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Abstract

The problem of advance scheduling of service appointments for patients arriving to a

healthcare facility received a lot of attentions in the literature of operations management.

Broadly speaking, the main goal is on the efficient assignment of patients entering the

system to the next operating days, advance in time and in a dynamic manner. In particular,

the problem of multi-class advance patient scheduling, that aims to incorporate differences

in the priority levels of patient classes, is of interest in many situations. In this setting, one

needs to address important challenges to efficiently utilize the limited and costly resources

of the underlying healthcare facilities. Furthermore, a reliable scheduling policy needs to

reserve sufficient capacity for high-priority patients, in order to avoid long waiting-times for

urgent cases in the future. Accordingly, at every time instant, the policy needs to consider

all outstanding appointments, as well as uncertainties in the future demand.

This work presents the first theoretically tractable framework for design and analysis

of efficient advance scheduling policies in a multi-class setting. First, we provide a realistic

formulation of the problem that reflects both the transient as well as the long-term behavior

of scheduling policies. Then, we study optimal policies that efficiently schedule patients

of different classes and characterize the resulting coarse-grained fluid dynamics, as well

as the finer dynamics of diffusion approximation. In fact, the former yields to a simple

policy that schedules all patients on the day of their arrival, and also sets the stage for the

analysis of the latter stochastic dynamical model. Then, we proceed towards considering

diffusion processes based on which the study of scheduling policies becomes a Brownian

control problem. Finally, by leveraging a dynamic programming approach, we characterize

the optimal policy and validate it through numerical implementations.
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Chapter 1

Introduction

Demand uncertainties together with resource constraints have created a huge backlogged

workload in the healthcare systems. For example, due to Covid-19 pandemic, Ontario

has a backlog of nearly 16 million medical procedures1. Magnetic Resonance Imaging

(MRI) with 477,301 cases is the procedure with the most backlogs2. The goal of this study

is to develop implementable, yet reliable and efficient algorithms for multi-class patient

scheduling. The process of patient scheduling assigns available resources in a healthcare

system to patients, over an operating time horizon (Truong 2015). The fundamental goal in

autonomous systems for appointment scheduling is matching supply and demand, consid-

ering the resulting operating costs as well as the trade-offs in patient wait time for different

classes. Technically, the former captures the efficiency in utilizing limited resources, while

the latter signifies the importance of timely access to the corresponding services.

Motivated by data collected from more than 70 hospitals in the province of Ontario,

Canada, we study the problem of assigning appointment times to patients of multiple

116 million health-care procedures backlogged in Ontario: OMA
2Almost 16 million medical procedures built up in Ontario pandemic backlog

1

https://ipolitics.ca/2021/06/09/16-million-health-care-procedures-backlogged-in-ontario-oma
https://toronto.ctvnews.ca/almost-16-million-medical-procedures-built-up-in-ontario-pandemic-backlog-1.5464945


classes over a time horizon, subject to unpredictable daily fluctuations in demand. Patients

are classified either by type or by priority, and their service requests arrive randomly

to the underlying healthcare facility. Clearly, significant parameters for comparing the

patients include the coefficients that reflect the waiting cost per unit time and service times

that measure the time-length needed for providing and accomplishing different services.

Therefore, the scheduler may set an appointment time for patients right after their request

arrive, or alternatively make them wait according to their class and the state of the system

at the time of their arrival.

We assume that at every time, the scheduling window consists of H upcoming days

starting from the current day, and the number of days-to-schedule, H, is a priori fixed. So,

a scheduling procedure needs to cope with

1. waiting time of a patient before receiving an appointment time,

2. waiting time of a patient after receiving an appointment until the appointment date,

3. and the utility cost a hospital needs to incur for a scheduled daily workload.

The broad objective is to find appointment scheduling policies for minimizing the wait-

ing and utility costs in a (long) time horizon. We formulate the problem by assuming that

service times are deterministic for all patients, and demands consist of stochastic processes

with statistical properties that vary among different classes of patients. To have a realistic

setting, we assume that the utility cost is a convex function of the scheduled workload.

Indeed, this convexity reflects the well-known fact that the cost of scheduling each patient

for a given day increases with the currently scheduled workload for that day.

Solving the problem using conventional methods leads to computational intractabilities

caused by the large number of decision variables involved. More specifically, since the
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state of the system at any time depends on the arrival, scheduling, and appointment time

of each patient, the number of possibilities grows exponentially with the total number

of days, rendering the computational complexity of the problem NP-hard. Therefore, we

establish an equivalent asymptotic problem at both fluid and diffusion scales. Considering

the optimization problem in the asymptotic regime reveals the fundamental complicating

factors (Armony et al. 2019). In the scaling scheme, we let the arrival rates tend to infinity

while increasing the service capacity in proportion to the arrivals. We show that in the fluid

regime, the daily variations of the demand process vanish, i.e., it remains the same demand

over different days. As a result, the problem becomes a dynamic scheduling problem with

deterministic arrivals. The consequence is that a simple scheduling policy that serves all

patients on the arrival day performs optimally.

Moreover, analysis of the fluid regime provides the basis for studying the problem at

the finer level of modeling the arrivals by diffusion processes. Technically, we show that the

behavior of the fluctuations around the fluid arrival-rate constitute a Brownian motion.

Therefore, we derive the corresponding Brownian Control Problem (BCP); in lights of its

technical framework, we find optimal scheduling policies and interpret their prescriptions.

To this end, we take the following steps. First, we formulate the scheduling problem

using a diffusion process. To characterize the optimal scheduling policy, we restrict the

admissible set of policies to those that meet an appropriate differentiability condition.

This lets us state the multi-class patient scheduling problem as a BCP. To deal with

the obtained BCP, we employ the Dynamic Programming Principle (DPP) to tackle the

problem. Specifically, the DPP splits the original problem into optimal control problems

over two time intervals. Then, we derive the Hamilton-Jacobi-Bellman equation (HJB).

The HJB is the infinitesimal representation of the DPP and describes the local behavior

of the optimal control problem around the current state of the system. The result of the
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HJB is interpreted as an optimal threshold policy for the scheduling problem where the

threshold is given for each specific class of patients and for every day in the scheduling

window. We determine the asymptotic optimal scheduling policy based on these thresholds

and numerically validate the performance for the multi-class advance patient scheduling

problem under study.

1.1 Relevant Literature

The existing literature of appointment scheduling is rich in general. Along this direc-

tion, Cayirli and Veral (2003) focus on appointment scheduling in outpatient services and

present important considerations for formulating and modeling the problem. Gupta and

Denton (2008) identify challenges in designing appointment systems and discuss poten-

tial directions for further investigations. In the work of Hall et al. (2012), applications

of queueing models and stochastic processes for improving scheduling in the healthcare

systems are demonstrated. Moreover, Ahmadi-Javid et al. (2017) review the papers that

focus on designing and planning outpatient appointment systems. Further details together

with comprehensive discussions about the different approaches can be found in the afore-

mentioned references.

For studying the waiting times, there are two main categories in the existing litera-

ture. The first stream focuses on the concept of direct wait, which is the gap between the

scheduled appointment time and the actual service time. This approach is widely used by

the community and focuses on minimizing the direct-wait-time using techniques such as

sequencing and restricting the appointments to a given interval (Denton and Gupta 2003,

Hassin and Mendel 2008, Zacharias and Pinedo 2014, Kuiper et al. 2017).

There is also another line of works that adopt an asymptotic approach for modeling
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the arrival process. Araman and Glynn (2012) show that under non-punctual arrivals,

the limit of scheduled traffic is a fractional Brownian motion. Under punctual arrivals

assumption, Armony et al. (2019) investigate the problem of scheduling within a certain

time interval for a finite population of customers. The problem is addressed in the fluid

and diffusion scales in the presence of no-shows and the asymptotically optimal schedule

to minimize the sum of customers waiting time and server overtime costs is characterized.

On the other hand, the indirect wait points out the interval between the patient request

and the scheduled appointment time. As stated in the work of Gupta and Denton (2008),

modeling and control of indirect waiting is an open problem. However, dynamic day-to-

day scheduling of patients to appointment days is the main approach to control indirect

waiting (McManus et al. (2003)). Two main paradigms of dynamic scheduling are allocation

scheduling and advance scheduling. In allocation scheduling, patients wait to be notified

until the appointment day while in advance scheduling, patients receive the appointment

time upon request (Truong (2015)).

There is a vast literature focusing on models for allocation scheduling. Gerchak et al.

(1996) employ a stochastic dynamic programming model to characterize an optimal policy

for allocating capacity to regular and emergency surgeries. Min and Yih (2010) provide a

structural analysis of a multi-priority scheduling problem to understand the properties of

the optimal policy. Ayvaz and Huh (2010) study a system of multi-class customers in the

sense of reactions to the delays in service, and propose a simple threshold heuristic policy.

Huh et al. (2013) focus on allocating multiple resources to two classes of elective and emer-

gency jobs. Several computationally-efficient policies are developed and their performances

are examined by numerical experiments. Min and Yih (2014) propose a scheduling proce-

dure for resource allocation to multiple classes of patients with time-dependent priority.

The alternative approach of considering the problem as a advance scheduling one re-
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ceived significant attentions as well. For example, Patrick et al. (2008) use the framework of

Markov Decision Processes (MDP) for scheduling patients of different priorities. To tackle

the “curse of dimensionality”, they utilize approximate dynamic programming and de-

velop heuristic methods for finding optimal control policies. Similarly, Gocgun and Ghate

(2012) leverage an approximate dynamic programming method together with a Lagrangian

relaxation. Efficiency of the proposed approximation is corroborated by performing exten-

sive numerical experiments. Taking into account no-shows and cancellations, Liu et al.

(2010) use data of an actual clinic to provide efficient dynamic policies for patient schedul-

ing. Feldman et al. (2014) also develop heuristics to solve the scheduling problem with

no-shows, considering the patient preferences regarding the appointment times.

More recently, Truong (2015) considers a model of advance scheduling with two ur-

gent and regular demand classes. The patients of urgent class need to be served on the

arrival day. However, the regular patients may receive an appointment time in the future.

She proposes an algorithm to efficiently compute the exact optimal policy. Specifically,

she shows that in the case of scheduling one class in advance, the cost of optimal advance

scheduling is identical to the cost of optimal allocation scheduling. Parizi and Ghate (2016)

provide a Markov decision process model for a class of advance scheduling problems with

no-shows, cancellations, and overbooking. Wang and Truong (2018) develop an online al-

gorithm to solve the problem of multi-priority patient scheduling with cancellations. Sauré

et al. (2020) focus on a multi-class multi-priority patient scheduling problem and consider

both deterministic and stochastic service times. They perform a comprehensive numerical

investigation based on approximate dynamic programming to evaluate the performance of

the proposed method(s).
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1.2 Preliminaries and Notations

For k, n ∈ N, by Ck(Rn), we denote the set of real-valued functions on Rn that their

first k derivatives exist and are continuous. Further, let DK [0,∞) be the space of K-

dimensional real-valued functions on [0,∞) that are Right-Continuous and the Left Limit

exists (RCLL). We assume that DK [0,∞) is equipped with the Skorokhod J1 topology3.

For a sequence of stochastic processes {Xk} and a stochastic process X, we denote the

convergence in distribution by Xk ⇒ X. It is equivalent to the following: letting {Pk} be

the distributions of {Xk} and P be the distributions of X, then
∫
RK ϕdPk →

∫
RK ϕdP as

k →∞, for all bounded and continuous functions ϕ in DK [0,∞)4. By [K] we refer to the

set of all integers from 1 to K; [K] := {1, 2, . . . , K}.

Next, for t ∈ R, let t− be the left-limit of the identity function at the point t. Define

RK
+ :=

{
x ∈ RK : x ≥ 0

}
, and denote the norm of the vector x ∈ RK by |x| =

√∑K
k=1 x

2
k.

For two real numbers a and b, let a ∧ b = min(a, b), as well as a ∨ b = max(a, b) and a+ =

max{a, 0}. We denote by β an arbitrary positive constant. For a function ϕ ∈ C2
(
RN+H

)
with the arguments (x, y) ∈ RN+H , let ∂xnϕ be the partial derivative with respect to the

n-th argument xn, while ∂yhϕ is the partial derivative with respect to the (N + h)-th

argument yh. We show the second order partial derivative of ϕ with respect to the n-th

argument by ∂2
xnϕ. Finally, B(R) denotes the Borel σ-algebra of the real line, which is the

smallest σ-algebra that contains all open sets of R.

3more details can be found in Section 3.3 of Whitt (2002)
4for details, see page 99 of Chen and Yao (2001)
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Chapter 2

Problem Formulation

Consider a service system providing service to N classes of patients during the time window

[0, T ], for some T ∈ N. After arriving to the system, each patient waits to get an appoint-

ment time at which he will return to receive the corresponding service. It is assumed that

in each period, patients can be scheduled to the next H periods, including the current

period. Therefore, at any time t, we have a waiting queue vector W (t) ∈ RN to capture

the states of N queues, each of which corresponding to one of the patient classes. That

is, Wn(t) is the number of patients of class n waiting to receive their appointment time

slot. Further, there is a scheduling table, denoted by S (t) ∈ RN×H , with N rows (i.e., the

number of classes) and H columns (i.e., the booking window), that reflects the scheduling

decisions made up to time t.

Since all the scheduled patients will be eventually served, we do not need to distinguish

the classes of patients after they receive their appointment times. That is, we only need

to keep track of the capacities occupied by the scheduled patients over the next H days,

stored in the vector (Q1, . . . , QH). Note that, the booking system is dynamic in the sense
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that at the end of every day, the vector Q need to shift one step to the left, i.e., Qh ← Qh+1,

for all h < H. Therefore, today’s record (Q1) disposes, and the records of the new last

day (i.e., QH ,) falls to zero because a new day becomes available to be used for scheduling

patients on.

Let ain denote the i-th inter-arrival time for class n patients, which has the mean value

of 1/λn and the standard deviation of van. We assume that the inter-arrival times are i.i.d.

within each class and independent between different classes. Let T in denote the arrival

time of the i-th patient from class n. So, we have T 0
n = 0, T in =

∑i
j=1 a

j
n, for all n ∈ [N ].

Moreover, let An (t) represent the number of class n patients who arrived by time t. Then,

An (t) satisfies

An (t) = max{i ≥ 0 : T in ≤ t}. (2.1)

Suppose that pin denotes the time that the i-th patient from class n receives his ap-

pointment date αin ∈ [H]. We define the control signal Sn,h (t) as the number of class n

patients scheduled up to time t to be served in h days after receiving their appointment

time slot. Formally, for all n ∈ [N ] and h ∈ [H], we define

Sn,h (t) = #{i ≥ 0 : αin = h, pin ≤ t}, n ∈ [N ], h ∈ [H]. (2.2)

where # gives the number of elements in the set. Therefore, for i ≤ t1 < t2 < i + 1,

the quantity Sn,h (t2) − Sn,h (t1) indicates the number of class n patients who received

an appointment time in the interval (t1, t2] to be served on day i + h. Define Q(i−) as

the number of patients scheduled to be served on day i (i.e., at some time t satisfying

i− 1 ≤ t < i). Then, we have,

Q
(
i−
)

=
N∑
n=1

H∑
h=1

mn

(
Sn,h

(
i− − h+ 1

)
− Sn,h

(
i− − h

) )
, i = 1, 2, . . . , T, (2.3)
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where m := (m1, . . . ,mN) is the vector containing the average service time of different

classes. Note that patients who receive appointment time h in time interval [i − 1, i) will

be served in time interval [i + h − 2, i + h − 1) that is days i + h − 1. Then, aggregating

the assignments of the last H days for different classes gives (2.3). Note also that, for all

n and h, Sn,h : R 7→ R+ is a non-decreasing, RCLL function. Let Sn,h vanish on R−. For

the sake of brevity, hereafter, we eliminate the superscript of i in (2.3) and call Q(i) as the

scheduled workload of day i.

Based on (2.1) and (2.2), the dynamics of the waiting queues satisfy

Wn(t) = An (t)−
H∑
h=1

Sn,h (t) , t > 0, ∀n ∈ [N ], (2.4)

that is simply subtracting the scheduled patients from the total arrival. Note that we

assume the system is initially empty so that the number of patients at time t = 0 is zero.

Now, we define the optimization criteria which is desired to be minimized by the schedul-

ing process. Let C0,n ∈ R+ be the waiting cost of a patient of class n for one unit of time

before receiving an appointment. Denote also by Cn,h ∈ R+ the waiting cost of a class

n patient who receives an appointment time for h days later. We use u : R+ 7→ R+ to

show the utility cost function that reflects the cost of resources and staffs for one day. The

objective is to minimize the following total cost during the time horizon [0, T ]:

E

[
N∑
n=1

∫ T

0

C0,nW
+
n (t)dt+

N∑
n=1

H∑
h=1

Cn,hSn,h (T ) +
T∑
i=1

u (Q(i))

]
, (2.5)

where S (t) :=
[
Sn,h (t)

]
n∈[N ],h∈[H]

for all 0 ≤ t ≤ T .

Assumption 2.0.1 For all n ∈ [N ], we have 0 = Cn,1 ≤ Cn,2 ≤ . . . ≤ Cn,H .

According to Assumption 2.0.1, the scheduler may schedule patients on the same day of

their arrival at no cost. Generally, Assumption 2.0.1 expresses that Cn,h is a non-decreasing
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function of h. This intuitively indicates that that, the system tends to give the patients

the earliest affordable appointment time.

Assumption 2.0.2 For all n ∈ [N ], we have C0,n > Cn,H .

Assumption 2.0.2 states that for all patients, the cost of waiting to receive an appointment

time is more than the cost of waiting to be served after receiving the appointment. Thus,

scheduling some patients in advance decreases the total expected cost of the system.

Assumption 2.0.3 We have u(x) := U ((x− κ)+)
2
, where U is a given constant and κ is

the nominal daily capacity of the system.

In general, the utility cost function u is required to be convex for a realistic setting. That

is, the marginal cost of scheduling more patients for a given day is increasing as the

scheduled workload of that day grows. Specifically, when we schedule above the nominal

daily capacity (which is denoted by κ), scheduling each additional patient results a higher

cost. For that reason, the decision-maker tends to schedule some patients on the next days

with lower occupied capacity. Henceforth, we let κ =
∑N

n=1 λnmn, which is the required

daily capacity if the system experiences deterministic arrival rate of λn for class n, n ∈ [N ].

Under this setting, u can also be interpreted as the overtime utility cost, in the sense that

the system tolerates the utility cost only in case of scheduling above the nominal capacity.

Now, based on (2.2)-(2.5), we define the Multi-class Advance Scheduling Problem
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(MASP) as follows,

inf
S

E

 N∑
n=1

∫ T

0

C0,nW
+
n (t)dt+

N∑
n=1

H∑
h=1

Cn,hSn,h (T ) +
T∑
i=1

U

(Q(i)−
N∑
n=1

λnmn

)+
2

s.t.

Wn(t) = An (t)−
H∑
h=1

Sn,h (t) , t > 0, ∀n ∈ [N ],

Q(i) =
N∑
n=1

H∑
h=1

mn

(
Sn,h (i− h+ 1)− Sn,h (i− h)

)
, i ∈ N.

(MASP)

Taking into account Assumptions 2.0.1-2.0.3, the above definition of the cost function

captures the fact that the scheduler aims to give the patients the earliest appointment to not

exceed the daily scheduled workload Q too much from the nominal capacity
∑N

n=1 λnmn.

Due to difficulties arising to solve this problem, we next introduce an asymptotic model

that is tractable and helps us to characterize the optimal policy for the MASP.
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Chapter 3

Asymptotic Analysis of MASP

In this section, we approximate the MASP by a Brownian Control Problem (BCP). To

this end, we define a sequence of closely related systems such that in the k-th system we

speed up the clock by k. Another interpretation of this scaling scheme is to scale up time

by k. That is, each day in the k-th system is equal to k days in the original system. Under

this interpretation, the scheduling window will be considered as h = k, 2k, . . . , Hk, with

respect to the initial system. A similar discussion is given in (Armony et al. 2019).

Speeding up the system leads to an increase in the system demand for appointment

times; thus, we expect to have more appointment slots to be set for each day. More

precisely, we assume that the n-th class arrival rate in the k-th system is λkn := kλn. So,

13



we rewrite the MASP for the k-th system by adding a superscript k to all quantities:

inf
Sk

E

 N∑
n=1

(∫ T

0
Ck0,nW

k,+
n (t)dt+

H∑
h=1

Ckn,hS
k
n,h (T )

)
+

T∑
i=1

Uk

(Qk(i)− N∑
n=1

λknm
k
n

)+
2

(MASPk-1)

W k
n (t) = Akn (t)−

H∑
h=1

Skn,h (t) , t > 0, n ∈ [N ], (MASPk-2)

Qk(i) =

N∑
n=1

H∑
h=1

mk
n

(
Skn,h (i− h+ 1)− Skn,h (i− h)

)
, i ∈ N. (MASPk-3)

Note that, in the scaled system, the average service time vector remains the same, i.e., mk =

(mk
1, . . . ,m

k
N ) = m, while the nominal daily capacity increases with the rate k.

To study the behaviour of MASPk as k → ∞, consider a probability space (Ω,F,P) with

the N -dimensional standard Brownian Motion B = (B1, . . . , BN ), and the natural filtration

{Ft}t∈[0,T ]. We denote by E expectation with respect to P.

We first investigate the fluid limit model of (MASPk-1)-(MASPk-3) as k → ∞. The result

of the fluid analysis provides the basis to define the diffusion approximation of the MASP and

develop the corresponding BCP.

3.1 Fluid Model for MASP

In the fluid regime, the focus is on the first-order deterministic approximation of the MASP. We

start by defining the fluid-scaled cumulative arrival process of the k-th system as:

Ākn (t) =
Akn (t)

k
. (3.1)

By the Functional Law of Large Numbers for renewal processes (see e.g., Theorem 5.10 in Chen

and Yao (2001)), as k →∞, (2.1) gives:

Ākn (t)⇒ λnt. (3.2)
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As a result, for large values of k, it approximately holds that

Akn (t) ≈ kλnt. (3.3)

Denoting by W
k
n the fluid-scaled waiting queue of the n-th class patients, by (MASPk-2) we have,

W
k
n(t) =

W k
n (t)

k
=
Akn (t)−

∑H
h=1 S

k
n,h (t)

k
= Ākn (t)−

H∑
h=1

S̄kn,h (t) ,

where

S̄kn,h (t) :=
Skn,h (t)

k
, n ∈ [N ], h ∈ [H]. (3.4)

Note that S̄kn,h (t) shows the fluid-scaled control matrix. Taking limit as k →∞ and using (3.2),

we get,

Wn(t) = λnt−
H∑
h=1

S̄n,h (t) , n ∈ [N ], (3.5)

where Wn(t) and S̄n,h (t) are the limits of W
k
n(t) and S̄kn,h (t), respectively. The following lemma

states the monotonicity of the control process with respect to time.

Lemma 3.1.1 For all n ∈ [N ] and h ∈ [H], the function S̄n,h (·) is non-decreasing.

Proof. Appendix A.1.

Further, by (MASPk-3), we can write the fluid-scaled scheduled workload of day i as,

Q̄k(i) =
Qk(i)

k
=

N∑
n=1

H∑
h=1

mn

(
S̄kn,h (i− h+ 1)− S̄kn,h (i− h)

)
.

Let Q̄(i) denote the limit of Q̄k(i) as k →∞. So, we have

Q̄(i) =

N∑
n=1

H∑
h=1

mn

(
S̄n,h (i− h+ 1)− S̄n,h (i− h)

)
, i = 1, 2, . . . T. (3.6)
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We next derive the cost function of the fluid model. For large values of k, (MASPk-1) yields to,

N∑
n=1

(∫ T

0
Ck0,nW

k,+
n (t)dt+

H∑
h=1

Ckn,hS
k
n,h (T )

)
+

T∑
i=1

Uk

(Qk(i)− N∑
n=1

kλnmn

)+
2

≈
N∑
n=1

(∫ T

0
Ck0,nkW

k,+
n (t)dt+

H∑
h=1

Ckn,hkS̄
k
n,h (T )

)
+

T∑
i=1

Uk

(kQ̄k(i)− N∑
n=1

kλnmn

)+
2

(3.7)

To derive a meaningful cost function that admits finite Real values for the limit problem, we

assume that the cost parameters vary with k as below:

Ck0,n :=
C0,n

k
, Ckn :=

Cn
k
, Uk :=

U

k2
. (3.8)

We can now provide the Fluid Multi-class Advance Patient Scheduling Problem (FMASP), based

on relations (3.5)-(3.8) and Lemma 3.1.1, as follows:

V T = min
S̄

E

 N∑
n=1

(∫ T

0
C0,nW

+
n (t)dt+

H∑
h=1

Cn,hS̄n,h (T )

)
+

T∑
i=1

U

(Q̄(i)−
N∑
n=1

λnmn

)+
2

(FMASP-1)

s.t.

Wn(t) = λnt−
H∑
h=1

S̄n,h (t) , t > 0, n ∈ [N ], (FMASP-2)

Q̄(i) =

N∑
n=1

H∑
h=1

mn

(
S̄n,h (i− h+ 1)− S̄n,h (i− h)

)
, i ∈ [T ]. (FMASP-3)

Note that in the fluid model, the system experiences a deterministic time-independent arrival

rate λn for the n-th class as indicated in the constraint (FMASP-2). The following theorem

characterizes the optimal scheduling policy for the fluid model.

Theorem 3.1.1 Consider (FMASP-1)-(FMASP-3). Then, for all T > 0, we have V T = 0, and
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the optimal scheduling policy of can be characterized as

S̄∗n,h(t) =


λnt, h = 1

0, h = 2, . . . ,H.

(3.9)

Proof. Appendix A.2.

As Theorem 3.1.1 shows, when there is no uncertainty in the demand, the optimal scheduling

policy is to serve all the arrivals on the same day. In that case, no patient waits either before or

after receiving an appointment time, and thus, all the waiting costs are zero. On the other hand,

by assumption 2.0.3, scheduling some patients for the next days increases both the system utility

cost and the patients waiting cost.

3.2 Diffusion Model for MASP

In this section, the goal is to take into account the uncertainty in the arrival process. Similar to

(3.1), define the following scaled and centered version of the arrival process related to the k-th

system:

Âkn (t) =
Akn (t)− kλnt√

k
. (3.10)

In view of Theorem 3.1.1, our focus is to derive deviations from optimal policy of the fluid model,

which is serving all arrivals on the same day. To define the scaled cumulative scheduling control

process of the k-th system, we are interested in the policies that satisfy the following relations as

k →∞:

Skn,h (t)

k
≈ S̄∗n,h(t)t, ∀n ∈ [N ], h ∈ [H], (3.11)

where S̄∗ is given in (3.9). That is, even in the diffusion model, to meet the average arrival rate

and conserve the stability of the system for large values of k, the scheduling rate of the n-th class
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of patients should be around kλnmn. We consequently define the following scaled and centered

scheduling control processes:

Ŝkn,1 (t) =
Skn,1 (t)− kλnt√

k
, ∀n ∈ [N ], (3.12)

Ŝkn,h (t) =
Skn,h (t)
√
k

, h = 2, . . . ,H, ∀n ∈ [N ]. (3.13)

Applying Functional Central Limit Theorem (FCLT) for renewal processes (see e.g. Corollary

2.1 in Whitt (2016)), as k →∞, Âkn converges to a Brownian motion with zero drift and diffusion

coefficient σn := λ
3/2
n van. That means, for large values of k, using (3.10), we have:

Akn (t) ≈ kλnt+
√
kσnBn(t), n ∈ [N ]. (3.14)

Then, we define the scaled waiting queue as:

Ŵ k
n (t) =

W k
n (t)√
k

=
Akn (t)−

∑H
h=1 S

k
n,h (t)

√
k

=
Akn (t)− ktλn −

∑H
h=1 S

k
n,h (t) + ktλn√

k

= Âkn (t)−
H∑
h=1

Ŝkn,h (t) .

(3.15)

Let Xn and Sn,h denote the limits of Ŵ k
n and Ŝkn,h as k →∞, respectively. So, letting k →∞ in

equation (3.15), we get:

Xn(t) = −
H∑
h=1

Sn,h (t) + σnBn(t), n ∈ [N ]. (3.16)

Next, considering (2.3), (3.12), and (3.13), we define the following scaled and centered scheduled

workload process as:

Q̂k(i) =
Qk(i)−

∑N
n=1 kλnmn√
k

=

∑N
n=1 kλnmn +

∑N
n=1

∑H
h=1

√
kmn

(
Ŝkn,h (i− h+ 1)− Ŝkn,h (i− h)

)
−
∑N

n=1 kλnmn
√
k

=

N∑
n=1

H∑
h=1

mn

(
Ŝkn,h (i− h+ 1)− Ŝkn,h (i− h)

)
.
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Denoting by Q(i) the limit of Q̂k(i) as k →∞, we get:

Q(i) =
N∑
n=1

H∑
h=1

mn (Sn,h (i− h+ 1)− Sn,h (i− h)) . (3.17)

Note that (3.17) is in accordance with the definition of Q in (2.3). Specifically, both Q(i) and

Q(i−) capture the total workload scheduled for day i in the associated system.

To derive the cost function (MASPk-1) as k →∞, for large values of k, we can write,

φ̂k(S) :=

N∑
n=1

(∫ T

0
Ck0,nW

k+
n (t)dt+

H∑
h=1

Ckn,hS
k
n,h (T )

)
+

T∑
i=1

Uk

(Qk(i)− N∑
n=1

λknm
k
n

)+
2

≈
N∑
n=1

(∫ T

0
Ck0,n
√
kŴ k+

n (t)dt+
H∑
h=1

Ckn,h
√
kŜkn,h (T )

)
+

T∑
i=1

Uk
(√

k
(
Q̂k(i)

)+
)2

.

(3.18)

Similar to (3.8), to obtain the cost function of the diffusion problem, we define the following

scaling scheme for the cost parameters:

Ck0,n :=
C0,n√
k
, Ckn :=

Cn√
k
, Uk :=

U

k
. (3.19)

Let φ denote the limit of φ̂k(S) as k →∞. Then, substituting (3.19) in (3.18) and letting k →∞,

we get:

φ(S) =

N∑
n=1

(∫ T

0
C0,nX

+
n (t)dt+

H∑
h=1

Cn,hSn,h (T )

)
+

T∑
i=1

U (Q(i))2 . (3.20)

Considering (3.16), (3.17), and (3.20), we have:

inf
S

E

[
N∑
n=1

(∫ T

0
C0,nX

+
n (t)dt+

H∑
h=1

Cn,hSn,h (T )

)
+

T∑
i=1

U (Q(i))2

]
(3.21a)

s.t.

Xn(t) = −
H∑
h=1

Sn,h (t) + σnBn(t), n ∈ [N ], (3.21b)

Q(i) =

N∑
n=1

H∑
h=1

mn (Sn,h (i− h+ 1)− Sn,h (i− h)) , i ∈ [T ]. (3.21c)
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The mathematical formulation given in (3.21a)-(3.21c) represents a multi-class advance scheduling

problem with Brownian noise. The evolution of the waiting queue X with respect to the control

process and the Brownian motion is given by (3.21b), and (3.21c) determines the daily scheduled

workload. Moreover, the cost function defined in (3.21a) reflects the scheduler inclinations; that

is, assigning the arriving patients to the earliest possible appointment time, whereas keeping the

scheduled capacity balanced over the booking horizon.

We next restate the problem defined in (3.21a)-(3.21c) as a Stochastic Control Problem, see

e.g. Fleming and Soner (2006), Pham (2009), Touzi (2012). To this end, we assume that for all

n ∈ [N ] and h ∈ [H], Sn,h is continuous and differentiable with respect to time, and denote its

derivative by sn,h. Further, based on (3.13), Lemma 3.1.1 implies that Sn,h (·) is a non-decreasing

function of time for all n ∈ [N ] and h = 2, 3, . . . ,H. We assume that for all n ∈ [N ], Sn,1 (·)

is non-decreasing as well. Regarding (3.21b), any decline in Sn,1 (·) over time translates into

rescheduling some patients in the associated advance scheduling problem. We summarize the

properties of the new control matrix s below.

Definition 3.2.1 The set of Admissible policies Aξ is the class of functions

s (t, ω) = [sn,h (t, ω)]n∈[N ],h∈[H] ,

such that for all n ∈ [N ] and h ∈ [H], the function sn,h : R×Ω 7→ R+ satisfies the following

conditions:

(a) (t, ω) 7→ sn,h (t, ω) is a B(R+)×F-measurable function.

(b) sn,h (t, ω) is Ft-adapted.

(c) If t < 0, then sn,h (t) = 0 for all n ∈ [N ], h ∈ [H].

(d) For all n ∈ [N ], h ∈ [H], and t ≥ 0, we have 0 ≤ sn,h (t) ≤ ξ.
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The last step before stating the Brownian Multi-class Advance Scheduling Problem is rewriting

the utility cost so that it will be compatible with the Markov problem setting.

Lemma 3.2.1 Let Q(i) be the scheduled daily capacity for day i as defined in (3.21c). Then, for

any ξ > 0, it holds that

T∑
i=1

Q(i)2 =

N∑
n=1

H∑
h=1

∫ T−h+1

0
2mnYh(t)sn,h (t) dt, (3.22)

where,,

Yh(t) =

N∑
n=1

mn

(∫ t

btc
sn,h (r) dr +

H∑
l=h+1

∫ i−l+1

i−l
sn,l (r) dr

)
.

Proof. Appendix A.3.

In words, Yh(t) is the scheduled workload for day btc+ h up to time t that satisfies1,

(
Y1(i), Y2(i), . . . , YH−1(i), YH(i)

)
=
(
Y2

(
i−
)
, Y3

(
i−
)
, . . . , YH

(
i−
)
, 0
)
, i > 0, i ∈ [T ]. (3.23)

For any i ∈ [T ], the quantity Q(i) includes the control process s (t) such that t ∈ [i −H, i),

see (3.21c). That means, at any time t ∈ [i−H, i), the scheduler decision s (t) depends on future

realizations of the Brownian motion. This is in contradiction to the definition of admissible

policies, see Definition 3.2.1. However, Lemma 3.2.1 enables us to use the equivalent marginal

cost rate.

Now, we can state the Brownian Multi-class Advance Scheduling Problem (BMASP) in an

infinite time horizon. Toward this end, we introduce the discount rate γ > 0. Then, according to

1Day i corresponds to the time interval i− 1 ≤ t < i.
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(3.21a)-(3.21c), Definition 3.2.1, and Lemma 3.2.1, for any ξ > 0, we have,

inf
s∈Aξ

E

[
N∑
n=1

∫ ∞
0

e−γt

(
C0,nX

+
n (t) +

H∑
h=1

(Cn,h + 2UmnYh(t)) sn,h (t)

)
dt

]
(BMASP-1)

s.t.

dXn(t) = −
H∑
h=1

sn,h (t) dt+ σndBn(t), n ∈ [N ], (BMASP-2)

dYh(t) =
N∑
n=1

mnsn,h (t) dt, h ∈ [H], (BMASP-3)

(
Y1(i), Y2(i), . . . , YH−1(i), YH(i)

)
=
(
Y2

(
i−
)
, Y3

(
i−
)
, . . . , YH

(
i−
)
, 0
)
, i ∈ N.

(BMASP-4)

To interpret the formulation BMASP given above, note that (BMASP-1) captures the opti-

mization criteria of an appointment system over an infinite time horizon. Relation (BMASP-2)

determines the evolution of the waiting queue, where the drift term reflects the scheduler deci-

sion, and the diffusion term captures the arrivals randomness as a Brownoian motion. Finally,

(BMASP-3) gives the dynamics of the scheduled workload process and (BMASP-4) reflects the

rolling scheduling horizon effect which opens new daily capacity to the organizer.

Taking into account the dynamics of the waiting queue, which is given in (BMASP-2), the

first term of the cost function encourages the system to schedule more patients over the booking

horizon. The second term of the cost function, in view of the system dynamics (BMASP-2)

and (BMASP-3), indicates the scheduling trade-off. That is, the utility cost term U prevents

the system to schedule many patients for each day. However, the term Cn,h makes the later

appointments more costly for the system, in lights of Assumption 2.0.1.

Recall that the fluid model discussed in Section 3.1 does not capture the value of the advance

scheduling due to failure in incorporating the uncertainty in the arrival process. However, the

BMASP captures the trade-off between scheduling patients in the current period versus scheduling

them in a later period considering the uncertainty in the future arrivals.
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Chapter 4

The BMASP Solution

This section develops a dynamic programming approach to study the BMASP defined in (BMASP-

1)-(BMASP-4). We restrict our attention to the Markovian control policies. That is, at any time

t ≥ 0, the scheduling policy depends on the history of the system only through the current state

of the system (the state of the system at time t). Let fix ξ > 0 throughout this section. We have

the following definition.

Definition 4.0.1 A measurable function π : RN ×RH+ 7→ RN×H+ is a stationary Markovian con-

trol if for all (x, y) ∈ RN ×RH+ , π(x, y) is an admissible policy, i.e., π(x, y) ∈ Aξ, that Aξ is

defined in Definition 3.2.1.

We denote by Πξ the set of all stationary Markovian control policies π. At any time t ≥ 0, we

can write

s (t) = π (X (t), Y (t)) ,

where X = (X1, . . . , XN ) and Y = (Y1, . . . , YH) are states of the system defined in (BMASP-2)

and (BMASP-3). In fact, π(x, y) is the scheduler decision whenever the system is in state (x, y).

Note that for any fixed s ∈ [0, ξ]N×H , the constant control π (X (t), Y (t)) = s is within Πξ.
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Next, we examine existence and uniqueness results for the solutions of the differential equa-

tions describing the dynamics of the system in (BMASP-2)-(BMASP-4).

Lemma 4.0.1 Fix an arbitrary policy π ∈ Πξ and choose r > 0 arbitrarily. Suppose that the

state of the system at time r is given by a Fr-measurable random variable (X (r), Y (r)) valued in

RN ×RH+ , such that

E
[
|X (r)|2 + |Y (r)|2

]
= E

[
N∑
n=1

Xn(r)2 +
H∑
h=1

Yh(r)2

]
<∞. (4.1)

Then, there exists a unique1 strong solution to the set of following equations that starts from

(X (r), Y (r)) at time r,
dXn(t) = −

∑H
h=1 sn,h (t) dt+ σndBn(t), r < t ≤ brc+ 1, n ∈ [N ],

dYh(t) =
∑N

n=1mnsn,h (t) dt, r < t ≤ brc+ 1, h ∈ [H],

(4.2)

where s (t) = π (X (t), Y (t)) , r ≤ t ≤ brc+ 1. Furthermore, we have,

E

[
sup

r≤t≤brc+1

{
|X (t)|2 + |Y (t)|2

}]
≤ βeβ

(
1 + E

[
|X (r)|2 + |Y (r)|2

])
. (4.3)

Proof. Appendix A.4.

By Lemma 4.0.1, starting at any time in a day, there is a stochastic process that reflects

the system dynamics within that day. Further, this process depends only on the initial state of

the system and the control policy. Lemma 4.0.1 establishes the existence and uniqueness of the

stochastic process describing the system dynamics for every admissible control policy within the

whole time horizon, as stated in the following theorem.

1This is the path-wise uniqueness which is equivalent to indistinguishability. The processes {χ1
t}t≥0

and {χ2
t}t≥0 are called indistinguishable if P{χ1

t = χ2
t ,∀t ≥ 0} = 1.
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Theorem 4.0.1 For any policy π ∈ Πξ and any initial state (x, y) ∈ RN ×RH+ , there exists a

unique strong solution to (4.4).

X (0) = x, Y (0) = y,

dXn(t) = −
∑H

h=1 sn,h (t) dt+ σndBn(t), t > 0, n ∈ [N ],

dYh(t) =
∑N

n=1mnsn,h (t) dt, t > 0, h ∈ [H],(
Y1(i), Y2(i), . . . , YH−1(i), YH(i)

)
= (Y2(i−), Y3(i−), . . . , YH(i−), 0) , i ∈ N.

(4.4)

where s (t) = π (X (t), Y (t)) , t ≥ 0.

Proof. Appendix A.5.

Now, for any policy π ∈ Πξ and any (x, y) ∈ RN ×RH+ , we denote by J(π;x, q) the cost

functional of the BMASP. That means,

J(π;x, y) = Eπx,y

[
N∑
n=1

∫ ∞
0

e−γt

(
C0,nX

+
n (t) +

H∑
h=1

(Cn,h + 2UmnYh(t))π (X (t), Y (t))

)
dt

]
,

(4.5)

where Eπx,y[·] denotes the expectation with respect to the probability distribution on the path

space of (X,Y ) which is the solution of (4.4) corresponds to the control policy π and the initial

state (x, y). When there is no ambiguity about the control policy and the initial state, we simply

use E. We also define the value function V as follows,

V (x, y) = inf
π∈Πξ

J(π;x, y). (4.6)

Given an initial state (x, y), the quantity of the value function is the minimum operating cost of

the system. The cost function J(π;x, y) is always non-negative; that means, for all π ∈ Πξ and

(x, y) ∈ RN ×RH+ , we have J(π;x, y) ≥ 0. Therefore, V is well defined as an extended positive

real number, i.e., V ∈ (R+ ∪ ∞). Further, π∗ is called an optimal control policy for the BMASP,

if V (x, y) = J(π∗;x, y). Now, the main goal is to characterize the optimal policy π∗. To this end,

we state the following Dynamic Programming Principle (DPP).

25



Theorem 4.0.2 (Dynamic programming principle) Assume that the value function V , de-

fined in (4.6), is continuous. Let X and Y satisfy (BMASP-2)-(BMASP-4) and (x, y) ∈ RN ×RH+
be fixed. Then, for any stopping time τ valued in [0,∞], we have

V (x, y) = inf
π∈Πξ

E

[
N∑
n=1

∫ τ

0
e−γt

(
C0,nX

+
n (t) +

H∑
h=1

(Cn,h + 2UmnYh(t)) sn,h (t)

)
dt

+ e−γτV (X (τ), Y (τ))

]
,

(DPP)

where s (t) = π (X (t), Y (t)) , t ≥ 0.

Proof. Appendix A.6.

According to Theorem 4.0.2, we can split the BMASP into two parts with respect to the

time horizon. Specifically, we solve a control problem that starts from time τ , given the system

state (X (τ), Y (τ)). Then, considering the result of optimization for after τ , we find the optimal

policy over the time interval [0, τ ]. Our goal is to characterize the optimal policy by finding

the infinitesimal version of the DPP as τ → 0. We have Lemma 4.0.2 that is a straightforward

application of Itô Formula (see e.g. Theorem 4.2.1 of Oksendal (2013)).

Lemma 4.0.2 Fix an admissible control input s ∈ Aξ. For any function v ∈ C2
(
RN×H

)
and

any i ≤ t1 < t2 < i+ 1, for some i ∈ (N ∪ 0), we have,

E
[
e−γt2v (X (t2), Y (t2))− e−γt1v (X (t1), Y (t1))

]
= E

[∫ t2

t1

e−γt

(
N∑
n=1

H∑
h=1

(
mn∂qhv (X (t), Y (t))− ∂xnv (X (t), Y (t))

)
sn,h (t)

)
dt

]

+E

[∫ t2

t1

e−γt

(
1

2

N∑
n=1

σ2
n∂

2
xnv (X (t), Y (t))− γv (X (t), Y (t))

)
dt

]
.

(4.7)

Proof. Appendix A.7.
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Next, we define a notation that will be used in the following discussions. For any function

ϕ ∈ C2
(
RN+H

)
, define,

δϕn,h(x, y) = ∂xnϕ(x, y)− Cn,h − 2Umnyh −mn∂yhϕ(x, y). (4.8)

Now, we state Hamilton-Jacobi-Bellman equation (HJB)2 that describes the local behaviour of

the value function defined in (4.6).

Theorem 4.0.3 (Hamilton-Jacobi-Bellman) Suppose that V ∈ C2
(
RN+H

)
, where V is the

value function defined in (4.6). Then, V is a solution of the HJB equation, i.e., for all (x, y) ∈

RN ×RH+ , we have

N∑
n=1

(
C0,nx

+
n +

1

2
∂2
xnV (x, y)σ2

n + inf

{
H∑
h=1

−δVn,h(x, y)sn,h

})
= γV (x, y), (HJB)

that the infimum is taken over all constant inputs s ∈ [0, ξ]N×H .

Proof. Appendix A.8.

Theorem 4.0.3 demonstrates that the value function of the BMASP satisfies the partial differ-

ential equation given in (HJB). We show that there is a measurable function π? = [π?n,h]n∈[N ],h∈[H]

such that for any (x, y) ∈ RN ×RH+ , the n-th row of π? (i.e., π?n = [π?n,1, . . . , π
?
n,H ]) is a solution

to the following optimization problem:

min
sn∈[0.ξ]H

{
H∑
h=1

−δVn,h(x, y)sn,h

}
, (x, y) ∈ RN ×RH+ , n ∈ [N ]. (4.9)

Since (4.9) defines a linear optimization problem with respect to the control s, we can find π?(x, y)

for any given state (x, y).

Theorem 4.0.4 Suppose that V ∈ C2
(
RN+H

)
, and define

π?n,h(x, y) =


ξ, δVn,h(x, y) ≥ 0,

0, δVn,h(x, y) < 0.

(4.10)

Then, π? is a Borel measurable solution to the optimization problem given in (4.9).

2It is also called the dynamic programming equation.
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Proof. Appendix A.9.

Recall that sn,h (t) is the rate of assigning class n patients to day btc+h at time t (see (2.2)).

According to (4.10), for all n ∈ [N ] and h ∈ [H], if at time t the coefficient of sn,h is non-positive,

π? schedules the class n patients to day btc + h with the highest possible rate ξ. Otherwise, π?

does not assign any patient to day btc+h at the current time. We state the following verification

theorem that justifies π? as an optimal Markovian policy for the BMASP.

Theorem 4.0.5 (Verification theorem) Let v be a function in C2(RN+H) that satisfies a

quadratic growth condition as follows

∃β > 0, |v(x, y)| ≤ β
(

1 + |x|2 + |y|2
)
, ∀(x, y) ∈ RN ×RH+ . (4.11)

Suppose that,

N∑
n=1

(
C0,nx

+
n +

1

2
∂2
xnv(x, y)σ2

n + inf

{
H∑
h=1

−δvn,h(x, y)sn,h

})
= γv(x, y), (x, y) ∈ RN ×RH+ ,

(4.12)

v (X (i), Y (i))− v
(
X (i), Y

(
i−
))

=

H∑
h=1

∂yhv
(
X (i), Y

(
i−
))

∆Yh(i), i ∈ N, (4.13)

lim
T→∞

e−γTE [v(X (T ), Y (T ))] = 0. (4.14)

where the infimum in (4.12) is taken over all constant inputs s ∈ [0, ξ]N×H and ∆Yh(i) = Yh(i)−

Yh(i−). Then, v(x, y) ≤ V (x, y) for all (x, y) ∈ RN ×RH+ , where V is the value function defined

in (4.6).

Further, fix the initial state (x0, y0) and let (X∗, Y ∗) denote the solution of (BMASP-2)-

(BMASP-4) corresponding to the Markovian policy π? defined in (4.10) and the initial state

(x0, y0). If

lim
T→∞

e−γTE [v(X∗(T ), Y ∗(T ))] = 0, (4.15)

then v(x0, y0) = V (x0, y0) and π? is an optimal Markovian policy in Πξ.

28



Proof. Appendix A.10

Considering Theorem 4.0.5, we interpret π? given in (4.10) as a threshold scheduling policy

for the MASP and validate its performance numerically.
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Chapter 5

Numerical Implementations

Taking into account Theorem 4.0.5, the optimal policy of the asymptotic multi-class advance

scheduling problem, given in (BMASP-1)-(BMASP-4), is π? defined in (4.10). This means that it

is optimal to assign patients of class n to day h according to the sign of δVn,h(x, y), given in (4.8),

where (x, y) is the current state of the system. Now, we translate this result into the context of

MASP. Recalling the definition of δVn,h(x, y) given in (4.8), we have for any n ∈ [N ] and h ∈ [H],

−δVn,h(x, y) = Cn,h + 2Umnyh +mn∂yhV (x, y)− ∂xnV (x, y). (5.1)

Fixing n and h, we interpret −δVn,h(x, y) as the marginal cost of scheduling one patient of class

n on day h in the booking window, when the system is at state (x, y). The first term, Cn,h,

is the waiting cost of a class n patient that receives an appointment for h day from now. The

second term, 2Umnyh, is the cost of assigning workload of mn to day h with occupied capacity

of yh. Eventually, mn∂yhV (x, y)−∂xnV (x, y) is the marginal cost of moving one patient with the

workload of mn from xn to yh. Considering this interpretation of −δVn,h(x, y) corresponding to

the BMASP, we define function f to reflect the extra available capacity of
∑N

n=1 λnmn in MASP.
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For all n ∈ [N ] and h ∈ [H], let

fn,h(x, y) = Cn,h + 2Umn

(
qh −

N∑
n=1

λnmn

)+

+mn∂yhV (x, y)− ∂xnV (x, y). (5.2)

Given the current state of the system (x, y) and values of ∂xnV (x, y) and ∂yhV (x, y) for all

n ∈ [N ] and h ∈ [H], our proposed scheduling policy is as follows. For each n ∈ [N ], find the set

ρn =
{
h ∈ [H] : fn,h(x, y) ≤ 0

}
. If ρn is empty, let patients of class n wait. Otherwise, suppose

that h∗n is the smallest element of ρn. Assign a patient of class n to day h∗n. As long as ρn is

not empty, repeat this procedure to schedule patients of class n who are waiting to get their

appoitnment date.

To investigate the performance of the proposed policy, we simulate a system with four

classes of patients. We assume that the arrival of each class follows a Poisson process with

rates λ = (10, 20, 30, 40). The vector of waiting cost before receiving an appointment time is

C0 = (1000, 50, 20, 1). We also let

1. For class 1: C1,1 = 0, C1,h = C1,h−1 + 10, h > 1,

2. For class 2: C1,1 = 0, C1,h = C1,h−1 + 2, h > 1,

3. For class 3: C1,1 = 0, C1,h = C1,h−1 + 1, h > 1,

4. For class 4: C1,1 = 0, C1,h = C1,h−1 + 0.1, h > 1.

The average workload vector is set to be m = (0.12, 0.1, 0.08, 0.05). Therefore, the nominal daily

capacity of the system is
∑N

n=1 λnmn = 7.6 and scheduling beyond this result in an extra cost

according to the cost function in MASP.

Considering a booking window of 30 days, we simulate the system over a time horizon of

3000 days considering several values for the utility cost U and different initial system states. We

compare the performance of the proposed scheduling policy against the fluid optimal policy which

is clarified in Theorem 3.1.1. That is, assigning all the patients to the day of their arrival.
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In order to numerically calculate f given in (5.2), we need the derivatives of the value function

∂yhV and ∂xnV . We consider a linear approximation for these derivatives and find the coefficients

using a brute-force search. To be more specific, we assume that ∂yhV = β1Uyh and ∂xnV =

β2C0,nxn and seek for (β1, β2) that give the minimum operating cost for the simulated system.

5.1 Simulation Results

In this section, we study the performance of our scheduling policy by simulating an appointment

system. Specifically, we show that employing the proposed policy results in the high utilization

of the resources while provides patients with timely access to the required service. Figure 5.1

illustrates four appointment systems with the same system parameters except the utility cost

coefficient. Blue stars in figures show the scheduled workload based on the proposed policy and

the red diamonds show the scheduled daily workload resulted from assigning the patients to the

day of their arrival. According to Figure 5.1, the proposed policy pushes the system to keep

the daily balance within a smaller neighborhood around the nominal capacity as the utility cost

increases.

The efficiency of the resource utilization also matters when the system needs to take into

account a drop in the supply. Although we assumed that the system is empty at the beginning,

it is not the case in healthcare facilities. In Figure 5.2, we examine the appointment system

while 80% of the nominal capacity of the first 30 days is initially occupied. Our proposed policy

assists the system to respond properly to this issue. In Figure 5.2b, the policy response to this

pre-occupation issue is more smooth concerning the high utility cost. That is, the system resolves

the extra demand issue over a longer time horizon and uses less overtime capacity. However, in

view of the affordable utility cost in Figure 5.2a, the policy allows the system to utilize overtime

capacity significantly.

We also demonstrate the structure of the scheduling policy by simulating the system over 100
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(a) U = 50 (b) U = 200

(c) U = 1000 (d) U = 10000

Figure 5.1: Results of implementing the proposed policy for different values of utility cost

coefficient.
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(a) U = 1000 (b) U = 4000

Figure 5.2: Results for an appointment system that 80% of the nominal capacity of the

first 30 days is occupied at the beginning.

different sample paths of the arrival process. We assume that the system is initially fully occupied.

That means, the nominal capacity of the first 30 days is unavailable to the scheduler. Figure 5.3

shows the average number of the scheduled patients over the booking window for different classes.

According to Figure 5.3, more than 45 percent of patients received an appointment time for the

arrival day, and more than 25 percent of patients were scheduled to be served within one day

after getting the appointment time. The high cost of waiting before receiving an appointment

time forces the system to schedule all patients just after their arrival time.

To compare the performance of our proposed policy with the case of scheduling all patients

on the day of their arrival, we define the following cost ratio.

cost ratio =
System operating cost under the proposed policy

System operating cost under the fluid policy
. (5.3)

According to (5.3), the lower cost ratio demonstrates a higher performance of the proposed policy

comparing to the policy obtained based on the fluid analysis. We provided the result of simulating

an appointment system for 200 different sample paths of arrivals in Figure 4. Specifically, Figure
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Figure 5.3: The average of the proposed policy over 100 different sample paths of the

arrival process. The nominal capacity of the first 30 days is fully occupied. (red: class 1,

green: class 2, blue: class 3, yellow: class 5)
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(a) Initially empty system (b) Initially fully occupied system

Figure 5.4: Comparing the average cost ratio (5.3) for 200 simulations

4 shows the average cost ratio of an initially empty system is around 0.16. In other words,

employing our proposed policy decreases the system operating cost by as much as 84%. On the

other hand, Figure 4 gives the result for an initially fully occupied system. The given policy still

improves the system performance by 73%.
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Chapter 6

Conclusion and Future Work

In this work, the first analytical results are provided for studying the problem of scheduling multi-

ple classes of patients advance in time. Toward this aim, a realistic formulation of the problem is

presented, which reflects the utility and waiting costs trade-off. Next, we formulate a theoretically

tractable stochastic control problem that captures the asymptotic behavior of the system. We ob-

tained an optimal policy relying on a proposed optimal solution to the corresponding fluid-regime

problem.

Then, the presented results are interpreted in the original setting to design an efficient advance

scheduling policy. At the last step, numerical implementations demonstrate the efficacy of the

proposed policy to manage the daily fluctuations in demand while providing timely access to the

desired service for patients. Moreover, the importance of taking into account the randomness of

the arrival process is signified by comparing the system operating cost under optimal policies, in

both fluid and diffusion regimes.

In future studies, we aim to incorporate the stochasticity of service times in the advance

scheduling problem. Further extensions may consider the no-shows effect on the optimal policy,

that is, to adapt the scheduling policy with the setting that some patients skip their appointment
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times. Investigating the consequences of the above extensions, as well as combinations of them,

on the structure of optimal policies, will constitute an interesting direction for future work.
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Appendix A

Proofs of Technical Results

A.1 Proof of Lemma 3.1.1

First, fix n and h. Then, according to (3.4), it is clear that S̄kn,h is non-decreasing. Thus, if

0 ≤ t1 ≤ t2 ≤ T , then

S̄kn,h (t1) ≤ S̄kn,h (t2) . (A.1)

Taking limit by letting k → ∞, the left-hand side of (A.1) gives S̄n,h (t1) ≤ S̄kn,h (t2). Now, by

taking a similar limit from the right-hand-side, we get the desired result. �

A.2 Proof of Theorem 3.1.1

Fix T > 0 and set

J̄
(
S̄
)

= E

 N∑
n=1

(∫ T

0
C0,nW

+
n (t)dt+

H∑
h=1

Cn,hS̄n,h (T )

)
+

T∑
i=1

U

(Q̄(i)−
N∑
n=1

λnmn

)+
2 .

(A.2)
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All terms of J̄
(
S̄
)

are non-negative for any arbitrary control process S̄ that is non-negative and

non-decreasing. It implies that J̄(·) ≥ 0. As a result, we have V T ≥ 0. Now, it is straightforward

to check that under the control process S̄∗ given by (3.9), for all t ∈ [0, T ] it holds that Wn(t) = 0,

and for all i ∈ [T ] we have Q̄(i) =
∑N

n=1 λnmn. Based on Assumption 2.0.1, we get Cn,1 = 0 for

all n ∈ [N ]. Therefore, we have J̄
(
S̄∗
)

= 0. That is, S̄∗ is the optimal policy for (FMASP-1)-

(FMASP-3), under which it holds that V T = 0. �

A.3 Proof of Lemma 3.2.1

Fix i ∈ [T ] and denote by Qi(t) the scheduled capacity up to time t for the i-th day. For t with

btc < i ≤ btc+H ≤ T , according to (3.17), it holds that,

Qi(t) =
N∑
n=1

mn

∫ t

btc
sn,i−btc (r) dr +

i∧H∑
h=i−btc+1

∫ i−h+1

i−h
sn,h (r) dr

 , (A.3)

Then, by the definition, it holds that Q(i)2 = Qi(i)2. We can write,

dQi(t)2 = 2Qi(t)dQi(t). (A.4)

Now, note that the scheduler may assign the patients to day i in time interval [(i − H) ∨ 0, i).

Therefore, taking integral from both sides of (A.4) gives

Qi(i)2 =

∫ i

(i−H)∨0
2Qi(t)dQi(t) =

i∧H∑
h=1

∫ i−h+1

i−h
2Qi(t)dQi(t).

Based on definition 3.2.1 part (e), for any t < 0, sn,h (t) = 0, n ∈ [N ], h ∈ [H]. Then, considering

(A.3), it gives,

Q(i)2 =

H∑
h=1

∫ i−h+1

i−h
2Qi(t)dQi(t) =

H∑
h=1

N∑
n=1

2mn

∫ i−h+1

i−h
Qi(t)sn,i−btc (t) dt.
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Now if i− h ≤ t < i− h+ 1, then btc = i− h. Hence, using the definition of Y , we get

Q(i)2 =
H∑
h=1

N∑
n=1

2mn

∫ i−h+1

i−h
Yh(t)sn,h (t) dt.

Now, we can write

T∑
i=1

Q(i)2 =

T∑
i=1

H∑
h=1

N∑
n=1

2mn

∫ i−h+1

i−h
Yh(t)sn,h (t) dt

=
T∑
i=1

H∑
h=1

N∑
n=1

2mn

∫ i−h+1

i−h
Yh(t)sn,h (t) dt

=

N∑
n=1

H∑
h=1

T∑
i=1

2mn

∫ i−h+1

i−h
Yh(t)sn,h (t) dt

=
N∑
n=1

H∑
h=1

2mn

∫ T−h+1

0
Yh(t)sn,h (t) dt.

�

A.4 Proof of Lemma 4.0.1

First, note that the drift and the diffusion coefficients of X defined in (BMASP-2) satisfy a

uniform Lipschitz condition. That is, there exists a constant β ≥ 0, such that for all x1, x2 ∈ RN

and for any constant control s ∈ RN×H+ , we have∣∣∣∣∣
H∑
h=1

sn,h −
H∑
h=1

sn,h

∣∣∣∣∣+ |σn − σn| = 0 ≤ β |x1 − x2| , n ∈ [N ].

Further, by Definition 3.2.1, for any n ∈ [N ], we can write,

E

∫ T

0

(
H∑
h=1

sn,h (t)

)2

+

(
H∑
h=1

mnsn,h (t)

)2

dt

 <∞, ∀T > 0.

Now, applying Theorem 3.1 of Touzi (2012) completes the proof. �
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A.5 Proof of Theorem 4.0.1

Starting from (x, y), according to Lemma 4.0.1, there exists a process {X (t), Y (t)}0≤t≤1 that

satisfies the relations in (4.2) for r = 0 and X (0) = x, Y (0) = y. Also, (4.3) implies that

E
[
|X (1)|2 + |Y (1)|2

]
< ∞. Now, define x1 = X (1) ans y1 = (Y2(1), Y3(1), . . . , YH(1), 0).

It holds that E
[
|x1|2 + |y1|2

]
< ∞. Reusing Lemma 4.0.1 gives that there exists a process

{X (t), Y (t)}1≤t≤2 that satisfies the desired conditions in (4.2). By repeating the procedure we

obtain the process {X (t), Y (t)}i≤t≤i+1 starting from (xi, yi) that satisfies (4.2) for any i ∈ N.

With a abuse of notations, define {X (t), Y (t)}t>0 :=
{
{X (t), Y (t)}i<t≤i+1

}
i∈{0∪N}

and X (0) :=

x, Y (0) = y. It is straightforward to check that {X (t), Y (t)}t>0 is a solution to (4.4).

To see the uniqueness, let {X (t),Y(t)}t≥0 be another solution to (4.4). Therefore, {X (t),Y(t)}r≤t<r+1

is a solution to (4.2) for r ∈ {0∪N}. But, recall that the solution of (4.2) is unique. That means

{X (t), Y (t)}t≥0 and {X (t),Y(t)}t≥0 are indistinguishable. �

A.6 Proof of Theorem 4.0.2

Step 1. Using the tower property of expectations, by (4.5) we have,

J(π;x, y)

= Eπx,y

[
N∑
n=1

∫ ∞
0

e−γt

(
C0,nX

+
n (t) +

H∑
h=1

(Cn,h + 2UmnYh(t)) sn,h (t)

)
dt

]

= Eπx,y

[
N∑
n=1

∫ τ

0
e−γt

(
C0,nX

+
n (t) +

H∑
h=1

(Cn,h + 2UmnYh(t)) sn,h (t)

)
dt

]

+ Eπx,y

[
e−γτEπX (τ),Y (τ)

[
N∑
n=1

∫ ∞
τ

e−γt

(
C0,nX

+
n (t) +

H∑
h=1

(Cn,h + 2UmnYh(t)) sn,h (t)

)
dt

]]

= Eπx,y

[
N∑
n=1

∫ τ

0
e−γt

(
C0,nX

+
n (t) +

H∑
h=1

(Cn,h + 2UmnYh(t)) sn,h (t)

)
dt+ e−γτJ(π;X (τ), Y (τ))

]
(A.5)
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In the last equality, we used the path-wise uniqueness of the solutions of (BMASP-2)- (BMASP-4)

that implies

X(x,y)(r) = X(X(x,y)(τ),Y (x,y)(τ))(r) r ≥ τ,

Y (x,y)(r) = Y (X(x,y)(τ),Y (x,y)(τ))(r), r ≥ τ,

where
(
X(x,y)(r), Y (x,y)(r)

)
is the solution to (4.4) starting from (x, y).

Note that by the definition of value function (4.6), we know that,

V (·) ≤ J(π; ·), ∀π ∈ Πξ. (A.6)

Now, (A.5) and (A.6) imply that,

J(π;x, y) ≥ inf
π∈Πξ

Eπx,y

[
N∑
n=1

∫ τ

0
e−γt

(
C0,nX

+
n (t) +

H∑
h=1

(Cn,h + 2UmnYh(t)) sn,h (t)

)
dt

+ e−γτV (X (τ), Y (τ))

]
.

Takeing infimum over π ∈ Πξ in the LHS, we get,

V (x, y) ≥ inf
π∈Πξ

Eπx,y

[
N∑
n=1

∫ τ

0
e−γt

(
C0,nX

+
n (t) +

H∑
h=1

(Cn,h + 2UmnYh(t)) sn,h (t)

)
dt

+ e−γτV (X (τ), Y (τ))

]
.

(A.7)

Step 2. To prove the reverse inequality, fix an arbitrary s ∈ Aξ and τ . For any ω ∈ Ω and ε > 0,

let sω,ε be an ε-optimal control process for V (Xω(τ(ω)), Y ω(τ(ω))). That means,

V (Xω(τ(ω)), Y ω(τ(ω))) + ε ≥ J (πε;Xω(τ(ω)), Y ω(τ(ω))) , (A.8)

where πε (Xω(t), Y ω(t)) = sω,ε(t), t ≥ 0. We define π̂ as follows1,

π̂ (Xω(t), Y ω(t)) :=


sω(t), t < τ (ω)

sω,ε(t), t ≥ τ (ω)

.

1The measurability of π̂ is the result of Measurable Selection Theorem (see e.g. Chapter 7 of Bertsekas

and Shreve (2004)). For a similar approach, see Theorem 3.3.1 of Pham (2009).

47



Again by the tower property of expectation and similar to (A.5), we have,

J(π̂;x, y) = Eπ̂
ω

x,y

[
N∑
n=1

∫ τ

0
e−γt

(
C0,nX

ω,+
n (t) +

H∑
h=1

(Cn,h + 2UmnY
ω
h (t)) sωn,h(r)

)
dt

+ e−γτJ (πε;Xω(τ(ω)), Y ω(τ(ω)))

]

Then, for any π ∈ Πξ, (A.6) and (A.8) imply,

V (x, y) ≤ J(π;x, y) ≤ Eπx,y

[
N∑
n=1

∫ τ

0
e−γt

(
C0,nX

ω,+
n (t) +

H∑
h=1

(Cn,h + 2UmnY
ω
h (t)) sωn,h(r)

)
dt

+ e−γτV (Xω(τ(ω)), Y ω(τ(ω))) + e−γτε

]
.

where sω(t) = π (Xω(t), Y ω(t)) , t ≥ 0. The arbitrariness of s and ε > 0 give,

V (x, y) ≤ Eπx,y

[
N∑
n=1

∫ τ

0
e−γt

(
C0,nX

ω,+
n (t) +

H∑
h=1

(Cn,h + 2UmnY
ω
h (t)) sωn,h(r)

)
dt

+ e−γτV (Xω(τ(ω)), Y ω(τ(ω)))

]
.

(A.9)

Combining (A.7) and (A.9) completes the proof. �

A.7 Proof of Lemma 4.0.2

Denoting v (X (t), Y (t)) simply by v and using Itô Formula (see e.g. Theorem 4.2.1 of Oksendal

(2013)), we have,

d
(
e−γtv

)
= e−γt

(
N∑
n=1

∂xnvdXn +

H∑
h=1

∂qhvdYh +
1

2

N∑
n=1

∂2
xnvσ

2
ndt− γvdt

)

= e−γt

(
N∑
n=1

H∑
h=1

(
∂qhvmn − ∂xnv

)
sn,h (t) dt+

1

2

N∑
n=1

∂2
xnvσ

2
ndt+

N∑
n=1

∂xnvσndBn(t)− γvdt

)
.
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Taking integration from both sides gives,

e−γt2v (X (t2), Y (t2))− e−γt1v (X (t1), Y (t1))

=

∫ t2

t1

d
(
e−γtv (X (t), Y (t))

)
=

∫ t2

t1

e−γt

(
N∑
n=1

H∑
h=1

(
∂yhv (X (t), Y (t))mn − ∂xnv (X (t), Y (t))

)
sn,h (t)

)
dt

+

∫ t2

t1

e−γt

(
1

2

N∑
n=1

σ2
n∂

2
xnv (X (t), Y (t))− γv (X (t), Y (t))

)
dt

+

∫ t2

t1

e−γt
N∑
n=1

σn∂xnv (X (t), Y (t)) dBn(t).

Taking expectation of both sides, the zero-mean property of Itô integrals gives,

E
[
e−γt2v (X (t2), Y (t2))− e−γt1v (X (t1), Y (t1))

]
= E

[∫ t2

t1

e−γt

(
N∑
n=1

H∑
h=1

(
mn∂qhv (X (t), Y (t))− ∂xnv (X (t), Y (t))

)
sn,h (t)

)
dt

]

+E

[∫ t2

t1

e−γt

(
1

2

N∑
n=1

σ2
n∂

2
xnv (X (t), Y (t))− γv (X (t), Y (t))

)
dt

]
.

That is the desired result and the proof is complete. �
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A.8 Proof of Theorem 4.0.3

Step 1. Fix (x, y) ∈ RN ×RH+ as the initial state of the system. For an arbitrary s ∈ [0, ξ]N×H ,

consider the constant control s (r) = s. Based on (A.9) and (4.7), for 0 < τ < 1 we have,

0 ≤ E

[
N∑
n=1

∫ τ

0
e−γt

(
C0,nX

+
n (t) +

H∑
h=1

(Cn,h + 2UmnYh(t)) sn,h

)
dt

]

+ E
[
e−γτV (X (τ), Y (τ))− V (x, y)

]
= E

[
N∑
n=1

∫ τ

0
e−γt

(
C0,nX

+
n (t) +

H∑
h=1

(Cn,h + 2UmnYh(t)) sn,h

)
dt

]

+ E

[∫ τ

0
e−γt

(
N∑
n=1

H∑
h=1

(
∂qhV (X (t), Y (t))mn − ∂xnV (X (t), Y (t))

)
sn,h

)
dt

]

+ E

[∫ τ

0
e−γt

(
1

2

N∑
n=1

∂2
xnV (X (t), Y (t))σ2

n − γV (X (t), Y (t))

)
dt

]

(A.10)

We simply denote V (X (t), Y (t)) by V where there is no ambiguity. Divide both sides by τ .

Then, take the limit as τ → 0 and pass it through the expectation using Dominated Convergence

Theorem (see e.g. Theorem 11.32 in Rudin (1964)), relying on the fact that V ∈ C2
(
RN×H

)
.

We have,

0 ≤ E

[
lim
τ→0

1

τ

N∑
n=1

∫ τ

0
e−γt

(
C0,nX

+
n (t) +

H∑
h=1

(Cn,h + 2UmnYh(t)) sn,h

)
dt

]

+ E

[
lim
τ→0

1

τ

∫ τ

0
e−γt

(
N∑
n=1

H∑
h=1

(
∂yhV mn − ∂xnV

)
sn,h +

1

2

N∑
n=1

∂2
xnV σ

2
n − γV

)
dt

]
.

A straightforward application of Mean Value Theorem (see e.g. Theorem 5.10 in Rudin (1964))

yields,

0 ≤
N∑
n=1

(
C0,nx

+
n +

H∑
h=1

(
Cn,h + 2Umnyh + ∂yhV mn − ∂xnV

)
sn,h +

1

2
∂2
xnV σ

2
n

)
− γV.
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Since s is arbitrary, we have,

0 ≤
N∑
n=1

(
C0,nx

+
n +

1

2
∂2
xnV σ

2
n + inf

s

{
H∑
h=1

(
Cn,h + 2Umnyh + ∂yhV mn − ∂xnV

)
sn,h

})
− γV.

(A.11)

Step 2. Now, suppose that s∗ is the optimal control process of the BMASP; that means,

V (x, y) = E

[
N∑
n=1

∫ ∞
0

e−γt

(
C0,nX

∗,+
n (t) +

H∑
h=1

(Cn,h + 2UmnY
∗
h (t)) s∗n,h (t)

)
dt

]
.

where X∗ and Y ∗ are respectively the solutions of (BMASP-2) and (BMASP-3) associated to

control process s∗. Using the DPP, for δ > 0 we can write,

V (x, y) = E

[
N∑
n=1

∫ δ

0
e−γt

(
C0,nX

∗,+
n (t) +

H∑
h=1

(Cn,h + 2UmnY
∗
h (t)) s∗n,h (t)

)
dt+ V (X∗(δ), Y ∗(δ))

]
.

Similar to step 1, it gives,

0 =

N∑
n=1

(
C0,nx

+
n +

H∑
h=1

(
Cn,h + 2Umnyh + ∂yhV mn − ∂xnV

)
s∗n,h (t) +

1

2
∂2
xnV σ

2
n

)
− γV. (A.12)

Combining (A.11) and (A.12) in the light of (4.8) gives the HJB. �

A.9 Proof of Theorem 4.0.4

Fix n ∈ [N ] and h ∈ [H]. Since V ∈ C2(RN+H), we know that δVn,h ∈ C1(RN+H). Fix an

arbitrary real number a. We want to show that {(x, y) ∈ RN ×RH+ : π?n,h(x, y) > a} is a Borel

measurable set. Then, by Definition 11.13 of Rudin (1964), π?n,h is a measurable function. If

a < 0 or a ≥ ξ, the measurability of {(x, y) ∈ RN ×RH+ : π?n,h(x, y) > a} is obvious. In case that

0 ≤ a < ξ, then

{(x, y) ∈ RN ×RH+ : π?n,h(x, y) > a} = {(x, y) ∈ RN ×RH+ : δVn,h ≥ 0}.

But, the RHS is measurable since δVn,h is continuous and measurable, see e.g. Example 11.14

and Theorem 11.15 in Rudin (1964). It is straightforward to check that π? minimizes the linear

problem given in (4.9). �
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A.10 Proof of Theorem 4.0.5

Fix T > 0. For l ∈ N, define θl = inf

{
t ≥ 0,

∫ t
0

∣∣∣∑N
n=1 σn∂xnv (X (r), Y (r))

∣∣∣2}dr. That means θl

is a stopping time. For a similar treatment see e.g. page 50 of Pham (2009).

Considering the discontinuities of Y defined in (BMASP-4), we apply Itô’s formula for semi-

martingales, see Theorem II-33 of Protter (2013), to e−γtv(X (t), Y (t)), we get,

e−γ(θl∧T )v(X (θl ∧ T ), Y (θl ∧ T ))− v(x, y) =∫ θl∧T

0

H∑
h=1

e−γt∂yhv
(
X (t), Y

(
t−
))

dYh(t)

+

∫ θl∧T

0

N∑
n=1

e−γt∂xnv
(
X (t), Y

(
t−
))

dXn(t)

+

∫ θl∧T

0

(
1

2

N∑
n=1

e−γtσ2
n∂

2
xnv

(
X (t), Y

(
t−
))
− e−γtγv

(
X (t), Y

(
t−
)))

dt

+
∑

0≤t<(θl∧T )

e−γt
[
v (X (t), Y (t))− v

(
X (t), Y

(
t−
))]

−
∑

0≤t<(θl∧T )

e−γt

[
H∑
h=1

∂yhv
(
X (t), Y

(
t−
))

∆Yh(t)

]
.

Recall the dynamics of the state processes (BMASP-2) and (BMASP-3), by the zero-mean prop-

erty of the stopped integrals and (4.13) we get

v(x, y) = E
[
e−γ(θl∧T )v (X (θl ∧ T ), Y (θl ∧ T ))

]
+ E

[
N∑
n=1

H∑
h=1

∫ θl∧T

0
e−γt

(
∂xnv

(
X (t), Y

(
t−
))
−mn∂yhv

(
X (t), Y

(
t−
)))

sn,h (t) dt

]

+ E

[∫ θl∧T

0
e−γt

(
γv
(
X (t), Y

(
t−
))
− 1

2

N∑
n=1

σ2
n∂

2
xnv

(
X (t), Q

(
t−
)))

dt

]
.

(A.13)

By (4.12) we can write,

N∑
n=1

(
C0,nx

+
n +

1

2
∂2
xnv(x, y)σ2

n −
H∑
h=1

δvn,h(x, y)sn,h

)
≥ γv(x, y), (x, y) ∈ RN ×RH+ , s ∈ [0, ξ]N×H .
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It implies,

N∑
n=1

(
C0,nx

+
n +

H∑
h=1

(Cn,h + 2Umnyh) sn,h

)
≥

γv(x, y) +
N∑
n=1

(
H∑
h=1

(
∂xnv(x, y)−mn∂yhv(x, y)

)
sn,h −

1

2
∂2
xnv(x, y)σ2

n

)
.

Plugging it in (A.13), we get

v(x, y) ≤ E
[
e−γ(θl∧T )v (X (θl ∧ T ), Y (θl ∧ T ))

]
+ E

[∫ θl∧T

0
e−γt

(
N∑
n=1

(
C0,nX

+
n (t) +

H∑
h=1

(Cn,h + 2UmnYh(t)) sn,h (t)

))
dt

]
.

We may take the limit as l → ∞ and using (4.11) and the fact that s ∈ [0, ξ]N×H , we apply

Dominated Convergence Theorem. It gives,

v(x, y) ≤ E
[
e−γT v (X (T ), Y (T ))

]
+ E

[∫ T

0
e−γt

(
N∑
n=1

(
C0,nX

+
n (t) +

H∑
h=1

(Cn,h + 2UmnYh(t)) sn,h (t)

))
dt

]
.

Sending T to infinity, according to (4.14) we get

v(x, y) ≤ E

[∫ ∞
0

e−γt

(
N∑
n=1

(
C0,nX

+
n (t) +

H∑
h=1

(Cn,h + 2UmnYh(t)) sn,h (t)

))
dt

]
.

Considering (4.5) and (4.6) imply v(x, y) ≤ V (x, y) for all (x, y) ∈ RN ×RH+ .

Now, by (4.10) and (4.12) we get for all (x, y) ∈ RN ×RH+ ,

N∑
n=1

(
C0,nx

+
n +

1

2
∂2
xnv(x, y)σ2

n −
H∑
h=1

δvn,h(x, y)ξ1δvn,h(x,y)≥0

)
= γv(x, y).

It gives,

N∑
n=1

(
C0,nx

+
n +

H∑
h=1

(Cn,h + 2Umnyh) ξ1δvn,h(x,y)

)
=

γv(x, y) +

N∑
n=1

(
H∑
h=1

(
∂xnv(x, y)−mn∂yhv(x, y)

)
ξ1δvn,h(x,y) −

1

2
∂2
xnv(x, y)σ2

n

)
.

53



By (A.13), we have,

v(x0, y0) = E
[
e−γ(θl∧T )v (X∗(θl ∧ T ), Y ∗(θl ∧ T ))

]
+ E

[∫ θl∧T

0
e−γt

(
N∑
n=1

(
C0,nX

∗,+
n (t) +

H∑
h=1

(Cn,h + 2UmnY
∗
h (t)) ξ1δvn,h(x,y)

))
dt

]
.

Similar to above, by taking limit and according to Dominated Convergence Theorem as well as

(4.15), we can write

v(x0, y0) = J(π?;x0, y0) = E

[∫ ∞
0

e−γt

(
N∑
n=1

(
C0,nX

∗,+
n (t) +

H∑
h=1

(Cn,h + 2UmnY
∗
h (t)) sn,h (t)

))
dt

]
.

Therefore, v(x0, y0) = V (x0, y0). �
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