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Abstract

How many samples of a quantum state are required to learn a complete description of it?
As we will see in this thesis, the fine-grained answer depends on the measurements available
to the learner, but in general it is at least Ω(d2/ε2) where d is the dimension of the state and
ε the trace distance accuracy. Optimal algorithms for this task – known as quantum state
tomography – make use of powerful, yet highly impractical entangled measurements, where
some joint measurement is performed on all copies of the state. What can be accomplished
without such measurements, where one must perform measurements on individual copies
of the states?

In Chapter 2 we show a relationship between the recently proposed quantum online
learning framework and quantum state tomography. Specifically, we show that tomography
can be accomplished using online learning algorithms in a black-box manner and Õ(d4/ε4)
two-outcome measurements on separate copies of the state. The interpretation of this
approach is that the experimentalist uses informative measurements to teach the learner
by helping it make “mistakes” on measurements as early as possible.

We move on to proving lower bounds on tomography in Chapter 3. First, we review a
known lower bound for entangled measurements as well as a Ω(d3/ε2) lower bound in the
setting where non-entangled measurements are made non-adaptively, both due to Ref. [18].
We then derive a novel bound of Ω(d4/ε2) samples when the learner is further restricted to
observing a constant number of outcomes (e.g., two-outcome measurements). This implies
that the folklore “Pauli tomography” algorithm is optimal in this setting.

Understanding the power of adaptive measurements, where measurement choices can
depend on previous outcomes, is currently an open problem. In Chapter 4 we present two
scenarios in which adapting on previous outcomes makes no difference to the number of
samples required. In the first, the learner is limited to adapting on at most o(d2/ε2) of
the previous outcomes. In the second, measurements are drawn from some set of at most
exp(O(d)) measurements. In particular, this second lower bound implies that adaptivity
makes no difference in the regime of efficiently implementable measurements, in the context
of quantum computing.

Finally, we apply the above technique to the problems of classical shadows and shadow
tomography to obtain similar lower bounds. Here, one is interested only in determining
the expectations of some fixed set of observables. We once again find that, for the worst-
case input of observables, adaptivity makes no difference to the sample complexity when
considering efficient, non-entangled measurements. As a corollary, we find a straightforward
algorithm for shadow tomography is optimal in this setting.
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Chapter 1

Introduction

1.1 Overview

This thesis is concerned with how many samples of a quantum state ρ are required to learn
some description of it, given various restrictions on what can be done with these samples.
A sample in this context amounts to preparing the state ρ in some register. For the most
part, we focus on quantum state tomography, the fundamental task of estimating ρ to
within some known accuracy ε in the standard trace distance between states. We will be
especially interested in how the number of samples scales with the dimension d of the state
to be learned, since this quantity grows exponentially with the number of qubits comprising
the system and is therefore, in theory, the primary obstacle toward accomplishing the task.

In the setup where samples of ρ are prepared on registers that may be simultane-
ously measured, it is said that the measurements are entangled. A series of breakthrough
works [31, 18, 39] proved that O(d2/ε2) samples suffice to perform tomography using en-
tangled measurements, matching an information-theoretic lower bound due to Ref. [18]
and improving upon previous upper bounds by a factor of d. Note that throughout this
thesis, we consider the case where the states can be full-rank in the interest of worst-case
bounds. We say that the sample complexity of entangled quantum state tomography is
O(d2/ε2) (and Ω(d2/ε2), by the lower bound).

From a practical standpoint, however, entangled measurements are problematic for a
few reasons. Firstly, in the case where one has access to just a single register that can be
prepared in the state ρ, entangled measurements are impossible. (For instance, one might
wish to perform tomography on the output state of a quantum computer by repeating
a computation). Second, even if one had access to n copies of the state simultaneously,
the entangled measurements may require that they undergo some joint unitary evolution
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(hence the term “entangled”) which is not possible if, for instance, one has n non-entangled
quantum systems. Finally, it is not clear how to implement the arbitrary nd-dimensional
measurements which arise in the entangled case, even with access to a suitably large system
that can be prepared in the state ρ⊗n. For these reasons, there is strong motivation to
consider restricted measurement models which have been coined unentangled measurements
by some sources [39, 13].

Within the unentangled model of measurement, one has access only to a single d-
dimensional register which can be repeatedly prepared in the state ρ upon request, at
which point a measurement is performed on the state and the state is discarded. This
means that the number of samples is equal to the number of measurements performed.
Results pertaining to the sample complexity of unentangled tomography predate those for
entangled measurements, potentially due to the practical relevancy of this case. Two promi-
nent examples are the folklore “Pauli tomography algorithm” (outlined in Section 8.4.2 in
Nielsen and Chuang [30]) and an algorithm due to Kueng, Rauhut, and Terstiege [26]
(KRT) based on low-rank matrix recovery. In both examples, the upper bound on the
sample complexity is worse than in the entangled case. However, it is unclear whether this
reflects a fundamental limit on what can be achieved without entangled measurements.

In Chapter 2, we give a meta-algorithm for quantum tomography using unentangled,
nonadaptive binary measurements using at most Õ(d4/ε4) samples. In terms of the di-
mension, this matches an information-theoretic lower bound we prove for this setting in
Chapter 3. We use the term meta-algorithm to denote that it is based on using the re-
cently proposed quantum online learning framework [4] in a black-box manner. In other
words, the procedure is agnostic to the way in which one chooses to implement the online
learning algorithm, so long as it has a sufficiently small “mistake bound”. The techniques
we use to analyze this algorithm’s sample complexity involve an anti-concentration result
to argue that the mistake bound is likely to be saturated using not too many measure-
ments. For this, it suffices to consider rotating binary measurement operators according to
unitary 4-designs. This is in direct analogy with the Hamiltonian updates procedure due
to Brandão, Kueng, and França [12]. Here, an upper bound of Õ(d3/ε4) is shown using
random d-outcome measurements and an adaptation of the matrix-exponentiated gradient
method for online learning which applies in the d-outcome case [35].

What is the best possible sample complexity using unentangled measurements? Haah et
al. [18] partially resolve this question by providing a Ω(d3/ε2) lower bound which matches
the upper bound in the KRT protocol, under the assumption that the choices of measure-
ment are independent of any previous outcomes (referred to as nonadaptive measurements).
However, their bound is not tight for the simplest of tomography protcols (such as the Pauli
tomography algorithm), and does not exhaust a particularly extensive set of realizable mea-

2



Nonadaptive o(d2/ε2)-adaptive Adaptive+efficient
# outcomes O(1) arbitrary arbitrary O(1) arbitrary

Upper bound O(d4/ε2) O(d3/ε2) [26] O(d3/ε2) O(d4/ε2) O(d3/ε2)

Lower bound Ω(d4/ε2) [*] Ω(d3/ε2) [18] Ω(d3/ε2) [*] Ω̃(d4/ε2) [*] Ω(d3/ε2) [*]

Table 1.1: Best known upper and lower bounds for the sample complexity of unentan-
gled quantum state tomography. Ω̃ hides log(d) factors, lack of citation indicates folklore
or implied by other bounds, and [*] denotes results from this thesis. For more on the
assumptions corresponding to the final two columns, see Sections 4.1 and 4.2, respectively.

surement strategies. Indeed, numerous tomography algorithms have been proposed [24, 27,
41] which utilize unentangled adaptive measurements where measurements can depend on
previous outcomes. Chapters 3 and 4 of this thesis are dedicated to providing lower bounds
in each of these measurement scenarios, and in particular in Chapter 4 we derive lower
bounds robust to a wide class of adaptive measurements. We summarize our lower bounds
in comparison to previous work in Table 1.1.

In Chapter 3 we begin by describing the basic framework for proving lower bounds on
the task of quantum tomography. We make use of the observation that state discrimina-
tion of sufficiently well-separated states reduces to tomography with sufficient accuracy.
Our lower bounds then follow from difficult instances of the state discrimination problem,
where the amount of information that the measurement statistics can reveal about the
chosen state is severely limited. “Discretizing” the learning problem in this manner for the
purposes of providing worst-case lower bounds is a standard technique in the field of den-
sity estimation, which is the classical analogue of quantum tomography. (See for example
Chapter 2 of Ref. [36].) To the best of the author’s knowledge, the method was first em-
ployed in the context of tomography by Flammia et al. [16] to derive a Ω(d4/ log(d)) lower
bound when one is restricted to using adaptive binary Pauli measurements. The general
method has since been used successfully in the lower bounds for nonadaptive measurements
due to Haah et al. [18], as well as for lower bounds of a different learning problem known as
classical shadows [23], where the measurements are once again assumed to be nonadaptive.

We first review the proof of the lower bound due to Haah et al. [18], and in the process
improve it by a factor of d when the measurements are restricted to having a constant
number of outcomes. This implies that the straightforward Pauli tomography algorithm
– which uses two-outcome measurements – is optimal in this case. Our analysis leverages
a known connection between the mutual information of two random variables and the
χ2 divergence of their distributions, as well as techniques for Haar integration based on
symmetry. Additionally, our proof does not require that the measurements be rank-one
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POVMs as in Ref. [18].

In Chapter 4 we shift our attention to the case where the sequence of measurements
can be made adaptively, which represents an intermediate restriction between nonadaptive
and entangled measurements. Much less is known about the sample complexity of learning
quantum states using adaptive measurements, though it has arguably more significance:
proving advantages for entangled measurements over unentangled measurements for some
learning task amounts to showing that adaptive measurements have strictly worse sample
complexity. It was posed as an open problem in Wright [39] to provide examples where
this is the case, and there has been some recent progress here, though not for the problem
of tomography. As recently as 2020, Bubeck, Chen, and Li [13] gave the first unconditional
separation between entangled vs. unentangled measurements, for the problem of quantum
state certification. Following this, Huang, Kueng and Preskill [22] proved an exponential
separation for the problem of determining the expectations of Pauli operators to constant
accuracy.

The lower bounds we present in Chapter 4 are the first to show a setting in which
adaptivity makes no difference to the worst-case sample complexity of learning a quantum
state. The catch is that we assume additional restrictions on the measurements beyond
belonging to the class of unentangled measurement schemes. However, we believe these
assumptions to be fairly mild, and the author is not aware of a proposal for adaptive
quantum state tomography which fails to meet at least one of these assumptions.

The first restriction admitting a tight lower bound is one we term limited adaptivity,
where the learner has infinitely many measurement settings, but may only adapt on a
fixed subset of the outcomes which is not larger than Ω(d2/ε2). The techniques we use to
obtain this bound are the same as the ones employed in the unconditional lower bounds of
Ref. [13].

The second kind of restriction under which we can show tight lower bounds is that of
efficiently implementable measurements. This comes from the fact that the lower bounds
we prove are robust to any measurement scheme which uses adaptive measurements drawn
from a fixed set of up to exp(O(d)) settings. We explain this in greater detail in Chapter 4.
We arrive at this lower bound by adversarially constructing our instance of the state
discrimination problem to be as difficult as possible for the specific set of measurements
under consideration.

Finally, we apply this technique to obtain a lower bound for the problem of classical
shadows robust to adaptively chosen measurements, so long as they are efficiently imple-
mentable. Here one is interested in estimating the expectations of some collection of ob-
servables, with practical applications ranging from entanglement verification to near-term
proposals of variational quantum algorithms [23, 33]. We also find that a simpler procedure
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than the one given in Ref. [23] is sample-optimal for classical shadows with unentangled,
efficient measurements, and under worst-case assumptions for the set of observables.

1.2 Preliminaries

This section contains relevant notation and facts that may be referred to as needed.

Sets

Let Z+ denote the set of nonnegative integers, U(d) the set of unitary operators acting on
Cd, H(d) the set of Hermitian operators acting on Cd, Psd(d) the subset of H(d) which is
positive semidefinite, and D(d) the subset of Psd(d) which has unit trace (i.e., the set of
d-dimensional quantum states). For some positive integer N > 0, let [N ] = {1, . . . , N}.

Operators

For any square operator A ∈ Cd×d let A† denote its adjoint. Let X ∈ H(d) be a Her-
mitian operator with spectral decomposition

∑d
i=1 λk(X)|k〉〈k|, where λd(X) ≤ · · · ≤

λ1(X) are its eigenvalues. For a function of the form f : C → C, we define f(X) =∑d
i=1 f(λk(X))|k〉〈k|. Let ‖A‖1 = Tr(

√
A†A) denote the “trace norm” of the operator A

and note that ‖X‖1 =
∑d

k=1 |λk(X)|. Let ‖A‖F =
√

Tr(A†A) be the Frobenius norm of

the operator A and note that ‖X‖2F =
∑d

k=1 |λk(X)|2. Let ‖A‖ be the spectral norm of
the operator A which is the operator norm induced by the Euclidean norm on Cd. We
have the useful relations ‖A‖F ≤ ‖A‖1 ≤

√
d ‖A‖F and ‖AB‖F ≤ ‖A‖ ‖B‖F. For any two

operators P,Q ∈ Psd(d), we have the relation P � Q if and only if Q − P ∈ Psd(d). A
useful result is that, for any ρ, σ ∈ D(d) we have

‖ρ− σ‖1 = 2 max
0�P�1

Tr(P (ρ− σ))

where the trace distance between two quantum states ρ, σ is defined to be the quantity on
the left-hand side. Let A,B ∈ H(d) and consider the operator A⊗B. We denote by Tr2(·)
the operation of tracing out the second system, i.e., Tr2(A⊗B) = ATr(B).

Permutation operator

The swap operator W acting on (Cd)⊗2 is defined by the action W |ψ〉⊗ |φ〉 = |φ〉⊗ |ψ〉 for
any two vectors |ψ〉, |φ〉 ∈ Cd. We may extend this procedure to arbitrary permutations,
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defining the operator Wπ for each π ∈ Sn and acting on (Cd)⊗n by the action

Wπ|x1〉 ⊗ · · · ⊗ |xn〉 = |xπ−1(1)〉 ⊗ · · · ⊗ |xπ−1(n)〉

for every choice of vectors |x1〉, . . . , |xn〉 ∈ Cd.

Random variables

We denote random variables using bold font, including matrix-valued random variables.
We use lowercase p, q with appropriate subscripts to denote the distributions of random
variables. For example, suppose x is a random variable taking values in X according
to some distribution px : A → [0, 1], where A is the set of Borel-measurable subsets of
X . Let S be some finite-dimensional vector space, and let f : X → S. Then we write
interchangeably Ex f(x) and Ex∼px f(x) to refer to the expectation of f with respect to
the distribution px (i.e.,

∫
X f(x)dpx(x)) using the latter notation when there may be some

ambiguity about what the distribution is. When it is clear enough from context, we drop
the subscripts altogether and write E f(x). In the case where x is a discrete random
variable taking values in some finite set (or alphabet) X , we write its probability mass
function (PMF) as px, and corresponding expectations Ex∼px f(x) =

∑
x∈X px(x)f(x).

We also refer to px as the distribution of x in this case.

Next suppose we have random variables (x,y) jointly distributed on X × Y . If y is
discrete, we write py|x(y) to mean the probability that y = y given x = x, when it is
well-defined. We will often have occasion to use functionals F mapping distributions to
the reals. Then if x has marginal distribution given by px, we write Ex′∼px F (py|x′) to
denote the expectation

∫
X F (py|x)dpx(x). Finally, we sometimes use in the subscripts of

expectations the notation x|y to mean the random variable x conditioned on y = y, when
it is well-defined. For example, suppose we have a function g : X × Y → R. It holds by
definition that Ex Ey|x g(x,y) = Ex,y g(x,y) = Ey Ex|y g(x,y).

1.3 Facts from information theory

Classical information theory

First, let us consider discrete random variables taking values on the same space. We
may then use the KL-divergence between their distributions to compare them. The KL-
divergence between two discrete distributions (PMFs) p, q : X → [0, 1] defined on the same
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space is

DKL(p ‖ q) =
∑
x∈X

p(x) log

(
p(x)

q(x)

)
.

(Throughout this thesis, log denotes logarithm base 2.) We next define some entropic
quantities. Let x be a discrete random variable taking values in X with distribution px.
The Shannon entropy measures our uncertainty about x and is defined as

H(x) = −
∑
x∈X

px(x) log(px(x)).

We also write H(px) to refer to the same quantity. A useful property of the entropy is
concavity, whereby for any two discrete distributions p, q defined on the same space and
λ ∈ [0, 1] it holds that

H(λp+ (1− λ)q) ≥ λH(p) + (1− λ)H(q).

Next, let y be a different discrete random variable taking values in Y , so that x and y
have joint distribution given by px,y : X × Y → [0, 1]. The joint entropy of these random
variables is

H(x,y) = −
∑
x∈X

∑
y∈Y

px,y(x, y) log(px,y(x, y))

and the conditional entropy of x given y is

H(x|y) = H(x,y)−H(y).

These definitions are valid only in the case where x and y are discrete. Mutual information,
on the other hand, is well-defined for arbitrary random variables x, y though for our
purposes it will suffice to define this quantity in the following way, which is valid when y
is discrete.

Definition 1.3.1 (Mutual information). Consider two random variables x and y where x
has marginal distribution px and y is discrete. Let py|x be the conditional distribution of
y given x = x and py the marginal distribution of y. The mutual information between x
and y is

I(x : y) = E
x∼px

DKL(py|x ‖ py).

7



As the name suggests, the mutual information between two random variables quantifies
the shared information between them. Since this definition is somewhat non-standard, it
is worth taking the time to see how it reduces to the more standard definitions in familiar
settings. Firstly, it may be shown that the above is equal to

I(x : y) = H(y)− E
x′∼px

H(y|x = x′)

where y|x = x is the random variable y conditioned on the event x = x. Then, if x is
also discrete, it holds that H(y|x) = Ex′∼px H(y|x = x′) in which case we arrive at the
commonly used expression for the mutual information,

I(x : y) = H(y)−H(y|x) = H(x)−H(x|y).

Next, suppose z is another random variable jointly distributed with x and y. When z has
a fixed value z, we use the notation

I(x : y|z = z) := I( (x|z = z) : (y|z = z) )

where (x|z = z) is the marginal distribution of x, conditioned on z = z, and likewise for
(y|z = z). The conditional mutual information between x and y given z is then defined
as

I(x : y|z) := E
z′∼pz

I(x : y|z = z′).

We now present three exceedingly useful facts about mutual information. We will use
these to derive stronger lower bounds on tomography than the ones obtained by applying
Holevo’s theorem (to be covered later in this section), in the case where there is some
restriction on the measurements.

Fact 1.3.2. Let x, y, and z be random variables, and suppose that y and z are independent
given x. Then

I(x : y|z) ≤ I(x : y).

Fact 1.3.3 (Chain rule for mutual information). It holds that

I(x : y1, . . . ,yn) =
n∑
i=1

I(x : yi|yi−1, . . . ,y1).
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Corollary 1.3.4 (Subadditivity of mutual information). If y1, . . . ,yn are independent
given x, it holds that

I(x : y1, . . . ,yn) ≤
n∑
i=1

I(x : yi).

The random variables x, y, z form a Markov chain x → y → z if the conditional
distribution of z depends only on y and is conditionally independent of x (Ref. [14],
Section 2.8). Under this assumption, the following lemma holds, which is indispensable
toward proving information-theoretic lower bounds.

Lemma 1.3.5 (Fano’s inequality [15]). Let x, y, x̂ be discrete random variables forming
a Markov chain x→ y → x̂, where x takes values in X . It holds that

H(pe) + pe log(|X |) ≥ H(x|y).

where pe := Pr[x 6= x̂], and H(·) is the binary entropy function.

Corollary 1.3.6. Let x,y, x̂ be discrete random variables forming a Markov chain x →
y → x̂. Suppose Alice has a message x which is uniformly random over N distinct values,
and Bob is able to decode the message with constant probability of success using x̂. It must
hold that

I(x : y) = Ω(log(N)).

Proof. Using the definition of mutual information we have I(x : y) = H(x)−H(x|y). Let
pe be as in Lemma 1.3.5. By Lemma 1.3.5 we have I(x : y) ≥ H(x)− pe log(N)−H(pe).
Using the fact that H(x) = log(N) for uniformly random x and H(pe) ≤ 1 we obtain
I(x : y) ≥ (1− pe) log(N)− 1.

Besides the KL-divergence, there is another way to compare distributions defined on
the same space.

Definition 1.3.7 (χ2-divergence). The χ2-divergence between two discrete distributions
p, q : X → [0, 1] defined on the same space X is

χ2(p ‖ q) :=
∑
x∈X

q(x)

(
p(x)

q(x)
− 1

)2

=
∑
x∈X

q(x)

(
p(x)

q(x)

)2

− 1.

These divergences are related in the following way.
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Lemma 1.3.8 (KL vs. χ2 inequality). Let p, q : X → [0, 1] be discrete distributions defined
on the same space X . We have

DKL(p ‖ q) ≤ log(e) χ2(p ‖ q).

See Ref. [32] for example.

Quantum information theory

We now move on to some elementary definitions and results from quantum information
theory.

Definition 1.3.9 (Ensemble). Consider N mixed states ρ1, . . . , ρN along with some ran-
dom variable x taking values in [N ]. We refer to the random state ρx as an ensemble of
states.

The von Neumann entropy of the quantum state ρ ∈ D(d) is defined as

S(ρ) := −Tr(ρ log(ρ)) = −
d∑
i=1

λi(ρ) log(λi(ρ)).

Theorem 1.3.10 (Holevo’s theorem, Theorem 12.1 in [30]). Consider N mixed states
ρ1, . . . , ρN and let x be some random variable distributed over [N ] according to px. Let
y be the random variable corresponding to the outcome obtained from performing some
measurement on ρx, and define the state ρ :=

∑N
x=1 px(x)ρx. It holds that

I(x : y) ≤ S(ρ)−
N∑
x=1

px(x)S(ρx).

The quantity in the right-hand side of the above inequality is sometimes referred to as
the Holevo information of the ensemble ρx.

1.4 Measurement models for learning quantum states

In general, a quantum measurement of a d-dimensional quantum state is described by a
positive operator-valued measure (POVM) M mapping quantum states to diagonal oper-
ators,

M : ρ 7→
∑
z

Tr(Mzρ)|z〉〈z|
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where {Mz}z ⊂ Psd(d) is a set of measurement operators satisfying
∑

zMz = 1. We
focus on measurements with a finite number of outcomes throughout this thesis. The
distribution of the random outcome z from measuring the state ρ is described by the PMF
pz = diag(M(ρ)), so that pz(z) = Tr(Mzρ) for all outcomes z. We describe next the three
models of measurement which we will be adopting in this thesis. Throughout, we assume
that the task is to learn properties of some unknown d-dimensional state ρ ∈ D(d) using
as few samples of ρ as possible. As mentioned in Section 1.1, a sample refers to the act of
preparing a register in the state ρ for measurement by the learner.

1.4.1 Entangled measurements

In the most general model, the learner is provided a register in the dn-dimensional state
ρ⊗n so that the number of samples is n, and an arbitrary measurement of this product state
is performed. The task is then to use the outcome of this measurement to infer properties
of ρ.

State discrimination

A classic example is that of quantum state discrimination, where the goal is to identify
the state ρi picked from a known set of alternatives {ρj} with the highest possible success
probability. The discrimination is enabled by the fact that taking the tensor product
effectively amplifies the trace distance between the alternatives, so that for sufficiently
large n it becomes possible to distinguish them via some measurement. (See Ref. [29] for
an upper bound on n.) The intuition that for large enough n there exists a measurement
which identifies the state with high probability continues to hold for the task of quantum
tomography with finite precision, in which case the set of alternatives is D(d), but the
success criteria is relaxed to outputting states that are close enough to the true state.
In fact, sample-optimal tomography in this setting is possible using, roughly speaking, a
measurement analogous to the optimal measurement for state discrimination [31, 18]. The
connection with state discrimination is also made apparent by observing that discrimination
reduces to sufficiently accurate tomography of the states, and we will return to this point
in Chapter 3 where we derive lower bounds for tomography in each of our measurement
models.
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1.4.2 Unentangled measurements

Suppose there is a single d-dimensional register which can be prepared in the state ρ upon
request, at which point it is measured once, and this process is repeated n times. The class
of measurements corresponding to this scenario is known as unentangled, where the number
of samples used is equivalent to the number of measurements performed. We describe the
two main models of measurement which fall into this class below.

Nonadaptive measurements

Consider n copies of the state ρ prepared in the above manner, so that they must be
measured individually. In the nonadaptive measurement model, we use a sequence of d-
dimensional measurements Mi for i = 1, . . . , n which are determined beforehand. Equiv-
alently, we measure the state ρ⊗n using the product measurement M1 ⊗M2 ⊗ · · · ⊗Mn.
Note that allowing the choice of the ith measurement to be an independent random variable
is equivalent to the above description, since the randomness in the choice of measurement
can then be incorporated into the measurement itself i.e., the resulting mapping is still
some fixed measurement.

Adaptive measurements

In the adaptive measurement model, the choice of each d-dimensional measurement in
the sequence can depend on the previous outcomes obtained. This means that the ith

measurement in the sequence can be writtenMy<i , where y<i = yi−1 . . . y1 are the outcomes
of the previous measurements. For each possible value of y<i there is a set of measurement
operators {My<i

yi
}yi corresponding to the different outcomes yi of the ith measurement, such

that the measurement has the action

My<i : ρ 7→
∑
yi

Tr(My<i
yi
ρ)|yi〉〈yi|

for any state ρ ∈ D(d).

1.5 Upper bounds on quantum tomography

1.5.1 O(d2/ε2)-tomography from entangled measurements

In the entangled measurement model, it has been shown by O’Donnell and Wright [31]
and Haah et al. [18] that O(d2/ε2) copies of the state suffice to estimate it to ε-accuracy
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in trace distance with high probability1. At the same time, a matching lower bound was
also shown in [18] meaning that the sample complexity of tomography in the entangled
measurement setting is essentially solved. A full description of these algorithms is outside
the scope of this thesis, requiring ideas from representation theory and in particular the
relationship between certain representations on (Cd)⊗n. We refer the interested reader to
Chapters 2 and 5 of the thesis of Wright [39].

1.5.2 O(d3/ε2)-tomography from random basis measurements

In the remainder of this thesis we will make use of unitary t-designs, which we define below.

Definition 1.5.1 (Unitary t-design). We refer to the random unitary operator V taking
values in U(d) as a unitary t-design (or say that it comprises a unitary t-design) if the
following holds for every operator X ∈ (Cd×d)⊗t:∫

U(d)
U⊗tX(U †)⊗tdµ(U) = EV ⊗tX(V †)⊗t

where µ is the Haar measure on the space of d-dimensional unitary operators. (See Ap-
pendix A for more on Haar integration.)

We now describe an algorithm which achieves a sample complexity of O(d3/ε2) for ε-
accurate tomography (in trace distance) using independent, rank-one measurements. Fol-
lowing a matching lower bound due to Haah et al. [18], this algorithm is sample-optimal
in the nonadaptive measurement setting. The analysis we present is due to Wright [39]
(Section 5.1), with minor differences and pointing out that unitary 2-designs are sufficient.
A more detailed analysis in the low-rank case is originally due to [26].

Let ρ ∈ D(d) be the state to be learned, and {|j〉}dj=1 be the standard basis. Consider
sampling a unitary operator U comprising a unitary 2-design and then performing the
basis measurement corresponding to the measurement operators {U |j〉〈j|U †}dj=1, obtaining
outcome j. Suppose we do this on n separate copies of the state, resulting in i.i.d. random
variables (U1, j1), . . . , (Un, jn) where Ui is the ith random unitary and ji is the outcome
from the ith measurement. Let ρ̂(U, j) := (d + 1)U |j〉〈j|U † − 1 for any U ∈ U(d) and
j ∈ [d].

Proposition 1.5.2. It holds that

E ρ̂(U , j) = ρ.
1Originally, the upper bound presented in Haah et al. [18] had an additional factor of log(d/ε), which

was subsequently removed in the thesis of Wright [39].
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Proof. We defer the calculation of some Haar integrals to Appendix A. Let pU denote the
distribution of U and pj|U(j) the probability of obtaining outcome j given that U is drawn.
We have

EU |j〉〈j|U † =
d∑
j=1

E
U∼pU

pj|U (j) U |j〉〈j|U †

=
d∑
j=1

E
U∼pU

〈j|UρU †|j〉U |j〉〈j|U †. (1.1)

Consider a specific term j in the sum above. We may write that term equivalently as

E
U∼pU

Tr2
(
(U |j〉〈j|U †)⊗2(1⊗ ρ)

)
= Tr2

(
E

U∼Haar
(U |j〉〈j|U †)⊗2(1⊗ ρ)

)
(1.2)

where the equality follows from linearity of trace and the fact that U is a 2-design. The
first relation in Proposition A.0.2 gives an explicit solution to the Haar integral inside the
partial trace for the general case of a rank-r projector rather than |j〉〈j|. Taking r = 1, we
find that

E
U∼Haar

(U |j〉〈j|U †)⊗2 =
1

d(d+ 1)
[1⊗ 1 +W ] .

Substituting into the right-hand side of Eq. (1.2) and making use of the identities Tr2(W (1⊗
ρ)) = ρ and Tr(ρ) = 1 we find that it is equal to 1

d(d+1)
(1 + ρ). Using the fact that this holds

for any j ∈ [d] and substituting into (1.1) we obtain the relation EU |j〉〈j|U † = 1
d+1

(1 + ρ).
The proposition then follows from the definition of ρ̂(U , j).

In other words, ρ̂(U , j) is an unbiased estimator of ρ. Take the empirical average of the
n independent samples of this estimator 1

n

∑n
i=1 ρ̂(Ui, ji) which we obtained by measuring

n separate copies of the state. Then the squared distance between the estimator and the
true state in terms of the metric induced by the Frobenius norm is

E

∥∥∥∥∥ 1

n

n∑
i=1

ρ̂(Ui, ji)− ρ

∥∥∥∥∥
2

F

=
1

n2
E

∥∥∥∥∥
n∑
i=1

(ρ̂(Ui, ji)− ρ)

∥∥∥∥∥
2

F

=
1

n2
Tr

E

[
n∑
i=1

(ρ̂(Ui, ji)− ρ)

]2 .
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It is straightforward to show that for a sum of n mean-zero, independent random matrices
Ai it holds that E [

∑n
i=1Ai]

2
=
∑n

i=1 EA2
i , which entails that the right-hand side of the

above is

1

n2

n∑
i=1

Tr
(
E(ρ̂(Ui, ji)− ρ)2

)
=

1

n2

n∑
i=1

(
ETr(ρ̂(Ui, ji)

2)− Tr(ρ2)
)

≤ 1

n2

n∑
i=1

ETr(ρ̂(Ui, ji)
2)

=
d2 + d− 1

n

where the inequality used Tr(ρ2) ≥ 0 and the final line comes from the following fact:
for a Hermitian matrix A, we have Tr(A2) =

∑d
i=1 λi(A)2 and in this case, the operator

(d + 1)U |j〉〈j|U † − 1 has eigenvalues which are all −1 except for one eigenvalue, which is
d. Using the matrix inequality ‖·‖1 ≤

√
d ‖·‖F, we obtain the inequality

E

∥∥∥∥∥ 1

n

n∑
i=1

ρ̂(Ui, ji)− ρ

∥∥∥∥∥
2

1

≤ d(d2 + d− 1)

n
.

Substituting n = O(d3/ε2) gives us the desired upper bound in expectation, and we can
easily convert this convergence in expectation into convergence with high probability using
Markov’s inequality.

1.5.3 O(d4/ε2)-tomography from binary Pauli measurements

In the setting of binary Pauli measurements there exists perhaps the most straightforward
tomography algorithm, to the point where its O(d4/ε2) sample complexity is folklore. How-
ever, since we will be proving in Chapter 3 that this is the information-theoretically optimal
algorithm for a class of nonadaptive measurement scenarios, it may be worth reviewing.
The general q-qubit Pauli matrices are the various Hermitian, unitary, and traceless q-fold
tensor products of the set of single-qubit Pauli matrices {1, σx, σy, σz} ⊂ C2×2. This means
that there are 4q = d2 different q-qubit Pauli matrices Pd = {P1, . . . , Pd2}, where we let
d = 2q. These operators form an orthogonal basis for the set of d-dimensional Hermitian
matrices H(d) so that an arbitrary ρ ∈ D(d) can be written

ρ =
1

d

d2∑
i=1

Tr(Piρ)Pi.
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The straightforward algorithm here is then to estimate each of the coefficients Tr(Piρ)
with sufficient accuracy, which will serve as a complete description of the estimate of ρ.
Consider the d2 POVMs Mi with corresponding measurement operators {1

2
(1 ± Pi)} for

each i ∈ [d2], with possible outcomes zi ∈ {±1} defined in the obvious way. Then zi is an
unbiased estimator for the ith Pauli coefficient, and performing this measurement s ∈ Z+

times results in i.i.d. random variables {zi,j}sj=1. Let us then take the empirical average
of the s samples corresponding to the ith Pauli measurement µi := 1

s

∑s
j=1 zi,j, for each

i ∈ [d2], which requires a total of sd2 measurements on separate copies of ρ. We then

consider our estimate of the state to be ρ̂ := 1
d

∑d2

i=1µiPi, which clearly satisfies E ρ̂ = ρ.
We may then compute

E ‖ρ̂− ρ‖2F =
1

d

d2∑
i=1

E |µi − Tr(Piρ)|2

=
1

d

d2∑
i=1

Var[µi]

=
1

ds2

d2∑
i=1

s∑
j=1

Var[zi,j]

≤ d

s

where in the third line we used the property Var[ax] = a2 Var[x] for a random variable x,
as well as the fact that the variance is additive for independent random variables. The final
line follows since |zi,j| = 1. Using the inequality ‖·‖1 ≤

√
d ‖·‖F, we find for s = d2/ε2, it

holds that E ‖ρ̂− ρ‖1 ≤ ε. We can once again convert this statement about convergence
in expectation to convergence with high probability using Markov’s inequality, which leads
to the conclusion that ε-accurate tomography in trace distance is achievable using at most
sd2 = d4/ε2 binary Pauli measurements on separate copies of ρ.
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Chapter 2

Online learning implies efficient
tomography

The number of measurements required in any procedure for tomography of an n-qubit quan-
tum state must grow exponentially in n, which we will show in the beginning of Chapter 3.
This apparent difficulty, however, can be misleading depending on what the learner is ul-
timately interested in, and so several alternative models have been proposed with relaxed
criteria for what constitutes learning the state. Of particular interest is mistake-bounded
quantum online learning [4]. Here, the learner undergoes T rounds of communication with
an adversary. In each round, the adversary provides the learner with a binary measurement,
for which the learner must output an estimate of the corresponding expectation value. At
the end of each round, the adversary reveals as feedback an approximation of the true ex-
pectation, and the learner is considered to have made a “mistake” if their estimate differed
too much from the feedback. The goal of the learner is to output a sequence of estimates
such that, after M mistakes have been made, the learner is correct (not mistaken) on all
future measurements provided by the adversary. Somewhat surprisingly, in Ref. [4] it was
shown that there exist strategies for which M is linear in n.

It is clear that performing full state tomography on the unknown state beforehand would
allow one to succeed in this online learning model. But what about the other direction – is
there a sense in which the ability to perform mistake-bounded online learning allows one to
successfully perform tomography? In this section, we show that the answer to this question
is yes with the additional guarantee that such a strategy can be made nearly optimal in
terms of the sample complexity, in the setting of nonadaptive measurements. In other
words, online learning algorithms such as the recently proposed RSOA [10], and FTPL
(see [20] for example), or MMW [35, 8] can be used in a black-box manner to perform
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tomography using a number of measurements which scales nearly optimally.

This result improves upon the sample complexity guarantees originally given in Ref. [40]
for using an online learning algorithm to perform tomography, where there are no strong
claims about the number of copies of the state required. The techniques used in this section
are in close analogy with the Hamiltonian updates tomography protocol of Franca et al. [12]
which uses d-outcome measurements, and the result in this chapter can be interpreted as
an extension of that algorithm to the case of binary measurements, which are of particular
relevance to the framework of online learning of quantum states. Generalizing the online
learning results which are known about the binary case to more measurement outcomes is
an open problem proposed in Ref. [4].

2.1 Quantum online learning

Let ε ∈ (0, 1) be a mistake parameter and consider a true state ρ ∈ D(d) unknown to
the learner. In the setting of online learning of quantum states, we consider two parties –
the online learner and the adversary – who undergo a sequence of iterations (or rounds)
t = 1, 2, 3, . . . in which the online learner constructs an estimate ωt ∈ D(d) of the true
state ρ. At the end of each round the learner receives from the adversary a measurement
operator 0 � Et � 1 as well as feedback yt satisfying |yt − Tr(Etρ)| ≤ ε/3. We then say
that the learner suffers a loss, as defined below.

Definition 2.1.1 (Loss). The loss incurred by the learner in round t is `t(Tr(Etωt)), where
the loss function `t : [0, 1]→ R is defined by

`t(x) = |x− yt|.

The loss function indicates how well the current estimate of the state predicts the
expectation of Et. One may consider different expressions for the loss function, but we
restrict ourselves to what is referred to as the L1 loss here. We sometimes write `t as
shorthand for the loss in round t – which is `t(Tr(Etωt)) – when it should be clear from
context this is the quantity of interest.

We say that a “mistake” has been made in iteration t if |Tr(Etωt)− Tr(Etρ)| > ε, and
our goal is to provide an upper bound on the number of iterations where the online learner
makes a mistake, which we denote by M . We will show that there is a strategy according
to which the online learner makes at most M = O(log(d)/ε2) mistakes, regardless of the
sequence of measurements presented to them. Furthermore, the strategy which achieves
this is the one which minimizes the excess total loss over the best strategy in hindsight, a
quantity which is captured in the following definition.
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Definition 2.1.2 (Regret). Let T > 0 be a positive integer and ωt be a sequence of
estimates. The regret of the sequence of measurements E1, . . . , ET is defined as

RT :=
T∑
t=1

`t(Tr(Etωt))− min
ϕ∈D(d)

T∑
t=1

`t(Tr(Etϕ)).

Note that because the feedback provided by the adversary yt need not be perfectly ac-
curate, the loss function need not be consistent with any fixed quantum state. That is why
we take the minimum over all mixed states ϕ ∈ D(d), rather than assuming this quantity
is zero. We will first give an achievable bound on the regret after T iterations without
proof and explain why this implies the desired mistake bound. Then for completeness we
present an example of an algorithm which achieves the claimed bound on the regret after
T iterations. The following two results are due to Ref. [4], with slight modification.

Theorem 2.1.3 (Regret bound). There exists an explicit rule for updating the estimates ωt
such that for any sequence of measurements E1, . . . , ET , the regret is RT ≤ 4 ln(d)/ε+Tε/4.

Corollary 2.1.4 (Mistake bound). Suppose the online learner applies the update rule from
Theorem 2.1.3 whenever `t > 2ε/3, and outputs the previous estimate otherwise. Then the
total number of mistakes is at most M = O(log(d)/ε2), independent of the number of
rounds.

Proof of Corollary 2.1.4. We have that
∑T ′

t=1 `t(Tr(Etωt)) ≥ 2T ′ε/3, where the sum is over
the subsequence of iterations where an update is made. Similarly, the total loss of out-
putting the true state ρ in each of these iterations can be computed as

∑T ′

t=1 `t(Tr(Etρ)) ≤
T ′ε/3, since `t(Tr(Etρ)) ≤ ε/3 for any of these rounds t by assumption. Therefore

minϕ∈D(d)

∑T ′

t=1 `t(Tr(Etϕ)) ≤ T ′ε/3. Together, these two bounds imply that the regret
of the sequence of measurements E1, . . . , ET ′ corresponding to rounds t in which `t ≥ 2ε/3
is RT ′ ≥ T ′ε/3. On the other hand, by Theorem 2.1.3 the total regret of this sequence of
measurements is at most RT ′ ≤ 4 ln(d)/ε + T ′ε/4. Combining with the lower bound on
the regret we find T ′ = O(log(d)/ε2), and the result follows from the observation that the
number of mistakes is M ≤ T ′.

As mentioned previously, there are a few different algorithms which constitute proofs of
Theorem 2.1.3. For completeness, we choose to explain how the MMW algorithm achieves
the desired bound, summarizing Section 3 in [9] and Appendix C in [4].
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Proof of Theorem 2.1.3

Consider the following matrix multiplicative weights (MMW) algorithm due to [8] and
based on the earlier work of [35]. The algorithm takes as input a sequence of loss matrices
Lt, and Theorem 2.1.3 will follow upon defining these appropriately based on the loss in
the quantum online learning setting.

Matrix multiplicative weights (MMW) algorithm. Given parameter η ∈ (0, 1)
and a sequence of loss matrices 0 � Lt � 1, in each round t = 1, 2, . . . :

1. Compute Wt := exp(−η
∑t−1

τ=1 Lτ ). (We have W1 = 1.)

2. Output the estimate ωt := Wt

Tr(Wt)
.

3. Receive the loss matrix Lt.

Lemma 2.1.5 (Theorem 3.1 in [9]). The MMW algorithm outputs estimates ωt satisfying

T∑
t=1

Tr(Ltωt) ≤ λd

(
T∑
t=1

Lt

)
+ η

T∑
t=1

Tr(L2
tωt) +

ln(d)

η

where λd(·) denotes the minimum eigenvalue of a Hermitian matrix.

Proof. Following the proof in Section 3 of Ref. [9] we track the changes in the quantity
Tr(Wt) for t = 1, . . . , T (known as a potential function in the online learning literature [7]).
We have for any t that

Tr(Wt+1) = Tr

(
exp

(
−η

t∑
τ=1

Lτ

))

≤ Tr

(
exp

(
−η

t∑
τ=1

Lτ

)
exp(−ηLt)

)
= Tr(Wt exp (−ηLt))

where the inequality follows from the Golden-Thompson inequality (see Appendix B.2)
Tr(exp(A + B)) ≤ Tr(exp(A) exp(B)) for two Hermitian matrices A,B. Then by the
matrix inequality exp(−A) � 1−A+A2 for any ‖A‖ ≤ 1 (see Appendix B.2) we find that
the right-hand side of the above is at most

Tr(Wt)
(
1− ηTr(Ltωt) + η2Tr(L2

tωt)
)
≤ Tr(Wt) exp

(
ηTr(Ltωt) + η2Tr(L2

tωt)
)
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using the inequality ex ≥ 1 + x for all real x. By induction on t with base case Tr(W1) =
Tr(1) = d we arrive at

Tr(WT+1) ≤ d exp

(
−η

T∑
t=1

Tr(Ltωt) + η2
T∑
t=1

Tr(L2
tωt)

)

while on the other hand, the fact that Tr(exp(A)) =
∑d

k=1 eλk(A) ≥ eλd(A) for any Hermitian
matrix A implies that

Tr(WT+1) = Tr

(
exp

(
−η

T∑
t=1

Lt

))
≥ exp

(
−ηλd

(
T∑
t=1

Lt

))
.

The result follows upon combining the two inequalities and taking logarithms of both
sides.

We can now return to proving Theorem 2.1.3. Firstly, Lemma 2.1.5 implies that

T∑
t=1

Tr(Ltωt) ≤
T∑
t=1

Tr(Ltζ) + ηT +
ln(d)

η
(2.1)

for any density matrix ζ, where we have used the fact that λd(A) = minϕ∈D(d) Tr(Aϕ) for
any Hermitian positive semidefinite matrix A, along with the inequality Tr(L2

tωt) ≤ 1.
Define the function1 `′t(x) = (21x≥yt − 1), i.e., equal to +1 if x ≥ yt and −1 otherwise. If
x ≥ yt then for any z ∈ R we have `t(x) − `t(z) = x − yt − |z − yt| ≤ x − z. If x < 0
then `t(x) − `t(z) = yt − x − |z − yt| ≤ −x + z. Using the definition of `′t, these two
inequalities can be expressed as `t(x)− `t(z) ≤ `′t(x)(x− z) for any x, z ∈ R. Let the loss
matrices be defined as Lt = `′t(Tr(Etωt))Et for each iteration t. We may substitute into
the inequality (2.1) to deduce that

ηT +
ln(d)

η
≥

T∑
t=1

`′t(Tr(Etωt))Tr(Etωt)−
T∑
t=1

`′t(Tr(Etωt))Tr(Etζ)

≥
T∑
t=1

`t(Tr(Etωt))−
T∑
t=1

`t(Tr(Etζ))

1This is the subgradient of the loss function, an important tool in convex optimization to extend the
definition of gradients beyond differentiable functions. Since we are only dealing with the special case
where `t(x) = |x− yt|, we do not elaborate on this point here, but refer the interested reader to Chapter
D. in Ref. [21].
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where the second line follows from the inequality `t(x) − `t(z) ≤ `′t(x)(x − z) for any
x, z ∈ R. Choosing η = ε/4 and noting this inequality holds for any density matrix ζ gives
the desired result.

2.2 Tomography with binary measurements and an

online learner

Recall from Section 1.5 that there is a straightforward method to perform tomography
using O(d4/ε2) copies of the unknown state, by estimating the expectations of the various
Pauli operators. We will see in Section 3.2.2 that this is in fact the optimal sample com-
plexity using binary measurements under the nonadaptive measurement assumption. In
this section, we show how to achieve a matching sample complexity in terms of d by let-
ting the experimentalist act as the adversary who provides feedback to the online learner.
Clearly, a sequence of uninformative measurements (e.g., 1,1, . . . ) prevents tomography
of the state. However, the experimentalist performing the measurements may choose to
be as informative as possible with their sequence, stepping out of their role as adversary
and becoming more of a “teacher” in order to enable the tomography. Thus, the question
we are concerned with is: what must the adversary do to guarantee that the learner’s
estimates are eventually close to the true state in some metric? The procedure described
in Algorithm 1 along with Theorem 2.2.1 provide an answer.

Theorem 2.2.1. Consider the procedure described in Algorithm 1. Let ρ ∈ D(d), ε ∈ (0, 1),
δ ∈ (0, 1), and M be the mistake bound of the online learner with mistake parameter ε, as
in Corollary 2.1.4. Let p be the distribution of the random measurement UQU † where Q
is a rank-d/2 orthogonal projection and U is a random unitary comprising a 4-design. For
T = M and some K = O(log(M/δ)) it holds that the output ω satisfies

1√
d
‖ω − ρ‖F = O (ε)

with probability at least 1− δ.

Let us pause here to explain why this theorem implies that tomography with ∼ d4

copies of the state is possible. We give a more rigorous treatment at the end of this section.
Line 8 in Algorithm 1 calls for O(ε)-accurate estimates of the expectation Tr(Eiρ), which
can be accomplished by performing the binary measurement corresponding to {Ei,1 −
Ei} a number of times which is O(1/ε2). Furthermore, we know from Corollary 2.1.4
that M ≈ log(d)/ε2 is achievable, so the sample complexity of achieving the condition in
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Algorithm 1 Tomography from online learning

Input Unknown state ρ, mistake parameter ε ∈ (0, 1), confidence δ ∈ (0, 1), K, T ,
distribution over measurements p

Output Estimate ω

1: for t = 1, . . . , T do
2: receive ωt from online learner
3: for i = 1, . . . , K do B The helpful adversary
4: if i = K then
5: return ωt
6: end if
7: sample Ei ∼ p
8: yi ← estimate of Tr(Eiρ) with ε/3 accuracy
9: if |yi − Tr(Eiωt)| > 4ε/3 then

10: Et ← Ei, yt ← yi
11: break
12: end if
13: end for
14: send measurement Et and feedback yt to online learner
15: end for
16: return ωT
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Figure 2.1: Schematic of online learning as a black-box for full state tomography.

Theorem 2.2.1 is (ignoring log log(d) and log(1/ε) factors) N ≈ log(d)/ε4. By the inequality
‖·‖1 ≤

√
d ‖·‖F, making the replacement ε→ ε/d leads to an estimate ω which is accurate

to within ε in trace distance, for a total sample complexity of ∼ d4/ε4

We will now establish some helpful lemmas before proceeding with the proof of Theo-
rem 2.2.1.

Lemma 2.2.2 (Paley-Zigmund inequality). For a real-valued random variable Z and fixed
θ ∈ (0, 1), it holds that

Pr
[
|Z| >

√
θEZ2

]
≥ (1− θ)2 (EZ2)2

EZ4
.

Proof. For a nonnegative random variable X and parameter θ ∈ (0, 1), let E denote the
event X ≤ θEX, E its complement, and let 1E denote the indicator random variable for
the event E. We have

EX = EX(1E + 1E) ≤ θEX + (EX2)1/2 Pr [X > θEX]1/2

where we have used Cauchy-Schwarz inequality to arrive at the second term in the inequal-
ity. Letting X = Z2 and rearranging gives us the desired inequality.

The following lemma combined with Lemma 2.2.2 allows us to lower bound the proba-
bility that a mistake occurs whenever ωt is sufficiently far from the true state. The proof
is provided in Appendix A and relies on the measurements being constructed from unitary
4-designs. Briefly, the reason for this is that 4-designs constitute a sufficiently expressive
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set of measurements for distinguishing between two states that are far enough apart in the
metric induced by the Frobenius norm. (See for example [5] for another application of this
property.) In the language of online learning, large distances between the estimate and the
true state manifest in sufficiently high probabilities of a mistake occurring.

Lemma 2.2.3. Let Q be a fixed rank-d/2 orthogonal projection and consider a random
measurement operator E where E := UQU † for U a random unitary comprising a 4-
design. Define Z = Tr(E(ω − ρ)) for some fixed density matrices ρ, ω. The following
relations hold:

c

d
‖ω − ρ‖2F ≤ EZ2 ≤ C

d
‖ω − ρ‖2F , EZ4 ≤ c′

d2
‖ω − ρ‖4F

where c, C, and c′ are universal constants.

We are now ready to prove Theorem 2.2.1.

Proof of Theorem 2.2.1. We refer to the indices t of the first loop in Algorithm 1 as the
“rounds”. First note that each measurement Et the online learner receives in round t is a
measurement for which they are guaranteed to make a mistake. This is since each of these
measurements must satisfy |yt − Tr(Etωt)| > 4ε/3 by Line 9, which by triangle inequality
along with the ε/3 accuracy of yt implies |Tr(Etρ)− Tr(Etωt)| > ε.

Hence if the algorithm terminates and outputs ωT this estimate will cease to make mis-
takes on any future measurements because T = M and the mistake bound is M . In other
words, if the algorithm returns ωT we must have that 1

2
‖ωT − ρ‖1 = max0�E�1 Tr(E(ωT −

ρ)) ≤ ε which certainly implies the relation in Theorem 2.2.1. So it suffices to upper
bound the probability that the relation does not hold when the algorithm returns ωt for
some t < M . Suppose

√
c
2d
‖ωt − ρ‖F > 5ε/3 and let Zi := Tr(Ei(ωt − ρ)) for Ei the ran-

dom measurement in Line 7 of the algorithm, which is based on a 4-design. By applying
Lemma 2.2.2 with θ = 1/2 and combining with Lemma 2.2.3 we obtain

Pr [|Zi| > 5ε/3] ≥ Pr

[
|Zi| >

√
c

2d
‖ωt − ρ‖F

]
≥ c′′ (2.2)

for some absolute constant c′′. Also, we have that Zi > 5ε/3 =⇒ |yi − Tr(Eiωt)| >
4ε/3. Therefore, if the algorithm returns the state ωt it is because in round t the random
variables Zi ≤ 5ε/3 for every i ∈ [K]. The probability of this occurring is at most
(1− c′′)K ≤ e−c

′′K by (2.2). Therefore, taking K = ln(M/δ)/c′′ and applying union bound
we find the probability is at most δ that in any round t the algorithm returns an estimate
ωt such that

√
c
2d
‖ωt − ρ‖F > 5ε/3.
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Further details on sample complexity upper bound

The remainder of this section explains in greater detail how Theorem 2.2.1 implies that
tomography to within ε trace distance can be accomplished with Õ(d4/ε4) copies of the
state ρ. Let us first consider which line of Algorithm 1 actually requires measurements of
this state. Upon inspection, only Line 8 requires measurements of ρ. In particular, for a
fixed measurement operator sampled in Line 7 Ei, it suffices to perform the measurement
corresponding to {Ei,1−Ei} a number of times N = 1

2(ε/3)2
log (2/p) in order to estimate

the expectation Tr(Eiρ) to within ε/3 with probability at least 1 − p, using Hoeffding’s
inequality. Consider the quantities T and K which are inputs to the algorithm. The
maximum number of times that Line 8 can be called is equal to TK. Therefore, by union
bound, taking p = δ′/(TK) in the above argument implies that the probability that any
call to Line 8 fails to produce an ε/3-accurate estimate is at most δ′. Let us call this failure
event A. From Theorem 2.2.1, we know that, given the event ¬A occurs (no failures in
the estimation step), the algorithm produces an estimate ω satisfying 1√

d
‖ω − ρ‖F = O(ε)

with failure probability at most δ′′ so long as T = M ≤ O(log(d)/ε2) (the mistake bound
with mistake parameter ε) and K = O(log(M/δ′′)). Here, we have assumed that the online
learner uses the updates specified in Corollary 2.1.4. The total failure probability is thus
at most Pr[A] + Pr[B|¬A] ≤ δ′ + δ′′. Taking δ′ = δ′′ = δ/2 we find that using a total of at
most

TKN = O

(
log(d)

ε4
log

(
log(d)

ε2δ

))
copies of the state suffices to achieve the Frobenius norm condition in Theorem 2.2.1 with
probability at least 1 − δ. Then, making the substitution ε → ε/d and using the matrix
inequality ‖·‖1 ≤

√
d ‖·‖F gives the desired upper bound on the sample complexity of

performing tomography to ε-accuracy in trace distance in this manner.
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Chapter 3

Lower bounds with nonadaptive
measurements

In this chapter we show lower bounds for quantum state tomography in the nonadaptive
measurement model which we introduced in Section 1.4. In the interest of worst-case
bounds, we do not make any assumptions regarding the rank of the state to be learned
although in theory knowledge of the rank can lead to improvements in the sample com-
plexity [16].

We begin with a Ω(d2/ε2) lower bound for the entangled measurement setting, in which
we describe the setup employed for the remaining sections. This flavour of lower bound
has been known since at least 2015 [31], although the basic argument in the context of
tomography goes back further [16]. Having since been employed in a variety of different
contexts, the basic argument involves constructing a sufficiently large ε-packing of states
and then using Fano’s inequality to bound the mutual information between the measure-
ment statistics and the choice of state from the packing. An often neglected fact in the
quantum information literature is that this technique is standard in the sub-field of density
estimation – which is the classical analogue of quantum tomography – going back to at
least 1978 [25].

Following the setup, we give a proof of a result due to Haah et al. [18] that Ω(d3/ε2)
copies of the state are required with nonadaptive measurements. For the case of nonadap-
tive constant-outcome measurements, we derive a lower bound of Ω(d4/ε2) copies which to
the best of our knowledge has not appeared in the literature. This implies that the straight-
forward tomography scheme using binary Pauli measurements outlined in Section 1.5 is
optimal in this setting.
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3.1 Entangled measurements and Holevo’s theorem

In this section, we will prove the following theorem, which is implied by Lemma 5 in Haah
et al. [18].

Theorem 3.1.1. Suppose a tomography algorithm has the following behaviour for any
mixed state ρ ∈ D(d): given a register in the state ρ⊗n, the algorithm outputs an estimate
ρ̂ such that ‖ρ̂− ρ‖1 ≤ ε with at least a constant probability of success. Then, it must hold
that the algorithm uses n = Ω (d2/ε2) samples of the state.

To demonstrate lower bounds for quantum tomography, it suffices to show that there
exists a large, but well-separated collection (an ε-packing) of quantum states which is
difficult to discriminate with too few copies of the state. This is due to the fact that the
task of state discrimination reduces to tomography with sufficient accuracy when the states
are far enough apart, since the latter task allows one to correctly identify the state in the
ensemble under these conditions. Our approach throughout this section will therefore be
to construct a hard instance of the state discrimination problem, and then argue that if
the number of copies n is too small the success probability of our protocol goes to zero as
the parameters d and 1/ε increase.

The tools which allow us to make this argument rigorously are Fano’s inequality and
Holevo’s bound, which suggests an interpretation in terms of a communication protocol
between two parties. To this end, imagine Alice and Bob have agreed upon an encoding of
2M quantum states into bit-strings x of lengthM . In a single round of communication, Alice
sends a quantum state ρ⊗nx encoding the message x ∈ {0, 1}M to Bob who then attempts to
decode the message through tomography. Assuming Bob can perform accurate tomography
using just n copies of the unknown state, Alice will have successfully transmitted M bits of
information to Bob. On the other hand, the Holevo information of the ensemble of quantum
states upper bounds the size of a message that could be sent reliably. In particular, we
will show that when n is small the Holevo information is also small. This provides the
necessary contradiction to arrive at our lower bound: a tomography protocol that succeeds
when n is small could be used by Bob to reliably decode too large a message from Alice.
Therefore, there can be no such protocol.

Our ε-packing will be comprised of states of the following form (also considered in the
lower bounds of [18, 13]):

ρε,U := εUσU † + (1− ε)1
d

(3.1)

where σ := 2
d
Q for Q, a fixed rank-d/2 orthogonal projection and ε ∈ (0, 1) is some

parameter interpolating between σ and the completely mixed state. (Assuming d is even
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here does not take away from the argument, and we may proceed analogously with a floor
or ceiling.) Intuitively, such states are useful for proving lower bounds for the task of
learning an unknown state because they represent a hard case where the completely mixed
state is slightly perturbed, which leads to noisy measurement statistics. We will make use
of the definition in Eq. (3.1) often in the remainder of this thesis.

How does one construct an ε-packing of states of this form? We can apply standard
concentration of measure results to argue that the probability of selecting an undesirable
state (that our state “collides” with a previously chosen one) is exponentially small. This
in turn implies that a large fraction of the states are “safe” choices, so that we may choose
one and apply the argument many times recursively. The concentration inequalities we will
invoke to arrive at our tail bounds follow from log-Sobolev inequalities, analogous to Lévy’s
Lemma for functions on the unit sphere [28]. A detailed discussion is beyond the scope
of this work, but roughly speaking these imply that sufficiently well-behaved functions of
unitary operators concentrate strongly around their expectation. In particular, we have
the following lemma, which we do not prove.

Lemma 3.1.2 (Consequence of Theorems 5.5 and 5.16 from [28]). Let f : U(d) → R be
an L-Lipschitz function with respect to the metric induced by the Frobenius norm, and let
µ := EU∼Haar f(U). Then, for any t > 0, it holds that

Pr
U∼Haar

[|f(U )− µ| ≥ t] ≤ 2 exp

(
− dt2

12L2

)
.

This concentration inequality enables us to derive a variation of a result which is due to
Ref. [19], called “concentration of projector overlaps”. We will invoke this lemma repeat-
edly in the remainder of this thesis in order to claim the existence of various collections of
quantum states.

Lemma 3.1.3 (Concentration of projector overlaps). Let U be a Haar-random unitary
operator taking values in U(d) and let P,Q ∈ Psd(d) be orthogonal projective operators
with rank rP ,rQ respectively. It holds that

Pr
U∼Haar

[∣∣∣Tr(PUQU †)− rP rQ
d

∣∣∣ ≥ t
]
≤ 2 exp

(
− cdt2
√
rP rQ

)
where c is some universal constant.

Proof. Define f : U(d) → R by f(U) = Tr(PUQU †) for all U ∈ U(d). We will show that
the expectation of this function is rP rQ/d and that it is O((rP rQ)1/4)-Lipschitz.
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For the expectation, we have from the first relation in Proposition A.0.2 that EU∼HaarUQU
† =

rQ1/d. Then by linearity of trace we have ETr(PUQU †) = Tr(P )rQ/d = rP rQ/d.

For the Lipschitz constant, consider the difference f(U)−f(V ) for two arbitrary unitary
operators U, V ∈ U(d). We have

|f(U)− f(V )| =
∣∣Tr(P (UQU † − V QV †))

∣∣
=

1

2

∣∣Tr(P (U + V )Q(U − V )†) + Tr(P (U − V )Q(U + V )†)
∣∣

≤ 1

2

∣∣Tr(P (U + V )Q(U − V )†)
∣∣+

1

2

∣∣Tr(P (U − V )Q(U + V )†)
∣∣ . (3.2)

Let us focus on just the first term in (3.2). Neglecting the factor of 1/2 we have

|Tr(P (U + V )Q(U − V )†)| ≤ |Tr(PUQ(U − V )†)|+ |Tr(PV Q(U − V )†)|
≤ (‖PUQ‖F + ‖PV Q‖F) ‖U − V ‖F

where we have used Cauchy-Schwarz to arrive at the second inequality. For any unitary
operator W we have ‖PWQ‖F =

√
Tr(PWQW †) ≤

√
‖P‖F ‖Q‖F =

√√
rP rQ using cyclic

property of trace along with the fact that P and Q are orthogonal projectors. This implies
that the first term in (3.2) is at most (rP rQ)1/4 ‖U − V ‖F. A similar argument can be
made for the second term, which gives the desired upper bound on the Lipschitz constant
of f .

We now give the lemma that we can use to construct a sufficiently large packing of
quantum states of the form (3.1) which is difficult to discriminate. In conjunction with
Holevo’s theorem, this hard instance necessitates the Ω(d2/ε2) lower bound. This is a
special case of the approach that is adopted in Haah et al. [18].

Lemma 3.1.4. There exists a universal constant c such that the following holds. Pick
ε ∈ (0, 1), let d > 0 be a positive integer, and let 0 ≤ N < ecd

2
/2 be an integer. Consider

a set of states {ρ1, ρ2, . . . , ρN} ⊂ D(d) where

ρi = εUiσU
†
i + (1− ε)1

d

for each i ∈ [N ], U1, U2, . . . , UN ∈ U(d) are arbitrary unitary operators, and σ is as in (3.1).
For Haar-random U taking values in U(d), the probability that ‖ρε,U − ρi‖1 ≤ ε/2 for any
i ∈ [N ] is strictly less than 1.
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Proof. Let U be a Haar-random unitary taking values in U(d), Q ∈ Psd(d) be the fixed
orthogonal projection appearing in the definition of ρε,U for arbitrary unitary operator U ,
and P := 1 − Q. A straightforward consequence of Lemma 3.1.3, the concentration of
projector overlaps lemma, is the following upper bound:

Pr
[
Tr(PUQU †) ≤ d/8

]
≤ 2e−cd

2

for some absolute constant c. This follows by taking t = d/8 in the lemma and combining
with the fact that P,Q are both rank d/2. Also, using the definition of ρε,U we have

ρε,U − ρε,1 =
2ε

d

(
UQU † −Q

)
for any U ∈ U(d). Now, due to the inequality ‖A‖1 ≥ |Tr(AV )| for any V ∈ U(d) and
A ∈ H(d), one may right-multiply the right-hand side in the above equation by the unitary
P −Q and take the trace to obtain

‖ρε,U − ρε,1‖1 ≥
2ε

d

∣∣Tr(UQU †P − UQU †Q+Q)
∣∣

=
2ε

d

∣∣Tr(UQU †P ) + Tr(UQU †(1−Q))
∣∣

=
4ε

d
Tr(PUQU †)

where in going from the first to the second line we have used linearity along with cyclic prop-
erty of trace and the last line follows from the definition of P . Therefore, if ‖ρε,U − ρε,1‖1 ≤
ε/2 for a unitary U ∈ U(d), we also have Tr(PUQU †) ≤ d/8, from which we may conclude
that for a Haar-random unitary U ,

Pr
[
‖ρε,U − ρε,1‖1 ≤ ε/2

]
≤ 2e−cd

2

.

Next, consider the unitary Ui and corresponding state ρi in the lemma, for some i ∈ [N ].
Using the invariance of the trace distance under unitary transformation, one may verify
that for the Haar-random unitary U

‖ρε,U − ρε,1‖1 = ‖ρε,UiU − ρi‖1
which, by left-invariance of the Haar measure, leads to the conclusion that

Pr
[
‖ρε,U − ρi‖1 ≤ ε/2

]
≤ 2e−cd

2

. (3.3)

Since this inequality holds for any index i ∈ [N ] the proof is complete upon applying union
bound over the events ‖ρε,U − ρi‖1 ≤ ε/2 for each i ∈ [N ].
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Lemma 3.1.4 implies we may construct a (non-explicit) ensemble of states of size
N = exp(Ω(d2)) which is an ε/2-packing in trace distance, using a probabilistic existence
argument.

Definition 3.1.5 (ε-packing condition). A set of mixed states S satisfies the ε-packing
condition for some ε > 0 if it holds that ‖ρ− ρ′‖1 > ε for every ρ, ρ′ ∈ S such that ρ 6= ρ′.

Corollary 3.1.6. Let d > 0 be a positive integer. There exists a set of N ≥ exp (Ω(d2))
quantum states as in Lemma 3.1.4 for which the ε/2-packing condition is satisfied.

Proof. First, suppose we have a set of states Sk = {ρ1, . . . , ρk} ⊂ D(d) which are of the same
form as in Lemma 3.1.4, where k < ecd

2−ln(2) and c is as in Lemma 3.1.4. Suppose further
that this set satisfies the packing condition; namely, ‖ρi − ρj‖1 > ε/2 for all i, j ∈ [k], i 6= j.
From Lemma 3.1.4 we know that the probability of choosing a unitary U Haar randomly
such that Sk ∪{ρε,U} no longer satisfies the ε/2-packing condition is strictly less than one.
Therefore, there must exist at least one state which we can add to the packing. The result
follows by induction on k.

Let us now turn our attention to bounding the Holevo information arising from an
ensemble of states constructed using the corollary above.

Lemma 3.1.7. Let S = {ρ1, . . . , ρN} ⊆ D(d) be a set of N = exp(Ω(d2)) quantum states
as in Corollary 3.1.6. Let x be uniformly random over [N ] and consider the ensemble of
states corresponding to ρ⊗nx . The Holevo information for this ensemble satisfies

S

(
1

N

N∑
i=1

ρ⊗ni

)
− 1

N

N∑
i=1

S
(
ρ⊗ni
)
≤ nε2.

Proof. Let ρ := 1
N

∑N
i=1 ρ

⊗n
i be the ensemble state and note that the reduced state on any

of the n registers is just τ := 1
N

∑N
i=1 ρi. It follows from the subadditivity of von Neumann

entropy that S(ρ) ≤ nH (τ). We also have S
(
ρ⊗ni
)

= nS(ρi), so it suffices to show the
upper bound

S (τ)− 1

N

N∑
i=1

S (ρi) ≤ ε2. (3.4)

The first term on the left-hand side is at most log(d). Also, since each state ρi is of the
form ρi = 2ε

d
UiQU

†
i +(1−ε)1

d
for some unitary Ui, half its eigenvalues are equal to (1+ε)/d
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and the other half are (1−ε)/d. (This follows from the fact that Q is a rank-d/2 orthogonal
projector.) Therefore, we may compute

S(ρi) = H((1 + ε)/2) + log(d/2)

where the entropy on the right-hand side is the binary entropy function. Thus, the expres-
sion on the left-hand side of (3.4) is at most

log(d)− log(d/2)−H((1 + ε)/2) ≤ 1− (1− ε2) = ε2

where the first relation follows from the inequality for the binary entropy function H(p) ≥
1− 4δ2 whenever |p− 1/2| ≤ δ.

We can now prove Theorem 3.1.1. Let S = {ρ1, . . . , ρN} be an ε/2-packing as described
in the probabilistic existence argument of Corollary 3.1.6. Also, let x be uniform over [N ]
and y be the outcome of a measurement on the state ρ⊗nx . By Holevo’s theorem and
Lemma 3.1.7, the mutual information between these random variables is upper bounded
as

I(x : y) ≤ nε2.

Assume that the measurement whose outcome is y succeeds in identifying the state ρx to
within ε/2 in trace distance with probability Ω(1), implying that we can decode x with at
least a constant probability of success. Then, by Fano’s inequality (Corollary 1.3.6), for
sufficiently large d we must have

c1d
2 ≤ c2 log(N) ≤ I(x : y) ≤ nε2

for some universal constants c1, c2, which can only be true if n = Ω(d2/ε2).

3.2 Nonadaptive measurements

We consider next the first of the unentangled measurement settings, where measurements
are performed on individual copies of the state nonadaptively i.e., the kth measurement
does not depend on the previous k − 1 outcomes. This means that the random variable
yk corresponding to the kth measurement outcome is independent of all other outcomes,
given the state being measured. In this case, one may prove stronger bounds on the mutual
information than the one due to Holevo’s theorem.
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To this end, let us begin by observing that, due to the conditional independence of
the measurement outcomes y1, . . . ,yn, the mutual information is subadditive. Let S =
{ρ1, . . . , ρN} ⊂ D(d) be a set of N = exp(Ω(d2)) states as in Corollary 3.1.6. Let x be
uniformly random over [N ] and y = (y1, . . . ,yn) be the outcomes obtained from measuring
ρ⊗nx with n nonadaptive measurements. We have

I(x : y) ≤
n∑
k=1

I(x : yk). (3.5)

Then, the following lemma enables us to bound each of the mutual information terms
appearing in the sum by an expectation over x.

Lemma 3.2.1. Let x be an arbitrary random variable with marginal distribution px and
y be a discrete random variable. Denote by py|x the distribution of y given a fixed value x
of x. For an arbitrary discrete distribution q defined on the same space as the distribution
of y, it holds that

ln(2)× I(x : y) ≤ E
x∼px

χ2(py|x ‖ q). (3.6)

Proof. By Definition 1.3.1 we have I(x : y) = Ex∼pxDKL(py|x ‖ py) where py is the
marginal distribution of y. We also have the inequality DKL(a ‖ b) ≤ log(e)χ2(a ‖ b) for
any two discrete distributions a and b defined on the same space, as in Lemma 1.3.8. This
implies the relation in (3.6) upon showing that

E
x∼px

DKL(py|x ‖ q) ≥ E
x∼px

DKL(py|x ‖ py). (3.7)

Let Y be the set of values y can take. Using the definition of KL-divergence, we have

E
x∼px

DKL(py|x ‖ q) = E
x∼px

∑
y∈Y

py|x(y) log

(
py|x(y)

q(y)

)
=
∑
y∈Y

py(y) log

(
1

q(y)

)
− E

x′∼px
H(y|x = x′)

= H(y) +DKL(py ‖ q)− E
x′∼px

H(y|x = x′)

which proves the relation in (3.7), since DKL(py ‖ q) ≥ 0 and H(y)− E
x′∼px

H(y|x = x′) =

E
x∼px

DKL(py|x ‖ py).
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Corollary 3.2.2. Define x,y, px, py|x as in Lemma 3.2.1 and let py be the marginal dis-
tribution of y. It holds that

ln(2)× I(x : y) ≤ E
x∼px

χ2(py|x ‖ py) = E
x∼px

E
y′∼py

py|x(y′)2

py(y′)2
− 1. (3.8)

Proof. Since Lemma 3.2.1 holds in particular when q = py, we immediately obtain the
inequality in (3.8). The second relation can be seen upon substituting the definition of the
chi-squared divergence (Definition 1.3.7) between py|x and py for some fixed value x of x.
We have

χ2(py|x ‖ py) = E
y′∼py

(
py|x(y

′)

py(y′)

)2

− 1

which completes the proof of the corollary, by taking the expectation over x drawn from
the marginal distribution px.

Although these results could be applied directly to the mutual information terms in
the sum in (3.5), it would be intractable to compute the expectation over x given that we
do not explicitly know the states which comprise our ensemble. Fortunately, we can make
use of an intermediate result to effectively replace that ensemble with one which admits
such explicit calculations, as explained in the following proposition. (A similar result is
also stated in the proof of Lemma 10 in Haah et al. [18].)

Proposition 3.2.3. Let U be a Haar-random unitary taking values in U(d) and z be
the outcome obtained upon measuring ρ⊗nε,U with measurement M, where ρε,U is defined as
in (3.1) for any U ∈ U(d). Let N = exp(Ω(d2)) be a positive integer and x be uniformly
random over [N ]. There exists a set S = {ρ1, . . . , ρN} ⊂ D(d) of states of the form in
Lemma 3.1.4 satisfying the ε/2-packing condition and for which

I(x : y) ≤ I(U : z)

where y is the outcome obtained from measuring ρ⊗nx with M.

Note that in this proposition the measurements performed on the product state can be
arbitrary.

Proof. Consider a fixed set S = {ρ1, . . . , ρN} ⊂ D(d) of states of the form in Lemma 3.1.4
satisfying the ε/2-packing condition, (which we know exists from Corollary 3.1.6) and let
U = {U1, . . . , UN} be the set of unitary operators such that ρi = ρε,Ui

for each i ∈ [N ].
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Note that the ε/2-packing condition on our set of quantum states continues to hold if we
replace our set of unitary operators U with the set WU for an arbitrary unitary operator
W ∈ U(d), which can be seen by unitary invariance of the trace norm and the fact that
‖ρi − ρj‖1 = ε‖UiσU †i − UjσU

†
j ‖1. For any fixed unitary W , define yW to be the outcome

obtained by measuring ρ⊗nε,WUx
with M (equivalent to choosing a unitary from the shifted

ensemble uniformly at random and measuring the state which corresponds to it). We claim
that

E
W∼Haar

I(x : yW ) ≤ I(U : z). (3.9)

First, define py|W,x to be the distribution of yW given x = x. By the definition of mutual
information, we have

I(x : yW ) = H(E
x
py|W,x)− E

x
H(py|W,x).

Using concavity of entropy along with the independence of x and choice of unitary W , the
left-hand side of (3.9) is then at most

H
(
E
x

E
W∼Haar

py|W ,x

)
− E

x
E

W∼Haar
H(py|W ,x).

By right-invariance of the Haar measure, the expectation of some function of Haar-random
W is equal to that expectation when W is mapped to WU †, for any unitary operator U .
Therefore, for any x ∈ [N ] we have

E
W∼Haar

py|W ,x = E
W∼Haar

diag
(
M(ρ⊗nε,WUx

)
)

= E
W∼Haar

diag
(
M(ρ⊗nε,W )

)
= E

W∼Haar
pz|W

= pz

where pz|W is the distribution of z given U = W and pz is the marginal distribution of z.
Similarly, we have for any x ∈ [N ] that

E
W∼Haar

H(py|W ,x) = E
W∼Haar

H(pz|W ).

By the definition of mutual information, this proves the inequality (3.9). We may then
once again invoke a probabilistic existence argument: since the expectation of I(x : yW )
over unitary operators W is at most I(U : z), there must exist at least one unitary
V ∈ U(d) for which the inequality I(x : yV ) ≤ I(U : z) holds. The proposition follows
by taking the set of density operators in the statement of the proposition to be S ′ =
{ρε,V U1 , ρε,V U2 , . . . , ρε,V UN

}.
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We now move on to presenting two lower bounds for the nonadaptive case.

3.2.1 Arbitrary nonadaptive POVMs

In this section, we prove a lower bound in the nonadaptive case that is originally due to
Ref. [18], where the POVMs acting on each state may be arbitrary.

Theorem 3.2.4 (Theorem 4 in Ref. [18]). Consider a tomography algorithm in the non-
adaptive measurement model which outputs an estimate ρ̂ ∈ D(d) such that ‖ρ̂− ρ‖1 ≤ ε
with at least a constant probability of success, for any unknown state ρ ∈ D(d). It must
hold that the algorithm uses n = Ω (d3/ε2) samples of the state.

Our analysis is simplified due to Lemma 3.2.1 as well as techniques for Haar integration
based on permutation invariance. (We refer the interested reader to Section 7.2 of Ref. [38]
for more on this topic.) We also do not assume the measurement operators are rank-one.
This allows us to conclude our novel Ω(d4/ε2) lower bound in the next section, in addition
to laying the groundwork for what is to appear in Section 4.2.

Proof of Theorem 3.2.4

Another way of phrasing the above result is that it takes Ω(d3/ε2) copies of a d-dimensional
quantum state to learn it to within trace distance ε by using product measurements which
are decided upon beforehand. We may writeM =M1⊗M2⊗· · ·⊗Mn for some measure-
mentsM1, . . . ,Mn each of which acts on operators in D(d). Let S = {ρ1, . . . , ρN} ⊂ D(d)
be the set of N = exp(Ω(d2)) states which satisfy the ε/2-packing condition as well as
the mutual information claim in the statement of Proposition 3.2.3. By Fano’s Inequality
we know that the mutual information must satisfy I(x : y) ≥ Ω(d2) in order to dis-
criminate the states with constant success probability, where x is uniform over [N ] and
y = (y1, . . . ,yn) are the outcomes from performing the measurementM1⊗M2⊗· · ·⊗Mn

on ρ⊗nx .

On the other hand, by Proposition 3.2.3 we have that I(x : y) ≤ I(U : z) where U
and z = (z1, . . . ,zn) are defined as in the proposition: U is a Haar-random unitary, and
zi is the measurement outcome obtained by measuring ρε,U with Mi, for each i ∈ [n].
Thus, it suffices to show I(U : z) = o(d2) for n = o(d3/ε2). Furthermore, by subadditivity
of mutual information it holds that I(U : z) ≤

∑n
k=1 I(U : zk) so that by applying

Corollary 3.2.2 (which is our χ2-divergence upper bound on the mutual information) to
each of the terms we arrive at

I(U : zk) ≤ log(e)

[
E

z∼pzk
E

U∼Haar

pzk|U (z)2

pzk(z)2
− 1

]
(3.10)
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for all k ∈ [n] where for fixed U ∈ U(d) the conditional probabilities may be written

as pzk|U(z) = Tr(M
(k)
z ρε,U) for some set of measurement operators {M (k)

z }z corresponding
to the measurement Mk on the kth copy of the state. The marginal probabilities in the
denominator are pzk(z) = EU∼HaarTr(M

(k)
z ρε,U ) for each outcome z.

It then suffices to show that the Haar expectation in (3.10) at most 1+O(ε2/d) regardless
of the measurement Mk, for then we have that I(U : z) ≤ O(nε2/d) which fulfills the
requirement of being o(d2) when n = o(d3/ε2). In summary, we must show the following.

Proposition 3.2.5. Let z be the random variable corresponding to the outcome of a mea-
surement M performed on the state ρε,U , where U is Haar-random and ρε,U is as in (3.1),
for each U ∈ U(d). It holds that

ln(2)× I(U : z) ≤ E
U∼Haar

χ2(pz|U ‖ pz) = O

(
ε2

d

)
.

This proposition follows immediately from the next lemma.

Lemma 3.2.6. Let d > 1 be a positive integer, M ∈ Psd(d), 0 �M � 1 be a measurement
operator, and ρε,U be defined as in (3.1), for each U ∈ U(d) and ε ∈ (0, 1). Also, let
w = Tr(M)/d. It holds that

E
U∼Haar

Tr (Mρε,U ) = w

and

E
U∼Haar

Tr (Mρε,U )2 ≤ w2

(
1 +

ε2

d+ 1

)
.

Proof. We will defer the calculation of some Haar integrals to Appendix A. By the definition
of ρε,U in (3.1) the first expectation is

E
U∼Haar

Tr (Mρε,U ) =
2ε

d
E

U∼Haar
Tr
(
MUQU †

)
+ (1− ε)w.

Also, from the first Haar integral in Proposition A.0.2 in Appendix A along with linearity
of trace we have

E
U∼Haar

Tr
(
MUQU †

)
=

Tr(M)

2
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which leads to the first identity in the lemma. (Recall that Q is a rank-d/2 orthogonal pro-
jector.) For the second expectation in the lemma, note that by substituting the definition
of ρε,U and expanding we have

E
U∼Haar

Tr(Mρε,U )2 =
4ε2

d2
E

U∼Haar
Tr(MUQU †)2 + w2(1− ε2). (3.11)

Also, by linearity of trace and the fact that Tr(A)2 = Tr(A⊗2) for any A ∈ H(d) we have

E
U∼Haar

Tr(MUQU †)2 = Tr
(
M⊗2 E

U∼Haar
(UQU †)⊗2

)
. (3.12)

The Haar integral on the right-hand side is evaluated explicitly in Proposition A.0.2 by
setting the rank parameter r in that proposition to d/2,

E
U∼Haar

(UQU †)⊗2 =
1

4(d2 − 1)

[
(d2 − 2)1 + dW

]
where the identity and swap operationW in the above act on the space (Cd)⊗2. Substituting
into (3.12) and making use of the identity Tr(W (A ⊗ B)) = Tr(AB) we find that the
expectation value in (3.11) is equal to

ε2w2(d2 − 2)

d2 − 1
+
ε2Tr(M2)

d(d2 − 1)
+ w2(1− ε2) ≤ ε2w2(d2 − 2)

d2 − 1
+
ε2dw2

d2 − 1
+ w2(1− ε2) (3.13)

= w2

(
1 +

ε2

d+ 1

)
as required, where the inequality follows from the fact that ‖M‖1 ≥ ‖M‖F and M is
Hermitian positive semidefinite.

By substituting the two relations in Lemma 3.2.6 into the upper bound on the mu-
tual information in (3.10) we find that I(U : Zk) ≤ O(ε2/d), which implies result in
Theorem 3.2.4.

3.2.2 Constant-outcome case

We can derive a stronger lower bound on the number of copies required in the nonadaptive
setting when the measurements are restricted to having a constant number of outcomes.
As a consequence we find that the straightforward binary Pauli algorithm from Section 1.4
is optimal in this setting.
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Theorem 3.2.7. Consider a tomography algorithm in the nonadaptive measurement model
which outputs an estimate ρ̂ ∈ D(d) such that ‖ρ̂− ρ‖1 ≤ ε with at least a constant probabil-
ity of success, for any unknown state ρ ∈ D(d). Suppose further that the each measurement
is restricted to having a constant number of outcomes. Then it must hold that the algorithm
uses n = Ω (d4/ε2) samples of the state.

We proceed in a similar fashion to the previous section. LetM =M1⊗M2⊗· · ·⊗Mn

be the measurement used by the tomography algorithm, where each Mk is a constant-
outcome measurement on operators in D(d). In other words, for every k ∈ [n] there exists
an L = O(1) such that for any density matrix ρ ∈ D(d),

Mk : ρ 7→
L∑
j=1

Tr
(
M

(k)
j ρ

)
|j〉〈j|

for some set of measurement operators {M (k)
1 , . . . ,M

(k)
L }. As explained in the previous

section, it will suffice to bound I(U : zk) for each k ∈ [n], where zk is the outcome
corresponding to the measurementMk on the state ρε,U and U is a Haar random unitary
in U(d). The inequality (3.10) from the more general nonadaptive case continues to hold:

I(U : zk) ≤ log(e)

[
E

z∼pzk
E

U∼Haar

pzk|U (z)2

pzk(z)2
− 1

]
and the result follows upon bounding the right-hand side by O(ε2/d2) rather than O(ε2/d)
i.e., we would like to show that

E
z∼pzk

E
U∼Haar

pzk|U(z)2

pzk(z)2
=
∑
z

E
U∼Haar

pzk|U (z)2

pzk(z)
(3.14)

is at most 1 + O(ε2/d2) when we know that the sum on the right-hand side consists of
O(1) terms, for then the mutual information I(U : z) =

∑n
k=1 I(U : zk) = o(d2) unless

n = Ω(d4/ε2). In summary, the result follows upon showing the following proposition.

Proposition 3.2.8. Let z be a random variable corresponding to the outcome of a constant-
outcome measurement M performed on the state ρε,U , where U is Haar-random and ρε,U
is as in (3.1), for each U ∈ U(d). It holds that

ln(2)× I(U : z) ≤ E
U∼Haar

χ2(pz|U ‖ pz) = O

(
ε2

d2

)
.
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We know from the first identity in Lemma 3.2.6 that pzk(z) = wk(z), where wk(z) :=

Tr(M
(k)
z /d) and M

(k)
z is the measurement operator corresponding to the outcome z for the

kth measurement. The desired upper bound on the right-hand side of (3.14) then follows
from the next lemma, which is an alternative upper bound on the second expectation
appearing in Lemma 3.2.6.

Lemma 3.2.9. Let d > 1 be a positive integer, M ∈ Psd(d), 0 �M � 1 be a measurement
operator, and ρε,U be defined as in (3.1), for each U ∈ U(d) and ε ∈ (0, 1). Also, let
w = Tr(M)/d. It holds that

E
U∼Haar

Tr (Mρε,U )2 ≤ w2 +
ε2w

d2 − 1
.

Proof. We found in the proof of Lemma 3.2.6 (see the left-hand side of (3.13)) that

E
U∼Haar

Tr(Mρε,U )2 =
ε2w2(d2 − 2)

d2 − 1
+
ε2Tr(M2)

d(d2 − 1)
+ w2(1− ε2).

We may rewrite the right-hand side of the above as

w2 +
ε2Tr(M2)

d(d2 − 1)
− ε2w2

d2 − 1
≤ w2 +

ε2w

d2 − 1

where the inequality follows since Tr(M2) ≤ Tr(M) for 0 � M � 1 and the third term in
the left-hand side is at most zero.

Note that
∑

z pzk(z) =
∑

z wk(z) = 1. The inequality in the lemma above along with
the fact that the number of outcomes is L = O(1) entails that the right-hand side of (3.14)
is at most

L∑
z=1

wk(z)2 + ε2wk(z)/(d2 − 1)

wk(z)
= 1 +O(ε2/d2)

as desired, completing the proof of Theorem 3.2.7.
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Chapter 4

Lower bounds with adaptive
measurements

We have previously seen that by taking into account restrictions on measurements, it is
possible to derive stronger lower bounds on tomography than that obtained by a direct
application of Holevo’s theorem. Specifically, we were able to show matching lower bounds
on tomography in the nonadaptive measurement setting for both constant-outcome mea-
surements and arbitrary POVMs. In this chapter we will consider two different kinds of
restriction on the measurements.

First, we examine the case where there is some fixed subset of the measurements which
can be used to adapt future measurements. For this scenario, we are able to show a lower
bound which matches the nonadaptive case, so long as the number of measurements which
can be adapted on is not Ω(d2/ε2).

We then allow measurements to adapt on arbitrarily many of the previous outcomes,
so long as they are selected from a fixed set of up to exp(O(d)) measurements. This is
large enough to encompass all possible measurements which can be efficiently performed
on a quantum computer with a fixed universal gate set.

Finally, we apply the above method to derive lower bounds on a different task called
classical shadows, where the goal is to predict the expectation of a number of observables
using few copies of the state. Namely, we show that the matching lower bound due to
Huang, Kueng, and Preskill [22] is robust to adaptively selected measurements, so long
as one restricts their attention to efficient quantum computation. Such an assumption is
particularly relevant in this context, since classical shadows are thought to be a useful
tool for proposed near-term applications of quantum computing [33]. It could be said that
any advantage for adaptivity lying outside the scope we consider (i.e., requiring eω(d) mea-
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surement settings) would undermine the value of classical shadows in a practical context,
since it could not be realized using a quantum device with a realistic number of operations,
growing polynomially with the number of qubits.

4.1 Measurements with limited adaptivity

Suppose that a tomography algorithm uses only some past measurement outcomes to
adapt future ones. For example, an experiment may begin with a preliminary phase in
which measurements are performed fully adaptively, but then transition to a second phase
in which measurements depend only on the outcomes obtained in the first one. (The
proposal considered in Mahler et al. [27] meets this criterion, for example.) In this section
we prove a lower bound on tomography with adaptive measurements when the algorithm
adapts on just a fixed subset of the previously observed outcomes, which is not too large.
More precisely, suppose there are n measurements made in total, which is equal to the
number of samples/registers prepared in the state ρ in this setting. Then we assume
that there is a subset of S ⊆ [n] of size at most r such that, for each i ∈ [n], the ith

measurement may depend only on the outcomes obtained from the registers corresponding
to the measurements [i−1]∩S. We find that adaptivity does not offer any advantage over
independent measurements in terms of the worst-case sample complexity in such scenarios.

Theorem 4.1.1. Consider a tomography algorithm in the adaptive measurement model
which outputs an estimate ρ̂ ∈ D(d) such that ‖ρ̂− ρ‖1 ≤ ε with at least a constant prob-
ability of success, for any unknown state ρ ∈ D(d). Suppose further that each choice of
measurement is independent of all but a fixed set of up to r = o(d2/ε2) outcomes. Then it
must hold that the algorithm uses n = Ω(d3/ε2) samples of the state.

We state at the outset that we find this theorem follows from suitable adjustments to
the analysis performed by Bubeck et al. [13] in the context of lower bounds for a different
problem, known as quantum property testing. We will highlight where we borrow ideas for
our proof. Compared to the independent case, the key difference when the measurements
are allowed to be adaptive is that the subadditivity property of mutual information no
longer holds. In other words, if y1, . . . ,yn are the measurement outcomes obtained upon
measuring ρ⊗nx , it may not necessarily be the case that I(x : y) ≤

∑n
k=1 I(x : yk) as in

the nonadaptive setting. We may however appeal to the chain rule for mutual information
(see Fact 1.3.3), I(x : y) =

∑n
k=1 I(x : yk|yk−1, . . . ,y1) which always holds for the random

variables x and y = (y1, . . . ,yn).

If it were the case that each of the n conditional mutual information terms in the
chain rule were O(ε2/d), then we would be able to recover the Ω(d3/ε2) lower bound from
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Theorem 3.2.4 in the independent case. Unfortunately we do not know how to show
this for the Haar-random ensemble we have been considering thus far. Instead, our proof
technique – inspired by Ref. [13] – relies on concentration inequalities to attempt to control
the deviation of the conditional mutual information terms away from the case where there
is no adaptivity. (See Lemma 4.1.3.) This leads to excess terms which scale exponentially
with r, the number of terms adapted on, unless r ≤ o(d2/ε2). At present, this shortcoming
seems to be an artifact of the strongest concentration inequality we are able to show, which
takes the form of a subexponential tail. If the concentration results were any tighter, the
approach would lead to an unconditional separation between tomography with and without
entangled measurements, analogous to the separation shown in Ref. [13] for the task of
quantum property testing.

We leave open the possibility of improvements in the relevant concentration inequalities
we derive from the above lemma. For now, let us make a final remark on the relationship
between the approach considered in this section and the lower bounds we will present in
Section 4.2. There, the bounds apply to measurements which can be fully adaptive, so
long as there is a fixed set of measurements which can be performed that is not too large.
In particular, the tail bound (Lemma 4.1.3) shown in this section will be applied to rule
out any advantage in adaptivity for a fixed set of up to exp(O(d)) measurements. Let us
now define the function for which we will show the aforementioned tail bound.

Definition 4.1.2. Let Ξ(d) be the set of all finite-outcome POVMs acting on operators
in D(d). We define the function X : Ξ(d)× U(d)→ R by

X(M, U) := χ2(pz|U ‖ w)

for any U ∈ U(d) and M ∈ Ξ(d), where, pz|U is the measurement outcome distribution
from applying M to the state ρε,U , and w = EU∼Haar pz|U .

We have ‖X‖∞ ≤ ε2 since for anyM with measurement operators {Mz}z and U ∈ U(d)
one has by definition

|X(M, U)| = E
z′∼pz

(
Tr(Mz′ρε,U)− w(z′)

w(z′)

)2

= ε2 E
z′∼pz

(
Tr(Mz′σ)− w(z′)

w(z′)

)2

≤ ε2

where w(z) = Tr(Mz)/d and we used the definition of ρε,U to write the expression in terms
of the quantum state σ. (Note that 0 ≤ w(z),Tr(Mzσ) ≤ 2w(z).)

We next turn to the tail inequality which will be used in this section and in Section 4.2
to derive lower bounds in adaptive measurement scenarios. We will only require the case
of arbitrary (finite-outcome) POVMs for the proof of Theorem 4.1.1, but we will also use
the constant-outcome case in later sections.
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Lemma 4.1.3 (Chi-squared tail bound). For any finite-outcome POVM M it holds that

Pr
U∼Haar

[X(M,U) > γ + t] ≤ 2 exp

(
−Cd

2t

ε2

)
(4.1)

where γ := cε2/d and c, C are universal constants. Furthermore, if M is restricted to
having a constant number of outcomes then the inequality holds with γ := aε2/d2 for some
universal constant a.

Proof. The lemma is analogous to Lemma 7.6 in Ref. [13], for example, and so we proceed
along similar lines considering first the case whereM has more than a constant number of
outcomes. We are trying to prove a subexponential tail on the random variable X(M,U)−
cε2/d, where U is Haar-random. It will suffice to show that the function which acts on any
U ∈ U(d) as

f : U 7→
√

X(M, U)− E
V ∼Haar

√
X(M,V )

has a tail like 2 exp(−Ω(d2t2/ε2)), for U selected Haar-randomly. Let us explain the reason
for this. Note that

E
V ∼Haar

√
X(M,V ) ≤

√
E

V ∼Haar
X(M,V ) =

c′ε√
d

where the inequality uses the concavity of the square root and the second relation follows

from Proposition 3.2.5. Furthermore, the inequality cε2/d + t ≥
(√

cε2/d+
√
t
)2
/2 for

any t > 0 entails that

Pr
U∼Haar

[
X(M,U) >

cε2

d
+ t

]
≤ Pr

U∼Haar

[√
X(M,U) > ε

√
c

2d
+

√
t

2

]

so that, by choosing c = 2(c′)2 we find f having a tail of 2 exp(−Ω(d2t2/ε2)) indeed gives
us

Pr
U∼Haar

[
X(M,U) >

cε2

d
+ t

]
≤ 2 exp

(
−Cd

2t

ε2

)
for some universal constant C, as required.

To arrive at the desired concentration inequality for f we can invoke Lemma 3.1.2,
according to which it suffices to show that f is O(ε/

√
d)-Lipschitz. Let z be the outcome
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from measuring ρε,U with M and having conditional distribution pz|U given U = U . Also
define the distribution w = EU∼Haar pz|U . For arbitrary U, V ∈ U(d), consider the difference

|f(U)− f(V )| =
∣∣∣√X(M, U)−

√
X(M, V )

∣∣∣
=

∣∣∣∣∣∣
√

E
z′∼w

(
pz|U(z′)

w(z′)
− 1

)2

−

√
E

z′∼w

(
pz|V (z′)

w(z′)
− 1

)2

∣∣∣∣∣∣
≤

√
E

z′∼w

(
pz|U(z′)

w(z′)
−
pz|V (z′)

w(z′)

)2

.

In the above, the second line follows from the definition of X(M, U) as well as the chi-
squared divergence between two discrete distributions, and the third line follows from
triangle inequality applied to the L2 norm. Let {Mz}z be the set of measurement operators
corresponding to M. We have that pz|U(z) = Tr (Mzρε,U) and w(z) = Tr(Mz)/d from
Lemma 3.2.6. Recalling the definition of ρε,U from (3.1) we may substitute into the right-
hand side of the above inequality to arrive at the upper bound

|f(U)− f(V )| ≤ 2ε

d

√
E

z∼w

1

w(z)2
Tr (Mz(UQU † − V QV †))2.

It suffices to show that the expectation in the square root is at most O(d) ‖U − V ‖2F. Write
WDW † for the spectral decomposition of the Hermitian matrix UQU †− V QV †, where W
is unitary and D is diagonal. We have

E
z∼w

1

w(z)2
Tr
(
MzWDW †)2 = d2 E

z∼w
Tr

((
W †MzW

w(z)d

)
D

)2

≤ d2 E
z∼w

Tr

((
W †MzW

w(z)d

)
D2

)
= d

∑
z

Tr
(
W †MzWD2

)
= d

∥∥UQU † − V QV †∥∥2
F

where in the second line we used the fact that WMzW
†/(w(z)d) is positive semidefinite

with unit trace and applied Jensen’s inequality to deduce that Tr(AD)2 = (
∑

iAiiDii)
2 ≤∑

iAiiD
2
ii = Tr(AD2) for any positive semidefinite matrix A with unit trace. Also, in the

final line we used the fact that the measurement operators for the different outcomes z
sum to identity.

46



Finally, we can use the matrix inequality ‖AB‖F ≤ ‖A‖ ‖B‖F to deduce that∥∥UQU † − V QV †∥∥
F

=
1

2

∥∥(U + V )Q(U − V )† + (U − V )Q(U + V )†
∥∥
F

≤
∥∥(U + V )Q(U − V )†

∥∥
F

≤ (‖UQ‖+ ‖V Q‖) ‖U − V ‖F
≤ 2 ‖U − V ‖F . (4.2)

The proof in the constant-outcome case is identical, except using the fact that the expec-
tation is then EU∼Haar X(M,U ) = O(ε2/d2) in accordance with Proposition 3.2.8.

Let us return to proving Theorem 4.1.1. We begin by introducing some short-hand
notation which will help when analyzing the conditioning of measurements on previous
outcomes. Let z = (z1, . . . ,zn) be the measurement outcomes from performing a sequence
of adaptive measurements on n identical copies of the state ρε,U , where U is a Haar-random
unitary operator and ρε,U is defined as in previous sections to be of the form (3.1) for any
U ∈ U(d). We say that the random variable zi can be adapted on if there is some choice
of measurement which depends on the outcome zi. Let z<k denote the random variables
z1, . . . ,zk−1 and z<k a possible sequence of values z1, . . . , zk−1.

By chain rule for mutual information we have that

I(U : z) =
n∑
k=1

I(U : zk|z<k). (4.3)

From now on we will focus on a specific term k in the sum in (4.3), since it suffices to
show that each term is O(ε2/d). Let y1, . . . ,yr−1 be the subset of outcomes which can
be adapted on out of z1, . . . ,zk−1 and write yr := zk. It follows from Fact 1.3.2 that
I(U : zk|z<k) ≤ I(U : zk|y<r) =: I(U : yr|y<r).

For each j ∈ [r] and y<j we have that the conditional distribution for the outcome yj
satisfies

pyj |y<j ,U(yj) = Tr
(
My<j

yj
ρε,U

)
for some set of measurement operators {My<j

yj }yj . (See Section 1.4 for a description of the
adaptive measurement model.) We will denote this POVM by My<j . Also, define

wy<j := E
U∼Haar

pyj |y<j ,U = Tr(My<j
yj

)/d,
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where the final equality follows from the first expectation in Lemma 3.2.6. Finally, define
the distribution w<r over outcomes y<r with probabilities w<r(y<r) =

∏r−1
j=1 w

y<j(yj).

We can now proceed with bounding the conditional mutual information term I(U :
yr|y<r). Recalling the upper bound on the mutual information from Lemma 3.2.1 we have

I(U : yr|y<r) ≤ E
y<r

E
U |y<r

χ2(pyr|y<r,U ‖ wy<r)

= E
y<r

E
U |y<r

X(My<r ,U)

= E
U

E
y<r|U

X(My<r ,U)

= E
U∼Haar

∑
y<r

r−1∏
j=1

pyj |y<j ,U (yj) X(My<r ,U)

= E
U∼Haar

E
y<r∼w<r

r−1∏
j=1

pyj |y<j ,U (yj)

wy<j(yj)
X(My<r ,U) (4.4)

where in the fourth line we use the fact that for fixed U we have that the conditional
distribution over prior measurement outcomes y<r satisfies

py<r|U(y<r) =
r−1∏
j=1

pyj |y<j ,U(yj),

and in the final line we factor out the probability w<r(y<r) from each term in the sum.
Also note that we are redefining the random variable y<r in the final line by writing the
expectation over y<r ∼ w<r, for ease of notation. We will now try to bound this expectation
using the tail bound in Lemma 4.1.3.

Let 1E be the indicator function for the event E where the random variable X(My<r ,U)
is at most cε2/d + τ for c the universal constant appearing in Lemma 4.1.3 and τ > 0 to
be specified later. Let E be the complement of this event. The expectation in (4.4) can be
written

E
U∼Haar

E
y<r∼w<r

r−1∏
j=1

pyj |y<j ,U (yj)

wy<j(yj)
X(My<r ,U) (1E + 1E)

≤ τ +
cε2

d
+ ε2 E

U∼Haar
E

y<r∼w<r

r−1∏
j=1

pYj |Y<j ,U(yj|y<j,U)

wy<j(yj)
1E
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≤ τ +
cε2

d
+ 2ε2 exp

(
−Θ

(
d2τ

ε2

))√√√√ E
U∼Haar

E
y<r∼w<r

r−1∏
j=1

pyj |y<j ,U (yj)2

wy<j(yj)2
. (4.5)

Here, the second line uses the fact that
∑

y<r
py<r|U(y<r) = 1 for any U along with

the bound ‖X‖∞ ≤ ε2, and the last line follows from Cauchy-Schwarz inequality and
Lemma 4.1.3, which is our tail bound on X(M, ·) for any fixed measurement operator
M. It remains to show a suitably small upper bound on the expectation appearing in the
square root in (4.5). To accomplish this, let us first define an ancillary random variable K
whose moments we can bound more easily, and then relate the quantity in our expectation
to this newly defined random variable.

Lemma 4.1.4. Fix a constant α > 0 and define the random variableK(M, α) = 1 + αX(M,U)
for any POVM M. For p ≤ o(d2/ε2) the pth moment of K(M, α) satisfies

EK(M, α)p ≤ C exp

(
C ′pε2

d

)
+ o(1) (4.6)

for some universal constants C,C ′, where the expectation is taken with respect to the Haar-
random distribution over the random variable U .

Proof. We will work with the cumulative distribution function F (x) := Pr[X(M,U) ≤ x]
as well as the probability density p(x) := F ′(x). Let G(x) := (1 + αx)p be a function over
the reals, which is nondecreasing for all x ≥ 0 and p ≥ 1. Also define x0 := 2cε2/d where c
is the constant appearing in Lemma 4.1.3 and x1 := ε2. We can then write our expectation
as

EK(M, α)p = EG(X(M,U))

=

∫ x1

0

G(x)p(x)dx

≤ G(x0) +

∫ x1

x0

G(x)p(x)dx

where the limits of the integral in the first line come from the fact that Pr[0 ≤ X(M,U) ≤
x1] = 1 and the inequality follows by observing that G is nondecreasing on the interval
[0,∞). Let us now perform integration by parts on the integral and use the fact that
F (x1) = 1 to deduce that the right-hand side of the above is at most

G(x0)+G(x1)−G(x0)F (x0)−
∫ x1

x0

G′(x)F (x)dx
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≤ G(x0) +G(x1) +

∫ x1

x0

G′(x)(1− F (x))dx−G(x1) +G(x0)

= 2G(x0) +

∫ x1

x0

G′(x) Pr[X(M,U) > x]dx

≤ 2G(x0) + 2

∫ x1

x0

G′(x) exp

(
−Cd

2(x− cε2/d)

ε2

)
dx (4.7)

≤ 2G(x0) + 2

∫ x1

x0

G′(x) exp

(
−Cd

2x

2ε2

)
dx (4.8)

≤ 2G(x0) + 2

∫ ∞
0

pα (1 + αx)p−1 exp

(
−Cd

2x

2ε2

)
dx (4.9)

=: 2G(x0) + 2p

∫ ∞
0

(1 + s)p−1 exp

(
−c
′d2s

ε2

)
ds (4.10)

where in the second line we neglect a negative term, in (4.7) we use Lemma 4.1.3, in (4.8)
we observe x − cε2/d ≥ x/2 for all x ≥ x0 = 2cε2/d, in (4.9) we substitute for G′(x) and
increase the limits of the integral (as the integrand is nonnegative) and in the final line we
make the substitution s := αx. Letting a = c′d2/ε2, we appeal to the integral identity∫ ∞

0

(1 + s)p−1e−asds = a−peaΓ(p, a)

where Γ(·, ·) is the incomplete Gamma function. (See Appendix B.1). Using the fact that
Γ(p, a) = ap−1e−a(1 + o(1)) for p = o(a) (and a = Θ(d2/ε2) so this is true by assumption),
we have that the expression in (4.10) is at most

2G(x0) + 2pa−1(1 + o(1)) = 2

(
1 +

2cαε2

d

)p
+

2pε2

d2
(1 + o(1))

≤ C exp

(
C ′pε2

d

)
+ o(1)

so long as p = o(d2/ε2) and defining C and C ′ appropriately, as required.

Now we present the lemma which relates our expectation value of interest from (4.5)
to the random variable defined in the lemma above.

Lemma 4.1.5. The following upper bound on the expectation in (4.5) holds for some
POVM M and absolute constant α > 0:

E
U∼Haar

E
y<r∼w<r

r−1∏
j=1

pyj |y<j ,U (yj)
2

wy<j(yj)2
≤ EK(M, α)r−1 (4.11)
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where K(M, α) is defined as in Lemma 4.1.4.

Proof. Similar steps for this proof are also used in Ref. [13] in the context of a lemma
necessary for their lower bound on quantum identity testing. First define

g
y<j

U (yj) =
pyj |y<j ,U(yj)

wy<j(yj)
− 1

For any U ∈ U(d), j ∈ {1, . . . , r−1}, fixed y<j, and ` ≥ 2 we can expand using generalized
binomial coefficients to find

E
yj∼wy<j

(
1 + g

y<j

U (yj)
)`

= 1 + E
yj∼wy<j

∞∑
p=2

(
`

p

)(
g
y<j

U (yj)
)p

≤ 1 + 2` E
yj∼wy<j

g
y<j

U (yj)
2

= 1 + 2`X(My<j ,U)

=: K(My<j , 2`)

where in the first line we used the fact that Eyj∼wy<j g
y<j

U (yj) = 0 and in the last line we are

using the fact that g
y<j

U (yj)
p ≤ g

y<j

U (yj)
2 for all p ≥ 2. Hence, the left-hand side of (4.11)

is upper bounded by

E
U

E
y<r−1

r−2∏
j=1

(
1 + g

y<j

U (yj)
)2
K(My<r−1 , 4) ≤

[
E
U

E
y<r−1

r−2∏
j=1

(
1 + g

y<j

U (yj)
) 2(r−1)

r−2

] r−2
r−1

×

[
E
U

E
y<r−1

K(My<r−1 , 4)r−1

] 1
r−1

where we have applied Hölder’s inequality E |XZ| ≤ (E |X|p)1/p(E |Z|q)1/q with p = (r −
1)/(r−2) and q = r−1 and y<r−1 has distribution w<r−1 with probabilities w<r−1(y<r−1) =∏r−2

j=1 w
y<j(yj). We will now make an assumption that will be justified at the end of this

proof: assume that the term being raised to the power of (r−2)/(r−1) is at least 1. Then,
we may raise that term to the power of (r − 1)/(r − 2) only to increase it, which enables
us to proceed by a recursive argument. Let us introduce some further notation that will
clarify how to apply the recursion. Define

Sa :=
a−1∏
j=1

(1 + g
y<j

U (yj)).
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Furthermore, let `i = 2
(
r−1
r−2

)i
for every i ∈ Z+. Substituting, we have the upper bound

E
U

E
y<r

S`0r ≤
[
E
U

E
y<r−1

K(My<r−1 , 2`0)r−1
] 1

r−1

E
U

E
y<r−1

S`1r−1.

Applying this argument recursively to the moments of the Sa random variables (and as-
suming at each step that they are at least 1) we arrive at

E
U

E
y<r

S`0r ≤
r−1∏
i=1

[
E
U

E
y<i

K(My<i , 2`r−1−i)r−1−i
] 1

r−1

(4.12)

≤ sup
i,y<i

K(My<i , 2`r−1−i)r−1

where in going from the first to the second line we first took the supremum over all terms
i in the product as an upper bound and then used the fact that the expectation for the ith

term is over a product distribution of the random variables U ,y<i to take the supremum
over all terms y<i as an upper bound. It remains to show that the argument `r−1−i is
bounded by some absolute constant for all i ∈ {1, . . . , r − 1}. To see this, note that
(r − 1)/(r − 2) =

(
1 + 1

r−2

)
and r − 1 − i ≤ r − 2 for every i ∈ {1, . . . , r − 1}. Hence,

`r−1−i ≤ 2
(
1 + 1

r−2

)r−2 ≤ 2e so that the lemma holds with α = 4e.

We return now to the assumption we are making at each step of the recursion that the
moments of Sa are lower bounded by 1. Suppose that this assumption fails at some step
1 ≤ t ≤ r− 1 of the recursion. We then have an upper bound analogous to the right-hand
side of (4.12), but with t terms in the product. Since K(My<i , α) is certainly at least 1,
raising each term in the product to the power of (r− 1)/t is an upper bound. We can then
take the supremum over these t terms to arrive at the same result.

We are now ready to prove Theorem 4.1.1.

Proof of Theorem 4.1.1. Lemmas 4.1.4 and 4.1.5 together imply the upper bound

E
U∼Haar

E
y<r∼w<r

r−1∏
j=1

pyj |y<j ,U (yj)
2

wy<j(yj)2
≤ C exp

(
Θ(rε2/d)

)
+ o(1) (4.13)

for some absolute constant C. Substituting into the right-hand side of (4.5) (which is our
upper bound on the kth conditional mutual information term) we get

I(U : zk|z<k) ≤ τ +O

(
ε2

d

)
+ 2Cε2 exp

(
−Θ

(
d2τ

ε2

)
+ Θ

(
rε2

d

))
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for some constant C. We must show that for appropriately chosen τ , the right-hand side
is not too large. Choosing

τ =
cε2

d
+
c′ε2 log(d)

d2

for appropriately chosen constants c, c′ and noting that r = o(d2/ε2) we get an upper bound
of

I(U : zk|z<k) ≤ O

(
ε2

d

)
.

Applying this upper bound to each term in the chain rule we obtain

I(U : z) ≤ O

(
nε2

d

)
so that the proof of Theorem 4.1.1 is complete upon invoking Fano’s inequality in the same
fashion as the previous sections.

4.2 Lower bounds for adaptive tomography with effi-

cient measurements

Fix a set of m POVMs {M1,M2, . . . ,Mm}. In this section, we claim the existence of a
large ε-packing of mixed states which possesses the additional property of leading to highly
uninformative measurement outcomes from each of themmeasurements. The Ω(d4/ log(d))
lower bound for adaptive Pauli measurements from Ref. [16] is obtained using this mindset,
except there the packing is constructed with the property that all possible binary Pauli
measurements lead to outcome distributions that are close to uniform, for every state in
the packing. In contrast, we do not enforce that the individual probabilities are close to
some fixed value, but rather directly bound the magnitude of the χ2 divergence (what
we have been calling the function X). This leads to tight lower bounds agnostic to the
measurements comprising our set.

Theorem 4.2.1. Consider a tomography algorithm in the adaptive measurement model
which outputs an estimate ρ̂ ∈ D(d) such that ‖ρ̂− ρ‖1 ≤ ε with at least a constant proba-
bility of success, for any unknown state ρ ∈ D(d). Suppose further that each measurement
is selected from a fixed set of up to exp(O(d)) different measurements. Then it must hold
that the algorithm uses n = Ω(d3/ε2) samples of the state.

53



We also have the following extension of the above theorem.

Theorem 4.2.2. Suppose the assumptions in Theorem 4.2.1 are satisfied, and further that
each measurement has a constant number of outcomes. Then n = Ω(d4/(ε2 log(d))) samples
are required.

Combined with the following property of quantum circuits, Theorem 4.2.1 limits the
potential for an improvement in the worst-case sample complexity using efficient, adaptive
measurements. Here, we adopt the definition of quantum circuits which allows us to model
POVMs besides unitary evolution followed by basis measurements1.

Proposition 4.2.3. Consider a q-qubit register in some unknown mixed state ρ ∈ D(d),
where d = 2q and let G be a finite universal gate set comprised of a constant number of
gates. The number of distinct measurements which can be implemented using a quantum
circuit of poly(q) gates from G is O(poly(q)poly(q)) = exp(O(d)).

One implication of the result in Theorem 4.2.1 is that the nonadaptive 2-design tomog-
raphy protocol from Section 1.5 is optimal in the setting of efficient quantum computation.
This can be seen from the fact that there exist unitary 2-designs that admit efficient im-
plementations on a quantum circuit. For example, each element of the group of q-qubit
Clifford circuits (forming a 3-design) can be implemented with poly(q) gates (see Corollary
9 in Ref. [2] for example). Another example of efficiently implementable measurements is
adaptive d-outcome Pauli basis measurements on q qubits as considered in the recent work
of Yu [41] where a O(10q/ε2) upper bound on tomography is shown. The result from this
section yields a Ω(8q/ε2) lower bound in that setting, improving the gap one obtains from
Holevo’s theorem which is Ω(4q/ε2).

Proof of Theorem 4.2.1

Let us move on to the proof of the theorem. Since our intermediate goal is to construct
an ε-packing of states using a probabilistic existence argument we will require a result
analogous to Lemma 3.1.4, which we used to derive the previous packing of states.

Proposition 4.2.4. There exists a universal constant c such that the following holds. Pick
ε ∈ (0, 1), let d > 0 be a positive integer and let 0 ≤ N < ecd

2
/4 be an integer. Consider a

1A gate is a quantum operation (a CPTP map taking mixed states to other mixed states), and the
universal gateset G can be used to enact any quantum operation from q to m qubits to within ε accuracy
in diamond norm, with only polynomial overhead [38]. An example is the Clifford+T gateset, along with
the erasure and ancilla gates to model the possibility of adding and tracing out qubits.
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set of states {ρ1, ρ2, . . . , ρN} ⊂ D(d) where

ρi = εUiσU
†
i + (1− ε)1

d

for each i ∈ [N ], U1, U2, . . . , UN ∈ U(d) are arbitrary unitary operators, and σ is as in (3.1).
For Haar-random U taking values in U(d), the probability that ‖ρε,U − ρi‖1 ≤ ε/2 for any
i ∈ [N ] is at most 1/2.

Proof. The proof is identical to that for Lemma 3.1.4.

Next, let K = {M1,M2, . . . ,Mm} denote our set of m available measurements, and
let us first consider the case where these can be arbitrary POVMs. We will invoke the
tail inequality from Lemma 4.1.3 to claim that for a large fraction of unitaries in U(d),
the measurement statistics from these POVMs are uninformative. Specifically, letting yk
denote the outcome from performing the measurementMk on ρε,U for Haar-random U , the
lemma says that for some fixed distribution w, there are many unitary operators U ∈ U(d)
such that χ2(pyk|U ‖ w) is small for every k ∈ [m].

Lemma 4.2.5. Fix a set of m POVMs K = {M1,M2, . . . ,Mm} acting on operators in
D(d), and define X(M, U) as in Definition 4.1.2. Let β = ε2 ln(6m)/(Cd2), where C is the
absolute constant appearing in the tail in Lemma 4.1.3. For Haar-random U the probability
that X(M,U) ≤ O(ε2/d) + β for every measurement M∈ K is at least 2/3.

Proof. Applying union bound over the various measurements we find that the probability
that there is some measurement M∈ K such that X(M,U ) > cε2/d+ β is at most

m∑
k=1

Pr
U∼Haar

[
X(Mk,U ) > cε2/d+ β

]
≤ 2m exp

(
−Cd

2β

ε2

)
=

1

3

where the inequality follows from the tail bound in Lemma 4.1.3 and c is as in that
lemma.

Combining Proposition 4.2.4 with Lemma 4.2.5 we can use a probabilistic existence
argument to claim that there is a packing which is especially difficult to discriminate using
any of the measurements in K. This is the content of the proceeding corollary.

Corollary 4.2.6. Define X(M, U), K, and β as in Lemma 4.2.5. There exists a set of
N = exp(Ω(d2)) mixed states S = {ρ1, . . . , ρN} ⊂ D(d) of the form

ρi = εUiσU
†
i + (1− ε)1

d

for some unitary operators U1, . . . , UN ∈ U(d) and σ as in (3.1) such that
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1. ‖ρi − ρj‖1 > ε/2 for every i, j ∈ [N ], i 6= j and

2. X(M, Ui) ≤ O(ε2/d) + β for every i ∈ [N ] and M∈ K.

Proof. The proof is similar to that of Corollary 3.1.6, except with an extra step. Suppose
we have a set of j ≤ ecd

2−ln(4) quantum states Sj = {ρ1, . . . , ρj} which are of the same form
as in the statement of the corollary we are trying to prove, satisfying the two conditions
with corresponding unitary operators Uj = {U1, . . . , Uj}. From Proposition 4.2.4 as well
as Lemma 4.2.5 we know that the probability of selecting a unitary U Haar-randomly
such that Sj+1 := Sj ∪ ρε,U no longer satisfies either the first or the second condition is
strictly less than one, where we have applied union bound on this event. To be precise, the
probability that ‖ρε,U − ρi‖1 ≤ ε/2 for some i ∈ [j] or that X(M,U) > O(ε2/d) + β for
some M∈ K is strictly less than one. Therefore, there must exist at least one such state,
and the result follows by induction on j.

We can now prove the lower bound in Theorem 4.2.1. Let S = {ρ1, . . . , ρN} be the
set of N = exp(Ω(d2)) states which satisfy the two conditions in Corollary 4.2.6, with
corresponding unitary operators {U1, . . . , UN}. Let x be uniformly random over [N ] and
y = (y1, . . . ,yn) be the measurement outcomes from applying n possibly adaptive mea-
surements (each of which is an element of K) on identical copies of ρx = ρε,Ux . By Fano’s
inequality as well as the assumption that the tomography algorithm is accurate to within
trace distance O(ε), we know that I(x : y) ≥ Ω(d2).

On the other hand, we can upper bound the mutual information by properties of the
states which comprise S. Firstly, by chain rule for mutual information we have

I(x : y) =
n∑
i=1

I(x : yi|y<i) (4.14)

where we are using the shorthand y<i to refer to the random variables yi−1, . . . ,y1 as
before. For each i ∈ [n], let pyi|y<i,x be the conditional distribution for the outcome of
performing the measurement My<i on the state ρx, with probabilities given by

pyi|y<i,x(y) = Tr(My<i
y ρx)

for each possible outcome y and the set of measurement operators {My<i
y }y corresponding

to the POVM My<i . Also, define wy<i as the discrete distribution with probabilities
wy<i(y) := EU∼HaarTr(My<i

y ρε,U ) for each outcome y. Consider the ith term in the sum in
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the right-hand side of (4.14). We may apply our upper bound on the mutual information
from Lemma 3.2.1 as well as Definition 4.1.2 for the function X(·, ·) to deduce that

I(x : yi|y<i) = E
y′<i∼py<i

I(x : yi|y<i = y′<i)

≤ E
y′<i∼py<i

E
x′∼px|y<i

χ2(pyi|y′<i,x
′ ‖ wy′<i)

= E
y<i

E
x|y<i

X(My<i , Ux)

≤ O

(
ε2

d

)
+ β

= O

(
ε2(1 + log(m)/d)

d

)
. (4.15)

The fourth line follows by the assumption that My<i ∈ K for every y<i. Applying this
argument to each of the n mutual information terms and making use of the assumption
that m = exp(O(d)) we find n = Ω (d3/ε2) which concludes the proof of Theorem 4.2.1.

Proof of Theorem 4.2.2

To derive the second lower bound in the constant-outcome case we may repeat the above ar-
gument using the corresponding tail bound from Lemma 4.1.3. This gives us an ε/2-packing
of states with corresponding unitaries U1, . . . , UN satisfying X(M, Ui) ≤ O(ε2/d2) + β for
each i ∈ [N ], implying that the conditional mutual information terms are each O(ε2(1 +
log(m))/d2), where we have used the fact that β = O(ε2 log(m)/d2). The assumption that
m = exp(O(d)) produces the Ω(d4/ε2(log(d))) lower bound in the constant-outcome case
upon invoking Fano’s inequality.

4.3 Classical shadows of quantum states

Since classical shadows are believed to have applications in quantum computing, in this
section we will focus on the case where the unknown states are of dimension d = 2q,
describing a system of q qubits. We will continue to use n to denote the number of samples
required for the learning task.
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Description of task

Full quantum state tomography is often unnecessary for determining important properties
of a quantum system. For example, to verify the output of a quantum computer, one
might only be concerned with comparing the state that is produced to some target pure
state, perhaps by estimating its fidelity. Alternatively, in variational quantum algorithms
an essential subroutine is to determine the expectation values of some observables encoding
the cost function of interest. For both these tasks and more, a description of the state known
as a classical shadow [23] can provide an exponential reduction in the number of copies
of the state required to learn its relevant properties. More precisely, a classical shadow
refers to a successful procedure for the problem described below. Here, unentangled access
refers to restricting measurements to individual copies of the unknown state, as described
in Section 1.4.

Classical shadows problem. Given parameters ε, δ, B and unentangled access to n
copies of ρ ∈ D(2q) the task is to output a function (classical shadow) f : Psd(d)M →
RM such that for any fixed collection of M observables 0 � O1, . . . , OM � 1 satisfying
Tr(O2

i ) ≤ B for all i ∈ [M ], it holds that ‖f(O1, . . . , OM)− fρ(O1, . . . , OM)‖∞ ≤ ε
with probability at least 1− δ, where fρ(O1, . . . , OM)i := Tr (Oiρ) for every i ∈ [M ].

A sample-efficient algorithm

Ref. [23] gives a procedure for computing classical shadows which uses only n = O(log(M)B/ε2)
efficient, nonadaptive measurements on separate copies of the state ρ. Here, the measure-
ments are implemented by random q-qubit Clifford operators which form a unitary 3-design
and then performing a median-of-means estimation of the expectation values. Overall this
is an exponential improvement over full state tomography in the case where Tr(O2

i ) is at
most a constant for the observables of interest Oi, since there is no explicit dependence on
the dimension. They then show a matching lower bound in the nonadaptive measurement
setting. However, this lower bound does not take into account the possibility of adaptive
measurements and so we turn to this in Section 4.3.1, considering the worst case where
B = O(d).

A worst-case adaptive lower bound

In related work [22] it was shown that in order to predict the expectation values of the 4q

q-qubit Pauli operators with constant-accuracy, one requires Ω(2q/3) copies of the state ρ
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Entangled Unentangled Unentangled+Efficient

Upper bound Õ(log2(d) log(M)/ε4) [11] O(d log(M)/ε2) [23] O(d log(M)/ε2) [23]
Lower bound Ω(log(M)/ε2) [1] Ω(d1/3) [22] Ω(d log(M)/ε2) (this work)

Table 4.1: Best known upper and lower bounds for the sample complexity of (ε, δ)-shadow
tomography of M ≤ exp(d2) observables under different measurement restriction assump-
tions. Õ hides loglog factors in d and 1/ε.

even if measurements are allowed to be adaptive. This was used to esablish an exponential
separation from the case in which all copies of the state can be jointly measured, in which
case O(q) copies suffice. Furthermore, since the task of predicting all Pauli expectations
reduces to the task of producing classical shadows, this result implies a Ω(2q/3) lower
bound on classical shadows in the worst case, meaning that adaptivity cannot lead to an
exponential improvement in the copy complexity of this task.

4.3.1 An alternative lower bound with adaptive measurements

In this section, we show how the previous arguments for quantum tomography can be
adjusted to give an n = Ω(2q min{4q, log(M)}/ε2) lower bound for classical shadows with
adaptive measurement protocols that can be efficiently implemented on a quantum com-
puter. Furthermore, the way we obtain this result is by proving this lower bound on the
strictly easier task of shadow tomography [1] with unentangled measurements. We there-
fore find that since there is a matching upper bound using the classical shadows algorithm
with random q-qubit Clifford measurements, that approach is optimal not only for the task
of classical shadows but also as a procedure for (unentangled) shadow tomography.

(Unentangled) (ε, δ)-shadow tomography problem. Given parameters ε, δ, un-
entangled access to n copies of ρ ∈ D(2q), as well as M observables 0 � O1, . . . , OM �
1, the task is to output a vector b ∈ RM such that with probability at least 1 − δ,
we have |bi − Tr(Oiρ)| ≤ ε for every i ∈ [M ].

Table 4.1 summarizes known results on the sample complexity of shadow tomography
under various measurement assumptions. It is clear that when we do not restrict the
parameter B from the classical shadows problem (i.e., it can be as large as d) then the
output of the classical shadows problem can be used to produce a solution to the shadow
tomography problem, setting the parameters ε and δ to match. We will prove the following
result.

59



Theorem 4.3.1. Any procedure for the unentangled shadow tomography problem with
the additional restriction that measurements are efficiently implementable must use
Ω(2q min{4q, log(M)}/ε2) copies of the state.

In Section 4.3.2 we provide a simpler algorithm than the median-of-means protocol of
Ref. [23] for optimal unentangled shadow tomography, under the assumption of efficient
measurements. The analysis is based on the straightforward approach of “reusing” samples
of the unknown state. Taken together, these results address an open question of Aaronson
and Rothblum [3] which asked how feasible it might be to perform shadow tomography
with unentangled measurements.

Proof of Theorem 4.3.1

Since we are operating under the assumption of measurements implemented using efficient
quantum computation, we may fix a finite universal gateset G with which we implement
the measurements. We will show that there exists a collection of L observables O1, . . . , OL

whose expectations enable one to uniquely identify a state from ρ1, . . . , ρL, but at the same
time whose measurement statistics are uninformative. Moreover, we can take L to be as
large as exp(min{Ω(d2), log(M)}) where d = 2q. The lower bound will then follow by using
our upper bound on the chi-squared divergence quantity we have been considering in the
previous sections on tomography, and combining with Fano’s inequality. We first construct
our difficult instance of the shadow tomography problem. Let U be a Haar-random unitary
taking values in U(d) and Q be a rank-d/2 projector. Lemma 3.1.3 implies that for any
fixed rank-d/2 projector P , we have

Pr[Tr(PUQU †) ≥ d/3] ≤ 2 exp(−Cd2) (4.16)

for some universal constant C, by choosing the parameter t in the lemma appropriately.
Let L := b1

4
exp (min{Cd2, log(M)})c so that, similar to Proposition 4.2.4 we have the

following result: for arbitrary unitary operators U1, . . . , UL ∈ U(d) the probability that
Tr(UiQU

†
iUQU

†) ≥ d/3 for any i ∈ [L] is at most 1/2. Let K = {M1, . . . ,Mm} be a set
of POVMs from which our measurements are drawn. Then Lemma 4.2.5 applies and we
have the following result:

Lemma 4.3.2. Define X(M, U) as in Definition 4.1.2 and let β = ε2 ln(6m)/(Cd2), where
C is the absolute constant appearing in the tail in Lemma 4.1.3. There exists a set of L
unitary operators U1, . . . , UL ∈ U(d) and Q a rank-d/2 orthogonal projector such that

1. Tr(UiQU
†
i UjQU

†
j ) ≤ d/3 for every i, j ∈ [L], i 6= j and
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2. X(M, Ui) ≤ ε2/d+ β for every i ∈ [L] and M∈ K.

Proof. The proof is identical to that for Corollary 4.2.6 except using Eq. (4.16) to impose
the first condition using the probabilistic existence argument, rather than Proposition 4.2.4.

Now, let S = {ρ1, . . . , ρL} ⊂ D(d) be a collection of states of the form

ρi =
2ε

d
UiQU

†
i + (1− ε)1

d

for each i ∈ [n], let x be uniformly random over [L] and y = (y1, . . . ,yn) be the measure-
ment outcomes obtained from n unentangled (possibly adaptive) measurements performed
on copies of the state ρx. Let x and y<i be identically distributed to x and y<i. By chain
rule for mutual information, we have

I(x : y) =
n∑
i=1

I(x : yi|y<i)

≤
n∑
i=1

E
y<i

E
x|y<i

X(My<i , Ux)

= O

(
nε2(1 + log(m)/d)

d

)
where we have omitted some steps since they are identical to those leading to Eq. (4.15).
Observing that m = exp(O(d)) by Proposition 4.2.3 we find the upper bound above is at
most O(nε2/d). On the other hand, it holds that for any i ∈ [L]

Tr(UiQU
†
i ρi) =

1

2
+
ε

2

while by Property 1 in Lemma 4.3.2 we have for any j 6= i

Tr(UjQU
†
j ρi) ≤

1

2
+
ε

6

which means that estimating Tr(UiQU
†
i ρx) with O(ε) accuracy for every i ∈ [L] would

allow one to identify the value of x ∈ [L]. Since L ≤M/4, a successful protocol for shadow
tomography of M observables can do this with some probability at least 1 − δ, taking
a subset of the input observables to be U1QU

†
1 , . . . , ULQU

†
L. This in turn implies that

I(x : y) ≥ Ω(log(L)) using Fano’s inequality, and therefore we arrive at the lower bound
of n = Ω(dmin{d2, log(M)}/ε2) as claimed.
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4.3.2 Simple algorithm for unentangled shadow tomography

As can be seen from Table 4.1, when there is no restriction placed on the M observables
whose expectations are to be learned, the median-of-means protocol due to Ref. [23] is the
information-theoretically optimal one for shadow tomography with unentangled, efficient
measurements. There, one employs random q-qubit Clifford circuits to make random basis
measurements. However, there is an even simpler approach one could take using this
same measurement scheme which also leads to optimal performance in terms of sample
complexity. Specifically, we will show that just taking straightforward sample means of
each observable’s expectation reproduces the same upper bound on the overall worst-case
sample complexity, which is n = O(d log(M)/ε2) where d = 2q.

Suppose our measurements are given by applying a random q-qubit Clifford circuit and
then measuring in the standard basis. We may write the set of measurement operators
corresponding to the various outcomes as { d

m
|vj〉〈vj|}mj=1 for some m > 0 and unit vec-

tors |vj〉 ∈ Cd. The probability that the outcome corresponding to the jth measurement
operator is obtained is d

m
〈vj|ρ|vj〉. Define ρ̂(v) = (d + 1)|v〉〈v| − 1, and let v be the

random variable corresponding to the outcome that is obtained. As was demonstrated in
Section 1.5, using the defining property of t-designs one may verify that E ρ̂(v) = ρ. We
also require the following property, which holds since our measurement operators form a
3-design.

Proposition 4.3.3 (Prop. S1, Sec. 5 in Suppl. Materials of Ref. [23]). Let 0 � X � 1 be
a positive semidefinite operator acting on Cd and ρ̂(·), v be as defined above. Then

Var [Tr(Xρ̂(v))] ≤ 3Tr(X2).

Now suppose that the observables of interest are 0 � O1, . . . , OM � 1 satisfying
Tr(O2

i ) ≤ B ∀i ∈ [M ], and define the function fi(v) := Tr(Oiρ̂(v)) for any observable
Oi and outcome v. Then fi(v) with mean E fi(v) = Tr(Oi E ρ̂(v)) = Tr(Oiρ) is an unbi-
ased estimator for the ith quantity we wish to estimate, Tr(Oiρ). Suppose one performs
the measurement n times and obtains the i.i.d. outcome random variables v1, . . . ,vn. Let
us consider the empirical mean of the ith estimator fi. By Bernstein’s inequality (see
Appendix B.3), we have for any ε > 0 that

Pr

[∣∣∣∣∣ 1n
n∑
j=1

fi(vj)− Tr(Oiρ)

∣∣∣∣∣ > ε

]
≤ 2 exp

(
− nε2/2

σ2 + εK/(3n)

)
where σ2 := 1

n

∑n
j=1 Var[fi(vj)] and K is such that |fi(vj)−Tr(Oiρ)| ≤ K with probability

1 for all j ∈ [n]. Now observe that by definition ‖fi‖∞ ≤ d+1 so K can be taken to be O(d),
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and by Proposition 4.3.3 σ2 ≤ B ≤ d. This implies that, taking n to be O(d log(M/δ)/ε2)
we obtain that the probability above is at most δ/M . By union bound, we can estimate
E fi(v) = Tr(Oiρ) for all i ∈ [M ] to additive error ε using just these n = O(d log(M/δ)/ε2)
samples of the state ρ, with failure probability at most δ.

4.4 Open problems

Can we use similar techniques to obtain a lower bound which takes into account the
maximum Frobenius norm of the observables of interest? (This is the parameter B in the
classical shadows problem.) In Theorem 4.2.2 we incur a log(d) factor in the denominator
of the lower bound for tomography with constant-outcome measurements. Can this be
improved? Note that this factor also appears in the denominator of the lower bound due
to Flammia et al. [16]. Is there a way to incorporate rank-dependence into these lower
bounds? This seems to be related to the B-dependent lower bound for classical shadows.
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Appendix A

Haar integrals

The Haar measure µ is the unique unitarily invariant probability measure on the space of
unitary operators, U(d). Using this measure, one may define channels Φk : (Cd×d)⊗k →
(Cd×d)⊗k of the form

Φk(X) =

∫
U(d)

U⊗kX(U †)⊗kdµ(U) (A.1)

which are referred to as “twirl” operations. In the rest of this section, we will be concerned
with evaluating this channel explicitly in the case where the operator X is a tensor product
of orthogonal projectors onto subspaces of Cd. Following the presentation in [38], we will
make use of an important result on the structure of permutation-invariant operators.

Theorem A.0.1 (Theorem 7.15 in [38]). Let k > 0 be a positive integer and X ∈ (Cd×d)⊗k

be an operator. The following are equivalent:

1. [X,U⊗k] = 0 ∀U ∈ U(d).

2. X =
∑

π∈Sk
v(π)Wπ for some choice of v ∈ C|Sk|.

Here, Wπ is the permutation operator corresponding to the permutation π ∈ Sk, and Sk is
the symmetric group on {1, . . . , k}.

(See Section 1.2 for more on the permutation operator.) Since Φk(X) satisfies the first
condition, we can apply the theorem to write it as a linear combination of permutation
operators. This will help us evaluate the Haar integrals which arise in the remainder of
the proof.
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Proposition A.0.2. Let d > 1 be a positive integer, Q a rank-r projector with r < d, and
U a Haar-random unitary operator. It holds that

EUQU † =
r1

d

and

E(UQU †)⊗2 =
r

d(d2 − 1)
[(rd− 1)1 + (d− r)W ]

where W is the swap operator acting on (Cd)⊗2.

Proof. We can write the expectations as∫
U(d)

(UQU †)⊗kdµ(U) = Φk(Q
⊗k)

for k = 1, 2 respectively. By Theorem A.0.1, each of these must be equal to a linear
combination of permutation operators. For k = 1, we have

E(UQU †) = κ1

where κ ∈ C is some coefficient depending on Q. Recalling that Q is a rank-r projector,
taking the trace of both sides and solving for κ yields κ = r/d. For k = 2 we have

E(UQU †)⊗2 = α1⊗ 1 + βW (A.2)

where W is the swap operator and α, β ∈ C are some coefficients depending on Q. Left-
multiplying by 1⊗ 1 or W and taking the trace of both sides yields

Tr(Q)2 = r2 = αd2 + βd, Tr(Q2) = r = αd+ βd2.

This allows us to solve for α, β:

α =
r(rd− 1)

d(d2 − 1)
, β =

r(d− r)
d(d2 − 1)

. (A.3)

This concludes the proof of the proposition.
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Proof of Lemma 2.2.3

We are interested in evaluating quantities of the form

ETr(UQU †(ω − ρ))k = Tr
(
E(UQU †)⊗k(ω − ρ)⊗k

)
(A.4)

for k = 2, 4, where U comprises a unitary 4-design, Q is a rank-d/2 orthogonal projector,
ω and ρ are quantum states, and the equality follows from linearity of the trace function.
Using the fact that the set of unitaries forms a 4-design, we can write the expectation on
the right-hand side for either k = 2 or k = 4 as

E(UQU †)⊗k =

∫
U(d)

(UQU †)⊗kdµ(U) = Φk(Q
⊗k)

which, by Theorem A.0.1, must be equal to a linear combination of permutation operators.
We have already seen in Proposition A.0.2 that for the case where k = 2 and the rank of
Q is d/2 we obtain

E(UQU †)⊗2 = α1⊗ 1 + βW (A.5)

where W is the swap operator and

α =
d2 − 2

4(d2 − 1)
, β =

d

4(d2 − 1)
. (A.6)

Furthermore, substituting (A.5) into the right-hand side of (A.4) when k = 2 and making
use of the fact that Tr(ω − ρ) = 0 gives us

ETr(UQU †(ω − ρ))2 = βTr(W (ω − ρ)⊗2) =
d

4(d2 − 1)
‖ω − ρ‖2F

where the final equality made use of (A.6) along with the identity Tr(W (ω − ρ)⊗2) =
‖ω − ρ‖2F. Noting that d

4(d2−1) = Θ(1/d) completes the proof of the first equation in Lemma
2.2.3.

Before continuing with the second part of the proof, we arm ourselves with a general-
ization of the above reasoning which we can use when k = 4.

Proposition A.0.3. Let s(π) be the number of cycles in the permutation π, and Seven ⊂ S4

be the set of all permutations in S4 having either two 2-cycles or one 4-cycle. Then∫
U(d)

Tr(UQU †(ω − ρ))4dµ(U) ≤
∑

π∈Seven

|v(π)| ‖ω − ρ‖4F
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where v ∈ R|S4| satisfies

∑
σ∈S4

v(σ)ds(πσ) =

(
d

2

)s(π)
for every π ∈ S4.

Proof. To prove the first relation, we use the fact that∫
U(d)

Tr(UQU †(ρ− σ))4dµ(U) = Tr(Φ4(Q
⊗4)(ρ− σ)⊗4). (A.7)

Since, by Theorem A.0.1

Φ4(Q
⊗4) =

∑
π∈S4

v(π)Wπ (A.8)

for some v ∈ R|S4| (the fact that v is real comes from the proof of the second relation), we
have that the right-hand side of (A.7) is∑

π∈S4

v(π)Tr(Wπ(ρ− σ)⊗4). (A.9)

Therefore, we must evaluate Tr(Wπ(ρ− σ)⊗4) for the various permutations in S4, which is
facilitated by the following observation:

Proposition A.0.4. Let Wπ ∈ (Cd×d)⊗4 be the permutation operator for π ∈ S4 and
Ai ∈ Cd×d be Hermitian operators for i = 1, . . . , 4. It holds that

Tr(Wπ(A1 ⊗ A2 ⊗ A3 ⊗ A4)) =
∏

cyc∈cycles(π)

Tr

(∏
i∈cyc

Ai

)† .

For example, if π = (2)(134), we will obtain

Tr
(
Wπ(ω − ρ)⊗4

)
= Tr (ω − ρ) Tr

(
(ω − ρ)3

)
= 0

because Tr(ω − ρ) = 0. By this reasoning, any term on the right-hand side of (A.9)
corresponding to a permutation with a 1-cycle will evaluate to zero, so it remains to upper
bound v(π)Tr(Wπ(ω−ρ)⊗4) whenever π has two 2-cycles or one 4-cycle. In the first case we
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obtain v(π) ‖ω − ρ‖4F, while in the second we get v(π) ‖ω − ρ‖44 ≤ |v(π)| ‖ω − ρ‖4F, which
concludes the proof of the inequality.

One may obtain the second relation in the proposition by left-multiplying each side
of (A.8) by Wπ and taking the trace, for each π ∈ S4. Then, by once again invoking
Observation A.0.4 and making use of the fact that Tr(Qk) = d/2 for any positive integer
k, the desired set of equalities holds.

We have already seen the derivation of the second moment in Lemma 2.2.3, so it remains
to show the claimed inequality

ETr
(
UQU †(ω − ρ)

)4 ≤ O
(
d−2
)
‖ω − ρ‖4F . (A.10)

By the first relation in Proposition A.0.3 it suffices to show that |v(π)| = O(d−2) for every
π ∈ S4 with π having either two 2-cycles or one 4-cycle i.e., π ∈ Seven. Moreover, the second
relation gives a system of linear equations with a unique solution v ∈ R|S4| satisfying the
requirement for each v(π). In matrix form, this system of equations is (for some ordering
of the elements in S4)

d4 d3 d3 d2 . . .
d3 d4 d2 d3 . . .
...

...
...

...
. . .

d2 d d3 d2 . . .


24×24

·


v1
v2
v3
v4
...


24×1

=


d4/16
d3/8

...
d2/4


24×1

yielding, for example,

v24 =
d2 − 6

16(d4 − 10d2 − 9)
= O(d−2),

and similarly for each element vi corresponding to a permutation π ∈ Seven. The full
calculation is omitted here. We remark that there is in all likelihood an easier way to
perform this integration, but the method we use is consistent with how we evaluated the
other Haar integrals appearing in this thesis.
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Appendix B

Miscellaneous facts

B.1 Incomplete Gamma function

The (upper) incomplete Gamma function Γ(·, ·) is defined by the integral

Γ(p, a) :=

∫ ∞
a

tp−1e−tdt = (p− 1)! e−a
p−1∑
k=0

ak

k!

where the series representation is valid for p a positive integer (see for example Chapter
10 in Ref. [6]). Factoring, we find that the series is equal to

e−aap−1

(
1 + (p− 1)!

p−2∑
k=0

ak−p+1

k!

)
= e−aap−1

(
1 +

p− 1

a
+

(p− 1)(p− 2)

a2
+ · · ·+ (p− 1)!

ap−1

)
which is e−aap−1(1 + o(1)) whenever p = o(a), as required in the proof of Lemma 4.1.4.

B.2 Some matrix inequalities

First, we state without proof the standard result of Golden [17] and Thompson [34].

Proposition B.2.1 (Golden-Thompson inequality). For any symmetric matrices A,B ∈
Rd×d we have

Tr(exp(A+B)) ≤ Tr(exp(A) exp(B)).
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We also have the following relation.

Proposition B.2.2. Let A ∈ Rd×d be a Hermitian matrix with ‖A‖ ≤ 1. It holds that

exp(−A) � 1− A+ A2.

Proof. Firstly, it holds that exp(−x) ≤ 1 − x + x2 for all |x| ≤ 1. Let PDP ᵀ be the
eigendcomposition of the Hermitian matrix A, for some diagonal matrix D and orthogonal
matrix P . It suffices to show that the claimed inequality holds for D, since if exp(−D) �M
then P exp(−D)P ᵀ = exp(−PDP ᵀ) � M as well, and exp(−D) � 1 − D + D2 follows
from the upper bound in the real number case.

B.3 Bernstein’s inequality

Here, we state without proof a version of Bernstein’s inequality that applies to random vari-
ables with bounded distributions. This concentration inequality can be found in Ref. [37],
for example.

Theorem B.3.1 (Theorem 2.8.4 in Ref. [37]). Let X1, . . . ,Xn be independent, mean zero
random variables such that |Xi| ≤ K with probability 1 for all i ∈ [n]. Then, for every
ε ≥ 0, we have

Pr

[∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣ ≥ ε

]
≤ 2 exp

(
− ε2/2

σ2 +Kε/3

)
where σ2 :=

∑n
i=1 EX2

i .
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