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Abstract

Unistroke gestures are an attractive input method with an extensive research history,
but one challenge with their usage is that the gestures are not always self-revealing. To
obtain expertise with these gestures, interaction designers often deploy a guided novice
mode — where users can rely on recognizing visual Ul elements to perform a gestural
command. Once a user knows the gesture and associated command, they can perform it
without guidance; thus, relying on recall. The primary aim of my thesis is to obtain a
comprehensive understanding of why, when, and how users transfer from guided modes
or modalities to potentially more efficient, or novel, methods of interaction — through
symbolic-abstract unistroke gestures.

The goal of my work is to not only study user behaviour from novice to more efficient
interaction mechanisms, but also to expand upon the concept of intermodal transfer to
different contexts. We garner this understanding by empirically evaluating three different
use cases of mode and/or modality transitions. Leveraging marking menus, the first piece
investigates whether or not designers should force expertise transfer by penalizing use of
the guided mode, in an effort to encourage use of the recall mode. Second, we investigate
how well users can transfer skills between modalities, particularly when it is impractical
to present guidance in the target or recall modality. Lastly, we assess how well users’ pre-
existing spatial knowledge of an input method (the QWERTY keyboard layout), transfers
to performance in a new modality.

Applying lessons from these three assessments, we segment intermodal transfer into
three possible characterizations — beyond the traditional novice to expert contextualiza-
tion. This is followed by a series of implications and potential areas of future exploration
spawning from our work.
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Chapter 1

Introduction

In human-to-human interaction, gestures are used as expressive, nonverbal tools to convey
an idea or intention. This can come in the form of simple gestures, such as a person
placing their hand in front of them with fingers extended to communicate “stop”, to more
extensive gesture sets such as American Sign Language (ASL) [206], that possess enough
complexity to encompass an entire language. With the expressivity that gestures allow
and the ubiquity of their appearance, gestural interaction has become a natural extension
for humans to communicate with computing systems. It is for this reason that gestural
interaction persists as a popular area of research in human-computer interaction (HCI).

Within HCI, gestural interaction can be broadly defined as a type of non-verbal com-
munication with a system, where the use of bodily motion is used to invoke a command
to a system. This could include the hands, head, feet, a finger etc. Alongside the natural
extension of using gestures to mimic human-human interaction, these techniques allow for
performance improvement in interaction [15, 16, 144, 127, 180, 186, 254, 255], and often
garner the ability to provide display or eye’s free input [165, 143, 257]. Taking this into
consideration, particularly when the gesture is symbolic or abstract, the most common use
case is to serve as a shortcut method or expert mode to perform a command on a computing
system.

When referring to shortcuts, we often describe the separation of command invocation
into two separate modes. In other words, two interaction mechanisms to perform the same
task. The first mode is geared toward the novice or casual user. These provide an eas-
ily discovered method of invoking a command, usually through some form of recognition
within an interface. The second mode, or shortcut is targeted at more practiced, experi-
enced users, who rely on recognition to perform an action associated with a command. As



an example, perhaps the most commonly used instance of two separate modes invoking
the same command is the copy command, depicted in Figure 1.1a. In a typical desktop
environment, the novice user will right-click to open a menu, navigate to the copy com-
mand, then left-click to select it. However, a user who is more familiar with the system
can execute the hot-key Ctrl C' or Command C (1.1b), as a shortcut — hence, performing
the same command, just in a separate mode, geared to the user who has a higher level of
expertise with the command.
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Figure 1.1: Invoking the Copy command in two separate modes.

When gestures are utilized as a shortcut or expert mode, similarly to the copy example,
they may also be separated into two modes. As an illustration, let’s say a shortcut could be
drawing the letter "X’ on an image in a graphic design application indicated the command
Cut. Whereas it’s associated novice mode could be right-clicking and navigating a menu
to select Cut. However, without explicitly reminding or telling the user that a second,
potentially more efficient, mode exists, many will continue to use the initial mode. Which
brings me to the question of, how can we support and better understand transitioning
between modes? A command method of supporting the transition from a novice mode is
to reveal the associated second mode while performing the novice mode. Revisiting the
copy example, you can see, in Figure 1.1a, the interface displays an iconic key combination
of the second mode, that is Command C.

Supporting and understanding this transition between modes has been of particular
interest to the HCI community, with Scarr et al.’s 2011 paper introducing a framework
of expertise development; and in particular intermodal expertise, which incorporates the
transition from an initial mode to a second mode [195]. In the case of shortcuts or expert
modes, their framework suggests that users will reach a ceiling or plateau in performance
in an initial mode, and then to reach a higher degree of performance, they must switch to
a second, expert mode. However, their framework postulates that a switch in modes will



come at a cost, which they refer to as a performance dip — essentially, to perform better,
the user is likely to perform worse with the second mode than their ultimate performance
with the first mode — but over time through practice, will surpass the performance ceiling
of the initial mode [195].
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—>< >< >
Initial Extend_cid 1 Ultimate |
performance learnability performance
L
Time
First mode/modality Second mode/modality

Figure 1.2: Characterization of intermodal expertise, adapted from Scarr et. al’s Dips and
Ceilings [195].

The overarching goal of this thesis is to garner a better understanding of the transition
between two interaction modes. In order to zero in on transition in a particular use case,
I will leverage input techniques in the category of symbolic-abstract unistroke gestures
for gaining insights into mode transfer. Symbolic-abstract gestures were chosen for their
unique property of having no meaning associated with the command without prior interface
experience, thus, we can obtain a greater understanding of the transition from an initial
mode to the gestural input mode.



1.1 Terminology

Prior to introducing my primary research questions, I will present the following terminology
to ensure sufficient grasp of the forthcoming sections.

1. Modality — While I acknowledge the discrepancy and controversy in the use of modality
and mode in the field of human-computer interaction, for this thesis I use the definition
of modality from Nigay et al. [162] as: the coupling of an interaction language L with
a physical device d: < d,L >. Examples of input modalities while using a mobile
device include: < microphone, pseudo natural language >, < inertial measurement
unit, mid-air input >, < capacitive touchscreen, surface/touch input >.

2. Mode — Again, mode is also a complex and controversial term, with is no standard-
ization in HCI. Thus, we extend upon Brewster et al.’s definition: A mode is a state
within a system in which a certain interpretation is placed on information [37]. For the
purpose of this dissertation, I will be focusing a specific type: two or more modes that
can produce the same output via different methodologies.

3. Intermodal Transfer — The concept of switching between modes and/or modalities
that produce the same output, as characterized by Scarr et al. [195].

4. Unistroke Gesture — A unistroke gesture can be defined as a single, continuous, stroke
with a starting point and ending point, provided by some input mechanism (e.g. finger,
hand, pen, or mouse). More technically speaking, these gestures are an ordered series
of points in a 2- or 3-dimensional space.

5. Symbolic Gesture — We leverage Wobbrock et al.’s Tazonomy of Surface Gestures
[240] to define a symbolic gesture as a gesture that visually depicts a symbol. Exam-
ples are tracing a caret (“*”) to perform insert, or drawing an “X” to perform a cut
command.

6. Abstract Gesture — Utilizing Wobbrock et al.’s Tazonomy of Surface Gestures [240],
we define an abstract gesture as a gestures that has no symbolic, physical, or metaphor-
ical connection to their associated command. The mapping is arbitrary.

7. Symbolic-Abstract Gesture — A unique case of gesture input that visually depicts a
symbol, but, without pre-existing knowledge or training with a particular user interface,
the depiction’s meaning has no association with the command. These types of gestures
are inbetween classifications of symbolic and abstract gestures (definitions 5. and 6.).



Examples include marking menu gestures (section 2.2.3) and word gesture keyboards
(section 2.4).

8. Touch Input — We define touch input as input requiring contact of a bodily limb
(usually a finger) with a physical 2 dimensional surface; e.g. a trackpad on a laptop,
a touchscreen mobile phone, or touchscreen tablet. Throughout the thesis, touch in-
put will be used interchangeably with surface input. For the purposes of the current
document, this will not encompass interaction with physical buttons.

9. Mid-Air Input — We define mid-air input as motion interaction in free space that does
not require making physical contact with a surface with their input device. This could
be via the users barehand, arm, limb, etc. or via some form of physical controller that
does not require contact with a separate surface (e.g. the WiiMote). This can also be
referred to as “in-air” input.

10. Head-Mounted Display (HMD) — A head-mounted display, is display device built
into glasses, a headset, or helmet, to be worn on the head for presentation of extended
virtual content. The display can present exclusively virtual content (virtual reality
or VR), overlaying virtual content onto the real world (augmented reality or AR), or
anchoring virtual content within the real world (mixed reality or MR).

1.2 Target Modes

Throughout the document, I will focus on two main “target” modes for knowledge transfer,
Marking Menus [127] and Word Gesture Keyboards [122], both of which rely on unistroke
gestures. These gesture sets were chosen for the unique property of being classified as both
symbolic and abstract gestures.

1.2.1 The Marking Menu

Similarly with other novice to expert mode transfer systems, marking menus rely on two
main modes of selection: a novice mode (“menu mode”), in the form of a radial menu, and
an expert mode (or “mark mode”). In the novice mode, the user presses down their input
device, waits for a pre-determined delay for the menu to appear, then moves their device
in the direction of a desired command; thus, in this mode, the user can rely on recognition
of the menu items for selection. In expert mode, if the user knows the directional unistroke
gesture corresponding to the location of the menu item, they can complete the selection



without waiting for the delay — meaning the user must solely rely on recall (or memory)
of the command. A visual representation of selection is presented in Figure 1.3.

Clipboard
A

selection using
menu mode

selection using
mark mode

Figure 1.3: The two modes with marking menus. Menu mode (right) and mark mode
(left). From Gordon Kurtenbach’s Doctoral dissertation: The Design and Evaluation of
Marking Menus [127].

A unique property of this type of unistroke gesture, is while it is symbolic in nature (i.e.
visually depicting where the menu item is located), without prior experience with a partic-
ular marking menu system, the user would have no idea what the gesture is mapped to. In
other words, the gesture is arbitrarily mapped, or abstract. This contrasts other symbolic
gestures, like drawing an ‘X’ to indicate a Cut command, as ‘X’ is a common iconic rep-
resentation for some form of deletion. For this reason, we classify marking menu gestures
as symbolic-abstract unistroke gestures. Since the mapping is arbitrary, this creates dis-
tinctive advantages over other unistroke gestures for modelling user behavior, as users can
truly be taken from a true novice state (with no pre-existing knowledge of how commands
may be mapped to gestures), through extended learning, to ultimate performance.



1.2.2 The Word Gesture Keyboard

Most soft-keyboards on mobile devices now employ two primary modes for text entry: the
standard tap-based text entry, and word gesture text entry — both of which appear on a
QWERTY style keyboard for the English language. On a word gesture keyboard, instead
of tapping individual keys the user can press down their input device (usually a finger),
and drag it to each individual letter on the keyboard, followed by releasing the input device
once the word or phrase is complete [251]; forming a unistroke gesture representation of
the word. In the same design space as marking menus, the premise, is that word-gesture
keyboarding will shift from this primarily visual-guidance driven letter-to-letter tracing or
typing, to recall-based gesturing [251]. We also categorize the word gesture keyboard as
symbolic-abstract, as the produced trace or path forms a representation of the word on a
QWERTY keyboard, without pre-existing experience with or a visual representation with
the QWERTY layout, the gesture is abstract in nature (i.e. deciphering a meaning from
the shape is nearly impossible, see Figure 1.4.

quick quick

Figure 1.4: A visual depiction of the word gesture keyboard forming the word quick. The
tracing of the word anchored on each individual letters, showing the symbolic nature of
the gesture (left). The abstract visual form produced without the QWERTY keyboard

context (right).

These two gesture sets provide a unique opportunity as a use case for studying mode
transition in the case of unistroke gestures, as they require prior experience with an interface
to allow transferring expertise to the gesture mode of interaction. They can both be
classified as symbolic-abstract gestures, for reasons described prior, and are part of a
larger set of interaction techniques called Rehearsal Based Interfaces, which attempt to
reduce the performance dip when switching between modes (see Figure 1.2) by rehearsing
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the interaction in a recognition-based mode prior to transferring that expertise to a recall-
based mode. I will discuss the concept of rehearsal based interfaces in further depth in
Section 2.2.

1.3 Research Questions

Chapter 3:

Do we need to force users to transition from a novice
mode to a secondary mode?

Users are often encouraged to transition to a recall
focused mode via penalty for needing guidance.

We conduct a 3 experiment investigation of delay
penalty in marking menus and find little benefit
switching to a recall mode of interaction.

Chapter 4: Chapter 5:

Under what circumstances do users need to transition

Can we leverage existing expertise rather than a
from a novice mode to a secondary mode?

penalized training session to transition to a secondary
mode in a new modality?
When guidance is unavailable or impractical.

We conduct a controlled laboratory study evaluating
the efficacy of training marking menu gestures in an
alternative modality (touch) to learn a recall mode in
a second modality (mid-air).

Considering users prior expertise with soft QWERTY
keyboards, we study whether this can be transferred
to perform word-gesture and tap-based text entry for
head-mounted displays in two novel modalities.

Y

Chapter 6:

Characterizing Mode and Modality Transfer

Using existing frameworks of intermodal transfer, combined with findings from our
individual studies on use cases that can require expertise transfer, we present three
extension characterizations -- followed by a discussion of their implications.

Figure 1.5: Hlustration of our research path: questions, methodology, and main findings.




As stated prior, the primary aim of my thesis is to obtain a comprehensive understand-
ing of transition between modes in the use case of symbolic-abstract unistroke gestures. In
contrast to much of the prior literature, which has largely focused on the transition from
an initial novice mode, to a more efficient mode (see Figure 1.2), the goal of my work is to
not only study user behaviour in novice to more efficient modes, but also to expand upon
intermodal transfer to different contexts. For instance, while one mode may be logical in
a particular scenario — for instance mouse input to a desktop computer — this mode may
not be realistic in another scenario, for example, a user interacting with their smartglasses
while sitting on a train. We aim to broaden the scope of mode transfer from the traditional
concept of a novice mode to a faster, more efficient mode, to observing transfer from a fa-
miliar mode to modes that may compromise speed and performance, but propose benefits
in emerging ubiquitous scenarios.

Thus, throughout the document I will be answering the following research questions,
further depicted in Figure 1.5.

RQ 1. Should interaction designers force users to transition from
a novice mode to a secondary mode?

Much of the prior literature apply an artificial penalty to the novice user, to encourage
or force the user to switch to a potentially more efficient mode — usually by hampering
temporal performance with a delay [15, 16, 71, 90, 127, 132, 150].

Leveraging the use case of marking menus, we address the larger research question of
should interaction designers force users to transition from a novice mode to a new mode?
via the following:

e Do users prefer being penalized or not being penalized?

e In the general use case, do users perform better when relying on recognition rather than
recall? In other words, do users perform better when remaining in a single mode or with
two mode options?

e (Can users reach optimal performance without switching modes?

e Do expert users perform better when the menu is not visible? How much better is
performance?

e Do users prefer having having a single mode or two modes?

e Do users find the recognition or menu mode visually disrupting to their task at hand?



RQ 2. Under what circumstances do users need to transition from
a novice mode to a secondary mode?

Again, within the use case of marking menus, we question in what circumstances should
users be required to transfer modes?. In terms of marking menus, the two modes are a
visual, or recognition, mode and a recall-based mode. Thus, we imagine modalities where
presenting a visual mode is challenging, such as mid-air interaction, would require the
transition to a memory or recall-based mode in the new modality.

e Can we leverage a modality where presenting a displayed menu mode is easy, to transfer
expertise to a recall mode in an modality where presenting a display is difficult?

e Can using a familiar modality for novice mode ease transition to a new modality in a
secondary mode?

e How does mode transfer compare across modalities and within a single modality? Is
there a cost to learning across modalities?

RQ 3. Can we leverage existing interface expertise to assist in
transition to a secondary mode in a new modality?

As a more complex symbolic-abstract gesture, we wonder whether we can take advantage
of user’s pre-existing expertise with the QWERTY keyboard layout and transfer it to new
modalities? In particular, can we transfer this to a new, emerging, modality: interaction
with a head-mounted display.

e Can users transfer expertise with the QWERTY keyboard layout to perform tap text
entry in a new modality?

e (Can users perform word gesture text entry in a new modality using their existing exper-

tise with QWERTY?

e How does a more familiar, novice mode (tap text entry) compare to a secondary mode
(word gesture text entry) in a new modality?

e How far can we push this transfer? After rehearsal in the new modality, can users
perform these interactions in a similar, more physically constrained environment?
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1.4 Contributions

In this dissertation, we make the following research contributions:

1.4.1 Investigating Delay in Marking Menus

Penalizing the novice user via delay is a core design component of marking menus, to en-
courage the user to switch to a secondary mode (mark mode) and, arguably, to prevent
visual disruption of displaying the novice mode (menu mode). Through this particular use
case, this work aims to understand RQ 1, that is: do we need to force users to transi-
tion from menu mode to mark mode? In other words, is temporal penalization actually
necessary to reach optimal performance with the interaction technique? We investigate
the initial assumptions from the development of marking menus, by contrasting the origi-
nal marking menu design (modes separated by delay) with immediately-displayed marking
menus (uni-modal, without delay) in three within-subjects experiments.

e Experiment 1: Using a prompt-react selection task with varying menu configurations
across the two delay conditions, we found an overall performance improvement of both
time and error rates for an immediately displayed, uni-modal marking menu.

e Experiment 2: To simulate expert performance, we used a highly constrained setting:
significant training with only two menu items to learn in a two-level marking menu in
a selection task. We found a slight time improvement for the delay separated modes by
260ms.

e Experiment 3: In visually crowded, drag-and-drop style, graphic editing interface, we
found delay separated marking menus caused significantly more “loss of focus” on the
task than immediately displayed marking menus. Additionally, we failed to reveal any
evidence validating the initial claim — that a non-delayed marking menu would be more
visually disruptive.

1.4.2 Cross-Modal Transfer to Mid-Air in Marking Menus

While mid-air gestures are an attractive modality with an extensive research history, one
challenge with their usage is that the gestures are not self-revealing. Scaffolding techniques
to teach these gestures are difficult to implement since the input device, e.g. a hand, wand
or arm, cannot present the gestures to the user. This project aims to present a potential
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use case for addressing RQ2: under what circumstances do users need to transition from a
novice mode to a secondary mode? Since in marking menus, the novice mode has a visual
display, but the secondary (mark mode) does not, mid-air gestures appear an ideal use case
that could benefit from transitioning to the secondary mode. In contrast to in-air input,
when interacting via touch gestures, feedforward mechanisms (such as Marking Menus or
OctoPocus) have been shown to effectively support user awareness and transition to a
secondary, recall-based, interaction mode.

Through a controlled, between-subjects experiment, we explore whether touch marking
menu input can be leveraged to teach users to perform mid-air marking menu gestures via
a smartphone controller. We show that marking menu touch gestures transfers directly to
knowledge of mid-air gestures, allowing performance of these gestures without intervention,
with only a slight initial performance dip. We argue that cross-modality learning can be
an effective mechanism for introducing users to mid-air gestural input.

1.4.3 QWERTY Text Entry in a New Modality for HMDs

In head-mounted display (HMD) interaction, text entry is frequently supported via some
form of virtual touch, controller, or ray casting keyboard. While these options effectively
support text entry, they often incur costs of additional external hardware, awkward move-
ments, and hand encumbrance. The goal of this work is to answer RQ 3: can we leverage
existing interface expertise, i.e. the QWERTY keyboard layout, to assist in transition to
a secondary mode (word gesture text entry) in a new modality? This work expands upon
the prior cross-modality work to another use case — head-mounted displays — where pro-
viding input is challenging. Rather than training in-lab, we question whether the user’s
existing soft-typing expertise can transfer to text entry performance with a mobile device
mounted on the user’s thigh.

In a within-subjects study, we compare the two interaction modes: tap text entry and
word gesture text entry in the new on-thigh modality for HMDs. We found that, while
words per minute did not significantly differ, tap based text entry appears to plateau
(or reach a ceiling) in performance, where as word gesture text entry shows potential for
further improvement. However, each mode has their place, as word gesture typing required
significantly more corrections that tap typing. Lastly, after rehearsal atop the thigh, users
were able to transfer that expertise to perform each mode with the mobile device placed in
their front pocket (a more constrained environment), with a very small cost in performance.
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1.4.4 Characterizing Mode and Modality Transfer

Taking into consideration lessons from answering our three primary research questions,
outlined in Section 1.3, we use this section to address potential adaptations to the char-
acterization of intermodal expertise from Scarr et al.’s Dips and Ceilings. In particular,
the extension of intermodal or cross-modal expertise to modalities that may not reveal
a performance increase, but possess external benefits based on context. Leveraging prior
work in conjunction with our findings, we then characterize performance dip as a func-
tion of differences in mode and/or modality, for a increased understanding of transitioning
between input methods.
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1.5 Dissertation Outline

The remainder of the thesis is structured as follows:

e Chapter 2: Literature Review. We review relevant prior background literature,
particularly in the space of gestural interaction styles, mode/modality transitions, and
techniques that can be leveraged to introduce users to interactive techniques — particu-
larly when they are categorized as abstract or non-self revealing.

e Chapter 3: Understanding the Necessity of Mode Transfer in Marking Menus.
We conduct an in depth, 3 experiment, investigation of whether users should be forced
into transitioning to a recall-based mode, as opposed to relying on recognition in menu
mode. This is followed by a discussion of the implications of these findings for other
rehearsal based techniques.

e Chapter 4: Presenting a Use Case of When Mode Transfer is Beneficial.
Leveraging the natural ability of touch screens to provide direct manipulation feed-
forward mechanisms for gesture guidance, we present the concept of utilizing surface
experience to provide instruction for mid-air gesture performance. In the case of marking
menus, we contrast learning mid-air gestures a cross-modal approach (touch to mid-air)
versus a consistent modality approach (mid-air to mid-air).

e Chapter 5: Leveraging Prior Expertise for Mode and Modality Transfer. This
section describes an example of using prior experience for mode/modality transfer, where
user’s pre-existing knowledge and experience with soft QWERTY keyboard layouts is
utilized for transfer to a new modality: on-thigh text entry for HMDs, in two separate
modes: via tap typing and word gesture typing.

e Chapter 6: Lessons in Mode and Modality Transfer. We adapt the concept of
intermodal experience development, characterized by Scarr et al., to include findings of
the three former studies.

e Chapter 7: Conclusions and Future Work. Finally, we summarize our findings and
provide recommendations for furthering understanding of mode and modality transfer
in gestural input.
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Chapter 2

Literature Review

As discussed in Chapter 1, this thesis will focus on understanding mode and modality
transfers in unistroke gesture interactions — which can be defined as a single, continuous,
stroke with a starting point and ending point, provided by some input mechanism. The goal
of this chapter is to provide related literature of particular gesture modes and modalities,
if and when it’s important to transfer to these modes and/or modalities, and how existing
knowledge can be leveraged to ease this transition.

2.1 Gesture Classification

By our the most widespread ubiquitous technologies, the most commonly used gestures
are performed on a touch screen surface — usually captured via some form of touch enabled
motion sensing technology, such as capacitive sensing, pen, or mouse input. However, re-
cent advances in sensing technologies have allowed capture of gestures performed in “free
space”, that is, not constrained by a surface and captured via worn or environmental sen-
sors. These free space gestures are an attractive mode of interaction as they are congruent
with natural human dialogue, for instance, pointing an index finger at an object to in order
to present contextual information.

For the purpose of the current project, to delve deeper into a particular topic within
the broader space of gestural interaction, we have chosen to focus on unistroke gesture
interactions, due to their wide usage and ease of recognition. Unistroke gestures can be
defined as a single, continuous, stroke with a starting point and ending point, provided
by some input mechanism (e.g. finger, hand, pen, or mouse). More technically speaking,
these gestures are an ordered series of points in a 2- or 3-dimensional space.
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Unistroke gestures can range in complexity. For instance, a simple unistroke gesture,
and likely the most common unistroke gesture, is a single directional stroke or swipe from
either left-to-right or right-to-left — commonly applied to switch between contexts or pages
within an interface. This simple style of gestures (e.g. 2.1a) is the foundation of one of the
most researched gesture systems within the HCI community — Kurtenbach and Buxton’s
Marking Menus [125, 127] — where single stroke directional gestures are mapped to items
within a menu selection system. At a higher degree of complexity, the larger space of
unistroke gestures includes ideographic gestures (e.g. 2.1b), such as those presented in the
$1 Gesture Recognizer work by Wobbrock et al. [241] or alphanumeric gestures, such as
Graffiti [149, 235], a shorthand handwriting writing recognition tool used in PDAs. At the
highest degree of unistroke complexity discussed within this thesis, we look at word-gesture
keyboards [122, 251], where the unistroke gesture begins at a location of a key to start a
word or phrase, followed by moving to each subsequent key, and finishing at the final key
of the sequence — producing an arbitrary shape that is decoded as a word or phrase.

Though the shapes and complexities in these unistroke gestures greatly differ, they
retain the property of being completed in a single stroke. Retaining this property allows
performance of these gestures in a number of different interaction methods — in mouse
or pen based input, touch input, mid-air free space input — for a variety of ubiquitous
technologies — desktop, mobile, IoT devices, as well as in augmented, mixed, or virtual
realities.

2.1.1 Gesture Taxonomy

Outside of gesture complexity, in 2009, Wobbrock et al. conducted an elicitation study
for surface gesture input. Leveraging the 1080 user-defined gestures, the authors manually
classified each, and propose a taxonomy for categorizing surface gestures beyond their
experiment [240]. The suggested taxonomy lies on four dimensions: form, nature, binding,
and flow; with each containing multiple categories, summarized in 2.1 — with a taxonomy
breakdown in 2.2.

The form dimension is applied to each hand of interaction (so if only one hand, applied
to the single hand, and if two, applied to each individually). One-point path is a derivative
case of static pose and path, and one-point touch is a derivative of static pose. The authors
distinguished such cases due to similarities in mouse-based interaction. The remaining
categories are self-explanatory:.

The nature dimension has four categories, symbolic, physical, metaphorical, and ab-
stract. Symbolic gestures are visual depictions, e.g. tracing a ‘?’ to indicate help. Physical
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Figure 2.1: Unistroke gestures ranging in complexity, from simple (a) to complex (c)

gestures are gestures that would have the same effect when interacting with physical ob-
jects placed atop of or embedded in a surface. Metaphorical gestures indicate a metaphor
of some sort — e.g. using two fingers to “walk” across the screen. Finally, abstract ges-
tures have no symbolic, physical, or metaphorical connection to their referents — thus an
arbitrary mapping.

The binding dimension also consists of four categories, and focuses on the location of the
performed gesture. Object-centric gestures only require information about the object they
effect or create, e.g. pinching to shrink an object. World-dependent gesture are defined
with respect to world space, e.g. dragging a window off screen. Whereas world-independent
gestures require no information about the world, for example, a non-contextual (or general)
marking menu gesture. Lastly, mixed dependencies have a combination of two or more of
the aforementioned styles. An example of this is two handed gestures, where one hand acts
on an object and the other, elsewhere.

Finally, the flow dimension is either discrete or continuous. Discrete means a gesture
is performed, delimited, recognized, and responded to as an event — e.g. a tick mark to
indicate something is correct. Whereas continuous means ongoing recognition throughout
the gesture, for instance pinch-to-zoom.
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Form static pose Hand pose is held in one location.
dynamic pose Hand pose changes in one location.
static pose and path Hand pose is held as hand moves.
dynamic pose and path | Hand pose changes as hand moves.
one-point touch Static pose with one finger.
one-point path Static pose & path with one finger.

Nature | symbolic Gesture visually depicts a symbol.
physical Gesture acts physically on objects.
metaphorical Gesture indicates a metaphor.
abstract Gesture-referent mapping is arbitrary.

Binding | object-centric Location defined w.r.t. object features.
world-dependent Location defined w.r.t. world features.
world-independent Location can ignore world features.
mized dependencies World-independent plus another.

Flow discrete Response occurs after the user acts.
continuous Response occurs while the user acts.

Table 2.1: Wobbrock et al.’s Taxonomy of Surface Gestures [240].

2.2 Mode and Modality Transitions

Oftentimes, gestures are mapped to commands, with little meaning associated between the
visual gesture and the intended command. For example, each of the gestures in Figure
2.1 requires some preexisting knowledge in order to understand what, exactly, it does.
Thus, since we our focused on symbolic-abstract unistroke gestures, each will requires
some form of learning mechanism to understand the mapping of the gesture in space. As
mentioned in the introduction, this is often accomplished by some form of mode transition
to from a novice mode, that relies on guidance to understand the form and dynamics of the
gesture, to an “expert” or secondary mode, that is, being able to perform these gestures
autonomically, without intervention.

2.2.1 Motor Learning

Going from a novice to expert mode of interaction, particularly in gestural input, can be
viewed as a subcategory of motor learning. Fitts and Posner’s theorize that motor learning
or skill acquisition follows a three stage model [67]. The theory states that learning begins
with a cognitive stage that requires substantial attention to understand the movement,
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Figure 2.2: A reproduction from Wobbrock et al. [240], indicating percentage of gestures
in each taxonomy category. From top to bottom, the categories are listed in the same
order as they appear in Table 2. The form dimension is separated by hands for all 2-hand
gestures.

often accompanied by over-corrections and a poor quality “stiff” result. The next stage
is associative, which requires less attentional resources, where focus is on refinement of
movement for increased efficiency. Lastly is the autonomous stage, where the movement
can be completed with little attention or cognitive guidance — thus, focus is not on the
skill and can be devoted to other tasks or skills [67].

Motor learning is generally measured by analyzing performance in three distinct ways:
acquisition, retention, and transfer of skills [200]. Most relevant to the current work is the
concept of transfer, which is performing a task similar in movement, yet different from the
original learned or practiced task [159] — in other words, the ability to take a skill that
was learned in one context or environment, and perform it in a different, but similar, way:.
This is of particular interest for going from novice to expert modes or modalities in user
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interfaces, as user’s are often taught using a novice mode, and they then have to transfer
that skill to the associated expert mode.

2.2.2 Novice to Expert Transfer

In the HCI literature, Cockburn et al. review four domains of research that help users make
the transition from novice to expert modes [50]. Two of which are particularly relevant
to the present research space: intramodal improvement, which concerns the rapidity and
magnitude of performance improvement with one particular interactive method for one
particular function, and intermodal transition, which is concerned with ways to assist
users in switching to a faster method of accessing a particular action. Revisiting Figure
1.2, the first mode/modality indicates intramodal expertise, and the entirety of the graph
depicts the overall intermodal transition.

Intramodal improvement is characterized as a power law curve, subdivided into three
segments, initial performance, extended learnability, and ultimate performance [195, 50].
They posit this stage to be the initial stages of learning, where users rely heavily on visual
search — thus, designers aim to ease comprehension via minimizing the number of controls
display. However, this often results in suppression of visual guidance for more efficient
methods of interaction, which inadvertently reduces their discoverability [50]; which, in
turn, can introduce a trade-off of whether to cater the interface to improve initial perfor-
mance, or to raise ceiling performance. The next stage is extended learning, focused largely
on increasing recall or memorization of a particular technique — reducing the user’s need
to rely on recognition factors from the initial performance stage [50]. Prior literature has
shown that an increase in effort in this stage improves memory, but comes at a cost of
frustration [51]. Lastly, is ultimate performance, which, in the intramodal curve, is the
asymptote or the performance “ceiling” [50, 195].

Scarr et al.’s characterization of intermodal transition combines two power law curves,
and involves the switch between a first mode or modality, to a more efficient, “expert”
mode or modality, that would, in theory, allow for a higher performance ceiling [195].
However, their theory postulates that the initial switch to a new input method will result
in a dip in performance [50, 195]. Alongside this, in order to adopt a new modality, users
must first become aware that a new modality exists and second, not only optimize for
immediate needs or fall fallible to ‘the paradox of the active user’, where “users are likely
to stick with procedures they know, regardless of efficacy” [42]. Many interfaces that aim
to solve these issues have been forceful in awareness mechanisms often leveraging some
form of a delay or effort inducing mechanism to deter use of any novice mode or modality
[15, 16, 81, 90, 121, 127, 124, 132].
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2.2.3 Marking Menus

One of the most infamous interfaces that was developed to attempt to bridge the perfor-
mance and awareness gap between two modes or modalities is Marking Menus [127, 124,
125], one of our chosen unistroke gesture techniques to study Marking Menus. Marking
menus [123] are an extension of traditional pie and radial menus, with a design relying on
marks, that are directional unistroke gestures, rather than target selections. Command
selection can be performed in two main modes: the menu mode triggered with a predeter-
mined delay (1/3 of a second in the original implementation), and the mark mode where
the user simply draws the mark corresponding to the command without waiting.

Because actions are similar in both modes, this design is intended facilitates a smooth
transition from menu to mark mode by simply repeating command selections. Kurtenbach
describes this as the principle of rehearsal: Guidance should be a physical rehearsal of the
way an expert would issue the command [127]. Essentially, in rehearsal-based interactions,
physical actions made by a novice in articulating a command are a rehearsal of the actions
an expert would make invoking the same command, with the goal of leading to a more
efficient transition from novice to expert interaction techniques [127].

In the case of marking menus, users begin to learn through a graphical representation
of the menu, displayed as they perform the directional strokes. The marks used to activate
commands are not self-revealing [127]; therefore learning a mark involves memorizing it’s
mapping to a command, like an accelerator key but lacking a mnemonic device. Once
users memorize the spatial content of the menu, they no longer need the visible menu, and
interact based on associating the directional strokes to the desired selection. Thus, the
user performs an identical interaction, whether the GUI is visible or not.

Because of this, Cockburn et al. note that marking menus “lie on the cusp” between
intramodal and intermodal transitions — but ultimately classify the input technique as
intramodal, as the initial mechanisms for interaction are identical for both novice and
expert modalities [50]. However, we question, if is it possible to be intramodal with two
interaction modes present? If it is intramodal, then why are the two modes even separated?

2.2.4 Using Delay to Force Mode and Modality Transfer

Marking menus have inspired a large body of related research. Considering mostly expert
users at first, research has explored ways to improve the breadth and depth — allowing more
items — by altering marking menus’ traditional radial shape. Examples include curved lines
[16] and inflection-free simple marks [254]. Each of these techniques, without question,
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employed the press-and-wait delay technique to support novice use, i.e. the menu mode.
Specifically, in order to switch from mark mode — the default where actions are preformed
autonomically, from memory, to menu mode where user guidance is available, the novice
users would need to pause for a timeout; thus, artificially introducing a penalty to the
novice user, to foster usage of the allegedly more efficient mode. Zhao and Balakrishnan
[254] noted that most of the possible advantages of their technique occurred when users
made selections without waiting for the menu to be displayed. Research has also explored
novice user experience through Wave menus [15] and Octopocus [24]. While both of these
studies aim to improve novice use, they also still utilize a press-and-wait delay technique
prior to triggering their respective menu modes of interaction.

However, is press-and-wait necessary to foster skilled interaction? Bailly et al.’s [15]
justification for improving novice interaction provides strong motivation and rationale for
an immediately-displayed marking menu. They note that menu mode is unavoidable —
before a user can use mark mode they must interact with the menu mode, which may deter
the user entirely if it is too slow or cumbersome. Further, menu mode never disappears:
for example, 90% of commands in Microsoft Office are rarely used [140] as cited in [15],
thus even expert users will still require menu mode. Lastly, the seamless transition between
menu and mark modes [127] necessitates their co-existence.

The principle of rehearsal used in marking menus, i.e. having two accompanying modes
of interaction and a delay before menu presentation, have influenced the design of alterna-
tive command selection techniques. An example of this is FastTap [73, 89, 90], a command
selection technique that displays commands in a spatially-stable grid-based overlay inter-
face. Users can display the interface by dwelling on a button located in the bottom left
corner of a screen and select a command by tapping an element of the grid without releas-
ing the first finger — thus, making selections via a chording gesture. Once the command
location is known, users can also select commands with a single two-finger tap on the in-
terface. Similarly, MarkPad [71] and InOutPad [29] are command selection techniques for
trackpads that implement the principle of rehearsal, utilizing a delay prior to displaying
the menu interface.

Though the above papers leverage delay, none of these papers have investigated — or
even questioned — the relative costs of benefits of delay to penalize novice use. The closest
work of which we are aware is recent research by Lewis [132, 133], which examines the effect
different values of delay, between 200 and 2000ms, have on the use of mark mode in marking
menus. Using a single level, 8-item marking menu, Lewis shows that longer delays increase
mark mode use, but at the cost of a significant increase in error rate; they observe more
than a six-fold error rate increase for the longest versus shortest delays initially, and more
than double the error rate for the longest versus shortest delays after users reach practiced
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use. Furthermore, in analysis of selection time, Lewis only observes faster selection time
for delays of 2000ms (all other delays exhibit no statistical differences).

2.3 When is Learning Necessary?

If, in the case of marking menus, the two separated modes are not required, thus always
having a visible menu available to guide the user’s interaction — is there a purpose to
learning the gesture? The question then arises, of, what circumstances does it become
vital to actually learn the gesture? The Marking Menu technique was originally designed
for pen- and mouse-based computing, and it has since been extended to touch input [36,
68, 116, 144, 212, 255|, mid-air bare-hand input [19, 131, 138], mid-air controller input
[164, 165], and others inputs such as gaze [5]. In their seminal work on the Charade system,
Baudel and Beaudoin-Lafon [25] note that one primary problem with mid-air gestures is
that gestures are not self-revealing - the user must know the set of gestures that the system
can recognize and their associated functionality; thus, a question related to gesture learning
is whether mid-air interaction can benefit from the principle of rehearsal.

2.3.1 Mid-Air Interaction

Early mid-air gesture systems follow a common pattern: pointing in a direction followed by
gesturing to indicate an action [31, 237, 41]. Wilson and Shafer’s XWand [237] was designed
for an intelligent environment, where users would point at a location in a room (recognized
using stereo-vision) and then complete a gesture, for example pointing at a television
set followed by rotating the wand to indicate volume up or down. The VisionWand [41]
used classical computer vision colour detection and stereo-vision to obtain orientation
information with an extensive gesture set allowing rotations, pull, push, tap, tilt and
selection via a pie menu. All of these follow the classic multimodal paradigm introduced
by Bolt [31] of pointing followed by action invocation.

Pointing interactions have flourished in gaming systems with devices like Nintendo’s
Wiimote [239], a ray-casting device for interaction mid-air. Input is captured by in-device
sensors including an accelerometer, gyroscope, and IR emitter. Despite the Wiimote being
a dedicated ray-casting device, Pietroszek et al. showed a smartphone had similar perfor-
mance [170]. Vatavu et al. compared user-defined gestures through free-form (i.e. hand
movement) and via a handheld device. Users deemed handheld gestures less difficult to
execute, which the researchers hypothesize is due to their familiarity with such devices
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[216]. Jakobsen et al. compared touch to mid-air techniques for large display interaction.
While their analysis found touch superior, their results suggest situations where mid-air
techniques would be optimal (e.g. walking to type on a keyboard) [106].

2.3.2 Learning Display-less Gestures

While touch gestures naturally possess a surface able to scaffold and guide users on interac-
tion, in-air motion gestures do not — lacking an explicit mechanism to self-reveal interaction
capabilities [25]. Most often, systems designed to teach mid-air interaction techniques re-
quire the use of additional hardware to reveal gestures to the user, usually in a visual
[1, 9, 10, 47, 58, 59, 69, 70, 110, 197, 203, 177, 222], auditory [156, 177], or haptic form
[177, 197]. Mirrored representations of the user are one common form of user training
[1, 9, 10, 58, 59, 110, 184]. For example, Anderson et al. taught physical movement se-
quences to users through an interactive large scale augmented reality mirror — and found it
improved learning and short-term retention in comparison with a standard video demon-
stration [10]. Geared to walk up and use displays, both Rovelo et al. [184] and Ackad et al.
[1], also presented mirrored representation and dynamic guidance to introduce interactive
gestures for systems.

In terms of ubiquitous display interaction, Vatavu actually suggested not requiring
users to learn at all, but, rather, to use a preferred, familiar gesture set that is individual
to each user, depicted in Figure 2.3. For example, a user who often uses a Kinect gaming
system may use mid-air gestures that they have used previously, where as a user who
only uses touch screen manipulations such as pan, tap, or pinch could use those gestures
[214]. While not targeting mid-air input, but in the same realm, Scarr et al. studied the
implications of consistent 2D representations in user interfaces, and found that consistency
allowed users to develop spatial memory of the interface, increasing performance [194],
which could be an asset when exploring in-air interfaces. Other works suggest eliciting
user defined gestures [187, 241], to create more intuitive interactions as opposed to an
arbitrary mapping. While not mid-air input, Gustafson et al. introduce the concept of
transfer learning for an imaginary phone interface on a display-less surface. The idea, is
that users transfer the spatial knowledge of a familiar interface that possesses a display, to
a novel touch interface (such as their own palm), that does not have any visual guidance
for where or how to provide input [87] — depicted in Figure 2.4

The above works give rise to rationale for utilizing a mobile device for mid-air input
training. Mid-air gestural interaction is effective in interactive environments because it
supports target selection and action in a single, unified input modality. While personal
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Figure 2.3: Reproduced from Vatavu et al.’s Nomadic Displays [214]

devices — via motion gestures [164, 188] — are an effective means of capturing and mapping
gestural commands, as Oakley et al. note [165], there are challenges with guiding users
mid-air inputs using a mobile device’s screen because, during performance, the screen may
not be visible. For us, the attendant question is then: Can we leverage touch-based training
to teach users mid-air input?

2.4 Knowledge Transfer: The Word Gesture Keyboard

While learning across the modalities of touch to in-air gestures is a novel concept, the
idea of transferring information between contexts is not new — in fact, prior in this area
have been shown to be effective in transferring spatial knowledge to learn complex gestural
input [122, 143, 250, 251, 257]. One of the most pervasive implementations of transferring
expertise between modes via rehearsal is word gesture keyboards — where pre-existing
knowledge of a keyboard layout allows users to perform unistroke gestural input between
characters (or keys) to form a word or phrase, without intervention. For example, Figure
2.1c, is a gesture spelling out “challenging”. Recent literature has shown that users are
capable of performing these gestures without a visual of the keyboard to guide vertex
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Figure 2.4: Reproduced from Gustafson et al.’s Imaginary Phone as the process of creating
a mental model for spatial transfer learning [87]

placement [143, 257], particularly in eyes-free contexts, such as virtual or augmented reality.
We then question how far can this knowledge transfer be pushed to new contexts?

2.4.1 Head-Mounted Display Input

Over the past decade, there has been a surge in popularity of head-mounted displays
(HMDs) for presenting an augmented or virtual reality to the wearer. A challenge arising
from these HMDs, which has subsequently become a roadblock in their widespread adoption
(e.g. smartglasses), is the lack of an input mechanism for their control [153]. One primary
input mechanism we require for HMDs is some facility for text entry. There is an extensive
body of research on techniques for text entry in wearables, including HMDs (e.g. [130,
145, 232, 247)).
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In general, text entry is a challenge in ubiquitous computing as input either requires a
button or key associated with each character, or some form of gesture or chord to describe
characters or words. This, in turn, may require specialized devices [145], additional sensors
[232], or learning a new input mapping [247] to effectively input text. Gaze eliminates the
need for specialized devices, but is perceived to be “complex, strenuous and slow” [7], and
both speech and gaze suffer from issues of social acceptability, especially when compared
with on-device interaction [181]. While it is possible to type on a virtually displayed
keyboard [205], this requires tracking of finger position and, without a physical surface, it
is challenging for users to localize keys—potentially reducing the speed and accuracy of
such a technique. Thus, a large amount of research has been dedicated to optimizing text
input when using a virtual display—resulting in increased performance via novel interaction
techniques [4, 84, 205, 247, 246]. Many of these techniques, however, require specialized
hardware or physical controllers that often encumber the user’s hands during interaction.

In recent work, Akkil et al. [7] note that, for users of smartglasses and other HMDs,
mobile phones are considered to “complement” HMDs, particularly for functions where
the HMDs are lacking, such as text entry. As users have become proficient in text entry
[180] on mobile touchscreens, mobile text entry for HMDs appears an ideal area to apply
knowledge transfer of a keyboard layout for seamless interaction.

2.4.2 Text Entry Techniques
Text Entry for HMDs Presenting Virtual Content

Many virtual reality (VR) scenarios leverage HMDs for their presentation. Physical key-
boards have been studied as a text entry technique in VR, and have proven effective,
with users performing only slightly slower than with physical keyboards outside VR [117].
However, physical keyboards may be impractical in ubiquitous HMD settings.

Where physical keyboards are impractical, specialized text entry devices can be used to
support text-entry. For example, when evaluating text entry techniques in VR, Gonzales et
al. [78] found mobile text entry with 12-15 physical buttons particularly effective (reaching
32.75 to 107.39 characters-per-minute, i.e. 6.5 to 20.5WPM). However, physical buttons
are rarely present on modern smartphone devices. Without physical buttons, text entry
rates tend to be more modest: Speicher et al. [205] conducted a study evaluating common
selection based text entry techniques for VR, including head pointing [246], controller
pointing (i.e. ray casting at characters), controller tapping, frechand selection, and discrete
and continuous cursors. While Yu et al. [246] found that gestural head-pointing reached
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WPM rates of up to 24.7 WPM after 60 minutes of training, Speicher et al. found more
modest rates of text entry for head-pointing (10.2WPM). Speicher et al. also found that
controller pointing achieved the highest text entry rate, 15.4 WPM. More subtle forms of
text input have also been evaluated; for example, Lu et al. [143] studied various algorithms
of decoding thumb-based tap text entry on a blank smartphone screen for use with HMDs
and external displays. Their baseline cursor implementation achieved 7.66 WPM, while
more complex statistical decoding algorithms boasted rates of up to 17-23 WPM [143], but
required a user to hold their phone in their hand.

Smartphone-Based Text Entry

Modern smartphone-based text entry typically leverages a soft keyboard to capture text
(i.e. an onscreen keyboard to replace the physical keyboard). On these soft keyboards,
users can enter text character-by-character, or, they can take advantage of a series of intelli-
gent typing options, including auto-correct, word-completion, and word-gesture-keyboarding
(WGK) [122, 180, 250, 251]. While it seems clear that auto-correct boosts text input speed
[168], word-completion and WGKSs are more difficult to analyze. In an extensive study of
over 37,000 smartphone users, conducted by Palin et al. [168], approximately one quarter
of users reported using WGKs versus 3/4 who used tap-based typing. They found that
both word-completion and WGKs actually resulted in slower text entry than typing. How-
ever, in an earlier in-the-wild study of the Google keyboard, Reyal et al. [180] found that
gesture-based text entry resulted in a significantly greater text entry rate than tapping-
based text entry, with average WPMs of 33.6 and 30.1, respectively. While there is a
significant body of work that leverages WGKs in various forms [85, 151, 245, 246, 257],
what is clear from the Palin et al. study [168], is that both character-by-character input
on soft keyboard (75% of data) and WGKs (25% of data) are both common mechanisms
for text entry.

One advantage of WGKs is that they are tolerant to a degree of imprecision in the
gesture input [122], provided the word is in the dictionary and there is sufficient difference
between word gestures [30]. Given this tolerance for imprecision, WGKSs have been explored
for eyes-free text entry. Of particular relation to the current work, Zhu et al. [257] modified
the original gestural text entry algorithm to develop an eyes-free gesture typing system
using a smartphone’s touch screen, Figure 2.5. In their evaluation they reached an average
WPM of 23.27. Similarly, Yang et al. [244] studied gesture typing on a smartphone’s touch
screen — motivated by first-touch imprecision for indirect touch text entry. Their technique
assumes every gesture begins at ‘G’ and reached an average WPM of 22 in their user study.
While restricted to in-dictionary words, this past research highlights the strong desire for
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Figure 2.5: Reproduced from Zhu et al.’s I'sFree [257].

eyes-free text input in a variety of contexts.

2.4.3 Gestural Text Entry for HMDs

To synthesize, we revisit the question in Section 2.4 of: how far can this knowledge transfer
be pushed to new contexts?. Taking into consideration the requirement for text entry in
head-mounted displays and the natural integration mobile devices can provide for wearable
devices, we ask: how can the spatial knowledge of a keyboard layout on a mobile device be
leveraged to provide word-gesture text input for HMDs?
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Chapter 3

Understanding the Necessity of
Mode Transfer in Marking Menus

This chapter presents the results of an in-depth study on the necessity of delay, or penal-
ization, within marking menu invocation. Delayed display of menu items is a core design
component of marking menus, arguably to prevent visual distraction and encourage the
transfer to mark mode. We investigate these assumptions, by contrasting the original
marking menu design with immediately-displayed marking menus. In three controlled ex-
periments, we fail to reveal obvious and systematic performance or usability advantages to
using delay and mark mode. Only in very constrained settings — after significant training
and only two items to learn — did traditional marking menus show a time improvement
of about 260 ms. Otherwise, we found an overall decrease in performance with delay — or
when penalized, whether participants exhibited practiced or unpracticed behaviour. Our
final study failed to demonstrate that an immediately-displayed menu interface is more
visually disrupting than a delayed menu. These findings inform the costs and benefits of
incorporating delay in marking menus, and motivate guidelines for situations in which its
use is desirable.

3.1 Motivation

One reason why marking menus have been intensely studied in Human Computer Inter-
action [15, 16, 24, 144, 161, 186, 253, 254, 255] is because they implement the principle
of rehearsal, whereby the selections in menu mode act as “rehearsal” for selecting com-
mands in mark mode, easing the transition from a novice to an expert level of interaction
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[123]'. Alongside rehearsal, marking menus typically include a press-and-wait attribute
which adds a cost (typically a 1/3 second delay [127]) to menu mode to distinguish, and
encourage the use of, mark mode. In his doctoral thesis [127], Kurtenbach rationalizes
displaying the menu after a certain delay on the basis that the menu “can be distracting”,
“can obliterate part of the screen” and that “displaying the menu takes time”. Despite the
extensive study of marking menus, surprisingly the impact of delay on users has received
little attention.

In this chapter, we investigate the necessity of delay in marking menu appearance, and
its possible accompanying issues. Our motivations for doing this are two-fold. First, the
delay in menu mode creates a cost for novice interaction. While this delay might act as
an incentive to use mark mode, it is unclear by how much it accelerates learning in real
use (i.e. is penalty an effective motivation [129] in context?). Second, while users may
use mark mode for common commands, not every command is used frequently, thus menu
mode interaction remains necessary for many commands, even for more experienced users.
To the best of our knowledge, the menu mode cost has never been directly measured in
expert interaction. We investigate whether a no-delay marking menu really inhibits expert
performance, and if so, by how much.

We report the results of three controlled experiments comparing interaction with two
types of marking menus: the original DELAY marking menu [127] and a NO DELAY marking
menu. The first experiment — prioritizing experimental validity — compares these two
marking menus in an abstract task where participants are prompted to select commands
using marking menus of different breadth and depth. The second experiment prioritizes
repetition to compare these two interfaces when users have reached expert level interaction.
Finally, the third experiment, more focused on marking menu use within an application,
investigates whether a NO DELAY marking menu impacts subjective user experience when
performing a visually demanding task requiring users to insert and move graphical objects
in a 2D scene. Our results suggest that a NO DELAY marking menu offers significant
benefit for novice use and comparable performance even when users are practiced with the
menus, at the expense of a small cost for fully autonomic individual command selection.
In particular, the NO DELAY menu exhibits fewer errors, similar learning rates, and does
not significantly disturb users These results allow us to present a more nuanced approach
to delay in marking menus, to better inform their cost/benefit trade-off, and to discuss
implications for other rehearsal-based interfaces.

1Unlike common practice in the HCI literature, we will refer to “novice” and “expert” exclusively to
describe user’s behavior and/or overall level of interaction, not specific modes for a given technique.
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3.2 Rationale for Delay in Rehearsal-Based Interfaces

While delay is commonly used in rehersal-based interaction techniques [16, 90, 71], the
duration of the implemented delays can vary depending on the technique (typically, from
100ms [16] to 500ms [71, 255] for marking menu variants). For its part, Autodesk’s Maya
2019 incorporates a delay of approximately 230ms, as determined by counting frames from
cursor change on press to marking menu appearing via screen capture running at 30Hz on
an Apple Macbook Pro. Implementations of other rehearsal-based techniques also employ
different values for delay (e.g. FastTap used delays of 150 [73] and 200ms [90], which
suggests an explicit adjustment).

In order to better understand the rationale behind the use and selected values of these
delays, we conducted non-anonymous email interviews with 4 interaction designers: G.
Kurtenbach (inventor of marking menus [123, 124, 125, 126, 127]), G. Bailly (who designed
marking menu variants and rehearsal based selection techniques [14, 15, 16, 17]), C. Gutwin
(inventor of FastTap [73, 89, 90, 128]) and E. Lecolinet (who contributed to the design of
several marking menus variants [15, 16, 176, 183] and rehearsal based selection techniques
[29, 71]). We sent a single e-mail to each interviewee asking the following questions:

e In your opinion, why do Marking Menus and other rehearsal-based interfaces require
delay?

e In each work, how did you choose the delay length?

e Overall, what are your views on the trade-off between penalizing novice users vs. making
skill acquisition hypothetically faster?

e Are you aware of any study that tested delay’s impact on performance, learnability or
visual disruption?

Three of these researchers answered these questions in a single e-mail, the fourth researcher
sent an additional e-mail to complement his answers shortly after sending the first one,
without us asking for additional details or clarifications

Initial motivations for delay

As expected, the goal of Kurtenbach’s initial introduction of a delay was to avoid visual
disturbance. Its introduction was indeed justified “as a means to invoke menu or mark
mode”, thus avoiding an unnecessary menu pop-up when users already know the mark of
the command they wish to select. Kurtenbach also answered that once these two modes
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co-exist, the delay “may encourage learning/marking the mark”. Avoiding visual distrac-
tion and nudging the user toward expert performance were also brought up by Gutwin
as motivations for two delay-separated modes in FastTap [90]. Interestingly, Lecolinet re-
ported that the delay in MarkPad [71] is needed, but for different reasons. MarkPad is a
command selection technique that leverages gestures beginning and ending at the borders
of a trackpad. However, trackpads are primarly used for cursor control. Therefore, the user
could “pre-activate” a menu by mistake by starting a cursor controlling movement from a
border of a trackpad that, if it were not for the delay, would display the menu. Thanks
to the delay, the menu is not instantly displayed and there is no visible effect. The delay
is therefore used to allow the system to distinguish between cursor control and command
gesture before the gesture is completed.

Delay duration and its evolution

Kurtenbach does not remember exactly how he chose the initial duration of 333 ms, and
responded that it may be based on an estimate of “human reaction time” even though
“if you think about it this isn’t a reaction time situation”. In later commercial marking
menu implementations, he realized that they could adjust its value as low as 100ms “and
still have wusers reliably control when a menu is displayed and when a mark is drawn”.
Bailly answered that he chose the delays for his implementations of marking menu variants
based on values used by Kurtenbach in the literature. Gutwin reported that the delay in
FastTap implementations was tuned to prevent menus from appearing during mark mode.
Interestingly, Kurtenbach noted that with a “very small delay, some users never used the
marks”, but also that “many people have to be told about mark mode. They don’t seem to
discover it”. Finally, Bailly mentioned that he recently started to express doubt on the
necessity of having two modes distinguished through a delay when it is possible to make
a technique “rely on recognition, not necessarily on memorization”, referring to his recent
research on hotkey learning as examples [74, 150].

Previous investigations of marking menus delay

The researchers were not aware of any study specifically investigating marking menus
delay’s impact. However, Bailly referred to Kurtenbach’s study comparing mark mode to
menu mode [127] (described in the next sub-section). Gutwin and Kurtenbach mentioned
a study on hotkeys, by Grossman et al. [81], notably investigating the impact of cost
applied to mouse-based selection on hotkey adoption.
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3.2.1 Investigating the necessity of delay in marking menus

In addition to the above reflections, other researchers have begun to question the ratio-
nale for delay. In recent work, Zheng et al. [255] studied the progression from menu to
mark mode using a 500 ms delay in a marking menu designed for mobile devices. They
acknowledge the lack of literature to support delay invocation, but note cognitive psychol-
ogy research supports the cost of waiting (cost-based interaction) as an incentive for active
memory retrieval [56]. Exploring cost-based interaction specifically, Cockburn et al. [51]
showed that hiding keys’ labels improved gesture retrieval for ShapeWriter [122] input, but
did not result in increased text-entry speed. Moreover, if cost-based interaction supports
active memory retrieval, it is unclear whether memory retrieval is necessary for accurate,
efficient marking menu interaction [15, 51, 66, 255].

We are aware of only two studies conducted in the early 90s by Kurtenbach and Buxton
that explore the value of having a delay [127, 125], and they present somewhat conflicting
information. The first is a longitudinal study in which 2 participants used a 6-item marking
menu for 8 and 10 hours, respectively. Results comparing command selection time in mark
and menu modes (with delay subtracted) suggested that marks are faster, but the specific
rationale for the improved performance ( “the user most likely waits for the menu to appear
[and] must then react to the display. [...] Thus, a mark will always be faster than menu
selection, even if press-and-wailt was not required to trigger the menu.” [127]) was — to the
best of our knowledge — only evaluated with this limited testing based on estimates, and
never contrasted with a NoO DELAY condition. The second compared menu mode (menu
always visible) with mark mode (menu always hidden, and only shown during the first 6s of
each block), using a menu layout of numbered items labelled in clockwise order. Average
execution times and error rates were significantly lower in menu mode. However, mark
mode was strongly disadvantaged in this study, in spite of using a layout of ordered menu

items, because participants could only consult the menu for the first 6 seconds of each
block.

3.3 Rationale for testing no-delay Marking Menus

Given the above research and information elicited via email from Kurtenbach and others,
we find merit in examining the use of delay for menu mode activation. In 1991, Kurtenbach
proposed that “even if a user did not have to pause to signal for the menu to be popped
up, one would still have to wait for the menu to be displayed before making a selection.
In many systems, displaying the menu can be annoyingly slow and visually disturbing”.

34



However, neither he nor any of the other surveyed experts were aware of any studies
that had specifically evaluated visual disturbance, and, with advances in computing over
the past 27 years, the likelihood that displaying a menu would be “annoyingly slow” is
low: as of 2019, the majority of systems display even the most complex user interfaces in
milliseconds. Further, effective use of threading in GUI design can ensure that interfaces
remain active even in the presence of costly computational tasks and users can act even
before the menu appears, if displaying it is slow, as there has been anecdotal evidence that
expert users avoid these issues by “mousing ahead” in pie menus [103], as cited in [123].

Making a mark

pen/ movetodrawa _~~ pen/
button| mark % button
down up

.07 secs .3 secs .07 secs

Using the menu

pen/ | press and wait to trigger menu system user reacts to move to select pen/
button displays | menu display from menu button
down menu up

.07 secs .33 secs .15 secs .2 secs .3 secs .07 secs
Using the no-delay menu towards a known item

pen/ | move to select pen/
button| from menu button
down [~system up

.07 secs gr:séglg vs 3 secs .07 secs

Figure 3.1: Top: Reproduction of figure 4.15 in [127]. Bottom: Our hypothesis on the time
costs of a no-delay Marking Menu.

Delving more deeply into issues of mousing ahead and temporal costs, consider Figure
3.1. Figure 3.1-top is a reproduction from figure 4.15 in [127]; it describes users’ expected
behaviour when using mark mode. In the center is user’s expected behaviour in menu mode,
where we can see additional costs to menu mode - including system display and user search
costs. However, whether there is a cost to menu display is debatable. Consider Figure 3.1-
bottom, our representation of an alternative hypothetical time costs of a no-delay marking
menu. Given that the system can capture input immediately and continuously, does the
user “most likely wait for the menu” (shown as user reacts to menu display time in Figure
3.1-center) if they already know what gesture to perform? Or might the user simply begin
to move, mouse ahead [123], removing the cost of menu display (bottom)? Abundant
research has shown that visual memory is quick to build and robust (see [191] for an
extensive review). Cockburn et al.’s model of expert performance in linear menus argues
that, in practiced use, users act without visual search delay [51]. Assuming that after
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sufficient practice the user acquires knowledge of the visual layout, removing the delay
(and therefore the mark-only mode) may reduce the temporal penalty without harming
memorization. Other possible issues, such as distraction and occlusion, would remain to
be investigated. The question then becomes whether or not we can determine the relative
costs of these factors.

One could argue that, even if DELAY is not needed, it does no harm, so why study no
delay? A reason to explore DELAY’s benefits is, alongside potential benefits in learning
and preventing visual disruption, there are potential costs to delaying the visual display of
the menu:

e First, delay is a cost when performing command selections in menu mode, penalizing
users if they are unfamiliar with the menu or with the specific command being invoked.

e Second, selecting a command in mark mode requires the user to memorize the corre-
sponding mark beforehand, i.e. it leverages recall rather than recognition.

e Finally, with delay possibly acting as an incentive to use mark mode, the user may try
to select commands via mark mode even if when not entirely sure of the correct mark,
which might increase error rates even for practiced use [132].

To contrast the cost of a NO DELAY marking menu with a DELAY-based marking
menu, we conducted three experiments. First, in a controlled experiment we evaluate the
comparative performance of DELAY and NO DELAY marking menus by testing the follow-
ing hypotheses:

H1: No DELAY marking menus have a lower command selection time than DELAY mark-
ing menus, because of the artificial delay imposed on the menu mode when selecting less
practiced or less frequent commands.

H2: No DELAY marking menus have lower error rate than with DELAY, because visual
feedback is always available.

H3: No DELAY marking menus are slower than with DELAY in highly practiced use, be-
cause trained participants will wait for the menu to appear and will suffer visual disruption.

In our first experiment, we find little benefit of delay-based activation, possibly because
our participants did not reach a sufficient level of expertise — or autonomic response — for
mark mode commands. We, therefore, conduct a second study that examines the limits of
expert level use to identify whether — with simulated ‘perfect’ expertise — we can see and
quantify a benefit from DELAY.

Finally, in a third experiment we evaluate visual distraction and occlusion issues in
menu mode. Evaluating these factors is challenging: the relative costs of visual distraction
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and disruption are subjective assessments of the user and are only present when using a
marking menu to accomplish a specific task. We leverage a simple comic replication task,
and elicit subjective assessments via Likert Scales and qualitative interview data to test
the following hypothesis:

H4: DELAY marking menus are, subjectively, less visually disruptive and occluding than
No DELAY marking menus, because the menu mode need not be used during the perfor-
mance of individual practiced commands.

3.4 Study 1: Evaluating the Impact of Delay

As a first step in evaluating the relative costs and benefits of DELAY versus NO DELAY,
we conducted a controlled experiment to contrast the impact of delay on the performance
of marking menus. Specifically, our experiment is designed to evaluation hypotheses 1, 2,
and 3 in the previous section.

3.4.1 Experimental Procedure
Participants and Apparatus

Sixteen paid participants were recruited for the study. Average age was 23.44 (SD = 2.99).
Four participants identified as female and the remaining 12 identified as male. All par-
ticipants were post-secondary students from two different technically-focused universities.
Each participant signed an informed consent form before starting the experiment.

The interface was displayed on a 28" ASUS PB287Q monitor with 1080p resolution.
User input was achieved using a Logitech M100 mouse. We ran the application on a
Macbook Pro running OS X Version 10.11.6. The application was written based on a
JavaScript implementation [185] of Kurtenbach and Buxton’s marking menu [123, 124, 125].
The application was modified to suit the purposes of the current research, which included,
the addition of confirmation mode, the ability to log user behaviour and to reflect conditions
outlined above.

Familiarization

Prior to completing the study, users were administered a verbal and visual demonstration
of how to use marking menus within both conditions, including all modes: menu mode, con-
firmation mode, and mark mode. The demonstration was conducted by the experimenter
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— thus, participants did not interact with the marking menus until the experimental task
began.

Task and Stimulus

Participants were instructed to select commands with a marking menu using the right
mouse button. For each trial, the participant had to select a target command (displayed
on top of the window) with a MARKING MENU (DELAY or NO DELAY) of a given LAYOUT
(4, 8,4 x 4, or 8 x 8 items).

The DELAY marking menu had a 333 ms delay to enter into menu mode and display
the menu, and a 200 ms delay to display the sub-menu?. In this condition, participants
could also use confirmation mode which displayed the menu after a 333 ms delay. The No
DELAY marking menu had 0 ms delay to display the menu and the sub-menu was opened
when participant entered the corresponding menu item.

For each menu and layout, participants performed 10 BLOCKS of command selection.
For the 4-item configuration, participants performed 10 BLOCKS of 4 command selections
(there were only four commands); for all other configurations, we selected 8 target com-
mands and participants performed 10 BLOCKS of these 8 commands presented in a random
order. We used two different command sets for each menu configuration, counterbalanced
across conditions, to control for confounds of learning behaviour and confusion between
categorical selections. Participants were permitted to take a break after each menu con-
figuration was complete.

Given this task, the experiment was a 4 x 2 x 10 within-subjects design, with the fol-
lowing factors and levels: LAYOUT (two 1-level configurations of 4 and 8 items, two 2-level
configurations of 4x4 and 8x8 items. MENU (DELAY vs. NO DELAY), and BLOCKS (0 to
9). Presentation orders of MENUs and LAYOUTs were counter-balanced across participants
using a Latin Square design. Therefore, in total, we collected (1 x 44 3 x 8) commands X
10 blocks x 2 Menus x 16 participants = 8960 selections in total.

Dependent Measures

The primary dependent measures were Selection Time (time from stimulus to correct
command selection), Ezecution Time (time from the last mouse press to correct command

2The duration of this delay is not specified in Kurtenbach’s thesis [127]. We empirically set it to 200 ms
to minimize accidental activation without penalizing this condition’s performance.
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selection) and Error Rate. Additional dependent measures were Preparation Time (time
between the display of the target item and the first mouse-down event) and the proportion
of mark mode usage in the DELAY condition.

3.4.2 Overall Time and Accuracy

In the following section, we used multi-way analyses of variance (ANOVA) for the inde-
pendent variables MENU, LAYOUT, BLOCK, and their interactions. Participant is always
included as a random factor using the REML procedure of the SAS JMP package. Post-hoc
tests are Tukey tests when there are more than two levels.

We systematically removed the first trial of each participant (once in each DELAY/NO
DELAY condition), which took distinctively more time than every other trial as partici-
pants were discovering the techniques. In what follows, TRIALs are ordered from 1 to 40
for 4-menu-item LAYOUT and from 1 to 80 for all other LAYOUTs (see subsection Task
and Stimulus), and represent the ordered trial indexes for a given participant in a given
MENU and LAYOUT condition. BLOCKS are ordered groups of trials containing exactly
one selection of each target of a MENU X LAYOUT condition: 4 trials for LAYouT 4x4, 8
for the other LAYOoUTs. We present our analysis for each of our three hypotheses in turn
in the remainder of this section.

H1: Menu Selection Time

Our first hypothesis posits that selection time is shorter, overall, for NO DELAY marking
menus because of the cost imposed on less practiced use. To assess this, the different time
measures were aggregated as medians instead of means to discard outliers and account
for asymmetric distributions; residuals were found to follow a normal distribution. Time
results are shown in Fig. 3.2.

To evaluate H1, we analyze Selection Time against MENU, LAYOUT, and BLOCK. Re-
garding median Selection Time, we found a significant effect of MENU (Fy 1155 = 76.29,
p = .0001), LAYOUT (F31185 = 623.43, p = .0001), and BLOCK (Fy1185 = 63.01,
p = .0001), as well as significant interaction effects: MARKING MENUXLAYOUT (F31185 = 3.76,
p = .05), MARKING MENUXBLOCK (Fy1185 = 2.58, p = .01), and LAYOUTxBLOCK
(For11s5 = 7.42,p = .0001).

Post-hoc tests revealed that the DELAY condition (mean 2294 ms) was significantly
slower than the NO DELAY condition (2042 ms). This allows us to reject H1’s null hy-
pothesis and claim that our data support improved performance overall for NO DELAY
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marking menus. Our results also not only revealed that Selection Time was longer for
1-level marking menus than for 2-level ones, but also that all LAYOUT levels are statisti-
cally different from each other: 4 (1393 ms) < 8 (1777 ms) < 4x4 (2512 ms) < 8x8
(2990 ms). Overall, as expected, our results also revealed that Selection Time decreased
with BLOCKs at a decelerating pace.

H2 Error Rate

Our second hypothesis posits that NO DELAY marking menus have lower error rate than
DELAY marking menus. The corresponding null hypothesis is that Error Rate differences
between NO DELAY and DELAY marking menus are not significant. Figure 3.3 shows
comparative error rates for NO DELAY in blue and DELAY in red. To test H2, we analyze
Error Rate as a function of MENU, LAyouT, and BLoCkK. We found a significant effect of
MARKING MENU (F} 1185 = 60.88, p = .0001), BLOCK (Fy1185 = 4.11, p = .0001), and
MARKING MENUXBLOCK (Fy1185 = 4.01, p = .0001) on average Error Rate. There was
no significant effect involving LAYOUT.

Post-hoc tests highlight that participants made significantly more errors with DELAY
(mean 4.2 %) than with NO DELAY (mean 1.3 %) condition. This result allows us to reject
the null hypothesis and claim that H2 is supported.

Effects of BLOCK and of the MARKING MENU X BLOCK interaction were also significant.
Error Rate significantly increased with BLOCKs overall (Fig. 3.3-bottom), but the study of
the interaction effect revealed that BLOCK levels are not significantly different from each
other in the NO DELAY condition. In the DELAY condition, however, BLOCKs 9 and 8
(resp. 6.9 and 8.5 %) contain significantly more errors than BLocKs levels 0, 1 (< 1.3 %)
and than every NO DELAY BLOCK (< 2.6 %). This result might be explained by the fact
that with more practice in this condition, participants made more selections using mark
mode (detail analysis of mark mode usage below), which is more likely to result in errors
because the user must know the mark corresponding to the target, compared to the menu
mode and the DELAY condition where the menu is displayed. It also suggests that users
can switch to mark mode before being entirely familiar with the item.

One additional question we can pose is whether the increase in error was due to de-
creased use of menu mode in the DELAY condition. Figures 3.2 and 3.3 shows the evolution
of Selection time and errors, respectively. Consider, particularly, Figure 3.3, where we can
see that error rates are identitical for DELAY and NO DELAY during BLOCK 1, but then
diverge. Visually, it appears that, in DELAY, the use of mark mode is detrimental to ac-
curacy. Analyzing this, we find that participants made significantly more selection errors
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in mark mode (mean 8.3 %) than in menu and confirmation modes (resp. 2 and 1.2 %).

H3 Practiced Performance

Our third hypothesis proposes that DELAY marking menus should outperform NO DELAY
marking menus because mark mode should be faster to execute than menu mode, even in
a NO DELAY condition because the user does not need to perceive the menu before acting.
To examine H3, we need, first, an understanding of how common mark mode is during
the DELAY. Next, we need some measure of Practiced Use for the NO DELAY condition,
because NO DELAY has no easily distinguishable mark mode. Finally, we can use this
understanding to contrast performance with DELAY and NO DELAY during practiced use.

To, first, explore how common the use of mark mode is during interaction, recall that
the DELAY condition exhibits three modes, a menu mode (for novice use), a mark mode
(for practiced users), and a mark confirmation mode to facilitate the transition between
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the latter two. In DELAY, we would expect use of mark mode to increase over time. We
would also expect more complex menus to result in reduced use of mark mode. Graphically,
Figure 3.3, top, shows the evolution of mark mode use later in the study, beginning around
BLock 4 or 5. This observation corresponds to statistical analysis: we found a significant
effect of BLOCK (Fysss = 38.5, p = .0001) and LAYOUT (F3585 = 76.78, p = .0001)
on the use of mark mode. It increased overall with BLOCKs (see Fig. 3.3-top), ranging
from 8.1 % in BLOCK 0 to 62.3 % in BLOCK 9. It also significantly decreased with menu
complexity: LAYOUT 8% 8 (mean 28.9 %) < 4x4 (36.3 %) and 8 (37.2 %) < 4 (67.4 %).
There was no significant interaction effect.

Analyzing the next two questions, some measure of Practiced Use for the NO DELAY
condition, and how to contrast performance with DELAY and NO DELAY during practiced
use is complicated to disentangle. First, considering Figure 3.2, we see that the curve of
selection time (ms) versus BLOCK for DELAY and NO DELAY mirror each other. We,
therefore, first examine BLOCK effects, then look at Ezxecution Times and Preparation
Times more deeply.

Contrasting Selection Time across BLOCKs (Fig. 3.2 left) post-hoc tests showed that
BrocKs 7-8 with NO DELAY are significantly shorter (mean < 1777 ms) than BLOCKs 0-5
with DELAY (> 2175), but only than BLOCKs 0-2 with NO DELAY (> 2139). Conversely,
Brocks 6-9 with DELAY (< 1973) were not significantly different from each others, nor
from any NO DELAY block other than 0 (2800 ms). Given that Selection Time appears
stable in DELAY BLOCKs 6-9, and that there is no significant difference between them and
any NO DELAY blocks, we cannot, prima facie, reject H3’s null hypothesis.

One factor that may prevent us from rejecting H3’s null hypothesis is that it is hard
to match a mark mode (DELAY) with an equivalent binary criterion in the NO DELAY
condition, because the menu always appears. Perhaps participants in NO DELAY perform
more “practiced” command selections.

To test this, we can assume that the “practiced” selections in any given condition form a
subset of trials that span all blocks, and with distinctively good time performance. In order
to properly compare practiced performance between conditions, we identify the BLOCKs
in which Selection Time stabilized towards its minimum using Hsu’s HSB contrast, i.e.
blocks 7 to 9. For Selection Time on these “stable” BLOCKs, we found a significant effect
of LAYOUT (Fs105 = 60.51, p = .0001), but no longer of MARKING MENU nor any
interaction between the two. Discarding trials with selection errors, we found significant
effects of DELAY MODE (Fy 414 = 331.57,p = .0001) and BLOCK (Fy 4131 = 2.31,p = .05)
on median Selection Time. For the DELAY condition, participants were significantly faster
in mark mode (mean 1445 ms) than in menu and confirmation modes (resp. 2982 and
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3102 ms). However, DELAY does not outperform NO DELAY in terms of overall selection
time; it remains the case that there is no significant difference between DELAY and NoO
DELAY during practiced use.

A final analysis we can perform involved breaking down Selection Time into Ezecution
Time and Preparation Time to try to identify, with finer granularity, contrasting effects of
DELAY and NO DELAY. We found a significant effect of MARKING MENU (Fy 105 = 7.12,
p = .0088) and LAYOUT (F3105 = 41.2,p = .0001) on Ezecution Time, with no interaction.
Post-hoc tests revealed that the DELAY condition has a smaller Ezecution Time (mean 948
vs. 1130 ms), and a similar LAYOUT effect as before. Finally, we found a significant effect
of MARKING MENU (F} 105 = 50.61, p = .0001) and LAYOUT (F3105 = 6.32, p = .0007)
on Preparation Time, again with no interaction. Post-hoc tests revealed that the DELAY
condition has a larger PREPARATION TIME (mean 830 vs. 569 ms), and a similar LAYOUT
effect as before.

In summary, for practiced use, we find no significant difference between DELAY and NO
DELAY in terms of Selection Time, and that while Execution Time is lower with DELAY
(182 ms difference), it is compensated by a lower Preparation Time (261 ms difference) for
No DELAY, regardless of the LAYOUT.

3.5 Study 2: investigating expert performance

Study 1 supports both H1 and H2 - NO DELAY has significant advantages over DELAY even
as users become practiced. H3, that DELAY outperforms NO DELAY in highly practiced
use, was not supported; DELAY suffered from higher error rates and reaction times, even
when selecting commands consistently in mark mode. However, it may be that, with
sufficient practice, users could reach a theoretical level of perfect expertise — autonomic
response — that would result in an overall performance benefit. Thus, study two was
designed to balance the need for the “best case” of an autonomic response, versus the
confound of anticipation, or the cost of deciding what selection to perform. With this
design, we are able to examine the limits of expert level use to identify whether — with
fully autonomic reaction — we can quantify a benefit from DELAY.
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3.5.1 Experimental Procedure
Participants

Eight participants (average age 26.88, SD = 2.56) were recruited for the study, two who
identified as female, six as male. All were either graduate students or post-doctoral re-
searchers from technical disciplines in a technically focused university.

Task and Stimulus

The study application was a modified version of Study 1, run on the same computer and
with the same mouse. Prior to completing the study, users were familiarized using the
same process as study 1. The experiment followed the same procedure as study 1 except
that:

e Users had to select only two items from each of two different menus repeatedly in DELAY
and NO DELAY conditions.

e The two items per menu were carefully balanced through pilot studies to ensure equiv-
alent speed and precision.

We chose the items to select in each menu based on geometric characteristics: one acute
angle and one right angle per menu. Prompted items for menu 1 were »] [north|[south-west]
and |, [south][east], and for menu 2 # [west][north-east] and 7} [east][south].

For each trial, the participant had to select one of the two target commands, whose
label was displayed on top of the window, within a MARKING MENU of 8 x 8 (64) items.
For each menu participants performed 8 BLOCKS of 10 selections per command. Ordering
of the commands was randomized within each menu. Similarly to study 1, we used different
command sets in each of the two 8 x 8 menus.

The result was a fully counterbalanced, within subjects, 2X2 design (MENU — DE-
LAY/NO DELAY and ITEMS). In total, we collected 2 commands per marking menu x 10
prompts per command X 8 blocks x 2 MENUs x 8 participants = 2560 selections (640 per
command) in total.

At the end of each MENU condition, we instructed participants to select the items of
the corresponding pair 4 times each using arrows as instructions, to obtain a temporal floor

for gesture peformance. Dependent measures and analysis method followed those of study
1.
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3.5.2 Results

Fig 3.4 shows the overall Preparation, Ezecution, and Selection times throughout the study
for each MENU condition. We found a significant effect of BLOCK on Preparation time
(Fraosas = 14.59, p < 0.0001), on Ezecution time (Frass = 49.83, p < 0.0001), and
on Selection time (Frases = 47.55, p < 0.0001). In all three measures, BLOCK 0 took
significantly longer than the rest (300 ms to 1 s), with no other significant difference
between BLOCK numbers. There was no effect of BLOCK on Error rate. We excluded
Brock 0 from further analyses.

We found significant effects of MARKING MENU on Ezecution time (Fygs1 = 164,
p < 0.0001) and Selection time (Fi2031 = 75.1, p < 0.0001). Selections with DELAY were
faster to Ezecute (mean 663.14 ms vs. 873.08 ms with NO DELAY), which was directly
translated into Selection time (mean 1380.37 ms, vs. 1633.01 ms with No DELAY), i.e. a
total improvement of about 250 ms. We therefore reject H3’s null hypothesis and conclude
that extensive training with two targets yields faster command selection in mark mode with
DELAY marking menus, than with NO DELAY marking menus. There was no significant
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effect on Preparation time nor on Error rate.

The other factor that significantly impacted time and error rate was ITEM. ITEM had
a significant effect on Ezecution time (F3200 = 16.75, p < 0.0001) and Selection time
(Fia29 = 6.78, p < 0.0001). ITEM »| had significantly longer Selection time (mean
1608 ms) than ~} and ~(means | 1480 ms), with |, in between and not significantly
different than the other three. For Ezecution time, we had »| (mean 855 ms) < |, (790 ms)
< "} and 2 (means j 725 ms). We also found a significant effect of ITEM on Error rate
(F39029 = 2.76,p < 0.05): |, (mean 2.32%) caused significantly fewer errors than ~ (mean
5.54%). We found no effect on Preparation time, nor interaction effect.

Next, we explored the common hypothesis that MARK mode is faster because it al-
lows smaller marks. We found significant effects of MARKING MENU (Fj 226 = 211.48,
p < 0.0001), ITEM (F392026 = 27.55, p < 0.0001), and MARKING MENU x ITEM
(F328 = 5.12, p < 0.01). DELAY caused shorter strokes overall (mean 279 vs. 349 px),
and #] (343 px) > ~ & |, (316 px) > 7} (281 px). No clear pattern emerges from the
Tukey test for the interaction effect, and correlations (R?) for linear regressions between
Execution time and Gesture length, for each MARKING MENU, are both 0. They all remain
below 0.3 (mostly below 0.1) if regressions are performed independently for each partici-
pant. Overall, Gesture length seems a poor predictor of Ezecution time in the context of
marking menus.

3.6 Experiment 3: Assessing Visual Disruption

Our previous studies suggest that NO DELAY marking menus yield fewer errors and lower
command selection times overall for all but extremely practiced targets. Kurtenbach’s
original design rationale for marking menus includes one additional benefit of mark mode,
i.e. that no menu is displayed and that menus “can be distracting” and “can obliterate part
of the screen” [127]. H4 presents this hypothesized benefit of DELAY. While studies 1 and
2 evaluated marking menu performance with and without delay for prompted commands,
generalization to real-world use-cases with occlusion and visual distraction requires we
test marking menus in an interactive program where occlusion of content might inhibit
interaction.

To evaluate occlusion and disruption, we conducted a third experiment. In a 2 x 2
within-subjects protocol, we evaluated the effects of DELAY vs. NO DELAY marking menus
in two simple yet realistic graphic arrangement applications in which participants were
instructed to replicate existing figures: one involving CARTOONS and a second involving

47



FLow CHARTS. Our rationale for this design is twofold: it requires many repeated menu
selections, so participants can exhibit practiced behaviour and possibly reach a higher level
of expertise with the menus; and it creates a crowded canvas with many elements, requiring
manipulation through contextual menus, so occlusion may become an issue for users.

3.6.1 Experimental Procedure
Participants and Apparatus

Sixteen paid participants were recruited for the study. Average age was 24.38 (SD = 2.16).
Three participants identified as female and the remaining 13 identified as male. While
all participants came from technical backgrounds, none of them participated in the first
two studies. 2 participants had heard about Making Menus before (4 unsure, 10 no), 2
had already interacted with one (5 unsure, 9 no), and 10 had already interacted with a
Pie/Radial Menu (1 unsure, 5 no).

The interface used the same display monitor and marking menu implementation as in
Study 1. Mouse input was obtained through a VicTsing Slim Wireless Mouse.The ex-
perimental software was an object arrangement application in Javascript. A right button
press on the page triggered a main, two-level marking menu containing the various avail-
able image items, arranged in categories, which upon selection were spawned onto the page.
These images could then be dragged into and within the scene, using the left mouse button,
for precise positioning. A right button press on any of those images triggered a contex-
tual marking menu containing manipulation functions such as "rotate”, "send to front”,
"delete”, etc. whose effects were applied, upon selection, to the right-pressed image.

Task and Stimulus

As in the previous experiment, users were administered a verbal and visual demonstration
of how to use marking menus within both conditions, including all modes and verbal in-
struction of how to use the drag and drop interface. Participants did not interact with the
interface until the experimental task began. The task began with a reference image appear-
ing in the top panel of our application (see Figure 3.5). Participants were then instructed
to recreate the image displayed in the above panel to the below panel by “spawning” and
modifying items using marking menus. Participants were asked to complete four of these
tasks, two per menu condition. This experiment employed a think aloud protocol [134]
inviting participants to comment while recreating the images.
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‘You know whats worse
than raining cats and
dogs?

Nature Shapes ‘?

Figure 3.5: An example of a user interacting with the drag and drop application. On
top is the figure to recreate. On the bottom is the participant’s current figure with an
ongoing menu selection. Icons in this figure were designed by Freepik and Smashicons
from www.flaticon.com.

There were two command sets: one for CARTOONS and one for FLOW CHARTS. Each
main menu had the same layout, but different configuration. For instance, the CARTOONS
menu had a single one-level item in the left stroke direction and the FLOW CHARTS menu
had a single one-level item in the right stroke direction. The layout consisted of a single one-
level item, one five-item sub-menu category, three 4-item sub-menu categories and three
8-item sub-menu categories. The contextual menus remained consistent throughout the
experiment, with a contextual menu for text (including font, style, alignment and delete)
and images (including rotate or change colour, send to front, send to back and delete).
Each task required the same minimum number of menu selections from each level and size
of submenu.
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Design and Analysis

The experiment used a 2 x 2 within-subjects design, with the following factors and levels:

e Main command sets / image theme: two different command sets, CARTOONS and FLOW
CHARTS, were used for each menu condition to control for confounds of learning be-
haviour and confusion between categorical selections.

e MARKING MENU (DELAY or NO DELAY) which remained consistent with those ex-
plained in section 3.4.

Order of menu conditions and command sets were counter-balanced, each combination
happening four times per subject.

Subjective Data Collection

Instead of determining whether occlusion occurs or if the display is “visually disruptive”,
our goal is to assess whether these factors affect the perceived usability of marking menus
with and without delay. To compare the subjective experience of DELAY and NO DELAY,
in addition to capturing spontaneous comments expressed during the tasks, participants
were administered a questionnaire after each condition, comprised of Likert-scales (1 =
Strongly Disagree to 7 = Strongly Agree). Questions and responses are shown in Fig. 3.6.

We also recorded think-aloud comments and conducted an exit interview. All subjective
data (Likert, think-aloud, and interviews) were leveraged for analysis: the Likert responses
as ordinal statistical data, and the qualitative data via transcripts and focused coding
regarding occlusion and disruption.

3.6.2 Results

Practiced performance When users can decide the order they wish to perform the
overall task it, becomes a challenge to assess selection errors. To confirm that the study was
long enough for users to become experienced with the menu layouts, we counted selections
in the DELAY condition performed in each available mode (menu, mark, confirmation)
that were not cancelled before completion. Among the 1279 successful command selections
performed by all 16 participants in DELAY condition, 48% (615, mean 38.4 per participant,
SD 17.5) were performed entirely in menu mode, 18% (225, mean 15/p, SD 9.2) involved
in confirmation mode, where participants pause upon completion to verify whether they
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successfully selected the command, and 34% (439, mean 31.4/p, SD 19.7) were performed
entirely in mark mode. Because over 1/3 of DELAY commands were invoked in mark mode,
we believe that this indicates that participants were, generally, able to learn the menus.

Subjective preferences Some overall trends appeared for both conditions. Questions
on performance with items whose location is already remembered (a, b) received neutral
or positive scores (4-7). Participants were not generally bothered by occlusion: only one
scored above 5 to question (g) (NO DELAY condition). Finally, only two participants
scored below neutral (4) to memorization (e) and real-world use (i) questions, both for
DELAY.

An ordinal logistic fit found a single significant effect of MARKING MENU on the answers
to question (h): “The [DELAY or ABSENCE OF DELAY| made me lose focus on my main
task” (x* = 3.97, p = .046), with DELAY (mean score 4, most frequent scores 1, 3, 4, and
7 each with N=3) found to be more problematic than ABSENCE OF DELAY (mean 2.56,
most frequent score 1 with N=7). For all other questions, we found no significant effect of
MARKING MENU. Ratings are summarized in Fig. 3.6.

At the end of the study, 7 participants preferred DELAY, 7 preferred NO DELAY, and
2 expressed no preference.

Subjective Comments We did not observe a consensus among participants against
DELAY or NO DELAY marking menu in terms of disruption or disturbance. For example,
Py said they “didn’t find any disturbance [in (NO DELAY)/” and P mentioned “I noticed
no disturbance or disruption [in NO DELAY/ because I could always control visibility of the
marking menu by simply releasing the right mouse button”.

A single participant (FPs) reported an issue with object occlusion in the No DELAY
condition, specifically when attempting to rotate an arrow image: “I cannot see which
direction the arrow currently is, so I don’t know how to rotate it. The arrow is hidden, the
menu should come somewhere else without hiding the picture [...] The menu should not
hide the existing element about to be manipulated”. That being said, this particular issue
impacted only one participant and would be present in either condition to a user unfamiliar
with the menu layout. One can expect that a user familiar with the menu would not forget
the orientation of the arrow while performing the command selection gesture. In fact, P
noted, in the DELAY condition, “the fact that the menu hid some of the content was only
problematic because I knew that closing the menu just to see what’s behind would come at
the additional cost of waiting when re-opening it later”.
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(a) I was able to quickly select items
whose location | already knew.

(b) | was able to correctly select items
whose location | already knew.

(c) | was able to quickly select items whose
location | did not know or did not remember.

(d) | was able to correctly select items whose
location I did not know or did not remember.

(e) 1 was able to memorize the position
of some items in the menu.

(f) 1 found the [Condition]
disturbing/disruptive overall.

(g) | found it problematic when the menu
interface hid the contents of the canvas.

(h) The [Condition] made me
lose focus on my main task.

(i) 1 would consider using this menu
interface in a real application.

e

1 2 3 4 5 6 7
Strongly Strongly
Disagree Agree

Figure 3.6: Likert scale questions (error bars are 95% CI).

In terms of speed, echoing findings in the initial experiment and Likert questions (a)
and (c), Pi5 noted, “I've been working with Photoshop, it’s basically like this [system] ...
the user wants to do the process as fast they can, so they don’t want to wait [in the DELAY
condition/, it’s slow”.

3.7 Discussion and conclusion

Delay has been an integral component of menu mode activation in marking menus since
their introduction. Despite this, little has been done to explicitly evaluate the costs and
benefits of marking menu delay to learning, performance, and visual disruption. There is
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good reason to evaluate this trade-off, however, because there exists a theoretical tension
around the use of delay. Specifically:

e Delay penalizes the novice experience, which may frustrate learners — but may also
promote faster learning.

e Delay stresses recall over recognition, which may lower throughput via errors and high
cognitive load — but may also speed performance for well-known, frequent commands.

e Delay eliminates visual occlusion of content and visual disruption of the interface for
practiced commands — but it is unclear how costly visual occlusion and disruption are
during command invocation, especially if it is expected.

Our hypotheses probe these questions, exploring overall cost during learning and into
early practiced use [H1, Experiment 1], error rate [H2, Experiment 1], speed during highly
practiced use [H3, Experiments 1 and 2], and perceived visual disruption [H4, Experiment
3]. We find support for H1 and H2, that DELAY does significantly impact the cost of mark-
ing menus. We also find mixed results for H3, with no benefit for DELAY observed during
mark mode activations in experiment 1 and only a benefit during autonomic command
invocation in experiment 2. Finally, in experiment 3, we note limited issues around visual
occlusion despite the fact that mark mode was used 34% of the time during the DELAY
condition; in fact, in experiment 3, we noted significantly more impact due to the cost of
DELAY than issues with occlusion.

Our difficulty finding support for H3 and H4 was somewhat surprising, as the assump-
tion with marking menu is that mark mode use should have performance benefits, and that
mark mode eliminates visual disruption. Temporal benefits of mark mode were difficult to
identify in experiment 1. Visual disruption issues were difficult to identify in experiment 3.
Only in study 2 did we identify a statistically significant benefit of mark mode, and then
only for two highly practiced commands.

The results of study 1 and 2 in concert suggest that extensive training may be required
to overcome performance costs, and it remains unclear whether users would be able to
reach expertise with enough commands for the delay to be beneficial overall when novice,
practiced, and expert behaviours are considered altogether. Assuredly, it is virtually im-
possible for a user to remember a complete menu layout: even projections using a Zipfian
distribution in a 8 items only marking menu suggest that users would be far from selecting
all commands in mark mode after extensive use, selecting only 43% when delay is 200 ms
delay, 55% with 333ms, and only reaching a higher rate with significantly longer delays,
up to 2s, but at the cost of a doubling or tripling of error rate [132].
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The most controversial result in our work is the lack of subjective impact of visual
disruption in Experiment 3. However, in hindsight it is questionable whether this result
should be surprising: consider past work by Cockburn et al. on menu performance [50, 51]
and past work on “mousing ahead” by Hopkins [103, 123]. In Cockburn et al.’s work,
novice (or unpracticed) performance is modeled via linear visual search because the user
still needs to read each menu item to find their desired target, and expert (practiced)
performance is modeled via the Hick-Hyman Law because the user simply mentally selects
the desired action from among candidates without the need to look for menu options.
Cockburn et al.’s model includes no temporal cost that results from visual disruption in
their model of menu access, and their model correlates perfectly with user performance.
Regardless, visual disruption may also be an over-stated issue: while one way to eliminate
visual disruption caused by occlusion is to avoid displaying the menu, partial transparency
of the menu may also allow users to continue to see underlying content without the need
to include novice mode penalty and increased error rate in marking menus.

While our results begin to explore the costs and benefits of DELAY in marking menu
interfaces, additional work remains. In our email questionnaire, Kurtenbach noted that, in
industry, he has used delay values significantly shorter than those in the academic literature
— around 100ms, and that many users fail to discover mark mode. These shorter delays
may reduce error, speed novice performance, and still support autonomic performance as
per experiment 2. We also note limitations in our work, including a relatively small sample
size and the lack of an in-situ scenario, i.e., utilizing an application where marking menus
are actually used, such as Audodesk’s Maya.

Our results open similar questions regarding other command selection techniques that
rely on delay-separated modes [71, 73, 75, 89, 90] to implement the rehearsal design prin-
ciple. Future work should investigate whether similar results would be found with these
interfaces. For example, the FastTap technique displays a full-screen grid that may result
in higher perceived visual disturbance.

In the end, our results are valuable to designers exploring the use of Marking Menus
and other rehearsal-based interfaces. Understanding DELAY’s benefit for highly practiced
commands allows designers to choose to incorporate delay depending on their perspective
of whether the system being designed should penalize novice and in order to force transition
to mark mode or other “expert” modes in rehearsal-based interaction. This work is, to our
knowledge, the first quantitative and qualitative exploration of the relative costs of these
factors in rehearsal-based interface design.
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Chapter 4

Presenting a Use Case of When
Mode Transfer is Beneficial

Taking into account the drawbacks of mode separation in marking menus exhibited in
Chapter 3, we then raise the question of under what circumstances do users need to transi-
tion from a novice mode to a secondary mode? In other words, in what scenarios do users
need to rely on recall as opposed to self-revelation via guidance? It would be reasonable
to assume these scenarios arise when revealing gestures to users is impractical.

While mid-air gestures are an attractive modality with an extensive research history, one
challenge with their usage is that the gestures are not self-revealing. Scaffolding techniques
to teach these gestures are difficult to implement since the input device, e.g. a hand, wand
or arm, cannot present the gestures to the user. In contrast, for touch gestures, feedforward
mechanisms (such as Marking Menus or OctoPocus) have been shown to effectively support
user awareness and learning. In this chapter, we explore whether touch gesture input can
be leveraged to teach users to perform mid-air gestures. We show that marking menu touch
gestures transfer directly to knowledge of mid-air gestures, allowing performance of these
gestures without intervention. Thus, we argue that cross-modal learning has potential to
be an effective mechanism for introducing users to mid-air gestural input.

4.1 Motivation

Mid-air gestures are an attractive method of interaction in the context of internet of things
(IoT) and ubiquitous computing environments (ubicomp). Free space gestures have the
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ability to provide eyes-free input, a benefit for many IoT devices that do not have a display
to guide users, e.g. a smart light-bulb or smart thermostat. In ubiquitous interaction
scenarios, mid-air gestures can free the external display to hold information pertaining to
it’s particular context, rather than an arbitrary gesture scaffolding.

Mid-air gestures are still rarely deployed in practice due to three primary challenges:
reliability in tracking and recognition [112, 113], user fatigue [98, 201], user discomfort
[3], and user awareness [110] (i.e. gestures are not self-revealing [25]). In this work, the
primary interest is in examining ways we can address the challenge of user awareness of
mid-air gestures; specifically, how can we help users learn an extensive mid-air gesture set.

(Y

\J~

Figure 4.1: Visualization of transferring gestures from touch to mid-air.

One primary advantage of surface gestures with respect to this challenge is that surface
gestures — because they are frequently performed on a display surface via direct manipu-
lation — have a natural visual feedback mechanism via a screen that allows feed-forward
techniques [24] to guide the user to a particular gesture that they wish to complete. These
feed-forward, rehearsal-based techniques generally display the structure or path of a ges-
ture, as in Bau et al.’s OctoPocus [24] and Kurtenbach et al.’s Marking Menus [125].
Mid-air motion gestures lack a natural visual display to scaffold gesture learning unless ad-
ditional hardware is deployed, which, for the majority of work, is accomplished by including
displays such as screens or projections [1, 10, 9, 47, 59, 70, 110, 177, 184, 197, 222, 230].
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Requiring a display constrains the interaction environment — negating loT contexts (as
mentioned prior) and/or consumes all or part of that display with gesture representations
— either permanently, reducing usable display space for other uses, or temporarily, requiring
some means to invoke the gesture help display. Even in the presence of these training mech-
anisms, it is often the case that training occurs as a separate task for the user [36, 110]; in
contrast, feed-forward techniques allow a user to learn the gestures while performing them
in context [24, 125].

In this chapter, we explore whether we can leverage surface-based gesture representa-
tions to teach users mid-air gestures. Leveraging marking menus [125, 230], we train users
in one of two-ways: 1) We show marking menus on an external display to reveal gestures
to users [110]; and 2) We show marking menus performed and displayed on a touch-screen
and explore whether users can map 2D actions learned on the touchscreen onto mid-air
actions, i.e. cross-modal training. We evaluate both the error rate and speed of interac-
tion and find no statistically significant differences between touch and mid-air training on
mid-air performance of gestures. We find, somewhat counter-intuitively, that error rate
is unaffected for participants trained on a mid-air gesture set using touch-based training.
The only cost we observe in touch-based training of mid-air gestures is in the first block of
the experimental phase of our two-phase (training and experimental phases) study, where
participants’ speeds differed significantly for only that first block as they move from one
modality (touch) in the training phase to a new modality (mid-air) in the experimen-
tal phase [50]. To the best of our knowledge, this work represents the first instance of
evaluating how well touch can be leveraged to train users to perform mid-air gestures.

4.2 Assessing Touch-based Teaching of Mid-Air Ges-
tures

In past work, the primary mechanism for providing feedback and teaching users to perform
mid-air gestures is through a visual representation of the current and required movement
path, typically via an external display [1, 10, 9, 47, 58, 59, 70, 110, 177, 222]. While this
makes sense in environments where external displays exist, in other environments (e.g.
environments populated with IoT artifacts), it may be the case that the environment does
not have physical displays and provides output more subtly. The other tension within this
space is, if we wish to train with surface gestures, then why move to motion gestures?
We believe that, alongside motion gestures representing an effective means for combining
target and command, motion gestures can serve as an eyes-free shortcut to command with
the attendant benefit that the touchscreen is not impacted. We view motion gesture input
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as a form of short-cut, analogous to a system-wide hotkey, to support dedicated gestural
input.

While our earlier discussion treated mid-air gestural input as a generalized input modal-
ity, in our evaluation we focus specifically on motion gesture input, i.e. mid-air gestural
input where the user moves a mobile device in order to issue commands. Our rationale for
this is similar to that of Vatavu et al. [215]: users are familiar with their personal devices,
almost always have them with them, and we can leverage the display as an opportunistic
training platform and as a convenient, on-hand, input sensor to capture interactions. That
said, we believe our results should generalize to bare-hand mid-air input, provided the
environment supports hand-tracking to capture gesture input.

In this section, we describe participants, apparatus, and an experiment that explores
the comparison of touch and mid-air training of mid-air gestures in detail.

4.2.1 Participants

Fourteen participants between the ages of 21 and 28 volunteered for the study. Average age
was 24.47 (SD = 2.36). Six participants identified as female and the remaining eight iden-
tified as male. Participants were remunerated $15 for their participation. 13 participants
were post-secondary students and one was a teacher. Five participants had experience
with marking menus (e.g. Maya, Pinterest for iPad, or other application contexts) and the
remaining nine did not.

4.2.2 Apparatus

The visual interface was displayed either on an ASUS PB287(Q monitor with 1080p resolu-
tion using an Nvidia Shield TV running Android 8.0 or on a smartphone. Participants inter-
acted using a Huawei Nexus 6P running Android 8.0, with dimensions: 159.3 x 77.8 x 7.3
mm, a weight of 178g and a 5.7” screen. Cross-device communication was facilitated
through a dedicated WiFi network.

4.2.3 Mid-Air Pointing

Mid-air interaction was captured through sensor fusion on the mobile device, i.e. obtaining
rotation of the Android smartphone as described in [167]. Our rotation technique maps
changes in device orientation on the Yaw and Pitch axis, which can then be converted to
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a 2D position relative to the center of the display. Participants were asked to keep the
device’s roll with the screen facing up within 45 degrees in each direction, as this facilitated
stability in orientation detection.

4.2.4 Task and Stimulus

The experiment was a 2-factor between-subjects experiment. Participants completed a
demographic questionnaire followed by a two phase study, a training phase that leverages
touch of mid-air followed by an experimental phase involving mid-air input.

In the training phase participants had a visual representation of a 4 x4, 16 item marking
menu. For each trial in the training phase, a prompt was displayed on the top-left corner
of the screen indicating what selection to make. Participants selected a command based
on the prompt, which then displayed on the top-right hand side of the screen, in either
green with a check-mark or red with an X, to indicate a correct or incorrect selection,
respectively. Each new prompt was one of 8 items from the marking menu and only
displayed upon correct selection. Prompts were presented in random order for each block.
Short breaks were given every 32 correct selections (4 blocks). The training phase consisted
of 20 blocks of 8 selections for 160 selections in total. Participants were assigned to one of
two conditions in the training phase, either TOUCH or MID-AIR, as follows.

e Touch: Participants learned the marking menu via a touch interface on mobile device.
They were instructed to press their finger down on the screen, navigate through the menu
(drawing a gesture on the screen), until they have reached the item they wish to select.
Once they have completed the gesture, they release their finger. The experimenter gave
a brief demonstration with no interface on the mobile device’s screen of how to complete
a gesture. The interface was displayed on the mobile device screen.

e Mid-Air: Participants learned the marking menu via an external display positioned in
front of them, motivated by prior work [1, 10, 9, 47, 58, 59, 70, 110, 177, 222]. They
were instructed to navigate through a menu, using a mobile device as a “wand” to point
where to select on the screen. Their movement path was displayed on the screen as
they completed a motion. To begin a gesture, they press down on the volume down
button on the device. When they have completed the gesture, they release the button.
The experimenter gave a brief demonstration with no interface on the monitor of how
to complete a gesture. Menu and motion path are displayed on the external display (to
avoid obfuscation as in the Oakley et al. training [165]).
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In both conditions, participants were asked to learn the menu as best as possible, because
in the experiment phase they would have to complete the gestures in MID-AIR with no
visual interface guiding them. In the training phase participants were required to select
the correct target before moving to the next selection.

The experiment phase followed the exact procedure of the training phase, with the
exception that no visual marking menu interface was displayed (Figure 4.4) and prompts
changed upon every selection made (regardless of correctness, to keep a consistent ex-
periment time and reduce frustration in the case participants did not learn the menu).
The experiment phase was always conducted with MID-AIR gestures. Prompts and cor-
rect /incorrect indicators were displayed on the external monitor. The experimenter gave a
brief demonstration with no interface on the monitor of how to complete a MID-AIR ges-
ture, but participants were not permitted to confirm whether or not their interpretation
was correct.

In each phase, participants were permitted a break after 32 (4 BLOCKS x 8) selec-
tions. After each phase, both training and experiment, participants completed the NASA-
TLX [72].

4.2.5 Design and Analysis

Our 2-factor between-subjects experiment included the following parameters: TRAINING
CoNDITION (TOUCH vs. MID-AIR, between-subjects), X BLOCKS (20) x commands (8)
X participants (14) for a total of 2240 command selections in the experiment phase.

Our analysis focuses on whether cross-modal training (i.e. learning mid-air gestures via
touch input) is as effective as learning mid-air gestures via mid-air training. As a result,
dependent measures are error rate and time to perform mid-air gestures in the experimental
phase of the experiment. We also assess, quantitatively, whether mid-air training provides
a statistical advantage versus touch training for learning mid-air gestures, and qualitatively,
on how large the advantage of consistency in training (mid-air to mid-air) is compared to
cross-modal (touch to mid-air) training.

4.3 Results

Our quantitative analysis consists of the error rate and timing of mid-air gestures. Error
rate represents the fraction of mid-air gestures ([0, 1]) performed correctly in the exper-
imental block given two training conditions — touch or mid-air training. Likewise, time
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Figure 4.2: Interface interfaces for the TOUCH condition, showing the dragged motion path
in white.

represents the time from prompt or from gesture initiation for mid-air gesture input in the
experiment phase given each training condition in the training phase.

Before beginning our analysis, we performed a power and sample size determination.
We set a threshold of 100ms for a temporal cost that would represent a significant difference
in temporal performance. The standard deviation of our data set for time from prompt to
selection was 1876ms and time from beginning a gesture to selection was 804ms. Because
our data was not normally distributed, we applied a log-normal transform of our data,
yielding a normal distribution. We found that, to support a 95% confidence interval for a
2-tailed analysis of effects, we required a sample size of at least 5 participants per condition,
or 10 participants. Our data set of 14 participants exceeds this threshold.
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Figure 4.3: Interface for the MID-AIR condition on a monitor (external display), showing
the movement motion path (i.e. pointer path) from the mobile device.

4.3.1 Error Rate

Figure 4.5 shows the fraction of gestures performed correctly in each condition. When
participants train to perform mid-air gestures via mid-air training, 89% of gestures are
performed correctly; interestingly, with cross-modal or touch training for mid-air gestures,
the rate of correct gestures is slightly higher, 94%. We performed a y? analysis of error
rate and found that the difference was not significant (p = 0.45), indicating no significant
difference in error rate for mid-air versus touch training of mid-air gestures.

4.3.2 Time

We ran an independent samples t-test on the mean time from prompt to selection and
mean time from beginning a gesture to selection for participants in our study. Figures 4.6
and 4.7 show the length of time from prompt to command selection and from beginning of
gesture (as measured by displacement of the device) and command selection. Differences
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Figure 4.4: Experiment phase interface, always in MID-AIR on a monitor (external dis-
play). No visual guidance is provided.

were not significant (T2 = —0.076,p = 0.94 and T}5 = 0.085, p = 0.93 respectively). Upon
observation, time from prompt to gesture was slightly shorter and time to gesture slightly
longer for the touch training condition, but neither measure exhibits statistical significance.

We also analyzed gesture time per block. One factor that does seem to differentiate
touch-based training of mid-air gestures is that the first mid-air gesture performed in the
experimental block is significantly slower (longer time) than subsequent blocks. Figure
4.8 demonstrates this effect, a result of the initial cost of switching modalities [50]. How-
ever, participants quickly converged on equivalent performance, and, by the second and
subsequent blocks, performance was indistinguishable.

4.3.3 NASA TLX

Recall after each phase in the user study, training and experiment, we asked participants
to complete the six category NASA Task Load Index [72]. We performed a multivariate
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Figure 4.5: Rate of correct selections across conditions (error bars indicate SD).

analysis (MANOVA) on reported TLX scores and found no significance across each study
phase (training or experiment) and each condition (TOUCH or MID-AIR). These results
are depicted in Figure 4.11. Between subjects tests indicated significance for reported
physical demand scores (F394 = 3.869, p < 0.05). Post-hoc analysis using Tukey’s HSD
indicated a difference in physical demand between the training and experimental phase for
participants who trained using touch and between training via touch and the experiment
in mid-air (after mid-air training).

4.4 Discussion

With quantitative analyses as presented in results, it is often desirable to examine hypothe-
ses, but, in this work, our goal was slightly different. We expected touch-based training to
be worse than mid-air training for mid-air gestural input, and our goal was to quantita-
tively assess a qualitative question: How much worse is touch-based training for learning
mid-air input?

Surprisingly, our results argue that touch training is as effective as mid-air training to
learn mid-air motion gesture input. There is no statistically significant difference between
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Figure 4.7: Time from beginning a gesture to selection across conditions.

error rate and time, and, qualitatively, overall values of performance appear similar in
the experimental phase: touch training results in slightly higher accuracy scores and both
training mechanisms exhibit similar interaction time. Stated more succinctly, we found that
participants were able to effectively learn marking menu gestures through an alternative
mechanism (touch).
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Figure 4.8: Time from prompt appearing to selection across blocks by condition.

Our control condition, of teaching mid-air gestures from scaffolding on a distant display,
echoes findings of previous literature — users are able to learn bodily motions, gestures, in
particular — through a representation of the required movement path on an external display
[10, 110, 9, 1, 177, 184]. Our result — of cross-modal learning — echoes findings of Kamal et
al., who showed that an alternative mechanism of revealing a gesture (on-device video plus
recognizer feedback) was as effective as instruction via an external display representation
of the gesture [110]. We note the difficulty in comparing our findings with the literature
as we are unaware of prior studies that observe learning free-space (mid-air) gestures via
touch.

In our view, mid-air gestural input as we have formulated the problem has much in
common with keyboard accelerators. Users typically use one, sub-optimal modality (e.g.
a menu or toolbar) to perform commands. However, use of these sub-optimal commands
provides them with an awareness of an expert mode - a keyboard accelerator - that can
sufficiently enhance performance. Cockburn et al. [50], in studying this learning of expert
performance, note that moving from a novice to expert mode may have a performance cost,
and we do see a brief performance cost in our experimental phase during the first block of
eight gestures as participants habituated themselves to the new input modality. However,
after that one habituation block, participant performance converged to being qualitatively
indistinguishable for the remaining blocks in the experimental phase.

There are some potential slight differences in NASA TLX ratings that might merit
further investigation. In Figure 4.11, it is observed that training in mid-air resulted in
the lowest overall average TLX score. Participants who trained in the touch condition
provided some insight of why this may be, for instance, “the occlusion of the menu by
my finger” [P16, trained via touch]. Since they were aware that they would have to later
perform gestures in mid-air, one participant noted “learning the gestures on the phone in
part 1 was somewhat stressful” [P10, trained via touch].
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Figure 4.11: Overall NASA TLX scores across phases and conditions (error bars indicate

SD). Training phase conditions are performing via touch or mid-air. Experimental phase
is always performed in mid-air, conditions are mode which training phase was completed.
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4.4.1 Future Work

While our results demonstrate that we can leverage touch-based training to teach in-air
marking menus, the marks represented in marking menus and evaluated in our study are
comprised only of two straight-line segments where the two segments vary only in direction.
One area of future work is to assess cross-modal gesture learning on more complex gesture
sets, including ideographic, alphanumeric and multi-stroke gesture sets [201] to see if our
findings hold. Furthermore, alongside mid-air gestures that can be rendered on a 2D plane
(i.e. planar gestures, as in the gestures by Siddhpuria et al. [201]), one could imagine
teaching 3-dimensional rotation gestures with a hand-held device, where the user could
rotate their finger or add an additional finger to indicate a rotation and we could explore
mappings to mid-air such that non-planar mid-air gestures could be trained via touch.
Another area extending from the current work is the incorporation of haptic feedback with
our cross-modal learning technique [177, 197]. Exploration of this space could include
haptic feedback while learning on a touch surface in an effort to further ingrain gestures
into a users memory, providing haptic effects while interacting in mid-air, or using both of
these in conjunction to create a more congruent mapping between modalities.

4.5 Limitations

In our study, the participant sample size is limited. To counter this, we performed a sample
size power estimate to ensure that our sample generates sufficient statistical power to
identify discrepancies at the level we wish. Alongside this, we also note that, qualitatively,
sample size is a highly questionable critique given that the error rate for touch training is
actually lower than the error rate for mid-air training and given that temporal profiles are
so similar — again touch training resulting in lower prompt to selection timing. Thus, in
conjunction with our sample size power estimate, it would be highly unlikely to identify
significant differences with a higher sample size, meaning that our likelihood of type 2 error
is quite low.

Alongside this obvious limitation, it is true that we do not explore delimiter costs in
mid-air input. However, we note that, first, delimiters are a cost for mid-air input whether
training is done mid-air or by touch, so this is not germane to our research question. Second,
if we were to evaluate delimiter cost for mid-air versus remaining in touch modality for
input, we would also need to measure, in some fashion, the cost of screen input in touch
being restricted during touch input (i.e. we need to provide touch on-screen so other apps
must be closed) versus the use of, for example, a delimiter motion gesture to switch the
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phone into gesture input mode [187] before accessing a command via a mid-air marking
menu.

4.6 Conclusion

One challenge with mid-air gesture input is that gestures are not self-revealing, so to teach
users gestures, it is common to use an external display and/or tracking to provide guidance
and feedback to the user. Revisiting RQ 2, that is under what circumstances do users need
to transition from a novice mode to a secondary mode?, we shed light on the challenge of
providing novice guidance to non-self revealing interactions — such as mid-air input. In
this work, as self-revelation is unavailable, we examine whether or not we can leverage
another modality, touch, to teach users a mid-air gesture set. Leveraging the paradigm of
free-space marking menus, and a smartphone, as a motion-gesture-style input device, we
explore how well learning in touch transfers to mastery in mid-air input when compared to
learning and performing in mid-air. Our results argue that transferring spatial knowledge
of marking menus between touch and mid-air exhibits similar performance as obtaining
such knowledge in mid-air, with only minimal, short-term performance cost.
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Chapter 5

Typing On The Thigh for HMDs

While we can conceptualize the transfer of simple unistroke gestures between modalities,
the question then arises of whether complex unistroke gestures can transfer to new modal-
ities in the same way? Due to the intricate nature of complex gestures, as opposed to
providing an in-study training task, we wished to look at whether we can leverage existing
interface expertise to assist in transition to a secondary mode in a new modality? (RQ 3).

Utilizing the complexity of word-gesture input, in this chapter, we introduce STAT, a
mobile touch typing technique for HMD that leverages smartphone screen located at the
thigh. Through a controlled laboratory study, we compare users’ ability to transfer pre-
existing QWERTY expertise to perform tap text input and word gesture text input via a
new modality: STAT. We then explore whether users can then transfer expertise gained via
rehearsal with STAT to perform the technique within an enclosed pocket. Lastly, we present
design recommendations for the opportunistic use of transferring keyboard expertise to use
a personal touchscreen device positioned at a user’s thigh for HMD text entry.

5.1 Introduction

Over the past decade, there has been a surge in popularity of head-mounted displays
(HMDs) for presenting an augmented or virtual reality to the wearer. Many HMDs, such
as smartglasses, are designed to be ubiquitous displays for providing a personalized, always
available, augmented view, without requiring external hardware. A challenge arising from
these HMDs, which has subsequently become a roadblock in their widespread adoption
(e.g. smartglasses), is the lack of an input mechanism for their control [153].
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Figure 5.1: Sample interactions using STAT techniques — STATSwype on-thigh (left) and
STATTap in-pocket (right).

One primary input mechanism we require for HMDs is some facility for text entry. There
is an extensive body of research on techniques for text entry in wearables, including HMDs
(e.g. [130, 145, 232, 247]). In general, text entry is a challenge in ubiquitous computing as
input either requires a button or key associated with each character, or some form of gesture
or chord to describe characters or words. This, in turn, may require specialized devices
[145], additional sensors [232], or learning a new input mapping [247] to effectively input
text. Gaze eliminates the need for specialized devices, but is perceived to be “complex,
strenuous and slow” [7], and both speech and gaze suffer from issues of social acceptability,
especially when compared with on-device interaction [181]. While it is possible to type on
a virtually displayed keyboard [205], this requires tracking of finger position and, without a
physical surface, it is challenging for users to localize keys—potentially reducing the speed
and accuracy of such a technique. Thus, a large amount of research has been dedicated
to optimizing text input when using a virtual display—resulting in increased performance
via novel interaction techniques [4, 84, 205, 247, 246]. Many of these techniques, however,
require specialized hardware or physical controllers that often encumber the user’s hands
during interaction.
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In recent work, Akkil et al. [7] note that, for users of smartglasses and other HMDs,
mobile phones are considered to “complement” HMDs, particularly for functions where
the HMDs are lacking, such as text entry. As users have become proficient in text entry
[180] on mobile touchscreens, we propose integrating this existing proficiency with HMDs.
Leveraging a state-of-the-art mobile keyboard (SwiftKey), we introduce a soft keyboard
variant we dub STAT, Subtle Typing Around the Thigh, a low-cost, mobile, touch typing
technique. STAT supports both tap and word gesture text entry, leveraging a smartphone
screen at a user’s front thigh area. This chapter describes the implementation of STAT
and a controlled within-subjects study of the technique. The results indicate that STAT
can reach average speeds of 13.15 words-per-minute (WPM) for word-gesture input and
13.37 WPM for tap-based text entry after minimal training. The main contributions of
this work are:

e (1) an innovative, low-cost solution to text entry for HMDs; and

e (2) a comprehensive laboratory study contrasting users’ ability to transfer pre-existing
keyboard knowledge to word-gesture typing and to tap-based typing (in and out of an
enclosed pocket)

Our results indicate users are capable of transferring their existing keyboard knowledge
to a new, unfamiliar interaction modality and we argue for the feasibility of leveraging a
personal smartphone placed on the users thigh to support text entry for HMDs.

5.2 Related Work

5.2.1 Around Thigh and In-Pocket Interaction

When a person’s hand or arm is at resting state, either seated or standing, it is most
often place on or around the thigh, as depicted in Figure 5.2. Thus, on-leg and in-pocket
interaction is an active area of research, as an ideal location for subtle, unobtrusive, low-
fatigue input [141, 201]. In-pocket techniques such as Tap [182] and Whack [104] leverage
the on-device IMU to capture quick, gestural commands. Other in-pocket systems leverage
touch-sensing fabric [94, 111] or augment the smartphone to capture touch events through
fabric [189]. In contrast to these, alongside the Nintendo Ring Fit’s leg strap [163], other
researchers have also looked at strap-on controllers to capture at-thigh interactions [141].
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On-thigh input is particularly opportunistic because, as Thomas et al. note [208], the front-
of-thigh seems an optimal location for high precision input — even in contrast to other on-
body locations such as the wrist or forearm — without compromising user comfort. However,
care must be taken when supporting interactions near the waist, as these interactions can
have low social acceptability ratings [178].

With respect to HMDs, two proposed around-thigh techniques specifically applied to
touch interaction are Belt [63] and Pocket Thumb [64]. In Belt, Dobbelstein et al. [63] added
metal divets to a leather belt for touch sensing capabilities, allowing a large horizontal
surface for input near a user’s waist and found that interaction near the front pocket was
preferred for touch input in general (particularly for longer interactions of 10s or more),
and interactions near the belt buckle (in the middle) were less desired. Leveraging this
idea, PocketThumb employs a dual-sided touch surface, on the inside of a pocket, for the
user’s thumb and index finger, where the thumb is used as a cursor and the index finger to
tap indicating selection (i.e. a pinch gesture). In a target selection task they determined
the dual-sided interaction was more efficient than a single-sided touch interaction [64]. One
challenge with the systems built for around-thigh and in-pocket interactions is that, while
effective, they all require additional hardware for facilitating touch input around the user’s
thigh. In contrast, a system such as the Nintendo Ring Fit’s leg strap makes use of a
pre-existing controller that the user already owns (as part of the Nintendo Switch system),
and the controller is strapped to the user’s thigh [163].

Text Entry on Constrained Touch Interfaces for HMDs

We define a constrained touch interface as a device with limited space for providing input.
Previous studies have worked on improving touch typing interactions on constrained touch
interfaces such as devices with ultra-small interfaces or small interaction space. Within
this space, Ahn et al. [4] explored various techniques that leverage a smartwatch’s touch
screen. TipText [243] uses small finger-tip gestures to capture text input (but requires
augmentation of the fingertips). Researchers have also used the surface of an HMD for
text input, e.g. the arm of smartglasses [80, 135, 247]. Typically, these small screen text
input techniques reach input speeds of between 8 and 11 WPM. Alongside constraints of
screen size, physical restriction can further constrain the use of touch interfaces—e.g. when
a user’s hand is in their pocket. Zhong et al. [256] presented a subtle pressure-based text
input technique that leveraged an off-the-shelf iPhone with (now discontinued) pressure
sensing. Users entered text by varying pressure via their finger on a smart phone touch
screen. While they note in-pocket interaction as a use-case, they do not explicitly evaluate
in-pocket performance.
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Figure 5.2: Position of the arm or hand at resting state.

5.2.2 On Thigh Gestural Text Entry for HMDs

To synthesize, we revisiting the question in Section 2.4 of: how far can this knowledge
transfer be pushed to mew contexts?. Taking into consideration the requirement for text
entry in head-mounted displays, the natural integration mobile devices can provide for
wearable devices, and the seamless input space on thigh interaction provides, we ask: can
the spatial knowledge of a keyboard layout be leveraged to provide word-gesture text input
to a thigh mounted device?

5.3 STAT Design

STAT is designed to be a subtle technique to facilitate text entry while wearing an HMD.
The subtlety of the technique lies in its positioning [141]: the controller is mounted to the
front of the user’s thigh, the typical location of a user’s hand/arm at rest, when seated
or standing. The technique is implemented using two components: the controller and the
display.
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To implement STAT, a Huawei Nexus 6P running Android 8.0.0 was used for the display,
with screen dimensions 2560 x 440 (landscape), encased in a MoGo Cinema2Go headset
[142]. The headset allows for near-display viewing, i.e. the phone display remains the same
but appears as a large screen close to the user’s eyes in the HMD. The smartphone for
text entry was an LG Nexus 5 running Android 6.0.1, with screen dimensions 1080 x 1920,
mounted to the user’s thigh either using a Velcro strap (portrait), as shown in Figure 5.3a or
inside a simulated pocket attached to the user’s clothing, Figure 5.3b. A “simulated” pocket
was chosen both for internal validity (to control pocket size for consistent measurement)
and to ensure inclusivity of participants (regardless of wardrobe preferences/size). Both
the HMD and the smartphone for text entry were connected to a Macbook Pro (OSX
10.11.6) and information was wired through USB between the two devices and sent via
tep/adb forwarding.

5.3.1 STAT Controller Design and Input

During the design phase, we evaluated a series of potential interactive designs via pilot
studies. We explored screen layout mechanisms and input paradigms, including whether a
Word-Gesture-Keyboard (WGK) or a Tap-Based-Keyboard should be used.

Two-State versus Three-State Input and Screen Orientation

One challenge with mobile phone touch-screen based input is that mobile phones are a
two-state input device (versus a three state model [38]) due to the absence of a tracking
state. Furthermore, because of the presence of an HMD), the user’s eyes are focused on the
HMD. As a result, the user is typing eyes-free relative to the smartphone screen.

In Zhu et al.’s I'sFree [257] developed a shifting QWERTY layout to support eyes-free
typing, where they synthesize a deformation model for WGKs that they then apply to
infer word gestures. However, one challenge we found in applying an eyes-free technique
was the inverted mapping which alters spatial perception. As well, while Zhu et al.’s
technique can effectively be used for WGKs, it is unclear how accurate the technique
would be for character-by-character entry, and, given that character-by-character entry
appears to be the most common smartphone-based text entry paradigm [168], we felt it
important to support both character-by-character and WGK-based text entry. Character-
by-character text entry was plausible with Lu et al.’s eyes-free technique [143], however,
without spatial perception of where your fingers are tapping in relation to the edges of the
phone, as possible while holding a phone, this becomes a challenge. While we considered
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performing additional analysis to explore inverted eyes-free tap typing, in pilot testing,
another option presented itself—the use of multi-touch input to support a 3-state input
model. We highlight the ability to support text entry without spatial perception — via
3-state input — as an integral difference in our work in comparison to Blindtype [143] and
I'sFree [257], which leveraged 2-state input.

To capture 3-state input, STAT takes advantage of the multi-touch nature of the smart-
phone screen by dividing the screen into a touchpad and a button. Given the position of
the smartphone on the thigh, the “top” section (dimensions 1080 x 608) of the smartphone
is used as an absolutely mapped trackpad for a cursor on the HMD. This “top” section
is positioned further from the waist (so nearer the user’s knee). The bottom section (di-
mensions 1080 x 1312) of the smartphone is a button to indicate an action (either being
a gesture or tap on a character, Figure 5.3c) and is positioned nearer the user’s waist. To
use the smartphone for text input, the user positions their hand on top of the screen; the
index, middle or ring finger can be used on the trackpad as a cursor, and the thumb is
used to press the button for an action.

Screen separation was chosen for several reasons. First, when mapping the text entry
smartphone to HMD, the HMD smartphone was landscape oriented and thigh positioned
smartphone portrait; this complicated mapping for our participants, leading us to divide
the screen so that mapping was more natural. Second, our pilot studies highlighted an
advantage in dedicating the lower section to state-switching. Consider, for example, if the
user navigates to the right edge of the thigh-mounted phone with their index finger and
attempts to tap with their middle finger they will miss the screen, whereas the thumb will
always be placed on the lower portion of the screen (closer to the user’s belt) regardless
of index finger position. Thus screen separation and mapping ensures the thumb is always
ideally positioned to manipulate input state. Finally, the separation of sections allows
for navigation with only minimal movements of the navigational (index) finger. In a con-
strained pant-pocket, the deeper the hand is, the more restricted movement becomes, and
in our technique, the navigational finger (placed deeper in the pocket) does not require
lifting/tapping at all, while the thumb (placed nearest to the pocket entrance) is at the
easiest location for lifting/tapping (to switch states).

Gesture versus Tap-Based Text Entry
Given the above 3-state model, Gesture versus Tap text entry can be supported. Actions

differ subtly based on two different implementations of the STAT technique: STAT Tap or
STATSwype.
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e STATTap: This implementation utilizes tapping on each individual key to type. Finger
position on the track pad in the top section of the controller is depicted as a cursor
on the HMD. The user moves the cursor using their finger to the letter they wish to
type, and presses the button in the bottom section of the controller using their thumb
to select.

o STATSwype: This implementation utilizes word gesture typing. Again, finger position
on the track pad is depicted as the cursor, and the user presses the button with their
thumb to start a word gesture. To end the word gesture, the user can lift their finger that
is on the track pad or press the button again in the bottom section with their thumb.
In the case a word gesture is not recognized, to type a single letter the user can press
the button with their thumb twice in a row (double-tap), or press the button with their
thumb once and release the cursor finger (lift-cursor-finger).

Alongside character-by-character and WGK typing, both auto-correction and word-
completion are also commonly used techniques to assist users in fast, accurate typing [168].
In order to provide these features, many researchers make use of state-of-the-art keyboards
that incorporate language models such as the Google or SwiftKey keyboards for gesture
recognition [155]. In our work, we make use of the SwiftKey keyboard [155]. Events were
injected using Android NDK [61] to the SwiftKey keyboard on the HMD. The smartphone
used for text entry was in incognito mode to prevent confounds introduced by the learning
of user input. Participants were permitted to use predictive text and auto-complete during
text entry. Corrections were completed by tapping backspace, and participants could only
backspace a single character at a time.

Finger Movement Mapping

One primary design decision that must be made in STAT is how best to map finger motion
on the display to cursor motion in the HMD. Consider Figure 5.3b, where the participant
is standing with the controller smartphone in the simulated pocket. The keyboard could
either be mapped such that gestures toward the waist, gestures that are “up” relative to
the ground, map to “up” in the HMD display (upright mapping), or gestures that move
toward the waist, away from the ground, could be mapped “down” from the perspective
of the user in the HMD (inverted mapping).

We performed a series of pilot studies, and in all cases, participants preferred inverted
mapping, where gestures toward the waist map as down. Because this perspective was the
most natural for end users, we adopted it for our STAT evaluation/implementation.
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Figure 5.3: (a) A participant using STAT for text entry on the HMD; (b) A closeup of
the STAT controller on a user’s thigh, with the index finger being used on the top section
trackpad as a cursor, and the thumb on the bottom section to press the button for an
action; (c¢) The simulated pocket used for in-pocket interaction; (d) State diagram for user
input using STAT; (e) The experimental interface used for performing text entry.

5.4 Experimental Protocol

In this section, we describe an evaluation of STAT. The purpose of the user evaluation was
two-fold: first, to assess the validity of typing on the thigh, where the user’s hand naturally
rests when seated, and where the user’s front pocket on the side of their dominant hand
would be; and second, to compare implementations for interacting in this location, using
either gestural text entry (STATSwype), or tapping text entry (STATTap).

Aside from these two primary questions, we wished to investigate whether or not users
were capable of using the aforementioned techniques, once they had learned to type on
their thigh, while carrying their phone in a more constrained environment (in a pocket
or bag, where these devices are typically carried). To provide a preliminary investigation
of the in-pocket interaction use-case (i.e. as suggested by Zhong et al. [256]), a pocket
(taken from a pair of trousers so as to keep pocket size and tightness the same for every
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participant) was clipped to the participant’s waistband and held in place with an adjustable
elastic strap (Figure 5.3b). The study followed a within-subjects design, counter-balancing
ordering of conditions. The apparatus was as-described in the previous section: i.e. a
Huawei Nexus 6P in a MoGo Cinema2Go headset [142] for the display and an LG Nexus
5 at the user’s thigh (either externally or encased in the strap-on pocket) for text entry.

5.4.1 Participants

12 participants were recruited for the study and paid $15 for the session. Average age was
24.92 (SD=2.27). Two participants identified as women and the remaining ten identified
as men. All participants were post-secondary students from a technically-focused univer-
sity. Each participant signed an informed consent form before starting the experiment.
Participants were screened for motion sickness and whether or not glasses were required
for normal vision, to reduce possible discomfort while wearing the HMD.

B Always

25%

34% @ Often

[JSometimes

8%

B Occasionally

8% B Never

25%

Figure 5.4: Distribution of participants’ self-reported usage of word-gesture typing.

5.4.2 Procedure

Prior to the study, participants were asked to self-report expertise with the QWERTY
keyboard and word gesture typing (depicted in Figure 5.4), as well as general demographics
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(e.g. gender, age, occupation, and handedness). Thereafter, participants were fitted with
an adjustable elastic strap around their thigh on the leg on the side of their dominant
hand, with a Velcro section facing the front. They sat on a chair for the duration of
the study—between 1 and 1.5 hours. In order to get a baseline of participants’ mobile
typing speed, before being given instruction on the upcoming typing technique to be used,
participants were asked to type five phrases with either tap or word gesture typing, without
the HMD and holding the device in their preferred manner, i.e. not attached to their
thigh. Following this, the controller phone was mounted to the Velcro section of the
strap on the participant’s thigh and the display phone fastened to the headset which
was then placed on the participant’s head. Depending on the ordering of the conditions,
participants were instructed to perform a series of text entry tasks (described in more
detail in the next section) using either the STATSwype or STAT Tap implementation. To
assess for potential learning of word-gesture text entry, upon completion of the STATSwype
technique, participants were asked to do a second block of gestural text entry on the mobile
device, holding it in their preferred manner without the HMD.

In the STATSwype condition, participants were told that they could ‘double-tap’ or ‘lift-
cursor-finger’ on each individual character, if they were unable to type the correct word or
phrase after the first attempt with gesture typing. This was made possible because, first,
it is common for users to employ both tapping on individual keys and gesture writing in
the same phrase (as mentioned in [84]) and second, to ensure that participants attempted
gestural text entry at least once before abandoning the input method in preference for tap.

Task

We assessed the STAT technique using Castellucci and Mackenzie’s TEMA application [43],
used for assessing text entry on android devices. The TEMA application presented random
text phrases from the Mackenzie corpus [147] and participants were asked to transcribe
these phrases. Each participant completed 5 trials (1 trial = 1 phrase) per block, with a
total of 4 blocks for each condition. Upon completing each phrase, participants selected
the enter button on the keyboard to continue. At the end of each block they were given
the opportunity to take a break. Participants were told to focus on accuracy and speed
while completing the task. If participants had an uncorrected error rate (UER) of 15%
after a trial, they were required to re-do the trial. After completing the 4 blocks of one
condition, participants were asked to complete the NASA Task Load Index (NASA-TLX)
to measure perceived workload.

After the TLX, participants performed one block (transcribing 5 phrases) with the
controller in the simulated pocket (Figure 5.3b). Then, participants were asked to comment
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on the experience interacting in-pocket in comparison to out-of-pocket (mounted on the
thigh). Once this was complete, participants repeated these steps in the second condition
(either STATTap or STATSwype). At the end of the session, participants were asked which
text entry method, tapping or swyping, they preferred in-pocket, and which out-of-pocket.
Finally, participants were debriefed, asked for additional commentary and paid for their
participation.

5.4.3 Measures

At a high level, our study reports on the following: Performance (measured with text entry
and error rates), Perceived Workload (measured using the NASA-TLX), and Subjective
Preference (measured through survey questions at the end of each condition and session).
Text entry rate was measured using WPM, where a word is five characters (including
spaces). Text entry duration for each trial began when the participant’s finger tapped
the bottom section of the controller, and ended when the participant ends the final word
(either by releasing their finger on the upper section of the controller or by tapping the
bottom section of the controller). The error rates calculated were corrected error rate
(CER), which considers rectified errors made during transcription, and uncorrected error
rate (UER), i.e. errors left uncorrected.

The study employed a within-subjects design with the following factors and levels:
condition (gestural text entry out-of-pocket, gestural text entry in-pocket, tap text entry
out-of-pocket, and tap text entry in-pocket) and block (1-4).

In total, we collected:
12 participants x ((5 phrases x 4 blocks x 2 conditions)
+ (5 phrases x 2 conditions))
= 600 phrase data points

5.5 Results

5.5.1 Gesture vs. Tapping - Out of Pocket
A repeated measures Analysis of Variance (RM-ANOVA) was conducted for text entry rate

(WPM), uncorrected error rate (UER) and corrected error rate (CER) with two factors:
condition (levels: gesture and tap), and block (1-4).

81



16 0.045 0.2 q

= o o
o
= 5 o
6- | I I | 0.025 - 1 I I | 0.0 - \ T T \
1 2 3 4 1 2 3 4 1 2 3 4
Block Block Block
O STATSwype ® STATTap

Figure 5.5: Each dependent measure across blocks and conditions (out of pocket). Error
bars indicate a 95% confidence interval.

Text Entry Rate (WPM)

Figure 5.5 (a) shows the text entry rate in WPM across the 4 blocks, for both STAT Tap and
STATSwype. There is no significant effect of condition on text entry rate, nor an interaction
effect of condition and block. However, block does have a significant effect (F3 33 = 25.662,
p < .001). Bonferroni post hoc tests indicate significant differences between block 1 and 2
(mean difference = -2.537, p < .001), block 1 and 3 (mean difference = 3.051, p < .001),
and block 1 and 4 (mean difference = -3.443, p < .001). Growth in WPM appears to slow
from block 2 onward for both conditions—for STAT Tap performance seems to plateau, but
continues slight growth in STATSwype from block 2 to 4. Mean WPM scores are depicted
in Table 5.1.

Uncorrected Error Rate (UER)

Figure 5.5 (b) depicts the UERs over the 4 blocks. There is no significant effect of condition
nor block; although we note a near significant effect on block (Fs33 = 2.423, p < 0.1). It
may have been the case that some uncorrected errors were due to certain words not being
present in the Swiftkey dictionary (as was found in prior work that used the same task
setup [85]).
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Condition Block | WPM | UER | CER
SS out 1 8.92 | 0.04 0.15
SS out 2 12.12 | 0.03 | 0.13
SS out 3 12.45 | 0.03 0.11
SS out 4 13.15 | 0.04 0.12
SSout (mean) | - | 11.66 | 0.035 | 0.1275
ST out 1 10.72 | 0.04 | 0.03
ST out 2 12.59 | 0.04 0.03
ST out 3 13.28 | 0.04 0.03
ST out 4 13.37 | 0.04 0.04
ST out (mean) - 12.49 | 0.04 | 0.0325
ST in 1 12.25 | 0.04 0.03
SS in 1 12.31 | 0.04 0.11
HHT 1 36.30 | 0.04 0.02
HH S 1 22.68 | 0.04 0.09
HH S 2 26.14 | 0.04 0.08

Table 5.1: Summary of means by block and condition. (SS = STATSwype; ST = STAT Tap;
in = in-pocket; out = out-of-pocket); HH = hand-held (T = tap, S = gesture). Note: Block
2 for regular on phone gestures is reported to control for those who were word-gesture typing
novices.

Corrected Error Rate (CER)
Figure 5.5 (c) presents the CERs, showing a clear contrast between the two conditions. In
fact, condition has a significant effect on CER (F;1; = 64.129, p < .001), with a mean

difference = 0.096. There is no effect of block or condition*block. Mean CERs are depicted
in Table 5.1.

NASA Task Load Index

We found no significant effects across conditions via the NASA TLX. Results are summa-
rized in Figure 5.6.
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Figure 5.6: Categorical NASA TLX scores across conditions out of pocket. (O = Overall,
PD = Physical Demand, TD = Temporal Demand, P = Performance, E = Effort, F =
Frustration)

5.5.2 In-Pocket vs. Out-of-Pocket

A one-way RM-ANOVA was conducted for text entry rate, UER, and CER, with one factor:
condition, with four levels (Block 4 of STATSwype out-of-pocket, Block 4 of STAT Tap out-
of-pocket, STATSwype in-pocket, and STAT Tap in-pocket).

There was no significant effect of condition on text entry rate or uncorrected error rate
(UER). Mauchly’s test of sphericity indicated the assumption of sphericity was violated
for CER (p < .05). Using Greenhouse-Geisser correction, there was a significant effect of
condition on CER (Fy gs1,18.4903 = 18.408, p < .001). Bonferroni post-hoc tests (summarized
in Table 5.2) indicate a significant difference between STATSwype in-pocket and STAT Tap
in-pocket (mean difference = 0.080, p < .001); STATSwype in-pocket and STAT Tap out-
of-pocket (mean difference = 0.079, p < .001); STATSwype out-of-pocket and STAT Tap
in-pocket (mean difference = 0.085, p < 0.01); STATSwype out-of-pocket and STAT Tap
out-of-pocket (mean difference = 0.084, p < 0.005). No significant difference was found
between STATSwype in-pocket and STATSwype out-of-pocket; and between STAT Tap in-
pocket and STATTap out-of-pocket. This indicates that once users had learned to type on
their thigh, they were able to transfer this knowledge to a more constrained environment,
with little loss in accuracy; further depicted in Table 5.1.

A correlation matrix was conducted for text entry rate (WPM) across the following
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Figure 5.7: Each dependent measure for block 4 of out-of-pocket (SS out, ST out) and
in-pocket conditions (SS in, ST in). Error bars indicate a 95% confidence interval.

85



SSin | SS out ST in ST out
SS in 1 —0.005 | ***0.080 | *** 0.079
SS out 1 **0.085 | **0.084
ST in 1 —8.69¢74
ST out 1

Table 5.2: Results of Bonferroni Post-hoc comparisons of CER for in-pocket vs. out-of-
pocket. Mean differences (standard error) shown. ** indicates significance at the 0.01
level, and *** at 0.001. (Naming conventions follow Table 1).

conditions: Blocks 1 and 2 of regular handheld word-gesture text entry, Block 4 of out-
of-pocket for STATSwype and STATTap, and both STATSwype and STATTap in-pocket.
Significant results are summarized in Table 5.3.

Condition | Condition | Pearson’s r p

SS out ST out *0.641 | < 0.05
SS out HH S 2 0.738 | < 0.01
ST out ST in 40.743 | < 0.01
SS in ST in *0.620 | < 0.05
SS in HHS 1 *0.629 | < 0.05
SS in HH S 2 *0.692 | < 0.05
ST in HH S 2 *0.599 | < 0.05
HH S 2 HH'T *0.579 | < 0.05

Table 5.3: Significant correlations between conditions for WPM. Naming conventions follow
Tables 5.1 and 5.2. * indicates significance at the 0.05 level, ** at 0.01, and *** at 0.001.

5.5.3 Subjective Preferences

Preference for either STAT implementation did not seem to exhibit any strong trend.
However, for out-of-pocket interaction, participants seemed to lean more toward word-
gesture typing, with 7 participants preferring STATSwype, 3 preferring STAT Tap and 2
had no preference either way. For in-pocket, 5 participants preferred STATTap and 7
preferred STATSwype.
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5.6 Discussion

This work demonstrates and evaluates the STAT technique for HMDs. Two implementa-
tions of STAT were tested: STATTap and STATSwype, and two levels of constraint: in
and out of an enclosed pocket. At a high level, our results indicate: (1) STAT is com-
parable to prior work in text entry for HMDs, (2) STATSwype and STATTap exhibit
similar performance and combining their usages would likely improve the technique, and
(3) while out-of-pocket is usually preferred, in-pocket text entry is feasible under certain
circumstances (unrestrictive pockets).

5.6.1 Comparison of Performance with Prior Work

Since our study measured 4 blocks of 5 phrase trials, we focus on the novice stages of
top performing related techniques of each category (findings outlined in Table 5.4) at the
closest reported WPM measure to 20 phrase trials. Surprisingly, our technique was able
to substantially outperform prior cursor based techniques that had an average rate of 7.66
WPM vs. the current techniques’ average rates of 12.49 and 11.66 WPM.

The techniques that out-perform STAT are head pointing [246], controller pointing
[205], and techniques optimizing hand-held smartphone typing [143, 244, 257]. Considering
head and controller pointing, we note that, while speed is high, gaze is perceived to be
strenuous [7], and may suffer from issues of social acceptability [181]; in contrast, while
specialized handheld controllers may exhibit stronger overall performance, they are yet
another device to locate, and, as Akkil et al. note [7], mobile phones are considered a
natural complement to HMDs for functions such as text entry — particularly, since users
can easily transfer their pre-existing soft-keyboard knowledge to the new modality.

This, then, leads to smartphone-based techniques for HMD text entry. While blind
tapping [143] and eyes-free gesturing [244, 257] have higher reported input rates, it is im-
portant, first, to note that Lu et al.’s evaluation was performed on a touchpad oriented
with the screen and Yang et al.’s [244] and Zhu et al.’s [257] techniques are restricted to
gesture-typing. As well, all were evaluated such that user’s can monitor the position of the
touchpad /smartphone via inter-hand proprioception and peripheral vision (both of which
simplify spatial correspondence targeting [171]). In our pilot evaluations, the inverted and
strapped nature of the device increased the complexity of the targeting problem. We high-
light these phenomena as a trade off revealed when introducing the usage of a truly eyes-free
technique, such as STAT, where users have more limited proprioception and peripheral vi-
sion of the touch screen input device (than prior approaches discussed [143, 244, 257]).
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Finally, in contrast to these prior approaches [143, 244, 257], positional correction for eyes-
free tap-typing and gestural typing both depend on dictionaries; STATTap can handle
out-of-dictionary words due to its ability to select characters deterministically.

This is not to say that past work in blind-tapping and eyes-free gesture typing are
flawed in any way; we believe that there is a second trade-off between hands-encumbered
techniques such as those of Lu et al., Yang et al., and Zhu et al., and techniques that
use more subtle forms of input via specialized controllers or restricted input spaces [4, 85,
243, 246, 247] as highlighted in Table 5.4. After minimal training, and considering Table
5.4, STAT’s performance recommends it as a useful addition to the suite of techniques for
text-based input on HMDs. Though a useful comparison, we do acknowledge limitations
due to the varying number of phrases in each study.

Technique # of phrases | WPM
STAT Tap 20 12.49
STATSwype 20 11.66
Eyes-free WGK [257] 10 22.44
Indirect Touch WGK [244] 10 19.40
Eyes-free Tapping [143] 30 17-23
Head Pointing WGK [246] 8 17.04
Controller Pointing [205] 5 15.40
Index + thumb tapping [243] 40 11.90
Smartwatch [4] 60 10.24
Wrist Rotation (via ring, WGK) [85] 20 9.20
Arm of SmartGlasses [247] 18 8.84
Eyes-free Cursor [143] 15 7.66

Table 5.4: Text entry speed of related techniques (WPM) in comparable (novice) learning
stages. We note a challenge in this direct comparison with differing # of phrases. (WGK
= Word Gesture Keyboards).

5.6.2 Design Implications

We conclude this discussion section by addressing issues of gesture versus tap text entry
and in- vs. out-of-pocket use.

38



Gesture vs. Tap Text Entry

Our results indicate comparable performance for our two technique variations in terms
of speed, with STATSwype reaching 13.15 WPM on average in block 4 and STATTap
reaching 13.37 WPM on average in block 4. Both conditions exhibited learning over time,
as depicted in Figure 5.5 (a). STATSwype may have a slightly steeper learning curve than
STATTap, and, while both converge on a similar speed, STAT Tap appears to be plateauing
sooner than STATSwype, so results for STATSwype could be pessimistic. One participant
noted this, stating: “I think that gesture could be better in both scenarios if I had more
time to practice more and become more comfortable with this method of typing” [P9].

A notable difference between techniques is the CER—while STATSwype exhibits com-
parable speed to STATTap, a significantly higher amount of corrections, thus increased
usage of the backspace key, were required to input the same phrase. This highlights an im-
portant trade-off in comparing the techniques: small deviations, gesture collision between
similar words, and out-of-dictionary words in gestural text entry will be more detrimental
to recognition of the intended word or phrase, but in-dictionary words that do not collide
will require less effort (not having to tap for each individual character), a higher risk, higher
reward input scenario. However, since we restricted correction to deleting each character
(as opposed to word-deletion), optimizing of correction/backspacing is likely to increase
speed of the STATSwype variation and increase its external validity — particularly since
users tend to spend more time on correction in real-world mobile-typing than in laboratory
studies [118].

Considering real-world gestural text entry on smartphones, while we restricted partic-
ipants to at least try the gesture first before employing the secondary tap technique in
STATSwype, a combination of the two (as on modern smartphones) would likely exhibit
better performance, giving the user the choice to tap or gesture if they think a word will
not be correctly recognized. [P9] observed that “smaller words are much more difficult
than larger words in the gesture method”—thus for words they believed would not be rec-
ognized, they would prefer tapping. One advantage of STAT in real-world use is that, as
with modern smartphone-based WGKs, both tap and gesture typing can elegantly co-exist.
While our chosen task for evaluation was transcription, due to ease of comparison with
related works, a composition task [220] would assist in assessing these real-world scenarios
in future work, and has the potential to reveal additional benefits of incorporating out of
dictionary text in tapping conditions.
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In vs. Out of Pocket

Our results for in vs. out of an enclosed front pants pocket exhibited similar performance
(see Figure 5.7), but typing out-of-pocket was approximately 1 WPM faster in comparing
each condition to their in-pocket counterpart. As anticipated, some participants noted
pitfalls of typing in-pocket: the hand posture was more challenging [P5, P7], the cloth made
dragging difficult [P3], and there were instances of accidental activation/tapping [P5, P7].
Additionally, some participants noted that in-pocket interaction may be difficult to do if
wearing pants with tighter pockets [P4, P8]. While we controlled pocket size/flexibility, the
interaction would not be plausible if pockets were too restrictive to contain both the user’s
hand and phone, while allowing for small motions of the hand; an issue likely to arise for
stiff, “skinny” pants — which clothing companies have begun to combat with increasingly
more flexible fabric.

We expected that users would prefer STAT outside of an enclosed pocket rather than
inside for two reasons. First, prior literature notes that social acceptability increases when
it is obvious that the user is interacting with computation [181]; we assumed an explicit
controller near the thigh would be perceived as more socially appropriate than subtle
touches on one’s body near the waist or movement of fingers within one’s pocket. As
well, the physical constraints of the pocket on the user’s hand might make input more
challenging. However, surprisingly, multiple participants indicated a preference for in-
pocket interaction: i.e. “inside felt better because I was getting some additional support
from the pocket walls which made me feel less fatigued” [P3]; “[it] felt almost the same, but
[a] bit easier, since I felt that the phone was more stable [in-pocket]” [P9]; the edges of the
pocket were effective boundaries [P8, P11]; and “inside the pocket seemed more practical
[...] Twould use it if it was available” [P11]. Others noted there was “no difference” [P4]
or it was “the same” [P6] as out-of-pocket, and that it was “trickier but not as much as I
expected it to be” [P5]. These comments by participants suggest that on-body interaction
near the user’s waist may not always be perceived as less socially acceptable [178]. Further,
these results indicate that physical restriction may not necessarily be a limiting factor to
the usability of STAT in constrained spaces.

5.6.3 Limitations

First, considering study design, we evaluated participants primarily in a seated position.
This decision was driven by two aspects of our study configuration: the specific HMD
used and study length. Considering our HMD, as noted in the Experimental Protocol,
we used a MoGo Cinema2Go headset with a Nexus 6P smartphone. This headset, while
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allowing a headlocked (egocentric) display solution for mobile device screens, lacks the
comfort of other common VR HMDs, such as HTC’s Vive or Oculus Rift. Thus, for
participant comfort, in an extended time frame wearing the headset (1-1.5 hours), our
research ethics protocol was restricted to a seated position. While we initially piloted
interaction in a standing position using STATSwype, we found the technique exhibited
comparable performance to a seated position; thus, we determined tap (STATTap) vs.
gestural text entry (STATSwype) to be a more useful contribution of the experiment.
While standing in a stationary position in lab may exhibit similar performance, in mobile
situations we would undoubtedly anticipate a degradation in performance. It becomes a
challenge to compare how walking and/or running would impact performance across text
input techniques, primarily because past at-side text input techniques such as Twiddler
[145] and “eyes-free” input techniques [4, 84, 143, 205, 244, 246] were also evaluated in
fixed, stationary contexts. However, an exploration of text input while moving serves as
an interesting avenue for future work of the current technique, as well as others cited.

Next, while our method of strapping a capture device to a user’s leg echoes past work
on subtle input [141], we acknowledge that this is somewhat unrealistic. We replicate prior
evaluations [141] by strapping an input device to the thigh as a mechanism to evaluate the
potential of forthcoming input mechanisms, such as pants pockets that allow transmission
of touch input through fabric or interactive and touch-sensitive fabrics that transmit input
to personal devices. Considering our use of a simulated pocket, it is the case that, unless
users choose to wear pockets that have sufficient space or flexibility, in pocket text entry (or
even carrying a smartphone in pocket) may not be desired. Past research [84, 141, 145, 208]
addressed this by simply wearing the input device at belt or side, as in our strap-on
condition. In the end, we chose to include a comparison of in- and out-of-pocket, as
improving touch typing interactions on constrained touch interfaces is an area of ongoing
research [4, 63, 64, 84, 130, 243, 256] with applications that include in-pocket text entry
[256]. Given that many people do carry phones in their pants pockets (21 out of 23 of
our survey respondents), we felt both in- and out-of-pocket had merit for exploration, but
— while out-of-pocket text entry could be achieved through a strap on a users leg (e.g.
Nintendo’s Ring Fit [163]), a belt clip [145] or, through fabric that permits text entry
atop pants pockets — in-pocket text entry requires small hand movements [256]. While
screen separation (see Section 3.1.1) does permit touch input in restricted spaces, both the
use of a strap-on sensor and the use of a simulated pocket is one factor that may impact
generalizability of our evaluation to real-world contexts.

Finally, we recognize a critique of the work may be the chosen sample size or number of
repetitions. Our selection of sample size was initially motivated by prior text entry work
(122, 143, 145, 257], and HCI literature, in which 12 participants was the most common
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sample size reported [40]. As recommended by Caine [40], to ensure that sample size
limitations were considered, we performed a power analysis on the 95% confidence interval
of sample size 12 for moderate effect size (0.3), means of 12.5 and 11.7 (WPM), S.D.
of between 3.0 and 3.1, which yielded power estimates above 0.95 for repeated measures
analysis due to highly correlated speed and error across conditions (note that the results
of power analysis — while not reported in past work — may be one reason for sample size
selection in past work). Also, while we show that both STATTap and STATSwype are
effective implementations for text entry, with only 20 repetitions of phrase entry it may be
that our results are pessimistic estimates of the potential of STAT. A longitudinal study
may provide more accurate final performance estimates.

5.7 Conclusion

In this work, we aim to determine whether users can leverage existing interface expertise
to assist in transition to a secondary mode in a new modality? To address this, we assess
two variations of Subtle Typing Around the Thigh (STAT), a text entry technique that
allows for subtle, low-cost, unencumbered text entry for head-mounted displays (HMDs).
Through a controlled laboratory evaluation of the technique, we validate whether users can
transfer their pre-exisitng expertise with the QWERTY layout on a soft keyboard to STAT,
to both a secondary mode, the word-gesture variation STATSwype, and the consistent
mode, tap-based text entry variation STATTap. Atop this, we investigate how well the
users can then transfer their new skill acquisition to inside a more constrained interaction
environment: inside a user’s front pocket — and find only a minimal performance cost to
doing so. While the expertise transfer from QWERTY soft keyboard experience to STAT
shows promise by exhibiting comparable results to the literature for HMD text entry, the
modality transition does result in a substantial initial performance and ceiling cost.
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Chapter 6

Lessons in Mode and Modality
Transfer

When we interact with computing systems, there often exists multiple interaction mech-
anisms that we can apply to complete the same task. As an illustration, we will use the
example of a user wanting to zoom in on a PDF document displayed in macOS’s Preview
application on a laptop, as there are at least four different methods they can use. First,
they could right click on the document, open a contextual menu and navigate to zoom
in (Figure 6.1). They could also use the menu bar, navigate to “view”, then to zoom in
(Figure 6.2). Though these first two methods are within the same modality, that is, mouse
based interaction, they are different modes of accomplishing the same task. You could
also leverage two different modalities for identical command invocation: by pressing a hot
key of “Command +” (Figure 6.3), or, by gesturing pinch-to-zoom on the trackpad (Fig-
ure 6.4). Though transferring from one of the more novice modalities, likely the manual
menu navigation technique to the hot key modality (or “expert” modality), could exhibit
an intermodal transfer style as characterized by Scarr et al. [195], this characterization
is limited to these strict novice to expert transitions. It’s less clear how other modes or
modalities may transfer to each other.

Kurtenbach notes, in the early 90s, that typically, good interfaces provide two modes
of operation: novice and expert [127]. In reality, with the amount of multi-modal, cross-
device, and truly pervasive computing today, interaction is far more nuanced. For instance,
what if a user is moving from PDF annotation on a laptop to a mobile device? It’s
likely that the mobile device would be less efficient, however, in mobile or ubiquitous
scenarios, this type of interaction can be extremely useful. Thus, one could imagine benefits
introduced by transferring expertise between these two modalities.
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Leveraging the specific use case of unistroke gestural input and findings outlined in
chapters three through five, this chapter is dedicated to characterizing mode and modality
transfer both within and outside of the context of novice to expert scenarios.

Und ding Mode and Modali = : Tnd ding Mode and Modali

Transfer in Unistroke Gesture Input Transfer in Unistroke Gesture Input

Jay Henderson

Figure 6.3: Hot key zoom in. Figure 6.4: Trackpad pinch to zoom in.

6.1 Should we force users to transfer modalities?

First, we will take a deeper look into our initial research question of whether or not users
should be penalized, or forced, into transferring modalities. As mentioned in section 2.2.3,
in his doctoral dissertation, Kurtenbach introduces the principle of rehearsal — that novice
actions should mimic those of an expert to “smoothen” transition to expert interaction
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techniques — the foundation of what marking menus are built on [127]. To encourage
transition to the expert interaction technique (mark mode), the novice user is artificially
penalized via delay. However, if the novice action is virtually identical to the expert
action, should novice performance be penalized? In the specific case of rehearsal-based
interfaces, this introduces a trade-off of whether penalties should be applied to optimize
highly practiced use.

Taking our results of contrasting a zero delay marking menu to the traditional mark-
ing menu into account, we illustrate a characterization of the performance trade-off in
mode/modality transfer for rehearsal-based, novice to expert transitions, depicted in Fig-
ure 6.5. As in Scarr et al.’s Dips and Ceilings, novice to expert mode or modality transfer
is characterized by two power curves and a switch between the initial mode to the second
mode results in a performance dip — which Kurtenbach’s principle of rehearsal aims to
mitigate [127]. The first mode or modality relies on recognition, or guidance within an
interface, and the second relies on recall.

For the purpose of the current work, as is typical in the HCI literature, we define
performance as a function of time (including preparation, execution, selection), and rate of
correctness. In our characterization, we introduce a non-penalized, truly unimodal curve,
where the user can always rely on recognition, or scaffolded guidance — shown in red — as
opposed to recall.

As you can see, for the novice user, there is an increase in temporal performance; this is
illustrated as the area between the unimodal, non penalized curve, U, and the novice mode
curve, N, from initial performance (t = 0) to the switch in mode/modality (s) (presented
in orange). By implementing a penalty, this region of untapped performance is lost. Thus,
if we recall that area between two curves is the integral of the the lower function subtracted
from the upper function, we can conceptualize novice mode difference («) as:

o= [ U= N@ at (6.1)

For the expert technique, there is also a potential increase in temporal performance —
if, in the expert mode area, the area between the expert mode curve, F/, and the unimodal
curve, U, is positive. We will refer to this as expert mode difference (/3), defined as,
the area between the unimodal curve and the expert mode curve (£) from the switch in
mode/modality (s) to the point of intersection (v), represented in green, subtracted from
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Figure 6.5: Mode/modality transfer characterized by removing penalty for relying on recog-
nition in rehearsal based interfaces.

the area between the unimodal curve and the expert mode curve from the intersection (v)
to the maximum time spent using an interaction technique (max), depicted as the section
in purple.

58— / B — U@ i — / U -BEnd (62)

So, for any particular command, there is a temporal benefit to a penalty if:

0>«

Note that this characterization will apply to each command individually. So, the
penalty must be advantageous for more potentially invoked commands than not. I say
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potentially invoked commands, as not all commands will be used as frequently as one an-
other, e.g. the copy hot key on macOS (Command C) is likely used more often than the
table of contents hot key (Option Command 3). Additionally, not every command has an
equal stake in terms of speed. For instance, if commands are in a gaming environment
where temporal factors are of a higher degree of importance, a shooting command likely
has a higher temporal requirement than an open menu command. Thus, for a system
leveraging penalty to benefit from expert temporal performance, the following must be
true:

Z pckcﬁc > Z pckcac (63)
c=0 c=0

where:

c is each individual command

k is the number of times a command, (¢), will be invoked
n is the total number of commands

p is the time sensitivity of a command | 0 < p < 1

One might assume that since the expert curve appears to continue infinitely, that g
will always be greater than «, so the penalty would always be useful. However, that is
dependent on how long the user continues to use the mode or modality to invoke a com-
mand, in other words, how far along the time axis before the user stops using a command
or system. This also applies to the novice interaction or first modality, the user may never
interact with a system long enough or with enough repetitions to even reach the transition
to expert mode. This has been evident in commercial implementations of marking menus
— Kurtenbach noted in our email correspondence that “some users never used marks” and
“many people have to be told about mark mode. They don’t seem to discover it”. Taking
this into consideration, there seems to be a disconnect between research literature and
implementations of these interaction styles in practice.

Though the first experiment in Chapter 3, reveals ambivalent benefit of the use of
penalty in marking menus, Cockburn et al. [51] argue that designers should consider
explicitly increasing mental effort, as they show that greater effort from the user will
benefit learning spatial tasks in graphical user interfaces. However, they do note that
this is of particular interest when the main objective is to train users to interact with
interfaces that are highly dependent on spatial properties — including gesture shapes or
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keypad layouts. Their findings are echoed by Lewis et al. [132], who show that greater
penalties, specifically when using delay, increased the usage of expert interaction techniques
in the case of marking menu and FastTap [90] style interfaces. However, they also found
that the greater penalties also decreased accuracy, so they discourage the use in high-
stakes interaction. We, too, observe this in Chapter 3, where participant error increases
as forced recall increases. Understanding if fully autonomic behaviours can persist when
more than a small number of menu items are to be accessed is an outstanding question.
Furthermore, while we observed that visual disruption may cause small delays in fully
autonomic action, it may be the case that, with increased experience, this slight delay
vanishes because users are able to overlook the disruption. In general, it is difficult to
draw strong conclusions about the benefit of delay for expert use, and it is clear that delay
is a significant impediment to throughput during learning [133].

The results from Cockburn et al. [51] and Lewis et al. [132] are somewhat expected due
to the guidance hypothesis, which suggests that augmented feedback geared to improve
early performance through guidance may impair retaining the performed skills once the
guidance is removed [196]. However, if removing guidance is not necessary, do we really
need to rely on recall? Or is recognition sufficient? As the benefits are purely temporally
related, and as recognition lowers error rate overall (as we discuss in Chapter 3 and as
found by Lewis et al. [132]), if relying on recognition is possible, it isn’t detrimental to
performance. We therefore predict, and our results suggest, that less cognitive resources
being spent on skill acquisition in interaction, will allow for a greater degree of focus on the
particular task at hand. This is not to say that recall methods aren’t useful, but, rather,
that benefits should be carefully weighed as to whether or not they should not be forced
upon users by discouraging reliance on guidance mechanisms. In addition, other methods
that do not temporally impact users could be used to activate recall methods, such as a
hot key, in order to not penalize novice users, but to preserve the shortcut mode/modality.

So, from our characterization, penalties should be reserved for highly specific, time
sensitive, frequently used interactions, and it is vital to weigh the costs and benefits
before introducing penalty.

Experiment one and two in Chapter 3 solidify the left-most and right-most portions of
Figure 6.5; that is, for initial stages of skill acquisition, we see a substantial decrease in
performance (orange region). In the autonomous case, as described by Fitts and Posner
[67], we see an increase in performance (green region). However, the more intermittent
stages of skill acquisition, or the associative stage, is less understood, and will require
additional research for further understanding.
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6.2 When do we need to transfer modes/modalities?

Our above characterization, and our results from Chapter 3, posit that reliance on recog-
nition in the general use case for interaction can be beneficial to users. If this is the case,
our second proposed research question was: Under what circumstances do users need to
transition from a novice mode to a secondary, recall, mode?

These situations can be categorized as guidance free interactions — where it is either
impractical or impossible for the user to rely on recognition, and must rely on recall. As
guidance is usually provided via a visual mechanism [1, 10, 9, 47, 58, 59, 70, 110, 177,
222], these are generally either eyes-free interactions, interactions that do not encumber
the user’s visual perception, or interfaces that do not have display capabilities, examples
including;:

e Mid-air input: Mid-air input is not-self revealing [25], so without some form of external
display to guide users on how to perform input to a system, there is no natural mechanism
to introduce interaction techniques to the user.

e In-vehicle input: When operating a vehicle, e.g. a car, drivers’ attention should ideally
be dedicated to the road, and not to a guidance mechanism presenting interface controls.

¢ Eyes-free mobile touch input: Prior works have introduced eyes-free touch input
on mobile devices [143, 257], so that (1) the screen can be freed to hold other content
and/or (2) the user can visually focus elsewhere.

e Imaginary touch interfaces: Imaginary touch interfaces are spatial, non-visual, touch
interfaces on any display-less objects or on the user them self [87, 88|

In these cases, since there is a desire to focus on recall during performance, we build
upon the concept of using a separate modality that is capable, or allows for, visual guidance,
in an effort to implicitly train users how to perform such inputs. In other words, we
suggest leveraging an input mechanism that can trivially supply guidance, for mode or
modality transition, to an input mechanism that requires recall. This is in congruence with
Gustafson’s Imaginary Phone placed on the palm, where users transfer spatial knowledge
from a mobile device touch screen to perform touch input on an ambiguous display-less
surface [87] and Vatavu’s suggestion that gestures in a novel modality (such as mid-air)
should be familiar to users from prior interactive modalities [214].

As presented in chapter 4, we zero in on the particular use case of mid-air marking menu
gestures, that falls into the first example noted above. From our findings, we characterize
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Figure 6.6: Characterization of transferring between recognition and recall modes across
modalities.

this type of modality transfer as shown in Figure 6.6. The characterization consists of four
power law performance curves. The first curve, depicted in solid black to the left of the
mode or modality switch, is representative of the training or novice modality, as it reaches
ultimate performance. The three performance curves after the switch in mode or modality
are as follows:

e The blue curve — depicting optimal performance — is exhibited when there is the smallest
possible difference between the novice modality and the target modality (second modal-
ity). In chapter 4, this would be indicative of performance after training in mid-air for
a second mode also in mid-air — the same modality. As can be seen, there is a dip in
performance due to the switch in mode (visual guidance to no visual guidance), but the
dip remains relatively small due to the modality consistency.

e The next best is the novice modality that has a greater difference to the target modality
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— the red curve. From chapter 4, this would represent the performance in mid-air after
training via touch. The dip in performance is greater than that of the consistent modality
training, but once the necessary adjustments are understood by the user, performance
converges.

e Lastly, the baseline scenario, depicted as a dotted black curve, means no training at all.
The user can eventually converge on ultimate performance, but the process would likely
be slow and erroneous, due to relying on trial and error.

The area between the consistent modality performance curve and the cross modal per-
formance curve, in green, represents the net performance increase in learning via the same
modality as performance versus learning from an alternative modality. Between the cross-
modal curve and baseline curve is the net performance increase for learning across modal-
ities versus no training at all. T’ll also note, that this characterization aims to represent a
spectrum of modalities that can be used as an alternative training modality, for example
for mid-air interactions, this could be video representations, mouse input, touch input,
etc. We then suggest, that the less different the training (first) modality is to the target
(second) modality, the (1) smaller the performance dip (PD), and (2) less time to converge
to ultimate performance (T'C') of a second modality.

Thus, we theorize:

TC o« Amodality (6.4)
PD «x Amodality (6.5)

6.3 Transferring to less efficient modalities

As I mentioned in the initial portion of the chapter, mode or modality transfer may not
always be devoted to a performance increase. Though the prior cases were geared more
toward performance increase through the requirement of recall over recognition, there are
other scenarios that may benefit from transferring between modalities — even when guidance
mechanisms are still present for users. In this section, we will take a deeper look at how
existing expertise with a mode or modality, can increase performance and ubiquity of an
interactive technique.

Transferring the spatial knowledge of a desktop QWERTY keyboard layout to a mobile
QWERTY keyboard is one of the most widespread interaction techniques that has stemmed
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from the concept of leveraging existing expertise in another modality, for a less efficient,
more convenient modality. Palin et al. [168] found that soft keyboard mobile typing was 15
WPM slower than physical desktop typing, and participants left more errors uncorrected
on mobile devices. Even though there is a performance cost, these interactions are still
valuable and have been commercially successful — as they introduce a number of benefits in
comparison to desktop environments, such as portability and flexibility in display content.
This transfer of keyboard layout expertise was also a culprit in prior modalities for text
input on mobile being largely discontinued, such as T9 or multi-tap.

Within the HCI literature, this knowledge transfer of the QWERTY keyboard layout
has been continuously used for creating intuitive interactions in novel modalities [85, 143,
243, 247, 246] — all of which suffer a deterioration in performance in comparison to the
original desktop form factor and even to the mobile soft keyboard. In the same way,
looking purely at performance, we see a substantial decline in comparison to our initial
modality of soft-keyboard typing to the implementations of the STAT technique. However,
as illustrated in Table 5.4, STAT is in the same performance vicinity as other text entry
techniques designed for head-mounted displays, demonstrating its advantages.

Taking lessons from these works, and chapter 5, we present a final characterization
of mode or modality transfer to less efficient second mode/modalities (Figure 6.7), that
may pose contextual benefits. First, we note that in this case, and potentially the prior
cases, the first mode or modality can be viewed as an accumulation of all prior experiences
with a particular, or multiple related, input technique(s). While in our specific user study,
we focus purely on the use case of QWERTY expertise, the characterization is aimed to
generalize beyond this context. Within this model, there are two performance curves after
switching to the target modality:

e The dotted black curve depicts a baseline case, where the user has no prior knowledge of
the interaction technique before engaging in performance — therefore, the curve begins
at 0 on the vertical axis.

e The red curve indicates a new target modality that leverages existing expertise, thus, it
exhibits an initial performance increase in comparison to the baseline case, but a dip in
performance relative to the existing modality expertise.

This reiterates Vatavu et al.’s suggestion that designers should allow users to interact
with new modalities in familiar methods from preceding interactions [214]. The area be-
tween the baseline and the second modality curve (from existing expertise) is indicative of
the net performance increase from using familiar techniques. Setting this characterization
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Figure 6.7: Characterization of transferring expertise from a higher ceiling modality to a
lower ceiling modality.

apart from the others, is the ceiling difference at a lower level of performance than the
previous modalities — thus, exhibiting both a ceiling difference and a performance dip.
Similar to the cross-modal characterization introduced in section 6.2, we hypothesize that
both the ceiling difference (C'D) and performance dip (PD) will be proportional to the
difference in the first modality and the second or target modality; as follows:

C'D o« Amodality (6.6)
PD x Amodality

We revealed these characteristics in chapter 5, to start, when the user transitioned from
their pre-existing QWERTY keyboard expertise to use the STAT technique. As the existing
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expertise was substantially different and more challenging than STAT, the performance dip
and ceiling difference were greater than those exhibited in a more similar interaction to
the prior expertise (as Zhu et al. found in their displayless word-gesture keyboard [257]).
However, when transferring from STAT atop the thigh to in-pocket, as the interactions
were quite similar, only in a more constrained environment, so the performance dip and
ceiling performance revealed a lesser degree of difference.

6.4 Transfer distance between modes/modalities

In section 2.2.1, we define transfer as the ability to perform a motor skill in an environment
or method separate from the context of which it was acquired. This requires the user to
conceptualize the difference between the new method and the originally acquired skill in
order to perform the newly transferred skill, but this distance between a first mode or
modality to a secondary mode or modality can differ between scenarios. In Table 6.1, I
present a few examples of transfer distance between interaction methods.

Transfer Distance | First Mode/Modality | Second Mode/Modality
Performing a touch Performing the same touch
LOW screen gesture with screen gesture with no visual
visual guidance guidance
Performing a touch Performing the same gesture
MED screen gesture with the user’s bare hand
in mid-air
Performing a touch Performing the same gesture
HIGH screen gesture in virtual reality using
foot rotation

Table 6.1: Examples of relative skill transfer distances from low to high.

To illustrate this is terms of the current works, in chapter 3, the transfer distance
between modes is minimal or low — the motor requirements remain relatively consistent,
with the exception of no visible interface. The same is true for transferring on-thigh STAT
to in-pocket STAT (chapter 5); the interaction is almost identical, the display remains on
the same HMD, the controller is a mobile device placed around the thigh, the interaction
remains a three-state-cursor based technique. The difference is the device is placed in
an enclosed pocket, so the motor requirements may slightly change due to the additional
constrained environment.
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There is, however, substantial difference in transferring expertise from traditional QW-
ERTY tap or gesture typing on a mobile device to performing it using STAT, which we
define as a high transfer distance. For example, the mobile device is inverted, the user
must incorporate both their index finger and thumb in the three-state-cursor technique
(as opposed to one or the other likely in typical mobile device input), and the interaction
becomes indirectly mapped with output on a HMD.

6.5 Conclusion

In this chapter, based on results from chapter 3 through 5, we present three characteriza-
tions for transferring expertise between modes or modalities, extended from Scarr et al.’s
Dips and Ceilings [195] and Cockburn et al.’s Supporting Novice to Expert Transitions [50].

While we are optimistic about the generalizability of these models, we note an obvious
limitation of our user studies is that we focused on one particular use case of mode/modality
transition — that is, for transferring to symbolic-abstract unistroke gesture input. Though
this is a very specific use case, we felt since marking menus served as the introductory
HCI piece for the concept of transferring expertise through rehearsal, and that word-
gesture keyboards are one of the most commonly available gesture inputs techniques, that
these were credible starting points. Furthermore, because we use a wide variety of input
mechanisms in our user studies; including mouse, touch screen, in-air, and input for head-
mounted displays, we encompass a large body of interactive equipment and methodologies.
However, we acknowledge the need for confirmation and welcome contradiction or extension
of our characterizations — especially considering the multifaceted nature of mode/modality
transitions.
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Chapter 7

Conclusion

In this chapter, we discuss the implications of our findings, and revisit proposed research
questions introduced in Chapter 1.

The vast majority of related work on mode or modality transitions has been devoted
to strict, novice to expert transitions for optimizing performance in a user interface. The
fundamental goal of this thesis, is to build upon these existing theories of mode or modality
transfer by either questioning existing, accepted, hypotheses or applying them to new
contexts. Using symbolic-abstract unistroke gestures: marking menus and word-gesture
keyboards, we provide insights to the following questions.

7.1 Should interaction designers force users to tran-
sition to a secondary mode?

The seminal rehearsal-based interface, the marking menu, introduced a penalty to encour-
age users to switch from a recognition mode to a potentially more efficient interaction
technique that relies on recall [127]. Despite it’s adoption in the research community, the
necessity of applying a penalty, often deployed through a temporal delay, had never been
questioned. In Chapter 3, we contrast the original marking menu with a no delay marking
menu at varying stages in the skill acquisition process, revealing performance trade-offs
for separating modes via delay. We conduct a deeper dive into whether penalty should be
applied to motivate the use of a secondary, recall-based, mode or modality, and present a
framework indicating when designers should implement penalization in Chapter 6.
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7.2 Under what circumstances do users need to tran-
sition to a secondary mode?

Since in our initial study (Chapter 3), we revealed little evidence for relying on a recall
mode over recognition mode, specifically in marking menus, we theorize that, situations
where displaying visual guidance is impractical could pose advantages for recall mode or
modalities. In the use case of mid-air interactions, since guidance is challenging, we pro-
pose the use of guided touch screen interactions to develop spatial expertise in performing
displayless mid-air interactions. In the context of marking menus, after a short-term per-
formance dip, this type of transfer resulted in similar performance regardless of whether the
user rehearsed using a guided touch screen or in mid-air through an external display. We
further characterize these cross-modal transfers in Chapter 6, introducing a spectrum of
alternative mechanisms for rehearsal and recognize that the degree of interactive difference
will influence performance dips and time to convergence.

7.3 Can we leverage existing interface expertise to as-
sist in transition to a new mode in a new modal-
ity?

After determining the efficacy of transferring expertise across modalities (for touch to in-
air), we study the user’s ability to transfer pre-existing expertise to new modalities. In
a complex unistroke gesture interaction — the QWERTY keyboard layout, that requires
extensive prior exposure, we present an analysis of users abilities to conduct word-gesture
and tap-based text entry in a novel context: touch input to head-mounted display, when
the interface is mounted to their thigh. We found the technique exhibited comparable
performance to other HMD text input techniques, suggesting the validity of the expertise
transfer. Additionally, once users rehearsed the on-thigh technique, they were able to
perform in an enclosed pant pocket without intervention, contributing to our cross-modal
transfer characterization in Chapter 6. As expected, the new context exhibited a lower
degree of performance in comparison to the initial modality (soft-keyboard typing), so we
present an additional characterization for inter-modal transfer outside of novice to expert
transitions, also in Chapter 6, and suggest the performance dip and secondary modality
performance ceiling is proportional to the difference in interaction.
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7.4 Recommendations

Based on findings of our three research questions and our characterization, we make the
following recommendations for interaction design:

1. Consider whether the performance increase in a recall mode justifies penalizing the
novice 1n a recognition mode. Revisiting equation 6.1, there needs to be an advan-
tage for a significant amount of command usage to give merit to penalizing the novice
user. Penalty should be reserved for specific, frequently used, temporally demanding,
command selection.

2. Spatial knowledge transfer can occur across modalities. If a system requires reliance on
spatial recall, the guidance mode can be presented in an alternative modality, to allow
for spatial learning. This approach can provide similar benefits for spatial learning to a
consistent modality. Particularly, mid-air interactions could be an ideal target modality
for touch-based instruction.

3. When possible, leverage existing expertise to increase expertise in novel modalities. Sim-
ilar to the previous point, consistency is key. While this is suggested in prior works,
existing interaction methods can and should be included in novel modalities. This
would allow for reliance on implicit, rather than explicit, learning to ease transfer to
and adoption of new technology.

7.5 Limitations

While we feel our research protocol is sufficient to drawn upon some recommendations and
shed light on new areas for research within mode/modality transfer, our work is inherently
limited in scope. To start, we focus on a niche use case for these transfers: symbolic-
abstract unistroke gestures. However, there are many other types of interfaces that rely
on rehearsal-based transfer, such as MarkPad [71], FastTap [89, 90|, and ExposeHK [150].
While MarkPad relies on unistroke gesture input, the latter two use chording or keypresses.

Secondly, each of our experiments are limited to a relatively small sample size (n ~
12—16), within a limited population (for the most part, university students ages 20-30 from
a technical institution). This is a constraint in much of the human-computer interaction
literature, due to the reach of recruitment in a university setting. Our population sample
generally grew up in the later part of the information age, where personal computers,
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smartphones, and WiFi have become commonplace. It’s less clear if or how different
populations, such as older adults, people with motor impairments, or less experienced
computer users, would transfer expertise across modes or modalities. For instance, in
Chapter 3, a different population may never discover or switch to using the expert mode,
diminishing the temporal benefit for switching. In addition, STAT (Chapter 5), requires
extremely fine-grained motor skills, so regardless of pre-existing expertise using variants of
QWERTY, the skill may never transfer. Taking these limitations into consideration, an
important piece of follow-on work is understanding if and how these results may generalize
to (1) separate populations and (2) other rehearsal-based interfaces.

7.6 Future Work

Undertaking our research agenda in the space of transfer between modes and modalities
has shed some light on additional areas for exploration.

7.6.1 Penalty to other rehearsal-based interfaces

First, as discussed, Chapter 3 largely discourages the use of a delay penalty. However, we
only explore a single type of rehearsal-based interface, marking menus [127, 124]. Marking
menus have spawned an entire area of rehearsal-based interfaces, so we question if our
results can generalize to each of these. Of particular interest is MarkPad [71], that de-
ploys directional gestures on a trackpad, and FastTap [90, 89|, that utilizes chords on a
touchscreen; both of these utilize a guided mode and a recall mode — separated by a delay.

Outside of this, if there are advantages to an expert mode in other rehearsal-based
interfaces, we question whether a technique outside of delay should be used to delimit
the recognition and recall modes. For example, could we use an an additional key press
(like “Shift”), or an double-tap to enter novice mode? How would these techniques impact
performance in comparison to delay?

7.6.2 How far can expertise be transferred?

Since we focused solely on basic, directional stroke gestures for transfer across touch to
in-air modalities, we question whether other spatial unistroke gesture systems will exhibit
similar results. For instance, ideographic gestures, such as drawing a square, or alphanu-
meric gestures, like drawing an “X”. How complex can gestures be when transferring across
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touch and in-air before there is no benefit to cross-modal training? How many gestures
can be transferred? Other than unistroke (static pose and path) gestures, can other types
of gestures, such as dynamic poses, be transferred?

Another area we wished to explore is whether contexts makes a difference. In-vehicle
interactions appeared an opportunistic area to apply cross-modal transfer to, as discussed
in Chapter 6, because they require consistent attentional resources from the operator. If
users can be guided via surface gestures of how to invoke particular commands, we question
if they can then transfer that knowledge to perform mid-air gestures as a shortcut — thus,
leaving more cognitive resources to the primary task of driving.

7.6.3 Quantifying the difference in modes/modalities

Both section 6.2 and 6.3 posit that performance after transition relies on the difference
between the modes or modalities. That being said, while we can observe surface level
differences (discussed in section 6.4), how exactly to quantify these differences is an open
research question. Tu et al. quantified the differences between varying complexities of
unistroke gestures produced on 2D surfaces, using various algebraic and geometric features.
We propose using a similar experimental protocol to determine differences in gesture pro-
ductions between modalities, such as: mouse, trackpad, touch, in-air controller, or in-air
barehand. Analyzing these modality differences can also be of value when transferring
gestures between contexts, as the more representative a trained gesture is to the required
performance gesture, the more likely a system’s produced output will be indicative of the
user intention.

7.7 Concluding Remarks

Expertise transfer across modalities are more common than you think — this field includes
hot keys, consistent gestures across devices (such as pinch to zoom), and physical to soft
keyboard layouts. Throughout my research, it has become abundantly clear that these
types of interaction expertise transitions extend far beyond the novice-to-expert contextu-
alization proposed in the literature. While I acknowledge that our work is a preliminary
investigation of deepening the understanding of these phenomena, limiting our user evalu-
ations to symbolic-abstract unistroke gestures, I feel the findings and subsequently outlined
characterizations will be invaluable for implementing transferable expertise in future inter-
action design.
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