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Abstract

The fundamental conflict between the increasing consumer demand for better Quality-

of-Experience (QoE) and the limited supply of network resources has become significant

challenges to modern video delivery systems. State-of-the-art Adaptive Bitrate (ABR)

streaming algorithms are dedicated to drain available bandwidth in hope to improve view-

ers’ QoE, resulting in inefficient use of network resources. In this thesis, we develop an

alternative design paradigm, namely Rate-Distortion Optimized Streaming (RDOS), to

balance the contrast demands from video consumers and service providers. Distinct from

the traditional bitrate maximization paradigm, RDOS must operate at any given point

along the rate-distortion curve, as specified by a trade-off parameter. The new paradigm

has found plausible explanations in information theory, economics, and visual perception.

To instantiate the new philosophy, we decompose adaptive streaming algorithms into

three mutually independent components, including throughput predictor, reward function,

and bitrate selector. We provide a unified framework to understand the connections among

all existing ABR algorithms. The new perspective also illustrates the fundamental limita-

tions of each algorithm by going behind its underlying assumptions. Based on the insights,

we propose novel improvements to each of the three functional components.

To alleviate a series of unrealistic assumptions behind bitrate-based QoE models, we

develop a theoretically-grounded objective QoE model. The new objective QoE model

combines the information from subject-rated streaming videos and the prior knowledge

about Human Visual System (HVS) in a principled way. By analyzing a corpus of psy-

chophysical experiments, we show the QoE function estimation can be formulated as a

projection onto convex sets problem. The proposed model presents strong generalization

capability over a broad range of source contents, video encoders, and viewing conditions.

Most importantly, the QoE model disentangles bitrate with quality, making it an ideal

component in the RDOS framework.

In contrast to the existing throughput estimators that approximate the marginal prob-

ability distribution over all connections, we optimize the throughput predictor conditioned

on each client. Although there are lack of training data for each Internet Protocol connec-

tion, we can leverage the latest advances in meta learning to incorporate the knowledge
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embedded in similar tasks. With a deliberately designed objective function, the algorithm

learns to identify similar structures among different network characteristics from millions

of realistic throughput traces. During the test phase, the model can quickly adapt to

connection-level network characteristics with only a small amount of training data from

novel streaming video clients with a small number of gradient steps.

The enormous space of streaming videos, constantly progressing encoding schemes,

and great diversity of throughput characteristics make it extremely challenging for modern

data-driven bitrate selectors that are trained with limited samples to generalize well. To

this end, we propose a Bayesian bitrate selection algorithm by adaptively fusing an online,

robust, and short-term optimal controller with an offline, susceptible, and long-term opti-

mal planner. Depending on the reliability of the two controllers in certain system states,

the algorithm dynamically prioritizes the one of the two decision rules to obtain the optimal

decision.

To faithfully evaluate the performance of RDOS, we construct a large-scale stream-

ing video dataset – the Waterloo Streaming Video database. It contains a wide variety

of high quality source contents, encoders, encoding profiles, realistic throughput traces,

and viewing devices. Extensive objective evaluation demonstrates the proposed algorithm

can deliver identical QoE to state-of-the-art ABR algorithms at a much lower cost. The

improvement is also supported by so-far the largest subjective video quality assessment

experiment.
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Chapter 1

Introduction

This research addresses some long-standing problems of digital video delivery that are

related to perceptually oriented network resource allocation. The root of these problems

is the misunderstanding of viewers’ QoE. In particular, traditional video delivery systems

tangle bitrate with quality, aggressively draining all available bandwidth. Such “best-

effort” approach misses out opportunities to save bandwidth usage and will eventually

cause network congestion or sub-optimal user QoE. The phenomena is widely known as

Tragedy of Commons in Economics [130].

In this thesis, we will explore a fundamentally different design philosophy for video de-

livery systems, where we consider video streaming as a rate-distortion optimization prob-

lem. Distinct from the bitrate maximization approach, we view bitrate as the cost of video

delivery, which should be minimized while preserving a target QoE constraint. The new

approach operates at any given point along the rate-distortion curve, as specified by a

trade-off parameter.

Of course, the rate-distortion optimization perspective by itself does not provide a

complete solution to the resource allocation problem. To instantiate the new paradigm,

we develop three functional components in the video delivery system from a Bayesian per-

spective, including a perceptually grounded QoE model, a connection adaptive throughput

predictor, and a deep reinforcement learning-based policy. The idea is to complement
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Figure 1.1: An overview of HTTP adaptive video streaming.

the information encoded in realistic training samples with suitable prior knowledge in the

design of complex, high dimensional, and time sensitive systems.

1.1 Background and Motivation

1.1.1 Dynamic Adaptive Streaming over HTTP

Video traffic from content delivery networks is expected to occupy 71% of all consumed

bandwidth by 2021 and exceed 82% by 2022 [215]. The explosion of data volume introduced

by media streaming will quickly drain available network bandwidth in the next decade.

Concurrent with the scarcity of network resources is the steady rise in user demands on

video quality. With the emergence of new technologies such as 4K, high dynamic range,

and high frame rate, viewers’ expectation on video quality has been higher than ever. The

trends in the shortage of network resources and the increasing demand in QoE has posed

significant challenges to content providers supporting millions of users and devices.

Since the ratification of the Dynamic Adaptive Streaming over HTTP (DASH) standard

in 2011 [196], video service providers have invested significant effort in the transition from

the conventional connection-oriented video transport protocols towards HTTP Adaptive

Streaming (HAS) due to its ability to traverse network address translations and firewall,
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Figure 1.2: System diagram of adaptive bitrate streaming player.

reliability to deliver video packet, flexibility to react to volatile network conditions, and

efficiency in reducing the server workload. Major streaming and media companies have in-

stantiated a variety of competing adaptive streaming protocols such as HTTP Live Stream-

ing (HLS), Microsoft Smooth Streaming (MSS), and HTTP Dynamic Streaming (HDS) to

promote and catalyze the adoption of DASH into a real business. The DASH technol-

ogy has empowered tens of world-class streaming applications including Netflix, YouTube,

TikTok, Disney+, Youku, and etc., each of which has received at least 10 million overall

downloads [194].

Figure 1.1 illustrates the end-to-end process of streaming a video over DASH [63].

Specifically, a source video is encoded at a variety of bitrates and video attributes (such as

spatial resolution, frame rate, and bit depth), and segmented into small HyperText Transfer

Protocol (HTTP) file chunks of 2-10 seconds each at the video server. The bitrate-encoding

attributes tuples are usually referred to as bitrate ladder or encoding profiles. Furthermore,

the media information of each segment is stored in a manifest file, which is created at

server and transmitted to clients to provide the specification and location of each segment.

Throughout the streaming process, the video player at the client adaptively switches among

the available streams by selecting video chunks at different quality levels. ABR algorithms,

that determine the bitrate of the next segment to download, are not defined within the

standard but deliberately left open for optimization. The key is to define an optimization

criterion that aims at maximizing viewer QoE given limited bitrate resources.
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Figure 1.2 shows a system diagram of ABR controller. At the start of each streaming

session, a video player sends a token to a video service provider for authentication. Once

the manifest file is received, the video player at the client then adaptively selects a video

representation to download based on playback rates, buffer conditions and instantaneous

throughput [196]. Concurrently, a buffer controller keeps depleting a playback buffer by

sending the next second of video to a playback controller, and replenishes the buffer with

the newly downloaded chunk. The remaining video playback time in the buffer is called

buffer occupancy. If buffer occupancy runs out, a rebuffering event will occur. Besides, a

throughput monitor estimates the network bandwidth according to the size and download

time of the last chunk. Finally, the playback controller continues rendering the video

received from the buffer unless rebuffering interrupts.

1.1.2 Functional Decomposition

To facilitate a better understanding of the ABR decision problem, we present a novel

framework that decomposes ABR functionally into three sub-components. Specifically,

the aforementioned streaming process can be recast as a reinforcement learning problem,

where an agent ought to take actions in an environment in order to maximize the notion of

cumulative reward. Before chunk t+1 is downloaded, the ABR controller π, or the agent,

performs an action at ∈ A based on all previous states s1:t, where st ∈ S for all t, to deter-

mine which representation to download. The state st generally encodes information about

throughput history, buffer occupancy, and previous downloaded representations before at

is taken. Given a bitrate decision at and the previous states s1:t, the environment E con-

sisting of the characteristics of streaming video and the future throughput will download a

corresponding representation of the next chunk, updates the buffer occupancy, tracks the

throughput, continues playing the video from the buffer, and returns all the updated state

st+1 to the agent. Then the agent takes another action at+1 based on the new states. The

cycle repeats until the whole video is streamed. Assuming that pE depicts the real-world

distribution of environment, the ultimate goal of the agent is to optimize the expectation

of certain utility/reward function U . Mathematically, the ABR problem can be expressed
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as
maximize

π
EpE [U(s1:T , a1:T )]

subject to at = π(s1:t)

st+1 = E(at, s1:t),

(1.1)

where T represents the total number of chunks1.

All ABR algorithms can be summarized by this framework, while they differ in how they

model the environment E , what reward function U to optimize, and using which strategy π

to optimize the reward function. The transition probability distribution pE is determined

by three factors, including the ABR player buffer dynamics, the network dynamics, and the

encoded video chunk characteristics. The buffer dynamic is a deterministic process that

has been thoroughly investigated [93, 241]. In live streaming applications, the uncertainty

in pE is governed by the throughput evolution and the future video chunk properties. For

example, one would need to explicitly model the time-varying chunk size and local quality

distributions in order to make an optimal bitrate selection. For video on demand services,

the chunk-level statistics can be obtained from the manifest file before the decision stage.

The major uncertainty for the distribution of environment pE arises from the stochastic

nature of future network throughput [200]. In this study, we focus on the video on demand

1The proposed decomposition is a simplified version of the practical ABR system, without considering

the player (decoding and rendering) speed, and potential transmission/decoding errors.
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services, although live streaming is a straight-forward extension. As a result, we formalize

the three modules as the throughput predictor, the reward function, and the bitrate selector

respectively. The schematic diagram of the proposed framework is illustrated in Figure 1.3.

At each decision step, the throughput predictor firstly estimates how much bitrate resource

will become available for allocation, based on which and other state variables such as

buffer occupancy the bitrate selector will select a representation that hopefully optimizes

a meaningful reward function.

1.1.3 Challenges in Adaptive Streaming

The design of three aforementioned functional components heavily influence the perfor-

mance of ABR algorithms. However, all of these algorithms face five primary practical

challenges:

• ABR algorithms must balance the benefit of maximizing QoE and the cost of network

congestion. However, these goals are inherently conflicting. For example, increasing

bitrate from 5 Mbps to 10 Mbps may introduce imperceptible quality improvement,

but may potentially cause server overload and network traffic. Conversely, consis-

tently choosing the lowest possible bitrate resolves the network congestion at the cost

of significant QoE degradation.

• While it has been widely accepted that accurate QoE measurement lies in the root

of ABR systems, an easy-to-use, mathematically well-behaved, and perceptually

grounded QoE model is still lacking. In practice, bitrate remains the major indi-

cator of QoE. However, encoding two different videos with the same bitrate could

result in a substantial difference in perceived picture quality, suggesting that bitrate

and picture quality/QoE cannot be used interchangeably. This is in addition to the

large differences in performance between different encoders/transcoders with different

configurations. The actual user QoE also varies with respect to the device being used

to display the video, another factor that cannot be taken into account by bitrate-

driven video delivery strategies. To further complicate matters, existing subjective
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studies suggest that QoE is further influenced by rebuffering, quality adaptation, and

their interactions with video quality.

• ABR agent does not have perfect information about the network conditions, which

can fluctuate over time and can vary significantly across environments. This com-

plicates bitrate selection as different scenarios may alter the major input signals in

ABR decision. For example, on time-varying cellular links, throughput prediction is

often inaccurate and cannot account for sudden fluctuations in network bandwidth,

resulting in underutilized network and low video quality or inflated download delays

and rebuffering. To overcome this, ABR algorithms must prioritize more stable input

signals like buffer occupancy in these scenarios.

• An ideal bitrate selection strategy should be efficient in running time, robust2 to

unobserved environmental states, and optimal in reward. However, these objectives

are extremely difficult to meet in practice. Specifically, there are approximately |A|T

possible bitrate selection strategies in one streaming session, where |A| and T are

the number of encoding profiles and the number of temporal chunks, respectively.

In a typical streaming video (|A| ≈ 10 and T ≈ 200), the search for global optimal

solution is computationally intractable. Moreover, bitrate selection has very strict

time requirements, where a second delay in bitrate selection leads to notable QoE

losses. As a result, practical online bitrate selection algorithms have to compromise

the optimality in order to obtain a reasonable efficiency. On the other hand, despite

being computationally efficient and nearly optimal in certain scenarios, learning-

based offline decision rules are often susceptible to unobserved environmental states,

whose dimension is in the order of thousands.

• The validation of ABR algorithms corresponds to the evaluation of (1.1) for each

ABR algorithm, which is a complex problem in its own right. First, the mea-

surement of (1.1) requires the precise knowledge about the streaming environment.

Quantitatively, this means specification of probability distributions over both net-

work conditions and streaming videos, neither of which are available. In practice,

2In this thesis, we define robustness as the model generalizability to unobserved test samples.
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many authors have to base their studies on empirical results computed from a lim-

ited set of example network traces and streaming videos. Second, since the HVS

is the ultimate receiver of streaming videos, the only “correct” way to evaluate the

reward function and the corresponding ABR system is by performing a subjective

experiment. Unfortunately, subjective testing is inconvenient, time-consuming, and

expensive. Restricted by these practical constraints, the quantity, representativeness,

and reliability of evaluation data can be hard to satisfy simultaneously.

1.1.4 Trends in Multimedia Communication

If the bitrate allocation problem is our enemy in the thesis, multimedia communication

technology is our arsenal. In particular, rate-distortion theory is the most important devel-

opment in the history of digital signal communication, presenting the natural link between

the cost of transmitting a signal and the distortion of the approximate signal at the receiver.

For the purposes of this thesis, there are two crucial trends in multimedia communication

technology: a deeper understanding of HVS and perceptually motivated signal processing

systems, and the thrive in data-driven methods for communication systems.

There is an growing consensus in the video distribution industry that the design and

operation of the full video delivery chain needs to be driven by the QoE appropriate to the

end-users. The gigantic scale of video data transmission and previous success in perceptual

image and video processing have attracted significant interests in understanding and mod-

eling of subjective QoE responses for adaptive streaming videos. In particular, there have

been more than 100 independent subjective experiments and numerous publicly available

datasets dedicated to investigate and measure the QoE of streaming videos over the past

decade [184]. A number of useful observations has been drawn such as 1) rebuffering sig-

nificantly degrade viewers’ QoE, 2) frequent quality adaptations irritate end users, and 3)

the same video viewed at different environment produces drastically experience. All these

studies, if exploited carefully, may lead to significant improvements over the existing ABR

algorithms. However, this is not to say that predicting subjective QoE would be easy. We

will still have to overcome significant challenges in developing a computationally efficient,

mathematically well-behaved and HVS properties-conforming objective QoE model.
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Another powerful trend is that multimedia communication and machine learning have

begun to merge in two fundamental ways. First, while multimedia communications have

developed largely as a model-driven field, the complexity of many emerging communication

scenarios is giving rise to the need to introduce data-driven methods into the design and

analysis of mobile networks. And, conversely, many machine learning problems are by their

nature distributed due to either physical limitations or privacy concerns. This distributed

nature gives rise to the need to consider mobile networks as part of learning mechanisms.

The quintessential example of communication involving machine learning is the recom-

mender systems, based on which companies like Amazon, Netflix, and Linkedin help users

discover new and relevant items (products, videos, jobs, music), creating a delightful user

experience while driving incremental revenue. Specifically, recommender systems learned

purely from enormous training data were shown to significantly outperform traditional

expert systems. Other examples of data-driven mechanisms in communication problems

include proactive caching, resource allocation and security, and the consideration of com-

munication issues arising in distributed learning problems such as federated learning and

social learning. Machine learning is truly an integral component of modern multimedia

communication.

In summary, present-day multimedia communication provides a very rich substrate

for new ABR systems. The two key nutrients are in-depth knowledge of HVS and recent

flourish of computation power, big data, artificial intelligence algorithms, and deep learning

infrastructures.

1.2 Objectives

The objectives of this thesis are to overcome the fundamental limitations of traditional

evaluation and design methodologies of video delivery systems by ways of perceptually

motivated QoE modeling and rate-distortion optimized streaming. We aim to develop

theories and algorithms for network system friendly, perceptually oriented, computationally

efficient, environmental shift robust, and statistically optimal network resource allocation.
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1.3 Thesis Overview

1.3.1 Organizational Themes

The central contribution of this thesis is the introduction of the rate-distortion optimized

streaming system: a general solution to the five manifestations of the network resource

allocation problem in this introduction. The following five themes unify presentation of

the system in response to the five aforementioned challenges.

• Conflicting Objective Challenge: To balance the contrast demands from video con-

sumers and service providers, we rethink the bitrate adaptation problem by asking

the question: is there inefficient bandwidth usage in adaptive streaming? Throughout

a set of simulation experiments, we show that current bitrate adaptation strategies

result in significant bandwidth waste in a variety of scenarios. We demonstrate that

the root cause of the problem can be attributed to the ignorance of content character-

istics, encoder performances, and display devices. Given that there exists redundant

bitrate usage in adaptive streaming, can we make more wise choices on the bitrate

selection? Put another way, is it possible to maximize users’ QoE while minimizing

the network resource usage? Following this line of thought, we formulate bitrate

adaptation as a generalized rate-distortion optimization problem. We show that it

is possible to achieve an optimal balance between bitrate utilization and viewers’

QoE with a broader design space of control algorithms and a deliberately designed

objective function.

• QoE Complexity Challenge: We develop BSQI, a Bayesian framework for percep-

tually motivated QoE modelling. In contrast to the existing objective QoE mod-

els whose functional form and parameter configuration are selected on the basis of

mathematical convenience, BSQI are built upon the combination of subject-rated

streaming videos and meaningful prior knowledge about source videos, distortion

process, and HVS. We show that all valid QoE functions must lie within a convex set

resulted from the known properties of HVS, and thus the QoE function estimation

can be formulated as a projection onto convex sets problem. Extensive experiments
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on four benchmark QoE databases demonstrate that BSQI outperforms state-of-the-

art objective QoE models. The robustness of BSQI is also significantly improved as

confirmed by a novel analysis-by-synthesis experimental methodology. Most impor-

tantly, by explicitly disentangling the bitrate from QoE model, the proposed QoE

measure fits perfectly into the RDOS system.

• Throughput Variability Challenge: Motivated by the shortcomings of the existing

model-based throughput predictor and the abundant throughput data, we develop a

data-driven throughput predictor by leveraging the latest advances in deep learning.

Unlike the traditional methods used for training throughput predictor, our training

process is performed in two stages. In the first stage, the proposed algorithm explic-

itly learns a generic prior model from a large corpus of throughput traces that can

quickly adapts to a broad range of throughput characteristics. In the second stage,

starting from the prior model and only a few connection-level throughput observa-

tions, we fine tune the pre-trained model for posterior inference with minimal number

of gradient steps. Using the proposed algorithm, we end-to-end optimize a variant of

Recurrent Neural Network (RNN) to predict the conditional probability distribution

of the future throughput, effectively resolving the long-term dependencies between

throughput observations. We empirically demonstrate that the proposed model out-

performs the other throughput predictors in several experimental setup with only

moderate model complexity.

• Efficient-Robust-Optimal Tradeoff Challenge: Motivated by the recent success of

AlphaGo [187], we propose a bitrate selection framework, namely Bayesian Bitrate

Selection (BBS), based on the combination of online traditional controllers and of-

fline reinforcement learning-based policies. The online dynamic programming-based

controller plays the role of likelihood function in the Bayesian theory. Despite the

relatively demanding computational complexity, the online algorithm is guaranteed

to provide a short-term optimal solution that is invariant to the probability distri-

bution of streaming videos. The offline policy learns a prior bitrate selection model,

tabula rasa, by interacting with the streaming environment characterized by the joint

probability distribution of network conditions and streaming videos. In contrast to
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the online controller, the data-driven policy can efficiently optimize long-term re-

ward, at the cost of model robustness. BBS underlies a family of ABR algorithms

that combine the online search policy and offline prior action-value belief in a prin-

cipled way, from which we find a specific algorithm named EfficiEncy, Robustness,

and Optimality (EERO). Depending on the reliability of the two policies in certain

environmental status, EERO dynamically prioritizes one of the two decision rules to

obtain the optimal bitrate decision. We compare EERO to state-of-the-art bitrate

adaptation algorithms using trace-driven experiments spanning a wide variety of net-

work conditions, streaming videos, and QoE measures. In all considered scenarios,

EERO outperforms the existing techniques in terms of robustness and optimality

with minimal computation overhead.

• Data Challenge: We believe that a large-scale database with great streaming video

diversity and realistic throughput variability is critical to evaluate ABR algorithms.

This motivates us to construct the Waterloo Streaming Video (WaterlooSV) database,

which in current state consists of 250 4K pristine videos and 20,000 realistic through-

put traces. To cover the diversity of video distribution network, we encode each

source video into 180 representations for three commonly used video encoders. Using

the WaterlooSV database as testbed and a state-of-the-art chunk-level simulator, we

present the most comprehensive objective ABR evaluation without sacrificing the

representativeness of data. To complement the objective evaluation with respect to

the reliability of reward function, we also conduct so-far the largest subjective evalu-

ation on a subset of ABR algorithms and environmental conditions. The full system

implementation of RDOS outperforms the best existing scheme, with average bitrate

saving ranging between 5%-54%.

1.3.2 Dissertation Roadmap

I have tried to write and illustrate the thesis in a way that will hopefully make it easily ac-

cessible and interesting to a broad range of readers, including computer network scientists,

QoE experts, machine learning practitioners, and ABR engineers.
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Chapter 2

Literature Review

Chapter 3

New Paradigm

Chapter 4

QoE Model

Chapter 5

Throughput Predictor

Chapter 6

Bitrate Selector

Chapter 7

System Validation

Figure 1.4: Dissertation roadmap.

Figure 1.4 is a map of some paths

that one may choose through the coming

chapters, and the topic that one would

cover. All readers may find it useful to

firstly explore Chapter 2, which presents

a comprehensive review of the existing

ABR algorithms from a Bayesian per-

spective. It also introduces the notation

used in the thesis. QoE experts will be

most interested in the RDOS paradigm

and objective QoE detailed in Chapter 3

and 4, and may wish to begin their ex-

ploration there. Chapter 5 and 6 assume knowledge of stochastic process and machine

learning at the level of first year graduate course, but it is not essential to develop the

intuition and digest the main ideas. Chapters 4, 5, and 6, each of which covers an individ-

ual ABR functional component, may be read in any order, while it is recommended to go

through chapter 3 prior to chapter 4. Chapter 7 presents more sophisticated analysis and

variations of the system, in which most ABR practitioners may be interested.

1.3.3 Chapter Descriptions

The organization of the thesis is as follows.

Chapter 2 discusses the related work in the literature. It reviews the existing studies of

throughput predictor, reward function, and bitrate selector from a Bayesian perspective.

We also present an overview of prior ABR algorithms, which are essentially built upon

different instantiations of the three functional components. In the end, we discuss a variety

of validation procedures that have been widely used in the design of ABR systems.

Chapter 3 proposes the new philosophy for the design of ABR algorithms, which bal-

ances the conflicting objectives of video consumers and service providers. We compare

the new approach to the traditional bitrate maximization paradigm, and illustrate the

necessity of RDOS from three distinct perspectives.
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Chapter 4 presents BSQI, a Bayesian framework for perceptually motivated QoE mod-

elling. BSQI are built upon the combination of subject-rated streaming videos and the

prior knowledge about HVS. By analyzing a corpus of psychophysical experiments, we

show the QoE function estimation can be formulated as a projection onto convex sets

problem.

Chapter 5 studies throughput prediction by leveraging the latest advances in deep

learning. The proposed throughput predictor learns to quickly adapt to connection-level

network characteristics, so as to achieve per-user optimization.

Chapter 6 develops a Bayesian bitrate selection framework that unifies all existing

bitrate adaptation functions. We provide a specific implementation of the framework

based on the combination of a variant of tree search and a state-of-the-art reinforcement

learning-based policy. Depending on the reliability of the two controllers in certain states,

the algorithm dynamically promotes one of the two decision rules to obtain the optimal

decision.

Chapter 7 studies the overall performance of the three components in the adaptive

streaming. It presents in detail the construction of the WaterlooSV dataset consisting of

a wide variety of streaming videos and throughput traces. Based on the novel dataset, we

present so-far the most comprehensive performance analysis of ABR algorithms with both

objective evaluation and subjective evaluation.

Chapter 8 summarizes lessons learned and points to future directions.
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Chapter 2

Literature Review

The proposed framework in Figure 1.3 not only provides a mathematical formulation to

the ABR problem, but also decomposes the system into three components such that each

component can be studied and reviewed independently. In this chapter, we will follow the

functional decomposition to review the previous studies in reward function, throughput

prediction, and bitrate selector in ABR streaming. We will then present an overview to

ABR algorithms with an emphasize on the existing approaches for functional integration.

In the end, we will review the existing methodologies to validate ABR algorithms.

2.1 Reward Function

The objective of ABR algorithm is for the player to obtain an optimal, or nearly-optimal,

policy that maximizes the reward function or other user-provided reinforcement signal that

accumulates from the immediate rewards. The reward function, which describes how the

agent “ought” to behave, not only defines the objective function in an optimization frame-

work, but also determines the evaluation criteria of competing mechanisms. Therefore,

the design of reward function lies at the heart of adaptive streaming systems. Despite

its importance, the research in the reward function has received very little interests. All

the existing methods adopt a viewer-centric design paradigm, assuming the ultimate goal
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of ABR algorithms is to optimize viewers’ QoE. To this regard, we firstly introduce the

existing subjective QoE assessment studies and summarize their key observations. We

then present an overview of objective QoE methods from a Bayesian perspective, with the

goals of unifying a wide spectrum of QoE approaches under a common framework and pro-

viding useful references to fundamental concepts accessible to vision scientists and video

streaming practitioners.

2.1.1 Subjective QoE Assessment

Subjective testing is the first step towards understanding the perceptual QoE of streaming

videos. Psychophysical experiments not only guide the development of objective QoE

models, but also provides useful data to validate competing hypotheses and theories. In

general, there are three types of distortion patterns in adaptive streaming videos including

compression artifact, rebuffering, and quality adaptation [67, 184]. In this section, we will

structure the review of subjective QoE studies with respect to the impairment category.

Video Quality Assessment Studies

Pioneering work on subjective VQA dated back to as early as 2000, when the video quality

expert group investigated a class of visual fidelity measures in the context of MPEG-2

video compression [175]. The experiment illustrated the challenges in characterizing the

perceptual quality with simple measures such as bitrate and Peak Signal-to-Noise Ratio

(PSNR), encouraging further investigation in VQA. As a follow-up to this small scale ex-

periment, the same group carried out a similar experiment covering a wider range of video

contents and distortions [77]. It was further confirmed that notwithstanding the approxi-

mate monotonicity between the bitrate and quality, the bitrate required to compress videos

for a specified visual quality varies dramatically with respect to the content. Since then,

more and more researchers began to realize the difficulty in accurately quantifying the rela-

tionship between video content and visual quality, given the large diversity of digital videos.

A number of experiments have been implemented to identify a set of features from source

content that well correlate with the perceptual quality such as spatial frequency [226],
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spatial information [158, 193, 234], temporal information [158], colorfulness [234], sam-

ple entropy [209], and motion strength [182, 183, 226, 234, 238]. For example, a video

with stronger motion increases the encoding complexity, thus requiring a higher bitrate to

achieve certain visual quality.

With the advance of networking and encoding technologies, multimedia streaming has

gradually become the mainstream for video delivery. The broader space of distortion

process motivates quality assessment techniques from novel perspectives. Assuming there

is a causal relationship between the transmission channel congestion and the video quality

degradation, the network Quality-of-Service (QoS) community tried to quantify visual

quality with transmission errors, such as bit error rate, packet loss rate, and network

jitter [106, 136, 152, 161, 220]. The network QoS approach has achieved limited success

in predicting visual quality as the measurements and protocols used are oblivious to the

actual content being transmitted over the network and have no direct relation to the

video quality as perceived by the user [51]. A parallel line of research investigated the

influence of video encoder on visual quality. Several independent subjective experiments

reported that there has been a significant improvement in the compression efficiency of

digital videos [40, 118, 142, 170, 183]. Specifically, the standard H.264 [232] encoder takes

as much as 63% more bitrate than the state-of-the-art AV1 [28] to achieve the same level

of perceptual quality. Even for the same video encoder, the rate-distortion performance

strongly depends on encoding configurations such as the motion estimation method [129],

the status of de-blocking filter [244], and the choice of distortion metric [218].

Thanks to the improvement in video acquisition and display devices, high spatial res-

olution, high frame rate, and high dynamic range videos are becoming increasingly more

popular over the past decade. Although the extension in resolution and precision pro-

vides higher quality moving pictures to end users, these novel dimensions cast significant

challenges to the VQA. A number of subjective tests have been dedicated to evaluate the

impact of these new video format in the context of video streaming [4, 118, 146]. It turned

out that the higher precision has a somewhat unexpected benefit to the video compres-

sion, apart from its intrinsically higher quality. To encode a video at a target bitrate and

media attributes (i.e., spatial resolution, frame rate, and dynamic range), one can either

compress the video directly, or employ a resample-compression-resample encoding strat-
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Figure 2.1: Samples of generalized rate-distortion surfaces for different video content.

egy [36, 120, 156]. It has been shown that a high-resolution, high-dynamic range encode

may produce a quality lower than the one produced by encoding at the same bitrate but

at a lower resolution and dynamic range [4, 36, 51]. This is because encoding more pix-

els/dynamic range with lower precision can produce a worse picture than encoding less

pixels/dynamic range at higher precision combined with upsampling and interpolation.

The resulting visual quality are further amplified or alleviated by the characteristics of

the viewing device and viewing conditions, which interplay with HVS features such as the

contrast sensitivity function [169, 173]. In our previous work, we formalize the complex

relationship among source content, encoding bitrate, encoding attributes, and viewing

display by the concept of generalized rate-distortion surface [47, 48]. Some samples of

generalized rate-distortion surfaces of different video content are illustrated in Figure 2.1,

where encoding bitrate and diagonal spatial resolution are plotted against Structural Simi-

larity Index Plus (SSIMplus) [169] scores, an state-of-the-art objective VQA measure. One

interesting observation is that visual quality is not necessarily a monotonic function of

bitrate when other video attributes such as spatial resolution are taken into account, even

for the same video content.

Despite the plethora of subjective experiments and observations, VQA is still a subjec-

tive of ongoing research [5, 50, 121]. Nevertheless, there is generally a shift in research focus

from encoded video quality assessment to DASH specific impairments quality evaluation

such as rebuffering and quality adaptation in the past decade. In the subsequent section,

I will introduce the recent progress in the subjective evaluation of rebuffering and quality
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adaptation.

Rebuffering Experience Studies

Initial exploratory studies [6, 62, 142, 159, 165, 192] suggest that rebuffering is the most

severe impairment in DASH, which significantly degrades viewers’ QoE. Based on this

observation, the earliest ABR logic [63, 93] were dedicated to prevent rebuffering events.

Unfortunately, it is extremely difficult to completely eliminate rebuffering due to the short-

age in bandwidth resources and the highly variable throughput capacity. Furthermore, the

overestimate on the impact of rebuffering is at risk of underrunning, resulting in overly

conservative bitrate selection. To overcome these problems, it is important to establish a

quantitative relationship between rebuffering and their perceptual quality by human ob-

servers. In particular, subjective rebuffering experience studies aim to answer the following

two questions: 1) How much video quality is a human viewer willing to sacrifice to avoid

one second rebuffering event? 2) If a rebuffering event cannot be avoided, what is the

optimal position for it to take place?

To address the first question, early attempts investigate the perceptual quality-rebuffering

tradeoff by applying linear regression on subject-rated videos with various rebuffering pat-

terns and bitrate levels [6, 53, 87]. However, the conclusion varies significantly across

datasets due to the vast diversity of video content, encoder, and viewing devices used in

the subjective experiments. For example, one of the first subjective experiments in the

perceptual tradeoff between video quality and rebuffering observed that the impact of a

one-second rebuffering is equivalent to a bitrate reduction of 100 Kbps [6]. While in a

larger-scale follow-up experiment, the influence of rebuffering is 8× stronger [53]. To com-

bat the content and encoder dependency, subsequent analyses [54, 45] replaced bitrate with

state-of-the-art VQA measures such as SSIMplus [169] and Video Multi-method Assess-

ment Fusion (VMAF) [117] as the perceptual quality measure. Their experiments suggest

that to maintain a fluid viewing experience, viewers were willing to reduce the intrinsic

video quality by 33% on average. The conclusion was shown to be more accurate and gen-

eral, evident by the superior prediction accuracy across multiple subject-rated streaming

video datasets [11, 12, 53, 46]. Despite the demonstrated success, the perceptual quality-
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rebuffering tradeoff problem is further perplexed by the duration neglect effects [79], which

posits subjects tend to be insensitive to the duration of a long lasting video impairment. In

the context of adaptive streaming, this effect suggests that not every second of rebuffering

worth the same amount of bitrate resources. A number of subjective studies [68, 87, 89]

have empirically observed a concave relationship between the rebuffering duration and

perceptual QoE, where the penalty assigned to each second of rebuffering diminishes over

time.

In the course of solving the tradeoff problem, researchers began to realize that the

impact of rebuffering depends on other variables, which motivated them to look for the

answer for the second question. The earliest research following this direction identified a

fundamental difference between initial delays and rebuffering [85, 178]. Distinct from ini-

tial delay which is somewhat expected by today’s consumers, rebuffering invokes a sudden

unexpected interruption and distort the temporal video structure. Hence, rebuffering is

processed differently by the human sensory system, i.e., it is perceived much worse [56].

Ghadiyaram et al. [71] took a step further to systematically investigate the impact of re-

buffering position on QoE. A rebuffering at the end tends to have a higher impact than

the one at an earlier point, while the effect may not be statistically significant [46]. An-

other useful observation is that the overall QoE degrades with respect to the frequency

of rebuffering events [71, 87, 142, 159]. Specifically, viewers prefer videos that have less

number of freeze events (even if they are relative longer) to videos that have a sequence

of short freezes through time. In addition to the position of rebuffering, motion strength

has been recognized as another influencing factor of the rebuffering experience [125]. It

was reported that a rebuffering occurring in a dynamic scenery significantly breaks the

temporal structure of streaming video, and is thus perceived more annoying than in a sta-

tionary one. Unfortunately, the impact of motion strength has not been validated by an

independent subjective experiment. Recently research discovered the presentation video

quality as the third variable of rebuffering experience [12, 53, 54, 68]. An exploratory

study [68] assumed that the impacts of video quality and rebuffering experience are inde-

pendent and additive when investigating the combined effect of video compression, initial

buffering, and rebuffering. However, the sample size in the studies is too small to make

a statistically meaningful conclusion. With a more deliberately designed experiment, we
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observed an interesting interaction between the presentation video quality and rebuffering

in our previous study [54]. For a fixed rebuffering duration, human subjects tend to give

a higher penalty to the video with a higher instantaneous video quality at the freezing

frame. Further investigations confirm the interaction persists in more complex streaming

scenarios [12, 53]. The phenomenon can be explained by the expectation confirmation

theory [153], which suggests that subjects assess the QoE with respect to their original

expectation formed by the presentation video quality and determine the extent to which

their expectation is confirmed. To validate the competing hypotheses drawn from the ex-

isting studies, Ma et al. [127] generates visual stimuli with a novel “analysis-by-synthesis”

approach. Specifically, the authors first synthesize a pair of stimuli that maximize/mini-

mize one hypothesis while holding the other fixed. This procedure is then repeated, but

with the roles of the two models reversed. Careful study of the stimuli indicates that given

the same rebuffering duration, videos with higher presentation video quality consistently

deliver higher overall QoE, despite the greater penalty for the rebuffering event.

Quality Adaptation Experience Studies

In contrast to the significant efforts in VQA and rebuffering experience studies, research in

quality adaptation experience has drawn little attention. Although it has long been con-

jectured that quality adaptation has a negative impact on QoE, the hypothesis turns out

to be surprisingly challenging to validate. Pioneering research on the quality adaptation

experience dated back to 2003, when Zink et al. [245, 246] evaluated the QoE of scalable

video transmission. To investigate the impact of layer change, they altered the temporal

distribution of bitrate in streaming videos while fixing the average bitrate. Since then, the

constant bitrate contour experimental protocol has been widely adopted in subjective QoE

studies of DASH [72, 116, 125, 126, 139, 142, 150, 172, 174, 205, 214]. One common conclu-

sion of these experiments included that QoE is negatively correlated with the magnitude

of quality adaptation. Nevertheless, the proof is not technically sound as the perceptual

quality is a concave function of the bitrate [221]. Specifically, a video sequence with a

higher bitrate variance intrinsically possesses a lower average perceptual quality, regard-

less of quality adaptations. To overcome the limitations of the constant contour strategy,

a few studies adopt a two-stage experiment procedure [168, 203], in which both the chunk-
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level quality and overall QoE are evaluated by participants. These studies showed that

viewers prefer positive over negative quality adaptations. Unfortunately, the conclusion

is still questionable since the observation may be a consequence of the recency effect [79]

rather than the quality adaptation direction. Somewhat surprisingly, the hypothesis was

not fully justified until 2017. To address the confounding factors and better explore the

space of quality adaptations, we carried out an path-analytical experiments on a large

database of streaming videos [51, 52]. The experiment showed that the visual quality of

a video chunk following a negative quality adaptation is generally perceived to be lower

than its intrinsic quality (i.e., when it is displayed independently), and the amount of

penalty is correlated with the intensity of negative quality adaptation. On the other hand,

positive adaptation (switching to a higher bitrate) generally receives an additional reward.

This phenomenon can also be well explained by the expectation confirmation theory [153].

Aside from the basic proof, some experiments have been demonstrated that the quality

adaptation experience is further affected by the adaptation type, the intrinsic quality, the

content variation, and the interactions between them [51, 150].

Summary

To sum up, the existing subjective QoE studies have drawn the following key observations:

• In general, QoE is a function of video quality, rebuffering experience, and quality

adaptation experience.

• Video quality is generally considered to be a monotonic function of the encoding

bitrate, but the relationship strongly depends on the video content, encoder config-

uration, and viewing devices.

• Even when the video content, encoder configuration, and viewing devices are fixed,

video quality is not strictly monotonic with respect to the encoding bitrate due to

the influence of encoding spatial resolution, frame rate, and dynamic range.

• The rebuffering experience is a monotonic function of rebuffering duration and fre-

quency.

22



• The rebuffering experience is further influenced by the position of rebuffering, video

motion characteristics, and the presentation video quality where the freezing occurs.

• Quality adaptations influence the QoE by modifying the perceived quality of subse-

quent video segments.

• The quality adaptation experience is also affected by the adaptation type, the intrinsic

quality, and the content variation.

2.1.2 Objective QoE Assessment Models for Streaming Videos

Although subjective QoE studies provide reliable evaluations, they are inconvenient, time-

consuming and expensive. Most importantly, they are not applicable in the real-time ABR

decision making. Therefore, highly accurate and low complexity objective QoE models are

desirable to enable efficient design of quality-control and resource allocation protocols for

media delivery systems. Thanks to the joint effort from multiple research communities

such as networking, vision science, signal processing, and machine learning, there has been

an accelerated development in objective QoE research in the past decade. Several design

principles have emerged and have been shown to be effective at creating QoE models, many

of which are well correlated with perceptual quality when tested using the current public

streaming video databases [10, 11, 53].

Despite showing great promise, several outstanding challenges remain in the funda-

mentals of QoE research. First, a well-structured problem formulation is missing that not

only provides a unified framework to understand the connections between QoE models,

but also identifies potential ways for future development. Second, the multi-discipline na-

ture of QoE research gives rise to misconceptions and ambiguities concerning some basic

QoE terminologies. In particular, QoE is frequently confused with bitrate, perceptual met-

ric, and network QoS, resulting in vague optimization goals, inconsistent psychophysical

experimental protocols, and inadequate evaluation criteria. Third, many algorithms are

derived in ad-hoc manner where assumptions are implicit, making it extremely challenging

to fairly evaluate competing hypotheses and recognize their limitations. Fourth, while it

seems obvious that a successful QoE model has to relate to the visual processing system
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in some way, many methods fail to draw a connection to vision science. As a result, it is

often difficult to make an intuitive sense of how and why an QoE model works. With a

growing number of new QoE models emerging each year, we have seen more “symptoms”

arising from the aforementioned fundamental issues.

The Bayesian theory has found profound applications in vision science by offering a

principled yet simple computational framework for perception that accounts for a large

number of perceptual effects and visual behaviors [108]. Meanwhile, Bayesian inference

and estimation theories have been employed extensively in a wide variety of computer vi-

sion, signal processing, computer graphics, and machine learning methods [164]. In this

thesis, we attempt to bridge the gap between the two, by laying out a generic conceptual

framework for quantifying QoE from a Bayesian perspective. We provide a general for-

mulation of the objective QoE problem, highlighting a branch of statistical models that

underpin the existing QoE methods. We discuss two types of Bayesian networks for QoE

with distinct definitions on visual quality. We also identify common source of prior infor-

mation for developing artificial vision systems, and discuss a series of examples in which

researchers have used a specific type of prior knowledge. Finally, we elaborate why the

most frequently used bitrate-based model fails to accurately predict the perceptual QoE.

Bayesian View of Objective QoE Assessment

The goal of QoE model is to determine the subjective quality rating y given a streaming

video x. The problem can be formulated as a Bayesian inference problem, where the

objective is to determine the probability distribution p(y|x), which may be followed by a

decision making process that generates a deterministic estimate of y. There are generally

two distinct approaches to solving the inference problem.

The first approach firstly solves the inference problem by determining the quality level-

conditional densities p(x|y) for each quality level y and the prior label probabilities p(y).

Then one can use Bayes’ theorem in the form

p(y|x) =
p(x|y)p(y)

p(x)
, (2.1)
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to find the posterior quality distribution p(y|x). The denominator in Bayes’ theorem can

be found in terms of the quantities appearing in the numerator, because

p(x) =

∫
p(x|y)p(y)dy. (2.2)

The models generated from this approach is known as generative models, because by sam-

pling from them it is possible to generate synthetic data points in the input space. However,

due to the lack of training data and effective learning methods, generative models have not

drawn much attention from QoE researchers. As a result, we focus on the second approach

in this review.

Alternatively, the second approach aims to determine the posterior quality probabilities

p(y|x) directly. This approach is simpler in the sense that we do not need to model the

streaming video space, of which we only have limited understanding. However, building

an accurate model of p(y|x) still requires sampling and performing subjective tests on all

possible streaming videos, neither of which is feasible in practice. Therefore, most exist-

ing QoE models are focused on the following problem: Given a set of training data Dx

comprising Nx input videos (and optionally some side-information such as network charac-

teristics) X = (x1, ...,xNx) and their corresponding target quality scores y = (y1, ..., yNx),

find a posterior quality distribution p(y|x, Dx) that best approximates p(y|x) in the HVS.

It should be noted that p(y|x, Dx) can be regarded as a point estimate of p(y|x) as the

latter would be fully recovered by
∫
p(y|x, Dx)p(Dx)dDx if we sample all possible data

Dx. The problem is further simplified by assuming the training data are independent and

identically distributed, so that the predictive distribution can be parametrized [37] as

p(y|x,Dx) =

∫
p(y|x,θ)p(θ|Dx)dθ, (2.3)

where θ, p(y|x, θ) and p(θ|Dx) represent the parameters of the HVS model, the quality rat-

ing generation process and the posterior distribution over parameters, respectively. Given

the enormous space of θ, the computation of the integral in Equation 2.3 is prohibitively

expensive. As a result, a common practice is to approximate the predictive distribution

p(y|x, Dx) by a point estimate p(y|x, θ∗), where

θ∗ = arg max
θ

p(θ|Dx) = arg max
θ

p(y|X,θ)p(θ). (2.4)
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The specific form of the likelihood function p(y|X, θ) is not known in practice. To fully

specify the problem, it is usually assumed that the likelihood function follows a Gaussian

distribution

p(y|x,θ, β) = N (y|f(x;θ), β), (2.5)

where f(x; θ) and β represent the mean and variance of the Gaussian distribution, respec-

tively. It is easy to show that the maximum likelihood solution of θ is equivalent to the

best least-square solution with respect to the MOS under this assumption.

Direct estimation of θ [46] from a set of training data is problematic, because of the

fundamental conflict between the enormous size of the streaming video space and the

limited scale of affordable subjective testing. Specifically, a typical “large-scale” subjective

test allows for a maximum of several hundreds or a few thousands of test videos to be rated.

Given the combination of source videos, distortion types and distortion levels, realistically

only a few hundreds of test videos (if not fewer) can be included, which is the case in

all known subject-rated databases. By contrast, digital videos live in an extremely high

dimensional space, where the dimension equals the number of pixels, which is typically

in the order of billions. Therefore, a few hundreds of samples that can be evaluated in

a typical subjective test are deemed to be extremely sparsely distributed in the space.

Furthermore, it is difficult to justify how a few hundreds of streaming videos can provide a

sufficient representation of the variations of real-world video. As a result, the fundamental

problem in the objective QoE is to develop a meaningful prior parameter distribution p(θ),

which encodes the configuration of the HVS.

Over the past decades, various QoE models have been developed where the key differ-

ence lies in the assumptions about the prior distribution p(θ). In general, three types of

knowledge may be used for the design of QoE measures, as shown in Figure 2.2. Most

systems attempt to incorporate knowledge about the HVS, which can be further divided

into bottom-up knowledge and top-down assumptions. The former includes the compu-

tational models that have been developed to account for a large variety of physiological

and psychophysical visual experiments [52, 81, 154]. The latter refers to those general

hypotheses about the overall functionalities of the HVS [224].

Knowledge about the possible distortion processes is another important information
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Figure 2.2: Knowledge map of objective QoE.

source in the design of objective QoE models. This type of information generally includes

the appearance of certain distortion pattern and the distribution of distortion processes in

practice. For example, one can explicitly construct features that are aware of particular

artifacts, such as compression [54], rebuffering [87], and quality adaptation [52], and then

assign penalties to these distortions. Also, it is much easier to create streaming video

examples that can be used to train these models, so that more accurate QoE prediction

can be achieved. This type of knowledge is typically deployed in QoE models that are

designed to handle a specific artifact type.

The third type is knowledge about the visual world to which we are exposed. It es-
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sentially summarizes what natural videos should, or should not, look like. It is known

that there exist strong statistical regularities of the natural videos [188]. If an observed

streaming video significantly violates such statistical regularities, then the video is con-

sidered unnatural and is presumably of low quality. The statistical properties of natural

videos, which are often referred to as NSS, have profound impact on the research in the

general-purpose visual quality assessment [223] and are still making significant impacts in

the deep learning era. In computational neuroscience, it has long been conjectured that the

HVS is highly adapted to the natural visual environment [13], and therefore, the modeling

of natural scenes and the HVS are dual problems [185].

A Two-Layer Hierarchical Bayesian QoE Framework

The QoE prediction problem is very challenging due to the fundamental conflict between

the enormous size of the streaming video space and the limited number of videos avail-

able for observation. To overcome the curse of dimensionality problem, all existing QoE

measures share a common probabilistic graphic model. Specifically, the conditional quality

distribution can be decomposed as

p(y|x;θ) =

∫
p(z|x;θ1)p(y|z;θ2)dz, (2.6)

where z, p(z|x; θ1), and p(y|z; θ2) are a low dimensional latent variable, a feature extractor,

and a regression model, respectively. In this Bayesian network, the objective QoE model

parameters θ consist of both the parameters of the feature extractor and the regression

model (i.e., θ = {θ1, θ2}). In general, the marginalization over the latent variable z

in (2.6) is not tractable to compute exactly. To avoid this issue, most methods consider

an approximation that makes use of a point estimate instead of performing the integration

over z in (2.6). The basic idea of the two-layer Bayesian network is to map the entire

streaming video space x onto a space of much lower dimension z, where, it is hoped, the

QoE problem will be easier to solve. The dimensionality reduction is possible because

natural videos exhibit strong statistical regularities [188] and that there are a limited

number of distortion processes involved in adaptive video streaming [184]. On top of the

feature extractor, the regression model p(y|z; θ2) is responsible to estimate the overall QoE

score from only incomplete information.
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Thanks to its conceptual simplicity and practical effectiveness, the combination of fea-

ture extractor and regression model has found ubiquitous applications in the field of video

processing, computer vision, and adaptive streaming. In addition to the performance con-

sideration, the choice of the hierarchical structure is also a natural consequence of the

sequential planning problem. To be specific, some ABR algorithms explicitly look ahead

for information from future chunks and select the video segment with the optimal expected

QoE. At the instance of the bitrate selection, however, the objective QoE model has to

estimate the perceptual quality of future chunks with only a small number of features em-

bedded in the manifest file, when the complete information about future chunks are not

available to the ABR player yet. The past decade has witnessed various instantiations of

the two-layer QoE framework. Motivated by the special architecture, we will separately

review feature extractors and regression models that are commonly used in the existing

objective QoE models, with an emphasis on their underlying assumptions.

The enormous space of x suggests that a parametric model p(y|x; θ) would intrinsically

exhibit a very high dimension in terms of θ. For example, parameters θ of the simplest

linear model lie in a space whose dimension is equal to the dimension of input variables

x. To reduce the complexity of the problem, it is desirable to work with a quality-aware

representation lying in a much lower dimensional space. The feature extractor, that quali-

tatively determines which piece of information in a streaming video is relevant to the QoE,

plays a central role in the objective QoE model. However, the extraction of the optimal

feature set is non-trivial. Care must be taken during transformation because often infor-

mation is discarded, and if this information is important to the solution of the problem

then the overall accuracy of the system can suffer. On the other hand, if too much infor-

mation is preserved, it would require excessive training data or prior knowledge to design

the subsequent regression module in order to avoid overfitting. Formally, the objective of

feature extractors is to minimize the dimension of the hidden state z such that the con-

ditional mutual information Ez[I(x, y|z)] = 0. To reduce the dimensionality of streaming

videos, all existing approaches make a priori assumptions about the transformation p(z|x;

θ1), although they differ in type of source knowledge embedded in the prior distribution

of the model parameters. We summarize these techniques as follows:

• Distortion Process-Based Approach: Assuming there exists a causal relationship be-
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tween impairments in the communication pipeline and the QoE, the QoS approach

tried to identify a set of objective performance measures that correlate well with

the subjective quality evaluation. A unique property of this approach is that the

extracted features z do not depend on the visual signal x or its pristine counter-

part, but is a function of the distortion process parametrized by φ instead. As a

result of the decoupling between the visual content and viewers’ QoE, the distortion

process-based feature extractors are often referred to as the QoS-based approach.

Over the past decades, there have been a wide variety of QoS-based methods ranging

from generic network-level features such as bit error rate, packet loss rate, network

jitter, Round Trip Time (RTT), and average bandwidth [106, 136, 152, 161, 220] to

application specific features such as Quantization Parameter (QP), encoding bitrate,
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rebuffering duration, and bitrate variation [124, 236, 241]. Although this approach

has achieved promising results in individual reports, it often struggles to deliver

competitive performance in a more comprehensive benchmark including more diverse

source contents, video encoders, and ABR algorithms [53]. One plausible explanation

of the phenomenon is the fundamental gap between the QoS and subjective QoE.

The inconsistency between these terms is made apparent by the probabilistic graphic

model of the two-layer Bayesian model in Figure 2.3, where φ encodes the set of

parameters that influences the likelihood of a particular streaming video x. Due to

the presumably causal relationship, these network QoS measures z constitute a sub-

set of φ, which partially determines the distribution of x. Even with the complete

set of φ and a perfect regression model, the network QoS models correspond to the

probability distribution

p(y|φ) =

∫
p(x|φ)p(y|x)dx. (2.7)

This marginal distribution is generally different from the true QoE distribution

p(y|x), as the structure of p(x|φ) may be extremely complicated. Perhaps a deeper

reason to the failure of QoS approach resides in the conditional independence between

the service performance φ and the QoE score y. In particular, a näıve subject can

consistently assess the quality of a streaming video without access to the underly-

ing transmission channel. The fundamental gap between the QoE-based models and

perceptual QoE suggests that the use of such knowledge in the feature extraction

process may not be preferable.

• HVS-Based Approach: Natural video signals are inherently redundant [188]. Vision

scientists have recognized for centuries that HVS understands the visual scene by

building a low-dimensional internal representation of the world, which discards part

of the input information. One evidence of the visual hypothesis is metamer, which

refers to the phenomenon that two distinct physical objects are perceived as iden-

tical (e.g., color and texture). Motivated by the functionality of HVS, HVS-based

feature extractors are developed to simulate the perceptual visual encoding process.

In practice, most feature extractors in this direction project each video chunk to
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a single scalar, representing the presentation video quality. The general methodol-

ogy, however, can be applied to generate other QoE related quantities such as visual

saliency, interestingness, and perceptual motion strength [125, 243]. Depending on

the underlying presentation video quality measure, these QoE models can be further

divided into bottom-up approach and top-down approach [50, 224].

Bottom-up methods extract video quality representations based on the visibility of

error signals. Specifically, it has been found that the HVS is relatively insensitive

to certain types of visual patterns. First of all, the HVS is known to have different

sensitivity to the spatial frequency content in visual stimuli. The relationship be-

tween the sensitivity of the HVS and the spatial frequency content in visual stimuli

can be modeled by the CSF [14], which peaks at a spatial frequency around four

cycles per degree of visual angel and drops significantly with both increasing and

decreasing frequencies. Second, the presence of one signal can sometimes reduce the

visibility of another video component, a phenomenon known as the contrast mask-

ing effect. In general, a masking effect is strongest when the signal and the masker

have similar spatial location, frequency content, and orientations. Third, the per-

ception of luminance obeys Weber’s law, which can be expressed mathematically as
∆L
L

= C, where L is the background luminance, ∆L is the just noticeable incre-

mental luminance over the background by the HVS, and C is a constant called the

Weber fraction. Motivated by the different sensitivity of the HVS to visual stimuli,

a variety of QoE feature extractors in the literature share a similar error visibility

paradigm. All these artificial visual models can be decomposed into five stages, in-

cluding pre-processing, CSF filtering, channel decomposition, error normalization,

and error pooling [50, 224]. The final output of the computational models encodes

certain quantities that are hopefully measured by part of HVS. Typical examples of

the approach includes [10, 45], which are built upon VMAF [117] as the chunk-level

feature extractor.

Unfortunately, HVS is too complex to be modeled precisely. Many bottom-up meth-

ods are based on simplified assumptions and limited psychophysical experiments, that

may not generalized well in practice. To overcome the challenges, a different top-down

approach was taken by making use of the knowledge about the overall functionality
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of the HVS. The widely accepted structural similarity paradigm assumes that the

HVS is highly adapted to extract structural information from the viewing field. It

follows that a measurement of structural similarity (or distortion) should provide a

good approximation to perceptual video quality. Pioneering the structural similar-

ity approach, Wang et al. proposed to define the nonstructural distortions as those

distortions that do not modify the structure of objects in the visual scene, and all

other distortions to be structural distortions [224]. For example, a spatial domain

implementation of the structural similarity paradigm called the Structural Similarity

Index (SSIM) separates the task of similarity measurement into three independent

comparisons: luminance, contrast and structure. Various QoE models [16, 54] that

employ SSIM or its close variants as the chunk-level feature extraction models are

essentially top-down HVS models.

• NSS Approach: It turns out that there exists a distinct way to look at the quality

representation problem, i.e. from the video formation point of view. The informa-

tion theoretic paradigm assumes that each reference video x0 is a sample from a

very special probability distribution p(x0), i.e., the class of natural scenes. Most

real-world distortion processes disturb these statistics and make the video signal un-

natural, suggesting that each distorted video x comes from a distinct probability

distribution q(x). As a result, the similarity between x and x0 can be measured by

some information theoretic distance/divergence between these two probability distri-

butions. Although the use of information theoretic distances as perceptual quality

seems somewhat arbitrary, there exists a non-trivial connection between the two

concepts. Specifically, it has long been hypothesized that the HVS is adapted to

optimally encode the visual signals [13]. Because not all signals are equally likely,

it is natural to assume that the perceptual systems are geared to best process those

signals that occur most frequently. Thus, the statistical properties of natural scene

have a direct impact to the characteristics of the HVS. Indeed, the statistical video

modeling is shown to be the dual problem of the error visibility-based perceptual

models [185]. To implement this idea, one has to specify the mathematical forms

of natural video distribution p(x0;θ11), distorted video distribution q(x;θ12), and

the information theoretic distance measure dINFO

(
p(x0;θ11), q(x;θ12);θ13

)
, where we
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have represented our prior knowledge about the source video and the distortion pro-

cess by θ1= {θ11 ,θ12 ,θ13}. To simplify the problem, it is often assumed that video

statistics are locally homogeneous and the patches within a video are independent

and identically sampled from the corresponding distribution. The probability distri-

butions are then estimated from a stack of sub-videos within the pair of distorted

and reference videos. All information theoretic VQA methods can be explained by

the framework. As an initial attempt in this paradigm, the Information Fidelity

Criterion [185] models the natural video distribution p(x0;θ11) as a Gaussian Scale

Mixture [217]. To derive the model for the distorted video distribution q(x;θ12), the

method assumes the distortion process to consist a simple signal attenuation and

additive Gaussian noise. Finally, the perceptual quality is measured by the mutual

information between p(x0;θ11) and q(x;θ12). As a close variant of the Information

Fidelity Criterion, Visual Information Fidelity and its descendant VMAF approach

the HVS as a “distortion channel”, which introduces stationary, zero mean, additive

white Gaussian noise to the videos in the wavelet domain [117, 186]. Inherited from

these base quality models, the QoE models [10, 8, 45, 92] utilize prior knowledge

about NSS in the feature extraction process.

Despite the demonstrated effectiveness, all the aforementioned feature extraction schemes

are solely derived from prior knowledge with a deterministic form. They do not incorporate

the likelihood function to adapt these features to the domain of QoE assessment. The full

Bayesian feature extraction scheme is an open question to be explored in the future.

Even with the reduced dimensionality, the design of objective QoE models is still a

challenging task, partly because the sequential nature of the streaming video. In partic-

ular, the dimensionality grows linearly with the number of segments, suggesting that the

latent representation of each video z still lies in a very high dimensional space. There has

been two distinct approaches to tackle the problem, both of which can be derived from

the Bayesian perspective. Given a dataset of observations Dz comprising Nx latent vari-

ables Z = (z1, ..., zNx) and their corresponding target quality scores y = (y1, ..., yNx), the

objective of the regression model is to obtain a set of parameters θ2 that optimizes the the

posterior parameter distribution p(θ2|Dz). According to the Bayes’ theorem, the posterior

distribution can be decomposed as p(θ2|Dz) ∝ p(Dz|θ2)p(θ2). Existing QoE models can
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be categorized based on their assumptions about the prior parameter distribution p(θ2) as

follows:

• Strong Prior: Given the limited training data in the latent space, the first approach

mainly relies on strong prior assumptions about p(θ2) to estimate the posterior dis-

tribution. To simplify the problem, four basic assumptions are commonly made. The

first is that the notion of QoE can be defined locally, and that the overall QoE can be

obtained by a linear combination of the chunk-level QoE scores. Typically, one makes

a Markov assumption that the chunk-level quality distribution, when conditioned on

its previous segment, is independent of the segments beyond the neighborhood. The

second is an assumption of temporal homogeneity: the chunk-level QoE distribution

is the same across all temporal positions. The two assumptions jointly suggest that

p(y|z;θ2) = N (y| 1
T

T∑
t=1

yt, β), (2.8)

where yt = g(zt;θ2)1 denotes the chunk-level QoE. It should be noted that the map-

ping between the local latent variables zt and the local QoE yt shares a common

functional form across all temporal indices. The third is an additive assumption that

the impact of each dimension in zt is independent from other dimensions in predicting

the local QoE scores. This assumption can be mathematically expressed as g({zt};
θ2) =

∑J
j=1 gj(z

t,j;θj2), where zt,j and gj(·;θj2) denote the j-th dimension in zt and

the dimensional specific activation function, respectively. In addition to the three as-

sumptions, most objective QoE models in this category also make assumptions about

the specific form of g(zt;θ2) along each dimension. Initial attempts incorporated

certain functions with pre-defined parameters as the latent space quality predictor.

Popular choices of the activation operator include linear function [16, 124, 231, 241],

exponential function [54, 86, 156, 174], and logarithmic function [191, 236]. In the

case of linear function, the chunk-level QoE can be computed by yt = θ>zt, where >
denotes the transpose operator. Since the parameters are fixed, we have p(θ2=θ∗2) = 1

1According to the Markov assumption, the chunk-level quality yt is a function of zt−1 and zt. However,

by the technique of feature enrich, we can denote the feature set zt at each time instance t as the aggregation

of the previous chunk-level feature and the present chunk-level feature without loss of generality.
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and p(θ2=θ2
′) = 0 for any function θ2

′ 6=θ∗2. Consequently, the posterior distribu-

tion p(θ|Dz) converges to the prior distribution p(θ) for any likelihood function and

dataset as long as p(Dz|θ∗2) > 0. Recent studies have indicated that these overly sim-

plistic models with manually tuned parameters have achieved limited success in repre-

senting the relationship between the latent variables and the subjective QoE [10, 53].

Several efforts have put forth to improve the prediction accuracy by optimizing the

adjustable model parameters θ2 on publicly available datasets [53, 46]. The combi-

nation of data fitting and a priori assumptions have achieved highly competitive per-

formance on existing benchmarks. Although the branch of QoE models have received

broad acceptance in real-world ABR systems [3, 131, 191, 237, 241], it is important to

recognize their limitations. One common drawback of the approach is that the prior

distribution is often selected on the basis of mathematical convenience rather than

as a reflection of any prior beliefs. The resulting strong inductive bias may manifest

itself in many ways. For example, the subjective QoE response with respect to each

feature can vary significantly from exponential and logarithmic functions. Generally

speaking, the problem applies to all model-based QoE measures that rely on a pre-

defined functional form. Furthermore, the additive assumption is also problematic

for QoE modeling, where the impact of one latent variable is hardly independent to

the other. In particular, recent experiments have illustrated that the joint impact

of conventional feature pairs on the QoE is statistically significant [10, 51, 54]. The

assumption becomes increasingly deficient as the dimensionality of the latent space

expands. Last, while the recent investigations in the subjective local quality inte-

gration mechanism partially validated the first two assumptions [51], there are still

some obstacles to truly relying on the hypotheses. Specifically, the psychophysical

experiments were conducted using relatively simple patterns, such as the streaming

videos with two segments. Can the models for the interactions between two chunks

generalize to evaluate interactions between tens or hundreds of chunks in practice? Is

this limited number of simple-stimulus experiments sufficient to build a model that

can predict the visual quality of complex-structured streaming videos? The answers

to these questions are currently not known, and are subject to future research.

• Non-informative Prior: Supposing HVS is too complex to understand, the second
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approach aims to approximate the posterior distribution from the likelihood function

p(Dz|θ2). With the emergence of subject-rated QoE databases [10, 11, 51, 53, 54,

46, 58, 71], the data-driven approach has dominated the objective QoE research. A

broad range of statistical models such as non-linear auto-regressive model [10], neural

network [189], support vector machine [8], random forest [52, 157], and Long Short-

Term Memory (LSTM) [58] have been utilized to map streaming video features to

subjective opinion scores. These models employ a maximum likelihood estimator

θ∗2 = arg max
θ2

p(Dz|θ2) (2.9)

to obtain the optimal model parameters, effectively assuming a non-informative prior

in the Bayesian inference problem [19]. Although these QoE models can fit arbitrary

complex continuous functions [84], they often suffer from the generalization prob-

lem. Specifically, it has been observed that the performance of QoE models trained

on one database reduces significantly on other benchmark datasets, largely due to

the distribution mismatch in the visual content and the distortion process across

datasets [10, 11, 53, 46, 71]. There are at least four sources for the generalization prob-

lem. First, in spite of the reduced dimensionality, the latent variable z still lives in a

high dimensional space. Each streaming video is represented by a Z × T -dimensional

vector when chunk-level feature extractors are employed, where Z and T represent

the number of chunk-level features and the total number of chunks, respectively. On

the other hand, a typical “large-scale” subjective test allows for a maximum of several

hundreds or a few thousands of test videos to be rated. Given the enormous space of

latent variables, a few thousands of subject-rated samples are deemed to be extremely

sparsely distributed in the space. Second, the learning-based models assume that the

training samples and testing samples come from the same distribution. However, the

assumption has never been justified in the existing studies and may hardly hold in

practice. A motivating example is shown in Figure 2.4, where the probability density

functions of video presentation quality measured by a state-of-the-art VQA model

VMAF [117], rebuffering duration, and quality adaptation magnitude in six publicly

available streaming QoE datasets are presented. Clearly, there is significant variabil-

ity on the characteristics of streaming videos across different datasets, suggesting that

an objective QoE model optimized on a simple dataset such as Waterloo Streaming
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(a) Distribution of VMAF (b) Distribution of rebuffering du-

ration

(c) Distribution of adaptation mag-

nitude

Figure 2.4: There exists significant variation on the characteristics of streaming videos,

evident by the distributions of (a) VMAF, (b) rebuffering duration, and (c) adaptation

magnitude in six publicly available datasets.

QoE Database-I (WaterlooSQoE-I) [54] may yield very poor predictions on complex

datasets as WaterlooSQoE-III [53], WaterlooSQoE-IV [43], and LIVE-NFLX-II [11],

and vice versa. The streaming video probability density estimation is further compli-

cated by the concept drift problem [64], where the characteristics of streaming video

changes over time. For example, the drift in streaming video distribution may arise

from the advancement of video acquisition [99, 105, 149], compression [36, 147, 208],

transmission [16, 93, 102, 131, 191, 241], and reproduction systems [118, 146, 227],

and the steady rise in viewers’ expectation on video quality [52, 153]. Third, the

maximum likelihood estimator generally assumes that each (z, y) pair in the training

set Dz is independent and identically distributed. In practice, however, the existing

QoE datasets typically generate multiple streaming videos for each reference video

to cover the diversity of distortion processes, suggesting that the training data are

not independent and identically distributed. Fourth, the consistency of subjective

QoE ratings among streaming video databases is only moderate due to drastically

different experimental conditions. Strictly speaking, the quality ratings of a stream-

ing video x collected from a subjective experiment are essentially samples from a

context conditional quality distribution p(y|x, t), where t encodes the information

about experiment environment, instruction, training process, presentation order, and
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experiment protocol. As a result, the subjective quality ratings obtained from dif-

ferent experiments cannot be simply aggregated into a larger QoE dataset p(y|x).

These data challenges constantly arise in QoE research and will remain a challenging

issue in the future.

One common drawback of both approaches is the lack of perceptually meaningful prior

distributions. In particular, none of these models make use of the knowledge about natural

videos, distortion processes, and the HVS, despite the plethora of dedicated subjective

experiments over the past decade. It remains to be seen how much improvement can be

achieved with these informative priors in the Bayesian framework.

2.2 Throughput Prediction

The network throughput directly determines the download time of each video chunk and

the buffer occupancy, which further influences the viewers’ QoE. Mathematically, the re-

lationship between the rebuffering duration τk when downloading the k-th chunk and the

instantaneous throughput ct can be described by

ck =
1

tk+1 − tk −∆tk

∫ tk+1−∆tk

tk

ctdt,

τk = max(
rk
ck
− bk −∆tk, 0),

(2.10)

where tk, tk+1, ∆tk, ck, rk, and bk represent the timestamp that the k-th chunk downloading

starts, the timestamp the download finishes, the waiting time such as RTT, the average

throughput during the download period, the bit count of the k-th chunk, and the buffer

occupancy before the download starts, respectively. If ct can be known precisely, then the

rebuffering duration and the overall QoE can be computed deterministically. Solving the

ABR problem in (1.1) corresponds to finding the bitrate trajectory with the maximum

reward in a deterministic environment, which can be easily solved by traditional dynamic

programming algorithm at the beginning of each streaming session. On the other hand, in

case that one does not have any knowledge about ct, the download time rk
ck

would follow

a uniform distribution. To reduce the probability of rebuffering, an ABR algorithm has
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Figure 2.5: Video streaming clients experience highly variable end-to-end throughput.

to make conservative bitrate decisions, resulting in sub-optimal QoE. Clearly, an accurate

throughput predictor may improve the performance of ABR algorithms.

Unfortunately, accuracy throughput prediction can be extremely challenging. The dif-

ficulty may arise from five aspects. First of all, regardless of the underlying technology or

the transport protocol used for any content transmission, the available bandwidth is highly

variable in time. Figure 2.5 is a sample trace reported by an ABR video player, showing

how the measured throughput varies wildly from 82 MB/s to 500 kB/s in a very short pe-

riod. Each point in the figure represents the average throughput when downloading a video

chunk. Apparently, one can hardly extract simple patterns such as symmetry, periodicity,

and smoothness in the design of throughput prediction models. Indeed, ABR researchers

often find it difficult to identify which piece of information is relevant and determine an

optimal parametrization for the throughput predictor. The substantial variation can be

caused by many factors, such as WiFi interference, congestion in the network, congestion in

the client (e.g. anti-virus software scanning incoming HTTP traffic), Transmission Control
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Figure 2.6: The time-varying throughput is a multi-modal stochastic process.

Protocol (TCP) slow start, TCP congestion control, or congestion at an overloaded video

server. The wide variety of influencing factors underlie the second challenge in the through-

put prediction. In particular, many influencing factors such as the server congestion, the

number of competing players in a bottleneck link, the WiFi interference, and the status

of anti-virus software are not observable to the ABR player. To accurately predict future

throughput, the model also has to infer the hidden states, whose dimension and value are

not available in practice, with a high precision. Third, the time-varying throughput is a

stochastic process by nature. Figure 2.6 shows a few real-world throughput traces with

similar characteristics at the first five seconds. The throughput traces vary significantly

starting at the sixth second, suggesting that the past observation conditional probability

distribution may be multi-modal. The approximation of multi-modal probability distri-

butions usually involves sophisticated optimization techniques [19]. Another cause of the

inability of a ABR player to estimate its fair share of available bandwidth is the discrete

nature of HAS traffic pattern. Specifically, an ABR player can only reserve a fixed amount
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Figure 2.7: The time-varying throughput is a multi-modal stochastic process.

of unplayed videos in the buffer due to the memory constraints. In scenarios where the

playback buffer cannot accommodate video from an additional chunk download, the ABR

player pauses requests for a certain period of time before retrying. Figure 2.7 illustrates

an example of such ON-OFF traffic pattern, from which we can observe that the average

observed throughput is not evenly spaced. The special traffic pattern makes bandwidth

estimation techniques that are dedicated to network traffic with fluid flow characteristics

inadequate. Fifth, the four challenges are further exacerbated by the demand in long-term

bandwidth estimation. In particular, state-of-the-art ABR algorithms rely on multi-step

throughput prediction in order to perform a global reward optimization. The uncertainty in

the throughput at each timestamp has a cascading effect to the subsequent state prediction

accuracy.
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2.2.1 Bayesian View of Throughput Prediction

Without loss of generality, the objective of throughput predictor at each instance t is to

estimate K-step future throughput {cj}t+Kj=t+1 based on the past throughput observations

{ci}ti=1. For simplicity, we denote ct+Kt+1 = {cj}t+Kj=t+1. Motivated by the stochastic nature of

throughput and our discussion in reward function, we can also formulate the throughput

prediction problem as a Bayesian inference problem, where the goal is to determine the

probability distribution p(ct+Kt+1 |ct1), ∀t ∈ [1, T ]. Some ABR algorithms that are built upon

deterministic throughput prediction append a decision making process to generate a point

estimate ci for each i ∈ [t+ 1, t + K]. In general, there are two approaches to solving the

Bayesian inference problem.

The first approach starts with approximating the joint probability distribution p(cT1 ).

At each state t, one can utilize Bayes’ theorem

p(ct+Kt+1 |ct1) =
p(ct+K1 )

p(ct1)
(2.11)

to estimate the past state conditional distribution. The throughput distribution in the

denominator can be determined by marginalizing over the throughput of future states

p(ct1) =

∫
cTt+1

p(cT1 )dcTt+1. (2.12)

The numerator can be obtained similarly. However, there have been limited studies in this

direction, possibly because of the computationally inefficient marginalization.

The second approach directly estimates the state conditional probability distributions

p(ct+Kt+1 |ct1), ∀t ∈ [1, T ]. This approach alleviates the burdensome computation of marginal-

ization at the cost of providing a prediction model for each t. However, building accurate

models of p(ct+Kt+1 |ct1) still requires repetitively sampling every single state, which grows ex-

ponentially with t. Therefore, most existing throughput predictors solve the following prob-

lem: Given a set of training data Dc comprising Nc throughput traces (and optionally some

side-information such as Internet Protocol (IP) address and TCP state) C = (c1, ..., cNc),

find a posterior probability distribution p(ct+Kt+1 |ct1, Dc) for each t ∈ [1, T ] that best approx-

imates p(ct+Kt+1 |ct1) in the real-world network. Again, p(ct+Kt+1 |ct1, Dc) is essentially a point
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estimate of p(ct+Kt+1 |ct1) since the ground-truth distribution can be obtained by integrating

the former distribution over all realistic dataset Dc. If we further assume the training data

are independent and identically distributed, then the predictive distribution for instance t

can be parametrized [37] as

p(ct+Kt+1 |ct1,Dx) =

∫
p(ct+Kt+1 |ct1,θt)p(θt|Dc)dθt, (2.13)

where θt, p(c
t+K
t+1 |ct1, θt), and p(θt|Dc) represent the parameters of t-th order throughput

prediction model, the future throughput generation process, and the posterior distribution

over parameters, respectively. Generally, one needs to estimate the time dependent model

parameter θt for each t. The sequential nature of throughput model combined with the

enormous space of θt suggests that the computation of the integral in (2.13) is prohibitively

expensive. In practice, algorithm develops usually make use of a point estimate p(ct+Kt+1 |ct1,

θ∗t ) instead of performing in integral, where

θ∗t = arg max
θt

p(θt|Dc) = arg max
θt

p(ct+Kt+1 |ct1,θt)p(θt). (2.14)

Although realistic throughput data can be collected at low cost and at scale, direct esti-

mation of θt from a set of training data can still be challenging. In particular, a streaming

session may last for hours, suggesting that the dimension of throughput data is in the order

of thousands. To prevent overfitting and reduce the complexity, all existing throughput

predictors make a priori assumptions about the form of θt. In the subsequent section, we

introduce a wide range of throughput predictors from the näıve nearest neighbour predictor

to state-of-the-art neural network-based models and identify their underlying assumptions.

2.2.2 Existing Throughput Prediction Models

Despite the apparent benefits from accurate resource estimation, throughput prediction

has only become an active research topic since the past few years. Various network ca-

pacity models have been developed, which can be roughly categorized into model-based

and data-driven methods depending on the usage of likelihood function p(ct+Kt+1 |ct1, θt). We

summarize these techniques in the subsequent sections.
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Figure 2.8: Joint distributions of throughput values separated by three different temporal

distances.

Model-based Methods

Due to the lack of training data, pioneering works in throughput prediction have to make a

series of simplifications and assumptions about the network characteristics. Specifically, all

model-based methods employ a fixed parameterization to model network dynamics without

relying on the observed data, although they differ in the detailed assumptions. Here we

present the most typical throughput predictors in this category.

• Stateless Predictor: The simplest bandwidth predictor assumes that the future through-

put are independent of the observed data in the past [93]. It further posits that the

network characteristics is constant across all timestamps. Specifically, the stateless

throughput predictor can be described by θt = θ for all time instance t, where θ is

the prior belief of the most probable capacity value. The history independent model

corresponds to a particular joint distribution of throughput p(cT1 |θ) = N (c|θ, IT ),

where θ is a T dimensional vector with each entry being θ and IT represents a T ×
T identity matrix.

• Nearest Neighbourhood Predictor: Even from a casual inspection of throughput

traces, one can see that neighboring temporal locations are highly correlated (e.g.,

the traces in Figure 2.6 and Figure 2.7). This is reflected in the scatter plot of pairs

of throughput values in Figure 2.8 (a). Motivated by the observation, algorithm
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Figure 2.9: Graphical model representation of most existing throughput prediction models.

The box is “plate” representing replicates. Each node represents a random variable (or

group of random variables), and the links express probabilistic relationships between these

variables. The observable variables are shaded in color.

developers replace the independence assumption with a Markov assumption. In par-

ticular, it is often assumed that the future throughput can be solely determined by

the immediate previous throughput observation. Mathematically, the deterministic

estimator can be derived from a Gauss Markov throughput distribution

p(ct+1|ct1,θt) = p(ct+1|ct,θt)
= N (ct+1|ct, βt),

(2.15)

where βt is the standard deviation of the Gaussian distribution. To further reduce

the complexity, one usually makes a stationary assumption such that p(ct+1|ct, θ) =

p(ct+2|ct+1, θ). Note that we have dropped the dependency of model parameters θ on

the temporal index t. The throughput in the interval [t+ 1, t + K] can be predicted

in a auto-regressive fashion.

• Arithmetic Mean: We have several observations from Figure 2.8. First, although
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the throughput at t + 1 is highly correlated with its nearest neighbour in time, the

network capacity occasionally experiences bursty traffic as a consequence of the time-

varying nature of the available bandwidth, or the dynamics of TCP. The instant

throughput derived from a single chunk is prone to such short-term fluctuations.

Second, the throughput at instance t can influence the epoch beyond its nearest

neighbour t+ 1. Based on the two observations, many studies proposed to estimate

the future bandwidth by averaging of the throughput observations over a horizon

H [63, 122]. Following this assumption, the throughput at time t+ 1 is generally an

averaging function of the previous H observations f(ctt−H+1; θ). The H-step Markov

assumption combined with Gaussian assumption gives the conditional throughput

distribution of form

p(ct+1|ct1,θ) = p(ct+1|ctt−H+1,θ)

= N (ct+1|f(ctt−H+1;θ), β),
(2.16)

where f(ctt−H+1; θ) is an averaging function of the previous H observations. The

arithmetic mean throughput predictor further assumes the averaging operator is a

linear function

f(ctt−H+1;θ) =
1

H

t∑
i=t−H+1

ci. (2.17)

Figure 2.9 shows the probabilistic graphic model of a 2-step Markov throughput

predictor.

• Harmonic Mean: Owing to the discrete nature of video segment transmission in

adaptive streaming, the throughput observations are not evenly spaced in time. To

this end, Jiang et al. [102] proposed a harmonic mean-based throughput prediction

model as an alternative to the arithmetic mean. The harmonic mean corresponds

to a variant of the arithmetic mean-based throughput predictor from a Bayesian

perspective, where the averaging function in (2.17) are replaced by

f(ctt−H+1;θ) =
H∑t

i=t−H+1
1
ci

. (2.18)

The reason for using this approach is twofold. First, the harmonic mean is more

appropriate when we want to compute the average of rates which is the case with

47



0 2 4 6 8 10 12
Temporal separation (seconds)

0.2

0.4

0.6

0.8

1.0

C
or

re
la

tio
n

Figure 2.10: Auto-correlation function of network throughput.

throughput estimation. Second, it is also more robust to larger outliers [102]. Thanks

to its simplicity, the harmonic mean-based model has become the default throughput

predictor in many ABR algorithms.

• Exponential Weighted Moving Average: The exponential weighted moving average

model is another variant of the arithmetic mean throughput predictor [16, 119]. This

model assigns different weight to the previous throughput observations in (2.17),

based on the observation that the correlation of the throughput at two instances is a

function of the relative position. From the examples in Figure 2.10, one can see that

the strength of the correlation falls exponentially with respect to distance.

Data-driven Methods

Although model-based throughput predictors receive ubiquitous acceptance in real-world

ABR systems, it is crucial to realize their shortcomings. A summary of some of the
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potential problems is as follows:

• Most model-based network capacity models are based on linear operators that are

derived from casual observations in a limited number of throughput traces. This is

problematic for two reasons. First, the Internet consists of many non-linear units

such as TCP congestion control and WiFi interference. Second, the network traces

used to derive the prediction models are usually collected from a single streaming

environment, whereas realistic throughput variability is much more significant across

different connection types, network protocols, and spatial locations. As a result, the

generalization capability of these models remains limited.

• Even if the throughput characteristic is linear, the manually selected parameters may

deviate significantly from the realistic setting. Furthermore, the adaptation of these

models to new environment (e.g., from 3G to 4G network) involves cumbersome

parameter tuning that is expensive and time-consuming.

• To reduce the complexity, model-based approach makes Markov assumption about

the throughput series. According to a recent study [200], however, the evolution

of throughput exhibits long-term dependency, and may even be affected by initial

throughput conditions and throughput evolution patterns. If the relevant piece of

information to be remembered falls outside the history window, the models with fixed

history memory cannot use it.

• Most models from the first approach can only produce a uni-modal probabilistic

prediction or simply a deterministic estimate of future throughput. However, we can

see from Figure 2.6 that the conditional distribution may be multi-modal in certain

situations. For example, there exists uncertainty about how many players will join

the bottleneck to compete for bandwidth at the next time instance.

To overcome these challenges, a different approach was taken by exploiting the knowledge

from realistic network traces. Specifically, the prediction engines in the second category

make use of the maximum a posteriori estimator in (2.14) to obtain the most plausi-

ble model parameters. Over the past decade, the maximum a posteriori approach has
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dominated the field of network characterization by delivering unparallel prediction accu-

racy [237]. Theoretically, the new generation of throughput prediction methods achieved

the progress by gradually lifting overly simplistic assumptions made by model-based ap-

proaches. We briefly present the evolution of the data-driven throughput prediction models.

• Linear Regression: The linear regression model is a close variant of the arithmetic

mean-based predictor in (2.17), where the averaging function has a linear form

f(ctt−H+1;θ) = θ>ctt−H+1. (2.19)

Assuming a uniform prior distribution, the optimal parameter θ is determined by

maximizing 2.14 across a corpus of realistic throughput traces. The learning-based

linear model is shown to achieve a better prediction accuracy in recent studies [102,

200]. However, as the simplest implementation of the data-driven approach, the

linear regression model still shares many common assumptions with the traditional

approach such as linearity, Markovian, Gaussian, and stationarity.

• Support Vector Regression: A linear function f(ctt−H+1; θ) is fairly restrictive and

may not be able to describe the true function. To alleviate the linear assumption, a

few studies proposed to use sophisticated machine learning methods for throughput

prediction, with Support Vector Regression (SVR) [135] being the most representative

model. SVR enriches the model capability by augmenting the feature vector ctt−H+1

with non-linear bases derived from ctt−H+1. For example, if H = 2 (i.e., ctt−1 =

(ct−1, ct)), one can augment it with φ(ctt−1) = (ct−1, c
2
t−1, ct−1ct, ct, c

2
t ). The linear

regression in the augmented feature space f(ctt−H+1; θ) = θ>φ(ctt−H+1) then produces

a non-linear fit in the original feature space. Note θ has more dimensions than

before. The more dimensions φ(ctt−H+1) has, the more expressive f becomes. To

avoid overfitting, SVR also imposes a zero-mean Gaussian prior over the parameter

θ, as opposed to the uniform distribution in linear regression.

• Multi-Layer Perceptron: There are at least two limitations with the SVR through-

put prediction model. First, the feature extraction function φ is selected somewhat

arbitrarily in SVR, which may be sub-optimal in the regression task. Second, SVR
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still produces a point estimate to the future throughput from a uni-modal probabil-

ity distribution. To overcome these problems, a neural network-based throughput

predictor was proposed recently [237]. Using a variant of stochastic gradient de-

scent, the model end-to-end optimizes parameters for both the feature extractor and

the regression model. By uniformly quantizing the output space and minimizing a

divergence measure, the neural network-based prediction engine can model a wide

range of throughput probability distributions p(ct+1|ctt−H+1, θ)2. This particular

parametrization corresponds to a Gaussian mixture model for throughput density

function

p(ct+1|ctt−H+1,θ) =

∫
p(h|ctt−H+1;θ1)p(ct+1|h, ctt−H+1,θ2)dh, (2.20)

where h and p(ct+1|h, ctt−H+1, θ2) represent the mixture variable and a Gaussian

distribution, respectively. In particular, the Gaussian distribution p(ct+1|h, ctt−H+1,

θ2) is pre-defined by the quantization levels such that the mean of each individual

Gaussian component lies at the center of each throughput bin. On the other hand,

the mixture distribution p(h|ctt−H+1; θ1) is optimized by the maximum likelihood es-

timator. To produce the throughput prediction for the next K chunks, K models are

learnt separately in practice. However, the combination of chunk-level throughput

prediction and the decoupling of temporal throughput characteristics is fundamen-

tally flawed since the average throughput level during the download of the t + 2-th

chunk is a function of the chunk size of the t+ 1-th video segment.

• Hidden Markov Model: Despite the demonstrated success, all aforementioned through-

put density models are Markovian. In general, however, the network throughput evo-

lution may express long-term dependency. Furthermore, many variables that directly

influence the throughput level are not observable to the ABR player. If these vari-

ables are available to the model, or at least can be estimated, we expect the prediction

model would enjoy a substantial improvement. Motivated by the two observations,

2In the original paper, the multi-layer perceptron is optimized to predict the download time given the

current state observations and the target bitrate level. Since for a fixed target chunk size, there exists

a one-to-one mapping between the download time and throughput value. Without loss of generality, the

download time prediction model can also be considered as a throughput predictor.
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Figure 2.11: Graphical model representation of the hidden Markov model-based throughput

generation process. The box is “plate” representing replicates. Each node represents

a random variable (or group of random variables), and the links express probabilistic

relationships between these variables. The observable variables are shaded in color.

Sun et al. proposed to characterize the throughput density with a Hidden Markov

Model (HMM) [200]. The conditional throughput distribution can be mathematically
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expressed by

p(ct+1|ct1,θ) = p(ct+1|ht+1,θ1)

p(ht+1|ht1;θ2) = p(ht+1|ht;θ2),
(2.21)

where p(ct+1|ht+1, θ1) and p(ht+1|ht; θ1) encode the emission probability distribu-

tion and the Markov state transition probability distribution. Note that we have

implicitly assumed the distribution to be stationary, as the model parameters do

not depend on the index t. Figure 2.11 presents the probabilistic graphic model

of the HMM. For simplicity, the emission probability distribution is assumed to be

Gaussian. The emission density function, the transition probability distribution, and

the initial state probability distribution can be optimized by the expectation maxi-

mization algorithm [19] in a data-driven fashion. The model achieves state-of-the-art

accuracy, reducing the median prediction error by ∼50% comparing to other baseline

solutions [200]. One plausible explanation of the superior performance is that HMM

can effectively lift the observation space Markov assumption and the Gaussian as-

sumption. In particular, the model is capable of capturing the long-term dependency

of throughput evolution since the hidden state ht+1 is a function of all previous

observations ct1. In addition, HMM can well characterize multi-modal probability

distributions. However, it should be noted that the HMM-based prediction engine

is still Markovian. For example, considering a scenario where two ABR players are

sharing a bottleneck link. One of the players has reached the upper limit of the buffer

occupancy such that it experiences the ON-OFF download pattern. The chance of

the flow transitioning from asleep to awake increases the longer the player has been

in the asleep state. In other words, the time-varying hidden state in another player

is not Markovian.

A summary of existing throughput predictors is given in Table 2.1. In essence, we have

witnessed a transition from linear, short memory, deterministic, and model-based through-

put predictor to non-linear, long term, probabilistic, and data-driven throughput density

functions. Nevertheless, it can be observed that all prediction engines retain the Markov

and stationary assumptions, which may not hold in practice. The two assumptions, if

addressed properly, may lead to further improvement in prediction accuracy.
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Table 2.1: Summary of adaptive bitrate streaming evaluation studies. Abbreviations: NN,

nearest neighbourhood; AM, arithmetic mean; HM, harmonic mean; EWMA, exponential

weighted moving average; SVR, support vector regression; HMM, hidden Markov model;

MLP, multi-layer perceptron.

Model Year Linear Markov Gaussian Stationarity Trainable

NN 2012 X X X X 7

AM 2012 X X X X 7

HM 2014 X X X X 7

EWMA 2007 X X X X 7

Linear 2014 X X X X X

SVR 2007 7 X X X X

HMM 2016 7 X 7 X X

MLP 2020 7 X 7 X X

2.3 Bitrate Selector

The bitrate selector, often referred to as adaptation logic and switching logic, is the module

within ABR schemes that determines the profile of the next chunk to be requested. Taking

the output from resource estimation module, the reward function, and the future chunk

presentation as inputs, bitrate selectors aim to return a representation which optimizes the

expected total reward.

Although the target seems straight-forward, the design of adaptation functions faces

three primary challenges.

• The bitrate selection for the next chunk has a cascading effect on the state of video

player. For instance, selecting a high bitrate may deplete the player buffer and

restrict the feasible bitrate range of subsequent chunks to avoid rebuffering. On the

other hand, if an adaptation function excessively prioritizes the long-term reward,

video consumers may quit the streaming session early due to the unacceptable initial

QoE. The cascading effect of bitrate selection makes it difficult to obtain a global

optimal adaptation strategy, which involves the long-term system dynamics at each
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decision stage. In general, given a streaming video with |A| encoding profiles and

T segments, there are a total of |A|T adaptation trajectories, each with a different

expected total reward. In a typical streaming session (|A| ≈ 10 and T ≈ 200, the

search for global optimal solution is computationally intractable. To reduce the

uncertainty in streaming environment, however, adaptation functions have to solve

the complex optimization problem at each bitrate selection step.

• The optimality challenge is further perplexed by the strict requirement in computa-

tion time. In particular, a second delay in bitrate decision may lead to notable QoE

losses, partially because the delay reduces the effective bandwidth in all streaming

sessions (the relationship between the effective bandwidth and the computation time

in bitrate selection can be understood by considering the delay as a part of RTT).

In addition, the postponed decision suggests that ABR agents have to rely on out-

dated throughput estimation, buffer occupancy, and QoE status of video consumers,

inevitably resulting in sub-optimal bitrate selection.

• Besides the two obstacles, adaptation functions also have to combat the diversity

of environment states. To optimize the long-term reward, ABR agents should make

efficient use of all available information to the player, including current buffer oc-

cupancy, future throughput dynamics, available chunk profiles, and bitrate selec-

tion history. As a result, the dimension of input space is in the order of Z × T ,

where Z and T represent the dimension of chunk-level features and the number

of chunks in the planning trajectory, respectively. Although each streaming video

is encoded into a limited number of representations, the resulting bitrate is time-

varying [93, 233]. Furthermore, the number and specification of encoding profiles

often adapt to the characteristics of streaming videos, encoder types, and the ca-

pability of service providers [35, 95, 147, 208, 242]. A generic input space is then

necessary to accommodate the diversity of streaming environment, suggesting a high

dimensionality of chunk-level features Z. Given the enormous input space, it is ex-

tremely challenging to explore all possible states with a limited training data. In

practice, adaptation schemes are often calibrated on a subset of observation states

which are sparsely distributed in the input space. It remains questionable whether
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Figure 2.12: The design tradeoff for the bitrate adaptation function. In general, ABR

algorithms cannot achieve efficiency in computation time, robustness to unobserved states,

and optimality in expected total reward simultaneously.

these algorithms can generalize well to unobserved environmental states (e.g., novel

encoding profiles).

A all-round bitrate selector should tackle the three challenges at once. However, it turns

out that existing ABR logic struggles to optimize the three objectives simultaneously.

Instead, they often compromise one or two dimensions to achieve a better performance

in the other aspects. We formalize the phenomena the efficiency-robustness-optimality
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tradeoff in Figure 2.12.

2.3.1 Bayesian View of Bitrate Selector

Given a reward function and a throughput predictor, there exists an optimal action-value

q∗t , which is the maximum expected return achievable by following any strategy, after seeing

some sequence s and then taking some action a, q∗t = Q∗(st = s, at = a) = maxπ E[Ut|st
= s, at = a, π]. Here, π is a policy mapping sequences to actions (or distributions over

actions). Ut =
∑T−1

l=0 γlut+l denotes the expected cumulative reward starting at the time

instance t, where ut, 0 < γ ≤ 1 , and T represent the instantaneous reward by receiving

the t-th chunk, a constant discounting future rewards, and the number of chunks in the

streaming session, respectively. Once the optimal action-value q∗t for each pair of state st

and action at is derived, we can select the action a that maximizes the action-value q∗t .

In the context of ABR streaming, there exists an algorithm that produces the ground-

truth optimal label of q∗t . Given a state st consisting of the current playback buffer level,

the future chunk profiles, and the throughput distribution (or a sample from the distribu-

tion), the optimal action-value function can be solved by value iteration (also known as

dynamic programming) [201]. Specifically, the optimal action-value q∗t obeys an important

identity known as the Bellman equation. If q∗t+1 of the playback state st+1 at the next

time-step was known for all possible actions at+1, then the optimal strategy is to select the

bitrate at+1 maximizing the expected value q∗t = Est+1∼E [ut+1 + γmaxat+1 q
∗
t+1]. By using

the Bellman equation as an iterative update, one can gradually improve the action-value

function qt starting from random initialization. Such value iteration algorithms eventually

converge to the optimal action-value function q∗t [201]. Although theoretically it is possi-

ble to integrate the value iteration algorithm into ABR players to produce online bitrate

selections, the iterative computation is inconvenient, time-consuming, and expensive. In-

stead, it is common to use a function to approximate the optimal overall reward q∗t for

each state-action pair. Since (st, at, q
∗
t ) are accessible, we can consider the formulation of

the optimal bitrate selector as a supervised learning problem.

From a Bayesian perspective, one feasible approach to solve the bitrate selection prob-

lem is to estimate the optimal action-value function p(q∗t |st, at). Note that the action-value
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q∗t expresses a probabilistic structure because some reward functions (e.g., QoE function)

are inherently stochastic. Given a set of training data Dq comprising Nq state action

pairs (S, a) =
(

(s1, a1), ..., (sNq , aNq)
)

and their corresponding optimal overall rewards q∗t
= (q∗1, ..., q

∗
Nq

), we aim to find a posterior action-value distribution p(qt|st, at, Dq) that best

approximates p(q∗t |st, at) for all t. The problem can be simplified by assuming an infinity

long decision process such that the dependency on t can be dropped. Alternatively, we

can enrich the state variable s with the time instance t. p(q∗|s, a, Dq) can be considered

as a point estimate of p(q∗|st, at) according to the Bayes’ Rule p(q∗|s, a) =
∫
p(q∗|s, a,

Dq)p(Dq)dDq. If the training data in Dq are independent and identically distributed, one

can parametrize the action-value function [37] as

p(q∗|s, a,Dq) =

∫
p(q∗|s, a,θ)p(θ|Dq)dθ, (2.22)

where p(q∗|s, a, θ) and p(θ|Dq) represent the parametric action-value probability density

function, and the posterior distribution over parameters, respectively. Given the enormous

space of θ, the integration in Equation (2.22) is computationally intractable. As a result,

a common practice is to approximate the predictive distribution p(q∗|s, a, Dq) by a point

estimate p(q∗|s, a, θ∗), where

θ∗ = arg max
θ

p(θ|Dq) = arg max
θ

p(q|S, a,θ)p(θ). (2.23)

The specific form of parametric action-value function p(q∗|S, a, θ) is generally not known.

In practice, existing ABR algorithms usually minimize the mean squared error between

the predicted action-value and the ground-truth q∗, which implicitly assumes a Gaussian

parametric likelihood function

p(q∗|s, a,θ) = N (q∗|µ(s, a;θ), β), (2.24)

where µ(s, a; θ) and β represent the mean and variance of the Gaussian distribution,

respectively.

Direct estimation of θ using the maximum likelihood method is problematic, because of

the fundamental conflict between the enormous state-action space and the limited capacity

to collect ground-truth q∗ samples. Specifically, in the general case that the instantaneous
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Figure 2.13: The computation time of dynamic programming and exhaustive search in a

typical adaptive streaming scenario.

reward ut is a function of all previous state and actions, the only feasible approach to

determine q∗ is by exhaustively searching all the combinations of bitrate selection. The

computational complexity of exhaustive search is in the order of O(|A|T ), where |A| denotes

the cardinality of the action space. Even if we simplify the problem by assuming that ut

enjoys a Markov property, obtaining each (s, a, q∗) sample still involves solving a dynamic

programming problem, whose time complexity is O(T × |S| × |A|). |S| represents the

cardinality of the state space. In the case of adaptive streaming, s may encode the statistics

of future chunks (e.g., chunk size and quality) and throughput prediction, suggesting that

|S| ∝ T . Either way, the computation of q∗ quickly becomes intractable as the planning

window T becomes longer. Figure 2.13 shows the computational time of both approaches
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with respect to T in a simplified ABR problem, where |A|) = 6 and |S|) ≈ 500, 000. We

can observe that the computation of q∗ on a sequence of T = 45 takes around five minutes,

exceeding the time budget of a subjective experiment. A typical “large-scale” dataset

allows for a maximum of a few thousands of action-value to be sampled. By contrast, the

action-value function live in a high dimensional space, which is typically in the order of

hundreds of thousands. Therefore, a few thousands of action-value samples are deemed to

be sparsely distributed in the space. As a result, the maximum likelihood approach may

hardly generalize to unobserved state-action pairs. To overcome the limitation, various

of prior distributions p(θ) have been developed, which will be detailed in the subsequent

section.

Once the predictive distribution p(q∗|s, a, θ∗) is determined, the optimal next chunk

a∗ can be obtained by selecting the bitrate with the maximum overall reward

π(a|s) =
∏
a′ 6=a

p(Q(s, a) ≥ Q(s, a′)). (2.25)

The probabilistic graphic model of the value-based approach is illustrated in Figure 2.14.

One disadvantage of the value-based method is the computation overhead introduced

by (2.25), especially in the case that p(q∗|s, a, θ∗) has a complicated structure.

Alternatively, one can directly model the optimal policy π(a|s) in (2.25) with a para-

metric approximation π(a|s, θ). Despite the distinction, these two approaches share a

very similar training data generation procedure. Most of the fundamental concepts in the

derivation of prior distribution p(θ) are also common to the two methods. The policy-

driven approach can efficiently shift the cumbersome computation in the online decision

process to the training procedure. However, these models usually require more training

data to approximate the nonlinear mapping between value q and action a. For consistency,

we adopt the value-based perspective to review the existing adaptation functions.

2.3.2 Existing Bitrate Selectors

Over the past decades, a wide variety of bitrate selectors have been developed where the

major difference lies in the assumptions about the prior distribution p(θ). While all these
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Figure 2.14: Graphical model representation of the value-based bitrate selection process.

The box is “plate” representing replicates. Each node represents a random variable (or

group of random variables), and the links express probabilistic relationships between these

variables. The observable variables are shaded in color. s encodes the current state obser-

vation (such as the past throughput histories and current buffer occupancy). s+ represents

the states required to make optimal offline decisions with the cumulative reward q, includ-

ing the future throughput prediction c and the future chunk statistics v. The optimal

action a∗ is obtained by selecting the action that optimizes the cumulative reward.

methods attempt to optimize the reward function, they often present a different tradeoff in

efficiency, robustness, and optimality. Existing adaptation rules can be categorized based

on when the actual logic is generated. The offline decision rules are developed before

it is applied to a particular streaming video, whereas the online algorithms derive the

adaptation function on the fly. In the subsequent discussion, we will present a Bayesian

61



interpretation of both approaches. We will also analyze the position of these algorithms in

the efficiency-robustness-and optimality space.

Offline Bitrate Selectors

The offline adaptation rules approximate a parametric function p(q∗|s, a, θ) before inter-

acting with a streaming session. The fixed adaptation function can either be derived from

expert knowledge, or learnt by sophisticated machine learning methods. Here we introduce

existing offline bitrate selectors in detail.

• Heuristic Methods: The earliest bitrate selectors employ hand-crafted rules to deter-

mine which chunk to request, although they all assume higher bitrate leads to higher

quality. One of the most representative methods is the Additve Increase Multiplica-

tive Decrease (AIMD) strategy [122]. Inspired by the congestion control in TCP,

the algorithm switches up to the next higher representation level when the estimated

download time is less than a pre-defined threshold. On the other hand, if the ex-

pected download time exceeds a upper threshold, AIMD decreases the target bitrate

by half. When the two thresholds for switching are not met, the algorithm keeps the

selected bitrate. Since the algorithm only considers three bitrate levels as feasible

actions, the resulting reward is sub-optimal in terms of the instantaneous reward ut.

To reduce the quality variation, some Additve Increase Additive Decrease (AIAD)

schemes [2, 134] are proposed, which restrict the adaptation space to the neighbour-

ing bitrate level of the current representation. Similar to its close variant AIMD,

the AIAD strategies quantize the state space based on some pre-defined thresholds.

Then, a bitrate selection in the filtered action space is taken in each state region

according to the educated guess of the instantaneous reward function. One of the

major improvement of the instantiation in [134] is the expanded state space. By

incorporating both the buffer occupancy information and the throughput prediction,

the algorithm can theoretically attain a higher reward.

Another heuristic adaptation function, called FESTIVE [102], can also be considered

as a variant of AIMD. FESTIVE not only limit the magnitude of bitrate increasing,
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but also the rate of adaptation. In particular, the strategy only switches to the next

higher level and uses a lower rate of upward switches at higher bitrates. In the case

of bandwidth drop, FESTIVE does not restrict the target adaptation level to its

immediate lower representation. After the AIMD-based pre-processing, FESTIVE

reduces the cardinality of action space by to two at each decision stage. The major

difference between FESTIVE and AIMD is that FESTIVE explicitly optimizes the

instantaneous reward function on a subset of available bitrate levels. Other heuris-

tic adaptation functions [103, 141] share a similar quantize-filter-maximize strategy,

which differ in their choice of quantization level and filtering schemes.

These heuristic approaches correspond to a family of prior action-value distributions.

First, the filtered action space suggests that p(q∗ = 0|s, a = a′, θ) = 1 for all

a′ 6∈ Af , where Af represents the feasible set of bitrate selections. For example, Af
= {a−t−1, at−1, a

+
t−1} for the AIMD method, where at−1, a−t−1, and a+

t−1 are the previous

representation level, its immediate lower and higher encoding profiles, respectively.

Second, the hand-crafted bitrate selection rule are dedicated to optimize the reward

function, suggesting that p(q∗ = ũt|s, a = a′, θ) = 1 for all a′ ∈ Af . In most

heuristic methods, ũt can be regarded as an educated guess of the instantaneous

reward, whereas the approaches involving an explicit optimization make use of the

precise instantaneous reward function ũt = ut. Since the functional form of these

policies is deterministic, we have p(θ = θheuristic) = 1 and p(θ = θ′) = 0 for any

function θ′ 6= θheuristic. There have also been efforts to improve the biased subjective

prior by integrating the information in the likelihood function p(q∗|S, a, θ) [3]. It

has been shown that the Bayesian treatment significantly outperforms its heuristic

counterpart.

Thanks to the reduced action space, these heuristic approaches are computationally

efficient. Specifically, the complexity of each bitrate selection is O(|Af |). However,

the heuristic approaches are by no means close to optimal. Furthermore, these hand-

crafted adaptation rules, which are usually derived from observations in a limited

streaming session and environmental conditions, are often susceptible the unobserved

states.
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• Imitation Learning: Another drawback of the empirical priors is that the prior policy

distribution makes strong assumption about the reward function and throughput

dynamics, which by themselves are subjects of ongoing research. If a novel reward

function or a better throughput predictor become available, the expert knowledge of

p(q∗|s, a, θ) can be difficult to obtain. Motivated by the limitations, state-of-the-art

adaptation functions determine the prior action-value distribution via demonstrations

from an optimal policy.

Fast Model Predictive Control (FastMPC) is one of the first instantiations of the

imitation learning framework [241]. The algorithm learns a lookup table from noisy

samples from the optimal action-value function p(q∗|s, a), where each entry stores

the expected cumulative reward E[q∗] for a particular state-action pair. At each

state s′, FastMPC sweeps through all entries with s = s′ in the lookup table, and

selects the option with the maximum total reward. In general, the state variable

lies in a continuous space, whose dimensionality is well above 100. Furthermore, the

action-value q∗ is also a function of the available actions a, which may be content-

adaptive. To simplify the problem, the authors make a series of assumptions. First,

FastMPC reduces the state space to three dimensions consisting of the current buffer

occupancy, the average future throughput, and the current bitrate level. The pre-

processing procedure can be regarded as a mapping from the raw observation space

to a latent variable space. Second, each state variable is made discrete by quantizing

the state space with a fixed step size. Third, the training process is performed on a

pre-defined bitrate ladder. Unfortunately, the tabular method do not scale to large

state-action space [131].

With the recent exciting development of deep learning methodologies, a end-to-end

bitrate adaptation solution becomes possible. Comyco [92] takes advantage of pow-

erful neural networks to model the optimal q∗. The training of neural network and

lookup table differ in several ways. First, in opposition to the tabular approach which

estimates the long-term reward separately for each state without any generalization,

Comyco uses a generic function approximator to estimate the action-value function.

In essence, each (s, a, q∗) sample would perturb the action-value function for all

states and actions. Second, the neural network model takes raw state observations as
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input, significantly expanding the state space. Thanks to the huge capacity of neural

network, the model can digest massive data in the training process to combat the

curse of dimensionality. The model is sent to the client player to perform real-time

bitrate adaptation decisions once it is fully calibrated.

Since these adaptation rules do not integrate information from novel observations,

one can regard them as prior action-value distributions p(q∗|s, a, θ). In contrast

to heuristic methods, for which the prior distribution is fixed before any data are

observed, these algorithms choose a prior distribution that best explains a dataset

Dq. Specifically, the marginal likelihood of the observed data is given by p(Dq|θ).

Maximizing the quantity as a function of θ gives a point estimate of θ, an instance

of a method known as empirical Bayes [19]. One of the biggest advantage of the

empirical Bayes’ method over the subjective prior is its flexibility to adapt to new

environment and reward signals. In particular, empirical Bayes’ method can auto-

matically determine appropriate prior distributions at any tasks by repeating the

training procedure on task-specific data.

Imitation learning-based bitrate selectors can be executed extremely efficiently be-

cause the optimal decision is given by either querying a lookup table, or performing

a simple feed-forward operation. The computation complexity of these operations is

merely O(|A|), which can be further reduced by parallel computation. In practice,

these computations take only a few milliseconds even on lightweight computation

devices such as smartphones. Furthermore, an increasing number of devices have

equipped with dedicated hardware to accelerate standard neural network computa-

tions [96], suggesting that more powerful statistical models may be deployed in the

future. Thanks to the pre-training, imitation learning methods demonstrate state-of-

the-art performance on states/environment that have been experienced in the training

set. Nevertheless, given the fundamental conflict between the enormous state-action

space and the limited capacity to collect ground-truth q∗ samples, FastMPC and

Comyco may not generalize well on unobserved states/environment.

• Reinforcement Learning: In fact, imitation learning-based methods may even fail on

training sequences due to the distribution mismatch problem [176]. Specifically, the
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Figure 2.15: Graphical model representation of the policy-based bitrate selection process.

The box is “plate” representing replicates. Each node represents a random variable (or

group of random variables), and the links express probabilistic relationships between these

variables. The observable variables are shaded in color. s encodes the current state obser-

vation (such as the past throughput histories and current buffer occupancy). s+ represents

the states required to make optimal offline decisions with the cumulative reward q, includ-

ing the future throughput prediction c and the future chunk statistics v. The optimal

action a∗ is obtained by selecting the action that optimizes the cumulative reward. The

model-free reinforcement learning models do not explicitly predicts the future environment

state s+ in the estimation of q.

learnt agent may make some tiny errors at each state, such that the updated state

may gradually deviate from the state distribution in the training set. Recall that

these supervise learning approaches achieve less competitive performance on unob-

served states/environment. The distribution mismatch problem has been thoroughly
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Figure 2.16: A reinforcement learning framework for bitrate adaptation.

investigated in other sequential decision making problems, such as autonomous driv-

ing [179] and computer games [138, 187]. A common solution is reinforcement learn-

ing [201]. As opposed to the imitation learning that learns the policy from expert

demonstration, reinforcement learning learns to improve an agent’s decision making

ability during the interaction with the environment. Figure 2.16 summarizes how

reinforcement learning can be applied to bitrate adaptation. The basic idea behind

many reinforcement learning algorithms is to estimate the action-value function, by

using the Bellman equation as an iterative update. Specifically, a parametric action-

value function approximator can be trained by minimizing a sequence of loss functions

Li(θi) that changes at each iteration i

Li(θi) = Es,a∼ρ(·)

[
(qi −Q(s, a;θ))2

]
, (2.26)

where qi = Es′∼E [u + γ maxa′ Q(s′, a′;θi−1)|s, a] is the target for iteration i and ρ(s,

a) is a probability distribution over states s and actions a that are commonly referred

to as the behaviour distribution [138]. The parameters from the previous iteration

θi−1 are held fixed when optimising the loss function Li(θi). Note that the targets

depend on the network weights; this is in contrast with the targets used for imitation
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learning, which are fixed before learning begins [138]. Under some mild conditions,

it can be proven that the parametric action-value function approximator converges

to the optimal solution [201]. Despite a slower convergence rate, the learning agent

experiences many states falling out of the distribution ρ∗(s, a) in the training stage,

where ρ∗(s, a) represents the behaviour distribution of the optimal policy. As a

result, reinforcement learning approaches are generally more robust in unobserved

states/environment.

Pioneering work on reinforcement learning-based bitrate selector dates back to 2013,

when Claeys et al. [32] investigated the feasibility of basic Q-learning [201] in the

context of adaptive streaming. The method uses Bellman equation as the updating

rule to learn a tabular action-value function. Various follow-up works extend the

study by expanding the state space [133], refining the definition of QoE [212], and

improving the efficiency of the näıve Q-learning [33]. These tabular reinforcement

learning methods share similar limitations with their imitation learning counterpart.

Recently, many studies proposed to apply deep reinforcement learning in adaptive

video streaming [91, 131], with Pensieve [131] being the most representative method.

Pensieve trains a neural network model to perform bitrate selection using a variant

of deep Q-learning [137, 138], while the basic idea still comes from (2.26). Thanks

to the capacity of neural network, Pensieve and its variants can take raw environ-

ment observations as input without making unrealistic assumptions for dimensional-

ity reduction. It has been empirically demonstrated that these deep learning models

outperform the traditional reinforcement learning by a sizable margin [131].

From a Bayesian view, the reinforcement learning approach also produces a prior

action-value distribution p(q∗|s, a, θ). Conceptually, the agent-environment interac-

tion process can be regarded as a data augmentation method to the imitation learning

such that the agent not only observes state-action pairs from the optimal behaviour

distribution ρ∗(s, a), but also experiences out of distribution samples. Some rein-

forcement learning methods even explicitly encourage exploration of the state space

with a deliberately designed loss function [131]. Applying the updating rule in (2.26)

on the augmented dataset Dq+ corresponds to maximizing the likelihood function

p(Dq+ |θ) under the Gaussian assumption, which is also an instance of the empirical
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Bayes method [19].

The reinforcement learning agent only takes a feed-forward operation and optionally

a maximization step to produce a bitrate selection, whose computation complexity is

O(|A|). Furthermore, the learnt action-value function can theoretically converges to

the ground-truth p(q∗|s, a), suggesting that the approach is also effective in optimiz-

ing the reward function. The augmented data generated from the agent-environment

interaction process acts as a regularizer and helps reduce overfitting when training

a statistical model. As a result, reinforcement learning usually exhibits a relatively

stronger generalization capability than imitation learning on unfamiliar environmen-

t/states. Nevertheless, reinforcement learning-based adaptation functions may still

fail to generalize, especially when the available actions in the test set deviate signifi-

cantly from the training set.

To sum up, offline adaptation functions can be interpreted as certain prior distributions of

the action-value function p(q∗|s, a, θ). These fixed adaptation rules can achieve very high

reward within a very short decision period. However, the prior distributions encode strong

assumptions about the streaming environment (including the characteristics of streaming

videos, the network variability, and the reward function), making the offline algorithms

difficult to generalize in practice.

Online Bitrate Selectors

In contrast to the offline counterpart, online bitrate selectors adaptively generate the action-

value distribution p(q∗|s, a, θ) based on the observation of state action pairs (s, a) in a

streaming session. Without large amount of training data, state-of-the-art online decision

making strategies can achieve equally competitive performance. We summarize the recent

progress of the techniques as follows.

• Greedy Algorithm: The heuristic bitrate selectors compromise reward to obtain a

high computational efficiency. In practice, however, the number of commonly used

representations is only in the order of hundreds, most of which may not appear

simultaneously in a particular bitrate ladder. The reduction in computation time
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from O(|A|) by taking all actions into considerations to O(|Af |) is negligible. It

is, therefore, reasonable to promote the optimality over efficiency. Following this

direction, a majority of ABR algorithms utilize the greedy algorithm in hopes of

obtaining a higher reward. The greedy algorithm sweeps through all actions, and

select the one with the highest instantaneous reward ut. These adaption logic can be

generally categorized into three classes according to their state space. Algorithms in

the first category selects the next chunk only based on throughput prediction, which

are commonly referred to as rate-based strategies [63, 119]. For example, if the

goal was to maximize the bitrate usage, rate-based greedy algorithm would choose

the maximum possible bitrate below the predicted throughput. The second class

advocate bitrate adaptation solely based on buffer occupancy while making strong

assumptions about the network characteristics. As a result, they are often dubbed

buffer-based strategies [93, 191]. Interestingly, these algorithms often employ buffer

occupancy-related reward functions. For example, a state-of-the-art buffer-based

strategy named Buffer-Occupancy-based Lyapunov Algorithm (BOLA) are dedicated

to minimize the unplayed video in the playback buffer. Unfortunately, both classes

of algorithms are discarding possibly useful information, resulting in sub-optimal

performance. The third group makes use of both buffer occupancy and throughput

predictions in the decision making [16, 35]. For example, if there are abundant video

segments in the playback buffer, one can afford to select a chunk with bitrate higher

than the available throughput.

From a Bayesian perspective, applying greedy algorithm is equivalent to approxi-

mating the posterior distribution with a noisy sample and a non-informative prior.

Specifically, the look-ahead and reward evaluation procedure at a particular state s

can be regarded as sampling from the optimal action-value function p(q∗|s, a) for

each a. Since the value estimation only involves the instantaneous reward, we can

consider the obtained reward as a noisy sample of p(q∗|s, a) such that q∗ ≈ ut. Al-

ternatively, one can interpret the instantaneous reward ut as a lower bound of the

action-value q∗ =
∑T

l=0 ut+l. Non-informative prior is imposed because the method

does not make a priori assumption about the form of the action value function p(q∗|s,

a, θ).
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Since the greedy bitrate selector traverses through the action space at each decision

stage, the computation complexity of the algorithm is O(|A|). With only a slight

increment in computation time, the algorithm can significantly boost the performance

of heuristic approaches [46]. Furthermore, the algorithm is very robust to unobserved

environment states, thanks to the non-informative prior.

• Model Predictive Control (MPC): In general, the greedy algorithm fails to produce

the optimal solution, and may even produce the worst possible solution. For example,

let us consider a widely used reward function [3, 131, 200, 241]

ut = rt − τt − |rt − rt−1|, (2.27)

where rt and τt represent the bitrate and the rebuffering duration during the download

of the t-th chunk. The motivation behind the reward function is that subjective QoE

is degraded by both rebuffering and quality adaptation. The greedy algorithm will

constantly pick the initial bitrate r0, which is usually the lowest representation level,

as the bitrate-related rt − |rt − rt−1| term is identical for all representations. By

choosing the lowest representation, the algorithm reduces the likelihood of rebuffering

τt, thereby optimizing the instantaneous reward. Clearly, the local optimal strategy

converges to a very poor solution.

Realizing limitations of the traditional approach, Yin et al. proposed to solve the

optimization problem by MPC [241]. MPC generalizes the greedy algorithm by

extending the planning horizon to 1 ≤ K ≤ T . At the t-th bitrate decision, the

algorithm estimates the expected total reward over the interval [t, t + K] for each

action a, and select the action that optimizes the value. At the next iteration, the

algorithm takes the updated state information as the input, re-plans the bitrate

trajectory, and produces the optimal bitrate selection. The control-theoretic ABR

framework has a very similar Bayesian interpretation to the greedy algorithm, where

the only difference is that the noisy sample of p(q∗|s, a) now takes the form q ≈∑K−1
l=0 γlut+l.

The MPC framework provides a flexible control knob to adjust the tradeoff between

efficiency and optimality. When K = 1, MPC degrades gracefully to the greedy al-

gorithm, prioritizing efficiency over optimality. As K approaches T , the algorithm
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gradually converges to the global optimal solution at the cost of extremely high

computational complexity. Recall that the reward optimization problem over an in-

terval K can be solved by exhaustive search or dynamic programming, whose time

complexity are O(|AK |) and O(K × |S| × |A|), respectively. To obtain a reason-

able approximation of action-value q within a limited time budget, the look-ahead

horizon K typically ranges from 5 to 8 [3, 200, 237, 241]. MPC also inherits the

robustness from the greedy algorithm, since they do not make any assumption about

the throughput dynamics and reward function. In particular, the throughput pre-

diction can be embedded into the state variable without re-calibrating the control

policy. Reward functions can also be applied in the framework in a plug-and-play

fashion.

In summary, online adaptation logic generally follows a sample-estimate-optimize pro-

cedure. The methods approximate the posterior action-value function p(q∗|s, a, θ) using

the maximum likelihood estimator solely based on a noisy sample from the theoretically

optimal policy. By adjusting the number of planning steps K, online ABR programs may

compromise computation time in order to reduce the noise level. Most importantly, these

bitrate selectors are very robust to the perturbation of streaming environment. Figure 2.17

summarizes the performance of existing adaptation functions in terms of efficiency, robust-

ness, and optimality.

2.4 Overview of Adaptive Bitrate Algorithms

Over the past decade, significant efforts have been denoted in the development of ABR

algorithms [119, 93, 141, 200, 191, 102, 241, 131, 30, 32, 212, 3, 91, 92, 237], all of which

can be explained by the presented framework. A complete list of summary is given in

Table 2.2. Here we only provide a brief description to the most representative approaches.

Rate-Based (RB) algorithm [63] is the default ABR controller in the DASH standard.

The name rate-based comes from the state space of the bitrate selector, which does not

depend on the buffer occupancy. RB algorithm is composed of an arithmetic mean through-

put predictor, a bitrate-centric reward function, and a greedy adaptation logic. Specifically,
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Figure 2.17: The schematic diagram of the efficiency-robustness-optimality tradeoff of the

existing bitrate selectors.

the function picks the maximum available bitrate below the throughput prediction over the

past five chunks. Assuming the throughput prediction is accurate, one can show that the

algorithm are dedicated to maximize the following reward function

U =
T∑
t=1

rt − ατt, (2.28)

where α → ∞. Despite its simplicity, some recent subjective experiments demonstrated

that rate-based is on par with the state-of-the-art ABR algorithms [53, 46].

Thanks to its simplicity, Buffer-Based (BB) algorithm [93] has become another base-

line ABR method in all subsequent studies. In contrast to the rate-based algorithm, BB
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advocates decision making based only on buffer occupancy, while regarding throughput

variations as un-modeled disturbances. Specifically, BB employs a monotonically increas-

ing function f(·) between the buffer occupancy and the bitrate selection. Although the

derivation of the adaptation rule seems somewhat arbitrary, BB is later well investigated

by another buffer-oriented method [191]. It has been shown that BB implicitly utilizes

a first-order stationary throughput distribution whose mean is encoded by the model pa-

rameters, a buffer occupancy weighted QoE function, and a greedy adaptation logic. In

particular, the reward function of BB can be expressed as

U =

∑T
t=1 g(rt)− ατt − βbt

Tend

, (2.29)

where g(·), bt, Tend, α, and β denote a non-linear function, the buffer occupancy of time t,

the overall duration of the streaming session, and two weighting parameters, respectively.

The function g(·) uniquely determines the functional form of the adaptation logic f(·).

MPC makes the first attempt to explicitly define the three functional components in our

framework, which unifies RB methods and BB algorithms in a principled way. By default,

MPC uses the harmonic mean throughput predictor and applies dynamic programming to

optimize the following reward function

U =
T∑
t=1

rt −
T∑
t=1

τt −
T∑
t=2

|rt − rt−1|, (2.30)

where the third term penalizes frequent quality adaptations. Nevertheless, the MPC frame-

work is general enough to incorporate a wide range of throughput predictors and reward

functions [237].

Recently, reinforcement learning-based ABR algorithms have gained an increasing pop-

ularity, with Pensieve being the most representative algorithm [131]. Following these meth-

ods, a neural network agent gradually learn to optimize the expected future reward via their

interactions with simulated streaming environments. Inherited from the model-free rein-

forcement learning framework, Pensieve does not need to explicitly model the throughput

dynamics. Instead, the learnt policy merges the throughput predictor and bitrate selec-

tor into an unified model. The probabilistic graphic model of model-free reinforcement
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learning methods and their variants is shown in Figure 2.15. Nevertheless, it is possible to

distill the underlying data-driven throughput model from Pensieve [132, 201]. In [131], the

authors also showed that Pensieve can adapt to different instantiations of reward functions.

More recently, a few studies also formulate the adaptive bitrate selection as an su-

pervised learning problem [92, 241]. For example, Comyco [92] trains a statistical model

to imitate actions produced by an offline optimal agent. Akin to Pensieve, Comyco also

models the throughput predictor (implicitly) and the bitrate selector using a single neural

network, which optimizes a close variant of reward function in 2.30.

2.5 Validation of Adaptive Bitrate Algorithms

With many ABR algorithms at hand, it becomes pivotal to compare their performance, so

as to find directions for further advancement. Mathematically, the performance validation

corresponds to the evaluation of (1.1) for each ABR algorithm, which is a complex problem

in its own right. To be specific, the difficulty in the computation of the expected reward

function arises from two aspects. First, the measurement of (1.1) requires the precise

knowledge about the streaming environment. Quantitatively, this means specification of

probability distributions over both network conditions and streaming videos, neither of

which are available. In practice, many authors base their studies on empirical results

computed from a set of example network traces and streaming videos that are representative

of the relevant environment. Generally speaking, the quantity and representativeness of

these samples are the keys to the success of the sampling-based evaluation procedure.

Second, since the HVS is the ultimate receiver of streaming videos, the only “correct” way

to evaluate the reward function and the corresponding ABR system is by performing a

subjective experiment. Unfortunately, subjective testing is inconvenient, time-consuming,

and expensive. As a result, some compromises to the quantity and representativeness of

data have to be made in a practical subjective evaluation. Alternatively, one can take

objective QoE models as an approximation of the subjective QoE in the ABR algorithm

evaluation, which inevitably restricts the reliability of the experiment. In general, all the

ABR evaluation approaches aim to approximate (1.1), while they put different emphasis
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on the tradeoff among quantity, representativeness, and reliability of data. We summarize

the existing evaluation methodologies as follows:

• Offline Simulation + Objective Evaluation: To obtain bitrate selection trajectories,

this approach simulate the streaming process with a network emulator, which can

either sample a bandwidth data from a certain distribution or faithfully shape the

bandwidth according to a target throughput trace. Once the bitrate decisions are

generated for each ABR algorithm, the algorithm developers usually compute certain

statistics of streaming events as the performance measure. Given the limited real-

istic throughput traces and streaming videos, early researches relied on small-scale

synthetic bandwidth data with only one source content as a representation of the

practical streaming environment [2, 35, 102, 103, 119, 144, 239]. Equally simplistic

component was the evaluation criteria, where bitrate utilization, rebuffering duration,

and bitrate variation were commonly used to assess individual aspects of ABR algo-

rithms. However, due to the tradeoff between video bitrate and rebuffering duration,

it is theoretically impossible for an ABR algorithm to achieve the best performance

in all aspects. In fact, researchers often found it difficult to conclude which ABR

algorithm is better based on these separate performance measures. With the aim to

evaluate ABR algorithms in a more realistic streaming environment, Yin et al. [241]

presented one of the largest objective evaluations at that time, covering a total of

2,000 real-world throughput traces. The study also explicitly defined the QoE as both

the optimization goal and the evaluation criterion. Following their seminal work, the

evaluation criterion of ABR algorithms have gradually converged to a single measure

of QoE [3, 16, 92, 131, 191, 202], although each study may adopt different definition of

QoE. One of the biggest advantages of this approach is its high efficiency, as it is not

necessary to perform the authentic streaming process. State-of-the-art chunk-level

simulator allows an ABR algorithm to “experience” 100 hours in only a few minutes,

making the setup an preferable choice for a very large scale validation experiment.

Nevertheless, this evaluation methodology maximizes the quantity of data at the cost

of the representativeness of input data and the reliability of reward function. Thanks

to its simplicity and efficiency, the combination of objective evaluation and offline

streaming environment simulation remains the most prevalent evaluation method for
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ABR algorithms since the ratification of DASH.

• Online Deployment + Objective Evaluation: The offline simulation may suffer from

the concept drift problem [64], where the characteristics of streaming video and net-

work condition change over time. For example, it is dangerous to assume a hypothesis

that works well on 3G network would generalize to 4G without testing it in the real-

istic 4G environment. The problem has also been known as the “staleness problem”

in the network community for decades [65], where mature solutions exist. The most

straightforward solution is to deploy the system under test in the real environment,

such that the system can experience up-to-date input data. Following this line of

thought, several efforts advocated the evaluation of ABR algorithms in a real-world

streaming environment [200, 237]. These studies typically deploy a couple of compet-

ing ABR algorithms in practical video delivery platforms such as YouTube, Netflix,

and Hulu for a short period. In each streaming session, some quality-related fea-

tures are recorded in the backend, based on which objective evaluation is conducted.

The online deployment of ABR algorithms enjoys the most realistic streaming en-

vironment for performance evaluation. Yet numerous obstacles remain in the path

of extensive application of this approach. First, most adaptive streaming platforms

are proprietary, suggesting that this method is not applicable for an average ABR

developer. Even if video service providers are willing to share their infrastructures

to ABR researchers, the resulting data are not allowed to be released due to license

and privacy issues, making the evaluation study difficult to reproduce. Second, the

pilot studies can only be hold within a short time period to avoid the potential loss

of QoE, reputation of the service, and eventually the revenue of the service provider.

Consequently, the quantity of data is bounded by the capacity of the experiment.

Third, the ABR algorithms are not evaluated under identical throughput traces and

streaming videos due to the uncontrolled experimental protocol, suggesting that the

reliability of such experiment is also compromised.

• Offline Simulation + Subjective Evaluation: Despite the improvement of objective

QoE models over the past decade, subjective evaluation still remains the most reliable

way to evaluate the QoE of a streaming video. A typical controlled subjective evalu-
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ation study takes the following steps. At the beginning, a handful of source contents,

encoders, network traces, viewing devices, and ABR algorithms are selected to cover

the diversity of streaming environment. A set of offline simulations are conducted,

during which the relevant streaming activities such as bitrate decision and rebuffering

duration are recorded. Based on the streaming logs, researchers either reconstruct

each streaming session using video processing tools and store the resulting videos to

the hard drive, or customize DASH players to enable the reproduction of a pre-defined

bitrate decision trajectory. A training session is then performed to get participants

familiar with the experimental procedure and calibrate their quality scales prior to

the main subjective experiment. During the subjective experiment, participants are

instructed to provide a QoE score after the playback of each streaming video. The

ground truth QoE label of each test stimuli, often referred to as MOS, is obtained

by applying a series of post-processing techniques on the raw quality ratings to re-

duce the potential sampling noise. Thanks to the controlled experiment and noise

reduction technique, this approach is generally considered as the most accurate way

to measure the performance of ABR algorithms. Nevertheless, only have a limited

number of studies taken this method [10, 53], partly because its low cost efficiency.

More importantly, the scale of subjective experiments is restricted by the fatigue

effect, which suggests that the reliability of subjective ratings gradually degrades

with respect to the number of test samples. Given the limited capacity of subjective

testing against the large variety of streaming environment, it is virtually impossible

to obtain sufficient subject-rated streaming videos.

• Online Deployment + Subjective Evaluation: At first glance, the combination of

online deployment and subjective evaluation may seem ideal for the evaluation of

ABR algorithms, in which the quantity, representativeness, and reliability of data

can be optimized simultaneously. Somewhat surprisingly, so far none of the evalu-

ation schemes have employed the traditional subjective evaluation in the wild. The

primary obstacle to such a strategy is the lack of motivation for the experimental

participation. In contrast to the laboratory experiments that usually attract partici-

pants by financial compensation, a random viewer on the Internet do not have strong

incentives to provide a quality rating when consuming online videos. Even without
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the stumbling block, there is still a lack of proven outlier removal scheme for such

data analysis. To overcome these problems, a few studies proposed to replace the

cumbersome subjective QoE ratings by other subject-related quantities. A common

choice of such surrogate QoE is the user engagement [93, 237], where it is assumed

that the early exit of a streaming session is a direct consequence of quality degra-

dation. Since the viewing duration is automatically recorded by the ABR player

once a viewer closes a streaming session, it can be obtained with very little effort.

However, this approach neglects the impact of viewers’ tolerance, random exit, and

loss of interests. Other proposals aim to infer the QoE from user-viewing activities

such as pause, refresh, and play with full screen [140]. These methods suffer from

similar limitations to the user engagement approach. Nevertheless, once the solution

to these problems is found, the subjective evaluation method of ABR algorithms in

the realistic environment has the potential to change the landscape of the fields of

ABR and QoE.

Each of the aforementioned methods exhibits its own benefits and drawbacks, and they

complement each other in terms of quantity, representativeness, and reliability. As a result,

it is ideal to employ multiple schemes in the evaluation of ABR algorithms.

A summary of existing ABR evaluation studies is given in Table 2.3. Most of the ex-

isting studies suffer from the following limitations: (1) the number of source videos too

small to represent the real-world scene; (2) advanced video encoders are not included; (3)

the quality assessment studies are conducted on few out-dated devices; (4) the realistic

throughput corpus are of limited size; (5) the studies do not cover a comprehensive list of

ABR algorithms; (6) only one experiment protocol is utilized as the evaluation methodol-

ogy, which inevitably results in a biased conclusion that favors a particular tradeoff among

quantity, representativeness, and reliability; (7) the experiment data are not publicly avail-

able.
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Table 2.3: Summary of adaptive bitrate streaming evaluation studies. Abbreviations: BU,

bandwidth utilization; RD, rebuffering duration; BV, bitrate variation; PSNR, peak signal-

to-noise ratio; SSIM, structural similarity index; UE, user engagement; QoE, quality-of-

experience; RDO, rate distortion performance.

Study Year
ABR Environment Evaluation

Algorithm Video Encoder Throughput Display Methodology Controlled Criterion

[239] 2010 1 1 1 3 1 Objective – PSNR, RD

[139] 2011 1 1 1 5 1 Subjective – QoE

[2] 2011 3 1 1 ∼10 1 Objective X BU

[144] 2012 5 1 1 3 1 Objective X BU, RD, BV

[35] 2013 4 1 1 2 1 Objective X BU, RD, BV

[119] 2013 4 1 1 N/A 1 Objective 7 BU, BV

[102] 2014 4 1 1 N/A 1 Objective 7 BU, BV

[93] 2015 2 4 days of real-world streaming A/B test 7 UE

[103] 2015 2 1 1 4 1 Objective X BU, BV

[241] 2015 6 1 1 2000 1 Objective X QoE

[200] 2016 3 8 days of real-world streaming Objective 7 BU, RD, BV, QoE

[202] 2016 10 1 1 1 1 Objective X BU, RD, BV

[16] 2016 5 1 1 6 1 Objective X BU, RD, BV

[191] 2016 6 1 1 98 1 Objective X QoE

[131] 2017 6 1 1 400 1 Objective X QoE

[3] 2018 5 1 1 571 1 Objective X QoE

[53] 2018 6 20 1 13 1 Subjective X QoE

[11] 2018 4 15 1 7 1 Subjective X QoE

[92] 2019 5 5 1 600 1 Objective X QoE

[237] 2020 5 ∼7 months of real-world streaming Objective 7 SSIM, RD, UE

Ours 2020 15 250 3 ∼20,000 3 Objective X QoE, RDO

Ours 2020 5 5 2 9 3 Subjective X QoE, RDO
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Chapter 3

Adaptive Streaming: From Bitrate

Maximization to Rate-Distortion

Optimization

Despite the diversity of instantiations, almost all ABR algorithms instantiate a bitrate

maximization paradigm. These methods share a common formulation

maximize
θ

EpE
∑T

t=1 Rt(at)

subject to at = πθ(s1:t)

st+1 = E(at, s1:t),

(3.1)

where Rt, π, and E represent the average bitrate of chunk t, the control policy, and the

streaming environment, respectively. The formulation encodes the physical transmission

and decision making process as follows. Before chunk t + 1 is downloaded, the ABR

controller π parametrized by θ, performs an action at ∈ A based on all previous states

s1:t, where st ∈ S for all t, to determine which representation to download. The state

st generally represents the information about throughput history, buffer occupancy, and

previous downloaded representations before at is taken. Given a bitrate decision at and the

previous states s1:t, the environment E consisting of the characteristics of streaming video

and the future throughput will download a corresponding representation of the next chunk,
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Figure 3.1: The relationship between bitrate and a perceptually motivated video quality

model on (a) different video contents, (b) different encoding spatial resolutions, and (c)

different video encoders and viewing devices.

updates the buffer occupancy, tracks the throughput, continues playing the video from the

buffer, and returns all the updated state st+1 to the agent. Then the agent takes another

action at+1 based on the new states. By utilizing the bitrate maximization paradigm, one

is implicitly making the following two assumptions. First, bitrate is a good estimate of

video QoE. Second, service provider incurs no cost for the storage and transmission of each

bit. Unfortunately, none of the assumptions hold true in practice. As a result of these

unrealistic assumptions, bitrate maximization-based ABR systems often suffers from the

following limitations.

• The Quality Definition Problem: It is often tempting to assume bitrate is a good

measure of quality in an adaptive streaming system because 1) for a given video con-

tent, a given spatial/temporal resolution, and a given video encoder, typically higher

bitrate leads to better QoE; 2) higher spatial/temporal resolution of the same video

content typically leads to higher quality, but requires higher bitrate; 3) it is easy to

operate and optimize as bitrate is accessible without fully decoding the compressed

video stream. However, the assumption contradicts the rate-distortion theory [17],

and may deteriorate in different compression, transmission and reproduction sys-

tems [36, 227, 229, 230]. A motivating example is shown in Figure 3.1, where the

relationships between bitrates and quality scores predicted from a perceptually mo-
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tivated, cross-resolution, and cross-device video quality model SSIMplus [169] at a

variety of operating conditions are presented. We summarize the key observations

as follows. First, there is a significant amount of rate-distortion variability across

different video contents. Specifically, it takes very little resource (around 500 kb/s)

to nearly losslessly encode the content “Garden”, while encoding the content “Cat”

at the same quality level takes more than 6 times bitrate. As a result, an ABR al-

gorithm optimized on “Cat” may introduce significant bitrate waste when streaming

“Garden”. Second, rate-distortion curves at different encoding resolutions exhibit

distinct characteristics, even for the same content. Each resolution may have a bi-

trate region in which it outperforms other resolutions. Third, there is significant

diversity in the rate-distortion characteristics for a video encoded by different video

encoders and viewed at different display ports.

• The Conflicting Demand Problem: The most fundamental problem with the tra-

ditional approach is the neglect/misjudgement of service providers’ demand, which

arises as a natural consequence of the second assumption. In particular, it is as-

sumed that both video consumers and service providers are benefited from draining

the available bandwidth. However, encoding, storage, and transmission at high bi-

trate run at the risk of server overload [38]. Currently, the best way to overcome the

problem is to incorporate more servers and content delivery network [101], which are

very expansive to purchase and maintain [26]. As a result, video service providers

have a strong incentive to reduce bitrate consumption.

• The Tragedy of Commons Problem: The two unrealistic assumptions jointly in-

troduce the Tragedy of Commons problem to the bitrate maximization-based ABR

systems, where bitrate resources are distributed across different video consumers in

a sub-optimal fashion. Specifically, the perceptual quality of streaming video usually

exhibits a concave relationship with respect to bitrate, suggesting that marginal in-

crease in QoE gradually decreases with the increment of bitrate. Such “best-effort”

approach miss out opportunities to save bandwidth usage for competing video play-

ers sharing the same bottleneck and will eventually cause network congestion or

sub-optimal viewer QoE. To illustrate this point, consider the scenario in Figure 3.2
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Figure 3.2: Illustration of bandwidth sharing scenarios. (a) bitrate maximization paradigm.

(b) rate-distortion optimization paradigm.

(a), where two video players sharing bandwidth join the network sequentially. In the

case of bitrate maximization strategy, both players select the highest bitrate when

it does not observe a completing player. Consequently, Player A does not finish the

download in time when player B joins the network. According to the default char-

acteristics of TCP, both players have to equally shares the bandwidth and download

videos at a significantly lower bitrate, which inevitably lead to in sub-optimal QoE.

The phenomena is widely known as Tragedy of Commons in Economics [130]. The

problem can be efficiently solved if both players download videos with a sufficiently

high quality but at a lower bitrate such that they do not need to compete for re-

sources, as illustrated in Figure 3.2 (b).

Some additional problems that may be caused by the second assumption, e.g., unnecessarily

increasing video bitrate even when there is no room for QoE gain; excessive bitrate is prone

to create rebuffering events, etc.

3.1 Rate-Distortion Optimized Adaptive Streaming

Our goal is to provide a new methodology to guide the design and evaluation of ABR

algorithms. In this section, we provide solutions to the aforementioned problems one by
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one. We show that the new paradigm RDOS arises as a natural consequence of these

solutions.

To address the quality definition problem, we first disentangle bitrate R from the notion

of QoE Q. We argue that bitrate and QoE are intrinsically two different quantities that

should not be considered equivalent. Since HVS is the ultimate receiver of streaming videos,

the most reliable way to evaluate QoE is by performing a subjective experiment. It is worth

noting that once a viewer observes a streaming video x, the QoE is independent of bitrate R

which is an innate component of the distortion process φ. Put another way, human viewers

can reliably evaluate QoE without the access to the encoding bitrate. In practice, however,

subjective evaluation is inconvenient, time-consuming, and expensive. Most importantly, it

is not applicable in the real-time ABR decision making. Alternative, one can construct an

artificial vision system to replace the HVS, which has been investigated for decades [224].

Being independent of the bitrate, such perceptual QoE measurement can generalize well

to a wide range of source content, encoding specifications, viewing devices, and even other

distortion processes.

Equipped with a better understanding of QoE, we are now ready to solve the conflicting

demand problem. To balance the adversarial objectives between video consumers and

service providers, we propose to formulate the adaptive streaming problem as a rate-

distortion optimization problem

maximize
θ

EpE
[
Q(s1:T )− λ

∑T
t=1Rt(at)

]
subject to at = Gθ(s1:t)

st+1 = E(at, s1:t),

(3.2)

where λ > 0 denotes a weighting parameter. In general, the overall QoE in each streaming

session is a function of all the visited states s1:T , which encode the quality adaptation

trajectories and the information about each rebuffering event. This new RDOS paradigm

respects both the demand of viewers, who would like to optimize their QoE Q(s1:T ), and the

requirement of service providers, who are inclined toward minimizing bitrate consumption∑T
t=1 Qt(at).

The RDOS paradigm also alleviates the inefficiency problem to some extent, since it

does not blindly maximizes bitrate usage. Instead, the rate-distortion optimized streaming
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agent seeks a solution with the marginal QoE improvement higher than the worth of its

bitrate increment. Such conservative strategy usually selects chunks of sufficiently high

QoE without spending too much bitrate, reduces the probability of network sharing, and

thus results in a better overall QoE. The phenomena is illustrated in Figure 3.2 (b).

3.2 Why RDOS?

We argue that the ultimate goal of bitrate adaptation is to balance the limited supply of

network resource and the increasing demand of users’ QoE. Rate-distortion theory appears

to be a natural fit to the resource allocation problem. To further motivate the use of

RDOS, we provide three interpretations to understand the framework.

We can view RDOS as a source coding problem with a fidelity criterion, closely related

to vector quantization. Specifically, for the number of bits required to transmit the video

under a time-varying channel, RDOS provides a version of the signal with a certain fidelity.

The bitrate adaptation engine can be interpreted as an online video encoder that adaptively

picks chunk-level encoding configurations from a determinant codebook according to the

environment status. The criterion for the encoding strategy is the minimization of a

Lagrangian cost function wherein the perceptual distortion is weighted against the number

of bits associated with each video chunk using a Lagrange multiplier.

An alternative interpretation is to view the bitrate adaptation problem as a QoE

maximization problem. Although video quality usually exhibits a monotonic relation-

ship with respect to encoding bitrate, the function connecting them is usually nonlinear,

time-varying, and signal-dependent. Further, the problem of QoE maximization becomes

increasingly ill-conditioned as we increase the number of dimensions in streaming videos

such as spatial resolution, frame rate, bit depth, and viewing devices. In particular, many

video representations in the attribute-quality space may possess the same perceptual qual-

ity. The ill-conditioning leads to a lack of consistency in the representation selection,

resulting in inefficient resource allocations. The Lagrangian formulation can regularize the

representation selection, leaning towards a solution with the minimum bitrate usage on an

equal-distortion contour.
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Another useful approach to learn RDOS is to view the bitrate adaptation problem as a

supply decision problem in an abstract QoE market. In this market, the streaming service

company, who acts as the buyer, purchases the goods, i.e. QoE, from the ABR controller,

who acts as the seller. To better explain the economic view, we rewrite the objective

function in (3.2) as

maximize
θ

1

λ
Q̃− R̃, (3.3)

where Q̃ = EpE
∑T

t=1 Q(at, xt, xt+1) denotes the expected overall QoE, and R̃ = EpE
∑T

t=1

Rt(at) denotes the expected total bitrates. The first term in (3.3) can be interpreted as the

total “revenue” made by the seller, where 1
λ

is the “price” in bitrates per unit QoE, and

the expected total QoE is the quantity of goods the ABR controller is willing to supply.

The second term can be interpreted as the total cost for delivering this amount of QoE.

Therefore, (3.3) indicates the total “profit” the ABR controller could make at the “price”

of 1
λ
. To maximize the total “profit”, the seller should deliver a QoE at which the marginal

cost equals the price [130], i.e. 1
λ

= ∂R̃
∂Q̃

.

Taking the framework as a starting point, we delve into the design of individual modules

including a QoE model Q, a reinforcement learning-based bitrate adaptation function that

explicitly optimizes the rate-distortion performance, and a realistic and content-aware state

space X .

3.3 Economic Interpretation

In the economic interpretation, we analogize the ABR agent as the supplier of QoE in a

virtual market, so we may use the supply curve to characterize the ABR agent. In the

context of economy, the supply curve describes the relationship between the price and the

supplied quantity [130]. In order to maximize the profit, the supplier often produces as

many goods as possible until the marginal cost of an extra unit of goods equals the price

in the market. This means that the supply curve can also be determined by the mapping

between the supplied quantity and the marginal cost at this amount of output. In the

scenario of adaptive streaming, the cost is network bandwidth measured in bitrate, and

the output is the QoE. It turns out that the rate-distortion function exactly describes the
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relationship between the cost and the supplied quantity. As a result, the supply curve

can be obtained by taking the derivative of the inverse rate-distortion function as shown

in Figure 3.3. Under some mild conditions, the rate-distortion function can be shown to

be concave [21], suggesting that the supply curve is monotonically increasing. It is also

worth noting that the supply curve varies according to the video content and the network

condition.

Regarding the demand side of the QoE market, we may also define a demand curve to

describe at each price, how much QoE people would like to consume. In fact, the demand

curve in the virtual market depends on its counterpart in a real-world market of video

services. We conceptually show the interaction between the two markets in Figure 3.4.

In the physical market, an end user pays money to video service companies for streaming

videos at certain quality levels. This is similar to what we do when subscribing a video

service, such as Netflix. Then the companies invest the money in bitrate resources, which

are then used to “buy” the QoE from the ABR agent in the virtual market as we dis-

cussed in the previous paragraph. Therefore, the demand curve depends on the customers’

willingness to pay for an extra unit of QoE in the physical market. A recent study has

demonstrated that video service providers exhibit a diminishing marginal utility of QoE

with both mathematically models and empirical evidence [82], suggesting that the demand

curve is monotonically decreasing. A conceptual demand curve is also drawn in Figure 3.3.

Now we can answer the question: what is the optimal value for λ? The answer is

that it depends on the characteristics of the QoE market. In an ideal case, the QoE

market can achieve an equilibrium price at the intersection of the supply and demand

curves thanks to the interplay of many consumers and service providers. It has been

proved that the equilibrium price yields the maximum market efficiency [130], which can

be measured as sum of the consumer surplus and the profit (producer surplus) as shown in

Figure 3.4. The equilibrium price is thus optimal in this sense. In other scenarios, we may

also apply appropriate economic tools to analyze the optimal λ. Therefore, the proposed

RDOS framework not only redefines the objective of the adaptive streaming task, but also

provides a systematic means to deal with various application scenarios.
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Figure 3.4: The illustration of the physical market between customers and video service

providers, and the virtual market between the service providers and ABR agents.

3.4 Connections to Bitrate Maximization Scheme

In contrast to the rate-distortion performance, most existing ABR algorithms [3, 30, 32, 93,

102, 119, 131, 141, 191, 200, 212, 241] are focused on maximizing the bitrates of streaming

videos under given network conditions. By comparing (3.1) to (3.2), we find that the bitrate

maximization scheme treats bitrate usage as delivered QoE, and set the value of λ to zero,

i.e. the price of each unit QoE to infinity. Such settings cause at least three drawbacks.

First, equaling quality to bitrate implies that the marginal cost of QoE keeps constant,

leading to a completely flat supply curve as shown in Figure 3.5. Second, for different video

contents, the bit maximization scheme generates an identical supply curve. The extremely

biased estimate of the supply curve will surely result in a sub-optimal market efficiency and

an impaired QoE. Third, the infinity price always drives the ABR agent to produce the

maximum QoE, where the marginal return to the consumer might be very low. In other

words, we may miss out the opportunity to save bitrates while still delivering satisfactory

QoE.

Although we have assumed the supply and demand curves of QoE to be monotonic for

illustration purpose, the RDOS framework does not rely on these assumptions. In fact,

the economic analysis is still valuable in finding the optimal operating point to balance

between QoE and bitrate based pricing. Specifically, the RDOS framework defines the
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Figure 3.5: The illustration of the the QoE market under the bitrate maximization scheme.

adaptive streaming problem as a trade in a virtual market, where the behaviors of buyer

and seller are influenced by the demand and supply of QoE. The most economically efficient

approach requires a precise model of demand curve and supply curve, such that an optimal

price could be derived. The benefits of being able to define a price 1
λ

are twofold. The

parameter not only reflects the true cost in video distribution, and may also be used as a

way to define priority of end users.

3.5 Summary

In this section, we propose a novel paradigm for the development of ABR algorithms. In

contrast to the traditional bitrate maximization paradigm, the new RDOS must operate

at any given point along the rate-distortion curve, effectively balancing the conflicting

requirement from video consumers and service providers. We motivate the new design

philosophy from three distinct perspectives. To instantiate the RDOS paradigm, one has to
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develop an objective QoE model that can accurately predicts subjective quality evaluation,

which is the topic of the subsequent chapter.
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Chapter 4

A Bayesian Quality-of-Experience

Model for Adaptive Streaming

Videos

In Chapter 2, we have learnt that existing objective QoE models share a common two-layer

Bayesian network. The first stage maps the raw streaming video signal x to a latent space

z with a much lower dimensionality, where the QoE prediction problem should hopefully

be easier to solve.

Traditional QoE models employ chunk-level bitrate and rebuffering duration as the

feature set, which achieved limited success in predicting subjective QoE ratings. In our

previous work, we developed a new feature extractor which maps each video chunk xt

into a three dimension latent space zt, consisting of perceptual video quality, rebuffering

duration, and the magnitude of quality change. Thanks to the informative prior about

HVS, the feature set has demonstrated outstanding performance in various independent

studies [8, 10, 11, 16, 51, 54]. Most importantly, the feature set does not comprise bitrate,

making the resulting QoE model independent of bitrate. As illustrated in Chapter 3,

the bitrate independent QoE model is an important component in the RDOS paradigm.

Therefore, we inherit the feature extractor from our previous study, and focus on the

regression model in this chapter.
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There have been two distinct approaches to model the regression function p(y|{zt}Tt=1;

θ2). The first approach makes strong prior assumptions about the regression model pa-

rameter p(θ2). In addition to the Markov assumption, temporal homogeneous assumption,

and additive assumption, objective QoE models in this category also make assumptions

about the specific form of activation function along each dimension. A common drawback

of the approach is that the prior distribution is often selected on the basis of mathematical

convenience rather than as a reflection of any prior beliefs. The second approach aims

to approximate the posterior parameter distribution solely from the likelihood function

p(Dz|θ2). Unfortunately, these models suffer from strong generalization problem due to

the lack of training data.

Motivated by the limitations of the existing methods, we aim to develop an objective

QoE model that can fuse the prior knowledge about QoE and subject-rated streaming video

data in a principled way. Bayesian method appears to be a natural fit to the information

fusion problem. To be specific, one can employ the maximum a posteriori estimator to

obtain the optimal model configuration

θ∗2 = arg max
θ2

p(θ2|Dz)

= arg max
θ2

p(Dz|θ2)p(θ2).
(4.1)

But even given such a unified framework, the QoE prediction problem is still non-trivial.

In particular, traditional prior distributions rely on a number of strong assumptions and

generalizations, strictly restricting the space of feasible solution. For example, the QoE

function can vary significantly from exponential and logarithmic functions, even with the

optimal model parameters. As will be demonstrated in subsequent sections, existing prior

models cannot make efficient use of the training data. On the other hand, simply removing

these assumptions would degenerate the maximum a posteriori approach to the maximum

likelihood estimator, resulting in the overfitting problem. Therefore, a meaningful prior

probability model for the HVS configuration is of central importance for this application.

While many recent works acknowledge the importance of prior knowledge in the objective

QoE models [10, 54, 127], a careful analysis, modeling, and evaluation of the models has

yet to be done. We wish to address this void.
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4.1 Prior QoE Model

In this section, we derive a prior QoE model by analyzing a corpus of subjective QoE

experiments. To simplify the discussion, we start with a deterministic formulation of

the prior QoE model. In the end of the derivation, we will also present a probabilistic

interpretation of the resulting prior model.

4.1.1 Deterministic View

Formally, the overall QoE can be denoted as Q({pt, τt, ∆pt}Tt=1), where pt, τt, and ∆pt

= pt − pt−1 represent the presentation quality (which may be measured by any modern

video quality assessment models such as VMAF [117] and SSIMplus [169]), the rebuffering

duration, the magnitude of quality adaptation of chunk t, respectively. T denote the

number of chunks in the streaming video. Defining the space of QoE functions helps us

build a model of these functions. It not only guides us as to the form such a model

should take, but also determines the constraints these functions must satisfy. We begin by

summarizing observations from a collection of existing subjective QoE studies, and then

formulate the domain knowledge to define the space of these functions. For the brevity

of math formulation, we will use simplified notations for the rest of this section unless

otherwise stated. Specifically, we will omit all the identical variables of the QoE function

Q in the same equation, and only emphasize the factors that are different. First, various

subjective tests [42, 87] have attested that rebuffering duration is negatively correlated

with the overall QoE of streaming videos. Formally, we may summarize this observation

by

Q(τt = τa) ≥ Q(τt = τ b),∀τa ≤ τ b, t. (4.2)

Note that we have used the simplified notation in (4.2) to show that the two compared

video streams are only different in the rebuffering duration of chunk t.

The second assumption is that, given the same rebuffering length, the QoE drop tends

to be greater when the presentation quality of the previous chunk is higher, i.e.

Q(pt−1 = pa, τt = 0)−Q(pt−1 = pb, τt = τ) ≤
Q(pt−1 = pa, τt = 0)−Q(pt−1 = pb, τt = τ), ∀τ, pa ≤ pb, t.

(4.3)
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Such a trend has been observed in recent subjective tests [12, 54], and may be explained

by the expectation confirmation theory [153].

The third assumption is elicited from the fact that, given a constant presentation qual-

ity and a fixed total duration of rebuffering, the overall QoE degrades as the number of

rebuffering occurrences increases [86, 142, 159]. Mathematically, this may be expressed as

Q(τt−1 = τa, τt = τ b) ≤ Q(τt−1 = 0, τt = τa + τ b),∀τa, τ b, t. (4.4)

The fourth remark is that, given the same rebuffering duration, videos with higher

presentation quality consistently deliver higher overall QoE, despite the greater penalty

for the rebuffering event [127]. This statement can be formulated as

Q(pt = pa) ≤ Q(pt = pb),∀pa ≤ pb, t. (4.5)

We then analyze the functional properties with respect to the quality adaptation. The

fifth assumption suggests that people always assign a penalty to presentation quality degra-

dation, reward to quality elevation, and neither penalty nor reward when no quality adap-

tation occurs [51, 72, 142, 168]. Mathematically, the assumption can be expressed as{
Q(∆pt = δpa) ≤ Q(∆pt = 0), ∀δpa ≤ 0, t

Q(∆pt = δpb) ≥ Q(∆pt = 0), ∀δpb ≥ 0, t
. (4.6)

Further analysis [51, 142, 150, 168] on the relationship between the QoE adjustment

and the intensity of quality adaptation ∆p indicates that subjects tend to give greater

QoE penalty or reward when quality drops or improves by a greater amount. This finding,

together with the fifth assumption, prompts our sixth assumption: QoE is monotonically

increasing with regards to ∆p:

Q(∆pt = δpa) ≤ Q(∆pt = δpb),∀δpa ≤ δpb, t. (4.7)

Experiments in [51] find that quality degradation occurring in the high quality range

leads to greater amount of penalty than that occurring in the low quality range, while
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quality elevation in the high quality range results in smaller rewards. Such an observation

leads to the seventh assumption that

Q(pt = pa,∆pt = δp)−Q(pt = pa,∆pt = 0) ≥
Q(pt = pb,∆pt = δp)−Q(pt = pb,∆pt = 0),∀δp, pa ≤ pb, t.

(4.8)

Another commonly observed trend in QoE is that the reward for a positive quality

adaptation is relatively smaller than the penalty for a negative one given the same intensity

of quality adaptation and the same average presentation quality [51, 150, 168]. Formally,

this can be summarized by

Q(pt = pa,∆pt = 0)−Q(pt = pa,∆pt = −δp) ≥
Q(pt = pa − δp,∆pt = δp)−Q(pt = pa − δp,∆pt = 0),∀pa, δp ≥ 0, t.

(4.9)

In summary, we define the space of QoE functions Q as

WQ := {Q : R3T → R|Q satisfying constraints (4.2) to (4.9)}. (4.10)

The inequality constraints in (4.10) represent a cone [19], which is convex by its definition.

4.1.2 Probabilistic View

The conversion from the inequality constraints in (4.10) to its probability representation

is straight-forward. Let θ2 denote the parameters of the regression function Q, then the

constraint in (4.2) corresponds to the following prior distribution

p1(θ2) =

{
ε, ∀Q({pt, τt,∆pt}Tt=1;θ2) satisfying (4.2)

0, otherwise
, (4.11)

where ε represents certain probability density for each feasible parameter configuration

such that p1(θ2) sum to 1. The constraints in (4.3)–(4.9) can be transformed into prior

probability distributions of θ2 in a similar fashion, which can be denoted as p2(θ2)–p8(θ2),

respectively. The simple aggregation of constraints in (4.10) implicitly assumes the inde-

pendence of individual assumptions. Therefore, the joint prior probability distribution of

QoE models may be obtained by

p(θ2) =

∏8
i=1 pi(θ2)∫

θ

∏8
i=1 pi(θ)dθ

. (4.12)
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4.2 A Bayesian QoE Model

Our discussion on the prior QoE models has been encouraging. However, the general form

of the QoE function still exhibits a very high dimensionality. To obtain a meaningful

approximation, some further assumptions have to be made. In this section, we present the

roadmap to design a perceptually grounded objective QoE model.

4.2.1 Additional Assumptions

The observations from existing psychophysical experiments not only illustrate the feasi-

ble functional form of QoE models, but also point out the joint impact among the three

dimensional features in QoE. As a result, we can effectively replace the specific form as-

sumption and the additive assumption in the traditional prior model by the HVS imposed

constraints in (4.10). However, existing subjective QoE studies do not provide enough

information in the temporal aspects. For example, how an impairment that appears early

in a streaming session affects the QoE in the subsequent QoE in a long run is still a subject

of ongoing research. There have also been limited studies [174] investigating the validity of

the temporal homogeneous assumption. In this study, we adopt a conservative approach

by inheriting the Markov assumption and the temporal homogeneous assumption. Nev-

ertheless, the proposed Bayesian framework is general enough to incorporate more prior

knowledge once they become available.

Mathematically, the Markov assumption and the temporal homogeneous assumption

can be jointly expressed by

Q({pt, τt,∆pt}Tt=1) =
1

T

T∑
t=1

q(pt, τt,∆pt),

where q(·) is the chunk-level QoE function, which is invariant to t. For simplicity, we will

drop the subscript t in the rest of this section unless otherwise specified. By incorporating

these assumptions, we reduce the original problem to the estimation of a three dimensional

function q(pt, τt, ∆pt).
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4.2.2 Parameterization

Strictly speaking,W is a space of continuous functions, but we may approximate it in terms

of a vector space by densely sampling the supporting domain of Q. To avoid potential bias

introduced by models with specific form, we propose to use a non-parametric model. Let

the supporting domain of Q be {(p, τ , ∆p)|p ∈ [0, Pmax], τ ∈ [0, τmax], ∆p ∈ [−p, Pmax −
p]}, where Pmax and τmax indicate the best quality and maximum rebuffering duration,

respectively. By uniformly sampling p, τ , and ∆p, we can represent the function Q with

a finite-size tensor Q ∈ R(I+1)×(J+1)×(K+1). The element qi,j,k denotes the QoE at (p, τ ,

∆p) =
(
i−1
I
Pmax,

j−1
J
τmax,

k−1
K
Pmax

)
. We then vectorize Q as q ∈ R(I+1)×(J+1)×(K+1) for the

convenience of further formulation. We employ the uniform vectorization for two reasons.

First, the exact form of QoE functions (e.g. exponential, logarithmic) cannot be known a

priori. To this regard, the uniform sampling implicitly serves as a non-informative prior on

the form of QoE functions. Our second motivation is closely related to the flat assumption,

which will be detailed in subsequent discussion. In particular, when the QoE functions are

band-limited, they can be fully recovered from these samples when the sampling density

is larger than the Nyquist rate. Finally, we are able to approximate the functional space

W with a vector space

Wq := {q ∈ R(I+1)×(J+1)×(K+1)|Gq ≤ h,Bq = c},

where G,h,B and c are constructed so that all the entries in q should satisfy the constraints

in (4.10).

4.2.3 Model Training

Even though the theoretical space of the rebuffering QoE function is restricted to a cone,

it is still infinite-dimensional. Ideally, the optimal rebuffering QoE function should be the

one that best explains the subjective data and lives in the theoretical space. Specifically,

given a training set of Dx video sequences, each of which has a QoE rating Q, we want

to obtain a vector q∗ ∈ Wq that minimizes the mean squared error between the model
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prediction and subject-rated data

εF :=
1

Dx

Dx∑
m=1

[
Q− 1

T

T∑
t=1

qimt ,jmt ,kmt

]2

,

where imt , jmt , and kmt encode the corresponding indices of presentation quality, rebuffering

duration, and quality adaptation magnitude for the t-th chunk of m-th video in the vector

q, respectively. However, existing subject-rated streaming video datasets contain very

limited samples, which are sparsely distributed in the feature space. In particular, some

(p, τ , ∆p) combinations never appear in the training set, suggesting the optimization

problem is ill-conditioned. To obtain a meaningful solution, we impose flat prior on the

function Q. Mathematically, flatness regularization can be represented as the second-order

differences along i, j, and k axes

εS :=
1

(I + 1)(J + 1)(K + 1)

I+1∑
i=1

J+1∑
j=1

K+1∑
k=1

[(
∂2qi,j,k
∂i2

)2

+

(
∂2qi,j,k
∂j2

)2

+

(
∂2qi,j,k
∂k2

)2
]
.

(4.13)

It is not hard to see that both εF and εS take quadratic forms of q. As a result, we are able

to estimate the rebuffering QoE matrix Q by solving the following quadratic programming

problem

minimize
q

L = εF + αεS

subject to q ∈ Wq,
(4.14)

where α > 0 is a weighting factor. Once the optimization problem is solved, q∗ is saved

as a look-up table to query the QoE score of each video segment. The convexity of Wq

and the objective function implies that there exists a unique solution for the optimization

problem. The problem can be efficiently solved with projected gradient descent-based

algorithms such as alternating direction method of multipliers [22]. Minimizing the loss

function in (4.14) is equivalent to solving the maximum a posteriori problem (4.1), with

a Gaussian likelihood function and a prior probability distribution given by the product

between a Gaussian distribution over (4.13) and a uniform distribution in (4.12).
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Table 4.1: Comparison of objective QoE models. Notations: r, bitrate; τ , rebuffering

duration; ∆r, bitrate variation; p, presentation quality measured by state-of-the-art video

quality assessment methods; ∆p, quality variation; s, spatial resolution. Abbreviations:

QP, quantization parameter; ML, maximum likelihood; MAP, maximum a posteriori.

QoE model Features Markov Temporal homogeneity Additive Functional form Training method

Mok2011 [141] τ X X X linear —

FTW [86] τ X X X exponential —

Liu2012 [124] r, τ X X X linear —

Xue2014 [236] QP, τ X X X logarithmic ML

Yin2015 [241] r, τ , ∆R X X X linear —

Spiteri2016 [191] r, τ X X X logarithmic —

Bentaleb2016 [16] p, τ X X X linear —

SQI [54] p, τ , ∆p X X 7 exponential —

P.1203 [157] r, s, τ , ∆r, QP 7 7 7 random forest ML

VideoATLAS [8] p, τ , ∆p 7 7 7 SVR ML

BSQI p, τ , ∆p X X 7 non-parametric MAP

4.3 Experiments

In this section, we first describe the experimental setups including considered objective QoE

models, benchmark databases, and evaluation criteria. We then compare BSQI with classic

and state-of-the-art objective QoE models. Furthermore, we also developed a efficient

methodology for examining the best-case performance of objective QoE models. Finally,

we conduct a series of ablation experiments to identify the contributions of the core factors

in BSQI.

4.3.1 Experimental Setup

Objective QoE Models

We evaluate the performance of 11 objective QoE models for adaptive streaming videos.

The competing algorithms are chosen to cover a diversity of design philosophies, including

8 classic parametric QoE models: FTW [86], Mok2011 [141], Liu2012 [124], Xue2014 [236],

Yin2015 [241], Spiteri2016 [191], Bentaleb2016 [16], and SQI [54], 2 state-of-the-art learning-
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based QoE models: VideoATLAS [8] and P.1203 [157], and the proposed BSQI. A de-

scription of the existing QoE models is shown in Table 4.1. The implementation for

VideoATLAS are obtained from the original authors and we implement the other nine

QoE models. We have made the implementation of the models publicly available at https:

//github.com/zduanmu/pysqoe. For the purpose of fairness, the parameters of all models

are optimized on the WaterlooSQoE-I [54] and the Waterloo Streaming QoE Database-II

(WaterlooSQoE-II) [51] datasets, except for P.1203 [157] whose training methodology is

not specified in the original paper. The WaterlooSQoE-I dataset contains 60 compressed

videos, 60 compressed videos with initial buffering, and 60 compressed videos with re-

buffering. The WaterlooSQoE-II dataset involves 588 video clips with variations in com-

pression level, spatial resolution, and frame-rate. For the models with hyper-parameters,

we randomly split the datasets into 80% training and 20% validation set, and the hyper-

parameters with the lowest validation loss are chosen. For BSQI, we set the maximum

rebuffering duration τmax to 10, while the penalty of a rebuffering event longer than 10 can

be easily obtained by extrapolating the tensor Q. We set the step size I = J = K to 10,

roughly characterizing the standard deviation of subjective presentation quality evaluation.

The maximum presentation quality value p = 100 is inherited from state-of-the-art VQA

measures SSIMplus and VMAF. Although we can learn a initial buffering experience tensor

independent from Q, it introduces unnecessary model complexity. Instead, we discount the

impact of initial buffering with 1
9

and set the expectation to the initial quality p−1 to 80

following the recommendation by [54]. We apply Operator Splitting Quadratic Program

(OSQP) [195] to solve the quadratic programming problem in (4.14). The fidelity-flatness

tradeoff parameter α = 1 is optimized on the validation set. In the subsequent section, we

will also show that BSQI performs consistently over a broad range of α.

Benchmark Databases

We compare BSQI with state-of-the-art objective QoE models on four subject-rated adap-

tive streaming video datasets, including LIVE-NFLX-I [12], LIVE-NFLX-II [11], WaterlooSQoE-

III [53], and WaterlooSQoE-IV [43]. The LIVE-NFLX-I dataset consists of 112 streaming

videos derived from 14 source content with 8 handcrafted playout patterns. The LIVE-

NFLX-II dataset consists of 420 streaming videos generated from content-adaptive encod-
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Table 4.2: PLCC between the objective QoE model prediction and MOS on the benchmark

datasets.
QoE model LIVE-NFLX-I LIVE-NFLX-II WaterlooSQoE-III WaterlooSQoE-IV Average Weighted Average

Mok2011 [141] 0.292 0.512 0.173 0.046 0.256 0.166

FTW [86] 0.286 0.568 0.323 0.147 0.331 0.263

Xue2014 [236] — 0.788 0.387 0.166 0.447 0.328

Liu2012 [124] 0.524 0.732 0.609 0.282 0.537 0.438

Yin2015 [241] 0.376 0.673 0.722 0.323 0.524 0.466

VideoATLAS [8] 0.100 0.644 0.385 0.675 0.451 0.586

P.1203 [157] 0.325 0.817 0.769 0.636 0.637 0.679

Bentaleb2016 [16] 0.741 0.898 0.625 0.682 0.737 0.713

Spiteri2016 [191] 0.612 0.731 0.809 0.685 0.709 0.714

SQI [54] 0.756 0.910 0.673 0.717 0.764 0.745

BSQI 0.753 0.905 0.794 0.720 0.793 0.769

ing profile, bitrate adaptation algorithms and network conditions. The WaterlooSQoE-III

dataset contains 450 streaming videos of 20 source content recorded from a set of stream-

ing experiment. The WaterlooSQoE-IV dataset contains 1, 350 highly-realistic streaming

videos constructed from 5 video contents, 2 video encoders, 9 real-world network traces, 5

ABR algorithms, and 3 viewing devices. The streaming videos in different datasets are of

diverse characteristics since they are generated from different source videos, encoding pro-

files, adaptive streaming algorithms, and network conditions. We do not evaluate Xue2014

on the LIVE-NFLX-I dataset because QP of the streaming videos are not publicly available.

Evaluation Criteria

Three criteria are employed for performance evaluation by comparing MOS and objective

QoE scores according to the recommendation by the video quality experts group [216]. We

adopt Pearson Linear Correlation Coefficient (PLCC) to evaluate the prediction accuracy,

Spearman Rank-order Correlation Coefficient (SRCC) and Kendall Rank Correlation Co-

efficient (KRCC) to assess prediction monotonicity. A better objective QoE model should

have higher PLCC, SRCC, and KRCC.
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Table 4.3: SRCC between the objective QoE model prediction and MOS on the benchmark

datasets.
QoE model LIVE-NFLX-I LIVE-NFLX-II WaterlooSQoE-III WaterlooSQoE-IV Average Weighted Average

Mok2011 [141] 0.335 0.516 0.152 0.056 0.265 0.171

FTW [86] 0.325 0.549 0.184 0.082 0.285 0.197

Xue2014 [236] — 0.778 0.388 0.219 0.462 0.360

Liu2012 [124] 0.438 0.732 0.598 0.468 0.559 0.539

Yin2015 [241] 0.441 0.686 0.741 0.541 0.602 0.601

VideoATLAS [8] 0.076 0.673 0.469 0.670 0.472 0.603

Spiteri2016 [191] 0.493 0.711 0.798 0.662 0.662 0.680

P.1203 [157] 0.415 0.821 0.797 0.668 0.675 0.708

Bentaleb2016 [16] 0.650 0.883 0.718 0.692 0.735 0.730

SQI [54] 0.644 0.906 0.690 0.690 0.735 0.732

BSQI 0.655 0.893 0.776 0.699 0.756 0.747

Table 4.4: KRCC between the objective QoE model prediction and MOS on the benchmark

datasets.
QoE model LIVE-NFLX-I LIVE-NFLX-II WaterlooSQoE-III WaterlooSQoE-IV Average Weighted Average

Mok2011 [141] 0.275 0.425 0.112 0.044 0.214 0.137

FTW [86] 0.251 0.425 0.135 0.072 0.221 0.156

Xue2014 [236] — 0.582 0.262 0.148 0.148 0.253

Liu2012 [124] 0.324 0.524 0.434 0.319 0.319 0.378

Yin2015 [241] 0.327 0.482 0.543 0.379 0.379 0.427

VideoATLAS [8] 0.050 0.491 0.330 0.480 0.338 0.432

Spiteri2016 [191] 0.376 0.501 0.597 0.461 0.484 0.490

P.1203 [157] 0.300 0.619 0.604 0.479 0.501 0.520

Bentaleb2016 [16] 0.479 0.712 0.521 0.495 0.552 0.538

SQI [54] 0.475 0.735 0.496 0.504 0.553 0.543

BSQI 0.488 0.722 0.584 0.575 0.572 0.558
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4.3.2 Performance

Tables 4.2, 4.3, and 4.4 show the PLCC, SRCC, and KRCC on the benchmark datasets,

respectively, from which we have several observations. First, the objective QoE models

which employ advanced VQA models as the presentation quality measure generally per-

forms favorably against the conventional bitrate-based QoE models. In particular, Ben-

taleb2016 significantly outperforms Yin2015, where the only difference between them is

the video quality measure. The results provide strong evidence for our use of VMAF

as the presentation quality measure. Second, although the learning-based QoE models

perform competitively on certain test sets, they fail miserably on the other benchmark

datasets. Specifically, the performance degradation of P.1203 and VideoATLAS from one

dataset to another can be as large as 0.406 and 0.575, suggesting that the learning-based

models exhibit low generalizability to diverse streaming environments. By contrast, BSQI

achieves state-of-the-art performance on all three datasets, thanks to the effectiveness of

the domain knowledge. Third, the classic QoE models with a fixed parametric form cannot

faithfully capture the subjective QoE response on streaming videos with complex distortion

pattern, evident by the low prediction accuracy on the WaterlooSQoE-III. In spite of the

authors’ effort in designing functional forms to conform known HVS properties [54, 86, 236],

the QoE functions can vary significantly from exponential and logarithmic functions. On

the other hand, BSQI does not assume a particular form of QoE functions and instead

maximizes the mathematically well-behaveness. In summary, we believe the performance

improvement arises because 1) BSQI is equipped with a HVS inspired VQA measure that

generalize well to a variety of video contents, encoders, and viewing devices; 2) the training

procedure optimizes the quality prediction accuracy regularized by the prior knowledge of

HVS; and 3) the proposed model does not make inaccurate a priori assumptions on the

form of QoE functions.

4.3.3 Best-case Validation

Objective QoE model is not only used to evaluate, but also to optimize a variety of ABR

algorithms and systems. A good rule of thumb is that an optimized system is only as

good as the optimization criterion used to design it [222]. Conversely, the performance
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of an objective QoE model can be assessed via synthesizing optimal streaming videos

with respect to an objective QoE model followed by visual inspection of the generated

stimulus [224, 228]. Specifically, given a set of encoded and segmented videos and a realistic

network trace, we can generate an optimal streaming video in terms of each objective QoE

model. Subjective evaluation of the synthesized stimuli provides a best-case validation

of the underlining objective QoE models. A good objective QoE model should produce

perceptually better streaming videos comparing to the other schemes.

We select 12 high-quality videos of diverse complexity to constitute the test sample

set. All videos have the length of 30 seconds. Using the source sequences, each video

is encoded with two types of encoding strategy including the traditional fixed bitrate

encoding [147] and the state-of-the-art per-title encoding suggested by Netflix [36]. In the

fixed bitrate encoding, each video is encoded into 10 pre-defined representations. While

in the per-title encoding, the number of compressed versions and the choice of encoding

configuration depend on the characteristics of source videos. Specifically, we select the

bitrate-resolution pair such that i) At a given bitrate, the produced encode should have as

high quality as possible, and ii) The perceptual difference between two adjacent bitrates

should fall just below one just-noticeable different (the difference in VMAF ≈ 10). We

segment the test sequences the encoded videos with GPAC’s MP4Box [112] with a segment

length of 2 seconds for the following reasons. First, 2-second segments are widely used in

the development of ABR algorithms [131, 241] and deployment of real-world streaming

applications [57, 113], primarily due to its flexibility for stream adaption to bandwidth

changes and for its strong impact on reducing the latency of video delivery. Second, it

allows us to derive test videos in an efficient way such that they cover a diverse adaptation

patterns in a limited time. We randomly selected 12 network traces from both the 3G High

Speed Downlink Packet Access (HSDPA) dataset [171] and the 4G Belgium dataset [211] to

cover a diversity of network conditions. The HSDPA dataset contains network traces that

have significant variability and low average bandwidth, making it a strong test for the QoE

models in the complicated scenarios. Traces in the Belgium dataset exhibit higher average

throughput and lower standard deviation, which closely represents the realistic streaming

environment. We compare BSQI with three objective QoE models that have guided the

development of ABR algorithms, including Yin2015, Spiteri2016, and Bentaleb2016. We
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present results for the offline optimal scheme [131, 191], which is computed using dynamic

programming with complete future throughput information. The dynamic programming-

based method generates globally optimal streaming videos for the considered QoE models,

completely eliminating the influence of inaccurate throughput estimation. For each source

video, we randomly select a network trace and optimize the streaming videos with respect

to the four objective QoE models. In the end, we obtain a total of 192 streaming videos

generated from 24 (source videos, network traces) pairs ×2 encoding strategies × 4 ABR

algorithms. An online demonstration of the experiment is available at [44].

The subjective user study adopts the pairwise comparison methodology in which a pair

of streaming videos generated from the same video contents and network traces are pre-

sented to human viewers. The subjective experiment is setup as a normal indoor home set-

tings with an ordinary illumination level, with no reflecting ceiling walls and floors. A cus-

tomized interface is created to render a pair of 1920×1080 videos side-by-side on a 27 inch

Ultra High Resolution Television (UHDTV). The display is calibrated in accordance with

the recommendations of International Telecommunication Unit-Recommendation (ITU-R)

BT. 500 [100]. For each video pair, the subjects are forced to choose which one has a better

perceptual quality. A total of 15 näıve subjects, including 7 males and 8 aged between

18 and 55, participate the subjective experiment. Visual acuity and color vision are con-

firmed from each subject before the subjective test. A training session is performed, during

which, 3 video pairs that are different from the videos in the testing set are presented to

the subjects. We used the same methods to generate the videos used in the training and

testing sessions. Therefore, subjects knew what distortion types would be expected before

the test session, and thus learning effects are kept minimal in the subjective experiment.

For each subject, the whole study takes one hour, which is divided into two sessions with

a 5-minute break in-between.

The results of the subjective experiment can be summarized as a 4 × 4 matrix R,

where ri,j represents the probability of QoE model i better than QoE model j. Figure 4.1

shows the result matrix R, where the higher value of an entry (warmer color), the stronger

the row model against the column model. It is obvious that BSQI performs favorably to

the competing models. We further aggregate the pairwise comparison results into a global

ranking via the maximum likelihood method for multiple options [127, 163, 210]. Let
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Figure 4.1: Pairwise comparison matrix R. Each entry indicates the subjective preference

of the row model against the column model. R−RT are drawn here for better visibility.

µ = [µ1, µ2, µ3, µ4] ∈ R4 be the global ranking score vector, we maximize the log-likelihood

of µ

arg max
µ

∑
i,j

ri,j log(Φ(µi − µj))

subject to
∑
i

µi = 0,

where Φ(·) is the standard normal cumulative distribution function. The constraint
∑

i µi =

0 is introduced to resolve the translation ambiguity. The optimization problem is convex

and enjoys efficient solvers. A larger µi means the optimal streaming video in terms of

the i-th model is perceptually better than the optimal samples generated by other QoE

models in general. Figure 4.2 shows the experimental results. It can be seen that BSQI

significantly outperforms the standard QoE models. By taking a closer look at the trace-

specific experiment results, we find that BSQI consistently delivers the best performance

across different experiment setup, although the improvement is less significant on the 4G

dataset. We notice that the small performance gain in the 4G experiment arises from the

abundant bandwidth resource, especially when the highest resolution of streaming videos is

restricted by the pairwise comparison experiment. Note that the maximum width/height
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Figure 4.2: Global ranking results of the four QoE models.

of one test stimulus can be at most half of the width/height of the display. We expect a

more significant improvement in the realistic setting where 4K, high dynamic range, and

high framerate video contents are involved. The results have significant implications on

the development of ABR algorithms. Specifically, state-of-the-art ABR algorithms have

achieved a performance plateau levels and significant improvement has become difficult

to attain. However, the enormous difference in perceptual relevance between the bitrate-

based QoE model and BSQI suggests that further improvement is attainable simply by

adopting perceptually motivated optimization criterion.

4.3.4 Statistical Significance Test

To ascertain that the improvement of the proposed model is statistically significant, we

carry out a statistical significance analysis by following the approach introduced in [186].

First, a nonlinear regression function is applied to map the objective quality scores to

predict the subjective scores. We observe that the prediction residuals all have zero-

mean, and thus the model with lower variance is generally considered better than the
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Table 4.5: Statistical significance matrix based on F-statistics on the combination of

WaterlooSQoE-III, WaterlooSQoE-IV LIVE-NFLX-I, and LIVE-NFLX-II datasets. A

symbol “1” means that the performance of the row model is statistically better than that

of the column model, a symbol “0” means that the row model is statistically worse, and a

symbol “-” means that the row and column models are statistically indistinguishable.

FTW Mok2011 Liu2012 Yin2015 VideoATLAS Spiteri2016 P.1203 Bentaleb2016 SQI BSQI

FTW - - 0 0 0 0 0 0 0 0

Mok2011 - - 0 0 0 0 0 0 0 0

Liu2012 1 1 - - 0 0 0 0 0 0

Yin2015 1 1 - - 0 0 0 0 0 0

VideoATLAS 1 1 1 1 - 0 0 0 0 0

Spiteri2016 1 1 1 1 1 - - 0 0 0

P.1203 1 1 1 1 1 - - 0 0 0

Bentaleb2016 1 1 1 1 1 1 1 - 0 0

SQI 1 1 1 1 1 1 1 1 - 0

BSQI 1 1 1 1 1 1 1 1 1 -

one with higher variance. We conduct a hypothesis testing using F-statistics. Since the

number of samples exceeds 50, the Gaussian assumption of the residuals approximately

hold based on the central limit theorem [19]. The test statistic is the ratio of variances.

The null hypothesis is that the prediction residuals from one quality model come from the

same distribution and are statistically indistinguishable (with 95% confidence) from the

residuals from another model. After comparing every possible pairs of objective models,

the results are summarized in Table 4.5, where a symbol ‘1’ means the row model performs

significantly better than the column model, a symbol ‘0’ means the opposite, and a symbol

‘-’ indicates that the row and column models are statistically indistinguishable. It can

be observed that the proposed model is statistically better than all other methods on the

streaming video QoE database.

4.3.5 Ablation Experiment

We conduct a series of ablation experiments to single out the core contributors of BSQI. We

first take bitrate [124, 241], logarithmic bitrate [191], and QP [236] as the presentation video

quality measure as opposed to VMAF and then train the QoE model with the proposed
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Table 4.6: PLCC between the variants of BSQI prediction and MOS on the benchmark

datasets.
QoE model LIVE-NFLX-I LIVE-NFLX-II WaterlooSQoE-III WaterlooSQoE-IV Average Weighted Average

BSQI with bitrate 0.622 0.722 0.670 0.618 0.658 0.647

BSQI with log bitrate 0.686 0.715 0.787 0.738 0.732 0.741

BSQI with QP — 0.776 0.416 0.184 0.459 0.343

BSQI with VMAF 0.753 0.905 0.794 0.720 0.793 0.769

Table 4.7: PLCC between the variants of BSQI prediction and MOS on the benchmark

datasets.
Constraint # LIVE-NFLX-I LIVE-NFLX-II WaterlooSQoE-III WaterlooSQoE-IV Average Weighted Average

None 0.731 0.903 0.663 0.681 0.745 0.720

(4.2) 0.743 0.902 0.788 0.718 0.788 0.766

(4.2)(4.3) 0.748 0.904 0.780 0.719 0.788 0.765

(4.2)(4.3)(4.4) 0.748 0.896 0.800 0.713 0.788 0.764

(4.2)(4.3)(4.4)(4.5) 0.753 0.905 0.794 0.720 0.793 0.769

(4.2)(4.3)(4.4)(4.5)(4.6) 0.753 0.905 0.794 0.720 0.793 0.769

(4.2)(4.3)(4.4)(4.5)(4.6)(4.7) 0.753 0.905 0.793 0.720 0.793 0.769

(4.2)(4.3)(4.4)(4.5)(4.6)(4.7)(4.8) 0.753 0.905 0.794 0.720 0.793 0.769

(4.2) 0.744 0.902 0.788 0.718 0.788 0.766

(4.3) 0.743 0.906 0.758 0.717 0.781 0.760

(4.4) 0.743 0.895 0.798 0.713 0.788 0.764

(4.5) 0.753 0.902 0.787 0.717 0.790 0.766

(4.6) 0.745 0.884 0.770 0.691 0.773 0.744

(4.7) 0.745 0.884 0.770 0.692 0.773 0.744

(4.8) 0.745 0.884 0.770 0.691 0.773 0.744

(4.9) 0.746 0.884 0.770 0.692 0.773 0.744

BSQI 0.753 0.905 0.794 0.720 0.793 0.769

optimization framework. In order to map the range of presentation video quality measure

into the same perceptual scale [0, 100], we apply a linear transform to the alternative

measures before the training stage. From Table 4.6, we observe that BSQI achieves the

best performance with the state-of-the-art video quality measure VMAF.

Next, we analyze the impact of the knowledge-imposed constraints on the quality pre-

diction performance. We start from a baseline model by solving the problem in (4.14)

with no constraints and gradually increase the number of constraints. We then investi-

gate the validity of each observation by imposing only one constraint in a variant model.

The results are listed in Table 4.7, from which the key observations are as follows. First,

the performance of BSQI generally improves with respect to the number of imposed con-
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Figure 4.3: Performance of BSQI with different number of bins.

straints, advocating the effectiveness of prior knowledge in regularizing the objective QoE

functions. Second, while some of the constraints do not improve the performance of BSQI

by themselves, the joint model achieves state-of-the-art performance. This suggests that

the constraints may be complement to each other. Third, the constraint (4.4) has drasti-

cally different impacts on the LIVE-NFLX-II dataset and the WaterlooSQoE-III dataset,

suggesting that the validity of the constraint may be influenced by other factors. A careful

investigation may further improve the performance of the proposed QoE model.

4.3.6 Impact of Step Sizes

In previous experiments, we set the bin sizes of presentation video quality and rebuffering

duration to 10 and 1, respectively. To investigate the impact of step sizes, we train several

variants of BSQI, where the number of bins ranges from 5 to 20. We show the exper-

imental results in Figure 4.3. Theoretically speaking, the performance of BSQI should

increase monotonically with respect to the precision of feature representations. However,

the observation does not echo our expectation, which may be a consequence of insufficient
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Figure 4.4: Performance of BSQI with different α.

training data and intrinsic noise in the subjective opinion scores. Nevertheless, BSQI is

generally very robust to a broad range of bin sizes.

4.3.7 Impact of α

The parameter α in BSQI determines the tradeoff between fidelity and flatness of the QoE

functions. Although the optimal parameter is obtained from cross-validation in previous

experiments, we also perform an experiment to investigate the impact of α. Specifically,

we train several versions of BSQI, where α ranges from 0.01 to 10, 000. The results are

shown in Figure 4.4, from which we can observe that the performance of BSQI is generally

insensitive to α.

4.4 Summary

In this chapter, we propose a novel objective QoE model for adaptive streaming videos,

namely BSQI, by regularizing a non-parametric model with known HVS properties. BSQI
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outperforms the existing objective QoE models by a sizable margin over a wide range of

video contents, encoding configurations, network conditions, and viewing devices, which

we believe arises from a perceptually motivated video quality representation, a knowledge

constrained optimization framework, and a non-parametric model of QoE functions.
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Chapter 5

Delving into Connection-Level

Throughput Prediction using Meta

Learning

In this chapter, we first discuss the fundamental limitations of existing throughput predic-

tors, which motivate us to develop a meta learning-based throughput distribution model.

In contrast to the traditional approach that maximizes the marginal likelihood function,

the proposed Meta Learning-based Throughput Predictor (MetaTP) are dedicated to ap-

proximate connection-level network dynamics. By making effective use of the abundant

network traces, the data-driven approach do not need to unrealistic assumptions, thereby

outperforming the state-of-the-art scheme with a sizable margin. By combining a generic

prior model and a connection-level likelihood function, we show that MetaTP can quickly

adapt to a broad range of network environment at very little cost.

5.1 Motivation

As discussed in Section 2.2, existing approaches build a generic throughput prediction

model for all network flows. The “one-size-fits-all” scheme achieves, for most cases, promis-
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Ground Truth Expected Optimal Finetuned Instance Optimal Meta Learning

Figure 5.1: Approximating of two instance-level Bernoulli distributions (first column) us-

ing the standard supervised learning (second column), fine tuning with pretraining (third

column), fine tuning with random initialization (fourth column), and meta learning (fifth

column). Row 1 and row 2 illustrate the conditional distribution for the first class and the

second class, respectively. Fine tuning from marginal distribution, random initialization,

and meta learning-based prior are performed for five gradient steps.

ing prediction accuracy on a test set with very similar characteristics to the training

set. However, these models often struggle to deliver equally competitive performance

in real-world network environment that is inevitably more complex, especially when the

connection-level network dynamics deviate significantly from the marginal throughput dis-

tribution.

There are generally three approaches to solve the problem. A straight-forward solution

to the distribution mismatch problem is to directly learn a throughput prediction model for

each client. However, there are often insufficient connection-level throughput observations

to obtain reasonable throughput prediction models [171, 237]. The second approach is

to adapt the generic throughput model to viewer conditional throughput distributions

with limited throughput observations from each source component. Though, the marginal

throughput distribution may not provide meaningful information to its sub-population.
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The third approach takes connection-level features such as IP address as the input of

throughput prediction models. Unfortunately, there is generally no regularities between

these features and the network characteristics. Even though one may cluster sessions

with similar features, the identification of useful handcrafted features and clustering relies

heavily on manual parameter tuning, which can backfire when their design assumptions

are violated.

Figure 5.1 provides a motivating example, where the goal is to approximate two source

Bernoulli distributions from their samples. The class prior model, which encodes the

likelihood a sample comes from one of these sub-populations, follows a uniform distribution.

The traditional approach learns a marginal distribution of the two classes with aggregated

training samples, neglecting the heterogeneity of instance conditional distributions. It can

be observed that the standard supervised learning model that digests all training data at

once converges to a very poor solution (in fact not better than random guess). Furthermore,

using the marginal state distribution as the model initialization may introduce inductive

bias in the fine-tuning of the class conditional distributions [19]. As a result, it takes even

more training data/computational resources to accurately approximate the conditional

distributions than simply starting with non-informative prior.

Figure 5.2 shows a similar example in the context of sequential data prediction. In this

problem, we are given limited training data uniformly sampled from two distinct Markov

processes, whose transition probabilities are given in the first column of Figure 5.2. Con-

cretely, we can assume the two Markov processes as two connection-level throughput dis-

tributions. The objective of the problem is to produce accurate throughput prediction

for both of the two clients. Traditional learning scheme generates a generic throughput

predictor by applying the maximum likelihood estimator on all available training data,

resulting in a Markov process as shown in the second column of Figure 5.2. Unfortu-

nately, the expected optimal throughput predictor has almost no correlation with the two

client-specific network dynamics. Even if one adapts the pretrained model to fit client con-

ditional distributions with additional connection-level observations, the convergence rate is

significantly reduced by the strongly biased initialization. On the other hand, learning the

client conditional distributions from scratch may produce models with excessive variance

due to the limited training data from each of the two sub-populations. This dilemma is a
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Ground Truth Expected Optimal Finetuned Instance Optimal Meta Learning

Figure 5.2: Approximating two sub-population Markov processes (first column) using the

standard supervised learning (second column), fine tuning with pretraining (third column),

fine tuning with random initialization (fourth column), and meta learning (fifth column).

Row 1 and row 2 illustrate the conditional distribution for the first class and the second

class, respectively. Fine tuning from marginal distribution, random initialization, and meta

learning-based prior are performed for five gradient steps.

manifestation of the bias-variance tradeoff [19].

It turns out that the source component shift problem [197] is not limited to the illustra-

tive examples. Rather, the “symptom” commonly arises in practical throughput prediction

systems. To demonstrate the universality of the problem, we present a similar analysis on

realistic throughput distributions. We consider throughput distributions from two IP ad-

dresses where there exist abundant throughput data. To simplify the analysis, we assume

the two throughput distributions to be Markov chains, each with three states1. Instead of

knowing the transition matrices a priori, we approximate the two ground-truth distribu-

tions using maximum likelihood method on all available class-specific training data. In the

rest of the experiment, we extract a subset of training data to simulate the limited sample

1Note that all existing throughput prediction models are built upon the Markov assumption.
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Ground Truth Expected Optimal Finetuned Instance Optimal Meta Learning

Figure 5.3: Approximating two sub-population realistic throughput distributions (first col-

umn) using the standard supervised learning (second column), fine tuning with pretraining

(third column), fine tuning with random initialization (fourth column), and meta learn-

ing (fifth column). Row 1 and row 2 illustrate the conditional distribution for the first

class and the second class, respectively. Fine tuning from marginal distribution, random

initialization, and meta learning-based prior are performed for five gradient steps.

scenario in practice. We then apply traditional supervised learning, fine tune the learnt

model with class conditional training data, and train two throughput prediction models

from random initialization. The experimental results are given in Figure 5.3, where we can

observe that practical throughput predictors also suffer from the distribution mismatch

problem.

Following the Bayesian theory, we formulate the throughput distribution modeling as

a few-shot learning problem. In contrast to the traditional approaches that either employ

hand-crafted rules to cluster individual sessions or blindly ingest the entire training set,

we propose a learning algorithm, namely MetaTP that can automatically identify the

common structure shared across different network environment. During the pretraining

stage, the parameters of the prior throughput distribution are explicitly optimized to be
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easy to fine-tune. From a dynamical systems standpoint, our learning process can be

viewed as maximizing the sensitivity of the loss functions of new clients with respect to the

parameters [61]. Then, the posterior throughput distribution can be obtained by combining

the data-driven prior model and the likelihood function embedded in a small amount of

session-level throughput observations. Thanks to the effectiveness of the proposed learning

scheme, MetaTP can produce accurate prediction in the three motivating examples shown

in Figure 5.1, Figure 5.2, and Figure 5.3. In this study, we will present a roadmap to

develop a practical connection-aware throughput predictor.

5.2 Meta Learning-based Throughput Prediction

We aim to develop client adaptive throughput prediction models with a limited number

of client-specific throughput observations. The proposed learning framework is illustrated

in Figure 5.4. First, a dedicated edge server trains a prior throughput model using meta

learning on a throughput dataset. The dataset consists of throughput traces from a great

number of clients, whereas there are only limited training samples (usually up to 100

samples) for each client. The server sends the pretrained model to all ABR players that

request videos from Content Delivery Network (CDN). Each client fine tunes the generic

prior model using limited number of local network flow observations, resulting in a pos-

terior throughput prediction model. Finally, the clients may periodically send their local

throughput dataset to the meta learner to prevent the data staleness problem. Apparently,

the key is to obtain a meaningful prior throughput model. In this section, we will define

the problem setup and present the meta learning algorithm.

5.2.1 Problem Setup

Our objective is to train a model that can quickly adapt to new environment using only

a few datapoints and training iterations. Following the terminology in meta learning [61],

we refer to the approximation of each client-level throughput prediction model as a task.

To accomplish this, we can exploit the common structures shared across a set of relevant

tasks. In effect, the meta-learning problem treats entire tasks as training examples.
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Figure 5.4: The proposed meta learning-based throughput prediction framework.

Formally, given a dataset Dc that defines a distribution over a family of tasks p(T ),

where each task T = {L, p(c)} consists of a loss function L and a connection-specific

throughput distribution p(c), the goal of meta learning-based throughput prediction model

is to learn a generic throughput model p(c; θ) that can quickly adapt to a new task in the

distribution p(T ). The loss function L provides task-specific feedback to guide the learning

of throughput prediction models. Specifically, the meta learning stage can be decomposed

into the following steps. First, a task Ti is drawn from p(T ). Second, a base model is

then learnt from N samples from pTi(c) and feedback from the corresponding loss LTi .

Third, the learning agent re-draws M samples from pTi(c). Last, the base model p(c; θ)

is improved by considering how the test error on new datapoints in pTi(c) changes with

respect to the parameters. During the meta testing (also referred to as fast adaptation)

phase, new tasks are sampled from p(T ), and the prior model p(·; θ) is fine tuned with N

samples from the throughput distribution pTi(c) to obtain the connection-level model p(c;
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Figure 5.5: The computational graph of the meta learning algorithm. Straight arrows,

crooked arrows, and plates denote deterministic computations, sampling operations, and

repeated computations, respectively.

φi). The computational graphic is illustrated in Figure 5.5.

5.2.2 Learning Algorithm

To instantiate the proposed throughput prediction framework, we adopt a state-of-the-art

meta learning algorithm namely Model Agnostic Meta Learning (MAML) [61]. Thanks to

the scalable gradient descent procedure, MAML is naturally applicable to complex function

approximators. The detailed learning algorithm is explained below.

The learning algorithm starts with a randomly initialized throughput prediction model

p(ct+1|c1:t; θ) for all t ≤ K − 1, where ct+1, c1:t, and K denote the throughput value of

the immediately next instance, the throughput observations from all previous instances,

and the total number of throughput observations in a trace, respectively. As discussed in
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Section 2.2, building a conditional sequence model for all t is equivalent to estimating a

generative throughput model p(c; θ). For simplicity of notation, we consider a generative

throughput distribution in the subsequent analysis. To obtain a task-specific throughput

prediction model p(c; φi), we update the base model using one gradient descent step

φi = θ − αs∇θLTi

(
p(ci1 , ..., ciN ;θ)

)
, (5.1)

where ci1 , ..., ciN are samples from the task-specific throughput distribution and αs is the

step size in meta learning. The base model parameters are trained by optimizing for the

performance of p(c; φi) with respect to θ across all tasks sampled from p(T ). Specifically,

the objective of meta learning is

min
θ

∑
Ti∼p(T )

LTi

(
p(ciN+1

, ..., ciN+M
;φi)

)
=

min
θ

∑
Ti∼p(T )

LTi

(
p

(
ciN+1

, ..., ciN+M
;θ − αs∇θLTi

(
p(ci1 , ..., ciN ;θ)

)))
.

(5.2)

In contrast to the traditional supervised learning where the loss is computed using the

up-be-optimized parameters θ, the loss in meta learning is computed using the updated

parameters φi. MAML effectively optimizes the model parameters such that one or a small

number of gradient steps on a new task will produce maximally effective behavior on that

task [61]. The optimization problem in (5.2) can also be solved by stochastic gradient

descent algorithm, such that the model parameters θ are updated as

θ ← θ − βs
∑
Ti∼p(T )

LTi

(
ciN+1

, ..., ciN+M
;φi)

)
, (5.3)

where βs denotes the meta-optimization step size.

The computation of (5.3) involves a gradient through a gradient, which requires an

additional back propagation step through p(c; φi) to compute Hessian-vector products.

This operation is supported by off-the-shelf deep learning libraries such as Tensorflow [1],

PyTorch [160], and JAX [23]. It has been found that one can approximate the update rule

in (5.3) by dropping this backward pass, and still achieve reasonable performance [61, 151].

Two common loss functions used for throughput predictors are mean absolute error

and cross-entropy, which we will detail below. Though the learning framework can be
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readily extended to other loss functions. By using the mean absolute error as the loss func-

tion [135], one implicit assumes the observation conditional connection-level throughput

distribution p(ct+1|c1:t) follows an constant variance Laplacian distribution, whose mean

can be approximated by a function f(c1:t; φi). With this simplification, the original density

estimation problem is transformed into a regression problem. The loss function takes the

form

LTi(φi) =
∑

c1:tj ,ct+1
j ∼Ti

||f(c1:t
j ;φi)− ct+1

j ||1, (5.4)

for all t ∈ [2, K − 1]. The sequential throughput observations c1:t
j and ct+1

j can be extracted

from the j-th throughput trace. Alternatively, some throughput prediction models consider

a more general task-specific distribution by imposing the cross-entropy loss [237], which

takes the form

LTi(φi) = −
∑

c1:tj ,ct+1
j ∼Ti

ct+1
j log(p(c1:t

j ;φi)), (5.5)

where the throughput observation ctj at each time instance is quantized into several bins. In

this study, we utilize the mean absolute error loss in the training of MetaTP for simplicity,

because the calibration of bin size in the cross-entropy approach involves cumbersome

manual parameter tuning. However, the general methodology is still applicable to optimize

any differentiable loss function.

5.2.3 Bayesian Interpretation

Following the discussion in Section 2.2 and a theoretic analysis in [73], we present a Bayesian

interpretation of the meta learning-based throughput prediction model. In MAML, each

task-specific parameter φi is distinct from but should influence the estimation of the pa-

rameters {φ′i|i′ 6= i} from other tasks. This intuition can be governed by a meta-level

parameter θ on which each task-specific parameter is statistically dependent. In effect, the

task-specific parameters are mutually independent conditioned on the meta-level parameter

θ, which encodes the prior knowledge of the common structures across all network envi-

ronments. Given some data in each task, we can apply the maximum likelihood method

to estimate the meta-level parameter θ by integrating out the task-specific parameters φi.
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Mathematically, let C collectively denote all training data, the marginal likelihood of the

observed data is given by

p(C|θ) =
∏
i

(∫
p(ciN+1

, ..., ciN+M
|φi)p(φi|θ)dφi

)
. (5.6)

Maximizing (5.6) as a function of θ gives a point estimate for θ, an instance of a method

known as empirical Bayes [18, 73]. In practice, the marginalization over task-specific

parameters φi is computationally intractable. To overcome this issue, MAML makes use

of a point estimation φi for each task instead of performing the integration over φi. This

approximation can be mathematically expressed by

− log p(C|θ) ≈ −
∑
i

(
p(ciN+1

, ..., ciN+M
|φ̂i)

)
, (5.7)

where we have recovered the objective function in (5.2). Therefore, the meta learning

process essentially approximates the meta-level parameters θ using the empirical Bayes

method.

During the fast adaptation stage, our objective is to find the optimal task-specific pa-

rameter φi. The maximum a posteriori estimate of φi corresponds to the global mode of the

posterior distribution p(φi|ciN+1
, ..., ciN+M

, θ) ∝ p(ciN+1
, ..., ciN+M

|φi)p(φi|θ). The likeli-

hood function p(ciN+1
, ..., ciN+M

|φi) measures how well a model fits the new connection-

specific throughput observations. The prior model p(φi|θ) specifies how much common

characteristics shared across all network conditions is explained by the current model pa-

rameter φi. Note that when p(φi|θ) encodes a non-informative prior, the learning al-

gorithm reduces to the random initialization solution. In the case of linear model, the

early stopping of a gradient descent procedure corresponds to a Gaussian prior distribu-

tion [73, 180]

p(φi|θ) = N (φi;θ,Q), (5.8)

where Q is a symmetric positive definite matrix that depends on the step size αs and the

co-variance structure of C. In the non-linear case, the point estimate is not necessarily the

global mode of a posteriori. Nevertheless, one can still interpret the point estimate given

by truncated gradient descent as the value of the mode of an implicit posterior over φi

resulting from a negative log-likelihood, and regularization penalties and the early stopping

procedure jointly acting as priors [19, 73].
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Figure 5.6: Illustration of the neural network configurations for MetaTP. We denote the

parameterization of the LSTM and fully connected layer as “input channel × output chan-

nel”.

5.2.4 Implementation Details

Input: To predict the throughput at t+1-th instance, MetaTP takes all previous through-

put observations c1:t = [c1, ..., ct] as input. Nevertheless, the proposed model can be easily

adapted to ingest additional input features such as Internet service provider, server iden-

tifier, and TCP states [200] by adjusting the input feature channels. A recent study has

demonstrated that neural network-based throughput prediction may enjoy significant im-

provement in prediction accuracy with these low-level features [237]. In this study, however,

we neglect the auxiliary inputs for two reasons. First, the focus of the study is to demon-

strate the effectiveness of the meta learning scheme in throughput prediction, rather than

investigating the optimal feature selection. Second, most existing throughput datasets do

not provide these information for training and validation.

Network Architecture: We instantiate the throughput predictor using a neural network,

which consists of two LSTM [83], a hidden neuron with non-linear activation function, and

a linear output layer. The parametrizations of recurrent, fully connected, and connectivity

from layer to layer are detailed in Figure 5.6.
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We choose to use RNN as the basic building block of throughput predictor instead of

Multi-Layer Perceptron (MLP) and Convolutional Neural Network (CNN) for two reasons.

First, the evolution of throughput exhibits long-term dependency, and may even be affected

by initial throughput conditions and throughput evolution patterns [200]. Such a case

presents obvious problems for fixed size history window approaches [131], which attempt to

resolve the hidden state by making the chosen action depend on a fixed number of the most

recent observations and actions. If the relevant piece of information to be remembered falls

outside the history window, the model cannot use it. On the other hand, our RNN structure

can efficiently encode high-order statistics of throughput conditions with a hidden state

variable [83]. Second, unlike history window approaches, RNN does not have to represent

entire histories, but can in principle extract and represent just the relevant information

for an arbitrary amount of time. However, MLP and CNN usually fail to discover the

correlation between a piece of information and the moment at which this information

becomes relevant, given the distracting observations between them.

Learning Algorithm Instantiation: Following the recommendation in MAML [61], we

adopt the Adam optimization algorithm [107] as the meta-optimize with a mini-batch of 10

tasks. We sample N = 5 traces from each task in each training iteration. For pretraining,

we start with the learning rate αs = 10−2 and subsequently lower it by a factor of 10 when

the loss plateaus, until αs = 10−4. Other parameters in Adam are set by default. During

fine tuning, αs and M are fixed to 10−4 and 5, respectively. To evaluate performance,

we fine tune a single meta-learned model with αs = 10−4 and for 5 gradient steps. We

implement MetaTP using Pytorch [160], which allows for automatic differentiation through

the gradient updates during meta learning.

5.3 Evaluation

In this section, we first compare MetaTP with classic and state-of-the-art throughput pre-

diction models. We then conduct a series of ablation experiments to identify the core

contributors of MetaTP. Furthermore, we investigate the capability of MetaTP to incor-

porate more sequentially incoming training data. Finally, we shed light on some practical
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concerns with using meta learning generated throughput prediction models.

5.3.1 MetaTP vs. Existing Throughput Predictors

We conduct a trace-driven experiment to validate the performance of the proposed MetaTP

model. To begin with, we describe the experimental setups including the evaluation frame-

work, throughput datasets, competing throughput prediction models, and evaluation cri-

teria. The detailed experimental results are given in the end of the subsection.

Experimental Setup

Evaluation Framework: We employ a trace-driven experimental methodology to evalu-

ate the performance of throughput prediction models. In particular, we collect throughput

traces from a great variety of real-world network environments. Each trace contains a

sequence of throughput measurements from a client device. The t-th entry encodes the

average throughput value observed in the interval [(t − 1)G, tG], where G represent the

granularity of measurements. We refer to such a period as an “epoch”. To facilitate

the connection-level throughput characterization, each client (identified by its IP address)

involved in the experiment has to contribute a sufficient number of throughput traces.

Given a throughput trace, each throughput prediction model evaluates p(ĉt+1|c1:t, φi) for

all t ∈ [1, T − 1], and the prediction results are compared to the ground truth value ct+1.

Datasets: To train and evaluate MetaTP and state-of-the-art throughput prediction mod-

els on realistic network conditions, we created a corpus of network traces by combining

several public datasets: two broadband datasets namely Federal Communications Commis-

sion (FCC) [60] and Puffer [237], a 3G dataset called HSDPA [171], two 4G datasets from

University College Cork (UCC) [167] and Belgium [213], and a 5G dataset from UCC [166].

The FCC dataset contains more than 1 million throughput traces, each of which records

the average throughput over 2, 100 seconds at a granularity of 5 seconds. Each trace is

associated with a unique connection identifier. We select 10, 000 sessions from 500 clients

by randomly cutting from the raw connection-level throughput traces, each with a dura-

tion of 120 seconds. The HSDPA dataset comprises 3G throughput measurements at a
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granularity of 1 second, collected from mobile devices that were streaming video while in

transit. The experiments were performed in the period Sep. 13, 2010 to Apr. 21, 2011

in Norway. 6 out 11 scenes contain more than five traces, resulting in a total of 78 valid

traces. We apply a sliding window to generate 1, 000 throughput traces to form the 3G

network dataset. The Belgium dataset consists of 40 4G bandwidth traces recorded along

several routes in and around the city of Ghent at a 1-second granularity. The UCC dataset

is composed of client-side cellular key performance indicators collected across different mo-

bility patterns (static, pedestrian, car, tram and train). The 4G trace dataset contains

135 traces, with an average duration of fifteen minutes per trace at a granularity of one

sample per second. The dataset also contains synthetic throughput traces from 100 mobile

users. We consider each route corresponds to a network environment, based on which the

connection-level throughput traces are extracted. To match the duration of our selected

FCC traces, we generate 10, 000 traces using a sliding window across the two 4G datasets,

each with a duration of 120 seconds. The 5G dataset comprises 45 traces collected from 15

environmental conditions. We follow a similar way to pre-process the data, obtaining 1, 000

traces. Started since Jan. 26, 2019, the Stanford Puffer dataset is an ongoing research

project that collects connection-level data in a realistic streaming video environment. To

date, the dataset includes more than 5M individual throughput traces collected on the

Amazon Mechanical Turk platform. We select all traces from June 2019 to May 2021 in

the construction of the WaterlooSV database. During the experiment, a number of envi-

ronmental statistics are logged from both video servers and players per video chunk. As a

result, the Puffer dataset does not provide the throughput at a fixed granularity. To make

the data format consistent, we apply linear interpolation to the source data such that the

a throughput measurement is recorded every two seconds. Each trace in the Puffer dataset

is assigned a SessionID, and throughput traces with the identical SessionID are generated

from the same connection. We cut every raw trace into 120-second sequences and randomly

select 20 traces for every task. With this pro-processing above, we randomly select 10, 000

traces from 500 users. In total, we obtain 32, 000 throughput traces from 1, 600 clients,

each with duration of 120 seconds.

We randomly split the dataset into 60% training set, 20% validation set, and 20% meta-

test set based on the UserID. As a result, throughput prediction models do not observe the
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test environment during the pretraining process. We optimize the throughput prediction

models on the training set with various hyper-parameters, and select the best model on

the validation set. To simulate the few-shot learning scenario, we randomly split traces

from each UserID in the meta-test set into 20% fine tuning (also called fast adaptation)

set and 80% test set. The pretrained models are adapted to each connection condition

represented by UserID using the fine tuning set, and are then evaluated on the test set.

We over-sample the 4G and broadband throughput traces to balance the task distribution

during pretraining.

Throughput Predictors: We consider several representative throughput prediction mod-

els listed in Table 2.1, including Nearest Neighbourhood (NN), Arithmetic Mean (AM) [63],

Harmonic Mean (HM) [102], Exponential Weighted Moving Average (EWMA) [102], Linear

Regression (LR) [80], HMM [200], and MLP [237]. We optimize the trainable parameters

of these models on the training set, and manually tune the hyper-parameters of machine

learning-based throughput predictors on the validation set, including (γ, C) for SVR, the

number of hidden state in HMM, and (number of layers, bin size) in MLP.

Evaluation Criteria: Given the stochastic nature of network dynamics, ideally we should

measure the performance of throughput predictors using some divergence measures between

the ground-truth task-specific joint throughput distribution and the probabilistic model

prediction. In practice, however, the ground-truth connection-level throughput distribu-

tion is unavailable. Instead, we only have limited samples from the realistic throughput

distributions. To this end, we use the following two proxy evaluation criteria to compare

the performance of throughput prediction models.

• Normalized Expected Log-Likelihood (NELL) is computed as

NELL =
1

JT

J∑
j=1

log p(cij ;φi)

=
1

JT

J∑
j=1

T−1∑
t=1

log p(ct+1
ij
|c1:t
ij

) + log p(c1
ij

)

(5.9)

where J and T represent the number of test samples per task, and the number of dat-

apoints in each trace, respectively. NELL measures the likelihood that the observed
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data is generated by a particular model. It has become the de facto performance

measure for deep generative models [155]. Given the stochastic nature of network

dynamics, we believe NELL is also an appropriate evaluation criterion for throughput

prediction models. Higher NELL suggests better performance.

For deterministic throughput prediction models, we assume the prediction results

come from the maximum likelihood solution of a Gaussian distribution, which is

centered at the predicted value. We estimate the variance of the Gaussian distribution

to maximize the log-likelihood on the training set. The evaluation of probabilistic

throughput predictors is straight-forward.

• The L1 metric is defined as

L1 = |ĉt+1 − ct+1|, (5.10)

where ĉt+1 and ct+1 are the predicted throughput and actual throughput, respectively.

The motivation for using L1 as the evaluation criteria is threefold. A lower L1

corresponds to a better prediction accuracy.

We directly compute L1 on each datapoint in the test set for deterministic throughput

prediction models, whereas for probabilistic models, we firstly obtain a point estimate of

throughput value ĉt+1 with the maximum likelihood estimator and then apply (5.10).

Experimental Results

Figure 5.8 depicts the NELL and L1 Cumulative Density Function (CDF) of the through-

put predictors across all sessions, from which we have two observations. First, although

most throughput prediction models achieve similar performance at stable network connec-

tions, MetaTP consistently produces the best prediction accuracy over a wide range of

scenarios. In particular, MetaTP can effectively reduce the moderate (L1 > 2) and sig-

nificant prediction errors (L1 > 4) over its best competitors by 2% and 6%, respectively.

Second, somewhat surprisingly, the linear regression model rivals or outperforms state-

of-the-art data-driven models MLP and HMM. This suggests that there exists significant

heterogeneity in the connection-level network dynamics. The good prediction accuracy on
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Figure 5.7: The optimality and robustness scores in BSQI of the sub-components of EERO.

Results are normalized against the performance of EERO. Error bars span ± one standard

deviation from the average.

the observed environment does not generally transfer to novel viewers, whose throughput

dynamics may deviate significantly from the training set.

Look-Ahead Horizon: We also study the performance of throughput prediction models

for longer prediction horizon up to 5. The long-term prediction is crucial for adaptive

streaming algorithms because theoretically an ABR player can only obtain the global

optimal solution with the perfect knowledge about the throughput characteristics over

the entire session [131]. In practice, some ABR algorithms [200, 237, 241] explicitly require

throughput prediction into a fixed look-ahead horizon. To adapt the competing models for

longer prediction horizon, we modify the output node of network architecture accordingly.

Figure 5.7 shows the experimental results over a range of prediction horizon. We see that

MetaTP outperforms the existing algorithms for all look ahead horizon with a sizable

margin, achieving 2%-10% improvements over the best competitor on average.
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Figure 5.8: The optimality and robustness scores in BSQI of the sub-components of EERO.

Results are normalized against the performance of EERO. Error bars span ± one standard

deviation from the average.

5.3.2 Ablation Experiment

We conduct a series of ablation experiments to single out the core contributors of MetaTP.

Specifically, we investigate the impacts of training method and network architecture.

MetaTP vs. Other Baselines

We start with analyzing the impact of meta learning in throughput prediction. There are

two features that distinguishes MAML from traditional supervised learning approaches.

First, the objective function of MAML is evaluated using the updated model parameters

φi. Second, the maximum a posteriori is optimized with an early stopping procedure. To

this end, we compare MetaTP with four baseline models: (1) pretraining on all tasks using

the traditional maximum likelihood method, and fine tuning on the fast adaptation set till

convergence (namely pretrain), (2) pretrain with early stopping procedure, (3) training on

the fast adaptation set from random initialization till convergence (namely random initial-

ization), and (4) random initialization with early stopping training method. All competing
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Table 5.1: Quantitative results of MetaTP with different learning algorithms.

Model L1 NELL

pretrain 0.554 1.275

pretrain + early stopping 0.553 1.274

random initialization 0.763 1.482

random initialization + early stopping 1.059 1.504

MetaTP 0.522 1.263
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Figure 5.9: The performance of MetaTP with other network architectures.

models share a common network architecture, and are optimized by a variant of stochastic

gradient descent algorithm Adam [107]. We perform the experiments for ten times and

report the median performance to mitigate the bias introduced from a particular random

initialization and the stochastic optimization process. From Table 5.1, we observe that fine

tuning from the two alternative prior models do not lead to competitive performance. In

particular, Training the neural network model with only few throughput traces results in

significant overfitting. Furthermore, early stopping only negatively influences the perfor-

mance of fine tuning. We conclude that the gradient through a gradient computation is

the key to the success of MetaTP.
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Table 5.2: Quantitative results of MetaTP with different numbers of hidden states and

layers.

# of Hidden States # of Layers L1 NELL

50 1 0.577 1.405

50 2 0.565 1.399

50 3 0.553 1.380

100 1 0.560 1.397

100 2 0.549 1.379

100 3 0.534 1.269

150 1 0.546 1.271

150 2 0.538 1.267

150 3 0.529 1.263

200 1 0.535 1.274

200 2 0.522 1.263

200 3 0.519 1.260

Network Architecture

Next, we examine the impact of neural network architecture on the prediction accuracy. We

start from a baseline by replacing the LSTM by a näıve linear regression model that takes

a fixed window of throughput history as input. To extend the model capacity, we also train

a MLP model that has been used in a state-of-the-art throughput predictor Transmission

Time Predictor (TTP). The parametrizations of the MLP is detailed in Appendix A.1.

Both model are adapted to take the past 8 throughput observations as input and to produce

throughput predictions for the next 5 time instances as output. We apply MAML to train

the baselines. All competing models employ Adam [107] as the meta-optimizer. The results

in Figure 5.9 illustrate that MetaTP is generally insensitive to the network architecture.

On the other hand, by comparing the performance of the meta learned MLP with the

experimental results from the previous subsection, we can observe that MAML can also

improve throughput prediction models with sufficient model capacity. This observation

reinforces our conclusion that the meta learning scheme is the core contributor of MetaTP.
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Figure 5.10: The performance of MetaTP with additional gradient steps.

We also investigate the impact of hyper-parameters in the RNN model. Starting from

the default network architecture in Figure 5.6, we sweep through a range of hidden state

numbers and recurrent layer numbers. Results from this sweep are presented in Table 5.2.

As shown, performance begins to plateau once the number of hidden states exceeds 150.

We also find that the network of 3 cascaded RNN layers yields the best performance.

Nevertheless, the performance varies relatively insignificantly with respect to the RNN

architecture.

5.3.3 Continual Learning

Given the greedy optimization scheme, it is natural to ask the following question: Can

MetaTP continue to improve with additional gradient updates and/or throughput obser-

vations? If the throughput predictor converges to a local optimum after one gradient step,

the ABR players equipped with MetaTP cannot benefit from more throughput measure-

ments. To answer the question, we extend the experiment in Section 5.3.1 by fine tuning

the meta-learned model on varying numbers M of throughput traces and gradient steps.

Note that the dataset in Section 5.3.1 is inadequate for the evaluation of continual learn-
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Figure 5.11: The performance of MetaTP with additional training samples.

ing, because the number of connection-level throughput traces is limited. We augment

the meta-test dataset as follows. First, we go back to the source throughput datasets and

extract all IP addresses with more than 50 measurement sessions. Second, we filter out

traces to make sure that there is no overlap in connection identifiers between the original

training set and the augmented meta-test set. The meta-test set is randomly split into

60% fast adaptation set and 40% test set. To investigate the impact of training samples,

we randomly draw M samples from the fast adaptation set to fine tune the MetaTP.

Figure 5.10 and Figure 5.11 demonstrate the experimental results, from which we have

two observations. First, MetaTP continues to improve with additional gradient steps and

training samples, despite being trained for maximal performance with only one gradient

step. This improvement suggests that the meta learning algorithm optimizes the through-

put predictor in a generalizable way such that the prior model parameters lie in a region

that is amenable to fast adaptation, rather than overfitting to parameters that only im-

proves after one training iteration. As a result, it is possible to continuously optimize

MetaTP as new connection-level throughput observations become available.
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Figure 5.12: The performance of MetaTP with different portion of training samples.

5.3.4 Discussion

Training Time: To measure the overhead of generating meta learning-based throughput

prediction models, we profile the training process of MetaTP. Training a prior model re-

quires approximately 0.72M iterations, where each iteration took 80 ms on a single NVIDIA

Pascal Titan X GPU. Thus, the meta learning process took about 16 hours. Albeit some-

what expensive, the training cost is incurred offline. The meta learning can be applied

infrequently depending on the environment stability (e.g. whenever the next-generation

of network becomes available). To simulate the fast adaptation process in practical ABR

applications, where the computation power of edge device may be limited, we fine tune

the prior model on a single Intel Core i7-4790 processor at 3.60 GHz. The fast adaptation

by default requires one backward pass, which took 10 ms. Given the minimal cost, it is

feasible to apply the continual learning as discussed in Section 5.3.3.

Training Data: To understand the impact of training data in the meta learnt prior model,

we compare our default model with other models trained with only 10%-90% training data.

We observe significant performance gain with increase in the number of training traces, as

shown in Figure 5.12.
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Computation Time: The throughput prediction in a practical ABR system should be

computationally efficient at test time. A second delay in bitrate selection could results in

a significant degradation in the overall performance. To this end, we compare the com-

putation complexity of the proposed RNN model with the existing throughput predictors.

The experiment is performed on a single Intel Core i7-4790 processor at 3.60 GHz. Each

forward pass of MetaTP took 2 ± 1 ms, which is on par with the state-of-the-art HMM

and MLP. The ∼ 2 ms delay in ABR decision would have negligible impact to the system

as suggested by a recent study [131].

5.4 Summary

In this chapter, we propose a connection conditional throughput prediction model, namely

MetaTP, using meta learning. MetaTP can effectively solve the distribution mismatch

problem incurred by the traditional “one-size-fits-all” models, and alleviate the over-

fitting problem experienced by the maximum likelihood methods with connection-level

throughput traces. Extensive experimental results demonstrate the effectiveness of the

proposed MetaTP with higher accuracy and improved robustness in environmental varia-

tions. Thanks to the Bayesian framework, the proposed method can be naturally extended

with continual learning scheme to obtain further improvement.
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Chapter 6

EERO: Towards An Efficient,

Robust, and Optimal Bitrate Selector

In this chapter, we recast the bitrate adaptation as a Bayesian inference problem, with the

goal of unifying a wide spectrum of ABR algorithms under a common framework. This new

BBS framework allows us to identify the successes and limitations of the existing approaches

for bitrate selection, based on which we develop a new ABR algorithm. The proposed

algorithm, namely EERO, is a natural extension of two prevailing and complementary

design paradigms, effectively integrating their strengths in a principled way.

6.1 A Bayesian Framework for Bitrate Selection

Given a reward function and a throughput distribution/sample, the goal of bitrate adapta-

tion function is to select the optimal bitrate a∗t given a state observation st. The goodness

of the action a∗t is measured by the expected cumulative reward function q∗t = Q∗(st = s,

at = a) = maxπ E[Ut|st = s, at = a, π], where π and Ut represent a policy function that

maps a state sequence to an action and the discounted cumulative reward starting at the

time instance t. The discounted cumulative reward q∗t and the function mapping the state-

action to the value are often termed as the Q-value and Q-function in the reinforcement

141



learning literature. Mathematically, the discounted cumulative reward can be expressed as

Ut =
T−1∑
l=0

γlut+l, (6.1)

where 0 < γ ≤ 1 and T denote a constant discounting future reward and the number of

chunks in a streaming session, respectively. As a result, the key of ABR problem is to

approximate the optimal action-value function q∗t = Q∗(st = s, at = a).

The Q-function approximation problem can be recast as a Bayesian inference problem,

where the objective is to estimate the action-value conditional distribution p(q∗t |st, at).
The general form of the distribution is not known. However, it is possible to sample the

distribution using sophisticated optimization techniques. Given a state s comprising the

current buffer occupancy, the previous bitrate trajectories, the future network dynamics

(either from a throughput trace or a throughput predictor), and the future chunk charac-

teristics (either from a manifest file or a streaming video model), one can obtain a sample

from the distribution p(q∗t |st, at) with value iteration (an instance of dynamic program-

ming) [201]. Specifically, the optimal cumulative reward can be acquired by iteratively

applying the following updating rule till convergence

q∗t = Est+1∼E [ut+1 + γmax
at+1

q∗t+1]. (6.2)

Although it seems appealing to integrate the sampling scheme in the bitrate decision pro-

cess, the high-dimensional iterative computation is inconvenient, time-consuming, and ex-

pensive. Instead, it is common to utilize a function approximator to estimate the action-

value function based on a set of offline generated samples. Formally, given a set of training

data Dq comprising Nq state action pairs (S, a) =
(

(s1, a1), ..., (sNq , aNq)
)

and their corre-

sponding optimal cumulative rewards q∗ = (q∗1, ..., q
∗
Nq

), we aim to find a posterior action-

value distribution p(q∗t |st, at, Dq) that best approximates p(q∗t |st, at) for all t. We can drop

the dependency on t by assuming an infinity long decision process or enriching the state

variable s with the time instance t. p(q∗t |st, at, Dq) can be considered as a point estimate

of p(q∗t |st, at) according to the Bayes’ Rule p(q∗t |st, at) =
∫
p(q∗t |st, at, Dq)p(Dq)dDq. If

the training data in Dq are independent and identically distributed, one can parametrize
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the action-value function [37] as

p(q∗|s, a,Dq) =

∫
p(q∗|s, a,θ)p(θ|Dq)dθ, (6.3)

where p(q∗|s, a, θ) and p(θ|Dq) represent the parametric action-value probability density

function, and the posterior distribution over parameters, respectively. Given the enormous

space of θ, the integration in Equation (6.3) is computationally intractable. As a result,

a common practice is to approximate the predictive distribution p(q∗|s, a, Dq) by a point

estimate p(q∗|s, a, θ∗), where

θ∗ = arg max
θ

p(θ|Dq) = arg max
θ

p(q∗|S, a,θ)p(θ). (6.4)

The specific form of parametric action-value function p(q∗|S, a, θ) is generally unknown.

In practice, existing ABR algorithms usually minimize the mean squared error between

the predicted action-value and the ground-truth q∗, which implicitly assumes a Gaussian

likelihood function

p(q∗|s, a,θ) = N (q∗|µ(s, a;θ), σ2), (6.5)

where µ(s, a; θ) and σ2 denote the mean and variance of the Gaussian distribution, re-

spectively. Once the predictive distribution p(q∗|s, a, θ∗) is determined, the optimal action

a∗ can be obtained by selecting the bitrate with the maximum cumulative reward

π(a|s) =
∏
a′ 6=a

p(Q(s, a) ≥ Q(s, a′)). (6.6)

It should be noted that the variance of the Gaussian distribution in (6.5) generally varies

with respect to different state action pairs. Existing ABR methods only approximate the

mean of the action-value distribution, essentially assuming a fixed variance σ2 across the

state action space. It can be shown that the optimal policy in (6.6) under this condition is

only a function of µ(s, a; θ) in (6.5) [207]. During the decision making stage, most bitrate

adaptation functions [32, 33, 91, 92, 131, 212] adopt a winner-take-all strategy by always

selecting the maximum likelihood bitrate

a∗ = max
a

π(a|s), (6.7)
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which leads to the highest mean cumulative reward. Some efforts [92, 131] have also directly

modeled the optimal policy π(a|s) with a parametric approximation π(a|s, θ), but the

equivalence between the two approaches is made clear in (6.6). For better consistency, we

perform the subsequent analysis from the action-value perspective.

6.1.1 The Bayesian Interpretation of Existing Arts

In this section, we will focus on the Bayesian interpretation of two prevailing bitrate adap-

tation logic, which are closely related to the proposed method. The Bayesian view of a

more comprehensive list of ABR algorithms is provided in Section 2.3.2.

Model Predictive Control

MPC [241] is a control theoretic ABR algorithm that approximates the action-value proba-

bility distribution p(q∗|s, a) on the fly. At the t-th bitrate decision, the algorithm estimates

the expected cumulative reward over the interval [t, t + K] for each action a, and select

the action that optimizes the Q-value, where K ≤ T is the planning window. At the next

iteration, the algorithm takes the updated state information as the input, re-plans the

bitrate trajectory, and produces the optimal bitrate selection.

From a Bayesian perspective, MPC corresponds to the maximum likelihood estimation

of the posterior distribution with a noisy sample. Specifically, the look-ahead and reward

evaluation procedure at a particular state s can be regarded as sampling from the optimal

action-value function p(q∗|s, a) for each a. Since the value estimation only involves the

cumulative reward in a truncated decision window, we can consider the obtained reward

as a noisy sample q̃ = Q̃(s, a) of p(q∗|s, a) such that q̃ =
∑K−1

l=0 γlul. Alternatively, one

can interpret the truncated cumulative reward q̃ as a lower bound of the action-value q∗t
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=
∑T

l=0 ut+l. Formally, MPC solves the following optimization problem

µ(s, a)∗ = arg max
µ(s,a)

p
(
q∗ = q̃|µ(s, a)

)
= arg min

µ(s,a)

− logN
(
q∗ = q̃|µ(s, a), σ2

)

= arg min
µ(s,a)

(
µ(s, a)− q̃

)2

2σ2
.

(6.8)

It is apparent that the maximum likelihood solution is µ(s, a) = Q̃(s, a) for all feasible

bitrate selection a ∈ A. MPC takes a non-informative prior in the Bayesian framework

because it does not have any knowledge about the mean action-value µ(s, a) before the

noisy sample is observed.

The MPC framework provides a flexible control knob to adjust the tradeoff between

efficiency and optimality. When K = 1, MPC degrades gracefully to the greedy algo-

rithm, prioritizing efficiency over optimality. As K approaches T , the algorithm gradually

converges to the global optimal solution at the cost of extremely high computational com-

plexity. Recall that the reward optimization problem over an interval K can be solved by

exhaustive search or dynamic programming, whose time complexity are O(|AK |) and O(K

× |S| × |A|), respectively. | · | denotes the cardinality operator. To obtain a reasonable

approximation of action-value q within a limited time budget, the look-ahead horizon K

typically ranges from 5 to 8 [3, 200, 237, 241]. Some recent studies have shown that the

truncated dynamic programming may deviate from the global optimal solution [92, 131].

Nevertheless, MPC is quite robust to the unobserved environment, partially because it

learns the posterior distribution at test time. Furthermore, it does not make any assump-

tion about the throughput dynamics and reward function. In particular, novel throughput

prediction models and reward functions can be applied in the framework in a plug-and-play

fashion.

Learning-Based Approach

A significant effort has been devoted to improving the optimality of ABR algorithms based

on sophisticated machine learning techniques. These data-driven methods learn to make
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ABR decisions either from expert demonstration or through observations of the resulting

performance of past decisions. We review representative methods in each of these two

sub-categories and discuss what role they play in the Bayesian framework.

• Imitation Learning: Comyco [92] is an offline bitrate adaptation rule that approxi-

mates the action-value distribution in a simulated environment. In contrast to MPC

that approximates the Q-value at test time with noisy samples, Comyco [92] employs

a parametric model to imitate the behaviour of an expert policy. Given a throughput

trace, a streaming video, a player status, and a reward function, the imitation learn-

ing algorithm firstly computes a global optimal cumulative reward by solving the

optimization problem in (6.2) with dynamic programming. By repeatedly maximiz-

ing the cumulative reward across a wide range of state action pairs, one can generate

a training set Dq =
(

(s1, a1, q
∗
1), ..., (sNq , aNq , q

∗
Nq

)
)

. Despite the considerably high

complexity, the cost of expert demonstration is incurred offline. Comyco [92] then

takes advantage of powerful neural networks to predict the optimal action at a given

state using supervised learning. Formally, the method minimizes the behavioral

cloning loss

L(θ) =
1

Nq

Nq∑
i=1

(
µ(si, ai;θ)− q∗i

)2

, (6.9)

to produce the optimal action-value function approximator µ(s, a; θ).

Since the adaptation rule does not integrate information from test time observa-

tions, one can regard it as a prior distribution p(θ) for the action-value function.

The behavioral cloning method in (6.9) can be derived from a maximum likelihood
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approach

θ∗ = arg max
θ

p(Dq|θ)

= arg max
θ

Nq∏
i

p(q∗i |si, ai;θ)

= arg min
θ
−

Nq∑
i=1

log p(q∗i |si, ai;θ)

= arg min
θ

Nq∑
i=1

(
µ(si, ai;θ)− q∗i

)2

,

(6.10)

where we have assumed a Gaussian likelihood function in (6.5). The optimization

problem in (6.10) gives a point estimate for θ, an instance of a method known as

empirical Bayes [19] due to its use of the data to estimate the parameters of the prior

distribution.

• Reinforcement Learning: As opposed to the imitation learning that learns the policy

from expert demonstration, reinforcement learning learns to improve an agent’s de-

cision making ability from the interaction with a simulated environment. The basic

idea behind many reinforcement learning algorithms is to estimate the action-value

function, by using the Bellman equation [201] as an iterative update. Specifically,

a parametric action-value function approximator can be trained by minimizing a

sequence of loss functions Li(θi) that changes at each iteration i

Li(θi) = Es,a∼ρ(·)

[
(qi − µ(s, a;θ))2

]
, (6.11)

where qi = Es′∼E [u + γ maxa′ µ(s′, a′;θi−1)|s, a] is the target for iteration i and ρ(s,

a) is a probability distribution over states s and actions a that are commonly referred

to as the behaviour distribution [138]. The parameters from the previous iteration

θi−1 are held fixed when optimising the loss function Li(θi). Note that the targets

depend on the network weights; this is in contrast with the targets used for imitation

learning, which are fixed before learning begins [138]. Under some mild conditions,

it can be proven that the parametric action-value function approximator converges

to the optimal solution [201]. Despite a slower convergence rate, the learning agent
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experiences many states falling out of the distribution ρ∗(s, a) in the training stage,

where ρ∗(s, a) represents the behaviour distribution of the optimal policy. As a

result, reinforcement learning approaches are generally more robust in unobserved

states/environment.

From a Bayesian view, the reinforcement learning approach also produces a prior

action-value distribution p(q∗|s, a, θ). Conceptually, the agent-environment interac-

tion process can be regarded as a data augmentation method to the imitation learning

such that the agent not only observes state-action pairs from the optimal behaviour

distribution ρ∗(s, a), but also experiences out of distribution samples. Some rein-

forcement learning methods even explicitly encourage exploration of the state space

with a deliberately designed loss function [131]. Applying the updating rule in (6.11)

on the augmented dataset Dq+ corresponds to maximizing the likelihood function

p(Dq+ |θ) under the Gaussian assumption, which is also an instance of the empirical

Bayes method [19].

It has been shown that learning-based ABR algorithms achieve state-of-the-art per-

formance in the environment that the agents experienced in the training process [32, 92,

131, 212]. The learnt action-value function can theoretically converge to the ground-truth

p(q∗|s, a) given sufficient training data, suggesting that the approach is also effective in

optimizing the reward function. Furthermore, these agents only take a feed-forward opera-

tion and optionally a maximization step to produce a bitrate selection, whose computation

complexity is O(|A|). However, these methods have demonstrated limited generalization

capability on state action pairs falling out of the behaviour distribution. Figure 6.1 shows

a motivating example, where a representative reinforcement learning-based ABR algo-

rithm Pensieve [131] and MPC are both evaluated on two streaming videos. Both of the

streaming videos in the experiment receive a per-title encoding recipe [208], such that the

encoding profiles of the first and second videos are [300, 700, 1800, 3000, 5700, 8000] kbps,

and [200, 600, 1000, 1600, 2800, 4300, 6000, 9000] kbps, respectively. We firstly train Pen-

sieve with hundreds of streaming videos including the first test video to optimize a QoE

model BSQI [45] (but with non-overlapping training/testing throughput traces). We then

repeat the same training procedure with the role of the two videos reversed, and evaluate

the performance on both test videos. The experimental results confirm our claim that
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Figure 6.1: The data-driven ABR algorithm Pensieve is susceptible to unobserved state-

action pairs. The model predictive control-based algorithm Fugu achieves sub-optimal

performance but is quite robust to environment shift. Case 1: Pensieve observed the

encoding profile of video 1 in the training process. Case 2: Pensieve observed the encoding

profile of video 2 in the training process.

learning-based approaches do not generalize well on unobserved state action samples, a

problem known as overfitting. The root cause of the problem is the fundamental conflict

between the enormous state-action space and the limited computation power for ground-

truth label generation. Specifically, in the general case that the instantaneous reward ut is

a function of all previous state and actions, the only feasible approach to determine q∗ is by

exhaustively searching all the combinations of bitrate selection. The computational com-

plexity of exhaustive search is in the order of O(|A|T ), where |A| denotes the cardinality

of the action space. Even if we simplify the problem by assuming that ut enjoys a Markov

property, obtaining each (s, a, q∗) sample still involves solving a dynamic programming

problem, whose time complexity is O(T × |S| × |A|). |S| represents the cardinality of

the state space. In the case of adaptive streaming, s may encode the statistics of future

chunks (e.g., time-varying chunk size and quality) and throughput prediction, suggesting

that |S| ∝ T . Either way, the computation of q∗ quickly becomes intractable as the plan-
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ning window T becomes longer. A typical “large-scale” dataset allows for a maximum of a

few thousands of streaming sessions to be labeled. By contrast, the action-value function

lives in a high dimensional space, which is typically in the order of hundreds of thousands.

Therefore, a few thousands of action-value samples are deemed to be sparsely distributed

in the space.

6.2 Towards Maximum A Posteriori Bitrate Selector

In the previous section, we have reviewed two prevailing ABR bitrate adaptation logic from

a Bayesian perspective. Interestingly, these algorithms are complementary to each other in

two important ways. First, MPC is quite robust to the change in behaviour distribution,

although it can only achieve sub-optimal performance in real-time. On the other hand,

data-driven algorithms are close to optimal in observed state-action regions, but may not

perform adequately in real-world environment that is inevitably more complex, especially

with constantly evolving video delivery modules (e.g., per-title encoding schemes [36, 49,

208], better video encoders [28, 198], and a broader range of viewing devices [169]). Second,

MPC and learning-based methods serve as the likelihood function and the prior distribution

in the Bayesian inference problem, respectively. These observations motivate us to develop

a new ABR algorithm by combining the advantages of these approaches.

The objective of bitrate selection function in the aforementioned sequential learn-

ing setting is to approximate the posterior parameter distribution p(θ|q̃), where q̃ is a

noisy sample generated by online dynamic programming. Inherited from the existing

approaches [32, 33, 92, 131, 212, 241], the proposed algorithm also assumes a Gaussian

likelihood function whose variance across the state-action space is uncorrelated. It follows

that the winner-take-all strategy in (6.7) only depend on the mean value of the posterior

action-value distribution [207]. As a result, we reduce the general problem in (6.4) to the

estimation of p
(
µ(s, a; θ)|q̃

)
. Formally, we would like to find a set of mean values that

maximizes the posterior distribution

µ∗ = arg max
µ

p(µ|q̃) = arg max
µ

p(q̃|µ)p(µ), (6.12)
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where the likelihood function p(q̃|µ) is given by (6.8). Existing data-driven methods ap-

proximate the prior distribution p(µ) with a point estimate in (6.10) or (6.11), neglecting

the reliability of the estimation. However, the point estimate may deviate significantly

from the real distribution. To this end, we take a second-order approximation around the

empirical Bayes estimated mean value µθ by assuming a Gaussian prior distribution

p(µ|Dq) = N (µ|µθ, σ
2
µ), (6.13)

where the variance of the distribution σ2
µ is a function of (s, a, Dq). The application

of the Gaussian distribution over a point estimate has been a very common technique

in the machine learning literature, evident by the prevalence of Laplace’s method [111]

and kernel method [19]. According to the Taylor’s theorem [75, 73], the second-order

approximation generally provides a tighter error bound than a point estimate, which is

essentially a first-order expansion of the prior distribution. Furthermore, we can make use

of this approximation to incorporate the varying uncertainty in Q-values across the input

space. Substituting (6.13) into (6.12) and taking the negative logarithm, the objective

function becomes
µ∗ = arg min

µ
− log p(q̃|µ)− log p(µ|µθ)

= arg min
µ

(µ− q̃)2

2σ2
+

(µ− µθ)2

2σ2
µ

.
(6.14)

It is then straight-forward to show that the maximum a posteriori mean action-value takes

the form

µ∗ =
σ2
µ

σ2
µ + σ2

q̃ +
σ2

σ2
µ + σ2

µθ, (6.15)

where q̃, µθ, and σµ are functions of state and action. Equation (6.15) underlies a novel

ABR algorithm by adaptively combining the cumulative reward q̃ from an online bitrate

adaptation function and a learning-based algorithm parametrized by µθ. The weighting

scheme has an intuitive interpretation as follows. The ABR algorithm would converge to

the learned policy if the uncertainty of the cumulative reward at the current state and

action σµ is low, because

lim
σµ→0

µ∗ = µθ. (6.16)
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Figure 6.2: The proposed EERO bitrate selection algorithm. (a) The ABR agent traverses

the tree and collects the instantaneous reward along the path. At each terminal node of

the look-ahead horizon, EERO may optionally estimate the future cumulative reward with

a value function. (b) The algorithm estimates the optimal cumulative reward function q̃

based on the simulation. (c) In the end, EERO combines the observation at the test time

q̃ and the prior estimate µθ.

On the other hand, in case that the player encounters an unobserved state-action pair, the

proposed method would prioritize the bitrate decision provided by the likelihood function.

We will introduce the specific choice of likelihood function and prior distribution in the

subsequent section.

6.2.1 Likelihood Function

The likelihood function in the framework is responsible to produce an estimate of the mean

action-value µ on the fly, generally by sampling the action-value distribution p(q∗|s, a) in

situ. An accurate sample from the distribution may be obtained by recursively computing

the optimal value function in a search tree containing approximately |A|T bitrate selection

trajectories, where |A| and T represent the number of bitrate levels and the number of

chunks in a streaming video, respectively. In a typical streaming session, |A| ≈ 10 and
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T ≈ 150, thus exhaustive search is infeasible. How to approximately sample from the

distribution in a limited time budget is crucial to the design of the likelihood function.

The most prevalent solution is to apply dynamic programming in a short decision

window, essentially discarding the cumulative reward falling out of the horizon. However,

the truncated optimization strategy often lead to short-sighted bitrate selections that are

far from global optimal [131]. The deficiency exists because the unbalanced state value

(i.e., the expected cumulative reward) at the leaf nodes of the decision window. To address

this problem, we propose to account for the cumulative reward below the leaf node s by

an parametric value function v(s; θ) that predicts the optimal outcome from the state.

Formally, the overall cumulative reward is approximated by

L∑
t=0

γtr(st, a
∗
t ) ≈

K∑
t=0

γtr(st, a
∗
t ) + γK+1v(sK+1;θ), (6.17)

where a∗t is the optimal action at the state st and

v(sK+1;θ) = max
a
µ(sK+1, a;θ). (6.18)

The mean action-value function can be obtained by any appropriate prior models, which

will be introduced shortly. The schematic diagram of the algorithm is illustrated in Fig-

ure 6.2. We employ a state-of-the-art throughput predictor TTP [237] to model the state

transition probability distribution required by the dynamic programming, although it is

also possible to apply other throughput predictors.

6.2.2 Prior Model

The prior model p(µ) encodes our prior belief of the cumulative reward function for each

state and action. Although it is possible to engineer subjective prior [63, 93, 102, 141]

about the overall goodness of an action, the handcrafted adaptation rules may deviate

significantly from the long-term optimal objective [131, 241]. Another drawback of these

priors is that they make strong assumption about the reward function and throughput

dynamics, which by themselves are subjects of ongoing research. If a novel reward function

or a better throughput predictor become available in the future, the expert knowledge of
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p(q∗|s, a, θ) can be difficult to acquire. In this study, we explore a data-driven method to

learn an objective prior model, tabula rasa. However, the proposed framework is general

enough to incorporate other prior models. We will discuss the issue in the subsequent

analysis.

We incorporate deep reinforcement learning to train a prior action-value model. In-

stead of utilizing off-the-shelf reinforcement learning-based algorithms that either lack the

compatibility with the proposed framework (e.g., Pensieve discards the action-value and

directly produces the optimal action) or learn a tabular Q function for each sequence with-

out any generalization [32, 33, 212, 241], we apply the deep Q-learning algorithm [138] to

train a neural network-based prior model, namely Deep Q-Network (DQN). The basic idea

of deep Q-learning is to integrate value iteration of the expert strategy into the training

process. The neural network iteratively improves the cumulative reward estimation based

on its previous iteration by solving the optimization problem in (6.11). Differentiating the

loss function with respect to the weights we arrive at the following gradient

∇θiLi(θi) = Es,a∼ρ(·);s′∼E

[(
u+ γmax

a′
µ(s′, a′;θi−1)− µ(s, a;θi)

)
∇θiµ(s, a;θi)

]
. (6.19)

Rather than computing the full expectations in the above gradient, it is computationally

expedient to approximate the gradient using stochastic gradient estimation computed over

a batch of throughput traces and streaming videos. To reduce the variance of the gradient,

a common strategy is to utilize the simulation results from previous iterations, which is

known as experience replay.

Combing these machine learning techniques, we summarize the training process of

deep Q-learning-based prior adaptation logic as follows. The algorithm starts by random

initializing the DQN and clearing the dataset Dq of capacity Nq. At each iteration, the

trainer randomly samples a batch of throughput traces and streaming videos, which gives

us the state variable st. For each pair of throughput trace and streaming video, we select

a random action at with a fixed probability of ε. Otherwise, the DQN takes the current

state of the player s and the feasible actions a as input and produces an estimate of the

cumulative reward, based on which an optimal action at is generated using Equation (6.7).

The ABR player emulator then executes the action at and returns the instantaneous reward

ut and the next state st. The observed data tuple (st, at, ut, st+1) is appended into the

154



dataset Dq. Depending on the capacity of Dq, the learning algorithm may remove the least

recent observation from the experience buffer to discourage less favorable actions. Based

on the instantaneous reward function, we update the target Q-value using value iteration

in (6.2). At the end of each iteration, we perform a gradient descent step on the DQN

with (6.19). The training cycle is repeated till model convergence.

6.2.3 Implementation Details

Input: The likelihood function and prior model in the BBS framework are executed in

parallel. Both modules take three pieces of information as the state variable to inference

Q-values, including

• Past Throughput Observations: The algorithm represents the network condition with

the previous throughput observations ct−H:t−1 for the past H time instances. Inher-

ited from Pensieve, the algorithm has a default history window of H = 8.

• Video Content Characteristic: To accommodate the highly variable bitrate ladders,

we propose a generic representation of the encoded video streams. Specifically, we

quantize the log bitrate space into N = 30 bins. The available bitrate levels for a

specific streaming video is 0-1 encoded by a feature vector, such that a compressed

version lying in the corresponding bitrate interval is labeled as 1 and 0 otherwise. By

using this feature embedding, we have implicitly made use of the prior knowledge that

a standard encoding profile would not include two similar representations lying in one

bitrate bin. In case that the assumption is violated, one can extend the dimension

of the feature vector by incorporating other encoding parameters such as spatial

resolution, frame rate, and bit depth. When using BSQI as the reward function,

we also include the VMAF score of each chunk to account for the heterogeneity of

the video complexity. The video quality scores are encoded in a similar fashion.

We consider the rate-distortion features of the next K = 5 chunks to represent the

video content. In the end, we extract 300 features to represent the video content

characteristics.
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Figure 6.3: Illustration of the neural network configurations for EERO. We denote the

parameterization of the fully connected “fc” layer as “input channel × output channel”.

• Video Player Status: The last relevant feature for describing the ABR players’ state

is the current video playback status. The status is represented by the previous

chunk selection (including both the bitrate and quality), the current buffer occupancy,

and the percentage of downloaded videos. This information source provides a 4-

dimensional vector.

Each action is represented by a one-hot vector adapted from the log bitrate representation

described in the video content characteristic feature extraction. In total, our instantiation

of EERO represents each state-action pair with a 342-dimensional vector.

Network Architecture: We now describe the the exact architecture used for prior cu-

mulative reward function model. Since we do not have any prior knowledge about the

form of Q-function (such as translation in-variance), we leverage a MLP as the function

approximator. The regression model consists of 2 hidden layers of size 128, followed by
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batch normalization [98], and a rectified linear unit non-linearity [145]. The output layer

is a fully-connected linear layer with a single output variable. The network architecture

and the number of parameters in each layer is depicted in Figure 6.3.

Reward Functions: It has been widely accepted that the ultimate goal of ABR algorithm

is to optimize end viewers’ QoE. The definition of QoE is a subject of ongoing research.

Thus, we consider a wide range of objective QoE measures from heuristic linear bitrate

model to state-of-the-art Bayesian VQA-based model. All these models decompose the

overall QoE into chunk-level instantaneous reward ut by taking the temporal homogeneous

assumption. Mathematically, the general form of these QoE models can be expressed by

u =
1

T

T∑
t=1

U(pt, τt,∆pt), (6.20)

where pt, τt, and ∆pt represent the bitrate, the rebuffering duration, and the bitrate vari-

ation of the t-th chunk, respectively. We consider three choices of U as follows.

1. The linear bitrate model takes the form U(rt, τt, ∆pt) = rt − α τt − β |rt − rt−1|,
where α and β are model parameters. Albeit its limited correlation with subjective

QoE ratings, the model proposed in [241] has received nearly ubiquitous acceptance in

the field of ABR [131, 200]. We optimize the two free parameters on WaterlooSQoE-I

and WaterlooSQoE-II such that the model can maximally explain the subjective QoE

data.

2. Another commonly used QoE measure is the logarithmic bitrate model that was used

by BOLA [191]. This model captures the phenomenon that the marginal gain in QoE

decreases with respect to the bitrate. Some recent studies have demonstrated that

this simple change leads to a significant improvement in the prediction accuracy [46,

53]. The log bitrate model can be expressed by U(rt, τt, ∆pt) = log rt − α τt − β

log |rt − rt−1|. Similarly, we optimize the free parameters on WaterlooSQoE-I and

WaterlooSQoE-II using linear regression.

3. Last, we employ BSQI as the objective QoE measure. The form of instantaneous QoE

function U(rt, τt, ∆pt) is learnt from data. In contrast to the two QoE models above,
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the presentation video quality measure is adapted to the streaming video complexity

and viewing condition. Meanwhile, the method imposes several constraints that

are derived from subjective QoE assessment studies to guarantee that the model is

consistent with certain HVS properties. For fairness, the model is also optimized on

WaterlooSQoE-I and WaterlooSQoE-II. Interested readers may refer to Chapter 4

for more details.

Learning Algorithm Instantiation: The learning of the DQN adopts the Adam opti-

mization algorithm [107] with a batch size of 3, 200. We start with a learning rate of 10−2

and subsequently lower it by a factor of 10 when the loss plateaus, until 10−4. The discount

factor γ is set to 0.99, essentially covering the rewards of 100 decision steps. We adopt 32

agents to asynchronously collect training data, while the back propagation is performed

synchronously [41]. To accelerate the training process, we utilize the chunk-level streaming

simulator in [131] for its demonstrated efficacy. We train our model for 100, 000 epoches

till convergence. Our reinforcement learning code is implemented in PyTorch [160].

The winner-take-all decision process implies that the resulting policy is invariant to the

translation and scaling of the Q-function. As a result, we can define the standard deviation

of the action-value distribution σ = 1 in (6.15) without loss of generality. We follow

the approach in [187] to model the uncertainty of a Q-value σµ with its visit frequency.

Specifically, we set σµ = 1
N(s,a)α

, where N(s, a) and α represent the visit count of the state

action pair in the training process and a temperature parameter. We implement N(s, a)

as a lookup table, motivated by the sparsity of observed training samples in the input

space. In accordance to the recommendation in [241], we quantize the state-action space

using 100 bins for buffer occupancy, 100 bins for throughput prediction, and 30 bins for

bitrate level. Additionally, we include 10 bins to represent video quality, whose range is

[0, 100]. We empirically find that these parameters work reasonably well across a wide

range of settings. Thanks to the sparsity of training sample, we can efficiently encode the

visit count with a sparse tensor such that the never-encountered entries do not have to

be recorded. The sparse tensor only takes around 60 kilobytes, resulting in insignificant

storage overhead in the modern streaming video receivers.
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Figure 6.4: The schematic diagram of the efficiency-robustness-optimality tradeoff of bi-

trate selectors. EERO integrates the robustness of MPC and the optimality of reinforce-

ment learning-based algorithms, thereby achieving a better efficiency-robustness-optimality

tradeoff. Abbreviations: MPC, model predictive control; RL, reinforcement learning; IL,

imitation learning.

6.2.4 Why EERO?

To further motivate the proposed algorithm EERO, we revisit the design space of ABR

algorithms. Conceptually speaking, all bitrate adaptation logic lie in a three-dimensional

space as shown in Figure 6.4. An ideal adaptation algorithm should be efficient in compu-

tation time, robust to unobserved state-action space, and close to global optimal solution

in standard streaming environment. However, existing ABR algorithms often neglect one
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or two of these dimensions. For example, heuristic approaches are computationally effi-

cient due to the reduced action space. However, they often rely on unrealistic assumptions

and overly simplified optimization algorithms, suggesting that the algorithms exhibit low

robustness and optimality. MPC is quite robust to different bitrate ladders and network

dynamics [237], partly because it does not make any prior assumption about the action-

value distribution. The MPC framework trades off efficiency with optimality by adjusting

the look-ahead horizon K. When K = 1, MPC degrades gracefully to the greedy algorithm.

Learning-based approaches generally employ a function approximator to estimate the op-

timal decision produced by MPC with K approaching T . The resulting agent is responsive

in computation and nearly optimal in an experienced environment. The augmented data

generated from the agent-environment interaction process in reinforcement learning acts as

a regularizer and helps reduce overfitting comparing to the imitation learning algorithms.

Unfortunately, these empirical Bayes-based algorithms do not always deliver equally com-

petitive performance, especially on unobserved bitrate ladders and never/hardly observed

throughput conditions. More generally, learning-based algorithms by themselves are insuf-

ficient to overcome the generalization problem in a complex environment such as adaptive

streaming [187]. To hit a sweet spot in the efficiency-robustness-optimality space, the pro-

posed algorithm combines the optimality of learning-based models and the robustness of

MPC in a unified framework. Furthermore, these two policies can be executed in parallel

on dedicated hardware, making the resulting algorithm computationally efficient.

6.3 Evaluation

In this section, we evaluate the performance of EERO with trace-driven experiments. The

goal of our experimental evaluation is to answer the following questions:

1. How does EERO compare with existing ABR algorithms? We find that given a fixed

time budget, EERO performs at least on par with the best existing technique in a

broad range of scenario, with average improvements of 7%-22%.

2. Where does the improvement come from? We conduct a series of ablation experiments

to identify the contributions of the core factors in EERO. We show that although
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a better likelihood function can moderately enhance the performance, the major

improvement of EERO comes from the Bayesian Q-function approximation.

3. How do hyper-parameters such as neural network architecture and quantization level

affect EERO? Our experiment suggests that the performance of EERO in terms of

reward function is rather insensitive to these parameters.

4. What should be considered in the practical deployment of EERO? We analyze var-

ious versions of EERO calibrated with different training time, training data, and

environmental conditions, based on which we shed light on the practical concerns

with using EERO in practical adaptive streaming systems.

6.3.1 EERO vs. Existing Bitrate Selectors

We first describe the simulation setups including a streaming video database, network

traces, viewing conditions, and evaluation criteria. We then compare EERO with classic

and state-of-the-art ABR algorithms.

Experimental Setup

Video Dataset: We construct a new video database which contains 15 high quality 4K

videos that span a great diversity of video contents. To make sure that the videos are of

pristine quality, we carefully inspect each of the videos multiple times and remove those

videos with visible distortions. The duration of the videos ranges from 3 minutes to 40

minutes, with an average duration of 7 minutes. Using the aforementioned sequences as

the source, each video is distorted by the following process sequentially to accommodate

constantly progressing encoding specifications.

• Spatial down-sampling: We down-sample the source video using the bi-cubic filter to

six spatial resolutions (3840× 2160, 2560× 1440, 1920× 1080, 1280× 720, 720× 480,

640× 360) according to YouTube recommendation [242].
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Table 6.1: Encoding Ladder of Video Sequences

Index Resolution Bitrate Index Resolution Bitrate

1 640×360 300 Kb/s 8 1280×720 3000 Kb/s

2 640×360 375 Kb/s 9 1920×1080 4300 Kb/s

3 640×360 560 Kb/s 10 1920×1080 5800 Kb/s

4 640×360 750 Kb/s 11 2560×1440 8100 Kb/s

5 640×360 1050 Kb/s 12 3840×2160 11600 Kb/s

6 720×480 1750 Kb/s 13 3840×2160 16800 Kb/s

7 1280×720 2350 Kb/s

• Compression: We encode the down-sampled sequences using three commonly used

video encoders, i.e., H.264, HEVC, and AV1, with two-pass encoding [36, 76, 110].

We uniformly sample 30 target bitrate on the interval 300 Kbps to 40 Mbps in the

log bitrate space. The full encoding specification is detailed in Appendix B.1.

In total, we obtain 180 representations for each streaming video. In our experiment, we

include four bitrate ladders that are widely used in practical video delivery systems. The

first bitrate ladder in Table 6.1 is a combination of the Netflix’s recommendation [147] and

Apple’s recommendation [95]. This encoding profile is fixed across all streaming videos.

We also include three per-title encoding schemes that are described in [36, 48, 208]. The

bitrate-centric encoding strategy [35] selects bitrate-resolution pairs such that i) At a given

bitrate, the produced encode should have as high quality as possible, and ii) The perceptual

difference between two adjacent bitrates should fall just below one just-noticeable different

(the difference in VMAF ≈ 10). The quality-centric encoding strategy [48] pre-defines

10 target quality levels, and exhaustively searches the constant target quality contour to

obtain the representation with the minimal bitrate. The per-title optimization algorithm

in [208] determines the encoding strategy by optimizing the overall quality of the en-

coded representations subject to some constraints on resources such as server storage and

throughput capacity. We segment the test sequences with GPAC’s MP4Box [112] with a

segment length of 4 seconds. We split the streaming video corpus into three datasets. We

first exclude one of the encoding profiles from the compilation, and denote the dataset as
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DR. The removed dataset DR is used in the robustness analysis, due to its unique char-

acteristics. We randomly split the remaining videos into 80% training set DT and 20%

testing set DO. This leave-one-out data segmentation scheme is repeated for all dataset,

such that each encoding strategy would appear in DR once.

Network Traces: To train and evaluate the ABR algorithms in realistic network condi-

tions, we created a corpus of network traces by combining several public datasets: a broad-

band dataset collected by FCC [60], two 4G datasets from UCC [167] and Belgium [213], a

5G dataset from UCC [166], and a Live Television streaming dataset named Puffer [237].

The FCC dataset contains more than 1 million throughput traces, each of which records

the average throughput over 2, 100 seconds at a granularity of 5 seconds. Each trace is

associated with a unique connection identifier. We select 10, 000 sessions from 500 clients

by randomly cutting from the raw connection-level throughput traces, each with a duration

of 120 seconds. The Belgium dataset consists of 40 4G bandwidth traces recorded along

several routes in and around the city of Ghent at a 1-second granularity. The UCC dataset

is composed of client-side cellular key performance indicators collected across different mo-

bility patterns (static, pedestrian, car, tram and train). The 4G trace dataset contains

135 traces, with an average duration of fifteen minutes per trace at a granularity of one

sample per second. The dataset also contains synthetic throughput traces from 100 mobile

users. We consider each route corresponds to a network environment, based on which the

connection-level throughput traces are extracted. To match the duration of our selected

FCC traces, we generate 10, 000 traces using a sliding window across the two 4G datasets,

each with a duration of 120 seconds. The 5G dataset comprises 45 traces collected from

15 environmental conditions. We follow a similar way to pre-process the data. The Puffer

dataset contains the data collected from January 2019 and we use the data from June 2019

to May 2021 in our experiment. The Puffer dataset does not provide the throughput at

a fixed granularity. To make the data format consistent, we apply linear interpolation to

the source data such that the a throughput measurement is recorded every two seconds.

Each trace in the Puffer dataset is assigned a SessionID, and throughput traces with the

identical SessionID are generated from the same connection. We cut every raw trace into

120-second sequences and randomly select 20 traces for every user. In the end, we randomly

select 10, 000 traces from 500 users. We again segment the throughput corpus into three
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datasets based on the following procedure. First, we uniformly sample 80% users from each

throughput dataset. For each user in the set, we randomly split the connection-level traces

into 80% training set DT and 20% optimality test set DO. The traces from the remaining

20% users form the robustness test set DR. We apply five-fold cross validation and report

the median performance.

Bitrate Selectors: Exhaustive evaluation of all ABR algorithms is difficult as it involves

optimizing over an infinite-dimensional functional space. To this end, we evaluate the

following ABR algorithms, ranging from the näıve de facto rate-based algorithm to the

state-of-the-art reinforcement learning algorithms, and optimize the free parameters by

empirical simulations on the training dataset:

• RB algorithm [63] employs a variant of greedy algorithm to optimize a linear bitrate-

based reward function. The available future throughput is predicted by the arithmetic

mean of observed throughput over the past five chunks. The algorithm makes a

conservative bitrate decision without using the buffer occupancy status.

• BB algorithm [93] is another representative greedy bitrate selection algorithm which

determines the optimal action based on the current buffer occupancy. We employed

the function suggested in [93], where bitrate is chosen as a piece-wise linear function

of buffer occupancy. We set a lower reservoir and cushion to be 5 and 10 seconds,

respectively.

• BOLA [191] makes greedy optimization to maximize a reward function that encour-

ages higher bitrate, shorter rebuffering duration, and lower buffer occupancy. Under

some mild assumptions, the problem can be solved by Lyapunov optimization, which

select optimal bitrates solely based on buffer occupancy observations.

• FastMPC [241] uses both buffer occupancy observations and throughput predictions

using harmonic mean of the past 5 chunks to select bitrate. In each step, the algo-

rithm maximizes a reward function over a horizon of five future chunks, and re-plans

the trajectory as new state variables become available. The optimization problem

is solved offline and its solution is stored as a lookup table. We use 100 bins for
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throughput prediction, 100 bins for buffer level, and 30 bins for the past bitrate

level. We train a lookup table for each reward function.

• Pensieve [131] is a model-free reinforcement learning-based ABR algorithm that

learns to select optimal bitrate from scratch. The algorithm learns a CNN-based

policy that takes throughput observations and buffer occupancy of previous eight

chunks as input and produces the optimal bitrate decision. In our experiment, we

optimized three versions of Pensieve to adapt to different notions of QoE. One of the

biggest advantages of the algorithm is that it can efficiently optimize the long-term

reward.

• Fugu [237] is a close variant of MPC [241]. This algorithm employs a data-driven

download time prediction model to estimate the cumulative reward in the next 5

steps on the fly. Based on the noisy sample from the action-value distribution, the

algorithm selects the action with the highest cumulative reward.

• Comyco [92] is an imitation learning-based offline ABR algorithm. This method first

applies dynamic programming over a look-ahead horizon of 8 to obtain a dataset of

training samples. Ingesting the state-action pairs as the target input-output vari-

ables, a neural network policy model is then optimized to match the offline optimal

solution.

• For comparison, we also present results for the oracle scheme, which is computed using

dynamic programming with complete future throughput information. This offline

optimal serves as an (unattainable) upper bound on the reward that an omniscient

policy with complete and perfect knowledge of the future network throughput could

achieve.

Viewing Devices: The ultimate receiver of streaming videos are human beings, who

consume multimedia on a large variety of viewing devices. In this study, we consider three

mostly used viewing devices according to [104], including Full High Resolution (FHD)

monitor, smartphone, and UHDTV. Note that the presentation quality is a function of

viewing device, which we take into account with device adaptive presentation QoE scores.
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Evaluation Criteria: In this chapter, we are interested not only in how well does EERO

perform in a streaming environment that the agent has experienced during the training

process, but also in its performance on unobserved state action pairs resulted from a

distribution shift. We consider three evaluation criteria, which are

• Efficiency: We define efficiency as the computation time required for each bitrate

adaptation, including resource estimation, action-value distribution sampling, prior

Q-value inference, and action selection. This measure is computed as

E =
1

N

N∑
i=1

1

Li

Li∑
j=1

(ttij − tsij), (6.21)

where N , Li, t
t
ij and tsij denote the number of streaming sessions in a test set, the

number of chunks in the i-th streaming session, the time instance that the j-th

chunk request in the i-th streaming session is sent out, and the time instance when

this specific bitrate selection process starts. A more efficient ABR algorithm would

exhibit a less computation time.

• Optimality: The optimality is defined as the average cumulative reward that an ABR

algorithm receives on the test set DO, where the test set DO and the training set come

from the same distribution (i.e., these two datasets share the same encoding strategy

and the source of throughput traces). Mathematically, the optimality measure can

be summarized by

O =
1

|DO|

|DO|∑
i=1

1

Li

Li∑
j=1

uj(rl, τl,∆rl), (6.22)

where |DO| represent the number of streaming sessions in the dataset. Note that we

normalize the cumulative reward by the number of chunks to eliminate the impact

of video duration.

• Robustness: The robustness measure is defined in a similar fashion to the optimality,

but is evaluated on a test set DR with different characteristics. Specifically, the

robustness can be mathematically expressed as

R =
1

|DR|

|DR|∑
i=1

1

Li

Li∑
j=1

uj(rl, τl,∆rl), (6.23)
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where the test set DR comprises different streaming videos, encoding profiles, and

network traces to the training set.

Evaluation Framework: To evaluate the algorithm efficiency in a realistic setting, we

perform a real-player emulation. Specifically, we randomly sample N = 1, 000 streaming

video and throughput trace pairs from |DO| to form the test set. These test videos are

stored on a Apache web server. Meanwhile, the VMAF scores of each video are embedded

in the corresponding manifest file such that the player has the access to the chunk-level

video quality. We implement test ABR algorithms in dash.js (version 3.2.2) [63], which are

deployed on three client devices, including iPhone 12, iPad Pro, and a desktop with an Intel

i7-6900K 3.2GHz CPU. For FastMPC, we compress the javascript code directly instead of

performing run-length coding on the lookup table. We find that the simplification intro-

duces minimum overhead and the code size is close to the original implementation [241].

To perform feed-forward prediction in the browser, we convert the neural network models

of Pensieve, Fugu, Comyco, and EERO to Tensorflow.js [97] and save the models in the

client local storage via IndexedDB [143]. The client video player is a customized Chromium

browser (version 91) supporting H.264, HEVC, and AV1 playback. The server runs on the

a computer with an Intel i7-6900K 3.2GHz CPU. To minimize the variance introduced

by manual operation, we develop a customized program in Python to automate the video

streaming process. After each video streaming session, a log file is generated on the client

device, including the start and finish time of each bitrate decision process.

We employ a PyTorch [160] implementation of ABR algorithms in the optimality and

robustness experiments. Given the immense state space, it is prohibitively expensive to

perform an exhaustive evaluation of ABR algorithms in a realistic setting. Specifically,

it would take more than 1, 000 years to download all possible combinations of streaming

videos in a real-player emulation setup. Nevertheless, we can leverage the chunk-level

simulator in [131] to evaluate the optimality and robustness, which has been previously

demonstrated to faithfully model the application layer network. For each chunk download,

the PyTorch ABR agent takes the current state and available bitrate levels as input and

send an action to the environment. The simulated environment assigns a download time

that is solely based on the chunk’s bitrate and the input network throughput trace. The

chunk-level simulator carefully keeps track of the player states such as buffer occupancy
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Figure 6.5: Computation time of ABR algorithms.

and download history. After each chunk download, the simulator passes several state

observations to the ABR agent and records the instantaneous reward. In our objective

evaluation, the streaming simulator is configured to emulate the network conditions from

our corpus of network traces, along with an 80 ms RTT, between the client and server.

Experimental Results

Efficiency: Figure 6.5 shows the average computation time of the 8 test ABR algorithms.

We summarize the key observations as follows. First, EERO does not introduce notable

computation cost to its base modules. Empowered by parallel computation, the algo-

rithm is as good as the least efficient computation between dynamic programming and

feed-forward inference in all scenario considered. Second, thanks to the dedicated neural

engine [96], the average computation time of EERO can be kept below 50 ms even on mo-

bile devices. Our client-side implementation is more efficient to the server-end deployment

in Pensieve, which incurs extra time for data transmission. Recent studies have illustrated

that such little latency has negligible impact on the cumulative reward [131, 237].

Optimality: Figure 6.6 shows the average reward that each scheme achieves on our test

set DO. We provide more detailed results in the form of full CDFs on different encoding

profiles and network environment in Figure 6.7 and Figure 6.8, respectively. There are two

key takeaways from these results. First, we find that EERO exceeds the performance of the

best existing ABR algorithm with a sizable margin on all scenarios considered. Two close
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Figure 6.6: The optimality performance of EERO and existing ABR algorithms in terms

of three QoE measures. Results are normalized against the performance of EERO. Error

bars span ± one standard deviation from the average.

competing algorithms are Fugu and Comyco. Each of these schemes has a state-action

region in which it outperforms its competitor. For instance, Comyco achieves a higher

reward on the “one-size-fits-all” Netflix bitrate ladder, while Fugu has an edge on streaming

video adaptive encoding profiles. Thanks to the Bayesian framework, EERO consistently

delivers the highest reward by combining the best of two approaches. On average, EERO

outperforms Comyco by 17% in terms of linear bitrate reward. The performance gap

expands to 18% and 22% for the log bitrate and BSQI, respectively. We observe a similar

results for Fugu.

Second, EERO’s performance is within 2.5%-9.2% of the offline optimal solution across

all streaming videos in DO. The offline optimal is unattainable because it requires the

complete knowledge about future throughput, while throughput dynamics in practice is a

stochastic process in nature. This suggests that there is little room for improvement in an

environment the agent has experienced.

169



0 20 40 60 80 100
BSQI

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

RB
BB
BOLA
FastMPC
Pensieve
Fugu
Comyco
EERO
Oracle

(a) FCC

0 20 40 60 80 100
BSQI

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

RB
BB
BOLA
FastMPC
Pensieve
Fugu
Comyco
EERO
Oracle

(b) 4G

0 20 40 60 80 100
BSQI

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

RB
BB
BOLA
FastMPC
Pensieve
Fugu
Comyco
EERO
Oracle

(c) 5G

0 20 40 60 80 100
BSQI

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

RB
BB
BOLA
FastMPC
Pensieve
Fugu
Comyco
EERO
Oracle

(d) Puffer

Figure 6.7: The optimality score of ABR algorithms on different throughput datasets.

Results are given in terms of BSQI.
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Figure 6.8: The optimality score of ABR algorithms with different encoding profiles. Re-

sults are given in terms of BSQI.

Robustness: Figure 6.9 demonstrates the average reward that each scheme exhibits on

the test set DR. Figure 6.10 and Figure 6.11 illustrate more detailed results on different

encoding profiles and network environment, from which we draw three observations. First,

EERO again rivals or outperforms the existing top performer with across a wide range of

QoE models, throughput traces, and streaming videos. The best existing ABR algorithm

is Fugu, which adapts reasonably well to different bitrate ladders. Despite working in a

relatively unfamiliar environment (more than 80% state-action pairs has not been observed

in DR), EERO still improves the noisy reward observation by using the learnt prior. As

a result, EERO outperforms Fugu by 7%, 10%, and 11% in linear bitrate, log bitrate,

and BSQI, respectively. However, the improvement is less significant comparing to the

performance gain on DO.
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Figure 6.9: The robustness performance of EERO and existing ABR algorithms in terms

of three QoE measures. Results are normalized against the performance of EERO. Error

bars span ± one standard deviation from the average.

Second, prior-based ABR algorithms such as Pensieve and Comyco incur a huge perfor-

mance degradation. Somewhat surprisingly, these state-of-the-art algorithms are inferior

to the de facto rate-based algorithm in terms of robustness. In particular, Comyco expe-

riences a ∼30% loss in the cumulative reward when tested on the unobserved state-action

space, suggesting that the offline data-driven model suffers from severe overfitting problem.

This issue is less prominent in ABR algorithms that sample the action-value distribution

on the fly. Nevertheless, Fugu suffers 5%, 7%, and 7% drop from the optimality test results

in terms of linear bitrate, log bitrate, and BSQI, respectively. The phenomenon motivates

the development of more robust throughput prediction models.

Third, although EERO achieves the best robustness score in the experiment, the per-

formance gap between EERO and the oracle widens to 13% in terms of BSQI. The result

suggests that there is still room for improvement in the robustness of ABR algorithms.

We believe that future ABR algorithms may improve the robustness from two aspects.
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(d) Puffer

Figure 6.10: The robustness score of ABR algorithms on different throughput datasets.

Results are given in terms of BSQI.
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Figure 6.11: The robustness score of ABR algorithms with different encoding profiles.

Results are given in terms of BSQI.

First, one may improve the accuracy of throughput prediction model by adapting it to

connection-level throughput characteristics. Second, more efficient sampling scheme may

be derived to extend the look-ahead horizon.

6.3.2 Ablation Experiment

In this section, we conduct a series of ablation experiments to single out the core contribu-

tors of EERO. We begin by comparing EERO to deliberately designed variant algorithms

to provide a deeper understanding of the scheme. We then analyze how robust EERO is

to varying system parameters (e.g. network architecture and quantization level of σµ).
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Figure 6.12: The optimality and robustness scores in BSQI of the sub-components of

EERO. Results are normalized against the performance of EERO. Error bars span ± one

standard deviation from the average.

EERO vs. Other Baselines

EERO without MAP: The fundamental difference between EERO and other adapta-

tion functions is the Bayesian value estimation. It is therefore natural to ask the question:

which module is the core contributor to the superior performance of EERO? To this end,

we decompose EERO into a value enhanced MPC-based likelihood function and a rein-

forcement learning-based prior model, and evaluate their performance on the test set. We

compare these subroutines with their close variants Fugu [241] and Pensieve [131]. The

experimental result is given in Figure 6.12. We observe that these subroutines by them-

selves do not achieve state-of-the-art results. The value enhanced dynamic programming

outperforms its baseline Fugu. Moreover, the weighted fusion brings the performance to

the next level. We conclude that the Bayesian action-value function approximation is the

key to the success of EERO.

Value Enhanced Tree Search vs. Other Likelihood Functions: In the previous
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Figure 6.13: The optimality and robustness scores in BSQI of EERO with different likeli-

hood functions. Results are normalized against the performance of EERO. Error bars span

± one standard deviation from the average.

experiment, we have found that the value boosted dynamic programming outperforms

the default MPC. Motivated by this observation, we would like to find whether a better

likelihood function would results in a higher cumulative reward in EERO. To answer this

question, we replace the enhanced MPC in EERO by the truncated dynamic program-

ming in MPC, CS2P + MPC, and Fugu (neural network-based throughput predictor +

MPC) and evaluate their performance according to the same experimental procedure. The

experimental results are shown in Figure 6.13. We find that EERO generally achieves a

higher reward when equipped with a better likelihood function, suggesting that EERO may

benefit from further improvement of online bitrate adaptation algorithms in the future.

Reinforcement Learning vs. Other Priors: Following the analysis of likelihood func-

tion, we are also interested in the impact of the prior model on EERO. We experiment

with three alternative prior action-value distributions, including a heuristic ABR rule,

FastMPC [241], and an imitation learned prior model. Specifically, the heuristic prior

model assigns the minimum reward to most available actions to reduce the search space in
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Figure 6.14: The optimality and robustness scores in BSQI of EERO with different likeli-

hood functions. Results are normalized against the performance of EERO. Error bars span

± one standard deviation from the average.

accordance with the traditional ABR rules [2, 102, 103, 134, 141]. We uniformly distribute

the prior probability mass to four actions, including the lowest bitrate, the bitrate immedi-

ately below/above the current representation, and the current representation. Since there

is no well-defined uncertainty measure in the heuristic method, we use a fixed σµ, which

is optimized on a small validation set. For the imitation learning-based prior model, we

follow the approach in [92] to generate a neural network-based ABR scheme. To eliminate

potential inductive bias, we reuse the network architecture in deep Q-learning. The tensor

σµ governing the uncertainty of prior estimate is trained according to the default proce-

dure. The performance of these variants of EERO is presented in Figure 6.14. As shown,

EERO can be improved by incorporating a more accurate prior model. Additionally, the

imitation learning-based EERO achieves a equally promising optimality, while it is not as

robust as the reinforcement learning model.

Learned σµ vs. Fixed σµ: The last key component in the proposed framework is the
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Figure 6.15: The optimality and robustness scores in BSQI of EERO with different weight-

ing schemes. Results are normalized against the performance of EERO. Error bars span ±
one standard deviation from the average.

uncertainty of the action-value estimation. Our theoretical derivation establishes a natu-

ral connection between the behavior of the policy and the confidence in the action-value

estimation. EERO adaptively prioritizes one of the subroutines, according to their con-

fidence in a state-action region. In this experiment, we examine whether a näıve linear

combination could lead to a similar improvement. To this regard, we experiment with a

Bayesian ABR model with a fixed uncertainty value σµ over the entire state-action space.

We manually tune the parameter by optimizing the model performance on a validation set.

The resulting optimality and robustness scores are given in Figure 6.15. Interestingly, we

find that a fixed combination rule can still achieve certain improvements upon the baseline

prior model. However, EERO enjoys a significant gain by modeling the heterogeneity in

uncertainty across the input space.
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Table 6.2: Quantitative results of EERO with different numbers of neurons and layers in

terms of BSQI.

# of Hidden States # of Layers Optimality Robustness

32 1 58.8 ± 20.1 58.0 ± 21.2

32 3 61.9 ± 19.4 58.2 ± 20.6

32 5 63.3 ± 16.8 58.3 ± 20.4

64 1 61.4 ± 19.0 57.9 ± 21.0

64 3 67.8 ± 14.3 58.8 ± 20.5

64 5 69.1 ± 13.9 59.1 ± 20.3

128 1 65.9 ± 18.7 60.6 ± 21.2

128 3 72.5 ± 13.3 63.6 ± 19.2

128 5 72.9 ± 12.8 63.9 ± 18.7

Sensitivity Analysis

Network Architecture: We experiment with different numbers of neurons and layers.

The experimental results are given in Table 6.2, where the number of neurons in each fully

connected layers is given in the second column. We find that the gain induced by larger

network capacity pleatues at around 128 neurons per layer.

Quantization Level: Starting from the default lookup table of σµ in EERO, we sweep

through a range of quantization levels to understand the impact that each has on BSQI.

Results from this sweep are presented in Table 6.3. As shown, performance begins to

plateau once the number of bins for buffer occupancy and throughput prediction each

exceed 100. Additionally, quantization levels of quality beyond 10 introduce marginal

improvements in the optimality and robustness.

6.3.3 Discussion

In this section, we discuss some practical concerns with deploying EERO in a video delivery

system. The major difficulty in the distribution of EERO comes from the training of

reinforcement learning-based prior model, for which we present a quantitative analysis.

177



Table 6.3: Quantitative results of EERO with different quantization levels in terms of

BSQI.

Variable # of Bins Optimality Robustness

Buffer Occupancy 33 67.8 ± 20.6 60.4 ± 20.9

Buffer Occupancy 66 71.4 ± 19.4 62.2 ± 20.6

Buffer Occupancy 100 72.5 ± 13.3 63.6 ± 19.2

Throughput Prediction 33 66.4 ± 18.5 58.3 ± 20.0

Throughput Prediction 66 71.8 ± 14.2 61.8 ± 20.5

Throughput Prediction 100 72.5 ± 13.3 63.6 ± 19.2

Bitrate 10 56.1 ± 21.1 55.0 ± 22.2

Bitrate 20 63.4 ± 17.4 60.2 ± 19.8

Bitrate 30 72.5 ± 13.3 63.6 ± 19.2

Quality 5 72.9 ± 18.7 60.6 ± 21.2

Quality 10 72.5 ± 13.3 63.6 ± 19.2

Quality 20 71.1 ± 12.8 63.9 ± 18.7

Training Time: We profile the training process of EERO to measure the flexibility of

system deployment. Training a reinforcement learning-based prior model requires approx-

imately 1M iterations. Each iteration involves 1, 000 Monte Carlo rollout and a backward

pass for model update. We parallel the simulation process with 32 CPUs to rollout the

streaming data and compute the back-propagation using a NVIDIA Pascal Titan X GPU.

The prior learning process took about 10 hours. Albeit the significant overhead, the train-

ing cost is incurred offline.

Training Data: To understand the impact of the amount of training data on the perfor-

mance of EERO, we train the uncertainty aware prior policy of EERO with only a portion

of training set. We use the same test set and evaluation criteria described in Section 6.3.1.

Figure 6.16 (a) illustrates the optimality and robustness scores with respect to the number

of training videos. We find that EERO generally benefits from observing more streaming

videos a priori. The result for network traces is shown in Figure 6.16 (b), from which we

have a similar observation.
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Figure 6.16: The optimality and robustness scores in BSQI of EERO with only a portion

of training data. Results are normalized against the performance of EERO.

RTT (ms) 0 20 40 60 80 100 120 140 160

EERO 0.08 0.15 0.17 0.12 0 -0.16 -0.33 -0.51 -0.72

Table 6.4: Percentage of change in BSQI of EERO at different RTT over the default model.

Round-Trip Time: The RTT of ABR streaming is set to 80 ms in our simulator (note

that the feed-forward prediction time can also be considered as part of RTT). We test the

performance at different latency settings. The results are demonstrated in Table 6.4. We

observe that EERO is fairly insensitive to latency conditions.

6.4 Summary

In this chapter, we propose a unifying framework for ABR algorithms from a Bayesian per-

spective. Existing algorithms approximate either the likelihood function or the action-value

prior, resulting in a sub-optimal solution. Motivated by the novel insights, we provide a

specific implementation in the expanded design space that is efficient, robust, and optimal.

179



Over a broad set of network conditions, streaming videos, and QoE measures, we found

that EERO outperforms existing ABR algorithms by 7%–22%.
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Chapter 7

System Validation

With many ABR algorithms at hand, it becomes pivotal to compare their performance.

The existing validation studies fall short in scale, representativeness, and reliability. In

this chapter, we construct the WaterlooSV database by carefully walking through the se-

lections of each of the key components in the ABR streaming process, from source contents,

encoding profiles, network traces, viewing devices, testing environment setups, to experi-

mental methodologies. The WaterlooSV database is the largest among all streaming video

databases in the literature. Building upon the dataset, we demonstrate how the RDOS

paradigm improves the existing ABR algorithms. We then perform a detailed objective

analysis on different combinations of throughput predictor, reward function, and bitrate

selector in terms of efficiency, robustness, and optimality. To complement the limited reli-

ability of reward functions in the objective evaluation, we carry out a large-scale subjective

evaluation on ABR algorithms using a subset of the WaterlooSV dataset.

7.1 Constructing the Waterloo Streaming Video Database

Adaptive streaming is a standard communication problem composed by a transmitter, a

channel, and a receiver. To comprehensively evaluate the performance of ABR algorithms,

we need to faithfully reproduce each of the modules in the practical communication prob-
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Human Animal Plant Landscape

Cityscape Still Life Transportation Computer Synthesized

Figure 7.1: Sample frames of source videos in the Waterloo Streaming Video database. All

images are cropped for neat presentation.

lem. In this section, we walk through the design choice of the WaterlooSV database for

each module and discuss potential alternatives along the path.

7.1.1 Transmitter

Source Content: Although it is possible to make use of the video representations in the

real-world streaming platforms, the approach suffers from two drawbacks. First, the copy-

right protected videos are restricted from copy, distribution, edit, and built upon. The

proprietary content significantly hinders the reproducibility of ABR evaluation studies.

Second, some analyses such as full-reference video quality assessment explicitly require the

availability of pristine videos. However, most online videos underwent a series of manip-

ulations such as resampling and compression that degrade the visual quality, prohibiting

further investigations. To this end, we construct a new video database which contains 250
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high quality 4K videos that span a great diversity of video contents. We resort to the In-

ternet and elaborately select 200 keywords to search for creative commons licensed videos.

The keywords can be broadly classified into 8 categories: human, animal, plant, landscape,

cityscape, still-life, transportation, and computer synthesized content. We initially obtain

more than 50,000 4K videos. Many of them contain significant distortions or inappropriate

content, and thus a sophisticated manual process is applied to refine the selection. To make

sure that the selected videos are of pristine quality, we perform two rounds of screening to

remove those videos with visible distortions. In the first stage, we filter out videos with

deficient attributes such that they are unlikely to retain pristine quality. Specifically, we

remove videos with bitrate, frame rate, and color channel less than 7,000 kbps, 24 fps, and

3, respectively. After this step, about 10,000 videos remain. To make sure that the remain-

ing videos are of pristine quality, we further carefully inspect each video multiple times by

zooming in and remove videos with visible compression distortions. Eventually, we end up

with 250 high-quality 4K videos. Sample frames are shown in Figure 7.1, where we can

see the richness of video content. The duration of the videos ranges from 30 seconds to 1

hour, with an average duration of 6 minutes. As a reference point, the average duration of

YouTube videos is 11 minutes [204].

Encoding: In practical video delivery, each video is encoded into multiple representations

to cover a wide range of network capacity and video quality. Existing streaming video

datasets employ a fixed encoding recipe, referred to as a bitrate ladder, in the evaluation

of ABR algorithms. There are two limitations associated with the approach. First, the bi-

trate ladder used in the experiments varies significantly across different studies, inevitably

resulting in sampling bias. Second, these fixed encoding profiles may deviate wildly from

the encoding strategy in a practical content delivery network. In particular, different video

service providers adopt different video encoders to facilitate content storage and distribu-

tion. For example, Netflix, Apple, and Google are promoting H.264 [233], HEVC [198],

and AV1 [28], respectively. Furthermore, video service providers are migrating from fixed

bitrate ladder to per-title encoding profile generation [36, 49, 208], since each video content

exhibits a unique generalized rate-distortion function [47, 48]. The optimal encoding strat-

egy for streaming videos is still a subject of ongoing research. To cover the wide variety

of encoding strategy, we densely sample the generalized rate-distortion function to make
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the dataset readily extendable to novel content preparation processes. Each video in the

database is distorted by the following process sequentially:

• Spatial downsampling: We downsample the source video using the bicubic filter to

six spatial resolutions (3840× 2160, 2560× 1440, 1920× 1080, 1280× 720, 854× 480,

640× 360) according to the recommended resolution by YouTube [242].

• Compression: We encode the downsampled sequences using three commonly used

video encoders, i.e., H.264 [233], HEVC [198], and AV1 [28] with two-pass encod-

ing. For each spatial resolution, we uniformly sample 30 target bitrates in the log

bitrate space on the interval 100 kbps to 45 Mbps, in accordance with the YouTube’s

recommendation [242]. Note that the target bitrate interval also roughly covers the

encoding recommendations of other service providers such as Apple [95] and Net-

flix [147]. The full encoding specification is detailed in Appendix B.1.

In total, we obtain 180 (hypothetical reference circuit [100]) × 250 (content) × 3 (encoder)

= 135, 000 video representations (currently the largest in the ABR literature). Sample

distorted video frames are shown in Figure 7.2.

In our experiment, we include four bitrate ladders that are widely used in practical video

delivery systems. The first bitrate ladder in Table 6.1 is a combination of the Netflix’s rec-

ommendation [147] and Apple’s recommendation [95]. This encoding profile is fixed across

all streaming videos. We also include three per-title encoding schemes that are described

in [36, 48, 208]. The bitrate-centric encoding strategy [35] selects bitrate-resolution pairs

such that i) At a given bitrate, the produced encode should have as high quality as possi-

ble, and ii) The perceptual difference between two adjacent bitrates should fall just below

one just-noticeable different (the difference in VMAF ≈ 10). The quality-centric encoding

strategy [48] pre-defines 10 target quality levels, and exhaustively searches each constant

target quality contour to obtain the representation with the minimal bitrate. The per-title

optimization algorithm in [208] determines the encoding strategy by optimizing the overall

quality of the encoded representations subject to some constraints on resources such as

server storage and throughput capacity.
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Figure 7.2: Sample frames of H.264 encoded videos in the Waterloo Streaming Video

database. All images are cropped for neat presentation. (a) Source reference video frame.

(b)-(f) 1920×1080 at 8,000 kbps, 4,000 kbps 1,000 kbps, 500 kbps, and 100 kbps. (g)-

(k) 1280times720 at 8,000 kbps, 4,000 kbps 1,000 kbps, 500 kbps, and 100 kbps. (l)-(p)

740times480 at 8,000 kbps, 4,000 kbps 1,000 kbps, 500 kbps, and 100 kbps.

Packaging: We implement a customized Python module, namely PyDASH, on top of

GPAC’s MP4Box [112] for video packaging. PyDASH is capable of performing feature
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extraction at high efficiency and insert these information into the manifest file as the

metadata. A sample manifest file generated by PyDASH is illustrated in Listing B.2. Many

features are useful later in the bitrate adaptation process. To make the dataset readily

extendable, we extract a comprehensive list of features that are commonly used in the QoE

monitoring and ABR algorithms with PyDASH, including bitrate, resolution, frame rate,

chunk duration, VMAF, PSNR, SSIM, QP, and motion vector magnitude. We segment the

test sequences with a segment length of 4 seconds following the recommendation in [114].

7.1.2 Channel

Network Traces: To faithfully represent realistic network conditions, we employ the

combination of several existing datasets: a broadband dataset collected by FCC [60], a 3G

dataset named HSDPA [171], two 4G datasets from UCC [167] and Belgium [213], a 5G

dataset from UCC [166], and a Live Television streaming dataset named Puffer [237].

The FCC dataset contains more than 1 million throughput traces, each of which records

the average throughput over 2, 100 seconds at a granularity of 5 seconds. Each trace

is associated with a unique connection identifier. We select 10, 000 sessions from 500

clients by randomly cutting from the raw connection-level throughput traces, each with a

duration of 120 seconds. The HSDPA dataset comprises 3G throughput measurements at

a granularity of 1 second, collected from mobile devices that were streaming video while

in transit. The experiments were performed in the period Sep. 13, 2010 to Apr. 21, 2011

in Norway. 6 out 11 scenes contain more than five traces, resulting in a total of 78 valid

traces. We apply a sliding window to generate 1, 000 throughput traces to form the 3G

network dataset. The Belgium dataset consists of 40 4G bandwidth traces recorded along

several routes in and around the city of Ghent at a 1-second granularity. The UCC dataset

is composed of client-side cellular key performance indicators collected across different

mobility patterns (static, pedestrian, car, tram and train). The 4G trace dataset contains

135 traces, with an average duration of fifteen minutes per trace at a granularity of one

sample per second. The dataset also contains synthetic throughput traces from 100 mobile

users. We consider each route corresponds to a network environment, based on which the

connection-level throughput traces are extracted. To match the duration of our selected

186



FCC traces, we generate 10, 000 traces using a sliding window across the two 4G datasets,

each with a duration of 120 seconds. The 5G dataset comprises 45 traces collected from 15

environmental conditions. We follow a similar way to pre-process the data, obtaining 1, 000

traces. Started since Jan. 26, 2019, the Stanford Puffer dataset is an ongoing research

project that collects connection-level data in a realistic streaming video environment. To

date, the dataset includes more than 5M individual throughput traces collected on the

Amazon Mechanical Turk platform. We select all traces from June 2019 to May 2021

in the construction of the WaterlooSV database. During the experiment, a number of

environmental statistics are logged from both video servers and players per video chunk.

As a result, the Puffer dataset does not provide the throughput at a fixed granularity. To

make the data format consistent, we apply linear interpolation to the source data such that

the a throughput measurement is recorded every two seconds. Each trace in the Puffer

dataset is assigned a SessionID, and throughput traces with the identical SessionID are

generated from the same connection. We cut every raw trace into 120-second sequences

and randomly select 20 traces for every task. With this pro-processing above, we randomly

select 10, 000 traces from 500 users. In total, we obtain 32, 000 throughput traces from

1, 600 clients, each with duration of 120 seconds.

The characteristic of each dataset is shown in Figure 7.3. Among five datasets, through-

put is the most stable in broadband network and the most variable in mobile network.

Furthermore, the 3G HSDPA dataset exhibits the lowest average throughput. Therefore,

the HSDPA dataset provides a stress test to ABR algorithms, while broadband datasets

can serve as a test-bed for inefficient bitrate usage.

7.1.3 Receiver

ABR Algorithms: We provide an open-source implementation of ABR algorithms in

both Python and Javascript. We implement the library in a way that 1) it is easy to perform

ablation experiment, and 2) it is easily extendable. In particular, each ABR algorithm

consists of three functional components, namely throughput predictor, reward function,

and bitrate selector. In the current stage, there are seven throughput predictors, six

reward functions, and eight bitrate selectors in the WaterlooSV database. The implemented
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Figure 7.3: Network characteristics of the three throughput trace databases.

algorithms in each module are summarized in Table 7.1. Customized ABR rules can be

easily obtained by plugging in different implementations of the three modules.

Viewing Conditions: The ultimate receivers of streaming videos are human beings, who

consume multimedia on a large variety of viewing conditions. According to the capability

of viewing device, the adaptive streaming player may re-sample the video to different

resolution, frame rate, and dynamic range, each of which may change QoE in some way.

The re-sampled video signal goes through the viewing environment and arrives in the

retina. The transmission process may further amplify or alleviate visual distortions by the

background luminance level and viewing distances, which interplays with HVS features

such as the contrast sensitivity function [173]. To make the problem tractable, we simplify

the viewing environment by only taking the viewing distance into consideration. In this

study, we consider three mostly used viewing devices including High Resolution Television

(HDTV), smartphone, and UHDTV and their typical viewing distance according to [104].

Note that the presentation quality is a function of viewing environment, which we take

into account with device adaptive VMAF scores (see Appendix B.3 for more details). An

alternative presentation quality measure is SSIMplus [169], which offers richer and more
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Table 7.1: Implemented throughput predictors, reward functions, and bitrate selectors

in the WaterlooSV dataset. Abbreviations: AM, arithmetic mean; HM, harmonic mean;

EWMA, exponential weighted moving average; HMM, hidden markov model; MLP, multi-

layer perceptron; MetaTP, meta learning-based throughput predictor; BO, buffer occu-

pancy; LB, linear function of bitrate; NB, non-linear function of bitrate; LV, linear func-

tion of video quality assessment score; BSQI, Bayesian streaming quality index; RDOS,

rate-distortion optimized streaming; Greedy/BO, greedy algorithm without taking buffer

occupancy into consideration; DP, dynamic programming; SL, supervised learning; A2C,

actor advantage critic; EERO, efficient, robust and optimal bitrate selector.

Modules Algorithms

Throughput predictor AM, HM, EWMA, Linear, HMM, MLP, MetaTP

Reward function BO, LB, NB, LV, BSQI, RDOS

Bitrate selector Heuristic, Greedy/BO, Greedy, DP, SL, Q-Learning, A2C, EERO

precise device-adaptive scoring, though its implementation is not publicly available.

7.2 Objective Evaluation

Building upon the WaterlooSV database, we perform a comparative study to illustrate the

advantages of the RDOS paradigm over the traditional bitrate maximization paradigm.

We then evaluate the full system implementation of RDOS.

7.2.1 Experimental Setup

Evaluation Framework: Existing studies evaluate the performance of ABR algorithms

by performing video streaming between a video server and a DASH client. The typical

evaluation architecture consists of four modules: two computers with a direct network

connection emulating a video client and server. Streaming videos are pre-encoded and

hosted on an Apache Web server. The main components of this architecture are the band-

width shaping and the network emulation nodes which are both based on Ubuntu utilities.
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The available bandwidth for the client is adjusted every second according to bandwidth

traces. The video client, where ABR algorithms are deployed, rendered videos at full

screen while the video server is a simple HTTP server. However, given the diverse stream-

ing environment in the WaterlooSV database, it is prohibitively expensive to perform an

exhaustive evaluation of ABR algorithms using the real-player emulation setup. In partic-

ular, it would take around 4,000 years to download and render all possible combinations of

streaming videos for a single player. Nevertheless, we can leverage the chunk-level simu-

lator in [131], which has been previously demonstrated to faithfully model the application

layer network. The streaming simulator maintains an internal representation of the client’s

playback buffer. For each chunk download, the simulator computes a download time based

on the chunk bitrate and the input network throughput traces. The environment model

then drains the playback buffer by the current chunk download time to simulate video

playback during the download, and replenishes the buffer with the duration of the down-

loaded chunk. The simulator carefully keeps track of rebuffering events that arise as the

buffer occupancy changes, i.e., scenarios where the chunk download time exceeds the buffer

occupancy at the start of the download. In scenarios where the playback buffer cannot

accommodate video from an additional chunk download, the simulator pauses requests for

500 ms before retrying, which is the default behaviour of DASH player. After each chunk

download, the simulator sends relevant state information to the ABR agent for the bitrate

decision of the next chunk. In our objective evaluation, the streaming simulator is config-

ured to emulate the network conditions from our corpus of network traces, along with an

80 ms RTT, between the client and server.

Model Training: We randomly split the streaming video contents/bitrate ladders/through-

put traces into 60% training, 20% validation, and 20% testing sets. The throughput traces

are split according to the client id to facilitate connection-level optimization. We follow the

experimental setup in Section 5.3.1 to train the proposed MetaTP, suggesting that 20% of

the traces from each client in the testing set is used for fast adaptation. For fairness, these

traces are also included in the training set for other data-driven ABR algorithms.

Evaluation Criterion: In this work, we are not only interested in the streaming video

QoE, but also the amount of bitrate resource it takes to achieve a certain QoE level. For two

ABR algorithms resulting in the same QoE, the algorithm consumes less bitrate should be
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considered better than the other. In order to capture this property, we propose to generalize

the Bjøntegaard-Delta bitrate measure [20], which has been widely used to evaluate the

performance of video encoders. Specifically, the performance of an ABR algorithm on a

specific video content can be characterized by its rate-distortion curve generated from a

corpus of network traces. The average bitrate differences between rate-distortion curves

for the same QoE is given by

RBD =

{
exp

{∫ qH
qL

[rB(q)− rA(q)] dq

qH − qL

}
− 1

}
× 100, (7.1)

where q, rA, and rB are the QoE, the logarithmic-scale bitrate of streaming videos generated

by the reference and test ABR algorithms, respectively. [qL, qH] is the effective range

covered by the rate-distortion curves under test. The overall rate-distortion performance

can be obtained by taking the average RBD across all video contents, video encoders, and

viewing devices, leading to a comprehensive evaluation of ABR algorithms.

7.2.2 Rate Distortion Optimization Paradigm vs. Bitrate Maxi-

mization Paradigm

We directly compare the proposed RDOS paradigm with the traditional bitrate maximiza-

tion paradigm by adapting the existing ABR algorithms to optimize the rate-distortion

reward. Each RDOS adapted ABR algorithm is compared against its original counterpart

in terms of the bitrate saving in (7.1). In this study, we adopt the proposed BSQI as

the QoE measure in (3.2). Nevertheless, the proposed framework is general enough to

incorporate better QoE measures once they become available.

Exhaustive evaluation of all ABR algorithms is difficult as it involves optimizing over

an infinite-dimensional functional space. To this end, we evaluate the following ABR

algorithms, ranging from the näıve de facto rate-based algorithm to the state-of-the-art

algorithms, and optimize the free parameters by empirical simulations based on the training

dataset:

• RB: RB ABR algorithm [63] employs a variant of greedy algorithm to optimize a

linear bitrate-based reward function. The available future throughput is predicted
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by the arithmetic mean of observed throughput over the past five chunks. The

algorithm makes a conservative bitrate decision without using the buffer occupancy

status.

• BOLA: BOLA [191] makes greedy optimization to maximize a reward function that

encourages higher bitrate, shorter rebuffering duration, and lower buffer occupancy.

Under some mild assumptions, the problem can be solved by Lyapunov optimization,

which select optimal bitrates solely based on buffer occupancy observations.

• FastMPC: FastMPC [241] uses both buffer occupancy observations and throughput

predictions using harmonic mean of the past 5 chunks to select bitrate. In each step,

the algorithm maximizes a linear bitrate-based QoE measure over a horizon of five

future chunks, and re-plans the trajectory as new state variables become available.

The optimization problem is solved offline and its solution is stored as a lookup table.

We use 100 bins for throughput prediction, 100 bins for buffer level, and 13 bins for

the past bitrate level.

• Fugu: Fugu [237] is a variant of FastMPC. The major improvement is a data-driven

throughput predictor over the model-based harmonic mean.

• Pensieve: Pensieve [131] is a model-free reinforcement learning-based ABR algorithm

that learns to select optimal bitrate in terms of a linear bitrate-based QoE model.

The algorithm learns a CNN-based policy that takes throughput observations and

buffer occupancy of previous eight chunks as input and produces the optimal bitrate

decision. One of the biggest advantages of the algorithm is that it can efficiently

optimize the long-term reward.

To derive the RDOS counterpart of these ABR algorithms, we made the following modifi-

cations:

• RB+RDOS: The adaptation of RB to the new RDOS paradigm is straight-forward.

We simply replace the original reward function by the linear combination of BSQI

and bitrate.
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• BOLA+RDOS: To lift the need for throughput prediction, the original BOLA algo-

rithm makes a prior assumption about the bandwidth characteristics. The through-

put distribution is a implicit function of the model hyper-parameters, making the

conversion to RDOS non-trivial. To this end, we use the simplest throughput pre-

dictor, i.e., the nearest neighbourhood predictor, in the adapted version of BOLA.

Similarly, we perform the greedy optimization scheme to maximize the RDOS reward

function.

• FastMPC+RDOS: To obtain the necessary input to perform rate-distortion opti-

mization, we look ahead both the quality scores and chunk-level bitrate in the next

five chunks. We also expand the input space by incorporating the presentation video

quality. We set the quantization step in the lookup table to 10. In the end, we

optimize the RDOS reward function at each state to obtain the revised lookup table.

• Fugu+RDOS: The RDOS optimized CS2P can be obtained in a similar fashion to

the FastMPC.

• Pensieve+RDOS: We extend the input space of Pensive to integrate the presentation

video quality, and change the neural network architecture accordingly. We utilize

Advantage Actor Critic Algorithm (A2C) as the learning algorithm to optimize the

RDOS reward function.

We set the rate-distortion tradeoff parameter λ = 0.001 in the experiment.

Experimental Results

Figure 7.4 demonstrates the average bitrate saving of RDOS schemes over its bitrate max-

imization counterpart for different encoders, throughput traces, and viewing conditions.

Figure 7.5 shows the QoE change in BSQI of each bitrate maximization algorithm intro-

duced by employing the RDOS objective function. There are three key takeaways from

these results. First, we find that the RDOS framework can achieve 12%-45% bitrate sav-

ing without sacrificing QoE for all baseline ABR schemes. In general, RDOS achieves a
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Figure 7.4: The bitrate saving of rate-distortion optimized ABR algorithms over its default

version. Error bars span ± one standard deviation from the average.

higher bitrate saving with a more accurate throughput prediction model and a better bi-

trate adaptation function. For example, the rate-distortion optimized Pensieve produces

a bitrate saving of 18%-58% over the original bitrate maximization Pensieve across all

scenarios considered while obtaining the highest average QoE of 67.

Second, due to the cross-video, cross-encoder, and cross-device adaptation capability,

RDOS attains different bitrate savings at different operating conditions. Specifically, the

maximum bitrate saving is obtained on smartphone and the AV1 encoded video streams,

where the presentation QoE score predicted by SSIMplus or VMAF usually saturates at

relatively low bitrate levels. Being aware of the device-specific rate-distortion character-

istics, the proposed framework usually picks the intermediate bitrate level of sufficiently

high QoE, effectively maximizing the presentation QoE scores while minimizing the bitrate

usage. The bitrate conservative strategy also has extra benefit in reducing the probability

of rebuffering, especially in high performance but high variability network environment

such as 5G. In particular, RDOS-based algorithms reduce rebuffering duration by 12% on

average comparing to the original implementations.

Third, RDOS not only earns the maximum bitrate saving when there are abundant

bandwidth resources, it also demonstrates notable performance gain at low-bandwidth

conditions. By having a closer look at the streaming logs, we find that RDOS is able to

learn a policy that starts with low bitrate level, gradually switches up, and stays at an
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Figure 7.5: The cumulative density function of QoE change in terms of BSQI introduced

by applying the RDOS reward function.

intermediate bitrate level at poor bandwidth conditions, while other ABR algorithms either

constantly makes conservative decisions or erratically switches up and down according to

the instantaneous bandwidth estimate or buffer occupancy observations. The difference

may be explained by the perceptually motivated QoE model employed by RDOS, whereby

positive adaptations are preferred over negative adaptations. On the other hand, FastMPC

and Pensieve, which penalize switching up and switching down equally, usually stay at the

minimum bitrate level even when temporary switching up is possible.

7.2.3 Full System Validation

In this section, we evaluate the performance of the full ABR system, which is a combination

of RDOS (with BSQI as the QoE measure), MetaTP, and EERO. For simplicity, we name

the full algorithm as RDOS. We compare RDOS with a comprehensive list of existing ABR

algorithms, including

• RB: Refer to 7.2.2.
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• BB: We employed the function suggested by Huang et al. [93], where bitrate is chosen

as a piece-wise linear function of buffer occupancy. The algorithm always starts with

the lowest bitrate till the buffer occupancy reaches a certain threshold called reser-

voir. Once reservoir is filled up, a higher bitrate is selected as the buffer occupancy

increases till there is enough video segment in the buffer (upper reservoir) to absorb

the variation caused by the varying capacity and by the finite chunk size, where the

range from the lower to upper reservoir is defined as cushion. We set a lower reservoir

and cushion to be 5 and 10 seconds, respectively.

• AIMD: The heuristic algorithm picks the representation according to the bandwidth

estimation using the previous downloaded chunk in an additive increase and multi-

plicative decrease manner [122]. When the two thresholds for switching are not met,

the algorithm keeps the selected bitrate.

• ELASTIC: This algorithm incorporates a PI-controller to maintain a constant du-

ration of video in the buffer (10 seconds in the experiment). Since the bandwidth

estimation module is not specified in the original implementation, we adopt the

throughput prediction using harmonic mean of the past five chunks, because it is

shown to be effective in previous studies [102].

• QDASH: QDASH picks an intermediate bitrate when there is a bandwidth drop to

mitigate the negative impact of abrupt quality degradation [141]. Without impacting

the performance, we replace the proxy service for bandwidth estimation in the original

implementation with the throughput prediction using harmonic mean of past five

chunks for simplicity.

• FESTIVE: This rate-based algorithm balances both efficiency and stability, and in-

corporates fairness across players, which is not a concern of this paper [102]. We

assume there is no wait time between consecutive chunk downloads, and implement

FESTIVE without the randomized chunk scheduling. Note that this does not nega-

tively impact the player QoE. Specifically, FESTIVE calculates the efficiency score

depending on the throughput prediction using harmonic mean of the past five chunks,

as well as a stability score as a function of the bitrate switches in the past five chunks.
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The bitrate is chosen to be the minimal stability score plus α = 12 times efficiency

score.

• BOLA: Refer to 7.2.2.

• Robust Model Predictive Control (RobustMPC): The algorithm applies dynamic

programming to solve the QoE optimization problem online. In accordance to the

recommendation in [102], RobustMPC employs the harmonic mean-based throughput

predictor to estimate the bitrate resource. In each step, the algorithm maximizes a

linear bitrate-based QoE measure over a horizon of five future chunks, and re-makes

the bitrate decision at the next state.

• FastMPC: Refer to 7.2.2.

• SDNDASH: SDNDASH is a centralized ABR algorithm that is dedicated to optimize

the expected group-level QoE [16]. Without impacting the performance, we employ

a client-side implementation of the algorithm, which is composed of a model-based

throughput predictor, a linear VQA-based reward function, and a greedy bitrate

selector.

• CS2P: Refer to 7.2.2.

• Q-Learning: Back in 2013, Claeys et al. [32] presented the first reinforcement learning-

based ABR algorithm. The algorithm, dubbed Q-Learning, learns a mapping between

each (state, action) pair and the corresponding expected total reward during the in-

teraction with a trace-driven environment simulator. The reward in the study is a

non-linear function of bitrate level, rebuffering duration, and bitrate oscillation.

• Pensieve: Refer to 7.2.2.

• Fugu: Fugu is a variant of RobustMPC which employs advanced machine learning

techniques in throughput prediction. Specifically, it learns a multi-layer perceptron

to predict the throughput in the next five chunks by using a very-large scale realistic

throughput dataset. By default, this ABR optimizes a SSIM-based reward function.

In this study, we replace the default reward function by a linear function of VMAF,

197



RB BB
AIM

D

ELASTIC

QDASH

FESTIVE
BOLA

RobustM
PC

FastM
PC

SDNDASH
CS2P

Q-Learning

Pensie
ve
Fugu

Comyco
0

10

20

30

40

50

B
itr

at
e 

sa
vi

ng
 (%

)

Figure 7.6: The bitrate saving of full RDOS over its competing algorithms.

rebuffering duration, and VMAF variation, because 1) the model exhibits a higher

correlation with subjective QoE measurement and 2) both of these models rely on

the same assumptions.

• Comyco: This ABR algorithm performs imitation learning [92] to mimic the behavior

of an offline optimal adaptive streaming algorithm. We use the default settings

suggested in the original paper to train the RNN-based ABR controller.

Experimental Results

Figure 7.6 shows the average bitrate saving achieved by the full RDOS algorithm over each

competing ABR algorithms on our entire test corpus. Figure 7.7 compares RDOS to all

test ABR algorithms in terms of the utility from the average quality, bitrate consumption,

and rate-distortion reward in (3.2). The key observations are summarized as follows.

First, we find that RDOS significant reduces the bitrate assumption without inducing

the loss in QoE, achieving an average bitrate saving of 18%-46% over the existing ABR
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Figure 7.7: The composition of rate-distortion reward obtained by the test ABR algorithms.

algorithms. The closest competing algorithm is Comyco, which employs a variant of BSQI

as reward function and a pure data-driven adaptation policy. Thanks to the novel rate-

distortion paradigm, the accuracy throughput predictor, and the robust control policy,

RDOS obtains a comparable QoE to Comyco but reduces the bitrate usage by 19%. Second,

the heuristic ABR algorithms generally receive the lowest QoE because they always apply

conservative strategy, regardless of the throughput condition. For example, FESTIVE

selects the maximum bitrate level at a probability lower than 2% even with sufficient

bandwidth resource. In contrast, RDOS can quickly switch to the best representation when

necessary, spending 2%, 5%, and 12% time in playing the highest bitrate level on Phone,

HDTV, and UHDTV, respectively. Third, despite consuming the most bitrate, Pensieve

does not produce the highest QoE. In fact, the two tabular ABR algorithms Q-learning

and FastMPC that optimize the same linear bitrate reward function outperform Pensieve

in terms of BSQI. On the other hand, a close variant of Pensieve, namely Comyco, can

effectively alleviate this problem. This suggests that there exists significant gap between

bitrate and QoE, and thus simply maximizing bitrate as a proxy of subjective QoE may
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(a) Slides (b) Game (c) Movie (d) Nature (e) Sport

Figure 7.8: Snapshots of video sequences.

Table 7.2: Spatial Information (SI), Temporal Information (TI), Frame Rate (FPS), and

Description of Reference Videos

Name FPS SI TI Description

Slides 30 97.7 1.1 screen content, static

Game 30 25.6 12.4 animation, high motion

Movie 24 31.2 28.2 computer generated, high motion

Nature 30 46.5 2.8 natural, animal

Sport 30 32.5 22.0 human, high motion

lead to sub-optimal performance.

7.3 Subjective Evaluation

In this section, we first describe the construction of the new WaterlooSQoE-IV database

including the source material collection and the simulation experiment setup. We then

present the details of the subjective experiment for collecting human annotations.

7.3.1 Database Construction

Source videos: We select five high-quality 4K creative commons licensed videos from the

Internet, which span a diverse set of content genres, including screen content, video game,

movie, natural scene and sport. There are different types of camera motion, including

static (e.g. Slides, Game and Nature) and complex scenes taken with a moving camera,
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with panning and zooming (e.g. Movie and Sport). To make sure that the videos are of

pristine quality, we carefully inspect each of the videos multiple times by zooming in and

remove those videos with visible distortions. The detailed specifications of those videos are

listed in Table 7.2 and a screenshot from each video is included in Figure 7.8. Ideally, the

sampled videos should come from the real-world streaming video distribution, suggesting an

average video duration of 11.7 minutes [204]. However, there exist several challenges in the

development of subjective experiment for long streaming videos in practice. First, given the

limited capacity for subjective experiment, the design of QoE database has to trade off the

number of source content, the number of influencing factors, and the duration of each video.

Second, the generalization capability of existing subjective experiment protocols on such

long video sequences has not been examined in the literature. To alleviate these problems,

we cut a 32-second video clip from each source content. This choice is in accordance with

many recent studies [11, 27], which suggest that longer videos of up to 30 seconds may be

required to be able to test the impact of switching patterns.

Encoding profiles: Using the aforementioned sequences as the source, each video is en-

coded with H.264 [233] and High Efficiency Video Coding (HEVC) [198] encoders into 13

representations using the bitrate ladder shown in Table 6.1 to cover different quality levels.

The choices of bitrate levels are based on Netflix’s recommendation [147] while the last

two representations are appended to the original bitrate ladder to cover the high-quality

representations suggested in Apple’s recommendation [95]. Despite the recent develop-

ment in content adaptive bitrate ladder generation [36, 49, 208], there has been no widely

accepted per-title encoding strategy. Furthermore, some ABR algorithms only accept a

fixed set of encoding profiles as input [131]. We segment the test sequences with GPAC’s

MP4Box [112] with a segment length of 4 seconds. Since some testing ABR algorithms

rely on chunk-level bitrate and presentation quality scores in the bitrate selection, we pre-

compute and embed them as the attributes of SegmentURL [63] in the manifest file that

describes the specifications of the video.

Network traces: We pick nine network traces from the test set in the simulation experi-

ment, as shown in Figure 7.9. To cover different network conditions, we choose traces at a

variety of mean and variance. Some network traces are likely to cause sudden bitrate/qual-

ity changes and rebufferings even if the average bandwidth is relatively high.
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Figure 7.9: Network traces used in the subjective experiment.

ABR algorithms: We evaluate the five representative ABR algorithms including RB, BB,

FastMPC, Pensieve, and RDOS. We implement the ABR algorithms in dash.js (version

2.9.2) [63]. We optimize the free parameters of BB, FastMPC, Pensieve, and RDOS across

an independent database of training videos generated from 250 high-quality 4K videos and

3040 network traces. The training data is generated in a similar fashion to ensure the

optimality of ABR algorithms on the test set. For FastMPC, we compress the javascript

code directly instead of performing run-length coding on the lookup table. For RDOS, we

set the tradeoff parameter to 0.001. In our experiment, we find the simplification introduces

minimum overhead and the code size is close to the original implementation [241]. We

implemented a simplified version of RDOS by replacing the reward function of the Pensieve

(with integrating MetaTP and EERO1). To perform feed-forward prediction in the browser,

we convert the actor networks of Pensieve and RDOS to Tensorflow.js [97] and save the

models in the client local storage via IndexedDB [143].

Viewing devices: The ultimate receivers of streaming videos are human beings, who

1We carried out the subjective experiment before the development of MetaTP and EERO. Due to the

time complexity of an user study, the subjective evaluation of the full system implementation is considered

as a future work.
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consume multimedia on a large variety of viewing devices. In this thesis, we consider

three mostly used viewing devices according to [104], including HDTV, smartphone, and

UHDTV. Note that the presentation quality is a function of viewing device, which we take

into account with device adaptive VMAF scores.

Experimental setup: In order to generate meaningful and representative test videos for

subjective experiment, we conduct a set of DASH video streaming experiments, recorded

the relevant streaming activities, and reconstructed the streaming sessions using video

processing tools. DASH videos were pre-encoded and hosted on an Apache Web server.

We used Mahimahi [148] to emulate the network conditions from our corpus of network

traces, along with an 80 ms round-trip time, between the client and server. The client

video player is a customized Chromium browser (version 73) supporting H.264 and HEVC

playback. Both the client and server run on the same computer with an Intel i7-6900K

3.2GHz CPU. Before a streaming session is initialized, the player selects one viewing device

from HDTV, Phone, and UHDTV, and parses presentation QoE scores from the manifest

file accordingly. After each video streaming session, a log file was generated on the client

device, including selected bitrates, duration of initial buffering, and the duration of each

stalling event. We then reconstructed each streaming video with FFmpeg [206]. Aiming to

evaluate the performance at steady status, we force all ABR algorithms to start with the

same quality level. We remove the initial buffering and the first chunk from the streaming

videos for presentation.

The simulation with realistic network traces and ABR systems ensures the generated

streaming videos come from the real-world distribution. Furthermore, the end-to-end treat-

ment from server, network to client viewing device enables controlled data analysis, which

is not possible with only the streaming videos in the wild.

Summary: A total of 1,350 streaming videos (5 source videos × 2 encoders × 9 network

traces × 5 ABR algorithms × 3 viewing devices) are generated for presentation. The mean

and standard deviation of the video duration are 30.7 and 1.8 seconds, respectively.
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7.3.2 Subjective Testing

Choice of testing methodology: Given the large-scale streaming videos and the limited

capacity of subjective testing, it is prohibitively difficult to employ the pairwise comparison

subjective testing method, which arguably produces more reliable ratings [100, 240]. There

exist two alternatives in the literature including Single Stimulus (SS) and Single Stimulus

Continuous Quality Evaluation (SSCQE) methods. In SS methods, a single streaming video

is presented and the assessor provides an index of the entire presentation. The approach

has become the standard subjective testing method in the field of visual communication

and has been applied in several streaming video QoE datasets [53, 54, 70]. By contrast,

the SSCQE scheme records not only continuous-time QoE scores while participants are

viewing test stimulus, but also retrospective scores at the end of the presentation. The

past decades has witnessed an increasing trend towards the usage of single stimulus con-

tinuous quality evaluation in streaming video QoE assessment[11, 12, 142], thanks to its

capability to provide scene-dependent and time-varying quality evaluation. We conduct a

small-scale pilot study to investigate the feasibility of SS and SSCQE in the QoE assess-

ment of streaming videos. There are 200 streaming videos in the experiment, which are

generated in a similar fashion to the WaterlooSQoE-IV dataset. 10 participants take part

in the pilot study, who are uniformly assign to the SS experiment and the SSCQE exper-

iment. To investigate the reliability of each experiment, each of the participant performs

the same experiment twice. The repeated experiments are scheduled on different date to

reduce the fatigue effect and memory effect. In the SS experiment, a single streaming

video is presented and the assessor provides an index of the entire presentation, while in

the SSCQE experiment, we record not only continuous-time QoE scores while participants

are viewing test stimulus, but also retrospective scores at the end of the presentation.

After the experiment, the participants in the SSCQE group report that they frequently

encounter difficulties in recalling retrospective scores due to the limited mental capacity.

The phenomenon is evident by the low repeatability and reliability of the SSCQE experi-

ment. Specifically, we obtain an inner-subject correlation and inter-subject correlation of

0.73 and 0.65 in the SSCQE experiment, respectively, which are significantly lower than

the inner-subject correlation and inter-subject correlation of 0.82 and 0.79 in the SS exper-

iment. Furthermore, there is time delay between the recorded instantaneous quality and
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the video content, and such delay varies between subjects and is also a function of slider

“stiffness”. This is an unresolved issue of the general SSCQE methodology, but is avoided

when only a single score is acquired. On the other hand, the long duration of test videos in

SS as opposed to the international recommendation [100] comes with a cost. We find that

participants gradually loss interests in viewing test stimuli, merely paying attention to the

first few segments. To overcome these problems, we propose a variant of SS by introducing

an auxiliary task in the experiment. In particular, each subject is asked to (1) perform

a keystroke whenever a rebuffering event occurs and (2) provide the overall QoE score at

the end of each presentation. The auxiliary task not only motivates participants focusing

on the experiment materials, but also helps us identify outliers who do not attend to the

full test stimuli. We empirically observe a better inner subject correlation in the proposed

experiment. As a result, we adopt the dual-task SS as the subjective testing methodology

in the development of WaterlooSQoE-IV.

Experiment procedure: The subjective experiment is carried out over a period of eight

weeks at the University of Waterloo at Image and Vision Computing subjective testing lab.

The environment is setup as a normal indoor home settings with an ordinary illumination

level, with no reflecting ceiling walls and floors. A customized graphical user interface

is used to render the videos on the screen and to record the individual subject ratings

on the database. In order to remove any memory effects, we randomly shuffle the source

contents and the corresponding playout patterns while ensuring that the same content is

not consecutively displayed to a subject in any session. Furthermore, the play order is

kept different for each participant to minimize the impact of context on the subjective

experiment. A total of 97 näıve subjects, including 50 males and 47 females aged between

18 and 38, participate in the subjective test. Given the time constraint, each subject is

randomly assigned a viewing device from HDTV (24 inch ViewSonic VA2452SM), Phone

(5.8 inch Apple iPhone XS Max), and UHDTV (55 inch Sony XBR55X800H). In the end,

the Phone, HDTV, and UHDTV studies received ratings from 33, 32, and 32 participants,

respectively. All videos are displayed at full-screen on each of the devices. The monitors

are calibrated in accordance with the ITU-R BT.500 recommendation [100]. Observers

are seated at a distance of 3 × the height of the viewing device [100]. Visual acuity and

color vision are confirmed from each subject before the subjective test. A training session
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is performed, during which, 8 videos that are different from the videos in the testing set

are presented to the subjects. We used the same methods to generate the videos used in

the training and testing sessions. Therefore, subjects knew what distortion types would

be expected before the test session, and thus learning effects are kept minimal in the

subjective experiment. Subjects were instructed with sample videos to judge the overall

QoE considering all types of streaming activities in the session. For each subject, the whole

study takes about 5.5 hours, which is divided into eleven sessions spanning over three days.

In order to minimize the influence of fatigue effect, the length of a session was limited to

25 minutes. The choice of a 100-point continuous scale as opposed to a discrete 5-point

ITU-R Absolute Category Scale (ACR) has advantages: expanded range, finer distinctions

between ratings, and demonstrated prior efficacy [186]. Since the eleven sessions were

conducted independently, there is a possibility of misalignment of their quality scales. In

order to alleviate the problem, we performed a separate experiment for realignment, where

ten videos from each session were collected as test stimuli. The videos chosen from each

session roughly covered the entire quality range for that session.

Post-processing: The raw subjective scores are converted to Z-scores. We remove the

ratings of streaming videos where each rebuffering event is not associated with an keystroke.

In addition to the outlier removal scheme suggested in [100], we remove subjects who failed

to accurately perform 10% of the auxiliary task, leaving 92 valid subjects. The results of the

realignment experiment were used to map the Z-scores to MOS in accordance with [186].

Specifically, we assume a linear mapping between Z-scores and MOS. The coefficients are

learnt by minimizing the prediction residual. One mapping is learnt for the experiment on

each day and applied to the Z-scores of all videos in the respective sessions to produce the

realigned MOS for the whole database.

The standard deviation of opinion scores and the mean SRCC between individual sub-

ject ratings and the MOSs are 17.35 and 0.67, respectively. The mean SRCC between

individual ratings and the MOSs in the WaterlooSQoE-IV database is relatively lower than

standard subjective video quality assessment database. To quantitatively analyze the be-

haviour, we compare the mean SRCC in the WaterlooSQoE-IV database to the ones in the

WaterlooSQoE-I, WaterlooSQoE-II, and WaterlooSQoE-III databases. Although we would

like to extend our analysis to other databases, neither the individual subjective ratings nor
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Figure 7.10: Performance of ABR algorithms on each testing network trace. Results are

normalized against the performance of RDOS. Error bars span ± one standard deviation

from the average.

existing data analysis are available in other streaming video QoE datasets. We believe

that the low inter-subject consistency arises from two aspects. First, it has been observed

that the inter-subject consistency negatively correlates with the number of stimuli under

the same experimental protocol [53, 54, 199]. The claim is supported by our small-scale

pilot study, which exhibits an inter-subject correlation of 0.79 under the same experimental

protocol. Nevertheless, we find that the mean SRCC in the WaterlooSQoE-IV database is

comparable to the WaterlooSQoE-III (mean SRCC of 0.667), which is considerably smaller

in size. This suggests that the auxiliary task and additional alignment experiment helped

mitigate the fatigue effect to some extent. Second, the low inter-subject consistency may

also be a consequence of the intrinsic heterogeneity in the presence of diverse distortion

patterns. The argument is evident by the high inter-subject consistency discrepancy be-

tween the databases with hand-crafted distortion (WaterlooSQoE-I and WaterlooSQoE-II)

and the databases with realistic distortions (WaterlooSQoE-I and WaterlooSQoE-II).

7.3.3 Performance of ABR Algorithms

We evaluate the performance of ABR algorithms in two aspects. First, we are interests

in how RDOS compare to other ABR algorithms in terms of subjective QoE, which is

typically considered as the ultimate goal of ABR streaming. To this regard, we evaluate

the performance of ABR algorithms with average MOS. Second, we are not only interested

in the streaming video QoE, but also the amount of bitrate resource it takes to achieve

207



Slides Game Movie Nature Sport H.264 HEVC HDTV Phone UHDTV
0.0

0.5

1.0

Rate-based Buffer-based FastMPC Pensieve RDOS

Figure 7.11: Performance of ABR algorithms on each content, video codec, and viewing

device. Results are normalized against the performance of RDOS. Error bars span ± one

standard deviation from the average.

a certain QoE level. For two ABR algorithms resulting in the same QoE, the algorithm

consumes less bitrate should be considered better than the other. In order to capture this

property, we adopt the bitrate saving measure in (7.1) as the evaluation criteria.

Performance in MOS

Figure 7.10 and 7.11 show the MOS that each ABR scheme receives across each dimension.

Figure 7.12 provides the cumulative distribution of MOS attained by the ABR algorithms

on the WaterlooSQoE-IV database. There are three key takeaways from these results.

First, we find that RDOS exceeds the performance of the best existing ABR algorithm

with a sizable margin on almost all scenarios considered. RDOS achieves 10% and 30%

performance gain over the second best algorithm rate-based and its bitrate-driven coun-

terpart Pensieve, respectively. Second, it is surprising that buffer-based, FastMPC, and

Pensieve are inferior to the de facto rate-based algorithm on average. This is in sharp

contrast to the significant gains claimed in existing studies using one or few test samples of

hand-picked video clips and network traces, and verified with casual testing. Our results

suggest that a better QoE model, or a better understanding of the human perceptual expe-

riences, is an essential and dominating factor in improving ABR algorithms, as opposed to

advanced optimization frameworks, machine learning strategies, or bandwidth predictors,

where a majority of ABR research has been focused on in the past decade. Third, FastMPC

outperforms another data-driven algorithm Pensieve, despite the common objective func-
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Figure 7.12: Cumulative distribution function of MOS generated from five competing ABR

algorithms.

tion. The first interpretation of the phenomenon is that the convolutional neural network

architecture cannot well characterize the vast diversity of network conditions, leading to

sub-optimal bitrate selection. Another possible explanation could be that despite a more

accurate throughput prediction, the enormous difference between the objective QoE pre-

diction and subjective QoE response results in misplacement of bitrate resources. The

real cause remains unclear because Pensieve only provides implicit throughput prediction.

Fourth, RDOS demonstrates the most notable performance gain at low-bandwidth condi-

tions. The difference may be explained by the perceptually motivated QoE model employed

by RDOS, whereby positive adaptations are preferred over negative adaptations. Fifth, the

rate-based algorithm and FastMPC perform at least on par with the best algorithm RDOS

on network traces with small variation such as traces 5, 6, and 9, suggesting the (implicit)

data-driven throughput prediction does not always lead to the optimal bitrate selection. In

such cases, future ABR algorithms may exploit the connection-level information to reduce

the uncertainty of future throughput [3, 237]. Sixth, although source content and viewing

device have relatively little influences, the performance of ABR algorithms varies signifi-

cantly over different video codecs. Consequently, the reported gain in the existing studies

obtained on a single encoder does not generalize to other settings. At last, not a single
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Table 7.3: Statistical Significance Matrix Based on Wilcoxon-Statistics on the

WaterlooSQoE-IV Dataset. A Symbol “1” Means That the Performance of the Row Algo-

rithm Is Statistically Better Than That of the Column Algorithm, A Symbol “0” Means

That the Row Algorithm Is Statistically Worse, and A Symbol “-” Means That the Row

and Column Algorithms Are Statistically Indistinguishable

Rate-based Buffer-based FastMPC Pensieve RDOS

Rate-based - 1 - 1 0

Buffer-based 0 - 0 1 0

FastMPC - 1 - 1 0

Pensieve 0 0 0 - 0

RDOS 1 1 1 1 -

algorithm provides the best perceptual quality under all network profiles. This suggests

that there is still room for future improvement.

To ascertain the performance difference among ABR algorithms is statistically sig-

nificant, we carry out a statistical significance analysis. The evaluation statistic is the

Wilcoxon signed-rank test. The null hypothesis is that the sample produced by a pair

of ABR algorithms come from the same distribution. In particular, it tests whether the

distribution of the differences is symmetric about zero (with 95% confidence). The results

are summarized in Table 7.3, where a symbol ‘1’ means the row algorithm performs signif-

icantly better than the column algorithm, a symbol ‘0’ means the opposite, and a symbol

‘-’ indicates that the row and column schemes are statistically indistinguishable. It can be

observed that buffer-based and Pensieve algorithms are statistically inferior to the näıve

rate-based algorithm, while RDOS is significantly better than all competing algorithms,

confirming the importance of perceptual QoE modeling.

Performance in Bitrate Saving

Table 7.4 summarizes the bitrate saving of RDOS with MOS as the QoE measure. In

general, our results echo the outcomes from the objective evaluation. We observe a slight
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Table 7.4: Percentage of bitrate saving of column model vs. row model with MOS as the

QoE measure.

BB FastMPC RB Pensieve RDOS

BB 0 -9.91 -7.02 -47.42 -51.95

FastMPC - 0 21.30 -25.41 -39.65

RB - - 0 -24.45 -39.56

Pensieve - - - 0 -6.17

RDOS - - - - 0

decrease in the bitrate saving of RDOS over the existing ABR algorithms. This is not

surprising because we use the proposed objective QoE index both in training and testing,

which inevitably introduces biases favoring RDOS. Nevertheless, RDOS outperforms the

best competitor algorithm by 6.17% on the aforementioned test set.
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Chapter 8

Conclusion

We present rate-distortion optimization as a motivating principle for the design of ABR

algorithms. The new RDOS paradigm not only delivers better resource allocation efficiency,

but also uncovers a secret trade between video consumers and service providers, based on

which streaming video business are made possible. In a free market, consumers pay the

video service provider for their desired QoE, while the latter invests money on bitrate

resources, which are in turn traded for perceptual quality of digital videos. Lying at the

heart of the virtual market, ABR algorithms have a much profound impact in the video

delivery ecosystem than what the bitrate maximization paradigm suggests. We believe

that the proposed RDOS principle paves the way to the next-generation network resource

allocation methods that are economically efficient and theoretically grounded.

To fully exploit the potential of RDOS, we delve into the three functional components

underpinning ABR algorithms, including objective QoE model, throughput predictor, and

bitrate selector. We take a Bayesian approach to formulate the three problems, effectively

resolving the strong inductive bias induced by traditional expert models and the overfitting

problem that comes along with the recently popularized data-driven methods. Depending

on the amount of available data in each domain, the prior distribution is either extracted

from expert knowledge or learnt by the empirical Bayes’ method. The resulting system

achieves highly competitive performance against the state-of-the-art, which is supported

by so-far the largest objective and subjection evaluations.
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Throughput history, most seminal scientific works challenge very fundamentals of con-

ventional wisdom, propose novel perspective to a long standing problem, and develop

mathematical theorems/models around the basic intuition. When it comes to the field of

engineering, this research principle usually leads to a more comprehensive and meaningful

design objective, which is the main lesson that I have learnt through my research. In

particular, I have been inspired to think through the true objective of a system before

blindly pursuing a “better” solution within a traditional framework. I have tried to apply

the principle in the design of ABR systems, and the solution advanced in this dissertation

is RDOS.

The second lesson that I have learnt during my investigation is to appreciate the im-

portance of prior knowledge in the design of visual communication systems. This does not

suggest the value of training data should be diminished. Rather, I hope to make the point

that the key is to adopt the most appropriate prior knowledge according to the problem

setting. In situations that there is a major conflict between the limited training data and

the huge dimension of input space, meaningful subjective prior knowledge can provide

strong regularization effect to the maximum likelihood-based solution, which is evident

by the state-of-the-art performance of BSQI. Even in the domain with abundant training

data, an objective prior empowered by empirical Bayes’ method could lead to significant

improvements as what have been observed in MetaTP and EERO.

In adaptive streaming, one of the most promising areas for future work is developing

better objective QoE models, where we only have very limited understanding of HVS and

sparsely distributed training data. The BSQI is an instantiation of the bottom-up ap-

proach, simulating the function of relevant early-stage components in the HVS. Future

approaches should explore the top-down approach, mimicking the hypothesized function-

ality of the overall HVS. For example, it is highly promising to adapt the feature extractor

optimized for other visual tasks to the QoE prediction according to our previous success

with image/video quality assessment [50, 123, 128].

There is little doubt that accurate throughput prediction could lead to improved bitrate

decision. The MetaTP makes one of the first attempt in this direction based on the combi-

nation of connection-level fast adaptation and empirical Bayes prior learning. However, the

proposed model is by no means the optimal throughput predictor. Specifically, MetaTP
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makes use of the connection-level throughput data across a couple of streaming sessions to

adapt the model to the target network characteristics, during which ABR algorithms have

to fall back to the user agnostic throughput predictor. The new throughput observation

required in the fast adaptation stage may be minimized in future works.

With the rise of the data economy, data privacy has become a major concern in multi-

media communication applications. Despite the potential benefits of customized services,

video consumers are inclined not to release their private information such as the geometry,

IP address, and throughput observations to service providers. In practice, many video

content providers have to deliver personalized services without invasion of privacy, which

strongly affects the application scope of the proposed MetaTP. To this end, federated

learning [109] may be a promising alternative to generate more flexible models that adapt

to individual users while protecting their privacy.

Future ABR research may also benefit from a better evaluation procedure, which can

reliably evaluate the performance of ABR algorithms in the wild and at scale. To this

end, crowd-sourcing has demonstrated strong promise in very large-scale data collection

involving human responses such as image recognition [39], scene parsing [177], and image

quality assessment [69, 90]. It remains to be seen how these techniques can be effectively

adapted to QoE evaluation.

Although several efforts attempt to simultaneously maximize the overall QoE and fair-

ness across multiple adaptive streaming players that compete at bottleneck links [102, 119],

our economic interpretation of RDOS suggests that there exists a fundamental conflict

between optimality and equity [130]. It would be interesting to build a quantitatively

relationship between efficiency and equity, and implement practical solutions to achieve

desired tradeoff.

We present a decentralized instantiation of the RDOS system in the thesis, which

performs QoE assessment, throughput prediction, and bitrate selection in the video player.

Nevertheless, the general RDOS paradigm can also be applied to a server-side or hybrid

adaptive streaming system. Such collaborative designs have already begun to make some

impacts in the practical video delivery frameworks [15]. We expect future works to extend

the new design paradigm at each operational points across the transmission pipeline, where
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different information is available to facilitate more efficient resource allocation.

The study of ABR algorithms in the thesis is a promising start for scientifically inves-

tigating many longstanding and emerging problems in the perceptually oriented resource

management. Both rate-distortion theory and Bayesian theory may find their application

in many other network resource allocation problems such as TCP congestion control, work-

station management, and general web services. With the challenge of meeting the growing

consumer demand using limited resources, I hope the study in the thesis can shed light on

the long-neglected problem, and provide a new perspective to the research community and

the industry.
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Appendix A

Detailed Experimental Setup of Meta

Learning-Based Throughput

Predictor

A.1 Multi-Layer Perceptron Architecture

We learn a MLP to using the proposed learning scheme, and use it as a baseline to vali-

date the effectiveness of the proposed network architecture in throughput prediction. The

parametrization of MLP used in the ablation experiment is shown in A.1.
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Figure A.1: Illustration of the multi-layer perceptron configurations for MetaTP. We denote

the parameterization of the fully connected layer as “input channel × output channel”.
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Appendix B

Construction of the Waterloo

Streaming Video Database

B.1 Encoding Configurations

We use the standard FFmpeg video processing library to encode the streaming videos in

the WaterlooSV database. More details of each encoder is given by Table B.1.

Table B.1: Encoder version and package.

Encoder Version Package URL

H.264 ffmpeg v4.4 https://trac.ffmpeg.org/wiki/Encode/H.264

HEVC ffmpeg v4.4 https://trac.ffmpeg.org/wiki/Encode/H.265

AV1 ffmpeg v4.4 https://trac.ffmpeg.org/wiki/Encode/AV1

The encoding configurations used in the WaterlooSV database are illustrated in Ta-

ble B.2.

B.2 Packaging

244

https://trac.ffmpeg.org/wiki/Encode/H.264
https://trac.ffmpeg.org/wiki/Encode/H.265
https://trac.ffmpeg.org/wiki/Encode/AV1


Table B.2: Encoder configuration.

Encoder Pass Command

H.264

1

ffmpeg INPUT -an -c:v libx264 -width=WIDTH -height=HEIGHT -preset veryfast -pass 1

-r FRAMERATE -b:v BITRATE -maxrate BITRATE*2 -bufsize BITRATE*4 -x264opts

-keyint=FRAMERATE*4:min-keyint=FRAMERATE*4:no-scenecut -f null /dev/null && /

2

ffmpeg INPUT -an -c:v libx264 -width=WIDTH -height=HEIGHT -preset veryfast -pass 2

-r FRAMERATE -b:v BITRATE -maxrate BITRATE*2 -bufsize BITRATE*4 -x264opts

-keyint=FRAMERATE*4:min-keyint=FRAMERATE*4:no-scenecut OUTPUT

HEVC

1

ffmpeg INPUT -an -c:v libx265 -width=WIDTH -height=HEIGHT -preset veryfast -pass 1

-r FRAMERATE -b:v BITRATE -maxrate BITRATE*2 -bufsize BITRATE*4 -x265-params

-keyint=FRAMERATE*4:min-keyint=FRAMERATE*4:open-gop=0 -f null /dev/null && /

2

ffmpeg INPUT -an -c:v libx265 -width=WIDTH -height=HEIGHT -preset veryfast -pass 2

-r FRAMERATE -b:v BITRATE -maxrate BITRATE*2 -bufsize BITRATE*4 -x265-params

-keyint=FRAMERATE*4:min-keyint=FRAMERATE*4:open-gop=0 OUTPUT

AV1

1

ffmpeg INPUT -an -c:v libaom-av1 -width=WIDTH -height=HEIGHT -preset veryfast -pass 1

-r FRAMERATE -b:v BITRATE -maxrate BITRATE*2 -bufsize BITRATE*4 -aom-params

-keyint min=FRAMERATE*4 -f null /dev/null && /

2

ffmpeg INPUT -an -c:v libaom-av1 -width=WIDTH -height=HEIGHT -preset veryfast -pass 2

-r FRAMERATE -b:v BITRATE -maxrate BITRATE*2 -bufsize BITRATE*4 -aom-params

-keyint min=FRAMERATE*4 OUTPUT

Listing B.1: Sample manifest file

1 <?xml version=’ 1 .0 ’ encoding=’ utf−8 ’ ?>

2 <MPD xmlns=” urn:mpeg:dash:schema:mpd:2011 ” maxSegmentDuration=”PT0H0M4

.000 S” mediaPresentat ionDurat ion=”PT0H0M32.000 S” minBufferTime=”PT1

.500 S” p r o f i l e s=” u r n : m p e g : d a s h : p r o f i l e : f u l l : 2 0 1 1 ” type=” s t a t i c ”>

3 <ProgramInformation moreInformationURL=” h t t p : // gpac . i o ”>

4 <T i t l e>mani fe s t .mpd generated by GPAC</ T i t l e>

5 </ ProgramInformation>

6

7 <Period durat ion=”PT0H0M32.000 S”>

8 <AdaptationSet b i t s t reamSwitch ing=” true ” lang=”eng” maxFrameRate=”30”

maxHeight=”2160” maxWidth=”3840” par=”16 : 9 ” segmentAlignment=” true ”>

9 <SegmentList>

10 < I n i t i a l i z a t i o n sourceURL=” m a n i f e s t i n i t . mp4” />

11 </ SegmentList>

12 <Representat ion bandwidth=”241372” codecs=”avc3 .64000D” frameRate=”30”

he ight=”180” id=”1” mimeType=” video /mp4” sar=”1 : 1 ” width=”320”>
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13 <SegmentList durat ion=”61440” t i m e s c a l e=”15360”>

14 <SegmentURL b i t r a t e=”149204” hdtv=”34” media=”v01 /1 . m4s” phone=”40”

uhdtv=”22” />

15 <SegmentURL b i t r a t e=”76864” hdtv=”1” media=”v01 /2 . m4s” phone=”0”

uhdtv=”0” />

16 <SegmentURL b i t r a t e=”163823” hdtv=”5” media=”v01 /3 . m4s” phone=”2”

uhdtv=”1” />

17 <SegmentURL b i t r a t e=”139866” hdtv=”4” media=”v01 /4 . m4s” phone=”0”

uhdtv=”0” />

18 <SegmentURL b i t r a t e=”143724” hdtv=”6” media=”v01 /5 . m4s” phone=”5”

uhdtv=”1” />

19 <SegmentURL b i t r a t e=”98406” hdtv=”3” media=”v01 /6 . m4s” phone=”2”

uhdtv=”1” />

20 <SegmentURL b i t r a t e=”114561” hdtv=”3” media=”v01 /7 . m4s” phone=”1”

uhdtv=”0” />

21 <SegmentURL b i t r a t e=”88342” hdtv=”4” media=”v01 /8 . m4s” phone=”2”

uhdtv=”0” />

22 </ SegmentList>

23 </ Representat ion>

24 <Representat ion bandwidth=”1070223” codecs=”avc3 .64001E” frameRate=”30

” he ight=”360” id=”5” mimeType=” video /mp4” sar=”1 : 1 ” width=”640”>

25 <SegmentList durat ion=”61440” t i m e s c a l e=”15360”>

26 <SegmentURL b i t r a t e=”624912” hdtv=”73” media=”v05 /1 . m4s” phone=”85”

uhdtv=”57” />

27 <SegmentURL b i t r a t e=”415939” hdtv=”53” media=”v05 /2 . m4s” phone=”68”

uhdtv=”30” />

28 <SegmentURL b i t r a t e=”723362” hdtv=”56” media=”v05 /3 . m4s” phone=”70”

uhdtv=”33” />

29 <SegmentURL b i t r a t e=”575269” hdtv=”58” media=”v05 /4 . m4s” phone=”70”

uhdtv=”34” />

30 <SegmentURL b i t r a t e=”561296” hdtv=”57” media=”v05 /5 . m4s” phone=”70”

uhdtv=”34” />

31 <SegmentURL b i t r a t e=”439411” hdtv=”55” media=”v05 /6 . m4s” phone=”68”

uhdtv=”31” />

32 <SegmentURL b i t r a t e=”544505” hdtv=”56” media=”v05 /7 . m4s” phone=”67”

uhdtv=”34” />

33 <SegmentURL b i t r a t e=”405499” hdtv=”56” media=”v05 /8 . m4s” phone=”68”

uhdtv=”35” />
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34 </ SegmentList>

35 </ Representat ion>

36 </ AdaptationSet>

37 </ Period>

38 </MPD>

B.3 Viewing Device

In the construction of the WaterlooSV database, we employ VMAF to account for the

device-dependent video quality prediction. VMAF [117] is a state-of-the-art presentation

video quality measure which is capable to predict the quality of a video displayed on HDTV,

smartphone, and UHDTV. Each device specific model is calibrated by a subject video

quality assessment experiment, in which streaming videos are displayed on a certain viewing

device to viewers at the typical distance. Following to the recommendation in [117], we

re-sample the test and reference videos using bicubic filter to match the display resolution

followed by objective quality evaluation.
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