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Abstract

Quantum networks, quantum nodes interconnected by quantum channels, offer powerful
means of secure communications and quantum computations. They are crucial elements in
a broad area of quantum technologies including quantum simulations and metrologies. In
particular, quantum links with satellites take the network into a global or greater scale, ex-
tending the capability of transmitting information. It also provides experimental platforms
of testing quantum physics in a relativistic regime. The realization of satellite-assisted
quantum networks requires devices that are interfaced with quantum optical channels to
satellites. This thesis discusses the development of four essential devices, three of which
are in line with Canada’s Quantum Encryption and Science Satellite (QEYSSat) mission.

First, polarization-entangled photon sources are developed to transmit one of the paired
photons over ground-based fiber-optic networks and the other over ground-to-satellite free-
space links. A practical and versatile interferometric scheme is designed and demonstrated,
which allows constructing highly non-degenerate sources with only conventional polariza-
tion optics. A method of directly producing entangled photon-pairs from optical fibers
without interferometers is studied with thorough numerical analysis to show feasibility of
experimental demonstration. An entangled photon source for the QEYSSat mission is con-
ceptually designed, and several key parameters to fulfill a set of performance requirements
are theoretically studied and experimentally verified.

Secondly, this thesis presents two characterization platforms for optical components
that are designed and implemented for the QEYSSat mission. One is to precisely measure
transmitted wavefronts of large optics including telescopes. A proof-of-principle experiment
is conducted with accurate modelling of measurement apparatus via three-dimensional ray-
tracing, and quantitative agreement between the experiment and simulations validates our
methodology. The other provides polarization characterizations for a variety of optical
components including lenses, mirrors, and telescopes with consistent precision. A de-
tailed description of subsystems including calibrations and test procedures is provided.
Polarization-test results of several components for the QEYSSat are discussed.

Third, quantum frequency transducers are developed for single-photon quantum key
distributions with QEYSSat links. The devices are designed to translate the wavelength
of single-photons emitted from quantum dot single-photon sources to QEYSSat channel
wavelength via four-wave mixing Bragg-scattering process. Two optical media are con-
cerned: a silicon nitride ring resonator and a photonic crystal fiber. Thorough numerical
simulations are performed to estimate the device performance for both cases. A proof-
of-principle demonstration of the frequency translation is conducted with a commercial
photonic crystal fiber.
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Finally, a quantum simulator, serving as a quantum node in satellite-assisted quantum
networks, is designed in a silicon nitride nanophotonic platform with cesium atoms. The
designed photonic structure tailors electromagnetic vacuum such that photon-mediated
forces between atoms causes collective motions mediating site-selective SU(2) spin-spin
interactions. A coherent spin-exchange rate between atoms and collective dissipation rate
of atoms are precisely estimated via finite-element time domain simulations. Furthermore,
two schemes of trapping atoms in the vicinity of the designed structure are studied with cal-
culations of potential energies and phonon tunneling rates. Experimental progress toward
realization of the proposed system is summarized.

The presented research activities of designing, analyzing, and implementing devices
demonstrates the readiness of satellite-assisted quantum networks. This work contributes
to creating quantum channels by entanglements with interfaces of various quantum systems
in line with a broader scope of establishing a global quantum internet and quantum space
exploration.
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Chapter 1

Introduction

1.1 My history at University of Waterloo

Over the past five years of my graduate study at University of Waterloo, I have been
given ample opportunity to pursue my research at two different groups: Ultracold Quan-
tum Matter and Light (UQML) led by Prof. Kyung Soo Choi and Quantum Photonics
Laboratory (QPL) led by Prof. Thomas Jennewein. My time at the UQML was full of
experiences to deepen my knowledge about fundamental atomic physics with lots of in-
puts about cutting-edge technologies in experimental atom and molecular optical (AMO)
physics, e.g., ultra-cold atomic gases in extreme-high vacuum. My research at the QPL
broadened the horizon of my knowledge in quantum optics and photonics as well as tech-
nical skills of developing devices for practical applications, e.g., versatile quantum light
sources and optical characterization tools, from conceptual designs to their prototyping.

In September 2016, I joined the UQML as a visiting scholar and started building elec-
tronics for Waveguide QED Lab. With circuit designs provided by my colleagues, Hyeran
Kong and Dr. Chang Liu, from Rydberg Lab, my role was to turn them into working
devices that power up and control external cavity diode lasers. In January 2017, I started
my master program and continued my research activities in the Waveguide QED Lab at
the UQML under the supervision of Prof. Kyung Soo Choi. My main responsibility was
to develop AMO experimental hardware, such as ultra-high vacuum (UHV) system, lasers,
and electromagnets. Hyeran Kong and Dr. Chang Liu shared their technical expertise with
me during the development. From the middle of 2017 to November, I was lucky to work
with Dr. Ying Dong and involved in designing and analyzing photonic crystal waveguides
to support his proposed waveguide QED scheme. Sainath Motlakunta introduced me Linux
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systems and helped me debugging numerical simulation tools during the designing acitivi-
ties. Prof. Kyung Soo Choi supported my first round of training sessions for fabrications of
the designed photonic devices in Quantum-Nano Fabrication and Characterization facility,
which was completed in February 2018. As experiments in the Rydberg Lab advanced
and needed more hands, I supported developments of laser systems with spectroscopies to
frequency- and phase-lock lasers in the Rydberg Lab. I completed my research activities at
the UQML and my master program was transferred to the Ph.D. program in April 2018.

In May 2018, I joined the QPL and participated in hardware developments for ground
stations in Canada’s Quantum Encryption and Science Satellite (QEYSSat) mission. The
research activities consist of various projects of designing, prototyping, and characterizing
photonic devices. From May to October 2018, I worked on the proof-of-principle demon-
stration for wavefront and polarization characterizations of various telescopes under the
guidance of Dr. Jean-Philippe Bourgoin and Dr. Brendon Higgins. The automation of
characterization platforms using a six-axis robot arm was completed in May 2019, and
Lindsay Bobcock and I initiated the operations of polarization tests on various optics in-
cluding commerically available telescopes and mirrors. I led polarization characterizations
supporting the development of optical components for the QEYSSat satellite payload led by
our industry team, Honeywell Canada Aerospace until March 2020. Kimia Mohammadi
joined in January 2020 and contributed to refinement of the characterization platform.
Kimia Mohammadi and I upgraded wavefront and polarization characterization systems in
early 2021, and use them to test a quantum transmitter telescope in April 2021.

I supported the development of fiber-based photon-pair source led by a visiting scholar
in the QPL, Mengyu Xie, from May 2018 to March 2019. Based on her characterizations
of photon pairs generated from polarization-maintaining fibers, I developed an entangled
photon source with a new interferometric scheme. With Ramy Tannous’s assistance, the
demonstration and characterization of the source was completed in December 2019. In
November 2019, Prof. Thomas Jennewein and I conceived the idea of using the new inter-
ferometer for an entangled photon source for the QEYSSat mission. A conceptual design
for photon generations and detailed designs including detection schemes were completed in
March 2020. Implementation of the designed source has been mainly led by my colleague,
Paul Oh, since May 2020.

In the QPL, my main thesis work was to develop a frequency transducer to interface
quantum dot single-photon sources with the QEYSSat link. This project was proceeded
in collaboration with Dr. Robin Williams’s group at National Research Council Canada
(NRC). In March 2019, I visited the NRC team to learn fabrication and characterization
processes. Dr. Khaled Mnaymneh provided me with a training session about various
equipments in the NRC nanofabrication facility. I designed ring resonators using numerical
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simulations of electromagnetism, which was completed in January 2020. From March
to September 2020, Covid-19 outbreak shut down all lab activities and also prevented
me from proceeding with the fabrication of the designed ring resonator at NRC. The
laboratory reopened in October 2020, and I carried out frequency translation experiments
with alternative media, i.e., photonic crystal fibers. My experimental activities ended in
June 2021.

I note that I will use “we” rather than “I” just as a convention in the remaining
chapters. I remark the statement of contributions at the beginning of every chapter to
avoid the ambiguity of credits.

1.2 Quantum networks

Quantum networks, quantum devices or objects interconnected through quantum chan-
nels, play a crucial role for scientific investigations and technological advancements in
a broad range of applications, including quantum computing, communications, metrol-
ogy, and fundamental scientific explorations. It was first conceptualized as a platform for
quantum transmission of information [62], and proof-of-principle demonstrations of ba-
sic building blocks have been performed with atoms and lasers in laboratories from late
1990’s to early 2000’s [156]. Over the past few decades, there have been several direc-
tions in the development of quantum networks. On the one hand, through significant
advances in quantum communications and quantum memories, the networks with longer
distances of quantum links have been pursued for secure communciations and enhancing
quantum computations [302]. On the other hand, considerable endeavors have been made
to achieve complex network connectivity in nanoscopic quantum networks to explore high-
dimensional quantum many-body dynamics [76]. This thesis concerns these two extrema
of quantum networks: primarily with enhancing ground-to-satellite quantum links for a
global quantum internet and the other with strongly interacting atoms applicable to a
fully programmable spin network. These two sectors of quantum networks have emerged
with their own motivations and potential applications, as illustrated in Figure 1.1 and in
the text that follows.

Current quantum technology is capable of constructing small-scale devices with lim-
ited capacity for dedicated tasks. For example, superconducting qubits and trapped ion
systems can perform quantum computing with tens of qubits and reasonabe connectivity,
surpassing the performance of conventional devices [242]. However, inevitable noise in
quantum gates limits the size of quantum circuits to 50–100 qubits, while more practical
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Figure 1.1: Quantum networks in different length scales with applications and potential
opportunities.

applications requires millions of qubits with fault-tolerant architecture [39]. In this so-
called Noisy Intermediate-Scale Quantum (NISQ) era, one of the approaches to establish
a larger scale and multi-functional quantum device is to form a network of such NISQ
devices by coherently interconnecting them with quantum links. Technological advances
in quantum communciations and memories may provide reliable quantum links between
distant locations on Earth. As opposed to classical links, the computational space scales
exponentially with the number of quantum links, which may be leveraged by distributing
computing tasks over multiple quantum nodes [290, 51, 48]. Conversely, remote users may
access centralized quantum processors via quantum-secured communications, forming a
quantum computing cloud infrastructure.

The networks formed with ground-satellite or inter-satellite links may provide a new
avenue of standardization of units as well as scientific tools to explore quantum phenom-
ena in space. For example, a global quantum network of atomic clocks may be formed
with inter-satellite links, serving as an united clock with quantum-limited precision and
quantum-secured accessbility from anywhere on Earth [160]. Also, the capability of trans-
mitting information over noisy channels allows extending the baseline of telescopes [105].
To this limit, the quantum network may be established with even further space objects such
as the Moon mainly for scientific purposes of testing the quantum theory in a relativistic
scale [250]. One of the feasible and near-term experiments is a Bell test with entangled
photon pairs under different gravitational fields. It is expected to witness entanglement
decoherence induced by gravitational field, originally proposed by Timoth C Ralph. Re-
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cently, such a Bell test between Earth and Moon has been conceived with entangled photon
sources placed at Lagrangian points [53].

The quantum network can also be established in a nanoscopic scale with natural quan-
tum objects such as atoms and ions. With quantum links created by coherent atom-light
interactions, the network effectively forms a quantum spin-network whose connectivity can
be engineered by active controls over the individual atom-light interactions. The control-
lable spin-network can then be used to efficiently emulate a complex many-body system
under investigation. Such an analogue quantum simulator has already been successfully
applied to solve problems in condensed matter physics [108, 61], and opened up a new
paradigm of engineering matters and probing deeply into the properties of exotic materi-
als. On the one hand, the concept of “photons engineered by matter and matter dressed
with photons” has been a principal theme to describe exotic quantum states of light and
matter. On the other hand, quantum information has become a key ingredient to describe
the nature of blackholes and spacetime from the perspective of low-energy theory, which
may provide insights toward a grand unified theory. Also, this small-scale yet flexible
quantum network provides powerful scientific tools to tackle practical but computation-
ally challenging problems such as electronic states of molecules in the subject of quantum
chemistry.

Broad impacts of quantum networks with a variety of applications has recently stim-
ulated the involvement of industry and government agencies [216]. Over the past several
years, quantum technology has been gradually transferred from laboratory to industry.
Several countries have already established metropolian quantum networks and industrial
quantum computers outperformed classical computers, i.e., quantum supremacy [17]. Fur-
thermore, collaborations between industries and academia has been pushing the limits of
the experimental capability to explore science with unprecedented complexity and physical
scale. This active and collective development of quantum technologies is often referred to
as the quantum revolution.

1.2.1 Quantum key distribution

Quantum key distribution (QKD) is the first quantum application and demonstrates point-
to-point quantum links using photons as quantum information carriers. It provides means
of sharing secret keys between two remote parties with information-theoretic security based
on quantum mechanical principles. Generally, secret key information is encoded in quan-
tum states of individual photons that are expected to be preserved throughout photon
transmission from one party to the other. Based on the superposition principle, the pho-
tons arrived at the other party inherently contains the information about the presence of
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eavesdroppers because measurements on photons inevitably disturb their original states
and leave traces. In the following, we briefly describe two of the most famous QKD proto-
cols. For more quantitative analysis of the two protocols, see reference [257].

BB84 protocol

The first QKD protocol was proposed by Charles Bennett and Gilles Brassard in 1984 [29],
namely the BB84 protocol. In the protocol, Alice sends Bob a photonic qubit which is
randomly prepared in one of the four states in two non-orthogonal bases, e.g., horizon-
tal, vertical, diagonal and anti-diagonal polarization states. Bob performs measurements
with randomly chosen basis of the qubits and record the qubit states. After the photon
transmission is completed, the two parties reveal the sequence of their bases used for the
qubit preparation and measurement through public communication channels, and keep the
results only when they used the same bases (i.e., sifting procedure), which results raw keys.
Then, Alice and Bob compare the portions of their raw keys to estimate the quantum bit
error rate (QBER), defined as a ratio of the error rate to the total photon-detection rate,
which represents the amount of information leaked to other channels including eavesdrop-
pers. If the QBER is above a certain threshold value, the channel is aborted and the raw
keys are discarded. Otherwise, the two parties proceed with classical error corrections and
privacy amplifications to extract final secret keys.

The implementation of the standard BB84 protocol requires true single-photon sources
to transmit the qubits, while attenuated lasers are much preferable in practice, i.e., weak
coherent pulses. However, the attenuated lasers inherently produces more than one photon
in each wavepacket. The multiphotons opens a way for an eavesdropper to obtain the
qubit information without leaving errors in the Bob’s measurements, such as a photon-
number splitting attack. Accounting such information leakage in the post-processing results
significant reduction of the secure key size at the end of the protocol, which also limits the
distance between the two parties.

In 2003, Hwang proposed employing decoy states to overcome the photon-number split-
ting attack. The decoy states were used to randomize the placement of the signal pulses,
which forces eavesdroppers to obtain information probabilistically. The idea was further
analyzed by Lo et al. in 2005 [185], and the formulated protocol is often called a decoy-
state BB84 protocol. The protocol introduces the decoy-state pulses to randomize the
mean-photon numbers of the pulse chain for the purpose of detecting the presence of eaves-
droppers. Meanwhile, the key generation is performed by following the original BB84. The
decoy-state method allows maintaining a high key-generation rate with attenuated lasers
as in the case of using true single-photon sources. The decoy-state BB84 has been one of
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the most popular QKD schemes and the decoy-state method has been applied for other
protocols such as twin-field QKD [107].

BBM92 protocol

The above BB84 protocol is often categorized into a prepare-and-measure scheme where
one of the two parties (Alice) encodes the information and transmit it to the other (Bob)
who performs measurements. The correlation of the secret key between the two parties
imposed by the state-preparation process at Alice or a third party. Such a correlation
can also arise from directly distributing entangled pairs shared between Alice and Bob.
In 1992, Bennett et al. proposed a QKD scheme, namely a BBM92 protocol [30], where
the photon-exchange process is performed by the measurements on the entangled photon
pairs at the two parties. The protocol is essentially equivalent to the BB84 protocol. The
photonic state preparation is achieved by projecting one of the entangled pairs onto one of
the four states via measurements of the other.

In 2003, Masato Koashi and John Preskill proved that the QKD with a source whose
average states are basis independent performs the same secure key rate as in the case of us-
ing single-photon sources [158]. More concretely, a basis-independent source produces the
output states that are invariant under the basis rotation. Remarkably, most of practical en-
tangled photon sources including parametric down-conversions produces basis-independent
photonic states. Based on their proof, the BBM92 protocol with practical entangled pho-
ton sources was further analyzed by Ma et al. in 2007 [196]. The analysis showed that the
entanglement-based QKD can tolerate higher channel losses than the decoy-state BB84
protocol.

Secret key rate, quantum bit error rate (QBER), and devices for quantum key
distributions

Generally, the secret key rate K = Rr is the product of the raw key rate R and the secret
fraction r [257]. Roughly speaking, the raw key rate and the secret fraction represents
the efficiency and accuracy of transmitting photons from one (Alice) to the other (Bob),
respectively. The raw key rate R = νη is mainly determined by the photon production rate
ν and the channel transmittance η. The secret fraction is mainly affected by the QBER,
and the low secret fraction means that photon-transmission channel is corrupted by either
noises or eavesdroppers (Eves). Mathematically, it is expressed as r = I(A : B)−IE where
I(A : B) = H(A) + H(B) −H(AB) = H(A) −H(A|B) is the mutual information of the
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raw keys A and B. Here IE is Eve’s information on the raw key of Alice or Bob and H is
Shannon entropy.

In the BB84 protocol, we assume that Alice uses a perfect single photon source (no
multiphotons, i.e., g(2) = 0) with the photon-production rate ν and a quantum random
number generator to prepare a sequence of polarization states. Then, the entropy of the
raw key is H(A) = H(B) = 1. Any imperfaction of the correlation H(A|B) of Alice’s
and Bob’s raw keys is characterized by binary entropy h(QBER) of the QBER, which also
estimates the Eve’s information IE = h(QBER). Therefore, the secret key rate can be
written as

K = (ν/2)η(1− 2h(QBER)). (1.1)

Here a factor of 1/2 accounts the sifting process.

The QBER is a key parameter in the implementation of any QKDs since it measures the
amount of the information leakage to other channels during photon-transmission process.
As discussed in the above example of the BB84 protocol, the QBER directly impacts the
length of the attainable secret key at the end of the protocol; the higher QBER results
the shorter secret key. The QBER resulting no keys K = 0 is called a threshold QBER
which depends on the protocols. The higher threshold QBER means better tolerance of
the protocol to the systematic errors. The threshold QBER for the BB84 protocol in
Equation 1.1 is around 11 %.

Any systematic errors in the preparation and measurement of photonic states con-
tribute to the increment of QBER. The measurement error includes dark-count rate of
photon detectors and other background noises. Therefore, for a given channel loss, the
achievable distance of quantum links highly depends on the performance of devices used
in the photon-exchange process. In polarization-encoded QKDs, as an example, the de-
gree of polarizations of the initially prepared state is the baseline of the QBER. The
polarization-extinction ratio of measurement devices and the misalignment of polarization
axes can increase the QBER. Also, if photon transmitters or receivers are lossy, the ran-
dom errors from the detector’s intrinsic noise can contribute to the QBER and dominate
over the signal. Therefore, the devices for the QKD is generally required for producing
highly pure states of photons and measuring them with minimal errors. Also, the high
photon-production rate is preferred to obtain a long distance of quantum links.

1.2.2 Quantum communications with satellites

One critical drawback of using photons in QKDs is the loss; the information simply dis-
appears, which limits the maximum distance between two parties. For example, typical

8



propagation loss 0.2 dB/km [1] of optical fibers limits the photon-transmission distance up
to about one or two hundreds of kilometers. Satellites have been considered as a necessary
piece to combat the limitations of existing terrestrial technology for quantum networks in
a global scale. This is mainly because the transmission loss scales quadratically with the
distance in space as opposed to the exponential scaling in optical fibers; once the photons
are outside of atmosphere, the transmission loss is only limited by diffraction because there
is no media to scatter the photons. Also, satellites orbiting around Earth are accessible
from anywhere on the ground, which makes it a promising candidate as global quantum
nodes interconnecting world-wide quantum devices.

Using satellites to mediate the quantum information exchange between distant nodes on
Earth has been conceived since the late 1990’s. One of the major-initiative investigations
is Space QUEST project in 2004 funded by European Space Agency. In 2007, entangled
photons were distributed over 144 km–distant parties through free-space channel across
islands [288], reaching distance longer than the thickness of atmospheric layers, which
clearly showed the feasibility of quantum communications using satellites. In 2016 August,
China’s Quantum Experiments at Space Scale (QUESS) mission successfully launched the
first quantum communication satellite, named Micius satellite, and demonstrated QKDs
in down-link configuration [179]. With the Micius satellite, the QUESS mission has further
accomplished the entanglement distribution over 1200 km [310], ground-to-satellite quan-
tum state teleportation [249], entanglement-based QKD between ground and satellite [311]
as well as between two 1120 km–distant nodes on the ground [312].

The global quantum network will ultimately be formed with a constellation of satellites
that are interconnected via photon exchange while mediating long-distance information
transmissions on the ground. According to the recent analysis by Brito et al. [42], a
number of satellites (>100) in conjunction with hubs features a notion of forming a robust
and scale-free network which allows the entanglement distribution between any two nodes
with only a few entanglement swappings. Such mass production of satellites requires cost-
effective development of small satellites such as micro satellites or CubeSats. There have
been a number of world-wide projects for miniaturized QKD satellites, as summarized in
references [28, 263].

1.2.3 Quantum Encryption and Science Satellite (QEYSSat)

In Canada, Quantum Encryption and Science Satellite (QEYSSat) mission funded by
Canada Space Agency (CSA) has been developing a set of technologies enabling quantum
key distributions between a micro satellite quantum receiver and ground stations [142, 259,
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238, 237]. Our QEYSSat Science Team at the QPL has been developing quantum light
sources together with a quantum optical ground station to be located at the University
of Waterloo. In parallel, our industry partner, Honeywell Canada Aerospace, has been
responsible for designing and constructing quantum payload hardware on the satellite as
well as an optical quantum ground station to be located at the CSA. The QEYSSat mission
is scheduled to launch in 2022.

The objectives of the QEYSSat mission are long-distance QKDs using a low-earth orbit
(LEO)-based satellite as a trusted node and long-distance entanglement tests. The QKD
will be performed with the well established BB84 and BBM92 protocols in an uplink con-
figuration where photons are sent from the ground to satellite. This reduces the onboard
complexity tremendously, resulting in a simple key distribution orbital node. Also, the up-
link allows testing various quantum sources on the ground with the satellite quantum link.
For example, our recent indoor-experimental study showed that quantum dot single-photon
sources performs better with satellite links than weak coherent pulse sources in BB84 QKD
protocol [55]. The comparison of quantum dot entangled photon sources with conventional
spontanous parametric down-conversions would also be an interesting subject to study in
terms of efficient entanglement distributions and quantum state teleportations [14].

It is worth noting that the QEYSSat spacecraft carries a secondary payload for high-
speed optical communications in addition to the primary QKD payload [259, 237]. Devel-
oped by Honeywell, the secondary payload is mainly motivated by market needs for LEO
constellation optical inter-satellite links. Thus, it is designed to compliant with low-cost
mass production methods while providing full duplex 10Gbps communication at inter-
satellite distances exceeding 6000 km. The secondary payload will support the QEYSSat
primary mission with a classical optical communication link to the ground.

1.2.4 Devices for quantum networks

In the context of global quantum internet, it has been conceived that quantum information
is not encoded to traveling photons due to inevitable photon loss unlike classical fiber-optic
communication where each optical pulse carries one bit via its intensity level. Instead,
the information is transmitted by a quantum state teleporation scheme where a Bell-
state measurement on one of the entangled qubits and a message qubit “teleports” the
information to the other qubit of the entangled pair [40, 51]. Then, two bits of classical
information will be used to reconstruct the original qubit by local unitary operations.
This also allows faithful transmission of fragile quantum information over noisy channel
via entanglement purification schemes. Therefore, the entanglement is the key resource of
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Figure 1.2: Devices for quantum networks with corresponding thesis Chapters. The de-
tailed description of each device is provided in the main text.

qauntum information transmission and processing tasks. The deterministic or on-demand
distribution of these resources with the ability of local storage and information processing
is a crucial technology in the development of quantum networks.

A fully functional quantum node is formed with multiple quantum devices that are
possibly built upon various physical platforms of stationary qubits. Photonic quantum
information can be coherently mapped to and read-out from the stationary matter qubits,
and it is commonly accepted that the quantum links will be formed by photon-transmission
channels. The whole assembly will eventually interface with optical quantum channels and
classical communications, as illustrated in Figure 1.2. The contents of this thesis may be
viewed as development of key devices for satellite-assisted quantum networks. Although
the quantum network is not completely realized here, the presented research tackles some
of major challenges in the pursuit of longer distance of quantum channels and higher
complexity of quantum networks for nodes. The thesis is organized in a way that each
chapter discusses one device with its own motivations and challenges.

Entangled photon sources

Entanglement is a key resource of quantum channels, and efficient entanglement distri-
bution over long distances is a very first step to establishing a global quantum network.
Every qubit transmission consumes an entangled pair, hence the production rate of the
entangled pairs is directly connected to the qubit transmission rate. Therefore, entangled
photon sources must be optimized for the best transmission of entangled pairs through
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optical channels. Also, practical and cost-effective implementations may be equally impor-
tant for scalability. There are commercial products, e.g., OZoptics and NuCrypt, that are
operational with fiber-optic networks. Recently, chip-scale entangled photon sources have
rapidly progressed with CMOS-compatible fabrications [224, 106, 60].

Chapter 2 discusses two distinct and practical schemes for polarization-entangled pho-
ton sources: one is based on a versatile interferometric setup and the other is a direct
production of entangled photon-pairs without any interferometers. Both were motivated
to distribute the entanglement over long distances using satellites. Theoretical analysis and
experimental demonstrations for both schemes are discussed. This chapter also presents
a conceptual design for an entangled photon source developed for the QEYSSat mission.
As an analysis for the designed system, the key experimental parameters was numerically
optimized to meet the required specifications.

Photonic transceiver

It is crucial to engineer quantum channels to preserve photonic quantum information and
to minimize the transmission loss of flying qubits. To be specific, photon transceivers must
be designed and constructed according to channel characteristics. In fiber-optic channels,
the photon loss is a pre-determined factor by the properties of manufactured optical fibers,
and much attention has been paid to enhance transmission bandwidths with wavelength-
division multiplexing scheme while suppressing Raman noises [81]. In free-space channels,
the photon loss is a variable or function of a geometry of photon transceivers and other
parameters. For example, one can reduce the loss by carefully designing and optimizing
transceiver telescopes and pointing systems. The development of an optical assembly
especially for ground-to-satellite free-space channels requires sophisticated designing and
testing process.

Chapter 3 describes our characterization infrastructure for optical components devel-
oped for the QEYSSat mission. Two critical properties of light for efficient transmission
of quantum information over free-space channels, i.e., wavefronts and polarizations, are
characterized. Fully automated, the wavefront measurement platform is capable of identi-
fying the error at the precision better than 0.01λ over a 20 cm aperture. The polarization
testbed is robotized for versatility of performing tests on various optical elements including
lenses, prisms, mirrors, and telescopes. In-depth discussions on the design of both testbeds
are provided with theoretical analysis and experimental verifications. The infrastructure
supported the development of hardware for a quantum satellite payload as well as optical
ground stations.
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Frequency transducers

Quantum frequency transducers are a necessary element to interface quantum nodes with
optical channels in a technology-independent manner. Photon sources and detectors some-
times do not operate at channel wavelengths. Also, the photon-acceptance wavelengths
and bandwidths of matter qubits are usually determined by the nature of materials be-
ing used. For example, it is well known that room temperature single-photon detectors
perform much better at visible and near infrared wavelengths (500 nm to 800 nm) than
telecom wavelength (1320 nm to 1580 nm). Also, InAsP/InP quantum-dot single-photon
sources operate at the wavelengths from 890 nm to 985 nm and solid-state quantum meme-
ories operate at distinct wavelengths ranging from 580 nm to 740 nm [318, 19]. Moreover,
interfacing superconducing qubits with optical photons has lately been an active research
topic.

The interface of flying qubits with stationary matter qubits via quantum frequency
translations plays an important role to create a global quantum internet. In particular,
quantum repeaters that are linked with satellites significantly enhance the capability of
distributing entanglements. Recent analysis showed that several entangled photon sources
on LEO satellites with realistic quantum memories (90 % storage-retrieval efficiency) on
the ground could provide the entanglement between two distant nodes over 20 000 km [36].

In Chapter 4, the design of quantum frequency transducers with silicon nitride ring res-
onators is described with ambition of single-photon quantum communications with satel-
lites in the QEYSSat mission. Theory of optical frequency translation with four-wave
mixings is formulated to study optimal conditions in optical waveguides and ring cavities.
A full package of numerical simulation program is described for thorough performance as-
sessment of the designed device. In addition, as an alternative approach, the four-wave
mixing process using photonic crystal fibers is theoretically studied and experimentally
demonstrated to perform the wavelength translation from 985 nm to 785 nm.

Interface between flying and stationary qubits

Local storage and processing of quantum information requires efficient interfacing of fly-
ing qubits with stationary matter qubits. The coherent information exchange between
the two qubits is obtained by conditioning strong light-matter interaction. Two common
approaches to enhance the interaction strength are to employ an optical cavity for longer
interaction time and to increase an optical depth of an ensemble of the matter qubits. The
cavity-assisted interaction may be understood as the modified electromagnetic vacuum
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stimulating the absorption or emission of photons with the quantum information embed-
ded in a specific mode or spin state. On the other hand, the ensemble of matter qubits may
collectively interact with electromagnetic quanta, and its interaction strength scales with
the square root of the number of the matter qubits. The former method tends to be more
commonly used for addressing the qubit-to-qubit information exchange in the scope of the
global quantum internet [221] whereas the latter has been popular in quantum metrology
to exaggerate the properties of the matter to be mapped onto photons such as in optical
lattice clocks [277].

With advanced techniques of engineering light-matter interactions in a unique nanopho-
tonic platform, Chapter 5 discusses the development of a programmable quantum spin net-
work. A novel waveguide QED system with neutral atoms in a photonic crystal waveguide
is proposed as an analogue quantum simulator for universal Hamiltonians [76, 70]. An
air-slotted photonic crystal waveguide is designed to support the proposed system, and
numerical simulations estimate atomic spin-spin interaction rate as well as system dissi-
pation rates at various experimental parameters, e.g., laser field detuning. Although the
main motiviation in Chapter 5 is to explore quantum many-body physics, the developed
quantum device can readily serve as a universal quantum processor.

1.2.5 Free-space channel for ground-to-satellite quantum link

In the development of devices for satellite-assisted quantum internet, it is essential to un-
derstand properties of free-space quantum channels and to set guidelines for designing ac-
cordingly. Photonic degrees of freedom must be carefully chosen to diminish decoherence
based on the channel properties. Also, the link budget is determined by the transmis-
sion loss together with the production rate of photon sources and background noises [18].
Moreover, an orbiting satellite causes limited contact time for exchanging photons and the
amount of background noises must be analyzed to keep a high signal-to-noise ratio during
the operation. The characteristics of free-space channels particularly for ground-to-satellite
links are briefly described in the following, while a comprehensive review in more general
free-space optics can be found in other literature [284].

Preferred photonic degrees of freedom

In 1969, D. H. Höhn reported experimental observations on polarizations of He-Ne laser
light after its propagation through atmosphere over 4.5 km [120]. The researcher injected
linearly polarized laser beam (1.2 mm beam diameter, extinction ratio > 107) and mea-
sured the degree of depolarization while monitoring intensity variations associated to the
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Figure 1.3: Characteristics of optical free-space channels for ground-to-satellite quantum
link. (a) Atmospheric transmission spectrum at a typical rural location for propagation
at zenith simulated by LibRadTran with average 30 % Earth albedo and 5 km visibility.
(b) Contour plots of free-space uplink attenuation in decibels as a function of diameters
of photon-transmitter DT and reciever telescopes DR. (c) The uplink attenuation α as a
function of Fried’s parameter r0. (d) Exemplary trajectories of International Space Station
(ISS) simulated by SGP4 algorithm with Two-line element (TLE) provided by North Amer-
ican Aerospace Defense Command (NORAD). (e) Spectra of various artificial light sources;
the data were obtained from http://ngdc.noaa.gov/eog/night_sat/spectra.html.

atmospheric turbulence. The results showed surprisingly small depolarization (< 10−5) in
the regime of “intermediate” turbulence, indicating that atmosphere is a nearly isotropic
optical medium. Indeed, the polarizations of photons have been one of the most popu-
lar photonic degrees of freedom in free-space quantum communications. In our QEYSSat
mission, as well as other satellite missions (e.g. Micius), QKD and entanglement test is
planned to be conducted by the exchange of polarized light.
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Recently, there have been experimental demonstrations of using other photonic de-
grees of freedom for free-space quantum communications such as orbital angular momen-
tums [266] and time bins of light [144]. Especially, unlike polarization (spin) states, the
arrival time of photons can be viewed as an external degree of freedom directly coupled
to reference frames or spacetime curvatures via Lorentz transformations, which may be
leveraged for fundamental tests of quantum mechanics with satellite-assisted quantum
networks [250]. In 2016, Vallone et al. conducted an experiment where time-bin encoded
laser pulses were sent to and retroreflected from orbiting satellites named Ajisai and Stella,
and measured kinematic phases from single-photon interferences [289]. Although the ex-
periment did not show general relativistic effects due to technical limitations, the attempt
to probe phase information from single-photon interference in large scale may be viewed
as a milestone toward a full realization of the famous Colella-Overhauser-Werner experi-
ment [68, 321].

Transmission loss

Transmission loss is one of the most critical and limiting factors for long-distance quantum
links. There are mainly three contributions in free-space channels: atmospheric scatter-
ing, atmospheric turbulence, and light diffraction. The first two factors are determined by
intrinsic properties of the atmosphere and the last one is due to the nature of electromag-
netic wave. Note that the dominant factors to limit the link distance are the atmospheric
scattering and turbulence in ground-based free-space optical communications, whereas in
ground-to-satellite or inter-satellite links, the diffraction plays an equally important role
as the vacuum-propagation distance becomes longer in space. Furthermore, it is a tun-
able parameter by the geometric settings of photon transceivers; the divergence angle of
diffraction-limited light θT = λ/DT at wavelength λ is determined by incident aperture
diameter DT .

Figure 1.3(a) shows an exemplary atmospheric transmission as a function of wavelength.
This is calculated by open-source library of radiative transfer simulations (LibRadTran) for
propagation at zenith in a typical rural location with 5 km visibility and 30 % Earth albedo.
The overall tendency of higher transmission at longer wavelength stems from Rayleigh
scattering and the fine structure originates from various absorption by mainly oxygens and
water molecules. Obviously, the channel wavelength must avoid those absorption lines. In
consideration with single-photon detection efficiency and light diffraction, the wavelength
range of quantum communications in the QEYSSat mission is chosen from 780 nm to
795 nm [38].

In addition to the scattering process, the propagating light through the atmosphere
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experiences phase shifts across the transverse electric field profile. Irregular thermal dis-
tribution and winds vary local atmospheric density, and thus individual segmants of the
optical wavefront experience different phase shifts that are time-dependent. In the far
field, this causes beam scintilation and deflections which acts as additional losses. This
randomization of the wavefront can be modelled as the reduction of (averaged) spatial
coherence characterized by the so-called Fried parameter r0. Then, the additional loss may
be treated as diffraction of the reduced effective aperture with a diameter r0, i.e., additional
divergence angle θatm = λ/r0 caused by atmospheric turbulence.

After accounting for the atmospheric turbulence and the diffraction of incident light,
the link attenuation factor α for propagation distance L as the ratio of power measured at
transmitter and receiver telescopes may be expressed as [18]

α =
L2 (θ2

T + θ2
atm)

D2
R

1

TT (1− LP )TR
10

αatm
10 , (1.2)

where DR and αatm are the diameter of the aperture at receiver and the attenuation of
the atmosphere in decibels, respectively. Here, the transmittance of optical terminals at
the transmitter TT and receiver TR is included and the LP denotes additional losses due
to pointing errors.

Figure 1.3(b) shows contour plots of the link attenuation factors as a function of the
transmitter and receiver apertures for an exemplary ground-to-satellite link under nominal
conditions of L =500 km, TT = TR = 0.8, LP = 0.2, r0 =9 cm, αatm =4 dB. With trans-
mitter and receiver aperture of DR ∼ DT ∼ 20 cm, the link attenuation factor is found
to be around 35 dB. This means that, if a source emits photons at a 1 GHz rate from
the ground, the photon-detection rate at the satellite would be around 1 MHz which is far
beyond the typical dark-counting rate of silicon-based single-photon detectors. Another
interesting observation is that the increment of transmitter aperture diameter does not
improve the photon transmission after a certain value for a fixed receiver aperture. For
example, for a receiver with DR=25 cm the link attentuation factor becomes nearly con-
stant at α =32.5 dB when the transmitter diameter is larger than 30 cm. This is mainly
attributed to the atmospheric turbulence effectively reducing the transmitter aperture to
a constant value. The dependency of the attenuation factor to the Fried parameter r0 for
a fixed receiver telescope DR =25 cm is shown in Figure 1.3(c).

The turbulence-induced loss could be mitigated by employing adaptive optics. It is
one of the active research areas in free-space quantum communications and some of the
applications are QKDs in daylight [102] and interference-based QKDs such as measurement
device independent QKDs [52]. This topic is beyond the scope of this thesis, and theoretical
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analysis on the advantages of using adaptive optics in ground-to-satellite links is provided
in reference [244].

Contact time

It is worth emphasizing that satellite quantum links exhibit a finite operating time. It
highly depends on satellite orbits and passages. For example, when satellites are out of
sight, the links are simply not available. Also, in some cases, e.g., bad weather, low elevation
angle may cause too high loss for the link to be operational for QKDs. Figure 1.3(d) shows
two passages of International Space Station (ISS) that were observable from University of
Waterloo on the same day. The trajectories were calculated from Two-Line Element via
SGP4 propagator provided by North American Aerospace Defense Command. The two
ISS passages represent good and bad cases of the orbits in the QEYSSat mission. The
satellites were within the line-of-sight only for about 5 minutes. Also, when the satellite
appears at low-elevation angles, the closest distance between the transmitter and satellite
becomes almost twice as long as when it appears at zenith.

Background noise

For operations at night, the main source of background noises in photon detections is
artificial light on Earth. In the QEYSSat mission, a telescope at a satellite payload has a
0.3° field-of-view [237]. Assuming that the satellite is 500 km away from the transmitter,
the telescope would recieve light from a circular region with radius around 2.6 km on Earth.
Although it is collimated, the quantum signal is vary faint compared to street light, and
therefore great care must be taken in selecting the location of transmitters. Also, the
spectral windows of quantum signal must be chosen to avoid a potential overlap with the
spectral radiance of aritifical lights, as shown in Figure 1.3(e). It was found that most of
commonly used lights, e.g., LED street lights and Sodium vapour lamps, are not bright in
the QEYSSat channel wavelength (780 nm to 795 nm). Nonetheless, one must verify the
darkness near ground stations with experimental measurements.
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Chapter 2

Polarization-entangled photon
sources for ground-to-satellite
quantum links

In this chapter, we design and demonstrate practical and phase-stable polarization-entangled
photon sources for distributing entanglements over ground-to-satellite quantum links. We
develop a novel interferometric setup which is suitable for highly non-degenerate photon
sources without requiring customization of polarization optics and exhibits an excellent
phase stability. We also investigate directly producing polarization-entangled photons from
conventional optical fibers. At the end of this chapter, we present our conceptual design
of the source to be used for the QEYSSat mission.

The content of this chapter was published in Quantum Science and Technology and
Optics Express:

1. Youn Seok Lee, Mengyu Xie, Ramy Tannous, and Thomas Jennewein. Sagnac-type
entangled photon source using only conventional polarization optics. Quantum Sci.
Technol. 6 025004 (2021) [171]

2. Mengyu Xie, Youn Seok Lee, Ramy Tannous, Guilu Long, and Thomas Jennewein.
Roles of fiber birefringence and Raman scattering in spontaneous four-wave mixing
process through birefringent fiber. Opt. Express 29(20), 31348-31363 (2021) [308]

I am allowed by the policies of Quantum Science and Technology, Optics Express, and by
permision from my co-authors to republish this work here.
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Statement of contributions

� Polarization-entangled photon source using only conventional polariation
optics
Prof. Thomas Jennewein and I conceived the idea of the interferometric scheme.
I performed the theoretical analysis as well as experimental demonstration. Ramy
Tannous and Mengyu Xie contributed to generating photon pairs from polarization-
maintaining fibers.

� Polarization-entangled photon source without optical interferometer
Prof. Thomas Jennewein and I conceived the idea. I performed the theoretical
analysis as well as experimental demonstration.

� Toward ground-to-satetllite entanglement distribution
Prof. Thomas Jennewein and I conceived the conceptual design of the polarization-
entangled photon source for the QEYSSat mission. I carried out theoretical analysis
and developed the Matlab code to estimate absolute pair-emission rates as well as
optimal beam waists in nonlinear crystals.

2.1 Introduction

Polarization-entangled photon source (PPS) is a quantum optical device which has con-
tributed to many scientific advances in quantum information science. It played a central
role in merging quantum optics with information science, and provided an experimental tool
for many proof-of-principle demonstrations for quantum computational gates and quantum
communication protocols. Also, it enabled experimental demonstrations that the quantum
theory is incompatible with local realism via the violation of Bell’s inequality [260, 98],
which offered insights to on-going discussions in the interpretations of the quantum me-
chanics [153]. PPSs have been an important item in laboratories studying discrete-variable
quantum optics. Many of the key components are nowadays commercially available, and
the practical implementation with minimal budget is an important aspect in the field.

Recently, PPSs have also been taken outside of the well regulated environment optical
labs and utilized in outdoor experiments. This is mainly motivated by two ambitions: test-
ing quantum entanglement in gravity and free-space quantum communications. It requires
sophisticated designing and precise engineering of the source for its high robustness and
reliable operation with proper packages to protect the internal optomechanical setup. In
2016, researchers at Institute for Quantum Optics and Quantum Information in Vienna has
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placed a PPS in the free fall and rotation of the crate for entanglement tests in accelerated
reference frame [89]. In the same year, researchers at Centre of Quantum Technologies in
Singapore reported an assembly technique that made a photon-pair source survive from
the explosion of a rocket [280]. In 2020, the same group demonstrated the polarization
entanglement in an orbiting nano-satellite [294].

With the growing interest of entanglement distributions over free-space channels, we
summarize some of the preferred settings of PPSs. First, optical polarization is a good
photonic degrees of freedom for encoding quantum information due to its minimal de-
coherence [120]. Most of the reported experimental demonstrations as well as proposals
for quantum links between satellites and ground stations utilized the polarization of pho-
tons [263]. Secondly, the wavelength of one of the pairs which is sent through free-space
channels is preferred to be from 780 nm to 810 nm. This wavelength range was found to be
an optimal zone in our previous study [38], which was mainly deduced from the trade-off
between photon loss by Rayleigh scattering and light diffraction as well as photon-detection
efficiency of silicon-based single-photon detectors. Additionally, the narrow spectral band-
width is desired to efficiently filter out the unwanted stray light from various objects such
as Sun, Moon, and street light. Finally, high generation rate and device throughput are
required for long-distance links, which is applicable for fiber-optic channels as well.

2.2 Polarization-entangled photon source using only

conventional polariation optics

2.2.1 Motivation

The main motivation of the work presented in this section is to develop a PPS which
can directly distribute polarization-entangled photons over both ground-to-satellite quan-
tum link and optical fiber-based network. As stated before, the photon transmission for
free-space quantum channels is optimal at near-infrared (780 nm to 810 nm) [38] wave-
lengths, whereas telecom wavelengths (1310 nm to 1550 nm) are optimal for optical fiber
channels. This poses the requirement of highly non-degenerate PPSs, which have been
implemented with various nonlinear materials and schemes, such as a dispersion-shifted
fiber in Michelson-interferometer [177], periodically poled potassium titanyl phosphate in
a so-called sandwich configuration [233, 129] and in a Sagnac-interferometer [119], and
periodically poled lithium niobate in a Sagnac-interferometer [256].

Sagnac-type entangled photon sources (Sagnac-EPS), as depicted in Figure 2.1(a), have
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Figure 2.1: A schematic diagram of two existing interferometric schemes for polarization-
entangled photon sources: (a) Sagnac-type entangled photon source (Sagnac-EPS) and (b)
Mach-Zehnder-type entangled photon source (MZ-EPS); PBS, polarization beam splitter;
HWP, half-waveplate; BD, beam displacers. Both interferometers superpose two orthong-
onally polarized pair-generation processes, producing polarization entangled photons. We
consider spontaneous parametric down conversion process with a type-I phase-matching
condition as an example. The HWP and PBS are required to operate at two or three
distinct wavelengths (i.e., pump field and photon pairs) in Sagnac-EPS. In the MZ-EPS,
the two orthogonally polarized pair-production processes are spatially saparated.

been one of the most popular methods due to their intrinsic phase stability and versatil-
ity [155]. A variety of nonlinear optical media including nonlinear optical fibers, photonic
crystal fibers, bulk- and waveguide-type periodically poled nonlinear crystals, and atomic
vapour cells have been employed [176, 86, 85, 94, 180, 16, 292, 207, 229]. However, a
typical Sagnac-EPS requires polarization optics working in at least two, sometimes three,
very distinct wavelengths, i.e., pump and photon pairs. The customization of polarization
optics for highly non-degenerate photon pairs is technically demanding and costly, and
its performance typically limits the quality of the polarization-entanglement. Sauge et
al. [256] demonstrated a non-degenerate entangled photon source by unfolding the Sagnac
loop into two different loops: one for pump (532 nm) and idler (1550 nm) photons and
the other for signal (810 nm) photon. This unfolded Sagnac scheme, which is originally
proposed by Fiorentino et al. [91], provides flexibility in the choice of the wavelength with-
out the customization of polarization optics. Recently, the unfolded Sagnac-like entangled
photon source was implemented for the randomness extraction from Bell violation [261].
However, the scheme loses the intrinsic phase stability of an original Sagnac-EPS due to
the separate optical paths for the signal and idler photons. On the other hand, Hentschel
et al. [119] demonstrated an original Sagnac-EPS by replacing a polarization beam split-
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ter and a half-waveplate with a Glan-Thompson polarizer and a periscope, respectively.
In their setup, a custom-designed Glan-Thompson polarizer is required to avoid angular
dispersions and the optical alignment is relatively tedious.

Mach-Zehnder-type entangled photon sources (MZ-EPS) with two beam displacers have
recently become popular [90, 84, 260, 123, 187]. The main advantages of this design are
the simple alignment procedure and the compactness, while the monolithic configuration
exhibits a high phase stability, as shown in Figure 2.1(b). In addition, the MZ-EPS takes
full advantage of the high polarization extinction ratio of beam displacers over a wide range
of wavelengths. However, since the photon-pair production processes occur in two different
optical paths, one may have to prepare two identical nonlinear materials or miniaturize
the waveplates used. More importantly, the MZ-EPS cannot be easily adapted for fiber-
or waveguide-based nonlinear media due to the requirement of their guided modes to be
matched.

In this section, we develop a new interferometer configuration for PPSs which is suitable
for various optical nonlinear materials over a wide wavelength range without the need for
customized polarization optics. The interferometer is configured such that a Sagnac loop is
placed inside a Mach-Zehnder interferometer that is formed by two beam displacers. The
polarization states of the pump and photon pairs are split and recombined by two beam
displacers as in MZ-EPS, and at the same time, two pair-production processes are kept
in a common optical path as in Sagnac-EPS. Thus, the designed entangled photon source,
which we call a beam displacement Sagnac-type entangled photon sources (BD-Sagnac-
EPS), takes advantage of both an original Sagnac-EPS and MZ-EPS. We demonstrate the
designed interferometer with the pulsed generation of polarization-entangled photon pairs
at the wavelengths of 764 nm and 1221 nm via spontaneous four-wave mixing (SFWM) in a
commercial-grade polarization-maintaining fiber (PMF) by using only standard commercial
optical elements.

2.2.2 Conceptual design of the BD-Sagnac-EPS

The conceptual design of the novel BD-Sagnac-EPS is depicted in Figure 2.2. Two beam
displacers (BD1 and BD2) form a Mach-Zehnder interferometer; one (BD1) is for the
input port of pump light and the other (BD2) is for the output port of the generated
photon pairs. The diagonally polarized pump light enters the interferometer, and the
BD1 converts the two orthogonal polarizations into two parallel optical paths, |H〉P and
|V 〉P . By connecting one path to the other, the Sagnac loop is formed inside the Mach-
Zehnder interferometer (blue path: clockwise and red path: counterclockwise). The optical
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Figure 2.2: A schematic drawing of the conceptual design for beam displacement Sagnac-
type entangled photon source; BD, beam displacers; HWP, half-waveplate; DM, dichroic
mirror; o-ray, ordinary ray; e-ray, extraordinary ray. Here, we consider a type-0 phase-
matching condition as an example of the pair-generation process. The implementations for
type-1 and type-2 phase-matching conditions are discussed in the main text.

nonlinear medium is placed at the center of the Sagnac loop where the correlated photon
pairs (namely, signal and idler) are generated via a spontaneous parametric amplification
process, e.g., a spontaneous parametric down-conversion and four-wave mixing. As an
example, we consider the medium where type-0 phase-matching conditions are satisfied in
two orthogonal polarization axes: |V 〉P → |V 〉S|V 〉I (clockwise) and |H〉P → |H〉S|H〉I
(counterclockwise) 1. Here, the subscripts P , S, and I stand for the pump, signal, and

1The phase-matching condition in two orthogonal polarization directions can be implemented in various
ways. One example is to place two identical nonlinear crystals that are cross-oriented to each other [274].
Also, one may utilize nonlinear media which naturally satisfy the phase-matching condition in both polar-
ization axes such as an atomic ensemble [229]. As for the fiber-based or pigtailed media, the two ends of
the fiber can be twisted such that the two pump polarizations are aligned to the phase-matching directions
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idler photons, respectively. As the wavelengths of the generated photons are different from
that of the pump, the two orthogonally polarized photon pairs are spectrally filtered out
using a dichroic mirror which in our case was implemented with a standard bandpass filter,
and exit the Sagnac loop 2. Then, the BD2 recombines the two photon pairs into a single
spatial mode. The superposition of two pair-production processes yields the polarization-
entangled state, |Φ+〉 = (|V 〉S |V 〉I + |H〉S |H〉I) /

√
2.

Beam displacers are made of uniaxial birefringent materials where refractive indices
between ordinary and extraordinary rays are different. The refractive index discrepancy
for a few centimeter beam displacer yields an optical path length difference that is large
enough to timely separate the photons’ wavepackets of two polarization modes, i.e., a
temporal walk-off. To make the optical path lengths balanced within the interferometer,
the temporal walk-off caused by the BD1 must be compensated at the BD2. In this
example of the type-0 phase-matching condition, a half-waveplate is introduced after the
first beam displacer in order to flip the pump polarization such that ordinary/extraordinary
ray at the first beam displacer experiences the extraordinary/ordinary path at the second
beam displacer. Note that for the type-1 phase-matching condition, the interferometer is
balanced without the half-waveplate in Figure 2.2.

However, for non-degenerate entangled photon sources, the three photons, i.e., pump,
signal, and idler, for each polarization mode propagate through the beam displacer at dif-
ferent speeds and refraction angles due to its chromatic dispersion. This causes additional
spatial and temporal walk-offs that must be compensated before or after the interferometer
appropriately. As illustrated in Figure 2.3, the spatial walk-off decreases the fiber-coupling
efficiency of the entangled photon pairs and the temporal walk-off degrades the entangle-
ment quality due to the imperfect overlap between the photon wavepackets in the ordinary
and extraordinary paths [189]. Furthermore, the phase shifts caused by the temperature
variation are different for the three photons due to the chromatic dispersion, which may
impact the stability of the interferometer significantly. In the following, we estimate the
walk-offs and the temperature-dependent phase shift of the entangled state, for different
uniaxial birefringent crystals.

First, we estimate the spatial walk-off ∆dS(I) by calculating the refraction angles ψ

at both ends.
2This could also be realized by a standard notch filter centered at the pump’s wavelength. In this case,

the incident pump light is reflected and the generated photon pairs are transmitted. Note that a precise
spectral filter or dichroic mirror is not required because the pump wavelength is usually far apart from the
photon-pair’s wavelengths in parametric down-conversion and four-wave mixing process.
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Figure 2.3: Spatial and temporal walk-off due to the chromatic dispersion of beam dis-
placers (BD1 and BD2). The photons generated from an optical nonlinear medium in the
Sagnac loop have different wavelengths from the incident pump light, and therefore they
pass through the BD2 with different refractive angles and group velocities.

between ordinary and extraordinary rays in the beam displacers [222], as expressed by

tan (ψ) =
(n2

e − n2
o) cos(θ) sin(θ)

n2
e cos2(θ) + n2

o sin2(θ)
, (2.1)

where θ is the angle between the optical axis and the wavevector of the incident light. Here,
no and ne are denoted as the ordinary and extraordinary refractive indices, respectively.
From the Sellmeier equation for different birefringent materials, the spatial walk-off is
calculated for the optical axis aligned at the angle of 45° with respect to the wavevector of
incident light:

∆dS(I) = L tan (ψP )− L tan
(
ψS(I)

)
, (2.2)

where L is the length of beam displacers and ψP (S,I) is the refraction angle of the pump,
signal, and idler photons, respectively.

Secondly, to estimate the temporal walk-off ∆TS(I), we consider the arrival time of the
photon pairs at the end of the BD2 after traveling through the ordinary and extraordinary
paths of the interferometer. These arrival times for signal and idler photons are referenced
from when the pump pulse departed the front of the BD1 and can be expressed as

TS(I),o(e) =
le(o)(λP)

vg,e(o)(λP)
+

lo(e)(λS(I))

vg,o(e)(λS(I))
, (2.3)

where le(o) = L/ cos(ψ) is the physical optical path length for the extraordinary (ordinary)
light of the beam displacer and vg,e(o)(λP (S,I)) is the group velocity of the extraordinary
(ordinary) light at the wavelength of the pump, signal, and idler photons, respectively.
Note that the group velocity for the extraordinary ray was calculated from the effective
refractive index neff, defined as

1

n2
eff

=
sin2(θe)

n2
e

+
cos2(θe)

n2
o

, (2.4)
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where θe = ψ+θ is the angle between the optic axis and the wavevector of the extraordinary
ray. Then, the temporal walk-off can be calculated by the arrival time difference between
ordinary and extraordinary light,

∆TS(I) = TS(I),o − TS(I),e. (2.5)

Finally, the temperature-dependent phase shift is estimated for the entangled state
which can be written as

|Φ+〉 =
1√
2

(
|V 〉S |V 〉I + eiφ(λ,T ) |H〉S |H〉I

)
. (2.6)

Here, the φ(λ, T ) is the relative phase between the clockwise and counterclockwise opti-
cal paths. As for the optical elements that lie inside the Sagnac loop, the temperature-
dependent phase shift can be negligible due to the self-compensation effect [119] and we
ignore the phase shift due to the waveplate after the first beam displacer because of its
thickness. Then, the relative phase can be expressed as

φ(λ, T ) = 2φe(λP ) + φo(λS) + φo(λI)− (2φo(λP ) + φe(λS) + φe(λI))

≡ 2∆φ(λP )−∆φ(λS)−∆φ(λI).
(2.7)

Here, the factor of two for the pump’s phase shift comes from the fact that in the four-wave
mixing process two pump photons are converted to the signal and idler photons. It is worth
to note that the phase shift difference between the ordinary and extraordinary rays ∆φ(λ) =
φe(λ)−φo(λ) for signal and idler photons are compensated by the pump-photon. This is the
manifestation of the self-compensating effect of the Saganc-interferometer [119]. In fact, our
designed interferometer can be viewed as an unfolded Sagnac interferometer: a polarized
beam splitter is replaced by two beam displacers, and it maintains the inherent stability
of the Sagnac interferometer. The temperature-dependent phase shift is characterized by
the derivative of the phase shift with respect to the temperature ∂φ/∂T . Each term can
be expressed in terms of the thermo-optic coefficient and the thermal expansion coefficient
as

∂φ

∂T
=

2π

λ
L(T )

[
∂n(λ, T )

∂T
+ n(λ, T )α

]
, (2.8)

where α is a thermal expansion coefficient. Again, the thermo-optic coefficient for the
extraordinary ray is derived from the formula of the effective refractive index 2.4.

∂n

∂T
=

∂no
∂T
ne + no

∂ne
∂T√

n2
o sin2(θe) + n2

e cos2(θe)
+ none

2no
∂no
∂T

sin2(θe) + 2ne
∂ne
∂T

cos2(θe)

(n2
o sin2(θe) + n2

e cos2(θe))3/2
(2.9)
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Table 2.1: The spatial, temporal walk-off, and temperature-dependent phase shift caused
by chromatic dispersions from different materials for two beam displacers in BD-Sagnac-
EPS. The Sellmeier equations no(e), thermo-optic coefficient dn/dT , and thermal expansion
coefficient α for calcite and α-BBO are obtained from [228]. Those parameters for YVO4

were from [255]. Note that in [255] the thermo-optic and thermal expansion coefficients are
available at the wavelength of 0.9 µm, 1.1 µm, and 1.3 µm. We applied a linear interpolation
and extrapolate to obtain the values at the wavelength of 764 nm, 940 nm, and 1221 nm.

Material ∆TS,∆TI (ps) ∆dS,∆dI (mm) ∂φ/∂T (°/K)
Calcite -0.20, 0.06 -0.07, 0.09 -7.00
α-BBO -0.18, 0.15 -0.01, -0.01 -0.97
YVO4 1.35, -0.93 0.07, -0.06 -0.86

It is worth noting that one can design the beam displacers by cascading two or more
complementary birefringent materials with the carefully chosen length ratio such that the
first-order temperature-dependence of the phase shift vanishes [72]. However, in our analy-
sis, we restrict our scope to the two beam displacers with the same length and birefringent
material for the practical implementation of the BD-Sagnac-EPS.

We demonstrate our design by generating photon pairs at 764 nm and 1221 nm via
SFWM driven by the pump light at 940 nm. The spatial ∆TI , temporal walk-off ∆TS,
and the temperature-dependent phase shift ∂φ/∂T are calculated for three common bire-
fringent materials, i.e., calcite, α-BBO, and YVO4, for 40 mm–long beam displacers at the
wavelengths of the photon pairs. The results are summarized in Table. 2.1. We found that
the temperature-dependence of the phase shift is less than 0.04π/K for the three materials
and the YVO4 is the most promising candidate in terms of thermal stability. As the tem-
poral walk-off is relatively easy to compensate by birefringent materials in comparison with
the spatial walk-off, the α-BBOs is also a good choice. However, in our demonstration,
we used two calcite beam displacers due to the availability of these components at our
facilities.

After accounting for the spatial and temporal walk-off, as well as the temperature-
dependent phase shift, here we summarize the main advantages of the BD-Sagnac-EPS.
First, the setup does not require any customized polarization optics because pump and
photon pairs do not share any common polarization optics. In fact, our demonstration
consists of all commercial off-the-shelf optical elements. Protected-silver coated mirrors
have a nominal reflectivity of greater than 97 % for wavelengths between 0.450µm to 7 µm
while the two identical calcite beam displacers exhibit extinction ratios of 100,000:1 over
wavelengths between 0.200 µm to 3.5 µm, which makes the setup suitable for highly non-
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degenerate polarization-entangled photon pairs. Secondly, the interferometer is symmetric
and the optical path lengths are balanced for two orthogonal polarization states by the
Sagnac loop, and therefore pulsed operation can be readily achieved. Third, the alignment
procedure is easier than for typical Sagnac-type sources due to the fact that the optical path
of the incident pump light and the emitted photon pairs can be individually controlled,
meaning that the optical paths for the pump and photon pairs do not have to be on the same
plane. Finally, our design is applicable for as broad range of optical nonlinear media as with
typical Sagnac-EPS, including an optical nonlinear bulk crystal, nonlinear optical fibers,
and periodically poled nonlinear waveguides. Furthermore, our design is not limited to the
type-0 phase-matching condition described above, as type-1 and type-2 phase-matching
conditions can also be implemented with minor modifications. For example, the type-
1 condition can be easily implemented by removing the half-waveplate. For the type-2
condition, one may add one or two more beam displacers to rearrange the polarization
components at the output, as demonstrated in other works [260, 123].

2.2.3 Experimental setup

We experimentally implement our design and generate non-degenerate polarization-entangled
photon pairs via SFWM in a commercially available PMF (HB800G, Thorlabs). A schematic
of the experimental setup is presented in Figure 2.5. Diagonally polarized pump light from
a mode-locked laser, operating at a wavelength of 940 nm with a pulse duration of 3 ps and
the repetition rate of 76 MHz, is split into two optical paths with horizontal- and vertical-
polarization by 40 mm-long calcite beam displacer. The pump light passes through a
bandpass filter (940 nm, FWHM = 10 nm) and enters the Sagnac loop. A 20 cm-long PMF
is used as the optical nonlinear medium. The PMF is twisted by 90° such that its slow
axes of each end are aligned to two counter-propagating pump polarizations. Correlated
photon pairs are generated at wavelengths of 764 nm and 1221 nm via SFWM, and the
phase-matching condition is assisted by the birefringence of slow- and fast-axis of PMF
[86, 269]. The PMF has neither any active temperature stabilization nor thermal insula-
tion. The generated photons are reflected by the bandpass filter centered at the pump’s
wavelength, and then recombined into a single spatial mode by the identical calcite beam
displacer. The signal and idler photons are separated by a dichroic mirror, coupled into
single-mode fibers, and then detected by a Silicon-based single-photon detector (Excelitas,
SPCM-AQ4H, Detection Efficiency ≈ 55 %) and superconducting nanowire single-photon
detector (Quantum Opus, Opus One, Detection Efficiency ≈ 80 %), respectively. Note
that we used bandpass filters for the signal (770 nm, FWHM = 10 nm) and idler (1220 nm,
FWHM = 25 nm) in front of the each single-mode fibers in order to block stray lights such
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Figure 2.4: A schematic drawing of the experimental setup for the demonstration of the
new interferometer design. Correlated photon pairs are generated at the wavelength of
764 nm and 1221 nm from 20 cm-long PMF that is pumped by a mode-locked picosecond
pulse laser (940 nm, 76 MHz, 3 ps). The PMF is placed at the center of Sagnac loop and
twisted by 90°, such that the slow-axis is aligned to pump polarizations. The generated
photon pairs exit the Sagnac loop upon the reflection by a spectral bandpass filter; BD,
40 mm-long calcite beam displacer; F, bandpass filter; H, half-wave plate; P, linear po-
larizer; M, protected-silver-coated mirror; DM, dichroic mirror; SMF, single-mode fiber;
SNSPD, superconducting nanowire single-photon detector; Si-SPD, Silicon-based single-
photon detector; TCSPC, time-correlated single-photon counter.

as Raman-scattered lights. The polarization correlations are analyzed by half-waveplates
and linear polarizers. The pair production rate and heralding efficiencies are characterized
by single and coincidence counting rates.

As shown in Table. 2.1, we estimated the spatial walk-off for signal and idler photon to
be 0.07 mm and 0.09 mm, respectively. We model the photon’s spatial modes in clockwise
and counterclockwise paths as two Gaussian beams F1(x, y) and F2(x, y) with the beam
diameter (1/e) of 1.1 mm. The corresponding spatial amplitude overlap factor

∫
F1·F2 dx dy
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Figure 2.5: A photograph of the experimental setup for proof-of-principle demonstration
of a BD-Sagnac-EPS in October 2019.

between the two modes is calculated to be higher than 99 % for both signal and idler
wavelengths. Therefore, in this experiment, it is expected that the fiber-coupling efficiency
drop due to the spatial walk-off is negligible [152]. On the other hand, from the measured
spectral full width at half maximum (FWHM) of the signal (0.8 nm) and idler photons
(2.0 nm), we model the photon’s amplitude temporal wavepacket with a Gaussian function
whose temporal width (1/e) is 1.3 ps for both signal and idler photons. Similarly, the
amplitude overlap factors between the wavepackets are calculated to be 97.3 % and 99.8 %
for the signal and idler photons, respectively. Therefore, in this experiment, we introduced
a 1.6 cm–thick quartz crystal in the signal arm to compensate for the temporal walk-off of
signal photons.
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Figure 2.6: Photon-pair generation rate for the clockwise (left) and counterclockwise (right)
paths of the Sagnac loop. The circles are the mean values of ten separate measurements of
single and coincidence counting rates with the standard deviations as the error bars. The
solid curves are fits to the model 2.10, and the shaded regions represent the 95 % confidence
interval for the fitting curve.

2.2.4 Results

Correlated photon-pair generation from a polarization-maintaining optical fiber

We measure the single and coincidence counting rates for the clockwise and counterclock-
wise paths with a coincidence window ∆tC of 1 ns, as shown in Figure 2.6. After subtracting
the detector’s dark counts from the single counting rate, we calculate the mean values for
the single and coincidence counting rates over five separate measurements. The measured
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single NS(I) and coincidence NC counting rates are used to estimate the heralding efficien-
cies, HS(I) = NC/NI(S), and the pair generation rate, NPair = (NSNI) /NC . The quadratic
scaling of the counting rates with the incident pump power shows that the pair production
process is governed by the third-order optical nonlinear process. Therefore, it is rational
to quantify the pair generation rate per pulse in units of cps/mW2, which is estimated to
be 2.1(2)× 10−6 cps/mW2 per pulse for our experiment.

In Figure 2.6, it is notable that the heralding efficiency for the signal photons varies as
a function of pump power while that of the idler photons stays relatively constant. This
feature is not typically observed in the spontaneous parametric down-conversion process.
To study this behavior, we modeled the single and coincidence rate with the inclusion of the
Raman-scattered photons from the PMF. In particular, we assumed that the incoherent
Raman-scattering plays a major role as background noise in our experiment which scales
linearly with pump power [41]. The modeled single and coincidence counting rates are
expressed as

NS = ηSNPairP
2 +ND,S + ηSNRaman,SP,

NI = ηINPairP
2 +ND,I + ηINRaman,IP,

NC = ηSηINPairP
2

+ ηSNPairP
2(ND,I +NRaman,IPηI)∆tC

+ ηINPairP
2(ND,S +NRaman,SPηS)∆tC

+ (ND,I + ηINRaman,IP )(ND,S + ηSNRaman,SP )∆tC ,

(2.10)

where ηS(I) is the total detection efficiencies of signal(idler) photons including fiber-coupling
efficiency, photon loss by imperfect optics, and detection efficiency. NPair is the pair gener-
ation rate of SFWM process, NRaman,S(I) is the Raman-scattering rates at the signal(idler)
wavelengths, ND,S(I) is the dark counts for the signal(idler) photon detectors, and P is the
average pump power.

We applied the least-squares method to perform a global fitting of the model 2.10
to the experimental data of {NS, NI , NC , HS, HI} with the shared fitting parameters of
{NPair, NRaman,S, NRaman,I, ηS, ηI}. Then, we used the optimized parameters to estimate
the pair generation rate NSNI/NC , as shown in Figure 2.6. In Figure 2.6, the symbols
represent the experimentally obtained values from the measured single and coincidence
count rate after the subtraction of the dark counts of each detector. The solid lines are
a curve fit based on the model and the shaded regions represent the 95 % confidence
interval for the fitting. The fit parameters for the clockwise (counterclockwise) path are
obtained to be {NPair = 149.71(141.97), NRaman,S = 18.61(0), NRaman,I = 450.39(615.96),
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Figure 2.7: Measurement of polarization entanglement: the circles are experimental data
with the standard deviation calculated over five separate measurements. The solid curves
are sinusoidal fits, and the shaded regions represent the 95 % confidence interval for the
sinusoidal fits. The visibilities are calculated from raw coincidence counts without any
background subtraction.

ηS = 0.25(0.25), ηI = 0.19(0.16)}, which agrees with the fact that the incoherent Raman-
scattering dominates in longer wavelength. It is worth noting that the difference in the
heralding efficiencies for the signal photons is negligible whereas there is a 3 % discrepancy
for the idler photons. This may be attributed to the polarization-dependent detection
efficiencies of the superconducting nanowire single-photon detector. From our model, we
interpret that the varying heralding efficiency is due to the fact that the incoherent Raman
noise dominates in idler arm for the low pump power regime. Thus, a click on the idler
detector has a low probability of heralding the presence of a photon in the signal arm.
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Polarization-entangled photon pairs

Polarization entanglement produced by the BD-Sagnac-EPS was characterized by perform-
ing polarization-correlation measurements. We measured the coincidence counting rates
as a function of the rotation angle of a polarizer in the signal arm while the polarization
measurement bases for the idler photons are fixed to horizontal (H, 0°), vertical (V , +90°),
diagonal (D, +45°), and antidiagonal (A, -45°), as shown in Figure 2.7. The measurement
was performed under the average pump power of 20 mW with a coincidence window of
0.6 ns. For each polarization setting, the mean values and standard deviations are calcu-
lated over five separate measurements of the single and coincidence counting rates. The
single counting rates of the signal and idler photons remained constant at around 13 000 cps
and 8000 cps, respectively, during all four polarization-correlation measurements. A lin-
ear least-squares method was applied to perform a sinusoidal fit to the 2π-rotation of
polarization-correlation measurement.

The visibilities, V = (max{NC} −min{NC}) / (max{NC}+ min{NC}), calculated from
raw coincidence counting rates for the idler’s polarization bases at H, V, D, A are (98.3± 0.9) %,
(96.5± 1.1) %, (93.8± 1.4) %, and (93.5± 1.4) %, respectively with the averaged value of
Vavg = (95.5± 0.6) %. To verify the polarization entanglement, we performed the CHSH
inequality test [63] with the measured coincidence rates in Figure 2.7. The inequality is
expressed as

S = |E(θ1, θ2)− E(θ1, θ
′
2) + E(θ′1, θ2) + E(θ′1, θ

′
2)| ≤ 2, (2.11)

where θi is the rotation angles of the linear polarizers for signal and idler photons. Here,
the polarization-correlation coefficient E(θ1, θ2) is expressed as

E(θ1, θ2) =
NC(θ1, θ2)−NC(θ1, θ̄2)−NC(θ̄1, θ2) +NC(θ̄1, θ̄2)

NC(θ1, θ2)−NC(θ1, θ̄2)−NC(θ̄1, θ2) +NC(θ̄1, θ̄2)
, (2.12)

where NC(θ1, θ2) is the coincidence counting rate between the signal and idler photon
detections with the two linear polarizers set to θ1 and θ2, and θ̄ = θ + 90° denotes the
orthogonal setting of linear polarizers. We obtained the parameter S = 2.70 ± 0.04 from
the raw coincidence counting rate recorded for the polarizers’ settings at θ1 = 0°, θ2 = 22.5°,
θ′1 = 45°, and θ′2 = 67.5°, which is in good agreement with the expected experimental value
Sexp = 2

√
2Vavg. The strong violation of the CHSH inequality by 17.5 standard deviations

is a direct indication of the polarization entanglement. Based on the above model for
counting rates together with the analysis on the spatial and temporal walk-off, the reduced
entanglement quality was mainly attributed to spontaneous Raman scattering in PMF at
idler wavelength and the uncompensated temporal walk-off for the idler photons.
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Figure 2.8: The phase-stability measurement of the BD-Sagnac-EPS. (a) Polarization-
correlation measurement for over 24 hours. Single and coincidence counting rates are
measured as a function of the rotation angle of the polarizer at signal arm while the polar-
ization basis of the idler photons is fixed to the diagonal state (D, +45°). The visibility V,
the variation of the phase δφ, and the relative amplitude fluctuation δγ/γ0 (γ0 = 1/

√
2)

are extracted by fitting the model 2.13 to the symmetric heralding efficiency. The temper-
ature of our laboratory T was monitored during the measurement (see text for a detailed
analysis). (b) The magnified plot of raw coincidence counts for different measurement
times. (c) Allan phase deviation as a function of the integration time. Block dots denote
experimental data and a gray area represents lines with the slope +1/2.

Phase stability

In order to characterize the phase stability of the BD-Sagnac-EPS, we performed the
polarization-correlation measurement for over 24 hours without active phase stabilization,
as shown in Figure 2.8. The temperature of the laboratory environment was regulated
within a peak-to-peak value of 0.16°C. We performed a full 2π-rotation of the signal po-
larization basis at a period of ten minutes while the idler polarization basis is fixed to the

36



diagonal basis (D, +45°). The coincidence measurements are averaged over five separate
measurement events at each rotation angle setting. We observed that the variation of the
visibility V remains within the range of 83.9 % to 93.9 %, as shown in Figure 2.8(a).

To extract the phase information from the measured data, we model the coincidence
rate NC in terms of the phase and amplitude of the produced entangled state. We assume
that the entangled state is a pure state |Φ〉 = γ |HH〉 +

√
1− γ2eiφ |V V 〉 and ignore the

contributions from the Raman-scattering and the detector’s dark counts. With the idler
polarization basis fixed at a diagonal state |MS〉 = 1/

√
2
(
|H〉 + |V 〉

)
while rotating the

signal basis |MI〉 = cos θ |H〉+ sin θ |V 〉, the coincidence counting rate can be expressed as

NC = NΦηSηI | 〈MSMI |Φ〉|2

=
NΦηSηI

2

(
γ2 cos2 θ + (1− γ2) sin2 θ + γ

√
1− γ2 sin 2θ cosφ

)
.

(2.13)

Here NΦ denotes a photon pair production rate of the entangled state which equals the
double of the pair production rate NPair of SFWM discussed in Section 2.2.4. Note that
single counting rates for signal and idler are constant values NS(I) = ηS(I)NΦ/2 over a full
2π-rotation of the signal polarization basis. The amplitude γ and phase φ can be replaced
with their mean values and their fluctuation; γ → 1/

√
2 + δγ and φ → δφ. Then, the

second-order Taylor expansion simplifies the above expression 2.13 as

NC ≈ NΦηSηI
1

4

[
1 + sin(2θ + sin−1

(
2
√

2δγ)
)

cos δφ
]
. (2.14)

The amplitude δγ and phase fluctuation δφ appear in the polarization-correlation mea-
surement as a phase shift and visibility drop, respectively. Therefore, one can extract them
by fitting the model to the measured coincidences with the fitting parameters of γ and φ.
However, the coincidence counting rate NC depends not only the systematic errors γ and
φ of the entangled state caused by the instability of the interferometer, but it also reflects
the instability of the other instrument such as the pump laser, i.e., the pair generation
rate NΦ. In fact, we observed considerable fluctuations in single counting rates, as shown
in Figure 2.8(a). Since our interest is the phase stability of the designed interferometer,
we take a symmetrized heralding efficiency Hsym = NC/

√
NSNI as a more appropriate

parameter that is not affected by the fluctuating pair generation rate. Then, we fit the
model to the heralding efficiency calculated from the raw single and coincidence rates for
every full rotation of the signal polarizer, and obtain 143 values of the amplitude γ and
phase φ of the entangled state, as shown in Figure 2.8(a).

In Figure 2.8(a), we observed that the standard deviation of the phase fluctuation
is 3.17° under the temperature variation of 0.04°C, which is ten times larger than our
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estimation in Section 2.2.2. Since the robustness of the BD-Sagnac-EPS to the temperature
variation is inherently obtained from its geometric Sagnac configuration, we stress that
this unexpected instability does not originate from the intrinsic property of the design
as well as the components used. We believe that the instability may be attributed to
a combination of multiple external factors, e.g., pump wavelength drift, a temperature-
dependent phase-matching condition in PMF, and the fiber-coupling efficiency fluctuation.
For example, Figure 2.8(a) shows that the visibility variation is correlated with the single
counting rates. One possible explanation for this is that the spectral instability of our
mode-locked pump laser causes a slight wavelength-shift which may impact the relative
phase φ(λ, T ) of the entangled state. In our setup, the quartz crystal compensates only for
the signal’s temporal walk-off. In this case, the pump wavelength-dependent phase shift
is estimated to be 1.01 rad/nm 3, which corresponds to the 5.8° phase shift due to 0.1 nm
pump wavelength-shift. The other reason may be the instability of the fiber coupling
efficiencies in two polarization modes. In our demonstration, the 20 cm-long PMF located
at the center of the Sagnac loop was kept straight in order to minimize the bending losses
experience by the idler. The footprint of our experimental setup is about 70 cm×50 cm
and the distance between the one end of the PMF to the tip of each single-mode fiber
is approximately 80 cm. As each of the two orthogonally polarized photons is produced
from one end of the PMF, any temperature variation and mechanical noise can cause the
imbalanced fiber coupling efficiencies between the two polarization modes. These effects
are not fully captured in our model 2.13 with the pure entangled state |Φ〉. The origin of
the instability will be further investigated in the future.

To quantify the long-term phase stability of the interferometer, we calculate the Al-
lan deviation with the extracted phases φ [8]. The Allan deviation with respect to the
integration time T is defined as

σ(T = Nτ) =

√
1

2

〈
(∆φ)2〉 =

√√√√ 1

2(Ntot −N)

Ntot−N∑
i=1

(φi+N − φi)2. (2.15)

The overall integration time, T = Nτ , is divided into N samples with the time interval τ =
10 minutes and the total number of samples Ntot = 143. We observed the Allan deviation
of 8° over the integration time of 1 hour, as shown in Figure 2.8(c). Note that the optical
path length from the first beam displacer to the second beam displacer in our setup is
approximately 1.3 m. The 8° phase uncertainty corresponds to the relative length deviation
of 2.1×10−8 per hour. This phase stability is comparable with the results obtained from a

3If the temporal walk-off is compensated for both signal and idler photons, the pump wavelength-
dependent phase shift is estimated to be 0.48 rad/nm.
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typical Sagnac interferometer with strong laser light [209]. Finally, it is worth noting that
the Allan deviation allows us not only to quantify the phase stability but also to identify
the source of noises by its scaling behavior [251]. In Figure 2.8(c), the measured Allan
deviation follows the square-root scaling which indicates that the random-walk noise plays
a major role in the long-term phase instability.

Our prototype demonstration can be further optimized in the future. In particular,
the phase stability can improved by thermal insulation of the setup and the miniaturiza-
tion of the interferometer. For example, the polarization-maintaining fiber used in our
demonstration can be replaced with other fibers which exhibit the less bending loss over
a wide wavelength range such as endlessly single-mode photonic crystal fibers, which sim-
plifies the Sagnac loop with the fiber-optic coil. Also, as the two beam displacers and the
spectral filter are relatively insensitive to the misalignment, they can be readily packaged
into a small pigtailed fiber-bench or integrated on a piece of the pre-aligned plate. On
the other hand, the entanglement quality can be substantially improved by reducing the
Raman noise. This could be implemented by either using narrower spectral filters or cool-
ing the fiber. Despite the remaining issues to be addressed in the future, we believe that
this stable, practical, and versatile source is a useful scientific research tool and will be a
promising candidate for industrial applications in quantum communication, sensing, and
information processing.

2.3 Polarization-entangled photon source without op-

tical interferometer

2.3.1 Motivation

In the previous section, we presented a practical and versatile interferometric scheme for
PPSs. The interferometer superposed orthogonally polarized pump fields each of which
drives photon-pair generation process in a certain propagation direction, e.g., clockwise or
counterclockwise path. This is because the nonlinear medium satisfies the phase-matching
condition in a specific polarization and propagation direction of the pump field. In this
section, we consider removing the optical interferometric setup and single-pass of the pump
field through an (nearly) isotropic χ(3) nonlinear medium where the phase-matching con-
dition is satisfied in both orthogonal pump polarizations.

The single-pass pump configuration has been studied and experimentally demonstrated
in several different schemes. First, before interferometric setups were spotlighted, PPSs
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in early stages were based on a birefringent medum, e.g., beta-barium borate, driven by
a strong pump light at a specific polarization state. By carefully aligning the incident
angle of the pump field, one can find and select two spatial modes producing polarization-
entangled photons [164]. Secondly, two periodically poled nonlinear media were cross-
oriented and placed in series. The timely distinguishable two pair-production processes
were compensated by birefringent media before and/or after the generation process [233,
129, 273, 167]. Both methods, i.e., birefringent phase matching and walk-off compensation,
require birefringent materials which must be carefully designed with a certain cut-axis and
desired length, and these are usually custom-designed and hence costly. One other notable
approach for the non-interferometric entangled photon source is to cross-splice two highly
birefringent optical fibers [208, 234].

In this section, we present a PPS which does not require an interferometer and walk-off
compensation. The setup becomes much simpler and naturally phase stable. All we need
for the source is a single-mode optical fiber and two orthogonally polarized pump fields.
The idea is to utilize a dual-pump four-wave mixing process in an isotropic optical nonlinear
medium which conserves the total angular momentum where the polarization correlation
between the generated photon pair arises. Since the pair generation processes are sym-
metric under the rotation of polarization states, the output state of the paired photon is
polarization-entanged. This idea was first proposed by Lin et al. in 2007 [181]. However,
all optical fibers are either weakly or highly birefringent in practice and the birefringence
is wavelength dependent. Our solution is to utilize principal states of polarization [239]
and the presented analysis is focused on the preservation of pump polarizations.

2.3.2 Vectorial quantum theory of spontaneous four-wave mixing

We present a vectorial quantum theory of photon-pair generations via SFWM. The theo-
retical framework for describing SFWM with scalar fields is provided in references [133, 77],
and here we adopt the formalism for the case with vector fields. The system of interest
is depicted in Figure 2.9. Two orthogonally polarized pump lights (ωP1 and ωP2) are cou-
pled into a single-mode fiber and polarization-entangled photon pairs named signal (ωS)
and idler (ωI) are produced from the fiber. This parametric vacuum-amplification process
is achieved by placing zero-dispersion wavelength (ωZD) near the center of the four wave-
lengths to satisfy the phase matching condition ωP1 +ωP2 = ωI +ωS and βP1 +βP2 = βI +βS.
Here, β and ω are the propagation constant and angular frequency of optical fields, respec-
tively. For now, we assume the fiber is perfectly an isotropic medium and our goal is to
derive the polarization states of the generated photons at the output of the fiber.
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Figure 2.9: Direct generation of polarization-entangled photons from a single-mode fiber
via dual-pump spontaneous four-wave mixing process. (a) Two orthogonally polarized
pump fields (ωP1 and ωP2) are coupled into a single-mode fiber and polarization-entangled
photon pairs named signal (ωS) and idler (ωI) are produced from the fiber. This parametric
vacuum amplification process is achieved by placing zero-dispersion wavelength (ωZD) near
the center of the four wavelengths. (b) A schematic diagram of energy-level configurations
of the four optical fields.

SFWM is microscopically photon-photon interactions mediated by an optical nonlinear
dielectric medium. It is fundamentally dispersive light-matter interactions and the famous
Kramers-Kronig relation, i.e., causality, ties it with the dissipation of light to environment,
i.e., photon loss, which means the system Hamiltonian is not conserved during the time
evolution. The self-consistent description for SFWM process requires the quantization of
electromagnetic fields in the presence of dielectrics, which we discuss in Chapter 5. For now,
we assume that the medium is lossless and it is simply characterized by the macroscopic
quantities such as dielectric constant. Following the discussion in reference [133], we write
electric field operators in guided modes as

Ê(r, t) =
∑
j=x,y

(
F (x, y)

√
~

2ε0c

1√
2π

∫
dω

√
ω

n(ω)
âj(ω, z)e

−iωt + H.c.

)
ej, (2.16)

where F (x, y) and n(ω) are the transverse mode function of electric fields and the refractive
index of the medium, respectively. The photonic annihilation operators satisfy the bosonic
equal-space commutation relations

[
âi(ω), â†j(ω

′)
]

= δ(ω−ω′)δij with Dirac delta function
δ(ω − ω′) and Kronecker delta function δij. As for the guided mode in optical fibers, the
transverse modal distribution F (x, y) is independent from the propagation distance z, and
therefore we integrate it over the transverse plane and normalize by the effective mode
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area Aeff = 1/
[∫∫
|F (x, y)|4dxdy

]
to simplify the dynamical variable

Ê(z, t) =
∑
j=x,y

(∫
dω

√
~ω

4πε0cAeffnj(ω)
âj(ω, z)e

−iωt + H.c.

)
ej

≡ Ê(+)(z, t) + Ê(−)(z, t).

(2.17)

The evolution of the photons over the propagation distance z is governed by the Heisen-
berg equation

∂âj(ω, z)

∂z
=
i

~
[
âj(ω, z), Ĝ(z)

]
, (2.18)

where the momentum generator Ĝ(z) is given by the intergration of the momentum flow
over the effective mode area Aeff during the quantization time T [133]:

Ĝ(z) =

∫
Aeff

dS

∫ T

0

dtD̂(−)(z, t) · Ê(+)(z, t) + H.c.. (2.19)

The local density and speed of the momentum flow is governed by the dispacement field
operator D̂(z, t) = ε0Ê(z, t)+P̂(z, t). Here, the induced polarization P̂(z, t) can be Taylor-
expended as in classcial nonlinear optics. Since our fiber is assumed to be an isotropic
medium where the second-order nonlinearity vanishes, we can rewrite the displacement
field operator in terms of the electric field operators as

D̂(z, t) = ε0Ê(z, t) + ε0
↔
χ

(1)
(ω)Ê(z, t) + ε0

↔
χ

(3)...Ê(z, t)Ê(z, t)Ê(z, t), (2.20)

where
↔
χ

(n)
is the nth-order medium susceptibility tensors. For isotropic media

↔
χ

(1)
(ω) =

χ(1)(ω) = n2(ω)−1, the third-order susceptibility tensor can be expressed in terms of three

independent elements as χ
(3)
ijkl = χ1111 (δijδkl + δikδjl + δilδjk) [6]. Then, each polarization

component of the displacement field operator is expressed as

D̂i(z, t) = ε0n(ω)2Êi(z, t) + ε0χ1111

∑
jkl

[
(δijδkl + δikδjl + δilδjk) Êj(z, t)Êk(z, t)Êl(z, t)

]
≡ D̂

(l)
i (z, t) + D̂

(nl)
i (z, t).

(2.21)

Here, we split D̂i(z, t) into the linear D̂
(l)
i (z, t) and the nonlinear D̂

(nl)
i (z, t) terms. First,

we substitute the linear term D̂
(l)
i (z, t) to the Equation 2.19. After the rearrangement of
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the coefficients and using the definition of the effective mode area, we find

Ĝl(z) =
∑
j

∫
dω

~ω
c
n(ω)â†j(ω, z)âj(ω, z). (2.22)

The solution of the Heisenberg equation âj(ω, z) = âj(ω, z = 0)e−iβ(ω)z with β(ω) =
n(ω)ω/c simply describes the linear propagation of the electric field operator with the
preservation of the polarization state.

Now we turn our attention to the nonlinear dynamics. For simplicity, we assume that
the electric field operator consists of four distinct fields whose central frequencies are ωP1,
ωP2, ωS, and ωI. Also, we assume two monochromatic pumps and take their bandwidth
to be the frequency step 2π/T . Since the self- and cross-phase modulation can be treated
classically, we ignore the modulation terms for now and only keep the four-wave mixing
term. Following the algebra similar to the reference [77], we find the nonlinear momentum
generator

Ĝnl(z) =
2π

T 2

~2χ
(3)
1111

ε0c2Aeff

∑
ijkl

(δijδkl + δikδjl + δilδjk)

[√
ωP1ωP2

n(ωP1)n(ωP2)∫
dω

√
ω (ωP1 + ωP2 − ω)

n(ω)n(ωP1 + ωP2 − ω)
âj(ωP1, z)âk(ωP2, z)â

†
l (ω, z)â

†
i (ωP1 + ωP2 − ω, z)

]
.

(2.23)

We substitute the derived momentum generators into Equation 2.18. In the rotating frame
by taking âj = ˆ̃aj(ω, z)e

iβ(ω)z, we obtain the Heisenberg equation for the slowly varying
field

∂ˆ̃aj(ω, z)

∂z
= i

2π

T 2

~χ(3)
1111

ε0c2Aeff

√
ωP1ωP2ω(ωP1 + ωP2 − ω)

n(ωP1)n(ωP2)n(ω)n(ωP1 + ωP2 − ω)
ei∆β(ω)z

[ ∑
i=x,y

Ai(ωP1, z)ˆ̃a
†
i (ωP1 + ωP2 − ω, z)Aj(ωP2, z)

+
∑
i=x,y

Ai(ωP2, z)ˆ̃a
†
i (ωP1 + ωP2 − ω, z)Aj(ωP1, z)

+
∑
i=x,y

Ai(ωP1, z)Ai(ωP2, z)ˆ̃a
†
j(ωP1 + ωP2 − ω, z)

]
,

(2.24)

with the phase mismatching term ∆β = βi(ωP1) + β(ωP2)− β(ω)− β(ωP1 + ωP2− ω). The
strong pump fields were taken to be classical ˆ̃aj(ωP1(P2), z) = Aj(ωP1(P2), z) and undepleted
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|Aj((ωP1(P2), z)|2 = |Aj((ωP1(P2), 0)|2. To further simplify the Equation 2.24, we define the
nonlinear coefficient γ(ω) and the pump power Pj as

γ(ω) =
3χ

(3)
1111

√
ω(ωP1 + ωP2 − ω)

2ε0c2Aeff

√
n(ωP1)n(ωP2)n(ω)n(ωP1 + ωP2 − ω)

,

Pj(ω, z) =
~ω ×N(z)

T
=

2π~ω
T 2
|Aj(ω, z)|2.

(2.25)

Then, we set two pumps to be orthogonally and linearly polarized (Ay(ωP1, z) = 0 and
Ax(ωP2, z) = 0), and decompose the polarization state of the generated photons in terms
of x- and y-polarization bases as ˆ̃aj = cos(θ)ˆ̃ax + sin(θ)ˆ̃ay. The evolution of the signal and
idler photons via SFWM process is described by

∂ˆ̃aj(ω, z)

∂z
=

∂

∂z

(
cos θˆ̃ax(ω, z) + sin θˆ̃ay(ω, z)

)
= i

2
√
Px(ωP1)Py(ωP2)

3
γ(ω)ei∆β(ω)z

×
(

sin θˆ̃a†x(ωP1 + ωP2 − ω, z) + cos θˆ̃a†y(ωP1 + ωP2 − ω, z)
)
.

(2.26)

As clearly seen in the above expression, the polarization state-independent correlation
arises between the generated photon pairs. The underlying physics is the angular mo-
mentum conservation provided by the rotational symmetry of the isotropic medium which
correlates the polarization states of the signal and idler fields. The initial angular momen-
tum is set to null by two orthogonally polarized pumps, which opens all possibilities of the
polarization states of photonic excitations, thereby producing polarization-entanglement
of the paired photons.

We calculate the joint spectral function and the pair generation rate. By integrating
over the propagation distance z = L with θ = 0, we obtain the output state

ˆ̃ax(ω, L) = ˆ̃ax(ω, 0) + i
2
√
Px(ωP1)Py(ωP2)

3
γ(ω)Lsinc

(
∆βL

2

)
ˆ̃a†y(ωP1 + ωP2 − ω, z).

(2.27)

The joint spectral density function can be calculated by the probability of detecting the
paired photons at the orthogonal polarization basis |ψ〉 = |0〉S,x|0〉I,y:

nd(ω, L) = 〈ψ|ˆ̃a†x(ω, L)ˆ̃ax(ω, L)|ψ〉

=
4Px(ωP1)Py(ωP2)

9
γ2(ω)L2sinc2

(
∆β(ω)L

2

)
.

(2.28)

44



The photon-pair generation rate can be calcuated by integrating the joint spectral density
function over the entire frequency range.

Npair/sec =

∫
dωnd(ω, L) =

4Px(ωP1)Py(ωP2)

9
L2

∫
dωγ2(ω)sinc2

(
∆β(ω)L

2

)
(2.29)

2.3.3 Low-birefringent fiber, principal states of polarization, non-
linear polarization rotations

We have studied that the polarization-entangled state are generated by injecting two or-
thogonally polarized pump lights into ideal optical fibers. However, in reality there is no
such thing. The initial polarization states are always rotated or even depolarized over the
propagation due to various reasons, e.g., non-uniform cylindrical structure of the fiber cross
section, stress-induced birefringence, thermal gradient, etc. One might naively think that,
even if the fiber’s birefringence rotates incident polarization states of the four fields, the
polarization correlation may still be maintained because the global rotation of the four po-
larizations would keep the “relative distance” between the states intact. However, it turns
out that this would be true only if the birefringence is constant over the wavelength range.
Since the birefringence is generally a function of wavelength, the polarization states of the
four fields are rotated differently, and therefore the pump polarizations are not orthogonal
to each other. Here, we investigate the conditions to maintain the orthogonality of pump
polarizations in weakly birefringent fibers.

Principal states of polarization

Inspired by the observation of the perservation of two orthogonal polarizations over a
5 km–long single-mode fiber in 1981 [197], Poole et al. showed that for any linear optical
transmission medium without polarization-dependent losses or gains there exist two mu-
tually orthogonal polarizations for which the corresponding output states are independent
of frequency to first order. The pair of polarization states are referred to as the principal
states of polarization (PSP) [239]. To be specific, polarization rotations due to medium
birefringence can be described by a complex transfer matrix T (ω). If we assume that there
is no polarization-dependent loss, then T (ω) takes the form

T (ω) = e−α−iβ(ω)U(ω) (2.30)

where β(ω) is the propagation constant and U(ω) is a unitary matrix

U(ω) =

[
u1(ω) u2(ω)
−u∗2(ω) u∗1(ω)

]
(2.31)
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with |u1(ω)|2 + |u2(ω)|2 = 1. Then, the PSP is obtained by the eigenvectors of the unitary
matrix in Equation 2.31

ê± =

[(
∂u2(ω)

∂ω
− ik±u2(ω)]

)
/D±,

(
∂u1(ω)

∂ω
− ik±u1(ω)]

)
/D±

]T

, (2.32)

where the k± and D± are expressed as

k± = ±

√∣∣∣∣∂u2(ω)

∂ω

∣∣∣∣2 +

∣∣∣∣∂u2(ω)

∂ω

∣∣∣∣2
D± =

√
2k±

(
k± − Im

[
u∗1(ω)

∂u1(ω)

∂ω
+ u∗2(ω)

∂u2(ω)

∂ω

])
.

(2.33)

PSP has been a useful tool to characterize the polarization-mode dispersion (PMD)
of single-mode fibers [240] because the group delay between the two eigenstates is mainly
caused by second- or higher-order dispersion. Also, the PSP plays an important role to
define an axis in Stokes space where we describe the state evolution within a birefringent
medium [276]. In this study, we hope to take advantage of using PSP to maintain the
orthogonality of two pump polarizations over the length of a weakly birefringent fiber.
Since the generation of signal and idler photons are equally probable over the whole polar-
ization states, we expect that the polarization states of the paired photons are coherently
superposed over the propagation. Then, the output state can be decomposed in terms of
the PSP and the relative phase shift can be compensated by waveplates after the fiber.

Nonlinear polarization rotations

The polarization states of the pumps and photon pairs are rotated by the mere presence
of two strong pump fields even in perfectly cylindrical fibers via self- and cross-phase
modulations. This is purely due to the third-order nonlinear effect and is always present,
and therefore must be characterized before conducting experiments. The four fields can be
treated classically and expressed as complex vectors |A〉i=P1,P2,S,I = [Aix, A

i
y]

T normalized
by the power |Aix|2 + |Aiy|2 = Pi. Then, the nonlinear polarization rotation (NPR) of the
four vector fields reads

d~SP1(2)

dz
=

2γ

3

[
(~SP1(2) + 2~SP2(1))2ê2 − 2~SP2(1)

]
× ~SP1(2),

d~SS(I)

dz
=

4γ

3

[
(~SP1 + ~SP2)2ê2 − (~SP1 + ~SP2)

]
× ~SS(I),

(2.34)
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Figure 2.10: Theoretical modeling of a weakly birefringent fiber with a concatenation
of phase retarders. (a) A weakly birefringent fiber is modeled as a concatenation of a
short fibers with its bending radius R. Each short fiber is viewed as a waveplate. The
birefringence is calculated by the analytic formula in Equation 2.36. (b) Typical bending-
induced birefringence of an optical fiber (125 µm cladding diameter). The birefringence is
wavelength-dependent and it is mostly linear with respect to the angular frequency.

where the Stokes vector ~S =
[
S1, S2, S3

]
= 〈A|~σ|A〉 represents the polarization states with

the Pauli vector ~σ = σ1e1 + σ2e2 + σ3e3. Here, σj are the Pauli matrices

σ1 =

[
0 1
1 0

]
, σ2 =

[
0 −i
i 0

]
, σ3 =

[
1 0
0 −1

]
. (2.35)

The full derivation of the Equation 2.34 is provided in reference [182]. The first equation
describes the variation of incident pump polarization states. It is obtained by the cross
product with either the state itself, i.e., self-phase modulation, and/or the other pump
polarization state, i.e., cross-phase modulation. Interestingly, the second equation shows
that the signal and idler polarization states can be preserved when the two pump are
orthogonal, i.e., ~SP1 = −~SP2. It is worth noting that our photon-pair generation process
lies in the low-gain regime γPL� 1 to reduce the multi-pair generations, which may also
make the NPR negligible.
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Coupled nonlinear Schrödinger equations and low-birefringent fiber model: a
series of randomly varying phase retarders

Here, we present our numerical analysis with randomly varying birefringence of a fiber
to investigate the feasibility of experimental demonstration. We model a low-birefringent
fiber with the concatenation of birefringent plates M̂i, as depicted in Figure 2.10(a). Each
plate represents a segmant of the fiber at a given orientation and bending radius. The
bending-induced birefringence can be calculated by a simple formula according to the
reference [286]:

b(ω) = 0.25k(ω)n3
eff(ω)(p11 − p12)(1 + ν)

r2

R2
, (2.36)

where k is the wave vector, r is the fiber diameter, and R is the bending radius. For fused
silica, ν = 0.17, (p11 − p12) = −0.15. The effective refractive index neff(ω) is calculated
by solving the eigenvalue equation for transverse electric fields derived from the Maxwell’s
equation in a cylindrical coordinate system [6]. The Equation 2.36 shows that the birefrin-
gence is wavelength dependent and mostly linear with respect to the angular frequency ω.
Examplary plots are shown in Figure 2.10(b).

We evaluate the polarization states of the output fields by solving coupled nonlinear
Schrödinger equations (CNLSE) via Runge-Kutta fourth order interaction picture (RK4IP)
method [317]. The CNLSE was originally derived by Curtis R. Menyuk in 1987 [206] and
has been used for performance estimation for optical nonlinear processes such as supercon-
tinuum generation [285]. We share our source code in Appendix B.

For the complex vector of slowly varying amplitudes A = [Ax(z, t), Ay(z, t)]
T, the linear

and nonlineaer dynamics is described by the CNLSE

i
∂A

∂z
+ bΣA + ib′Σ

∂A

∂t
− 1

2
β′
∂2A

∂t2
+ γ

[
|A|2A− 1

3

(
A†σ2A

)
σ2A

]
= 0. (2.37)

In our model, the linear interaction between the two polarization components can be
described by the birefringence of the modeled fiber

Σ = M̂NM̂N−1 · · · M̂3M̂2M̂1 (2.38)

with each plate expressed by a Jones matrix

M̂i =

[
e−ibi(ω)δz/2 cos2(θi) + eibi(ω)δz/2 sin2(θi) (e−ibi(ω)δz/2 − eibi(ω)δz/2) cos(θi) sin(θi)
(e−ibi(ω)δz/2 − eibi(ω)δz/2) cos(θi) sin(θi) e−ibi(ω)δz/2 sin2(θi) + eibi(ω)δz/2 cos2(θi)

]
.

(2.39)
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Figure 2.11: Nonlinear polarization rotations in the absence of externally induced bire-
fringence. We solved the CNLSE for the incident pump polarization states of (a)
|AP1〉 = |α〉 and |AP2〉 = |α〉, (b) |AP1〉 = |α〉 and |AP2〉 = |β〉, and (c) |AP1〉 = |α〉
and |AP2〉 = 1/

√
2 (|α〉+ |β〉) with |α〉 = [cos(θ), i sin(θ)]T and |β〉 = [i sin(θ), i cos(θ)]T.

The quantum state fidelity |〈AP1|AP2〉|2 between two output pump polarization states are
calculated as a function of the nonlinear interaction strength γPL.

Here, the birefringence bi(ω) and the orientation of the plate θi are the random variables
with the fixed plate thickness δz. The nonlinear interaction between the two polarization
components is described by the last two terms. In this simulation, we assume that all
the input fields are monochromatic such that the group delay between the two eigen-
polarizations is ignored.

Numerical analysis

In our experiment, we use an endlessly single-mode photonic crystal fiber (ESPhCF)
with the zero-dispersion wavelength λZDW =1050 nm. The dispersion satisfies the phase-
matching condition with the pumps at λP1 = 780nm and λP2 = 1480nm for the generated
photon pairs at λS = 920nm and λI = 1160nm. The ESPhCF was modeled as a conven-
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tional single-mode fiber with extraordinarily small cladding refractive index. This corre-
sponds to the fact that the cladding is made of air-holes in ESPhCFs, which effectively
reduce the cladding refractive index. The fiber is modeled with the 5.0 µm core diameter
and the core–to–cladding index difference ∆n = 0.12.

Figure 2.11 shows the evolution of pump polarizations via NPR in the absence of
birefringence. We evaluated the quantum state fidelity between the output polarization
states to estimate their relative distance at various input settings. Note that we set two
pump powers to be equal. We found that the pump polarization states rotate together
when the incident states were identically prepared. On the other hand, the orthogonally
prepared states do not maintain their orthogonality, and the variation gets greater as the
initial states differ from the horizontal and vertical states. We verified the orthogonally
prepared state maintains the fidelity less than 1 % with γPL < 0.4. For a 5 m–long
ESPhCF with γ ∼ 10W−1 km−1, the γPL ∼ 0.4 corresponds to the incident single-pump
power PP1 = PP1 ∼ 8W.

We now investigate the evolution of the PSP during the propagtion over the modeled
birefringent fiber. We first verify the wavelength independency of the preservation of PSP
by launching a coherent and broadband pulse light into the fiber and calculate the intensity
spectra at the non-orthogonal basis, as shown in Figure 2.12(a). We model the 50 m–long
fiber with eight thousands birefringent plates whose phase retardences are randomized with
the bending radius R =30 cm. We first aligned the principal axes of the plates in order
to keep the linear frequency dependency of the birefringence. As shown in Figure 2.12(b),
the PSP is preserved over a wide range of wavelength. On the other hand, when the fiber
is modeled with randomly oriented birefringent plates, as shown in Figure 2.12(c), the
output polarization varies as a function of the incident wavelength. This is because the
phase retardence is typically a sinusoidal function of the rotation angle and the oscillation
period is a nearly linear function of the wavelength in our model. Thus, the randomly
distributed rotation angle makes the fiber birefringence nonlinear to the frequency, and
therefore the PSP is not preserved.

We evaluate the state fidelity between two pump polarizations for different fiber bending
radii as a function of the propagation distance, as shown in Figure 2.12(d). It turns out that
the orthogonality of the pumps at PSP is well maintained over the 5 m propagation with
the fidelity less than 1 % when the bending radius is greater than 40 cm. With the same
fiber model, we compared the result with non-PSPs, and verified the merit of preparing
the pumps at PSPs.
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Figure 2.12: Principal states of polarization in the modeled weakly birefringent fiber. (a)
Normalized intensity spectra of the coherent and broadband laser light after propagating
through the modeled birefringent fiber and then a polarizer. The incident polarization
states are not the PSPs and the fiber is modeled with a series of birefringent plates whose
principal axes are aligned to each other. (b) The incident states are prepared in PSP. (c)
The PSP state propagates through the fiber modeled with randomly oriented birefringent
plates. (d) The state fidelity of the output polarization states as a function of the propaga-
tion distance. Inset. the evolution of the Stokes vectors of the PSP with the fiber bending
radius R =40 cm.

2.3.4 Experimental setup

Figure 2.13 shows our experimental setup. Two pump fields at the wavelength of 785 nm
and 1480 nm were generated from continuous wave lasers and coupled into a 5 m–long
endlessly single-mode photonic crystal fiber (ESPhCF). We ensured that the fiber was
not bent or twisted and lies in room-temperature without any active stabilitzation. The
incident polarizations of the two fields were initially prepared at linear and orthogonal
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Figure 2.13: A schematic diagram of the experimental setup for direct generation of
polarization-entangled photon pairs using an endlessly single-mode photonic crystal fiber;
ECDL, external cavity diode laser; DBG-LD, fiber-bragg grating wavelength-stabilized
laser diode; OI, optical isolator; Si-APD, silicon-avalanche photodiode; P, polarizer; OL,
objective lens; H(Q)-FR, half-(Quarter-)wave fresnel rhomb; DM, dichroic mirror; BPF,
bandpass filter; HWP, half-waveplate; FC, fiber connector; ESPhCF, endlessly single-mode
photonic crystal fiber.

states, i.e., s- and p-polarizations of the dichroic mirror. They propagated through two
half-wave and one quarter-wave Fresnel rhomb retarders (H-FR and Q-FB) altogther. By
rotating the two H-FRs (θ1 and θ2), we can prepare the arbitrary polarization states while
keeping their orthogonality. The generated photon pairs and the two pump fields passed
through a H-FR and a Q-FB after exiting the fiber, and the pump polarization states
were returned to the linear s- and p-polarization states of the second dichroic mirror. The
signal and idler photons are separated and then coupled into single-mode fibers. The
pump fields and other stray lights were filtered out by bandpass filters placed at each arm.
The signal photons at 980 nm and idler photons at 1078 nm were detected by a Silicon-
based single-photon detector (Excelitas, SPCM-AQ4H, Detection Efficiency ≈ 55 %) and
superconducting nanowire single-photon detector (Quantum Opus, Opus One, Detection
Efficiency ≈ 80 %), respectively.

52



(a)

0 5 10
PP1 (mW)

0

2

4

6

N
S
;I

(#
10

5
cp

s)

0

1

2

3

4

N
C
C

(#
1
0
3
cp

s)

Signal (970nm) Idler (1080nm) Coincidence

(b)

0 5 10 15
PP2 (mW)

0

2

4

6

N
S
;I

(#
10

5
cp

s)

0

1

2

3

4

N
C
C

(#
1
0
3
cp

s)

(c)

0 100 200 300
Polarizer angle (/)

0

0.2

0.4

0.6

0.8

1

N
o
rm

a
li
ze

d
in

te
n
si
ty

6P1 = 785 nm
6P2 = 1480 nm

Figure 2.14: Photon-pair generation via dual-pump spontaneous four-wave mixing process.
(a) The measured single and coincident counting rate as a function of the pump powers at
the wavelength of λP1=785 nm and (b) λP2=1480 nm. (c) The variation of the measured
optical power of the pump fields as a function of a polarizer’s rotation angle. The polarizer
was placed before the dichroic mirror and after the two Fresnel’s rhombs at the output of
the fiber.

2.3.5 Results

Figure 2.14 shows the single and coincident counting rates of the generated photon pairs
from the 5 m–long ESPhCF via dual-pump spontanoues four-wave mixing process. We
subtracted the dark counting rate of the detectors from the measured single counting
rate. We varied one of the two pump powers PP1 (λP1=785 nm) and PP2 (λP2=1480 nm)
while the other is fixed to investigate the background noise contributed from each differ-
ent pump fields. As shown in Figure 2.14(a) and (b), we observed that the pump field
at λP1=785 nm produces a strong background noise which is mainly expected to be the
spontanoues Raman-scattered photons.

The output polarization states of the two pump fields were analyzed by the intensity
variations of each field as a function of the rotation angle of a single polarizer placed before
the dichroic mirror at the output of the fiber (this polarizer is not shown in Figure 2.13).
The extinction ratio of the polarizer is greater than one thousand at the both wavelengths
of 785 nm and 1480 nm. We adjusted the rotation angles of the three Fresnel’s rhombs θ1,2,3

to find a good preservation of the orthogonality of the pump polarizations. The visibilities
of the output polarization states at the wavelengths of 785 nm and 1480 nm were measured
to be 99.1 % and 95.0 %, respectively.

53



(a)

0

100

200

300

In
te

n
si
ty

(a
rb

.u
n
it
)

783.72
782.6
780.39
778.11

6P1 (nm)

(b)

0.85 0.9 0.95 1 1.05 1.1 1.15 1.2 1.25
6S(I) (7m)

0

0.5

1

n
d
(!

)
(r

a
d
!

1
H

z"
p
u
ls
e!

1
)

(c)

0.776 0.778 0.78 0.782 0.784
6P1 (7m)

0.8

0.9

1

1.1

1.2

1.3

6
S
(I

)
(7

m
)

Figure 2.15: Spectra of the generated photon pairs at different pump wavelengths. (a) The
measured spectra of the generated photon pairs from a 5 m–long endlessly single-mode
photonic crystal fiber. (c) The calculated spectra of the generated photon pairs including
the broad linewidths of the pump lasers. (c) The measured (circles) and calculated (black
solid lines) central wavelengths of the photon pairs.

Figure 2.15(a) shows the measured spectra of the generated photon pairs at different
pump wavelengths after the subtraction of the background. The background spectrum
was measured by blocking the pump field at 1480 nm while injecting the pump at 785 nm.
We observed that the central wavelengths of the photon pairs varied according to the
phase-matching condition. The spectral bandwidth of the generated photons is reduced
due to the higher-order dispersions as the central wavelengths are shifted further from
the zero dispersion wavelength of 1026 nm. The variation of the peak intensity of each
spectrum is mainly attributed to different fiber-coupling efficiencies at the wavelengths of
the generated photons. We calculated spectra of the generated fields with the modeled
fiber, as discussed in Section 2.3.3. The linewidths of the two pump lasers were included
in the calculation based on the measured values with a high-precision optical spectrum
analyzer (see Section 4.6.3). As shown in Figure 2.15(b) and (c), the close agreement
between the theory and experiment shows the validity of our modeled fiber.
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The polarization states of the generated photon pairs will be investigated in the future.
We plan to study the polarization correlation in two different polarization states of the
pump fields. First, we will measure the photons polarization when both pumps are prepared
in the same state of the PSP. We expect to observe that the polarization state of each of the
photon pair is identical to the PSP due to the angular momentum conservation. In contrast,
when the two pumps are prepared at the two orthogonal PSPs, the polarization state of
each photon may appear to be an unpolarized (or mixed) state as generally expected in
the entangled state. The polarization correlations will reveal the output polarization state
of the paired photons.

2.4 Toward ground-space entanglement distribution

In this section, we provide a conceptual design for a PPS for the QEYSSat mission and
the detailed analysis on the attainable pair-generation rate as well as heralding efficiency.

2.4.1 Requirements for entanglement-based QKD in the QEYSSat
mission

The PPS must satisfy certain requirements to be operationally useful in the QEYSSat
mission. Based on the analysis in the reference [38], we summarize the requirements in the
following.

� Wavelength
One of the emitted pair must be in a wavelength range of 780 nm to 795 nm with
nominal baseline of 785 nm.

� Spectral bandwidth
Spectral bandwidth of the photons propagating through the ground-to-space link
must be less than 1 nm. The photon receiver at the spacecraft contains narrow
spectral bandpass filters to block stray light.

� Pair-emission rate
The pair-emission rate must be greater than 100 MHz. Generally, a satellite launched
in a higher orbit or close to the horizon requires the PPS to be operated at greater
pair-production rate with lower intinsic QBER.
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� Heralding efficiency
The probability of heralding the presence of photons arriving at the satellite receiver
must be greater than 50 %. The heralding efficiency is defined as the ratio of coin-
cident counting rate between the photon pair (one at the satellite and the other at
the ground station) to single counting rate measured at the ground. It includes the
detector’s efficiency and transmittance of optical components in the ground.

� Quantum Bit Error Rate (QBER)
The quality of the polarization correlation between the emitted photon pair is de-
fined as visibility V =

(
NE
CC −NU

CC

)
/
(
NE
CC +NU

CC

)
, where NE

CC and NU
CC are the

coincident counting rate measured at expected and unexpected polarization states,
respectively. The entangled state must perform the visibility greater than 98 %, which
corresponds to the QBER=(1− V ) /2 less than 1 %. This includes dark counts and
other background noises of the photon detectors.

2.4.2 Design considerations

We have studied two schemes for practical implementations of PPSs. In both demonstra-
tions, we used optical fiber-based nonlinear media to generate photons at well-defined spa-
tial modes without temperature stabilization. However, we noticed that the pair-generation
rate of the fiber-based PPSs is too low to be deployed for the QEYSSat mission. Also,
spontaneous Raman-scattering process inevitably adds unwanted noise photons which are
ultimately translated to the increment of intrinsic QBER. In our demonstration of the BD-
Sagnac-EPS in Section 2.2.4, the entanglement visibility was measured to be around 95 %,
while the required visibility is above 98 %. Therefore, we decided to utilize periodically
poled bulk nonlinear crystals as they have been widely investigated for high-rate photon-
pair sources with great signal-to-noise ratio via spontaneous parametric down-conversion
(SPDC).

The designed optical configuration for the PPS is depicted in Figure 2.16. We adopt the
BD-Sagnac-EPS scheme with further optimizations and the design is conceptually similar
to the demonstration in reference [274]. Two identical nonlinear crystals are placed in
series with one of them rotated by 90° with respect to the other, producing orthogonally
polarized photon pairs that are superposed in the Sagnac loop. One of the key elements
in the PPS is an optical nonlinear medium which must be carefully designed in order
to generate the photon pairs at the required wavelengths. The designed parameters and
experimentally measured values for the nonlinear crystal are summarized in Table 2.2. As
a baseline, we choose a bulk periodically poled MgO-doped lithium niobate (PPLN) with
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Figure 2.16: Conceptual design of polarization-entangled photon-pair source for the
QEYSSat mission. (a) The proposed optical setup for polarization-entangled photon-pair
source; BD, beam displacer; BPF, bandpass filter; PBS, polarization beam splitter; HWP,
half-wave plate; DM, dicrhoic mirror; L, lens; PMF, polarization-maintaining fiber; SMF,
single-mode fiber; OI, optical isolator. (b) Experimental verification of the type-0 quasi-
phase matching condition in 10 mm–long PPLN (Λ = 7.10µm). The measured the central
wavelengths and (c) spectral bandwidths (FWHM) of the generated photon pairs. The
theoretical curves (solid black lines) were obtained from the Sellmeier equation for the
material refractive index provided in Appendix A.

the type-0 quasi phase-matching (QPM) condition which exhibits high effective nonlinear
coefficient (15.9 pm/V). We engineered the poling period (Λ = 7.10 µm) of the PPLN
crystal such that type-0 QPM (eee) is satisfied to generate the correlated photon pairs at
the wavelengths of 790 nm (signal) and 1552 nm (idler) under the continuous-wave pump
at 523.6 nm at the temperature of 107 °C. Here, the type-0 QPM (eee) means that the
polarizations of three lights (pump, signal, and idler) are aligned to extraordinary axis of
the PPLN crystal. The spectral bandwidth of signal and idler photons are 0.73 nm and
2.81 nm, respectively.

The requirement of 50 % (80 % as a goal) heralding efficiency ηtotal includes the transmis-
sion of all optical elements ηoptics, fiber coupling efficiency ηfc, and idler detection efficiency
ηdet [38]. With the conservative assumption of the absolute detection efficiency ηdet =80 %
of superconducting nanowire single-photon detectors and the transmission of all optical
elements ηd =80 % including filters and polarization-analysis optics, we must achieve the
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Table 2.2: Design parameters and measured values for the nonlinear crystal. We mark NA
for parameters that are not directly measured in our experiment.

Parameters Design Measurement
Material 5 % MgO-doped PPLN NA
Λ (µm) 7.10 NA
T (°C) 107 107.6
λP (nm) 523.6 523.64
λS (nm) 790.8 792.8
λI (nm) 1552 1542.9

∆λS,FWHM (nm) 0.73 0.84
∆λI,FWHM (nm) 2.81 2.66

L (mm) 10 NA
WP (µm) 120 118
WS,(I) (µm) 62.5 62 (67)

RT (Mcps/mW) 2.37 1.80

single-mode fiber coupling efficiency greater than 80 %. This condition is highly depen-
dent on the spatial modes of the photon pairs and pump fields, as well as the optical
arrangement.

2.4.3 Theory of collinear spontaneous parametric down-conversion
(SPDC)

We provide a brief review on the theoretical formalism of SPDC process [183, 31]. We
calculate absolute emission rate of photon pairs based on the Fermi’s golden rule for tran-
sition probability from vacuum state to single pair-excited state. The transverse modes
of the generated photons are decomposed in terms of Laguerre-Gaussian modes, and the
single-mode fiber coupling efficiency is determined by the ratio of the lowest mode, i.e.,
TEM00 Gaussian mode, to the summation over all other higher modes. Here, the coin-
cidence and single rates are calculated without so-called thin-crystal assumption, wherein
the beam waists of all fields are constant across the crystal length.

Figure 2.17 depicts SPDC process where a periodically poled nonlinear crystal with the
poling period Λ and the length L is driven by a pump field ωP with a paraxial Gaussian
mode and produces photon pairs, i.e., signal ωS and idler ωI , via collinear type-0 SPDC
process. The central wavelengths λS(I), spectral bandwidths ∆λS(I), and spatial modes of
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Figure 2.17: A schematic drawing of spontanoues parametric down-conversion process in
a periodically poled nonlinear crystal. A pump field at 523.6 nm propagates through a
10 mm-long PPLN crystal (poling period Λ = 7.10 µm), and generates correlated photon
pairs at the wavelengths of 790 nm (signal) and 1552 nm (idler) via type-0 (eee) spontaneous
parametric down-conversion (SPDC) process. The generated photon pairs are collected
into optical single-mode fibers. The beam waist of the pump, signal, and idler fields at the
center of the crystal is denoted as WP , WS, and WI , respectively.

the generated photon pairs are determined by QPM condition. The beam waists of single-
mode fiber-collection modes for the pump, signal, and idler fields are denoted as WP , WS,
and WI , respectively. As discussed in the previous section, we assume that the medium is
lossless and follow the phenomenological approach to describe photon-photon interactions
of SPDC process.

We start with writing the quantized electric field operators for signal and idlers

ÊS(I) =
i

2

∑
kS(I)

√
2~ωS(I)

n2
S(I)ε0L

eS(I)gS(I)(r)e−iωS(I)tâkS(I)
+ h.c.

≡ 1

2

[
Ê

(+)
S(I) + Ê

(−)
S(I)

]
,

(2.40)

where we include the refractive index n to capture the modified field density inside the
nonlinear crystal. We treat the pump field classically EP (r, t) = [E0

PePg(r)e−iωP t + c.c.] /2
with the electric field amplitude E0

P =
√

2P/ (ε0nP c) for the input optical power P . Then,
the interaction Hamiltonian for SPDC process reads [183]

ĤI = −2ε0
8

∫ ∞
−∞

dxdy

∫ L/2

−L/2
dzχ(2)(z)E

(+)
P Ê

(−)
S Ê

(−)
I + h.c., (2.41)
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where ε0 and χ(2)(z) are the vacuum permittivity and the second-order nonlinear suscep-
tibility of the nonlinear crystal, respectively. Here, the factor 2 at numerator originates
from the intrinsic permutation symmetry of the second-order nonlinear susceptibility [41].
The periodically poled nonlinear susceptibility function χ(2)(z) can be expressed by Fourier
series

χ(2)(z) = χ2f(z) =
4χ2

π

M∑
m=0

(−1)m

2m+ 1
e−i(2m+1)Kz, (2.42)

where K = 2π/Λ (T ) is the poling spatial frequency. Then, we rewrite the interaction
Hamiltonian

ĤI =
deffE

0
P~
√
ωSωI

nSnIL

∑
kS ,kI

Φ(∆k)e−i∆ωtâ†kS â
†
kI

+ h.c. (2.43)

with the phase mismatching terms ∆ω = ωP − ωS − ωI and ∆β = βP − βS − βI , Here,
the effective nonlinearity deff captures the contraction of the nonlinear susceptibility tensor
with corresponding polarization vectors (2deff = ePχ

(2) : eSeI) [41]. The Φ(∆β) is the
overlap integral of the three transverse mode functions in the crystal

Φ(∆k) =
4

π

M∑
m=0

(−1)m

2m+ 1

∫ ∞
−∞

dxdy

∫ L/2

−L/2
dze−i(2m+1)KzgP (r)g∗S(r)g∗I (r), (2.44)

As is well established, each mode function can be decomposed in terms of Laguerre-
Gaussian (LG) modes [2]

g(n,l)
α (r;ω) =

√
2

π

(
Wα

qα

)l+1(
q∗α
qi

)n
Lln

(
2w2

αρ
2

|qα|2

)
exp

(
−ρ

2

qα
+ ikαz + ilφ

)
, (2.45)

with ρ =
√
x2 + y2, φ = tan−1(x/y), and qα = w2

α + 2iz/βα.

The pump field is launched from a single-mode fiber and set to be Gaussian mode
g

(0,0)
P (r;ω) for the rest of the analysis. For coincident counts, we consider that each of

the paired photons is coupled into a single mode fiber which supports the Gaussian mode.
Therefore, the pair excitation probability is obtained by evaluating the overlap integral of
the three Gaussian transverse modes with n = l = 0 for pump, signal, and idler fields.

The single detection probability for signal photons, as an example, is evaluated by the
probability of detecting signal photons coupled into a single-mode fiber for all possible
modes of the paired idler photons. This is obtained by setting n = l = 0 only for the signal
mode g

(0,0)
S (r;ω), and summing over the overlap integral with all possible idler modes

g
(n,l)
I (r;ω). Since the pump and signal modes are azimuthally symmetric, i.e., Gaussian
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mode, the spatial ovelap vanishes unless the idler mode is also azimuthally symmetric
(l = 0). The spatial mode overlap between the pump g

(0,0)
P , signal g

(0,0)
S , and the idler in

the nth LG mode g
(n,0)
I is expressed as

Φn(∆k) =
4

π

1

(π/2)3/2

M∑
m=0

(−1)m

2m+ 1

∫ ∞
−∞

2πρdρ

∫ L/2

−L/2
dz
wPwSwI
qP q∗Sq

∗
I

×
(
qI
q∗I

)n
Ln

(
2w2

i ρ
2

|qi|2

)
exp

[
−ρ2

(
1

qP
+

1

q∗S
+

1

q∗I

)
+ i(∆k − i(2m+ 1)K)z

]
.

(2.46)

The absolute pair-emission rate NS
n =

∫
dωSRn(kS) for signal photons at the TEM00

with the paired idler photons at the nth LG mode is evaluated by the integration of
transition probability per unit time Rn(kS) from the initial vacuum state |i〉 = |0kS , 0kI 〉
to the final photon pair state |f〉 = â†kS â

†
kI
|0kS , 0kI 〉 over all possible kS. The transition

rate in the modes kS and kI is calculated by Fermi’s Golden rule in the time-dependent
perturbation theory as

Rn(kS) ≈ 2π

~
|〈f |ĤI |i〉|2D(∆E), (2.47)

where the transition probability amplitude 〈f |ĤI |i〉 (in the unit of energy) are given as

〈f |ĤI |i〉 =
deffE

0
P~
√
ωSωI

nSnIL
Φn(∆k). (2.48)

The density of states D(∆E) per unit energy ∆E = ~∆ω for the idler photons can be
calculated as

D(∆E) =
∆m

∆kI

∂kI
∂(~∆ω)

≈ L

2π

nI
~c
. (2.49)

Here, the ∆m/∆kI ≈ L/2π denotes the number of modes per unit of wave vector compo-
nent kI in the quasi-continuum approximation for large L. By integrating the transition
rate Rn(kS) over the emission bandwidth, we obtain the emission rate of the signal at the
TEM00 and idler at the nth LG mode with the TEM00 pump as

NS
n =

[
deffEP
c

]2
ωSωI

2πnSnI

∫
dωS|Φn(∆~k)|2. (2.50)

For a given nonlinear crystal and focal parameters, the coincidence rate NCC = NS
n=0 =

N I
n=0 and single rate NS(I) =

∑∞
n=0N

S(I)
n can be calculated to obtain the symmetrized

fiber-coupling efficiency ηfc = NCC/
√
NSNI and the total pair-generation rate NPair =

NSNI/NCC .
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Figure 2.18: Functional block diagram of Matlab program. A user inputs experimental
parameters such as the crystal material, poling period, and the crystal length. The Matlab
program utilizes a built-in numerical iterative optimization algorithm to search the beam
waists of signal and idler photons that maximize the single-mode fiber-coupling efficiency
ηfc = NCC/

√
NSNI for a given pump beam waist. In the optimization program, single NS,I

and coincidence NCC counting rate are calculated. The code for evaluating the counting
rates is provided in Appendix C

2.4.4 Numerical optimization for efficiently fiber-coupled photon
pairs from SPDC

Based on the forementioned theoretical framework, we numerically search focal conditions
for signal and idler photons that maximize the fiber-coupling efficiency ηfc, as shown in
Figure 2.18. We first calculated the wavelengths of signal and idler photons satisfying the
QPM condition, and then all the geometric factors were taken into account for the calcu-
lation of the counting rates. Then, we utilized the Matlab built-in iterative optimization
algorithm to obtain optimal beam waists of signal and idler photons for the fiber-coupling
efficiency for a given pump beam waist.
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Figure 2.19: Optimal focal parameters for fiber-coupling efficiency of correlated photon
pairs generated from SPDC process. (a) Optimal beam waists of signal and idler fields
as a function of beam waist of pump light. (b) Photon-pair generation rate (left, black-
coloured) and fiber-coupling efficiency (right, red-coloured) at the optimal beam waists.

2.4.5 Results and conclusion

The preliminary simulation results of optimal beam waists of signal and idler photons as
a function of input pump beam waist is plotted in Figure 2.19(a). The corresponding
fiber-coupling efficiency as well as pair-production rate is shown in Figure 2.19(b). We
found that the beam waists of signal and idler fields are almost two times smaller than
the incident pump beam waist. The optimal beam waists of photon pairs converge to the
same value as the pump waist increases, and they start splitting into different values at
the pump waist smaller than 20 µm.

Our simulation shows that the maximum pair-production rateNPair greater than 30 Mcps/mW
can be achieved at tight focal conditions WP ≈ 7 µm. More importantly, there exists a
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trade-off between the pair-production rate and the fiber-coupling efficiency. The focal con-
dition which yields the coupling efficiency of 95 % or better reduces the pair emission rate
to 10 % or less of its maximum value. The 100 Mcps of pair-production rate is achievable
with a long pump focal condition. The pump beam waist WP around 110 µm which yields
the fiber-coupling efficiency of 0.96 and the pair production rate of 2.37 Mcps/mW.

In our experimental test, we chose the beam waists of 118µm, 62µm, and 67 µm for
pump, signal, and idler beams, respectively, according to our simulation result. The pair-
production rate was measured to be 1.8 Mcps/mW which agrees well with our simulation
result. The small discrepancy may be attributed to manufacturing imperfection of the
PPLN crystal; e.g., irregularity of the periodic poling structure and aberrations of pump,
idler and signal beams.

2.5 Chapter summary

We discussed two polarization-entangled photon sources for ground-to-satellite free-space
quantum channels. First, we designed and analyzed a novel interferometric configuration.
By taking advantage of the intrinsic phase stability and the utility in traditional Sagnac-
type and Mach-Zehnder-type sources, our beam displacement Sagnac interferometer is a
practical and versatile source of entangled photons that can be implemented at various
platforms without the requirement of customizing multi-wavelength polarization optics.
We presented the detailed analysis for the spatiotemporal walk-off and the temperature-
dependent phase shift with commercially available beam displacers. The analysis showed
that the designed interferometer is suitable for highly non-degenerate wavelengths and ther-
mally stable. Furthermore, the alignment procedure for our scheme is more straightforward
than traditional Sagnac-type sources.

We experimentally tested the functionality of the designed configuration with the
pulsed generation of polarization-entangled photon pairs at the wavelengths of 764 nm and
1221 nm from a polarization-maintaining fiber via spontaneous four-wave mixing process.
The setup consisted of only commercial off-the-shelf optical items. The strong violation of
CHSH-inequality with parameter S = 2.70±0.04 verified the polarization entanglement of
the generated photon pairs. The long-term phase stability of the designed interferometer
was characterized by performing the polarization correlation measurement over 24 hours,
and during that time the visibility remains within a range of 83.9 % to 93.9 % without
active phase stabilization. We attribute the observed instability mainly to the external
instrumental imperfections, not to the intrinsic property of the designed interferometer or
the used components, and this will be further investigated in the future. Nonetheless, the
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Allan deviation of less than 8° over the integration time of 1 hour quantitatively showed a
good long-term phase stability of the interferometer.

Secondly, we studied a practical scheme of directly producing polarization-entangled
photon pairs from a conventional optical fiber via dual-pump spontaneous four-wave mix-
ing. We formulated a vector theory of correlated photon-pair generations and showed that
maximally entangled state can be produced from an isotropic optical fiber. Then, we mod-
eled a realistic fiber including weak birefringence by a concatenation of randomly varying
and oriented birefringent plates. We investigated the preservation of the orthogonality of
two pump polarizations by numerically solving coupled nonlinear Schrödinger equations. It
turns out that the principal states of polarizations are preserved for short and weakly bire-
fringent fibers. We also proposed an experimental setup for demonstrations using Fresnel’s
Rhombs and showed the preservation of pump polarizations. We also presented our prelim-
inary results of photon-pair generation which showed that spontaneous Raman-scattering
process is the main source of noise photons.

Finally, we provided a conceptual design of the polarization-entangled photon source for
the QEYSSat mission. With the amibition of distributing entangled photons simultanously
over fiber-optic networks and ground-to-satellite links, the designed source is capable of
producing photon pairs with the spectral linewidths of 0.73 nm and 2.81 nm at the central
wavelengths of 790.8 nm and 1552 nm, respectively. Our numerical analysis showed that
single-mode fiber-coupling efficiencies of generated photon pairs can be greater than 95 %
while the pair-generation rate is estimated to be NPair ∼2.37 Mcps/mW.
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Chapter 3

Characterization infrastructure for
optical components in quantum
communications with satellites

The content of this chapter is based on the manuscripts that are either preprinted in arXiv
or in preparation. Also, some of the experimental results were published in a conference
proceeding paper.

1. Youn Seok Lee, Kimia Mohammadi, and Thomas Jennewein. Practical wavefront
measurement with scanning pentaprism for optical terminals in free-space quantum
communication. In preparation

2. Youn Seok Lee, Kimia Mohammadi, Lindsay Babcock, Brendon Higgins, Hugh Pod-
more, and Thomas Jennewein. Robotized polarization characterization platform for
free-space quantum communications. arXiv:2109.01984 (2021) [170]

3. Hugh Podmore, Ian D’Souza, Jeffrey Cain, Thomas Jennewein, Brendon Higgins,
Youn Seok Lee, Alex Koujelev, Danya Hudson, Ashley McColgan. QKD Terminal
for Canada’s Quantum Encryption and Science Satellite (QEYSSat). Proc. SPIE
11851, International Conference on Space Optics — ICSO 2020, 118520H (2021) [237]

Statement of contributions

� Optical aberration characterization system
Prof. Thomas Jennewein and I conceived the idea. I designed, analyzed performance,
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and procured components. Kimia Mohammadi and I implemented the experimental
apparatus, developed control software, and performed experiments. I analyzed the
data and drew conclusions under the supervision of Prof. Thomas Jennewein.

� Robotized polarization characterization system
Prof. Thomas Jennewein and I conceived the idea. I designed, analyzed performance,
procured components, and implemented the measurement apparatus and control pro-
gram. Kimia Mohammadi, Lindsay Babcock, and I implemented the experimental
setup for various test optics and performed the measurement. I analyzed the data.
Prof. Thomas Jennewein provided a polarization-raytracing code. Dr. Hugh Pod-
more provided a test optic developed for quantum payload in the QEYSSat mission.
Prof. Thomas Jennewein and Dr. Brendon Higgins supervised the project.

3.1 Introduction: optical terminals for the QEYSSat

mission

3.1.1 Background

With the recent successful China’s Quantum Experiments at Space Scale mission and Mi-
cius satellite [310, 249, 311, 312], quantum communications with satellites opened a new
platform for long-distance secure key exchange, as well as for fundamental quantum exper-
iments in a relativistic length scale. Several countries around the world are pursuing the
quantum links between ground and space in various scenarios [263]. In Canada, the Quan-
tum Encryption and Science Satellite (QEYSSat) mission has been developing a satellite
payload and ground stations with the mission objectives of long-distance quantum key
distributions (QKD), and of long-distance quantum entanglement tests via the exchange
of polarized photons in an uplink configuration [141, 238, 237].

Encoding quantum information in optical polarization is a straightforward and robust
approach to free-space quantum communications, but depends critically on preservation
of high-purity polarized states of light throughout the optical chain. Degradation of po-
larization quality necessarily impacts the performance and any protocol, such as QKD,
being attempted. In particular, free-space communications with moving platforms such
as satellites require specialized photon transceivers to create efficient quantum channels.
The transceivers typically consist of a large “front-end” telescope (pointed at the other
telescope) supported by small “back-end” optics for multiplexing of quantum light with
a strong beacon, fine-pointing actuation, etc. [300, 243, 238, 237]. The preservation of
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Figure 3.1: A schematic diagram of a examplary free-space optical transmitter.

polarization states throughout such complex optical terminals is challenging because some
polarization rotations or depolarizations are fundamentally inevitable and are easily caused
by myriad reasons, e.g., stress-induced birefringence, or thermal expansion of birefringent
material. Also, optical coatings usually cause phase shifts of polarizations, which could
lead depolarizations when the phase shifts are not uniformly applied across the spatial pro-
file of the incident beam. Moreover, the polarization effect depends on the geometry of the
optical terminal; mere reflection/refraction changes the polarization state depending on
the incident angle. In the QEYSSat mission, the QBER less than 0.5 % must be attained
by the entire optical terminal [38], and therefore great care must be taken to design optical
terminals to preserve the polarization state and it is essential to ensure polarization is pre-
served at the major interfaces, and the effect of any individual component on polarization
is both well understood and verified.

Optical aberrations of transmitted light also impacts the quality of ground-to-satellite
links, and it is challenging to preserve high quality of the transmitted wavefront throughout
complex optical terminals. Also, quantum light and beacon laser field are often delivered
through a single-mode fiber which must be precisely positioned at the “back-end” of the
optical terminal to ensure the collimation of the launched fields. Therefore, characterizing
optical aberrations including beam divergence or convergence is also essential during the
hardware development for the QEYSSat mission.

In this chapter, we present the development of characterization platforms for both
wavefront errors and polarization preservation of the transmitted light for optical elements
developed for the QEYSSat mission. We mainly focus on the measurement apparatus and
discuss detailed analysis of the system, as well as the validation of methodology.
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(a)

(b)

(c)

(d)

Figure 3.2: Photographs of optical components developed for the QEYSSat mission. (a)
A prototype of quantum optical payload telescope and (b) its primary mirror developed
by Honeywell Canada Aerospace. (c) The front side and (d) rear side of a quantum optical
transmitter telescope developed by the QPL.

3.1.2 Development of free-space optical transceivers

Over the past few years, several optical devices have been designed and implemented for
the successful accomplishment of the QEYSSat mission. Table 3.1 lists the selected optical
components that are examined in this chapter.

Among various devices, large optical systems, e.g., greater than 10 cm diameter, are
required to be designed and tested in the development phase and are critical for success-
ful link. In the QPL, we developed a telescope (IQC-T) as quantum optical transmitter,
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Table 3.1: List of devices under test.
Device Description Test method Date
HON-T Satellite payload prototype telescope [238] Polarization February

2020
HON-M Satellite payload prototype primary mir-

ror [238]
Polarization March

2020
IQC-L Custom-designed achromatic doublet Polarization and

wavefront
March
2021

COTS-M Commercial-off-the-shelf silver-coated
mirror (48-118-577, Edmund Optics)

Polarization March
2021

IQC-T Quantum transmitter telescope Polarization and
wavefront

March
2021

led by Kimia Mohammadi [212]. With 243.8 cm effective focal length (f/12) and ±0.1°
field of view (FoV), the IQC-T is optimized at 780 nm, 980 nm, and 1550 nm for trans-
mission throughput greater than 95 % and wavefront error less than 0.25λ Peak-to-Valley
(PV) value. It consists of two protected silver-coated mirrors (COTS-M), and a 20.3 cm–
diameter achromatic doublet (IQC-L) that are precisely aligned in a pre-defined location
by the optomechanical mounts. The size of the achromatic doublet lens and the design
specifications were determined by quantum link-budget analysis [212], including the im-
pact of optical aberrations under atmospheric turbulence. The kinematic mirror mounts
are all motorized by electromechanical actuators for the precise alignment with consistent
repeatibility.

On the receiver side, a 26 cm catadioptric telescope (HON-T) was developed by Honey-
well Canada Aerospace under contract to the Canadian Space Agency [238]. The telescope
is a classic on-axis Cassegrain design consisting of a spherical primary mirror (HON-M),
hyperbolic secondary mirror supported by a three-legged spider, and a field-widening as-
pheric singlet lens to extend the telescope FoV up to ±0.3°. The optical surfaces of the
primary and secondary were fabricated in aluminum by single-point diamond turning, and
the mirror reflectivity was enhanced via protected silver coating. Direct assembly of the
telescope was achieved through precision machining of the telescope spider and field lens
mount, which provided controlled air-gaps and correct tip/tilt between the primary and
secondary mirrors.
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3.2 Characterization of optical aberrations with scan-

ning pentaprism

3.2.1 Motivation

One of the most popular devices to measure wavefronts is the Shack-Hartmann sensor
(SHS) [236]. It pixelizes the transverse profile of incident light and measures wavefront
slopes of individual sections with an array of lenses. One major drawback of existing de-
vices is their limited entrance pupil size which is typically 1 cm2, making it difficult to
be directly used for large optics such as telescopes. There have been different approaches
to characterize aberrations of individual optical components. For example, the thickness
variation of transmissive optics was tested using calibrated lenses and curved mirrors to
effectively reduce the pupil size of the test optic [220, 92]. Also, the aberration charac-
terizations of telescopes have been performed where the SHS is attached to the eyepiece
of the telescope and star light is used as a point source [241, 79]. The surface roughness
of reflective optics or wafers has been measured by laterally scanning a SHS across the
test optic and stitching the measured wavefronts [247, 154]. The forementioned methods
require an additional calibration of the measurement apparatus and/or post-processing of
the measured data. Also, the required optics are often customized and thus expensive.
Furthermore, the dynamic range of wavefront measurements is limited by the sensor area
∼1 cm2. More importantly, all the schemes require special customization for testing a sin-
gle optical element at a time—characterizing aberrations throughout a complete optical
assembly would be much preferable in free-space optical communications.

We developed a practical and mobile wavefront measurement platform for large optics
of up to 30 cm diameter, as well as optical terminals developed for quantum communi-
cations with satellites. We used a pentaprism which scans across the aperture of a test
optic to sample the transmitted light for the measurement of local wavefront slopes. The
pentaprism is the only moving part during the measurement and the 90° deflection angle is
insensitive to the rotation of the pentaprism to first order, thereby providing a precise way
of characterizing optical aberrations of the transmitted light. This technique has been used
for the collimation test of telescopes [305] and the precise topographic measurement for
both curved [275, 10] and flat large mirrors [309, 245], as well as wafers [96]. We conduct a
proof-of-principle experiment for a transverse linear measurement of the transmitted wave-
front for our 20.3 cm achromatic doublet developed for a quantum optical transmitter in
the QEYSSat mission (IQC-L).
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3.2.2 History of the system development

The initial idea of using a pentaprism for collimation tests was provided by our industry
collaborator INO before I joined the QPL group in May 2018, and Prof. Thomas Jen-
newein conceived the first test configuration. A preliminary test was carried out under the
supervision of Dr. Jean-Philippe Bourgoin in June 2018. Lindsey Babcock and I developed
the first automated version of the measurement system in May 2019, which was used as
a subsystem of a polarization characterization platform to verify the beam collimation.
In April 2020, I conceived the idea of using a corner cube to shorten the length of the
test setup, allowing for the whole scanning system to be safely rotated by a motorized
rotational stage for scanning in different directions. I carried out the design analysis and
implemented a subpixel centroid algorithm. In March 2021, after procuring all necessary
components, Kimia Mohammadi and I built the final version of the measurement apparatus
and performed aberration characterizations on IQC-L and IQC-T. The test was completed
in April 2021.

3.2.3 System design and methodology

Conceptual design and experimental setup

Figure 3.3(a) shows our experimental setup for measuring the transmitted wavefront on a
device under test (DUT) of the IQC-L. A continuous-wave laser operating at the wavelength
of λ=785 nm is coupled to a single-mode fiber which is mounted on a motorized translation
stage. The DUT is installed on a rotation stage (RVS80CC, Newport), which allows us to
tilt the lens around the vertical y-axis with the accuracy better than 0.01°. We determine
the focal position of the lens by back-propagating a collimated visible laser to the lens.
This allows precisely positioning the fiber in the xy-plane and a rough estimation of the
focal plane in the z-direction due to the long Rayleigh length. The fiber produces diverging
light propagating through the DUT and the transmitted light is then roughly collimated.

The measurement apparatus consists of a pentaprism (CCM1-PS932, Thorlabs) and
a pinhole that are mounted on a motorized linear stage (FSL40, FUYU) actuated by a
stepper motor over the travel range of 40 cm. The guiding rail is straight with deviation
no more than 0.085 mm. The linear stage moves the pentaprism across the aperture of
the DUT and samples the light through the pinhole with a diameter of 4 mm. At each
position of the pentaprism, the sampled light with the angle of incidence θ is deflected
by 90°. Then, an imaging lens (f2 =500 mm) converts the angle θ to the position of the
focused spot ∆ = f2 tan(θ). In our setup, the pentaprism is the only moving part during
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Figure 3.3: Experimental setup for optical aberration characterizations. (a) A schematic
diagram of the experimental setup; ECDL, external cavity diode laser; SMF, single-mode
fiber; OI, optical isolator; DUT, device under test. A scanning pentaprism deflects the
incident light by 90° and a convex lens converts the incident angle to the position of
centroid spot on the camera. A motorized linear stage moves the pentaprism across the
diameter of the incident light. (b) A photograph of the measurement system with scanning
pentaprism.

the measurement. The beauty of using the pentaprism is that the centroid in the xz-plane
is not sensitive to three pentaprism’s rotation angles to the first order. Also, note that
the spot position is insensitive to translational shift of the incident light to the first order.
Therefore, the designed scheme is capable of detecting the variation of the incident angle
caused only by the thickness irregularity of the test optic. The CMOS camera (acA1920-
40um, Basler) records the variation ∆ with subpixel centroid algorithms [7]. Under the
paraxial approximation for the imaging lens, the relationships between the local wavefront
slope S, the transmitted wavefront W (x, y), the variation of the centroid ∆, and the
incident angle θ may be written as

S =
∂W (x, y)

∂x
= tan(θ) =

∆

f2

. (3.1)

In our proof-of-principle demonstration, we perform a transverse linear measurement of
the transmitted wavefront. A simple numerical integration of the measured slopes over the
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scanning range yields the reconstruction of the transmitted wavefront: Si = (Wi+1−Wi)/h,
where h is the distance between the adjacent pentaprism positions. The numerical relation
between the measured slope values Si and the reconstructed wavefront Wi can be expressed
by a N by N + 1 sparse matrix A as

~S = A ~W, (3.2)

where N is the number of the pentaprism positions during the scanning. To solve this linear
equation, we first multiply the transpose of the matrix A to both sides of the equation:
AT~S = ATA ~W . Since the matrix ATA is singular, we impose an additional condition of
the zero-mean value of the wavefront ~W across the test optic, as discussed in [272]. We add
an additional row of ones to the matrix A to construct the N+1 by N+1 extended matrix
Ae. Then, the solution of the transmitted wavefront ~W can be obtained by multiplying
the inverse matrix of AT

e Ae as

~W = (AT
e Ae)

−1AT~S. (3.3)

The uncertainty of the wavefront measurement δW was simply estimated from the standard
deviation of the wavefront-slope measurements multiplied by the distance between two
adjacent pentaprism position: δW = δS × h. This is valid because the measured slope
values already include the errors of positioning the pentaprism.

Our measurement setup is built on a 34 mm×34 mm×1000 mm aluminum extrusion
rail (XT34-1000, Thorlabs), as shown in Figure 2.5(b). To reduce the total length of
the apparatus while keeping a long focal length of the imaging lens, we used a corner
cube reflector to fold the sampled light. The scanning pentaprism system is mounted on
a 2-axis rotational stage for alignment of the system as well as for scanning in different
directions across the test optic. The whole assembly is mounted on a portable and height-
adjustable heavy duty metrology stand (233 Series, BRUNSON), thereby constructing a
mobile wavefront sensor for large optics.

Design analysis

According to our design specifications, the optical path difference of our DUT is estimated
to be 0.066λ of Peak-to-Valley (PV) value which is mainly caused by spherical aberration.
However, the manufacturing process of the lens causes additional aberrations from the
surface irregularity of about PV WPV = 0.17λ. Our goal is the resolution of the divergence-
angle measurement to be 2.5 µrad which yields the wavefront-measurement precision of
5 nm for a 2 mm step size of scanning pentaprism. Under the paraxial approximation
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Figure 3.4: 3D raytracing analysis of the wavefront measurement apparatus. (a) Optical
configuration of our wavefront measurement apparatus. (b) Monte-Carlo estimation of the
precision of the centroid position measurement with randomly distributed rotation angle
of the pentaprism. (c)–(e) The centroid variation δ∆ as a function of the rotation angles
of the pentaprism.

of the imaging lens (f2 =500 mm), the 4 mm aperture size of the iris yields a spot size
of 240 µm which covers more than 40 pixels of our imaging sensor. With a conservative
assumption of the centroid estimation precision being 1/10 of the pixel size of 5.86µm [7],
the measurement precision of the divergence angle θ is estimated to be approximately
1 µrad in the absence of any systematic errors. Also, our imaging sensor size (11.3 mm ×
7.1 mm) gives the dynamic range of our wavefront sensor of the PV value of greater than
50λ.

To estimate the measurement precision of centroid positions after accounting higher
order effects, we investigated the variation of centroid positions δ∆ as a function of the
rotation angles of the pentaprism via three-dimensional raytracing, as shown in Figure 3.4.
In our model, the rotations were performed in the order z-, y- and x-axis (labeled γ, β,
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α, respectively) and we assume the perfect pentaprism: no tilt-angle between adjacent
surfaces. The Figure 3.4(c)–(e) shows the variation of the spot position δ∆ for normal
incident light θ = 0° under pentaprism rotation from −0.5° to 0.5°. Rotation around the
x-axis (α rotation) showed the most significant impact on the slope measurement, with
quadratic response. Meanwhile, the centroid measurement was relatively insensitive to the
β and γ rotations. The α rotations (around the x-axis) during the measurement can be
suppressed by monitoring the retro-reflected light with auto-correlators and feedback, as
demonstrated in other deflectometries [309, 245]. It is worth noting that, although the
variation is on the order of tens of nanometers, the centroid depends on the β rotation
(around the y-axis), which is attributed to the spherical aberration of the imaging lens.

We performed a Monte-Carlo analysis to determine the precision of the slope measure-
ment. We varied the incident angle θ from −50µrad to 50µrad with 11.1 µrad increments
and sampled ten thousands randomly distributed pentaprism-rotation angles in a range
from −0.25 rad to 0.25 rad at each incident angle. The mean value and the standard devi-
ation of the centroids ∆ were calculated as a function of the angles of incidence, as shown
in Figure 3.4(b). The centroid position uncertainty characterized by the averaged stan-
dard deviations was estimated to be 2.5 µm, which is translated to the divergence-angle
uncertainty of 5 µrad.

3.2.4 Results

To experimentally obtain the wavefront-measurement precision including all systematic
errors, we performed the characterization with sufficient redundency. The 20 cm mea-
surement range of the scanning pentaprism is discretized with step size of 2 mm. At
each position, the camera adjusts its exposure time to keep a good signal-to-noise ratio
(SNR>10) while ensuring no saturated pixels. Then, we captured twenty frames of images
and calculated the centroid positions in the x-direction for all images. The full scan of the
pentaprism was repeated five times, and therefore at each pentaprism position we collected
one hundred centroid values. Total runtime of our experiment is about 30 minutes.

Wavefront slope measurement

We measured the centroid positions at various positions of the launch fiber to characterize
and calibrate our measurement apparatus. Two parameters must be experimentally ob-
tained: the focal lengths of the DUT (f1) and the imaging lens (f2). First, we adjusted
the fiber position in the z-direction to find the minimal divergence angle, as shown in
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Figure 3.5: Wavefront slope measurements and system calibration. (a) The measured cen-
troid position ∆ values as a function of the pentaprism position for collimated light and (b)
for de-focused light. Black solid lines represent the theoretical prediction calculated from
a three-dimensional raytracing. (c) Characterization of the centroid position measurement
with the scanning pentaprism. At each pentaprism position, the centroid position is mea-
sured for five different positions of the optical fiber in the x-direction. The dependency of
the measured five centroid position values to the corresponding fiber positions is linearly fit
to obtain the focal ratio of the DUT to the imaging lens (f1/f2). (d) The slope coefficient
a1 of the linear function y = a1x + ab multiplied by f2/f1 is plotted as a function of the
pentaprism position.

Figure 3.5(a). We observed that the variation of centroid values was kept within a PV
value of ∆PV =9.53µm. The focal length of the DUT f1 =(243± 1) mm was measured
with a laser-distance measurer, which showed good agreement with the design parameter.
The centroid variation ∆ is mainly attributed to the thickness variation of the DUT. The
averaged standard deviation of the centroid measurements was found to be 0.24µm which
is twenty times smaller than a pixel size of the camera being used. Note that the presented
results were averaged over five times of a full scan of the measurement. This excellent
repeatibility shows a great stability of our measurement apparatus.

To find the focal length of the imaging lens, we shifted the launch fiber in the z-
direction by ±2.54 mm and obtained the difference of centroid variations by subtracting the
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measured values at the original fiber position, as shown in Figure 3.5(b). This removes the
wavefront error caused by the DUT’s surface irregularity, and leaves contributions mainly
from the beam divergence or convergence owing to the de-focused fiber position. Thus,
the obtained results can be accurately predicted by modeling the experiment via three-
dimensional raytracing. We used the measured focal length of the test optic and compared
the experimental results with the predicted values (black solid lines) to determine the focal
length of the imaging lens f2 =(500± 1) mm. We characterized a closeness between the
theory and experiment by a statistical parameter R2 = 1−

∑n
i=1(yi−f(xi))

2/
∑n

i=1(yi− ȳ)2

with ȳ denoting the mean value of yi. Here, yi and f(xi) are the measured and theoretically
prediected values, respectively. The R2–values for both −2.54 mm and +2.54 mm fiber
shifts were calculated to be 99.8 %. This excellent quantitative agreement validates our
measurement apparatus as a collimation test system. With the obtained focal lengths, the
∆PV =9.53 µm is translated to the maximum divergence angle of θPV =19.1 µrad.

We further characterized the uniformity of our measurement precision over the range of
scanning pentaprism. We recorded the centroid positions for five different fiber positions
in the x-direction at each pentaprism position, as shown in Figure 3.5(c). The ratio of
the centroid shift measured at the camera to the distance of the fiber translation is given
by the focal ratio of the DUT and the imaging lens: f2/f1. We performed the least-
squares regression with the linear function y = a1x + a2 to the measured spot positions
and fiber positions at every pentaprism position. The obtained slope value a1 ± δa1 at
each pentaprism position measures the focal ratio f2/f1, where the uncertainty of the
regression δa1 is given by the diagonal elements of a covarience matrix. Then, we verified
the focal length of the imaging lens f2 = ā1/f1 =500 mm with ā1 denoting the averaged
slope value over the scanning range. In our approach, the precision of estimating the fiber
positions from the measured centroid positions at the camera is given by the uncertainty
of imaging the fiber position δā1 × f1/f2. The averaged uncertainty was obtained to
be δā1 × f1/f2 = 0.009, meaning that the centroid values can be determined with the
uncertainty better than 1 % over the entire scanning range. Note that a1 × f2/f1 = −1
(inversed image). The uniformity of the estimation over the scanning range is quantified by
the variation of the obtained mean value a1×f2/f1 = −1±0.003, as shown in Figure 3.5(d).

Wavefront reconstruction

We reconstruct the transmitted wavefront from the measured centroid positions shown in
Figure 3.5(a). The wavefront is normalized by the wavelength of λ=785 nm, as shown in
Figure 3.6(a). The averaged uncertainty over the 20 cm travel range of the pentaprism is es-
timated to be δW =0.007λ. This exceptional precision is comparable with the performance
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Figure 3.6: Reconstructed wavefront of the transmitted light from (a) the aligned lens
and (b) tilted lens. Black solid lines represent the theoretical prediction calculated from a
three-dimensional raytracing.

of shearing interferometers [173, 304]. Most previous reports on the wavefront measurement
for large optics with SHSs exhibited the precision of order of 0.02λ to 0.1λ [220, 92, 154].
This outperformed precision of our scheme is attributed to excellent stability of our scan-
ning pentaprism system and the long focal length of the imaging lens.

We characterized aberrations for a tilted DUT and compared the result with theoretical
prediction. The test optic was rotated by ±1.5° around the vertical y-axis. The measured
wavefront at each tilt angle was subtracted from the wavefront measured at the normal
angle, as shown in Figure 3.6(b), which removes the thickness variation of the DUT from
manufacturing imperfections. We calculated the transmitted wavefront from our raytracing
model (black solid lines in Figure 3.6(b)). The R2 parameters were calculated to be 99.9 %
and 99.6 % for the –1.5° and +1.5° tilt angles, respectively. The quantitative agreement be-
tween theory and experimental results further validates our wavefront measurement system
with the scanning pentaprism.

3.3 Robotized polarization characterization platform

3.3.1 Motivation

Characterization of the polarization effect of an optical element is performed by injecting
known polarization states and measuring the outcomes. The polarization testbed must be
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capable of precise generation and accurate measurement of polarization states. Especially
for devices in free-space quantum communications, the task must be performed for the
optical elements of small to large sizes which constitute the quantum optical terminals.
Moreover, the polarization state analysis must be attained at the range of orientations
and positions over which the terminal’s components will operate. This is challenging with
commercially available polarimeters because they are typically optimized for a small field
of view (FoV) with a limited beam aperture, necessitating significant modification of the
testbed for each test optic. As a consequence, most prior works limited their focus, such
as on telescopes [306] or for an entire assembly in an end-to-end manner [115, 307].

The characterization of instrumental polarization has a long history and it has been
developed in many different research areas. As for relatively small optics, the test can be
performed in the lab relatively easily. Since the size is well standardized, once the system
is built and validated, one can perform the test for various optics without major modifi-
cations of the setup. Also, the angle-dependent polarization test can be achieved by an
ellipsometry-like method [254, 111]. However, most of the previously reported methods
are specialized in non-divergent elements. On the other hand, large telescopes or mirrors
often require a specialized test platform. One of the widely used methods for polarization
tests on a large telescope, which has been developed in solar observatories, is to build a
similar-sized calibration unit in front of the aperture which consists of arrays of rectangular
foils that transmit linearly polarized light. By aligning the polarization axes of the indi-
vidual foils parallel to each other and using sunlight as an incident light passing through
the calibration unit, the polarization test is performed on the collected light at the input
of the telescope [11, 157, 27, 135]. This approach is a relatively quick and simple test, but
it does not provide information on the polarization properties at individual sections of the
telescope aperture. Also, the test had to incorporate large calibrated optical units and be
performed in an outdoor environment. Futhermore, the approach is designated only for
telescopes—the test setup is not adaptive to other large optical elements such as lenses
and curved mirrors.

In mobile applications, such as satellite-assisted quantum communications, the tele-
scopes are usually the reflector-type due to the weight limit of the satellite, and the rel-
atively small aperture size of the telescope (12 cm to 25 cm) compared to astronomical
telescopes [38]. The polarization quality of the telescope is optimized for a specific wave-
length, and it is often in a near-infrared range from 780 nm to 1550 nm. Due to this
restriction, the telescope will be custom-designed and expensive. Therefore, an indoor test
is highly preferable to keep the payload components intact and to maintain controllable
conditions. Moreover, it is desired to obtain a full map of the instrumental polarization
across the aperture, which helps to diagnose issues that may be localized, e.g. pressure
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Figure 3.7: Photographs of the polarization characterization system developed at the QPL
in (a) October 2018 and (b) March 2021.

points on the optics and obstructions due to structural elements.

3.3.2 History of the system development

An initial version of a polarimeter was mounted on the optical bench by Sebastian Sla-
man [268], but could only accommodate limited angular motion. We have developed the
widely movable polarization setup since August 2018 with a scanning range of over 80 cm,
and angular range of around 180°. Our initial version of the measurement apparatus for
telescopes utilized one motorized linear rail for horizontal scanning with manual adjust-
ment of the height of the scanning system, as shown in Figure 3.7(a) (scanning ranges
were 30 cm and 25 cm in horizontal and vertical directions, respectively). This laterally
scanning polarimeter was used for the first characterization of the initial version of the
HON-T in September 2018. To upgrade the system with full range of motion in all axis
over a larger range of motion, we procured a six-axis robotic manipulator in April 2019 to
replace the linear rails. Lindsay Babcock and I implemented the polarization characteri-
zation system in May 2019, and validate the system by performing tests on various optical
systems including a COTS telescope, a glass plate, and pentaprism from June to August
2019. With the improved polarimeter and analysis program, the polarization characteri-
zation for HON-M and HON-T has been performed until March 2020. I designed a new
imaging polarimeter and upgraded the control software with graphical user-interface (GUI)
in January 2021. The upgraded polarization testbed supported the hardware development
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Figure 3.8: A conceptual design of the robotized polarization characterization platform.
Four different linearly polarized states are injected into the device under test (DUT) and
a sample of the transmitted or reflected light is examined. The output beam size and
direction varies depending on the type of test optics.

for quantum optical ground stations at the QPL by tests on IQC-L, COTS-M, and IQC-T.

3.3.3 Conceptual design of polarization characterization system

Figure 3.8 illustrates the concept of our polarization characterization platform. We inject
several well-defined polarization states into a device under test (DUT) and perform po-
larization state tomography on the output states to see how they change. To match our
intended application, we consider four incident polarization states: |H〉 (horizontal), |V 〉
(vertical), |D〉 (diagonal, 45°), and |A〉 (antidiagonal, −45°). This is sufficient to determine
performance of the system in the context of BB84-style QKD protocol1. In our system,
the light source is an external cavity diode laser (DLpro, Toptica photonics) operating in
continuous-wave mode at 785 nm wavelength, which produces a stable intensity over a long
period of time for the polarization test. The input polarization state is initially determined
by an optical isolator and delivered through a polarization-maintaining fiber. Upon exit-
ing the fiber, the laser light passes through a linear-film polarizer (LPVIS100, Thorlabs)
mounted on a motorized rotation stage (PR50PP, Newport). This rotation stage rotates
the fiber and the polarizer altogether to define the four input polarization state with the
accuracy of ±0.025°. Once the light has been sent through the test optic, it reaches a po-

1To perform full process tomography, such as to establish Mueller matrices, one could straightforwardly
incorporate additional circularly polarized incident states.
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larimeter which is attached to a six-joint robotic manipulator (AUBO-i5, AUBO Robotics).
The robot manipulator precisely moves the polarimeter to measure the output polarization
state at the desired positions and angles. The polarimeter projects the output state onto six
polarization-basis states (|H〉, |V 〉, |D〉, |A〉, |R〉 right-circular, and |L〉 left-circular), and
thus sufficient measurements for complete polarization state tomography are performed.

Here, we summarize the main advantages of our test system. First, our test setup is
applicable for a wide range of sample sizes and ranges of motion without major modifica-
tions. Also, from measurement to data analysis, the whole procedure is automated and
therefore many different types of samples can be tested with consistently high precision.
Secondly, the capability of an angle-dependent polarization measurement enables the test
for small optics for reflection-induced polarization rotation as a function of incident angle.
Moreover, the input polarization states can be directly characterized, and therefore the
precision of the polarization test is limited by the extinction ratio of measurement polar-
izers. A typical extinction ratio for polarized beam splitter (PBS) cube is 1000:1, which
yields an accuracy of 0.1% QBER. One option to improve the extinction ratio is to use
linear-film polarizers whose typical extinction ratio is 10000:1, or other types of polarizing
elements such as a Glan-Taylor prism (extinction on order 100000:1). In this case, the
main limiting factor becomes the SNR of the detector.

3.3.4 Detailed design for subsystems

Six-axis collaborative robot arm

Our robotic manipulator is driven by six geared servo-motors with absolute encoders at all
joints. This robot has a reach of 0.924 m, which can easily scan over the entire trajectory
around the optics being tested. The robot has a payload capacity of 5 kg and itself weighs
24 kg. According to the manufacturer’s specifications, the robot has position repeatability
of 0.02 mm and position accuracy of 2 mm. The average orientation repeatability and
accuracy are 0.004° and 0.5°, respectively. A pre-programmed teaching pendant supports
manual control by the user-friendly interface in a touch screen tablet, while Python and
C++ SDK provided by the manufacturer allows us to remotely control the robot arm.
Both methods can independently control the orientation and position of the robot’s end
effector.

The robotic manipulator has two pre-set coordinate systems: base coordinates and
sensor coordinates, and the option to set a user-defined coordinate system, as shown in
Figure 3.9. The base and sensor coordinates are referenced to the absolute position {x, y, z}
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Figure 3.9: Three coordinate systems of the six-axis robot arm: base, sensor, and user-
defined coordinates and an example method of the coordinate alignment. Three points,
one at the origin, another on the z-axis, and the other on the xz-plane, define a user-
coordinate system. The number labels indicate positions used for relative calibaration of
the coordinate systems.

and the orientation {α, β, γ} of the end effector, respectively. These six parameters and the
six joint angles can be transformed to each other via forward and inverse kinematics. For
testing purposes, it is convenient to define the robot’s trajectory in a coordinate system
whose one axis is parallel to the light propagation direction, which was chosen to be the z-
axis. The accurate alignment of this coordinate system is essential to ensure the polarimeter
follows the desired path of scanning across the test optic. Following is an example of our
procedure we developed to determine the user-defined coordinate system.

Three orthogonal axes are required to create a user-defined coordinate system. These
axes can be determined using three points in various combinations. Here, we describe one
example method to determine the coordinate system; inputting one point at the origin 1O,
another point along the z-axis 2O, and the other at anywhere on the xz-plane 3O. We set
up two sets of two pinholes at the same height on the optical table that the test optic was
mounted and aligned to. The four pinholes define two parallel lines which are parallel to
the surface of the optical table. A diode laser is attached on the end effector of the robot
arm, and the laser light is manually aligned through the two in-line pinholes using the
robot teaching pendant. This point was then recorded and set as the origin point. The
laser was then moved further away from the table and carefully re-aligned through the
same two pinholes to define the point along the z-axis. Finally, the laser was aligned to the
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Figure 3.10: Two polarimeters used for polarization characterizations: a conventional
division-of-amplitude polarimeter (DOAP) and high-precision imaging polarimeter (HPIP).
The schematic diagram of (a) DOAP-v2 and (b) HPIP; QWP, quarter-wave plate; HWP,
half-wave plate; P, polarizer; PD, photodiode. Photos of the (c) DOAP-v2 and (d) HPIP.

second set of pinholes, and the position was recorded as a point on the xz-plane. In this
way, the orientation of the end effector is aligned such that the polarimeter is faced towards
the incident beam, and thus the angles α and β are automatically calibrated. The angle γ
is defined by the incident horizontal polarization axis, and the pre-calibrated polarimeter
is oriented such that the power measured at the vertical polarization state is minimized.

Polarimeters

We developed two different types of polarimeters that are illustrated in Figure 3.10. Both
include an iris, quarter-wave plate (QWP) and half-wave plate (HWP). The plates rotate
the projection state to six tomographically complete polarization states (|H〉, |V 〉, |D〉,
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|A〉, |R〉, and |L〉). The projected states are converted to the intensity distributions at
the output port of either the PBS or Wollaston polarizer (68-823, Edmund Optics). The
main difference between the two polarimeters is the optical power measurement device.
One utilizes two identical optical power meters at the output ports of the PBS, which
we call a division-of-amplitude polarimeter (DOAP), and the other uses a CMOS camera
(pco.panda.4.2, PCO) with an imaging lens (f =30 mm, 49-115, Edmund Optics) at the
output of the Wollaston prism, which we call a high-precision imaging polarimeter (HPIP).
From the measured results, we found that the reflection port of the PBS exhibits worse
polarization extinction ratio (100:1) than the transmitted port (1000:1). Then, we added
two film polarizers (colorPolRO VISIR CW02, CODIXX) at the two output ports of the
PBS in order to improve the polarization-extinction ratio to > 10000:1 for more thorough
characterizations of the prototype payload telescope HON-T and its primary mirror HON-
M. It is worth noting that we did not include the polarizers in the DOAP at the initial stage
of validating the system with tests on a COTS pentaprism and glass plate. Throughout this
chapter, we label the DOAP without and with the film polarizer DOAP-v1 and DOAP-v2,
respectively.

Our HPIP is capable of measuring the incident polarization states and the angle of
incidence (AOI) altogether. Figure 3.11(a) shows the detailed schematic diagram of our
HPIP. A convex lens is placed after the Wollaston polarizer such that the far-field image
of the intensity distribution is mapped on the focal plane where an imaging sensor of the
CMOS camera is placed to read out the image N(x, y). In this way, the variation of the
AOI appears as the translation of the intensity distribution by ∆xe(o) and ∆ye(o) which can
be precisely measured by sub-pixel centroid algorithms [7].

We consider the variation of the AOI that mainly comes from the imperfect orienta-
tion of the robotic end effector which is defined by three rotation angles (α,β,γ) around
the three orthogonal axes (x,y,z), respectively, as shown in Figure 3.11(a). The angular
deviation under consideration is on the order of 0.5° and aberrations of the imaging lens
are neglected. As the split angle between the ordinary and extraordinary light exiting the
polarizer depends on its tilt angle [264], we calculate the central point of the two centroids
∆x = (∆xe + ∆xo)/2 and ∆y = (∆ye + ∆yo)/2 to cancel such effect. Thus, under the
paraxial approximation for the lens, the centroid shifts ∆x and ∆y are related to the AOI
by the formula

∆x = f tan β,

∆y = f tanα.
(3.4)

Note that the γ–rotation (around the z-axis) is not directly detected by measuring the shift
of the intensity distribution as it rather appears as the variation of the intensity because
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the polarizer and the camera are rotated altogether.

Design analysis of the high-precision imaging polarimeter

In the following, we focus on the detailed analysis of the HPIP design as the DOAP
has been commonly used and studied in other literature [12]. Although the usage of the
camera provides accurate estimation of the AOI, one major drawback of such an imaging
polarimeter is the limited dynamic range of optical power measurements with the camera.
The issue becomes significant especially when the polarization measurement basis is aligned
to the incident polarization axis. For example, our camera exhibits dynamic range of
21,500:1, an order of magnitude smaller than the extinction ratio of the Wollaston polarizer
(200,000:1). The signal-to-noise ratio (SNR) of the captured images directly impacts the
precision of measuring polarization states. For a given camera with its quantum efficiency
η and the exposure time ∆T , the SNR is given by

SNR =
Pη∆T√

N2
shot + Idark∆T +N2

read-out

, (3.5)

where P is the optical power of the incident light, Nshot =
√
Pη∆T is the shot noise, Idark

is the dark current, and Nread-out is the read-out noise. To keep acceptable SNR over a wide
range of incident optical power, we capture two images for a given waveplate setting. The
camera adjusts the exposure time ∆Te(o) to improve the SNR for the power measurement
of extraordinary (ordinary) light at a time. For sufficient optical incident power and long

exposure time, the SNR is mainly determined by shot noise. The optical powers P
(i)
e(o) at

the i-th waveplate setting are obtained by the averaged pixel values over a region around
the intensity distribution of extraordinary (ordinary) light per unit exposure time of the
camera ∆Te(o) as

Pe(o) =
1

∆Te(o)

[ n∑
i,j=1

N(xi, yi)

n
−

m∑
i,j=1

N(xi, yi)

m

]
. (3.6)

Here, we subtracted background noises with the averaged pixel values over the outside of
the region to calculate the net power values. n and m are the number of pixels including
incident power values and background noises, respectively. Then, we determine the mea-
sured polarization states by evaluating for each Stokes vector ~S = [S0, S1, S2, S3]>, where
S0 is the total power of the incident light, S1 denotes the bias for |H〉 and |V 〉, S2 for |D〉
and |A〉, and S3 for |R〉 and |L〉.
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Figure 3.11: Design analysis of a high-precision imaging polarimeter (HPIP). (a) A
schematic diagram for the optical configuration of the polarimeter; HWP, half-wave plate;
QWP, quarter-wave plate. Experimental characterization in terms of (b) the angle of in-
cidence via the centroid position measurements, (c) the linearity of the camera exposure
time, and (d) the dynamic range of the optical power measurement.

We characterized our polarimeter in terms of the accuracy of the centroid and power
measurement as well as the dynamic range. First, we mounted the polarimeter on the
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robotic manipulator, injected laser light in a fixed propagation direction, and measured
the centroids ∆x and ∆y as a function of the rotation β which are then converted to the
AOI via Equation 3.4. The slope is estimated to be nearly unity in x–axis via least-square
fitting with 0.6 % standard error of the regression, indicating accurate AOI measurement,
as shown in Figure 3.11(c). Secondly, with a constant incident optical power, we recorded
the maximum pixel values as a function of the camera exposure time to ensure linearity of
the exposure time control, as shown in Figure 3.11(d). The slope is estimated by the same
fitting method, and the relative uncertainty of the power measurement is estimated to be
around 1 %. Finally, the dynamic range is characterized by varying the incident power.
We varied the incident optical power while allowing automated control of the camera
exposure time to maintain a constant SNR over the range of incident power, as shown in
Figure 3.11(e). The optical power was measured over a range of three orders of magnitude
while maintaining SNR greater than 200 by adjusting the exposure time between 0.2 ms
and 500 ms. With our camera capable of exposure times of 0.01 ms to 5000 ms, we expect
that a dynamic range of 100, 000 : 1 can be readily achieved.

3.3.5 Polarimeter model, error analysis, and calibration

We model our HPIP with Mueller matrices and analyze polarization measurement errors
caused by the imperfect robotic movement as well as manufacturing imperfections of op-
tical components being used. We assume that the error of translating the polarimeter
impacts negligibly on the polarization measurement, while the imperfect orientation of the
polarimeter is modeled by the the tilted waveplates and the polarization axis misalignment.

Polarimeter model

Our HPIP is modeled by the Mueller matrices of the polarizer MP and waveplates MWP

as
M(θP , θH , θQ;φH , φQ) = MP(θP )MWP(θH ;φH)MWP(θQ;φQ). (3.7)
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The polarizer and waveplates are parametrized by the azimuthal rotation angle θ and phase
retardance φ:

MH(Q)(θ;φ) =


1 0 0 0
0 C2 + S2 cosφ CS(1− cosφ) −S sinφ
0 CS(1− cosφ) C2 cosφ+ S2 C sinφ
0 S sinφ −C sinφ cosφ

 ,

MP(θ) =
1

2


1 C S 0
C C2 CS 0
S CS S2 0
0 0 0 0

 .
(3.8)

Here, C and S are cos(2θ) and sin(2θ), respectively. With MP we assume the Wollaston
polarizer differs negligibly from perfectly polarizing. Ideally, the phase retardances of the
HWP and QWP are φH = π and φQ = π/2, respectively. We model the polarization
extinction between extraordinary and ordinary paths of the Wollaston polarizer by the
rotation of the polarizer θP ∈ {0°, 90°}. Also, for complete tomography, the rotation an-
gle of the waveplates are in corresponding pairs of θH,Q ∈ {(0°, 0°), (22.5°, 45°), (0°, 45°)}.
The optical power for each combination of the rotation angles can be calculated by mul-
tiplying the first row of the Mueller matrix ~M = [M00,M01,M02,M03]> to the incident

Stokes parameter ~Sin. As we have three rotation angle settings of the waveplates and two
ports of the polarizer, the six power measurements can be described by the 6 × 4 matrix
A = [ ~M (H), ~M (V ), ~M (D), ~M (A), ~M (R), ~M (L)]> called an instrument matrix. Here, the super-
script (i) represents each configuration of the polarimeter settings for the power measure-
ments in the horizontal, vertical, diagonal, anti-diagonal, right-circular, and left-circular
polarization-basis states. Then, the six power values ~P = [P

(H)
e , P

(V )
o , P

(D)
e , P

(A)
o , P

(R)
e , P

(L)
o ]>

for the input polarization state can be written as

~P = A · ~Sin + Pd, (3.9)

where we added a constant value Pd for randomly fluctuating power noises from the camera
including the dark current, shot noise, and stray light. Then, the Stokes vector ~Smeas =
W · ~P is obtained from the measured power vector ~P multiplied by the pseudoinverse of
the instrument matrix called a data reduction matrix W = (A> ·A)−1 ·A>. The obtained
Stokes vector is used to reconstruct the density matrix ρ̂out of the measured polarization
state:

ρ̂out =
1

2

[
1̂ +

S1

S0

σ̂z +
S2

S0

σ̂x +
S3

S0

σ̂y

]
, (3.10)

where 1̂ is the 2× 2 identity matrix.
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We characterize the quality of the output polarization states with the quantum state
fidelity F , purity P , and QBER. The fidelity is a measure of the similarity between the
measured state ρ̂out and the incident state σ̂ = |H〉 〈H| (and similarly for V , D, and A
states) which is generally defined as

F = Tr(ρ̂outσ̂) + 2
√

det(ρ̂out)det(σ̂). (3.11)

Assuming that our incident states σ̂ are prepared at pure states, which gives det(σ̂) = 0, the
fidelity can be simplified as F = Tr(ρ̂outσ̂). The purity, defined as P = Tr(ρ̂2

out), describes
the degree of polarization, where P = 1 means a pure state and P = 1/2 indicates a
fully mixed state, i.e., unpolarized light. Finally, the QBER is obtained directly from the
measured power values P

(i)
e(o) at the i-th waveplate setting. For example, the QBER for the

horizontal state of the incident light is calculated as QBER = P
(V )
e /(P

(H)
e + P

(V )
o ).

The three quality parameters, i.e., fidelity F , purity P , and QBER, are related to each
other. For a single qubit of polarized light, the QBER = 1−F indicates the deviation of the
measured state from the incident state. However, the purity depends on the type of noise
or instrumental polarizations. For example, if the initial state is prepared in ρ̂in = |H〉〈H|
and then experiences depolarization due to a symmetric noise, then the output state can
be modeled as ρ̂out = p|H〉〈H| + (1 − p)(|V 〉〈V | + |H〉〈V | + |V 〉〈H|). In this case, the
fidelity F = Tr(ρ̂inρ̂out) = p is related to the degree of polarization while the purity P = p2

represents only the loss of coherence between the basis states |H〉 and |V 〉.

Polarization measurement errors due to tilted polarimeters

Based on the above model, we study how orientation of the robot’s end effector (α, β,
γ) changes the reconstructed density matrix ρ̂out. First, it is obvious that the γ rotation
causes misalignment of the incident polarization state with respect to the principal axes
of the waveplates and the polarizer, as depicted in Figure 3.11(a). This can be modelled
by equally adding the robot’s rotation angle γ to the azimuthal angles as the waveplates
and polarizer rotate altogether: θP (Q,H) → θP (Q,H) + γ. The α and β rotations are related
to the tilt angle of the waveplates ψ = cos−1

(
cos(α) cos(β)

)
. The phase retardance of the

waveplates for a given tilt angle ψ and azimuthal rotation angle θ is expressed in a closed
form [111]

φ(θ, ψ) =
2π

λ
d

(√
n2
e −

n2
e cos2(θ) + n2

o sin2(θ)

n2
o

sin2(ψ)−
√
n2
o − sin2(ψ)

)
, (3.12)
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Figure 3.12: Quantum state fidelity for polarization states characterized by tilted polarime-
ters. The fidelity is calculated by our theoretical model for four linearly polarized states
(horizontal H, vertical V, diagonal D, and anti-diagonal A) as a function of (a) the tilt
angle ψ and (b) the rotation angle γ. (c)–(d) three-dimensional plot for the calculated
fidelity.

where λ is the wavelength of the incident light, d is the thickness of the waveplate, and
no and ne are the ordinary and extraordinary refractive indices, respectively. Here we
considered a single-crystal waveplate for simplicity.

We evaluated the quantum state fidelity of the reconstructed density matrix in Equa-
tion 3.10 for the four linear input polarizations as a function of the rotation angle γ and
the tilt angle ψ, as shown in Figure 3.12. In our calculation, we modelled the ideal MgF2

single-crystal zeroth-order QWP and HWP operating at a wavelength of 785 nm: dH =
33.6 µm, dQ = 16.8 µm, ne = 1.3869, and no = 1.3752. We found that the fidelity is de-
graded mainly due to the γ rotation and it scales quadratically, whereas the effect for the
ψ rotation is relatively negligible.

Polarimeter calibration

We calibrate our polarimeter by a conventional method [37] to obtain the instrument
matrix including the manufacturing imperfections of the HWP and QWP as well as any
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Figure 3.13: Experimental results of calibrating the high-precision imaging polarimeter.
Optical powers are measured under the rotation of half- and quarter-wave plates. The
incident light is horizontally polarized. The circles show the mean values of twenty power
measurements of the ordinary and extraordinary light. The solid curves are fits to the
model in Equation 3.9, and the shaded regions represent the 95 % confidence interval for
the fitting curve. Top: the half-waveplate (HWP) is rotated without the presence of QWP.
Middle: the QWP is rotated while the HWP is aligned to the horizontal polarization axis.
Bottom: the HWP is rotated while the QWP is oriented at 45° with respect to the incident
polarization direction.

other systematic error such as the waveplate misalignment. We injected a horizontally
polarized input state, and recorded the optical powers of the ordinary and extraordinary
rays of the polarizer as a function of the rotation angle of the waveplates in three different
configurations, as shown in Figure 3.13. First, we rotated the HWP without the QWP
to find the angle for the principal axis of the HWP (top). Then, we rotated the QWP
while the axis of the HWP has aligned to the incident horizontal polarization (middle).
Finally, we rotated the HWP through 360° while the optic axis of the QWP was rotated
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by 45° with respect to the incident polarization direction (bottom). Data were collected
at 5° increments. For each waveplate setting, we captured twenty frames of images to
calculate the mean values and standard deviations of the optical power for the ordinary
and extraordinary rays of the Wollaston polarizer. Also, we maintained SNR greater than
two hundred via auto-exposure time control. Thus, we obtained 438 power values with
different waveplate settings.

To determine the phase retardance φH,Q and misalignment θH0,Q0 of the waveplates,
we used a least-squares fit of the 438 measured power values to our polarimeter model
in Equation 3.9 with fitting parameters {φH , φQ, δθ, θH0, θQ0, Pd, Pe, Po}, as shown in Fig-
ure 3.13. Here, θH0 and θQ0 are the azimuthal angles of the HWP and QWP where their
optic axes are aligned to the horizontal polarization. δθ is the azimuthal rotation error
between the HWP and QWP due to potential offsets of the two rotation stages. We no-
ticed that the power-measurement efficiencies were slighly different at the two orthogonal
basis states; Pe(o) quantifies these differential incident optical powers. The fit parame-
ters are {φH = 3.1872rad, φQ = 1.6292rad, δθ = −0.0137rad, Pd = 4.6423 × 10−6, P0,T =
2.6829, P0,R = 2.6741}. The 95 % confidence intervals for φH , φQ, and δθ are less than
1.0× 10−4 rad. The corrected instrument matrix is

AC =


0.5000 0.5000(0) 0.0000(1) 0.0000(3)
0.5000 −0.5000(0) 0.0000(1) 0.0000(3)
0.5000 −0.0032(1) 0.5006(0) −0.0124(3)
0.5000 −0.0032(1) −0.5006(0) 0.0124(3)
0.5000 0.0296(0) 0.0129(3) −0.4990(0)
0.5000 −0.0296(0) −0.0129(3) 0.4990(0)

 . (3.13)

Note that the absence of the uncertainty in the first column in Equation 3.13 is attributed
to exact number of the element in the first column and first row of the Mueller matrix
of our polarimeter in Equation 3.7. The zero in parentheses means that the statistical
uncertainty is smaller than the smallest digit of the mean value shown in Equation 3.13.
The standard deviation of the instrument matrix is based on the uncertainty (i.e., 95 %
confidence intervals) of the least-squares fit to the mean value of the twenty separate power
measurements. This means, the standard deviations of the measured powers presented as
error bars in Figure 3.13 are not taken into account for estimating the fit parameters.
To test repeatability, we performed the calibration process five times after repositioning
the robot arms from different initial poses: the relative variation of the extracted phase-
retardance was measured to be less than 0.2 %.

We performed Monte-Carlo analysis to estimate the total polarization measurement
uncertainty including both phase-retardance error of the waveplates and motion-induced
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Figure 3.14: Polarization-test procedure and the control system. A polarimeter attached
on a six-axis collaborative robot arm follows the output lights and analyzes the output
polarization state. The polarization test processes are fully automated by the custom-built
control software.

polarization error, incorporating the measured values of φH and φQ. We adjusted the
thickness of the waveplates to match the phase retardance to the experimentally obtained
values (φH = 3.1872rad and φQ = 1.6292rad). We sampled one hundred thousand uni-
formly distributed random values for the robot arm’s orientation error from α, β, γ ∈
(-1°,+1°) and obtained root-mean-square quantum state fidelity deviation and QBER of
0.01 % and 0.05 %, respectively.

3.3.6 Control software

A general procedure of the polarization test and the interfaces of the characterization setup
are depicted in Figure 3.14. For each sample, a user must input parameters such as sample
size, grid size, and directory to save the data. From the sample size and grid size values,
an optimal path is calculated and an array of positions is generated in a user-defined
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coordinate system, which is then transformed into the base coordinates. The positions and
orientations in the base and sensor coordinates are converted to a series of joint angles via
an inverse kinematics solver and fed into the robot arm controller.

First generation

The first generation of the control program was scripted in a high-level, widely known pro-
gramming language such as Matlab. It was used to operate the system with the DOAPs.
As shown in Figure 3.15, for each input polarization, the robot will scan through each posi-
tion, taking 5–10 power measurements at each of the six different polarization measurement
settings. After this entire process has been completed, polarization state tomography is
applied to the results from power measurements at every grid position. The outcome of
this analysis will present the measured polarization states with fidelity, purity, and QBER.
All rotational stages for the input polarizer, the wave plates, as well as small optics stage,
are controlled by a single motion controller (XPS-Q8, Newport). We developed software
tool kits in Python for the communication to three different devices: the motion controller,
six-axis robot manipulator, and optical power meter (2936-R, Newport). Then, the Mat-
lab script calls the Python class to control the device and performs post-processing, e.g.,
polarization state reconstruction and error analysis, on the measured results.

Second generation

Our second generation of the program was motivated to include two features. First, it
allows real-time monitoring of the position and orientation of the robot arm by GUI pro-
grammed in C++ with Qt designer. The procedures for defining a user-defined coordinate
system and calibrating the HPIP become much simpler thanks to the convenient inter-
face of reading and writing the robot’s coordinate and the angle of the rotation stages.
Secondly, real-time control of the scientific CMOS camera significantly reduces the mea-
surement time. The program monitors the total intensity being detected by the camera,
and performs the polarization measurements only when the intensity is greater than a pre-
set threshold value. If it is below the threshold, the robot moves to the next position. Also,
the auto-exposure time control ensures maintaining good signal-to-noise ratio during the
measurement. Finally, the captured images are post-processed during the test to output
and store only the mean values and the standard deviations for the measured powers and
centroids, which requires less storage of intermediate data.
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Figure 3.15: Functional block diagram of the control program for polarization tests. The
main program is scripted in Matlab, which calls functions from Python class for the control
of robot arm, rotational stage, and optical power meter. The Matlab script automates the
entire system including taking measurements and analyzing data.
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Figure 3.16: A screenshot of the upgraded control software for the polarization character-
ization system using HPIP.

3.3.7 Experimental setup

Figure 3.17 shows our optical configuration to perform the polarization tests on four dif-
ferent optics: small reflective optics, large lens, telescopes, and concave mirrors. First,
as for small reflective optics, we characterized the polarization maintenance as a function
of the incident angle by rotating the test optic in evenly sized increments with a fixed
incident beam direction. The robot arm moves the polarimeter to track the reflected light
from the test optics in an arced path, and polarization measurements are performed at
each incident angle, as shown in Figure 3.17(a). We ensure that the light path and the
rotational axis coincide such that the arced path is simply defined by the radius from the
center of the test optic to the center of the end effector. The radius is then measured by a
laser-distance measurer. Given a set of incidence angles and the radius, the program could
simply determine the robot arm path by converting from polar coordinates to Cartesian
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Figure 3.17: A schematic diagram of the experiment setup. (a) Angle-dependent polariza-
tion charaterization on the reflective optics; PMF, polarization-maintaining fiber. Polar-
ization tests for (b) a large lens (20.3 cm diameter) with the fixed angle of incidence, (c)
afocal Schmidt-Cassegrain telescope (26 cm diameter), and (d) its primary mirror.

coordinates. The quality parameters, e.g., state fidelity, purity, and QBER, are derived
from the measured data, and polarization maintenance is examined at various incident
angles.

As for the large test optics, we placed a polarization-maintaining fiber at the focal
position of the test optics, producing diverging light with well-defined polarization states.
Characterization of the input polarization states of the diverging light can be achieved by a
similar method to the angle-dependent polarization test as in the test for small optics; the
polarization measurements are taken in an arced path around a stationary diverging beam.
The test optics produces a large collimated light, the cross section of which is discretized
with an evenly-spaced 15× 15 section grid for the polarization measurements. The robot
arm scans the polarimeter through all 225 positions at a given input polarization in the
transverse direction (as in a raster scan) to perform the tomographic measurement across
the entire output beam, as shown in Figure 3.17(b)–(d). The whole 2-dimensional scan is
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Figure 3.18: Polarization characterization for the test optic of an 2.54 cm pentaprism. (a)–
(b) The fidelity and (c)–(d) purity are measured for incident horizontal |H〉, vertical |V 〉
states, diagonal |D〉, and anti-diagonal |A〉 states. Black solid lines are the theoretical
curve obtained from the 3D polarization ray tracing.

repeated for four different input polarization states. Since all power measurements at six
orthogonal polarization bases are performed at a position, and then the robot arm moves
the polarimeter to the next position, the ensemble average of the quality parameters, e.g.,
fidelity and purity, over the measured area represent the performance lower bound of the
test device and the standard deviation includes the position and orientation error of the
robot arm. The scanned area also includes the corners and the secondary mirror of the
telescope where no light is expected. These sections are not included in the analysis. As
for the test for the primary mirror of the telescope, we disassembled the secondary mirror
and the spider, and located the fiber launcher at the focal plane of the primary mirror.
Our wavefront characterization system is utilized to ensure the collimation of the output
beam.
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Table 3.2: Characterization of incident polarization states for the test on pentaprism and
glass plate with DOAP-v1. Such unphysical values are the result of experimental imper-
fection and statistical fluctuations (further described later in the text)

Input state Fidelity (%) Purity (%) QBER (%)
|H〉 99.20± 0.01 99.21± 0.16 0.80± 0.01
|V 〉 99.86± 0.01 100.88± 0.15 0.14± 0.01
|D〉 99.10± 0.01 98.42± 0.16 0.81± 0.01
|A〉 99.89± 0.01 99.98± 0.11 0.12± 0.01

3.3.8 Test results with division-of-amplitude polarimeters

Pentaprism and glass plate

We performed angle-dependent polarization tests on a pentaprism and a glass plate. The
pentaprism provides the simplest test procedure because the output light is always deflected
90° to the incident light, which means that the position and orientation of the robot arm
are fixed during the test. This test is expected to show the stability of the polarization
characterization system with the static pose of the robot arm, as well as the quality of
the coordinate alignment procedure. On the other hand, the polarization states of the
reflected light from a glass plate can be analytically calculated by the Fresnel equations.
Our custom-built three-dimensional polarization raytracing program [315] was used to
estimate the state fidelity and purity after the reflection from the pentaprism and glass
plate as a function of incidence angle.

We first characterized the four incident polarization states |H〉 , |V 〉 , |D〉 , |A〉 by using
a collimated laser light at 785 nm wavelength with 1/e2 beam diameter of 1.2 mm. The
results are summarized in Table 3.2. In this test, we used DOAP-v1, and the polarization
extinction ratio is about 1000:1 which is the main limiting factor for the measurement
precision. More importantly, the extinction ratio of the reflection port is an order of
magnitude worse than the transmission port, which is clearly observed by the measured
QBERs for |V 〉 and |A〉 being slightly better than |H〉 and |D〉.

Figure 3.18 shows the fidelity and purity of the polarization states measured for the
reflected light from the pentaprism (CCM1-PS932, Thorlabs). For each rotation angle of
the pentaprism and the polarization measurement basis setting, we repeated the power
measurements five times. The mean and standard deviations were used for state tomogra-
phy to examine the polarization maintanence. The test pentaprism is made of N-BK7 with
aluminum coated on the two reflection surfaces. From the refractive index of the aluminum
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Figure 3.19: Polarization-test results on a glass plate. (a) Polarization-dependent reflec-
tivity of s- and p-polarizations. (b) Quantum state fidelity for the four incident states. For
the theoretical curve presented in black lines, we assumed the refractive index of the glass
plate to be 1.5.

coating [205], we calculate the output polarization state by using our polarization raytrac-
ing program. In Figure 3.18, black lines indicate the theoretical values of the fidelity and
purity as a function of the incident angle. An excellent agreement with experimental re-
sults is observed particularly for the |V 〉 and |A〉 state, and the discrepancies for the other
polarization states are mainly attributed to the poor extinction ratio of the reflection port
of PBS.

Figure 3.19(a) shows the experimentally measured reflectivity and the theoretical curve
for s- and p-polarizations of a 25.4 mm×76.2 mm×1.02 mm microscope glass plate. We
aligned the |H〉 and |V 〉 states to be the p- and s-polarizations, respectively, and measured
the optical powers of the reflected light with the six polarization measurement settings.
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The angle-dependent reflective coefficients at the interface between two different optical
media, i.e., air and glass, for s- and p-polarizations are given by the Fresnel equations

rp =
n1cosθ1 − n2cosθ2

n1cosθ1 + n2cosθ2

,

rs =
n1cosθ2 − n2cosθ1

n1cosθ2 + n2cosθ1

,

(3.14)

where θ1 and θ2 are the angle of incidence and refraction, respectively. n1 and n2 are the
refractive indices of the two materials. The measured optical power PH,V for |H〉 and |V 〉
states are normalized by the total power PV + PH , and the relative phase shift between
the |H〉 and |V 〉 states was obtained from the reconstructed output polarization states via
polarization state tomography. The theoretical curves of the normalized reflectivity for
the s- and p-polarization and the phase shift were calculated from the absolute square of
the reflective coefficients, i.e., |rs,p|2/(|rs|2 + |rp|2), and the Brewster’s angle, respectively.
At Brewster’s angle, the sign of the reflective coefficient for p-polarization is flipped; the
relative phase value is changed from 180° to 0°.

Figure 3.19(b) shows that the measured fidelity for the four incident polarization states
are in good agreement with theoretical curves. We observed that the |H〉 and |V 〉 states
are well preserved as they are aligned to p- and s-polarizations. And, as shown in Fig-
ure 3.19(a), the reflectivities of the two states converges to 50 % as the incident angle
becomes close to zero and there is a relative π–phase shift upon reflection. This indicates
that the incident |D〉 and |A〉 states are expected to become their orthogonal states after
reflection at normal incident angle. Indeed, the state fidelity for |D〉 and |A〉 was measured
to be close to zero at small incident angle. The 50 % fidelity at around the 56° incident
angle is attributed to the perfect transmission and reflection for p- and s-polarizations at
the Brewster’s angle, which also appears as a slight fidelity drop for the |H〉 state (see
the inset of Figure 3.19(a)). Reproducing the analytic curve for the case of air-glass in-
terface with the experimental results validates our methodology of the angle-dependent
polarization characterization.

Quantum satellite payload telescope (HON-T) and its primary mirror (HON-
M)

We now turn our attention to the polarization characterizations of the prototype telescope
HON-T and its primary mirror HON-M developed for the QEYSSat quantum payload.
Here, we use the DOAP-v2: the division-of-amplitude polarimeter with two thin film
polarizers inserted at both outputs of the PBS.
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Figure 3.20: Polarization-test results for a prototype satellite payload telescope (HON-T).
The color maps show the measured optical power, the quantum bit error rate (QBER), the
quantum state fidelity, and the purity for four input polarization states: |H〉 , |V 〉 , |D〉 , |A〉.
The areas enclosed with solid red lines indicate the sections where the measured optical
power is greater than 50 nW. We calculate the ensemble averaged values of the fidelity,
purity, and QBER within these areas.

Figure 3.20 shows the polarization test results for the HON-T via color maps of the
power, QBER, fidelity, and purity for each input polarization state. The region marked
with red lines indicates the area in which the quality parameters are averaged. The outcome
of this test shows great polarization maintenance as the ensemble averaged fidelities for
all four input states are above 99.9 %. The promising result of QBER less than 0.05 %
indicates that our prototype telescope is suitable to be deployed for the free-space QKD
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Figure 3.21: Polarization-test results for the primary mirror (HON-M). The color maps of
the optical power, the quantum bit error rate (QBER), the quantum state fidelity, and the
purity. The sections in which the measured power above the threshold power of 100 nW are
considered for the calculation of the ensemble averaged values of the quality parameters.

experiment. The standard deviations for the fidelity and QBER are less than 0.03 %, which
demonstrates good precision of our polarimetry using the robot arm.

Figure 3.21 shows the test results for the HON-M. We perform the test only for the
selected four sections of the mirror in order to reduce the time for the polarition test. The
average fidelity and purity are measured to be 99.86±0.03% and 99.86±0.09%, respec-
tively, and the average QBER is measured to be 0.14±0.03%. The observed polarization
maintenance for the primary mirror is slightly worse than the whole telescope assembly.
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This may be mainly attributed to the background noise that can be easily captured within
the FoV of the concave mirror. Since our blackout enclosure has an aperture wider than
the telescope diameter, we noticed that there was significant stray light coming from our
control computer which was located behind the robot arm.

3.3.9 Test results with high-precision imaging polarimeter

Commercial off-the-shelf silver-coated mirror (COTS-M)

We measured the polarization states of the reflected light from a 10 cm–diameter protected
silver-coated mirror (COTS-M) as a function of the reflection angle. Collimated light
with 4 mm 1/e2 beam diameter was sent to the center of the mirror. The horizontal and
vertical states of the input polarizations were aligned to p- and s-polarizations of the mirror,
respectively. We rotated the mirror to vary the reflection angle from 5° to 52.5°, and the
robot arm follows the reflected beam in an arced path. The trajectory was defined by the
measured radius from the center of the mirror to the center of the end effector with a laser-
distance measurer. At each angle, twenty frames were captured to calculate the mean and
standard deviation of the measured powers and centroids while maintaining SNR above
one hundred. The full scan of the polarization test was repeated four times for statistical
certainty.

Figure 3.22(a) shows the variation of the AOI to the polarimeter during the test. AOI
variation was maintained within ±0.2°, indicating good coordinate alignment and excellent
repeatability. As shown in Figure 3.22(b), the averaged purity and fidelity for horizontal
and vertical input polarization states are maintained above 99 % over the entire reflection
angle range, indicating good alignment of horizontal and vertical polarization states to the
s- and p-polarizations of the mirror.

The polarization-dependent reflectivity of the protected silver mirror can be accurately
calculated by multilayer coating calculations [303]. It is expected that the comparison
between experimental data and theoretical prediction validates our methodology, i.e., the
usage of robot arm to move the polarimeter for angle-dependent polarization character-
ization. We modeled the protected silver film with a 92 nm–thick SiO2 layer coated on
top of a 1 µm-thick silver layer. The transmissive and reflective coefficients of the s- and
p-polarizations were calculated by a conventional optical admittance method [75]. The
coefficients were then used to obtain the polarization states of reflected light. In Fig-
ure 3.22(b), black lines indicate theoretical values of fidelity and purity as a function of
reflection angle. We characterize a closeness between theory and experiment by the stan-
dard error of regression SER =

√∑n
i=1(yi − f(xi)2/ (n− k) with k denoting the number
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Figure 3.22: Experimental results from the angle-dependent polarization characterization
on the protected silver-coated mirror (COTS-M). (a) The variation of the measured AOI.
(b) The fidelity and purity of the measured polarization states for incident horizontal |H〉,
vertical |V 〉 states, diagonal |D〉, and anti-diagonal |A〉 states. Circles show the measured
data and solid black lines indicate theoretical predictions based on multilayer thin-film
coating calculations.

of free parameters for the theoretical model. In our case, we consider the thickness of SiO2

and silver layer as free parameters, and thus k = 2. Here, yi and f(xi) are the measured
and theoretically prediected values, respectively. We calculated SER of fidelity being better
than 0.4 % for all four input polarization states, showing the excellent agreement between
theory and experiment.
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Table 3.3: Median values of the fidelity, purity, and QBER for the transmitted polarization
states from the 20.3 cm custom-designed len. Lower and upper quartiles are listed in
parantheses.

Input state Fidelity (%) Purity (%) QBER (%)

|H〉 99.60 99.59 0.40
(99.01,99.73) (99.53,99.70) (0.27,0.99)

|V 〉 99.68 99.79 0.32
(99.03,99.84) (99.44,100.00) (0.16,0.97)

|D〉 99.55 99.50 0.35
(98.99,99.70) (99.38,99.56) (0.19,0.97)

|A〉 99.52 99.42 0.42
(98.97,99.68) (99.27,99.51) (0.28,1.01)

In our experiment, the density matrices of measured polarization states are recon-
structed by calculating the Stokes vector that is normalized by the total intensity averaged
over three different polarization measurement bases. As we used collimated light with
beam diameter of 4 mm and set the pin-hole size to be 2 mm, any positional instability
while rotating the waveplates causes total intensity variation. This effect may yield un-
physical quantum states whose purity is greater than unity, as seen in Figure 3.22(b).
This issue can be resolved by either larger pinhole size or other alternative tomographic
reconstructions such as the maximum likelihood estimation.

Quantum optical transmitter component (IQC-L)

We characterize the polarization maintenance of our IQC-L developed for the quantum
optical ground station. We applied the same method as in the test for the telescope and
primary mirror. We placed an optical fiber at the focal position of the IQC-L which
produces diverging light with well-defined polarization states. The lens outputs large colli-
mated light with fixed direction and position. We added a 20 cm–diameter mask in front of
the lens to block stray light because the numerical aperture of the fiber used in the experi-
ment was larger than the lens. We ensured that the transmitted light was collimated with
divergence angle less than ±10 µrad measured by our aberration characterization system.

Figure 3.23(a) shows the variation of measured AOI during the polarization test. It
was observed that the AOI to the polarimeter was maintained within ±0.5°. The measured
purity and fidelity are presented in the color maps shown in Figure 3.23(b). We discarded
values where the incident light is too weak to be detected with the exposure time greater
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Figure 3.23: Polarization-test results for a 20.3 cm custom-designed achromatic doublet
(IQC-L). (a) The variation of the measured AOI. (b) The color maps of fidelity and purity
of the measured states for incident horizontal |H〉, vertical |V 〉, diagonal |D〉, and anti-
diagonal |A〉 states.

than 100 ms. Histograms of remaining values indicate the uniformity of transmitted po-
larization states across the aperture. QBERs for the four incident polarization states were
directly calculated from the raw power measurements. The median and quartiles of the
three quality parameters, i.e., fidelity, purity, and QBER, are listed in Table 3.3. The
outcome of this test shows great polarization maintenance as the typical fidelities for all
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four input states are greater than 99.5 %. The promising result of the QBER less than 1 %
indicates that the lens is suitable for the free-space QKD experiment.

It is worth noting that the high-fidelity region shows a “cross-mark” feature on the
color maps. This feature seemingly depends on the input polarization states; plus–sign in
horizontal and vertical state and X–shape in the diagonal and anti-diagonal input states. In
our setup, the input polarization states are defined by the rotation of the polarizer and the
fiber together, and the high fidelity region is correlated to this rotation angle, indicating
that the high- and low-fidelity region may not be attributed to the quality of the test
optic, but rather by the uniformity of the input polarization state across the lens aperture.
The reason for the imperfect state preparation with the polarized diverging beam will be
further investigated. The full characterization for the instrumental polarization of the lens
can be performed by directly characterizing the input states with the same polarimeter
and comparing the results as in Mueller-matrix polarimetries [20].

3.4 Chapter summary

The first part of this chapter presents the development of a practical characterization
system for optical aberrations of free-space quantum communication optics. The direct
measurement of local wavefront slopes across output aperture of the test optic identifies
the collimation of the transmitted light. We performed a proof-of-principle experiment for
a linear measurement of the transmitted wavefront and analyzed the measurement appara-
tus using a three-dimensional raytracing method. The test optic was chosen to be 20.3 cm
diameter achromatic doublet developed for the QEYSSat mission. With sufficiently redun-
dant measurements and statistical analysis, it was shown that our wavefront-measurement
system exhibits the precision better than 0.01λ. We compared the measured wavefronts
with the theoretical predictions and excellent agreement between the two results validates
our methodology.

Our transverse linear measurement apparatus can be implemented at reasonable costs.
The simple optical configuration requires minimal efforts for alignment, yet the system
performs excellent stability and precision to characterize aberrations of large collimators.
The wavelength range of our measurement setup is limited by the spectral sensitivity of
the camera which can be switched without major modifications. We believe our practical
test platform for characterizing aberrations is a useful tool for both scientific and industrial
applications in diverse fields including optical satellite communications and astronomical
observatories.
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The second part of this chapter describes our robotized polarization characterization
platform for optical devices in free-space quantum communications. Our system can easily
be adjusted for performing polarization tests on diverse reflective or refractive optical
systems with a wide range of aperture sizes (up to 30 cm), and either curved or flat
surfaces at consistently high precision. We developed two different polarimeters: the DOAP
and HPIP. The DOAP-v2 performs better than the HPIP in terms of the measurement
precision. It was capable of measuring QBER less than 0.04 %. On the other hand, the
HPIP is capable of monitoring the variation of incident angle, and thus the misalignment
due to the robot’s motion can be detected. This could even be used for implementing a
feedback mechanism to correct the polarimeter’s position and orientation in the future.
The precision of the HPIP was mainly limited by the dynamic range and signal-to-noise
ratio of the power measurement.

The measurement apparatus can be readily set up in outdoor and used for deployed sys-
tems. The characterization process is fully automated once the robot’s coordinate system
is calibrated. We presented our theoretical analysis of the polarization measurement error
caused by the tilt and rotation of the polarimeter, and showed that the misalignment of
the polarization axis due to the azimuthal rotation is a dominant measurement error. This
rotation error could be detected and compensated by injecting more incident states to fully
characterize the change of the polarizations, as in conventional Mueller-matrix polarime-
tries. It is also worth noting that the input polarization states can be directly characterized
in our system, and therefore the precision of the polarization characterization of the test
optic is limited by the measurement device.

We performed polarization tests on various optical elements including a pentaprism,
microscope glass plate, protected silver-coated mirror, telescopes, large concave mirror
and lens. The angle-dependent polarization characterization for the small reflective opti-
cal elements validated our test system with excellent agreement between the test results
and theoretical predictions. The polarization characterization on the prototype optical
components for the QEYSSat mission provided a lower bound of the performance of the
test optics, which includes imperfection of the input state preparation. In our setup, the
standard deviation from the ensemble-averaged value for the test optics takes into account
various systematic errors, e.g., the robotic motion, waveplate rotation, beam collimation,
optical power readout, etc.

Our polarization characterization clearly demonstrates the viability of using an indus-
trial robotic manipulator to study large optical components and systems. Our theoretical
model and experimental demonstration showed that the motional precision achieved is suf-
ficient to draw robust conclusions from the optical measurements. Although not presented
here, the telescope assembly IQC-T exhibited transmitted wavefront error less than 0.04λ
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RMS-value, and polarization-preservation with the state fidelity greater than 99.5 % [212].
We believe that our robotized polarization characterization platform could therefore also
support the development of free-space optical components or terminals for a broad range
of applications including laser communications, lidars, and astronomical observatories.
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Chapter 4

Quantum frequency transducer for
single-photon quantum
communications with satellites

In this chapter, we present the development of quantum frequency transducers (QFTs)
using two different optical media: a silicon nitride ring resonator and a photonic crystal
fiber. We describe designing and analyzing ring resonators via numerical simulations of
optical nonlinear phenomena which provide thorough assessment to device performance.
We perform a theoretical analysis and experimental demonstration of the frequency trans-
lation using a photonic crystal fiber and discuss our preliminary results as well as future
works.

Statement of contributions

� Quantum frequency translation using a silicon nitride ring resonator
The presented research was in collaboration with Dr. Robin Williams’s group at Na-
tional Research Council Canada (NRC). The project was conceived by Prof. Thomas
Jennewein. I carried out numerical simulations for designing and analyzing ring res-
onators. Dr. Robin Williams provided information about silicon nitride materials
and specifications of quantum dot single-photon sources developed at NRC.

� Quantum frequency translation using a photonic crystal fiber
Prof. Thomas Jennewein and I conceived the idea of using a photonic crystal fiber. I
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carried out the analysis for the performance assessment, procured prerequisites, and
conducted the experiment.

4.1 Introduction

4.1.1 Quantum frequency transducers

QFT is a quantum photonic device which translates the frequency of an electromagnetic
field to the desired frequency while preserving other quantum information. The idea was
first proposed by Prem Kumar in 1990 [162] and demonstrated by the same group two
years later [126]. They used sum-frequency generation process in a χ(2) medium and
showed the preservation of nonclassical intensity correlation of squeezed light. Over the
past decades, there has been growing interest in the development of highly efficient, low-
noise, and scalable QFTs for various applications.

The first QFT-assisted quantum device was frequency up-conversion single-photon de-
tectors for photons at telecom wavelengths as quantum key distribution (QKD) became
more advanced and even commercialized in fiber-optic networks [291, 231, 232, 195, 178].
Later on, QFTs were used to interface optical fiber channels with different quantum light
sources such as single-photon sources [232, 139, 265, 219] and paired photon sources [136,
138, 202]. Recent technological advances made it possible to transfer photonic quantum
information to matter qubits for storage and processing [201, 137, 202, 296, 267, 69, 314].
Furthermore, it has also been shown that a QFT can be used for photonic quantum infor-
mation processing in frequency domain [159, 64, 150]. Other interesting applications are
the generation of quantum states of light [25, 24] and the enhancement of measurement
precisions [319].

QFTs are typically made of optical nonlinear media where frequency translation process
is driven by one or two strong pump fields. Unlike parametric amplification processes such
as photon-pair generations where the pump fields amplifies photonic excitations, here in
QFTs the pump fields mediate energy exchange between input signal and output target
frequency modes. Indeed, the frequency translation process is mathematically expressed as
a beam-splitter operation, i.e., coherent mode conversion. Therefore, in principle, noise-free
frequency translation with unity efficiency can be achieved.

Two of the most popular schemes have been sum-frequency generation and four-wave
mixing Bragg-scattering (FWM-BS) processes [204] using χ(2) (second-order) and χ(3)
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(third-order) optical nonlinear media, respectively. With the mature technologies of fer-
roelectric domain engineering in χ(2) media such as periodically-poled lithium niobate
(PPLN), the former method has been utilized more commonly than the latter and its
typical conversion efficiency ranges from 50 % to 90 %. One problem is that the pump
wavelength rapidly increases as the signal and target wavelengths get closer to each other.
For example, the wavelength conversion from the input signal at 985 nm to target wave-
lengths at 785 nm via sum-frequency generation requires the pump field at the wavelength
of 3866 nm. To address this issue, FWM-BS has become a popular method lately. In FWM-
BS, the energy exchange between input and target photons is obtained by coherent (Bragg)
scattering from the frequency beat between two pump fields, which provides flexibility of
choosing the target wavelength. Recently, 97 % intraband frequency-translation efficiency
was achieved via FWM-BS process using a 100 m–long dispersion shifted fiber [150].

A common challenge in QFTs is to strongly drive only the desired frequency-translation
process while suppressing other unwanted nonlinear processes. For a given medium with its
nonlinearity γ and length L, the unity conversion efficiency requires γPL ∼ π with P denot-
ing incident pump power. This means, one needs either a strong pump field or long inter-
action length. For example, a 500 m–long highly nonlinear optical fiber (γ ∼10 W−1 km−1)
typically requires single pump power of around 100 mW. The requirement of the strong
pump power could be relieved by either recycling the field inside an optical cavity [253]
or reducing the mode area via waveguide structures [231, 5, 230, 195, 178]. As will be
discussed later, both the cavity-assisted enhancement of optical nonlinearity and the tight
localization of the guided fields can be achieved by integrated optical circuits such as ring
resonators and photonic crystal waveguides [127, 293]. However, this strongly driven non-
liear medium easily involves other unwanted processes, e.g., spontaneous Raman-scattering,
which usually adds noise photons or decrease the conversion efficiency.

There has been significant progress in the development of QFTs with the great ambition
of establishing a global quantum internet. Recently, Lu et al. proposed a scheme of using
third-order sum-frequency generation for low-noise frequency up-conversion process, which
allows using a single pump field at the long wavelength, thereby suppressing spontaneous
Raman-scattered photons [191]. According to their analysis, 80 % conversion efficiency can
be achieved with 50 mW pump light using a high-Q ring cavity. Another notable interesting
approach for QFTs is a rapid adiabatic passage scheme for broadband frequency conver-
sions [21, 74]. Also, there has been gradual progress to extend a frqeuency-translation
range from optical domain to microwaves, which is mainly motivated by the networks of
superconducting quantum processors with quantum optical channels [166].
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4.1.2 Motivations

The development of QFTs presented in this chapter is mainly motivated by QKD over a
ground-to-satellite quantum link using quantum dot single-photon sources (QD-SPSs).

Single-photon quantum key distribution

As discussed in Section 1.2.1, the complete operation of QKD requires a sequence of exe-
cutions of the invoked protocol such as an authentication, photon transmission, and post
processing. One of the most practical protocols is the decoy-state BB84 which allows using
attenuated lasers with as high asymptotic key rate as the case of using single photons.
However, for a ground-to-satellite quantum link, since the high photon loss and limited
contact time reduce the size of sifted key, statistical fluctuations play a significant role in
the parameter estimation during the post processing. To ensure unconditional security, one
must take the maximum bound of the fluctuation to completely eliminate possible leak-
age of information to eavesdroppers, which reduces the length of the attenable final key.
This reduction, so-called finite-size effect, turns out to be considerable in the case of using
coherent pulse sources as each pulses includes substantial amount of multi-photons [49].

It has been conceived that single-photon sources could outperform weak coherent pulse
sources under this condition thanks to their low multi-photon components. Single-photon
QKD has been experimentally demonstrated in both optical fiber and free-space chan-
nels [9, 278, 118]. However, due to technological limitations such as low photon-extraction
efficiency and residual multiphotons (“high” g(2)(0)), the benefit of using single-photon
sources in QKD had yet to be clearly demonstrated or actively investigated. The devel-
opment of QD-SPS has been advanced to yield the generation rate higher than 100 MHz
with the extraction efficiency higher than 80 % [299, 287, 71]. Recently, the QPL and our
collaborators at NRC conducted an indoor experiment for proof-of-principle demonstra-
tions using single photons generated by a semiconductor quantum dot (QD) embedded in
a photonic nanowire. The experiment and theoretical analysis showed the enhancement of
secure key rate by almost an order of magnitude [55]. Here, we aim to use the QD-SPS
for our QEYSSat mission by translating the wavelength of emitted photons at 985 nm to
around 785 nm.

Integrated silicon photonic circuits with single-photon sources

One of the exciting technological advances in QD-SPS is the capability of deterministic
growth of quantum dots and its integration with a silicon photonic platform [316, 73, 71,
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225]. It opens new synergistic opportunities for integrated quantum photonic devices using
mature technologies in silicon photonics. Recently, our collaborators at NRC demonstrated
a pick-and-place method for InAsP quantum dots using a nanomanipulator installed in a
scanning electron microscope [211]. The pre-selected single quantum dots can be picked by
a tungsten tip and placed on silicon nitride waveguides. QFTs based on a silicon nitride
ring resonator can be integrated with QD-SPSs, thereby constructing on-chip wavelength-
tunable single-photon sources.

Chip-scale optical elements have already been widely deployed in classical fiber-optic
communications, such as phase- and amplitude-modulators and wavelength-multiplexers.
Likewise, integrated quantum photonics will form the backbone of future quantum net-
works [301]. Nanophotonic devices provide features that cannot easily be attained in bulk
optics, such as high optical nonlinearity and long interaction time. Also, their efficient
integration with matter qubits, e.g., color centers in diamonds [298], could play a ma-
jor role as on-chip information processors or quantum memories. At the time of writing
this thesis, one of the notable major and national developments in this area is Quantum
Foundry funded NSF’s Quantum Leap Challenge Institutes program. Also, UK-Canada
and Europe QLSI (Quantum Large Scale Integration with Silicon) projects invest to the
development for the integrated quantum photonic devices. Researchers recently printed a
roadmap which envisions large-scale integration of versatile and reconfigurable quantum
photonic integrated circuits to be implemented in the next decade [217].

4.2 Theory of four-wave mixing Bragg-scattering in

waveguides and ring resonators

In this section, we provide a theory of FWM-BS in waveguides and ring resonators. Fig-
ure 4.1(a) depicts the system of our interest where the frequency of incident photons ωS

(signal) is translated to the target frequency ωT (target) after interactions with pump fields
(pump1 and pump2) mediated by a χ(3) medium. For high efficiency, the four fields must
satisfy a phase-matching condition

ωP1 − ωP2 = ωT − ωS,
β (ωP1)− β (ωP2) = β (ωT )− β (ωS) ,

(4.1)

where β is a propagation constant of the medium.

Optical waveguides or fibers support guided modes with a continuous frequency range,
and the phase mismatching is characterized by propagation constants of the four fields
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Figure 4.1: A schematic diagram of quantum frequency translation using a ring resonator.
(a) Two classical pump fields (ωP1 and ωP2) are injected to a ring resonator together
with a quantum signal field (ωS) whose wavelength is translated to the target wavelength
(ωT). (b) The frequency-translation process is based on four-wave mixing Bragg-scattering
(FWM-BS). The interaction between the two pump fields mediates the coherent mode
translation from the signal to the target. Ideally, the ring resonator is populated by the
four fields interacting to each other via FWM-BS process (top). However, in practice,
there are unwanted nonlinear processes such as spontaneous Raman-scattering, modulation
instability (MI), and higher-order harmonics of the pump fields (bottom).

∆β = β (ωP1) − β (ωP2) + β (ωS) − β (ωT ). On the other hand, in ring resonators, as
shown in Figure 4.1(b), the periodic coupling of a ring cavity (radius R) to a waveguide
alters the dispersion with resonant peaks provided by 2πRneff(λ) = mλ where m and neff

are integer mode numbers and an effective refractive index, respectively. Therefore, the
phase-matching condition for the four resonant modes mP1,P2,S,T of the intracavity fields
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can be rewritten as

ω̂P1 − ω̂P2 = ω̂T − ω̂S,
mP1 −mP2 = mT −mS,

(4.2)

where ω̂m is the resonant frequency of the m-th modes. This means that the momentum
conservation (the second equation in Equation 4.2) is always satisfied for carefully counted
longitudinal modes. However, due to higher-order dispersions, the four modes may not
satisfy the energy conservation (the first equation in Equation 4.2) with the frequency
mismatching ∆ω̂ = ω̂P1 − ω̂P2 + ω̂T − ω̂S.

The unity conversion efficiency from ω̂S to ω̂T can be achieved when there are only four
fields circulating inside the cavity with the phase-matching condition satisfied in Equa-
tion 4.2. However, in reality, there are always other nonlinear processes. For example, as de-
picted in Figure 4.1(b), two strong pump fields typically produce their harmonics as well as
spontaneous Raman-scattered fields. Each pump field also seeds parametric amplification
process, i.e., modulation instability (MI). All these additional fields introduce noises and
hinder the preservation of quantum information. Furthermore, for given signal and pump
fields, there are two modes satisfying the momentum conservation: m

(+)
T = mP2−mP1+mS

and m
(−)
T = mP1 −mP2 −mS. Since the energy of the signal field is then distributed to

two modes via FWM-BS process (for example, the target mode m
(+)
T and the conjugated

mode m
(−)
T ), this spurious FWM process reduces the conversion efficiency from the signal

mode to the desired target mode. We will discuss methods to suppress such unwanted
processes later in Section 4.3.1. The following is the analysis for the time evolution of
FWM-BS process to estimate frequency-translation efficiency. We first discuss the process
in waveguides and then move to ring resonators.

4.2.1 Generalized nonlinear Schrödinger equation

The time evolution of optical fields including thrid-order nonlinear interactions in a waveg-
uide is described by a generalized nonlinear Schrödinger equation (GNLSE)

∂A(z, t)

∂z
= −α0

2
A+

∞∑
n=2

in+1βn
n!

∂nA

∂tn
+ iγ

(
1 +

i

ω0

∂

∂t

)(
A(z, t)

∫ t

−∞
R(t− t′)|A(z, t′)|2dt′

)
(4.3)

with βn = ∂nβ/∂ωn. Here, α0 and γ denote the propagation loss and optical nonlinearity of
the waveguide, respectively. The detailed derivation is provided in graduate-level nonlinear
optics textbooks [6], and here we only note several points for interpretation purposes.
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First, the Equation 4.3 essentially describes the time evolution of temporal envelope of
the launched field at a fixed polarization (For the evolution of vector fields, see coupled
nonlinear Schrödinger equation in Section 2.3.3). The first term and second term on the
right side describes the variation of the temporal modes after their infinitesimal propagation
due to the linear and nonlinear interactions, respectively, that are governed by the medium
dispersion β(ω) and the optical nonlinearity γ, respectively. The underlying assumption is
that the electric field E(x, y, z, t) propagates along z with a fixed transverse mode. Optical
nonlinear effects are not strong enough to modify the waveguide dispersion which deter-
mines the spatial profiles of guided modes. In other words, the electric field can be expressed
as a simple product of three complex functions E(x, y, z, t) = F (x, y)A(z, t)ei(β0z−ω0t): a
transverse mode profile F (x, y), slowly varying longitudinal temporal field A(z, t), and a
fast carrier with the carrier frequency ω0 = 2πf0. This separation of variable splits the
Maxwell’s wave equation into two partial differential equations (PDEs); one is the eigen-
value equation for the transverse mode F (x, y) and the other describes the time evolution
of for the temporal envelop A(z, t). The GNLSE is derived from the latter one normalized
by the effective mode area defined as

Aeff =
(
∫ ∫

εr(x, y)|F (x, y)|2dxdy)2∫ ∫
core

ε2r(x, y)|F (x, y)|4dxdy
, (4.4)

where εr is the relative permittivity. Also, it is worth noting that we have adopted a
reference frame moving at the group velocity at the carrier frequency, so that the phase
accumulation is accounted only for higher-order dispersions:

∑∞
n=2 i

n+1 βn
n!

∂n

∂tn
. This is not

necessary, and we can also take the frame rotating at the carrier frequency, which then
includes the first-order dispersion:

∑∞
n=1 i

n+1 βn
n!

∂n

∂tn
.

The nonlinear coefficient γ = n2ω0/ (cAeff) is in the unit of W−1m−1 and the amplitude
A is assumed to be normalized such that |A|2 represents the optical power. Here, n2 is the
Kerr nonlinear refractive index (n2 ≈ 2.5 × 10−19m2W−1 for Si3N4). In the time-domain
description, the nonlinear coefficient γ depends only on the central frequency of an incident
optical pulse and is considered as a constant parameter. The frequency dependence of
nonlinearity is described by the time-derivative term in Equation 4.3 which also ensures the
energy conservation [199]. Later, in the modified GNLSE which turns into coupled mode
equations for describing ring resonators, the γ will be a frequency-dependent parameter
with a slightly different definition of the effective mode area.

The temporal shape is affected by a Raman response function R(t− t′) only for a short
pulse propagation. In quasi-continuous wave operations, only Raman gain, i.e., imaginary
part of the response function, plays a major role and produces uncorrelated photons over
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a wide wavelength range near the pump frequency. This originates from incoherent scat-
tering of incident pump photons with medium optical phonons. The scattered photons
particularly from the ground-state phonons are inevitably produced at longer wavelengths,
i.e., Stokes photons, which cannot be removed even with cryogenic coolings of the medium.

To study the dynamics of FWM-BS, we make several assumptions to simplify the
Equation 4.3. First, we assume that the waveguide is lossless (α0 = 0) and supports
a single transverse mode, e.g., single-mode fibers. Secondly, the medium dispersion is
approximated by the Taylor-expansion near the zero-dispersion wavelength β2 (ωZDW) = 0
and it is truncated at the second-order, which makes the linear interaction term vanish in
Equation 4.3. Third, we consider the frequency translation driven by monochromatic CW
lasers, which makes the Raman response function R(t− t′) set to be a δ-function. Finally,
we consider the interaction length or time is not too long for the pump fields to be depleted
and their temporal modes are assumed to be preserved. Then, we express the field A(z, t)
as the sum of four fields A(z, t) =

∑
i=P1,P2,S,T Ai(z, t)e

i(β(ωi)z−∆ωit) with ∆ωi = ωi−ωZDW.
Then, we obtain four coupled mode equations which read

dAP1

dz
= iγ

(
|AP1|2 + 2|AP2|2

)
AP1,

dAP2

dz
= iγ

(
2|AP1|2 + |AP2|2

)
AP2,

dAS

dz
= iγ

(
2|AP1|2 + 2|AP2|2

)
AS + iγAP1A

∗
P2ATe

i∆βz,

dAT

dz
= iγ

(
2|AP1|2 + 2|AP2|2

)
AT + iγA∗P1AP2ASe

i∆βz,

(4.5)

where ∆β = β (ωP1) − β (ωP2) + β (ωS) − β (ωT ) is the phase-mismatching term. The
Equation 4.5 can be analytically solved and the energy exchange between the signal and
target mode is described by a sinusoidal function. The frequency-translation efficiency η
is given as

η =
r2

k2
BS

sin2 (kBSL) . (4.6)

The full derivation is provided in the reference [88]. The maximum conversion efficiency
is obtained when kBSL =

√
∆β2 + 4γ2P 2L = π/2. We consider ∆β ≈ 0, i.e., the phase-

matching condition, and the typical optical nonlinearity γ =10 W−1 km−1 of photonic crys-
tal fibers. For the pump power of around 0.5 W, the fiber length required for kBSL = π/2
is about 160 m.
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4.2.2 Lugiato-Lefever equation

We turn our attention to FWM-BS inside a ring cavity. The dynamics for the intracavity
fields can be described by the GNLSE, but now with a boundary condition imposed by a
cavity-waveguide coupling. For a guided field Ain(out) in a waveguide and its power transfer
rate K to a ring cavity, the intracavity field A(n+1)(0, t) at the beginning of (n + 1)th
roundtrip is related to the field A(n)(L, t) at the end of n-th roundtrip by so-called Ikeda
map as [

A(n+1)(0, t)
A(out)

]
=

[√
1−K i

√
K

i
√
K

√
(1−K)

] [
A(n)(L, t)e−iδ0

A(in)

]
, (4.7)

where L is the the roundtrip length of the ring cavity and δ0 is the linear phase accumulated
over one roundtrip.

We assume that the variation of the intracavity fields over a single roundtrip is very
small and the single roundtrip length or time can be treated as an infinitesimal step in the
time scale of optical nonlinear interactions such as frequency-translation process. Then,
the Ikeda map for the intracavity field can be rewritten as

A(n+1)(0, t) =

(
1− K

2
− iδ0

)(
A(n)(0, t) +

∂A(z, t)

∂z
L

)
+ i
√
KAin, (4.8)

where we used the approximation of e−iδ0
√

1−K ≈ (1− iδ0) (1−K/2) ≈ (1−K/2− iδ0).
This mean-field picture is valid in high-Q ring resonators where the time scale of amplitude
evolution is much slower than a single roundtrip time tR = ngL/c with ng denoting the
group velocity of the ring cavity. We use the GNLSE to describe the evolution of the
intracavity fields. By keeping only first-order terms, we obtain

A(n+1) − A(n) =

(
−α0L

2
− K

2
− iδ0 − i

∞∑
n=2

βn
n!

(
i
∂

∂t

)n
+ iγL|A|2

)
A(n) + i

√
KAin. (4.9)

Finally, we formulate a PDE describing the externally driven nonlinear dynamics of the
intracavity fields in a slow time scale of the roundtrip time tR, also known as Lugiato-
Lefever equation (LLE) [193]

tR
∂

∂t
A(t, τ) =

[
−α− iδ0 − i

∞∑
n=2

βn
n!

(
i
∂

∂t

)n
+ iγL|A|2

]
A(t, τ) + i

√
KAin (4.10)

with α = (α0L+K) /2. The LLE has been extensively used to study optical nonlinear
phenomena in ring cavities particularly with a single pump field, including optical frequency
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comb generation [223, 65] and soliton crystal formation [66]. It can be efficiently evaluated
by split-step Fourier methods [214] or Newton-Rhapson methods [65], and the results have
been shown to agree well with experiments [213].

The LLE is essentially identical to the coupled (longitudinal) mode equations, which
is clearly apparent in the frequency domain. Following discussions in reference [175], we
consider the intracavity field A(t, τ) =

∑
mAm(t) exp(−iωmτ) as a collection of plane

waves oscillating at the evenly spaced frequencies {ωm}. In the derviation of LLE, we
chose an infinitesimal time step to be a single roundtrip tR, and the frequency grid is
spanned with the spacing of the free-spectral range at the central frequency ω0. Unlike
waveguides or optical fibers, the boundary condition of the ring cavity discretizes the
supported longitudinal modes with resonant frequencies {ω̂m}, which does not generally
coincide with the equally spaced frequency grid {ωm}; the spacings in the resonant modes
vary according to the dispersion. The Fourier transformation of the Equation 4.10 yield a
coupled mode equation

tR
dAm
dt

= − (αm + iδm)Am + iγmLF{|A(t, τ)|2A(t, τ)}m + i
√
KmAin,m, (4.11)

where the detunings δm = (ω̂m − ωm) are determined by the dispersion of the ring cavity
which is characterized by the resonant frequencies ω̂m = ω̂0+

∑
n≥1 Lβn (ω̂m − ωm)n /(n!tR).

Note that we now evaluate the optical nonlinearity γm = n2ωm/ (cAeff(ωm)) and the cou-
pling rate Km at each frequency mode. The definition of the effective mode area is derived
from the variational principle, as presented in the supplementary material of reference [175],

Aeff(ωm) =

(
n0(ωm)

ng(ωm)

)2 (
∫∫

εr(x, y, ωm)|F (x, y, ωm)|2dxdy)2∫∫
core

ε2r(x, y, ωm)|F (x, y, ωm)|4dxdy
, (4.12)

where n0 and ng are the refractive index and group index of the ring cavity, respectively.
The conversion efficiency η is defined as the ratio of a photon flux at the waveguide output
to the incident photon flux at the waveguide input

η =
Aeff(ωT)

Aeff(ωS)

Φ(ωT)

Φ(ωS)
with Φ(ω) =

|A(ω)|2

~ω
. (4.13)

The description of the nonlinear dynamics among all resonant modes in ring cavities,
including spurious FWM and MI, requires the numerical evalutation of the GNLSE with the
boundary condition in Equation 4.7, which is further discussed later in Section 4.3.2. For
now, we only consider the four modes, i.e., two pumps, signal and target fields, and restrict
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their nonlinear interactions to the FWM-BS as in the discussion with waveguides 4.2.1.
Assuming the undepleted CW pump fields, the Equation 4.11 is expressed as

tR
dAP1

dt
= − (αP1 + i∆φP1)AP1 + i

√
KP1PP1,

tR
dAP2

dt
= − (αP2 + i∆φP2)AP2 + i

√
KP2PP2,

tR
dAS

dt
= − (αS + i∆φS)AS + 2iγSLA

∗
P1AP2AT + i

√
KSPS,

tR
dAT

dt
= − (αT + i∆φT)AT + 2iγTLAP1A

∗
P2AS + i

√
KTPT,

(4.14)

where the detunings ∆φP1(P2) =
(
ω̂P1(P2) − ωP1(P2)

)
tR − γP1(P2)L

(
|AP1(P2)|2 + 2|AP2(P1)|2

)
and ∆φS(T) =

(
ω̂S(T) − ωS(T)

)
tR − 2γS(T)L (|AP1|2 + |AP2|2) include the ring cavity disper-

sion as well as the self- and cross-phase modulations.

The steady state solution can be obtained by denoting dA/dt = 0. First, the solution
for the pump fields are AP1(P2) = i

√
KP1(P2)PP1(P2)/

(
αP1(P2) + i∆φP1(P2)

)
. Then, we solve

the coupled equations of the third and fourth line in Equation 4.14, which describe the
energy exchange between the signal and target modes, by rewriting them in a matrix form
as [

AS

AT

]
=

[
−i (αS + i∆φS) −2γSLA

∗
P1AP2

−2γTLAP1A
∗
P2 −i (αT + i∆φT)

]−1 [√
KSAS,in√
KTAT,in

]
. (4.15)

The solution of the steady state intracavity fields is given by

AS =
i (αT + i∆φT)

√
KSAS,in − 2γSLE

∗
P1AP2

√
KTAT,in

(αS + i∆φS) (αT + i∆φT) + (4γTγSL2|AP1|2|AP2|2)
,

AT =
−2γSLE

∗
P1EP2

√
KSAS,in + i (αS + i∆φS)

√
KTAT,in

(αS + i∆φS) (αT + i∆φT) + (4γTγSL2|AP1|2|AP2|2)
,

(4.16)

which are then coupled to the waveguide field as AS(T),WG = AS(T),in + i
√
KS(T)AS(T) to

evaluate the output waveguide fields:

AS,WG = AS,in −
(αT + i∆φT)KSAS,in

(αS + i∆φS) (αT + i∆φT) + (4γTγSL2|AP1|2|AP2|2)
,

AT,WG =
−2iγSLA

∗
P1AP2

√
KTKSAS,in

(αS + i∆φS) (αT + i∆φT) + (4γTγSL2|AP1|2|AP2|2)
.

(4.17)

The frequency-translation efficiency η is then calculated to be

η =
Aeff(ωT)

Aeff(ωS)

ωS
ωT

4γ2
SL

2|AP1|2|AP2|2KTKS∣∣ (αS + i∆φS) (αT + i∆φT) + 4γTγSL2|AP1|2|AP2|2
∣∣2 . (4.18)
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Figure 4.2: Structure of a quantum frequency transducer using a silicon nitride ring res-
onator. For detailed description of each parameter, see Table 4.1.

Obviously, the conversion efficiency is unity when the propagation loss is negligible α ≈ 0
and the two fields are both resonant ∆φS = ∆φS = 0. This is because we assumed that
there exist only four modes inside the cavity that are interacting to each other via FWM-BS
process.

4.3 Design considerations

The development of nanophotonic quantum devices generally requires a thorough design
process from a conceptual level to the precise estimation of the performance. It involves
a sophisticated modeling of the device and assessment to the functionality with accurate
computations based on the theory of electromagnetism. It is important to clearly define
the design specifications, validate the numerical tools being used, and eventually verify the
design with experiment. In this section, we discuss a set of requirements for the QFT to
be used for QD-SPS and provide our detailed designing process. As optical ring resonators
are extensively described in literatures [258, 3], we adopt formula for basic properties, e.g.,
free-spectral range and linewidth, in the following discussions.

Figure 4.2 sketches the structure of our ring resonator. The device is made of stochio-
metric Si3N4 deposited on a 5µm–thick SiO2 layer. The fabricated Si3N4 layer is protected
by a SiO2 top cladding which also provides the symmetric distribution of the dielectric con-
stant. To ease fabrication process, we restrict the height to be constant across the entire
structure, as shown in the inset of Figure 4.2. In terms of functionalities, the device mainly
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Table 4.1: Design parameters for the quantum frequency transducer. Sellmeier equations
for the refractive indices of Si3N4 and SiO2 are provided in Appendix A.

Parameter definition designed value
T Thickness 800 nm
R Radius of ring resonator 50µm
W Width of ring resonator 1360 nm
g Gap for directional coupler 300 nm

LC = RW θ Coupling length 10µm
WWG Width of waveguide 660 nm
WTF Tapering width for the input 120 nm
WTE Tapering width for the output 100 nm
LT Tapering length ≥100 µm

consists of three parts: ring cavity, directional coupler, and Butt coupler. The input and
output light are considered to be coupled with single-mode fibers at both ends of the QFT.
The field propagations are supported by the low-loss Si3N4 waveguide which is coupled
with a ring cavity where the FWM-BS process generates the frequency-translated light.
The geometry of each part is uniquely determined by a set of parameters summarized in
Table 4.1.

4.3.1 Requirements

Target wavelength and acceptance bandwidth

First and foremost, the QFT shall translate the wavelength from 985 nm to 785 nm. The
signal wavelength may be changed depending on QD-SPSs to be used, but the target
wavelength is restricted to be within the QEYSSat quantum channel wavelength range
from 780 nm to 795 nm. During the design phase, the dependence of geometric parameters
to the wavelengths for the frequency-translation process must be characterized such that
the device operating at the desired input wavelength can readily be designed at will.

The frequency-translation process must cover the entire spectral bandwidth of the in-
cident field. Typical linewidth of the emitted photons from a cryogenic-cooled QD-SPS is
a few gigahertz. The linewidth of the corresponding resonant mode must be greater than
the bandwidth of the photons. This sets the maximum loaded Q-factor of the designed
ring resonator. For example, the FWHM linewidth λFHWM =1 GHz of the resonent mode
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at 985 nm gives the Q-factor Q ≈ 3 × 105, and the higher Q comes with the narrower
linewidth.

Low-noise process with high efficiency

As discussed in the previous section, the frequency-translation process inevitably involves
other optical nonlinear processes which could potentially limit the conversion efficiency.
We mainly consider four competing third-order nonlinear processes inside the ring cavity:
FWM-BS, spurious FWM, MI, and sponteneous Raman-scattering. The dispersion must
be tailored such that the four fields satisfy the phase-matching condition only for FWM-
BS process. Also, it is highly preferable to place pump wavelengths longer than the signal
and target fields to avoid spontaneous-Raman scattered photons. As a goal, the intrinsic
conversion efficiency is greater than 90 % at the pump power of several milliwatts.

We focus on the phase-matching condition for FWM-BS process. The resonant fre-
quency ω̂m can be Taylor-expanded with respect to the resonant mode index m closest to
the zero-dispersion wavelength m0

ω̂m = ω̂m0 + ω̂(1)
m0

(m−m0) +
ω̂

(2)
m0

2!
(m−m0)2 +

ω̂
(3)
m0

3!
(m−m0)3 +

ω̂
(4)
m0

4!
(m−m0)4 + · · · (4.19)

with ω̂
(n)
m0 = dnω̂/dmn. Here, the derivative of the discrete frequency modes is calculated by

the finite-difference method, e.g., dω̂/dm = ω̂m−ω̂m−1. Figure 4.3 shows the decomposition
of the ring-cavity dispersion ω̂m up to the fifth order with the mode m0 = 577 at the zero-
dispersion wavelength for an examplary structure (the parameters listed in Table 4.1).
Then, the frequency-mismatching term for FWM-BS process ∆ω̂BS = ω̂P1− ω̂P2 + ω̂T− ω̂S

can be rewritten as

∆ω̂BS = ω̂(1)
m0

(mP1 −mP2 +mT −mS)

+ ω̂(3)
m0
/6
[
(mP1 −m0)3 − (mP2 −m0)3 + (mT −m0)3 − (mS −m0)3

]
+ ω̂(4)

m0
/24
[
(mP1 −m0)4 − (mP2 −m0)4 + (mT −m0)4 − (mS −m0)4

]
+ · · · .

(4.20)

The first and second terms of Equation 4.20 vanish by the momentum conservation. In
fact, all odd-order terms are cancelled due to the symmetric position of the four resonant
modes. Thus, the conversion efficiency is mainly limited by the fourth-order term.

One obvious method to suppress the higher-order dispersion is to bring the four resonant
modes close to the zero-dispersion wavelength. However, as discussed in reference [172],
the spurious FWM process and MI can be suppressed by placing the pumps far away
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Figure 4.3: Taylor expansion of the resonant frequency ω̂m up to the fifth order for an
examplary ring cavity with respect to the resonant mode indexm. The detailed explanation
is provided in the main text.

from the zero-dispersion wavelength, which introduces higher order dispersion to reduce
the bandwidth of the two processes. For example, the third-order dispersion breaks the
symmetry between the desired FWM-BS and the spurious FWM ω̂

(−)
T = ω̂P1 − ω̂P2 − ω̂S,

and creates the energy discrepancy between them. This trade-off must be taken care to
maximize the conversion efficiency by the simulations of the designed device.

One may concern that it would be notoriously difficult to fabricate the structure whose
four selected resonant modes are precisely aligned to satisfy the phase-matching condition,
e.g., ∆ω̂BS < δω̂FWHM. However, it turns out that the detuned pump fields with stronger
optical power can mediate the energy exchange by virtually populating photons in the
resonant modes. This picture is clear when we interpret it from the perspective of an
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atomic system which exhibits many energy levels as an analogue of the resonant modes of
the ring cavity. The atomic population transfer from one level to another can be seen as
the frequency translation from one resonant mode to another. Indeed, the mathematical
description of the FWM-BS is closely related to the population exchange of coherently
driven two-level atomic system [293]. Also, demonstrations of the FWM-assisted frequency
conversion with cold atoms have been performed with detuned pump fields [246].

After accounting all the forementioned aspects, we chose the pump wavelengths to be
around λP1 ∼1064 nm to 1100 nm and λP2 ∼ 1470 nm to 1550 nm by placing the zero-
dispersion wavelength at around λZDW ∼ 1030 nm to 1050 nm. This provides additional
benefits of using commercially available narrow-linewidth lasers for pump fields. Another
advantage of the selected wavelengths is that the QFT could readily be adapted for fre-
quency translation from the QD wavelength at λS ∼ 985 nm to telecom wavelength by
operating one of the pump at λT ∼ 785 nm with minor modifications in the design.

Overcoupling regime: waveguide-cavity coupling rate greater than cavity dis-
sipation rate

One of the most critical requirements is to keep the ring resonator in the overcoupling
regime at the wavelengths of all four fields. This means that the field injection rate K(ωm)
from the waveguide to the ring cavity must be greater than the dissipation rate α0 of the
intracavity fields in order to keep the fields coherently accumulated and amplified inside
the cavity. In other words, the coupling-Q factor Qc must be smaller than the intrinsic
Q-factor Qi of the ring resonator.

In general, the coupling rate between the cavity and the waveguide is proportional
to the amount of the mode overlap between the two guided fields. The amount of the
overlap can be adjusted by the structural parameters, e.g., g and WWG. However, since
the field confinement is dependent on the wavelength: shorter wavelength comes with
better confinement, the coupling rate is dramatically decreased at short wavelengths, which
creates a large difference of the coupling Q-factor Qc(ωm) = ω̂m/κ

2
m between 1470 nm and

785 nm with Km = |κm|2. To overcome this problem, we use a pulley coupler and engineer
the coupling length Lc to control the flow of the fields between the ring cavity and the
waveguide [124].

For high-Q ring resonators, we assume that the coupling between the two guided modes
do not change their own transverse mode profiles. We treat the ring-cavity modes as
perturbations to the waveguide modes. To the first order, the coupling coefficient between

129



the ring cavity and the curved waveguide over the pulley region is given by

κpulley =

∫ θ0

−θ0

[
iωm

4

∫ WWG

0

∫ T

0

(ε(r, z)− ε0)ER · EWGrdrdz

]
ei(βWGRW−m)θdθ, (4.21)

where EWG is the unperturbed electric field vector in the curved waveguide normalized to
unit power and ER is the uncoupled resonator mode field normalized to unit energy.

The pulley coupler includes the point-contact coupling at the two ends of the pulley
region, and the total directional coupling coefficient κm = κpulley+κpoint is given by the sum
of the two coefficients for the pulley and point-contact couplers. The point-contact coupling
coefficient κpoint can be calculated by integrating the inner product of the two normalized
electric vectors between the ring cavity and the straight waveguide over the interaction
region. The full derivation of the coupling coefficient is provided in reference [271], and
the formalism of coupled mode theory is provided in the textbooks [200, 270]. As seen
in Equation 4.21, one can selectively lower the coupling-Q factor [124] at the desired
wavelengths by engineering the propagation constant of the waveguide with the width
WWG and radius RW as well as the coupling length LC = RW θ.

Availability of Si3N4 film

Silicon nitride has been chosen to be a good material for integrated quantum photonic
devices because of its good optical transparency from visible to infrared wavelength (400 nm
to 2350 nm), high intrinsic tensile stress, substantial Kerr nonlinearity with negligible two-
photon absorptions, as well as the wafer-scale fabrication process [218]. Nowadays the
propagation loss of less than 1 dB m−1 can be readily achieved, opening a new nanophotonic
platform for cavity-assisted nonlinear photonics such as photon-pair generation, optical
frequency comb, and frequency conversion. A comprehensive review on the state-of-art
Si3N4 photonics is provided in reference [34].

Two notable technological breakthroughs in the field has put the Si3N4 as the next
generation of nanophotonic platform. First, for quantum applications where optical non-
linearity plays a major role, it is often required that the Si3N4 film is thicker than 500 nm
to properly tune the spectral location of the zero-dispersion wavelength. However, due to
the high film stress of Si3N4, the film gets severely cracked when the thickness is greater
than 400 nm during the deposition process. This had been one of the major challenges
that limits the device yield. Recently, this issue has been addressed by multiple groups
(see section 2 in reference [34]). One of the notable solution is the two-step deposition pro-
cess where the wafer is 45°–rotated after the first round of deposition, distributing uniaxial
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strain to avoid film cracks [83, 82]. In this method, the Si3N4 film can be deposited with
the thickness greater than 800 nm. The second breakthough is a significant reduction of the
propagation loss in Si3N4 waveguides via thermal annealing after the fabrication process.
The insight was that the propagation loss is mainly limited by the surface roughness, not
the material’s intrincic absorption properties. The annealing process reduces the surface
roughness, which brought the Q-factor greater than 170 million [143].

We consider that our QFT is fabricated on 800 nm–thick Si3N4 film (MPW-IR series,
LIGENTEC) and assume 0.05 dB cm−1 propagation loss. Also, it is important to exper-
imentally characterize the material’s refractive index by spectroscopic ellipsometer and
other methods. We designed the QFT with the measured refractive indices provided by
the company. However, the results presented in this chapter is produced with the modeled
materials by Sellmeier equations provided in Appendix A.

High single-mode fiber-coupling efficiency

We aim to have the QFT efficiently coupled to single-mode fibers at both ends for three
input fields and one output field. The device throughput is as important as the frequency-
translation efficiency to improve the length of the secure key in satellite-assisted QKD.
The three input fields at the wavelength of 985 nm, 1065 nm, and 1469 nm are anticipated
to be delivered through an ultra-high numerical aperture fiber (UHNA3, Nufern), whereas
the output field at 785 nm is coupled to a conventional single-mode fiber (780-HP, Nufern).
The coupling coefficient ηB is related to the mode overlap factor between the waveguide
mode {EWG,HWG} and the optical fiber {EF,HF} as

ηB(ω) =

∫∫
~z · (E∗WG ×HF + EF ×H∗WG) dxdy∫∫

~z · (E∗WG ×HWG + EWG ×H∗WG) dxdy
. (4.22)

The electromagnetic fields in conventional single-mode fibers are weakly guided and
their typical mode areas are around 5 µm2 to 10µm2, whereas silicon photonic device per-
forms much tighter confinement of the guided mode 0.3 µm2 to 0.5 µm2 due to the large
refractive index difference. This big discrepancy of the mode areas yields a poor cou-
pling efficiency between the two modes. One common solution is to transform the mode
profile via adiabatic tapering of the waveguide. By changing the shape of the waveguide
slow enough that the guided modes remain in the same fundamental eigenstates, one can
manipulate the spatial mode without causing significant losses [190]. When the waveg-
uide’s cross-section becomes small enough, the guided mode reaches so-called “squeezed
out regime” or “sub-wavelength regime” where most of the field is guided through the
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Matlab Batch program

Function Ring resonator (λS, λT, W, R, T) 

• Phase-matching condition

Return [          ,             , Aeff, γ, λP1, λP2 ]
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Eigenmode solver
• Calculate nonlinear properties

W, R, T
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ˆ
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,m mE H

ˆ
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,m mE H
ˆ
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,m mE H

Function Directional coupler (g, RW, LC W, T) 

Return [ κm ]

• Coupling coefficient / Q-factor

#include “mex.h”

#include “FFTW.h”
void run RK4IP (*Input[], *Output[])

Function Performance estimation

(         , Aeff, γ, κ, λS, λT, λP1, λP2)ˆ
m

run RK4IP

(*Input[], *Output[])

• RK4IP to solve GNLSE

• Ikeda map boundary condition
Return [ η ]

g, RW, LC W, T

Function Butt coupler 

(WTF , WTE , λS, λT, λP1, λP2)

• Tapering length • Eigenfrequencies and field profiles

• Mode propagation • Transverse mode overlap factor

Figure 4.4: A functional block diagram of the design process. The structural parameters
for a ring cavity is determined before the design of a directional coupler. Butt couplers is
designed separately.

cladding [26]. It has been demonstrated that a simple lateral tapering yields greater than
90 % of coupling efficiency [320]. We adopt this technique in our QFT design.

It is worth noting that many designs of adiabatic tapers have been proposed with
different shapes of tapering [93], such as linear, exponential, parabolic, and etc. In this
study, we used a linear waveguide taper for simplicity.
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4.3.2 Design methods

Our design process is essentially the iterative optimization of the geometric parameters
of the QFT based on the numerical evaluation of the device performance. Generally, the
time evolution of the electromagnetic field in the ring resonator including the couplers is
fully described by three-dimensional (3D) Maxwell’s wave equations including the Kerr
nonlinearity with source fields. Although the direct evaluation of the 3D Maxwell’s equa-
tion is possible using finite-difference time-domain (FDTD) method, it is computatonally
very expensive to keep the spatial resolution at tens of nanometers for the ring cavity
whose radius is tens of micrometers. Especially for high-Q cavities, numerically solving
the Maxwell’s equation in time domain is not preferred because one must wait a long time
until the intracavity field decays to precisely estimate the quality factor.

In our scheme, following the theory presented in Section 4.2, we separate the 3D
Maxwell’s equation into two: the eigenvalue equation for the transverse modes and the
PDE for the time evolution of the longitudinal modes, provided by the separation of vari-
ables E(x, y, z) = F (x, y)A(z)eiβz+ωt with the forementioned assumptions. We first obtain
the eigenmodes of the individual subsystems by solving the former equation using finite-
element eigenmode solver. Then, we evaluate the optical properties of the QFT such as the
dispersion ω̂m, optical nonlinearity γm, and waveguide-ring coupling rate κm. Those pa-
rameters are eventually fed into our custom-built coupled mode equation solver to estimate
the frequency-translation efficiency and bandwidth.

A functional block diagram of our design workflow is illustrated in Figure 4.4. We
developed a design software package which consists of multiple commerical softwares of
finite-element and finite-difference eigenmode solver that are interfaced with Matlab. The
QFT performance is estimated by a numerical propagator of the GNLSE with the Ikeda
map (GNLSE-IM) via an algorithm named Runge-Kutta fourth-order in interaction picture
(RK4IP). This is written in C and integrated with Matlab’s MEX function.

For given geometric parameters and material’s refractive indices, we first run the finite-
element method (FEM) eigenmode solver (COMSOL multiphysics) to obtain a set of eigen-

frequencies {ω̂m} and corresponding transverse mode profiles { ~Em, ~Hm} of the resonant
modes over the range of wavelength of interest. We then calculate phase-matched pump
wavelengths λP1 and λP2, effective mode area Aeff, as well as nonlinear coefficients γm. For
pre-determined geometric parameters of the ring cavity, we run another FEM simulations
to obtain the eigenmodes for the directional coupler. At this time, we run the simulation
twice for one coupler: one is for the curved waveguide and the other is for the straight
waveguide. We then evaluate the coupling coefficients for point-contact κpoint and pulley-
coupled waveguides κpulley, which are summed together to determine the total coupling
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coefficient κ for the directional coupler. The obtained parameters ω̂m,λS,T,P1,P2, γm, κm
are finally substituted to the GNLSE-IM which fully models the third-order nonlinear pro-
cesses with all resonant modes and evaluate the conversion efficiency. We design the Butt
couplers separately by using a finite-difference eigenmode propagator (Lumerical MODE)
after the design for the ring cavity and waveguide is finalized. The following are the details
of individual numerical computations.

Finite element method for electromagnetic eigenmode solver: COMSOL mul-
tiphysics

FEM is a numerical technique to obtain an approximated solution for a PDE that describes
the time evolution of complex physical systems. Unlike finite difference methods (FDMs)
which directly solve the differential form of PDEs by approximating the differential opera-
tions with Taylor expansion, the FEM finds an approximated solution for an integral form
of a PDE by using weighted residual methods. It is based on a sound mathematical back-
ground, and its flexible meshing capability enables an efficient and accurate computations
for complex physical structures. There are already commercial packages of FEM solvers
e.g., COMSOL multiphysics, FreeFEM, Elmer FEM, and one can easily run the simulation
without facing mathematical details.

The COMSOL multiphysics provides methods to solve the Maxwell’s wave equation
with user-defined boundary conditions for the desired geometry of dielectric constants.
The eigenmodes are obtained by solving the Maxwell’s equation in the frequency domain.
As the geometry of the straight waveguide and the electric field profiles are defined by
the 2D cross section, the solution can be efficiently obtained with requiring expensive
computational resources. Similarly, for pulley waveguides, since the curvature is fixed,
the geometry can also be defined in 2D by the axial symmetry and the method is also
provided by COMSOL multiphysics. However, the solution for the resonant modes in the
ring cavity requires an additional boundary condition which is not included in the built-in
Maxwell equation solver. This forces us to rewrite the Maxwell’s equation in the weak form
including the boundary conditions for ring resonators. The solution can be obtained using
the COMSOL’s eigenmode solver. We adopted the mathematical formulation developed by
Mark Oxborrow [227] and Cheema et al. [58] for the accurate modeling of our ring cavity.

For any numerical simulations, it is important to validate the method by comparing the
solutions with well known cases or analytic solutions before applying for complex systems.
We testify the COMSOL eigenmode solvers in two steps. First, we compare the results for
a simple 2D slab waveguide, as shown in Figure 4.5, where the TE eigenmode profiles Ey
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Figure 4.5: Validation of COMSOL eigenmode solver. The definition of the coordinate
system for two dimensional (a) curved waveguide and (b) straight waveguide. (c)–(d)
The comparison of the numercally computed results with analytical solutions. (e)–(f)
Refractive index of an example of the curved waveguide and its corresponding conformal
transformation to the straight waveguide. (g)–(h) The comparison of the results for the
two cases.

and eigenfrequencies can be analytically calculated as

Ey =

{
B± exp [−q (|x| − d)] , if |x| > d,

A cos (px−mπ/2) , if |x| ≤ d,

2V
√

1− b = mπ + tan−1

√
b

1− b
+ tan−1

√
b+ δ

1− b
,

(4.23)

with p2 = n2k2
0 − β2, q2 = β2 − n2k2

0, B± = A cos (pd∓mπ/2), the normalized parameters
V = k0d

√
n2

core − n2
sub, b = (n̄2 − n2

sub) / (n2
core − n2

sub), δ = (n2
sub − n2

clad) / (n2
core − n2

sub).
The excellent agreement between the numerical results from the COMSOL and analytic
solutions verifies that our numerical tool for straight waveguides is ready for further usage.

Curved waveguides with the curvature R in cylindrical coordinate can be mapped onto
leaky straight waveguides via the conformal transfomration u = −R log (ρ/R) with the
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refractive index ñ(u) = n(Reu/R)eu/R [117], as shown in Figure 4.5(e)–(f). Given that
our straight waveguide solutions are verified with the analytical solution, we test our so-
lutions for curved waveguides in COMSOL axisymmetric domain by the comparison with
the results calculated for the corresponding leaky straight waveguide, as shown in Fig-
ure 4.5(g)–(h).

Fourth-order Runge-Kutta in interaction picture for nonlinear Schrödinger
equation with Ikeda map

In the LLE formalism discussed in Section 4.2.2, where the equal frequency spacing is deter-
mined by the free-spectral range at a central frequency ω0, it is not trivial to systematically
accommodate multiple on-resonant pump fields. On the other hand, the GNLSE-IM does
not have any restrictions in the setting of frequency grids. To accomodate multiple pump
fields, we numerically evaluate the field variation over one roundtrip according to the Equa-
tion 4.3 and then apply the coupling with the waveguide according to Equation 4.7. We
repeat the calculations over many roundtrips until the fields reaches the steady states.
The GNLSE can be efficiently solved by RK4IP method described in reference [130, 23].
The frequency grids are defined with spacings that are fine enough to resolve the spectral
shape of individual resonant peaks. As we will show later, this setup helps understanding
nonlinear resonant peak shifts as well as mode splittings at the high pump powers.

This method is, however, at the expense of higher computation cost compared to the
LLE formalism. This is mainly because the propagation step size cannot be larger than
the cavity length and the fine frequency grid requires the massive size of array to compute.
For example, a typical Q-factor of 2 × 105 with no loss exhibits the spectral FWHM of
a few GHz. In order to resolve the resonant feature with 10 frequency bins we need to
have 222 frequency bins to cover the wide spectral range of 0.3 µm-1.8 µm. Also, higher
Q-factor comes with a larger number of frequency bins and more roundtrips of electric field
propagation.

The RK4IP method involves computing Fast-Fourier Transformation (FFT) and inverse-
FFT four times for a single roundtrip of ring cavity (see Appendix B for the source code).
To accelerate the computation speed, we implement the RK4IP algorithm in two different
approaches; one is to make use of GPU-accelerated FFTs and the other is to write it in C
with the FFTW library. For the former method, the Matlab script is written such that the
frequency array is directly stored in and processed by the GPU. The array of the steady-
state fields is called back to the RAM. In this method, we were able to speed up a single
run of the simulation by a factor of 10 compared with using only Matlab built-in FFT
executed by the CPU. On the other hand, the FFTW library provides high-speed FFTs
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on the very large array. Our C script can be directly called by Matlab’s MEX-function.
Although a single simulation time is two times slower than pure Matlab GPU-accelerated
simulation, the main advantage of this method is to massively parallelize a batch of simu-
lations. For example, if we want to calculate the conversion efficiency as a function of the
incident pump powers or the propagation losses, then the simulations for individual power
values or losses can be assigned to different cores and run simultaneously.

Finite-difference eigenmode solver: Lumerical MODE

For the tapered waveguide with Butt couplers, the assumption of the constant transverse
modes over the field propagation breaks down. The tightly localized mode in the waveguide
is gradually transformed to the field distributed over the cladding. Thus, the forementioned
separation of the electric field variable and the method of calculating the transverse and
longitudinal modes separately are no longer valid.

We use a different numerical technique to obtain the efficiency of the power transfer
from the waveguide to the optical fiber. The strategy is first to discretize the waveguide
with multiple cells along the propagation direction and obtain the supported eigenmode
in each cell by solving the Maxwell’s equation in frequency domain via a finite-difference
eigenmode (FDE) solver. Then, boundary condtions at each cell interface are applied to
formulate scattering matrices. The amount of the power transfer from one cell to the
next can be efficiently calculated from coupling coefficients from one mode to the other.
Lumerical MODE provides accurate methods for the FDE solver and the bi-directional
mode propagation via their US patented Continuously Varying Cross-sectional Subcell
(CVCS) method. The beauty of using this method is that, once the modes are calculated
for all the cells, the propagation length can be modified without having to recalculate the
modes. Also, the computational time scales well with propagation distance, and therefore
it is very useful for optimizing tapered waveguides or mode convertors.

4.4 Detailed design analysis

In this section, we discuss the detailed analysis for the designed QFT and estimate the
conversion efficiency. The structural parameters are listed in Table 4.1. Based on the
numerical simulations for the ring cavity and pulley waveguide, we calculate the optical
characteristics of the device such as phase-matched pump wavelengths, optical nonlinear-
ity, and coupling Q-factor, as summarized in Table 4.2. The following are the detailed
assessment to each subsystem.
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Table 4.2: Optical properties of the designed QFT from 985 nm (mS = 607) to 785 nm
(mS = 777). The structural parameters are summarized in Table 4.1. The zero-dispersion
wavelength λZDW and optical nonlinear coefficient γ as well as the effective mode area
Aeff were obtained by the simulation with COMSOL multiphysics. The wavelengths of
the pump fields λP1 and λP2 satisfy the phase-matching condition. The coupling Q-factor
Qc = ω̂m/κ

2
m was calculated using Equation 4.21.

Derived parameters Description
λZDW 1028.83 nm (m = 579) Zero-dispersion wavelength
λP1 1064.64 nm (m = 557) Pump1 wavelength
λP2 1469.47 nm (m = 387) Pump2 wavelength

Aeff (S, T , P1, P2) 0.653, 0.589, 0.676, 0.798 (µm2) Effective mode area
γ (S, T , P1, P2) 2.44, 3.40, 2.18, 1.34 (W−1m−1) Nonlinear coefficient
Qc (S, T , P1, P2) 3.13, 9.26, 4.01, 1.66 (×105) Coupling-Q factor of ring cavity

4.4.1 Ring cavity and phase-matching condition

The key aspect in the design of the ring cavity is to engineer the dispersion for the efficient
frequency translation from λS = 985nm to λT = 785nm with one pump at around λP1 =
1064nm and the other at the telecom S-band. The 2D FEM eigenmode solver outputs a col-
lection of eigenfrequencies {ω̂m} with the azimuthal mode number m and the corresponding
eigenmode profiles of the resonant TE modes, as shown in Figure 4.6. Our approach to
find the phase-matched pump wavelengths is following. First, we find the resonant modes
closest to the signal mS = 607 (985 nm) and target wavelength mT = 777 (785 nm), and
record the mode number difference ∆m = mS − mT = 170. Then, we search two pump
modes that are separated by the same mode number ∆m, ensuring the momentum conser-
vation, and minimize the phase-mismatching function ∆ω̂m = ω̂mS

− ω̂mT
+ ω̂m − ω̂m+∆m.

We obtained the two pump modes λP1 = 1064.64nm (mP1 = 557) and λP2 = 1469.47nm
(mP2 = 387) with ∆ω̂m=557 = −1.26GHz.

We evaluated the effective mode area from the obtained field profiles using Equa-
tion 4.12 and obtained the optical nonlinearity of the ring cavity, as shown in Figure 4.6(c).
The wavelength dependency of the effective mode area originates from mainly two factors:
first, the wavelength-dependent refractive indices of the Si3N4 and SiO2 materials and sec-
ond, the relative size of the optical potential well, i.e., the geometric distribution of the
dielectric materials, to the wavelength of the guided field. The averaged value over the
four fields is estimated to be Aeff ≈0.68µm2 which corresponds to the optical nonlinearity
γ ≈2.34 W−1 m−1.
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Figure 4.6: Optical properties of the designed ring cavity. (a) The color maps of the
intensity profiles of the four resonant modes. (b) The group velocity dispersion D. (c) The
optical nonlinearity γ and effective mode area Aeff as a function of the wavelength.

We investigate the dependency of the phase-matched pump wavelengths to the struc-
tural variation of the ring cavity, i.e., width, thickness, and radius. This is because the
designed structure will never be exactly same as the real device, and the absolute value
of the phase-mismatching doesn’t have much meaning. Rather, it is more useful to study
the tendancy or sensitivity of the phase-matched wavelengths to the structure parameters.
Figure 4.7 shows the variation of the optimal pump wavelengths as a function of the dif-
ferent geometric parameters. The least-squares method with a linear function is applied
to quantify the sensitivity. It is observed that the phase-matching condition exhibits the
highest sensitivity to the ring width ∼0.5 nm nm−1 and the least dependency on the ring
radius ∼3 nm µm−1.

Note that the sign of the sensitivity to the ring width appears to be opposite to the other
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Figure 4.7: Phase-matched pump wavelengths as a function of structural parameters of
the ring cavity: (a) width, (b) thickness, and (c) radius. When one parameter varies, the
other two parameters are fixed at the value listed in Table 4.1.

two parameters. This feature could be utilized to compensate the wavelength variation
due to the imperfact fabrication process. One of the standard methods to measure the
thickness in the fabrication process is to use an ellipsometry after the film deposition and
then double-check it with a stylus profilometer after patterning the structure. A typical
precision of this measurement for a 1 µm–thick sample is 5 nm to 10 nm. The thickness
variation may be compensated by adjusting the width of the ring cavity, and eventually the
phase-matching condition can be optimized by tuning the radius during the experiment.
One example to adjust the ring cavity size is to apply voltages across the piezoelectric
materials placed at the center of the ring, as demonstrated in the reference [145].

4.4.2 Pulley coupler and overcoupling regime

The pulley coupler is designed to maintain the ring cavity operating in the overcoupling
regime. We assume that the propagation loss in the Si3N4 waveguide is 0.05 dB cm−1, and
its corresponding intrinsic Q-factor is around one million which sets the maximum value of
our coupling Q-factor. We obtained the eigenmodes for both the straight waveguide and the
curved waveguide, and calculated the coupling coefficient κm including the point-contact
and pulley regions, as shown in Figure 4.8(b). The coupling Q-factor for the point-contact
coupler (black solid line) dramatically decreases as the wavelength increases. It varies from
Qc ∼ 108 at λ ∼650 nm to Qc ∼ 105 at λ ∼1500 nm. On the other hand, the coupling-Q
factor for the designed pulley waveguide lies well below a million at all four wavelengths.
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Figure 4.8: Simulation results of the designed pulley coupler. (a) The color map of the
normalized intensity profile of a pump mode at the wavelength of 1065 nm. The white
squares represent the refractive index distribution of the cross section of the ring cavity
(left) and the pulley coupler (right). (b) The coupling-Q factor as a function of wavelength.

The coupling Q-factor shows a peak in a certain wavelength, which originates from the
phase-matching between the two guided modes in the curved waveguide and the ring cavity.
The two coupled modes exchange the electromagnetic energy during the propagation, and
the exchange rate is determined by their phase difference. For a fixed coupling length LC ,
the coupling of the two modes destructively interfere at a certain wavelength, and therefore
effectively increases the reflectivity of the ring cavity. The peak position can be located at
the desired wavelength by adjusting the coupling length, as shown in Figure 4.8(b).

4.4.3 Frequency-translation efficiency

We evaluated the frequency-translation efficiency by solving the GNLSE-IM via the RK4IP
method. We detuned one of the pump fields ωP1 = ω̂P1 + ∆ω̂ by the frequency mismatch
∆ω̂ =−1.26 GHz while keeping the other pump on resonant. Figure 4.9(a) shows the spec-
trum of the steady-state intracavity fields at the incident pump powers PP1 = PP2 =20 mW.
The present target field with the high magnitude compared with other spurious field, e.g.,
conjugated fields, indicates the dominant FWM-BS process in the ring cavity, which justi-
fies the isolation of only four modes for the analytical discussions in Section 4.2.2. This is
further verified by the comparison of the numerically obtained conversion efficiency with
the analytical solution in Equation 4.18, as shown in Figure 4.9(b)-(d). Note that the solu-
tions for the pump fields in Equation 4.14 are obtained including the self- and cross-phase
modulations, and the steady-state pump fields are substituted into the Equation 4.18.

We first evaluated the efficiency η at the output of the waveguide as a function of the
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Figure 4.9: Numerical evaluation of quantum frequency-translation efficiency in the de-
signed ring resonator. (a) The spectrum of steady state intracavity fields at the incident
pump powers PP1 = PP2 =20 mW. (b) Signal depletion rate ζ at λS =985 nm and (c)
frequency-translation efficiency η at λT =785 nm as a function of the signal detuning. (d)
The maximum frequency-translation efficiency at the detuned frequency as a function of
the incident pump power PP1 = PP2.

signal detuning, as shown in Figure 4.9(b) and (c). We observed that the strong intracavity
pump fields shift the resonant frequencies of the signal and target modes via the cross-phase
modulation. The different shifting rate between the four resonant frequencies limits the
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conversion efficiency as clearly seen in the analytical solutions. Also, the resonant mode is
split into two peaks as the pumps drive stronger, indicating the strong coupling between
the signal and target modes. In this region, the conversion process becomes too fast for
the on-resonant signal field to be coherently accumulated inside the ring cavity, and the
optimial conversion process occurs at the detuned frequency. This phenomenon can also be
interpreted in the dressed picture of two-level atomic system, as discussed in reference [293].

Figure 4.9(d) plots the maximum conversion efficiency max{η} as a function of the
incident pump field. This includes the efficiencies for the detuned signal fields. The max-
imum possible conversion efficiency max{η} =95 % can be achieved at the single pump
power PP1 = PP2 =15 mW for the lossless medium α0 = 0. With moderate propagation
loss α0 =0.05 dB cm−1, the 80 % is attainable with the similar pump power. We emphasize
that this high efficiency was obtained after taking into account all possible the nonlinear
interactions among all resonent modes. Remarkably, the excellent agreement of our nu-
merical result with the analytical solution further supports that the unwanted processes
are well suppressed in our system and the efficiency is mainly limited by the propagation
loss of the ring cavity.

4.4.4 Interface to standard optical fibers: Butt coupler

Finally, we discuss the last piece of our QFT design: Butt couplers and the tapered waveg-
uides. As shown in Figure 4.10, we evaluated the single-mode fiber (780-HP, Nufern)
coupling efficiency ηB for various waveguide structures. The waveguide thickness was fixed
to 800 nm due to the availability of the Si3N4–deposited wafers and the width was deter-
mined by the pulley waveguide.

We first varied the width of the Butt coupler WTF and calculated the Butt coupling
coefficient ηB from the eigenmode profiles for the waveguide and the fiber using the Lumer-
ical MODE. The highest attainable coupling efficiency for 785 nm and 985 nm were found
to be over 95 % at the waveguide width of 100 nm and 120 nm, respectively. The nominal
coupling efficiency for the pump fields is estimated to be around 80 % to 90 %.

We next study the efficiency of the optical power transfer from the waveguide to Butt
coupler through the linearly tapered waveguide. With the tapered region divided into
thirty cells, we computed the eigenmodes for the individual cross sections of the cells, as
shown in Figure 4.10(a). The eigenmodes are propagated bi-directionally using the CVCS
method in the Lumerical MODE. We found that the transfer efficiency doesn’t change once
the length is greater than 100 µm.
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Figure 4.10: Simulation results of the designed Butt coupler. (a) The color maps of the
intensity profiles of the guided mode in the tapered waveguide. (b) The estimated coupling
efficiency to a single-mode fiber (780-HP, Nufern) as a function of the wavelength. (c) The
coupling efficiency as a function of the tapering length at 985 nm.

4.5 Progress in experimental demonstrations

4.5.1 Timeline

The realization of the designed QFT requires the multiple iterations of the fabrication and
characterization process. We planned to fabricate the device in the nanofabrication facility
at the NRC, and then characterize it in the QPL. Our first goal was to validate our design
method by experimentally testing basic properties of the ring resonator, e.g., free-spectral
ranges and Q-factors, with simplified sample devices. During the test, we expected to
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Figure 4.11: Photographs of the experimental setup for the characterization of ring res-
onators. (a)–(b) The waveguide-coupling setup developed in October 2020. (c) A test
sample of ring resonators fabricated by the company LIGENTEC.

obtain the precise model for the refractive indices of the materials, which will then be used
for the final design for the frequency translation.

The development of the design method started in August 2018 and it was completed in
January 2020. The implementation of the characterization platform in the QPL required
procuring equipment such as lasers, microscopes, and fiber-coupling stage. I visited the
NRC for a week to learn the laboratory setup and characterization procedures for the
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nanophotonic device in March 2019. We prepared the required hardware and the initial
characterization system in February 2020. My second visit to the NRC to fabricate the
test sample was planned in the late March 2020. However, the experimental activities were
hampered by the COVID-19 which stopped all visitor’s access to the NRC laboratory.
As an alternative, we procured two test samples from a company named LIGENTEC in
October 2020. Also, our NRC collaborator provided us with two samples whose structural
parameters are closer to one of our designed QFT.

4.5.2 Experimental setup

Figure 4.11 shows our experimental setup for the characterization of ring resonators. In-
cident fields at 785 nm and 1480 nm were generated by two external cavity diode lasers
and then delivered through an ultra-high numerical aperture fiber (UHNA3, Nufern). The
output fields from the ring resonators were coupled to a single-mode fiber for the examina-
tion of transmission as a function of the detuning frequency of the incident field. The two
fibers were mounted on three-axis translation stages (MAX313D, Thorlabs) for the precise
position control. The sample device which possesses multiple ring resonators with different
design parameters was placed on an optical waveguide sample holder (F273-5, MiSUMi)
which can be manually translated in a plane parallel to the optical table.

The injection to and collection from the waveguide of the ring resonator were achieved
by the following procedure. First, we translated the input fiber close to the sample and
precisely adjusted the position of the fiber tip near the waveguide. The process was moni-
tored through a stereo microscope (M125C, Leica) whose magnification can be tuned from
12.8 to 160. To ensure that the incident field is coupled to the waveguide (not guided
through the slab), we image the output field profile by using a high-NA objective lens and
a CCD camera. Then, the coupling of the incident field is further optimized by maximizing
the power of the output field. Finally, we switch the objective lens with the optical fiber
to couple the output field.

4.6 Alternative approach using photonic crystal fibers

In this section, we present our study of an alternative approach for the frequency translation
from 985 nm to 785 nm using a polarization-maintaining endlessly single-mode photonic
crystal fiber (PM-ESPhCF). The idea of placing the pump wavelengths far enough from
the zero-dispersion wavelength for the suppression of the unwanted nonlinear processes
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Figure 4.12: Group-velocity dispersion for the endlessly single-mode photonic crystal fiber
which is modeled as a cylindrical single-mode fiber with large core-to-clad refractive index
difference. The βn = ∂nβ/∂ωn is the coefficient of the Taylor expansion of the dispersion
with respect to the zero-dispersion wavelength.

can also be applied same for the fiber system [172]. We procured the 100 m–long PM-
ESPhCF (ESM-5-125-PM, Photonics Bretagne) whose dispersion with the zero-dispersion
wavelength at 1050 nm is similar to the designed ring resoantor.

4.6.1 Theoretical modeling for frequency translations in optical
fibers

Our PM-ESPhCF can be effectively modeled by a cylindrical single-mode fiber with the
large core-to-clad refractive index ∆n = 0.12 and the 5 µm core diameter. In this way,
the eigenmodes and eigenfrequencies (and propagation constants) can be analytically cal-
culated [6]. Figure 4.12 shows the comparison between the group velocity dispersions
calculated with the modeled fiber and the specification of the PM-ESPhCF provided by
the manufacturer. The close agreement between the two dispersions indicates the validity
of the approximation. The propagation constant β(ω) is Taylor-expanded with respect to
the zero-dispersion wavelength ω0 as

β(ω) = ω − ω0 + β1(ω − ω0) +
β2

2!
(ω − ω0)2 + · · · (4.24)

147



with βn = ∂nβ/∂ωn|ω0 . Our fiber exhibits a high β3 ≈ 0.075ps3/km, indicating a good sup-
pression of spurious FWM process and the MI. The electric field profiles of the eigenmodes
are used to calculate the optical nonlinearity γ ∼10 W−1 km−1.

The phase-matched pump wavelengths are λP1 =1075 nm and λP2 =1480 nm with the
zero-dispersion wavelength around λZDW =1050 nm. In the optical fiber-based QFT, it is
important to ensure the availability of the pump lasers which provide high pump power
and the narrow spectral linewidth. A few watts of pump powers at λP1 =1075 nm and
λP2 =1480 nm can be readily obtained by Ytterbium-doped fiber amplifiers and Raman
amplifiers, respectively. One could also implement an optical parametric oscillator to obtain
the two pump fields.

It is worth noting that there are a few practical disadvantages in our configuration.
First, optical elements must operate in a broad wavelength range, i.e., 785 nm to 1500 nm.
In particular, the objective lens for the fiber coupling must be achromatic over the wave-
length range from 985 nm to 1480 nm. One way to address this issue is to fiber-couple
the pump and signal fields into three different fibers and combine them with fiber-based
wavelength multiplexers whose output port may be spliced with the PM-ESPhCF. The
second issue is the very narrow phase-matching bandwidth at 785 nm and 1480 nm which
is attributed to the long fiber length and the higher-order dispersions. This means that one
must prepare the incident fields whose the linewidth is narrower than the phase-matching
bandwidth for the efficient frequency translation.

We numerically solved the GNSLE via RK4IP algorithm for the modeled PM-ESPhCF
with the length of 100 m. We included the propagation loss α =20 dB km−1 based on
the specification sheet. The frequency translation efficiency η = |A(ωT )|2/|A(ωS)|2 is
calculated as a function of the incident pump powers P1 = P2, as shown in Figure 4.13(b).
The conversion efficiency can also be obtained by the analytical solution in Equation 4.6
with the assumption that the nonlinear process occurs only among the four fields, i.e., two
pumps, signal and target, and the pump fields are undepleted (black line in Figure 4.13(a)).
Our simulation predicted that the maximum conversion efficiency 63 % can be achieved at
the incident pump power PP1 = PP2 ∼750 mW, which is mainly limited by the propagation
loss. The excellent agreement between the numerical and analytical results indicates that
the spurious FWM and the MI are negligble, and the contribution from the fourth-order
dispersion does not significantly reduce the conversion efficiency.
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Figure 4.13: Numerical simulation of the four-wave mixing Bragg-scattering process for
the modeled 100 m–long PM-ESPhCF. (a) The spectrum of the electric fields evaluated
at the output of the fiber with incident pump powers PP1 = PP2 = 0.75W. (b) The
frequency-translation efficiency as a function of incident pump powers. A close agreement
with the analytical expression in Equation 4.6 indicates that the spurious FWM process is
negligible.

4.6.2 Experimental setup

Figure 4.14 illustrates our experimental setup. Due to the availability of lasers in our lab,
we rearranged the signal, target, and pump wavelengths and demonstrated the frequency
translation from λS =785 nm to λT ∼1075 nm. The two pump fields are produced from a pi-
cosecond mode-locked pulse laser (Tsunami, Spectra-Physics) at λP1 =985 nm and a fiber-
Bragg grating laser diode (FBG-LD, QFBGLD-1480-500, Qphotonics) at λP2 =1480 nm.
The signal field is generated from an external cavity diode laser (ECDL) at wavelength of
λS =785 nm. The 100 m–long PM-ESPhCF is coiled with the radius greater than 20 cm.

All three laser fields, i.e., two pumps and signal, are combined into a single spatial
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Figure 4.14: A schematic drawing of the experimental setup for optical frequency trans-
lation from 985 nm to 785 nm; ECDL, external cavity diode laser; DBG-LD, fiber-bragg
grating wavelength-stabilized laser diode; OI, optical isolator; Si-CCD, silicon-based charge
coupled device; APD, avalanche photodiode; P, polarizer; OL, objective lens; DM, dichroic
mirror; BPF, bandpass filter; FC, fiber connector; PM-ESPhCF, polarization-maintaining
endlessly single-mode photonic crystal fiber.

mode by dichroic mirrors and coupled into the 100 m–long PM-ESPhCF through a high-NA
objective lens (C110TMD, Thorlabs). Due to the chromatic dispersion of the objective lens
and the uncoated lens surfaces, the achieved fiber coupling efficiencies were 10 %,40 %, and
20 % at the wavelengths of λS =785 nm, λP1 =985 nm, and λP2 =1480 nm, respectively. The
spectral properties of generated FWM field and the conversion efficiency are characterized
by a high-precision optical spectrometer and an optical powermeter, respectively.

4.6.3 Results

Phase-matching condition and bandwidth

We generated the FWM field at the wavelength of around λT ∼1100 nm for the input
signal at λS =786.4 nm with the pumps operating at λP1 =965 nm and λP2 ∼1480 nm, as
shown in Figure 4.15. The spectral linewidth (FWHM) of the generated FWM field is
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Figure 4.15: Measured spectra of the frequency-translated field. (a) The measured spectra
of the FWM field at different pump wavelength λP1. (b) The wavelength of the generated
FWM light λT as a function of the central wavelength of an incident pump field λP1.

measured to be (0.5± 0.1) nm, which is mainly limited by the spectral resolution of the
measurement apparatus. We varied the wavelength of one of the pumps from λP1 =950 nm
to 990 nm with the other fixed at λP1=1480 nm. The central wavelength of the FWM light
was translated according to the phase-matching condition. Although the output power of
the generated FWM field varies, this shows the wavelength tunability for our frequency
transducer. Also, note that the presence of the strong spontaneous Raman-scattered light,
as shown in Figure 4.15(a), limits the minimum input power of the incident signal field,
which is a main bottleneck in the current setup to be used for the frequency translation
with quantum light.

There are commercially available lasers producing the power over 2 W with the wave-
length tunability from 1060 nm to 1080 nm. For example, FLT photonics has developed
a ASE-free tunable fiber laser which can be a potential replacement for our mode-locked
pulsed laser, which makes it possible to perform the frequency translation for QD-SPS at
wavelength from 970 nm to 990 nm to the 785 nm QEYSSat quantum channel wavelength.
A strong suppression of the Raman noise from anti-Stokes photons is also expected after
the replacement which may make the system suitable for quantum light with the increased
signal-to-noise ratio.
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Figure 4.16: Measured spectral bandwidth and efficiency of the optical frequency transla-
tion. (a) The measured FWM spectra at different incident signal wavelength λS. (b) The
frequency-translation efficiency as a function of the incident pump power.

Frequency-translation bandwidth and efficiency

We characterized the frequency-translation acceptance bandwidth by tuning the input
signal wavelength while the two pump wavelengths are fixed. Assuming that all the
laser linewidths are very small (delta-function spectra), the phase-matching bandwidth
at 785 nm, 965 nm, and 1480 nm for the 100m-long fiber were calculated to be 0.002 nm,
0.03 nm, and 0.0015 nm, respectively. This means that, if we sweep the wavelength of the
signal laser light and fix the wavelength of the pump lasers, the FWM light must be gen-
erated with the acceptance bandwidth of 0.002 nm. However, we found that the intensity
of the FWM light was maintained over 50 % over the 3 nm tuning range of the signal field,
as shown in Figure 4.16(a), which is three orders of magnitude greater than the theoretical
estimation. This is mainly attributed to the broad linewidth of the pump lasers being used.
The spectral linewidth (FWHM) of the mode-locked laser at 985 nm and the FBG-LD at
1480 nm were measured to be 0.06 nm and 0.71 nm, respectively, as shown in Figure 4.17.
We confirmed that the acceptance bandwidth was reduced to less then 1 nm after replacing
the FBG-LD with an external cavity diode laser (OSICS ECL-1480, Yenista) operating at
1480 nm.

As shown in Figure 4.16(b), the frequency-translation efficiency, which is defined as the
ratio of the average power of the FWM field to the incident signal field, was measured as a
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Figure 4.17: Measured spectral linewidths of three lasers for signal and two pump fields.

function of the incident pump power. The 1.7× 10−5 conversion efficiency was obtained at
the average pump power of PP1 = PP2 = 110 mW. This includes the system efficiency such
as the transmissions of the filters and dichroic mirrors. The obtained efficiency is three
orders of magnitude smaller than the theoretical expectation, which is mainly attributed
to the broad linewidth of the FBG-LD being used: three orders of magnitude broader than
the phase-matching bandwidth.

4.7 Chapter summary and outlook

4.7.1 Summary

We studied two different approaches for frequency translations. First, we designed and
analyzed a Si3N4 ring resonator for the frequency translation from 985 nm to 785 nm via
four-wave mixing Bragg-scattering (FWM-BS) process. The device is fully characterized
by numerical simulations, and the linear and nonlinear dynamics of intracavity fields are
accurately modeled by coupled mode equations under the approximation of weak coupling
between the ring cavity and waveguide. A finite element eigenmode solver was utilized to
precisely evaluate the optical properties of the designed ring resonator, e.g., nonlinear inter-
action strength and cavity-assisted field enhancement. Then, the Kerr nonlinear dynamics
among the entire resonant modes was computed to estimate the frequency-translation effi-
ciency. The frequency transducer is designed to interface with standard single-mode fibers
via transverse mode engineering with the tapered waveguide and Butt couplers.
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The frequency-translation process in our designed QFT is driven by two pump lasers
operating at the 1065 nm and 1469 nm wavelengths. By engineering the dispersion of
the ring cavity, we ensured that the phase-matching condition is satisfied for FWM-BS
process while suppressing the modulation-instability process and spurious FWM process.
The pulley coupler was designed to operate the ring cavity in the overcoupling regime at
the wavelengths of the four fields. The designed QFT performs the maximum conversion
efficiency of 80 % achieved at 20 mW pump powers after accounting the 0.05 dB cm−1 prop-
agation loss. The numerical estimation showed a good agreement with analytical solutions
for the coupled mode equations with only four isolated modes, which verifies the excellent
suppression of the spurious FWM process.

Secondly, we utilized a 100 m–long photonic crystal fiber exhibiting high optical nonlin-
earity. We theoretically modeled and experimentally demonstrated the frequency transla-
tions from 785 nm to 1076 nm by using a commerical photonic crystal fiber pumped by two
lasers operating at 985 nm and 1480 nm. Our theoretical analysis predicted a high conver-
sion effieciency, which however experimantally was not achieved primarly due to the lack of
high-quality pump lasers. We characterized the spectral properties of the generated FWM
field and the efficiency of the frequency translation. With the verified phase-matching
conditions under different pump wavelengths, we anticipate that our frequency transducer
is capable of translating the wavelength for quantum-dot-based single-photon sources op-
erating at around 970 nm to 990 nm to our QEYSSat quantum wavelength range 780 nm
to 795 nm.

4.7.2 Future work

Experimental demonstration of the frequency translation using a ring resonator

Our design method for ring resonators will be verified by experimentally testing sample
devices in the future. Two important parameters must be measured and compared with
the simulations: the free-spectral ranges and Q-factors at the wavelengths of the four fields
(signal, target, and two pumps). The free-spectral ranges will provide the dispersion of
the ring cavity which determines the phase-matching condition. The coupling Q-factor can
be estimated by the measured (loaded) Q-factor with the pre-characterized propagation
loss. The characterization requires the precise measurement of the intensity variation of
the output field as a function of the incident field detuning in the range of 10 GHz with the
tuning step size of less than 1 GHz. This can be achieved by using electro-optic modulators
to tune the sideband frequency of the input field whose fundamental frequency is stabilized
to a certain atomic transition.
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The demonstration of the frequency translation will be performed in the future. The
conversion efficiency and signal-to-noise ratio will be investigated for the feasibility of using
quantum-dot single-photon sources. One experiment we can conceive is to prepare two
identical frequency transducers which can translate the wavelength from 790 nm to 985 nm
at the pump wavelengths of 1106 nm and 1550 nm. One of them can be directly used to
translate the wavelength from 1550 nm to 985 nm with the pumps operating at the other
two wavelengths. Then, we could use our polarization-entangled photon source, which is
presented in Section 2.4, and the wavelengths of the emitted photon pairs are translated
to 985 nm by the two frequency transducers. The indistinguishability between the two
frequency-translated photons can be examined, e.g., Hong-Ou-Mandel interference, which
can helps characterizing the functionality of the frequency transducers.

Polarization-modulated frequency translation using a photonic crystal fiber

One of the technical challenges in using QD-SPSs for free-space quantum communications
is to modulate the polarization states of the generated single photons. Most of the QD-
SPSs produce one particular polarization state of the emitted photons, and one has to
insert polarization-modulation components before sending the photons through an optical
transmitter. High-speed polarization-modulators, such as phase-modulators, come with
insertion loss of typically 3 dB. Also, most of the high-speed modulators are developed
at the telecom wavelengths. The photon loss is critical because single photons cannot be
amplified unlike weak coherent pulse sources.

One of the future works using the fiber-based frequency transducer is the polarization-
modulation of the frequency-translated field by altering the polarization states of the pump
field. This is inspired by the polarization-insensitive frequency tranlsation which has been
implemented with both classical and quantum fields [279, 116]. The replacement of the
varying polarization states of the incident signal photons with one of the pump fields is
expected to have the same effect on the output polarization of the frequency-translated field
due to the symmetric arrangement of the four waves. However, as discussed in Section 2.3.3,
two non-orthogonal pump polarizations cause nonlinear polarization rotations via self- and
cross-phase modulation for all pumps, signal and target states.

We propose that our beam-displacment Sagnac interferometer can be used for the
polarization-modulated frequency translation, as depicted in Figure 4.18. In this case,
unlike the demonstration in Section 2.2.3, only one beam displacer is required because
the polarization state of the FWM field is parallel to the pumps as in type-0 photon-pair
generation process. The two frequency translation processes at orthogonal polarizations,
i.e., horizontal |H〉 and vertical |V 〉, are superposed inside the Sagnac loop. In the proposed
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Figure 4.18: Proposed experimental scheme for polarization-modulated frequency transla-
tion. See Figure 4.14 for the optics labels and acronym.

scheme, the polarization states of the input signal photons and one of the two pumps are
initially prepared at diagonal state |D〉 = 1/

√
2 (|H〉+ |V 〉). Then, we modulate the

polarization states of the other pump to one of the four polarization states of diagonal,
antidiagonal |A〉 = 1/

√
2 (|H〉 − |V 〉), right-circular |A〉 = 1/

√
2 (|H〉+ i|V 〉), and left-

circular |L〉 = 1/
√

2 (|H〉 − i|V 〉). We expect the output FWM states will vary according
to the pump state due to the angular momentum conservation.
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Chapter 5

Hybrid nanophotonic platform with
neutral atoms for universal quantum
matter

In Chapter 4, quantum frequency transducers using ring resonators provided the means of
interfacing quantum light sources at different wavelengths with ground-to-satellite quantum
links. The underlying physics was a coherent mode conversion of electromagnetic quanta
(e.g., from signal frequency mode to target mode) provided by the optical nonlinearity of
the classical dielectrics. However, this nonlinear optical process is only strong when the
photon-number states are linearized. That is, the total energy of the photonic system is
linearly proportional to the number of photonic excitations, which is mainly due to the
absence of quantum dielectrics, e.g., single quantum emitters. The underlying Hamiltonian
is a beam-splitter type and does not generate non-classical states on its own. As a result,
there is no photon-photon interaction; the quantum state of one photon depends on the
other, e.g., controlled single-qubit gates. Note that this is distinguished from parametric
amplification processes (discussed in Chapter 2) which indeed generate non-classical states,
i.e., squeezed states.

In this chapter, we introduce quantum dielectrics (neutral atoms) into nanophotonic
devices, forming a hybrid nanophotonic platform with strong light-matter interactions.
From the work of cavity quantum electrodynamics (QED), there is a plethora of research
where individual quantum systems are exploited as the resource for generating interesting
quantum states in the regime of strong coupling domain. In this domain, strong interactions
between photons are possible and allow the functionalization of otherwise passive dielectrics
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(e.g., an optical cavity). The scope of this chapter is to explore quantum many-body
physics with an array of atoms whose photon-exchange interactions are engineered by the
tailored electromagnetic vacuum of dielectrics. That is, whereas the earlier chapters may
concentrate on the quantum channels and interfaces, what we try to address in this chapter
is a pathway to create the quantum nodes through light-matter interactions. The main
contents of this chapter was preprinted in arXiv:

Y. Dong, J. Taylor, Y. S. Lee, H. R. Kong, and K. S. Choi. Waveguide QED toolboxes
for universal quantum matter. arXiv:1712.02020v4 (2021) [76]

I am allowed by the policies of arXiv and by permision from my co-authors to republish
part of the work here.

Statement of contributions

The research presented in this chapter was conducted in the UQML group from January
2017 to April 2018 under the supervision of Prof. Kyung Soo Choi.

� Development of the theoretical framework for universal quantum matter
using waveguide QED system
Dr. Ying Dong and Prof. Kyung Soo Choi conceived the idea of the proposed waveg-
uide QED system and carried out the theoretical analysis. Jacob Taylor carried out
the tensor-network numerical simulation. Hyeran Kong performed Schrieffer-Wolf
analysis of the SU(N) models and field theories. I designed photonic crystal waveg-
uides and performed the computations of electromagnetic Green function, which
supported the feasibility of realizing the proposed scheme. Prof. Kyung Soo Choi
provided an initial version of Matlab code to calculate the Green function using
FDTD solvers. I wrote the Scheme codes to calculate photonic band structures and
Casimir-Polder potentials. Prof. Kyung Soo Choi and I procured and assembled the
UQML-Andromeda cluster server.

� A cluster UHV system and other experimental activities
Prof. Kyung Soo Choi and I conceived the overall architecture of the ultra-high
vacuum (UHV) system and planned the experimental setup. I designed, procured,
cleaned, and air-baked the components for the cluster UHV system under the super-
vision of Prof. Kyung Soo Choi. Hyeran Kong provided the procedure and equipment
for cleaning and air-baking UHV components. I designed the sample transporter with
the docking stage for the loadlock system. I implemented and tested the presented
electronics based on the circuit diagram provided by Prof. Kyung Soo Choi, Dr.
Chang Liu, and Hyeran Kong.
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5.1 Introduction

Fundamental light-matter interaction is one of the most impactful subjects to our life and
there is a long history of its understanding and manipulation. With the birth of cavity
QED [297] and technolgoical advances in quantum optics, the atom strongly coupled with
a single-mode electromagnetic field has now become a toolbox to store and process the
quantum information of the individual photonic quanta [156]. The manipulation of the
internal states of atoms and the coherent information exchange between photons and atoms
can be precisely controlled with very high success probability (>99 %) [35, 248]. Many
different physical platforms have emerged to emulate such a perfectly controllable atomic
system with the ambition to coherently link them by quantum channels to form universal
quantum computers or simulators, e.g., circuit QED, quantum dots, NV center [114, 125].

With the network of atomic systems, one of the exciting frontiers in quantum informa-
tion science is the realization of complex many-body systems [156]. The idea is to explore
condensed matter physics by naturally mapping a complex many-body Hamiltonian to
physical quantum spin networks and investigating its time evolution followed by a set of
measurements. This bottom-up approach allows us to understand exotic quantum mat-
ter from the perspective of quantum information science, e.g., long-range entanglements in
topological quantum phases of matter [59]. Researchers have realized such quantum many-
body systems using a quantum network of atoms in lattices [109], Rydberg atoms [43], and
quantum degenerate gases inside single- or multi-mode optical cavities [210].

Hybrid nanophotonic system with cold atoms has merged as the paradigmatic platform
for engineering long-range spin models with unprecedented complexities [56]. With recent
developments in atom-photon interfaces with photonic crystals [148, 163, 147, 132, 282,
283, 101, 100, 121], there has been significant interest towards assembling quantum many-
body systems by garnering the control over individual quantum systems [184, 13, 33]. The
coherently driven atoms under the tailored electromagnetic vacuum by the presence of
exotic dielectrics exhibit a unique feature of engineering their mechanical interactions, as
discussed in the following sections.

In this chapter, we present the theoretical and experimental effort toward the real-
ization of a fully programmable quantum spin network in a waveguide QED system with
neutral atoms and photonic crystals. In Section 5.2, we describe our proposed waveguide
QED system which allows designing the interactions between atoms with any combination
of SU(2)-spin operators. In Section 5.3, we provide a quantum optics theory used to de-
sign and analyze a conceivable experimental platform with nanophotonic structures. In
Section 5.4, we focus on the detailed design considerations for a photonic crystal waveg-
uide and present our custom-built computational resource. In Section 5.5, we present the
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detailed analysis on the designed nanophotonic structure to show the feasibility of realiz-
ing our proposed scheme. We evaluate coherent spin-spin interaction rate between atoms
and correlated spontaneous decay rates. Also, the accurate calculation of Casimir-Polder
force and Stark shifts shows the formation of a stable trapping potential for a string of
Cesium atoms near the designed structure with appropriate illumiation of laser fields. In
Section 5.6, we summarize our experimental progress with our custom-built cluster UHV
system.

5.2 Motivation

5.2.1 Background: photon-mediated atom-atom interactions in
waveguides

Our goal is to develop a network of atoms with the connectivity provided by atom-light
interactions in a waveguide QED system. On the one hand, the internal spin states of
atoms must be interfaced with a photonic channel such that the information of the matter
qubits must be efficiently read out without dissipating into environments. On the other
hand, the type and strength of the interactions between the atoms, i.e., the connectivity
of the network, must be engineered to simulate other quantum systems.

To contrast the unique feature of waveguide QED systems with photonic crystals, we
first consider one of the simplest waveguide QED systems: an array of two-level atoms
trapped near a cylindrical waveguide, as depicted in Figure 5.1(a). We consider the
waveguide with the core diameter smaller than the wavelength λ of the guided field, e.g.,
nanofiber, where the majority of the field propagates through the cladding, e.g., air, and
therefore there is substantial overlap between the photon’s transverse mode and optical
scattering cross-section. The optical properties of the guided field is determined by the
dispersion relation of the waveguide, as shown in the inset of the Figure 5.1(a). In this
setup, we characterize coupling strength between the atoms and the guided photons by
spontaneous decay rate of the atoms into the guided mode (GM) Γ1D given as

Γ1D =
1

2

c

vg
σ0Aeff(~rA)Γ0. (5.1)

Here, Γ0 is the free-space decay rate in the absence of the dielectric and vg is the group
velocity of the guided field oscillating at the transition frequency of the atoms with c
denoting the vacuum speed of light [57]. σ0 and Aeff are the optical cross-section and the
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Figure 5.1: Examplary waveguide QED systems with neutral atoms. (a) An array of
two-level atoms interacting with each other through photons guided through a tapered
nanofiber and (b) a photonic crystal waveguide. The interactions between the atoms are
governed by dispersion relations of the nanofiber and waveguide (right).

effective mode area of the guided mode, respectively. We desire the strong atom-photon
coupling, i.e., Γ1D/Γ0 � 1, for the efficient interface between the atoms and photons. As
clearly shown in Equation 5.1, the strong atom-photon coupling can be obtained by a slow
group velocity vg � c and a small effective mode area Aeff � λ.

In the context of realizing quantum many-body physics, much of interesting dynamics
take place with the off-resonent atom-light interaction. When the optical frequency of
the guided field is detuned from the transition frequency of the atoms, a photon emitted
from one atom virtually populates the GM and reabsorbed by another atom, thereby
effectively mediating spin-exchange interactions between the atoms. Therefore, the atom-
light coupling rate is directly related to the photon-mediated spin-exchange rate. The
coherent spin-spin interaction rate is desired to be greater than any other dissipation rate
in order to investigate the spin dynamics of the atoms. Also, the capability of engineering
individual interactions between atoms is crucial for mapping high-dimensional and complex
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Hamiltonians onto 1D or 2D lattice atoms. However, systems with monolithic waveguides
only provides all-to-all connections with the fixed interaction strength among trapped
atoms.

Photonic crystal waveguides (PhCWs) provide both the strong atom-light coupling and
the tunability of photon-mediated spin-spin interactions. As shown in Figure 5.1(b), the
periodic and highly contrast distribution of dielectrics exhibits an exotic dispersion rela-
tion, i.e., photonic bands, with the tightly confined GM [146]. In particular, the presence
of a photonic band gap (PBG) provides a unique feature of atom-light interactions. For
example, when the atomic transition frequency is resonant with the guided mode at the
band edge, the high effective mass of the guided field significantly reduces the group ve-
locity and this slow-light effect dramatically enhances the atom-photon coupling rate. The
strong atom-light interaction assisted by the PhCW acting like an optical cavity stimulates
collective dissipations of the atoms into the GM (e.g., superradience [100]) while suppress-
ing dissipations into other environmental modes. The enhanced spontaneous decay rate
into a single photonic mode (i.e., Purcell-effect) has been actively exploited in quantum-dot
applications [186].

With the atomic transition frequency resides within PBG (i.e., detuned from the band
edge), the underlying lattice of atoms cannot dissipate propagating waves into the GMs
of the photonic structure. However, in a strong coupling regime, where the atom-light
coupling rate is much greater than any other dissipation rates, the mere presence of the
atoms at sites seeds dynamic defect modes which support stable atom-field bound states
in the form of exponentially decaying evanescent waves [148, 163, 78, 262, 50], as depicted
in Figure 5.1(b). The large effective mass provided by the flat band edge leads to a short
localization length for correlations in “many-body” photon Hamiltonian, which tranlsate to
tightly localized atom-photon bound states in the bandgap [148]. From the perspective of
quantum optics, the localization is related to the presence of squeezed states in the vicinity
of the atom, which becomes classical radiation as they exit the dielectric media [99]. This
tightly localized fields mediate short-range spin-exchange interaction between the adjacent
atoms [113, 104]. The complex spin-exchange strength can be engineered for atoms coupled
to 1D photonic crystals with auxiliary Raman sidebands and digital time-steps [184], which
has been utilized for a wide range of translationally-invariant pairwise models for quantum
magnetism [131].

The effective spin-exchange interaction between the atoms through the localized pho-
tons results from the modified electromagnetic vacuum of the dielectric, consisting of both
the passive photonic structure and the active emitters. Such a quantum dielectric is in-
herently renormalized by the strong coherent and dissipative radiative forces between the
atoms, i.e., photonic Lamb shifts. In other words, the spin-exchange interaction can be
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viewed as a van der Waals-type interaction which originates from a vacuum (in our case,
virtually populated photon in the GM)-driven dipole-dipole interaction. Such a nanoscopic
quantum force modifies the mechanical vacuum of the atomic motion. Then, Bogoliubov
phonons can be distributed across the atomic sample as a collective bath that in turn
couples to the spin system.

5.2.2 Waveguide QED system for universal quantum matter

We will specifically harness the coherent coupling between atomic motion and internal
states in a 1D PhCW for the realization of an analogue universal quantum simulator. Our
approach is based upon the unique capability of a PhCW to induce strong photon-mediated
forces between proximal neutral atoms and to create many-body atomic states of internal
spin and external motion. In particular, we utilize the coupling of spin matter to atomic
motion generated by spin-independent forces of the synthetic vacuum of the PhCWs to
mediate the underlying long-range spin-spin interactions. In our approach, translationally-
variant binary interaction Ĥi,j ≈

∑
α,β J

(i,j)
α,β σ̂

(i)
α σ̂

(j)
β between spins i,j is arbitrarily designed

for any combination of SU(2)-spin operators σ̂
(i)
α , σ̂

(j)
α with α,β ∈ {x, y, z}. More generally,

our spin network allows complex Hamiltonian graphs with connectivity that can no longer
be represented by spatial lattices and dimensions, thereby realizing a universal 2-local
Hamiltonian in an analog quantum system.

Universal quantum matter

In 1996, Seth Lloyd showed that quantum computers can be programmed to simulate
other quantum systems [184]. Universal quantum simulators, which means the quantum
computer capable of simulating any other quantum systems, can be obtained by applying
a series of gate operations in the pre-defined orders with digitized time steps. The idea
is supported by that any Hamiltonian with local interactions can be represented by the
summation of a set of the Hamitonians whose time evolutions are accurately controlled.
Nowadays, this quantum computer running numerical simulations for other quantum sys-
tems is referred to as “digital quantum simulators”. This approach requires an error
correction with large number of physical qubits as generally needed for running quantum
algorithms in quantum computers.

Alternatively, our approach is to prepare a physical system whose time evolution natu-
rally emulates other quantum systems, also known as “analogue quantum simulators” [47].
In 2018, Cubitt et al. proved that the arbitrary SU(2) binary Hamiltonian, which can be
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Figure 5.2: Proposed many-body waveguide QED system. (a) An examplary waveguide
QED spin network. A slotted squircle photonic crystal waveguide enables a versatile plat-
form for highly tunable defect guided modes. Green spheres represent the trapped atoms
whose resonant frequency for electronic excitation is detuned by ∆b with respect to the
frequency of the guided mode ωb. (b) Two laser fields Ωm,1, Ωm,2 with detunings δm,1,
δm,2 create strong photonic Lamb shifts between two atoms localized within a photonic
bandgap. The bandgap is detuned by ∆ with respect to the laser frequencies.

realized in our proposed waveguide QED system, belongs to one of the universal Hamil-
tonian families which can replicate all other quantum many-body Hamiltonians [70]. This
means that an arbitrary Hamiltonian can be efficiently mapped on a lattice or an array
of atoms by engineering the interaction properties between any two atoms. Also, the sim-
ulation can be performed at any desired accuracy without requiring the quantum error
corrections. More importantly, one can create the case that the interesting model does not
really exist in the digital quantum simulators, whereas an analogue quantum simulator has
all the physical properties of the target system in addition to the time-evolved states. In
fact, there are instances of complex models where we anticipate from computational com-
plexities that even a universal quantum computer would not be able to obtain the ground
state efficiently.

Our proposed waveguide QED system can be viewed as a prerequisite to synthesize
universal quantum matter. The reason why I call “matter” instead of simulators is that
the proposed scheme can go beyond simulating other quantum systems and one can even
create new quantum states of matter which physically exists (e.g., ultracold atomic cloud
levitated inside a vacuum chamber). To be specific, our universal quantum matter is
realized in the form of the internal spin states and external motions of atoms as well as
light that are all intertwined truly by the electromagnetic vacuum of the dielectric.
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Physical platform

As shown in Figure 5.3, our basic building block is a system of neutral atoms strongly
coupled to a GM of the 1D PhCW represented by the red line of Figure 5.3(a). The
dispersion relation of the GM in PhCW near the band edge k = k0 (corresponding to
frequency ωb) can be approximated by ωk−ωb ≈ − 1

2me
(k−k0)2 with effective mass 1/me =

−(∂2ωk/∂k
2) for the first brillouin zone. The band edge at frequency ωb is red-detuned by

∆b = ω − ωb > 0, so that the atomic transition frequency ωD2 lies within the band gap.
Here, the atom-photon coupling constant is given by g ≈ d

√
ωb/4πε0Aeff near ωb where

Aeff is the effective mode area. We envision that each atom is tightly localized with trap
frequency wt and lattice constant a0 by a nanoscopic optical potential with a trapping field
that populates a higher-order GM (blue line).

Spin-independent dipole-dipole interaction

In our scheme, the atoms exhibit two excited states labelled |d〉 and |d̄〉 and two hyperfine
ground states |g〉 and |s〉, as shown in Figure 5.3(b). A pair of coherent fields Ωm,1,Ωm,2

are applied to couple the ground states |g〉 and |s〉 to the excited states |d〉 and |d̄〉,
respectively. As discussed previously, the driven atom cannot dissipate into the GM inside
the band gap, but form the atom-field bound states in the form of evanescent waves. In
the off-resonant regime f = Ωm,1/δm,1 = Ωm,2/δm,2 � 1, the virtually populated photon in
the GM mediates the atom-atom interactions without alternating their internal spin states.
For example, for given two proximal atoms located at the sites i and j that are prepared
in four different initial states, the interaction between the atomic spin states and photons
in the GM can be expressed as

|g〉i|g〉j|0〉
Ω1−→ |e〉i|g〉j|0〉

gc−→ |g〉i|g〉j|1〉
gc−→ |g〉i|e〉j|0〉

Ω1−→ |g〉i|g〉j|0〉,

|g〉i|s〉j|0〉
Ω1−→ |e〉i|s〉j|0〉

gc−→ |g〉i|s〉j|1〉
gc−→ |g〉i|d〉j|0〉

Ω2−→ |g〉i|s〉j|0〉,

|s〉i|g〉j|0〉
Ω2−→ |d〉i|g〉j|0〉

gc−→ |s〉i|g〉j|1〉
gc−→ |s〉i|e〉j|0〉

Ω1−→ |s〉i|g〉j|0〉,

|s〉i|s〉j|0〉
Ω2−→ |d〉i|s〉j|0〉

gc−→ |s〉i|s〉j|1〉
gc−→ |s〉i|d〉j|0〉

Ω2−→ |s〉i|s〉j|0〉.

(5.2)

As clearly shown in the expression, this photon-mediated spin-exchnage interaction is inde-
pendent of the atomic internal spin states. In the limit of fg � ∆ (i.e., atomic transition
frequency residing deep inside the band gap), the quantum dipole-dipole interaction driven
by the virtually populated waveguide vacuum may be treated as the mechanical interaction

which originates from photonic Lamb shifts ∆
(i,j)
Lamb =

g2
c |uk0

|
∆

e−|i−j|a0/Lc with the effective in-

teraction strength gc = g
√

2π/Lc and the effective interaction range Lc =
√

1/me∆. Here,

165



∆𝑔𝑠
(𝑗)

ȁ ۧ𝑔

ȁ ۧ𝑠

ȁ ۧǁ𝑒 ȁ ۧҧ𝑒ȁ ۧ𝑒

Ω𝑧,𝑙
(𝑖)

−Ω𝑧,𝑙
(𝑖)

Ω𝑏,𝑙
(𝑖)

Ω𝑟,𝑙
(𝑖)

Ω𝑟,1
(1)

Ω𝑟,2
(1) Ω𝑟,𝑁

(1)

𝜈𝑟,1
(1)

𝜈𝑟,2
(1)

𝜈𝑟,𝑁
(1)

∆
𝑔
𝑠

(1
)
−
𝜖
1

∆
𝑔
𝑠

(1
)
−
𝜖
2

∆
𝑔
𝑠

(1
)
−
𝜖
𝑁

Atom 1

Ω𝑟,1
(𝑁)

Ω𝑟,2
(𝑁) Ω𝑟,𝑁

(𝑁)

𝜈𝑟,1
(𝑁)

𝜈𝑟,2
(𝑁)

𝜈𝑟,𝑁
(𝑁)

∆
𝑔
𝑠

(𝑁
)
−
𝜖
1

∆
𝑔
𝑠

(𝑁
)
−
𝜖
2

∆
𝑔
𝑠

(𝑁
)
−
𝜖
𝑁

Atom N

Ω𝑟,1
(1)

Ω𝑟,2
(1) Ω𝑟,𝑁

(1)

𝜈𝑟,1
(1)

𝜈𝑟,2
(1)

𝜈𝑟,𝑁
(1)

∆
𝑔
𝑠

(1
)
−
𝜖
1

∆
𝑔
𝑠

(1
)
−
𝜖
2

∆
𝑔
𝑠

(1
)
−
𝜖
𝑁

Atom 2

Figure 5.3: Fully programmable spin-spin interactions for any combination of SU(2) spin
operators via Raman-sideband engineered spin-motion couplings. (a) Energy level diagram.

(b) Raman-sideband engineering. Programmable Raman fields Ω
(j)
α,l selectively couples

internal spin states |g〉, |s〉 of atom j to photonic band l ∈ {1, · · · , N} with two-photon

detuning ν
(j)
l . To do so, we need to make sure that each single sideband with frequency

ν
(j)
l (red dash line) is nearly resonant to ∆

(j)
gs − εl (black solid line). For simplicity, we only

depict the red sidebands coupling.

∆ denotes the pumping laser detuning from the band edge. If the atomic wavefunction is
tightly localized enough such that x0 � Lc ≈ a0 with x0 =

√
~/2mwt denoting the zero

point fluctuation, this mechanical interaction between the nearest-neighbour atoms yields
a collective phononic excitation, as in trapped ions.

Remarkably, unlike trapped ions, the collective phonon spectrum εl (i.e., the eigenfre-
quencies of the collective motional states) exhibits high anharmonicity which originates
from the exponential function of the mechanical interaction. Also, the phononic Hamil-
tonian becomes an emergent property of the system, which can then be designed through
the electromagnetic vacuum. This would be the qualitative difference, where we can have
coherent phononic bath, but also a dissipative one. Moreover, current systems of trapped
ions have scalability issues due to the phonon mode spreading. This is because of the 1/r
like potential of the phononic interaction which flattens the phonon bands, and reduce the
addressable phonon modes. In our case, the interaction is more generally expontential and
short-ranged, where the phonon modes do not diminish in the energy difference. Further-
more, this interaction potential may be engineered as well.
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Arbitrary spin-spin interaction through collective motions of atoms

We now introduce the Raman-sideband engineering for the phonon-mediated spin-spin
interaction. Let us take the red-detuning coupling shown in Figure 5.3(c) as an example.
To gain independent control over the interaction coefficients between any atom pair, we
need to distinguish the coupling of an individual atom i to a particular Bogoliubov mode
l. To do so, we first introduce a site-dependent ground-state energy shift ĤA =

∑
i ∆

(i)
gs σ̂

(i)
z

with ∆
(i)
gs = ∆

(i)
gs + gFmFB(xi) in the form of a linear Zeeman gradient B(xi). We require

that the ground-state shift δ∆gs between neighboring sites is larger than the width of

the phonon spectrum |εN − ε1|. This gaurantees that the frequency difference ∆
(i)
gs − εl is

different for all pairs of (i, l), as shown in Figure 5.3(d).

Then, we apply a spatially global Raman field Ω
(i)
+,l with N2 sidebands, i.e., N atoms

× N photon modes, to the atom chain through the GM. Each single sideband with fre-
quency ν

(i)
+,l is nearly resonant to ∆

(i)
gs − εl with detuning ∆

(i)
l , thus effectively coupling

the spin operator σ̂
(i)
+ to the phononic mode b̂l only. That is, our Raman fields popu-

late a single guided mode with N2 sideband modes, which could be generated by a single
phase-amplitude modulator. Similar arguments may also be applied to the blue-detuning
coupling and Z–coupling. For sufficiently cooled atoms, in the Lamb-Dicke regime, the
phonon fields can be adiabatically elliminated, and we obtain the phonon-mediated fully
programmable 2-body Hamiltonian

Ĥ2-body ≈
∑
i,j,α,β

J
(i,j)
α,β σ̂

(i)
α σ̂

(j)
β +

∑
i,γ

h(i)
γ σ̂

(i)
γ (5.3)

for any combination of α, β, γ ∈ {x, y, z} and between any two spins at sites i, j. The spin-

exchange rate J
(i,j)
α,β and the bias field h

(i)
γ can be arbitrarily designed by tuning complex

amplitudes of the Raman fields Ω
(i)
α,l with α ∈ {+,−, z}. The full derivation of the Equa-

tion 5.3 with clear mathematical connection between the interaction coefficients J
(i,j)
α,β , h

(i)
γ

and the Raman fields are provided in reference [76]. Here, we emphasize that, for any set

{J (i,j)
α,β , h

(i)
γ }, at least one solution {Ω(i)

α,l,∆
(i)
l } can be obtained to the target model within

certain physical constraints, e.g., laser power.

Many-body QED and simulatable quantum systems

In a larger perspective of many-body QED developed at the UQML group, our waveguide
QED system as subcategory employs a photonic crystal which allows photonic clouds with
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non-trivial properties, such as chiral and symmetry-protected topology, to dress the atom.
The engineering of the photonic bands open the possibility of introducing novel forms of
interactions to the atoms, which otherwise are not available in its native form.

The proposed scheme allows engineering the dynamical gauge structure in a completely
analog fashion. Our spin-assembly approach provides the toolboxes for universal open
quantum many-body systems with complexities far beyond of regular spin lattices hereto-
fore explored. This thesis provides only a summary of our proposed scheme. For more
detailed derivation and application to the complex spin network, see the reference [76].
The followings are simulatable quantum systems that were not covered in this section.

� Chiral spin liquids in Kagome lattice

� Interacting SU(n) lattice models

� Detecting the scrambling of quantum gravity with out-of-time-order correlators (OTOC)
on the Sachdev-Ye model

� Wess-Zumino-Witten (WZW) conformal field theories (CFTs) for atom strings in
photonic crystals, and operator product algebra of the field theory

5.3 Green function formalism for open quantum sys-

tem with dielectrics

Two key requirements to realize our proposed scheme are the high localization of the atom-
field bound state whose effective interaction length is about one lattice constant Lc ≈ a0

and the stable trapping potential formed at the anti-nodes of the guided mode function
with the sufficient cooling to reach the Lamb-Dicke regime. Also, the dissipation rate of
the spin network must be much smaller than the coherent interaction rate. To design a
nanophotonic structure satisfying the above requirements, it is necessary to understand
how it impacts the internal spin states of atoms as well as their external motions. In this
section, we present the quantum optics theory that has recently been developed to describe
atom-light interactions in the presence of an arbitrary dielectric by using electromagnetic
Green functions. There are a number of great articles and theses [122, 15, 67] which provide
a full derviation as well as concise review on this formalsim. Here, we only provide the
summary of the main results and their physical interpretations without derivations.
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5.3.1 Brief review of the quantization of electromagnetic fields
with dielectrics

The attempt to include the dielectrics in the quantization scheme began in 1948 [140], but
the full canonical quantization of electromagnetic field with dielectrics which satisfies the
causality (e.g., Kramers-Kronig relation) was completed in 1992 by Bruno Huttner and
Stephen M. Barnett [134]. The strategy was to explicitly introduce the dielectrics that is
microscopically modeled as a collection of bosonic polarization fields, as first introduced
by Fano [87], in order to construct the conserved Hamiltonian. The diagonalization of
the total Hamiltonian yields a collection of polariton-like bosonic operators f̂(r′, ω), i.e.,
a combination of electromagnetic vacuum and material polarizations, which satisfies the
commutation relations

[f̂k(r, ω), f̂ †k′(r
′, ω′)] = δk,k′δ(ω − ω′)δ(r− r′),

[f̂k(r, ω), f̂k′(r
′, ω′)] = 0.

(5.4)

This fundamental electromagnetic excitations are associated with the polarization noise
operator P̂N(r, ω) which describes the polarization fluctuations necessarily tied with the
coupling to the lossy reservoir, as expressed in

P̂N(r, ω) = i

√
~ε0
π

Im ε(r, ω)f̂(r, ω), (5.5)

where ε0 and µ0 are vacuum permittivity and permeability, respectively. Here, the dielectric
constant ε(r, ω) naturally satisfies the Kramers-Kronig relations.

This quantization approach was extended to inhomogeneous dielectrics by Gruner and
Welsch [110] in 1996, which is also known as macroscopic QED. They followed the reverse
process of Huttner and Barnett on the basis of Green function expansion. They showed a
clear connection between the diagonalized Hamiltonian and macroscopic Maxwell’s equa-
tions including the Langevin-noise source term [80] as an open system. The electric field
operator is given by

Ê(r, ω) = iµ0ω
2

√
~ε0
π

∫
dr′
√

Im{ε(r′, ω)}G(r, r′;ω) · f̂(r′, ω) + h.c.

≡ Ê+(r, ω) + Ê−(r, ω),

(5.6)

where G (r, r′;ω) is the dyadic Green fucntion satisfying the classical Maxwell’s equation[
∇×∇×−ω

2

c2
ε(r, ω)

]
G(r, r′;ω) = Iδ(3)(r− r′), (5.7)
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where I is the unity tensor. The Green function satisfies the identity

ω2

c2

∫
d3s Im{ε(r′, ω)}Gik(r, s;ω)G∗ik(r

′, s;ω) = Im G∗ij(r, r
′;ω), (5.8)

which naturally imposes the fluctuation-dissipation theorem. Besides the beauty of in-
corporating the causality of electromagnetism, the practical advantage of this formalism
is that all the information about the dielectric is included in the classical Green function
which can be accurately calculated with finite-difference time-domain (FDTD) methods.
The physical interpretation of the above expression is that the presence of the dielectric
material modifies the electric field even without any sources due to the fluctuation of the
material polarization driven by surrounding electromagnetic vacuum.

5.3.2 Atom-light interactions in dielectrics

Now we turn our attention to the interaction between the modified electric field Ê(r, t) and
N two-level atoms, as shown in Figure 5.4. For the atoms being considered as quantum
dielectric objects with the internal electronic energy states of |g〉 and |e〉 that are separated
by an energy ~ωA, the atom-light interaction may be treated to be a collection of quantum
dipoles d̂ driven by the electric field, and therefore the interaction Hamiltonian is given as
Ĥint = −Ê(r, t) · d̂(t). The total Hamiltonian is expressed as

Ĥ =

∫
d3r

∫ ∞
0

dω~ωf̂ †(r, ω)f̂(r, ω) +
N∑
j=1

~ωA
2
σ̂zj −

N∑
j=1

Ê(rj, t) ·
(
djσ̂j + d∗j σ̂

†
j

)
, (5.9)

where the dipole matrix elements are d = 〈g|d̂|e〉 and d∗ = 〈g|d̂|e〉, and the Pauli spin
operators are the annihilation operator σ̂ = |g〉〈e| and creation operator σ̂† = |e〉〈g|.

Our goal is to study the time evolution of the state of the N atoms represented by the
density matrix ρ̂(t) whose equation of motion is referred to as a master equation. The full
derivation is lengthy and it is provided in the reference [122] with the detailed explanations
step by step. A short recap of the procedure is following. First, we solve the Heisenberg
equation for the field operator under the Markov approximation. After some algebra using
Green function identity in Equation 5.8 and the Kramers-Kronig relation, we obtain the
electric field operator

Ê+(r, t) = Ê+
free(r, t) + µ0ω

2
A

N∑
j=1

G(r, rj;ωA) · djσ̂j(t). (5.10)
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As clearly shown in Equation 5.10, the modified electromagnetic vacuum is given by the
free-space vacuum Ê+

free(r, t) plus the field generated by the vacuum-driven atomic quantum
dipoles propagating through the modified vacuum by the dielectrics which is represented
by the Green function. Next, we calculate the Heisenberg equation for an arbitrary atomic
operator. After substituting the electric field operator in Equation 5.10 to the Heisenberg
equation and converting it from Heisenberg picture to the Schrodinger picture, we obtain
the master equation for the atomic state ρ̂(t). One may include a driving field at frequency
ωL with the detuning ∆A = ωL − ωA from the atomic resonance frequency. Following the
same procedure in the interaction picture, the driven-dissipative evolution of the reduced
density matrix of an atomic system under the Markov approximation is obtained with
master equation

˙̂ρ =
i

~

[
Ĥ0, ρ̂

]
+ L[ρ̂], (5.11)

where the conservation part is

Ĥ0 =
N∑
j=1

~∆A

2
σ̂zj +

N∑
j,k=1

Jjkσ̂
†
j σ̂k (5.12)

and the dissipative Lindblad is

L[ρ̂] = −1

2

N∑
j,k=1

Γjk

(
σ̂†j σ̂kρ− 2σ̂kρσ̂

†
j + ρσ̂†j σ̂k

)
. (5.13)

The spin-exchange rates Jij and the collective dissipation rate Γij are expressed in terms
of the Green function as

Γij =
2µ0ω

2
A

~
Im [di

∗G (ri, rj;ωL) di] ,

Jij =
µ0ω

2
A

~
Re [di

∗G (ri, rj;ωL) di] .

(5.14)

Notice that all geometric properties of the material is included in the Green function which
can be calculated classically.

5.3.3 Exact Green function via FDTD method

An electromagnetic Green function for a given dielectric structure ε(r, ω) can be obtained
by FDTD methods. We first define a computation space with the dielectric structure
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Figure 5.4: FDTD simulation for a dyadic Green function Gµν(r, r
′;ω) and its validation

by comparison with analytical solutions. (a) A schematic diagram of the FDTD simula-
tion with Yee cells for a dielectric material ε(r, ω). (b) The spontaneous decay rates Γ
normalized by the free-space decay rate Γ0 for the D2–transition of a Cesium atom near
an infinite glass plate with refractive index n = 1.45. The decay rate was calculated as a
function the distance x between the atom and glass plate. The numerical evalulation using
local Green functions via Lumerical FDTD Solutions (blue dashed line) is compared with
the analytical solutions [168] (red solid line) for the atom polarized in normal and parallel
direction to the plate.

discretized by Yee cells at the desired resolution, as shown in Figure 5.4(a). We then place a
point dipole source oscillating in µ–direction at location r′ (i.e., P(r;ω) = P(ω)·êµδ(r−r′))
and a “monitor” at r where the electric field E(r;ω) is evaluated by propagating the source
field via Maxwell’s equation

∇×∇× E(r;ω)− ω2

c2
ε(r, ω)E(r;ω) = µ0ω

2P(ω) · êµδ(r− r′). (5.15)

Comparing it with the definition of the Green function in Equation 5.7, we obtain the the
Green function related to the calculated electric field by the expression

Gµν(r, r
′;ω) =

Eν(r, ω)

µ0ω2Pµ(r′;ω)
=

FT [Eν(r; t)]

µ0ω2FT [Pµ(r′; t)]
, (5.16)

where FT [ ] represents a Fourier transform.
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It is obvious that the local Green function Gµν(r, r;ω) diverges as it requires a field
evaluated at the location of a point source r′. To obtain physically meaningful results, the
Green function must be analytically integrated over a small volume around the source (i.e.,
regularized Green function). The FDTD naturally handles such regularization process by
averging the electric field over a unit Yee cell [295], which typically provides an accurate
nonlocal Green function Gµν(r, r

′;ω). To ensure this numerical averaging process for local
Green function to be the same as the analytical integration, one must pay a particular
attention to the placement of a dipole source. As illustrated in Figure 5.4(a), the source
location must be shifted by a half unit cell in its oscillating direction. The shifted position
is where the electric field is calculated during the FDTD simulation (e.g., Ez–position for
the source P(ω) · êzδ(r− r′)) whereby we ensure that only a single dipole point is excited
instead of creating possibly eight effective dipoles at the corners.

To testify our method, we calculated the spontaneous decay rate Γ for the D2–transition
of a Cesium atom near a infinitely large dielectric plate with the refractive index n = 1.45.
The local Green function Gµν(r, r;ω) was calculated via Lumerical FDTD Solutions at
a position of the atom, and the Equation 5.14 relate the Green function to the atomic
decay rate. It can also be obtained from analytical solutions from the reference [168],
and therefore the comparison between the two results validates our numerical method.
Figure 5.4(b) shows the spontaneous decay rate normalized by free-space decay rate Γ0.
The decay rate was evaluated for the Cesium atom polarized in the normal (top) and
parallel (bottom) directions to the plate. We observed excellent agreement between the
numerical results and analytical solutions across the distance from 20 nm to 600 nm for
both cases.

5.3.4 Casimir-Polder force

We present the quantum theory for the numerical time-domian simulation of dispersive
electromagnetic forces due to the presence of dielectrics–also known as Casimir-Polder
forces. The microscopic origin of this force is the modified vacuum-induced energy shift of
an atomic ground state. The amount of the energy shift can be calculated by the purter-
bation theory, as shown by G. S. Agrawal in 1975 [4]. Recently, with the development of
the canonical quantization scheme with dielectrics, Buhmann et al. showed the derviation
of more general electromagnetic forces to both macro- and mirco-objects starting from the
Lorentz force formula [45, 46].

With the interaction Hamiltonian Ĥint = −Ê(r, t)·d̂(t) under the dipole approximation,
the ground-state energy shift for a single atom in second-order perturbation theory [4, 46]
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is given by

∆E = −
∑
k,ζ

∫
d3rP

∫ ∞
0

dω

∣∣∣〈g|d̂|e〉 · 〈0|Ê|1λ(r, ω)〉
∣∣∣2

~(ωk0 + ωk)
, (5.17)

where k and ζ are the indices for the wave vector and the polarization of the electric
field, respectively. Here, the state |1k,ζ(r, ω)〉 = f̂ †λ|0〉 represents a single excitation of
the polariton-like bosonic field in the k mode and the ζ polarization. We substitute the
Equation 5.6 to Equation 5.17 and use the identity 5.8 to yield

∆E = −µ0

π

∑
k

P
∫ ∞

0

dω

ωk0 + ω
ω2d0k · Im G(rA, rA;ω) · dk0 (5.18)

with dk0 = 〈k|d̂|0〉. The position-dependent ground state energy shift is obtained by the
local scattering Green function Gs = G−G0 with respect to the vacuum G0 as

UCP(ra) = −~µ0

2π
Im

[∫ ∞
0

dωω2 Tr [α(ω) ·Gs(rA, rA;ω)]

]
, (5.19)

where the dynamic polarizability tensor of the atomic ground state α(ω) is defined as

α(ω) = lim
ε→0

2

~
∑
k

ωk0d0kdk0

ω2
k0 − ω2 − iωε

(5.20)

The contour integral in Equation 5.20 can be numerically evaluated in time domain,
which was originally developed for macroscopic objects in reference [252]. The strategy is
to deform the contour integration into the upper imaginary plane, in particular, along the
complex frequency contour of the form ω = ξ

√
1 + iσ/ξ, parametrized by a real number

ξ ≥ 0 and a constant σ > 0. Here, we apply this technique to the Casimir-Polder potential
for a single atom, and derive the same result presented in reference [132].

We first rewrite the Equation 5.20 as

UCP(ra) = −~µ0

2π
Im

[∫ ∞
0

dξ
dω

dξ
ω2(ξ) Tr

[
α(0)(ω(ξ)) ·G(1)(rA, rA;ω(ξ))

]]
. (5.21)

To rewrite it in the time domain, we use the convolution theory to express∫ ∞
0

dξxji(ξ)Gij(ξ) =

∫ ∞
0

dtxji(−t)Gij(t), (5.22)
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where xji(ξ) = dω
dξ
ω2(ξ)αji(ω(ξ)) is the Fourier transform of x̃ji(t) =

∫∞
0
dξxji(ξ)e

−iξt and

Gij(t) =
∫∞
−∞ dξGij(ξ)e

−iξt. Here, we take one element of the inner product between the
polarizability tensor and the Green tensor since the Fourier transformation is linear. While
x̃ji(t) could be evaluated relatively easily, calculating Gij(t) could be tricky because it is
not the Fourier conjugate of Gij(ω).

Following the discussion in reference [252], we setup the Maxwell’s equation to calculate
Gij(t) using the FDTD solver [226] with the modified material property. For a given dielec-
tric function ε′(r, ξ) and a dipole current source J (r, ξ) = êµδ

(3)(r− r′), the FDTD solver
evalulates the electric field E(r, t) whose Fourier transform E(r, ξ) = 1

2π

∫
dtE(r, t)eiξt sat-

isfies the frequency-domain Maxwell’s equation[
∇×∇×−ξ2µoε

′(r, ξ)
]
E(r, ξ) = iµ0ξJ (r, ξ). (5.23)

Comparing the Equation 5.23 with the definition of the Green tensor in Equation 5.7, we
can assign the following dielectric function to the FDTD solver

ε′ =
ω2

ξ2
ε =

(
1 + i

σ

ξ

)
ε(r, ω(ξ)), (5.24)

Then, the resulting electric field E will have the following correspondence to our target
Green function

iξEij = Gij(ξ), (5.25)

Using the dielectric function in Equation 5.24, we can calculate the Equation 5.22 through
the field solution E(r, t) ∫ ∞

0

dξxji(ξ)Gij(ξ) =

∫ ∞
0

gji(−t)Eij(r, t), (5.26)

with

gji(t) =

∫ ∞
0

dξgji(ξ)e
−iξt,

gji(ξ) = i
ω2

ξ

dω

dξ
= −iξ

√(
1 + i

σ

ξ

)(
1 + i

σ

2ξ

)
αij(ω(ξ)).

(5.27)

5.4 Designing photonic crystal waveguides for many-

body waveguide QED

In this section, we present numerical simulation tools to design a PhCW structure. We
consider a spin network of Cesium atoms localized along a Si3N4 PhCW with highly tunable
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GMs in terms of TE photonic band gap, effective photon mass me, and mode area Aeff

near the band edge kx = k0. Figure 5.5(a) shows a general layout of the structure of our
slotted squircle photonic crystal waveguide (SqPhCW).

5.4.1 Design considerations

The full realization of our waveguide QED system requires the capability to maintain fa-
vorable figure of merit F = ∆Lamb/Γtot with short-ranged mechanical interactions between
the trapped atoms, where the localization length Lc =

√
1/2me∆e is comparable to the

lattice constant a0. Here, ∆e ' 2∆b denotes the detuning of atomic transition to the
effective cavity mode [78], and ∆b is the detuning of the atomic transition frequency to the
band edge. In the following, we listed a set of requirements as a guidance of the designing
process.

1. Wide angular field of view for optical access
The very first requirement is the optical access to a nanostructure not only for the
pump fields and Raman-sideband lasers into the GMs but also for complex laser cool-
ing and trapping sequences. This requirement restricts the dimensions of photonic
crystal structures to 1D and 2D slabs. Because of the lack of full 3D PBGs, the
total decay rate Γtotal = Γ1D + Γ′ consists of both the waveguide decay Γ1D and the
homogeneous decay Γ′. While Γ1D is significantly suppressed for large ∆e, majority
of slow-light PhCWs do not have the adequate band structure with F � 1 for small
Lc.

2. Precise matching of the waveguide properties to atomic spectral lines
Our proposed scheme requires the strong coupling between atoms and photons in
waveguide modes while keeping the tight and stable potential formed around indi-
vidual Cesium atoms. The precise tailoring of photonic dispersion is extremely crucial
to match optical properties of the designed waveguide to atomic spectral lines. We
consider the Cesium D2–transition λD2 =852 nm.

3. Sufficient localization of atom-induced cavity
Extremely flat band structure of the GM is required to have the localization length
Lc =

√
1/2me∆e to be comparable with the lattice constant a0. While it is not

necessary to have nearest-neighbor interactions, the atomic collective motion can
experience band-flattening effect due to the long-range tunnelling, hence reducing
the local addressability of the spin-motion coupling.
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4. Stable trapping of atoms in the presence of substantial Casimir-Polder
forces
To form an atomic chain, a stable potential energy must be prepared at each site.
Since they are in the vicinity of the highly refractive dielectric structure, atoms are
expected to experience a substantial Casimir-Polder forces. The designed structure
must incorporate the proper laser cooling and trapping process to form a stable po-
tential. We utilize the far-off-resonant trap (FORT) with the blue-detuned trapping
field at one of the magic wavelengths λtrap =793.5 nm for the Cesium D2–transition.

5. The device must be readily manufacturable.
The standard electron-beam lithography technology can fabricate nanophotonic de-
vices with the accuracy of a few nanometers, which may shift the frequency of pho-
tonic band edge far off from the atomic transition. Also, the fabricated device with
large optical access is suspended in air and hence extremely fragile. Therefore, the
fabrication tolerance must be included during the analysis for the designed structure
and the proper fixture to support the suspended waveguide must be designed.

5.4.2 Design methods

We designed a variation of a slotted PhCW that utilizes PBG of the 2D slab as the
guiding mechanism, as illustrated in Figure 5.5(a) with the design parameters summarized
in Table 5.1. The dispersion is tailored by a line defect introduced to a triangular TE-
PBG slab, where a significant portion of the energy of the GM is localized within the air
slot. We introduce anomalous squircles in the vicinity of the air slots to alter their band
curvatures. The rationale of our dispersion engineering is that the combination of the
lattice constant a0, the hole radius r, and the air slot width ws can tune the locations of
the band edge frequencies with respect to the band gap of the slab, while the additional
squircle geometries defined by the asymmetry a, b cause differential energy shifts between
the z-even bands of opposite x-symmetry. By placing the bands deep into the PBG of the
surrounding slab, we suppress the k-space interval [kc, kl] where the in-plane field profile of
the guided mode is localized by index-guiding near the light cone. The proximal squircle
geometry then flattens the GM across the band-gap guided k–space fraction [kl, k0]. In
addition, the out-of-plane emission Γh is affected by the distance of the squircles to the
slot.

Figure 5.5(b) depicts a functional block diagram of our design workflow. Since there are
multiple requirements that must be simultanously satisfied and the structure parameters
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• Iterative eigenmode solver (MPB)

FDTD solver (Lumerical & MEEP)
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Figure 5.5: The design process for photonic crystal waveguides and UQML-Andromeda
cluster server. (a) The definition of structural parameters for a slotted squircle photonic
crystal waveguide. (b) The workflow of the numerical simulations. (c) A photograph of
our UQML-Andromeda cluster server in November 2017.

are coupled to each other, it is not practical to twick the parameters individually to search
an optimal structure. We applied a gradient descent algorithm for the SqPhCW geometry
n(~r) (design variables) to minimize the objective function Ftotal(n(~r)) with intermittent
thermal excitations to avoid local extrema, as with simulated annealing. The objective
function is expressed as

Ftotal(n(~r)) = Fc + FD2 + Ft,

Fc ∝ |me|−2,

FD2 = |ωb − ωD2 + ∆b|2,
Ft = |ωb − ωt|2,

(5.28)

where Fc is the contribution from the band curvature and FD2(Ft) is the frequency de-
viations of |F = 4〉 → |F ′ = 5〉 transition frequency ωD2 = 2πνD2 (blue-detuned magic-
wavelength frequency ωt = 2πνt) for atomic Cesium from band edges ωb of the respective
modes. During the optimization sequence, the complex band diagram is computed by
open-source software package named MIT photonic bands (MPB) [149] to estimate the
effective mass me and the localization length Lc. After convergence, we switch over to a

178



Table 5.1: Final design variables for the SqPhCW with slab index n=2. The uncertainty
±1 nm is added for the normal distributions of the disordered SqPhCW structure in Fig-
ure 5.5.

Lattice constant a0 (366± 1) nm Slot width w (266± 1) nm
Slab thickness t (200± 1) nm Squircle radius rs (99± 1) nm

Secondary radius r′ (105± 1) nm Hole radius r (109± 1) nm
First line shift l (413± 1) nm Secondary line shift m (729± 1) nm
Squircle height a (79± 1) nm Squircle width b (124± 1) nm

finite structure with device length Ld and apply a combination of filter-diagonalized FDTD
and FDFD methods with the Yee lattice modified to directly optimize the dyadic Green
function G(r, r′;ω) to arrive at the final design variable n(~r) in Table 5.1.

5.4.3 Computational resource: UQML-Andromeda cluster

The three-dimensional and fully vectorial evaluation of Maxwell’s equation is computation-
ally demanding in both time- and frequency-domain. In particular, for PhCWs featuring
ultra-high Q-factor, as the decay rate of electric intracavity fields is extremely small, the
evaluation of Maxwell’s equation in time domain takes very long time. Also, the computa-
tion domain must be meshed with reasonably good spatial resolution in order to capture
delicate patterns and shapes of the PhCW. Therefore, it is highly desirable to parallize the
task to reduce the calculation time.

The parallization must be carefully performed depending on the properties of the com-
putational alogrithm. For example, the MPB calculation may be massively parallized as
solving the eigenmodes at one frequency is independent from the computations at other
frequencies. In contrast, the parallization of the FDTD simulations requires the intercon-
nection between the distributed tasks because the solution from one computational node
depends on the others. Therefore, the parallization for FDTD solvers is often performed
with the message-passing interface (MPI). In addition, the interconnects between the nodes
for FDTD require an infiniband fabric to reduce the latency for the communication.

In order to speed up and systematize our design process at the UQML, we built a cluster
server in heterogeneous achitecture, which we named a UQML-Andromeda cluster, as
shown in Figure 5.5(c). The system mainly consists of one master node and two computing
nodes. As summarized in Table 5.2, the characteristics of the two computing nodes (CN1
and CN2) are different. The CN1 has a higher CPU performance with less number of cores,
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Table 5.2: Specifications of the UQML-Andromeda cluster server used to design and ana-
lyze the nanophotonic structure for the proposed waveguide QED system. Note that this
information is based on the hardware installed in the very initial version of the system
(October 2017). Steve G Weiss provided a fan-mounted server rack.

Acronym Part number Description Task

UPS APC 3000VA Uninterrupted power
supply

Battery back-up for master
node in case of power outage

MN Dell, R910 32 Core 4 X 2.16 GHz
CPU, 128GB RAM
1.2 TB HDD

Master node: user-interface
and distribute the tasks over
compute nodes

CN1 HP ProLiant,
DL580 G7

32 Core Intel E7-4820
CPU, 512GB RAM

Computing node 1: Lumerical
FDTD for the Green functions

NS Mellanox,
MSX6036

56Gb/s full bidirec-
tional bandwidth per
port

Interconnect the compute node
2.

CN2 HP ProLiant,
SL230s Gen8

128 Core 2.20GHz In-
tel E5-2660, 512GB
RAM

Computing node 2: massively
parallelized computation, e.g.,
gradient descent optimization
with MPB and MEEP for
Casimir-Polder forces.

compared to the CN2. The CN2 consists of eight blades of sub-computing nodes that are
linked together by a high-bandwidth network switch (NS) with ethernet cables.

The CN1 was utilized to obtain Green functions for the finite-sized PhCW via Lumerical
FDTD Solutions, whereas the CN2 was focused on the calculation for the photonic band
diagrams and Casimir Polder potential with MPB and MEEP [226], respectively. As for the
Casimir-Polder force, the electric field was calculated at several atomic positions for a unit
cell of the designed PhCW with the Bloch boundary condition to reduce the computational
space. As the evaluation of the electric field at each position is independent from another,
the task was efficiently distributed over the eight nodes of the CN1 without the speed being
limited by the bandwidth of the ethernet cables.
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Table 5.3: Experimental parameters for realizing universal quantum matter and their
energy scale together with the corresponding effective error rates.

Definition Value Comments

gc =
√

ωbd2

2ε0AeffLc
∼ 10 GHz Atom-PhCW interaction

t ≈ η2
l f

2g2
c

∆
∼ 1 MHz Mechanical tunneling,

Requirement: f � 1, fgc � ∆

J
(i,j)
α,β = 2 Re

[
Ω̃

(i)
α,lΩ̃

(i)∗
β,l

∆l

]
∼ 50 kHz Spin-spin interaction,

Requirement: |Ω̃(i)
α,l| � ∆l � |εl±1 − εl|

κ = κ0 + g2
c

∆2 Γ′ ∼ 10 MHz Photon loss

γm ≈ κ
∆
t ∼ 10 Hz Phonon loss

γ ≈ γm
∆l
J (i,j) ∼ 0.1 Hz Spin decoherence

F = t
γm

= ∆(
κ0+

g2c
∆2 Γ′

) > 104 Figure of merit

5.5 Detailed design analysis

In this section, we present the detailed analysis for the designed structure. Starting with
investigating the photonic properties of the designed SqPhCW, we evaluate coherent spin-
spin interaction rate and collective dissipation rate of the localized Cesium atoms. Also, we
describe two trapping schemes and estimate the nearest-neighbor phonon tunneling rate
as well as on-site interaction for each cases. The results estimate the coherent spin-spin
interaction rate ∼50 kHz with the spin decoherence rate ∼0.1 Hz as well as the phonon
loss∼10 Hz, which shows the feasibility of realizing our proposed waveguide QED system
as an analogue universal quantum simulator.

5.5.1 Photonic properties: dispersion relation of the guided modes

The results of dispersion engineering is shown in Figure 5.6(b) for our flat-band silicon
nitride SqPhCW slab, with the effective mass me =2.1 Hz−1 m−2. In the single-band ap-
proximation, the localization length is expected to be Lc ' 2a0 at ∆e =0.4 THz. We
assume that the atom is confined by the blue-detuned magic-wavelength GM trap νt at
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Figure 5.6: Simulation results of optical properties of the designed photonic crystal waveg-
uide. (a) SqPhCW band diagram. The guided modes are depicted as solid lines for both
the excitation νD2 = ωD2/(2π) (red) and trapping modes νt (blue). Through our optimiza-
tion iterations, the guided modes (GM) νD2 and νt are flattened around the Cesium D2–
transition and magic-wavelength trapping frequencies. The GM νt is defined to operate at
the blue-detuned magic-wavelength condition for the D2–transition at λt =793.5 nm. The
grey shaded region indicates the presence of slab modes. (b) Contour intensity map of the
guided modes at νD2 and νt. (c) Effective mode area Aeff. We depict the x-cut contour map
of Aeff for the GM νD2. We anticipate the sub-wavelength localization Aeff/λ

2
D2 ≈0.18 of the

guided field with the effective coupling rate gc ≈11.5 GHz to the trapped Cs atom. The re-
sulting photonic Lamb shift and localization length are ∆1D

Lamb ≈620 MHz and Lc ≈0.77µm
at ∆e =0.4 THz.

λt =793.5 nm (blue line of Figure 5.6(a)) with the intensity represented by blue-coloured
contour map in Figure 5.6(b). The excited states of the trapped atom is modified by the
vacuum of νD2-mode (red line of Figure 5.6(a)) as indicated by the red contour map in
Figure 5.6(b). At the band edge k0 = 0.5, νD2-mode is highly localized with the effective

mode area Aeff ' 0.18λ2
D2. The resulting photonic Lamb shift is ∆1D

Lamb = g2
c

∆e
'620 MHz at

∆e =0.4 THz.

5.5.2 Coherent spin-spin interactions and correlated dissipations

We now turn to the numerical Green function G (ri, rj;ω) of a finite SqPhCW with de-
vice length Ld = 80a0 in Figure 5.7. We evaluate the collective decay and the coherent
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Figure 5.7: Numerical evaluation of coherent spin-exchange coefficients and collective decay
rates in 1D photonic crystal waveguide. (a) Photonic Lamb shift ∆1D

Lamb for electronically
excited states normalized by the free-space decay rate Γvac. The energy shift ∆1D

Lamb of
the excited state |6P3/2, F = 4〉 of Cesium atoms is computed by numerically evaluating
the local scattering Green function Gs(r, r;ω). We also display the photonic Lamb shift
∆1D

Lamb under the single-band approximation as red dashed line. (b) The enhancement and
inhibition of spontaneous emission in dispersive and reactive regimes. The total decay rate
Γtotal is strongly enhanced at the band edge, and is exponentially inhibited in the band
gap with Γtotal ' Γ1D exp(−Ld/Lc), where Γ1D is the enhanced decay rate at the resonance
closest to the band edge. Ld = 80a0 is the device length for lattice constant a0, and Lc
is the localization length. (c) Lamb shift to decay rate ratio ∆1D

Lamb/Γtotal across a wide
detuning range up to ∆e ≈10 THz. Inset. Figure of merit F � 1 (red dashed line). The
grey shaded region indicates the presence of slab modes.
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interaction

Γ
(i,j)
total =

2µ0ω
2
A

~
Im [di

∗G (ri, rj;ω) di] ,

∆
(i,j)
Lamb =

µ0ω
2
A

~
Re [di

∗Gs (ri, rj;ω) di] ,

(5.29)

where the scattering Green function is Gs = G − G0 with respect to the vacuum G0.
More generally, we also define the waveguide Green function Gwg = G −Gh absent the
homogeneous (non-guided) contribution Gh (coupling to the lossy modes beyond the light
cone and to the free-space modes), where the waveguide portion Gwg can be estimated
from a multimode cavity model [15] under a single-band approximation, with the resulting
decay rate

Γ
(i,j)
1D =

2µ0ω
2
A

~
Im [di

∗Gwg (ri, rj;ω) di] (5.30)

into the waveguide GM.

As shown in Figure 5.7, in the dispersive regime [100], the flat band νD2 exhibits extreme
slow-light enhancement of the decay rate with group index ng ≈ 1, 000 near the band edge.
As the atom enters the band gap in the reactive regime ∆e > 0 [121], the waveguide decay
rate Γ1D from Gwg is exponentially suppressed (red dashed line in Figure 5.7(b)), while
the highly asymmetric Fano-like resonance of Gwg around the band edge gives rise to a
photonic Lamb shift ∆1D

Lamb ≈620 MHz that greatly exceeds Γtotal ≈60 MHz (Γ1D ≈4 kHz)
in the band gap with figure of merit F > 104 at ∆e =0.4 THz, indicating significant
coherence fraction in the collective motion relative to the correlated phononic dissipation.
Deep into the band gap ∆e � 0, the reduction of Γtotal is limited by the weakly inhibited
homogeneous decay rate Γ′ ≈ 0.7Γvac that predominantly emits photons out of plane of
the slab.

With the close agreement between the numerical Green function G (black lines) and the
waveguide model Gwg (red dashed lines) in Figure 5.7, we can reliably predict Γ1D from Gwg

and the mechanical loss factor γm from both G and Gwg. Thanks to the large band flatness,
we can operate as close as ∆ =5 THz (∆ ≈10 THz) and attain short-ranged motional
coupling over Lc ≈ 2a0 � Ld, while maintaining inherent figure of merit F ∼ 1010. We
remark that F is defined as the ultimate coherence-to-dissipation ratio for the collective
phonon modes, where we only consider the inherent dissipation of the atomic motions
in the photonic band gap. In practice, our method will be realistically limited by the
phase-noises of Raman sideband lasers and the inhomogeneous hyperfine broadening of
the trapped atoms, as well as various uncontrollable surface forces.
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For disordered photonic structures, we compute the dyadic Green functions with the
Gaussian-random geometric disorder of 1 nm (positions and sizes of holes, thickness of the
waveguide) distributed across the entire nanophotonic waveguide. In a single realization,
the radiative enhancement factor at the band edge may be hindered by Anderson and weak
localization. However, in the reactive regime ∆e > 0, we observe that the decay rate and
the photonic Lamb shift in Figure 5.7, as well as the nonlocal Green function G (ri, rj;ω)
are not significantly modified by the structural disorder of 1 nm (grey dashed lines in
Figure 5.7). Such nanofabrication tolerances have been demonstrated in reference [101,
121]. Because of the nature of the photonic bandgap, the non-radiative atom-field localized
modes are resistant to the degree of structural disorder.

5.5.3 Ground-state potentials and phononic modes

We now turn our attention to the trapping mechanism for the atoms in the SqPhCW. For
simplicity, we first consider a single GM trap that combines the repulsive FORT ĤFORT

of the GM at the blue-detuned magic-wavelength condition λt =793.5 nm (blue line of
Figure 5.6(a)) and the attractive Casimir-Polder (CP) potential ĤCP. The ground-state
adiabatic potential is obtained by diagonalizing Ĥtrap = ĤFORT + ĤCP [132, 165, 169].

ĤFORT is readily computed by the field profile of the trap GM at λt =793.5 nm. ĤCP is
obtained by the method described in Section 5.3.4. As we are only concerned with sub-
wavelength distance scales, we neglect bulk material dispersion. For the excited states,
we additionally include the Lamb shift ∆1D

Lamb in Figure 5.7 associated with the radiative
decay Γ1D.

In Figure 5.8, we show the trap temperature for the ground state |6S1/2〉 of Cesium
atom. Repulsive FORT at the band edge confines the external motion along x-y plane,
while the CP attraction along z-axis localizes the atom towards the center of the SqPhCW.
Due to the tight field localization, we obtain a large trap frequency ωx = 2π × 3.8MHz
along the propagation mode x with Lamb-Dicke parameter η

(x)
0 =0.04 and zero-point motion

x0 = 5nm. Remarkably, due to the extreme trapping confinement along the y-direction,
the trapping frequency is ωy = 2π × 1.9MHz even for a relatively shallow trap depth

60µK. Due to the significant η
(y)
0 =0.50 and y0 = 12nm, we expect the presence of Mott-

insulating phase with strong on-site interaction U0 > t in the phononic Hubbard model.
For z–direction, the trap frequency is ωz = 2π × 197kHz with η

(0)
0 = 0.19 and z0 = 40nm.

With these parameters for the Bose-Hubbard model, we estimate a modest nearest-
neighbor phonon tunneling rate t ' 2π × 1.5kHz and on-site interaction U0 ' 2π × 9kHz.
The tunneling rate is largely limited by the small zero-point motion x0, which cannot be
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Figure 5.8: Adiabatic ground-state potentials of a Cesium atom with a blue-detuned field
in the guided mode. Cesium trapping potential of |6S1/2〉 for (b) x-y plane and (c) y-z plane
with (d) the x-, (e) y-, (f) z-slices. The confinement along z-axis is due to the attractive
Casimir-Polder potential that pulls the atom towards the center of the structure, while
the double peaks are the effect of repulsive FORT potential that protects the atom from
colliding with the surface. We assume that the refracitve index is frequency-independent.

readily improved in a single-beam configuration. In the limit of small total phonon number
〈n〉 � 1, we neglect the effect of the later term into the superfluid phonon dispersion.
However, for large-scale systems N � 10, phonon on-site interaction should be included
with the dispersion of Bogoliubov excitations. We also remark that the preparation of zero-
temperature phonon bath is not necessary, as we virtually populate the phonon dispersion.
For instance, it is possible to operate the Equation 5.3 with close to unity filling, whereby
phonon “holes” can alternatively play the role of phononic excitations.

An improved method, as shown in Figure 5.9, is to confine the atoms in the y-z plane by
two incoherent incoherent side-illumination (SI) beams and localize the x-motion by a weak
guided mode trap at 794 nm. With the SI beams near the blue-detuned magic-wavelength
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Figure 5.9: Adiabatic ground-state potentials for Cesium atom with side-illumination
beams. Cesium trapping potentials of |6S1/2〉 for (b) x-y plane and (c) y-z plane with
(d) the x-, (e) y-, (f) z-slices. We assume that the refractive index of the SqPhCW is
frequency-independent.

λ=687 nm in an optical accordion, we anticipate efficient loading into the GM trap. Because
the SI beam provides additional confinement along z-direction, we can operate the GM trap
away from the band edge at kx = 0.48, thereby reducing the intensity contrast along x-
direction. The result is a shallow 3D FORT with trap frequency ω′x = 2π × 260kHz and
zero-point motion x′0 = 34nm, yielding a maximum tunneling rate t′ ' 2π × 230kHz.

From the numerical non-local Green function G (ri, rj;ω), we observe that the local-

ization length scales with Lc =
√

1/2me∆e and the effective mass me = 2.1Hz−1 m−2 up
to ∆e ≈5 THz. We attribute the deviation of the localization scaling beyond ∆e >5 THz
to the residual Lamb shift by the off-resonant couplings to the other bands and to the
slab modes. Figure 5.10 depicts the local nature of external atom-atom interaction tij =
η2
l f

2∆Lamb(xi, xj) with ηl = x0/Lc relative to the mechanical decoherence γm = η2
l f

2(Γ1D +
|∆Lamb/∆e|2Γ′), where the homogeneous decay rate Γ′ ' 0.7Γvac is weakly inhibited. At
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Figure 5.10: Short-ranged atom-atom interaction in a photonic band gap. We numerically
evaluate the non-local Green function G (ri, rj;ω) for the SqPhCW and obtain the spin-
cooperativity factors for effective detunings ∆e = 0.01, 0.05, 0.14, 0.24, 0.4, 1.6, 10 THz.
Due to the large photon mass me, the atoms experience exponentially localized tunneling
interactions tij/γm � 1 over lengths Lc. The grey shaded regions depict the dissipative
regime with tij < γm, where collective phononic loss dominates over the coherent tunneling
rate. For large ∆e, the ratio tij/γm � 104 is exponentially enhanced at the expense of
reduced values tij ≈ 2π×20 kHz and localized length Lc ≈ 2.5a0 at ∆e ≈10 THz

∆e =0.4 THz, we find tunneling rate t ≈ 2π×230 kHz and localization length Lc =0.77µm
and phonon loss rate γm ≈ 2π×5 Hz. Another possible error source could be recoil heating
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from the trapping beam. Since we work with FORT in blue detuning, the heating rate can
be estimated as γheat ≈ Er(Ωt/δt)

2Γ′/~wt [97], where Ωt and δt are trapping Rabi frequency
and laser-atom detuning respectively, and Er = 4π2~/2mλ2

t is recoil energy. For Cesium
atom and our trapping setup, the heating rate is estimated as γ ≈0.2 Hz� γm, therefore
can be neglected safely.

5.6 Toward experimental demonstration: a cluster UHV

system for waveguide QED with neutral atoms

The realization of quantum spin networks in our waveguide QED system requires a ultra-
high vacuum (UHV) system for cooling and trapping atoms and highly stabilized laser
system to control the motion and internal states of atoms. In this section, we present
our cluster UHV system designed for various experiments in the Waveguide QED lab at
the UQML, including our proposed scheme for universal quantum matter. The designing
process began in November 2016 and completed in May 2017 after multiple iterations. The
cleaning and air-baking was performed in January 2018.

5.6.1 Design considerations

Designing a UHV system generally requires lots of literature reviews and discussions with
experts. This is mainly because vacuum physics is based on a combination of fluid dynamics
with surface physics, and there are a set of cautionary design “rules” [161]. In particular, a
large and cluster UHV system generally requires a set of well-defined goals and requirements
as the system can easily be excessviely complicated and expensive. The goal usually
determines a conceptual design and specify the customized parts as well as long-lead items.
Furthermore, the designer must pay a great attention to every single joints of the UHV
components because one small mistake or missing item would either require a major revision
of the design or delay at least one week to procure the replacement. Prof. Kyung Soo Choi
and my colleague Hyeran Kong shared their experience and insights with me.

We mainly consider two requirements. First, we must prepare a cold and dense atomic
gas trapped in a UHV environment with the ultimate pressure of less than 1× 10−12 torr
where the lifetime of the trapped atoms is estimated to be a few seconds. Preparing a
large number of atoms (N > 109) that are densely trapped in such a low pressure used
to be one of the major challenges for the realization of Bose-Einstein condensate in late
nineties. Nowadays, this issue can readily be addressed in many AMO physics laboratories
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either using the Zeeman slower [235] or preparing the pre-cooled atoms in a separate
high-vacuum chamber, namely “Source Chamber” [192]. Both methods aim to prepare
a slow and regulated atomic beam to the UHV-maintained “Science Chamber”. In the
Rydberg Lab at the UQML, former group members have already designed, analyzed, and
implemented such a chamber with the latter technique (see reference [161] for the developed
system). Here, we applied the same technique for the UHV system in the Waveguide QED
Lab. Secondly, as achieving the UHV condition requires considerable manpower with a
long pumping time, it is highly desirable to include a loadlock system which enables loading
various nanophotonic samples without breaking the vacuum of the Science Chamber. The
loadlock system has been used for various deposition and etching systems in many nano-
fabrication facilities.

In addition to the two major requirements, there are several notable conditions to
facilitate waveguide QED experiments. First, the Science Chamber must provide a spa-
cious room to include UHV-compatible optomechanical setups to inject laser fields into
a nanophotonic sample. We plan to interface PhCWs with standard optical fibers whose
positions are precisely controlled by a UHV-compatible nanopositioner. Also, especially for
stainless steel chambers, the number of viewports and their arrangement must be specified
according to the number of laser beams and their directions for the conceived cooling and
trapping sequences. Furthermore, once a PhCW is loaded in the Science Chamber, the
sample is exposed to dense Cesium gases during experiments. We anticipate that metallic
Cesium atoms are deposited on the dielectric sample and change the photonic properties,
e.g., guided mode frequency. Our solution to this problem is the in-situ plasma cleaning
on the metal-deposited silicon nitride sample which has also recently been investigated in
trapped-ion community [203].

5.6.2 System architecture

As shown in Figure 5.11(a), our cluster UHV system consists of three chambers: Science
Chamber, Source Chamber, and loadlock chambers. Each chamber is supported by three-
point contacted aluminum fixtures and the three chambers are connected by stainless steel
bellows in order to minimize potential mechanical stress caused by the over-constrained
assembly. The separation between the Science Chamber and Source Chamber is made
by a differential pumping tube (not shown in Figure 5.11) which maintains the pressure
difference by two orders of magnitudes. The loadlock chamber is separated by a gate valve
to isolate the pressure of the Science Chamber from outside as it is often exposed to the
atmosphere when the nanophotonic sample is loaded. A 60.2 mm–diameter stainless steel
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Figure 5.11: 3D CAD drawing of a cluster UHV system designed for the Waveguide QED
Lab at the UQML. (a) An overview of the designed system which mainly consists of three
chambers: Science Chamber (red deshed line), Source Chamber (blue deshed line), and
loadlock chamber (green deshed line). The close-up to (b) the loadlock system and (c) the
Source Chamber. See main text for the detailed descriptions.

tube connects the Science Chamber to loadlock chamber, which provides high vacuum con-
ductance for pumps, as discussed later in detail. With the designed architecture, following
is the planned experimental procedure.
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Loading nanophotonic samples

Figure 5.11(b) shows the close-up to the loadlock system. We close the gate valve, vent the
loadlock chamber, and open a viewport to load a sample. Once the sample is mounted on
the magnetic transporter, we seal the chamber with the viewport and then pump it down
by mechanical pumps, i.e., a roughing pump and turbo pump. After the pressure reaches in
a range from 1× 10−6 torr to 1× 10−7 torr, a small ion pump (Ion pump3) further reduces
the pressure to 1× 10−10 torr. Then, the gate valve is opened with the non-evaporable
getter (NEG) pump (inside the Science Chamber) turned off, and we transport the sample
to the docking stage installed inside the Science Chamber. After the sample is secured on
the stage, we close the gate valve, and operate the ion pump (Ion pump1) and NEG pump
to reduce the pressure in the Science Chamber to 1× 10−12 torr.

Preparing ultracold atoms

Figure 5.11(c) shows our Source Chamber. The standard magneto-optical trap (MOT)
method is utilized to continuously prepare the Doppler-limited cold atomic gas inside the
Source Chamber. The three pairs of electromagnet coils are directly mounted on the
chamber in order to reduce the number of windings as well as the amount of current flow.
Then, a weakly focused laser field (Push beam) delivers the atoms at the well-regulated
speed to the Science Chamber where the atoms are re-trapped at the center. The detailed
analysis for choosing the beam size and detuning frequency of the Push beam is provided
in reference [161].

5.6.3 Subsystem description

Science Chamber

Our Science Chamber is a 27 cm–wide and 9.5 cm–thick stainless steel disk-shaped chamber
which is sealed with two 8 inch (20.32 cm) viewports at the top and bottom, ten 2.75 inch
(6.985 cm) viewports on the side, and three 4.5 inch (11.43 cm) flanges for the pumps and
the sample transportation, as shown in Figure 5.12(a). This large chamber was manufac-
tured the company named VMT. The manufacturing process begins with machining two
individual pieces of the main disk-shaped body and the flanges from bulk SS316LN mate-
rials. Then, the two parts are welded from both inside and outside. The entire chamber
was then electro-polished, ultrasound-cleaned, and vacuum-passivated after the leak-test.
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Figure 5.12: 3D CAD drawing of the custom-designed subsystems. (a)–(b) the Science
Chamber with a quantum gas microscope (QGM) and XYZ-fiber positioner installed in it.
A green sphere represents an atomic cloud that is injected from the Source Chamber and
recaptured at the center of the Science Chamber. (c) The docking stage and the sample
transporter. The detailed descriptions for each subsystem are provided in the main text.

The chamber provides the wide angle of optical access to the center as well as the
sufficient room to install various tools for experiments. The delivered atoms from the
Source Chamber are recaptured at the center of the Science Chamber in various optical
configurations. The four of the six MOT beams can simply be injected from the four side
viewports, as depicted in Figure 5.12(a). Or, if one wants to save the side viewports, then
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the four MOT beams could be injected from the top and bottom viewports as the angular
field of view is greater than 90°.

Our sample holder is mounted at the docking stage placed in the line-of-sight from the
loadlock chamber via the grabber grooves. The UHV-compatible XYZ-nanopositioner is
placed next to the sample docking stage in order to selectively couple an optical fiber to
one of the several PhCWs fabricated on a Si3N4 chip. We plan to use a pair of deformable
lenses that are electrically controlled to translate the focal position with the constant spot
size [174]. This allows us to transport the atoms from MOT to the optical dipole potential
which can then be translated from the center of the Science Chamber to the vicinity of a
nanophotonic sample.

As the optimal arrangement of the trapping potential depend on the structures of
the samples, we anticipate to use a quantum gas microscope (QGM) with high numerical
aperture combined with digital micro-mirror device as a holographic amplitude modulator.
Also, we plan to implement a close-loop and real-time rearrangement of the position of the
trapped atoms based on images of the atomic lattice through the QGM. This allows us
to load a defect-free atomic array in a pseudo-deterministic way, as recently demonstrated
with Rydberg atom quantum simulators [43].

Loadlock sample transport and docking stage

The fabricated sample must be precisely and reliably loaded into the Science Chamber.
In addition, since PhCWs are suspended in air by tethers attached to the tapered waveg-
uides [313], mechanical vibrations must be minimized during the loading process. We
developed a mechanism of transporting and docking the sample. Figure 5.12(c) shows
a preliminary design for the sample holder, transporter, and docking stage that may be
refined in consideration with the UHV-compatibility in the future.

A brief description of loading procedure is as follows. The fabricated device is first
mounted on the Teflon sample holder with the top cover fixed by four UHV-compatiable
screws outside the loadlock chamber. The assembled holder is then placed on the sample
transporter which is installed in the loadlock chamber. The transporter has a lever whose
height is adjusted by the rotation of the magnetic transporter shaft (see Figure 5.11(a))
with respect to the L-shaped main body. This means, if the L-shaped body is not fixed
or hold, the rotation of the shaft will freely rotate the whole sample transporter instead of
lifting the lever. Therefore, once the holder is properly placed on the transporter, one must
hold the body by hands and then rotate the shaft to lower the grabbing lever to hold the
sample holder. Once the lever is lowered, the whole transporter stage is freely rotatable,
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and therefore the angular alignment can be manually done when the transporter is close
to the docking stage inside the Science Chamber. The sample holder can be slided into the
docking stage. As this point, we rotate the shaft and lift up the grabbing lever. We can
further secure the sample holder on the docking stage by using screws, which completes the
loading procedure. The unloading procedure is basically the reverse process of the loading
steps.

As briefly mentioned previously, the nanophotonic device may be metalized after its
exposure to the Cesium gas. The designed docking stage includes two monolithic titanium
blades for in-situ plasma cleaning, as shown in Figure 5.12(c). More sophisticated design
analysis will be carried out via finite-element analysis for electric field distribution in the
future.

5.6.4 UHV components preparation

We procured all the components including three chambers, viewports, bellows, flanges,
oxygen-free coppor gaskets, and silver-plated screws, and so on. Most UHV components
are made of SN316LN stainless steel, and the detailed cleaning procedure for this material
is well documented in reference [161]. We performed thorough cleaning of the individual
components in the acetone-filled ultrasound bath, rinsed them with isopropanol, and let
them dried under the Ultra Low Penetration Air (ULPA) filter.

The formation of chromium-oxide layers on surfaces of the individual components is
a necessary step to reach the UHV condition. This is because the chromium-oxide layers
prevent hydrogen atoms from penetrating into the UHV environment [32]. It can be done
by either vacuum-passivation or air-baking process. The manufacturer VMT provided the
vacuum-passivation for the Science Chamber. The chromium-oxide layers appear in the
interior with gold coloured reflective surface, as shown in Figure 5.13(a). As for the other
components, we used our home-made furnace and performed air-baking. Our furnace is
made of firebricks covered by the UHV aluminum foil, as shown in Figure 5.13(b). The
equipment and the baking recipe were developed in the Rydberg Lab [161]. As shown in
Figure 5.13(c) to (f), after the air-baking, we obtained the beautiful gold-coloured compo-
nents with their reflective metal surfaces well preserved.

5.6.5 Brief summary of other experimental activities

In addition to the UHV system, we implemented lasers and control electronics as well as
other prerequisites (e.g., electromagnets and photodetectors) for the Waveguide QED Lab.
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Figure 5.13: Photographs of the UHV components with chromium-oxide layers formed on
the surface. (a) Science Chamber after the vacuum-passivation provided by the manu-
facturer. (b) Home-made furnace for the air-baking process. (c)–(f) The stainless steel
(SS316LN) UHV components after the air-baking process.

The accuracy of manipulating atomic internal state and external motion heavily relies on
lasers’ linewidth and phase noises. The entire laser system must be stable and remote
controlled for long data acquisition and analysis.

We designed and implemented three-layer µ–metal enclosures in order to shield exter-
nal magnetic fields (e.g., Earth magnetic field) for precise spectroscopy with atomic vapour
cells, as shown in Figure 5.14(a). We also constructed and tested low-noise power supplies,
laser control electronics, a three-channel current source for bias coils, and a twelve-channel
acousto-optic modulator (AOM) controller. Circuit diagrams were developed in the Ry-
dberg Lab with the carefully selected electronic components. The mechanical enclosures
were machined from Science Machine shop at the University of Waterloo.

The implementation of electromagnetic coils for MOT requires appropriate materials
for the coil holder. As it typcially requires several amperes of current flow or greater, the
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Figure 5.14: Photographs of hardware implemented at UQML. (a) Five three-layer µ–metal
enclosures. (b) A stable high-current source for bias coils. (c) Four bias coils. (d) Ten
laser control electronics and each of which includes ultra-stable current source, temperature
controller, and frequency-locking module. (e) Eight twenty-channel power supplies. (f) A
twelve-channel AOM controller. (g) Four laminated 30.5× 30.5× 7.62cm3 Corian blocks.

material must exhibit good thermal conductivity and high temperature rating. We found
a promising candidate of machinable thermoceramic named Corian with the high thermal
conductivity ∼1.01 W m−1 K−1 and good temperature rating ∼150°C. One challenge of
using it for MOT coils is that this material is not available in blocks. As it is produced
for kitchen countertops, the manufacturer DuPont only produces sheets. We found two
solutions for this problem. One is to make a block with a stack of the Corian sheets that
are glued together so that when they can be machined with no voids present. The other
is to thermo-form the sheet to make a cylinder part separately for the coil holder. Then,
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the cylinder is glued to the sheet. Both methods would work, but we decided having
blocks, as shown in Figure 5.14(g), given that the thermoforming process for individual
custom-designed parts with a few quantities was relatively costly.

5.7 Chapter summary

The first part of this chapter described a novel waveguide QED system which allows syn-
thesizing universal quantum matter. An array of atoms are coherently driven under the
tailored electromagnetic vacuum, and their correlated photonic Lamb shift generates me-
chanical interaction between the external motional states of atoms. In turn, the Bogoliubov
photons are exploited as a quantum bus for mediating the universal Hamiltonian.

We designed and analyzed a slotted photonic crystal waveguide to support the feasibility
of the proposed waveguide QED system. The systematic designing process and optimiza-
tion yielded a nanophotonic structure tailored to achieve the desired photonic bands for
strong photon-mediated mechanical interactions with extremely low dissipations as well as
the formation of stable trapping potentials. Based on the Green function formalism, we
numerically evaluated the coherent spin-exchange rate between the trapped atoms and the
collective decay rate. Also, we presented two possible methods of trapping atoms near the
photonic crystal waveguide via far-off resonant traps.

Finally, we presented our progress in the experimental demonstration of the hybrid
nanophotonic system with neutral atoms. We designed a cluster UHV system with the
detailed plan for experimental procedures. Our UHV system is designed to incorporate
a standard loadlock mechanism with the continuous loading of pre-cooled atoms. Our
preliminary design of the UHV-compatible sample transporter and docking stage described
a full sequence of experimental procedure to load and unload nanophotonic samples. We
summarized the preparation of some of equipment to turn our Waveguide QED Lab into
a functional AOM laboratory.

198



Chapter 6

Conclusion and outlook

6.1 Conclusion

The work presented in this thesis demonstrates several advances towards satellite-assisted
quantum networks. We discussed the development of three devices, i.e., polarization-
entangled photon sources, photon transceivers, and quantum frequency transducers, specif-
ically designed to support the QEYSSat mission. We also described theoretical investiga-
tions and experimental progress to realize a fully programmable spin-network as a device
for quantum nodes which interface photonic quantum channels with matter qubits and
process quantum information.

In Chapter 2, polarization-entangled photon sources were developed to enable con-
current entanglement distributions where one photon is compatiable with ground-based
fiber-optic networks while the other photon is compatible with ground-to-satellite free-
space channels. We showed a novel beam-displacement Sagnac-interferometer which is the
first design to allow using various optical nonlinear media without customizing (and hard
to manufacture) polarization optics. Also, the direct generation of entangled photon-pairs
from optical fibers via dual-pump four-wave mixing was analyzed to show the feasibility
of experimental demonstrations. These research outcomes contribute to practical imple-
mentations of polarization-entangled photon sources and to improving the stability of the
sources.

In Chapter 3, two dedicated characterization platforms were developed for assessments
of aberrations and polarization effects of large scale optical components used for satellite
quantum communications, including lenses and telesocpes. Our new aberration test system
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for lenses, reflective or refractive telescopes can perform the wavefront measurement at
a precision which is an order of magnitude better than conventional Shack-Hartmann
wavefront sensors. Also, we built a unique robotized polarization-test system which allows
analyzing polarization states at desired positions and angles, which enables characterizing a
variety of optical components at consistent precision. Both measurement systems produced
test results which closely matched results from theoretical models. Two telescopes and their
primary elements, e.g., the 20.3 cm achromatic doublet and the curved primary mirror, were
tested to show the fitness of optical transceivers in the QEYSSat mission.

In Chapter 4, an optical microring resonator was designed and numerically simulated
for quantum frequency translations, with the goal to interface quantum-dot-based photon
emitters with ground-to-satellite quantum links in the QEYSSat mission. The designed
device is predicted to tranlsate the wavelength from 985 nm to 785 nm with the conversion
efficiency of 80 % including the 0.05 dB cm−1 propagation loss at the single-pump powers
of 15 mW. The potential integrability of the designed ring resonators with quantum-dot-
based photon emitters provides the first step toward performing single-photon quantum
key distributions with satellites. As an alternative approach a photonic-crystal fiber system
was studied and experimental data was generated to show that the desired phase-matching
conditions indeed exist.

In Chapter 5, a many-body waveguide QED system was developed with an array of
atoms trapped in the vicinity of a photonic crystal waveguide. We proposed a novel
scheme to simulate universal Hamiltonians by utilizing strong interactions between atoms
and the guided photons under vacuum of the nanophotonic structure. The correlated mo-
tions of atoms, which arises from a strong photonic Lamb shift, can mediate an arbitrary
SU(2) spin-spin interactions between any sites of atoms. The interactions can then be
programmed by the Raman sideband engineering, thereby constructing a universal and
analogue quantum simulator. We designed a slotted photonic crystal waveguide to realize
the proposed many-body QED system. The spin-spin interactions and collective dissi-
pations of the Cesium atoms were numerically computed to show strong and long-live
coherent dynamics over the dissipations. We also showed two different approaches to form
stable trapping potentials of atoms in the vicinity of the dielectric. We presented our
experimental progresses toward the realization of the proposed scheme.

The work in this thesis covered a wide range of theories of light from classical linear
and nonlinear optics to advanced quantum optics with dielectrics. Our polarimeters in
Chapter 3 were modeled in a Mueller matrix formalism based on classical fields interacting
with linear optical media. The theory of quantum frequency translations was formulated
from classical nonlinear optics in Chapter 4. The coupling between discretized cavity
modes and continuous waveguide modes was treated in a purterbative approach, and the
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system dynamics was described by a mean-field theory of driven-dissipative open quantum
system. The generation of entangled photon pairs in Chapter 2 was described in standard
quantum optics theory with the electromagnetic vacuum as a resource of creating photons.
In Chapter 5, the vacuum was a medium engineered by quantum and classical dielectrics.
Atoms dressed by photonic fields under the modified vacuum formed a nanoscopic quantum
network, and the system dynamics was fully described by driven-dissipative open quantum
systems based on the Green function formalism. Various numerical techniques based on
the forementioned physical theories were developed to analyze various components in the
devices presented in this thesis. We share several source codes in the appendices and the
UQML Github https://github.com/Quantum-Matter-and-Light/waveguideQEDcodes.

The work presented in this thesis has been publicised as follows:

1. Youn Seok Lee, Mengyu Xie, Ramy Tannous, and Thomas Jennewein. Sagnac-type
entangled photon source using only conventional polarization optics. Quantum Sci.
Technol., 6 025004 (2021) [308]

2. Mengyu Xie, Youn Seok Lee, Ramy Tannous, Guilu Long, and Thomas Jennewein.
Roles of fiber birefringence and Raman scattering in spontaneous four-wave mixing
process through birefringent fiber. Opt. Express 29(20), 31348-31363 (2021) [171]

3. Youn Seok Lee, Kimia Mohammadi, and Thomas Jennewein. Practical wavefront
measurement with scanning pentaprism for optical terminals in free-space quantum
communication. In preparation

4. Youn Seok Lee, Kimia Mohammadi, Lindsay Babcock, Brendon Higgins, Hugh Pod-
more, and Thomas Jennewein. Robotized polarization characterization platform for
free-space quantum communications. arXiv:2109.01984 (2021) [170]

5. Hugh Podmore, Ian D’Souza, Jeffrey Cain, Thomas Jennewein, Brendon Higgins,
Youn Seok Lee, Alex Koujelev, Danya Hudson, Ashley McColgan. QKD Terminal
for Canada’s Quantum Encryption and Science Satellite (QEYSSat). Proc. SPIE
11851, International Conference on Space Optics — ICSO 2020, 118520H (2021) [237]

6. Ying Dong, Jacob Taylor, Youn Seok Lee, Hyeran Kong, and Kyung Soo Choi.
Waveguide QED toolboxes for universal quantum matter. arXiv:1712.02020v4 (2021) [76]
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6.2 Outlook

6.2.1 Polarization-entangled photon sources

Development of entangled photon sources for the QEYSSat mission

Section 2.4 presented the conceptual baseline of a polarization-entangled photon source
suitable for the QEYSSat mission, and currently a new source is under construction. This
new source will be mainly focused on the generation of entangled photon-pairs, namely
signal and idler, with the brightness greater than 100 MHz and fiber-coupling efficiency
above 90 %. We fully expect that the signal photons at 790 nm are sent to the satellite and
the idlers at 1552 nm are measured on the ground to perform quantum key distributions
between ground and space. The development of such ultra-bright, narrow-band, and low-
noise sources of entangled photons is technically challenging. In Section 2.4, we mainly
discussed optimizing the experimental parameters to achieve the high brightness and fiber-
coupling efficiency.

Another important consideration is the photon detections on the ground. Assuming
that the photons on the ground do not experience high losses, the photon detection and
the data acquisition must be performed at a similar rate to the production. This requires
single-photon detectors that are capable of detecting the idlers at the 100 MHz detection
rate without being saturated. Also, the time of arrival must be recorded by a high-speed
time tagger, which is then efficiently stored in a computer for the post-processing. In
the Quantum Photonics Laboratory (QPL) group, we recently acquired a six-channel su-
perconducting nanowire single-photon detector whose maximum photon-detection rate of
each channel is greater than 20 MHz. The distribution of the idlers over the six channels
can reduce the overhead of high-rate photon detection at each channel. This multiplexed
detection scheme can be further used to perform reference-frame-independent quantum
key distributions, namely 6-4 state protocol, where the polarization states of the idler
is fully characterized by the measurements with six tomographically complete polariza-
tion states [281]. Our group also acquired a high-speed time-tagging system which has a
15.625 ps timing resolution with 64 independent input channels. Data transfer to the host
computer is via external-PCI-express interface, enabling a high-speed data transfer up to a
total of 800 MHz continous events for all inputs combined. The complete entangled photon
source will be installed in the QEYSSat Science Operating Center located at University of
Waterloo.
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Polarization-entangled photon-triplets via third-order parametric down con-
versions

Our beam-displacement Sagnac-type entangled photon source can be adapted for various
optical media at a wide range of wavelengths. The direct production of photon triplets has
been known for an interesting subject owing to its non-Gaussianity of the generated fields
which is in general a resource of photonic universal quantum computing [112]. So far, pho-
ton triplets at optical frequencies have been realized only by cascaded second-order para-
metric down conversion processes [128]. Its direct generation via third-order parametric
down-conversion has been a long-standing goal, and several fiber media have been proposed
as promising cadidates [54]. By placing a photon-triplet source in the Sagnac-loop, one
can produce polarization-entangled photon triplets such as Greenberger–Horne–Zeilinger
state. Interestingly, when the third-order nonlinear process is fully seeded by lasers, gen-
uine tripartite continuous-variable entanglement is generated, which appears to be robust
to photon losses [103].

6.2.2 Characterization of optical terminals and optical compo-
nents for satellite quantum communications

We demonstrated two unique instruments for characterization of polarization and wavefront
aberration of large optical systems. Our characterization systems can be further upgraded
in the future. For instance, The precision of our imaging polarimeter is mainly limited by
the dynamic range and noise of the camera being used. This is indicated by the interquartile
range of the measured QBERs that are greater than the median values. Also, note that
the linearity of the camera’s exposure time showed uncertainty from 0.1 % to 1.6 %. Since
our AOI measurements verified the reliable control of the position and orientation of the
polarimeter, the replacement of the camera with two photomultiplier-tube (PMT) modules
may be considered in future to improve polarization measurement precision [22].

In the near future, we will upgrade our aberration characterization system by extending
our linear measurement setup to two-dimensional measurement of wavefronts, which may
identify correctable aberrations such as coma aberration. The two-dimensional topography
of optical surfaces has been obtained in scanning pentaprism deflectometries [275, 10, 245].
One could perform additional linear measurements in different scanning directions, and
reconstruct wavefronts using similar methods. For example, wavefronts can be expanded
in terms of Zernike polynomials, and its gradient in the scanning directions can be fit to the
measured slopes via a least-squares method, as discussed in [245]. Also, the measurement
precision may be further improved by more precise alignment of the pentaprism. The
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quadratic response of centroid position shifts caused by the pentaprism rotation around
the scanning direction can be minimized by the alignment of the pentaprism to the normal
incident angle. This can be experimentally tested by centroid position measurements as
a function of pentaprism rotation angles in both scanning and cross-scanning directions.
The detailed description of the test method is provided in [95].

The two characterization systems will continue to support the development of optical
terminals in the QEYSSat mission. Kimia Mohammadi in the QPL is currently responsible
for developing a fine-pointing module, and the assembly of the quantum optical transmitter
will be characterized in terms of aberrations and polarizations. Also, our industry partner,
Honeywell Canada Aerospace, recently reported the development of the optical terminal
for the receiver to be placed at the satellite [237]. The quantum link between the two
systems will be tested before launching the QETSSat satellite, currently expected in late
2022.

6.2.3 Integration of silicon nitride nanophotonic devices with
quantum-dot photon emitters

One challenge of using quantum-dot-based photon emitters for quantum communication
tasks is to alter polarizations and frequencies of the emitted photons at high repetition
rates. Our numerical designing and analysis tools can be utilized to develop on-chip quan-
tum light sources emitting photons with structured characteristics. For example, wave-
length superposition states of single photons can be generated by frequency translation
processes in the ring resonators. Also, one could enhance photon emission rates with time-
multiplexed pump pulses by embedding multiple quantum emitters. Moreover, as recently
demonstrated by Loredo et al. [188], the photon number states could be selectively pop-
ulated or even superposed by transferring coherence of pump fields to multiple quantum
dot sources.

The integration of the silicon nitride ring resonators with quantum-dot photon emitters
requires a technological capability of operating the device in a cryogenic temperature. The
optical properties of silicon nitride films must be characterized in low temperatures. The
characterization results will then be used to design ring resonators or other devices to
perform the desired quantum optical tasks. Recently, Kartik Srinivasan’s group at the
National Institute of Standards and Technology demonstrated soliton frequency combs at
cryogenic temperatures using a silicon nitride miroring resonator [215]. Their measurement
was performed at around 10 K and showed a thermorefractive coefficient two orders of
magnitude smaller than the room-temperature value, which leads to the strong suppression
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of optical frequency fluctuations. Also, it was shown that the Lugiato-Lefever equation with
a simple thermal model reproduces their experimental results. In the future, our numerical
solver for the generalized nonlinear Schrödinger equation with the Ikeda map could be
incorporated with the thermal model to further support the design of ring resonators at
cryogenic temperatures.

6.2.4 Interfacing quantum matter with satellite quantum com-
munication links

Our quantum frequency transducers and our analogue quantum simulator can be integrated
on a silicon nitride chip. The D1–transition frequency of Cesium atoms (λD1 =894 nm) can
be translated to the wavelength for free-space quantum channels (λD1 =785 nm). Then,
two or more quantum matter at distant locations, each of which can be arbitrarily designed
at local, can be efficiently linked and potentially entangled by free-space channels. One
interesting experiment would be the investigation of entanglement between two quantum
matter, one of which is placed in an orbiting satellite. According to the discussions in
reference [44], it is expected that the entanglement is degraded due to the change of the
gravitational field. If so, one might ask a question “can we find and realize quantum states
of matter that can protect nonlocal correlations from gravity-induced decoherence?”. This
question is just a speculation, and future experiments may provide the answers.

The large-scale quantum network with long-range links and the small-scale spin network
with complex connectivity will continue to be pursued and involve many different physical
realizations. The research and results demonstrated in this thesis will provide important
steps towards this long-term vision of a global quantum network for both scientific advances
and practical applications.
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Monat, Xavier Letartre, Minhao Pu, Leif Katsuo Oxenløwe, Kresten Yvind, and
Corrado Sciancalepore. Annealing-free si3n4 frequency combs for monolithic inte-
gration with si photonics. Applied Physics Letters, 113(8):081102, 2018.

[84] P. G. Evans, R. S. Bennink, W. P. Grice, T. S. Humble, and J. Schaake. Bright
source of spectrally uncorrelated polarization-entangled photons with nearly single-
mode emission. Phys. Rev. Lett., 105:253601, Dec 2010.

[85] J. Fan, M. D. Eisaman, and A. Migdall. Bright phase-stable broadband fiber-based
source of polarization-entangled photon pairs. Phys. Rev. A, 76:043836, Oct 2007.

[86] Bin Fang, Offir Cohen, and Virginia O. Lorenz. Polarization-entangled photon-pair
generation in commercial-grade polarization-maintaining fiber. J. Opt. Soc. Am. B,
31(2):277–281, Feb 2014.

[87] U. Fano. Atomic theory of electromagnetic interactions in dense materials. Phys.
Rev., 103:1202–1218, Sep 1956.

[88] Alessandro Farsi. Coherent Manipulation Of Light In The Classical And Quantum
Regimes Via Four-Wave Mixing Bragg Scattering. PhD thesis, Cornell University,
2015.

[89] Matthias Fink, Ana Rodriguez-Aramendia, Johannes Handsteiner, Abdul Ziarkash,
Fabian Steinlechner, Thomas Scheidl, Ivette Fuentes, Jacques Pienaar, Timothy C.
Ralph, and Rupert Ursin. Experimental test of photonic entanglement in accelerated
reference frames. Nature Communications, 8(1):15304, May 2017.

214



[90] Marco Fiorentino and Raymond G. Beausoleil. Compact sources of polarization-
entangled photons. Opt. Express, 16(24):20149–20156, Nov 2008.

[91] Marco Fiorentino, Gaétan Messin, Christopher E. Kuklewicz, Franco N. C. Wong,
and Jeffrey H. Shapiro. Generation of ultrabright tunable polarization entanglement
without spatial, spectral, or temporal constraints. Phys. Rev. A, 69:041801, Apr
2004.

[92] Craig R. Forest, Claude R. Canizares, Daniel R. Neal, Michael McGuirk, and
Mark Lee Schattenburg. Metrology of thin transparent optics using Shack-Hartmann
wavefront sensing. Optical Engineering, 43(3):742 – 753, 2004.

[93] Yunfei Fu, Tong Ye, Weijie Tang, and Tao Chu. Efficient adiabatic silicon-on-
insulator waveguide taper. Photon. Res., 2(3):A41–A44, Jun 2014.

[94] Jérémie Fulconis, Olivier Alibart, Jeremy L. O’Brien, William J. Wadsworth, and
John G. Rarity. Nonclassical interference and entanglement generation using a pho-
tonic crystal fiber pair photon source. Phys. Rev. Lett., 99:120501, Sep 2007.

[95] Ralf D Geckeler. Optimal use of pentaprisms in highly accurate deflectometric scan-
ning. Measurement Science and Technology, 18(1):115–125, nov 2006.

[96] Ralf D. Geckeler and Ingolf Weingaertner. Sub-nm topography measurement by de-
flectometry: flatness standard and wafer nanotopography. In Angela Duparré and
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[160] P. Kómár, E. M. Kessler, M. Bishof, L. Jiang, A. S. Sørensen, J. Ye, and M. D.
Lukin. A quantum network of clocks. Nature Physics, 10(8):582–587, Aug 2014.

[161] Kong, Hyeran. Towards many-body physics with rydberg-dressed cavity polaritons.
Master’s thesis, 2018.

[162] Prem Kumar. Quantum frequency conversion. Opt. Lett., 15(24):1476–1478, Dec
1990.

[163] Gershon Kurizki. Two-atom resonant radiative coupling in photonic band structures.
Phys. Rev. A, 42:2915–2924, Sep 1990.

[164] Paul G. Kwiat, Edo Waks, Andrew G. White, Ian Appelbaum, and Philippe H. Eber-
hard. Ultrabright source of polarization-entangled photons. Phys. Rev. A, 60:R773–
R776, Aug 1999.
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and P. Senellart. Generation of non-classical light in a photon-number superposition.
Nature Photonics, 13(11):803–808, Nov 2019.

[189] Rodney. Loudon. The quantum theory of light / Rodney Loudon. Clarendon Press
Oxford, 1973.

[190] J.D. Love. Tapered single-mode fibres and devices. part 1: Adiabaticity criteria. IEE
Proceedings J (Optoelectronics), 138:343–354(11), October 1991.

224



[191] Xiyuan Lu, Gregory Moille, Ashutosh Rao, and Kartik Srinivasan. Proposal for
noise-free visible-telecom quantum frequency conversion through third-order sum and
difference frequency generation. Opt. Lett., 46(2):222–225, Jan 2021.

[192] Z. T. Lu, K. L. Corwin, M. J. Renn, M. H. Anderson, E. A. Cornell, and C. E.
Wieman. Low-velocity intense source of atoms from a magneto-optical trap. Phys.
Rev. Lett., 77:3331–3334, Oct 1996.

[193] L. A. Lugiato and R. Lefever. Spatial dissipative structures in passive optical systems.
Phys. Rev. Lett., 58:2209–2211, May 1987.

[194] K. Luke, Y. Okawach, M.-R.-E. Lamont, A.-L. Gaeta, and M. Lipson. Broadband
mid-infrared frequency comb generation in a si3n4 microresonator. Optics Letters,
40:4823–4826, 2015.

[195] Fei Ma, Long-Yue Liang, Jiu-Peng Chen, Yang Gao, Ming-Yang Zheng, Xiu-Ping Xie,
Hong Liu, Qiang Zhang, and Jian-Wei Pan. Upconversion single-photon detectors
based on integrated periodically poled lithium niobate waveguides. J. Opt. Soc. Am.
B, 35(9):2096–2101, Sep 2018.

[196] Xiongfeng Ma, Chi-Hang Fred Fung, and Hoi-Kwong Lo. Quantum key distribution
with entangled photon sources. Phys. Rev. A, 76:012307, Jul 2007.

[197] S. Machida, J. Sakai, and T. Kimura. Polarisation conservation in single-mode fibres.
Electronics Letters, 17(14):494–495, 1981.

[198] I.-H. Malitson. Interspecimen comperison of the refracitve index of fused silica.
Journal of the optical society of america, 55:1205–1209, 1965.

[199] P.-V. Mamyshev and S.-V. Chernikov. Ultrashort-pulse propagation in optical fibers.
Optics Letter, 15:1076–1078, 1990.

[200] D. Marcuse, American Telephone, and Telegraph Company. Theory of Dielectric
Optical Waveguides. OPTICS AND PHOTONICS SERIES. Academic Press, 1991.

[201] Nicolas Maring, Pau Farrera, Kutlu Kutluer, Margherita Mazzera, Georg Heinze,
and Hugues de Riedmatten. Photonic quantum state transfer between a cold atomic
gas and a crystal. Nature, 551(7681):485–488, Nov 2017.

[202] Nicolas Maring, Dario Lago-Rivera, Andreas Lenhard, Georg Heinze, and Hugues
de Riedmatten. Quantum frequency conversion of memory-compatible single photons
from 606 to the telecom c-band. Optica, 5(5):507–513, May 2018.

225



[203] Robert McConnell, Colin Bruzewicz, John Chiaverini, and Jeremy Sage. Reduction
of trapped-ion anomalous heating by in situ surface plasma cleaning. Phys. Rev. A,
92:020302, Aug 2015.

[204] C. J. McKinstrie, J. D. Harvey, S. Radic, and M. G. Raymer. Translation of quantum
states by four-wave mixing in fibers. Opt. Express, 13(22):9131–9142, Oct 2005.

[205] Kevin M. McPeak, Sriharsha V. Jayanti, Stephan J. P. Kress, Stefan Meyer, Stelio
Iotti, Aurelio Rossinelli, and David J. Norris. Plasmonic films can easily be better:
Rules and recipes. ACS Photonics, 2(3):326–333, Mar 2015.

[206] C. Menyuk. Nonlinear pulse propagation in birefringent optical fibers. IEEE Journal
of Quantum Electronics, 23(2):174–176, 1987.

[207] Evan Meyer-Scott, Nidhin Prasannan, Christof Eigner, Viktor Quiring, John M.
Donohue, Sonja Barkhofen, and Christine Silberhorn. High-performance source of
spectrally pure, polarization entangled photon pairs based on hybrid integrated-bulk
optics. Opt. Express, 26(25):32475–32490, Dec 2018.

[208] Evan Meyer-Scott, Vincent Roy, Jean-Philippe Bourgoin, Brendon L. Higgins, Lyn-
den K. Shalm, and Thomas Jennewein. Generating polarization-entangled photon
pairs using cross-spliced birefringent fibers. Opt. Express, 21(5):6205–6212, Mar 2013.
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Sven Höfling, John Lawall, Varun Verma, Richard Mirin, Sae Woo Nam, Jin Liu, and
Kartik Srinivasan. Quantum frequency conversion of a quantum dot single-photon
source on a nanophotonic chip. Optica, 6(5):563–569, May 2019.

[266] Alicia Sit, Frédéric Bouchard, Robert Fickler, Jérémie Gagnon-Bischoff, Hugo
Larocque, Khabat Heshami, Dominique Elser, Christian Peuntinger, Kevin
Günthner, Bettina Heim, Christoph Marquardt, Gerd Leuchs, Robert W. Boyd, and
Ebrahim Karimi. High-dimensional intracity quantum cryptography with structured
photons. Optica, 4(9):1006–1010, Sep 2017.

[267] James D. Siverns, John Hannegan, and Qudsia Quraishi. Neutral-atom wavelength-
compatible 780 nm single photons from a trapped ion via quantum frequency con-
version. Phys. Rev. Applied, 11:014044, Jan 2019.

[268] Slaman, Sebstian. Understanding polarization distortions for real-world quantum
key distribution. Master’s thesis, 2020.

[269] Brian J. Smith, P. Mahou, Offir Cohen, J. S. Lundeen, and I. A. Walmsley. Photon
pair generation in birefringent optical fibers. Opt. Express, 17(26):23589–23602, Dec
2009.

[270] A.W. Snyder and J. Love. Optical Waveguide Theory. Springer US, 2012.

[271] Mohammad Soltani. Novel integrated silicon nanophotonic structures using ultra-high
Q resonators. PhD thesis, Georgia Institute of Technology, 12 2009.

[272] W.H. Southwell. Wave-front estimation from wave-front slope measurements. J. Opt.
Soc. Am., 70(8):998–1006, Aug 1980.

[273] Fabian Steinlechner, Pavel Trojek, Marc Jofre, Henning Weier, Daniel Perez, Thomas
Jennewein, Rupert Ursin, John Rarity, Morgan W. Mitchell, Juan P. Torres, Harald
Weinfurter, and Valerio Pruneri. A high-brightness source of polarization-entangled
photons optimized for applications in free space. Opt. Express, 20(9):9640–9649, Apr
2012.

[274] Terence E. Stuart, Joshua A. Slater, Félix Bussières, and Wolfgang Tittel. Flexible
source of nondegenerate entangled photons based on a two-crystal sagnac interfer-
ometer. Phys. Rev. A, 88:012301, Jul 2013.

233



[275] P. Su, J. H. Burge, B. Cuerden, J. Sasian, and H. M. Martin. Scanning pentaprism
measurements of off-axis aspherics. Frontiers in Optics 2008/Laser Science XXIV/-
Plasmonics and Metamaterials/Optical Fabrication and Testing, page JWD7, 2008.

[276] Bogdan Szafraniec, Bernd Nebendahl, and Todd Marshall. Polarization demultiplex-
ing in stokes space. Opt. Express, 18(17):17928–17939, Aug 2010.

[277] Masao Takamoto, Feng-Lei Hong, Ryoichi Higashi, and Hidetoshi Katori. An optical
lattice clock. Nature, 435(7040):321–324, May 2005.

[278] Kazuya Takemoto, Yoshihiro Nambu, Toshiyuki Miyazawa, Kentaro Wakui, Shinichi
Hirose, Tatsuya Usuki, Motomu Takatsu, Naoki Yokoyama, Ken'ichiro Yoshino, Aki-
hisa Tomita, Shinichi Yorozu, Yoshiki Sakuma, and Yasuhiko Arakawa. Transmission
experiment of quantum keys over 50 km using high-performance quantum-dot single-
photon source at 1.5 µm wavelength. Applied Physics Express, 3(9):092802, sep 2010.

[279] Takuo Tanemura, Kazuhiro Katoh, and Kazuro Kikuchi. Polarization-insensitive
asymmetric four-wave mixing using circularly polarized pumps in a twisted fiber.
Opt. Express, 13(19):7497–7505, Sep 2005.

[280] Zhongkan Tang, Rakhitha Chandrasekara, Yue Chuan Tan, Cliff Cheng, Kadir Du-
rak, and Alexander Ling. The photon pair source that survived a rocket explosion.
Scientific Reports, 6(1):25603, May 2016.

[281] Ramy Tannous, Zhangdong Ye, Jeongwan Jin, Katanya B. Kuntz, Norbert
Lütkenhaus, and Thomas Jennewein. Demonstration of a 6 state-4 state reference
frame independent channel for quantum key distribution. Applied Physics Letters,
115(21):211103, 2019.

[282] J. D. Thompson, T. G. Tiecke, N. P. de Leon, J. Feist, A. V. Akimov, M. Gullans,
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Appendix A

Material refractive indices

Periodically poled lithium niobate (PPLN)

Sellmeier equation used for the PPLN crystal in Section 2.4 is from the reference [151]

n2
e = 5.756 + 2.860× 10−6f

+
(0.0983 + 4.700× 10−8f)

λ2 − (0.2020 + 6.113× 10−8f)2 +
(189.32 + 1.516× 10−4f)

λ2 − 12.52f 2
− 1.32× 10−2λ2

n2
o = 5.653 + 7.941× 10−7f

+
(0.1185 + 3.134× 10−8f)

λ2 − (0.2091− 4.6413× 10−9f)2 +
(89.61− 2.188× 10−6f)

λ2 − 10.852
+ 1.97× 10−2λ2,

(A.1)

with f = (T − 24.5)× (T + 570.82). The thermal expansion of the crystal is described by

L = L0 ×
(
1 + α(T − 25) + β(T − 25)2

)
, (A.2)

where L0 is the crystal length at 25°C with α = 1.54× 10−5 and β = 5.3× 10−9.

Silicon nitride

Sellmeier equation used for the Si3N4 ring resonator in Chapter 4 is from the reference [194].

n2
SiN = 1 +

3.0249λ2

λ2 − 135.34062
+

40314λ2

λ2 − 12398422
(A.3)
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Silicon dioxide

Sellmeier equation used for the SiO2 buffer layer of the ring resonator in Chapter 4 is from
the reference [198].

n2
SiO2

= 1 +
0.6961663λ2

λ2 − 0.06840432
+

0.4079426λ2

λ2 − 0.11624142
+

0.8974794λ2

λ2 − 9.8961612
(A.4)
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Appendix B

C code: coupled nonlinear
Schrödinger equation via
fourth-order Runge-Kutta
interaction picture method

1 /*

2 2020 Nov.

3 Youn Seok Lee , University of Waterloo.

4
5 Matlab Mexfunction

6 [UoutfH ,UoutfV] = mex_CNLSE_RK4IP(UinfH ,UinfV ,dz,alpha ,beta ,gamma ,Bbeta ,Bvec ,N_roundtrip)

7 :Solve Coupled Nonlinear Schrodinger Equations.

8
9 INPUT:

10 U0H (double array [N X 2]): pumps/signal/idler power in frequency domain

11 U0V (double array [N X 2]): pumps/signal/idler power in frequency domain

12 dz (double scaler [1 X 1]): roundtrip length of ring cavity

13 alpha (double scaler [1 X 1]): material propagation loss

14 beta (double array [N X 1]): propagation constant of ring cavity

15 gamma (double array [N X 1]): nonlinear coefficient

16 Bbeta (double array [N X M]): fiber birefringence , N: number of frequency grid , M: number

of waveplates

17 Btheta (double array [1 X M]): waveplate orientation/angle

18 Nt (int scaler [1 X 1]): number of iterations

19
20 OUTPUT:

21 U_hatH (complex array [N X 2]): electric field spectrum at pass port

22 U_hatV (complex array [N X 2]): electric field spectrum inside cavity

23 */

24
25 #include stdlib.h

26 #include stdio.h
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27 #include math.h

28 #include fftw3.h

29 #include mex.h

30
31 /* Macros for real and imaginary parts */

32 #define REAL 0

33 #define IMAG 1

34
35 /* Function declaration */

36 void mexFunction(int nlhs , mxArray *plhs[], int nrhs , const mxArray *prhs []);

37 void doublevector2complexarray(double *in , double out[][2], int array_length);

38 void complexarray2doublevector(double in[][2], double *out , int array_length);

39 void run_RK4IP(double *UinfH , double *UinfV , double length , double alpha , double *beta ,

double *gamma , double *Bbeta , double *Btheta , int N_roundtrip , int M_plate , int N_freq

, double *UoutfH_RE , double *UoutfH_IM , double *UoutfV_RE , double *UoutfV_IM);

40
41 /* -------------------------------*/

42 /****** MATLAB MEX GATEWAY ****** */

43 /* -------------------------------*/

44 void mexFunction(int nlhs , mxArray *plhs[], int nrhs , const mxArray *prhs [])

45 {

46 /* input parameters */

47 double *UinfH;

48 double *UinfV;

49 double dz;

50 double alpha;

51 double *beta;

52 double *gamma;

53 double *Bbeta;

54 double *Btheta;

55 int N_roundtrip;

56 mwSize M_plate;

57 mwSize N_freq;

58
59 UinfH = mxGetPr(prhs [0]); /* complex array: double [N X 2] */

60 UinfV = mxGetPr(prhs [1]); /* complex array: double [N X 2] */

61 dz = *mxGetPr(prhs [2]); /* scalar */

62 alpha = *mxGetPr(prhs [3]); /* scalar */

63 beta = mxGetPr(prhs [4]); /* real array: double [N X 1] */

64 gamma = mxGetPr(prhs [5]); /* real array: double [N X 1] */

65 Bbeta = mxGetPr(prhs [6]); /* real array: double [N X M] */

66 Btheta = mxGetPr(prhs [7]); /* real array: double [1 X M] */

67 N_roundtrip = *mxGetPr(prhs [8]); /* scalar */

68
69 M_plate = mxGetM(prhs [7]);

70 N_freq = mxGetM(prhs [0]);

71
72 plhs [0] = mxCreateDoubleMatrix(N_freq , N_roundtrip , mxREAL);

73 plhs [1] = mxCreateDoubleMatrix(N_freq , N_roundtrip , mxREAL);

74 plhs [2] = mxCreateDoubleMatrix(N_freq , N_roundtrip , mxREAL);

75 plhs [3] = mxCreateDoubleMatrix(N_freq , N_roundtrip , mxREAL);

76
77 run_RK4IP(UinfH , UinfV , dz , alpha , beta , gamma , Bbeta , Btheta , N_roundtrip , M_plate ,

N_freq , mxGetPr(plhs [0]), mxGetPr(plhs [1]),mxGetPr(plhs [2]),mxGetPr(plhs [3]));

78 }

79 /* --------------------------------*/

80 /* ******* END GATEWAY ************ */
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81 /* --------------------------------*/

82
83 /* --------------------------------*/

84 /* ****** RK4IP for CNLSE ******** */

85 /* --------------------------------*/

86
87 void run_RK4IP(double *UinfH , double *UinfV , double dz , double alpha , double *beta , double

*gamma , double *Bbeta , double *Btheta , int N_roundtrip , int M_plate , int N_freq ,

double *UoutfH_RE , double *UoutfH_IM , double *UoutfV_RE , double *UoutfV_IM)

88 {

89 double (* m_matrix)[M_plate ][4][2] = malloc(N_freq*sizeof(double[M_plate ][4][2]));

90 double (* halfprop)[2] = malloc(N_freq * sizeof(double [2]));

91 double (* U_hatH)[2] = malloc(N_freq * sizeof(double [2]));

92 double (* U_hatV)[2] = malloc(N_freq * sizeof(double [2]));

93 double (* Uip_hatH)[2] = malloc(N_freq * sizeof(double [2]));

94 double (* Uip_hatV)[2] = malloc(N_freq * sizeof(double [2]));

95 double (*U1H)[2] = malloc(N_freq * sizeof(double [2]));

96 double (*U2H)[2] = malloc(N_freq * sizeof(double [2]));

97 double (*U3H)[2] = malloc(N_freq * sizeof(double [2]));

98 double (*U4H)[2] = malloc(N_freq * sizeof(double [2]));

99 double (*k1H)[2] = malloc(N_freq * sizeof(double [2]));

100 double (*k2H)[2] = malloc(N_freq * sizeof(double [2]));

101 double (*k3H)[2] = malloc(N_freq * sizeof(double [2]));

102 double (*U1V)[2] = malloc(N_freq * sizeof(double [2]));

103 double (*U2V)[2] = malloc(N_freq * sizeof(double [2]));

104 double (*U3V)[2] = malloc(N_freq * sizeof(double [2]));

105 double (*U4V)[2] = malloc(N_freq * sizeof(double [2]));

106 double (*k1V)[2] = malloc(N_freq * sizeof(double [2]));

107 double (*k2V)[2] = malloc(N_freq * sizeof(double [2]));

108 double (*k3V)[2] = malloc(N_freq * sizeof(double [2]));

109
110 double (* Uf_RE_H)[N_roundtrip] = malloc(N_freq * sizeof(double[N_roundtrip ]));

111 double (* Uf_IM_H)[N_roundtrip] = malloc(N_freq * sizeof(double[N_roundtrip ]));

112 double (* Uf_RE_V)[N_roundtrip] = malloc(N_freq * sizeof(double[N_roundtrip ]));

113 double (* Uf_IM_V)[N_roundtrip] = malloc(N_freq * sizeof(double[N_roundtrip ]));

114
115 double normfactor = 1.0 / N_freq;

116
117 /* FFT in -plane (input = output) */

118 fftw_plan FFTplan_ip = fftw_plan_dft_1d(N_freq , U1H , U1H , FFTW_BACKWARD , FFTW_MEASURE);

119 /* IFFT in-plane (input = output) */

120 fftw_plan IFFTplan_ip = fftw_plan_dft_1d(N_freq , U1H , U1H , FFTW_FORWARD , FFTW_MEASURE);

121 /* FFT out -plane (input ~= output) */

122 fftw_plan FFTplan_op = fftw_plan_dft_1d(N_freq , U_hatH , U1H , FFTW_BACKWARD , FFTW_MEASURE

);

123 /* FFT out -plane (input ~= output) */

124 fftw_plan IFFTplan_op = fftw_plan_dft_1d(N_freq , U1H , U_hatH , FFTW_FORWARD , FFTW_MEASURE

);

125
126 int i;

127 int j;

128
129 /* initialize the complex vector variables and prepare M-matrix */

130 for (i = 0; i < N_freq; i++)

131 {

132 U_hatH[i][REAL] = 0.0; U_hatH[i][IMAG] = 0.0;

133 U_hatV[i][REAL] = 0.0; U_hatV[i][IMAG] = 0.0;
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134
135 halfprop[i][REAL] = exp (-1.0* alpha *0.5*dz*0.5)*cos (-1.0* beta[i]*dz *0.5);

136 halfprop[i][IMAG] = exp (-1.0* alpha *0.5*dz*0.5)*sin (-1.0* beta[i]*dz *0.5);

137 }

138
139 /* double vector to complex array */

140 doublevector2complexarray(UinfH , U_hatH , N_freq);

141 doublevector2complexarray(UinfV , U_hatV , N_freq);

142
143 /* M-matrix */

144 for (i = 0; i < N_freq; i++)

145 for (j = 0; j < M_plate; j++)

146 {

147 {

148 /* M-matrix 1 X 1 component */

149 m_matrix[i][j][0][ REAL] = cos(-1.0 * Bbeta[i+(j*N_freq)] * 0.5 * dz * 0.5) * cos(

Btheta[j]) * cos(Btheta[j]) + cos (1.0 * Bbeta[i+(j*N_freq)] * 0.5 * dz * 0.5) *

sin(Btheta[j]) * sin(Btheta[j]);

150 m_matrix[i][j][0][ IMAG] = sin(-1.0 * Bbeta[i+(j*N_freq)] * 0.5 * dz * 0.5) * cos(

Btheta[j]) * cos(Btheta[j]) + sin (1.0 * Bbeta[i+(j*N_freq)] * 0.5 * dz * 0.5) *

sin(Btheta[j]) * sin(Btheta[j]);

151
152 /* M-matrix 1 X 2 component */

153 m_matrix[i][j][1][ REAL] = cos(-1.0 * Bbeta[i+(j*N_freq)] * 0.5 * dz * 0.5) * cos(

Btheta[j]) * sin(Btheta[j]) - cos (1.0 * Bbeta[i+(j*N_freq)] * 0.5 * dz * 0.5) *

cos(Btheta[j]) * sin(Btheta[j]);

154 m_matrix[i][j][1][ IMAG] = sin(-1.0 * Bbeta[i+(j*N_freq)] * 0.5 * dz * 0.5) * cos(

Btheta[j]) * sin(Btheta[j]) - sin (1.0 * Bbeta[i+(j*N_freq)] * 0.5 * dz * 0.5) *

cos(Btheta[j]) * sin(Btheta[j]);

155
156 /* M-matrix 2 X 1 component */

157 m_matrix[i][j][2][ REAL] = cos(-1.0 * Bbeta[i+(j*N_freq)] * 0.5 * dz * 0.5) * cos(

Btheta[j]) * sin(Btheta[j]) - cos (1.0 * Bbeta[i+(j*N_freq)] * 0.5 * dz * 0.5) *

cos(Btheta[j]) * sin(Btheta[j]);

158 m_matrix[i][j][2][ IMAG] = sin(-1.0 * Bbeta[i+(j*N_freq)] * 0.5 * dz * 0.5) * cos(

Btheta[j]) * sin(Btheta[j]) - sin (1.0 * Bbeta[i+(j*N_freq)] * 0.5 * dz * 0.5) *

cos(Btheta[j]) * sin(Btheta[j]);

159
160 /* M-matrix 2 X 2 component */

161 m_matrix[i][j][3][ REAL] = cos(-1.0 * Bbeta[i+(j*N_freq)] * 0.5 * dz * 0.5) * sin(

Btheta[j]) * sin(Btheta[j]) + cos (1.0 * Bbeta[i+(j*N_freq)] * 0.5 * dz * 0.5) *

cos(Btheta[j]) * cos(Btheta[j]);

162 m_matrix[i][j][3][ IMAG] = sin(-1.0 * Bbeta[i+(j*N_freq)] * 0.5 * dz * 0.5) * sin(

Btheta[j]) * sin(Btheta[j]) + sin (1.0 * Bbeta[i+(j*N_freq)] * 0.5 * dz * 0.5) *

cos(Btheta[j]) * cos(Btheta[j]);

163 }

164 }

165
166 /* RK4IP starts! */

167 for (j = 0; j < N_roundtrip; j++)

168 {

169 /* Matlab code: u1 = ifft(u_cav_hat); */

170 fftw_execute_dft(IFFTplan_op ,U_hatH ,U1H);

171 fftw_execute_dft(IFFTplan_op ,U_hatV ,U1V);

172
173 /* Matlab code: uip_hat = halfstep .*M1.* u_cav_hat; u1 = u1*abs(u1).^2; */

174 for (i = 0; i < N_freq; i++)
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175 {

176 double tmpRE_H = U_hatH[i][REAL];

177 double tmpIM_H = U_hatH[i][IMAG];

178 double tmpRE_V = U_hatV[i][REAL];

179 double tmpIM_V = U_hatV[i][IMAG];

180 /* M1.* U_hat */

181 U_hatH[i][REAL] = (m_matrix[i][j][0][ REAL]* tmpRE_H - m_matrix[i][j][0][ IMAG]* tmpIM_H

) + (m_matrix[i][j][1][ REAL]* tmpRE_V - m_matrix[i][j][1][ IMAG]* tmpIM_V);

182 U_hatH[i][IMAG] = (m_matrix[i][j][0][ REAL]* tmpIM_H + m_matrix[i][j][0][ IMAG]* tmpRE_H

) + (m_matrix[i][j][1][ REAL]* tmpIM_V + m_matrix[i][j][1][ IMAG]* tmpRE_V);

183 U_hatV[i][REAL] = (m_matrix[i][j][2][ REAL]* tmpRE_H - m_matrix[i][j][2][ IMAG]* tmpIM_H

) + (m_matrix[i][j][3][ REAL]* tmpRE_V - m_matrix[i][j][3][ IMAG]* tmpIM_V);

184 U_hatV[i][IMAG] = (m_matrix[i][j][2][ REAL]* tmpIM_H + m_matrix[i][j][2][ IMAG]* tmpRE_H

) + (m_matrix[i][j][3][ REAL]* tmpIM_V + m_matrix[i][j][3][ IMAG]* tmpRE_V);

185
186 Uip_hatH[i][REAL] = halfprop[i][REAL]* U_hatH[i][REAL] - halfprop[i][IMAG]* U_hatH[i][

IMAG];

187 Uip_hatH[i][IMAG] = halfprop[i][REAL]* U_hatH[i][IMAG] + halfprop[i][IMAG]* U_hatH[i][

REAL];

188
189 Uip_hatV[i][REAL] = halfprop[i][REAL]* U_hatV[i][REAL] - halfprop[i][IMAG]* U_hatV[i][

IMAG];

190 Uip_hatV[i][IMAG] = halfprop[i][REAL]* U_hatV[i][IMAG] + halfprop[i][IMAG]* U_hatV[i][

REAL];

191
192 tmpRE_H = U1H[i][REAL];

193 tmpIM_H = U1H[i][IMAG];

194 tmpRE_V = U1V[i][REAL];

195 tmpIM_V = U1V[i][IMAG];

196
197 double abs_squareH = tmpRE_H * tmpRE_H + tmpIM_H * tmpIM_H;

198 double abs_squareV = tmpRE_V * tmpRE_V + tmpIM_V * tmpIM_V;

199
200 double squareHreal = tmpRE_H * tmpRE_H - tmpIM_H * tmpIM_H;

201 double squareHimag = 2.0 * tmpRE_H * tmpIM_H;

202
203 double squareVreal = tmpRE_V * tmpRE_V - tmpIM_V * tmpIM_V;

204 double squareVimag = 2.0 * tmpRE_V * tmpIM_V;

205
206 U1H[i][REAL] = (tmpRE_H * abs_squareH + (2.0/3.0) * tmpRE_H * abs_squareV +

(1.0/3.0) * (tmpRE_H * squareVreal + tmpIM_H * squareVimag)) * normfactor *

normfactor * normfactor;

207 U1H[i][IMAG] = (tmpIM_H * abs_squareH + (2.0/3.0) * tmpIM_H * abs_squareV +

(1.0/3.0) * (tmpRE_H * squareVimag - tmpIM_H * squareVreal)) * normfactor *

normfactor * normfactor;

208
209 U1V[i][REAL] = (tmpRE_V * abs_squareV + (2.0/3.0) * tmpRE_V * abs_squareH +

(1.0/3.0) * (tmpRE_V * squareHreal + tmpIM_V * squareHimag)) * normfactor *

normfactor * normfactor;

210 U1V[i][IMAG] = (tmpIM_V * abs_squareV + (2.0/3.0) * tmpIM_V * abs_squareH +

(1.0/3.0) * (tmpRE_V * squareHimag - tmpIM_V * squareHreal)) * normfactor *

normfactor * normfactor;

211 }

212
213 /* Matlab code: u1 = fft(u1); */

214 fftw_execute_dft(FFTplan_ip ,U1H ,U1H);

215 fftw_execute_dft(FFTplan_ip ,U1V ,U1V);
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216
217 /* Matlab code: k1 = halfstep .*M1*(1i*gamma .*u1); */

218 /* U2 = uip_hat + k1*dz/2 */

219 for (i = 0; i < N_freq; i++)

220 {

221 double tmpRE_H = U1H[i][REAL];

222 double tmpIM_H = U1H[i][IMAG];

223 double tmpRE_V = U1V[i][REAL];

224 double tmpIM_V = U1V[i][IMAG];

225 /* M1.* U_hat */

226 U1H[i][REAL] = (m_matrix[i][j][0][ REAL]* tmpRE_H - m_matrix[i][j][0][ IMAG]* tmpIM_H) +

(m_matrix[i][j][1][ REAL]* tmpRE_V - m_matrix[i][j][1][ IMAG]* tmpIM_V);

227 U1H[i][IMAG] = (m_matrix[i][j][0][ REAL]* tmpIM_H + m_matrix[i][j][0][ IMAG]* tmpRE_H) +

(m_matrix[i][j][1][ REAL]* tmpIM_V + m_matrix[i][j][1][ IMAG]* tmpRE_V);

228 U1V[i][REAL] = (m_matrix[i][j][2][ REAL]* tmpRE_H - m_matrix[i][j][2][ IMAG]* tmpIM_H) +

(m_matrix[i][j][3][ REAL]* tmpRE_V - m_matrix[i][j][3][ IMAG]* tmpIM_V);

229 U1V[i][IMAG] = (m_matrix[i][j][2][ REAL]* tmpIM_H + m_matrix[i][j][2][ IMAG]* tmpRE_H) +

(m_matrix[i][j][3][ REAL]* tmpIM_V + m_matrix[i][j][3][ IMAG]* tmpRE_V);

230
231 k1H[i][REAL] = halfprop[i][REAL ]*( -1.0* gamma[i]*U1H[i][IMAG]) - halfprop[i][IMAG ]*(

gamma[i]*U1H[i][REAL]);

232 k1H[i][IMAG] = halfprop[i][REAL ]*( gamma[i]*U1H[i][REAL]) + halfprop[i][IMAG ]*( -1.0*

gamma[i]*U1H[i][IMAG]);

233
234 k1V[i][REAL] = halfprop[i][REAL ]*( -1.0* gamma[i]*U1V[i][IMAG]) - halfprop[i][IMAG ]*(

gamma[i]*U1V[i][REAL]);

235 k1V[i][IMAG] = halfprop[i][REAL ]*( gamma[i]*U1V[i][REAL]) + halfprop[i][IMAG ]*( -1.0*

gamma[i]*U1V[i][IMAG]);

236
237 U2H[i][REAL] = Uip_hatH[i][REAL] + k1H[i][REAL]*dz *0.5;

238 U2H[i][IMAG] = Uip_hatH[i][IMAG] + k1H[i][IMAG]*dz *0.5;

239
240 U2V[i][REAL] = Uip_hatV[i][REAL] + k1V[i][REAL]*dz *0.5;

241 U2V[i][IMAG] = Uip_hatV[i][IMAG] + k1V[i][IMAG]*dz *0.5;

242 }

243
244 /* Matlab code: u2 = ifft(u2); */

245 fftw_execute_dft(IFFTplan_ip ,U2H ,U2H);

246 fftw_execute_dft(IFFTplan_ip ,U2V ,U2V);

247
248 /* Matlab code: u2 = u2*abs(u2).^2; */

249 for (i = 0; i < N_freq; i++)

250 {

251 double tmpRE_H = U2H[i][REAL];

252 double tmpIM_H = U2H[i][IMAG];

253 double tmpRE_V = U2V[i][REAL];

254 double tmpIM_V = U2V[i][IMAG];

255
256 double abs_squareH = tmpRE_H * tmpRE_H + tmpIM_H * tmpIM_H;

257 double abs_squareV = tmpRE_V * tmpRE_V + tmpIM_V * tmpIM_V;

258
259 double squareHreal = tmpRE_H * tmpRE_H - tmpIM_H * tmpIM_H;

260 double squareHimag = 2.0 * tmpRE_H * tmpIM_H;

261
262 double squareVreal = tmpRE_V * tmpRE_V - tmpIM_V * tmpIM_V;

263 double squareVimag = 2.0 * tmpRE_V * tmpIM_V;

264
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265 U2H[i][REAL] = (tmpRE_H * abs_squareH + (2.0/3.0) * tmpRE_H * abs_squareV +

(1.0/3.0) * (tmpRE_H * squareVreal + tmpIM_H * squareVimag)) * normfactor *

normfactor * normfactor;

266 U2H[i][IMAG] = (tmpIM_H * abs_squareH + (2.0/3.0) * tmpIM_H * abs_squareV +

(1.0/3.0) * (tmpRE_H * squareVimag - tmpIM_H * squareVreal)) * normfactor *

normfactor * normfactor;

267
268 U2V[i][REAL] = (tmpRE_V * abs_squareV + (2.0/3.0) * tmpRE_V * abs_squareH +

(1.0/3.0) * (tmpRE_V * squareHreal + tmpIM_V * squareHimag)) * normfactor *

normfactor * normfactor;

269 U2V[i][IMAG] = (tmpIM_V * abs_squareV + (2.0/3.0) * tmpIM_V * abs_squareH +

(1.0/3.0) * (tmpRE_V * squareHimag - tmpIM_V * squareHreal)) * normfactor *

normfactor * normfactor;

270 }

271
272 /* Matlab code: u2 = fft(u2); */

273 fftw_execute_dft(FFTplan_ip ,U2H ,U2H);

274 fftw_execute_dft(FFTplan_ip ,U2V ,U2V);

275
276 /* Matlab code: k2 = 1i*gamma.*u2; */

277 /* u3 = uip_hat + k2*dz/2; */

278 for (i = 0; i < N_freq; i++)

279 {

280 k2H[i][REAL] = -1.0* gamma[i]*U2H[i][IMAG];

281 k2H[i][IMAG] = gamma[i]*U2H[i][REAL];

282
283 k2V[i][REAL] = -1.0* gamma[i]*U2V[i][IMAG];

284 k2V[i][IMAG] = gamma[i]*U2V[i][REAL];

285
286 U3H[i][REAL] = Uip_hatH[i][REAL] + k2H[i][REAL]*dz *0.5;

287 U3H[i][IMAG] = Uip_hatH[i][IMAG] + k2H[i][IMAG]*dz *0.5;

288
289 U3V[i][REAL] = Uip_hatV[i][REAL] + k2V[i][REAL]*dz *0.5;

290 U3V[i][IMAG] = Uip_hatV[i][IMAG] + k2V[i][IMAG]*dz *0.5;

291 }

292
293 /* Matlab code: u3 = ifft(u3); */

294 fftw_execute_dft(IFFTplan_ip ,U3H ,U3H);

295 fftw_execute_dft(IFFTplan_ip ,U3V ,U3V);

296
297 /* Matlab code: u3 = u3*abs(u3).^2; */

298 for (i = 0; i < N_freq; i++)

299 {

300 double tmpRE_H = U3H[i][REAL];

301 double tmpIM_H = U3H[i][IMAG];

302 double tmpRE_V = U3V[i][REAL];

303 double tmpIM_V = U3V[i][IMAG];

304
305 double abs_squareH = tmpRE_H * tmpRE_H + tmpIM_H * tmpIM_H;

306 double abs_squareV = tmpRE_V * tmpRE_V + tmpIM_V * tmpIM_V;

307
308 double squareHreal = tmpRE_H * tmpRE_H - tmpIM_H * tmpIM_H;

309 double squareHimag = 2.0 * tmpRE_H * tmpIM_H;

310
311 double squareVreal = tmpRE_V * tmpRE_V - tmpIM_V * tmpIM_V;

312 double squareVimag = 2.0 * tmpRE_V * tmpIM_V;

313
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314 U3H[i][REAL] = (tmpRE_H * abs_squareH + (2.0/3.0) * tmpRE_H * abs_squareV +

(1.0/3.0) * (tmpRE_H * squareVreal + tmpIM_H * squareVimag)) * normfactor *

normfactor * normfactor;

315 U3H[i][IMAG] = (tmpIM_H * abs_squareH + (2.0/3.0) * tmpIM_H * abs_squareV +

(1.0/3.0) * (tmpRE_H * squareVimag - tmpIM_H * squareVreal)) * normfactor *

normfactor * normfactor;

316
317 U3V[i][REAL] = (tmpRE_V * abs_squareV + (2.0/3.0) * tmpRE_V * abs_squareH +

(1.0/3.0) * (tmpRE_V * squareHreal + tmpIM_V * squareHimag)) * normfactor *

normfactor * normfactor;

318 U3V[i][IMAG] = (tmpIM_V * abs_squareV + (2.0/3.0) * tmpIM_V * abs_squareH +

(1.0/3.0) * (tmpRE_V * squareHimag - tmpIM_V * squareHreal)) * normfactor *

normfactor * normfactor;

319 }

320
321 /* Matlab code: u3 = fft(u3); */

322 fftw_execute_dft(FFTplan_ip ,U3H ,U3H);

323 fftw_execute_dft(FFTplan_ip ,U3V ,U3V);

324 /* Matlab code: k3 = 1i*gamma.*u3; u4 = halfstep .*( uip_hat + k3*dz); */

325 for (i = 0; i < N_freq; i++)

326 {

327 k3H[i][REAL] = -1.0* gamma[i]*U3H[i][IMAG];

328 k3H[i][IMAG] = gamma[i]*U3H[i][REAL];

329
330 k3V[i][REAL] = -1.0* gamma[i]*U3V[i][IMAG];

331 k3V[i][IMAG] = gamma[i]*U3V[i][REAL];

332
333 double tmpRE_H = Uip_hatH[i][REAL] + k3H[i][REAL]*dz;

334 double tmpIM_H = Uip_hatH[i][IMAG] + k3H[i][IMAG]*dz;

335 double tmpRE_V = Uip_hatV[i][REAL] + k3V[i][REAL]*dz;

336 double tmpIM_V = Uip_hatV[i][IMAG] + k3V[i][IMAG]*dz;

337 /* M1.* U_hat */

338 double tmptmpRE_H;

339 double tmptmpIM_H;

340 double tmptmpRE_V;

341 double tmptmpIM_V;

342 tmptmpRE_H = (m_matrix[i][j][0][ REAL]* tmpRE_H - m_matrix[i][j][0][ IMAG]* tmpIM_H) + (

m_matrix[i][j][1][ REAL]* tmpRE_V - m_matrix[i][j][1][ IMAG]* tmpIM_V);

343 tmptmpIM_H = (m_matrix[i][j][0][ REAL]* tmpIM_H + m_matrix[i][j][0][ IMAG]* tmpRE_H) + (

m_matrix[i][j][1][ REAL]* tmpIM_V + m_matrix[i][j][1][ IMAG]* tmpRE_V);

344 tmptmpRE_V = (m_matrix[i][j][2][ REAL]* tmpRE_H - m_matrix[i][j][2][ IMAG]* tmpIM_H) + (

m_matrix[i][j][3][ REAL]* tmpRE_V - m_matrix[i][j][3][ IMAG]* tmpIM_V);

345 tmptmpIM_V = (m_matrix[i][j][2][ REAL]* tmpIM_H + m_matrix[i][j][2][ IMAG]* tmpRE_H) + (

m_matrix[i][j][3][ REAL]* tmpIM_V + m_matrix[i][j][3][ IMAG]* tmpRE_V);

346
347 U4H[i][REAL] = halfprop[i][REAL ]*( tmptmpRE_H) - halfprop[i][IMAG ]*( tmptmpIM_H);

348 U4H[i][IMAG] = halfprop[i][REAL ]*( tmptmpIM_H) + halfprop[i][IMAG ]*( tmptmpRE_H);

349
350 U4V[i][REAL] = halfprop[i][REAL ]*( tmptmpRE_V) - halfprop[i][IMAG ]*( tmptmpIM_V);

351 U4V[i][IMAG] = halfprop[i][REAL ]*( tmptmpIM_V) + halfprop[i][IMAG ]*( tmptmpRE_V);

352 }

353
354 /* Matlab code: u4 = ifft(u4); */

355 fftw_execute_dft(IFFTplan_ip ,U4H ,U4H);

356 fftw_execute_dft(IFFTplan_ip ,U4V ,U4V);

357
358 /* Matlab code: u4 = u2*abs(u4).^2; */
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359 for (i = 0; i < N_freq; i++)

360 {

361 double tmpRE_H = U4H[i][REAL];

362 double tmpIM_H = U4H[i][IMAG];

363 double tmpRE_V = U4V[i][REAL];

364 double tmpIM_V = U4V[i][IMAG];

365
366 double abs_squareH = tmpRE_H * tmpRE_H + tmpIM_H * tmpIM_H;

367 double abs_squareV = tmpRE_V * tmpRE_V + tmpIM_V * tmpIM_V;

368
369 double squareHreal = tmpRE_H * tmpRE_H - tmpIM_H * tmpIM_H;

370 double squareHimag = 2.0 * tmpRE_H * tmpIM_H;

371
372 double squareVreal = tmpRE_V * tmpRE_V - tmpIM_V * tmpIM_V;

373 double squareVimag = 2.0 * tmpRE_V * tmpIM_V;

374
375 U4H[i][REAL] = (tmpRE_H * abs_squareH + (2.0/3.0) * tmpRE_H * abs_squareV +

(1.0/3.0) * (tmpRE_H * squareVreal + tmpIM_H * squareVimag)) * normfactor *

normfactor * normfactor;

376 U4H[i][IMAG] = (tmpIM_H * abs_squareH + (2.0/3.0) * tmpIM_H * abs_squareV +

(1.0/3.0) * (tmpRE_H * squareVimag - tmpIM_H * squareVreal)) * normfactor *

normfactor * normfactor;

377
378 U4V[i][REAL] = (tmpRE_V * abs_squareV + (2.0/3.0) * tmpRE_V * abs_squareH +

(1.0/3.0) * (tmpRE_V * squareHreal + tmpIM_V * squareHimag)) * normfactor *

normfactor * normfactor;

379 U4V[i][IMAG] = (tmpIM_V * abs_squareV + (2.0/3.0) * tmpIM_V * abs_squareH +

(1.0/3.0) * (tmpRE_V * squareHimag - tmpIM_V * squareHreal)) * normfactor *

normfactor * normfactor;

380 }

381
382 /* Matlab code: u4 = fft(u4); */

383 fftw_execute_dft(FFTplan_ip ,U4H ,U4H);

384 fftw_execute_dft(FFTplan_ip ,U4V ,U4V);

385
386 /* Matlab code: u_cav_hat = halfstep .*( uip_hat + k1*dz/6 + k2*dz/3 + k3*dz/3) + 1i*

gamma.*u4*dz/6; */

387 for (i = 0; i < N_freq; i++)

388 {

389 double tmp_RE_H = Uip_hatH[i][REAL] + k1H[i][REAL]*dz *(1.0/6.0) + k2H[i][REAL]*dz

*(1.0/3.0) + k3H[i][REAL]*dz *(1.0/3.0);

390 double tmp_IM_H = Uip_hatH[i][IMAG] + k1H[i][IMAG]*dz *(1.0/6.0) + k2H[i][IMAG]*dz

*(1.0/3.0) + k3H[i][IMAG]*dz *(1.0/3.0);

391 double tmp_RE_V = Uip_hatV[i][REAL] + k1V[i][REAL]*dz *(1.0/6.0) + k2V[i][REAL]*dz

*(1.0/3.0) + k3V[i][REAL]*dz *(1.0/3.0);

392 double tmp_IM_V = Uip_hatV[i][IMAG] + k1V[i][IMAG]*dz *(1.0/6.0) + k2V[i][IMAG]*dz

*(1.0/3.0) + k3V[i][IMAG]*dz *(1.0/3.0);

393
394 double tmptmpRE_H;

395 double tmptmpIM_H;

396 double tmptmpRE_V;

397 double tmptmpIM_V;

398 tmptmpRE_H = (m_matrix[i][j][0][ REAL]* tmp_RE_H - m_matrix[i][j][0][ IMAG]* tmp_IM_H) +

(m_matrix[i][j][1][ REAL]* tmp_RE_V - m_matrix[i][j][1][ IMAG]* tmp_IM_V);

399 tmptmpIM_H = (m_matrix[i][j][0][ REAL]* tmp_IM_H + m_matrix[i][j][0][ IMAG]* tmp_RE_H) +

(m_matrix[i][j][1][ REAL]* tmp_IM_V + m_matrix[i][j][1][ IMAG]* tmp_RE_V);
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400 tmptmpRE_V = (m_matrix[i][j][2][ REAL]* tmp_RE_H - m_matrix[i][j][2][ IMAG]* tmp_IM_H) +

(m_matrix[i][j][3][ REAL]* tmp_RE_V - m_matrix[i][j][3][ IMAG]* tmp_IM_V);

401 tmptmpIM_V = (m_matrix[i][j][2][ REAL]* tmp_IM_H + m_matrix[i][j][2][ IMAG]* tmp_RE_H) +

(m_matrix[i][j][3][ REAL]* tmp_IM_V + m_matrix[i][j][3][ IMAG]* tmp_RE_V);

402
403 U_hatH[i][REAL] = (halfprop[i][REAL]* tmptmpRE_H - halfprop[i][IMAG]* tmptmpIM_H) -

gamma[i]*U4H[i][IMAG]*dz *(1.0/6.0);

404 U_hatH[i][IMAG] = (halfprop[i][REAL]* tmptmpIM_H + halfprop[i][IMAG]* tmptmpRE_H) +

gamma[i]*U4H[i][REAL]*dz *(1.0/6.0);

405
406 U_hatV[i][REAL] = (halfprop[i][REAL]* tmptmpRE_V - halfprop[i][IMAG]* tmptmpIM_V) -

gamma[i]*U4V[i][IMAG]*dz *(1.0/6.0);

407 U_hatV[i][IMAG] = (halfprop[i][REAL]* tmptmpIM_V + halfprop[i][IMAG]* tmptmpRE_V) +

gamma[i]*U4V[i][REAL]*dz *(1.0/6.0);

408
409 Uf_RE_H[i][j] = U_hatH[i][REAL];

410 Uf_IM_H[i][j] = U_hatH[i][IMAG];

411 Uf_RE_V[i][j] = U_hatV[i][REAL];

412 Uf_IM_V[i][j] = U_hatV[i][IMAG];

413 }

414 }

415
416 /* double vector to complex array */

417 for (i = 0; i < N_freq; i++)

418 {

419 for (j = 0; j < N_roundtrip; j++)

420 {

421 UoutfH_RE[i+N_freq*j] = Uf_RE_H[i][j];

422 UoutfH_IM[i+N_freq*j] = Uf_IM_H[i][j];

423 UoutfV_RE[i+N_freq*j] = Uf_RE_V[i][j];

424 UoutfV_IM[i+N_freq*j] = Uf_IM_V[i][j];

425 }

426 }

427
428 /* Clear space */

429 fftw_destroy_plan(FFTplan_ip);

430 fftw_destroy_plan(IFFTplan_ip);

431 fftw_destroy_plan(FFTplan_op);

432 fftw_destroy_plan(IFFTplan_op);

433 fftw_cleanup ();

434
435 free(m_matrix);

436 free(halfprop);

437 free(Uip_hatH);

438 free(Uip_hatV);

439 free(U_hatH);

440 free(U_hatV);

441 free(U1H);

442 free(U2H);

443 free(U3H);

444 free(U4H);

445 free(k1H);

446 free(k2H);

447 free(k3H);

448 free(U1V);

449 free(U2V);

450 free(U3V);
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451 free(U4V);

452 free(k1V);

453 free(k2V);

454 free(k3V);

455 free(Uf_RE_H);

456 free(Uf_IM_H);

457 free(Uf_RE_V);

458 free(Uf_IM_V);

459 }

460
461 void doublevector2complexarray(double *in , double out[][2], int array_length)

462 {

463 int i;

464 for (i = 0; i < array_length; i++) {

465 out[i][0] = in[i];

466 out[i][1] = in[i+array_length ];

467 }

468 }

469
470 void complexarray2doublevector(double in[][2], double *out , int array_length)

471 {

472 int i;

473 for (i = 0; i < array_length; i++) {

474 out[i] = in[i][0];

475 out[i+array_length] = in[i][1];

476 }

477 }
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Appendix C

Matlab code: optimal focal
conditions in spontaneous parametric
down-conversion process

1 function [R_CC , R_SSC , R_ISC]= Absolute_emission_rate (LightParam , MediumParam)

2 %%%% Input variables

3 % LightParam.waist_p: beam waist of pump light

4 % LightParam.waist_s: beam waist of signal light

5 % LightParam.waist_i: beam waist of idler light

6 % LightParam.k_p: wavevector of pump light

7 % LightParam.k_s: wavevector of signal light

8 % LightParam.k_i: wavevector of idler light

9 % LightParam.Pp: pump power

10 % LightParam.deltak: wavevector -mismatch

11 % LightParam.design_signal: signal wavelength

12 % LightParam.design_idler: idler wavelength

13 % LightParam.dLambda_s: wavelength steps for numerical

14 % integration of signal photons

15 % LightParam.dLambda_i: wavelength steps for numerical

16 % integration of idler photons

17
18 % MediumParam.z: spatial grid

19 % MediumParam.np: refractive index at pump wavelength

20 % MediumParam.ns: refractive index at signal wavelength

21 % MediumParam.ni: refractive index at idler wavelength

22 % MediumParam.xi2: periodic poling function , e.g., periodic square function.

23
24 %%%% Ouput variables

25 % R_CC: coincident counting rate

26 % R_SSC: single counting rate (signal)

27 % R_ISC: single counting rate (idler)

28
29 %% Constant

30 clight = 299792458; % m/s
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31 eps0 = 8.85418782e-12; % s^4 A^2 / m^3 / kg

32
33 deff = 15.9e-12; % Effective nonlinear coefficient of Lithium niobate (Type -0) [m^-1*V^-1]

34 Ep0 = sqrt (2* LightParam.Pp/eps0/MediumParam.np/clight);

35
36 q_p = LightParam.waist_p ^2 + 2*1i*MediumParam.z ./ LightParam.k_p;

37 q_s = LightParam.waist_s ^2 + 2*1i*MediumParam.z ./ LightParam.k_s;

38 q_i = LightParam.waist_i ^2 + 2*1i*MediumParam.z ./ LightParam.k_i;

39
40 %% Absolute emission rate

41 denom = (conj(q_s).*conj(q_i)+q_p.*conj(q_i)+q_p.*conj(q_s));

42 dz = MediumParam.z(2)-MediumParam.z(1);

43
44 % Coincidence rate

45 PhizCC = sqrt (8/pi) * LightParam.waist_p * LightParam.waist_s * LightParam.waist_i * sum(

dz * exp(-1i * LightParam.deltak ' * MediumParam.z) .* repmat(MediumParam.xi2 ,[ length(

LightParam.deltak) ,1]) ./ repmat(denom ,[ length(LightParam.deltak) ,1]) ,2);

46 Phi_integratedCC = sum(abs(PhizCC).^2 .* (2 * pi * clight * MediumParam.ns / (LightParam.

design_signal * 1e-6)^2) * (LightParam.dLambda_s * 1e-6));

47 R_CC = (deff*Ep0/clight)^2 * (2 * pi * clight / LightParam.design_signal / 1e-6)*(2 * pi *

clight / LightParam.design_idler / 1e-6) / (MediumParam.ns * MediumParam.ni * 2 * pi)

* Phi_integratedCC;

48
49 % Single rate

50 Laguerre_S = (conj(q_s).* q_i + q_p.*q_i - q_p.*conj(q_s)) ./ (conj(q_s).*conj(q_i) + q_p

.*conj(q_i) + q_p.*conj(q_s));

51 Laguerre_I = (conj(q_i).*q_s + q_p.*q_s - q_p.*conj(q_i)) ./ (conj(q_s).*conj(q_i) + q_p.*

conj(q_i) + q_p.*conj(q_s));

52 Laguerre_order = 20;

53
54 R_SSC = 0;

55 R_ISC = 0;

56
57 for qq = 0: Laguerre_order

58 PhizSSC = sqrt (8/pi) * LightParam.waist_p * LightParam.waist_s * LightParam.waist_i *

sum(dz * exp(-1i * LightParam.deltak ' * MediumParam.z) .* repmat(MediumParam.xi2

,[ length(LightParam.deltak) ,1]) ./ repmat(denom ,[ length(LightParam.deltak) ,1]) .*

repmat(Laguerre_S .^(qq),[length(LightParam.deltak) ,1]) ,2);

59 PhizISC = sqrt (8/pi) * LightParam.waist_p * LightParam.waist_s * LightParam.waist_i *

sum(dz * exp(-1i * LightParam.deltak ' * MediumParam.z) .* repmat(MediumParam.xi2

,[ length(LightParam.deltak) ,1]) ./ repmat(denom ,[ length(LightParam.deltak) ,1]) .*

repmat(Laguerre_I .^(qq),[length(LightParam.deltak) ,1]) ,2);

60 Phi_integratedSSC = sum(abs(PhizSSC).^2 .* (2 * pi * clight * MediumParam.ns / (

LightParam.design_signal * 1e-6) ^2) * (LightParam.dLambda_s * 1e-6));

61 Phi_integratedISC = sum(abs(PhizISC).^2 .* (2 * pi * clight * MediumParam.ni / (

LightParam.design_idler * 1e-6)^2) * (LightParam.dLambda_i * 1e-6));

62 R_SSC = R_SSC + (deff * Ep0 / clight)^2 * (2 * pi * clight / LightParam.design_signal

/ 1e-6) * (2 * pi * clight / LightParam.design_idler / 1e-6) / (MediumParam.ns *

MediumParam.ni * 2 * pi) * Phi_integratedSSC;

63 R_ISC = R_ISC + (deff * Ep0 / clight)^2 * (2 * pi * clight / LightParam.design_signal

/ 1e-6) * (2 * pi * clight / LightParam.design_idler / 1e-6) / (MediumParam.ns *

MediumParam.ni * 2 * pi) * Phi_integratedISC;

64 end
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Appendix D

Matlab code: coherent spin-exchange
rate and collective dissipation using
Green function

1 % contants

2 clight =299792458;

3 a=374*10^ -9; % Lattice constant in m

4 eps0 =8.85e-12;

5 hbar =1.05457148e-34;

6 mu0 =4*pi*10^( -7);

7 h=2*pi*hbar;

8 fcs_d1 =335.116*10^12;

9 fcs_d2 =351.725*10^12; % Units in Hz

10 omega_d1 =2*pi*fcs_d1;

11 omega_d2 =2*pi*fcs_d2;

12 ec =1.6022*10^ -19;

13 a0 =5.291*10^ -11;

14 JdJD1 =4.489* ec*a0; % Jonathan 's thesis (A.19)

15 JdJD2 =6.324* ec*a0; % Jonathan 's thesis (A.20) : already includes jj_factor

16 jj_factor =0.5; % D2 transition

17
18 %% Data load

19 % Local Green function

20 load('muresulty.mat')

21 load('GreenNf2D.mat')

22 load('GreenN2D.mat')

23 load('Green0f2D.mat')

24 load('Green02D.mat')

25
26 % FDTD result

27 load('GFresulty.mat')

28 ffieldy=GFresult.f;

29 Efieldy=GFresult.E;

30 X=GFresult.x;
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31 load('GFresult0y.mat')

32 Efield0y=GFresult0.E;

33 ffield0y=GFresult0.f;

34 X0=GFresult0.x;

35
36 % Linear interpolation (not necessary)

37 Xplot=linspace(X(1),X(end) ,100000);

38 ffield=linspace(ffieldy (1),ffieldy(end) ,100000);

39 InG0f=interp1(ffield0y ,squeeze(G0f(2,2,:)),ffield ,'linear ');

40 InGNfyy=interp1(ffieldy ,squeeze(GNf(2,2,:)),ffield ,'linear ');

41 InG0=interp1(X0,squeeze(G0(2,2,:)),Xplot ,'linear ');

42 InGNyy=interp1(X,squeeze(GN(2,2,:)),Xplot ,'linear ');

43
44 % Find the frequency at the band edge

45 [M I]=max(squeeze(imag(GNf(2,2,:))));

46 fg=ffieldy(I);

47 delta=(ffieldy -fg);

48 deltav =(ffield0y -fg);

49 [m0 q0]=min(abs(delta));

50 [mv0 qv0]=min(abs(deltav));

51
52 % Detuning

53 delta1 =0.1*10^12;

54 [m1 q1]=min(abs(delta -delta1));

55 [mv1 qv1]=min(abs(deltav -delta1));

56
57 w0=2*pi*ffieldy(q0); wv0=2*pi*ffield0y(qv0);

58 w1=2*pi*ffieldy(q1); wv1=2*pi*ffield0y(qv1);

59
60 q=[q0 q1];

61 qv=[qv0 qv1];

62 w=[w0 w1];

63 wv=[wv0 wv1];

64
65 % Calculate nonlocal Green function

66 for j=1: length(q)

67 Gyy(:,j)=squeeze (( Efieldy(:,2,q(j))))*clight ^2* eps0/w(j)^2/mu;

68 Gyy0(:,j)=squeeze (( Efield0y (:,2,qv(j))))*clight ^2* eps0/wv(j)^2/mu;

69 end

70
71 % Linear interpolation (not necessary)

72 for i=1: length(q)

73 InGyy(:,i)=interp1(X,squeeze(Gyy(:,i)),Xplot);

74 InGyy0(:,i)=interp1(X0 ,squeeze(Gyy0(:,i)),Xplot);

75 end

76
77 % Gamma (decay rate) & Jij (spin -exchange coefficient)

78 Gamma_yy =(JdJD2*jj_factor)^2*(2* omega_d2 ^2/( hbar*eps0*clight ^2))*(imag(InGNfyy));

79 Jij_yy =(JdJD2*jj_factor)^2*( omega_d2 ^2/( hbar*eps0*clight ^2))*(real(InGNfyy));

80 Gamma0 =(JdJD2*jj_factor)^2*(2* omega_d2 ^2/( hbar*eps0*clight ^2))*(imag(InG0f));

81 Jij0=(JdJD2*jj_factor)^2*( omega_d2 ^2/( hbar*eps0*clight ^2))*(real(InG0f));

82 Gamma1D=Gamma_yy -Gamma_yy (34000);

83
84 NLoGamma =(JdJD2*jj_factor)^2*(2* omega_d2 ^2/( hbar*eps0*clight ^2))*(imag(InGyy));

85 NLoJij =(JdJD2*jj_factor)^2*( omega_d2 ^2/( hbar*eps0*clight ^2))*(real(InGyy));

86 NLoGamma0 =(JdJD2*jj_factor)^2*(2* omega_d2 ^2/( hbar*eps0*clight ^2))*(imag(InGyy0));

87 NLoJij0 =( JdJD2*jj_factor)^2*( omega_d2 ^2/( hbar*eps0*clight ^2))*(real(InGyy0));
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Appendix E

Scheme MEEP code: Casimir-Polder
force

;; 2017.08.23 Youn Seok Lee

;; This CTL file is to calculate Casimir-Polder potential for the ground

;; state of Cesium atom near the "Si3N4 Squircle W1 waveguide

;; structure" by MEEP. "filename_xyr" is for the calculation of

;; CP potential in xy-plane at z=0, and "filename_zr" is

;; for the z-direction at x=y=0.

;; Structure parameters :

;; (1) Lattice constant : a

;; (2) Air-hole radius (r1: Squircle size)

;; (r2: Second-line holes)

;; (r3: all the other holes)

;; (3) Structure thickness : thk

;; (4) Width of air-line-slot: wid

;; (5) Ellipcity of squircles : Alpha

;; (the larger value: more elongated squircle in x-direction)

;; (6) Shift of the squircles in y-direction : s1

;; (7) Shift of the second line of holes in y-direction : s2

;; (8) offset : Additional dielectric slap

;; between the first line squircles and air line-slot

;; (9) Squareness : Nsq

;; (*) Sinusoidal modulation of the edge of th air

;; line-slot (Alligator structrue) : Amplitude

;; distance units in (um) and unity speed of light (c=1) ;;

;(include "/usr/share/meep/casimir.scm")

(include "/home/uqml/apps/meep-1.3/share/meep/parallel.scm")

;; constant;;

(define pi (* 2 (acos 0))) ; pi

(define Si3N4 1.9935) ; index of Si3N4

(define-param myvacuum 1)
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(define-param Sigma 1)

;; PhC dimensions (um);;

(define-param Nsq 4) ; Only even number: 2 -> Circle, 4 -> Squircle

(define-param amp 0)

(define-param wid 114)

(define-param thk 200)

(define-param a 373) ; lattice constant

(define-param y 8) ; the number of unitcell in y-direction

(define-param r1 110) ; radius of the 1st air-holes (Squircles)

(define-param r2 110) ; radius of the 2nd air-holes

(define-param r3 110) ; radius of all the other air-holes

(define-param s1 -20) ; minimum distance between air hole and air slot

(define-param s2 -20) ; minimum distance between 1st air hole and 2nd air hole

(define-param offset 120)

(define-param slot (* 2 (+ amp wid)))

(define-param alpha 1.15) ; ellipcity of the 2nd holes

(define-param buffer 500) ; distance between the edge of structure and PML layer

;; define unit conversion function ;;

(define (simUnits x) (/ x a)) ; units of length in (um)

;; Unit conversion ;;

(define-param MEEPthk (simUnits thk))

(define-param MEEPa (simUnits a))

(define-param MEEPr1 (simUnits r1))

(define-param MEEPr2 (simUnits r2))

(define-param MEEPr3 (simUnits r3))

(define-param MEEPs1 (simUnits s1))

(define-param MEEPs2 (simUnits s2))

(define-param MEEPslot (simUnits slot))

(define-param MEEPoffset (simUnits offset))

(define-param MEEPbuffer (simUnits buffer))

(define-param elpta (* alpha r1))

(define-param elptb (/ r1 alpha))

(define-param MEEPelpta (simUnits elpta))

(define-param MEEPelptb (simUnits elptb))

;; Define perfecty-matched-layer thickness ;;

(define-param dpml 1)

;; Define computational cell dimension ;;

(define supercell-x MEEPa) ; width of blocks in x-direction

; distance between central line and the center of 1st air hole (squircle)

(define L1 (+ MEEPs1 MEEPoffset (* (/ (sqrt 3) 2) MEEPa)))

; distance between central line and the center of 2nd air hole

(define L2 (+ MEEPs2 MEEPoffset (* (sqrt 3) MEEPa)))

; width of blocks in y-direction

(define wY (+ (* (sqrt 3) MEEPa y) (* 2 L2)))

; the computational size in y-axis

(define supercell-y (+ wY (* 2 MEEPbuffer) (* 2 dpml)))

(define supercell-z (+ MEEPthk (* 2 MEEPbuffer) (* 2 dpml)))

;; AUX Settings ;;

(define-param res 32)

(define-param crnt 0.5)

(set-param! resolution res)
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(set-param! Courant crnt)

(define-param endtime 10)

(define-param kpt (* 0.5 (/ 1 MEEPa)))

(define dx (/ 1 res 10))

;; Create geometry ;;

(define (drawBlock x)

(let ((dy (+ wid (* amp (cos (* 2 pi x))))))

(let ((cy (/ dy 2)))

(list

(make block

(center x (simUnits cy) 0)

(size (* 1.1 dx) (simUnits dy) (simUnits thk))

(material (make dielectric (index myvacuum)))

)

(make block

(center x (* -1 (simUnits cy)) 0)

(size (* 1.1 dx) (simUnits dy) (simUnits thk))

(material (make dielectric (index myvacuum)))

)

)

)

))

(define (drawSquircle x)

(let ((dy (* 2 MEEPelptb (expt (- 1 (/ (expt x Nsq) (expt MEEPelpta 4))) (/ 1 Nsq)))))

(list

(make block

(center x L1 0)

(size (* 1.1 dx) dy MEEPthk)

(material (make dielectric (index myvacuum)))

)

(make block

(center x (* -1 L1) 0)

(size (* 1.1 dx) dy MEEPthk)

(material (make dielectric (index myvacuum)))

)

)

))

(define (makeModule x)

(if (>= x 1)

’()

(begin (set! geometry (append geometry (drawBlock x)))

(makeModule (+ x dx))

)

))

(define (makeSquircle x)

(if (>= x MEEPelpta)

’()

(begin (set! geometry (append geometry (drawSquircle x)))

(makeSquircle (+ x dx))

)

))

;; Sources ;;
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(define-param fcen (/ 1 0.852)) ; unit in (c/a=1/(lambda/a))

(define-param df 1)

;; position of interest ;;

(define-param xbgn 0)

(define-param ybgn 0)

(define-param zbgn 0)

(define-param r-min -0.2)

(define-param r-max (+ -0.2 (/ 20 res)))

(define-param dr (/ 1 res))

(define r-list (parallel-make-list r-min r-max dr))

(define eps-list (list Si3N4 myvacuum))

(define pol-list (list Ex Ey Ez))

(define Ext-list (list r-list eps-list))

(define Int-list (list pol-list))

(define param-info (make-param-list Ext-list Int-list))

(print param-info)

(define param-list (first param-info))

(define Next (second param-info))

(define Nint (third param-info))

(define Nsims (* Next Nint))

(define gamma-list (make-list Next 0))

(print "Number of simulations: "Nsims"\n")

;%%%%% LOCAL COMMUNICATION

;(define nproc (meep-count-processors))

;(define ngroups (min Nsims nproc))

;(define mygroup (meep-divide-parallel-processes ngroups))

;(print "nproc = "nproc"\n")

;(print "ngroups = "ngroups"\n")

;(print "mygroup = "mygroup"\n")

; a list of simulations for the group

;(define my-sims (get-indices Nsims nproc mygroup))

;(print "Total: my-sims = "my-sims"\n")

(define polstring "xyddz")

(define xstring "")

(define rstring "")

(define prev-r r-min)

(define (run-sim current-sim)

(let* ( (index-info (get-ie-indices current-sim Next Nint))

(i-internal (first index-info))

(i-external (second index-info))

;%%%%% Get current simulation parameters

(curr-params (list-ref param-list current-sim))

(curr-r (first curr-params))

(curr-eps (second curr-params))

(curr-pol (third curr-params))

(ft (meep-type curr-pol))

(dt (/ Courant resolution))
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)

(print "index-info "index-info", i-internal "i-internal",

i-external "i-external", curr-params "curr-params"\n")

(set! pml-layers (list

(make pml (direction Z) (thickness dpml))

(make pml (direction Y) (thickness dpml))

;(make pml (direction X) (thickness dpml))

)

)

(set! ensure-periodicity true)

(set! geometry-lattice (make lattice

(size supercell-x supercell-y supercell-z)))

;Bloch perioodicity

(set-param! k-point (vector3 kpt 0 0))

(set! geometry ’())

(set! geometry

(append

(list

(make block (center 0 0 0) (size infinity infinity infinity)

(material (make dielectric (index myvacuum))))

(make block (center 0 0 0) (size MEEPa wY MEEPthk)

(material (make dielectric (index curr-eps)))) ; dielectric Block

; First air holes

(make cylinder (center (* 0.5 MEEPa) L2 0) (radius MEEPr2)

(height MEEPthk) (material (make dielectric (index myvacuum))))

(make cylinder (center (* -0.5 MEEPa) L2 0) (radius MEEPr2)

(height MEEPthk) (material (make dielectric (index myvacuum))))

(make cylinder (center (* 0.5 MEEPa) (* -1 L2) 0) (radius MEEPr2)

(height MEEPthk) (material (make dielectric (index myvacuum))))

(make cylinder (center (* -0.5 MEEPa) (* -1 L2) 0) (radius MEEPr2)

(height MEEPthk) (material (make dielectric (index myvacuum))))

)

(geometric-object-duplicates

(vector3 0 (* (sqrt 3) MEEPa) 0) 0 (/ (- y 2) 2)

(make cylinder (center 0 (+ (* (/ (sqrt 3) 2) MEEPa) L2) 0)

(radius MEEPr3) (height MEEPthk)

(material (make dielectric (index myvacuum))))

)

(geometric-object-duplicates

(vector3 0 (* -1 (* (sqrt 3) MEEPa)) 0) 0 (/ (- y 2) 2)

(make cylinder (center 0 (- (* (/ (sqrt 3) -2) MEEPa) L2) 0)

(radius MEEPr2) (height MEEPthk)

(material (make dielectric (index myvacuum))))

)

(geometric-object-duplicates

(vector3 0 (* (sqrt 3) MEEPa) 0) 0 (/ (- y 2) 2)

(make cylinder (center (* 0.5 MEEPa) (+ (* (sqrt 3) MEEPa) L2) 0)

(radius MEEPr2) (height MEEPthk)

(material (make dielectric (index myvacuum))))

)

(geometric-object-duplicates

(vector3 0 (* (sqrt 3) MEEPa) 0) 0 (/ (- y 2) 2)

(make cylinder (center (* -0.5 MEEPa) (+ (* (sqrt 3) MEEPa) L2) 0)

(radius MEEPr2) (height MEEPthk)

(material (make dielectric (index myvacuum))))
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)

(geometric-object-duplicates

(vector3 0 (* -1 (* (sqrt 3) MEEPa)) 0) 0 (/ (- y 2) 2)

(make cylinder (center (* 0.5 MEEPa) (- (* -1 (* (sqrt 3) MEEPa)) L2) 0)

(radius MEEPr2) (height MEEPthk)

(material (make dielectric (index myvacuum)))) ; First middle hole below

)

(geometric-object-duplicates

(vector3 0 (* -1 (* (sqrt 3) MEEPa)) 0) 0 (/ (- y 2) 2)

(make cylinder (center (* -0.5 MEEPa) (- (* -1 (* (sqrt 3) MEEPa)) L2) 0)

(radius MEEPr2) (height MEEPthk)

(material (make dielectric (index myvacuum)))) ; First middle hole below

)

))

(makeModule 0)

(makeSquircle (* -1 MEEPelpta))

(if (= ft E-stuff) (begin

(set! global-D-conductivity Sigma)

(set! global-B-conductivity 0)))

(set! sources (list (make source ( src

(make custom-src

(src-func (lambda (t) (/ 1 dt)))

(start-time (* -.25 dt))

(end-time (* .75 dt))

(width dt)

(is-integrated? false))

;(make gaussian-src (frequency fcen) (fwidth df))

)

(component curr-pol)

(center xbgn curr-r 0)

(size 0 0 0))

)

)

(print "Current polarization: "curr-pol"\n")

(print (string (string-ref polstring curr-pol))"\n")

(print "Current dielectric constant: "curr-eps"\n")

(print "Current position: "curr-r"\n")

(reset-meep)

(init-fields)

(if (= curr-eps myvacuum) (use-output-directory

(string-append "out_vac_xyr_xp" (number->string xbgn) "_kx"

(number->string kpt))) (use-output-directory

(string-append "out_xyr_xp" (number->string xbgn) "_kx"

(number->string kpt))))

(if (not (= curr-r prev-r)) (begin (set! rstring (string-append rstring "r"))

(set! prev-r curr-r)))

; (if (not (= xbgn 0)) (begin (set! xstring (string-append xstring "x"))

; (set! xbgn 0)))

; (get-filename-prefix "kpt")

(run-until endtime

(at-beginning output-epsilon)

(after-time 0 (to-appended (string-append (string #\e #\x)

(string (string-ref polstring curr-pol)) (string #\k #\x)

(number->string kpt) (string #\r) rstring)
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(at-every dt (in-point (vector3 xbgn curr-r 0) output-efield-x))))

(after-time 0 (to-appended (string-append (string #\e #\y)

(string (string-ref polstring curr-pol)) (string #\k #\x)

(number->string kpt) (string #\r) rstring)

(at-every dt (in-point (vector3 xbgn curr-r 0) output-efield-y))))

(after-time 0 (to-appended (string-append (string #\e #\z)

(string (string-ref polstring curr-pol)) (string #\k #\x)

(number->string kpt) (string #\r) rstring)

(at-every dt (in-point (vector3 xbgn curr-r 0) output-efield-z))))

)

)

)

(do ((j 0 (1+ j))) ((= j Nsims)) (run-sim j))
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Appendix F

Scheme MPB code: photonic bands

;; This CTL file is to calculate the dispersion relation for "Si3N4 Squircle W1 waveguide structure" by MPB

;; Structure parameters : (1) Lattice constant : a

;; (2) Air-hole radius (r1: Squircle size) (r2: Second-line holes) (r3: all the other holes)

;; (3) Structure thickness : thk

;; (4) Width of air-line-slot: wid

;; (5) Ellipcity of squircles : Alpha (larger value gives more elongated squircle in x-direction)

;; (6) Shift of the squircles in y-direction : s1

;; (7) Shift of the second line of holes in y-direction : s2

;; (8) offset : Additional dielectric slap between the first line squircles and air line-slot

;; (9) Squareness : Nsq

;; (*) Sinusoidal modulation of the edge of th air line-slot (Alligator structrue) : Amplitude

;; W1 waveguide structure parameters ;;

(define pi (* 2 (acos 0))) ; pi

(define ix_SiN 1.9935) ; index of Si3N4

(define myvacuum 1)

;(define-param kst 0.42)

;(define-param ked 0.47)

(define-param kstart 0.4)

(define-param kend 0.4997)

;; PhC dimensions ;;

(define-param Nsq 4) ; (Only even number) Nsq = 2 -> Circle // Nsq = 4 -> Squircle

(define-param amp 0)

(define-param wid 114)

(define-param thk 200)

(define-param a 373)

(define-param y 8) ; the number of unitcell in y-direction

(define-param r1 110) ; radius of the 1st air-holes

(define-param r2 110) ; radius of the 2nd air-holes

(define-param r3 110) ; radius of all the other air-holes

(define-param s1 0) ;minimum distance between air hole and air slot

(define-param s2 0) ; minimum distance between 1st air hole and 2nd air hole

(define-param offset 100)

(define-param slot (* 2 (+ amp wid)))

(define-param alpha 1.15) ; ellipcity of the 2nd holes

;; define unit conversion function ;;
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(define (simUnits x) (/ x a))

;; Unit conversion ;;

(define-param MPBthk (simUnits thk))

(define-param MPBa (simUnits a))

(define-param MPBr1 (simUnits r1))

(define-param MPBr2 (simUnits r2))

(define-param MPBr3 (simUnits r3))

(define-param MPBs1 (simUnits s1))

(define-param MPBs2 (simUnits s2))

(define-param MPBslot (simUnits slot))

(define-param MPBoffset (simUnits offset))

(define-param elpta (* alpha r1))

(define-param elptb (/ r1 alpha))

(define-param MPBelpta (simUnits elpta))

(define-param MPBelptb (simUnits elptb))

; width of blocks in x-direction

(define-param wX 1)

; distance between central line and the center of 1st air hole (squircle)

(define-param L1 (+ MPBs1 MPBoffset (/ (sqrt 3) 2)))

; distance between central line and the center of 2nd air hole

(define-param L2 (+ MPBs2 MPBoffset (sqrt 3)))

(define-param wY (+ (* (sqrt 3) y) (* 2 L2))) ; width of blocks in y-direction

(define-param sy wY) ; the computational size in y-axis

;; AUX Setting ;;

;; AUX settings ;;

(define-param res 20)

(set-param! resolution res)

(define dx (/ 1 res 10))

(define-param kpts 10)

(define-param nbands 24)

;; Cell dimensions ;;

(define sx wX)

(define-param sz 10)

(set! geometry-lattice (make lattice (size sx sy sz)))

;; Create geometry ;;

(define (drawBlock x)

(let ((dy (+ wid (* amp (cos (* 2 pi x))))))

(let ((cy (/ dy 2)))

(list

(make block

(center x (simUnits cy) 0)

(size (* 1.1 dx) (simUnits dy) (simUnits thk))

(material (make dielectric (index myvacuum)))

)

(make block

(center x (* -1 (simUnits cy)) 0)

(size (* 1.1 dx) (simUnits dy) (simUnits thk))

(material (make dielectric (index myvacuum)))

)

)

)
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))

(define (drawSquircle x)

(let ((dy (* 2 MPBelptb (expt (- 1 (/ (expt x 4) (expt MPBelpta 4))) (/ 1 4)))))

(list

(make block

(center (- x 0.5) L1 0)

(size (* 1.1 dx) dy MPBthk)

(material (make dielectric (index myvacuum)))

)

(make block

(center (- x 0.5) (* -1 L1) 0)

(size (* 1.1 dx) dy MPBthk)

(material (make dielectric (index myvacuum)))

)

(make block

(center (+ x 0.5) L1 0)

(size (* 1.1 dx) dy MPBthk)

(material (make dielectric (index myvacuum)))

)

(make block

(center (+ x 0.5) (* -1 L1) 0)

(size (* 1.1 dx) dy MPBthk)

(material (make dielectric (index myvacuum)))

)

)

))

(set! geometry ’())

(set! geometry

(append

(list

(make block (center 0 0 0) (size sx sy MPBthk) (material (make dielectric (index ix_SiN)))) ; dielectric Block

;(make cylinder (center 0.5 L1 0) (radius MPBr1) (height MPBthk)

; (material (make dielectric (index myvacuum)))) ; First air hole right above

;(make cylinder (center -0.5 L1 0) (radius MPBr1) (height MPBthk)

; (material (make dielectric (index myvacuum)))) ; First air hole left above

;(make cylinder (center 0.5 (* -1 L1) 0) (radius MPBr1) (height MPBthk)

; (material (make dielectric (index myvacuum)))) ; First air hole right below

;(make cylinder (center -0.5 (* -1 L1) 0) (radius MPBr1) (height MPBthk)

; (material (make dielectric (index myvacuum)))) ; First air hole left below

(make cylinder (center 0 L2 0) (radius MPBr2) (height MPBthk)

; (material (make dielectric (index myvacuum)))) ; First air hole right above

(make cylinder (center 0 (* -1 L2) 0) (radius MPBr2) (height MPBthk)

; (material (make dielectric (epsilon 1)))) ; First air hole left above

)

(geometric-object-duplicates (vector3 0 (sqrt 3) 0) 0 (/ y 2)

(make cylinder (center 0.5 (+ (/ (sqrt 3) 2) L2) 0) (radius MPBr3) (height MPBthk)

(material (make dielectric (index myvacuum))))

)

(geometric-object-duplicates (vector3 0 (sqrt 3) 0) 0 (/ y 2)

(make cylinder (center -0.5 (+ (/ (sqrt 3) 2) L2) 0) (radius MPBr2) (height MPBthk)

(material (make dielectric (index myvacuum))))

)

(geometric-object-duplicates (vector3 0 (sqrt 3) 0) 0 (/ y 2)

(make cylinder (center 0 (+ (sqrt 3) L2) 0) (radius MPBr2) (height MPBthk)

(material (make dielectric (index myvacuum))))
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)

(geometric-object-duplicates (vector3 0 (* -1 (sqrt 3)) 0) 0 (/ y 2)

(make cylinder (center 0.5 (- (/ (sqrt 3) -2) L2) 0) (radius MPBr2) (height MPBthk)

(material (make dielectric (index myvacuum))))

)

(geometric-object-duplicates (vector3 0 (* -1 (sqrt 3)) 0) 0 (/ y 2)

(make cylinder (center -0.5 (- (/ (sqrt 3) -2) L2) 0) (radius MPBr2) (height MPBthk)

(material (make dielectric (index myvacuum))))

)

(geometric-object-duplicates (vector3 0 (* -1 (sqrt 3)) 0) 0 (/ y 2)

(make cylinder (center 0 (- (* -1 (sqrt 3)) L2) 0) (radius MPBr2) (height MPBthk)

(material (make dielectric (index myvacuum)))) ; First middle hole below

)

))

(define (makeModule x)

(if (>= x 1)

’()

(begin

(set! geometry (append geometry (drawBlock x)))

(makeModule (+ x dx))

)

)

)

(define (makeSquircle x)

(if (>= x MPBelpta)

’()

(begin

(set! geometry (append geometry (drawSquircle x)))

(makeSquircle (+ x dx))

)

)

)

(makeModule 0)

(makeSquircle (* -1 MPBelpta))

(define pork (vector3 0.4998 0 0))

(define chicken (vector3 0.4999 0 0))

(define beef (vector3 0.5 0 0))

(define Delicacy (list pork chicken beef))

(define Gamma (vector3 kstart 0 0))

(define M (vector3 kend 0 0))

(define Normal (interpolate kpts (list Gamma M)))

(set! k-points (append Normal Delicacy))

(set! num-bands nbands)

(set! tolerance 1e-9)

;(run-tm display-group-velocities fix-efield-phase output-efield)

(run-zeven display-group-velocities

(output-at-kpoint beef fix-efield-phase output-efield-x output-efield-y output-efield-z ))
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