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Abstract 

Soil erosion remains a primary challenge in the 21st century threatening fresh water and cropland that 

supports more than 95% of global food production. It is of significance to plan for and prevent soil 

erosion in its initial stages rather than labor intensive repairing later. The Middle Thames River 

watershed has suffered from severe erosion issues for more than ten years with 21% highly erodible 

lands throughout the basin, where extensive soil conservation measures are highly encouraged. A 

series of practical measures that landowners can apply to enhance soil health and water quality while 

preserving or increasing agricultural production are termed farmland Best Management Practices 

(BMPs). Among these measures, grassed waterways, as broad and shallow channels to move 

concentrated surface runoff, are considered as one of the most effective measures to prevent 

ephemeral soil erosion. Therefore, identifying the site-specific opportunities for grassed waterways 

implementation in the Middle Thames River watershed can support targeted soil conservation and the 

watershed planning.  

 

This study aims to identify the potential locations for grassed waterways implementation in the 

Middle Thames River Watershed using four different techniques with high-resolution data 

(Compound Topographic Index model, Stream Power Index threshold model, weighted linear 

overlay, fuzzy logic analysis).  The Compound Topographic Index model and Stream Power Index 

threshold model have been developed to predict the existing and potential grassed waterways at the 

field level. Then the Compound Topographic Index and Stream Power Index threshold models, the 

multi-criteria decision analysis (MCDA) has been conducted to map the priority areas for grassed 

waterways implementation at the watershed scale. The output maps of the Compound Topographic 

Index model and Stream Power Index threshold model display the location and length of predicted 

grassed waterways in each field.  To better visualize the results of the Compound Topographic Index 

model and Stream Power Index threshold model, the density distribution maps of predicted grassed 

waterways throughout the studied watershed have been created based on the outputs from Compound 

Topographic Index and Stream Power Index threshold model. The performance of the Compound 

Topographic Index and Stream Power Index threshold model have been assessed by visual 

evaluation, occurrence evaluation and length evaluation. After developing Compound Topographic 

Index and Stream Power Index threshold models, the multi-criteria decision analysis (MCDA) has 
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been conducted to map the priority areas for grassed waterways implementation at the watershed 

scale. Twelve factors were selected as criteria of MCDA based on literature review, data availability 

and geographic knowledge. Two methods including weighted linear combination and fuzzy logic 

analysis were employed in MCDA, which produced two outputs maps of priority areas for grassed 

waterways implementation. The results of these two maps have been validated using existing grassed 

waterways. 

 

The results of the Compound Topographic Index model and Stream Power Index threshold model 

display the existing and predicted grassed waterways in each field. The Compound Topographic 

Index model with the threshold of 600 has identified 30 existing grassed waterways, while the Stream 

Power Index threshold model with the threshold of 0.01 standard deviation identified 23 grassed 

waterways. Several discontinuities exist in predicted grassed waterways along the trajectories of 

digitized grassed waterways. The lengths of predicted grassed waterways by Compound Topographic 

Index model have a much better agreement with observation than that of Stream Power Index 

threshold model. The density distribution map of Compound Topographic Index and Compound 

Topographic Index model presented high-density areas of predicted grassed waterways which are 

mainly situated in the northern and central part of the study area, especially the areas along the 

upstream of Middle Thames River and Nissouri creek. The low-density areas for grassed waterways 

implementation are mostly located in the southwestern part of the study area.  

 

The results of weighted linear combination and fuzzy logic analysis displayed the high-priority areas 

mainly located in the northwestern part of the watershed, especially along the upstream of Nissouri 

creek. It is found that these upstream areas have relatively steeper slope gradient than other areas in 

the studied watershed, with dominant soil type of sandy loam and silty loam. There are more areas 

belonging to the lowest priority zone and lower areas falling into the most priority level in the fuzzy 

logic analysis output map, compared with the map of weighted linear combination. The fuzzy logic 

analysis required less prior knowledge of the relationship among criteria, which provide more 

flexibility and convenience to decision makers. The validation of both weighted linear combination 

and fuzzy logic analysis output maps displays relatively good performance, based on the criteria that 

a greater percentage of grassed waterways implementation must occur in the higher priority zones 

(Kanungo et al., 2009). 
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 Background 

A series of practical measures that landowners can apply to enhance soil health and water quality 

while preserving or increasing agricultural production are termed farmland Best Management 

Practices (BMPs) (UTRCA, n.d.). Examples of farmland BMPs include vegetated buffer strips, water 

and sediment control basin (WASCoB) and grassed waterways (Liu et al., 2017). If properly 

implemented, farmland BMPs can protect soils from erosion and retain sediments (Rao et al., 2009).  

 

Soil erosion and sedimentation can trigger a series of cascading impacts, including declining 

productivity and biodiversity, reduced food security, sediments added to adjacent watercourses, and 

nutrient loss (Borrelli et al., 2020). These nutrients, such as nitrogen and phosphorus, are transported 

into water bodies, contributing to algal and cyanobacterial blooms that can contaminate drinking 

water (Rao et al., 2009; Schindler & Fee, 1974). These irreparable effects can be seen globally, with 

soil erosion still considered to be a primary challenge in the 21st century threatening fresh water and 

crop land that supports more than 95% of global food production (Borrelli et al., 2020; FAO, 2020). 

 

Planning for and preventing soil erosion in its initial stages are increasingly emphasized by many 

countries as a more cost-effective option than labor intensive repairs later (OMAFRA,2018). Among 

series of farmland BMPs, Grassed Waterways (GWWs) stand out for their effectiveness on reducing 

surface runoff to prevent erosion and reduce catchment sediment yield (Chow et al., 1999; 

Verstraeten et al., 2002). Although GWWs are accepted as one of the most common BMPs, they have 

not been the most frequently evaluated practices in recent BMP studies (Porter, 2018). For example, 

even if it was reported that GWWs can reduce much more sediment yield than vegetative filter strips 

at the catchment scale (Verstraeten et al., 2000), there existed far more studies concentrated on 

vegetative filter strips than GWWs, which assessed vegetative filter strips’ effectiveness of runoff 

reduction and trapping sediment (e.g., Schmitt et al., 1999; Delphin and Chapot, 2001). Additional 

research of BMPs concentrated on GWWs are in great demand.  

 

Grassed waterways (GWWs) are shaped constructed channels planted with grass or other permanent 

vegetative covers, where concentrated surface water is conveyed slowly across farmland to an outlet 

at a non-erosive velocity (NRCS, n.d.). Without GWWs, this concentrated flow following heavy rains 
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can have significant eroding forces to cause channels and deliver sediment (Dosskey, 2002). These 

temporary erosion channels caused by concentrated overland flow were termed ‘ephemeral gullies’ 

by Foster (1986).  

 

Ephemeral gully erosion attracts less farmers’ attention than other typical types of erosion such as 

sheet and rill erosion, since ephemeral gullies are temporary features that can be filled by tillage 

operations but reappear latter in the same location during the next heavy rainstorm (Bennett & Wells, 

2019). Filling the ephemeral gullies with soils from adjoining areas can thin the topsoil layers of 

borrowing areas, resulting in significant decline in productivity. Even worse, it will accelerate the 

reforming of ephemeral gully erosion during the next rainstorm since the materials are looser 

(Dosskey, 2002). Therefore, it is vital to implement GWWs for landowners to prevent ephemeral 

gully formation and trap sediment (Atkins and Coyle, 1977).  

 

Several studies have demonstrated GWWs’ remarkable performance in runoff reduction and 

catchment sediment yield reduction, reaching up to 86% and 20% respectively (e.g., Chow et al., 

1999; Verstraeten et al., 2002). However, GWWs have not been extensively evaluated in recent 

BMPs studies, and their performance in erosion reduction under excess infiltration saturation runoff 

conditions is probably undervalued (Porter et al., 2018). Few studies concentrate on identifying 

preliminary source areas (the areas most in need) for GWWs implementation using topographic 

models; Gali et al. (2015) provided a good starting point to predict placement of GWWs in several 

agricultural fields of the hickory Grove Lake watershed in Iowa. For the lack of targeted 

encouragement of implementation and fast preliminary decision-making tools, GWWs are still under-

utilized in many European countries (Fiener & Auerswald, 2003) and part of steeper agricultural 

landscapes in North America (Porter et al., 2018). Fast and cost-effective methods for preliminary 

siting of GWWs are in great demand at the watershed level, enabling better implementation 

opportunities to control soil erosion and reduce water pollution effectively (Liu et al., 2017).  

 

Considering GWWs’ primary function of preventing ephemeral gully erosion, several studies 

suggested that identifying areas susceptible to ephemeral gully erosion are necessary for identifying 

source areas for GWWs implementation (Fiener and Auerswald, 2003). Previous studies have used 
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terrain attributes and topographic parameters to predict the initiation of ephemeral gully erosion 

(Moore et al., 1988; Parker et al.,2007; Momm et al., 2013). Whereas most of these studies are 

subject to grid data resolution and spatial location variance, resulting in dissatisfactory performance 

in predicting extents and trajectories of ephemeral gullies (Holmes et al.,2000). Pike et al. (2009) 

conducted logistic regression and neural networks to develop erosion susceptibility maps for GWWs 

implementation in Kentucky, which provided a scientific basis for determining factors influencing the 

priority of locations for GWWs implementation and their relative importance. Several GIS and 

remote sensing techniques have been used by Khawlie et al. (2002), Servenay and Prat (2003), Martin 

and Franklin (2005) for ephemeral gully erosion mapping, which provided a good starting point to 

employ GIS methods in ephemeral gully erosion research. GIS-based Multi-criteria analysis (MCA) 

techniques stand out for their automatable and repeatable execution and flexibility (Majumdar & 

Chatterjee, 2021). However, these techniques have not been utilized as tools for identifying locations 

for the placement of GWWs (Gali et al.,2015).  

 

Some researchers developed topographic index models to identify existing and potential ephemeral 

gully erosion using critical threshold values specific to study areas’ geographic and climate conditions 

(Thorne et al., 1986; Parker et al., 2007; Daggupati et al., 2013). Among these models, the compound 

topographic index (CTI) model was considered to predict the location and extent of ephemeral gullies 

better than others (Daggupati et al., 2013). The CTI is defined as product of slope, planform curvature 

and drainage area, which can detect ephemeral gullies where CTI values are above the critical 

threshold (Thorne et al., 1986). The U.S. department of Agriculture (USDA) developed the Stream 

Power Index (SPI) threshold tool to predict candidate locations for GWWs implementation within the 

fields at the Hydrologic Unit Code (HUC)12 watershed scale (sixth level sub-watershed in 10000 to 

40000 acres) (Porter, 2018; U.S. Geological Survey et al., 2013). The grids with SPI values over the 

user-defined threshold were selected as potential locations for GWWs. The effectiveness of this tool 

applied in other study sites outside HUC 12 watershed remains to be explored by additional studies 

(Tomer, 2018).   

 

In recent years, soil and water conservation have gained constant attention in southern Ontario 

(Watters, 2019).  It is estimated that annual cost owing to soil erosion for Ontario farmers is worth 

over 150 million (OMAFRA, 2016). In southern Ontario, Lake Erie experienced the third severest 
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algal bloom since the 21st century in 2017 (Daniel et al., 2017). The excessive nutrient loading from 

adjacent cropland with few BMPs implementation was considered as the primary driver triggering 

those harmful algal bloom in Lake Erie (Michalak et al., 2013). Proper adoption of BMPs throughout 

southern Ontario is in great need for preventing soil erosion and improving water quality. A series of 

programs and strategies have been developed to improve and prevent the deterioration of soil and 

water resources in southern Ontario, including Southern Ontario Soil and Water Environmental 

Enhancement Program (SWEEP) (AAFC, 1986), Clean Water Act (Government of Ontario, 2006) 

and Farmland Health Incentive Program (FHIP) (OSCIA, 2016), which offered financial and 

technical supports of BMPs implementation for farmers (Rao et al., 2009). Simple and cost-effective 

methods for identifying candidate locations for specific types of BMPs in southern Ontario are 

suggested to support targeted planning and promote stakeholder engagement (Tomer, 2018). 

 

This study aims to identify the potential locations for GWWs implementation in the Middle Thames 

River Watershed using four different techniques with high resolution data (CTI models, SPI 

threshold, weighted linear overlay, fuzzy logic).  Specific objectives were to (1) develop a GIS-based 

methodology to identify the existing and potential locations for GWWs implementation using two 

topographic index models respectively (CTI models and SPI threshold) (2) evaluate the performance 

of two topographic index models in predicting GWWs’ occurrence and length under different 

threshold selection respectively (3) develop multicriteria decision analysis (MCDA) to map 

prioritized areas for GWWs implementation using weighted linear overlay and fuzzy logic 

respectively (4) examine the weights’ sensitivity of weighted linear overlay analysis using a novel 

simulation method (5) evaluate the priority division for GWWs implementation of weighted linear 

overlay and fuzzy logic respectively.  This study can be used to facilitate existing hydrology decision-

making systems and water quality models, which can help to identify the most suitable locations for 

implementing GWWS. In addition, the methods can be applied as simple preliminary ‘screening’ 

tools for project managers, sponsors and landowners with weak technical background.     
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 Literature Review 

This chapter reviews the required background for this study, including farmland BMPs in the Upper 

Thames River, existing studies of GWWs, methods of identifying ephemeral gully erosion, the 

application of MCA in conservation practices. The first section introduces the development of BMPs 

with their relevant studies and most common farmland BMPs implemented in the Upper Thames 

River Watershed, including their categories, functions, management plans and relevant studies. 

Following these initial descriptions, a detailed review of the current studies of GWWs is presented, 

with the explanation of their impacts on ephemeral erosion and various factors affecting their 

effectiveness. In this section, the existing gaps in the literature and research need for GWWs 

placement are stressed, as they relate to the objectives of this thesis. Considering that the primary 

function of GWWs is to prevent ephemeral gully erosion, the third section describes the cause and 

effect of ephemeral gully erosion. This description is then followed by a review of various methods of 

identifying ephemeral gully erosion which have been used by existing studies. A comparison of the 

CTI model, the SPI threshold model and other commonly used topographic models, together with 

their potential methods of evaluation is discussed. The last section summarizes the application of 

multicriteria decision analysis in conservation practices by current studies, which can support the 

feasibility and rationality of MCA applied in the thesis. Then the sensitivity analysis techniques of 

MCA and methods of validation are overviewed. 

 

2.1 Best Management Practices 

2.1.1 Introduction of Farmland BMPs 

Best Management Practices (BMPs) initially referred to pollution control mechanisms for industrial 

wastewater and municipal sewage in the beginning of the 20th century (Curtiss, 1978). In the area of 

stormwater management and wetland management, BMPs have been widely used since the middle of 

the 20th century, as operational practices or management mechanisms focusing on water pollution 

control in both urban and rural environments (Kincheloe, 1994; Ahiablame et al., 2012; Liu et al., 

2016). Farmland Best Management Practices (BMPs), as affordable and effective measures that 

farmers can take, were developed to target the protection of soil health and water quality while 

maintaining or improving production, by means of controlling soil loss and surface runoff of 
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sediments, nutrients, and nonpoint source pollutants into surrounding ecosystems (Srivastava, 

Hamlett & Robillard, 2013; OMAFRA, n.d.).  

The earliest studies of farmland BMP applications mainly concentrate upon tillage 

management, terraces, crop residue management and so on, which were initially developed to prevent 

and reduce soil erosion (Schaller & Bailey, 1983; Logan, 1993). From the middle of the 20th century, 

nutrients and sediments entering waterways began to receive increasing concern in BMP applications 

(Clark et al., 1985).  Additional BMPs application in preventing non-point source pollution entering 

water bodies were expected (Novotny, 2003; Rao et al., 2009). Based on this situation, Logan (1990) 

divided BMPs into two categories: structural BMPs and non-structural BMPs. Structural BMPs 

frequently use permanent facilities and structural changes in the flow system to decrease the pollution 

by removing contaminations once they leave the sources, such as sediment control basis, detention 

ponds, riparian buffers (Ackerman & Stein, 2008). The non-structural BMPs are accomplished by 

changing agricultural behavior with no structural facilities (EPA, 1999). These non-structural 

measures develop two approaches to mitigate the non-point source pollution from areas susceptible to 

erosion (Rao et al., 2009). The first approach is to reduce harmful materials on vulnerable fields (e.g., 

nutrient management), which belongs to source control (Holland, 2004). The second one is to control 

the transport of sendiments, such as conservation tillage (Dabney,1998). 

2.1.2 Factors influencing the effectiveness of BMPs’ program 

Effective planning strategies for BMPs require integrated decision-making systems involving multi-

stakeholders and multi-objectives (Chen, 2019). Garnet et al. (2013) stressed that both factors 

affecting BMPs’ functionality in short and long term and elements influencing landowners’ adoption 

of BMPs play a significant role in effective BMPs’ programs.  

 

For conservation managers and government, BMP implementation should spatially target at specific 

land parcels with most suitable selection of specific BMP types or their combination, with the aim of 

maximizing the environmental benefits and minimizing the costs (Garnett et al., 2013). Previous 

studies have assessed the impacts of watershed characteristics on short-term BMP performances, such 

as topography, metrology, and land use (Rao et al., 2009; Liu et al., 2017). In addition, the design 

standards, installation and maintenance condition are considered to have relative impacts on BMPs 

functionality (Rao et al., 2009). Compared with studies of short-term BMPs effectiveness, the 
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research regarding long-term performance is limited, owing to the inconsistency in the measurable 

effects and time limitation (Diebel et al., 2008; Koch et al., 2014). There existed several conservation 

programs developed in previous years which were not able to achieve their water quality 

improvement goals, such as the program of reducing the excess nutrients (eutrophication) in the Lake 

Erie basin (Denver et al., 2010; Sharpley et al., 2012). These failures draw increasing attention to 

recent studies, which reemphasized the essential roles of the intensity and scale of BMP applications 

at the watershed scale (Reckhow et al., 2011; Sharpley et al., 2012). Various studies highlight that the 

simple increase of the number of facilities in BMPs region may not be the most cost-effective 

solution to enhance water quality; on the contrary, the greater effectiveness can be achieved by 

preferential investment in certain types of BMPs in targeted regions (Strauss et al. 2007; Artita et al. 

2013). Diebel et al. (2008) suggested that the BMPs strategies with the goal of reducing water 

pollution should be designed on the watershed scale, with the priority of upstream stressors rather 

than local effects.  

 

Despite the studies of BMPs applications and their effectiveness on water quality improvement that 

are abundant and various, there still exist considerable uncertainties in transferring findings or model 

thresholds to a different region, due to the localized case-study nature. (Tomer and Locke 2011).  

Additional research on localized management plans dedicated to specific types of BMPs is high in 

demand in the watershed level, enabling better implementation opportunities to control soil erosion 

and reduce water pollution effectively (Liu et al., 2017).  

 

Apart from the factors affecting BMPs’ functionality, recent studies stressed that the core of a BMP 

program is the adoption of BMPs, which is based on farmers’ voluntary adoption of BMPs (Prager et 

al., 2012).  The encouragement, financial and technical support in targeted communities or targeted 

watershed scales can attract more farmers’ participation in BMP program (Chen, 2019). There are 

more and more financial incentives provided by governments to farmers to implement BMPs, with 

the aim of achieving high production goals and reducing the sediment and nutrient loadings (Chen, 

2019). As the final adopters of BMPs, farmers should have a better understanding of their stewardship 

roles and BMP adoption, which considerably requires effective information conversation between 

managers and farmers. There are growing concerns about the rationale of adopting BMPs (Chen, 

2019). Several researchers have identified the relationship between farmers’ characteristics and their 
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BMP adoption (Baumgart-Getz, Prokopy, & Floress, 2012). There are also several studies conducting 

the analysis about the farmers’ attitudes change to BMP adoption and their perception of innovation 

(Floress etal., 2008; Trujillo-Barrera et al., 2016). 

 

In view of the important role of information in BMP adoption, the promotion of effective 

communication between stakeholders, and the application of participatory mechanisms have gained 

influence in decision support programs focused on BMPs. For instance, there were several workshops 

and one-to-one consultations held by the Canada Ontario Environmental Farm Plan, which worked on 

supporting stakeholders on decision-making of BMP adoption (Smither & Furman, 2003; Chen, 

2019). According to the European Union’s rural development policy, the State Members in the 

European Union were also required to encourage stakeholders’ involvement in BMP adoption and 

support the partnership program (Chen, 2019). Nevertheless, there still exist difficulties and obstacles. 

According to Prager and Freese (2009), the decision support programs and system of BMPs have a 

long way to go, which still faces challenges including limited funding of conservation, farmers’ lack 

of knowledge and awareness, and poor efficiency in communication. 

 

2.1.3 BMPs in the Upper Thames River Watershed 

The Upper Thames River Watershed got second place in overall good water quality for all of the 28 

sub-watersheds in 2017 (UTRCA,2017). This grading was according to bacterial abundance, 

phosphorous loading, and other significant indexes (UTRCA, 2017). To maintain and improve this 

ranking, the UTRCA has developed several goals, such as “improve each sub-watershed’s water 

quality score by one grade by 2037” (UTRCA, 2017). Based on these targets, the UTRCA initiated 

the Clean Water Program (CWP) offering technical and financial support for farmers to implement 

BMPs (UTRCA, n.d.). Eight different categories of BMPs are mainly adopted in the Upper Thames 

River Watershed, including Bio-Filters, Buffer Strips, Cover Crops, Drain Modifications, Fragile 

Land Retirement, Wetland Construction, Windbreaks and Erosion Control Structures (UTRCA, 

2017). These BMPs all fit with the cost-effective approach to protect soil health and improve water 

quality without sacrificing productivity (OMAFRA, n.d.). The Erosion Control Structures include 

three different methods depending on the types of erosion, size of the watershed and characteristics of 
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farm fields, including Water and sediment control basins, diversion terraces, and grassed waterways 

(UTRCA, n.d.). 

 

The earliest studies of BMPs in the Upper Thames River mainly focus on the effects of BMPs 

implementation on water quality improvement (Yates et al., 2007). However, the results showed no 

significant correlation between BMPs intensity and stream quality, owing to the limited number of 

BMPs implemented in 2007 (Yates et al., 2007). Recent studies have found significant correlation 

between BMPs implementation and water quality indexes (Liu et al., 2017), with several studies 

aiming to optimize the BMPs distribution for best performance in erosion control and water quality 

improvement (Rao et al., 2009; Gaddis et al., 2014). Other researchers analyzed the relationship 

between BMP adoption and farmers’ characteristics such as behaviors through regression modelling 

(Srivastava et al., 2003; Nebel et al., 2017). It was found that there existed positive correlation 

between BMPs adoption and farmland size, term of land ownership and good attitudes on 

conservation (Srivastava et al., 2003; Nebel et al., 2017). In these studies, voluntary surveys were 

conducted for collecting data for regression modelling. However, there were only 18% of voluntary 

respondents in the survey, which may result in non-response bias when representing overall 

population. (Srivastava et al., 2003; Nebel et al., 2017). Although the existing studies of BMPs in the 

Upper Thames River provide adequate findings of BMPs’ functionality of water quality 

improvement, the studies focusing on facilitating targeted planning are still limited. The additional 

research of identifying potential location for BMPs placement in the Upper Thames River is in need. 

 

2.2 Grassed Waterways 

Grassed waterways refer to permanently vegetated channels which are designed for transporting 

runoff to a stable outlet and mitigating soil erosion when it happens during rainstorms and snowmelt 

(UTRCA, n.d.). With the increase of surface roughness by vegetation cover, the water flow can be 

slowed down, and the sediment can be trapped. Therefore, the sediment and nutrient loading can be 

relatively reduced, and the soil can be protected from ephemeral gully erosion. The vegetation cover 

provides the habitat for birds and animals, which relatively increase the biodiversity of the field. 

(Clean water Iowa, n.d.). Compared with other measures of erosion control, the GWWs have some 

specific advantages; for instance, the cost of maintenance is relatively low after the establishment of 
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vegetation. Moreover, GWWs can carry large runoff from large watersheds during a heavy rainstorm. 

GWWs can be crossed by farm machinery on the field (OMFRA, n.d.). Generally, the GWW is 

supposed to follow the natural drainage way and fit the watershed’s characteristics (UTRCA, n.d.). It 

is recommended to construct grassed waterway when the drainage area covers more than 35 acres. 

According to Stone and McKague (2009), the shape of waterways, the dimensions such as width, 

height need to be considered according to the soil characteristics and runoff volume. For instance, it is 

suggested to select the side slope greater than 1% to protect against out-of-bank flow (Stone and 

McKague, 2009). It is noted that the appropriate side slope can prevent drainage tile buried under the 

GWWs from offsetting from the grassed waterway’s center, which can also make farm machinery 

easily move (OMFRA, n.d.). To achieve higher efficiency, grassed waterways are usually 

implemented with the combination of other BMP methods; for instance, it was found that the system 

combining terraces and GWWs can effectively reduce approximately 86% of runoff and 95% 

sediment delivery in fields with potato cultivation (Chow et al., 1999). 

 

Porter et al. (2018) explained 3 reasons why GWWs are relatively effective and efficient measure for 

preventing ephemeral gully erosion. First, the growing vegetation can slow down the surface run off, 

which can prevent soil detachment at the same time. Second, if the grass is flushed to lie flat on the 

field, it can also function as a physical barrier to discourage ephemeral gully formation. Last, the soil 

strength can be enhanced by grasses’ root system, thus restricting soil detachment (Port, 2018). 

Several researchers have highlighted GWWs’ remarkable effectiveness in runoff reduction and 

catchment sediment yield reduction, reaching up to 86% and 20% respectively (Chow et al., 1999; 

Verstraeten et al., 2002). One study found that the GWWs were able to reduce 56% of weedicide loss 

in surface runoff (Briggs et al., 1999). In addition, substantial hydrologic models were conducted to 

analyze the relationship between GWW properties and its effectiveness on runoff reduction and 

sediment control (Fiener and Auerswald, 2006; Dermisis et al., 2010). Fiener and Auerswald (2006) 

found that there is minor influence of seasonal variation of GWW characters (e.g., hydraulic 

roughness) on the effectiveness of runoff reduction and sediment control. Another study analyzed the 

impacts of GWW length on its functionality through Water Erosion Prediction Project (WEPP) model 

(Dermisis et al., 2010). It was found that GWW length had a significant impact on the effectiveness 

of sediment reduction. Moreover, the researchers demonstrated peak run off as the primary factors 

affecting GWW’s performance of sediment reduction (Dermisis et al., 2010).  
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While GWWs are among the most common and effective BMPs, they are still not fully used in part of 

countries, for the lack of targeted encouragement of implementation and fast preliminary decision-

making tools (Port et al., 2018). The annual expense of implementing grassed waterway is 

approximately 18.13 dollars per hectare which is far lower than buffer strips’ 40.71 dollars per 

hectare (Schroter and Kansas, n.d.). This difference of the annual expense is probably owing to 

different planting and installation cost (e.g., some buffer stripes need woody plating stock and tile 

extensions), different maintenance cost, and different opportunity cost of the land taken out of the 

production (Tyndall & Bowman, 2016). Simple and user-friendly tools or methodology for 

preliminary placement of GWWs are suggested at the watershed level, which can promote 

implementation opportunities to control ephemeral gully erosion (Liu et al., 2017).  Gali et al (2015) 

tried to identify the potential locations of GWWs using CTI considering the GWWs’ primary function 

of preventing ephemeral gully erosion, which present a good starting point in GWW placement 

studies (Port et al., 2018). However, there still existed obvious discontinuities in the predicted 

trajectory of GWWs, likely due to the omission of soil properties in the CTI model (Gali et al., 2015). 

The U.S. department of Agriculture (USDA) developed an SPI threshold tool to predict candidate 

locations for GWWs implementation within the fields at the Hydrologic Unit Code (HUC) 12 

watershed scale (Porter, 2018). The grids comprising SPI values over the user-defined threshold were 

post-processed, such as excluding the non-agricultural grids, and then selected as potential locations 

for GWWs. This tool was comprised in Agriculture Conservation Planning Framework (ACPF) 

toolbox, which contains a set of GIS-based tools using high-resolution data to predict potential 

locations for different types of BMPs in the Midwest (Porter, 2018). Although the effectiveness of 

this toolbox applied in other study sites outside the U.S. remains to be explored by additional studies 

(Tomer, 2018), it has provided a guideline for analyzing placement opportunities for BMPs from the 

field scale to watershed scale. 

 

2.3 Ephemeral Gully Erosion  

2.3.1 Introduction of Ephemeral Gully Erosion  

Ephemeral gullies refer to temporary erosion channels caused by concentrated overland flow, which 

was firstly explored by Foster (1986). Poesen (1993) supplemented Foster’s definition of ephemeral 

gully erosion, indicating that ephemeral gully erosion may also occur along linear landscape features 
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where overland runoff concentrates such as parcel borders. Ephemeral gullies are typically developed 

by disequilibrium between erosional forces and erosional resistance of soils. Either the erosion forces 

increase (for the increasing concentrated flow or discharge), or the erosion resistance decreases 

(owing to the decreasing vegetation cover or the disturbance) to initiate the formation of ephemeral 

gully erosion (Bernard et al., 2010).  Several studies emphasized that the initiation of ephemeral gully 

erosion is also affected by subsurface flow on hillslopes (Huang et al., 1999; Zheng et al., 2000).  

 

Ephemeral gully erosion is distinguished from other types of erosion such as rill erosion and classic 

gully erosion, owing to ephemeral gully erosion’s ‘ephemeral’ nature of temporary features that can 

be filled by tillage operations but reappear latter in the same location during the next heavy rainstorm 

(Foster 1986, Bennett & Wells, 2019). Classic gully erosion refers to very deep erosion in channels 

that farming equipment can not cross (Hutchinson and Pritchard, 1976). In contrast to ephemeral 

gully erosion, classic gully erosion is mainly evolved by a complex combination of erosion processes 

including ‘head-cut migration and erosion of gully walls’ (Nachtergaele et al., 2002). For ephemeral 

gully erosion, it is mainly evolved by repeated incision process, which is less impacted by ‘head-cut 

migration and erosion of gully walls’ (Nachtergaele et al., 2002). Rill erosion is characterized as 

erosion in many small channels spreading along the slope, which has a different way of contributing 

to the drainage pattern from ephemeral gully erosion (Nachtergaele, 2002).  The distribution of rill 

erosion is restrained by field boundaries, while ephemeral gully erosion usually crosses several fields. 

This difference indicates that rill erosion and ephemeral gully erosion have different impacts on soil 

transport: rill erosion usually moves soil within a single field, whereas ephemeral gully erosion can 

redistribute soil particles cross numerous farmlands in the watershed. 

 

2.3.2 Causes and effects of Ephemeral Gully Erosion 

Ephemeral gully erosion phenomena are relatively impacted by interaction between natural factors 

(such as heavy rainstorm and soil erodibility) and social factors (such as excessive cultivation). Huge 

ephemeral gully erosion s usually present in the arid and semi-arid areas with exiguous vegetation and 

abundant clay minerals. With respect to social factors, unsustainable land management practices have 

exacerbated ephemeral gully erosion and their cascading effects over the last decades. (Majumdar er 

al., 2021). For instance, filling the ephemeral gullies with soils from adjoining areas can thin the 
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topsoil layers of borrowing areas, resulting in significant decline in productivity. Even worse, the 

looser materials will raise the chance of ephemeral gully erosion’s reoccurrence in the same location 

during the next rainstorm (Den Biggelaar et al., Dosskey, 2002; AEP 2005). It is noticeable that 

badlands are instance of these erosion areas where topsoil layers are removed and incision occur into 

the land (Valentin et al., 2005).  

 

Ephemeral gully erosion features are usually overlooked by landowners and scientific communities, 

since it is difficult to predict their location and timing of occurrence (Soil Science Society of 

America, 2008). These complicated problems originate from dynamic interaction between: (1) the 

surface and subsurface runoff’s intensity (2) the earth materials’ erodibility (3) variations in 

vegetation cover resulted from conservation practices and landscape (Nachtergaele et al., 2002). 

Owing to these complex interrelation problems, the previous studies on ephemeral erosion account 

for less than 10% of soil erosion research during the past decades (Majumdar, 2021). There emerged 

increasing instances of damage from sediment and chemical in concentrated runoff to surrounding 

watercourses, in relation to ephemeral gully erosion (Boardman, 2001; Poesen et al., 2003). These 

damages attract more and more attention to field studies, indicating that ephemeral gully erosion 

s do not merely act as sediment sources but as transporting links of sediment between uplands and 

lowlands (Verstraeten and Poesen, 1999; Poesen et al., 2003). Apart from the sediment production 

and delivery, various studies begin to explore gully erosion’s significant impacts on soil loss (e.g., 

Bocco 1991; Poesen et al., 1996b; Poesen et al., 2003). It is found that the ephemeral gully erosion’s 

impacts on soil loss vary significantly from spatial locations across the world, with soil loss rates 

ranging from 10% to 94% (Poesen et al., 2003). In addition to spatial factors, the environmental 

factors relatively impact the ephemeral gully erosion’s contribution to soil loss rate, such as land use, 

topography, soil type and climate condition (Poesen et al., 2003). However, ephemeral gully erosion’s 

contribution to soil loss is currently over-subscribed in current soil loss prevention and assessment 

projects (Garen et al., 1999; Poesen et al., 2003). It was found that the reformation of ephemeral gully 

erosion prevention is considerably limited compared with the research in ephemeral gully erosion’s 

development (Poesen & Valentin, 2003). There existed many studies stressing that a number of 

existing ephemeral gully erosion prevention measures were not valid as expected (e.g., Poesen et al., 

2003; Poesen & Vanwalleghem, 2011). More research efforts of ephemeral gully erosion’s impacts 

are expected to assist better conservation strategies. 
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2.3.3 Research on Ephemeral Gully Erosion 

The previous studies on ephemeral erosion account for less than 10% of soil erosion research during 

the past decades (Majumdar, 2011). In recent years, various research on ephemeral gully erosion with 

relevant tools and software have widely increased (e.g., Poesen 2011; Majumdar, 2011). Existing 

research on ephemeral gully erosion typically involves three categories: (1) predicting erosion retreat 

rates at different spatial and temporal scales (e.g., Oostwoud and Bryan, 2001; Hu et al. 2007); (2) 

assessing the impacts of ephemeral gully erosion on soil loss, sediment yield and hydrology (e.g., 

Nyssen et al., 2008); (3) monitoring ephemeral gully erosion’s initiation and development (e.g., 

Poesen et al., 2003). 

 

2.3.3.1 Prediction of Erosion Rate 

Several scientific literatures have used physically-based models or field-based techniques to evaluate 

ephemeral gully erosion’s erosion rate quantitatively and qualitatively. Poesen et al. (2003) explored 

the variation of erosion rates during the evolution of ephemeral gully erosion, with the highest rate at 

its initiation and drastic decrease as ephemeral gully erosion grows steadily. Wu and Wang (2005) 

developed a model to simulate the headcut migration vertically in two dimensions, considering the 

hydraulic erosion on the headcut’s vertical headwall and technical faults caused by the scour. 

However, this model ignores both concentrated flows and sided bank erosion (Bernard et al., 2010). 

There emerged several models able to predict ephemeral gully erosion rate (Poesen et al., 2003), 

including CREAMS (Chemicals, Runoff and Erosion from Agricultural Management Systems) 

(Knisel, 1980), GLEAMS (Groundwater Loading Effects of Agricultural Management Systems) 

(Knisel, 1993), WEPP (Water Erosion Prediction Project (Ascough et al., 1997) and REGEM 

(Revised Ephemeral Gully Erosion Model) (Bingner et al., 2007). These models are based on the 

assumption of the proportional relationship between the rate of concentrated flow detachment and the 

difference between (1) the flow’s delivery capacity and sediment load and (2) “flow sheer stress 

applied on the bed material” (Majumdar, 2011). 
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Despite these models professed to be capable of estimating soil losses from ephemeral gully erosion, 

there existed no thorough tests on the erosion process of these models (Majumdar, 2011). 

Nachtergaele et al. (2001) conducted a test of predictive capability of EGEM in multiple cropland 

environments. Although the preliminary tests presented good alignment between estimated and 

observed ephemeral gully volumes, there was a week relationship between the estimation and 

observation of ephemeral gully erosion cross-sections, since the ephemeral gully volumes need to be 

divided by the ephemeral gully length (Majumdar, 2011). This test by Nachtergaele et al. (2001) 

reveals that the predictive capability of EGEM is relatively weak for the cropland environments in the 

test. In addition, the ephemeral gully length becomes an increasingly important parameter in these 

prediction models. 

 

2.3.3.2 Prediction of EGE’s Location 

Prediction of ephemeral gully erosion’s location is significant for decision makers to prevent and 

mitigate ephemeral gully erosion. Both universal models (such as RUSLE) and existing prediction 

models of EGE’s erosion rate lack routines to predict the potential location of EGE (Poesen et al., 

1998). For instance, AnnAGNPS (the Annualized version of the Agricultural Non-point Source 

Pollution Model) is a well-accepted model to predict the origin, movement, amount, and probability 

of sediment and chemical at any location within the watershed. The magnitude and length of 

ephemeral gully erosion caused tillage can also be predicted by AnnAGNPS. However, both the 

prediction of pollutants and E ephemeral gully erosion’s magnitude need users to identify location of 

ephemeral gully erosion e 

specially the mouth of ephemeral gully erosion in advance, which reveals the important roles of 

predicting ephemeral gully erosion’s location (Parker et al., 2007). 

 

Various studies have used multivariate statistics techniques and data mining methods to predict areas 

prone to ephemeral gully erosion, including logistic regression modelling (Bou Kheir et al., 2007), 

artificial neural networks (Geissen et al., 2007) and classification and regression trees (Gómez-

Gutiérrez et al., 2009). These studies commonly use topographic parameters, soil erodibility, 

lithology, climate parameters and land cover as explanatory variables (Gómez-Gutiérrez et al., 2015). 

However, these studies typically demand large databases and high spatial resolution environmental 
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data, such as ephemeral gully erosion inventory data in large temporal scales. Obtaining this 

inventory data require integrated monitoring system, abundant field-based determination, or advanced 

satellite image processing techniques.  In addition, the accessibility and availability of high spatial 

resolution environmental data are not always adequate, especially in undeveloped countries (Gómez-

Gutiérrez et al., 2015). These limiting factors have negative impacts on the application of statistical 

methods and data mining techniques in well-accepted, universal, and user-friendly tools. 

 

2.3.3.2.1 Topographic Index Methods 

In recent years, there emerges relative development in Light Detection and Ranging (LIDAR) 

technologies and global mapping missions to obtain high-resolution digital elevation models (DEMs). 

In addition, more and more topographic data with high resolution in global scale is published and 

shared through projects (Gómez-Gutiérrez et al., 2015). These advancements promote the 

development of precision conservation, which can identify the areas prone to erosion accurately and 

suggest the placement of BMPs (Gali et al., 2015). Various studies have used topographic threshold 

to predict the potential location of ephemeral gully erosion (Thorne et al., 1986; Moore et al., 1988; 

Desmet et al., 1999; Parker et al., 2007; Knapen and Poesen, 2010; Daggupati et al., 2013). The 

application of topographic threshold was firstly introduced by Horton (1945), claiming that “a 

channel incision occurs when a threshold force is exceeded” (Daggupati et al., 2013). Based on 

Horton’s study, several researchers explored the channel incision by slope and drainage area, finding 

that there is inverse correlation between slope and drainage area (Patton and Schumm,1975; Begin 

and Schumm, 1979). Other studies used stream power to identify the potential ephemeral gully 

erosion location, which are according to the theory that “the ephemeral gully formation is generated 

when the concentrated surface runoff have abundant magnitude and duration” (Thorne and 

Zevenbergen, 1984). The stream power can be obtained by multiplying the discharge, slope, and 

channel width (or other power-type function), which can represent the sufficient concentrated surface 

runoff (Desmet et al. 1999). Apart from stream power, Zevenbergen and Thorne (1987) found that 

plan curvature is another significant parameter contributing to ephemeral gully erosion’s 

development, which indicate the convergence and divergence of flow along the cross-section.  

 



 

 17 

With growing knowledge of important topographic parameters contributing to ephemeral gully 

erosion formation, researchers began to apply these parameters in some combination to describe the 

spatial variations in ephemeral gully erosion processes (Moore et al., 1988). Since these topographic 

parameters can be obtained directly from DEM data, the combination of these parameters is defined 

as topographic index model or compound indices (Moore et al., 1991; Daggupati et al., 2013). When 

the topographic index value is over the specific threshold, it indicated the occurrence of ephemeral 

gully erosion.   

 

Several topographic models have been explored to identify the potential location of ephemeral gully 

erosion s during the past decades. Thorne et al. (1986) developed compound topographic index model 

(CTI) to predict the location of ephemeral gully erosion. The CTI is defined as product of slope, 

planform curvature and drainage area, which can detect ephemeral gullies where CTI values are 

above the critical threshold (Thorne et al., 1986; Gali et al., 2015). Moore et al. (1988) developed 

slope area index model (SA) and wetness topographic index (WTI) model to predict the location of 

ephemeral gully erosion. SA model refers to the product of slope gradient and contributing drainage 

area. WTI model is derived by Napierian logarithm of the quotient of upstream drainage area divided 

by slope. (Moore et al., 1988). Vandaele et al. (1996) developed slope area power index model (SAP) 

to detect the location of ephemeral gully erosion. SAP model is defined as the product of slope 

gradient of empirical power of drainage area. Daggupati et al (2013) evaluated the predictable 

capability of these four topographic index models in Kansa. It is concluded that the CTI model can 

predicted the extent of ephemeral gullies in relatively good agreement with existing GWWs’ using 

specific threshold values (Daggupati et al., 2013).  

 

There is still no standard methodology to evaluate the topographic index models (Gali et al., 2015). 

Desmet et al., (1999) evaluated the models’ performance by the percentage of estimated pixels of 

ephemeral gully erosion aligned with the observed pixels of ephemeral gully erosion. Parker et al. 

(2007) assessed the models by comparing predicted ephemeral gully erosion trajectories with satellite 

images visually. Daggupati et al. (2013) used three methods to evaluate the predicable performance of 

four topographic models, including visual evaluation, error matrix assessment and assessing the 

predicted ephemeral gully erosion length by statistical indicators.  These studies highlighted that there 

exist inevitable discontinuities in predicted ephemeral gully erosion trajectories (Desmet et al., 1999; 
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Parker et al., 2007; Gali et al., 2015). In addition, soil properties are not considered in the topographic 

index models, which may result in overestimate of the number and magnitude of ephemeral gully 

erosion s (Gali et al., 2015). As for the threshold selection, it is unsuitable to utilize the threshold used 

in the previous studies with different environmental conditions directly, for the localized case-study 

nature of threshold selection (Parker et al., 2007). However, the cost-effective advantage and relative 

outstanding predictable performance enable topographic index models as simple and user-friendly 

tools to assist land managers and policy makers. Compared with complex methods of predicting 

ephemeral gully erosion s such as neural network and regression modeling, the CTI model requires 

minimal input data and cost, with relatively good performance of identifying the location and extent 

of ephemeral gully erosion s, which stands out as preliminary “screening” tool to identify the location 

of ephemeral gully erosions. 

2.3.3.2.2 Multi-Criteria Decision Analysis 

In recent years, increasing decision makers and researchers used various GIS and remote sensing 

techniques for prioritizing the BMPs placement and mapping the areas susceptible to erosion and 

landslides. Among these techniques, GIS-based Multi-criteria analysis (MCA) techniques stand out 

for their automatable and repeatable execution and flexibilities (Majumdar & Chatterjee, 2021). GIS-

based Multi-criteria analysis (MCA) refers to the analysis through converting and integrating multiple 

geographic data in order to generate new information of the problem (Greene et al., 2011; 

Malczewski & Rinner, 2015; Domazetović, 2019). Other researchers define GIS-based MCA as a 

‘complementary approach to cost-benefit analysis (CBA)’ (APFM, n.d.). The application of GIS-

based MCDA is typically related to explore the areas with different levels of vulnerability of hazards 

(e.g., Erener et al., 2016; Kumar et al., 2017) or different degrees of suitability of the placement 

(Young et al., 2010). Various studies have used GIS-based MCA to analyze the susceptibility of 

ephemeral gully erosion (e.g., Conoscenti et al., 2011; Rahmati et al., 2017). These application of 

MCA in these studies is based on existing factors impacting the ephemeral gully erosion’s initiation 

and development (Domazetović et al., 2019). Rundquist (2002) developed a ranking system for 

mapping fields where ephemeral gully erosion is susceptible to develop, using multiple layers derived 

from topographic data and multi-temporal ortho images such as normalized difference vegetation 

index (NDVI). Domazetović et al. (2019) developed a GIS automated MCA (GAMA) methodology, 

which simplified the multicriteria grouping and weighting assignment. This GAMA methodology can 

be developed as an automatable and repeatable tool for decision makers in various regions, where the 



 

 19 

factors and weights can be adjusted according to different objectives. The existing statistical 

modeling results of predicting ephemeral gully erosion occurrence have provided abundant 

information of established criteria and weight assignment for MCA of ephemeral gully erosion 

susceptibility (e.g., Zabihi et al., 2018). Although there still lack of inventory data of gully erosion 

and existing GWWs recognized as efficient and sufficient which is required by statistical models, the 

coefficients and summary statistics in existing studies of statistical modeling can provide the relative 

importance of conditioning factors of implementing GWWs in MCA. The common established 

criteria include topographic wetness index (TWI), plan curvature, Stream Power Index (SPI), 

lithology, distance form river, distance from road, slop aspect, land use, slope length and steepness 

(Lucà et al., 2011; Conoscenti et al., 2013). 

 

2.4  Multi-Criteria Decision Analysis in Spatial Decision-Making System 

Apart from the application of detecting an area’s susceptibility of ephemeral gully erosion, MCA has 

also been applied in spatial decision-making system of BMPs placement. The application of MCA to 

both the susceptibility of ephemeral gully erosion and a spatial decision-making system provide 

sufficient rationales for applying MCA in identifying GWW’s placement. A series of BMP planning 

decision support systems have been developed in recent years (Jia et al., 2013; Wang et al., 2017). 

One of the most famous systems is System for Urban Stormwater Treatment and Analysis Integration 

systems (SUSTAIN) (Shoemaker et al.2009), which can provide detailed BMP process simulations 

and optimal analysis and applications in multiple scales. However, these professional models and 

systems are usually complex, which is not user-friendly for the stakeholders with weak technical 

background (Balmforth et al.,2006). In some situations, it can be adequate to apply a simple analysis 

on BMPs’ decision-making, as a central data integration and communication tool, much like a 

precursor or monitory tool to assist the complex modeling process (Jia et al., 2013; Ellis et al., 2004). 

Therefore, there emerged several studies implementing multi-criteria analysis in the BMP decision-

making framework (e.g., Young et al., 2010; Raines et al., 2010). 

 

There are three common techniques in MCA related to criteria standardization, weight assignment 

and aggregation: (1) Analytical Hierarchal Process (AHP) (2) Fuzzy Logic Analysis (3) Weighted 

Linear Overlay. The fundamental for AHP is the pairwise comparison matrices, based on which the 
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comparison and rank of the various alternative BMPs can be obtained. The weights of each thematic 

layer will be calculated by creating the pair-wise comparison matrix according to the relative 

significance between two thematic layers. The numeric scales will be used to illustrate the intensity of 

importance between the two layers (Chen et al.,2010). And the weights of layers can be calculated by 

normalization of the principal eigenvectors with the largest eigen value (Chen et al., 2010). Then the 

consistency ratio (CR) will be calculated to check ‘the inconsistencies among pair-wise judgements’ 

(Chen et al., 2010). For examples, Young et al. (2010) applied analytical hierarchal process (AHP) in 

BMP site selection, which developed priority ranking of stormwater control and BMP efficiency 

metrics. However, there seems to be an inherent limitation in these methods, since the weights are 

determined by the knowledge of researchers and experts, thus introducing bias while being time-

consuming (Alvarez-Guerra et al., 2009). Apart from AHP, some researchers used Fuzzy Logic 

Analysis to construct the benchmarks and indicators. Fuzzy logic analysis is an overlay analysis 

technique, with the basic premise regarding inaccuracies in both attributes and geometry of spatial 

data, through which the possibility of the phenomenon is a member of a set is defined (Esri,2017). Ki 

et al. (2014) used fuzzy logic function in the Spatial Analyst toolbox in ArcGIS 10 to select suitable 

sites to implement different BMPs, which was recognized as brand-new BMP decision-making 

structure using initial site screening and final index map developing. It is concluded by Martin (2007) 

that the suitability scores from fuzzy logic will be skewed in low score zones. The AHP is expected to 

be skewed in high suitability scores with a negative skewness distribution (Martin, 2007). 

 

Many strengths of MCA in spatial decision support system have been highlighted inthe literature. 

MCA can be used to perform assessments of complicated problems inepistemic and standard 

dimensions, which are significant in environmental management evaluation (Vatn, 2019). In addition, 

multiple objectives of decision-making problems can be considered simultaneously ranging from 

natural requirements, social issues, cultural issues, economic issues, and human demand issues. The 

multi-stakeholder scenarios can also be facilitated (Marttunen et al., 2015; Khosravi et al., 2019). 

Moreover, its capacity of dealing with both quantitative and qualitative information or their mixed set 

can support environmental planning problems with much uncertainty and incomplete information 

(Locatelli et al., 2008). 
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The literature also highlights limitations. In some cases, the best alternatives may not be the most 

appropriate alternatives in the decision-making process (Triantaphyllou, 2000). There exist some 

exterior factors which seem to be uncertain and difficult to be considered such as government policies 

(Triantaphyllou, 2000). In addition, the methods of quantifying the criteria may average the tradeoffs 

of the criteria. Moreover, some stakeholders’ objectives may be contradictory, and the analysis 

methods can only serve for relatively small group of partnerships. The dearth of covering the whole 

population’sobjectives and preferences lead this analysis less representative (Saarikoski et al., 2013). 
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 Data and Method 

3.1 Study Area 

The Middle Thames River watershed is one of the four river watersheds of the Upper Thames River 

in southern Ontario. On a wider scale, the Middle Thames River watershed is a component of the 

Lake Erie watershed. There are 2 out of 28 sub-watersheds of the Upper Thames River basin in the 

Middle Thames River Watershed, which are Middle Thames Corridor watershed and Mud Creek 

watershed (Board et al., 2000; UTRCA, n.d.). The Middle Thames River watershed sits in the south-

central part of the Upper Thames River basin (shown in figure 3.1), spanning the East Zorra-

Tavistock and the Zorra township (UTRCA, 2017a). 

 

The Thames River rises from northeast of London flowing downstream into southwest of Lake St. 

Clair. Water from Mud Creek runs north of the Middle Thames River joining it downstream of 

Embro. As a major branch of South Thames River, the Middle Thames enters the South Thames at 

the downstream area of Dorchester and runs through London and Chatham joining Lake St. Clair, 

which meets Lake Erie through Detroit River (Board et al., 2000; UTRCA, 2017b).  

 

The total length of watercourses within the Middle Thames River watershed is 517km, including 

248km in the Mud Creek watershed and 269 km in the Middle Thames Corridor watershed. The Mud 

Creek Watershed covers an area of 171 km2 taking up approximately 5% of the Upper Thames River 

basin, while the Middle Thames Corridor Watershed occupied 157 km2. The agricultural lands 

constitute the majority land use types in the Middle Thames River watershed, covering 85% of the 

total land in the Mud Creek Watershed and 81% in the Middle Thames Corridor watershed (UTRCA, 

2017a). In the Mud Creek watershed, approximately 49% of the basin has agricultural field tile. The 

dominant soil type in this watershed is silty loam and sandy loam, covering 68% and 25% 

respectively (UTRCA, 2017a). As for the Middle Thames Corridor watershed, the agricultural field 

tile covers 49% of the total watershed. The major soil type is sandy loam and silty loam, both of 

which account for 42% of the total area. (UTRCA, 2017b). The climate in the Middle Thames River 

is humid continental, with significant seasonal fluctuation. During the growing season from mid-April 

to late October, rainfall composes about 60% of all forms of precipitation, marked with an average of 
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160 frost-free days annually (CCDS, 2020). The annual precipitation is about 999mm on average 

from 2001 to 2020, with the standard deviation of 168mm (Watershed Evaluation Group, 2018).  

 

Figure 3.1 Middle Thames River Watershed in Upper Thames River  

Note: Upper Thames River Main Watersheds Map (left) and Middle Thames River Watershed Map 

(right). (Left map) Reprinted from 2017 Upper Thames River Watershed Reports Card, Retrieved 

August 1, 2021, from https://thamesriver.on.ca/wp-content/uploads//WatershedReportCards/Map3-

UpperThamesRiverMainWatersheds.pdf. Copyright 2017 by UTRCA. Reprinted with permission. 

 

The Middle Thames River watershed has suffered from severe erosion issues for more than ten years. 

It is noticeable that up to 20% of lands in the Mud Creek watershed is highly erodible, indicating 



 

 24 

more than 7 tons of soil per hectare annually contributed to the adjacent watercourse (UTRCA, 

2017a). The Middle Thames Corridor experiences more serious erosion issues with 21% highly 

erodible lands throughout the basin (UTRCA, 2017b). The average portion of highly erodible lands in 

the total Upper Thames River watershed is 9%, which is much lower than that of the Middle Thames 

River watershed (UTRCA, 2017a). The Watershed Report Card (2017) stressed that the overall water 

qualities of the Mud Creek watershed and the Middle Thames Corridor watershed keep the grade of D 

and C respectively during the last ten years. The concentrations of Phosphorus in these two sub-

watersheds are both higher than three times of provincial aquatic life guideline, dominantly 

contributing to excess algae and low oxygen in waterbodies (UTRCA, 2017a; b). The Middle Thames 

River watershed has been identified as one of the polluting sources to Lake Erie through speeding the 

formation of algal blooms, which is responsible to provide millions of people with drinking water, 

business development and recreation (UTRCA, 2017a), with 21% highly erodible lands throughout 

the basin. 

 

To control soil erosion and improve water quality in the Upper Thames River Watershed, the Upper 

Thames River Conservation Authority has initiated multiple Clean Water Program Projects 

throughout the Upper Thames River basin from 2011 to 2015. The number of projects completed in 

the Mud Creek Watershed is the largest among 28 sub-watersheds. The Middle Thames Corridor 

watershed also has the third largest quantity of projects completed (UTRCA, 2017c). Although plenty 

of projects have been completed in these two watersheds, the water quality and soil health still need 

to be improved through more targeted management strategies (UTRCA, 2017a). Few studies of BMPs 

have focused on this region to facilitate the existing decision-making systems of BMPs. Considering 

the severe erosion issues in the Middle Thames River watershed, more research efforts on identifying 

the potential locations for erosion control BMPs are in highly demand. Numerous BMP projects in 

the Middle Thames River watershed can provide plentiful BMP data available for modeling and 

calibration. Therefore, the Middle Thames River watershed is selected as study area for identifying 

the potential locations for GWWs implementation. 
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3.2 Digitization of Existing Grassed Waterways 

The locations and shapes of existing GWWs were used as observed data to evaluate the performance 

of topographic index models and MCA in previous studies. For the lack of accurate inventory data of 

existing BMPs, the existing GWWs need to be delineated. In this study, the digitization of existing 

GWWs were conducted to retrieve reference data to assess performance of CTI model, SPI model and 

MCDA. The Section 3.2.1 introduces the relevant data used in the digitization of GWWs. In Section 

3.2.2, the process of digitization is presented. 

 

3.2.1 Data 

The process of digitizing existing GWWs requires three layers of data, including watershed boundary, 

aerial imagery, and BMP project data. The boundary data provide the scope of digitization. The aerial 

imagery is used as the base map offering landscape information. The BMP project data provide 

approximate locations of the fields with GWWs supported by UTRCA, which can assist the 

identification of GWWs. The Section 3.2.1.1 introduces detailed information of the required 

boundary data, including data sources and how they were processed. In Section 3.2.1.2, details of 

aerial imagery and BMP project data are explained. 

 

3.2.1.1 Boundary Data 

The digitization of existing GWWs required the primary layer of buffered Middle Thames River 

watershed boundary, to ensure that land use, soils and slope can adequately represent the watershed’s 

extent. This buffered watershed boundary data were created at a distance from the union of original 

Middle Thames River watershed boundary and the crop field boundary data (intersect with the 

watershed). The ‘union’ operation and ‘buffer’ operation were both conducted in ArcGIS using the 

Union tool and Buffer tool respectively. The buffer distance in this study is 1000 meters, referring to 

the buffer distance used in the Agricultural Conservation Planning Framework (Porter et al., 2018) 

and the extent of agricultural fields within the watershed. 

 

The quaternary Ontario Watershed Boundary (OWB) data provided by Land Information Ontario 

(LIO) were used as the source of watershed boundary data. This boundary data were generated based 

on the latest Ontario Integrated Hydrology (OIH) data published in 2019. During the generating 
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process, the involvement of several advanced interpolation and smoothing techniques improved the 

data’s consistency with present local hydrology (MNRF, 2019; LIO, 2021). The division of each 

watershed primarily followed the ‘Drainage Area’ hierarchical reporting framework proposed by 

Water Survey of Canada. This division aimed to ensure that all the land mass and waterbodies within 

the same suitably sized ‘Drainage Areas’ were contained in the same polygon, which can facilitate 

conservation management research and setting hydrometeorological sites (LIO, 2021).  

 

The field boundary data were retrieved from the Agricultural Resource Inventory (ARI) 1983 dataset. 

This dataset was published by Ontario Ministry Agriculture, Food and Rural Affairs, with a recent 

update in 2019. Instead of only representing discrete ownership patterns, these shapefile data reflected 

the crop mix and crop proportions within each ownership block, where each polygon represented 

crop-specific land use (OMAFRA, 2019). This kind of crop-specific field boundary data have been 

increasingly used in recent conservation planning projects such as Agricultural Conservation Planning 

Framework in the U.S. (Porter et al., 2018). The identification of cropping systems rather than 

ownership patterns or land use information can be valid for a longer period, which facilitates field-

level conservation planning process. During the generating process of the ARI, the crops growing in 

each field were identified through field surveys with the latest 1:40000 and 1:50000 aerial images as 

references. These observations were managed in units of ownership block, based on the ownership 

data from the local assessment offices (OMAFRA, 2019).  

 

3.2.1.2 Aerial Imagery and BMP Project Data 

The Southwestern Ontario Orthophotography (SWOOP) 2015 embedded in the Goggle Earth Engine 

was used as the aerial base map for digitization. This aerial imagery was provided by Land 

Information Ontario coordinating several organizations from public and private sectors, covering the 

entire Ontario province. The pixel resolution of the imagery is 20 centimeters, with 90% accuracy in 

50 centimeters on the ground. (LIO, 2020). The aerial imagery was captured in the spring of 2015 

with leaf off, under ideal conditions when there is no cloud, snow, ice, and smoke (LIO, 2020). This 

high-resolution imagery can provide explicit landscape information for reference of digitization, 

ensuring most of GWWs were not covered by canopies.  
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The BMP project data in the Upper Thames River Basin was provided by the technician in the Upper 

Thames River Conservation Authority. These data were stored in comma-separated values (CSV) file, 

providing approximate coordinates of GWWs or the starting point of fields with GWWs supported by 

UTRCA. Theses point data can be displayed on the aerial base map layer on Google Earth Engine 

through importing the CSV file. Although it is not an accurate and exhaustive list of GWWs, it can 

provide a guideline for digitizing GWWs. 

3.2.2 Digitizing Existing Grassed Waterways 

The existing GWWs in the Middle Thames River watershed were identified and digitized using 

drawing tools of geemap in Google Earth Engine (Wu, 2020; Wu et al., 2019). Field reconnaissance 

surveys of GWWs were not possible owing to the restricted access to agricultural fields (private 

property) during the pandemic. In view of this limitation, the identification of GWW features was 

cross-checked with the technician from UTRCA and relevant experts throughout the digitizing 

process. The location of each digitized GWWs was checked with the technician, ensuring that the 

open watercourses and low-lying lawn were not misidentified as existing GWW. 

 

The existing GWWs were recognized only as features inside crop fields; GWWs found along 

property lines or development boundaries were not recorded, which were not considered as “in-field” 

GWWs according to previous studies (e.g., Gali et al., 2015; P. Daggupati et al., 2013). The 

shapefiles of buffered watershed boundary, field boundaries and BMP points were overlaid on the 

aerial base map on the Google Earth Engine, supporting to locate the possible GWWs. The visual 

interpretation standards for identifying GWWs referred to expert judgment and previous studies of 

GWWs (e.g. Boardman, 2016; Gali et al., 2015; P. Daggupati et al., 2013); specifically: 

(1) Curved or tortuous features in 6 to 20 meters width within cultivated fields especially in the 

thalweg, with different color or texture from surroundings. 

(2) Prescence of grass or vegetative cover along linear features, sometimes along the natural 

drainage way and providing outlets for terraces or diversions.  

Every identified GWW was digitized as a polygon feature on Google Earth Engine, which was 

performed at scales from 1:3500 to 1:1000. The map scale during the manual tracing process was 

fixed at 1:3500; while the scale was zoomed out gradually until 1:1000 to check the surrounding 

landscape of identified GWWs. The minimum mapping unit was 50 meters. To prevent 
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misinterpretation, special attention was paid on straight and parallel traces in the agricultural fields, 

which were likely to be trails of agricultural machinery. In addition, great care was required in the 

determination of starting and ending points of GWWs, which can influence the accuracy of GWWs 

length. The digitized GWWs were verified with technicians in the UTRCA, ensuring that intermittent 

headwater streams or open watercourses were not misinterpreted as GWWs. GWWs that appeared on 

the aerial imagery but were not stored in BMP project dataset were also digitized, which were 

possibly supported by other projects. The digitized GWWs were used as observed data to assess the 

predictable performance of CTI model, SPI model and MCDA. 

3.3 Compound Topographic Index Models (CTI) 

3.3.1 Data 

The Ontario Digital Elevation Model (DEM) data were used as the source of primary topographic 

information to generate terrain attributes and compound topographic indices. These data were the 

product of the Southern Ontario Orthophotography Project (SWOOP) with 2-meter resolution, 

provided by Ontario Ministry of Natural Resource and Forestry (MNRF) in 2015. These data are a set 

of raster elevation tiles (1km * 1km) retrieved from the Ontario Classified Point Cloud data, 

representing the general elevation of surface and ground (MNRF, 2016). The name of each file in the 

data package reflects the corresponding tile’s boundary coordinates and UTM zone, which facilitates 

the mosaic of contiguous tiles within the study area. During the generating process, the “pixel-

autocorrelation” and “steam rolling” algorithm were conducted to ensure the DEM data closer to 

ground true elevation (MNRF, 2016). After these processes, the elevations of several types of bumped 

features such as small buildings and small forest cover were reduced which was closer to the ‘bare 

earth’ (MNRF, 2016). 

 

The Annual Crop Inventory 2019 data provided by the Agriculture and Agri-Food Canada (AAFC) 

were used as land-cover data to mask non-agricultural fields. These raster data display the crop type 

distribution of individual fields throughout Canada with 30-meter resolution. A decision tree 

algorithm combined with crop insurance data and ground-truth information were used in the 

generating process of this data layer, with overall accuracy of 85% in land-cover type classification 

(AAFC, 2019). To better describe the agricultural landscape information, several series of multi-

temporal optical images were used in the critical stages of the generating process. For the Ontario 
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region, 66 categories of land-cover types were included in the dataset with more than 82% 

classification rate (AAFC, 2019).  

 

The Ontario Hydro Network (OHN) data were used as hydrology data source to remove the cells 

corresponding to the open drainage network and stream network. This dataset is a polyline layer 

covering the entire Ontario province, provided by the Ministry of Natural Resource and Forestry 

(MNRF) through digitization. The OHN captures all the watercourses feature in Ontario, including 

stream, ditches, and virtual flow (MNRF,2020). During the generation process of the OHN, the GPS 

data, LIDAR and hydrologic modeling were used to enhance the data quality (MNRF, 2020). 

 

3.3.2 Compound Topographic Index Model 

The CTI model was primarily developed to predict the presence or absence of ephemeral gully 

erosion at each point in earliest studies (Thorne et al., 1986; Moore et al., 1988; Parker et al., 2007). 

Considering GWWs’ major function of preventing ephemeral gully erosion, recent research began to 

use CTI model to predict the locations of GWWs where ephemeral gully erosions are prone to occur 

(Gali et al., 2015). In this study, the CTI model was conducted on each DEM raster within the Middle 

Thames River watershed, to predict the existing and potential locations with GWWs implementation. 

The output of the CTI model is a map, where each raster cell is assigned a topographic index value. 

The presence of GWWs at each DEM raster was detected when the CTI value of the pixel was higher 

than the critical threshold. The selection of critical threshold was based on values reported in previous 

studies through a trial-and-evaluation approach, which will be explained in the next section. In the 

CTI model, three terrain attributes including upstream drainage area, slope and plan curvature were 

used to describe the topographic variability of the drainage network. The following equation 

 was applied to calculate the CTI value for each raster. 

CTI = A · S · PLANC                                  Equation 3.3.2 

where A represents the drainage area (m2), S refers to the slope (m m-1), and PLANC represents the 

plan of curvature (m per 100 m). The slope and drainage area represent the flow intensity, which is a 

proxy for forecasting sediment delivery capacity. The plan curvature reflects the lateral concavity or 

convexity at the cell, indicating the degree of concentration of the runoff by the plan curvature value. 
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The concave surface has negative value, indicating the convergence of flow in that pixel across the 

surface. A positive value represents the convex of the surface and the divergence of flow 

(Zevenbergen and Thorne, 1987).  

 

These three terrain attributes are derived from DEM data using ArcGIS function. The slope was 

obtained by calculating maximum rate of elevation change between the cell and its surroundings 

through “Slope” function in ArcGIS (Burrough & McDonell, 1998; Esri, 2016). Before calculating 

drainage area, the “filling” operation was performed on the DEM data through ArcGIS to remove 

depressions. After filling sinks, the “Flow Direction” and “Flow Accumulation” were conducted on 

each raster sequentially to calculate the accumulated number of upland raster (flow) draining into 

each cell. The contributing drainage area of each raster was the product of raster size and flow 

accumulation. The plan curvature measured the local flow geometry perpendicular to the direction of 

maximum slope using “Curvature” function on DEM data (Esri, 2016). The plan curvature layer was 

multiplied by -1 to convert the values of convergent pixels to positive value, allowing for more direct 

interpretation of the output and easier threshold finding (Gali et al., 2015). Based on the CTI output 

raster, the land-use data were used to clip the output raster into cultivated fields. The pixels 

corresponding to open drainage network and stream network were excluded from the CTI output map. 

 

3.3.3 Threshold Finding and Visual Evaluation 

In this study, a trial-and-evaluation approach was adopted to iteratively adjust the threshold until the 

most suitable threshold of the CTI model is determined. Considering that the critical threshold cannot 

be currently derived from theoretical basis, this study first tested critical threshold values reported in 

the literature and conducted visual evaluation on the outputs. The poor performances of the outputs 

with critical thresholds suggested iterative increments in the threshold until the output achieved the 

visual evaluation criterion. After identifying the range of eligible threshold values from visual 

evaluation, this study conducted a quantitative assessment with two methods to identify the most 

suitable threshold values, which will be illustrated in the next section. 

 

This study first tested five critical threshold values (12, 30, 62, 75,100) reported as most appropriate 

thresholds in the literature (Daggupati et al., 2013; Parker et al., 2007; Thorne et al., 1986; Thorne 
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and Zevenbergen, 1990). Five output maps of potential locations for GWWs using these empirical 

thresholds were developed respectively. Visual evaluation was conducted on the output maps of 

potential locations for GWWs. The digitized GWWs and predicted GWWs along the trajectory of 

existing GWWs were visually compared. The criterion for qualitative assessment of CTI performance 

using suitable thresholds referred to the relevant literature (Boardman, 2016; Gali et al., 2015; P. 

Daggupati et al., 2013; Parker et al., 2007; Thorne et al., 1986; T); specifically: 

(1) Most (more than 90%) of the existing GWWs’ occurrences in the study area are identified. 

(2) The shape of each predicted GWW is consistent with the trajectory of digitized GWW. 

Neither significant distortions nor missing parts exist in the shape of predicted GWWs along the 

trajectory of existing GWWs.  

(3) There are few “branches” outside the trajectory of the digitized GWWs in the shape of the 

prediction.   

The shapes of predicted GWWs in five output maps display poor consistency with shapes of existing 

GWWs based on the criteria for visual evaluation above, with quantities of extra “branches” outside 

the major trajectories of existing GWWs. An example was presented in Figure 3.3.3. According to 

previous studies of CTI model (e.g., Boardman, 2016; Gali et al., 2015; P. Daggupati et al., 2013; 

Parker et al., 2007; Thorne et al., 1986; T) and numerous trials, the shapes of predicted GWWs can be 

simplified when the threshold value is increased, through which the extra “branches” outside the 

existing GWWs’ trajectories can be reduced. Therefore, it can be concluded that the suitable 

threshold values are larger than the five critical threshold values selected from the existing studies. 

The increment iteration of the threshold value started from 100 (the maximum value of critical 

threshold in the literature) is suggested, with an increment of 100 in each loop. This increment step 

size was selected based on numerous trials since there were no theoretical basis for critical threshold 

values. The increment iteration process was stopped when significant discontinuities and missing 

parts existed in the predicted GWWs along the trajectories of existing GWWs. After the increment 

iteration process, a range of threshold values were identified as eligible values meeting visual 

evaluation standards, above which significant discontinuities and missing parts existed in the 

predicted GWWs along the trajectories of existing GWWs. Based on the range of suitable threshold 

values, following statistical assessments using two methods were conducted to evaluate CTI model’s 

performance and identify the most suitable threshold values. 
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Figure 3.3.3 Example of extra branches outside the major trajectory of existing GWW 

Significant extra branches are denoted by green circle.  

(Left) existing GWWs; (Right) Predicted GWWs with threshold value of 100 

 

3.3.4 Post-processing Techniques before Statistical Evaluation 

Before the statistical evaluation, a series of post-processing techniques were applied using ArcGIS to 

derive length of GWWs from the output maps of CTI models with each eligible threshold value 

respectively. These techniques were developed to smooth the trajectories of predicted GWWs without 

distorting their original shapes and link the discontinuities along the trajectories, in reference to 

previous studies of predicting GWWs by topographic index models (Daggupati et al., 2013; Parker et 

al., 2007; Thorne et al., 1986; Thorne and Zevenbergen, 1990). The main steps are as follow: 

(1) Pixels with CTI values greater than the selected threshold were recoded as a value of 1. Then 

the majority filter function was applied to smooth the recoded pixels. 

(2) The smoothed pixels with the value of 1 were extended by 1 pixel using “expand” function to 

enhance the connection between cells, then narrowed to a maximum width of 1 cell using “thin” 

function in ArcGIS. 

(3) The post-processed pixels representing GWWs in the output raster layer were converted to a 

polyline output layer. 

(4) The output polylines were snapped to nearest edge and end of polylines within 3 meters. This 

specified snapping distance was based on previous studies, beyond which the shape of trajectories 

would be distorted. The polylines with a common endpoint were dissolved into one polyline features 

using “dissolve” function. 
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(5) The lengths of post-processed polylines were calculated. The dangled polylines with length less 

of 10 meters were excluded. 

(6) The polylines within the digitized GWW polygons were selected. All individual polylines 

within the same polygon were merged into one polyline feature, representing the GWWs present in 

both predicted and observed dataset with unique identification number. The sum of lengths of 

polylines within each GWW polygon was used as the length of predicted GWWs. 

(7) For the polylines outside the digitized GWW polygons, all individual polylines within the same 

crop field boundary were dissolved into one GWW polyline feature. The GWWs with cumulative 

length less than 50 meters were excluded, according to the typical scales of GWWs which are more 

than 50 meters and existing studies of GWWs using the CTI model (e.g., Gali et al., 2015; Parker et 

al., 2007). 

 

3.3.5 Occurrence Evaluation 

In this study, the error matrix approach was used to assess the occurrence of predicted GWWs and 

evaluate the suitability of threshold values. An error matrix summarized the agreement between 

predicted dataset and ground truth dataset, which was also called covariance matrix or confusion 

matrix. This approach was used in previous studies of predicting the locations of ephemeral gully 

erosions with CTI models and regression analysis (Daggupati et al., 2013; Gutierrez et al., 2009). 

This matrix used a binary variable to describe the occurrence of GWWs (1= present, 0 = absent). 

There were four entries in this matrix, recording frequencies of four categories of prediction from 

comparing the predicted and digitized GWWs respectively. For each CTI model with the eligible 

threshold value selected, the occurrence evaluation using an error matrix was conducted respectively 

using the format in Table 3.3.5. The entries in the Table 3.3.5 are defined as follows: 

a = the number of GWWs that presented in both predicted dataset (by CTI model) and digitized 

dataset., which was also called as true positive value. 

b = the number of GWWs that were predicted by the model but absent in the ground truth dataset, 

which was also called as false positive value. 

c = the number of GWWs that were not predicted by the model but present in the ground truth 

dataset, which was also called as false negative value. 
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d = the number of GWWs that were absent in both predicted dataset and observed dataset, which 

was also called as true negative value 

Table 3.3.5. Error matrix to assess occurrence of GWWs predicted by CTI models 

 Observation  

Prediction Present Absent Totals 

Present a (true positive) b (false positive) (a+b) 

Absent c (false negative) d (true negative) (c+d) 

Totals (a+c) (b+d)  

False positive rate b/(a+b)   

False negative rate c/(a+c)   

 

Several statistics can be derived from the error matrix table to evaluate the performance of CTI 

model. The performance of the CTI model can also indicate the suitability of the threshold selected. 

(Daggupati, 2012; Daggupati et al., 2013; Gali et al., 2015). In this study, false positive rate, false 

negative rate, and Kappa (k) statistics were calculated to assess the performance of each CTI model 

with eligible threshold respectively. The false negative rate was calculated as the number of false 

negative GWWs divided by the total number of GWWs predicted by the model. The false positive 

rate was derived from the number of false positive GWWs divided by the total number of existing 

GWWs.  

 

A model with good performance is supposed to have low false positive rate and low false negative 

rate. In the study of GWWs prediction, a high false positive rate did not necessarily reflect poor 

performance of the CTI model, because the model may predict potential locations in great need of 

GWWs implementation where GWWs have not been adopted at the time of capturing aerial imagery. 

However, a high false positive rate was considered as an indicator of poor performance of CTI model, 

which also indicated the poor suitability of the corresponding threshold value (Dagggupati et al., 

2013; Gali et al., 2015). It is noticeable that the present study conduct occurrence evaluation on the 

cropping fields with existing GWWs. Cropping fields without any existing GWWs but predicted as 
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potential locations for GWWs implementation were not considered in the occurrence evaluation. The 

suitable threshold values were identified with which the CTI model had considerably low false 

positive rate. 

 

3.3.6 Length Evaluation 

There is no established method of assessing GWWs’ length predicted by CTI model. This study 

applied the cumulative length evaluation method developed by Daggupati et al. (2013) in GWWs’ 

length evaluation, which was previously used to assess the ephemeral gully erosion length predicted 

by topographic index models. The total accumulated length of each GWW derived from the CTI 

model was compared with the corresponding GWW’s length in ground truth dataset, which was 

extracted from the centerline of the digitized GWWs polygon. This comparison was conducted on 

“true positive” GWWs that were present in both predicted and observed dataset. The Nash-Sutcliffe 

efficiency (NSE) and percent bias (PBIAS) were statistics used in this comparison. These statistics 

were commonly used to assess the predictive performance of hydrological models relative to 

observed data, such as SWAT evaluation (Gali et al., 2015; Moriasi et al., 2007).  

The NSE is derived from one minus the estimation error variance, as the Equation 3.3.6.1 illustrated:  

NSE = 1- ∑!"#	
% (#&

!$#'!)(

∑!"#	% (#'!$#')(
                     Equation 3.3.6.1 

where 𝐿& represents the average length of observed GWWs, and N is the total number of existing 

GWWs;  𝐿&'  is the nth observed GWW’s length, and 𝐿('  is the nth predicted GWW’s length. The higher 

NSE represents the better predictable performance of the CTI model, indicating the better suitability 

of the threshold value. The optimal value of 1 indicates the perfect predictable performance of the 

CTI model, with the ideal agreement between predicted GWWs’ length and observed length.   

The PBIAS measures the magnitude of the bias between prediction and simulation. The Equation 

3.3.5.2 was applied to calculate PBIAS. The low-magnitude values of PBIAS indicate good 

predictable performance, with the value of 0 indicating the perfect estimation of GWWs length. The 

positive value of PBIAS displays the underestimation of GWWs’ length. The negative PBIAS value 

indicates that the CTI model overestimates GWWs’ length relative to digitized GWWs (Dagggupati et 

al., 2013). 

PBIAS = 100 * ∑!"#	
% (#&

!$#'!)
∑!"#	% #'!

             Equation 3.3.6.2The length evaluation was conducted on outputs 
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of CTI models with each eligible threshold value respectively. The threshold values of with high NSE 

and low PBIAS were considered as suitable threshold values.  

 

3.4 Stream Power Index (SPI) Threshold Model  

In Section 3.4, the SPI threshold model was applied as the second method using topographic index to 

predict the locations of GWWs in the Middle Thames River watershed. The SPI threshold method 

was developed by the United States Department of Agriculture (USDA) to predict the potential 

placement of GWWs in sub-watersheds at the scale of 10000 to 40000 acres in the U.S. (Porter et al., 

2018). The USDA applied this method in the Agriculture Conservation Planning Framework (ACPF), 

as one of the ArcGIS tools to support the implementation of GWWs in each field. In the SPI threshold 

tool, a specified threshold was applied to the stream power index (SPI) raster layer of the study area. 

The cells with SPI values greater than the user-defined threshold were identified as potential locations 

for GWWs, followed by several post-processing techniques to derive the polyline layer of potential 

locations of GWWs.  

 

SPI is a topographic index indicating the erosive power of flows across the surface, based on 

the assumption that the flow of water is in proportion to the contributing drainage area. Both net 

erosion in convex areas and net deposition in concave areas are estimated by SPI. In this study, the 

SPI raster layer was derived from the DEM raster data following the Equation 3.4, where A refers to 

the contributing drainage area (m2) and β refers to the slope (m m-1). These two terrain attributes in 

the Equation 3.4 had been derived in Section 3.3.2 using ArcGIS. Based on the SPI raster, the land-

use data were used to clip the output raster into cultivated fields. The pixels corresponding to open 

drainage network and stream network were excluded from the SPI raster layer. 

SPI = A * tan 𝛽                      Equation 3.4 

 

After deriving SPI output layer, this study first tested 4 threshold values suggested by ACPF (from 2 

to 5 standard deviations greater than the average SPI values of the study area). The raster cells with 

SPI values greater than each standard deviation threshold values were selected respectively, and four 

output maps of GWWs were generated. Visual evaluation was conducted on these output maps, 

which followed the same criterion of that of CTI models in Section 3.3.2. Numerous absences of 
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predicted GWWs at the locations of existing GWWs suggested the iterated decrement of the threshold 

values. The decrement iteration of the threshold value started from 1 standard deviation above the 

average SPI values of the study, with a decrement of 0.01 standard deviation in each loop. A range of 

threshold values were identified as eligible values meeting visual evaluation standards. Based on the 

output maps using each eligible threshold values selected, a series of post-processing techniques were 

conducted to smooth the trajectories of predicted GWWs and derive the lengths of predicted GWWs, 

which followed the same steps in the post-process of CTI models in Section 3.3.4.  Following the 

post-process, the same statistical assessments (occurrence evaluation and length evaluation) applied 

in Section 3.3.5 and 3.3.6 were conducted to evaluate SPI threshold model’s performance and identify 

the most suitable threshold values. 

 

3.5 Multi-Criteria Decision Analysis (MCDA) 

In Section 3.5, the GIS-based multi-criteria decision analysis is applied to identify prioritized areas 

for GWWs implementation. The present study adopted two approaches for MCDA including 

weighted linear combination (WLC) and fuzzy logic analysis (FLA). The differences between their 

priority maps and advantages of each method are compared.  

 

The MCDA process consisted of six major steps: (1) setting a MCDA goal (2) selecting the criteria 

and constraints (3) standardization of criteria (4) weight assignment (5) aggregating criteria (6) 

validation. The primary goal of the MCDA in this study was identifying the prioritized areas for 

GWWs implementation and creating the priority maps. Based on the main goal, the factors 

influencing the priority of GWWs implementation were selected through comprehensive analysis of 

existing studies conducted on similar sites. The detailed explanation of each criterion and constraints 

will be given in Section 3.5.2 and 3.5.3. The data used for deriving criterion and constraints will be 

illustrated in Section 3.5.1. According to selected criterion, the WLC and FLA employ different 

techniques in step (3), (4), and (5), which produce biases between the results. The detailed illustration 

of WLC and FLA process will be presented in Section 3.5.4 and 3.5.5 respectively.   
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3.5.1 Data 

The MCDA of GWWs requires 6 categories of data, including elevation data, land cover data, soil 

information data, stream network data, road data and boundary data. The Ontario Digital Elevation 

Model (DEM) data provided by OMNRF are used as the source of elevation information, 

simultaneously providing primary topographic information to generate terrain layers in MCDA. The 

Annual Crop Inventory (ACI) 2019 data provided by the Agriculture and Agri-Food Canada (AAFC) 

is used as land-cover data to mask non-agricultural fields and provide crop type information in each 

field. The detailed information of the DEM data and ACI data has been illustrated in Section 3.3.1. 

The soil survey complex data are used as the source of soil information, providing depictive 

information such as soil texture, soil erodibility, and soil component. This dataset is a polygon layer, 

generated from a number of soil surveys throughout the Southern Ontario on a county-by-county 

basis from the 1920s to the 2000s (LIO, 2015). These surveys were developed by Ontario Ministry of 

Agriculture, Food and Rural Affairs (OMAFRA) and the Ministry of Nature Resources (MNR). 

During the primary stage of the production, the soil information of each soil polygon was checked by 

a GIS specialist using various resources, such as surveys from regional municipal and existing soil 

data maps (LIO,2015). The Ontario Hydro Network (OHN) data provided by OMNRF is used as 

stream network data source to generate drainage density, which has been introduced in Section 3.3.1. 

The Ontario Road Network (ORN) Segment with Address provided from OMNRF is used as road 

network data source. This polyline layer data comprise municipal roads and provincial highways 

covering the entire Ontario province, which was authorized as the official source of road data for the 

Government of Ontario (LIO, 2019). The boundary data provide the scope of MCDA, which is used 

to clip the data into the buffered Middle Thames River watershed. This buffered watershed boundary 

data were created at a 100-meter distance from the union of original Middle Thames River watershed 

boundary and the crop field boundary data (intersect with the watershed), which has been illustrated 

in detail in Section 3.2.1.1. 

3.5.2 Constraints in MCDA 

In GIS-based MCDA, the constraints commonly refer to Boolean criterion, using binary classification 

to exclude non-satisfactory alternatives (Jiang & Eastman, 2000). The present study selected two 

constraints including land use and waterway grade, which classified study area into areas where 

GWWs are possible to be constructed (1-true) and areas where GWWs are impossible to be 
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constructed (0-false). The selection of these constraints was based on the primary goal of MCDA and 

the construction manual of erosion control structures by OMAFRA (2016).  

Land use is the constraint which can identify agricultural areas and non-agricultural areas. Since the 

object of this study is agricultural GWWs implemented within fields, the non-agricultural areas are 

considered as impossible alternatives in MCDA. The pixels belonging to farmland were classified as 

1(true), and pixels belonging to non-farmland were classified as 0 (false).  

Waterway grade is the constraint classified study area into areas with suitable grade for constructing 

GWWs and areas with steep grades impossible for GWWs construction. According to OMAFRA 

(2016), a grade of more than ten percent is not suitable for GWWs, which has a potential for erosion. 

Therefore, the pixels with grades less than ten percent are classified as 1, and pixels with grades more 

than 10 percent are classified as 0. 

 

3.5.3 Criterion for MCDA 

Since the locations of GWWs implementation is influenced by various factors including the 

susceptibility of ephemeral gully erosion and suitability of GWWs construction, this study selected 12 

parameters as criterion for MCDA, which can affect (1) the likelihood of ephemeral gully erosion’s 

occurrence and (2) the efficiency of GWWs. The selection of the criterion was based on previous 

studies (Domazetović et al., 2019; Mohsen et al.,2017; Majumdar et al., 2021), data accessibility, and 

hydrological and geological knowledge. Table 3.5.3 presents an overview of selected criterion. The 

criterion selected in MCDA included: (1) slope (2) aspect (3) drainage density (4) topographic 

wetness index (TWI) (5) stream power index (SPI) (6) slope length and steepness (LS Factor) (7) 

profile curvature (8) plan curvature (9) distance from stream (10) distance from road (11) soil 

erodibility (12) crop type.  

 

Table 3.5.3 overview of selected criterion. (Part 1) 

# Criteria Literatures using certain criteria Data Source 

1. Slope Conforti et al., 2011; Domazetović et al., 2019a; 

Domazetović et al., 2019b; Ki & Ray, 2014; 

Pournader et al., 2018; Zabihi et al., 2018;  

DEM 
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Table 3.5.3 (continued) overview of selected criterion. (Part 2)  

# Criteria Literatures using certain criteria Data Source 

2. Aspect Rahmati et al., 2016; 2017; Domazetović et al., 

2019a; Ki & Ray, 2014; Pournader et al., 2018; 
DEM 

3. Drainage 

density 

Boufeldja et al., 2020; Majumdar et al., 2021; Zabihi 

et al., 2018; Samira et al., 2020 
Ontario Hydro 

Network (OHN) 

4. TWI Agnesi et al., 2011; Conforti et al., 2011; 

Domazetović et al., 2019a; b; Rahmati et al., 2016; 

2017; Ki & Ray, 2014; 

DEM 

5. SPI Agnesi et al., 2011; Conforti et al., 2011; 

Domazetović et al., 2019a; b; Rahmati et al., 2016; 

2017;  

DEM 

6. LS factor Conforti et al., 2011; Domazetović et al., 2019a; b; 

Lucà et al., 2011; 
DEM 

7. Profile 

curvature 

Conforti et al., 2018; Domazetović et al., 2019a; b; 

Zabihi et al., 2018;  
DEM 

8. Plan 

curvature 

Lucà et al., 2011; Pournader et al., 2018; Zabihi et 

al., 2018; 
DEM 

9. Distance 

to stream 

Ki & Ray, 2014; Pournader et al., 2018; Zabihi et al., 

2018;  
Ontario Hydro 

Network (OHN) 

10. Distance 

to road 

Ki & Ray, 2014; Zabihi et al., 2018; Ontario Road 

Network (ORN)  

11. Soil 

erodibility 

Agnesi et al., 2011; Conforti et al., 2011; Pournader 

et al., 2018; Lucà et al., 2011; 
soil survey 

complex data 

12. Crop type Boufeldja et al., 2020; Pournader et al., 2018;  Annual Crop 

Inventory (ACI) 

 

Slope is one of the major factors of landform formation, which has a direct impact on the intensity of 

erosion process. The steeper slope increases the intensity of surface runoff and risk of ephemeral 

gully erosion. In addition, the slope gradient can influence the efficiency of GWWs. The OMAFRA 
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(2019) recommended that the suitable range of slope for GWWs was between 1 percent to 5 percent. 

A grade of more than 10 percent is not suitable for implementing GWWs, where there is likely to be 

erosions in the waterways. A slope of less than 1 percent is not suggested either. The slope of 5 

percent is considered as optimal slope for implementing GWWs (OMAFRA, 2019). The slope layer 

was derived from the DEM data, throughy calculating maximum rate of elevation change between the 

cell and its surroundings using “Slope” function in ArcGIS (Burrough & McDonell, 1998; Esri, 

2016). 

 

Aspect is one of the significant factors influencing both erosion process and efficiency of GWWs. 

The aspect of the slope controls the exposure of terrains to climate conditions such as the duration of 

sunlight and wind speed (Dai et al., 2001; Rahmati et al., 2016; Wijdenes et al., 2000). It also has an 

impact on vegetation cover, evapotranspiration, and water content, which affect both the erosion 

process and vegetation growth in GWWs (Cevik and Topal 2003; Conforti et al., 2011; Pulice et al. 

2009). Southern, south-eastern, and south-western slope was proven to be exposed to longer sunlight 

duration in Canada (Avalance Canada, n.d.). The aspect layer was extracted from the DEM data using 

“aspect” function in ArcGIS. 

 

The drainage density measures “the mean length of channels per unit area” (Horton, 1945). Exiting 

studies have concluded that there existed significant positive relationship between drainage density 

and erosion rate (Clubb et al., 2016). The drainage density layer was derived from the stream network 

data using “line density” function in ArcGIS. 

 

The topographic wetness index (TWI) is a topographic index indicating the water saturated areas with 

low surface water infiltration (Conforti et al., 2011; Beven and Kirkby, 1979). This saturated area is 

prone to concentrated surface runoff, where ephemeral gully erosion is more likely to occur 

(Domazetović et al., 2019). The TWI layer was derived from the DEM data, based on the Equation 

3.5.2.1 below (Beven and Kirkby, 1979), where α is contributing drainage area (m2/m), and β is slope 

(degree). The extraction of contributing drainage area has been given in Section 3.3.2. 

TWI = ln ( !
"#$%

)                Equation 3.5.2.1 
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The stream power index (SPI) is a topographic index indicating the erosive power of flows across the 

surface, based on the assumption that the flow of water is in proportion to the contributing drainage 

area. The extraction of SPI layer has been illustrated in Section 3.4. 

 

The slope length and steepness (LS) factor is a parameter used in the Universal Soil Loss Equation 

 (USLE), indicating the sediment transport capacity of surface flow. This factor depends on two 

relevant factors: the slope length factor (L) and slope steepness factor (S), which have a significant 

impact on surface runoff speed. The cells in the areas with steeper slope and larger catchment area 

have large LS factor values, representing high susceptibility of erosion. There are various methods 

applied in previous studies to calculate the LS factor. In this study, the LS layer was derived from the 

DEM data using the Equation 3.5.2.2 given in Moore and Burch (1986), where A is contributing 

drainage area (m2/m), and β is slope (degree). 

LS = 1.4 * ( &
''.)*

)+., * ( -.$	%	
+.+012

)).*             Equation 3.5.2.2 

 

The profile curvature reflects the upward concavity or convexity at the cell, indicating the velocity of 

surface runoff by the profile curvature value. It described the local flow geometry parallel to the 

direction of maximum slope, which affects the erosion and deposition process (Esri, 2016). An 

upwardly convex surface has negative value of profile curvature, indicating the deceleration of the 

runoff across the surface. A positive value of profile curvature indicates the upward concavity of the 

surface with the acceleration of the flow. (Esri, 2016). The profile curvature layer was derived from 

DEM data using “Curvature” function in ArcGIS.  

The plan curvature reflects the lateral concavity or convexity at the cell, indicating the degree of 

concentration of the runoff by the plan curvature value. It measured the local flow geometry 

perpendicular to the direction of maximum slope using “Curvature” function on DEM data (Esri, 

2016). The concave surface has negative value, indicating the convergence of flow in that pixel across 

the surface. A positive value represents the convexity of the surface and the divergence of flow 

(Zevenbergen and Thorne, 1987). The plan curvature layer was derived from the DEM data using 

“Curvature” function in ArcGIS. 

The distance to road is an indirect factor influencing the susceptibility of erosion, which was used by 

several studies of mapping ephemeral gully erosion (Domazetović et al., 2019; Mohsen et al.,2017; 
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Majumdar et al., 2021). Xiao et al. (2016) concluded the indirect impacts of roads on the erosion 

process including the fragment landscapes and pollution from the transportation. The construction of 

roads disturbs the original stream systems and soil systems, with the vegetation removed 

simultaneously. The distance to road layer was derived from the ORN data, using raster-based 

distance tool in ArcGIS. 

 

The distance to stream is a factor influencing the erosion process and sediment delivery, which was 

used in several studies of predicting ephemeral gully erosion and landslides (Domazetović et al., 

2019; Majumdar et al., 2021). The areas in shorter distance to stream bed are prone to ephemeral 

gully erosion. The distance to stream layer was derived from the OHN data, using raster-based 

distance tool in ArcGIS. 

 

The soil erodibility (also known as K factor) is a parameter used in the Universal Soil Loss Equation 

(USLE), indicating the susceptibility of the soil to erosion with the influence of runoff and rainfall. 

The soil texture, structure and organic matter can affect the soil particles detachment and transport, 

thus generating different susceptibility of soil loss (OMAFRA, 2015). This soil erodibility layer is 

derived from soil survey complex data. The soil erodibility of each soil polygon was the weighted 

average K factor value of each textural class within the polygon. The soil polygon layer was 

converted to 2-meter raster layer with cell values indicating soil erodibility.  

 

The crop type is a factor indicating different cropping management systems with different 

effectiveness of preventing soil erosion. The farmlands with different crop types and tillage methods 

can prevent soil loss in different effectiveness in compare with fallow and tilled lands (OMAFRA, 

2015). The crop type layer was derived from ACI data, which was resampled to 2-meter resolution 

consistent with other 2-meter raster layers. 
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3.5.4 Weighted Linear Combination (WLC) 

3.5.4.1 Standardization of Criteria 

To ensure all criterion are comparable, the values contained in all criteria layer maps require to be 

reclassified and scored with the same scale, through the process of standardization. In this study, the 

selected criteria were divided into several categories and scored on a numeric scale from 1 to 5, where 

1 was given to the least priority categories of a certain criteria, and 5 was assigned to the highest 

priority categories. Similar studies have applied standardized scale of 1-3, 1-4, 1-5 and 1-16 (Aguilar-

Manjarrez & Ross, 1995; Domazetović et al., 2019a; Pournader et al., 2018; Salam & Ross 2000). 

However, it is found that the standardized scores of 1-3 and 1-4 presented insensitive results and the 

scale of 1-16 was relatively complex. The standardization in the present study was based on the 

detailed analysis of existing studies of predicting ephemeral gully erosion conducted on the similar 

sites and geology knowledge. The referenced studies mainly applied frequency ratio (FR) model, 

index of entropy (I of E), weight of evidence (W of E), analytical hierarchical process (AHP) logistic 

regression analysis to evaluate the susceptibility of ephemeral gully erosion (Conforti et al., 2011; 

Domazetović et al., 2019a; Lucà et al., 2011; Zabihi et al., 2018), based on which the relative 

correlation between each category in the criteria and the occurrence of ephemeral gully erosion can be 

obtained. The standardization of criteria was adapted to local characteristics of the study area and 

GWWs construction manual provided by OMAFRA (2016). Table 3.5.4.1 presented the summary of 

standardized criteria and corresponding references.  

Table 3.5.4.1 Summary of Standardization of Criteria in WLC 

# Criteria Categories Scores References 

1. Slope  

(in percent) 

0 - 1 2 OMAFRA, 2016;  

 1-5 5 

  5-10 4 

  >10 1 

2. Aspect Flat 1 Conforti et al., 2011; Majumdar & 

Chatterjee, 2011; Zabihi et al., 2018;  

 

 

 

  North 1 

  North East 2 

  East 3 

  South East 4 
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# Criteria Categories Scores                 References 

  South 5 

  South West 4 

  West 3 

  North West 1 

3. Drainage 

Density 

<0.5 1 Boufeldja et al., 2020; Majumdar & 

Chatterjee, 2011; Zabihi et al., 2018;  0.5 - 2 2 

 (m/m2) 2 - 4 3 

  4 - 6 4 

  >6 5 

4. TWI <4 1 Conforti et al., 2011; Lucà et al., 2011; 

Zabihi et al., 2018;    4-6 2 

  6-8 3 

  8-10 4  

  >10 5  

5. SPI 0-3 1 Conforti et al., 2011; Lucà et al., 2011; 

  3-8 2  

  8-50 3  

  50-1000 4  

  >3000 5  

6. LS Factor 0-0.3 1 Conforti et al., 2011; Lucà et al., 2011; Zabihi 

et al., 2018;   0.3-0.7 2 

  0.7- 3 3 

  3 - 9 4 

  >9 5 

7.  Plan 

Curvature 

<-58 5 Conforti et al., 2011; Lucà et al., 2011; Zabihi 

et al., 2018;  -58 - -10 4 

  -10 - 0 3 

  >0 1 

8.  Profile 

Curvature 

<0 (convex) 1 Lucà et al., 2011; Zabihi et al., 2018; 

 0 (flat) 3 

  >0(concave) 5 
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9. Distance to 

stream 

0 - 100 5 Majumdar & Chatterjee, 2011; Pournader et 

al., 2018; Zabihi et al., 2018;  100- 300 4 

 (m) 300 - 550 3 

  550 - 850 2 

  >850 1 

10. Distance to 

roads 

0-250 5 Ki & Ray, 2014; Zabihi et al., 2018; 

 250-400 4  

 (m) 400-600 3  

  600-800 2  

  >800 1  

11.  Soil 

Erodibility 

0-0.19 1 OMAFRA, 2015; Majumdar & Chatterjee, 

2011;  0.19-0.33 2 

  0.33-0.42 3  

  0.42-0.47 4  

  0.47-0.63 5  

     

12. Crop type Corn system 5 OMAFRA, 2015; 

 Continuous row 

crop 

5  

  Orchard 2  

  Grain system 5  

  Mixed system 4  

  Tabaco system 2  

  Berries 2  

  Field vegetables 3  

  others 1  

 

3.5.4.2 Weight Assignment 

After the standardization of criteria, the weight coefficient of each criteria needs to be determined to 

differentiate the selected criteria based on their importance. This study adopted the Simple Multi 

Attribute Rating Technique Exploiting Ranking (SMARTER) approach to determine weight 

coefficients in WLC (Barron and Barret, 1996). This method was commonly used in planning, 
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environmental construction, and site selection, owing to its efficiency, simplicity, and repeatability 

(Barron and Barret, 1996). The SMARTER was developed by Edwards and Barron, as a simplified 

version of the Simple Multi Attribute Rating Technique (SMART) method to determine the weights 

of criteria. Different from Analytical Hierarchical Process (AHP) and other objective weighting 

methods, the SMARTER does not require various experts’ opinions or sufficient historical data for 

statistical analysis, which is suitable for the present study conducted during the pandemic (Odu, 

2019).  

 

The first step in SMARTER process was to rank the criteria in (descending) order of importance. The 

criteria ranking of this study was based on the research goals and detailed analysis of existing studies, 

including frequency ratio (FR) model, index of entropy (I of E), weight of evidence (W of E), 

analytical hierarchical process (AHP) logistic regression analysis, which provide relative importance 

of each criterion in predicting ephemeral gully erosion and implementing GWWs. Based on the 

ranked criteria, “surrogate” weights were assigned to corresponding criteria as the “true” weights 

indicating the relative importance of the criteria. There are four methods of calculating “surrogate” 

weights, including rank order distribution (ROD) method, rank order centroid (ROC) weights method, 

rank sum (RS) weights method, and rank reciprocal (RP) weights method. Among these methods, the 

RS method is considered as a relatively practical and accurate solution to problems with plentiful 

criteria (Roberts and Goodwin, 2002), which was used in this study. The calculation of RS weights is 

given in Equation 3.5.4.2, where n is the count of criteria, i represents the rank of the criteria and  

∑ 𝑊))*+
' = 1. The overview of criteria ranking, and weight assignment is given in Table 3.5.4.2. 

Wi (RS) = (𝑛 + 1 − 𝑖) 𝑛(𝑛 + 1)/2.  , 𝑖 = 1, 2, …, n.              Equation 3.5.4.2 

 

 

Table 3.5.4.2 summary of ranking and weight assignment (part 1) 

Criteria Ranking Weight 

SPI 1 0.1538 

LS factor 2 0.1410 

Slope 3 0.1282 

Soil erodibility 4 0.1154 
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Table 3.5.4.2 (continued) summary of ranking and weight assignment (part 2) 

Criteria Ranking Weight 

Aspect 5 0.1026 

Profile Curvature 6 0.0898 

Distance to stream 7 0.0769 

Drainage Density 8 0.0641 

TWI 9 0.0513 

Distance to road 10 0.0385 

Plan Curvature 11 0.0256 

Crop type 12 0.0128 

 

3.5.4.3 Criteria Aggregation 

The last step in WLC is the criteria aggregation, which is used to aggregate constraints and sum of 

weighted criteria to produce priority map. Equation 3.5.4.3 was applied to conduct criteria 

aggregation, where S is the priority score of each raster cell; 𝑋)	 is the standardized value of ith 

criteria; 𝑤) is the weight of the ith criteria; 𝐶- is the constraint value. Based on the Equation 3.5.4.3., 

the priority score of each cell was derived from 14 raster layers using “raster calculator” tool in 

ArcGIS. 

S = ∑ 𝑤))*+
' 𝑋)	* ∏𝐶-            Equation 3.5.4.3 

 

3.5.5 Fuzzy Logic Analysis (FLA) 

In this study, the fuzzy logic analysis (FLA) was applied as the second method of MCDA. The FLA 

is an overlay analysis technique, with the basic premise regarding inaccuracies in both attributes and 

geometry of spatial data, through which the possibility of the phenomenon is a member of a set 

defined (Esri, 2016). Compared with other approaches of MCDA, the FLA requires least prior 

knowledge during the standardization and weighting process (Ki & Ray, 2014). The FLA process 

comprises two major steps including fuzzy membership function and fuzzy overlay (Joss et al.,2008). 

The fuzzy membership function is presented in Section 3.5.5.1. The fuzzy overlay process is 

explained in Section 3.5.5.2. 
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3.5.5.1 Fuzzy Membership Function 

Fuzzy membership function is a standardization process where the criteria values in each thematic 

layer are rated between 0 and 1 (Joss et al.,2008). This transforming process, also known as 

fuzzification, ranks the criteria value as a possibility of “being a member of a fuzzy set”, with 1 

representing the absolute belonging to the set (Ki & Ray, 2014). There are seven categories in fuzzy 

membership function, which all belong to continuous functions. Each function is based on different 

types of transforming process to achieve different expected effect (Esri, 2016). Table 3.5.5.1 presents 

the overview of fuzzy membership functions selected for each criterion and corresponding statistical 

properties. The selection of fuzzy membership function was based on geological knowledge and 

existing studies (Conforti et al., 2011; Gigović & Pamučar; 2019; Lucà et al., 2011; Ki & Ray, 

2014;). The fuzzy membership functions used in this study included fuzzy Guassian, fuzzy large, and 

two types of fuzzy linear (decrease and increase). It is noticeable that the fuzzy membership function 

could not be applied to crop type layer which consists of discrete classes, since the membership 

function should be continuous for all input values (Gigović & Pamučar; 2019). To maintain the 

consistency with the remaining criteria layers for the aggregation, this study used the crop type layer 

standardized in Section 3.5.4.1 and divided each cell values by 10 to be scaled from 0 to1. 

Table 3.5.5.1 Summary of fuzzy membership functions in FLA 

Factors Fuzzy Membership Parameters 
Drainage density Linear (increase) minimum 0 
    maximum 8.693 
aspect Guassian midpoint 202.5 
    spread 0.001 
slope  Guassian midpoint 5 
    spread 0.01 
TWI Large midpoint 5 
    spread 1 
SPI Linear (increase) minimum 30 
    maximum 3000 
profile Curvature Linear (decrease) minimum 549.0114 
    maximum -58.38 
plan curvature Linear (increase) minimum -499.57 
    maximum 430.27 
distance to road Linear (decrease) minimum 1382.0332 
    maximum 100 
distance to stream Linear (decrease) minimum 1599.93 
    maximum 5 
ls factor Linear (increase) minimum 0.8 
   maximum 50 
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soil k factors Linear (increase) minimum 0 
    maximum 0.63 
 

Among the criteria in Table 3.5.5.1, the distance to road is an indirect factor influencing the 

susceptibility of erosion, which was used by several studies of mapping ephemeral gully erosion 

(Domazetović et al., 2019; Mohsen et al.,2017; Majumdar et al., 2021). Xiao et al. (2016) concluded 

the indirect impacts of roads on the erosion process including the fragment landscapes and pollution 

from the transportation. The construction of roads disturbs the original stream systems and soil 

systems, with the vegetation removed simultaneously. The selection of fuzzy ‘linear’ function for the 

distance to road was according to the existing studies (e.g., Mohsen et al.,2017; Majumdar et al., 

2021). The distance to stream is a factor influencing the erosion process and sediment delivery, which 

was used in several studies of predicting ephemeral gully erosion and landslides (Domazetović et al., 

2019; Majumdar et al., 2021). The areas in shorter distance to stream bed are prone to ephemeral 

gully erosion. The selection of fuzzy ‘linear’ function for the distance to stream was based on the 

existing studies of fuzzy logic analysis on ephemeral gully erosion (e.g., Domazetović et al., 2019; 

Majumdar et al., 2021). 

 

The fuzzy Guassian function is a transformation process based on Gaussian or normal distribution, 

which is around a defined midpoint, with a user-defined spread declining to zero (Esri, 2016). The 

fuzzy Guassian function is suggested when the membership is around a certain value. Considering 

that the areas with the slope gradient closer to 5 percent and the aspect closer to south are more 

favorable for GWWs implementation, the aspect and slope criteria were transformed by Guassian 

function with midpoint of 5 and 202.5 respectively (OMAFRA, 2015; Gigović & Pamučar; 2019). 

The formula for the fuzzy Guassian function is given in Equation 3.5.5.1.1, where f1 is the user-

defined spread; f2 is the midpoint, and  x is the input criteria value. 

𝜇(𝑥) = 	 𝑒$.+∗(0$.1)(            Equation 3.5.5.1.1 

 

The fuzzy linear function is a linear transforming process, within the range from specified minimum 

value to user-defined maximum value (Esri, 2016). The minimum value is assigned a membership of 

0 and the maximum value is assigned a membership of 1 (Gigović & Pamučar; 2019). When the 

specified minimum parameter was larger than the specified maximum parameter for a certain 
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criterion, the linear transformation is in a negative slope. The linear function is suggested when the 

membership value linearly increases (or decreases) with the increase of corresponding criteria value. 

The drainage density, SPI, plan curvature, LS factor and soil erodibility were applied increase linear 

function, based on their positive linear correlation between criteria value and membership value. The 

profile curvature, distance to road and distance to stream were applied decrease linear fuzzy function.  

 

The fuzzy large function is a transforming process through which the larger input values are 

transformed to higher membership closer to 1 (Esri, 2016; Gigović & Pamučar; 2019). The fuzzy 

large function is suggested when the large values of criterions possess larger membership. The 

formula for the fuzzy large function is given in Equation 3.5.5.1.2, where f1 is the user-defined 

spread; f2 is the midpoint, and  x is the input critera value. The TWI layer was applied fuzzy large 

function, based on the existing literatures (Gigović & Pamučar; 2019). 

𝜇(𝑥) = 	 +
+2( )*()

+*#        Equation 3.5.5.1.2 

3.5.5.2 Fuzzy Overlay 

After deriving multiple thematic layers by fuzzy membership function, this study conducted fuzzy 

overlay to aggregate all the criteria layers using fuzzy overlay tool in ArcGIS. The output of the fuzzy 

overlay is a raster layer where each cell with the value representing the priority level of implementing 

GWWs. There are five optional approaches of overlay provided in the tool, including fuzzy And, 

fuzzy Or, fuzzy Product, fuzzy Sum and fuzzy Gamma (Esri, 2017; Gigović & Pamučar; 2019). The 

fuzzy overlay aggregates the input data through set theory analysis, with different methods addressing 

distinct aspects of pixels’ membership relative to the multiple input layers (Esri, 2016). The selection 

of appropriate overlay approach should be based on the goals of MCDA and expected results 

(Gigović & Pamučar; 2019). 

 

Fuzzy And and fuzzy Or approach are suggested when the output map is expected to extract the 

minimum and maximum values from the aggregation of multiple input sets (Gigović & Pamučar; 

2019). Fuzzy Product is suggested when the values of cells in the aggregated output map are less 

important than those of any single criteria layer. The fuzzy Sum approach is suggested when the value 

of each cell in the output map is more important than that of any single criteria layer (Gigović & 
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Pamučar; 2019). Fuzzy Sum is an increasing linear combination of input layers rather than algebraic 

sum, which is not commonly utilized in the analysis. Fuzzy Gamma is a compromised approach to 

neutralize fuzzy Sum’s increasing effect and fuzzy Product’s decreasing effect (Esri, 2016). This 

method is suggested when the value of each cell in the output is expected to be larger than fuzzy 

Product and smaller than fuzzy Sum. The formula of fuzzy Gamma is given in Equation 3.5.5.2 

below. 

𝜇(𝑥) = 	 (𝐹𝑢𝑧𝑧𝑦𝑆𝑢𝑚)3 ∗ 	(𝐹𝑢𝑧𝑧𝑦𝑃𝑟𝑜𝑑𝑢𝑐𝑡)+$3         Equation 3.5.5.2 

 

In this study, the fuzzy Gamma was applied to combine 12 criteria layers in FLA. The value of 0.9, 

which were most used in previous studies as default value of Gamma, were applied to produce the 

priority maps (Ki & Ray, 2014; Raines et al., 2010). The suitability of the Gamma value was 

evaluated through the subsequent validation process given in Section 3.5.7. 

 

3.5.6 Division of Priority Level 

After WLC and FLA, different output raster layers were obtained, where the value of each cell 

indicates the priority score of GWWs implementation. To generate the priority maps for GWWs 

implementation, the priority scores need to be divided into several categories indicating different 

levels of priority zone. The traditional methods of segmentation used in previous studies are relatively 

subjective, owing to the random central tendencies in criteria layers (Saha et al., 2005). This study 

applied a new probabilistic method of priority level division, which was employed in recent studies to 

segment susceptibility zones of landslide (Saha et al., 2005; Kanuago et al., 2009). The priority values 

were divided into five categories including least priority, low priority, median priority, high priority, 

and most priority, with boundaries fixed at (𝜇 − 1.5𝑚𝜎), (𝜇 − 0.5𝑚𝜎),	(𝜇 + 0.5𝑚𝜎) and (𝜇 +

1.5𝑚𝜎), where 𝜇	is the average priority value of cells in the output layer, 𝜎 is the standard deviation 

of priority values in the output layer, and 𝑚 is a positive, non-zero value (Saha et al., 2005; Kanuago 

et al., 2009). Based on the range of value assigned to m in previous studies, this study tested the value 

of 0.9, 1, 1.1 and 1.2 assigned to m, through the subsequent validation process given in Section 3.5.7. 

The suitable value of m was selected when greater percentage of existing GWWs occur in higher 

priority zones. 
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3.5.7 Validation 

The validation of priority map is a significant process in MCDA to evaluate the predictive ability of 

the method and the suitability of the parameters selected (Yilmaz, 2010). The most common method 

of validation adopted in previous studies is AUC (Area Under the Curve) -ROC (Receiver Operating 

Characteristics) curve, which can assess the model’s ability of predicting occurrence or non-

occurrence of natural hazards (Fawcett, 2006; Kanuago et al., 2009; Nandi and Shakoor, 2009; Saha 

et al., 2005;). In this study, there exist locations with non-occurrence of existing GWWs in demand of 

GWWs implementation, which cannot be treated as “non-occurrence” used in natural hazards. These 

locations should be predicted as potential locations with occurrence of GWWs. Therefore, the AUC-

ROC method is not a suitable validation method in this study. A statistics summary method was 

adopted in this study to validate priority maps and the suitability of selected parameters. This 

validation method summarized the distribution of priority zones and GWWs within each zone. The 

performance of the priority maps is evaluated by the fact that greater percentage of GWWs 

implementation must occur in the higher priority zones. Table 3.5.7 presented the statistics required in 

the validation process. 

Table 3.5.7 Validation of Priority Output 

Priority 
level 

I. 
Percent 
Watershed 
Area (%) 

II. 
Percent 
GWWs 
Field Area 
(%) 

III. 
Percent 
GWWs per 
level (%) 

IV. 
GWWs 
Field in 
watershed 
density 

V. 
GWWs in 
GWWs 
Field 
density 

VI. 
GWWs in 
watershed 
density 

Least 
Priority 

a f k f/a k/f k/a 

Low 
Priority 

b g l g/b l/g l/b 

Median 
Priority 

c h m b/c m/h m/c 

High 
Priority 

d i n n/d n/i n/d 

Most 
Priority 

e j o o/e o/j o/e 

 

The percentage of total study area in five priority level zoned were summarized in column I. The 

percentage of the agricultural fields with existing GWWs in each priority level were summarized in 

column II. The column III summarized the portions of pixels within existing GWWs polygon 
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belonging to each priority level zone. The column IV recorded the distribution of various densities of 

the fields with GWWs belonging to each zone. The column V summarized the GWWs density in the 

field belonging to various priority level. The column VI recorded the GWWs density of the watershed 

in different priority zones. The performance of the priority map and the suitability of the parameter 

selected can be validated following two criteria: (1) the greater percentage of existing Grassed 

Waterways occur in the higher priority zone of the watershed (2) greater percentage of crop fields 

with existing Grassed Waterways occur in higher priority zone (3) the greater percentage of existing 

Grassed Waterways occur in higher priority areas within the field. 

3.5.8 Sensitivity Analysis 

Sensitivity analysis (SA) is a crucial step in the evaluation of MCDA, which assesses the stability of 

the MCDA. It examines the extent of variation in the output when specific input parameters are 

changed in a specified range (Archer et al., 1997; Delgado and Sendra, 2004; Ravalico et al. 2010;). 

This study examined the criteria sensitivity of WLC by changing criteria weights using a cost-

effective approach known as OAT. This method changes input factors one-at-a-time and examines the 

change in the output (Chen et al., 2010). It was commonly used in existing studies owing the strong 

operability and low cost (Archer et al., 1997; Chen et al., 2010; Delgado and Sendra, 2004; Ravalico 

et al. 2010). 

 

At the beginning of the OAT process, a range of weight deviations from the initial weight value needs 

to be defined. This range can be specified as either range of percent change (RPC) or a group of 

discrete percent change. Either the same range is assigned to all criteria, or different ranges can be 

applied to selected criteria (Chen etal., 2010). After determining the RPC, a series of SA simulation 

runs are conducted through increment of percent change (IPC) in each criterion within the specified 

range (RPC). In each simulation run, the main changing criterion weight is changed in percent 

increments, and the weights of the remaining criterions are altered in proportion to their relative 

importance, under the constraint that the sum of the criteria weights is always equal to one. The base 

run of the simulation is the original criteria weights used in MCDA with no IPC.  

 

The Equation 3.5.8.1 is applied to calculate the weight of the main changing criterion at a certain 

percent change (PC) level (Chen et al., 2010), where 𝑐4 is the main changing criterion (also the mth 

criterion in the criteria set) and 𝑊(𝑐4,0) refers to the weight of criterion 𝑐4 at the base run. 
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𝑊(𝑐4,𝑝𝑐) = 	𝑊(𝑐4,0) + 𝑝𝑐 ∗ 	𝑊(𝑐4,0)          Equation 3.5.8.1 

The additivity constraint of criteria weights at a certain percent change (PC) level is given in equation 

3.5.8.2, where 𝑊(𝑝𝑐) is the sum of the total criteria weight at PC level; 𝑊(𝑐5,𝑝𝑐) refers to the 

weight of the kth criterion at a certain percent change (PC) level, and n is the number of criteria in 

MCDA. 

𝑊(𝑝𝑐) = ∑ 𝑊(𝑐5 , 𝑝𝑐)'
5*+ = 1	            Equation 3.5.8.2 

The weights of the remaining criteria 𝑊(𝑐) , 𝑝𝑐) are altered through Equation 3.5.8.3, where 

𝑊(𝑐) , 𝑝𝑐) is the weight of ith criterion at a certain PC level; 𝑊(𝑐) , 0) refers to the weight of criterion 

𝑐) at the base run; 𝑊(𝑐4, 𝑝𝑐) and 𝑊(𝑐4, 0) 

𝑊(𝑐) , 𝑝𝑐) = (1 −𝑊(𝑐4, 𝑝𝑐)) * 6(7,,9)
+$6(7-,9)

,  𝑖 ≠ 𝑚, 1 ≤ 𝑖 ≤ 𝑛	     Equation 3.5.8.3 

 

For each simulation, a priority map is generated after changing the criteria weight at a specific PC 

level, and the number of cells in five priority levels are summarized. For each main changing 

criterion, the variation in distribution of each priority level throughout the specified RPC are 

summarized. 

 

Owing to the huge computation and time limitation, the present study examined the sensitivity of six 

criteria representing different levels of importance in generating priority scores of WLC (most 

important, moderately important, least important), which were selected according to their quantile 

ranking order in weight assignment (as Table 3.5.8 illustrates). The sensitivity of six criteria in WLC 

were examined through OAT method, including SPI, LS factor, profile curvature, distance to stream, 

plan curvature and crop type. For each selected criterion, the SA simulation was conducted with an 

RPC of ± 20% and an IPC of ± 1%, consisting of 40 simulation runs. There were 240 simulation 

runs in total where each run created a new priority map with corresponding attribute table recording 

the distribution of cells’ priority scores. Six plots were generated for each criterion, where the 

variations of the cells in different priority level were summarized.  
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Table 3.5.8 Selected Criteria for Sensitivity Analysis 

Criteria Rank Importance 

SPI 1st  Most important 

LS factor 2nd   

Profile Curvature 6th  Moderately important 

Distance to Stream 7th   

Plan Curvature 11th  Least important 

Crop type 12th   

 

3.6 Summary of Chapter 

This chapter illustrates the methodology of identifying existing and potential areas for GWWs 

implementation in the studied watershed, as well as the required data. The identification and 

digitization of GWWs have been conducted using ariel images to delineate the existing GWWs as 

reference data. The CTI model and SPI model has been developed to predict the existing and potential 

GWWs at the field level. The process of threshold finding and visual evaluation were described. The 

performance of CTI and SPI model were assessed through occurrence evaluation and length 

evaluation. After CTI model and SPI model, the MCDA was conducted to predict the priority areas 

for GWWs implementation. The WLC and FLA were developed, which produced two output maps 

respectively. The validation of priority maps of WLC and FLA was conducted following the criteria 

that greater percentage of GWWs implementation must occur in the higher priority zones (Kanungo 

et al., 2009). In the end, the sensitivity analysis was employed to examine the stability of WLC and 

sensitivity of selected criteria. 
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 Results 

4.1 Digitization of GWWs 

A total of 30 GWWs were identified and digitized in the study area. These identified GWWs are 

distributed in 28 cropping fields. Figure 4.1 presented an example of digitized GWWs polygon. The 

lengths of the digitized GWWs range from 83 to 588 meters, with an average of 283 meters; the 

widths of the GWWs vary from 5 to 32 meters, with an average of 15.8 meters. The total surface area 

covered by the digitized GWWs is approximately 33.9 ha. The elevation at which the GWWs were 

identified ranges from 278.22 to 355.227 meter, with an average of 325.69 meter; the slope gradient 

of digitized GWWs varies from 0.03% to 15%, with an average of 4.35%. 

 

 

Figure 4.1.1 Example of digitized GWWs. (a)identified GWW (near 80°48'52.165"W, 

43°14'55.992"N). (b)close view of digitized GWW of (a).  (c)identified longest GWW 

(80°58'55.285"W, 43°11'53.147"N). (d) close view of digitized GWW of (c) 

 

(a) (b) 

(c) (d) 



 

 58 

In geographic terms, most of the identified GWWs are situated in the north part of the Middle 

Thames River Watershed, with denser distribution in the east part around Strathallan. Specifically, 

most digitized GWWs are distributed along the upstream of watercourses, including Mud Creek, 

Middle Thames River, Nissouri Creek and Phelam Creek. The geographic distribution of digitized 

GWWs is presented in figure 4.1.2.  It was found that the GWWs were identified mainly in corn 

system (13 out of 31 cases), continuous row crops (10 out of 31cases), and mixed system (5 out of 

31cases). 
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Figure 4.1.2 Distribution of digitized GWWs. (a) Distribution map (b) close view of distribution 

map (c) close view of digitized GWW on Google Earth Engine 

 

4.2 CTI model 

4.2.1 Threshold Finding and Visual Evaluation 

In CTI model, a trial-and-evaluation approach was adopted to iteratively adjust the threshold until the 

most suitable threshold of the CTI model is determined. This study first tested five critical threshold 

values (12, 30, 62, 75,100) reported as most appropriate thresholds in the literature (Daggupati et al., 

2013; Parker et al., 2007; Thorne et al., 1986; Thorne and Zevenbergen, 1990). Five output maps of 

potential locations for GWWs using these empirical thresholds were developed respectively. The 

visual evaluation was conducted on five output maps by comparing the existing GWWs and predicted 

GWWs. It reveals that the shapes of predicted GWWs using 5 critical thresholds display poor 

consistency with trajectories of existing GWWs, with quantities of “branches” outside the trajectories, 

which suggested iterative increase of the threshold values. After the iterative increments in the 

threshold, the visual interpretation of the CTI model output showed that the models with threshold 

from 500 to 1100 can correctly predict most of GWWs’ trajectories up to standard of qualitative 

assessment. The representative results of this procedure for the trial-and-evaluation are presented in 

figure 4.2.1. As this figure illustrates, with the increase of the threshold value, the areas predicted to 

be GWWs placement reduce in size, with better consistency with the trajectory of digitized GWW. 

When the threshold value is under 500, there still exist distortions and several significant “branches” 

outside the trajectory of GWW. When the threshold value is 500 or higher, there are few “branches” 

outside the trajectory of the digitized GWWs in the shape of the prediction, and the shape of predicted 

GWWs better match the shape of existing GWW. Closer observations reveal that there exist more 

discontinuities and missing parts along the trajectory, as the threshold value increases to 1000 or 

higher. Overall, the visual evaluation reveals that the range of suitable CTI threshold is from 500 to 

1100. 
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Figure 4.2.1. The Procedure of threshold finding. The predicted GWWs are denoted by red lines. 

The significant discontinuities are denoted by green circle. 

4.2.2 Occurrence Evaluation 

The occurrence evaluation shows that the CTI models with threshold from 100 to 600 can identify 30 

of 31 existing GWWs in the study area. The models with threshold from 700 to 1000 can identify 29 

of 31 existing GWWs in the study area. The false positive rate and false negative rate for the models 

with series of suitable threshold values are summarized in Table 4.2.2. The models with threshold of 

500 and 600 have lower false negative rate (0.0323). As the threshold value increases, the false 

positive rate decreases. In this study, the false positive rate does not necessarily reflect poor 

performance of the CTI model. This rate can indicate (1) potential locations in great need of GWWs 

implementation where GWWs have not been adopted at the time of capturing aerial imagery, or 

alternatively (2) overestimated GWWs by CTI models, which could be eroding channels or low-lying 

drawn; (3) Locations where the imagery's time differs from that of prior or existing GWWs. (4) 

Locations where there should have been GWWs but do not. In general, the model with threshold of 

600 have relatively better performance in occurrence evaluation.  

Table 4.2.2 Summary of Occurrence Evaluation of CTI model 

Threshold Value False Positive Rate False Negative Rate 
500 0.898 0.0323 
600 0.756 0.0323 
700 0.736 0.0645 
800 0.727 0.0645 
900 0.691 0.0645 
1000 0.689 0.0645 
1100 0.638 0.0645 

 



 

 62 

4.2.3 Length Evaluation 

The statistics of length evaluation is summarized in Table 4.2.3. In terms of PBIAS, all the models 

obtain relatively low-magnitude values close to 0, revealing the little bias between estimated and 

observed lengths of GWWs. The models with threshold of 800 and 1100 have negative values in 

PBIAS, indicating the underestimation of GWWs’ lengths. The positive PBIAS values from the 

models using 500, 600, 700, 900, 1000 as threshold values indicate the overprediction of the lengths 

of GWWs. As for the NSE value, the model with the threshold of 600 obtains the value closest to 1, 

indicating the best agreement between prediction and observation. Overall, the model with the 

threshold of 500, 600 and 700 have better performance in length evaluation. 

Table 4.2.3. Summary of length evaluation of CTI model 

Threshold Value PBIAS NSE 
500 2.099 0.616 
600 3.006 0.684 
700 2.187 0.443 
800 -1.854 0.388 
900 2.184 0.442 
1000 2.378 0.427 
1100 -1.163 0.328 
 

 

4.2.4 Visualization of CTI output 

Based on the visual evaluation, occurrence evaluation and length evaluation, it is found that the CTI 

model with the threshold of 600 has overall better performance than others. The output map from CTI 

model with the threshold of 600 is presented in Figure 4.2.3.1. To better visualize the output result, 

the distribution of predicted GWWs density map is given in Figure 4.2.3.2, where each raster value 

indicates the length density (m km-2) of GWWs in the neighborhood of the raster cell. The bandwidth 

of the density map is specified as the default value, which can guarantee the relative robustness to 

spatial outliers (Esri, 2016).  

As Figure 4.2.3.2 illustrates, high-density areas of predicted GWWs are mainly situated in the 

northern and central part of the study area. Specifically, the areas along the upstream of Middle 

Thames River, Nissouri creek and Phelan Creek within the study area are predicted as potential areas 

for intensive GWWs implementation. The low-density areas for GWWs implementation are mostly 
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located in the southwestern part of the study area. It is noticeable that the predicted GWWs density 

has similar geographic distribution of existing GWWs which is illustrated in Figure 4.1.2.   

 
Figure 4 .2.3.1 The output map of predicted GWWs by CTI model (threshold = 600) 
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Figure 4.2.3.2 GWWs density distribution map by CTI model 

4.3 SPI Threshold Model 

For SPI threshold model, four threshold values suggested by ACPF (from 2 to 5 standard deviations 

greater than the average SPI values of the study area) have been tested and visually evaluated.  There 

are no existing GWWs identified by SPI model with threshold from 2 to 5 standard deviation above 

the mean, indicating that these thresholds are not capable of predicting GWWs correctly. The model 

with the threshold of one standard deviation is not able to identify the existing GWWs as well, which 

471 

147 
0 
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can only identify several open drainage lines with significant discontinuities. During the iterated 

decrement of the threshold values, it showed that the models can predict increasing number of 

locations of existing GWWs gradually until 23 GWWs with 0.01 standard deviation above the mean. 

For the models with the threshold from 0.05 to 0.09 standard deviation, there exist numerous 

absences of predicted GWWs at the locations of existing GWWs, with considerably significant 

discontinuities along the trajectories of existing GWWs. Figure 4.3.1 presents an identified GWWs 

with SPI threshold model with comparison of output from CTI model. It is found that there exist lots 

of missing parts in the output SPI model along the trajectory of existing GWWs.  Figure 4.3.2 

presented the output map of SPI model with 0.01 standard deviation. Figure 4.3.3 presented the 

GWWs density distribution map by SPI model with 0.01 standard deviation. 

  
Figure 4.3.1 the comparison between SPI model output and CTI model output. 
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Figure 4.3.2 output map of SPI model with 0.01 standard deviation 
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Figure 4.3.3 GWWs density distribution map by SPI model 

 

As Figure 4.3.3 presents, the distribution of GWWs density predicted by SPI threshold model is 

roughly similar to that of CTI model in figure 4.2.3.2. The maximum GWWs density is around 

183.35 meter per square kilometer, which is much less than that of CTI model. The high-density areas 

are mainly located along the watercourses in the northern part of the Middle Thames River watershed. 
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There exist high-density areas in the southwestern part of the study area, which is different from the 

density distribution by SPI model.  

The occurrence evaluation is summarized in Table 3.4. There are 23 GWWs identified by SPI 

threshold model. The absent values for the observations referred to the number of predicted GWWs 

by SPI model which were not identified during the digitization process (which have not been 

implemented). The false negative rate is 0.258065, which is much higher than that of CTI model. The 

Kappa statistics of SPI model is 0.2574, indicating the moderately agreement between prediction and 

observation. As for the length evaluation, the PBIAS and NSE of SPI model area   -0.128 and -1.08 

respectively, revealing the underestimation of the lengths and poor agreement between predicted 

lengths and observed lengths, owing to numerous absences of predicted GWWs at the locations of 

existing GWWs and significant discontinuities along the trajectories of existing GWWs.  

 

Table 4.3 The error matrix of SPI model 

  observation   
  Present Absent total 

prediction Present 23 26 49 
 Absent 8   
 total 31   
 False positive rate  0.530612   
 False negative rate 0.258065   

 

4.4 MCDA 

4.4.1 Thematic layers of criteria 

The thematic layers of MCDA are presented in figure 4.4, which displays the distribution of 12 

criteria in the Middle Thames River Watershed respectively. As map (a) illustrates, the soil erodibility 

of the study area ranged from 0 to 0.063, with the highest value in northwestern of the watershed 

where there may contain rocky structures. The minimum values of soil erodibility are mainly 

distributed in the southeastern part of the study area, which is around the outlet of Mud Creek. There 

exist areas with lowest soil erodibility in the northernmost part of the watershed, which is possibly the 

outlet of North Woodstock watershed. The topographic layer in map (i) displays that the slope of the 

watershed varied from 0.09% to 1.26%, with relatively steep slope along the Middle Thames River 

and Nissouri Creek. The overall slope of the northwestern part is steeper than others. Map (b) 
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displays the distribution of the LS factor value, which is similar to that of slope layer. The high LS 

values are mainly distributed in the northern part especially the northeastern part of the study area. 

The crop type layer shows that the corn systems and continuous row crops dominate the crop type by 

more than 85% of the watershed area. In terms of terrain attribute layers, the profile curvature and 

plan curvature layers distinguish the road ditches, valleys, and concave surface of the study area. The 

SPI layer, TWI layer and stream density layer display geographic distribution patterns respectively 

which are closely associated with drainage pattern and erosive power of the surface. 

 

 
Figure 4.4 Part 1. Criteria Distribution Map of MCA. 

(a) Soil Erodibility Map (b) LS Map (c) Distance to Road Map  

(d) TWI Map (e) Aspect Map (f) Distance to Stream Map 
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Figure 4.4 Part 2. Criteria Distribution Map of MCA. 

(g) SPI MAP (h) Crop Type Map (i) Slope Map  

(j)Stream Density Map (k) Profile Curvature Map (l) Plan Curvature Map 

 

4.4.2 Weighted Linear Combination 

The propriety map of WLC is presented in figure 4.4.2 below. Figure 4.4.2 illustrates the distribution 

of priority for GWWs implementation in the Middle Thames River watershed, with priority scores 

ranging from 0 to 4.56. The priority scores in watershed are devided into 5 classess: least priority 

zone, low priority zone, median priority zone, high priority zone and most priority zone. There also 

exist constraint areas where the implementation of GWWs is impossible. The boundaries of these 
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priority level division are located at value of 0.405 (μ0 -1.5mσ0), 1.357(μ0 -0.5mσ0), 2.309(μ0 

+0.5mσ0) and 3.261(μ0 +1.5mσ0), where μ0 is observed mean value of scores; σ0 is the standard 

deviation and m is set to 0.8. The rationale of priority division and the selection of m are validated in 

Section 4.4.4. Maximum area of priority level is devoted to low priority category taking up 39.6% 

and 2.3% of the area have the most priority of GWWs implementation. The high and median priority 

categories of priority cover 15.3% and 29.6% respectively, while the least priority area accounts for 

13.2% of the studied watershed. As figure 4.4.2 displays, the areas with the highest priority are 

located in northwestern part and northeastern part of the watershed, especially along the upstream of 

Phelan Creek and Nissori Creek. It is found that these upstream areas have relatively steeper slope 

gradient than other areas in the studied watershed, with dominant soil type of sandy loam and silty 

loam. In macroscopical sight, the priority map of GWWs implementation from WLC has the similar 

geographic distribution of GWWs density map from CTI model and SPI model, where the areas in the 

northwestern part along the Nissori Creek and upstream of Mud creek are in highly demand of 

GWWs implementation. 

Several highest priority areas are retrieved from the priority map of WLC through post-processing 

techniques, including raster calculation using operator “Condition” and “raster to polygon” in ArcGIS 

(Esri, 2016). Three priority areas with pixels comprising highest average priority scores are presented 

in Figure 4.4.2. These three priority areas are located in large farmlands, two of which belong to 

mixed system. In terms of geographic distribution, they are clustered at central part of the studied 

watershed, closely along the watercourses. There are totally 26 priority areas retrieved from the 

priority map, covering the area from 0.35ha to 1.89ha. These priority areas are primarily located in 

large crop fields covering an area more than 990 acres. The predominate crop type of these priority 

areas are mixed system and corn system.  
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Figure 4.4.2 the priority map of GWWs by WLC 
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Figure 4.4.2.2 priority area which should have GWWs from WLC 

4.4.3 Fuzzy Logic Analysis 

The propriety map by FLA is presented in Figure 4.4.3 below. Figure 4.4.3 illustrates the distribution 

of priority for GWWs implementation in the Middle Thames River watershed, with priority scores 

ranging from 0 to o.4835. The priority scores in watershed are divided into 5 classes: least priority 

zone, low priority zone, median priority zone, high priority zone and most priority zone. There also 

exist constraint areas where the implementation of GWWs is impossible. The boundaries of these 

priority level division are located at value of 0.000768, 0.01137, 0.2267, 0.3396 and 0.4835. 

Maximum area of priority level is devoted to median priority category accounting for 30.24%, and 

1.27% of the area have the most priority of GWWs implementation. The high and low priority 
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categories of priority cover 30.24% and 17.15% respectively, while the least priority area accounts for 

21.04% of the studied watershed. As Figure 4.4.2 displays, the areas with the most priority are located 

in north central part and northwestern part of the watershed. Although there exist highest priority 

areas along the watercourses, it displays less agreement with drainage pattern compared with the map 

from WLO. The spatial tendency of each priority categories cannot be visualized directly. It is 

noticeable that there exist more areas with lowest priority in the northern part of the watershed, which 

is possibly owing to the fuzzy Gamma overlay. 

Several highest priority areas are retrieved from the priority map of FLA through post-processing 

techniques, including raster calculation using operator “Condition” and “raster to polygon” in ArcGIS 

(Esri, 2016). Three priority areas with pixels comprising highest average priority scores are presented 

in Figure 4.4.3. These three priority areas are located in median and large farmlands, which are 

relatively smaller than that of WLC. The central locations of these three priority areas are 

( 81°3'50.285"W  43°6'2.429"N), (80°52'28.855"W  43°13'36.647"N) and 

(80°48'48.726"W  43°13'32.964"N), which are relatively dispersed.  There are totally 18 highest 

priority areas retrieved from the priority map, covering the area from 0.25ha to 1.49ha. These priority 

areas are primarily located in median to large crop fields covering an area more than 590 acres. The 

predominate crop type of these priority areas is corn system followed by mixed system.  
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Figure 4.4.3 the priority map of GWWs implementation by fuzzy logic analysis 
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Figure 4.4.3.2 priority area which should have GWWs from FLA 

4.4.4 Validation 

The performance of priority maps from WLC and FLA and their priority division were validated 

based on the criteria that greater percentage of GWWs implementation must occur in the higher 

priority zones (Kanungo et al., 2009). The validation statistics of WLC priority map and FLA priority 

map were summarized in Table 4.4.3.1. and Table 4.4.3.2 respectively.  

Table 4.4.3.1 Validation of WLC priority map 
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Priority 
level 

I. 
Percent 
Watershed 
Area per 
level (%) 
km2/ km2 

II. 
Percent 
GWWs 
Field Area 
per level 
(%) 
km2/ km2 

III. 
Percent 
GWWs per 
level (%) 
km2/ km2 

IV. 
GWWs 
Field in 
watershed 
density 
(km2/ km2) 

V. 
GWWs in 
GWWs 
Field 
density 
(km2/ km2) 

VI. 
GWWs in 
watershed 
density 
(km2/ km2) 

Least 
Priority 

13.2% 7.55% 2.6% 0.572 0.344 0.196 

Low 
Priority 

15.3% 10.89% 6.7% 0.711 0.615 0.438 

Median 
Priority 

39.6% 34.06% 30.5% 0.860 0.895 0.770 

High 
Priority 

29.6% 37.70% 46.6% 1.274 0.615 1.574 

Most 
Priority 

2.3% 9.80% 13.6% 4.261 0.344 5.913 

 

It can be observed from Table 4.4.3.1 that 2.3 % of the studied watershed is occupied by most priority 

zone, while 13.2%, 15.3%, 39.6% and 29.6% areas are occupied by least priority, low priority, 

median priority, and high priority zones respectively. The distribution of digitized GWWs in different 

priority zones and crop fields with existing GWWs in different zones are compared respectively. It is 

found that 13.6% of occupied area of existing GWWs is predicted over most priority zones, 

while37.7%, 34.06%, 10.89% and 7.55% of GWWs area are predicted as high priority, median 

priority, low priority and least priority zones respectively. These statistics displays that 47.5% area of 

most priority and high priority zones can predict 60.2% GWWs area, indicating that the distribution 

of GWWs over studied watershed tends to the higher priority zones. In addition, Table 4.4.3.1 

displays that the GWWs density in most priority zone is higher than those of lower priority zones, 

which indicates the relatively good performance of priority map and priority division. Similarly, it 

can be obtained from the Table 4.4.3.1 that the distribution of cropping fields with existing GWWs 

over priority zones is skewed to the higher priority zones. Within each cropping fields with existing 

GWWs, the GWWs density over most priority zone is relatively higher than those of lower priority 

zones. 
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Table 4.4.3.2 Validation of FLA priority map 

Priority 
level 

I. 
Percent 
Watershed 
Area per 
level (%) 
km2/ km2 

II. 
Percent 
GWWs 
Field Area 
per level 
(%) 
km2/ km2 

III. 
Percent 
GWWs per 
level (%) 
km2/ km2 

IV. 
GWWs 
Field in 
watershed 
density 
(km2/ km2) 

V. 
GWWs in 
GWWs 
Field 
density 
(km2/ km2) 

VI. 
GWWs in 
watershed 
density 
(km2/ km2) 

Least 
Priority 

21.04% 5.26% 0.57% 0.0269 0.108 0.0269 

Low 
Priority 

17.15% 6.50% 9.55% 0.557 1.470 0.557 

Median 
Priority 

30.30% 13.94% 35.1% 1.158 2.517 1.158 

High 
Priority 

30.24% 14.52% 39.63% 1.308 2.730 1.308 

Most 
Priority 

1.27% 0.622% 1.728% 1.361 2.778 1.361 

 

As for the priority map from FLA, it can be observed from Table 4.4.3.1 that 1.27 % of the studied 

watershed is occupied by most priority zone, while 21.04%, 17.15%,30.30% and 30.24% areas are 

occupied by least priority, low priority, median priority, and high priority zones respectively. The 

distribution of digitized GWWs in different priority zones and crop fields with existing GWWs in 

different zones are compared respectively. It is found that 1.728% of occupied area of existing 

GWWs is predicted over most priority zones, while 39.63%, 35.1%, 9.55% and 0.57% of GWWs area 

are predicted as high priority, median priority, low priority and least priority zones respectively. 

These statistics displays that 31.51% area of most priority and high priority zones can predict 

41.358% GWWs area, indicating that the distribution of GWWs over studied watershed tends to the 

higher priority zones. In addition, Table 4.4.3.2 displays that the GWWs density in most priority zone 

is higher than those of lower priority zones, which indicates the relatively good performance of 

priority map and priority division. Similarly, it can be obtained from the Table 4.4.3.2 that the 

distribution of cropping fields with existing GWWs over priority zones is skewed to the higher 

priority zones. Within each cropping fields with existing GWWs, the GWWs density over most 

priority zone is relatively higher than those of lower priority zones. 
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4.4.5 Sensitivity Analysis 

Within the range from -20% to +20% of the baseline weight value, a total of 240 simulation runs of 

sensitivity analysis were conducted on 6 selected criteria to analyze the sensitivity of the criteria and 

stability of the WLC model created in the present study. For each selected criteria, the number of cells 

falling into each priority zones during each simulation run are summarized and plotted, as Figure 

4.4.4 illustrates. 

 
Figure 4.4.4 sensitivity analysis plots of selected criteria 
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In Figure 4.4.4, the count of cells in different priority levels is denoted by different colors, with x-axis 

representing the order of simulation runs and y-axis indicating the number of cells. It can be observed 

from plot c and plot (f) that SPI and LS factor belong to most sensitive criteria which can result in 

significant changes in priority category distribution when their weights are increased by more than 

10%. These criteria also have the highest weight coefficients in WLC. Compared to other categories 

of priority level, the level of most priority denoted by red line is relatively stable, with slight 

variations in the number of cells, which remains the overall ranking. The stability of the most priority 

category indicates the relative independency of most of cells over most priority zone in weight 

adjustment of selected criteria. It is noticeable that the alteration of the weights of plan curvature and 

crop type have relatively weak impacts on the number of cells in median priority, low priority, and 

highest priority category, indicating their slight significance in WLC model. The most significant 

variations of priority level ranking happen in high priority category and least priority category, which 

are most sensitive to criteria weight alterations. There is a remarkable decrease of the number of cells 

in high priority category and significant increase in low priority category, with the increment in 

weights of LS and SPI. Overall, it can be observed from Figure 4.4.4 that the degree of sensitivity of 

each criterion is relatively consistent with their weights in WLC. The stability of the most priority 

category reveals the relative stability and reliability of the result from WLC. 

4.5 Summary of Chapter 

This chapter summarizes the results of digitization of GWWs, CTI model, SPI model and MCDA for 

GWWs implementation. 30 existing GWWs in the studied watershed have been identified and 

digitized, working as the ground truth data for threshold finding in topographic model and evaluation 

of outputs from CTI model, SPI model and MCDA. The CTI model with the threshold value of 600 

has identified 29 existing GWWs, with good performance in predicting trajectory and length of 

GWWs. The close observation of the CTI output map can support the potential placement of GWWs 

in specific cropland. The predicted GWWs density distribution map by CTI model displays high 

density of potential GWWs situated in the northern and central part of the study area, which can 

provide general information and suggestion for decision makers of GWWs in watershed scale. The 

SPI threshold model has identified 23 existing GWWs with the threshold of 0.01 standard deviation, 

which has worse performance in occurrence prediction and length prediction of GWWs than that of 

CTI model. The output of SPI model displays several absences of predicted GWWs at the locations of 

existing GWWs and significant discontinuities along the trajectories of digitized GWWs. The 
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geographic distribution in GWWs density map by SPI threshold model is roughly similar to that of 

CTI model, revealing the high-density areas mainly located along the watercourses in the northern 

part of the Middle Thames River watershed. For the output from MCDA, 2 priority maps for GWWs 

implementation by WLC and FLA have been created respectively, both of which display the northern 

part of the watershed are occupied by higher priority zones. The priority levels in watershed are 

divided into 5 classes: least priority zone, low priority zone, median priority zone, high priority zone 

and most priority zone. The performance of two priory maps have been validated, which shows that 

the GWWs density in most priority zone is higher than those of lower priority zones. The sensitivity 

analysis has been conducted on WLC with 6 selected criteria. It shows that the degree of sensitivity of 

each criterion is relatively consistent with their weights in WLC. The stability of the most priority 

category reveals the relative stability and reliability of the result from WLC. 
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 Discussion 

5.1 Threshold Finding  

In this study, 5 critical CTI threshold (12, 30, 62, 75,100) reported as most appropriate thresholds in 

the literature (Daggupati et al., 2013; Parker et al., 2007; Thorne et al., 1986; Thorne and 

Zevenbergen, 1990) were tested in the CTI model, which all display poor performance in visual 

evaluation. The suitable CTI threshold value selected in this study is 600, which is much higher than 

those of previous studies. This difference in threshold values is likely owing to the impacts of soil 

type and lands use on forming ephemeral gully erosion, which are not considered in the CTI model. 

The main soil texture in the study area is silt loam combined with sandy loam, which is relatively 

different from those in existing studies including Clarion loam, Webster clay loam (Gali et al., 2015), 

Loring silt loam and Memphis silt loam (Parker et al., 2007). These soil types are relatively finer and 

better drained than those of studied watershed, which also have higher soil erodibility than those in 

the study area (Van et al., 2000). The land cover in the present study is mainly corn system and 

continuous row crops, while the primary land cover in study sites of previous studies is soybeans and 

mixed crop system. Apart from the soil type and land use, recent research highlighted that 

conservation practices, land management, meteorological conditions even piping system can 

influence the threshold values for different study sites (Piccarreta, & Capolongo, 2006; Parker et al., 

2007). It is pointed out that these factors can influence the likelihood of ephemeral gully erosion and 

be unique to specific study sites. There are few theoretical bases for extracting suitable CTI threshold 

in different site conditions. Parker et al. (2007) provided a starting point for summarizing the 

threshold values selected in different site conditions. Further work on developing the databases of 

critical threshold values of CTI model with different site conditions are expected.  

 

For the SPI model, four threshold values suggested by ACPF (from 2 to 5 standard deviations greater 

than the average SPI values of the study area) have been tested in this study. There is no existing 

GWWs identified by these thresholds. The value of 0.01 standard deviation was selected as suitable 

threshold in this study, which is much smaller than the thresholds suggested. This is possibly due to 

the localized nature of the threshold in SPI model. This model was originally developed by the USDA 

in ACPF to predict candidate locations for GWWs within the fields at the sub-watershed scale of 

10000 to 40000 acres in the U.S. (Porter, 2018). There exist few studies to explore the applicability 



 

 83 

and effectiveness of this model applied in other study sites outside the U.S. The SPI values 

throughout the Middle Thames River watershed have considerable variations which results in 

extremely large standard deviation value. This large value successively results in the relatively large 

value of critical value for identifying GWWs, thus some existing GWWs with moderate SPI value are 

omitted. 

 

5.2 GWWs predicted by CTI and SPI model 

The close observation of predicted GWWs in CTI and SPI model reveals that there exist significant 

discontinuities along the trajectory of digitized GWWs. Similar discontinuities are found among the 

raster cells with negative value in the plan curvature layer. The discontinuity in the output of CTI 

model is probably due to the involvement of plan curvature in the model, which can exclude raster 

cells with reduced flow convergence or flat areas in the GWWs (Parker et al., 2007; Daggupati et al., 

2013). Several lower lawns and roadside ditches are predicted as GWWs, owing to the inclusion of 

plan curvature in the CTI model. There are 2 existing GWWs which were not predicted by CTI 

model. These GWWs are in the downstream area with relatively flat slope, which possibly causes 

they could not be predicted. The lower upslope drainage areas around these GWWs result in low CTI 

values of the pixels in these GWWs location. The flat slope leads to relatively small values in plan 

curvature of the cells in these GWWs location. Therefore, the CTI values of the cells in these areas 

are possibly lower than the critical threshold, and these GWWs can not be identified by CTI model. 

Further work of combining soil properties with CTI model to determine the areas for GWWs 

implementation is expected to improve the performance of identifying GWWs, which can overcome 

the strong dependency of topographic conditions. The GWWs density distribution map of CTI and 

SPI models have similar patterns in high density areas for GWWs, since both methods are 

significantly impacted by the slope gradient and drainage area. Both maps display several high-

density areas in the northern part and central part of the study area, especially along the watercourses 

in the northern part of the Middle Thames River and Noussouri River. Closer observations of these 

high-density areas over the ariel image reveals that there is denser drainage network compared with 

other areas. 
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5.3 Relationship with RUSLE 

The Revised Universal Soil Loss Equation (RUSLE) is considered as a comparatively robust 

empirical method to estimate the soil loss rates from the eroded area. Numerous studies have applied  

the RUSLE toidentify areas prone to soil erosion (e.g., Efthimiou et al., 2016; Gayen et al., 2020). 

However, this model can not be employed to estimate soil loss rate from ephemeral gully erosion and 

assess areas’ susceptibility to ephemeral erosion. The RUSLE was initially developed based on 

immense data from study sites (Bernard et al., 2010). There were no research plots which were big 

enough to experience ephemeral gully erosion, which can only predict rill and sheet erosion. 

Ephemeral gully erosion is mainly evolved by repeated incision process, which is less impacted by 

‘head-cut migration and erosion of gully walls’ (Nachtergaele et al., 2002). Rill erosion is 

characterized as erosion in many small channels spreading along the slope, which has a different way 

of contributing to the drainage pattern from ephemeral gully erosion (Nachtergaele, 2002).  

Furthermore, the distribution of rill erosion is restrained by field boundaries, while ephemeral gully 

erosion usually crosses several fields. This difference indicates that rill erosion and ephemeral gully 

erosion have different impacts on soil transport: rill erosion usually moves soil within a single field, 

whereas ephemeral gully can redistribute soil particles across numerous farmlands in the watershed. 

Therefore, there exist no similar simple methods of estimating soil loss from ephemeral gully erosion 

(Bernard et al., 2010).  

 

Although this simple empirical method can not be applied directly in predict ephemeral gully erosion, 

the factors comprised in RUSLE can play a significant role in studies of ephemeral gully erosion 

especially the presented study. There are five factors in RUSLE: R (rainfall erosivity factor), K (soil 

erodibility factor), LS (slope length and steepness factor), C (cover and management factor) and P 

(erosion control and practice factor) (Rowlands, 2019), which have different impacts on erosion 

process. It was concluded that the majority of existing modelling methods is dependent on “process-

based representations” (Bernar et al., 2010). The processes of ephemeral gully erosion are founded to 

be affected by the same factors influencing the process of rill and sheet erosion, such as drainage 

network, drainage area and concentrated flow (Bernar et al. 2010). Therefore, the RUSLE provides 

the scientific basis for ephemeral gully erosion modelling.  
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5.4 MCDA 

In this study, 12 factors were selected as criteria in MCDA, based on previous studies (Domazetović 

et al., 2019; Mohsen et al.,2017; Majumdar et al., 2021), data accessibility, and hydrological and 

geological knowledge. These criteria have different degrees of influence on the susceptibility of 

ephemeral gully erosion and suitability of GWWs construction. However, it is observed from Figure 

4.4 that several thematic layers have similar geographic distribution throughout the study area, such 

as slope and steam density. There exist relative association among these topographic criteria; for 

example, the areas with steeper slope and more runoffs may have higher stream density, thus 

experiencing more erosion. Although there is no linear relationship established among these criteria, 

the association between these factors on topographic and hydrologic aspects is likely to generate the 

distribution of priority more similar to those of criteria. The influence of other criteria on the output 

map may be comparatively diminished. It remains unreasonable to conclude that the association 

among criteria in MCDA can have a negative influence on MCDA results, since there exist few 

studies to evaluate the influence of association among criteria on the performance of MCDA. 

Moreover, the performance of priority maps in this study have been validated. Additional research on 

the association among criteria in MCDA is suggested. 

 

In the process of WLC, the SMARTER method was employed to assign weights to each criterion.  

The ‘proxy’ weights standing for an approximation of the ‘real’ weights not only reflect the relative 

importance of each criterion with separation, but also keep priority ranking of raster cells separate 

well in the output. Compared with the sets of coefficients for each criterion in previous ephemeral 

gully erosion susceptibility models, including frequency ratio, index of entropy and linear regression 

model (Zabihi et al., 2017; Conforti et al., 2010; Pournader et al., 2018), there is an approximate 

match of proportional relation between the SMARTER weights and coefficients in previous studies. 

The weights for highest ranked criteria in SMARTER method are relatively smaller than those in 

previous studies, which is likely due to the ’smooth’ effect of ‘proxy’ weights on the ‘true’ weights 

with extreme values (Ambrasaite et al., 2011). These effects may decrease the influence of highest 

ranked criteria on the priority scores. However, it is argued that the ‘smooth effect’ does not 

necessarily result in inaccuracy in the output, since the weight coefficients unique in previous studies 

may be unapplicable for this study site, which can not be referred as exact ‘true’ weights (Ambrasaite 

et al., 2011). Overall, the SMARTER method is an easier way for decision makers to determine 
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weights; especially, it may generate more precise weights than that determined by decision makers 

who have more confidence in determining the ranking of the importance of each criterion than 

determining the raw weights (Barron and Barret, 1996). 

 

In this study, the FLA was applied as the second method of MCDA. Compared with WLC, it does not 

demand the relative importance of criteria determined by decision makers directly. The FLA 

aggregates thematic layers using fuzzy operators, which requires least prior knowledge of 

relationships among criteria (Ki & Ray, 2014). This overlay method is particularly convenient when 

substantial thematic layers are aggregated, which also provides flexibility through changing GAMMA 

value when the priority scores of raster cells need to be adjusted. Comparing the priority maps from 

FLA and WLC, there exist some degree of biases in geographic distribution and priority division 

distribution. It can be observed that there exist more cells belonging to highest priority zones in the 

map of WLC, and the map of FLA have more pixels falling into least priority zones. These biases are 

likely due to different techniques of standardization and overlay in WLC and FLA: (1) the additive 

effect of the ranking system in WLC contributes to more high priority scores in the priority map, (2) 

the continuous rating scales in fuzzy membership function probably results in more low scores in the 

priority map of FLA. As for the bias in geographic distribution of two priority maps, some most 

priority areas of FLA map appear in the lower Oxford across the ‘Zorra & East Zorra Tavistock 

Line’, which cannot be observed in the map of WLC. Closer observation reveals that these areas are 

close to Strathallan swamp, which may influence the development of ephemeral gully erosion. In the 

priority map of WLC, these exist more areas of most priority along Nissouri Creek and Middle 

Thames River than those in FLA map, which is likely due to the additive effect of the ranking system 

on the drainage pattern. Overall, the priority maps of WLC and FLA display the similar priority 

distribution of GWWs implementation, with highest priority areas concentrated in the northern part of 

the studies watershed. 

 

5.5 Limitations and Prospects 

The accuracy, preciseness and integrity of this study are expected to be improved if more data are 

available and accessible, including GWWs inventory data and criteria data. For the lack of accurate 

inventory data of existing BMPs, the existing GWWs need to be identified and delineated.  Field 
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reconnaissance surveys of GWWs were not possible owing to the restricted access to agricultural 

fields (private property) during the pandemic. Although the identification of GWW features was 

cross-checked with the technician from UTRCA and relevant experts throughout the digitizing 

process, the precision of GWWs’ starting and ending points location together with their trajectories 

can be improved, if existing BMPs data record more accurate location of specific types of BMPs or 

field reconnaissance surveys can be conducted. Moreover, it is likely to identify more existing 

GWWs as ground truth data in the studied watershed, which can facilitate the validation process.  

 

Apart from the GWWs inventory data, more thematic layers are expected to be applied in the MCDA, 

including lithology layer and meteorology layer. These thematic layers are commonly used as 

conditioning factors in existing studies of ephemeral gully erosion susceptibility, which are limited 

within the studies watershed. The number of meteorological stations within the study area is relatively 

inadequate to display the detailed spatial variation of meteorology through interpolation. Further 

works on retrieving more thematic layer data in good quality and combining into priority map are 

suggested, which can improve the robustness of the priority map.   

 

There also exist limitations in the CTI model. The CTI model only considers the influence of terrain 

attributes in forming the ephemeral gully erosion, which overlooks the impacts of soil type and 

climate condition. In addition, the localized nature of threshold value may restrict the application of 

this method in other study areas where the ground truth data are not accessible. Additional research is 

suggested on strategies for finding thresholds in different site conditions. Besides, the discontinuities 

among the trajectories of predicted GWWs may influence the length prediction performance of 

GWWs. Further work on enhancement of length prediction and trajectory modification can support 

the application of this method in GWWs design. 

 

Finally, the MCDA in this study faces challenge in weight determination. Firstly, it is restricted to 

consult a group of experts about their opinions on weight assignment in the Middle Thames River 

especially during the pandemic. Secondly, there are no similar studies of GWWs, or ephemeral gully 

erosion conducted in the Middle Thames River watershed. It increases the difficulty of criteria 

standardization and weight determination, which requires the combination of prior experience from 
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existing studies and the local characteristics of the study area. Thirdly, the existing GWWs data are 

not able to support statistical modelling (as training data) for retrieving the relative importance of 

each criterion. The suitability and effectiveness of existing GWWs remain unexplored. Moreover, it is 

unscientific to conclude that the areas without GWWs implementation at present belong to the areas 

with no need for GWWs. Therefore, more accurate GWWs data are expected to be applied to develop 

statistical modelling, which can derive the relative importance of each criterion for reference of 

weight assignments.  

 

Further research on GWWs’ effectiveness in different prioritized areas is suggested, including 

sediment reduction rate and runoff reduction rate, which is probably achieved by combining the CTI 

model with complex hydrological models such SWAT and AGNPS. Moreover, it is expected to 

design the potential GWWs (e.g., shape, grass type, and storm duration) at the field scales in 

prioritized areas based on specific meteorology and geographic condition. Besides, additional 

research on extending the application of methods developed in the present study to the provincial and 

national scales is expected. The parameters in the present study including CTI threshold, SPI 

threshold, criteria ranking, weight assignment and fuzzy membership need to be formularized. 

Alternatively, an inventory database of parameters specific to different study sites’ conditions is 

expected to be created. Last but not least, a more integrated sensitivity analysis is needed to be 

conducted on total of 12 criteria. The variations in criteria weighting and priority distribution are 

expected to be visualized more explicitly. 

 

Overall, the predicted GWWs and priority maps in this study can facilitate the targeted placement of 

GWWs within the Middle Thames River watershed. Considering the automatic, repeatable, and rapid 

characteristics of the methods in this study, it has a potential to be used as a preliminary or 

‘screening’ tool incorporated into complex hydrology modeling process such as BMPDSS and 

AGNPS, which are currently unable to locate GWWs automatically.  

 

5.6 Chapter Summery 

In conclusion, the CTI and SPI model are rapid methods to predict potential GWWs in specific fields, 

which requires the threshold finding unique to study areas. The MCDA can generate priority maps for 
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GWWs implementation, which assists decision makers with watershed planning. This Section 

discussed the localized nature of threshold values and discontinuities along the trajectories of 

predicted GWWs in CTI and SPI model. The biases in overlay techniques and priority maps between 

WLC and FLA are explained. Finally, three main limitations of this study are presented, including (1) 

data availability of GWWs inventory data and criteria data; (2) limited application of CTI model; (3) 

challenges in weight assignments in MCDA. The methods in this study are expected to be automated 

and incorporated into complex hydrology models, which can enable conservation efficiency and assist 

landowners and local stakeholders with targeted placement of GWWs. 
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 Conclusions 

Soil erosion remains considered to be a primary challenge in the 21st century threatening fresh water 

and crop land that supports more than 95% of global food production (Borrelli et al., 2020; FAO, 

2020). It is of significance to plan for and prevent soil erosion in its initial stages rather than labor 

intensive repairing later (OMAFRA,2018). The Middle Thames River watershed has suffered from 

severe erosion issues for more than ten years with 21% highly erodible lands throughout the basin, 

where extensive soil conservation measures are highly encouraged (UTRCA, 2017). Grassed 

waterways, as broad and shallow channels to move concentrated surface runoff, are considered as one 

of the most effective measures to prevent ephemeral soil erosion. Therefore, identifying the site-

specific opportunities for GWWs implementation in the Middle Thames River watershed can support 

targeted soil conservation as well as the watershed planning.  

 

This study aims to develop a fast and effective methodology to identify the potential areas for GWWs 

implementation from the field scale to the watershed scale. For the lack of inventory GWWs data, the 

identification and digitization of GWWs have been conducted using ariel images to delineate the 

existing GWWs as reference data for evaluation. The CTI model and SPI model has been developed 

to predict the existing and potential GWWs at the field level. The output maps of CTI and SPI model 

display the location and length of predicted GWWs in each field. The performance of CTI and SPI 

model have been assessed by visual evaluation, occurrence evaluation and length evaluation. To 

better visualize the results of CTI and SPI models, the density distribution maps of predicted GWWs 

throughout the studied watershed have been created based on the outputs from CTI and SPI. After 

developing CTI and SPI models, the MCDA has been conducted to map the priority areas for GWWS 

implementation at the watershed scale. Twelve factors were selected as criteria of MCDA based on 

literature review, data availability and geographic knowledge. Two methods including WLC and FLA 

were employed in MCDA, which produced two outputs maps of priority areas for GWWs 

implementation. The results of these two maps have been validated using existing GWWs.  

 

The results of CTI model and SPI model display the existing and predicted GWWs in each field. The 

CTI model with the threshold of 600 has identified 30 existing GWWs, while the SPI model with the 

threshold of 0.01 standard deviation identified 23 GWWs. Several discontinuities exist in predicted 
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GWWs along the trajectories of digitized GWWs. The lengths of predicted GWWs by CTI model 

have a much better agreement with observation than that of SPI model. The density distribution map 

of CTI and SPI model presented high-density areas of predicted GWWs which are mainly situated in 

the northern and central part of the study area, especially the areas along the upstream of Middle 

Thames River and Nissouri creek. The low-density areas for GWWs implementation are mostly 

located in the southwestern part of the study area.  

 

The results of WLC and FLA displayed the high-priority areas mainly located in the northwestern 

part of the watershed, especially along the upstream of Nissouri creek. It is found that these upstream 

areas have relatively steeper slope gradient than other areas in the studied watershed, with dominant 

siol type of sandy loam and silty loam. There are more areas belonging to lowest priority zone and 

lower areas falling into most priority level in FLA output map, compared with the map of WLC. The 

FLA required less prior knowledge of relationship among criteria, which provide more flexibility and 

convenience to decision makers. The validation of both WLC and FLA output maps display relatively 

good performance, based on the criteria that greater percentage of GWWs implementation must occur 

in the higher priority zones (Kanungo et al., 2009).  

 

The main limitations and challenge of this study have been identified. For the lack of accurate 

inventory data of GWWs and constraints of field survey, the existing GWWs need to be delineated 

manually, which may produce more uncertainty. The second limitation is related to discontinuities 

and threshold finding in CTI and SPI model. The localized nature of threshold value in both CTI and 

SPI may restrict the application of this method in other study areas where the ground truth data are 

not accessible. The significant discontinuities among the trajectories of predicted GWWs can 

influence the length prediction performance of GWWs. The third challenge of this study is weight 

assignment in MCDA. There are no similar studies of GWWs, or ephemeral gully erosion conducted 

in the Middle Thames River watershed. Additionally, it is restricted to consult a group of experts 

about their opinions on weight assignment in the Middle Thames River especially during the 

pandemic.  
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To conclude, this study has identified existing and potential areas for GWWs implementation from 

the field scale to watershed scale. Future work on the automation of the methodology is expected. It 

has a potential to be used as a preliminary or ‘screening’ tool incorporated into complex hydrology 

modeling process such as BMPDSS and AGNPS. The results of this study can facilitate the targeted 

placement of GWWs within the Middle Thames River watershed. 
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Appendix 

The digitization of GWWs and visual evaluation of CTI model and SPI model were conducted 

through geemap in Google Earth Engine (GEE) using Python script and drawing tools, which can 

support interactive mapping in GEE. The scripts in geemap are presented below. 

 

// creating a feature collection from digitized GWW polygons 

var GWWPolygon_1 = ee.FeatureCollection (GWWPolygon) 

// export the feature collection to the drive as shapefile format, specifying the folder name and task 

name 

Export.table.toDrive({ 

collection: GWWPolygon_1, 

description:'GWW_POLY', 

folder:'Digitization', 

fileFormat: 'SHP' 

}) 

// Load shapefiles of SPI (with 1st to 5th standard deviation threshold) , CTI (threshold from 100 to 

1000), watershed boundary and  BMP point and visualize them. 

Map.addLayer(table0,{color:' FF396E '},'SPI_1ST'); 

Map.addLayer(table1,{color:' FF3D00'},'SPI_2ST') 

Map.addLayer(table2,{color:'FF4500'},'SPI_3ST'); 

Map.addLayer(table3,{color:'grey'},'SPI_4ST') 

Map.addLayer(table4,{color:'green'},'SPI_5ST'); 

Map.addLayer(table5,{color:'red’},'CTI_Line100') 

Map.addLayer(table6,{color:'red'},' CTI_Line200); 

Map.addLayer(table7,{color:'red'},' CTI_Line300); 
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Map.addLayer(table8,{color:'red'},' CTI_Line400); 

Map.addLayer(table9,{color:'red'},' CTI_Line500); 

Map.addLayer(table10,{color:'red'},' CTI_Line600); 

Map.addLayer(table11,{color:'red'},' CTI_Line700); 

Map.addLayer(table12,{color:'red'},' CTI_Line800); 

Map.addLayer(table13,{color:'red'},' CTI_Line900); 

Map.addLayer(table14,{color:'red'},' CTI_Line1000); 

Map.addLayer(table15,{color:'red',pointRadius: 5},'BMPoint'); 

 

// visualize the watershed boundary without filling color 

var ecoregions = ee.FeatureCollection(table16) 

var empty = ee.Image().byte(); 

var outlines = empty.paint({ 

  featureCollection: ecoregions, 

  color: 'BIOME_NUM', 

  width: 2.5 

}); 

var palette = ['FF0000', '00FF00', '0000FF']; 

Map.addLayer(outlines, {palette: palette, max: 14}, 'buffered watershed boundary'); 

 


