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Abstract

This thesis studies several aspects of the quantum annealing (QA) computing approach.

Quantum annealers’ primary objective is to solve hard computational optimization prob-

lems. Because these optimization problems are in the NP-Hard complexity class, they

are of great interest in several fields. One of the leading open questions concerning quan-

tum annealers asks whether they will outperform other classical methods for solving these

problems; Some aspects of this question are addressed in this thesis. The first part of the

thesis investigates whether quantum annealing provides improved performance for solving

a particular family of NP problems, called the Quadratic Knapsack Problem (QKP), using

the D-Wave Quantum Annealer. The performance metrics used to assess QKP solving are

the solution quality and the total runtime, and are benchmarked against other classical

solvers.

Furthermore, we extend our research on quantum annealers to propose two use cases

for such systems. One is for Blockchain technology, and the second is in the area of

quantum chaos. For the first use case of QA, an application for Blockchain’s Proof of

Work (PoW) is proposed, based on having hard optimization problems as an alternative

to PoW hashing challenge, and using quantum annealers as solvers. For the second use

case of QA, we propose simulating quantum chaos on the D-Wave Quantum Annealer to

study the transition between the deep quantum realm and the classical limit in a chaotic

system, and obtain insights into the “quantumness” of quantum annealers.
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Chapter 1

Introduction

1.1 Overview

This thesis is motivated by the possible advantage of using the Quantum Annealing al-

gorithm over classical methods for solving NP-Hard optimization problems. NP-Hard

problems are of importance in a wide range of industrial and research fields. However, pre-

vious studies show that solving these problems using exact classical algorithms is highly

inefficient, requiring an exponential amount of time. Hence, the interest in finding better

algorithms for solving these problems is growing. One of the recently studied algorithms

for this purpose is the quantum annealing algorithm. Quantum annealing was first pro-

posed as a method to solve combinatorial optimization problems in [ACd89]. The proposed

procedure is based on using the quantum tunneling effect to search for the global minima

of the optimization problem while escaping from the local minima.

The interest in solving NP-Hard optimization problems using Quantum Annealing is

due to the fact that it seems to provide a speed-up compared to the existing classical

algorithms in some cases [AL18]. However, the performance of Quantum Annealing is

still an open debate. Quantum Annealing is not always guaranteed to provide a quantum

speed-up; in some cases, it can perform similarly or even worse than the classical methods

[AKR10], implying that the Quantum Annealing algorithm is problem-dependent. Hence,

empirical testing is needed for characterizing Quantum Annealing performance and whether
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it provides an advantage over other methods for solving a particular family of a problem

with a consistent structure. This research aims to study if quantum advantage is realized

for solving a particular class of the NP-Hard problems, called the Quadratic Knapsack

Problem (QKP), using the Quantum Annealing algorithm. The Canadian company D-

Wave Systems, founded in 2000, is aiming to physically implement the Quantum Annealing

algorithm for scalable quantum computers via the Adiabatic Quantum Computing (AQC)

model. Their Quantum Annealer solvers are used to test Quantum Annealing performance

for solving QKP in the Chapter (2). The second aim is to study Quantum Annealers for

potential use cases, specifically, for Blockchain technology (chapter 3), and in the field of

Quantum Chaos (chapter 4).

In the following sections, we provide the necessary background regarding Adiabatic

Quantum Computing, Quantum Annealing, D-Wave’s Quantum Annealer architecture,

and the complexity class of the problems they solve. At the end of this chapter, we provide

an overview of the structure of this thesis.

1.2 Adiabatic Quantum Computing

The Adiabatic Quantum Computing (AQC) model exploits the adiabatic theorem to solve

an optimization problem. The adiabatic theorem states that given an initial system in the

nth eigenstate (typically the ground state for an optimization problem), the final state of the

system remains in the same eigenstate if the system is evolved “adiabatically” [McG14].

For a system to evolve adiabatically, the evolution process should happen very slowly,

such that the global changes in the system can take place without any changes happening

locally in the system [JP94]. Hence, the AQC method can solve an optimization problem

by evolving an initial Hamiltonian that is easily prepared in its ground state to a final

Hamiltonian that remains in the system’s ground state, which encodes the solution to

the optimization problem. In its ideal form, AQC allows universal quantum computation,

which means it can simulate other universal quantum computing models like the circuit

model, with at most polynomial resource overhead [AvDK+08].

Typically, the universal AQC model is referred to as a “non-stochastic” model; it can

simulate non-stochastic Hamiltonians that have both positive and negative off-diagonal
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elements in their matrix representation. This allows the AQC model to solve any Turing-

computable problem, which makes the model universal [McG14]. Hence if a problem can be

designed on the circuit model, it can be mapped to the AQC model. Also, it is important

to note that the computation on the AQC model does not have to occur in the ground

energy state, which means that the problem could start with any initial Hamiltonian nth

eigenstate and still end up in the same eigenstate of the final Hamiltonian according to the

adiabatic theorem. However, because the AQC is commonly used for solving optimization

problems, the initial Hamiltonian is then prepared in its ground state, causing the final

Hamiltonian to end up in the ground energy state as well, encoding the solution to the

optimization problem [McG14].

Quantum Annealers Hardware tries to incorporate the AQC algorithm to solve com-

putational problems by encoding the optimization problem via evolving the system to the

ground states of final Hamiltonian. However, the physical realization for a Quantum An-

nealing system does not insist on adiabaticity condition due to the physical limitations of

the hardware [VL17]. Hence, the Quantum Annealing model is a limited realization of the

universal AQC model. Moreover, Quantum Annealing is a non-universal model as it can

only simulate “stochastic” Hamiltonians, which can only have non-positive off-diagonal

elements in their matrix representation [HBCT17].

Three main studies greatly influenced the development of Adiabatic Quantum Com-

puting (AQC) in the literature:

1. The Hamiltonian-to-Circuit construction that Richard Feynman introduced in 1985

[Fey82], then later developed by Kitaev in 2002.

2. Farhi et al. in their study: Quantum computation by adiabatic evolution, as they

were the first to develop the quantum adiabatic algorithms.

3. The 2004 study by Aharonov et al. [AvDK+08], which showed that adiabatic quan-

tum computing is polynomially equivalent to the standard quantum circuit model.

Before describing the AQC model in more detail, we give a very brief description of

the quantum circuit-based model for comparison. However, the main focus of the chapter
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is the AQC model. First, because both models are universal descriptions of the quantum

computing model, it is only appropriate to present the fundamental similarities between

them before discussing their differences. In the general description, the building block of

any quantum computing model is the qubit, a two-level quantum state. A convenient way

to present the pure quantum state of the qubit is in the computational basis {|0〉 , |1〉},
which is typically represented by the vector state |ψ〉 in a Hilbert space [SC95];

|ψ〉 = α |0〉+ β |1〉 →

(
α

β

)
(1.1)

In Eq. (1.1), α and β are complex values of the probability amplitudes of the qubit

state. These probability amplitudes determine the qubit’s state being measured as 0 or 1,

and they need to be normalized for the qubit state to be a valid quantum state [DW19].

|α|2 + |β|2 = 1 (1.2)

Furthermore, this description can generalized to describe a system state |Ψ〉 with mul-

tiple qubits as;

|Ψ〉 =
N∑
i=0

αi |ψi〉 (1.3)

N∑
i=0

|αi|2 = 1

An alternative representation to the vector state in Eq. (1.3), is the density matrix

representation, which will become relevant when we discuss quantum chaos in Chapter

(4). The quantum state is written as the density matrix ρ;

ρ = |ψ〉 〈ψ| (1.4)

The representation in Eq. (1.3) is an ideal quantum state described by pure states;

however, it is not always possible to construct states that are purely deterministic, meaning
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that the system initially might be in a probabilistic superposition of these pure states.

Hence, a more general state vector that can describe this probabilistic superposition of

pure states is called the “mixed state” and it can be represented by the density matrix

[Mer07];

ρ̂ =
∑
i

pi |ψi〉 〈ψi| (1.5)

where, ∑
i

pi = 1 =, 0 ≤ pi ≤ 1

Performing operations on a quantum state to evolve the system is done by applying

unitary operations on the quantum state; the unitary operator Û can be represented as:

|ψ(t2)〉 = Û(t2, t1) |(t1)〉 (1.6)

For the operator U to be unitary, Û Û † = 1 needs to hold.

Finally, the last piece to complete the description of the quantum computing model is

the system measurement, which is a crucial part of doing quantum computing. Because

of the probabilistic nature of the measurement outcomes that corresponds to a physical

observable A in the system, the measured value of any observable in the system must be

calculated as an expectation value. To every measurable physical quantity in the system,

there exists a Hermitian operator Â for it. The probability p of measuring the system in

the specific state m is presented as [Gri60];

p(m) =< ψ|Âm
†
Âm|ψ > (1.7)

In the quantum circuit model, as shown in Fig. (1.1), the horizontal lines follow the

qubits through time, and the boxes represent quantum gates that can operate on single or

multiple qubits. The state of n qubits evolves by these unitary operations in discrete time

steps. These quantum gates operating on the qubits are often represented by matrices, as

they act on qubits represented by state vectors [DW19]. The state |Ψ0〉 in Fig. (1.1) is the
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input state in the tensor product of the subsystems |ψ1〉⊗ |ψ2〉, as shown, the qubits states

are changed after each operation in discrete time steps, and finally, |Ψ3〉 is the output state

[Mer07].

Uf

H

H X

Figure 1.1: Quantum ciruit gate model

Unlike the circuit model, there are no gates or discrete time steps in AQC. Instead, as

shown in Fig. (1.2), the qubit states gradually evolve according to certain forces represented

by the Hamiltonian H(t) which makes the system evolve from the initial Hamiltonian H0

to the final Hamiltonian Hf . The system evolution in AQC is continuous and is governed

by Schrodinger’s equation in Eq. (1.8), where the state of the n qubits at time t is defined

by Ψ(t) [McG14].

i~
∂

∂t
Ψ(t) = HΨ(t) (1.8)
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t

H0

Hf

H(t) = (1-s)H0+sHf

Figure 1.2: Adiabatic Quantum Computing model

1.2.1 The Adiabatic Quantum Algorithm

In Farhi et al. [FGG+01], the quantum adiabatic algorithm is proposed for solving var-

ious instances of satisfiability problems (SAT) (known to be NP-Hard), using adiabatic

evolution. Moreover, they suggested that the adiabatic quantum algorithm can solve hard

optimization problems as a formulation of an energy minimization problem.

The algorithm for solving an optimization problem P is described as follows:

(i) The system is initialized into the ground energy state of an easily prepared Hamil-

tonian H0.

(ii) The system is then adiabatically evolved for time T , to a more complex final Hamil-

tonian Hf , such that its ground energy state encodes the solution to the problem.
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The final Hamiltonian evolves according to:

H(t) = (1− t

T
)H0 +

t

T
Hf = (1− s)H0 + sHf (1.9)

This adiabatic quantum algorithm exploits the quantum adiabatic theorem. The the-

orem in its original form, formulated by Max Born and Vladimir Fock (1928), is stated as

follows:

“A physical system remains in its instantaneous eigenstate if a given perturba-

tion is acting on it slowly enough and if there is a gap between the eigenvalue

and the rest of the Hamiltonian’s spectrum.”[BF28], [Hen13]

This means that if a system is in the ground eigenstate of H0, it will remain in the

ground eigenstate of Hf at the end of the process if the change is adiabatic. For the

evolution to be adiabatic, the time over which the Hamiltonian changes needs to be much

larger than the characteristic time scale for changes in the system.

To achieve an adiabatic change, the time scale of the change must be proportional to

the inverse of the minimum energy gap between the ground state E0(s) and the lowest

excited state E1(s) [FGG+01].

T>> 1
g2min

gmin = min0≤s≤1(E1(s)− E0(s)).
(1.10)

Consequently, the total run time for the adiabatic change depends on the inverse square

of the energy gap. Hence, finding gmin is important for assessing the capabilities of adiabatic

quantum computing. From this relationship, the closer together the two lowest energies

get, the slower we have to run the algorithm. In case the levels cross, sending gmin → 0,

the running time will T →∞. However, finding gmin to assess the performance of AQC is

as difficult as solving the original problem. Hence, bounds on gmin are typically considered

when assessing the performance of AQC optimization.

This implies that the adiabatic quantum algorithms for optimization sometimes fail for

some NP-hard problems, as the ground energy and the first excited energy often do get
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exponentially close to each other. Hence, to avoid the level crossing, the algorithm needs

to run for an exponentially long time to remain in the ground state. Several studies in

the literature [FGGN08], [VDMV01], [JRS07], [AC09], [FGG+09] explored the conditions

under which the AQC algorithm fails. [VDMV01] showed that it is problem-dependent,

such that the energy gap can become exponentially small for hard-designed instances.

1.3 Quantum Annealing

Quantum Annealing (QA) is designed to solve hard computational optimization problems,

where the solution is encoded into the final ground state of a time-dependent quantum

Hamiltonian. QA performs a slow adiabatic process to let the initial ground state of the

Hamiltonian evolve to the final ground state of the Hamiltonian that gives the desired solu-

tion of the problem [DC08]. However, unlike the universal AQC model, quantum annealing

discounts various physical aspects of the system environment, and it does not necessarily

insist on following the adiabatic process, making it a non-universal model [HBCT17].

Quantum Annealing can be compared to Simulated Thermal Annealing, which is used to

find the optimal solution via thermal fluctuations. In Simulated Annealing, the algorithm

implements the metal-cooling analogy to simulate the annealing procedure. Random points

are generated in the neighborhood of the current best optimal point, and the problem

functions are evaluated at those points. If the evaluated value obtained at one of these

points is better (or lower) than its current best value, then the algorithm accepts this point,

and the better value is updated accordingly. However, the point is sometimes accepted or

rejected if its value is worse (or higher) than its best-known value so far. The decision of

accepting or rejecting a point is probabilistic and is based on the probability value of the

density function in the Bolzman-Gibbs distribution [Aro04].

Quantum Annealing is similar to Simulated Annealing in the sense that the temperature

parameter is analogous to the tunneling field strength in Quantum Annealing, since it

exploits quantum tunneling on the quantum scale. The idea behind producing the quantum

tunneling effect by a transverse field to help evolve the system into its ground state was

first proposed in [RCC89]. In simulated annealing in fig (1.3), the temperature determines

the likelihood of moving to a state of upper “energy” from one current state. The weak
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thermal fluctuations allow the system to navigate its energy landscape and reach a low-

energy configuration. However, the strength of the transverse field in quantum annealing

determines the quantum-mechanical likelihood to manipulate the amplitudes of all states in

superposition. The qubits need not get trapped in energy minima that are not actually the

solution (local minimum) to solve the optimization problem. Classically, if the qubit gets

trapped in a local minimum, it would need extra energy to climb out of the local minimum

to reach the global minimum. However, with quantum tunneling, qubits can tunnel through

these barriers as they look for the lowest energy minimum [TC15]. Hence, the advantage

of Quantum Annealing over the classical Simulated Annealing lies in the exploitation of

quantum tunneling. However, this does not guarantee that Quantum Annealing will always

perform better than the classical methods because of the existence of exponentially small

minimum energy gaps gmin for some hard instances.

In Chapter (2), we will compare the performance of simulated annealing to quantum

annealing using the D-Wave Quantum Annealer.
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Figure 1.3: Simulated annealing versus quantum annealing

To perform Quantum Annealing, quantum fluctuations are induced by adding a trans-

verse magnetic field in the x-direction, represented by the Pauli matrix σ̂
(x)
i acting on qubits

i, obtaining the time-dependent N-qubit Hamiltonian [McG14]

H(t) = Γ(t)
∑
i=1

∆iσ
x
i + A(t)Hf , (1.11)

such that
∑

i=1 ∆iσ
x
i is a suitably chosen non-commuting quantum tunneling Hamiltonian,

and its ground state is a superposition of the states 0 and 1. The ∆i parameter is introduced
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to account for the non-zero probability of the qubit tunneling between the two potential

wells associated with the states. The system is easily initialized in this state, and during

quantum annealing, the transverse term Γ in Eq. (1.11) is gradually decreased from one

to zero, and A of the final Hamiltonian is increased from zero to one, thus ending up in

the ground state of Hf according to the adiabatic theorem.

1.3.1 Combinatorial Optimization Problems

The class of problems we are interested in are the Combinatorial Optimization prob-

lems, which are concerned with finding an optimal configuration of objects from a finite

set of objects that optimize the cost of the problem [PS98]. This set of problems includes

the infamous Traveling Salesman problem, satisfiability problems, and many others. For

example, in the Traveling Salesman Problem, given a set of cities and the distance between

each possible pair of them, an optimization algorithm seeks to find the best possible con-

figuration of paths between these cities under the constraint that a city must be visited

only once, and the traveling path must return to the starting point at the end [GG78].

Combinatorial optimization problems are in the NP-Hard complexity class, making them

of huge interest in several fields, including artificial intelligence, machine learning, lattice

protein models in biology, and many other areas in industry and businesses.

To understand the complexity class of the combinatorial optimization problems, thr P,

the NP, NP-complete, and NP-hard classes are defined as follows [Häm06]:

1. P (Polynomial) complexity class contains all decision problems that are easy to solve

and have deterministic polynomial-time algorithms.

2. A problem in the NP (Non-deterministic Polynomial) complexity class is a decision

problem that is hard to solve in polynomial time, but easy to verify a given answer

in polynomial time.

3. NP-complete problems, shown in Fig. (1.4), are also decision problems that belong

to both NP and NP-hard classes. As a result, NP-Complete problems are verifiable in

polynomial time and any NP problem can be reduced to it in polynomial time. NP-

complete problems are the hardest problems in the NP complexity class. [MRKA18].
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4. The NP-hard problems are not necessarily decision problems, so they don’t need

to be necessarily in the NP class as shown in Fig. (1.4), and we cannot prove that

we can verify their solutions in polynomial time. In order to define a problem A as

NP-hard, there should exist an NP-complete problem B, such that B can be reduced

to A in polynomial time.

Figure 1.4: complexity classes provided that P 6= NP

The optimization version of a combinatorial optimization problem is NP-hard if its

decision version is proved to be an NP-complete problem.

For example, the question that asks ‘Given a graph G that is defined by G = (V,E),

with a finite set of vertices V and a set of edges E that connects each pair of vertices; is

there a clique of size K, defined as a complete subgraph of G, that exists in the graph?’ is

an NP-Complete problem with the answer ‘yes’ or ‘no’ [BBPP99]. However, the NP-hard

problem form of this problem seeks to find the largest clique in the graph G.

A NP-Hard problem is formulated as follows [Häm06]:

Given an objective function f : Dn− > R defined on n variables x = x1...xn
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from some discrete domain D, find an assignment of value to x that minimizes

f(x).

It is not difficult to cast a given NP-Hard problem into an optimization framework expressed

in binary (Boolean) variables. Let there be an optimization problem of the form [McG14]:

E(~s) = −
∑
i

hisi +
∑
i,j>i

Jijsisj (1.12)

where si = ±1, for any given set of hi and Jij ranges from -1 to 1, and there exists at

least one optimal solution ~s that minimizes the objective E. This problem is a NP-hard

problem.

To solve these kinds of problems with Quantum Annealers, a physical problem has to be

identified, where some Hamiltonian represents the objective function. The following sub-

section discusses the Ising Hamiltonian on D-Wave, used to express the objective function

in (1.12).

1.3.2 Quantum Annealing on D-Wave

The D-Wave 2000Q implements the quantum annealing algorithm using the following

Hamiltonian:

Hising = A(s)H0 +B(s)Hf (1.13)

In Eq. (1.13), A(s) and B(s) are the driving functions and are changed over time. The H0

is the starting Hamiltonian, and the Hf is the final Hamiltonian, which is the objective

function of the problem that the algorithm seeks to find the ground state of it. Typically,

the annealing process begins at s = 0 with A(s) >> B(s) and ends at s = 1 with

A(s) << B(s). The system is slowly annealed by decreasing A and increasing B. Therefore,

as annealing happens, the Hamiltonian’s problem is introduced, and the influence of the

initial Hamiltonian is reduced. At the end of the anneal, the eigenstate of the problem

Hamiltonian is reached, making the final Hamiltonian’s lowest energy state the answer to

the problem we are trying to solve.
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For the D-Wave system, the Hamiltonian is the sum of two terms, the initial Hamilto-

nian and the final Hamiltonian, and it is represented as [McG14]:

Hising = −A(s)

(∑
i

σ̂(i)
x

)
+B(s)

(∑
i

hiσ̂
(i)
z +

∑
i>j

Ji,jσ̂
(i)
z σ̂

(j)
z

)
(1.14)

In the first part of the Hamiltonian, the initial system is prepared in the ground energy

state by applying a strong transverse magnetic field represented by the Pauli matrix σ̂
(i)
x in

Eq. (1.17), and all qubits i are in a superposition state of 0 and 1. The initial Hamiltonian

is diagonal in the Hadamard basis, which is an alternative basis to the computational basis

|0〉 and |1〉 in the z basis, represented by |+〉 and |−〉. The Hadamard basis states can be

prepared by applying the Hadamard operation in Eq. (1.20) to the computational basis

states to create a superposition;

|+〉 =

(
1√
2
1√
2

)
(1.15)

|−〉 =

(
1√
2

− 1√
2

)
(1.16)

The Pauli matrices operating on qubits

• Pauli-X is equivalent to the classical NOT gate. It maps |0〉 to |1〉, and |1〉 to |0〉.

σx =

(
0 1

1 0

)
(1.17)

• Pauli-Y maps |0〉 to i |1〉, and |1〉 to −i |0〉

σy =

(
0 −i
i 0

)
(1.18)

• Pauli-Z maps |1〉 to − |1〉, and does not change |0〉

σz =

(
1 0

0 −1

)
(1.19)
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Hadamard Operation

H =
1√
2

(
1 1

1 −1

)
(1.20)

H |0〉 =
1√
2
|0〉+

1√
2
|1〉 = |+〉

H |1〉 =
1√
2
|0〉 − 1√

2
|1〉 = |−〉

Therefore, to start the annealing process at t = 0, the system starts from the lowest

energy eigenstate of the initial Hamiltonian H0 in the hadamard basis, given by;

|+(t = 0)〉 =
1
√

2
N
⊗Ni=1 (|0〉i + |1〉i) (1.21)

In the second term of the Hamiltonian in Eq. (1.13), i and j represent two neighboring

qubits, and interactions between them are quantified by coupling strengths Jij. The linear

coefficients corresponding to qubit biases are hi, and σ
(i),(j)
z in Eq. (1.19) are Pauli matrices

that represent the local longitudinal magnetic fields acting upon qubits i and j, respectively,

according to the qubit biases hi. This Ising model is shown to be in the NP-Hard complexity

class, and it could be mapped to any other NP-Hard problem in polynomial time. Hence,

the objective function in Eq. (1.12) can be expressed by the Ising model.

D-Wave supports two equivalent formulations for the objective functions:

1. The Ising model

2. The Quadratic Unconstrained Binary Optimization model (QUBO).

Ising model:

Eising(s) =
∑
i=1

hisi +
∑
i<j

Ji,jsisj (1.22)

The variables in Eq. (1.22) are the qubit states that correspond to +1 and -1 values,

which could be the state “spin up” or “spin down”.
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However, because we deal with computational optimization problems, it is more con-

venient to represent those problems using logical values 0, 1 rather than −1, 1. Moreover,

as mentioned, D-Wave also supports the QUBO model, which can be trivially converted

to and from the Ising model.

QUBO model:

f(x) =
∑
i

Qi,ixi +
∑
i<j

Qi,jxixj (1.23)

Q is an upper-diagonal matrix, which is an N x N upper-triangular matrix of real

weights.

QUBO can also be expressed more concisely:

Min xTQx , x ∈ {0, 1}

Several hard optimization problems can be properly encoded into the QUBO model.

Some of these problems are Quadratic Assignment Problems, Constraint Satisfaction Prob-

lems (CSPs), Task Allocation Problems, P-Median Problems, Quadratic Knapsack Prob-

lems, Multiple Knapsack Problems, Set Partitioning Problems, and more [GKD19]. In this

thesis, we will focus on the Quadratic Knapsack Problem.

1.3.3 D-Wave architecture

When a QUBO problem is submitted to D-Wave’s Quantum Processing Unit (QPU), it

gets translated and embedded on a physical system. D-Wave’s architecture is simply a

lattice of interconnected qubits that are connected via “couplers”. However, the qubits in

the current topology are not fully connected. This is something that should be considered

while mapping the problem onto the physical topology, although it is usually handled

automatically by the D-Wave software. The first topology D-Wave developed was the

“Chimera” topology. At the end of year in 2020, they released the new topology “Pegasus”

[Doc].
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The D-Wave 2000Q QPU consists of a 16×16 grid of unit cells on the Chimera topology.

The unit cell on the Chimera graph is a K4,4 bipartite graph, as shown in Fig. (1.5).

Each unit cell on the Chimera graph has eight qubits, and each qubit is connected to its

neighboring qubit (represented by the purple dots in the figure) by internal couplers (the

green lines in the figure), resulting in each qubit being connected to 4 other orthogonal

qubits via these internal couplers. Different unit cells are connected by external couplers

(the blue lines in the figure), and they connect the parallel qubits in the same horizontal

or vertical line. The external couplers give more freedom to the qubit, allowing it to be

connected to a maximum of 6 qubits.

Figure 1.5: Chimera topology graph, showing four unit cells.

D-wave’s new QPU is called the Advantage System, and it implements the “Pegasus”

topology [Doc]. This new topology is also a lattice of a 16×16 grid of unit cells but is more

complicated than the Chimera topology. In addition to the internal and external couplers,
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Pegasus adds “Odd couplers”, which allows each qubit to be connected to a maximum of

15 qubits.

1.4 Structure of Dissertation

The general theme of this thesis is the study of Quantum Annealers and their potential

use cases.

Chapter (2) investigates whether Quantum Annealing provides improved performances

for solving a particular family of NP problems, called the Quadratic Knapsack Problem

(QKP), by evaluating the solution quality and the total runtime. Furthermore, transform-

ing the native QKP problem to D-Wave’s QUBO form and the impact of this transforma-

tion on the problem’s complexity are also studied.

In Chapter (3), we propose a use case for Blockchain’s Proof-of-Work (PoW) using

Quantum Annealing. Our proposal involves formulating a PoW challenge based on the

NP-hard optimization problem QUBO, with the goal of reducing blockchain’s energy waste

and possibly improving its decentralization and its scalability. The main challenge of this

study is to formulate a good PoW that satisfies the hardness adjustability property, such

that the PoW challenge achieves the desired difficulty. Expanding on the results found in

Chapter (2), the relationships found between the problem’s parameter and runtime is used

as tuning parameter for the PoW difficulty.

Chapter (4) discusses the second use case of QA. We propose simulating quantum chaos

on a quantum annealing system like D-Wave. Quantum Annealers with large numbers of

qubits may be better suited than small-scale circuit-based quantum computers for simu-

lating chaotic quantum models to study the chaotic transition between the deep quantum

realm to the classical limit, This proposal studies the well-known kicked Ising model, which

displays many-body quantum chaos, and is naturally mapped onto the Quantum Annealing

hardware.

Finally, Chapter (5) summarizes the main results found in this thesis and discusses

potential future work.
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Chapter 2

Quantum Annealing for Solving

QKP: Computational Analysis

2.1 Overview

Solving NP-hard combinatorial optimization problems is of enormous interest in several

fields, including artificial intelligence, machine learning, and many other areas in industry

and businesses. However, the question of whether Quantum Annealing (QA) computing

will exceed the classical methods for solving such problems is still an open one. Our re-

search investigates whether Quantum Annealing provides increased performance for solving

a particular family of NP problems, called the Quadratic Knapsack Problem (QKP), re-

garding the solution quality and the total runtime. Furthermore, transforming the native

QKP problem to the Quantum Annealer D-Wave’s QUBO form is also studied, and the

impact of this transformation on the problem’s structure and complexity.

2.2 Background

Unlike exact algorithms, metaheuristics algorithms come with no theoretical proofs, which

makes computational evaluation important. Metaheuristic solvers, like Quantum Anneal-

ers, are evaluated for their solution quality, and computation time [ZE81]. In this project,
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we obtain empirical results from solving the NP-Hard Quadratic Knapsack Problem (QKP)

on the D-Wave QA solver and comparing it against classical solvers.

2.2.1 Mapping QKP onto Quantum Annealers

An example of the Quadratic Knapsack Problem arises in telecommunication, which was

first discussed in [Wit75]. In Fig. (2.1), the locations of a set of satellite stations must be

selected in a way that maximizes the global traffic between them while respecting a budget

constraint. This problem can be extended to other applications, for example, it could be

used to optimize the distribution of freight handling terminals, railway stations and many

others.

Figure 2.1: QKP example for satellite stations locations selection

QKP In scalar form [Pis07];
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Max f

{
n∑
i=1

n∑
j=1

qijxixj : x ∈ X, x binary

}

s.t X ≡

{
x ∈ {0, 1}n :

n∑
i=1

wixi ≤ c;xi ∈ {0, 1}

}
for i = 1, . . . , n

(2.1)

Applying this formulation on the mentioned satellite example in Fig. (2.1), qij would

be the link benefit, and it’s realized whenever both sites i and j are selected for the com-

munication facilities. This link benefit could be a measure of revenue, service improvement

or both combined.

The objective is to determine which sites are the best out of a mass of potential candi-

dates, based on some measure of goodness, while respecting some constraints, which could

be financial, geographical or both.

Equivalently, QKP In the matrix form [Pis07];

Max xTQx

s.t wTx ≤ c, x binary (2.2)

We see that QUBO and Ising formulations are unconstrained functions; however, QKP

is a constrained function that involves inequalities. To transform the constrained NP

optimization problem to unconstrained Ising, a common approach in the literature is to

add the constraint as a penalty term to the objective function, such that this term adds

a positive energy cost to any proposed solutions that exceed the constraint it replaces.

However, this approach has a drawback in that the penalty term is a squared expression,

resulting in increased complexity with the growing size of the problem. Fortunately, there

are few suggested approaches for more efficient mapping [VD19].

As the focus of this project is assessing the quantum advantage and studying the

hardness and the structure of the QUBO reformulation, we will be only exploring the

common approach for mapping the QKP into the Ising formulation in the first stage of
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the project, which is explored in this chapter. In [Luc14], the QUBO mapping of 21

NP-complete problems into an Ising formulation is represented using the common penalty

approach. One of the problems that is represented in [Luc14] is the Knapsack Problem

(KP) with Integer Weights. However, following Lucas’s approach, the KP formulation is

expanded to include quadratic terms for QKP. To formulate QKP as an Ising problem, we

solve this an energy function with goal of minimizing the energy cost, the function consists

of two components:

H = HA +HB (2.3)

In Eq. (2.3), HA is the energy part that penalizes the function if the weight of the

objects in QKP exceeds the value of the constraint, and HB is energy that maximizes over

the number w of subjects included. The goal is to have Eq. (2.3) be 0 at the end of the

anneal.

To formulate the first part of Eq. (2.3), we refer back to Eq. (2.1). This knapsack can

only carry weight W . Let the total weight in the knapsack be:

W =
N∑
i=1

wixi

The total cost is

χ =
N∑
i=1

N∑
j=1

qijxixj

The goal is to maximize χ subjects to the constraint that W ≤ c.

Next, let the final weight of the knapsack be n after the optimization process; hence,

we want to construct a Hamiltonian such that the ground state of this Hamiltonian is 0 iff

the final weight n ≤ W exists.

We introduce a binary variable yn, which is 1 if the final weight of the knapsack is n

for 1 ≤ n ≤ c, and 0 otherwise. The Hamiltonian that can give us this result is

HA = A(1−
c∑

n=1

yn)2 + A(
c∑

n=1

nyn −
N∑
i

wixi)
2 (2.4)
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In this Hamiltonian, we ensure that weight takes only on one value, and also the weight of

the objects in a knapsack will equal the value we said it would.

The second part of the Hamiltonian (2.3) maximizes over the number of χ subjects

included, and it penalizes solutions that weakly violate HA at the expense of a more

negative HB, meaning that it’s not allowed to add one item with heavy weight versus

maximizing over multiple items, therefore:

HB = −B
N∑
i=1

N∑
j=1

qijxixj (2.5)

Consequently, N3 spins are required to encode this formulation. However, we can

reduce the number of extra yn spins that must be added (slack variables) in Eq. (2.4) from

O(c) to O(log(c)) by using the logarithmic reduction trick in [Luc14]:

2M ≤ c < 2M+1

where, M = log2(c)

In this case, we only need M + 1 binary variables, and the spins required are reduced

to N2 + [1 + log(c)] After updating the variables, the formulation becomes,

HA = A

(
M−1∑
n=0

2nyn + (c+ 1− 2M)yM −
N∑
i=1

wixi

)2

(2.6)

In eqs. (2.5) and (2.6), A and B are some constants for separation of energy scales, and

they are typically scaled to 1 in the literature. However in the QKP formulation case, to

minimize the energy, we must ensure that B is smaller than A in order to avoid violating

the constraint of HA. For simplicity, we let B = 1, and define A as the penalty scalar P,

which could be any positive value. Hence, the complete formulation becomes:

H = P

(
M−1∑
n=0

2nyn + (c+ 1− 2M)yM −
N∑
i=1

wixi

)2

−

N∑
i=1

N∑
j=1

qijxixj
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The qubogen package from github/tamuhey is QUBO matrix generator on different

major combinatorial optimization problems written in Python, and it follows the same

procedure we outline in this section. The following QKP-to-QUBO code is used to convert

the QKP benchmarking instances to QUBO.

1 Quadratic Knapsack Problem (QKP) → QUBO generator

2 Function qubo qkp(obj, w, c, p):

Input: obj ←− array values of the objective fn.

w ←− array values of the constraint fn.

c←− integer value of the constraint capacity

p←− integer penalty value

Output: QUBO Matrix Q

3 n = len(obj)

// size of the QKP objective fn.

4 nslack = np.ceil(np.log2(c))

// the ceil of the number of the slack variables is log2(c)

5 slack = 2(np.arange(nslack))

6 w = np.concatenate([w, slack])

// the updated constraint fn. with the added slack variables

7 Q = penalty * (np.outer(w, w) - 2 * c * np.diag(w))

8 Q[:n, :n] -= obj

9 return Q

2.3 Approach

This section presents our approach to empirically test the QUBO reformulation of the QKP

native problem and compare QA performance against a variety of classical algorithms,

including exact algorithms and other classical metaheuristics. Furthermore, we want to

place other literature results on QKP benchmarking in context with our findings.
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To select appropriate benchmarking instances for the computational experiments, ran-

domly generated QUBO problems are unlikely to provide useful benchmarking results for

a metaheuristic solver, due to the limitations of generalizing the optimization benchmark

results to other problems with different structure [SM20]. Also, random instances are un-

likely to be representative of real-world problems. Therefore, we need families of related

instances with controllable parameters to test the quantum annealing algorithm [PWS+16].

The group of instances that are tested in this study includes common instances used in

other existing computational experiments for QKP.

The group of instances used for testing was generated by Billionnet and Soutif in [BS04]

and is made up of 100 small and medium-sized instances, and their optimal solutions are

known in [CH17]. These instances are defined by their object numbers n ∈ {100, 200, 300},
density d ∈ {25%, 50%, 75%, 100%}, where density here is the probability of non-zero co-

efficients of the objective function. In the objective function in Eq. (2.1), the integer

coefficients qij are uniformly distributed in the interval [0, 100], and each weight wj in the

constraint function in Eq. (2.1) is uniformly distributed in [1, 50], and also the capacity

c is randomly selected from [50,max(
∑
wj)]. The structure of these instances assures as-

sures a feasible solution. Finally, all runs are carried out on MacBook Pro with an 2.7

GHz Quad-Core Intel Core i7 and 16 GB RAM. The code scripts written for the tests are

included in Appendix B.

The test contains the following components:

1. Problem types:

• Native QKP problem

• Transformed QKP-QUBO

2. Problem parameters:

• n, native QKP problem size

• d, native QKP density

• P, scalar penalty added to the QUBO
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• p, QUBO matrix diagonal dominance

3. Algorithms & solvers:

• CPLEX - Classical Solver and uses Branch and Bound algorithm (Exact algo-

rithm)

• D-Wave, Simulated Annealing - Classical Solver and uses Metaheuristic algo-

rithm

• D-Wave, Advantage System - Quantum Solver and uses Metaheuristic algorithm

• D-Wave, Hybrid Solver - Classical & Quantum solvers and uses Metaheuristic

algorithm

2.3.1 Working Mechanisms of the Used Algorithms

CPLEX - Exact Algorithm

CPLEX Algorithm is based on using Branch and Cut algorithm within Branch and Bound

[Man87]. In the Branch & Cut algorithm, when a problem is submitted to CPLEX for

MIP (mixed integer program) optimization, CPLEX builds a tree at the root with the

continuous relaxation of the MIP problem. The algorithm solves a series of continuous

subproblems in which each subproblem is a node in this tree.

In the case of a relaxation with fractional variables, CPLEX will look for cuts, defining

“cuts” as constraints that cut away areas where fractional solutions (non-integer solutions)

which would be the solutions in case the problem is in its continuous relaxation form.

Cuts are added as a way to reduce the branches number that are needed to solve the MIP

problem.

After CPLEX tries to add cuts, the subproblems might still result in a fractional solution

again, in an infeasible solution, or in an all-integer solution. If the relaxation solutions still

contain one or more fractional values, CPLEX then executes Branch and Bound algorithm,

such that it branches on the fractional variable to generate two new subproblems. For the

newly generated subproblems, more restrictive bounds will be placed on each of them on
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the branching variable [Man87]. For example, in a problem with binary variables, one node

might set the variable to 1, and the other sets it to 0.

D-Wave - Simulated Annealing

D-wave’s Simulated Annealing Sampler implements the simulated annealing algorithm that

simulates the cooling technique of metals from a high temperature to a cooler temperature

with the purpose of improving its structure [PB21]. The idea behind translating this

analogy to the simulated annealing process is by doing random walks in the problem’s

landscape and generating random points in the neighborhood or the vicinity of the current

best point, and then calculate the problem’s cost at this point, if its cost is better than

the older point, then the older point is updated with the new point. The algorithm is

described in more detail in Chapter (1).

D-Wave - Advantage Quantum Solver

D-Wave’s quantum solver, in both the Chimera and Advantage solvers, implements the

Quantum Annealing algorithm physically. Quantum annealing can be compared to simu-

lated thermal annealing, such that the temperature parameter is analogous to the tunnel-

ing field strength in Quantum Annealing, as QA process exploits the quantum tunneling

phenomenon that happens on the quantum scale. The Quantum Annealing algorithm is

described in more detail in Chapter (1).

D-Wave - Hybrid Solver

The main idea behind solving a problem using D-Wave’s Hybrid solver is that the solver

loops through parallel solvers to find an optimal solution [Sys]. In the default setting, the

algorithm implements four parallel solvers, each branch generally consists of: decomposer,

sampler, and composer. Tabu Search runs in the top branch on the entire problem, until

another branch interrupts it by completing first. D-Wave’s quantum sampler runs in the

second-highest branch, such that, the hybrid algorithm allocates the pure Quantum solver

to the parts of the problem where it benefits most. In addition, the algorithm allows for a
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user-defined criterion as well as shown in the last branch. Due to the different parts of the

algorithm, the Hybrid solver can accommodate even large problems.

2.3.2 Testing Approach

First, to evaluate the suggested mapping, the native QKP and the reformulated QUBO are

both solved classically via the standard branch-and-cut optimizers available via CPLEX.

However, we note that solving QUBO on CPLEX is highly inefficient as the runtime can

take up to hours and even days for large problems. Experimental evidence in [MW13]

shows that solving three instances in the NP-hard problem domain on the D-Wave quantum

computer system outperformed the CPLEX of IBM by 3600x times faster. Therefore, we

put a time limit when we solve large QUBO problems.

Second, the QKP-QUBO reformulated instances are solved by the classical simulated

annealing solver, D-Wave’s pure quantum solver, and the Hybrid solver. Then a compu-

tational comparison is made between the native QKP instances optimal solutions and the

reformulated instances obtained solutions solved by both the classical and the quantum

solvers, to further investigate the suggested mapping, evaluating the quantum and the

hybrid solvers performance and to investigate relationships between the problem structure

and its complexity.

For solving QKP original instances on CPLEX, we use the original formulation in Eq.

(2.1). Furthermore, For solving QUBO instances on CPLEX, we use the following classical

mixed-integer linear programming (MILP) formulation of QUBO problem:
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Min
∑
i<j

Qi,jyij +
n∑
i

Qi,ixi

subject to

yij ≤ xi

yij ≤ xj

xi + xjyij ≤ 1

yij ≥ 0

∀j < j, x ∈ {0, 1}n

(2.7)

For any fixed i, j, the constraints in Eq. (2.7) (called Fortet inequalities [For60] or

McCormick inequalities [McC76]), which force yij to equal xixj.

Finally, the same QUBO instance is solved on D-Wave’s simulated annealing, Advan-

tage, and Hybrid solver.

2.4 Results and Discussion

All the numerical results represented in this section are included in Appendix A.

30



2.4.1 Results (1) - Classical comparison between the native QKP

and the mapped QKP-QUBO on CPLEX
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Figure 2.2: Classical comparison between the native QKP and the mapped QKP-QUBO

on CPLEX
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In Fig. (2.2), the native QKP and the reformulated QUBO are both evaluated on the

classical solver CPLEX. The x-axis represents the index of the benchmark instance in

[BS04], and the values on y-axis represents the optimal cost solution.

To judge the solutions quality, we are comparing the estimated optimal solutions against

the actual optimal solutions obtained by the CPLEX QKP solver, we calculate the mean

absolute percentage error, which we call the Average error gap.

Avg. Err. gap =
100%

2

∑ |actual − estimated|
actual

(2.8)

The error gap is approximately 12% in Fig. (2.2) between the native QKP and the

reformulated QUBO on CPLEX.

According to other computational studies in the literature, [Das13], solving QUBO is

very difficult on CPLEX; it can take up to hours and even days to get an exact solution

that is guaranteed to be optimal. In the testing code, we had a time limit to solve QUBO

on CPLEX, so the optimal solution wasn’t guaranteed; hence there was an error gap

between the native QKP and the QUBO on CPLEX. However, to test if the only reason

for getting an error gap is the time limit, we generated small-sized instances with the

same benchmarking instances structure and removed the time limit; both the native QKP

and QUBO produced the same optimal solutions except for some instances. We traced the

error and found that the exact algorithm on CPLEX produces this error when the knapsack

capacity is very close to the weight of selected objects at the boundary condition, and the

objects are nearly equally heavy. We selected one of the failed instances to demonstrate

this failure:

The objective matrix 
0 68 29 81

68 3 0 13

29 0 0 0

81 13 0 0


subject to the knapsack constraint

20x0 + 35x1 + 47x2 + 48x3 ≤ 54 (2.9)
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When this instance is solved in its native QKP form on CPLEX, the optimal value

found is 3, such that only x1 is selected. However, when the instance is transformed to

QUBO form and solved on CPLEX, the optimal value found is 129, where the objects x0

and x1 are selected (20 + 35 = 55), violating the constraint value (54) by a value of 1.

2.4.2 Results (2) - Penalty’s choice impact comparison between

the mapped QKP-QUBO on CPLEX and D-Wave

The QUBO form of the same failed instance in Eq. (2.9) is also solved on D-Wave. Sur-

prisingly as shown in fig (2.4), the instance has chances of success when it is solved using

the simulated annealing algorithm. We find that the algorithm has an average success

probability of finding the correct cost solution seven times out of 100 run times. However,

it still displayed a failed solution, as shown in Fig. (2.3).

Figure 2.3: Energies sample using simulated annealing, with the lowest energy = -29289

and the cost solution = 129
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Figure 2.4: Energies sample using simulated annealing, with the lowest energy = -29163

and the cost solution = 3

The same instance was tested on the chimera pure quantum solver on D-wave; the

success probability for the chimera solver was found to be 3%, and does not improve with

increasing the penalty value. The hybrid solver is not included as it’s not efficient for small

sized problems [Sys].

These discrepancies can be traced back to the effect of the penalty P scalar value

has on the computational efficiency. Suppose the scalar penalty P value is too large. In

that case, it can disrupt the computation process since the penalty terms can overwhelm

the original objective function, making it hard to determine the quality of one solution

over another. Alternatively, a penalty value that is too small compromises the search for

feasible solutions [GKD19]. However, deciding on what penalty values are appropriate may

be problem-specific, and they are not unique. For the example shown in Fig. (2.3), the

penalty has the value of 10, which has a success probability of 7% when solved using the

simulated annealing algorithm. However, this success probability keeps increasing as we

increase the penalty value. For example, when we increased the penalty to the value of

50, it had a success probability of 99%, suggesting that the penalty value indeed impacts

the quality of the computational efficiency.

However, the CPLEX optimizer never gets the correct optimal solution except for only

one penalty value which is found to be 136.
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2.4.3 Results (3) – Evaluating Density vs Runtime

Second, we want to test whether the argument made in the literature that there is a

correlation between the matrix density and difficulty.

In Fig. (2.5), (2.6), and (2.7), the relationship between the native QKP density and

the runtime for different solvers is shown. There was no relationship found using the pure

quantum Advnatge solver on D-wave; also, the runtime was very long with an average of

330s.
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Figure 2.5: QKP native problem run time on CPLEX vs density, n=100, 200, 300

Fig (2.5) shows a positive correlation between the QKP native problem density and it’s

difficulty.
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Figure 2.6: QUBO anneal time for simulated annealing vs original QKP Density, n=100,

200, 300

We observe something interesting here in fig (2.6), the QUBO anneal time for simulated

annealing decreases with increasing the native problem’s density for the problem size n =

100 and 300. However, in n = 200, we observe that the runtime decreases for d = 0.5,

but goes up again for d = 0.75. We also note that, even though there is a general trend

of decreasing the runtime, the spread in some the error bars in Fig. (2.6) overlaps with

other data points error bars. Hence, we should be careful while drawing the conclusion

that the runtime ”always” decrease with increasing the density of the native problem. We

also found a similar trend for n = 200 and n = 300. It seems that the original problem’s

density somehow influences the difficulty of the reformulated QUBO, even though, whether

the original problem is sparse or dense, the reformulated QUBO is always fully dense. This

result implies a negative relationship between the hardness of the native QKP problem
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and the reformulated QUBO problem. This not intuitive result suggests that further

investigation is needed.
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Figure 2.7: QUBO anneal time for Hybrid solver vs original QKP Density, n=100, 200,

300

2.4.4 Results (4) – Solution quality comparison between all solvers

In the first run of the instances on all solvers, in Fig. (2.8), we used penalty value = 10.

The x-axis represents the index of the benchmark instance in [BS04], and the values on

y-axis represents the optimal cost solution according to the different solvers shown. As

shown in Tables (2.1)-(2.3), we compare between all solvers in terms of the average error

gap and the average runtimes.
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Figure 2.8: Solution quality comparison between all solvers, P=10, n=100
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Table 2.1: Comparison between solvers in terms of the Average Error gap (Avg. Err. gap)

and Avg. runtime, n=100, P =10

Avg. Err. gap (%) Avg. runtime (s)

QKP CPLEX 0 14.62 (time-limit is applied for for d=100%)

QUBO CPLEX 12.01 34.20 (time-limit)

QUBO SA 15.74 13.04

QUBO Hybrid 12.10 16.62

QUBO Adv 66.72 329.10

From our initial testing, we found that the pure quantum solver (Advantage system)

was doing bad in all testing cases, so its results have been eliminated in the following

tables.

Table 2.2: Comparison between solvers in terms of the Avg. Err. gap and Avg. runtime,

n=200, P =10

Avg. Err. gap (%) Avg. runtime (s)

QKP CPLEX 0 29.35 (time-limit)

QUBO CPLEX 12.01 47.30 (time-limit)

QUBO SA 20.46 17.91

QUBO Hybrid 9.18 18.72

Table 2.3: Comparison between solvers in terms of the Avg. Err. gap and Avg. runtime,

n=300, P =10

Avg. Err. gap (%) Avg. runtime (s)

QKP CPLEX 0 30.12 (time-limit)

QUBO CPLEX 12.01 47.14 (time-limit)

QUBO SA 20.47 8.61

QUBO Hybrid 10.00 24.11

After we found that the quality of the solution can improve by increasing the penalty

value in result (2), we did another run on the instance with a larger penalty value; however,
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we found the opposite, that in fact, the solution becomes worse with increasing the penalty

on these instances, and instead, the solution quality improved with decreasing the penalty

value.

For the third run of the instances on all solvers Fig. (2.9), we used penalty value = 4,

in Tables (2.4)-(2.6) we compare between SA and Hybrid solvers in terms of the average

error gap and the average runtimes.
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Figure 2.9: Solution quality comparison between all solvers, P=4, n=100
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Table 2.4: Comparison between classical SA and Hybrid solver in terms of the Avg. Err.

gap and Avg. runtime, n=100, P =4

Avg. Err. gap (%) Avg. runtime (s)

QUBO SA 3.48 63.99

QUBO Hybrid 4.93 12.94

Table 2.5: Comparison between classical SA and Hybrid solver in terms of the Avg. Err.

gap and Avg. runtime, n=200, P =4

Avg. Err. gap (%) Avg. runtime (s)

QUBO SA 2.56 20.28

QUBO Hybrid 2.45 17.29

Table 2.6: Comparison between classical SA and Hybrid solver in terms of the Avg. Err.

gap and Avg. runtime, n=300, P =4

Avg. Err. gap (%) Avg. runtime (s)

QUBO SA 9.97 53.47

QUBO Hybrid 3.16 17.03

2.5 Conclusion

In this project, the performance in terms of the quality and runtime of the solution was

compared for solving QKP reformulated QUBO of the hybrid solver on four different

solvers: CPLEX exact solver, D-Wave’s simulated annealing algorithm, pure quantum

solver, and Hybrid Solver. Also, these solvers’ response to the change in the parameters of

QK-QUBO reformulation is investigated.

There are few important insights we can draw from the results found in Sec. (2.4). First,

in result (1), when the native QKP problem is solved classically on CPLEX and compared

to the formulated QKP-QUBO problem on CPLEX as well, we found that solving the

reformulated problem using the CPLEX exact algorithm sometimes fails for instances that
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have knapsack capacity very close to the weight of selected objects, suggesting that the

solution is sensitive to the boundary conditions of the problem; also, the objects are nearly

equally heavy in the failed instances. Second, in result (2), the discrepancies found due

to the choice of the penalty values suggest that the penalty value does indeed impact the

quality of the computational efficiency.

In result (3), we can see that there is a positive correlation between the QKP native

problem density and its difficulty. According to the literature, research on developing a

methodology to generate QKP instances with predictable and consistent difficulty levels

is ongoing. However, the studies in [HM09], and [For97] include a discussion of the QKP

problem difficulty, and both studies conclude that there is a positive correlation between

the density of objective function coefficients and CPU time, which supports our initial

results.

Next, we observe something interesting in fig (2.6): the QUBO anneal time for simu-

lated annealing decreases with increasing native problem density. We also found a similar

trend for n=200 and n=300. It seems that the original problem’s density somehow influ-

ences the difficulty of the reformulated QUBO, even though, whether the original problem

is sparse or dense, the reformulated QUBO is always fully dense. This result implies a neg-

ative relationship between the hardness of the native QKP problem and the reformulated

QUBO problem. This not intuitive result suggests that further investigation is needed.

We also found a similar trend with the hybrid approach in fig (2.7), but the relationship

is weakly correlated; however, this result is not found when we use the Advantage D-

Wave solver. This result shows strongly in the simulated annealing approach but shows

a weak relationship in the hybrid approach and an almost non-existent relationship using

the Advantage Quantum solver. Hence, this suggests that this result is associated with

the Simulated Annealing algorithm, as simulated annealing is partially used in the Hybrid

solver algorithm, so the result is still showing in the Hybrid approach but not as strong as

in only using the Simulated Annealing approach. From this result, we can conclude that

QUBO reformulation might influence the structure and the landscape of the original QKP

problem when transformed and solved using the SA and the Hybrid solver approaches. The

next step would be investigating how does the density of the native problem influences the

transformed QUBO.
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Result (4) answers the main question of our project. The results in Tables (2.1)-

(2.6) suggest that the Simulated Annealing and hybrid solver outperform both the pure

quantum solver and the classical implementation on CPLEX. However, it’s found that D-

Wave’s Hybrid solver does slightly better, in terms of the solution quality, by 2× times,

than the simulated annealing with the growing size of the QKP problem when n > 100,

and the pure quantum Advantage solver does worse in all cases. Hence, it’s concluded that

Quantum Annealing can display quantum speed-up in the Hybrid solver case. This means

that if QA-Hybrid scaling advantage is due to quantum effects in the current generation of

the highly noisy quantum annealers, then we speculate the future generation of quantum

annealers with less implementation errors will at least achieve the same (or even more)

performance of SA for this particular class of problems.

To explain why the Advantage solver is worse in all cases, we think that with the

limited development of the current hardware, it is able to solve small instances on the

chimera topology with better quality; however, to solve larger instances on the Pegasus

topology, which is more complicated than chimera, the software takes up a long time to find

a suitable embedding for these larger instances (> 90). To improve the embedding times,

good decomposition algorithms and efficient embedding algorithms are needed. Also, the

thermal fluctuation in the current hardware might be causing it to be incoherent affecting

its solutions quality, hence, making it challenging to observe any noticeable advantage over

other algorithms.

Finally, we seek to understand some of the results further for future work. First,

regarding the non-intuitive density-runtime relationship we get in result (3), the next step

would be to investigate how the density of the native problem influences the complexity

of the transformed QUBO. Second, as the Hybrid approach showed potential for better

quality solutions and runtime for solving QKP-QUBO, the next step would be developing

our defined criterion in its algorithm to improve its performance. A future study that

might potentially provide increased performance, is relating the formation of the minimum

energy gap gmin (described in chapter 1) to the structure of the QKP problem, and using

this insight in designing a better algorithm on the Hybrid solver.
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Chapter 3

Quantum Annealing approach to

Blockchain Consensus Mechanism

3.1 Overview

Proof-of-Work (PoW) is a consensus mechanism commonly used in blockchain technology

due to its robustness. However, although PoW is highly robust against misbehavior on the

blockchain, the enormous amount of energy spent by PoW is becoming an overwhelming

problem. We propose an alternative approach for the blockchain PoW by considering a

wide range of real-world NP-hard optimization problems, mapped into quadratic uncon-

strained binary optimization (QUBO) problems. Our approach joins “Proofs of Useful

Work” schemes, where we solve PoW challenge into a useful resource. Finally, we study

the potential of Quantum Annealers as solvers for these NP-hard optimization instances.

Numerical experiments in this study test the difficulty adjustability of the QUBO problem

to investigate if the suggested problem satisfies the criteria for a practical PoW challenge

that could be used in the blockchain network.
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3.2 Introduction

Since the introduction of the cryptocurrency Bitcoin in 2008, blockchain has become a

tempting new technology; because of its promising security, transparency, and decentral-

ization that can be beneficial for various businesses to integrate blockchain within their

applications [YMRS18].

The most widely used consensus protocol for the public (or permissionless) blockchain

is the Proof-of-Work (PoW) [YMRS18]. While PoW is very robust against misbehavior

on the blockchain network, the enormous amount of energy spent by PoW is becoming

an overwhelming problem. At the time of writing this chapter, Bitcoin alone consumes

around 132 TWh of energy over the course of a year [bit21], which is more than the

country of Norway’s energy consumption. Several alternatives to the PoW with better

energy efficiency have been proposed; however, some of these alternatives exhibit at least

a single flaw [WHH+19], and that is why most of the current cryptocurrencies based on

PoW are still dominant.

Our proposed approach involves formulating a PoW challenge based on hard optimiza-

tion problems, aiming to have this wasted energy used for useful purposes. Consequently,

this approach requires an efficient optimization algorithms that can serve as solvers for

these problems. Heuristic algorithms are the most attractive class of algorithms to solve

optimization problems [ZE81]. Unlike exact algorithms, heuristic algorithms do not spend

an exponential amount of time searching for the optimal solution that can take up to

hours or even days when large real-world problems are considered. Heuristic algorithms

can run in polynomial time according to the size of the input and settle on solutions near

the optimal in an acceptable amount of time. In this chapter, the metaheuristic algorithm,

Quantum annealing, is considered to be used for the proposed approach.

The proposed protocol is not restricted to one family of optimization problems; we

take advantage of the ability to map a vast number of optimization problems into QUBO

problems. We formulate a PoW challenge based on hard optimization problems and map

it into the QUBO problem. D-Wave’s Quantum Annealing sampler is then used to ‘mine’

for the best configuration of this problem to solve the PoW challenge. The solution is then

verified simply using classical resources to test whether it satisfies the given constraint in
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the challenge; the block is then added to the blockchain. There are many hard optimiza-

tion problems that can be appropriately embodied into the QUBO model. This study only

considers the Quadratic Knapsack problem (QKP) in the NP-Hard complexity class. How-

ever, this approach is not limited to the QKP and can be extended to any optimization

problem that can be mapped into QUBO and satisfies the criteria for a practical PoW

challenge. A practical PoW would require to satisfy the hardness property mainly, such

that, the PoW challenge should be quickly generated, and the challenge should achieve the

desired difficulty. The criteria for a practical PoW are explained formally in Sec. (3.3).

Finally, the solver is then expected to spend a certain amount of (non-reusable) work in

producing a solution that is easily verified in polynomial time [WHH+19].

This chapter is organized as follows: Sec.(3.3) gives a background on blockchain and

consensus protocols. In Sec. (3.4), we discuss the related work found in the literature, and

our contributions. In Sec. (3.5), the proposed protocol scheme and the used algorithms

are discussed. In sec (3.6), QUBO as PoW challenge is evaluated according to the baseline

properties for a good PoW challenge. Finally, we conclude in Sec. (3.7).

3.3 Background

Blockchain is an immutable, distributed ledger that facilitates recording transactions in a

peer-to-peer (P2P) network. As the name suggests, blockchain is a series of blocks con-

taining the information associated with the recorded transaction. Usually, each block in

the blockchain includes the transaction’s ID, timestamp, quantity, and the status of the

transaction, and the blocks are securely linked to each other using cryptographic functions

like SHA-256 hashing, and elliptic curve cryptography (ECC) [YMRS18]. Furthermore,

each block consists primarily of the previous block’s hash and a list of all transactions to

prevent any block from being changed or inserting a block between two already existing

blocks. Thus, each new block added to the blockchain reinforces the validation of the

preceding block, thus making the blockchain safe from tampering. This prevents the pos-

sibility of malicious agents and supports the creation of a ledger of trusted transactions

from participants of the entire network [YMRS18]. Although, this brings the core strength

of the concept of trust in the blockchain, it cannot be considered entirely immutable as
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often misunderstood, as there exist attacks to which the blockchain is prone and could be

modified[YMRS18].

Four steps must happen to add a new block to the blockchain:

1. A transaction must occur, like a purchase or money transfer.

2. This transaction must be verified. There is no single entity specializing in verify-

ing transactions, as is the case with banks. This task is handled by a network of

thousands (or even millions) of computers in the blockchain case. When a partici-

pant makes a purchase, this network will verify that the transaction data is valid.

There are different ways to achieve this transaction verification process; For a block

to be verified, the blockchain network participants must achieve a consensus among

themselves to agree on the transaction’s validity. The most currently used consensus

algorithms in blockchains are the Proof-of-Work (PoW) and the Proof of Stake (PoS).

Many other consensus algorithms are proposed and used; however, each comes with

its advantages and disadvantages. This section explains the two consensus protocols

and focuses on the most common one, PoW.

3. Store the transaction in a block. After verifying that the transaction data is correct,

the transactions are stored in a single block.

4. Mark that block with a unique hash value. After verifying all the block transac-

tions, the block is given a hash token identifying it as the latest block added to the

blockchain (that is, this block identifies the previous block, and the previous block

also knows the previous block, so all blocks are connected as a blockchain). After

the block is given a special token, it can be added to the blockchain.

Fig. (3.1) shows the basic design structure of the blockchain network. Each block

consists mainly of the block’s transactions and the block’s header, containing information

like the block’s id, timestamp, and block’s size. The Merkle root field in each block

represents the hash value of all hashing values of the current block’s data. The next block’s

hash is combined with the hash value of the previous block for tracking and verifying each

block. This method is called Merkle Tree hashing, and it is commonly used to secure

distributed systems and P2P networks.
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Figure 3.1: Basic design structure for blockchain.

3.3.1 Consensus protocols in Blockchain

The goal of the consensus algorithm in a blockchain network is to allow multiple users

to agree on the state of the blockchain even though they do not trust each other or any

central authority. The two main types of consensus algorithms that are widely used are

PoW and PoS; however, both have some fundamental differences:

(a) PoW is the consensus algorithm that Bitcoin uses to secure the network through a

process known as “mining”. Mining requires specially designed hardware to solve a

difficult mathematical problem. When the problem is solved, a block is generated

and the “miner” is awarded for solving the mathematical problem for that block.

In the case of the Bitcoin blockchain, the reward is the creation of a new Bitcoin.

This reward is compensation for the resources required to solve the problem. The

reward in the PoW algorithm is usually a fixed amount per block, but it can also

vary over time. In the case of Bitcoin, the block reward is reduced every four years.

The reward is determined in advance by the system.

(b) PoS is a consensus algorithm for validating existing transactions and achieving dis-

tributed consensus. Unlike the PoW algorithm, which requires the user to perform a

certain amount of computational work (mining) to validate transactions, the Proof-

of-Stake algorithm requires the user to prove their ownership of a certain amount of
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currency or “stakes”. The PoS algorithm depends on the strength of the wallet that

the participant owns, and it also depends mainly on the time duration of the coins

remaining in the participant’s wallet. Hence, the “mining” difficulty in the PoS al-

gorithm is determined by the amount and time of the tokens occupied by each node.

Accordingly, the mining difficulty is reduced or increased in proportion to each node’s

ownership strength. This means the system naturally disadvantages small nodes, and

the wealthiest nodes have control of the network.

In the usual PoW algorithm, the miner is asked to solve a hard cryptographic problem

based on a Hash function H(x), which maps to the input x with any size to the hash value

y with a fixed-sized output. This function is designed so that y can be easily computed

from the input x if H(x) = y, but finding x from y is computationally difficult.

In the Bitcoin case, the miner spends computational resources to find a is a 32-bit

number that is called “nonce” n, such that, when this nonce is hashed with the block’s

header h using the SHA-256 hashing function, the output should be less than or equal to

the “target” τ value specified by the network. According to the network requirement, the

difficulty of finding this nonce can be adjusted by tuning the target value τ .

Hash(n) = SHA-256(h|n) ≤ τ (3.1)

The main advantage of PoW is that it’s incredibly robust; however, one of its weak

points is that it wastes electricity and computational resources. The use of hash puzzles in

blockchain systems allows to solve two main problems: to cryptographically bind transac-

tions to a block and to provide transactions with computational work to reach consensus

among users of the blockchain. The main drawback of hash puzzles is that they are useless

outside of blockchain systems. Various alternatives to PoW have been proposed to address

this problem. However, although many of these alternatives offer better energy efficiency

than PoW, some of them still introduce some degree of failure. For this reason, Bitcoin

and other PoW-based cryptocurrencies are still dominant, as they are robust and offer

unbeatable security. This chapter proposes an alternative to the blockchain PoW, where

a hard NP optimization problem replaces the hash puzzle.
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In the next section, the alternative scheme that uses useful problems is proposed, but

first, we need to discuss the properties of a good PoW challenge in the blockchain as we try

to meet its criteria while we design our protocol. We find the criteria used in the studies

[Din19] and [Sho17] to be encompassing for the essential properties a good PoW challenge

must-have.

1. Intrinsic Hardness

This property requires that a certain amount of computational work be spent to

find the problem’s solution, and the problem difficulty should reflect on solving the

challenge with no “easy” way of solving it.

2. Adjustable Hardness

This property requires the problem difficulty to be tunable, and it could be decreased

or increased according to the network requirements.

3. Easy Verifiability

This property requires the problem’s solution to be easy to verify; hence, reaching a

consensus between the blockchain’s participants.

4. Block Sensitivity

This property requires the problem to be unique and only tied to one block; using

the same problem for several blocks is prohibited as it tampers with the blockchain’s

security.

5. Non-reusability

This property requires that the computational work done on one problem cannot be

reused on another as this gives an advantage to one node over the other.

In section (3.6), we compare our alternative protocol against these properties.
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3.4 Related Work

Few studies in the literature suggested PoW based on optimization problems; a study done

in [Shi19] proposed a consensus protocol for the blockchain, named proof-of-search (PoS).

Their protocol allows any node (called client) to submit optimization problems via the

blockchain. Furthermore, any client can submit a job to find a solution to an optimization

problem. The clients in this protocol can submit an instance of the problem and receive

the found solution, rewarding the node that finds the best approximate solution. However,

if clients submit no job, the protocol falls back to the basic PoW. Motivated by Shibata’s

protocol, in our study, we are proposing a more efficient protocol. Our protocol would not

have empty jobs; instead, randomized optimization problems, modeling real-life problems,

are generated, and their solutions are stored. Also, Shibata’s protocol demands the client

to meet specific requirements, like submitting an ‘Evaluator’ program and a ‘Searcher’

program for the particular submitted optimization problem. However, in our protocol,

we propose a more automated network by mapping a large set of various optimization

problems into one model. Thus, it was immediately natural to think of QUBO.

The second study in [SDK19] used the Traveling Salesperson Problem as a model and

looked at using optimization algorithms as a method for providing the PoW required to add

a new block to the blockchain. Their basic idea is to add one extra city to the best cities

path found for block n to satisfy blockchain requirements for adding a new block n + 1.

Their protocol also allows for designing limited blockchains while solving the underlying

combinatorial optimization problem.

Our contribution would be generalizing the protocol to work with various types of

optimization problems mapped to the general QUBO problem. Experimental results on

the D-Wave machine support the study. In particular, we are testing one of the hard

optimization problems (QKP) as one of the potential candidates for a good PoW problem.

The QKP problem is mapped to the QUBO model to be implemented on the D-Wave

sampler, and evaluating it QUBO according to the criteria of a good PoW protocol.

A study done by Kalinin and Berlo in [KB18] is worth mentioning, as we were not the

first to think about using quantum resources for this approach. Their study provided a gen-

eral framework of the blockchain PoW based on analog Hamiltonian optimisers (Quantum
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Annealers, OPO-based simulators, Gain-Dissipative Simulators..etc) with no implementa-

tion on an actual Hamiltonian optimiser machine and with no consideration of how QUBO

problem would satisfy the blockchain consensus protocol requirements for a good PoW

problem.

3.5 Proposed Protocol

In this section, we describe our enhanced protocol, which builds on the PoS protocol in

[Shi19], and enhances some of its parts. However, before we move to describe our protocol,

we discuss briefly the PoS protocol in [Shi19], its working mechanism, and some of its

security considerations and challenges.

3.5.1 Proof-of-Search (PoS) With Optimization Problems

The working principle of PoS protocol in [Shi19], is close to that of PoW, however, instead

of wasting power on finding hash puzzles in proof-of-work, PoS utilized this computational

power in solving instances of optimization problems. PoS protocol allows any node (called

client) to submit optimization problems to the blockchain. The client needs to submit a

program called an evaluator that is included in a submitted job, which is used by the nodes

(or miners) to evaluate the solution candidates of the problem to be solved. The nonce

in the PoS protocol is created by concatenating a candidate solution and its evaluation

value, rather than an integer as in PoW. In order for a node to generate a valid nonce,

the evaluator must be executed several times to evaluate different solution candidates.

In PoS protocol, the client provides a computer program searcher, which implements a

randomized search algorithm, in order to facilitate the search for solution candidates. The

nodes execute this searcher program, which is included in the jobs, and it’s designed in a

way that it calls the evaluator many times every time it finds a solution candidate.

Because the consensus process requires the generation of a large number of nonces, con-

sequently, many solutions candidates must be evaluated. The protocol uses two methods

of rewarding nodes separately to prevent collusion between nodes. There are two possible

ways for a node to be rewarded: succeeding in adding a new block by finding a valid nonce
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given a target value, or succeeding in finding the best solution to the optimization problem.

In the first case, the miner is rewarded in the same way as in PoW. In the second case,

the miner is rewarded the charge paid by the client. However, in case there was no job

submitted by a client, then the blockchain automatically adds an empty job, which makes

PoS fall back to the ordinary PoW protocol.

There is no need to protect against the reuse of past computation results in PoW. This is

because computing the hash function is the only way to get a hash value, and the hash value

is linked to the miner’s ID and the last block. However, in PoS, it is necessary to ensure

that an evaluation is performed each time a the hash value of a block is generated. The

miners may try to reuse and share the results of computations by among multiple nodes,

as the amount of computation required to calculate them can be significantly greater than

this of hash values in PoW. To avoid this, the evaluation result is linked to the miner’s ID

and other data of the block. This is accomplished by giving the evaluator two arguments.

The first argument contains all the hash values of all the items in a block, and the nonce

is used as its second argument. Then the evaluator introduces a small amount of error in

its output to force it to depend on the second argument. The PoS protocol requires that

the algorithm for introducing this error has to be designed and implemented separately by

each client.

Making each node’s probability of winning proportional to its computational power

spent on the job, it is possible to adjust the block-time as needed; this technique, however,

presents the risk of increased fork occurrence since its probability is dependent on the

block-time. To reduce the probability of fork occurrence without changing the block-time,

the PoS protocol introduced the idea of ‘miniblocks’ between blocks. A miniblock contains

a nonce, the mining node’s ID, and the last block’s hash value. As shown in Fig. (3.2),

each node attempts to find a valid nonce for each miniblock whose hash value starts with

a number of zero bits that corresponds to the job associated with the miniblock. When a

node finds such a nonce, the node broadcasts the miniblock along with the found nonce,

and it’s rewarded accordingly if it succeeds in adding this miniblock. Upon completion of

all the jobs in the miniblocks specified by the blockchain, the block is then added.
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Figure 3.2: Distributed timestamp server in the PoS protocol. Reproduced from [Shi19]

Potential Attacks and their Resolutions

In the following paragraphs, we summarize some of the potential attacks addressed in

[Shi19] against the PoS protocol.

1. The client submits a problem where they already know a good solution, and colludes

with other miners to obtain the reward unfairly.

Resolution:

PoS rewards the miner for finding the best solution, but it also rewards the miner

that finds a valid nonce that makes the hash value less than or equal to the target

value specified by the network. This means, the miner essentially picks a random

solution candidate and calculates the hash value. Hence, the problem and its true
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best solution are irrelevant, so the colluding between the client and the miner has no

advantage.

However, in case a client solves the problem before submitting it and tells the solution

to a colluding miner, there will be no advantage doing so as well, as the client pays

the colluding miner the reward. This is basically considered a regular transaction

in a cryptocurrency, as the colluding client sends their coins to the colluding miner

with no financial gain.

2. A client submits an infeasible problem instance that doesn’t have a solution to force

miners to spend work on these instances while colluding with other miners to work

on tasks submitted by other clients.

Resolution:

If the submitted problem doesn’t have a solution, the ‘evaluator’ will always return

the same worst evaluation value for a problem instance that does not have a solution.

In this case, this worst evaluation value will be considered the best solution if it’s

found by multiple miners with no improvement. Consequently, the reward will be

divided equally between those miners, hence, discouraging the colluding client as

they will have to pay other miners.

The rest of the potential cheats and attacks are discussed in [Shi19] in more detail,

however, we specifically address the above scenarios as we think some certain aspects to

them are not considered in [Shi19]. We discuss this further at the end of this section.

3.5.2 QUBO-based PoW Proposed Protocol

Our QUBO-based PoW protocol has two functionalities.

a. It allows any participant in the blockchain to submit any combinatorial optimization

problem that can be converted into QUBO problem. The participant receives the

found solution, and the system rewards the miner that finds the best approximate

solution. The potential problem of a participant submitting a problem they solved
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beforehand is discussed in Sec. (3.5.1), we also discuss this further in the end of this

section.

b. If there is no problem submitted to the network, then randomized optimization prob-

lems are generated, modeling real-life problems, and their solutions are stored.

Although solving hard optimization problems that arise in real-life practical situations,

is more advantageous than solving randomized problems; in case of a shortage of guaranteed

useful tasks, the network allows the generation of hard optimization problems that are

“close” to the structure of real-life problems, which, however, will lead to questions about

what kind of problems structures that can model useful practical problems.

The implementation of task submission can be organized in different ways. We see

three fundamental options:

1. Tasks are published by the blockchain itself (as smart contracts or transactions of a

special type associated with one of the blocks),

2. Or a set of tasks of practical importance is created outside the blockchain by a

separate service that creates and maintaining a database of tasks,

3. Or finally, the tasks are created and submitted by independent clients.

In all cases, a database of tasks should be formed that allows the selection of tasks

based on an estimate of the average block-time to find a solution.

In the first case, assuming the blockchain is public, we allow the disclosure of tasks,

after which they can be solved and the solutions can subsequently be used to form the

blocks of the blockchain. In the second and third cases, such disclosure can be prevented,

however, a potential problem with the second case would be the question of who will be

the owner of the tasks database, and can lead to centralization of control. Hence, in our

protocol, we only consider the first and the third case, which is similar to the protocol in

[Shi19]. After adding the subsequent blocks, the solved problems and their solutions can

be deleted from the database or marked as archived, which can be decided by the client or

the service who sets the problem.

Our protocol consists of five algorithms:
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1. The challenge generator, in Algorithm (1)

2. The challenge submitter, in Algorithm (2)

3. QKP (Or any combinatorial optimization problem family)-to-QUBO converter, in

Algorithm (3)

4. The solver algorithm

5. The evaluator algorithm

Algorithms (1), (2), (3) are using classical resources and are expected to work in poly-

nomial time, where Algorithm (4) is using a metaheuristic algorithm, mainly we are con-

sidering Quantum Annealing algorithm, and it should be difficult for exact algorithms on

classical computers to solve. The evaluator Algorithm (5), follows the same ideas as in

[Shi19], and is expected to work in polynomial time, however, this algorithm should be

provided by the blockchain network and not by the client.

Algorithm 1: Challenge Generator

Input: NP problem family type, block-time T

Output: Block data + QUBO Matrix Q

1 Generate problem instance pi with pre-defined parameters to satisfy the

block-time T ;

2 Execute Algorithm (3) ;

3 Attach the problem to the requested block;

4 return Block & Q

The block-time T is the time required to add a block to the blockchain. For example,

the average block-time for Bitcoin is 10 minutes. The time-block T depends on the problem

difficulty.
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Algorithm 2: Challenge Submitter

Input: problem instance px, block-time T

Output: Block data + QUBO Matrix Q

1 if if instance T − δT ≤ tx ≤ T + δT then

2 go to step (7);

3 else

4 call Algorithm (1) to generate a problem pi such that

T − δT ≤ tx + ti ≤ T + δT ;

5 end

6 Execute Algorithm (3) ;

7 Attach the problem to the requested block;

8 return Block & Q

Algorithm 3: NP-to-QUBO

Input: NP problem family, Problem instance P

Output: QUBO Matrix Q

1 Select proper mapping algorithm based on NP problem family;

2 Map P to Q;

3 return Q ;

In case that the family type of the submitted problem is QKP for Algorithm (3), as

we discussed in chapter (2), to transform QKP to QUBO, the problem is first formulated

as an Ising problem, which can be properly embedded on a Quantum Annealer. The Ising

problem is solved as an energy function with goal of minimizing the energy cost, to briefly

summarize the transformation in simple steps:

1. Introduce slack variables in the form of the binary expansion to get an equality

constraint.

2. Change the maximization objective function to minimization function.

3. Add the penalty term with equality constraint to the minimized objective function.
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Putting everything together, Fig. (3.3) shows the data structure scheme of a blockchain

with a QUBO-based PoW. The procedure of the proposed scheme is presented in the next

steps:

• The Genesis Block

• The blockchain of N blocks requests to add the next block N + 1, which contains the

the hash of former block.

• A task is submitted by a client or by the blockchain itself.

• In alg. (2), if the task px is submitted by a client, then task is checked if it satisfies

the required block-time T . If it doesn’t satisfy the block-time, then the task is

submitted along with other task(s) pi that are selected from the tasks database in

alg. (1), such that, their total time should be within the block-time requirement

T − δT ≤ tx + ti ≤ T + δT .

• Charges are deducted from the client’s account.

• The submitted problem is mapped to QUBO matrix Q. Alg. (3) selects a proper

mapping algorithm based on the submitted NP-hard problem family.

• Each node runs the solver algorithm, and broadcasts the found solution’s hash value.

• Because the solution should be tightly tied to just one block, the solution hash is

concatenated with the block’s data, to serve as block N hash and carried on to the

next block N + 1.

• Block N+1 is added and the charge is paid to the client that found the best solution.
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Our QUBO-based PoW protocol borrows the same concepts from the PoS protocol in

[Shi19] as explained in Sec. (3.4), like the concept of the client, searcher (we call it solver

in our protocol), evaluator and miniblocks. However, because we introduced some new

elements or alternatives to some existing elements in PoS, a comparison needs to be made

to study how these changes might impact certain aspects of the protocol or how it might

introduce new vulnerabilities to it. In Table 3.1, we compare the main properties of the

PoS with our proposed protocol.

In Table 3.1, (!) means that this property exists in our protocol. (7) means that this

property doesn’t exists or has an alternative property in our protocol. (∼) means that it’s

not clear if this property exists in our protocol and it needs further discussion.

Table 3.1: Comparison between the properties of PoS

and QUBO-based PoW

# Proof-of-Search (PoS) properties in [Shi19] QUBO-based PoW

1 All the properties of PoW are preserved ∼
2 Any node can submit a job and become a client. !

3 A client can specify any instance of an optimization

problem in a job.

!

4 A client can implement any search algorithm for any

optimization problem for a job.

7

5 A client pays a charge for their job. !

6 If clients submit no job, the protocol falls back to the

basic PoW.

7

7 The clients submit the task with an evaluator, which is

used by the nodes to evaluate the solution candidates of

the problem to be solved

7

8 Miners have a financial incentive to find a good solution

for the instance in a job.

!

9 Miners have a financial incentive to provide the best-

found solution to the client.

!
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10 The charge is automatically paid to the node that pro-

vides the best solution to the client.

!

11 A probabilistic proof that the miners have evaluated a

large number of solution candidates is provided.

∼

12 Multiple jobs can be executed at a time. !

13 The winning probability for each miner to find the best

solution is proportional to the computational power

spent by the miner for the job.

∼

14 The expected amount of computation for a job is pro-

portional to the charge paid for the job.

!

15 The variance in block time is lower than that with PoW. ∼
16 The probability of a fork is lower than that with PoW. ∼
17 The storage capacity required to manage a blockchain

based on PoS is not too large.

∼

18 A blockchain based on PoS accepts jobs that run on

computers with different architectures.

∼

In property #3 in Table 3.1, our protocol agrees with PoS, such that, it allows any

participant in the blockchain to submit any optimization problem. However, in our protocol

we require that the optimization problem can be converted into QUBO problem. There are

few advantages to using the QUBO problems format. When we consider privacy concerns,

many instances of useful NP-hard problems can arise in the framework of commercial

developments. The problems themselves and their solutions may be trade secrets. For

private (permissioned) blockchain networks this is not a critical problem, but the inability

to use the wider possibilities of public blockchain can be restricting and limiting. One of

our protocol advantages, is that it’s possible to “mask” the original problem. Masking the

original problem is possible due to the polynomial reduction of one problem to another.

In our protocol, the client can submit a wide range of optimization problems, which are

mapped to the QUBO formulation. For example, if a client submits a task to the blockchain

network to find the best route for TSP problem, the converter algorithm in alg. (3) will

62



map this TSP instance to a QUBO problem and it will be solved accordingly, without

publishing the original problem. Another property that our protocol doesn’t agree with is

the property #6, as we mentioned in the beginning of this section, our protocol doesn’t

have empty jobs, instead, in case of a shortage of guaranteed useful tasks, the network

allows the generation of hard optimization problems that can model the structure of real-

life problems.

One of the main concerns we find in the PoS protocol is the power given to the client

by letting them implement the ‘searcher’ and the ‘evaluator’ themselves in property #4

and #7. Instead, our protocol only allows the client to submit an optimization problem,

the solver and the ‘evaluator’ algorithms are implemented by the blockchain network. For

example, in one of the potential attacks, [Shi19] discusses a cheat in which an ‘evaluator’

implemented by a malicious client returns an unfairly bad evaluation value when a special

candidate solution is presented. In such case, the searcher set up by the malicious client

will disregard this special solution candidate. In most cases, a client who submits a job

with such an ‘evaluator’, can find the best solution to the problem and collect back the

charge. Although these potential cheats in [Shi19] are argued to be resolved through the

financial discouragement, as we explained in Sec. (3.5.1), we argue that malicious attacks

are not necessarily performed to obtain financial advantage. In a situation where a client

and a miner are colluding, doesn’t necessarily mean that they are trying to obtain an unfair

amount of coins where they already know a good solution, one of the possible attacks that

can happen if they already know a good solution, is that they get to decide on what goes in

the next block, and essentially can control certain transactions that occur within it. Our

protocol resolves such cheats that are related to the client’s power of implementing the

‘evaluator’ and the ‘searcher’ programs, as they are provided by the blockchain itself.

For the properties that are marked with ∼ in Table (3.1), we argue that our protocol

agrees with them, as we kept the same components of the original PoS protocol with

the same mechanism flow, instead, we limited the control of the client, which in return,

enhanced parts of the protocol as discussed above.

Finally, as the proposed protocol needs a suitable optimization algorithm that can be an

alternative to the ‘searcher’ algorithm in PoS, we proposed using the Quantum annealing

Algorithm as the solver algorithm for our protocol. As we explained in Sec. (3.2), heuristic
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algorithms are the most suitable algorithms to solve large optimization problems, as they

do not spend an exponential amount of time searching for the optimal solution that can

take up to hours or even days when large real-world problems are considered. Expand-

ing on our study of the quantum annealing algorithm in the previous chapter, Quantum

annealing is then considered as the solver algorithm for our protocol. However, there is

a trade that needs to be made for using quantum computers that run such algorithm. In

property #18, PoS accepts jobs that can run on computers with different architectures.

While, our protocol could be used with any classical heuristic algorithm that can run on

any computers with different architectures, in this project, however, we study the use of

Quantum Annealers solvers, such as D-Wave.

Using quantum solvers, however, poses the question, if this would make the blockchain

centralized with one central power. As in [KB18], the authors argue that quantum optimiz-

ers can be considered as computational blackboxes with approximately the same computa-

tional power, which is still higher than the power of any classical computer, and assuming

that such Quantum Annealers will be available with more numbers and with more public

access in the future, these solvers could be distributed between 30+ independent nodes and

would still be relatively more decentralized compared with any of the current blockchain

networks.

For example, when we consider Bitcoin that runs on PoW protocol, which is a decen-

tralized protocol in principle, we find that in reality, Bitcoin’s network is controlled by few

pools as shown in Fig. (3.4), which are groups of miners that share computational power

and split the reward if any of them successfully mine a block. This leaves any individual

with an average computer with no possibility to ever successfully mine a block. However,

with fair access to these Quantum Annealers, which are assumed to have approximately the

same computational power, the average miner would be able to participate in the mining

process.
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Figure 3.4: Hashrate Pools Distribution in Bitcoin as of September 12, 2021. Reproduced

from [poo21]

Additionally, PoW-based Blockchain, such as Bitcoin, is prone to 51% attack, in which

one or more hashing pools can obtain control of the the majority (51% or more) of the

hashing power of the system to use it for malicious purposes. Hence, another advantage

that can be obtained in exchange for using centralized Qunatun Annealers, is the possibility

of using such solvers as a bottleneck, in which, they can be aware when nodes collude to

obtain more than 51% of the solvers power.

3.6 QKP-QUBO as PoW challenge for Blockchain

In this section, we consider the task (or the challenge) component of our proposed protocol

in the previous section, and study if it can be used as a practical alternative challenge to

the hashing puzzle in the ordinary PoW.

Essentially, a good PoW would require satisfying the hardness property. According

to the literature, research is still ongoing to develop an approach for generating 0-1 QKP
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instances that are predictable and consistent in their difficulty. Studies that include a

discussion of problem difficulty are Hansen and Meyer in [HM09], and Forrester in [For97].

It is concluded in both studies that the density of the objective function coefficients is

positively correlated with CPU time, which is confirmed by our results in the chapter (2).

In this section, we do more analysis on the benchmarking instances we used in the

chapter (2) to evaluate the suitability of using the QKP-QUBO problem as a PoW chal-

lenge. The baseline properties of the standard PoW in the Subsection (3.3.1) are used to

compare them against our approach.

3.6.1 Intrinsic hardness

The intrinsic hardness is guaranteed by the NP-Hardness of the QUBO problem [KHG+14].

Because the general quadratic 0-1 contains problems like the minimum cut and maximum

clique problems, which are NP-hard, hence, complexity-wise, the general quadratic 0-1 is

NP-hard. Also, [PJ92] showed that the general quadratic 0-1 problem can be reduced to a

minimization problem of a quadratic function with a unique solution in polynomial-time,

and since the general quadratic 0-1 problem is NP-hard; hence, the minimization problem

of a quadratic function with a unique solution is also considered NP-hard.

3.6.2 Adjustable Hardness property

For the QKP-QUBO problem to qualify as a good challenge for PoW, we want to adjust

the hardness of the problem based on tuning some parameters of the challenge. In this

section, we introduce a parameter called the diagonal dominance; this parameter has been

used in [HBT08] to characterize the QUBO’s difficulty in finding its optimal solution.

Defining diagonal dominance, a diagonally dominant matrix has the diagonal entry

magnitude of a row to be larger than or equal to the sum of the magnitudes of all the other

entries that are non-diagonal in that row. In a QUBO matrix, where

P = C+ +Q+ where C+ =
∑
cj>0

cj and Q+ =
∑
cij>0

cij (3.2)
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N = C− +Q− where C− =
∑
cj<0

cj and Q− =
∑
cij>0

cij (3.3)

such that, P (and respectively, N) is the sum of the positive (and respectively, negative)

coefficients of the QUBO. In the above equations, C represents the linear coefficients, and

Q represents the quadratic coefficients.

The instance matrix is said to have p diagonal dominance when [HBT08],

p =
C+ − C−

Q+ −Q−
. (3.4)

The second parameter we are defining is the WC-Ratio, which is the objects’ weight to

knapsack capacity ratio of the native QKP [WKG12],

WC-ratio =

∑
wi
c

. (3.5)

Most heuristics for QKP use this parameter to determine an initial solution by com-

paring the total object weights wi with the knapsack capacity c and selecting those objects

whose weight sum does not exceed c. Such that, fewer objects will be chosen in an initial

solution if the ratio is large. However, more objects will be chosen in the initial solution if

this ratio is small, implying that the problem may be harder to solve [WKG12].

In Fig. (3.5) and Fig. (3.6), we found a strong relationship between the diagonal

dominance and WC-ratio. Although we did not see a clear effect of this relationship on

the runtime scaling, it opens the door for further testing in determining the relation-

ship between the QKP native problem and the transformed QUBO. However, we found a

promising result in Fig. (3.6), there is a strong relationship between these parameters and

the error gap produced when the transformed QUBO is solved using the simulated anneal-

ing algorithm. This could be potentially used to determine the number of runs required to

reduce the error gap, hence, increasing the runtime of the problem.
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Figure 3.6: Correlation heatmap for n = 100

Another approach we could use to achieve the desired hardness is using the runtime

scaling against the problem size. For example, if a QUBO problem has a small size, several

challenges could be combined to be one challenge for just one block to achieve the desired

complexity (block-time).
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3.6.3 Easy verifiability property

The decision problem form of the Quadratic knapsack problem is an NP-complete problem,

which asks, “Can a cost of at least C be achieved that does not exceed the weight W of the

Knapsack?” [Pis07]. Even though the decision problem is NP-complete, the optimization

problem form of the QKP is not, it’s in the NP-Hard class, but it’s still at least as difficult

as the decision problem. Although verifying that the QKP obtained solution is the optimal

answer is as difficult as solving the quadratic knapsack problem, given a set of solutions, we

can verify the best of those solutions in polynomial time. Thus, even though one miner’s

solution is not guaranteed to be optimal, we can take advantage of this fact by requiring

the network to be continuously updated by a better solution among the miner’s different

solutions, and the network rewards the best solution.

3.6.4 Block Sensitivity property

The Block Sensitivity property is fulfilled, because the solution is hashed together with the

block’s data hash, as discussed in the protocol, which is only tied to this block.

3.6.5 Non-reusability property

The QKP-QUBO problem associated with the given block is uniquely associated with the

given block and is independent from other blocks’ associated problems, thus, work done

on one problem cannot be reused on another.

3.7 Conclusion

This chapter proposed solving hard combinatorial optimization problems as an alternative

to the Hash puzzle used in the current blockchain’s PoW protocol, improving the wasted

energy problem in the usual PoW protocol. In particular, we studied the QKP family

of problems in the NP-Hard complexity class. While the future of quantum computers

imposes a considerable threat to the application of the blockchain, quantum technology can
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be harnessed to improve parts of the blockchain better. We proposed Quantum Annealing

as the proper metaheuristic algorithm to use as the solver for this family of problems.

The suitability of using the QKP-QUBO problem as PoW challenge is evaluated ac-

cording to the baseline criteria of what constitutes a good PoW challenge. One of these

properties is that a good PoW would require to satisfy the adjustable hardness property

mainly. Our numerical experiment in the chapter (2) showed the problem complexity

does indeed grow in a time when being solved by the metaheuristics: classical simulated

annealing and Hybrid Quantum annealing; which is the basic requirement for the PoW

concept to be practical. Also, from the difficulty analysis done in Sec. (3.6), we find a

relationship between the diagonal dominance parameter of the QUBO problem and the

WC-Ratio parameter of the native QKP. In the literature, both of these parameters are

used to characterize the problem’s difficulty; hence, finding this relationship between the

QUBO and the QKP parameters could potentially help in tuning the desired difficulty for

the PoW challenge.
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Chapter 4

Simulating Chaos of The Quantum

Kicked Ising Model on Quantum

Annealer

4.1 Overview

In this chapter, we propose an approach for simulating the Quantum Kicked Ising Model

(QKI) on the Quantum Annealer D-Wave. Simulating quantum chaotic systems on a

real quantum machine could provide interesting insights into studying quantum chaos,

and because the circuit model lacks simulating large qubit system, Quantum Annealing is

more suited for this simulation, specifically, to study the chaotic transition between the

deep quantum realm to the classical limit. To achieve this, we propose simulating the

QKI model on D-Wave, which a well studied model that exhibits chaotic behavior, and

it’s naturally mapped onto the Quantum Annealing hardware. Also, this approach could

provide insights into the connection between entanglement and quantum chaos, which could

be utilized to study the “Quantumness” of D-Wave. The implementation of this approach

is outside of the thesis’s scope, and is left for future work.
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4.2 Introduction

The classical chaos theory describes the unpredictability in the system’s evolution dynam-

ics due to its sensitivity to the system’s initial conditions. The concept of chaos was first

developed by Poincaré in [Poi05] in the 19th century. In classical dynamic systems, par-

ticles move along trajectories in the phase-space, where chaos is typically characterized

by positive Lyapunov exponent [Gre10] in nonlinear systems, leading to trajectories with

similar initial conditions to diverge exponentially fast from each other.

It follows, however, that since quantum physics is a limit of classical physics according

to the correspondence principle, the search for quantum signatures of classical chaos is

sought after. Hence, the subject of quantum chaos studies the relation between quantum

mechanics and classical chaos. While classical chaos principles are well established in clas-

sical physics, it has not been rigorously established in the area of quantum physics. One

of the reasons is the fundamental difference between both descriptions; according to quan-

tum mechanics, conjugate observables like position and momentum cannot simultaneously

take on determined values, unlike classical systems, where the states can be completely

described using a set of dynamical variables [SM19]. The dynamics of the quantum sys-

tems are instead described by the linearity of the Schrödinger equation, which allows the

superpositions of quantum states, and described by the uncertainty principle. As a result,

the formulation of quantum mechanics in its current form is fundamentally incompatible

with classical chaos, because the classical chaotic dynamics require nonlinearity and the

exponential divergence of neighboring trajectories [GFS12].

One area of studying quantum chaos seeks to find signatures of classical chaos in quan-

tum systems, to help to identify quantum realm’s properties to distinguish the underlying

regular dynamics of the system from the chaotic dynamics of classical dynamics. Even

though many attempts in the literature have been made to characterize the signature of

quantum chaos, this problem is still an open one [Kum19]. In this chapter, we focus on a

particular area of research, which tries to identify quantum chaos signatures in the quan-

tum entanglement’s dynamics. In particular, we consider the Kicked Ising model, which

has been shown in [Pro02], [LS05], [VKRPS18], to display both regular (integrable) and

chaotic (non-integrable) behavior according to a certain choice of parameters in the model
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simulation. We hope this proposed work can provide insights into studying entanglement

and its relationship with classical dynamics and nonlocality in the Quantum Kicked Ising

(QKI) model.

In the following section (4.3), we describe the QKI model and give an overview of the

possible quantum chaos measures and entanglement measures. In Sec. (4.4), we outline

the basic approach for mapping the QKI on D-Wave’s Quantum Annealer. Finally in Sec.

(4.5), we propose a possible future study under the general theme of our thesis, which is

Quantum Annealing. We discuss the potential of using the connection between quantum

chaos and entanglement to further investigate the problem of the “Quantumness” of D-

Wave.

4.3 Background

4.3.1 Model Description

The model presented in this study is the quantum Kicked Ising (QKI) model, which is a

1D lattice chain of N qubits, coupled and locally interact with each other via the nearest

neighbour Ising interaction. The system is periodically kicked with spatially homogeneous

transverse magnetic field [Pro07].

The time dependent Hamiltonian can be written as:

H(t)KI = HI +H0

∑
n

δ(t− nτ) (4.1)

where the kicks are provided by the δ(t− nτ) which is a unit-periodic Dirac delta.

The 1-dim Ising Hamiltonian HI :

HI =
∑
i

hiσ̂
(i)
z +

∑
i>j

Ji,jσ̂
(i)
z σ̂

(j)
z (4.2)

The Hamiltonian H0 for a spatially homogeneous magnetic field b applied along the x

axis :

H0 = b
∑
i

σ̂(i)
x (4.3)
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such that:

The indices i and j represent two neighboring qubits, and interactions between them

are quantified by coupling strengths Jij.

Jij: homogeneous Ising spin-coupling interaction between spins i and j along the z-axis.

b: transverse magnetic field applied along the x-axis to the whole chain

hi: longitudinal magnetic field applied along the z-axis on spin i, represents the linear

coefficients corresponding to qubit biases

and σix,y,z are the usual Pauli spin variables on a finite lattice, satisfying the commuta-

tion algebra [σiα, σ
j
β] =

∑
γ 2iεαβγδ

ijσiγ

Note that Jij, b and hi, are independent dimensionless parameters that specify the

model [PPV14], and their sign does not impact the dynamics, as the system with positive

parameters can be mapped into the system with negative parameters by performing some

rotations.

4.3.2 Quantum Chaos Measures

Understanding quantum chaos requires a close look at classic chaos in the deep quantum

regime. Several measures of quantum chaos have been developed in the literature, however,

the two measures of chaos that are considered in this proposal are the Out-of-time-order

correlators(OTOCs) and Level Spacing Statistics, as both of these measures and their

connection to entanglement are explored in the literature [GHR18], [KSL07], [VLRK03].

Out-of-time-order correlators (OTOCs)

Chaos in non-integrable many-body systems is predicted to cause both thermalization and

scrambling of information, leading to nonlocal information. Under the chaotic dynamics

of the Heisenberg picture, when the local operator A grows with time, this growth is then
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reflected in the noncommutativity of A(t) and B, which is another local operator that

exists at a different site, hence, resulting in the OTOC decaying with time [NZZ+19].

Assuming that A and B are Hermitian and unitary local operators, then [NZZ+19],

FAB(t) =< A(t)B(0)A(t)B(0) > (4.4)

In chaotic many-body systems, the OTOC F(t) is expected to drift away from 1 and

approaches zero at a relatively late time, reflecting the chaotic nature of the dynamics, and

this applied for almost any choice of operators A and B.

Level spacing distribution

For the QKI model, the system can be driven from the integrable regimes to the chaotic

ones. This transition can be observed by studying the spectrum of eigenvalues and the

distribution of eigenstates. One of the chaos measures we are considering is the level

spacing statistics.

Level spacing distribution is used in literature as an indicator of chaos. To specify

when the system becomes chaotic, the level spacing distribution is studied, such that, the

distribution P (s) of neighboring energy levels spacings, s, differs depending on whether the

system is integrable or non-integrable system [Pra15]. In integrable systems, the energy

levels are not correlated, and are not denied from crossing, so the distribution is Poissonian

(P) [GFS12].

P (s)p = e−s (4.5)

However, the eigenvalues in chaotic system become correlated resulting in “avoided

crossings”, meaning there is level repulsion [GFS12], the level statistics in this case P(s) is

given by the Wigner-Dyson (WD) distribution given by:

PWD(s) =
πs

2
e
πs2

4 (4.6)
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To demonstrate this, a study done in [KSL07] shows the connection between noninte-

grability and avoided crossings, As shown in Fig. (4.1), the presence of the Wigner-Dyson

distribution is an indicator of a certain measure of quantum chaos.

Figure 4.1: The nearest neighbor spacing distribution of the even states of a chain with N

= 13 spins at various angles θ of tilt of the transverse magnetic field in the non-integrable

region. The parameters are Jij = hi = 1 in QKI model from Eq. (4.2). Reproduced from

[KSL07]

4.3.3 Entanglement Measures and Chaos

Entanglement is a quantum phenomenon that is used often as a powerful tool in quan-

tum information theory. In principle, entanglement of two distant systems can produce

instantaneous correlations between them that local hidden variable theories cannot ex-

plain [Wit14]; this phenomenon is called nonlocality, which cannot be realized by classical

systems.

To quantify entanglement in any given quantum state, the use of entanglement measures

is needed. Entanglement can exist in both two-body (or bipartite) and many-body (or
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multipartite) systems. However, there has been more focus on bipartite entanglement

measures in pure states and their relationship to chaos, mostly due to the fact that the

von Neumann entropy of the reduced density matrices is a clear measure of entanglement.

A bipartite system consists of two different subsystems A and B, represented by the

density matrix [Kum19];

ρAB =
N∑
i=0

piρA ⊗ ρB (4.7)

However, if a bipartite system can be written in this form, it means that the bipartite is

separable and the subsystems are not entanglement. For an entangled bipartite state, the

von Neumann Entropy is used to measure the entanglement entropy E, and it’s defined as

[Kum19];

E(ρAB) = S(ρA) = S(ρB) (4.8)

where S(ρ) is the von Neumann Entropy and is defined as

S(ρ) = −trρ log ρ (4.9)

Another measure of entanglement content in a bipartite system is called Concurrence

[HW97]. We explain it later in the section as it’s a commonly used measure in studying

entanglement and chaos in QKI model.

Despite the fact that the entanglement content of an Ising spin-chain could be greater

than the amount of entanglement present in two-body correlations, the lack of studying

the multipartite entanglement compared to the bipartite entanglement could be due to the

difficulty of defining proper measures of global entanglement in these spin chains [LS05].

However, one of the few promising multipartite entanglement measures in the literature is

the Meyer and Wallach Q measure, proposed in [MW02].
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Concurrence

The concurrence measure associated with two qubits i and j, can be obtained from [AMMV20]

C(ρij) = max{0,
√
λ1 −

√
λ2 −

√
λ3 −

√
λ4} (4.10)

where ρij is the reduced density matrix.

λn is the eigenvalues of the matrix R = ρρ̃ in decreasing order,

and ρ̃ij = (σyi ⊗ σ
y
j )ρ
∗
ij(σ

y
i ⊗ σ

y
j ).

The concurrence measure is always between 0 and 1, with the concurrence vanishing

for unentangled states and reaching 1 for maximally entangled bipartite system.

The Meyer and Wallach Q measure

The Meyer and Wallach Q measure is based on the fact that the purity or the presence

of mixed states of the reduced density matrices ρi can be viewed as an indicator of entan-

glement of the ith qubit, which calculates the entanglement content between the given ith

qubit and the rest spins in the system of N spins. The measure is defined as [MW02];

Q(ψ) = 2(1− 1

N

N∑
k=1

Tr(ρ2k)) (4.11)

A study done in [LS05] on QKI model, showed that for spin chain system with spins N =

2 in the integrable regime (with zero-tilt of the transverse magnetic field), the concurrence

coincides with Q, but for a higher number of spins, as shown in Fig. (4.2), they find that

at times which the nearest neighbor concurrence vanish, the multipartite entanglement

content as measure by Q is at its maximum during these periods, indicating that two-body

correlations are being globally distributed throughout the spin-chain system.
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Figure 4.2: The Meyer and Wallach measure of entanglement Q and the nearest neighbour

concurrence for spin chain N=4, as functions of (scaled) time. Reproduced from [LS05]
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However, in the non-integrable regime, With a non-zero tilt angle of the transverse field

applied on the QKI model, they find that while the maximum of the Q measure drops from

1, as in Fig. (4.3), the average of the measure is still larger then the entanglement content

for the integrable case.

Time

Figure 4.3: The entanglement measure Q as a function of time, for different tilt angles of

the transverse field. The parameters are Jij = 0.1, hi = 0.1, N = 10 in QKI model from

Eq. (4.2). Reproduced from [LS05]
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4.4 Approach

4.4.1 Mapping QKI model on D-Wave Quantum Annealer

The D-Wave 2000Q implements the following schedule of quantum annealing:

Hising = A(s)H0 +B(s)H1 (4.12)

where the driving functions A(s) and B(s) are changed over time as shown in fig (4.4).

A(s) represents the transverse field strength, and B(s) is the energy applied to the problem

Hamiltonian. The H1 is the target Hamiltonian, and H0 is the starting Hamiltonian, this

is explained in more details in Chapter (1).

In a simplistic approach, we can think of the annealing functions as A(s) = 1 − s(t),
and B(s) = s(t), such that s(t) is a normalized anneal fraction, parameter ranging from 0

to 1. The typical choice is s = t
τ
, where τ is the annealing time.

For the D-Wave system, the Hamiltonian is represented as [McG14]:

Hising = −A(s)

(∑
i

σ̂(i)
x

)
+B(s)

(∑
i

hiσ̂
(i)
z +

∑
i>j

Ji,jσ̂
(i)
z σ̂

(j)
z

)
(4.13)

where σ̂
(i)
x,z are Pauli matrices operating on a qubit i. the coupling strength Jij and

longitudinal field hi can be set to an arbitrary value chosen within the limits of the hardware

connectivity respectively [CV+14].
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A(s)
B(s)

The temperature of the system

Figure 4.4: Functions A(s) and B(s) for the Annealing schedule

To map QKI model to the D-Wave’s Ising model, simulating the periodic “kicks” would

be the main challenge. One way to simulate these period kicks, is by manipulating the

D-Wave “annealing Schedule”. The time-dependent functions A(s) and B(s) give the an-

nealing schedule. On D-Wave, the annealing schedule can be traversed at any rate the user

chooses. Rather than having s(t) = t
τ
, which has the dimensionless time parameter s, be

related to the time τ in a linear relationship, where τ is the total annealing time, D-Wave

allows us to use more flexible relationships such as ds/dt for different annealing rates in

different portions of the anneal. D-Wave implements two algorithms for the annealing

schedule, the ‘forward’ annealing and the ‘reverse’ annealing [MVHR19].

Working with the forward annealing schedule, we can use the annealing protocol to

simulate one kick, by annealing the system from s = 0 to some other point s = sp, We

then pause at s = sp for some time tp and again, we can continue the anneal to another

s = sp2 and then we can pause the anneal for some time to simulate the second kick and

so on. Finally, we finish by annealing to s = 1. Hence, by having s, and consequently the

Hamiltonian, to stay fixed for some period of time [MVHR19], we can achieve the kicks we

aim for to implement the QKI model.
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4.5 Proposed/Future Work and Remarks

In this section we discuss a possible advantage of this study under the general theme of

our thesis, which is Quantum Annealing. We propose simulating the QKI model on the

Quantum Annealer D-Wave for future work, and use the connection between entanglement

and chaos in spin systems [Kum19] to study the “Quantumness” claim of D-Wave. In the

following paragraphs, we discuss the problem of the “Quantumness” of D-Wave and the

potential of using the connection between chaos and entanglement to further investigate

this problem.

The “Quantumness” of D-Wave claims have provoked much controversy, as to whether

or not their machine truly performs quantum annealing. It is very sensible to be skeptical

and question whether this macroscopic artificial spin system truly behaves quantum me-

chanically. There are two fundamental quantum phenomena claimed to be present during

the Quantum Annealing process on D-Wave. The first is quantum tunneling, and the

second is entanglement. Because both phenomena are a critical indication of the quan-

tumness of a system, several attempts have been considered in the literature to prove the

“Quantumness” of D-Wave. For the first phenomenon, an experimental study [JAG+11]

was carried out to determine whether the qubit dynamics during the annealing process

is dominated by thermal activation or quantum tunneling. Their study used a supercon-

ducting flux quantum qubit array with programmable spin-spin couplings to implement

an artificial Ising spin system that underwent quantum annealing to find the ground state

of this system. To demonstrate a signature of quantum annealing in this artificial Ising

spin system in their experiments, they measured the temperature dependence of the time

when the dynamics of the system freezes, which is the point at which the system stops

responding to changes in the landscape of its energy. The authors were able to show a

clear indication of quantum annealing that is different from the classical thermal annealing,

supporting the “Quantumness” argument of D-Wave.

For the second claim that entanglement is present during the Quantum Annealing pro-

cess, another study in support of “Quantumness” of D-Wave is presented in [LPS+14].

Their study showed that during a critical part of the Quantum Annealing process, experi-

mental evidence showed that the qubits become entangled, and this entanglement remains
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even after reaching equilibrium with the surrounding thermal environment, proving the

“Quantumness” of QA. Moreover, the presence of entanglement during Quantum Anneal-

ing has also been observed in [LKEH17] and [ARTL15]. In this proposal, we focus on

investigating the claim of entanglement presence in D-Wave. The presented idea is to use

the connection between entanglement and quantum chaos by simulating the chaotic model

QKI on D-Wave, and use the available measures of quantum chaos as a possible witness

of the presence of entanglement if it exists at all.

Two measures of chaos were considered in this proposal: Out-of-time-order correlators

(OTOCs) and Level Spacing Statistics. Both of these measures and their connection to

entanglement are explored in the literature. First, for the OTOCs measure, the late-time

vanishing of OTOCs is related to the scrambling of information in quantum systems that

takes place in chaotic systems. Also, witnessing entanglement in quantum systems is used

as a probe of the scrambling of quantum information. In a study done in [GHR18], the

authors showed that a specific family of OTOCs could serve as a witness to the entangle-

ment of multiparticle systems. Second, for the level spacing measure [SLB20], when the

spacing between energy levels move close to each other, sometimes reaching 0, resulting

in an energy-level crossing. Studies in [VLRK03], [KSL07] and [OHPK08] showed that

entanglement is generically witnessed at its maximum at this avoided crossing region.

For our final remarks, we discuss the advantage of simulating QKI on a quantum

annealer like D-Wave. The current available qubit size using the circuit model for quantum

chaos studies is limited. For example, IBM’s current largest quantum computer contains 65

qubits [Cho20]. However, most quantum chaos experiments done on the available quantum

computers or in the labs, are done with smaller qubit systems, that range from 2 qubits

system to less than 10 qubits [LTF21]. With the launch of D-Wave’s Advantage Quantum

processor, which has over 5, 000 qubits, and with the promising scaling of the quantum

annealing technology, simulating quantum chaotic models with such large qubit systems can

provide an advantage to study the chaotic transition between the deep quantum realm and

the classical limit. Also, it could provide insights into entanglement and its relationship

with classical dynamics and nonlocality in the Quantum Kicked Ising model, which in

return, could be useful in studying the “Quantumness” of quantum annealers, such as

D-Wave.
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Chapter 5

Conclusion

There are two main goals that are addressed in this thesis to assess the potential of Quan-

tum Annealers. The first goal of this research was to study if quantum advantage is

realized for solving NP-Hard problems with Quantum Annealing. The second goal was to

study Quantum Annealers for potential use cases; specifically, we proposed a use case for

Blockchain technology and a use-case in the field of Quantum Chaos.

For the first goal, we asked the specific question of whether Quantum Annealing can

provide better performance for solving NP-hard Quadratic Knapsack problem (QKP) in

terms of the solution quality and the total runtime. In addition to whether the trans-

formation from QKP to the D-Wave’s QUBO would impact the problem’s structure and

complexity. To answer this question for a metaheuristic solver like D-Wave’s Quantum

Annealer, benchmarking and computational analysis were necessary as such algorithms do

not have a theoretical guarantee like exact algorithms.

In Chapter (2), we presented our approach to empirically test the QUBO reformula-

tion of the QKP native problem, to compare the pure and the hybrid QA performance

on D-Wave, against the CPLEX exact algorithm and the classical metaheuristic algorithm

Simulated Annealing. To achieve this, we selected the appropriate benchmarking instances

for the computational experiments as randomly generated QUBO problems are unlikely

to provide useful benchmarking results for a metaheuristic solver. The results from the

computational analyses suggest that the Simulated Annealing and D-Wave’s Hybrid solver
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outperform both the pure quantum solver and the classical implementation on CPLEX.

However, as the problem grows in size, we found that that D-Wave’s Hybrid solver does

slightly better, in terms of the solution quality, by 2× times compared to simulated an-

nealing. Hence, we concluded that Quantum Annealing can display quantum speed-up in

the Hybrid solver case. Another result found a negative relationship between the density

parameter of the native QKP problem and the complexity of the reformulated QUBO prob-

lem when solved using the Hybrid solver and Simulated Annealing, which is a non-intuitive

result. From this result, we concluded that QUBO reformulation might influence the struc-

ture and the landscape of the original QKP problem when transformed and solved using the

Simulated Annealing and the Hybrid solver approaches. Another interesting result found

that solving the reformulated problem using the CPLEX exact algorithm sometimes fails

for instances that have knapsack capacity very close to the weight of selected objects sug-

gesting that the solution is sensitive to the boundary condition of the problem. However,

the instances sometimes have some success probability when solved using metaheuristic

algorithms. For future work, we seek to understand some of these non-intuitive results

further and to possibly improve the solution quality and runtime on the Hybrid solver by

developing a customized algorithm inside one of the Hybrid solver branches.

For the second goal of this thesis, in Chapter (3) we proposed a protocol for solving

QKP-QUBO as an alternative to the Hash puzzle used in the current Blockchain PoW

protocol, improving the wasted energy problem in the usual PoW protocol, and use Quan-

tum Annealer as their solvers in the protocol. While we were not the first to propose using

QUBO and Quantum Annealing for PoW in Blockchain, as it was first proposed in [KB18],

our contribution was generalizing the protocol to work with various types of optimization

problems mapped to the general QUBO problem. In particular, we studied QKP as one of

the other possible potential candidates for a practical PoW problem. Also, we evaluated

the QKP-QUBO problem with consideration of how it would satisfy the Blockchain con-

sensus protocol requirements for a practical PoW problem. We showed that the suggested

problem does satisfy the baseline criteria to work in a practical PoW protocol.

Another use-case for Quantum Annealers was proposed in the Chapter (4). We pro-

posed an approach to simulate the Quantum Kicked Ising Model on the Quantum Annealer

D-wave, motivated by two aims. First, gaining more interesting insights into studying quan-
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tum chaos by simulating a chaotic quantum system on a real quantum machine. Second,

to study the “Quantumness” of D-Wave via the connection between entanglement and

quantum chaos. The testing and development of this study in the area of quantum chaos

are left for future work.
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[MRKA18] Aarne Mämmelä, Jukka Riekki, Adrian Kotelba, and Antti Anttonen. Multi-

disciplinary and historical perspectives for developing intelligent and resource-

efficient systems. IEEE Access, 6:17464–17499, 2018.

[MVHR19] Jeffrey Marshall, Davide Venturelli, Itay Hen, and Eleanor G Rieffel. Power of

pausing: Advancing understanding of thermalization in experimental quantum

annealers. Physical Review Applied, 11(4):044083, 2019.

[MW02] David A Meyer and Nolan R Wallach. Global entanglement in multiparticle

systems. Journal of Mathematical Physics, 43(9):4273–4278, 2002.

[MW13] Catherine C. McGeoch and Cong Wang. Experimental evaluation of an adia-

biatic quantum system for combinatorial optimization. In Proceedings of the

ACM International Conference on Computing Frontiers, CF ’13, New York,

NY, USA, 2013. Association for Computing Machinery.

[NP09] Apurva Narayan and C. Patvardhan. A novel quantum evolutionary algorithm

for quadratic knapsack problem. In 2009 IEEE International Conference on

Systems, Man and Cybernetics, pages 1388–1392, 2009.

[NZZ+19] Xinfang Nie, Ze Zhang, Xiuzhu Zhao, Tao Xin, Dawei Lu, and Jun Li. Detect-

ing scrambling via statistical correlations between randomized measurements

on an nmr quantum simulator. arXiv preprint arXiv:1903.12237, 2019.

[OHPK08] Sangchul Oh, Zhen Huang, Uri Peskin, and Sabre Kais. Entanglement, berry

phases, and level crossings for the atomic breit-rabi hamiltonian. Physical

Review A, 78(6):062106, 2008.

95



[PB19] Davide Pastorello and Enrico Blanzieri. Quantum annealing learning search

for solving qubo problems. Quantum Information Processing, 18(10):1–17,

2019.

[PB21] Frank Phillipson and Harshil Singh Bhatia. Portfolio optimisation using the

d-wave quantum annealer. In International Conference on Computational Sci-

ence, pages 45–59. Springer, 2021.

[Pis07] David Pisinger. The quadratic knapsack problem—a survey. Discrete Applied

Mathematics, 155(5):623–648, 2007.

[PJ92] Panos M Pardalos and Somesh Jha. Complexity of uniqueness and local search

in quadratic 0–1 programming. Operations research letters, 11(2):119–123,

1992.
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Appendix A

Computational Experiment Results

• Instance name −→ I

• QKP size −→ n

• QKP density −→ d

• QKP WC-Ratio −→ r

• QUBO diagonal dominance −→ p

• QKP optimal on CPLEX −→ Sqkp

• QKP runtime on CPLEX in seconds −→ tqkp

• QUBO optimal on CPLEX −→ Squbo

• QUBO runtime on CPLEX in seconds −→ tqubo

• QUBO optimal on SA −→ Sanl

• QUBO runtime on SA in seconds −→ tanl

• QUBO optimal on Hybrid Solver −→ Shy

• QUBO runtime on Hybrid Solver in seconds −→ thy

• QUBO optimal on Advantage Solver −→ Sadv

• QUBO runtime in seconds on Advantage Solver −→ tadv
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I n d r Sqkp tqkp p Squbo tqubo Sanl tanl Shy thy Sadv tadv

r 100 25 1 100 0.25 0.259 18558 2.688 0.699 15438 33.245 17373 13.4839582 15298 18.405 8290 308.509

r 100 25 2 100 0.25 0.855 56525 1.132 1.294 49806 34.858 42669 24.7356815 49023 16.213 18018 492.285

r 100 25 3 100 0.25 0.063 3752 2.870 0.203 2775 34.950 3455 14.2860336 3417 15.805 100 493.237

r 100 25 4 100 0.25 0.762 50382 2.812 1.203 45716 34.956 36555 22.6666112 43760 15.254 24748 197.125

r 100 25 5 100 0.25 0.934 61494 2.323 1.419 58334 37.100 40986 29.3656941 50389 15.377 21593 349.684

r 100 25 6 100 0.25 0.540 36360 2.444 1.067 29796 34.104 22593 21.3408511 28922 17.353 20935 468.322

r 100 25 7 100 0.25 0.190 14657 2.852 0.603 12740 33.764 12730 11.0596263 11890 17.605 5087 372.677

r 100 25 8 100 0.25 0.262 20452 1.120 0.681 16872 33.983 18845 16.4170437 17015 15.535 10066 355.670

r 100 25 9 100 0.25 0.568 35438 1.818 1.268 29899 36.133 28726 9.05917239 27399 15.501 17153 248.868

r 100 25 10 100 0.25 0.399 24930 2.758 0.812 21305 33.516 22213 12.5192857 19298 15.325 11310 356.729

r 100 50 1 100 0.5 0.621 83742 4.175 1.321 78216 32.022 73174 22.3957322 74576 15.911 34991 207.690

r 100 50 2 100 0.5 0.789 104856 8.542 1.736 90512 33.407 67296 14.4557595 91872 14.344 43150 266.549

r 100 50 3 100 0.5 0.241 34006 2.980 0.621 28111 34.032 32950 8.34003878 29453 17.204 12126 512.010

r 100 50 4 100 0.5 0.828 105996 5.846 1.208 99023 33.383 63856 10.2393811 90247 15.988 42228 381.986

r 100 50 5 100 0.5 0.420 56464 10.757 1.139 51552 33.976 47048 10.8758123 47279 16.076 29469 126.800

r 100 50 6 100 0.5 0.135 16083 5.212 0.414 13396 33.045 15595 11.2068839 14698 15.547 5644 400.015

r 100 50 7 100 0.5 0.407 52819 3.708 0.835 37948 32.263 46161 12.999752 43308 14.606 23234 182.865

r 100 50 8 100 0.5 0.416 54246 2.912 0.832 46431 32.837 50681 8.80625868 45038 24.187 27410 279.023

r 100 50 9 100 0.5 0.550 68974 6.620 1.188 61569 32.231 60375 15.4210713 58374 15.663 38536 212.043

r 100 50 10 100 0.5 0.702 88634 24.278 1.578 84456 34.333 54450 14.3333266 71913 29.586 31234 279.599

r 100 75 1 100 0.75 0.983 189137 1.182 1.419 183462 32.003 117379 5.59568429 180435 15.436 57186 335.881

r 100 75 2 100 0.75 0.502 94957 30.816 1.078 88771 33.985 90831 6.19878244 86553 23.330 50368 305.562

r 100 75 3 100 0.75 0.329 62098 11.001 0.907 47021 33.091 58965 6.28894353 53653 15.258 31412 280.601

r 100 75 4 100 0.75 0.381 72167 30.618 1.051 58062 35.057 69140 19.882086 66992 17.645 38465 421.623

r 100 75 5 100 0.75 0.148 27616 9.849 0.463 23698 33.011 27327 16.1517782 25264 15.446 7860 396.619

r 100 75 6 100 0.75 0.740 145273 3.508 1.633 131575 33.101 95765 10.6766684 124690 14.873 50885 245.345

r 100 75 7 100 0.75 0.568 110979 18.497 1.228 99363 34.674 106677 10.3770986 103074 20.635 70805 305.484

r 100 75 8 100 0.75 0.132 19453 31.157 0.424 16454 35.255 19120 18.5227401 16499 15.626 9607 229.401

r 100 75 9 100 0.75 0.566 104120 31.104 1.245 82818 34.373 90899 9.05056834 92847 14.373 59374 235.803

r 100 75 10 100 0.75 0.754 143740 12.173 1.647 131652 33.679 142213 7.28371167 125184 15.979 62882 177.158

r 100 100 1 100 1 0.283 81978 30.670 0.720 70201 34.705 82064 10.8005917 79073 15.442 37273 186.862

r 100 100 2 100 1 0.757 190267 30.700 1.677 175736 36.369 164700 12.7350283 174102 14.808 88953 296.050

r 100 100 3 100 1 0.889 225434 30.679 1.256 208476 33.822 172957 17.8171499 203276 18.296 80228 359.589

r 100 100 5 100 1 0.890 230076 30.778 1.268 222907 34.982 122000 12.5483854 210622 15.429 64663 505.067

r 100 100 5 100 1 0.890 230076 30.554 1.268 222907 34.859 167658 10.0338805 215830 15.222 64617 321.373

r 100 100 6 100 1 0.296 74358 30.596 0.794 67677 34.036 73628 8.12566853 68825 15.206 33365 617.844

r 100 100 7 100 1 0.041 10330 30.537 0.133 8165 33.908 10713 6.98741198 10713 14.526 1158 261.131

r 100 100 8 100 1 0.245 62582 30.641 0.649 52048 36.349 62366 6.13812065 57191 14.747 38569 458.270

r 100 100 9 100 1 0.917 232754 30.560 1.312 225005 36.363 178168 13.6318729 209427 15.467 86312 393.194

r 100 100 10 100 1 0.748 193262 31.288 1.578 182226 36.309 150039 8.74122953 185054 15.638 85131 339.456

Table A.1: Computational results for n=100, P=10
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I n d r Sqkp tqkp p Squbo tqubo Sanl tanl Shy thy

r 200 25 1 200 0.25 0.777 204401 31.276 1.718 158521 42.34 152873 18.840 168143 17.04

r 200 25 2 200 0.25 0.914 239573 5.419 1.222 224572 40.40 128793 37.759 225211 17.53

r 200 25 2 200 0.25 0.914 239573 8.044 1.222 224572 47.22 133463 23.160 212067 16.11

r 200 25 4 200 0.25 0.852 222361 19.601 1.246 183877 40.48 135270 23.032 194444 18.01

r 200 25 5 200 0.25 0.724 187324 26.108 1.577 142781 39.99 123495 6.460 152849 17.93

r 200 25 6 200 0.25 0.327 80086 32.005 0.907 34713 39.74 63924 17.109 63120 20.31

r 200 25 7 200 0.25 0.234 58921 32.755 0.635 23240 47.44 43285 21.846 45913 18.27

r 200 25 8 200 0.25 0.569 149433 12.581 1.200 83335 45.30 97924 33.291 121075 21.22

r 200 25 9 200 0.25 0.195 49366 26.437 0.634 11536 47.57 33523 37.992 37995 16.88

r 200 25 10 200 0.25 0.186 48459 8.719 0.607 11591 44.83 37104 12.530 36933 20.30

r 200 50 1 200 0.5 0.716 372097 6.368 1.537 281200 38.54 316053 15.124 312736 21.40

r 200 50 2 200 0.5 0.427 209061 32.299 0.888 116028 46.67 158726 13.889 190448 17.89

r 200 50 3 200 0.5 0.432 227185 32.300 0.861 122138 39.20 166775 12.491 207659 18.81

r 200 50 4 200 0.5 0.431 228572 4.264 0.864 127100 36.17 160530 10.767 204131 20.69

r 200 50 5 200 0.5 0.940 479651 31.340 1.370 432170 38.21 370958 4.112 405512 18.02

r 200 50 6 200 0.5 0.852 425849 31.314 1.209 360587 37.78 326335 5.796 394907 18.25

r 200 50 7 200 0.5 0.449 219947 31.948 0.957 125572 41.43 191317 30.243 196003 18.10

r 200 50 8 200 0.5 0.619 317942 21.108 1.328 212715 36.83 157914 4.690 269723 18.03

r 200 50 9 200 0.5 0.219 102256 31.839 0.580 51017 40.32 95740 17.076 93788 20.00

r 200 50 10 200 0.5 0.548 284751 31.845 1.150 212083 40.20 232188 17.226 258281 17.29

r 200 75 1 200 0.75 0.583 442894 32.280 1.218 307956 41.90 263343 8.591 410279 18.23

r 200 75 2 200 0.75 0.403 286538 31.961 0.835 169732 43.86 222546 12.646 269740 17.80

r 200 75 3 200 0.75 0.081 61924 33.742 0.281 19406 41.69 62954 6.187 62907 19.70

r 200 75 4 200 0.75 0.208 128351 32.421 0.581 36265 43.17 119614 9.615 109553 18.71

r 200 75 5 200 0.75 0.171 137701 32.476 0.550 52619 40.81 128950 14.684 136249 17.93

r 200 75 6 200 0.75 0.290 229552 35.599 0.764 116751 47.87 167799 17.900 223501 17.21

r 200 75 7 200 0.75 0.342 269887 32.913 0.944 128246 42.31 217130 32.652 255158 18.13

r 200 75 8 200 0.75 0.778 600717 35.491 1.578 510865 50.51 413083 30.516 546796 17.60

r 200 75 9 200 0.75 0.678 516647 40.303 1.460 380561 60.96 433988 25.617 464902 16.83

r 200 75 10 200 0.75 0.185 142694 35.060 0.599 45458 48.66 135087 18.754 137522 19.77

r 200 100 1 200 1 0.931 937149 41.731 1.355 879215 102.87 741746 19.715 890433 18.05

r 200 100 2 200 1 0.268 303007 38.314 0.719 167577 53.92 263130 18.434 301855 22.02

r 200 100 3 200 1 0.035 29296 38.329 0.120 2200 74.68 30353 29.394 30353 17.74

r 200 100 4 200 1 0.096 100837 41.211 0.336 22906 55.43 102089 15.759 102089 20.04

r 200 100 5 200 1 0.778 786402 37.968 1.716 624903 49.82 742723 23.697 717809 20.30

r 200 100 6 200 1 0.040 39981 38.223 0.140 9918 45.54 42346 9.445 42346 18.09

r 200 100 7 200 1 0.691 700966 33.456 1.514 577465 47.52 611518 11.355 657031 20.13

r 200 100 8 200 1 0.763 782121 33.765 1.625 602567 56.62 612027 18.990 717740 18.46

r 200 100 9 200 1 0.627 628948 38.414 1.362 517615 59.74 547596 13.140 605930 21.99

r 200 100 10 200 1 0.365 378237 32.887 1.012 235776 53.54 327497 16.173 370129 18.04

Table A.2: Computational results for n=200, P=10
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I n d r Sqkp tqkp p Squbo tqubo Sanl tanl Shy thy

r 300 25 1 300 0.25 0.050 29140 15.37 0.179 3922 50.00 26150 14.024 27601 23.18

r 300 25 2 300 0.25 0.496 280747 33.88 1.272 167425 52.83 192416 8.265 243781 24.84

r 300 25 2 300 0.25 0.496 280537 33.48 1.272 167425 52.99 200324 7.824 241254 31.47

r 300 25 4 300 0.25 0.759 444498 33.41 1.406 336499 52.62 345976 10.191 381116 33.96

r 300 25 5 300 0.25 0.026 14988 16.00 0.091 1776 51.26 15144 8.513 15099 31.53

r 300 25 6 300 0.25 0.450 269782 33.59 1.137 129327 47.92 204985 13.233 231912 20.75

r 300 25 7 300 0.25 0.840 484578 33.57 1.563 404520 52.69 415311 16.343 415012 20.93

r 300 25 8 300 0.25 0.015 9343 10.75 0.050 943 52.02 9570 8.904 9570 33.44

r 300 25 9 300 0.25 0.433 250257 33.70 1.066 124038 52.52 146596 7.744 211748 21.79

r 300 25 10 300 0.25 0.659 382626 33.98 1.244 281304 53.36 273131 14.661 296480 22.43

r 300 50 1 300 0.5 0.457 513379 32.66 1.164 300640 43.16 412183 7.868 489193 23.33

r 300 50 2 300 0.5 0.101 105543 32.82 0.346 22650 43.26 79398 5.401 102457 22.41

r 300 50 3 300 0.5 0.768 875788 33.14 1.443 739189 45.19 672528 5.952 775795 23.73

r 300 50 4 300 0.5 0.268 307117 32.44 0.817 164792 44.80 228351 9.060 292752 19.81

r 300 50 5 300 0.5 0.641 727820 33.03 1.164 486055 41.90 615348 5.823 612407 23.87

r 300 50 6 300 0.5 0.657 734053 32.62 1.210 554372 43.32 553163 6.501 604206 20.01

r 300 50 7 300 0.5 0.042 43595 32.06 0.148 3066 40.46 44020 5.958 43760 20.38

r 300 50 8 300 0.5 0.677 767977 32.04 1.223 558280 40.16 614623 4.456 664985 22.70

r 300 50 9 300 0.5 0.667 761351 31.97 1.187 553928 41.10 447389 4.742 665653 20.88

r 300 50 10 300 0.5 0.871 996070 31.97 1.706 889418 41.42 811339 6.745 922592 20.78

Table A.3: Computational results for n=300, P=10
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I Sanl tanl Shy thy

r 100 25 1 18515 59.60 17134 11.16

r 100 25 2 51741 90.85 47254 15.44

r 100 25 3 3837 48.68 3689 15.23

r 100 25 4 43361 107.90 43567 16.18

r 100 25 5 53601 90.19 56466 9.40

r 100 25 6 36022 76.48 32531 8.74

r 100 25 7 14669 56.68 13706 15.63

r 100 25 8 20377 51.39 18734 15.42

r 100 25 9 34442 102.83 30238 14.01

r 100 25 10 24593 84.39 21936 15.74

r 100 50 1 70398 51.22 79010 10.77

r 100 50 2 97575 121.41 95821 10.01

r 100 50 3 34404 58.13 33378 9.88

r 100 50 4 100662 97.46 96659 10.29

r 100 50 5 56865 54.60 55036 9.99

r 100 50 6 16152 46.33 16080 10.04

r 100 50 7 52802 61.50 50001 11.75

r 100 50 8 54272 63.36 52149 10.03

r 100 50 9 68668 68.49 65382 11.62

r 100 50 10 82131 90.74 80081 15.48

r 100 75 1 178340 50.65 176629 15.31

r 100 75 2 95215 55.62 93025 13.43

r 100 75 3 62410 56.68 61195 15.45

r 100 75 4 72988 45.99 71324 9.50

r 100 75 5 28110 43.16 28110 15.54

r 100 75 6 144894 58.13 136504 8.68

r 100 75 7 111256 92.97 108443 10.16

r 100 75 8 19776 46.79 19691 10.45

r 100 75 9 104974 89.92 101775 16.26

r 100 75 10 126405 74.64 131447 16.02

r 100 100 1 83557 31.82 83557 10.23

r 100 100 2 190606 55.55 179420 15.40

r 100 100 3 208758 43.93 210230 15.69

r 100 100 5 127317 39.29 223932 15.53

r 100 100 5 203096 43.03 214406 15.66

r 100 100 6 75225 40.38 75225 15.42

r 100 100 7 11101 34.14 11101 10.18

r 100 100 8 63483 33.81 63483 10.77
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r 100 100 9 220049 59.12 222887 15.34

r 100 100 10 195495 81.94 184123 15.77

Table A.4: Computational results for n=100, P=4 on SA and

Hybrid Solver
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I Sanl tanl Shy thy

r 200 25 1 180334 15.57 180334 15.57

r 200 25 2 219138 15.89 219138 15.89

r 200 25 2 219138 15.89 230162 16.19

r 200 25 4 202220 16.56 202220 16.56

r 200 25 5 165635 16.08 165635 16.08

r 200 25 6 73072 16.75 73072 16.75

r 200 25 7 54139 16.43 54139 16.43

r 200 25 8 140052 29.32 140052 29.32

r 200 25 9 46935 16.52 46935 16.52

r 200 25 10 44882 16.44 44882 16.44

r 200 50 1 342182 16.24 342182 16.24

r 200 50 2 207344 15.37 207344 15.37

r 200 50 3 225575 16.20 225575 16.20

r 200 50 4 227438 17.41 227438 17.41

r 200 50 5 453574 17.12 453574 17.12

r 200 50 6 387425 17.19 387425 17.19

r 200 50 7 217265 37.51 217265 37.51

r 200 50 8 306264 19.07 306264 19.07

r 200 50 9 105251 16.96 105251 16.96

r 200 50 10 281190 17.02 281190 17.02

r 200 75 1 437519 17.02 437519 17.02

r 200 75 2 287669 17.13 287669 17.13

r 200 75 3 63976 17.51 63976 17.51

r 200 75 4 129129 10.48 129129 10.48

r 200 75 5 139986 17.26 139986 17.26

r 200 75 6 231032 18.19 231032 18.19

r 200 75 7 270714 17.53 270714 17.53

r 200 75 8 583161 16.89 583161 16.89

r 200 75 9 495786 10.31 495786 10.31

r 200 75 10 144302 16.22 144302 16.22

r 200 100 1 936373 15.98 936373 15.98

r 200 100 2 306669 15.25 306669 15.25

r 200 100 3 31607 15.91 31607 15.91

r 200 100 4 103303 15.74 103303 15.74

r 200 100 5 758311 17.74 758311 17.74

r 200 100 6 43874 17.51 43874 17.51

r 200 100 7 673124 16.30 673124 16.30

r 200 100 8 759514 17.92 759514 17.92
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r 200 100 9 619577 17.40 619577 17.40

r 200 100 10 381630 17.73 381630 17.73

Table A.5: Computational results for n=200, P=4 on SA and

Hybrid Solver
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I Sanl tanl Shy thy

r 300 25 1 29634 49.35 29634 18.90

r 300 25 2 251356 35.70 266879 18.21

r 300 25 2 251356 35.70 273279 17.42

r 300 25 4 398414 52.05 411860 16.84

r 300 25 5 15459 44.45 15459 11.39

r 300 25 6 230898 54.41 259059 17.93

r 300 25 7 241797 32.92 460537 16.78

r 300 25 8 9851 39.10 9851 17.36

r 300 25 9 201342 87.91 244308 16.94

r 300 25 10 339417 38.90 324251 16.88

r 300 50 1 471555 107.78 511998 18.65

r 300 50 2 106810 50.69 106810 17.45

r 300 50 3 773710 84.52 830755 17.52

r 300 50 4 308906 45.91 308824 19.13

r 300 50 5 668010 49.88 694503 11.84

r 300 50 6 678858 77.55 672273 18.97

r 300 50 7 44701 39.01 44701 18.31

r 300 50 8 670625 57.57 702453 13.29

r 300 50 9 757115 45.95 731071 18.75

r 300 50 10 611039 40.11 942103 18.14

Table A.6: Computational results for n=300, P=4 on SA and

Hybrid Solver
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Appendix B

Python Codes

B.1 Function to generate Instances with the bench-

mark structure

#function that takes QKP parameters as arguments and generates an objective

and constraint function for QKP problem

def gen(n: int, r:str, d:float):

"""

n number of objects

r range of linear coefficients

d density

}"""

#objective function coefficients:

value = np.zeros((n, n))

w = np.zeros(n)

for i in range(n):

#Quad coeff:
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value[i][i] = random.randint(1,r)

for j in range(i):

#linear coef:

value[j][i] = random.randint(1,r)

#constraint function coefficients:

w[i] = random.randint(1,r/2)

#print(value)

#applying the density parameter..

sparse_matrix = np.array(sparse.random(n, n, density=d, data_rvs=np.ones).

toarray())

obj_mat = value * sparse_matrix

inds = np.triu_indices(len(obj_mat))

#print(inds)

obj_mat[(inds[1], inds[0])] = obj_mat[inds]

#obj_mat = value

#capacity:

c = random.randint(r/2,max(r/2,np.sum(w)))

return obj_mat, w, c

B.2 CPLEX models

The code in this section is written with help from [Moa18].

B.2.1 QKP model

def cplex_QKP(n, obj_mat, a, b ):

#CplexMethodforQKP Solve a problem using the solver’s Cplex default approach

to quadratics
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set_I = range(0, n)

set_J = range(0, n)

c = {(i,j): obj_mat[i,j] for i in set_I for j in set_J}

opt_model = cpx.Model(’docplex model’)

opt_model.set_time_limit(30)

# if x is Binary

xi_vars = [opt_model.binary_var(name="x_{0}".format(i))

for i in set_I ]

# <= constraints

constraints = opt_model.add_constraint(

ct=opt_model.sum(a[i] * xi_vars[i] for i in set_I) <= b)

objective = opt_model.sum(xi_vars[i] * xi_vars[j] * c[i,j]

for i in set_I

for j in set_J)

# for maximization

opt_model.maximize(objective)

# solving with local cplex

solution = opt_model.solve()

print(opt_model.statistics)

#print(opt_model.solution.quality_metrics(True))

solution_cost = opt_model.solution.get_objective_value()

print("Status is ", opt_model.solve_details.status)
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variables_values = []

for index, dvar in enumerate(opt_model.solution.iter_variables()):

variables_values.append([dvar.to_string(),solution[dvar]])

return solution_cost, variables_values

B.2.2 QUBO model

def cplex_QUBO(QUBO, a, b):

n_qb = QUBO.shape[0]

set_I = range(0, n_qb)

set_J = range(0, n_qb)

c = {(i,j): QUBO[i,j] for i in set_I for j in set_J}

opt_model2 = cpx.Model(’docplex QUBO model’)

#time_limit

#opt_model2.set_time_limit(30)

xi_vars = opt_model2.binary_var_list(n_qb, name="binary_var")

y_vars = opt_model2.continuous_var_matrix(keys1=n_qb, keys2=n_qb,

lb=-opt_model2.infinity)

# constraints

for i in set_I:

for j in set_J:

if i != j:
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if c[i,j] < 0:

opt_model2.add_constraint( y_vars[i,j] <= xi_vars[i] )

opt_model2.add_constraint( y_vars[i,j] <= xi_vars[j] )

if c[i,j] > 0:

opt_model2.add_constraint( y_vars[i,j] >= (xi_vars[i]

+ xi_vars[j] - 1) )

opt_model2.add_constraint( y_vars[i,j] >= 0 )

else:

opt_model2.add_constraint( y_vars[i,j] <= xi_vars[i] )

opt_model2.add_constraint( y_vars[i,j] <= xi_vars[j] )

opt_model2.add_constraint( y_vars[i,j] >= (xi_vars[i]

+ xi_vars[j] - 1) )

opt_model2.add_constraint( y_vars[i,j] >= 0 )

objective = opt_model2.sum(( (y_vars[i,j] * c[i,j]))

for i in set_I

for j in set_J if i !=j) + opt_model2.sum(( (xi_vars[i]

* c[i,i] )) for i in set_I)

# for minimization

opt_model2.minimize(objective)

# solving with local cplex

solution = opt_model2.solve()

solution_cost = opt_model2.solution.get_objective_value()

print("Status is ", opt_model2.solve_details.status)

return solution_cost
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