Self-assembly of a binary mixture of particles and diblock
copolymers

Jae Youn Lee,” Russell B. Thompson,* David Jasnow” and Anna C. Balazs**

“ Department of Chemical and Petroleum Engineering, University of Pittsburgh,
Pittsburgh PA 15261, USA

b Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh,
PA 15261, USA

Received 23rd May 2002, Accepted 7th June 2002
First published as an Advance Article on the web 7th October 2002

Using theoretical models, we undertake the first investigation into the synergy and rich
phase behavior that emerges when binary particle mixtures are blended with microphase-
separating copolymers. We isolate an example of spontaneous hierarchical self-assembly in
such hybrid materials, where the system exhibits both nanoscopic ordering of the particles
and macroscopic phase transformation in the copolymer matrix. Furthermore, the self-
assembly is driven by entropic effects involving all the different components. The results
reveal that entropy can be exploited to create highly ordered nanocomposites with
potentially unique electronic and photonic properties.

Introduction

The combination of organic polymers and inorganic particles can lead to a composite material
that is more useful than either of the individual components. By carefully picking the particles
and polymers, designers can tailor composites to meet the final product requirements that could
not be achieved using other materials. The formation of nanostructured composites is a key step
in overcoming the obstacles to miniaturization as feature sizes in devices reach the nanoscale.
The most efficient route for creating such complex composites is through self-assembly, where
cooperative effects among the different components drive the system to form nanostructured
materials. Consequently, a particularly important scientific and technological challenge is iso-
lating new routes for promoting the self-assembly between organic polymers and inorganic
nanoparticles.

In order to establish these routes, we can exploit the following properties of hard particle
mixtures and block copolymer melts. Driven by entropic interactions, binary mixtures of hard,
spherical particles that differ only in size have been shown to form a rich variety of structures.' For
example, a lattice of small spheres can interpenetrate a lattice of large spheres to form a simple
cubic, body-centered or face-centered structure.? Driven by similar entropic effects, binary mixtures
of particles that differ in shape can also self-organize. In particular, mixtures of nanoscopic spheres
and rods can self-assemble into a startling array of ordered structures.’ Driven by enthalpic effects,
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block copolymers can microphase-separate into spatially periodic lamellar, cylindrical, spherical or
more complicated mesophases.*

In this paper, we use theoretical modeling to show that the blending of separately self-organizing
particles and block copolymers can be exploited to create novel self-assembled nanostructured
materials. In particular, we focus on a small volume fraction of bidisperse spheres in AB diblocks.
We show that the introduction of particle bidispersity provides a means of controlling both the
morphology of the polymer matrix and the spatial organization of the spheres. Through these
studies, we isolate a specific system that simultaneously exhibits the self-assembly of the particles
and transformation in the microstructure of the copolymer matrix, creating in a single process a
hierarchically structured nanocomposite with potentially unique opto-electronic properties. Fur-
thermore, these morphological changes are driven by entropic effects involving all of the species.

To capture the subtle interplay between the different components in this complex mixture, we
employ two distinct theoretical approaches. We first adapt our recently developed approach that
combines a self-consistent field theory (SCFT) for the chains and a density functional theory (DFT)
for the solid particles.*® The SCFT has been remarkably successful in describing the thermo-
dynamics of pure polymer systems,’ whereas DFTs capture particle ordering and phase behavior in
colloidal systems.®® Applied to a blend of diblocks and monodisperse spherical nanoparticles, our
integrated SCF/DFT technique identified new self-assembled morphologies, where both particles
and polymers form spatially periodic mesostructures.™® A powerful feature of this method is that
we make no a priori assumptions about the morphology of the system or the distribution of
particles within the different domains. Here, we alter the model to allow for bidispersity in the size
distribution of the spheres. To complement the findings from this SCF/DFT approach, we also
adapt a scaling theory for particle/diblock mixtures.® The scaling theory allows us to readily
calculate phase diagrams for the mixture as a function of the ratio of particle sizes and composition
of the diblocks.

Below, we provide a brief description of the models we used to probe the behavior of the binary
particle/diblock mixtures and then, describe the unique structural organization within these
nanocomposites.

The models

The diblock/binary particle mixture consists of a volume fraction ¢,,;0f solid spherical particles of
radius R; and a volume fraction ¢, of particles of radius R,. Here, R; > R,. The mixture also
contains a volume fraction (1 —¢,) of diblock copolymers, where ¢, = ¢, + ¢p2, and each
copolymer consists of N segments. To characterize the diblocks in our mixture, we let ' denote the
fraction of A segments per chain. The enthalpic interaction between an A segment and a B segment
is described by the dimensionless Flory—Huggins parameter, yap . Both the larger (referred to as p;)
and smaller (p,) spheres are preferentially wetted by the A blocks. That is, the Flory—-Huggins
interaction parameter between the particles and A is taken as yp4 = xp2a = 0, and the interac-
tion parameter between the different particles and the B species is set equal to yap (Yap =
IpiB = Xp2B = ). Finally, we note that the nanoparticles are assumed to be comparable in size to
the copolymers, and this correspondence of scales plays an important role in the behavior of the
system.

To calculate the morphology of the mixture (shown, for example, in Figs. 1-3), we used an
extension of SCF/DFT theory.”® In SCF theory, pair-wise interactions between differing segments
are replaced by the interaction of each segment with the average field created by the other seg-
ments. Here, we let wa(r) denote the value at a point r of the mean field felt by the A segments,
wg(r) denote the field for B segments, and wy(r) represent the field for the particles, where i = 1,2.
Using this approach, the free energy for our system is given by: Fr = F.+ Fq+ F,. (The “free
energy” discussed here is actually a dimensionless free energy density: F— NF/pokgTV, where po~"
is a segment volume, kp is the Boltzmann constant, 7 is the absolute temperature and V is the
volume of the system.) The first term, F,, details the enthalpic interactions:

Fe= (1/V)/dr{XN[<PA(V)¢B(V) + @B(r)@p1(r) + B(r)@pa(r)] (1)
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where @a(r), @g(r) and ¢,(r) are the local concentrations of A segments, B segments, and the
particles, respectively. The diblock entropic free energy Fjy is:

Fa=(1-¢p — ¢p2)In[V(1 — @p1 — ¢p2)/Qa] — (1/V) / driwa(r)ea(r) +we(r)es()]  (2)

where Qyq is the partition function of a single diblock subject to the fields wa(r) and wg(r). Finally,
the particle entropic contributions to the free energy are given by

Fy = (¢p1/op1)In(Vpy1 / Oprop1) + (dpa/0p2)In(V ppy / Op202)
— (V) / dr{p1 (P)pp1 (1) + W2 (1) s ()} )

% / drpyy (F) [y (F), 1 3] + poa (1) P (B0 (1), 1 2]} (3)

where Q,,; is the partition function of a single particle p; subject to the field wp(r). x| and x, are the
mole fractions of the p, and p, particles, respectively. The functions py(r) and pp»(r) are the
distributions of the centers of the spheres; these functions are dimensionless. The local particle
volume fraction ¢,(r) is related to p,(r) by

0pi(r) = (4api/ (3nR)) / A ppi(r + 1), (4)

|F| < Ri

The parameter oy = (4nR} 00/ (3N)) denotes the particle-to-diblock volume ratio, where the R; are
in units of Ry, the root-mean-square end-to-end distance of the chain. The last two terms in F}, are
DFT terms using the expression of Denton and Ashcroft.> They account for the steric interactions
between the particles. ¥ is the excess free energy per particle, derived from the Mansoori et al.
equation of state.!! “Smoothed” densities @p1 and @, are introduced in the last two terms of eqn.
(4) using the Tarazona weighted density approximation.®

In the SCFT, wa(r), wg(r) and wy(r) are determined by locating saddle points in the free energy
functional F subject to the incompressibility constraint: @aA(r) + @g(r) + @pi(r) + @pa(r) = 1. This
yields a system of equations that is solved numerically and self-consistently to give possible
equilibrium solutions. To obtain these solutions, we implement the “combinatorial screening
technique” of Drolet and Fredrickson.'> We make an initial random guess for the fields and
calculate all the densities and the free energy at each step; the fields are then recalculated and the
entire process is repeated until changes in the diblock densities at each step become sufficiently
small. In addition, we also minimize our free energy with respect to the size of the simulation box,
as proposed by Bohbot-Raviv and Wang.'?

To demonstrate the generality of our predictions, we also use a strong segregation scaling the-
ory'® (Figs. 3 and 4). The chains are assumed to be highly stretched; the melt is divided into pure-A
and pure-B domains, separated by narrowed interfacial regions.'* The balance between the
stretching free energy of the blocks and the energy of the A—B interfaces determines the equilibrium
morphology of the pure diblock melt. As above, we introduce a volume fraction ¢, of A-like
particles, of which ¢, are the larger particles and ¢, are the smaller ones. The total volume
fraction of diblocks is ¢q = (1 — ¢;,), where (f¢q) is the volume fraction of A segments and
(1 =f)¢q is the volume fraction of B segments.

Small particles can distribute in a relatively uniform manner over both the A and B domains in
order to maximize their translational entropy.!> On the other hand, larger particles possess less
translational entropy and thus tend to localize in the energetically more favorable domain;’ fur-
thermore, large particles tend to segregate to the center of the compatible phases.>® Following
these observations, we allow the smaller particles to leak into the B domains, with f; denoting the
fraction in A and (1 —f3) in B. For simplicity, the smaller particles are assumed to be uniformly
distributed within the A and B regions. The larger particles are restricted to the energetically
favorable A domains and the distribution of larger particles within A is allowed to vary from
uniform to completely segregated. In the latter case, the larger particles are localized near the center
of the A domains.
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Fig. 1 One-dimensional SCF/DFT density profiles of a monodisperse particle/diblock copolymer system. The
fraction of A segments per diblock copolymer is f = 0.30. The volume fraction of the particles is ¢, = 0.20 and
Ry = R, = 0.2Ry. (a) The solid curve represents the A block distribution and the dotted curve shows the
distribution of particles. (b) The solid curve shows the distribution of the centers of the particles.

The free energy of the ordered structures is:
8ordered = (Pa/N)Indy + (dy /v1)In(W14) + (Sodp/v2)In(Y24)
+ ((1 —fz)d)pz/Vz)ln(WzB) + YW1, ¥on, 1A, 124, ) + g Pes(Yap)
+ maR?/ANfay® + maRy* J4Nfay* + mpRo?/ (4N (1 — f)ag?)
21— Yop)Wran(0.5/Ra) + 371 (2N) 21723113 (5)

where v; is the volume of a type i sphere, n,, is the number of species 7 in the o domain and ay = 1/
v/6. Here, R; is in units of a, the segment length, which is set to 1.

The first term describes the translational entropy contribution to the free energy from the diblock
copolymers. The following three terms describe the translational entropy contributions from the
particles, where /., indicates the local volume fraction of species i in the & domain. The next two
terms describe the steric interactions between the particles. The first of the two is the Mansoori
et al.'' free energy expression for a binary hard sphere mixture, and the latter is the Carnahan—
Starling free energy!® for the smaller particles in the B phase. For Ry = R,, the Mansoori term ¥
reduces to the Carnahan-Starling expression for monodisperse spheres. The next three terms are
associated with the free energy loss due to the stretching of the chains around the particles. The
next term describes the Flory—Huggins interaction between smaller particles and B monomers; the
term reduces to the expression for diblocks in solvent when R, = 0.5. The last term is the diblock

(a)

e

Fig. 2 Two-dimensional SCF/DFT density profiles for the same set of parameters as in Fig. 1. (a) and (b) are
density and surface plots, respectively, for the A phase. In (a), the light regions indicate high concentrations of
A, while the black regions mark the absence of A. The morphology of the system is clearly lamellar.
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Fig. 3 The bidisperse case is shown in (a)~(d), with the large particle (¢, = 0.05, R; = 0.2R,) density and
surface plots shown in (a) and (b), respectively. The small particle (¢,> = 0.15, R, = 0.1Ry) density and surface
plots are displayed in (c) and (d), respectively. As can be seen, a graded cylindrical morphology results from the
introduction of the bidispersity.

contribution to the free energy in the strong segregation limit. This term arises from the elastic
energy of the chains and the interfacial tension between the different domains.'* The prefactors /
and «x are both morphology dependent.'®!* We only consider the three classical diblock structures:
lamellar, cylindrical and spherical.

For each set of parameters for each possible morphology, we minimize eqn. (5) to determine the
equilibrium structure. In order to obtain phase diagrams, we compare the free energies of the
ordered structures and the disordered phase. In the disordered phase, both particles and diblocks
are dispersed uniformly in space. Thus, the free energy for the disordered phase is given by:

Saisordered = (Pa/N)In(dg) + (¢p1/v1)In(y) + (¢p2/v2)In(p)
+ Y (Pp1s Ppas Pp1 V15 Ppa/v2) + (b1 /v1)R1Z [4Nay” + (p2/v2) Ry [4Nao®
+x(1 =) = ) ppi(0.5/R1) + x(1 = f)(1 = b,)2(0.5/R2)
+2f (=11 = )’ (6)

Results and discussions

In this paper, we are interested in studying binary hard sphere/diblock copolymer mixtures. For
the SCF/DFT calculations, the radius of the larger spheres is given by R; = 0.2Ry, and the radius
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Fig. 4 Phase diagram for mixtures of bidisperse spheres and diblocks calculated using strong segregation
theory. R,/R, is the ratio of the smaller to larger particle radii and f'is the fraction of A units in the diblock.
Letters L and C designate lamellar and cylindrical morphologies, respectively. The regions marked D delineate
the location of the disordered phases and the area labeled 20 marks the two-phase coexistence region. The total
volume fraction of particles is fixed at 20%, of which 3% are the larger and 17% are the smaller spheres. Here,
N = 300 and AplA = Ap2A = 0, and yap = AplB = Ap2B = L.

of the smaller spheres is R, = 0.1R,. To specify the composition of the diblock, we set /' = 0.3; that
is, each d1block is composed of 30% A monomers and 70% Bs. We fix N = 1000, where
N = py’a®N is the invariant polymerization index. We also fix yagN = 20. As noted above, we
focus on the important case of preferential wetting, where ypia = ypoa =0 and ypigN =
Zp28N = xaN. This implies that particles of both sizes are completely coated with or are che-
mically identical to the A species.

As a basis of comparison, we first consider the effect of adding the larger monodisperse spheres
to the pure diblocks. Here, Ry = R, = 0.2R,. Figs. 1 and 2 show the respective one- and two-
dimensional density profiles obtained from the SCF/DFT calculation in the case where 20% of
these particles (¢, = 0.20) are added to the f = 0.30 diblock melt. The morphology of the system is
clearly lamellar. A close look at Fig. 1(a) reveals a self-assembled morphology where the entire
composite displays a spatially periodic structure. We also see that the particles are forced near the
A-B interface. This is particularly clear from Fig. 1(b), which shows the particle center distribution.
The plots also show that A-block concentration is increased in the center of the A domain

We now fix f and ¢,,, but alter the composition of the particle mixture so that there is a 5%
volume fraction of larger particles (¢,; = 0.05), with R; = 0.2R,, and a 15% volume fraction of
smaller particles (¢p> = 0.15), with R, = 0.1R,. As a consequence of this change, the system forms
a cylindrical mesophase, as shown in Fig. 3(a)-(d). These figures also reveal a new structural
feature: the large and small A-like particles are not homogeneously distributed. Now the large
particles are concentrated in the center of the domain. In this manner, the A chains do not lose
conformational entropy by having to stretch around these large obstacles.’ The smaller particles
are concentrated near the edge of the A-B interface and, to a large degree, in the incompatible B
phase.

Thus, replacing the monodisperse spheres with an equal volume fraction of bidisperse particles
has prompted not only a phase transformation in the polymer microstructure but also, the creation
of a graded particle film that can typically be tens of nanometres in width. The system constitutes a
hierarchically ordered nanocomposite, which has been formed entirely through self-assembly. If the
particles were semiconductors, the graded layers could display novel opto-electronic properties,'’
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and the filled cylinders can form an array of nanoelectrodes, which can be utilized to fabricate
organized nanodevices.'®

A sufficient disparity in particle size is necessary to produce a transition from the lamellar to
graded cylindrical phase. This can be seen from the phase diagram shown in Fig. 4, which is shown
in the R,/R; — f plane. To obtain this plot, we use the strong segregation scaling theory (SST) for
mixtures of diblocks and bidisperse spheres that was described in the Models section. In order for
the polymeric system to be in the strong segregation limit, y N > 10. For our calculations, we set
N =300 and y = 1. Since the SST is primarily applicable at low temperatures, we only expect
qualitative agreement between the SST and SCF/DFT calculations. Nevertheless, we can focus on
the case where f~0.3, as in Fig. 3. At R,/R; = 1, within the SST, the system forms a lamellar
structure similar to the image in Fig. 1(a). However, it is only for R,/ R; ~ < 0.3, that the mixture
forms a cylindrical phase; as shown in Fig. 5, the small particles migrate to the B phase, much as in
Fig. 3(a)—(d).

To determine what drives these morphological changes, we can separate the various contribu-
tions to the total free energy of the system. Since the SST and SCF/DFT give qualitatively similar
results, we present results from the SST analysis. Fig. 5 shows how the contributions to the free
energy from the particles vary as a function of R,/R; at f = 0.28. The volume fraction of larger
particles is fixed at 3%, while the volume fraction of smaller particles is 17%. The inset shows the
volume fraction of smaller particles in the A phase (¢24 = f2¢p2) and the local volume fraction of
larger particles in the A phase (14) for various R,/R;. The variable 1| is a measure of the
segregation of the larger particles within the A region; as ;5 approaches 1, the particles become
highly confined in the center of this domain.'”

From the inset, we see that as R,/R; decreases to approximately 0.3, the smaller particles
“delocalize” and migrate into the energetically unfavorable B regions. This results in an increase in
the enthalpic contribution (see Fig. 5); however, this increase in free energy is offset by the gain in

0.1
jm————————]
E‘ 0.15 ,’
L 1 — Vi
\‘ 2z I' === 0,
\ £ 0.1 ~—
0.05 "\ g ot ‘

-0.05 /' =-===- Translational entropy contribution
/. ==== Enthalpic contribution

II' Steric contribution
-0.1 : : : :
0.2 0.4 0.6 0.8 1

R/R,

Fig. 5 Decomposition of free energy for bidisperse spheres/diblocks as a function of particle bidispersity
calculated using strong segregation theory. Plot is for the same composition of particles as shown in Fig. 4 at
/= 0.28. The dashed curve is the contribution to the free energy from translational entropy, the dashed/dotted
curve is the contribution from the enthalpic interactions and the solid curve indicates the contribution from the
steric interactions between particles. The inset shows the fraction of smaller particles in the A phase
(¢p2a = f2¢>) (dashed curve) and the local volume fraction of larger particles in the A phase (solid curve).
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the translational entropy of the smaller particles and a decrease in the steric contribution, which is a
measure of the crowding of the hard particles. Apparently, entropy wins, and it is more favorable
for the particles to be distributed in the manner shown in Fig. 3(a)—(d) than to have the large and
small particles uniformly mixed and confined within the energetically favored A phase.

We also note an increase in y/; at the point where the smaller particles delocalize into B (see
inset). In mixtures of small and large particles, there is a ““depletion attraction’ between the larger
objects that is due to the extra volume that is available to the smaller particles when the larger
particles approach one another, thus increasing the entropy of the system.'>?° Here, we find similar
attractions between the larger spheres; in particular, the “enhanced localization” of the larger
particles to the central regions of the A blocks coincides with an increase in the translational
entropy of the smaller spheres.

There is a significant consequence of the smaller particles migrating to the B phase. In mixtures
involving small monodisperse spheres, the migration of these A-like particles into B apparently
decreases the effective value of f and thus can drive the system into the cylindrical phase.!” It is
likely that this mechanism is responsible for the transition from lamellar to cylindrical at f'= 0.28
and R,/R;~0.3 in Fig. 4.

We can obtain other novel structures by altering the relative number of smaller and larger
particles at fixed ¢, and f. We now set ¢,; = 0.15 and ¢, = 0.05 at f'= 0.30. Now, there is a
higher volume fraction of larger spheres than smaller particles. This combination of parameters
yields a lamellar film of graded nanoparticles within a lamellar matrix, as can be seen in Figs. 6 and
7. Fig. 6(a) is obtained by performing the calculation in one dimension and reveals the 1D density
profiles. As can be seen, the larger particles (dashed curve) segregate in the center of the A block
(solid curve), while the smaller spheres (dotted curve) are expelled to the edge of the A-phase, and
to a large degree into the B domain (B density profiles are not depicted). Again, the particles have
microphase-separated into regions of smaller and larger particles. Since all the particles (large and
small) are wetted by A and are incompatible with B, there is no enthalpic reason for the small
particles to coalesce in the B region. This size-based microphase separation is also apparent by
examining the distribution of the centers of the particles as shown in Fig. 6(b). One can see a
significant number of small particles (dotted curve) that are separated from the region of large
particles (dashed curve). The large-particle region is relatively free of small particles. Fig. 7 shows
the result of a two-dimensional calculation on this system; the images show the distribution of the
different particles in the lamellar matrix.

The causes for the demixing of the different sized particles in the case shown in Figs. 6 and 7 are
similar to reasons cited for the previous case shown in Fig. 3. As the small particles migrate out of
the A-phase into the B, the enthalpic contribution to the free energy goes up.?! However, this

Fig. 6 One-dimensional SCF/DFT density profiles of a bidisperse particle/diblock copolymer system with a
fraction of A segments per chain of /= 0.30. In (a), the solid curve represents the A block distribution, the
dashed curve shows the distribution of the larger R; = 0.2R, particles and the dotted curve shows the smaller
R, = 0.1R, particles. The volume fraction of the larger particles is ¢, = 0.15 and the volume fraction of
smaller particles is ¢, = 0.05. In (b), the solid curve shows the distribution of the centers of the large particles,
while the dashed curve shows the small particle center distribution.
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Fig. 7 Two-dimensional SCF/DFT density profiles for the particle distributions for the same parameters as in
Fig. 6. (a) Distribution of the larger particles and (b) the smaller particle distribution. The light regions show the
presence of a species, whereas the dark regions show the absence of that species.

increase in free energy is more than compensated by two factors: the steric term, and the small-
particle translational entropy.?' Thus it is entropically more desirable for particles to be segregated
in the manner shown in Figs. 6 and 7 than to be relatively mixed and completely localized in the A
domain.

Fig. 8 captures and summarizes the rich phase behavior that can be obtained at fixed f'and ¢,, by
introducing bidisperse particle mixtures into the copolymer matrix, and by varying the relative
composition of the binary particle mixture. In this figure, as in the all the examples presented here,
f=0.3, ¢, = 0.20 and the particles are preferentially wetted by the A phase. In Fig. 8(a), we see
the particle-filled lamellar structure that appears when monodisperse spheres with R; =
R, = 0.2R, are added to the diblocks. In Fig. 8(b), we show the graded lamellar morphology that
can be achieved by introducing bidispersity in particle size with ¢,; = 0.15 and ¢,, = 0.05.
Directly below this image, in Fig. 8(c), is the graded cylindrical phase that results when the relative
composition of the binary sphere mixture is shifted to ¢,; = 0.05 and ¢,> = 0.15. Finally in
Fig. 8(d)), we show the simple cylindrical structure that appears when smaller monodisperse
particles with R; = R, = 0.1R, are added to the pure f = 0.3 matrix. Thus, not only can one drive
a transition from a lamellar to a graded cylinder phase (as discussed in the first part of this paper)
but also, a transition from a cylindrical to a graded lamellar phase can be promoted through the
introduction of bidisperse particles.

Conclusions

We investigated the self-assembly of binary particle mixtures within a self-organizing medium of
diblock copolymers. We focused on the case where the smaller and larger spherical particles are
preferentially wetted by the A blocks of the AB diblocks. We found a rich phase behavior where
entropic effects give rise to novel nanostructured composites. In particular, a number of entropic
effects play a role in the observed transition from the lamellar to graded cylindrical phase. Entropic
interactions between the A chains and larger particles, and steric effects between the different
particles drive the larger particles to localize near the center of the A domains. In addition, the
smaller particles gain translational entropy by delocalizing and migrating into the unfavorable B
phase, suggesting a ““microphase separation” in the particle system. Here, we isolated a special case
where the fraction of smaller particles in the mixture is relatively high and fis sufficiently close to
the order—order transition, that the delocalization of these spheres and the lamellar—cylindrical
transition in the matrix structure happen simultaneously.
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Fig. 8 Two-dimensional SCF/DFT density profiles. Here, /= 0.3, ¢, = 0.20 and all the particles are pre-
ferentially wetted by the A phase. The figures highlight the variations in morphology that can be achieved by
altering the relative size and composition of the particles in the mixture. (a) Particle-filled lamellar structure for
R, = R, = 0.2R,. (b) Graded lamellar morphology that occurs when we introduce particles that are bidisperse
in size with ¢, = 0.15 and ¢, = 0.05. (c) Graded cylindrical phase that arises when the composition of the
binary particle mixture is shifted to ¢, = 0.05 and ¢, = 0.15. (d) Simple cylindrical structure that appears
with smaller, monodisperse particles where Ry = R, = 0.1R,. Thus, by introducing bidispersity in the size of
the particles, one can go from (a) to (b) or (c); one can also go from the structure in (d) to (b) or (c).

Other morphologies can be obtained by changing the relative ratio of the smaller to larger
particles at fixed values of f and ¢,. In particular, we can create a transition from a graded
cylindrical structure to a graded lamellar film by altering the values of ¢,,; and ¢, . Fig. 6 reveals
other transitions that can be obtained by the introduction of bidisperse particles and mixtures and
the variation in the relative fraction of each particle species.

We hypothesize that the polydispersity-induced particle microphase separation shown here in the
lamellar phase and cylindrical phases will be seen for other diblock morphologies, and thus other
graded structures could be fabricated. For example, the same phenomenon should be seen in the
spherical morphology, where the large particles would localize in the center of the A spheres and
the small particles would form coronas around the larger species.

These findings point to a new methodology for tailoring the particle distributions within the
copolymer matrix and/or the overall morphology of the mixture, and thereby controlling the
performance of the nanocomposite. The results also reveal that in complex mixtures of hard and
soft components, entropy can be exploited to create highly ordered hybrid materials.
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