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Abstract

A particular challenge for both autonomous vehicles (AV) and human drivers is deal-
ing with risk associated with dynamic occlusion, i.e., occlusion caused by other vehicles
in traffic. In order to overcome this challenge, we use the theory of hypergames to de-
velop a novel dynamic-occlusion risk measure (DOR). We use DOR to evaluate the safety
of strategic planners, a type of AV behaviour planner that reasons over the assumptions
other road users have of each other. We also present a method for augmenting naturalistic
driving data to artificially generate occlusion situations. Combining our risk identifica-
tion and occlusion generation methods, we are able to discover occlusion-caused collisions
(OCC), which rarely occur in naturalistic driving data. Using our method we are able to
increase the number of dynamic-occlusion situations in naturalistic data by a factor of 70,
which allows us to increase the number of OCCs we can discover in naturalistic data by a
factor of 40. We show that the generated OCCs are realistic and cover a diverse range of
configurations. We then characterize the nature of OCCs at intersections by presenting an
OCC taxonomy, which categorizes OCCs based on if they are left-turning or right-turning
situations, and if they are reveal or tagging-on situations. Finally, in order to analyze
the impact of collisions, we perform a severity analysis, where we find that the majority
of OCCs result in high-impact collisions, demonstrating the need to evaluate AVs under
occlusion situations before they can be released for commercial use.
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Chapter 1

Introduction

Imagine you are in the left-turn lane in a busy intersection. There is a vehicle ahead of
you that has started their left turn, and as a result is occluding your view of oncoming
vehicles from the opposite side of the intersection. You have two options, you can either
wait to see if there are any oncoming vehicles before making your turn, or, you can trust
that since the vehicle in front of you is making a turn, the way should be clear for you too.
Being a cautious driver you decide to wait and see if there are any oncoming vehicles. Just
as the vehicle in front of you finishes its turn, an oncoming vehicle, which was previously
occluded, drives past you at 50 km/h. Had you decided to follow the vehicle in front of
you into the intersection you would have been involved in a front-to-front collision.



Figure 1.1: You are following a lead vehicle and cannot see the oncoming vehicle. Your
blue trajectory represents the safe action, to wait and see if there are any oncoming vehicles
before proceeding with your turn. Your red trajectory is the unsafe action, in this case
resulting in a collision with the oncoming vehicle.

Dynamic occlusion, i.e., obstructed views caused by other vehicles in traffic, can occur
in any traffic environment, and can result in both low- and high-severity collisions. With
that being said, there are certain road geometries, such as four-way intersections, where
dynamic occlusion occurs more frequently and is more likely to result in high-severity
collisions. Dynamic occlusion at intersections is a particular problem given that there is
ample opportunity for vehicles to block each other’s view, and since vehicles are often
moving along paths that intersect, there is also ample opportunity for head-on collisions.
Occlusion is a critical factor in causing collisions at intersections with the National Motor
Vehicle Crash Causation Survey reporting that 7.8% of all intersection-related collisions
were caused by the driver’s incorrect decision to turn with an obstructed view of traffic

[26].

One of the primary goals of autonomous driving is to avoid making the same mistakes as
human drivers. However, autonomous vehicle (AV) development has not gone without its
own challenges. After an array of highly-publicized accidents involving AVs [27, 111, 23],



many people are justifiably wary about the safety capabilities of this new technology [35].
AVs have the potential to make the world a better place by optimizing traffic flow, giving
those who are unable to drive the ability to commute on their own, and reducing the
number of drunk-driving accidents, to name just a few examples. However, in order for
AVs to become widely used and trusted by the public, we have to first demonstrate they
are safe. To that end, we focus on the challenging subproblem of navigating intersections
in the presence of dynamic occlusion.

We focus on dynamic occlusion because unlike static occlusion (i.e., obstructed views
caused by buildings, trees, and parked cars), where information about road structures
can be leveraged from high-definition (HD) maps to predict where occlusion may occur,
dynamic occlusion is fundamentally transient in nature, making it more difficult to predict.
The transient nature of dynamic occlusion also means that the scope of the problem is much
larger. Dynamic occlusion occurs when two or more vehicles are visually obstructed from
each other by at least one occluding vehicle, and as a result, there are an infinite number of
ways in which dynamic occlusion can occur. As a result, AV safety evaluations that only
account for traffic situations found in existing naturalistic driving data will not achieve
complete coverage of all dynamic occlusion situations an AV will face in its operational
lifetime.

To address this problem at scale, we present a situation-based accelerated evaluation
method which is able to efficiently generate realistic and critical dynamic-occlusion situa-
tions that go beyond the set observed in existing naturalistic driving data. Using a novel
dynamic-occlusion risk (DOR) measure, we are able to estimate to what extent occlusion
contributes to driving risk. Along with the presentation of our methods, we formulate the
following guiding research questions:

RQ1: Are there patterns to how dynamic occlusion emerges at an intersection?
RQ2: Are there certain locations in an intersection where dynamic occlusion tends to occur?
RQ3: How severe are collisions caused by dynamic occlusion?

RQ4: How long does dynamic occlusion have to last to result in a critical situation?

Therefore, we expand on previous occlusion-aware risk estimation work by incorporating
game-theoretic models of the traffic environment into our vehicle simulation, which allows
us to test multiple AVs at once, all of whom use a multi-agent view to plan manouevres.
Each AV is controlled using a strategic planner, which reformulates driving as a game-
theoretic problem where traffic participants are players in a game [71, , , 72,42, 36].

3



Each agent has knowledge of the actions and preferences available to all other agents
and therefore can reason over their available strategies in order to solve for an optimal
strategy—optimality being defined by a game’s solution concept, one such example being
Nash equilibrium.

However, a problem arises when evaluating strategic planners using standard game-
theoretic models, namely, game theory assumes there is common knowledge shared amongst
the agents in the game, such as each agent knowing the rules of the game as well as knowing
each other agent’s preferences. Implicit in the common knowledge assumption is the idea
that each agent is aware of every other agent in the game. However, this is not the case in
traffic situations with occlusion. In these kinds of situations, drivers may all be included
in the same traffic game, but due to occlusion, may not be aware of each other. Therefore,
a novel contribution of this thesis is to use the theory of hypergames as an extension
to standard game theory, which allows each agent to have their own subjective view of
the game being played, and as a result allows for occlusion to be incorporated into the
game-theoretic traffic models we use.

More broadly the research contributions of this thesis are:

e a method for efficiently generating dynamic occlusion situations from naturalistic
traffic data,

e the novel use of hypergame theory as an extension to standard game theory allowing
for the incorporation of occlusion in traffic games,

e a novel dynamic-occlusion risk (DOR) measure, which measures to what extent oc-
clusion contributes to driving risk,

e a taxonomy describing the different dynamic-occlusion configurations that can lead
to high-risk situations,

e empirical insights into the nature of dynamic-occlusion situations, including a severity
analysis, how long occlusion tends to last in high-risk occlusion situations, and where
occluding vehicles tend to be positioned.

This thesis is divided into seven chapters. In chapter 2, we cover relevant literature for
this work in the areas of occlusion-aware risk estimation and black-box safety validation of
AVs. Following this, in chapter 3 we describe in more detail both how we use game theory
as a model for AV decision-making, as well as how we incorporate dynamic occlusion into
our approach. In chapter 4 we outline the whole workflow, with a running example, for



how our situation-based accelerated testing is performed. Following that, we describe our
results in chapter 5, comparing the variety and number of occlusion situations we can
generate using our method to what can be extracted from existing data. In chapter 6,
we outline threats to the validity of our findings. Finally, we conclude in chapter 7 by
summarizing our contributions.



Chapter 2

Literature Review

Our proposed approach can be divided into two components. The first component is an ac-
celerated situation-based testing method where we generate critical and realistic occlusion
situations not found in existing data. The second component is identifying risky occlusion
situations. Our accelerated situation-based testing method closely resembles falsification®,
a technique used in black-box testing, where the task is to identify stimuli—that could
come from other vehicles, pedestrians, etc.—that induce failures in the AV. In this work,
the stimuli are occlusion situations and the failures are collisions (caused by occlusion).
Therefore, we first provide a brief overview of black-box testing, describing where it is
situated in the broad area of AV safety validation.

We then review literature related to three common techniques used in black-box test-
ing, falsification (used in this work), most-likely failure analysis, and failure probability
estimation, comparing the benefits and drawbacks of each technique. The second compo-
nent of our approach is performing risk estimation on the occlusion situations we generate.
Therefore, we also cover related works in the area of occlusion-aware risk estimation.

2.1 Safety Validation and AV Black-box Testing

AV safety validation is a process that seeks to ensure the system-under-test (SUT) behaves
according to a given safety specification in a driving environment. Safety specifications

'In the sense that we treat the strategic planners we test as black boxes. However, we note that strategic
planners are white-box planners in actuality, we simply do not exploit this property in this work.



typically include conditions like avoiding collisions, but can also more broadly include defi-
nitions for unsafe situations such as a violation of minimum following distance or executing
a turn while oncoming vehicles are occluded. Safety validation typically occurs in three
different modes, real-world testing, simulation testing, and mixed-reality testing [3].

Solely relying on real-world testing is not a feasible way to approach safety validation
as setting up physical test drives is costly and time consuming [3]. Crucially, an AV can
drive for thousands of miles on public roads and not encounter any adverse event, since
these events (e.g., collisions) are rare. In order to show that an AV is safe, it would need
to drive for hundreds of millions, up to hundreds of billions of miles on public roads [53].
Even if these miles could be driven—perhaps over a large fleet of AVs—this validation
would need to happen every time the AV receives a significant software update. A similar
problem emerges for basic simulation testing. While one could operate a fleet of AVs in a
simulated driving environment, the requirement of driving hundreds of millions of miles is
computationally infeasible for many AV developers.

Fortunately, specialized approaches have been developed to lower the time and cost
of safety validation. These approaches broadly fall into two categories, white-box and
black-box testing. In white-box testing, knowledge of the internal workings of the SUT
can be used to develop a formal proof of safety. For example, model checking [28, 55] and
automated theorem proving [39, 37, 98] use mathematical models of the SUT to prove
the existence or absence of safety specification violations. White-box testing has been
used for adaptive cruise control (ACC) systems [75, 73], but in general these approaches,
which must consider all execution possibilities, struggle to scale to larger problem spaces;
furthermore, many AV planners employ the use of deep neural networks and are thus not
easily interpretable.

In contrast, black-box testing does not assume the internals of the SUT are known.
Like its name suggests, black-box testing assumes the SUT is a “black box” which accepts
input, performs a hidden calculation on that input, and returns the output. This generality
allows black-box approaches to be applied to a much larger class of systems. Unlike white-
box testing where the goal is to prove that the SUT will not violate the safety specification,
black-box testing tries to falsify the SUT by generating counterexamples showing where
the SUT fails.

Broadly speaking, black-box testing is made up of the SUT, the environment in which
the SUT operates, and an adversary that generates disturbances with the goal of causing the
SUT to fail. Corso et al. separate black-box testing into three distinct tasks [33]. These are,
falsification (i.e., finding situations where the SUT fails to meet the safety specification),
most-likely failure analysis (i.e., finding the most likely cases where the SUT fails to meet



the safety specification), and failure probability estimation (i.e., estimating the probability
that the SUT will fail to meet the safety specification).

2.1.1 Falsification

The goal of falsification is to generate examples where the SUT violates the safety spec-
ification. Abbas et al. [!] propose a falsification framework that tries to induce a failure
in the SUT by both changing the position and velocity of the SUT and other road partic-
ipants and by varying the number of vehicles in the scenario. Their SUT implementation
also includes object detection, which allows them to induce perception errors by varying
the weather and lighting conditions. The simulation environment is set in the video game,
GTA V. The authors raise the apt question of how failures found in simulation translate
into real world failures. This is a challenge for simulation-based testing as a whole and is
something we, in this thesis’ work, also contend with (we address how realistic our syn-
thetic occlusion situations are in chapter 5). Abbas et al. focus their attention on showing
that object detection in simulation translates well to the real world by demonstrating in
their results that the object detector’s performance in simulation was observed to be a
lower bound on its performance, so it would perform at least as well in the real-world as
in simulation. This allows them to translate their safety validation results from simulation
to the real world.

Domain knowledge can be incorporated in order to increase the efficiency of finding
safety specification violations. Koschi et al. [(1] develop two falsification methods, forward
and backward search, that use rapidly-exploring random trees to search for failure cases
for an ACC system. They define an unsafe state to be a state where a collision will occur if
the lead vehicle fully brakes and use these unsafe states to guide the SUT to failure cases.
Indeed, we employ a similar tactic in this thesis—in order to generate occlusion-caused
collisions (OCC), we inject synthetic vehicles that cause occlusion and use these artificial
occlusion scenarios to lead us to occlusion-caused collisions.

Before a failure case can occur, the driving situation must first become safety com-
promised. Falsification approaches will often use this fact to aid in the search for failure
cases. For example, Althoff and Lutz [5] take safe traffic situations, and by manipulating
the positions of the traffic participants, create dangerous situations—i.e., situations where
there is a small space of actions that can be used to avoid a collision. A challenge with
approaches that manipulate the positions of the traffic participants is to make sure the
transformed situations are still realistic. Since our own work uses synthetically injected
vehicles to generate dangerous occlusion scenarios, this is a problem that we also had to
overcome.



2.1.2 Most-Likely Failure Analysis

Unlike falsification, which only seeks to find failure cases without any other constraint,
most-likely failure analysis goes one step further and seeks to find failure cases with the
highest occurrence frequency. This provides developers with more information on how to
most effectively implement changes to make AVs safer. Furthermore, all failure cases are
at most as likely as the most-likely failure case, therefore this provides a bound on the
likelihood of failures.

A prominent approach in this area is Adaptive Stress Testing (AST) [59, 31]. Unlike
traditional falsification approaches where the goal is to find a set of cases where the SUT
violates the safety specification, AST instead learns an adversarial policy that causes the
SUT to fail. In other words, AST uses an adversary, typically a reinforcement learning
agent, that learns what kinds of disturbances to both the environment and SUT cause the
SUT to fail. Koren et al. [59] use AST in a situation where the SUT is approaching a
crosswalk where two pedestrians are crossing. The adversary has six available actions to
disturb the environment and cause a failure. It can control each pedestrian’s longitudinal
and lateral acceleration and the amount of noise in each pedestrian’s position and acceler-
ation measurement. They compare deep reinforcement learning (DRL) to a Monte Carlo
tree (MCTS) search method and show that DRL is able to use information from simulation
more efficiently and therefore can generate more failure cases than MCTS. However, both
of these methods are not without their drawbacks. In particular, they found that a large
portion of the failure cases were not caused by the SUT but by the pedestrians, who would
run and jump into the SUT (which is not typical pedestrian behaviour!).

The problem is that they had setup the objective function such that it rewards the
adversary for any kind of collision, regardless if the collision is caused by the SUT or not.
In a follow-up paper, Corso et al. [31] handcrafted a new reward function that takes into
account the notion of blame, so that the adversary is only rewarded when the SUT causes
a collision. They use Responsibility-Sensitive Safety [100]—a mathematical formulation of
blame, which encodes notions like minimum safe following distance and proper response
to adverse driving situations—as a model for blame in their updated reward function. In
order to generate varied failure cases they also include a dissimilarity metric in the reward
function to encourage the adversary to learn to induce different collision configurations.

Qin et al. [91] present an augmentation to the AST reward function. They use Signal
Temporal Logic (STL) [76] to mathematically formalize the safety specification for the
SUT. Instead of manually crafting a reward function, they reward the adversary based on
whether it generated failure cases within the STL constraints or not. Like all simulation-
based approaches (our method included), AST suffers from the “garbage in garbage out”

9



problem, i.e., AST requires accurate traffic participant behavior, environments, and driving
scenarios in order to generate realistic failure cases.

2.1.3 Failure Probability Estimation

Unlike the previous two tasks which focus on finding particular failure cases, failure prob-
ability estimation instead focuses on estimating the probability that the AV will violate its
safety specification. Works in this area use the notation X ~ P, to denote a realization
of sampling from a base distribution that models standard traffic behaviour (e.g., X can
be parameters such as the weather, lighting, time of day, behaviour of other traffic partic-
ipants, etc.). Here, the safety specification f: X — R, maps these parameters to a safety
value such that low values of f(z) correspond to a low safety score. The goal of failure
probability estimation is then,

Py = PBo(f(X) < 7). (2.1)

In other words, to estimate p,, which is the probability that the AV will perform below
some safety threshold, 7. As noted by Kalra and Paddock [53], evaluating this probability
in the context of autonomous vehicle driving safety becomes a rare event analysis problem
and so simply sampling from F, to compute p, requires a prohibitively large amount of
time. One way to solve this problem is to use importance sampling techniques. The key
idea being to modify the base distribution, Fy, in such a way that failures can be sampled
more frequently. Then, the results are modified to reflect the changes made to Fy, in order
to compute the unbiased probability of failure. The goal of importance sampling is to
construct a biased distribution which minimizes the number of samples needed to compute
an accurate estimate of p..

O’Kelly et al. [25] use cross-entropy importance sampling, a parametric importance
sampling method, in order to estimate p,. The idea being to iteratively get closer to the
optimal importance sampling distribution by constructing intermediate distributions, Fj, .
The parameters of the k' distribution, 6, are obtained based on samples taken from the
previous distribution, P, ,. Over time, regions of X where f(z) is low (i.e., unsafe) will
be more heavily weighted resulting in a closer approximation of the optimal importance
sampling distribution. Their SUT is a black-box AV with a deep-learning-based perception
system. They test the SUT in a multi-lane highway environment modeled after the 1-80
in the United States, where the goal is to safely traverse the 2 km stretch of highway
modeled in the simulator. The other vehicles are trained using generative adversarial

10



imitation learning on the NGSim dataset [!]. The simulation parameters, X, are the
initial positions, orientations, and velocities for each vehicle, as well as a set of 404 weights
which represent the last layer of the neural network used to control the other vehicles. The
safety specification, f(z), is defined as the minimum time-to-collision (TTC), from the
centre of the SUT, across the simulation rollout. They find that the cross-entropy method
was able to sample rare failure events with a speedup of 18 times that of naive Monte
Carlo, as well produced importance sampling estimators with a lower variance.

A drawback of the cross-entropy method is that it can be numerically unstable. The
authors get around this problem by limiting the search space to regions that are tractable.
They found that the importance sampler would induce violations of the minimum TTC
by shifting the other vehicles such that the SUT was surrounded by other vehicles while
driving, as well as increasing the initial velocity of trailing vehicles. While situations like
this are dangerous, they are not necessarily a result of any failure on the AV’s part. Future
work could include incorporating blame into the safety specification to specifically search
for situations where the SUT is at fault. They also found that, as a result of defining TTC
from the centre of the SUT rather than from the closest point along the SUT’s edge, the
induced failure cases frequently were sideswipe collisions as opposed to front-to-front or
front-to-back collisions. This being a good reminder to be careful when designing f(z) as
how it is designed can have a direct impact on the safety results.

Norden et al. [81] use adaptive multi-level splitting (AMS), a non-parametric impor-
tance sampling method, to compute p,. The key idea being to decompose the rare event
probability, p,, into the product of non-rare probabilities that can be computed using
Markov chain Monte Carlo (MCMC). Instead of immediately using the threshold level, ~,
intermediate threshold levels are used, oo := Ly < Ly -+ < Ly := 7, eventually converging
to 4. This is in contrast to parametric adaptive importance sampling methods (e.g., the
cross-entropy method [35]), which can have difficulty with AV-related tasks since the prob-
lem space is often high dimensional, failure regions are discontinuous, and likelihood ratios
are numerically unstable. AMS solves this by not needing to generate models for the failure
regions(s) nor compute likelihood ratios. The drawback of AMS is that the types of failure
cases it finds are limited by the number of samples drawn and the generative properties of
the MCMC sampler used. The SUT in this work is a proprietary SAE-level 2 [29] driver
assistance system, which uses camera images to reconstruct an image of the environment.
The goal is to safely navigate 1 km of highway road, in the Carla simulator, in the presence
of 5 other vehicles (which are trained using imitation learning). The authors use the same
simulation parameters as [35] with the addition of four parameters controlling precipitation
on the ground, the altitude angle of the sun, cloudiness, and precipitation in the air. They
define f(x) as the minimum TTC but with respect to each vehicle’s bounding box rather
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than the centre of each vehicle.

They found that when searching for dangerous rare events; i.e., ¥ < 0.1 seconds, AMS is
able to sample three orders of magnitude more failure cases than naive Monte Carlo. Given
~ = 0.1 seconds, they found that the failure rate was roughly 1 in 10* simulation rollouts.
However, for non-rare events (i.e., v > 0.8 seconds) naive Monte Carlo outperforms AMS.
In fact, naive Monte Carlo also outperforms the cross-entropy method for non-rare events
[85], suggesting that importance sampling methods should be used only for rare event
sampling. Using PCA dimensionality reduction, the authors categorize failures into four
modes, collisions involving direct sunlight, or heavy rain, and collisions where there is
either a low relative velocity, between vehicles, or high relative velocity. They further note
that collisions are much more likely in heavy rain than in direct sunlight, suggesting that
the perception system does not perform well on scenes with overcast and rainy weather.
However, while errors in the perception system is a contributing factor to failures in the
SUT, it is not solely responsible. It is the interaction between the perception system and
the motion planner that causes the SUT to fail. They give the example where there is
direct sunlight and the perception system is uncertain of the exact position of the vehicle
in front of the SUT. The motion planner knows that the perception system is uncertain,
but instead of planning a conservative trajectory that accounts for the perception system’s
uncertainty in the lead vehicle’s position, the motion planner plans a trajectory that is
too aggressive resulting in the SUT colliding with the leading vehicle. This highlights that
black-box testing should ideally include whole system testing. It is not enough to only test
individual components of the SUT since errors often accumulate around the interactions
between components.

Sinha et al. [102] build on the work in [31] by employing “neural bridging” to outperform
AMS and naive Monte Carlo sampling. Their proposed technique is closely related to AMS
with the major difference being how the intermediate distributions P, are computed. AMS
uses “hard barriers” through the use of indicator functions while bridge sampling uses “soft
barriers” through the use of smoother exponential functions. Furthermore, where AMS
iteratively steers the probability towards p, through the use of the intermediate levels, Lo
to Ly, neural bridging uses a gradient-based approach which avoids inefficient random-
walk behaviour. The authors test their method on a variety of tasks including OpenAT’s
CarRacing environment [36], where they compare two neural-network-based approaches;
specifically, they compare the probability that either one achieves a score lower than 150
(this is a rare event as both approaches, on average, achieve scores around 900). The
parameter search space, Py, in this case is characterized by 12 checkpoints that define the
geometry of the racing track. The task then, is to compute the probability that randomly
sampling a track will result in a score below 150. The authors find that naive Monte
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Carlo is not able to distinguish the failure rates between the two SUTs because of its high
uncertainty, whereas the authors’” method clearly shows that one of the methods has a
lower probability of failure than the other.

Sarkar and Czarnecki [91] develop a novel driving behaviour model based on the theory
of bounded rationality to model traffic behaviour for evaluation of autonomous vehicles.
One of the key ideas of their work is incorporating the fact that human drivers often
behave sub-optimally. Their work, like ours, generate driving policies based on safety and
progress-to-goal utilities. However, where we use a pure utility maximization principle
(i.e., where agents choose the optimal strategy 100% of the time), the authors instead
use a bounded rationality principle where each vehicle in their simulation may choose a
sub-optimal strategy with some probability. They use their behaviour model to generate
a range of driver behaviours and estimate the probability of a near-crash situation (i.e.,
a rare event) under these behaviours. They find that their rare event sampling approach
outperforms both naive Monte Carlo and Cross Entropy sampling in terms of sampling
rare events.

In general, failure probability estimation is a powerful tool for validating autonomous
systems, providing information on the overall behaviour of the SUT. It is clear that such
approaches will most likely be a necessary component in the safety certification pipeline for
autonomous vehicles. However, an added difficulty of these approaches is the identification
of Fy. In order to carry out failure probability estimation, the reviewed works assume
that Py is known. However, this assumption must not be overlooked when performing
safety validation as the effectiveness of these approaches is contingent on F, being an
accurate representation of what goes on in the real world. If Py does not closely replicate
what is observed in reality, the results from failure probability estimation could lead to
overconfidence in the safety level of the SUT.

2.2 Occlusion-Aware Risk Estimation

In addition to rare-event generation, we also review related work in occlusion-aware risk
estimation—with a specific focus on works that incorporate traffic intersections in their
analysis. While some of the works we review here only propose a risk estimation method,
many present an occlusion-aware planning method which incorporates risk from occlusion
into the planning process. Occlusion-aware risk estimation fundamentally revolves around
dealing with uncertainty, specifically the potential existence of occluded vehicles. As such,
there are primarily two paradigms for navigating traffic situations with occlusion, these
being probabilistic and set-based methods.
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2.2.1 Probabilistic Approaches

What makes autonomous driving a particular challenge is the inherent uncertainty of other
traffic participants’ intentions and the uncertainty of how occluded areas of the driving
environment will evolve over time. Probabilistic methods provide a framework to both
reason about uncertainty while also performing approximately-optimal decision making.
One such approach is the Partially Observable Markov Decision Process (POMDP) [19,

, 20, 105, 97], which is a generalization of the Markov Decision Process (MDP), but where
the agent cannot observe the true environment state (e.g., in the case of AVs, because of
noisy sensor measurements or because of occlusions).

Bouton et al. [19] use a POMDP planner to navigate a blind crosswalk (i.e., a crosswalk
with static occluding objects) and blind unsignalized T-intersection. A challenge with
POMDPs is that they scale exponentially with the number of agents being modeled and
quickly become computationally infeasible to solve. To get around this, the authors use
utility fusion as a way to approximate the solution to multi-agent POMDPs. However,
another drawback of POMDPs is that the state space must be discretized in order for
POMDPs to be used. This results in the continuous driving environment being transformed
into a relatively small subset of discrete states which often do not allow for optimal decision-
making. To get around this, Brechtel et al. [20] use a continuous POMDP solver that
learns a suitable state representation that depends on the driving situation. Lin et al. [74]
propose a POMDP approach to handle turning at intersections under static and dynamic
occlusion. Where prior works assumed that the number of vehicles on the road and their
positions are known quantities (which is not the case in many real traffic situations), the
authors here do not. To get around this, the authors make the worst case assumption that
vehicles are always present in occluded regions. In other words, they inject virtual vehicles
at the vision boundaries of the occluded areas which the AV’s planner incorporates into its
decision making. However, simply injecting these vehicles in these worst-case configurations
results in a deadlock, i.e., the AV is unable to move as it perpetually anticipates a vehicle
emerging in the next second. To get around this, the authors created a priority list for
different actions, prioritizing acceleration over deceleration, which resulted in the AV slowly
creeping forward even if it believes a vehicle could emerge from the occluded region in the
next moment.

Narksri et al. [30] propose another solution to the deadlock problem. They use a
particle-filter-based visibility-dependent behavior model, which allows the planner to rea-
son about how the occluded vehicle will react to the AV once both vehicles are no longer
occluded. Similar to [80], Hubmann et al. [50] note that handling the general possibility
of an occluded vehicle appearing at any time analytically is infeasible, since the worst-case
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position of such a vehicle depends on the AV’s trajectory, which has yet to be found. Fur-
thermore, simply limiting the longitudinal velocity of the AV such that it can perform an
emergency stop if an occluded vehicle were to suddenly emerge often leads to the deadlock
problem. Therefore, they solve this problem by simulating the future field-of-view (FOV)
of the AV, and incorporating both static and dynamic occluding objects in the simulation.
Potential occluded vehicles are then computed by mapping the future FOV onto the lanes
of a topological map.

Occlusion-aware deep reinforcement learning (DRL) [51, 5] has also been used to safely
navigate blind unsignalized intersections. While DRL can outperform simplistic rule-based
approaches (such as a TTC rule-based approach [51]) it is difficult to evaluate how safe
DRL would prove to be in the real world since DRL struggles to adapt to unseen scenarios.

Other probabilistic approaches incorporate a risk metric in order to safely navigate
occluded spaces. McGill et al. [77], propose a real-time probabilistic risk assessment tool,
which incorporates cross traffic, sensor errors and driver attentiveness in its risk calculation.
Lee et al. [06] generate an occlusion-aware collision risk estimate by first predicting the
point where an occluded vehicle could emerge and then predicting the future path of
the vehicle, checking to see under what speed conditions the path would intersect with
the AV’s path. Instead of predicting potential future paths, Yu et al. [113] use a particle-
based approach, relying on road geometry and a motion model to populate the intersection
with particles representing the potential future positions of occluded vehicles. The more
particles an area has the higher the occlusion risk.

A drawback of probabilistic methods as a whole is that they are fundamentally approx-
imative, i.e., they do not provide safety guarantees. Using set-based methods on the other
hand, allows one to generate collision-free trajectories, even in the presence of occlusion.

2.2.2 Set-based Approaches

The key idea behind set-based approaches is to over-approximate the occupancy predictions
of other observable and unobservable traffic participants. Fail-safe trajectories can then
be generated by ensuring they do not intersect with the over-approximated occupancies
of other traffic participants. Set-based methods cannot guarantee that the AV will not be
involved in an accident because that guarantee requires that every other traffic participant
behaves safely as well. What they can do is guarantee that—under the assumption that
AV localization and object detection is working properly—the AV cannot be blamed for
causing the accident (the notion of blame in the driving context is formally described in

[100]).
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Orzechowski et al. [37] propose a reachable-set approach using a Kamm'’s circle to
outline each vehicle’s laterally reachable set and each vehicle’s maximum velocity for its
longitudinally reachable set. They test their approach on three urban scenarios where
occlusion is caused by static and dynamic objects. While this approach can ensure fail-safe
trajectories, a drawback of being over-approximative is that the planner can end up being
too conservative, resulting in the AV being unable to progress. Another consideration of
such an approach is the trade off between comfort and safety since some fail-safe trajectories
require higher jerk values in order to ensure there are no intersections between the reachable
sets of both the AV and other traffic participants.

Koschi and Althoff [60] extend the previous work by incorporating virtual pedestrians
and cyclists along with virtual vehicles, which are injected at the occlusion boundary
edge. They then over-approximate the reachable sets for these participants in order to
create fail-safe trajectories. A challenge with this approach is to tune the parameters of
the model—such as the maximum velocity and acceleration the AV assumes other traffic
participants can perform—such that the parameters cover the range of behaviors other
traffic participants may exhibit while not being too conservative so as to prevent the AV
from making progress. Unlike previous work where evaluation is only done in a low-fidelity
simulation environment, the authors tested their approach on public roads using a BMW
series 7 test vehicle.

A distinction between our work and the occlusion-aware risk estimation works reviewed
here is the number and variety of occlusion situations tested. These works mention testing
their method on 1-3 different occlusion situations, in contrast we test our method on
roughly 106,000 different occlusion situations. Another important distinction is the form
and use of the risk measure in our work compared to the works we review. In the works
we review the risk measure typically defines regions in the intersection where there is
high occlusion risk, which can be used to inform the AV’s trajectory planner how best to
generate trajectories in the presence of occlusion. However, in our work we use DOR, which
instead measures to what extent occlusion contributes to the overall driving risk. A high
DOR score means that the traffic situation is risky primarily due to occlusion. A low DOR
score does not mean that the situation is not risky but simply that whatever risk is present
is not from occlusion. Therefore, unlike the other occlusion-aware risk measures reviewed
here, DOR is a categorization tool, which AV developers can use to quickly identify risky
occlusion situations.
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Chapter 3

Background

This chapter is split into three sections. In the first section, we describe how we use strategic
planners to control AV behaviour. Each strategic planner plays a hierarchical traffic game,
which is a combination of a high-level manoeuvre game and a low-level trajectory game.
In the second section, we cover the theory of hypergames, which we use to incorporate
occlusion into our traffic game models. In the final section, we describe in greater detail
how dynamic occlusion occurs, as well as provide a definition for DOR, which relies on
concepts covered in the hypergame section.

3.1 Hierarchical Games

Hierarchical traffic games are largely inspired by research into modelling driving as a hier-
archy of tasks in the field of traffic psychology [105, 68, 79]. A particularly relevant example
comes from Michon [79] who proposes a 3-leveled hierarchy for driving tasks consisting of
a strategical level, tactical level, and operational level. The strategical level operates on
a long time horizon, and includes the determination of the goal location, mode of trans-
portation, and the costs and risks associated with the trip. The tactical level operates on
a much shorter time horizon of typically just a few seconds and includes the determination
of which driving manoeuvres should be carried out to reach the goal location (e.g., over-
taking, gap closing, lane changing, turning, etc.). Finally, the operational level operates on
a millisecond time horizon and involves the determination of the actuation patterns that
control the vehicle such as steering and acceleration.

AVs follow a similar decomposition of driving tasks, with a high-level route planner,
an intermediate-level behaviour planner, and a low-level trajectory planner [9] (with more
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granular levels abstracted away for the sake of simplicity). A benefit of such an approach is
that the costs' associated with planning can be dealt with separately at each level. On the
strategical level, a route planner evaluates the most effective way to reach the goal location
while taking into account costs associated with driver safety and comfort, such as having to
wait in traffic, as well as driving in regions with higher collision rates. At the tactical level,
a behaviour planner, generates driving manoeuvres based on the traffic environment (e.g.,
traffic lights, signs, positions of other vehicles, etc.). Costs and risks at this level involve
ensuring that manoeuvres are chosen that provide progress along the AV’s global path
while also ensuring only safe and preferably comfortable manoeuvres are chosen. These
manoeuvres are based on trajectories generated by a low-level trajectory planner. Once
a trajectory is ready to be executed, it is converted into actuation commands, which are
then carried out by a vehicle controller. The controller must balance executing actuation
commands that match the trajectory profile while also accounting for passenger comfort,
by minimizing the jerk profile and staying within comfortable acceleration bounds.

Hierarchical games take the hierarchical nature of driving tasks and apply it in a multi-
agent environment. Previous works by Fisac et al. [30], and Sarkar and Czarnecki [95] use
hierarchical games to model challenging multi-agent driving scenarios such as overtaking
and merging on a two-lane highway [36], and negotiating manoeuvres at a busy intersection
[95]. However, there are differences between their implementations. Fisac et al. [30]
model multi-agent driving as a hierarchical Stackelberg game, which frames traffic games
as a leader-follower interaction. In a Stackelberg game, the leader makes the first move
and then each of the followers sequentially make their move. Historically, Stackelberg
games have been used to model competition between businesses. For example, consider
a duopoly with a dominant leading firm and a follower firm. The leading firm sets the
price of the good, and after doing so the follower firm matches the price and adjusts their
production accordingly. Stackelberg games work well in this context because the leader-
follower distinction is easily discernible. However, in the context of driving, where roles
such as leader and follower rapidly change as vehicles merge into new lanes and overtake
other vehicles, modeling driving as a Stackelberg game can be difficult.

In contrast, Sarkar and Czarnecki [95] model multi-agent driving as a hierarchical si-
multaneous move game, which does not require any distinction to be made between leader
and follower. Figure 3.1 shows both game types modelling an interaction between two
vehicles at an intersection. Agent 1 is driving straight through the intersection and has
two available actions, the first being to drive straight through the intersection at the speed
limit (7'), or decelerating to a stop and yielding to the oncoming left-turning vehicle (D).

"'Where the cost is the inverse of the utility value.
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The left-turning vehicle, agent 2, has two available actions, the first being to wait for agent
1 to pass (W), or to proceed with its left turn (P).

Agents 1 and 2 move
at the same time.

T ... Agent1Manoeuvre
Level

.. Agent2 Manoeuvre
Level

W

first.
u . :
1 Backward induction
... Agent1 Trajectory solves the trajectory Aee-cccceccc-@~. = = = @

Level N
games first.
.. Agent1Trajectory
Level

Agent 2 moves .
second. W P ... Agent 2 Manoeuvre
Level *
u o
u, > o -~ [~
... Agent2Trajectory > o T = ... Agent2 Trajectory
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Figure 3.1: (a) A Stackelberg game between two vehicles. Agent 1 is the leader and
therefore moves first. (b) A simultaneous-move game between two vehicles, the dotted blue
lines indicate the information sets. Both game types are two-leveled hierarchical games,
including both a trajectory level and a manoeuvre level. The red arrows indicate that
utilities are determined in the trajectory-level game and then are used in the manoeuvre-
level game. We show a single trajectory (highlighted in black) being selected from a set
of five potential trajectories simply for the sake of simplicity. In our work, we generate 50
trajectories for each manoeuvre, where each trajectory has a time horizon of 6 s.

In the Stackelberg game shown in figure 3.1a, the leader, agent 1, chooses action 7.
Agent 1 then generates a trajectory to execute the manoeuvre. There are a broad spectrum
of trajectories that can be used to execute manoeuvre T, and so agent 1 must decide on
the optimal trajectory based on their predictions for what agent 2 will do. Then, with the
knowledge of agent 1’s action, agent 2 determines their best response. In this example,
agent 2 chooses action W, and then generates a trajectory to execute the manoeuvre.

Stackelberg games are best used to model driving situations where one agent clearly has
the ability to move first so that the distinction between leader and follower is unambiguous.
This can be the case in merging and overtaking situations, for example, where one vehicle is
takes the initiative to move first and other vehicles must react to the manoeuvre. However,
the Stackelberg leader-follower assumption is also quite restrictive. There are a broad
spectrum of situations that can emerge at intersections, where the distinction between
leader and follower is transitory or in other cases entirely ambiguous. Therefore, we use
simultaneous move games to model traffic dynamics, thereby avoiding the strong leader-
follower assumptions used in Stackelberg games.

In the simultaneous move game agents reason about their optimal action by taking
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into account the actions available to all other agents, without having knowledge of what
action the other agents have committed to executing. Actions are divided into two levels,
high-level manoeuvres and low-level trajectories. Agents first play the manoeuvre-level
game, and then once they have selected a manoeuvre they play the trajectory-level game
to determine which trajectory should be used to carry out the manoeuvre. Sarkar and
Czarnecki [95] employ backward induction to solve the hierarchical simultaneous move
game.

Figure 3.1b provides an overview of how backward induction can be used to solve the
simultaneous move game between agents 1 and 2. Starting from the bottom of figure
3.1b, both agents first play the trajectory level game, generating a set of trajectories for
each manoeuvre and then selecting the optimal trajectory for each manoeuvre based on
the other agent’s set of trajectories. Sarkar and Czarnecki use a weighted combination
of progress and safety functions to measure the utility of each trajectory. The progress
utility measures the percentage of the total trip distance the trajectory covers. The safety
utility measures the minimum distance between the trajectory being evaluated and another
vehicle’s trajectory. The goal at this level is to select a trajectory for each manoeuvre that
maximizes both the progress and safety utilities. Once a trajectory has been selected
for each manoeuvre (meaning that each manoeuvre has an associated utility value), both
agents play the manoeuvre level game, which reduces to a standard normal-form game. An
example showcasing the entire process of instantiating and solving a simultaneous move
game is shown in chapter 4.4.

We use the maxmin solution concept for solving trajectory-level games due to its ability
to accurately model human driving behaviour [95] (we describe how maxmin is used as
a solution concept in the following chapter). The solution concept for the trajectory-
level game determines which trajectory becomes the representative trajectory for each
manoeuvre. A solution concept must also be chosen for the manoeuvre-level game. Below
we outline three different options.

e Nash equilibrium is a standard solution to non-cooperative games [95, 43, 90, 99],
where no agent can increase their own utility by unilaterally changing their strategy.

e Stackelberg equilibrium [36] is another solution concept used in leader-follower games,
where the leader computes the optimal response by the follower given each of the
leader’s actions. With this information, the leader can compute its optimal action
given the optimal response from the follower [10, 7].

e Finally, Pareto equilibrium [104], is used in cooperative games, as opposed to both
Nash and Stackelberg equilibrium, which are used in non-cooperative games—i.e.,
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where agents are playing in competition against each other. Pareto equilibrium (also
known as Pareto optimality and Pareto efficiency), is often used in a cooperative
setting, and is defined as the state where no reallocation of resources is possible
without at least one agent being worse off based on their preferences.

Since the primary contribution of the work is a safety validation methodology, rather
than coming up with the most appropriate solution concept for planning, we choose Nash
equilibrium as the solution concept for solving manoeuvre-level games mainly due to its
ubiquity of use in motion planning literature [90, 11, 78]. Additionally, for cases where
there are multiple Nash equilibria, we select the utilitarian social welfare maximizing Nash
equilibrium, i.e., a Nash equilibrium that maximizes the sum of the utility of all agents.
We calculate Nash equilibria in pure strategies. With that being said, the developed
methodology, including occlusion situation generation and hypergame construction, are
agnostic to the specific solution concept. Therefore, one can replace the Nash-equilibrium-
based planner with a Stackelberg-equilibrium-based planner, for example, and the methods
developed in the thesis will work seamlessly.

Nevertheless, in a study comparing how various bounded-rationality strategic plan-
ners perform, Nash equilibrium with quantal errors was shown to most closely model
human driving behaviour [95]. Bounded rationality refers to the notion that humans have
a bounded amount of computational resources to figure out what their best action is.
Driving is an activity where bounded rationality plays an important role as humans must
necessarily choose their best action with a limited computational budget (and thus may
not always choose the optimal action). While we do not use Nash equilibrium with quantal
errors in this work, we instead use Nash equilibrium as the solution concept which can be
interpreted as an optimistic variant of Nash equilibrium with quantal errors. We leave the
inclusion of bounded-rationality strategic planners for future work.

A hierarchical game is defined as the tuple, G = (N, M, T,U), where

N is the number of agents in the game indexed by ¢ € {1,2,3,..., N} (we use agent
and vehicle interchangeably),

M, is the set of manoeuvres available to agent ¢ in the manoeuvre-level game (we use
action and manoeuvre interchangeably).

Tm, 1s the trajectory representing manoeuvre, m;, for agent i,

U is the utility function U — 7 : RY, which maps trajectories to the real-valued
N-dimensional vector, RV.
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Each game is instantiated as a simultaneous-move game, where agent i’s state at time ¢
is defined as the 7-tuple X, , = [z, y, Vs, vy, Uy, Uy, 0], where (z,y) represents the coordinates
of the agent in R?, (v,,v,) are the longitudinal and lateral velocities, (v,,v,) are the
longitudinal and lateral accelerations, and 6 is the agent’s yaw. The manoeuvres in the
game are cubic spline trajectories [70, 3], and provide complete state information for each
agent over a 6 s planning horizon. We denote a trajectory for agent i starting at time, t,
as Tt = {Xits Xitt01, .-, Xirreo}. We generate trajectories with a time horizon of 6 s,
where the timesteps are in increments of 0.1 s.

The utility of each trajectory is measured using a combination of progress and safety
functions. For vehicle ¢ with trajectory 7,,,, the progress function maps the distance that
Tm, covers to the interval [0, 1] (higher values indicating higher progress levels), while the
safety function compares how close i gets to another vehicle j by computing the minimum
distance between the trajectories 7, and 7T,,;, and mapping the minimum distance to a
value in the range [—1, 1] using a sigmoid function (where a higher value indicates a higher
safety level). The total utility, U;, is a function of both the progress and safety utilities,
combined based on lexicographic thresholding [69],

U(Tm,) = {US(TmHij) R (3.1)

Up(Tin,) if Us(Ton, ij) 2.

Where U, is the progress function, Uy is the safety utility, and 7 is a threshold constant
that determines if the safety or progress utility should be used to represent the total utility
value of 7T,,,.

There may be some who are at this point confused about how we can use backward
induction given that the simultaneous-move game does not seem to have any subgames.
The key idea is that we can break the information sets in the trajectory game, given the
assumption that a decelerate-to-stop (D) manoeuvre and a track-speed (7') trajectory
combination, for example, cannot happen. The backward induction step is shown in figure
3.2, where the hierarchical game is divided into the trajectory-level games, shown as the
four separate coloured boxes. We use the non-strategic maxmin solution concept for the
trajectory-level games. Then, the solutions to the trajectory-level games become the utili-
ties in the manoeuvre-level game, represented in normal form. The process shown in figure
3.2 is analogous to performing backward induction on the extensive form of the hierarchical
game shown in figure 3.1b.
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Figure 3.2: An example of how backward induction is performed on a hierarchical traffic
game.

3.2 Hypergames

Standard game theory cannot model occlusion since games are instantiated with the im-
plicit assumption that each agent is aware of every other agent participating in the game,
which is not the case in occlusion situations where vehicles are hidden from sight. In or-
der to incorporate occlusion in our work we propose the novel application of hypergames
[11, 14, 63], to incorporate misperception into game-theoretic traffic modelling. The key
idea being that agents do not always have a mutually-consistent understanding of the game
they are playing. For example, consider two countries, A and B, who are preparing for war
against each other. However, one of the informants in A mistakenly misinforms country
A that country B possesses an army of 3000 soldiers when in reality they possess 5000
soldiers. A historian with complete knowledge of the army sizes of both A and B might be
baffled by the decisions made by A if the historian uses standard game-theoretic models.
This is because they are assuming both countries knew the size of the other’s army. Using
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a hypergame instead to model this conflict would allow the historian to reason over each
country’s individual views of the game. In the hypergame, two games are instantiated, one
game from A’s perspective (where they believe B has an army of 3000), and another game
from country B’s perspective. Reasoning over the hypergame would allow the historian to
accurately model the individual beliefs that each agent possesses.

Hypergames have a rich history of being used to model situations spanning military
conflicts [15, 13, , , 93, , 38], sports [10], resource allocation [31, 18], business
[17, 44,39, 12, 45], and cybersecurity [62, 57, 19]. In general, hypergames are typically used
to model adversarial situations where agents do not have perfect information of each other,
and as a result, misperceptions are a frequent occurrence. Specifically, a misperception can

be [63, 39]:

(I) having an incorrect understanding of the preferences of other agents,

(IT) having an incorrect understanding of the actions available to other agents,
(III) not having awareness of all other agents playing the game,
)

(IV) any combination of the above.

In the context of our work, we focus on (III) since this kind of misperception can be
caused by occlusion.

Additionally, we use the extension to hypergame theory proposed by Wang et al. [110],
which splits hypergames into a hierarchy of levels based on the perceptions of the agents
playing the game. In a level-0 hypergame the hypergame reduces to a standard game,
H® = @, because all agents have perfect information about all other players and therefore
no misperceptions exist. In a level-1 hypergame, H' = {G1, G, ..., Gx}, agents have their
own view of the game and are not aware that other agents may have differing views of the
game. Here, G; = {N;, K;, A;, U;} denotes agent i’s view of the game. A level-2 hypergame,
H? ={H{,H), ... Hi} occurs when at least one agent is aware that a hypergame is being
played. Here, H} = {G;1,G,2,...,G; n} represents the hypergame as perceived by agent
v and G, ; is the jth agent’s game as perceived by agent 7. While hypergame levels can
in theory be extended up to a finite level L, we only use level-2 and lower hypergames in
order to model dynamic occlusion.

1. Level-0 (Occlusion-resolved perspective): In the level-0 hypergame, all agents possess
an omnispective view of the game and so each agent is aware of all other agents
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playing the game. We use the occlusion-resolved perspective to verify that collisions
occurring in the level-1 (occlusion-naive) hypergame are a result of occlusion. If a
collision occurs in the level-0 hypergame in addition to the level-1 hypergame then
occlusion was not the cause of the accident since we eliminate occlusion as a variable
in the level-0 hypergame.

2. Level-1 (Occlusion-naive perspective): Dynamic occlusion is incorporated at this
level. This means each vehicle constructs a game from their own perspective, and
each game only includes vehicles that are not occluded from that vehicle’s perspective.

3. Level-2 (Occlusion-aware perspective): In a level-2 hypergame the vehicles know they
are playing a hypergame and therefore understand that dynamic occlusion is present
in the situation. We detail how a vehicle using their occlusion-aware perspective, can
generate a dynamic occlusion risk (DOR) measure for the situation in section 3.3.

In order to better illustrate how we use hypergames to model dynamic occlusion, we
provide the following example. Figure 3.3 shows an occlusion situation generated using our
method. The vehicles circled in red are taken from naturalistic data, while the synthetic
occluding vehicle (SOV) circled in blue is generated using our method. Both the SOV and
vehicle 1 are in the left-turn lane. Vehicle 2 is driving straight through the intersection
from the other direction and following behind vehicle 3. This is an occlusion situation
because neither vehicle 1 nor 2 can see each other due to the SOV.

25



Figure 3.3: An example of an occlusion situation generated using our method. We use this
occlusion situation as a running example throughout this thesis.

We model this situation as the level-1 hypergame shown in figure 3.4, in which we show
the perspectives of the game from vehicle 1’s perspective 3.4a, and the game from the SOV
and vehicle 3’s perspectives 3.4b. Vehicle 2 is not included in vehicle 1’s game because
vehicle 2 is occluded from vehicle 1. In contrast, all vehicles are included in figure 3.4b
because from the SOV and vehicle 3’s view no vehicle is occluded. We did not include the
game tree for vehicle 2 but it would look similar to figure 3.4a except vehicle 2 would be
included and vehicle 1 would not.
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Figure 3.4: (a) Vehicle 1’s view of the traffic game. (b) Both the SOV and vehicle 3’s view
of the traffic game. The red paths and utilities represent the Nash equilibria actions and
utility values.

In figure 3.4b vehicle 1 has two available manoeuvres, following the lead vehicle into the
intersection (F) or waiting for vehicle 2 to pass (W) (a full list of the available manoeuvres
and their descriptions we use in this work are provided in table A.1). The SOV can either
execute its left turn (P) or wait for vehicle 2 to pass (W). Vehicle 2 can either execute
a follow manoeuvre whereby it matches its speed to vehicle 3 as it drives through the
intersection (F') or it can instead drive at the speed limit through the intersection (7).

The paths highlighted in red indicate a Nash equilibrium. For example, in figure 3.4b
(W, P, T, T) is a Nash equilibrium, which represents the maneuvers for vehicle 1, the
SOV, and vehicles 2 and 3 respectively. From vehicle 1’s perspective (in figure 3.4a),
the only Nash equilibrium is (F, P, T'), which has vehicle 1 following the SOV into the
intersection. Thus, vehicle 1’s misperception of the full traffic game being played can lead
to the dangerous situation where it executes a left turn while vehicle 2, unaware of vehicle
1, drives straight through the intersection. Indeed, simulating this situation we find that
vehicles 1 and 2 end up colliding due to the occlusion caused by the SOV.

At this point, a question that may arise to some readers is why we opt to use hypergames
as a framework to model occlusion as opposed to Bayesian games, which allow for the
possibility that players in the game may have incomplete information about other players.
For example, in a Bayesian game a player may not know the exact payoff function that other
players use and so instead model a probability distribution representing their beliefs over
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the possible payoff functions that other players may be using. The first reason why we opt to
use hypergames over Bayesian games is because of the simplicity of hypergames. Bayesian
games, while a powerful modelling tool, require that an accurate model of the probability
distribution over each player’s beliefs can be computed. Computing these distributions
is a non-trivial task. In contrast, hypergame theory provides a straightforward way to
incorporate occlusion into traffic games by creating individual games from each player’s
perspective, which is a significantly simpler task than instantiating and solving Bayesian
games. For our work then, hypergames suffice. Secondly, while Bayesian games allow for
the possibility that players may have incomplete knowledge of other players, it is not clear
how Bayesian games handle the case where players are not even aware that other players
(i.e., occluded vehicles) are involved in the game. Hypergames on the other hand provide
a simple and effective framework that incorporates this case with little computational
overhead, making it again the clear choice for this work.

3.3 Dynamic Occlusion and DOR

Dynamic occlusion occurs from specific spatial configurations involving three or more ve-
hicles. We use the occlusion-indicator function O(i, j, k) € {0, 1}, to check for occlusions,
where O(i, j, k) = 1 indicates that vehicle k is occluded from vehicle ¢ by vehicle j, and
O(i,j, k) = 0 indicates that vehicle k is visible to vehicle 7. Note that occlusion is not
necessarily symmetric, meaning that O(i, 7, k) = 1 does not imply that O(k, j,i) = 1. We
illustrate this with the examples shown in figures 3.5a and 3.5b.

In figure 3.5a frames the situation from vehicle 1’s perspective. In this case, O(1,2,3) =
1 because vehicle 2 is occluding vehicle 3 from vehicle 1. However, in figure 3.5b from
vehicle 3’s perspective, O(3,2,1) = 0, because while vehicle 2 is partially occluding vehicle
1, vehicle 3 still has partial vision—>5 rays still manage to collide with vehicle 1—and
therefore still has vision of vehicle 1. In general, the positioning and orientation of the
human driver—or the suite of sensors in the case of an AV—determine if occlusion is
symmetric or not.

If for all vehicles in the traffic situation O(z, j, k) = 0 then the highest level hypergame
that can be played is 0 since each vehicle is aware of all other vehicles in the situation
and they all play the common game H® = GG. However, if there is at least one case where
O(i,7,k) = 1 for any combination of vehicles i, 7, and k then the level of the hypergame
must be at least 1 since there will be at least one vehicle that will have a different view of
the traffic game due to occlusion.
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Figure 3.5: An example of asymmetric occlusion between two vehicles. (a) Vehicle 3 is
occluded from vehicle 1, since no rays from vehicle 1 collide with vehicle 3. (b) Vehicle 1
is still visible to vehicle 3 since 5 raycasts collide with vehicle 1.

One goal of this work is to be able to evaluate how much dynamic occlusion contributes
to driving risk. In order to do this, we define dynamic occlusion risk (DOR). However,
since we assume all the vehicles in the traffic game are occlusion-naive it follows that
none of the vehicles can compute the DOR measure (which requires an occlusion-aware
perspective). To get around this we introduce the notion of a third party observer, such
as an AV, that is able to observe all vehicles in the traffic situation (e.g., an AV could use
V2X communication infrastructure to gain information on the positions of all vehicles in
the situation). This third party would then compute the solutions to Hy and H;, which
would result in two sets of trajectories, Ty,, the set of trajectories used by vehicles in the
occlusion-resolved view (H) and, Ty,, the set of trajectories used in the occlusion-naive
view (H;). Using a surrogate safety metric, S (we use minimum distance gap), we now
define DOR  as follows:

DOR(Tuy, Ty »S) = S(Thy) — S(Twy)- (3.2)
S(Tw,) is the minimum distance gap between all trajectories executed in Hy and S(Ty,)

is the minimum distance gap between all trajectories executed in H;. DOR measures
the difference in outcomes when all vehicles have an omnispective view of each other
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(Hp) and when dynamic occlusion obstructs vehicles from seeing each other (H;p), thus
DOR(Tway, Try,,S) > 0 implies that dynamic occlusion contributes to whatever driving risk
is present in the traffic situation. We define an occlusion-caused collision (OCC) when
DOR(Tuy, Tr,,S) > 0 and S(Tx,) = 0 (since this implies there was a collision in H; but
not in Hy). More succinctly, OCC := DOR(Tu,, Tu,,S) = S(Tu,) > 0.
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Chapter 4

Method

In this chapter we describe how we generate occlusion situations, as well as how we evaluate
strategic planners on those occlusion situations. Figure 4.1 shows an overview of our work-
flow. Since our occlusion situation generation method requires augmenting traffic data,
the first step is to select a naturalistic traffic dataset. Once selected, step 2 decomposes
full traffic scenes from the dataset into partial scenes, which represent subsets of vehicles
grouped by how relevant they are to each other’s behaviour (e.g., a lead vehicle would be
grouped with the follower vehicle since the lead vehicle can affect the follower’s behaviour).
In step 3, we augment each partial scene by spawning vehicles in a variety of positions in
order to cause occlusion. With the occlusion situations generated in step 3, we play the
level-0 and level-1 hypergames in steps 4 and 5 respectively. With the results from steps
4 and 5, we compute the DOR measure for each occlusion situation in step 6, and then
identify and record OCCs in step 7. We classify our proposed method as a situation-based
accelerated evaluation method for AVs [1 15, 92], which includes

1. extracting situations from naturalistic driving data (steps 1 and 2),
2. guided generation of novel test situations based on a target condition (step 3),

3. identification of risk based on a quantifiable measure and assessment of the system
under test using the selected risk measure (steps 4-7).

We cover each of these steps in greater detail in the following sections.
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Figure 4.1: An overview of our situation-based accelerated evaluation method.

4.1 Step 1: Selecting a Naturalistic Traffic Dataset

Our method augments naturalistic driving scenes with SOVs to create high-risk occlusion
situations. In order to realistically simulate the traffic situations we generate, we require
the ground-truth positions, orientations, and velocities of the naturalistic vehicles. We use
the Intersection dataset from the Waterloo Multi-agent database! which contains recorded
traffic data from the University-Weber intersection in Waterloo, Canada. The traffic data
was first recorded by drone and the subsequent video recordings were sent to a third party
for data processing. The dataset contains over 3.5k unique vehicles, and over 1.9 million
data points representing each vehicle’s ground-truth trajectory information (i.e., position,
orientation, velocity, acceleration, etc.) as they cross the intersection.

4.2 Step 2: Partial Scene Extraction

Full traffic scenes taken directly from the intersection dataset can involve a large number
of vehicles, not all of whom are relevant to each other. It can be computationally expensive
and inefficient to solve the hierarchical game for all vehicles present in a naturalistic driving
scene, which can include twenty or more vehicles. We want each occlusion situation we
generate to only include, in addition to the synthetic vehicle we inject, vehicles that are

'http://wiselab.uwaterloo.ca/waterloo-multi-agent-traffic-dataset/
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relevant to the situation. Figure 4.2 shows the process we take to decompose a full traffic
scene from the dataset into smaller subsets of partial scenes, and then finally into occlusion
situations. In order to decompose the full scene into partial scenes, we use a subject-
vehicle/relevant-vehicle relationship to discern which vehicles should be grouped together.
The idea being that each vehicle in the full scene will have their own partial scene where
they are the subject vehicle. We then determine the set of relevant vehicles for that
subject vehicle. Our goal, restated in the subject/relevant vehicle framework, is then to
inject SOVs into the partial scenes we extract in order to cause high-risk occlusion between
the subject vehicle and one or more of the relevant vehicles. By designating each vehicle
in the full scene as the subject vehicle in their own partial scene we make sure to cover
high-risk occlusion situations arising from every vehicle in the full scene.

However, since our goal is to generate high-risk occlusion situations involving the sub-
ject vehicle, we want to ensure subject vehicles are allowed to execute manoeuvres in the
intersection. This is not possible if they are stopped at a red light. Therefore, subject
vehicles must be either (a) straight-through vehicles with a green or yellow light, (b) left-
turn vehicles with a green or yellow light, or (c) right-turn vehicles with a green, yellow, or
red light. The vehicles that are eligible to be subject vehicles in figure 4.2a are circled in
red. The vehicles not circled in red are not eligible to be subject vehicles. We ignore them
in our analysis because even if they were to be occluded from other vehicles, the occlusion
would not result in a high-risk of a collision, since these vehicle are not allowed to proceed
through the intersection.

Next, we compute the set of relevant vehicles for each subject vehicle. A relevant vehicle
is either

1. a leader to the subject vehicle,
2. in a conflicting lane to the subject vehicle,

3. a leader to a vehicle in a conflicting lane to the subject vehicle.
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Figure 4.2: (a) The full traffic scene. Circled vehicles have a green light. (b) An example
of a partial scene. (c) The same vehicles from the partial scene in (b) but an SOV has
been injected, causing occlusion between vehicles 1 and 2.
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In figure 4.2b we show an example of one partial scene extracted from the full scene
to illustrate how the process is performed. The subject vehicle is in the left-turn lane and
has moved into the intersection to make its turn. Relevant vehicle 2, at the top of figure
4.2b, is driving straight-through the intersection and is therefore in a lane that conflicts
with the subject vehicle’s path. Relevant vehicle 3 at the bottom of the figure is leading
relevant vehicle 2.. The reason we include leading vehicles is because they can change the
behaviour of follower vehicles, since following vehicles must modulate their speed to match
the leader’s as well as maintain a distance gap.

In order to efficiently use the dataset, we extract full scenes from the dataset—which
are then decomposed into partial scenes—1.0 s apart to generate occlusion scenarios. The
WMA intersection dataset is roughly 3300 s long, meaning we end up extracting roughly
3300 full scenes. Figure 4.3 shows our workflow for generating occlusion situations from a
full scene taken at time ¢.

.0

l Naturalistic Dataset

S
>

Each full scene extracted from the
dataset is spaced 1.0 s apart.

Extract the full scene from
the dataset at time .

Decompose full scene into
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Figure 4.3: Our workflow for generating occlusion situations from a full scene taken at
time ¢ from the dataset.

First, all eligible subject vehicles are selected, and then partial scenes are created for
each subject vehicle. A range of occlusion situations are then created from each partial
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scene by injecting SOVs (each occlusion situation only containing one SOV). Note that
some partial scenes result in more occlusion situations while others result in less. This
is due to how the vehicles are positioned in the partial scene, thus some partial scenes
allow for many occlusion situations while others do not. The process of creating occlusion
situations from partial scenes is explained next.

4.3 Step 3: Injecting SOVs

There are many approaches one could take to injecting SOVs into partial scenes. One ap-
proach is to randomly sample positions from the intersection map, spawning SOVs at those
sampled locations, and checking to see if they cause occlusion. However, this approach is
not ideal as it can result in unrealistic SOV positions, such as spawning SOVs between
lanes or on the sidewalk. Instead, we use domain knowledge to construct valid spawn
locations. The set of all SOV positions we sample from is shown in figure 4.4, where the
lines represent the centrelines for each lane in the intersection and the red dots represent
the positions of each SOV spawn location.
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Figure 4.4: All positions in the intersection map that can be used to spawn SOVs.
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Spawning SOVs on the centrelines helps to ensure that the resulting occlusion situations
are realistic since vehicles typically drive on or near the centreline. Each spawn location
is approximately 1 m apart which provides a good balance between covering the entire
intersection map without having a large computational overhead of having to handle too
many spawn locations.

Given a partial scene, our task is to select the subset of spawn locations that are valid
for the subject vehicle in the partial scene. Figure 4.5 shows two partial scenes (a) and
(b) where the red dots represent the valid SOV spawn locations for each scene. A valid
SOV spawn location must (i) be within the FOV region of the subject vehicle, (ii) be a
minimum of 1 m away from the subject and relevant vehicles, and (iii) must be in a lane
with a green or yellow light. This last point is to prevent SOVs from being spawned in the
middle of the intersection when they should not be there, however, it does also mean that
we do not generate right-turning SOVs that have a red light. Figure 4.5a shows that there
is only one valid SOV spawn location in this partial scene. In contrast, in figure 4.5b there
are multiple valid SOV spawn locations.
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Figure 4.5: Determining valid SOV spawn locations across two different partial scenes.
Note that (a) is the same partial scene as the one shown in figure 4.2b.

In both examples, the subject vehicle’s FOV is divided into two regions, the green
region directed at one relevant vehicle, and the blue region directed at the other relevant
vehicle. The size of these regions is determined by how much attention the subject vehicle
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pays to each vehicle. Attention is calculated based on how close the vehicle is to the subject
vehicle. The motivation behind this is that vehicles closer to the subject vehicle are more
relevant to the subject vehicle’s behaviour and should therefore receive more attention.
For example, in figure 4.5a the closer relevant vehicle receives the majority of the subject
vehicle’s attention, due to its proximity, and therefore the FOV region is much larger than
the other vehicle’s.

We calculate how much attention, A;, the subject vehicle pays to vehicle ¢ using

N

_ 25 4 —di

=N
Zj dj

Where d; is the distance between the subject vehicle and vehicle 7, and A is the number
of vehicles visible to the subject vehicle. Once attention scores are computed for each
vehicle, we normalize all the attention scores such that the sum equals 1.0. Therefore,
A; = 0.4 is analogous to saying the subject vehicle pays 40% attention to vehicle i. Of
course, the attention scores are just half the story. In order for the attention scores to be
meaningful they must be converted into FOV ranges. The subject vehicle has a total FOV
range of 1 degrees. The attention scores determine how much of the total FOV range is
allocated to each vehicle. Thus, if A; = 0.4 then 40% of the total FOV budget goes to
vehicle 7. The FOV region for each vehicle is always centered on the vehicle so in this case
the FOV region would extend 0.2 % 1 degrees to the right and 0.2 % ) degrees to the left of
vehicle ¢. This means there can be overlapping FOV regions for different vehicles, which
can be seen in figures 4.5a and 4.5b.

)

(4.1)

Once the set of valid SOV spawn locations has been selected, the next step is to de-
termine how much occlusion each SOV causes. We use a grid-based raycasting approach
based on the work by Amanitides and Woo [(], as a way to simulate each vehicle’s per-
ception system. Each vehicle’s bounding box is approximated as a set of squares on the
grid, where each grid square is 10 cm x 10 cm. In order to determine which vehicles are
visible to the subject vehicle, the subject vehicle performs a raycast check for each vehicle.
We use the same attention-based FOV regions from the previous step to determine the
direction and range of the rays. If a ray hits another vehicle’s bounding box, it will end
there and not continue. If € or fewer rays from the subject vehicle hit vehicle i, then vehicle
1 is considered occluded from the subject vehicle. Figure 4.6a shows the same partial scene
as figure 4.5a but with the visible regions to the subject vehicle. Figure 4.6b shows the
occlusion situation—which is the same partial scene with the addition of the SOV. In the
occlusion situation, relevant vehicle 2 is occluded by the SOV.
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Figure 4.6: Example of a traffic situation from naturalistic data with (b) and without
(a) a synthetic occluding vehicle. The grey region indicates that anything in that area is
occluded from the subject vehicle (a) The subject vehicle can see both relevant vehicles.
(b) The subject vehicle can see the closer relevant vehicle but not the other relevant vehicle
due to the occluding vehicle.

We summarize the process of generating occlusion situations from naturalistic data in
algorithm 1. The output of algorithm 1 is the set of occlusion situations, D, created from
augmenting partial scenes from the dataset. D is the set of all partial scenes from the
dataset. The function occluding_vehicle_sampling(S), takes as input a partial scene,
S, and outputs V, the set of state vectors, X,, for SOVs that have a valid spawn location
for S. The state vector, along with position information, also includes orientation and
initial speed information. Likewise, each vehicle, v, in the partial scene, S, is a state vector
containing position, orientation, and speed information.

For each occlusion situation we simulate the level-0 and level-1 hypergames and compute
the DOR measure. However, in order to simulate the occluding vehicle’s behaviour we need
to initialize the SOV with realistic values. The SOV’s orientation is set to the centreline’s
tangent vector at the SOV’s spawn location. However, the SOV’s initial speed is more of
a challenge. In order to set a realistic initial speed for each SOV we first analyze the speed
distributions in each of the intersection’s lanelets. A lanelet is a component of the lane, such
that a set of connected lanelets forms a lane. For example, the straight-through lane cover-
ing the path from South to North includes the entrance lanelet, 1n_s_2, the lanelet covering
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Algorithm 1 Occlusion Situation Generation Algorithm

1: DO « {0} > Initialize set of occlusion situations
2: for S € D do: > Iterate through partial scenes
3: V < occluding_vehicle_sampling(S)

4 for v, € V do:

5 for v € S do

6: if 3z € S\ v;O0(v,v5,2) =1 then > Check if v, causes occlusion
7: S {vo} > Add SOV to partial scene
8 DY « D9 + {S} > Add occlusion situation to DY
9: end if
10: end for
11: end for
12: end for

return D%

the middle of the intersection, 1_s_n_1, and the exit lanelet, 1n_n_-1. The South-to-
West left-turn lane includes the entrance lanelet, In_s_1, the preparatory left-turn lanelet,
prep-turn_s, the lanelet in which the vehicle executes their left-turn, exec-turn_s, and
the exit lanelet, 1n_w_-1. The intersection map with the lanelets overlaid can be found at

the url, https://git.uwaterloo.ca/a9sarkar/traffic_behavior_modeling.

We create the speed distributions for each lanelet by extracting vehicle speeds from the
dataset. However, simply extracting the speeds in this way ignores that vehicle speed is
conditioned on factors such as traffic light state. Therefore, we split the speed distribution
for each lanelet into conditional speed distributions based on

e the traffic light state,
e if the light just turned green,
e if the light is a dedicated green,

e if there is a vehicle in a conflicting lane.

The traffic light state can affect the urgency with which vehicles travel and therefore
can impact the vehicle’s speed. Additionally, we found that recording vehicle speeds im-
mediately after the traffic light changed to green resulted in different speeds as opposed to
waiting for 5 s for vehicles to begin moving. Therefore, we divide some speed distributions
based on if the speed was recorded within 5 s of the light changing to green (which we

40


https://git.uwaterloo.ca/a9sarkar/traffic_behavior_modeling

denote as without delay), or recorded after 5 s of the light changing to green (which we
denote as with delay). A dedicated green light can also significantly affect left-turn speeds
since turning vehicles do not have to worry about conflicting vehicles, so we include this
condition in our analysis. Finally, we divide left- and right-turn lanelet speed distributions
based on if there is a conflicting vehicle present, which can affect the speed of turning
vehicles.

We observed that the speed distributions broadly fell into either normal distributions
or exponential distributions. Lanelets where there is never an opportunity for vehicles
to stop (such as exit lanelets) typically follow a normal distribution, whereas lanelets
where it is common for vehicles to yield to oncoming traffic typically follow an exponential
distribution, with a peak at 0 m/s and a sharp slope downwards for higher speeds. For
example, figures 4.7a and 4.7b show the green and yellow light speed distributions for
the lanelet, 1n_w_-1, which vehicles use to exit the intersection. The two distributions
are roughly normal distributions. Figures 4.7c¢ and 4.7d show the speed distributions
for the left-turn lanelet prep-turn_s on a green light with (4.7¢c) and without (4.7d) a
conflicting vehicle present. These two distributions are roughly exponential distributions.
Unsurprising, there are, on average, lower recorded speeds when there is a conflicting
vehicle present since the left turning vehicle is more likely to drive slowly in order to wait
for the conflicting vehicle to pass. The highest speed recorded with a conflict measures
just roughly 4 m/s while the highest speed with no conflict measures above 10 m/s.

We observed that the speed distribution for lanelets that are the entrances to the
straight-through lanes roughly follow an exponential distribution for the first few seconds
after the light turns green and eventually become more normally distributed as time passes.
The reason for this is that vehicles are initially stopped and therefore it takes time for
them to begin moving. Furthermore, vehicles in these lanelets must wait for their leading
vehicle to begin moving before they can move. Therefore, it takes around 5 s (which
we empirically observed from the dataset) from the time the light turns green for most
vehicles in the entrance lanelets to begin moving. Figures 4.7e and 4.7f are an example
of this phenomenon. We see that the speeds for the first 5 s (i.e., without delay) in the
entrance lanelet, 1n_s_2 roughly follow an exponential distribution with a sharp peak at
0 m/s and a dramatic tapering off for higher speeds. However, after a delay of 5 s, the
second figure, 4.7e, shows that while there are still vehicles that are not moving, most are
now moving and the speeds roughly follow a normal distribution.

One challenge we encountered while extracting these distributions was that there was
not always enough data to extrapolate a speed distribution. This was the case with most
of the yellow light speed distributions. In order to ensure reasonable initial speeds were
chosen for the SOVs we opted to use default speeds when this was the case.
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Figure 4.7: Examples of conditional speed distributions extracted from lanelets in the

intersection.
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There are primarily two types of manoeuvres that vehicles can perform in the traffic
game, these are “go” manoeuvres and “stop” manoeuvres. Go manoeuvres include track-
speed, proceed-turn, follow-lead, etc., while stop manoeuvres include decelerate-to-stop, wait-
for-oncoming, and wait-for-lead-to-cross. Therefore, we use different initial speeds based
on what manoeuvre the SOV intends to carry out. If the SOV is in a straight-through lane,
we use initial speeds of 13 m/s and 2 m/s for go and stop manoeuvres respectively. For left-
turn lanes we use initial speeds of 5 m/s and 1 m/s for go and stop manoeuvres respectively.
For right-turn lanes we use initial speeds of 8 m/s and 2 m/s for go and stop manoeuvres
respectively. We provide a full description of the conditional speed distributions used for
each lanelet in appendix B.

4.4 Step 4: Hypergame Construction and DOR Esti-
mation

In this section, we explain how we simulate the occlusion situations we generated in the
previous step and how we estimate the DOR measure. We first illustrate the process using
the occlusion situation generated in the previous section (see figures 4.2c and 4.6b) and
then summarize the steps to replicate our approach in algorithm 2.

In order to compute the DOR measure for the occlusion situation shown in figure 4.2c,
we need to check the outcomes of the level-0 and level-1 hypergames instantiated from
the occlusion situation. We first consider the level-0 hypergame, where all vehicles by
definition have perfect vision of each other. The available actions for each vehicle are
determined based on the criteria outlined in table A.1. Broadly speaking, turning vehicles
have the option to proceed with their turn, or wait for oncoming vehicles to pass, while
straight-through vehicles can drive through the intersection or wait for turning vehicles to
make their turn. If a vehicles has a lead vehicle then they can also choose to follow the
lead vehicle with a follow manoeuvre.

We use backwards induction to solve the hierarchical game. This means that all ve-
hicles first play the trajectory-level game to determine which trajectories to use for their
manoeuvres. Selected trajectories from the trajectory level are then used to represent ma-
noeuvres at the manoeuvre level. The solution to the manoeuvre-level game determines
which manoeuvre each vehicle uses when simulating the occlusion situation.

For each manoeuvre available to each vehicle we generate 50 cubic spline trajectories.
The path of the trajectory is fit to the centreline of the lane in which the vehicle is traveling.
To represent a wide range of driving behaviours we sample the middle and end speeds for
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each trajectory from a range of speed values. For example, for vehicle 3’s T manoeuvre,
we generate 50 trajectories. Vehicle 3’s initial speed is 43 km/h while the speed limit is 50
km/h. Therefore the objective for this manoeuvre is to have vehicle 3’s terminal speed be
closer to 50 km/h. To that end, we sample middle trajectory speeds between 45-48 km/h
and terminal velocities around 49 and 52 km/h. Trajectories are then generated that try
to hit these speed targets while maintaining a comfortable level of acceleration and jerk.

To further account for differences in driving behaviour we allow for lateral variation in
the trajectories meaning that vehicles do not need to stick directly to their lane’s centreline
path. However, having 50 potential trajectories for each manoeuvre would make playing the
trajectory-level game computationally expensive and so we filter the set of 50 trajectories
down to 3 trajectories based on a set of criteria depending on if the trajectory is for a go
manoeuvre or stop manoeuvre. We want the 3 trajectories we select to be an expressive set
over the possible behaviours the driver might take. Therefore for go-manoeuvre trajectories
we order the trajectories based on their terminal speed and select the trajectories with the
minimum, middle, and maximum terminal speeds. For stop-manoeuvre trajectories, we
instead order the trajectories based on how many seconds it takes for the vehicle to reach
a terminal velocity of 0 m/s. We then select the stop trajectories that represent the
minimum, middle, and maximum durations to reach a terminal speed of 0 m/s.

Now each vehicle has a set of actions and a set of 3 trajectories that can represent each
action. To determine which trajectory to represent each action, we play the trajectory-
level game. In our work we use the non-strategic maxmin decision rule to determine which
trajectory to select. The maxmin decision rule makes worst-case assumptions about the
utility of each trajectory and selects the maximum utility trajectory under these assump-
tions. Equation 4.2 shows how the trajectory, 7. , which represents vehicle 7’s manoeuvre,
m;, is selected. The notation —i refers to all other agents besides 1.

T, = argmax <argmin(U(Tm., Tm_i)>> (4.2)

Vg N VT, '

We demonstrate how the trajectory-level game is played by showing an example where
vehicle 1 (i.e., the subject vehicle) uses the maxmin rule to select the trajectory for its
F manoeuvre in the level-0 hypergame (figures 4.8a-4.8d). Importantly, which trajectory
vehicle 1 selects for F' depends on the maneouvres that the SOV, and vehicles 2 and 3
execute. Therefore, there are four cases to consider, which are covered in the four figures.
In figure 4.8a, the task is to select vehicle 1’s trajectory given the SOV, vehicle 2, and
vehicle 3 perform manoeuvres P, T, and T respectively. Each box shows the combined
safety and progress utility for one of vehicle 1’s trajectories.
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sov Vehicle 2 Vehicle 3
P T T
Traj.1  Traj.2 Traj.1  Traj.2 Traj. 1 Traj. 2
Vehicle 1
0.4 0.5 -0.99 -0.99 0.7 0.78
Traj. 1
F
Traj. 2 0.53 0.6 -0.98 -0.99 0.5 0.9
(a)
sov Vehicle 2 Vehicle 3
P F T
Traj. 1 Traj. 2 Traj. 1 Traj. 2 Traj. 1 Traj. 2
Vehicle 1
0.4 0.5 -0.89 -0.99 0.7 0.78
Traj. 1
F
Traj. 2 0.53 0.6 -0.67 -0.99 0.5 0.9
(b)
sov Vehicle 2 Vehicle 3
w T T
Traj.1  Traj.2 Traj.1  Traj.2 Traj. 1 Traj. 2
Vehicle 1
-0.99 -0.99 -0.99 -0.99 0.7 0.78
Traj. 1
F
Traj. 2 -0.99 -0.99 -0.98 -0.99 0.5 0.9
(c)
sov Vehicle 2 Vehicle 3
w F T
Traj. 1 Traj. 2 Traj. 1 Traj. 2 Traj. 1 Traj. 2
Vehicle 1
-0.99 -0.99 -0.89 -0.99 0.7 0.78
Traj. 1
F
Traj. 2 -0.99 -0.99 -0.67 -0.99 0.5 0.9
(d)

Figure 4.8: An example of trajectory selection for the subject vehicle’s follow-lead (F')
manoeuvre. Red utilities represent the minimum utility values for that row.

Each utility value is a function of another vehicle’s trajectory because the safety utility
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takes the minimum distance between both trajectories. If vehicle 1 uses trajectory 1, the
minimum utility is -0.99 indicating a collision. This is because both vehicle 2’s trajectories
intersect with vehicle 1’s trajectory resulting in the minimum safety value. Therefore, the
effective utility for vehicle 1’s trajectory 1 is -0.99. Taking the minimum utility from the
second row we get -0.99 as well. In this case both trajectories have a minimum utility
value of -0.99 and so the maxmin utility value between these trajectories is -0.99, and
either trajectory can be selected to be the representative trajectory (we randomly select
one of the two).

Using the maxmin decision rule allows us to model the worst-case outcomes that can
result from choosing either of vehicle 1’s trajectories. This same process is repeated for
figures 4.8b-4.8d to arrive at the trajectory vehicle 1 should select for its F' manoeuvre
given the SOV, vehicle 2, and vehicle 3 perform manoeuvres P, F, and T (figure 4.8b), W,
T,and T (figure 4.8c), and W, F, and T (figure 4.8d). Coincidentally, the minimum utility
values for vehicle 1’s F' manoeuvre is consistently -0.99. This is because if the SOV (vehicle
1’s leader) decides to perform W, vehicle 1 would end up rear-ending the SOV. If the SOV
decides to execute P, vehicle 1 could begin its turn, following the SOV, but would end up
colliding with vehicle 2, no matter if vehicle 2 chooses to perform F' or T. Unsurprisingly
then, F' is an extremely dangerous action for vehicle 1 to take. Figure 4.9 reflects that
F' is an unsafe manoeuvre for vehicle 1 as all the utilities consistently result in -0.99 no
matter what the other vehicles decide to do. We have shown the process of computing
the utilities for vehicle 1’s /' manoeuvre, this process is then repeated for vehicle 1’s W
manoeuvre and then for the SOV’s, and vehicles 2’s and 3’s available manoeuvres. Once
all utilities have been computed, we will have constructed the manoeuvre-level game tree
shown in figure 4.9a.

We solve the manoeuvre-level game by computing the set of Nash equilibria. In this
case there are two Nash equilibria, (W, W, P, T), and (W, W, T, T), for vehicle 1, the
SOV, and vehicles 2 and 3, respectively. In order to simulate the level-0 hypergame, we
select the Nash equilibrium with the highest summed utility (calculated by summing the
utility values for each vehicle’s manoeuvre together). Here, both equilibria have the same
summed utility so we randomly select one of the two to simulate. In this case the former
equilibrium was chosen, meaning that vehicle 1 stops for vehicle 2 while the SOV, already
in the middle of its turn at the start of the situation, finishes its turn before there is any
danger of a collision with vehicle 2. Vehicle 3 exits the intersection, in front of vehicle 2.

Simulating the level-1 hypergame is a similar process to simulating the level-0 hyper-
game with the only difference being that both the trajectory-level and manoeuvre-level
games for vehicle 7 only include the vehicles visible to vehicle .
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-0.99,
-0.76,
-0.95,
-0.99

-0.99,
-0.76,
-0.95,
-0.99

-0.99,
-0.99,
-0.95,
-0.99

-0.99,
-0.76,
-0.94,
-0.96

-0.99,
-0.76,
-0.94,
-0.96

Figure 4.9: (a) The level-0 hypergame for the occlusion situation shown in figure 4.2c. (b)
Vehicle 1’s view in the level-1 hypergame. (c) Vehicle 2’s view in the level-1 hypergame.
The utilities are shown in the same order as the vehicles are listed in the game tree.

Since vehicle 1 is occluded from vehicle 2 and vice versa, we instantiate two additional
game trees representing their views of the game (figures 4.9b and 4.9¢). In vehicle 1’s
manoeuvre-level game, there is one Nash equilibrium, where vehicle 1 executes F, the SOV
executes P, and vehicle 3 executes T. In vehicle 2’s game, there is also one Nash equilibrium
which is coincidentally the same set of actions as vehicle 1’s game. Therefore, in vehicle
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1’s view, it’s optimal action is to follow the SOV into the intersection and begin executing
its turn, while in vehicle 2’s game, its optimal action is to follow vehicle 3 out of the
intersection. Since both the SOV and vehicle 3 have vision of all vehicles in the occlusion
situation they play the game shown in figure 4.9a. The SOV chooses P, while vehicle 3
chooses T. Simulating these actions, there is a collision between vehicles 1 and 2.

In order to determine if the collision is avoidable, we replay the level-1 hypergame and
have vehicles 1 and 2 execute an emergency braking manoeuvre the moment the other
vehicle is no longer occluded. In this case, the emergency manoeuvres are not enough to
prevent a collision. The SOV manages to finish its left-turn ahead of vehicle 2, but vehicle
1 is not so fortunate, colliding in a front-to-front collision with vehicle 2 as the former tries
to complete its left turn while the latter tries to drive straight through the intersection?.
In this occlusion situation DOR(Tx,, Ta,,S) = S(Tu,) > 0 since there is no collision in
Hj but there is a collision in H;. Thus, this is an example of an OCC.

Our workflow to simulate the level-0 and level-1 hypergames for each occlusion sit-
uation generated in the previous steps and to identify OCCs using DOR is summa-
rized in algorithm 2. The first thing done is to simulate Hy,. We use the function,
manoeuvres(S,), to calculate all manoeuvres available to each vehicle for the occlusion
situation, S,, based on the criteria in appendix A. The function, trajectories(S,, M), re-
turns 3 trajectories for each manoeuvre in M. We then play the trajectory-level game in
trajectory-game(S,, M, T'), which returns the selected trajectories 7* and the correspond-
ing utilities U*. The manoeuvre-level game is then solved in the function manoeuvre-
game(S,, M, T*,U*), which returns the trajectories, 7Tp,, which represent each vehicle’s
simulated manoeuvre in Hy. In order to simulate Hy, we split .S, into separate sets of vehi-
cles, S,,, which only contain vehicles that are visible to v;. Then, both the trajectory-level
and manoeuvre games are instantiated and solved for the vehicles in S,,.

We then compute the DOR measure and check if there was an OCC. If there was an
OCC we check to see if the collision can be avoided by having both colliding vehicles perform
an emergency braking manoeuvre. To that end, the function emergency-braking(7x, )
has each colliding vehicle execute an emergency braking manoeuvre the moment the other
colliding vehicle becomes unoccluded. Note that we factor in a response time of 1.5 s
[10] representing the time it takes from the moment occlusion ends to the moment the
driver begins emergency braking. The trajectories, 7, », represent the trajectories of both
colliding vehicles, augmented to include emergency braking. If the collision still occurs
then the occlusion situation, S,, is added to the set of OCCs, D°. Finally, the algorithm
returns D°.

2The simulation recording of this occlusion situation can be found at https://bit.1y/3F9fZ6Y.
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Algorithm 2 OCC Identification Algorithm.

1: D {0}

2: for S, € D9 do

3: M < manoeuvres(S,)

4: T <« trajectories(S,, M)

5: T* U* + trajectory-game(S,, M, T)

6: Th, < manoeuvre-game(S,, M, T*,U*)
7 TH1 — {@}

8: for v; € S, do >
9: Sv, S

10: for v9 € S, \ v; do

11: if 3z : O(v1,z,v2) = 1 then

12: Syy < Sy, — {v2}

13: end if

14: end for

15: M <+ manoeuvres(S,, )

16: T « trajectories(S,,, M)

17: T*,U* < trajectory-game(S,,, M, T)
18: Ty, < manoeuvre-game(S,,, M, T*, U*)
19: Tr, < Ty, {70, }
20: end for
21: if DOR(Tu,, T, ,S) = S(Ta,) > 0 then
22: T, » = emergency-braking(7s, , So)
23: if S(Th,») =0 then
24: D¢ <« D€ +{S,}
25: end if
26: end if
27: end for

return DC

> Initialize set of OCCs

> Compute manoeuvres used in Hy
> Initialize set of H; trajectories
Iterate through vehicles in occlusion situation

> Remove occluded vehicle

> Select v1’s manoeuvre for H

> Compute DOR
> Check if collision is avoidable

> Add to set of OCCs

49



Chapter 5

Experiments and Evaluation

In order to evaluate and demonstrate the efficacy of our situation-based accelerated evalua-
tion method we performed a variety of qualitative and quantitative analyses on our results.
We first provide an overview of our experimental design, outlining the hyperparameter val-
ues used in the simulation. We then describe our experimental results. First, we compare
the results from our synthetic occlusion situation generation method with naturalistic data.
Next, we provide an occlusion situation taxonomy based on our results. We then demon-
strate that the occlusion situations and OCCs we generate are realistic by comparing them
to recorded occlusion situations from the real world. This is followed by an OCC severity
analysis, where we show that OCCs tend to result in high-impact collisions with little time
to react. Finally, we present use cases for our risk identification and occlusion situation
generation methods and how they could fit into a larger AV safety validation pipeline.

5.1 Experiment Design

Each vehicle was designed to have the same bounding box size, with dimensions 4.1 m X
1.8 m, for length and width respectively, which is roughly the size of a small to medium-
sized car in North America. We set € = 3, meaning that if 3 or fewer rays from vehicle
¢ hit vehicle j, then j is considered occluded from vehicle ¢ in our simulation. We set
n = 60 degrees, which is the subject vehicle’s total FOV budget.
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5.2 Comparison with Naturalistic Data

As a baseline comparison to demonstrate the efficacy of our method, we compare the num-
ber of dynamic-occlusion situations generated using our method compared to the number
of dynamic-occlusion situations that naturally occur in the WMA dataset (table 5.1). We
check for occlusion in both cases using our 2D raycasting method, so as to make the re-
sults comparable. We find that using our method we are able to expand the number of
occlusion situations in the dataset by roughly a factor of 70, as well as the number of
OCCs in the dataset by a factor of 40. The OCCs that we generate can be viewed at
https://bit.1ly/3wHabH1.

Naturalistic data Our approach

No. of dynamic-occlusion situations 1534 105,914
No. of OCCs 2 79

Table 5.1: Comparing the number of dynamic-occlusion situations and OCCs we generated
to the number that occur in naturalistic data.

Importantly, we note that there is no recorded footage of a collision in the WMA dataset.
The two OCCs that we found in the WMA dataset both occurred within our game-theoretic
traffic simulation environment, which simplifies many of the environment details and thus
can lead to discrepancies between what actually occurred and what the simulation predicts
should occur. Even though there can be a discrepancy between simulated and recorded
traffic behaviours, we show in section 5.4 that the dynamic-occlusion situations and OCCs
we generate are realistic by comparing them with real-world scenarios that closely match
our results.

Occlusion situations at the highest level fall into two categories, left-turn-across-path
(LTAP) situations and right-turn situations (RT). Like their names suggest, LTAP situ-
ations involve vehicles making left turns in the presence of oncoming vehicles, while RT
situations involve vehicles making right turns in the presence of oncoming vehicles. Table
5.1 shows that we are able to generate 79 unique! OCCs, which is a significant increase
over the 2 that naturally occur in the WMA dataset. The generated OCCs also cover a

! Unique meaning that each occlusion situation involves a distinct configuration of vehicles. Given how
we take an exhaustive approach to injecting SOVs we end up with many occlusion situations which are
essentially the same, the only difference being that the SOV’s position has been slightly shifted.
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much more diverse range of configurations and positions as shown in figures 5.1 and 5.2.
Analyzing the locations of the occlusions, Figure 5.1a shows that occluding vehicles tend
to be positioned close to the center of the intersection (and along their respective straight-
through path for LTAP scenarios). However, for RT scenarios, our results suggest that the
occluding vehicle must be positioned at a particular location—at the end of the South-to-
West (SW) left-turn lane for OCCs with conflict directions, (WS,NS), or at the end of the
East-to-South (ES) left-turn lane for OCCs with conflict directions, (SE,WE). The large
clusters in Figure 5.2a show that OCCs tend to occur as one of the colliding vehicles is in
the process of completing its left-turn and the other colliding vehicle is crossing straight
through the intersection.

+4.814¢6 Occluding Vehicle Positions +4.814e6 Occluding Vehicle Positions
40 A 40 -
30 4 // 304 //
201 20 '
10 1 10 -
Conflict Directions
04 %* WN:EW 0-
¢ SW:NS
€ SE:WE N
—10 8 NE:SN —10 A Conflict Directions
VA O ES:WE O ES:WE
O WS:NS * WN:EW
—20 - r r r r r —20 - T T T T T
0 20 40 60 80 0 20 40 60 80
+5.388e5 +5.388e5
(a) (b)

Figure 5.1: (a) and (b) show the occluding vehicle positions across the 79 generated OCCs
and 2 naturally occurring OCCs respectively. The conflict directions indicate the direction
both occluded (colliding) vehicles were traveling.

Our results allow us to develop a sense for where occluding vehicles tend to be initially
located during an OCC, as well as where OCCs tend to occur. This analysis would not
be possible just using naturalistic data, since it requires a large number of diverse OCC
examples.

An interesting phenomenon was that in 17 out of the 79 OCC cases, the vehicle oc-
cluding the colliding vehicles was not the SOV but rather a vehicle from the naturalistic
data. The SOV did also cause occlusion in these situations (since that is the criteria we
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Figure 5.2: (a) and (b) show the colliding vehicle positions across the 79 generated OCCs
and 2 naturally occurring OCCs respectively. The conflict directions indicate the direction
both occluded (colliding) vehicles were traveling.

use to spawn SOVs), however, the occlusion the SOV causes does not lead to an OCC.
What typically happens in these 17 OCCs is that the SOV itself is occluded from oncoming
vehicles by a naturalistic vehicle and this results in a collision.

5.3 Categorizing Occlusion Situations

In order to better understand the nature of occlusion situations at intersections, we propose
a taxonomy that decomposes occlusion situations into four levels (figure 5.3). Level 1
encompasses all occlusion situations at intersections, level 2 divides situations into RT or
LTAP situations. In level 3, RT and LTAP situations are decomposed into tag-on and
reveal situations. Tag-on situations refer to when a vehicle follows behind a lead vehicle.
This can refer to a tailgating situation where the follower proceeds closely behind the
lead vehicle, but more broadly refers to any situation where a vehicle is following another
vehicle. LTAP tag-on situations can be further subdivided into LTAP [eft-turn tag-on
(where only the left-turning vehicle tags on behind a lead vehicle), LTAP straight tag-on
(where only the vehicle crossing straight through the intersection tags on behind a lead
vehicle), and LTAP both left-turn and straight situations (where both left-turning and

23



straight-through vehicles tag on behind lead vehicles). We first explain the decomposition
of LTAP situations and then do the same for RT situations.

Occlusion

situations Level 1
Right-turn Left-turn
Situations situations vee Level 2
(RT) (LTAP)
Reveal Reveal e« Level 3
Tag-on Tag-on Tag-on e level4

(straight) (left-turn) (straight)

Figure 5.3: A taxonomy for occlusion situations.

Figure 5.4a is an example of a LTAP left-turn-tag-on situation. The follower vehicle is
making a left turn behind the lead vehicle, which happens to be occluding an oncoming
vehicle in the top right corner of the map. Figures 5.4b and 5.4c¢ show different configura-
tions for a straight-tag-on situation. Here, the follower vehicle is driving straight through
the intersection while following behind a lead vehicle that is occluding a vehicle making
a left turn in the bottom left corner of the map. While there are different variations of
this situation, the underlying idea remains the same—the lagging vehicle is following a
lead vehicle straight through the intersection while being occluded (for a portion of the
drive) from an oncoming left-turning vehicle. Combining the previous two ideas, we arrive
at LTAP both-tag-on situations, where both left-turning and straight-through vehicles are
following lead vehicles that are causing occlusion. Figure 5.4d is an example of this situ-
ation. (Note, Figure 5.4 does not cover all the variations of each occlusion situation since
there are numerous ways to realize these situation categories—this is just a set of common
examples.) With the exception of RT straight-tag-on situations (figure 5.4h), our method
was able to discover occlusion situations that fit into each of the different categories laid
out by the occlusion situation taxonomy (figure 5.5). This demonstrates that our method
can produce a diverse range of occlusion situations, covering different traffic configurations.
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(h) RT: Straight tag on

Figure 5.4: Example configurations for each of the occlusion situation categories laid out
in the taxonomy in figure 5.3. The blue circles represent the SOVs, while the red circles
represent the vehicles occluded from each other by the SOV.
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Figure 5.5: Occlusion situation examples generated using our method in the same config-
urations as those shown in figure 5.4. The blue circles represent the SOVs, while the red
circles represent the vehicles occluded from each other by the SOV.

Distinguishing occlusion situations based on whether they are a tag-on or reveal situa-
tion is useful because these two categories represent two primary driving behaviours. For
tag-on situations, the follower matches their speed to the leader and tries to maintain a

o6



minimum distance gap, whereas in reveal situations there is no leader and so the vehicle
can choose to drive at a higher speed. Furthermore, in tag-on situations, the follower may
pay less attention to the traffic environment because they trust that if the situation is safe
for the leader, then it will be safe for them as well.

Table 5.2 shows results across the four categories, LTAP left-turn-tag-on (Left-turn),
LTAP straight-tag-on (Straight), LTAP both left-turn- and straight-tag-on (Both), LTAP
reveal (L-Reveal), and RT reveal (R-Reveal) situations. Out of the 79 OCCs, 49 were
Left-turn, 11 were Straight, 6 were Both, 11 were L-Reveal, and 2 were R-Reveal
situations.

We now cover the relationship between the occlusion situation categories covered above
and the collision configurations they lead to. The collision configuration, front-to-front,
occurs when both colliding vehicles collide head-on into each other. A similar configuration
is the angle collision, which occurs when one of the colliding vehicles collides head-on into
the side of the other colliding vehicle. A sideswipe collision occurs when the sides of both
vehicles’” glance off each other. Finally, a front-to-rear collision occurs when one of the
colliding vehicles collides head-on into the rear end of the other colliding vehicle?. Both
Left-turn and Straight situations have a similar distribution over collision configurations,
having roughly 75% front-to-front collisions, and 25% angle collisions—and in the case of
Left-turn situations, a small percentage of sideswipe collisions. This distribution is not
surprising, since in both Left-turn and Straight situations, both vehicles are heading
towards each other, so one would expect most collisions to result in either front-to-front or
angle collisions.

The difference in how a front-to-front and angle collision occurs comes down to the
relative position and speeds of the left-turning vehicle and oncoming straight-through ve-
hicle. Front-to-front collisions occur as the left-turning vehicle is beginning its turn while
angle collisions occur when the left-turning vehicle is already deep into its turn causing
the left-turning vehicle to be at an angle to the oncoming straight-through vehicle. Both
situations have a relatively high percentage of sideswipe collisions. Looking at figure 5.4d
gives us a clue as to why sideswipe collisions occur more frequently in these situations:
they are typically configured with the lead occluding vehicles in adjacent lanes and with
the followers moving closely behind.

The final row in Table 5.2 shows the mean impact velocities along with their variance
across the different situation categories. While there is a large spread over the impact
velocities, the maximum impact velocity (second last row) for Both situations is much
lower than the other three categories. This is likely because both vehicles are followers and

2Refer to Appendix F in [2] for a more detailed overview of the different collision configurations.
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as such cannot accelerate to higher speeds through the intersection. Furthermore, Both
situations have the highest mean occlusion duration, which is caused by simultaneously
having two occluding vehicles in front of both colliding vehicles. Therefore, it is clear
from these results that Both situations represent a distinct situation category apart from
Left-turn and Straight tag-on situations.

Situation category Left-turn Straight Both L-Reveal R-Reveal

Front-to-front Collision 38/49 8/11 3/6 4/11 0/2
Angle Collision 9/49 3/11 1/6 7/11 0/2
Sideswipe Collision 2/49 0/11 2/6 0/11 0/2
Front-to-rear Collision  0/49 0/11 0/6 0/11 2/2
Occlusion duration (s) 0.5 +0.2 0.6 £ 0.6 0.9+0.7 05=£0.2 0.2+£0.0
Min. impact v (m/s) 2.1 3.4 3.2 1.3 3.8
Max. impact v (m/s)  25.9 17.5 12.0 22.3 6.5

Mean impact v (m/s) 148+378 11.2+186 83487 123£341 52+£19

Table 5.2: A comparison between the different occlusion situation categories and their col-
lision details. The columns represent left-turn tag-on Left-turn, straight tag-on Straight,
both left-turn and straight tag-on Both, left-turn reveal L-Reveal, and right-turn reveal
R-Reveal. Rows 1-4 show the distribution of collision configurations for each situation
category. Row 5 shows the mean occlusion duration—the time it takes for both vehicles
to become unoccluded from each other—and variance for each situation category. Rows
6-8 show the minimum, maximum, and mean of the impact velocities, where the impact
velocity is the relative velocity between both colliding vehicles at the moment of impact.

Unlike the other situation categories, angle collisions rather than front-to-front collisions
make up the majority of L-Reveal collisions. While it is difficult to say with certainty
why L-Reveal situations should be so skewed towards angle collisions, the asymmetric
nature of occlusions provides a possible explanation. Angle collisions are caused when
the left-turning vehicle is in the middle of executing its turn when the oncoming straight-
through vehicle collides with it. This could be caused by the left-turning vehicle becoming
unoccluded from the straight-through vehicle first. In this case, the left-turning vehicle
would continue through its turn, since it is unaware of the occluded straight-through ve-
hicle, while the straight-through vehicle would begin emergency braking since it sees the
left-turning vehicle. The result is that the left-turning vehicle would be deep into its turn
when the collision occurs.

Indeed, we found that 4 out of the 7 L-Reveal situations that resulted in an angle
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Situation category Left-turn Straight Both L-Reveal R-Reveal

Front-to-front Col. (S) 17/38 3/8 3/3  0/4 0/0
Front-to-front Col. (L) 5/38 5/8 0/3 2/4 0/0
Front-to-front Col. (R) 0/38 0/8 0/3 0/4 0/0
Angle Col. (S) 4/9 1/3 1/1 4/7 0/0
Angle Col. (L) 4/9 1/3 0/1 1/7 0/0
Angle Col. (R) 0/9 0/3 0/1  0/7 0/0
Sideswipe Col. (S) 1/2 0/0 2/2 0/0 0/0
Sideswipe Col. (L) 0/2 0/0 0/2  0/0 0/0
Sideswipe Col. (R) 0/2 0/0 0/2 0/0 0/0
Front-to-rear Col. (S)  0/0 0/0 0/0 0/0 0/2
Front-to-rear Col. (L) 0/0 0/0 0/0 0/0 0/2
Front-to-rear Col. (R) 0/0 0/0 0/0  0/0 0/2
Total (S) 22/49 4/11 6/6  4/11 0/2
Total (L) 9/49 6/11 0/6  3/11 0/2
Total (R) 0/49 0/11 0/6  0/11 0/2

Table 5.3: Asymmetric occlusion across the different situation categories and decomposed
for each collision configuration. The columns represent left-turn tag-on Left-turn, straight
tag-on Straight, both left-turn and straight tag-on Both, left-turn reveal L-Reveal, and
right-turn reveal R-Reveal. Here, (S) stands for straight, (L) for left turn, and (R) for
right turn. For example, Front-to-front Col. (S) for Left-turn is 17/38 meaning that 17/38
of the front-to-front Left-turn OCCs resulted in the straight-through vehicle gaining vision
of the left-turning vehicle first.

collision had the straight-through vehicle gain vision of the left-turning vehicle first, which
supports the theory that asymmetric occlusion plays a role in causing angle collisions.
However, this is not a complete explanation since 1 of the 7 angle collisions had the left-
turning vehicle gain vision of the straight-through vehicle first and 2 did not have any
asymmetric occlusion. This suggests that while asymmetric occlusion can be important in
determining collision configuration, other factors such as the initial position and speed of
the colliding vehicles still play an important role.

We were only able to generate 2 R-Reveal situations, making it the lowest occurring
situation category in our results. R-Reveal situations are configured such that the occlud-
ing vehicle is in the process of completing its left turn while one of the colliding vehicles
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moves straight through the intersection and the other colliding vehicle executes a right
turn. The OCC is caused by the straight-through vehicle rear ending the right-turning
vehicle®. Unsurprising, these situations result in the lowest occlusion durations across the
five situation categories since there is only a small window when the occluding vehicle can
block vision between the colliding vehicles. R-Reveal situations also result in the lowest
impact velocity since they only resulted in front-to-rear collisions in our experiments. We
perform a severity analysis in section 5.5, but even these initial results give AV safety
designers insight into which situation categories are more dangerous and thus should be
prioritized in the safety validation pipeline.

Table 5.3 provides insight into which situation category experiences the most asymmet-
ric occlusion. From the table both Left-turn and Straight situations experience asym-
metric occlusion across the different collision configurations. For Left-turn situations 17
out of the 38 front-to-front collisions had the straight-through vehicle gain vision of the
left-turning vehicle first, this suggests that the specific positions of the vehicles in this sit-
uation category might bias this outcome. In contrast, the majority (i.e., 5/8) of Straight
front-to-front collisions had the left-turning vehicle gain vision of the straight-through ve-
hicle first. For Both situations in all collision configurations, the straight-through vehicle
was able to gain vision of the left-turning vehicle first. The last three rows in table 5.3
show that situation category seems to influence the number and type of asymmetric occlu-
sion. Left-turn situations are heavily skewed towards the straight-through vehicle gaining
vision first, while Straight situations are slightly skewed towards the left-turning vehicle
gaining vision first. The only asymmetric occlusion cases for Both situations had the
straight-through vehicle gaining vision first. For L-Reveal the split is almost equal and
there was no recorded asymmetric occlusion for R-Reveal situations.

While it is clear that asymmetric occlusion alone does not determine the collision con-
figuration, it nonetheless is an important factor. Thus, understanding the relationship each
situation category has to asymmetric occlusion allows us to better understand how OCCs
occur.

5.4 Comparison with Real-World Occlusion Situations

We next address the question of how realistic the generated OCCs are. We want the
OCCs to be realistic so that if the AV performs well using our situation-based accelerated
evaluation method, it will be an indicator that it will perform well in the real world. We

3The two R-Reveal OCCs can be viewed at https://bit.1y/3ktB1Fqand https://bit.1y/3DcigDs.
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demonstrate that our method can generate realistic occlusion situations and OCCs by
showing that our results closely match real-world occlusion situations and OCCs.

Figure 5.6 show three OCCs, 5.6a-5.6¢*, 5.6d-5.6°, and 5.6g-5.6i%, as well as one risky
occlusion situation, 5.6j-5.617, that could have led to a collision if the drivers were not
cautious. For the images 5.6a-5.61, the occluded colliding vehicles are circled in red while
the occluding vehicles are circled in blue. We focus first on the first three images 5.6a-5.6¢,
which describe a left-turn-tag-on situation. We are able to generate this occlusion situation
as can be seen in figure 5.5a. This OCC can be broken down as follows, in image 5.6a the
occluding vehicle (a truck highlighted in blue) makes a left turn at the intersection, while
a straight-through vehicle (highlighted in red) approaches from the other side of the road.
The follower vehicle, shown in image 5.6b, is also highlighted in red. Both the follower and
the oncoming straight-through vehicle are occluded from each other by the truck. Instead
of waiting to gain vision of potential oncoming vehicles, the follower decides to proceed
with its left turn and collides in an angle collision with the oncoming straight-through
vehicle in image 5.6¢.

The sequence of images, 5.6d-5.6f show a LTAP reveal situation. We have also generated
this occlusion situation in our results (see figure 5.5f). In images 5.6d and 5.6e we see that
a large emergency vehicle, in the process of making a left turn, causes occlusion between
a left-turning vehicle on the opposite side of the road and an oncoming straight-through
vehicle. Both vehicles take evasive manoeuvres but still end up colliding in image 5.6f.

The OCC shown in images 5.6g-5.6i is actually not covered in our results but can be
classified as a reveal situation. The reason why our method was not able to generate this
OCC is because the white truck (highlighted in red) drives through the intersection on
a red light. We did not include running red lights as valid behaviour in our experiment
design. In images 5.6g and 5.6h we see the truck (highlighted in blue) making a right turn
and occluding both colliding vehicles (highlighted in red), which are making their way into
the intersection. In image 5.6i they collide in an angle collision. While this situation differs
from the other situations we generated due to the truck running the red light, we can draw
similarities to our results. For example, if the occluding vehicle was instead making a left
turn from the opposite side of the road, and the black vehicle was making a right turn
instead of proceeding straight through the intersection, the situation would look exactly
like the RT reveal situation as shown in figure 5.5g.

“https://youtu.be/jDEZ-igoDgw?t=634
Shttps://youtu.be/tDN-mwNSJc87t=44
Shttps://youtu.be/fQv43MEPCcWs?t=71
7https://youtu.be/Qk7ejm8MlEc?t=94
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Figure 5.6: Real-world occlusion situations. Examples (a)-(i) result in collisions. The red
circles in these images represent the colliding vehicles, which are occluded from each other.
The blue circle represents the occluding vehicle. The sequence of images, (j)-(1), show a
risky occlusion scenario recorded in the real world that could have resulted in a collision
if either driver was not cautious. The red circles here represent vehicles that were fully
occluded and are a potential dynamic-occlusion risk.

While we only show the one variation of the RT reveal situation in figure 5.4g, this
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real-world occlusion situation suggests another variation where the occluding vehicle is not
making a left turn in front of the straight-through vehicle but is instead making a right
turn in the adjacent lane to the straight-through vehicle.

Finally, images 5.6j-5.61 show another LTAP reveal situation, involving a large transport
vehicle causing oncoming left-turn vehicles to be occluded. In images 5.6j and 5.6k, a
previously occluded left-turning truck (highlighted in red) decides to make a left turn
even though it did not have vision of the oncoming-straight-through vehicle (the camera
view is from the oncoming-straight-through vehicle’s perspective). A collision is avoided
as the following left-turn vehicle (highlighted in red) in image 5.61 decides to wait before
proceeding. Given the size of these trucks it is easy to see how occlusion situations can
easily occur in the real world. One drawback of our occlusion checking approach, being
a 2D raycasting algorithm, is that it treats vehicles as infinitely tall obstacles that rays
cannot pass through. However, situations like these translate well into our simulation
environment, since the occluding vehicle is tall enough to effectively act as an infinitely
tall obstacle that AV sensors and human vision cannot pass through.

From these real-world examples, we can see that our method is able to generate oc-
clusion situations that precisely resemble or at least have similar characteristics to what
occurs in the real world. Ultimately, what makes an occlusion situation realistic or not are
factors such as how we model occlusion and our assumptions as to how vehicles behave
under occlusion. We make simplifying assumptions here such as using 2D raycasting to
model vision, as well as assuming that occluded vehicles do not exist from the perspective
of other vehicles. Such assumptions could be changed depending on how best to model the
traffic environment. For example, instead of using 2D raycasting one could model an AV
perception system using front- and side-mounted cameras as well as a top-mounted LiDAR
system in a 3D environment. Such a system would be much more costly to simulate but
would result in a much more realistic implementation of how an AV sees its environment.
Similarly, human vision could be modeled using 3D raycasting. Nonetheless, we see from
these examples that these simpler assumptions are in certain circumstances good enough
to model the real world. As shown in images 5.6a-5.6¢, human drivers sometimes make
the mistake of thinking that an occluded oncoming vehicle doesn’t exist. Furthermore,
occlusion situations like the one shown in images 5.6j-5.61 demonstrate that 2D raycasting
can be an appropriate method to model occlusion in the real world.
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5.5 Severity Analysis

We perform a severity analysis on the 79 OCCs, in order to evaluate how dangerous OCCs
tend to be. We calculate how severe an OCC is by extracting the relative velocity between
the colliding vehicles and mapping the value to the ranges shown in table 5.4. The severity
class ranges are based on tables 2 and 3 in Krampe and Mirko’s injury modelling work
[64]. Specifically, table 5.4 provides the injury risk to belted front-seat occupants involved
in a front-to-rear collision with a leading vehicle, and also applies to belted occupants
seated on the near-side of an angle collision. The ranges have also been cross-checked with
the injury model proposed by Jurewicz et al. [52], which estimates the probability of an
injury with a severity level above 3, as a function of Av, on the AIS injury scale. The
AIS scale is shown in table 5.5, which maps each AIS level (1-6) to an injury level, with 1
representing minor injuries and 6 representing maximal injuries. The model proposed by
Jurewicz et al. predicts that at roughly 30 km /h the probability of an AIS level 3 or higher
injury (MAIS34) is approximately 10% for frontal and nearside collisions. This roughly
corresponds with S2 in our categorization of severity injury level in table 5.4. An impact
velocity of 40 km/h results in a roughly 50% chance of a MAIS3+ injury, and roughly
corresponds to S3.

Severity Class Velocity Range (m/s) Velocity Range (km/h)

S0 [0,5.3] [0, 19]

S1 (5.3,7.7] [19, 28]
32 (7.8,10.3] [28, 37]
S3 (10.3, 00) 37, o0

Table 5.4: Mapping relative velocity between colliding vehicles to severity class (S0-S3).
S0 is the least severe type of collision and S3 is the most severe. The ranges are based
on injury models outlined by Krampe and Mirko [61], Jurewicz et al. [52], and the SAE
Functional Safety Committee [10].

We note that both Krampe and Mirko’s injury severity model [64] as well as the injury
model proposed by Jurewicz et al. [52] use Av, which measures the change in velocity
between both colliding vehicles before and after the collision. Instead of using Awv, we
choose to use the relative velocity at impact between both colliding vehicles, which for
vehicles of the same mass, is roughly half the value of Av [18]. The value of Av approaches
the relative velocity if one vehicle’s mass is much greater than the other’s (such as when
a small car collides with a large bus). Therefore, using relative velocity we naturally end
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up with higher severity measurements when analysing collisions. From a safety validation
standpoint, we can do this because what we end up measuring represents an upper bound
on OCC severity, and so we can conclude that in the real world the actual severity of these
OCCs would be at most as severe as what we measure.

AIS Code Injury Example AIS Prob. of Death (%)
1 Minor Superficial Laceration 0

2 Moderate Fractured Sternum 1-2

3 Serious Open Fracture of Humerus 8-10

4 Severe Perforated Trachea 5-50

) Critical Ruptured Liver with Tissue Loss 5-50

6 Maximum Total Severance of Aorta 100

Table 5.5: The AIS injury scale [30], which defines a 6 level scale for injury severity ranging
from 1 for minor injuries and 6 for injuries that result in death.

The distribution of severity classes across the 79 OCCs is shown in figure 5.7. Roughly
10% were classified as SO, 10% as S1, 13% S2, and 67% as S3. That many of the OCCs
were front-to-front collisions with a severity level of S3 is not surprising, given that out
of the 79 OCCs, 55 were front-to-front collisions, which frequently result in high impact
velocities. However, this does highlight the critical need for AVs to be properly evaluated
under these types of occlusion situations.

In addition to the high likelihood of a severe collision, OCCs are dangerous because they
do not allow much time for either driver to respond to the imminent collision. Figure 5.8
shows the distribution of durations from the moment both colliding vehicles are no longer
occluded to the moment of impact, across the 79 OCCs. The distribution ranges from 0.5 s
to 3.0 s with a mean value of 1.65 s. The range of driver response time is typically between
0.8 s to 2.5 s with a mean response time between 1.3 s to 1.5 s [35, 21, (7]. Based on the
average response times then, drivers only have between 0.15 s and 0.35 s to decelerate or
perform an evasive manoeuvre before a collision. Therefore, proactively identifying and
addressing potential occlusion situations before they occur is critical for ensuring driver
safety.

We also analyze the occlusion duration length to get a sense for how long occlusions
generally last. Figure 5.9a shows the range of times it took for both occluded vehicles to
gain vision of each other. We see that the distribution is skewed towards lower durations,
with a peak at 0.2 s. The mean occlusion duration for both vehicles was 0.57 s. The
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longest occlusion duration recorded was 2.6 s, which was a result of a situation where both
occluded vehicles were following lead occluding vehicles that were moving slowly and so
the occlusion lasted longer. The average occlusion duration being only 0.57 s suggests that
the occlusion duration does not need to be long in order for a dangerous occlusion situation
to arise.

Severity Distribution
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Figure 5.7: Severity distribution across the 79 OCCs.
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Figure 5.8: The distribution of time to collision after occlusion ends.
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Out of the 79 OCCs, 54 had asymmetric occlusion. Figure 5.9b shows the range of
times it took from the moment both vehicles were occluded to the moment one of the
vehicles became unoccluded from the other. The mean occlusion duration was 0.46 s. In
12 cases the occlusion duration was 0 s meaning one of the colliding vehicles never actually
lost vision of the other vehicle. It seems odd that an OCC would occur even though one
of the vehicles had vision of the other vehicle the whole time. The explanation is that
in our simulation the vehicle with vision incorrectly assumes the other colliding vehicle
also has vision of them. This phenomenon highlights the need to not only reason over
other driver’s preferences, but also to correctly model the world from the other driver’s
perspective, since they may be make decisions that seem irrational to others but are rational
given their perspective of the environment. In other words, even if no vehicle is occluded
from the driver personally, in order for them to safely navigate occlusion situations, they
must be occlusion-aware.

Occlusion Duration - Both Colliding Vehicles Occluded Occlusion Duration - One Colliding Vehicle Occluded
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Figure 5.9: (a) Shows the range of times it takes for both vehicles to gain vision of each
other. (b) If one of the occluded vehicles gained vision of the other occluded vehicle first
we record the duration of time it took for the first vehicle to gain vision and include it in
this distribution. Both distributions are over the 79 OCCs we generate.

Finally, we present the distribution of lead-follower distances from each tag-on OCC (see
figure 5.10). The mean lead-follower distance is 11.1 m. If we assume that the speed limit
while traveling through the intersection is 50 km/h and the minimum time gap between
vehicles is 2 s, then followers should ideally be around 28 m behind the leader. Of course,
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many of the situations included in this distribution are of left-turning followers and leaders
in which case the distance gap will naturally be lower. Furthermore, the skew towards
low lead-follower distances likely is a result of the lead-follower distances from each tag-on
OCC, where in order for the follower to be occluded from oncoming vehicles, it must be
tagging-on closely behind the lead vehicle.

LM QMMI n k|
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Lead-Follower Distance (m)

Figure 5.10: Lead-follower distances based on the initial positions of the lead and follower
vehicles across each tag-on OCC.

5.6 Use Cases

In this section we outline the two primary use cases we foresee for our proposed method.
The first use case is as an offline situation-based accelerated testing method for strategic
planners where multiple planners can be tested in tandem in traffic environments with
dynamic occlusion. We have already outlined this method in chapter 4. The second use
case is as an online occlusion-aware predictive reasoning engine that works in real-time to
predict how other agents will behave in situations with and without occlusion.

Using the method presented in chapter 4 as an offline situation-based accelerated testing
method comes naturally from the workflow. We note that our approach is also planner-
agnostic meaning that it can be extended to any type of strategic planner with just the
knowledge of the solution concept. A more sophisticated strategic planner could reason
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over the possibility of occluded vehicles or about other drivers” perspectives of the driving
environment. We also note that using a low-fidelity 2D environment for simulation is
actually an advantage rather than a drawback. This is because we see our method as
simply the first step in a larger safety validation pipeline. Using our method, failure cases
can be quickly generated in low-fidelity without having to incur the computational costs
associated with running high-fidelity simulation. We envision the next step in the safety
validation pipeline to be to recreate the occlusion situations that lead to OCCs in a high-
fidelity environment with realistic vehicle models, where we can verify if these occlusion
situations lead to OCCs in that environment too. A similar idea of bootstrapping AV
failure examples in low-fidelity and then translating them into a high-fidelity environment
is proposed by Koren [58]. While some of the candidate failure cases generated in low
fidelity may end up being spurious errors in high fidelity, the idea is to generate a large
enough pool of candidates that at least some candidates translate into genuine failures or
near-failures in high fidelity.

Our second proposed use case is to use our hypergame-based simulation and DOR
estimation methods as a real-time occlusion-aware predictive reasoning engine. This idea
relies upon the assumption that the subject AV, using traffic cameras and other nearby AVs
on the road, will be able to construct a near occlusion-free view of their driving environment
using vehicle-to-X (V2X) communication. However, AVs will still need to reason about
how human drivers—who do not have access to such an omnispective state—will behave
in occlusion situations. Assuming the subject AV has access to each human driver’s world
view (for example by simulating the human driver’s view of the environment), the AV
can act as an occlusion-aware agent, using our game-theoretic framework to predict what
human drivers (i.e., occlusion-naive agents) will do even in the presence of occlusion.
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Chapter 6

Threats to Validity

In this chapter we identify threats to the validity of our findings. These threats cover
issues that may have affected our results including the number and diversity of our results,
and also cover the possibility that some OCCs may be spurious errors when checked in
higher fidelity simulation. We split the threats into two categories, internal threats, which
deals with aspects of our implementation that could have impacted our results, and external
threats, which deals with how ideas we did not implement could have impacted our results.

6.1 Internal Threats

These are threats to the validity of our results that emerge from the particular way we
implemented our method. In order to cover a wide range of driving behaviours, we generate
trajectories with varying degrees of lateral offset. However, this lateral offset can be quite
large at times, so much so that the vehicle can end up crossing the lane boundary into the
lane running adjacent in the opposite direction. This is likely how some of the sideswipe
collisions in our results occur. Sideswipe collisions do occur in the real-world, so whether
or not trajectories with a large lateral offset are realistic is something we still need to
investigate. Ultimately, the challenge is making sure that the OCCs we generate in low-
fidelity translate into OCCs in high-fidelity. Another factor that may prevent this from
happening is that we only use emergency braking to avoid collisions. In contrast, a study
done by Scanlon et al. [96] found that most drivers perform a combination of steering
and braking to avoid a collision in an intersection environment. Thus, our simulation step
should ideally incorporate evasive manoeuvres with steering in addition to braking.
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Another limitation of our driver behaviour modelling stems from our definition of the
safety utility as the minimum distance gap between two trajectories. Driving in an inter-
section frequently forces vehicles to drive close to each other, but these situations are also
not necessarily dangerous. Indeed, vehicles drive adjacent to each other at high speeds
through intersections, highways, and other types of public roads every second of every day,
and these situations are not considered dangerous. For example, the minimum gap may
occur in the middle of two vehicles executing their trajectories, but since the trajectories
do not intersect there is no actual conflict between them. So while the safety utility would
be extremely low, say -0.97, there would not actually be any threat of a collision. However,
since the safety utility is lower than 0, we use it to represent the total utility (see eq 3.1).
As a result, in reality this pair of trajectories may be completely safe but the vehicles do
not choose to use them because they appear dangerous using our safety utility definition.
A potential fix would be to record pairs of trajectories where there is a collision and give
these pairs low safety utilities, while giving pairs of trajectories where there is no collision
a high safety utility score.

In addition to what has already been discussed, another limitation of our work centres
around modelling each lanelet’s conditional speed distributions in the intersection. Our
goal was to split the speed data into conditional distributions that represent distinct driver
behaviour, however, these conditional distributions did not always capture a single mode
of driving behaviour. For example, figures 6.1a and 6.1b show that the conditional speed
distribution for green light with conflict for lanelets exec-turn_e and exec-turn_s follow
a bimodal distribution comprised of an exponential decay distribution and normal distri-
bution. These bimodal distributions suggest that the “green light with conflict” condition
can be further decomposed. What appear to be happening here is that these distributions
are capturing both wait and go turning behaviours, i.e., i) waiting for the oncoming vehicle
to pass before making their turn, or ii) quickly making the turn before the oncoming ve-
hicle gets too close. Thus, the exponential distribution near 0 m/s represents this waiting
behaviour while the normal distribution centred around 7 m/s likely represents this go be-
haviour. Since we were not able to capture a single driving behaviour in these conditional
distributions we did not use them to sample speeds. Instead, we manually set each SOV’s
initial speed to 8 m/s for go manoeuvres and 2 m/s for stop manoeuvres.
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Figure 6.1: Bimodality in conditional speed distributions.

Finally, we note that we treat sideswipe collisions as front-to-front collisions for the
purposes of computing the relative velocity between both colliding vehicles, as well as
computing severity of the collision. This is because it is difficult to say how the relative
velocity in a sideswipe collision translates into our S0-S3 severity level otherwise. The best
case assumption is that a sideswipe collision results in no injuries because both colliding
vehicles lightly glance off each other. However, from a safety point of view we would rather
have an upper bound on the potential severity of sideswipe collisions and so therefore
we instead make the worst-case assumption, treating sideswipe collisions as front-to-front
collisions. Thus, our results represent an upper bound on the actual severity of OCCs in
the real world.

6.2 External Threats

While these can be considered threats, they are more so future avenues of research for how
we can improve the implementation of our method in the future. The first limitation we
highlight involves the notion that we base each vehicle’s behaviour in simulation solely on
the Nash equilibrium manoeuvres with the maximum combined utility values. However,
vehicles in the real world likely base their decisions not only off of the Nash equilibrium
but also on the rules of the road. If there is a conflict between the Nash equilibrium
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and rule-based manoeuvres, they will likely choose the rule-based manoeuvre since that is
the safer choice. For example, a left-turning vehicle may find that its Nash equilibrium
manoeuvre is to execute its left turn (they cannot see that there is an occluded oncoming
vehicle), whereas the rule-based manoeuvre dictates that they should wait to make sure
the way is clear before making their left-turn. Nash-equilibrium-based decision making
and rule-based decision making represent two different driver behaviours. Most drivers
use both decision frameworks, with rule-based decisions having priority over the former.
However, it is clear that drivers do not always prioritize rule-based manoeuvres as can be
seen from the real-world OCCs we cover in figure 5.6. Nonetheless, future work should
incorporate this feature when modelling driver behaviour.

Some OCCs that occur in our simulation may be avoidable in the real world for another
reason, while occlusion is always present at the beginning of each occlusion situation we
generate, our current implementation fails to account for the fact that as vehicles approach
the intersection from afar they may see other vehicles that may become occluded in the
future. Therefore, it is possible that in some of occlusion situations we simulate, vehicles
would know of the existence of the occluded vehicles and would therefore anticipate their
presence. With that being said, there are occlusion situations, such as in figures 5.6j-5.61
where there is no opportunity to gain sight of potentially occluded vehicles before entering
the intersection. Rather than simulating forward in time from the start of the occlusion
situation, one solution to this problem would be to instead simulate backwards in time and
check at each previous timestep which vehicles are visible to each other. This would then
inform the behaviour of the vehicles in the forward simulation. This can be viewed as a
future research endeavour, building off of what we have proposed here. Where in this work
we have shown a variety of occlusion situations that lead to OCCs, the next endeavour is
to look into the prerequisite conditions that allow occlusion situations to form in the first
place.

Finally, we highlight a challenge that does not only pertain to this work but to all
simulation-based approaches when going from low-fidelity to high-fidelity. Namely, certain
failure modes only emerge in a high-fidelity environment. For example, failures in the
system’s perception system due to specific lighting or weather. However, we want to
emphasize that our workflow, incorporating occlusion situation generation and evaluation
of strategic planners using hypergames is the key takeaway of this work, rather than our
specific implementation. As computers become more capable of handling higher and higher
computational loads, what is considered high-fidelity today will likely become low-fidelity
in 10-20 years.
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Chapter 7

Conclusion

In this work we have proposed a situation-based accelerated testing method for strategic
planners. Our proposed method includes i) extracting partial traffic scenes from natural-
istic data, ii) injecting occluding vehicles into extracted scenes to create realistic occlusion
situations, and iii) efficiently identifying high-risk occlusion situations using a novel DOR
measure.

Our results provide us with rich insight into the nature of dynamic occlusion at inter-
sections. Along with characterizing where OCCs tend to occur in the intersection, we also
provide a taxonomy for dynamic occlusion at intersections, categorizing occlusion situa-
tions at the high level into LTAP or RT situations and at a lower level into tag-on or reveal
situations. A severity analysis of our results reveals that OCCs tend to lead to high-severity
collisions with little time for drivers to react and perform an evasive manoeuvre.

Strategic planners are a powerful tool to perform multi-agent decision making, and have
the potential to significantly improve the way AVs make decisions in complex multi-agent
traffic environments. Unfortunately there are little to no resources for how to properly
evaluate strategic planners so that they are safe for public use. In this work, we sought to
address this problem by focusing on the subtask of safety validation under conditions of
dynamic occlusion in an intersection environment. Additionally, to the best of our knowl-
edge, this is the first work to incorporate the theory of hypergames into game-theoretic
occlusion-aware traffic modelling. Our hope is that this thesis can be a stepping stone for
future work in this area, with the ultimate goal of creating safe, reliable, and comfortable
AV technology for everyone.
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Appendix A

Available Manoeuvres in the Traffic
Game

Outlined in table A.1 are the set of manoeuvres each vehicle can use in our traffic game
simulation. The manoeuvres can be grouped into two broad categories, go manoeuvres,
such as proceed-turn, track-speed, follow-lead, and follow-lead-into-intersection, and stop
manoeuvres, such as wait-for-oncoming, decelerate-to-stop, and wait-for-lead-to-cross. Go
manoeuvres allow the vehicle to make progress along its global path towards its goal
location. Stop manoeuvres allow vehicles to avoid a dangerous situation by yielding to
oncoming traffic. Stop manoeuvres can also be used to avoid rear ending lead vehicles.

The description column outlines the manoeuvres each vehicle can use. In general,
followers can use follow and non-follow go manoeuvres. The primary difference is the speed
target for follow manoeuvres is set to the lead vehicle’s initial speed, whereas, non-follow
go manoeuvres set the target speed to the intersection’s speed limit.
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Available Manoeuvres Description

This applies to left- and right-turning vehi-
Wait-for-oncoming (W) cles. Wait for an oncoming vehicle to clear
the intersection.

This applies to left- and right-turning vehi-

P - P :
roceed-turn (P) cles. Execute a left-turn or right-turn.

This applies to vehicles driving straight
Track-speed (T) through the intersection. Drive at the speed
limit straight through the intersection.

This applies to vehicles driving straight
through the intersection and have a lead ve-

Follow-lead (F') hicle. Follow a lead vehicle straight through
the intersection, matching the lead vehicle’s
speed.

This applies to all vehicles. Decelerate to
a stop in order to let an oncoming straight-
through, left-turning, or right-turning vehi-
cle to pass.

Decelerate-to-stop (D)

This applies to left- and right-turning vehi-
Wait-for-lead-to-cross (W) cles with a lead vehicle. Wait for the lead
vehicle to finish executing its turn.

This applies to left- and right-turning vehi-
cles with a lead vehicle. Follow the lead vehi-
cle into the intersection while the lead vehicle
executes its turn.

Follow-lead-into-
intersection

(F)

Table A.1: The set of available manoeuvres to vehicles in the traffic game.
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Appendix B

Extracting Speed Distributions from
the Dataset

Tables B.1 and B.2 show the conditional speed distributions used for each lanelet. The
lanelets are also grouped based on their function in the intersection. For example, we
use the same five conditional speed distributions for the preparatory left-turn lanelets,
prep-turn_[x] where [x] can be one of n, s, e, or w. Since vehicles in this lane are
making left turns we split the speed distribution into cases where there is an oncoming
straight-through vehicle and cases where there is not, since this will affect the speed of
the left-turning vehicle. We also distinguish cases where the left-turning vehicle has a
green or yellow light, since this can affect the urgency of the turn. A final distinction
is made for cases where there is a dedicated green light since even if there a conflicting
vehicle in such cases the left-turning vehicle can freely proceed without having to yield.
The left-turn lanelet, exec-turn_[x], in which vehicles execute their left turn, directly
proceeds prep-turn_[x]. Therefore, we use the same conditional distributions for this
lanelet category. However, we do not create a dedicated green light distribution because of
a lack of data. Nonetheless, the four distributions we are able to create provide adequate
coverage of the factors (i.e., traffic light state and presence of a conflicting vehicle) that
can affect the SOV’s initial speed and allow for realistic speed sampling in this lanelet
category.

The exit lanelets, In_[x] _-1 and 1n_[x]_-2, are the regions that vehicles take to exit
the intersection and so the primary factor affecting speed in these lanelets is the traffic light
state. Similarly, the right-turn lanelets rt_prep-turn_[x] and rt_exec-turn_[x], and
the straight-through lanelets, 1_[x] _[y]_1 and 1_[x]_[y]_r (where [y] is the connecting
direction from [x]) only use green and yellow light distributions since all conflicting vehicles
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have a red light and therefore should not affect the SOV’s speed. Note that 1_[x]_[y]_1
refers to the left straight-through lanelet while 1_[x]_[y]_r refers to the right straight-
through lanelet.

The entrance lanelets for the straight-through lanes are denoted 1n_[x] _2 and 1n_[x]_3
for the right and left straight-through lanes respectively. For example, 1n_w_2 precedes
1_w_e_r, while 1n_w_3 precedes 1_w_e_1. Instead of just using a green light and yellow
light distribution, these lanelets divide the green light speed distributions based on 5 s
delay, the idea being that if the light has just changed to green most vehicles stopped
at the intersection will take roughly that long to start moving (with vehicles in the front

moving more quickly than vehicles in the back of the line).

Finally, the most involved lanelet category is the entrance lanelet to each left-turn lane,
1n_[x]_1, which directly precedes prep-turn_[x]. We use six distributions to model this
lanelet. The first two being the dedicated green light with and without a delay, which is
included for the same reasons as the previous lanelet category. The other four conditional
distributions are the same as prep-turn_[x] and exec-turn_[x] and are included for
the same reasons. The full list of conditional speed distribution images can be found at
https://bit.ly/31NBwnb.
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Lanelets

Conditional Speed Distributions

prep-turn_n
prep-turn_s
prep-turn_e
prep-turn_w

Dedicated green light,

green light with conflict,
green light without conflict,
yellow light with conflict,
yellow light without conflict.

exec-turn_n
exec-turn_s
exec-turn_e
exec-turn_w

Green light with conflict,
green light without conflict,
yellow light with conflict,
yellow light without conflict.

rt_prep-turn_s
rt_prep-turn_w

Green light,
yellow light.

rt_exec-turn_s
rt_exec-turn_w

Green light,
yellow light.

In.n_-1 Green light,

In_s_-1 yellow light.

In e_-1

In w_-1

In.n_-2 Green light,

In_s_-2 yellow light.

In_e_-2

In_w_-2

In_n_2 Green light with delay,
ln_s_2 green light without delay,
ln_e_2 yellow light.

In w_2

In.n_3 Green light with delay,
ln_s_3 green light without delay,
ln_e_3 yellow light.

In w_3

Table B.1: The right column shows the groupings of lanelets and the left column shows
the conditional speed distributions created for each lanelet grouping. For example, for
each exit lanelet, In_.n_-1, 1n_s_-1, In_e_-1, and 1In_w_-1, a green light and yellow light

speed distribution was extracted.
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Lanelets

Conditional Speed Distributions

1l sn.l Green light,

l snr yellow light.

lns_1

lnscr

1l w.el

lwer

lewl

l e w.r

In_s_4 Green light,

In_w_4 yellow light.

In_n_1 Dedicated green light with delay
In_s_1 dedicated green light without delay,
ln_e_1 green light with conflict

In_w_1 green light without conflict,

yellow light with conflict,
yellow light without conflict.

Table B.2: Continuation of table B.1.
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