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Abstract

Images/videos are playing a more and more important role in the 21st century. The

perceived quality of visual content often degrades during the process of acquisition, storage,

transmission, display and rendering. Since subjective evaluation of such a large amount

of visual content is impossible, the development of objective evaluation methods becomes

highly desirable. Traditionally, there are three well established Image Quality Assessment

(IQA) paradigms. They are Full Reference (FR) IQA which needs full access to the pristine

quality reference, Reduced Reference (RR) IQA which requires partial information from

the pristine reference and, No Reference (NR) IQA which does not require any reference

information. While the strict requirement prohibits FR IQA from wide usage in many

applications, RR and NR IQA methods can not produce comparable performance. In the

thesis, we aim to address this problem by exploring the Degraded Reference (DR) paradigm

which makes no requirement on pristine reference but on reference of degraded quality, and

at the same time, outperforms RR/NR methods.

We address this problem in three steps. Firstly, we develop an FR model built upon

a Deep Neural Network (DNN) that can handle multiply distorted images. The model

structure of this FR model is then utilized to design DNN-based DR IQA models. We

further improve the DR DNN model by adjusting the network structure. Finally, we use

a two-step framework, which utilizes an NR model and an FR model as base modules

followed by a regressor to create a single DR prediction for a given image.

We test our models on subject-related datasets in IQA field. The testing results show

that our FR model has state-of-the-art performance when handling multiply distorted

images, and meanwhile produces great performance when handling singly distorted images.

Our DR model developed using the two-step framework gives better performance than

RR/NR models when the reference is not pristine.
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Chapter 1

Introduction

An image can be defined as a two-dimensional function f(x, y), where x and y are the

spatial coordinates, and f(x, y) is the intensity level at (x, y). Natural images usually have

three channels, e.g. RGB, which define the color of a point[2]. In the 21st century, images

and videos are playing an ever more important role in our daily life. These digital contents

have contributed to the vast majority of the increasing global Internet traffic. For example,

there is about one billion hours of videos are watched daily on Youtube[1].

For people watching images and videos, the quality of the visual content is of great

importance. However, visual content usually undergoes lots of distortion processes before

reaching its end-users. The acquisition, storage, transmission, rendering and display pro-

cesses introduce various kinds of distortions to images and videos. In some extreme cases,

for example, when the network condition is bad, there might be some serious blocking arti-

facts inside frames. There is no doubt that improving the quality of the images and videos

can greatly improve the experience of end-users. The first step to improve the quality of

images and videos is to design objective IQA algorithms that can evaluate the quality of

given images or video frames.

There are mainly two broad categories of methods to evaluate the quality of images,

subjective IQA and objective IQA. Subjective IQA is expensive in time and cost. Also, sub-

jective IQA can not be done in real-time. Therefore, objective IQA methods are desirable

in many real-world application senarios.
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Traditionally and intuitively, measuring the quality can be done by directly compar-

ing the pixels at the same spatial locations. Mean Square Error (MSE) and Peak Signal

to Noise Ratio (PSNR) are two objective IQA methods that are widely used. However,

these methods do not correlate well with Human Visual System (HVS)[46]. As a re-

sult, many algorithms are developed, including FR, RR and NR IQA methods. In the

FR domain, structural similarity is the dominate paradigm[48]. The structural similar-

ity can be done in spatial domain or frequency domain. Other successful ideas include

comparing the similarity of gradients and the phase congruency of the reference and dis-

torted images[59, 25]. Recently, a notable trend is to incorporate Deep Learning (DL)

technology into FR IQA domain, producing many high performance models[3, 35, 9]. In

the RR domain, researchers mainly use statistical methods to model parameters derived

in spatial or frequency domains[23, 50]. In the NR field, early models are usually de-

veloped to handle specific distortions[12, 36]. Later, efforts have been made to combine

specific distortion models into more general models that can take more distortion types into

consideration[62, 26]. Recently, more and more general-purpose NR IQA models appear in

which aim to assess the quality of images undergoing general or mutiple distortion steps.

Natural Scene Statistics (NSS) based models[29, 38], general DL based models[28, 60] and

Vision Transformer (ViT) [10] based models[17] are among the most popular ones.

However, none of the existing objective IQA methods consider a more general situa-

tion, in which the pristine reference image is not accessiable but another distorted image

of degraded quality is available as a reference. For example, the video feed of a video

transcoder often has degraded quality, which is available in the evaluation of the video

at the transcoder output. We call such a reference Degraded Reference (DR). DR images

are more common reference images in real world due to the fact that complete pristine

reference images are not available in most situations. On the other hand, compared with

NR IQA, DR IQA can provide better performance since we still have some reference in-

formation available. We aim to design a unified IQA framework that bridges FR and NR

methods. Also, we aim to design a scalable and flexible model that can be used given

any kind of reference images. The developed DR IQA algorithm should have performance

between FR and NR IQA when a DR image is given.
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1.1 Background and Motivation

1.1.1 Challenges in Image Quality Assessment

Images are two dimensional signals, and can be further categorized into grey scale images

and color images. We mainly consider color images as input to IQA algorithms. Given

a commonly met 256 by 256 image, it can have 65536 dimensions, in each dimension, we

have three color values ranges from 0 to 255. The high dimension of color images make

IQA intrinsically a difficult problem.

On the other hand, designing IQA algorithms is quite different from other image re-

lated problems due to the fact that humans are the final judges of the quality of images.

Algorithms that take HVS into consideration should outperform those algorithms that do

not. HVS is an extremely complex systems and is not fully understood. The complex

nature of HVS has also made the development of IQA algorithms difficult.

1.1.2 Limitations of Existing Image Quality Assessment Algo-

rithms

The IQA algorithms are traditionally divided into three groups, FR IQA, RR IQA and

NR IQA algorithms. FR algorithms generally have the highest performance because more

information is used. One assumption of FR methods is that a pristine reference is needed to

evaluate its distorted counterpart. In the real world situation, an image is distorted at the

time it was born. For example, in images created by photographers using optical cameras,

the noise is added at the sensor. Motion blur and other blur might be also added. What’s

more, consider a situation an image is transmitted to its end-user. To apply FR algorithms

in this situation, the bandwidth required to transmit the pristine reference image is much

more than that of transmitting the distorted image itself. Because we cannot provide FR

IQA algorithms with pristine reference images, the performance of FR algorithms may not

be applicable. Moreover, the bandwidth problem makes FR algorithms hard to implement

in the real world situation.

In RR and NR IQA, much less information is accessible, and thus the performance
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drops significantly. Generally speaking, given the same testing condition, RR and NR

algorithms’ performance is worse than their FR counterparts. Recent NR IQA algorithms

use DL technologies which need a large amount of training images that are hard to obtain.

NR IQA problem can be solved using supervised learning technology which needs ground

truth labels. The most reliable way to label a distorted image is to let human observers

give scores in a subjective experiment. Subjective experiments are very time-consuming,

especially when the number of images to be labelled is large.

To summarize, current IQA methods have many limitations. Most of them can not be

solved in the traditional FR/RR/NR framework

This motivates us to work on a new IQA paradigm named Degraded Reference (DR)

IQA. The main difference between DR IQA and FR IQA is that DR IQA algorithms do

not make strict assumption on reference images. The reference images can be distorted.

To summarize, DR IQA algorithms aim to assess the quality of distorted images when

reference images are of degraded quality. .

1.2 Objectives

Our objectives are three folds. Firstly, we aim to develop a DR IQA algorithm that avoids

strict requirements on pristine reference images. Secondly, we aim to develop a DR IQA

algorithm that outperforms current state-of-the-art NR algorithms. Finally, we aim to

develop a general-purpose DR IQA algorithm that is able to handle distorted images with

multiple distortion types and distortion levels.

1.3 Thesis Outline

In Chapter 2, an overview of FR, RR, NR and DR algorithms are provided. For FR

algorithms, the pixel-wise algorithms, HVS based algorithms, structural similarity base

algortihms, DL based algorithms are reviewed. For RR IQA, we mainly focus on sta-

tistical modeling based RR algorithms. For NR algorithms, distortion specific modeling
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algorithms, multiple distortion oriented algorithms and general-purpose NR algorithms are

reviewed. Several recently proposed DR algorithms are also discussed.

In Chapter 3, we first develop a FR model which can handle multiply distorted images.

We then layout several architectures for deep learning based DR IQA models. Finally, we

propose a novel two-step DR IQA algorithm.

In Chapter 4, the performance of the developed models is assessed using carefully se-

lected databases for training and testing. We evaluate the performance of the proposed FR

model compared to current state-of-the-art FR models. Next, we compare the performance

of DL-based DR architectures when Pristine Reference (PR)/DR images are given. Finally,

We compare the performance of DR IQA models with FR and NR models and demonstrate

that the proposed DR IQA model, which do not have access to pristine reference but to

DR images only, is able to achieve comparable performance against FR models that have

full access to pristine reference images.
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Chapter 2

Literature Review

This chapter provides a literature review of previous studies that are closely related to our

work, including an overview of the current IQA algorithms. In this field, algorithms are

traditionally divided into FR IQA, RR IQA and NR IQA algorithms[1]. We illustrate the

connections between FR IQA, RR IQA and NR IQA in Figure 2.1.

Figure 2.1: Illustration of General IQA Frameworks[1]

As shown in Figure 2.1, FR methods evaluate the quality of a distorted image using

its pristine counterpart, RR methods evaluate the quality of distorted image with features

extracted from pristine reference image, while NR methods evaluate the quality of distorted

image using the distorted image itself without access to the pristine reference images.
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2.1 Full Reference Image Quality Assessment

2.1.1 Error based algorithms

To the best of our knowledge, MSE and PSNR are historically the most widely used FR

metrics. Denote the distorted image and the pristine reference image by Y = {yi|i =

1, 2, 3, ..., N} and X = {xi|i = 1, 2, 3, ..., N}, respectively, where yi and xi represent the

pixel intensity in the distorted and reference images, respectively. MSE and PSNR can be

expressed by:

MSE =
1

N

N∑
i=1

(xi − yi)2

PSNR = 10 log10

L2

MSE

(2.1)

where L is the dynamic range of image pixel intensities. For a typical grey scale image

where each pixel is represented by 8 bits, L = 28 − 1. MSE and PSNR are designed to be

a signal fidelity measure, where the quantitative output denotes the level of error. MSE

have multiple advantages. It is simple and easy to use. It is directly related to the l2 norm

which holds many convenient mathematical properties, such as non-negativity, identity,

symmetry and satisfying triangle inequality. However, MSE does not correlate well with

human perception of image quality [46].

Based on the observation that HVS is more sensitive to low frequency distortions than

to high frequency ones[8], a PSNR-HVS[11] is proposed which improves the performance

of PSNR.

2.1.2 Structural Similarity Based Methods

The Structural Similarity (SSIM) index started a new paradigm of IQA research [48]. Given

image X and Y, the luminance comparison is given by:

l(X,Y) =
2µXµY + C1

µ2
X + µ2

Y + C1

(2.2)
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where µX and µY are the mean of input image X and image Y. C1 is a constant to avoid

instability. The contrast comparison is given by:

c(X,Y) =
2σXσY + C2

σ2
X + σ2

Y + C2

(2.3)

where σX and σY are the variance of input image X and image Y. C2 is a constant to avoid

instability. Finally, the structure comparison is given by:

s(X,Y) =
σXY + C3

σXσY + C3

(2.4)

where σXY is the covariance of input image X and Y. Combining three components above,

we have the finial SSIM index:

SSIM(X,Y) =
(2µXµY + C1) (2σXY + C2)

(µ2
X + µ2

Y + C1) (σ2
X + σ2

Y + C2)
(2.5)

In order to incorporate image details at different resolutions, Multi-scale Structural Sim-

ilarity (Multi-scale Structural Similarity (MS-SSIM)) [51] is proposed. In the MS-SSIM

framework, an given image is downsampled multiple times, and the SSIM index is com-

puted for images at all scales. The downsampling process is illustrated in Figure 2.2.

Figure 2.2: Diagram of MS-SSIM [51]

Finally, the MS-SSIM is computed by combining the luminance, contrast and structural

comparison in difference scales.

MS-SSIM(X,Y) = [lM(X,Y)]αM ·
M∏
j=1

[cj(X,Y)]βj [sj(X,Y)]γj (2.6)
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where X and Y are input images, lM is the luminance comparison at Mth scale, cj and

sj(j = 1, ...,M) are the contrast comparison and structural comparison at jth scale.

αM , βj, γj are weight parameters for luminance, contrast and structural comparison re-

spectively.

MS-SSIM takes viewing conditions into account, but weights different parts of the

content the same. To compensate this, Information content Weighted Structural Similarity

(IW-SSIM) is proposed [49], where different parts in a image are weighted based on the

shared information of that part between the reference and distorted images.

Apart from the previous mentioned metrics which measure the similarity between two

inputs in spatial domain directly. Some metrics are proposed to use this paradigm in

other domains. These metrics include Feature Similarity (FSIM)[59], Wavelet Structural

Similarity Index (WSSI)[37], Gradient Similarity (GSIM)[25], and Gradient Magnitude

Similarity Deviation (GMSD)[54].

FSIM is designed for grey scale image quality assessment. Firstly, Phase Congruency

(PC) has been chosen as the main feature since visually discernable features coincide with

the point where different frequency Fourier waves have congruent phases. A complemen-

tary feature Gradient Magnitude (GM) has been included considering that local contrast

has contribution to visual quality. An Feature Similarity Color (FSIMc) method is also

proposed to take color information into consideration. WSSI performs structural similar-

ity in wavelet domain. The images are transformed to wavelet domain before a structural

similarity measure is applied. Based on the idea that gradient can convey important

information of images which is important for scene understanding, GSIM uses gradient

similarity comparison to capture structural and contrast changes. Apart form structural

and constrast information, luminance is also a very important component of images, GSIM

assesses the quality of distorted image using gradient similarity and luminance similarity.

GMSD models most of the IQA methods as a two-step framework, as illustrated in Fig-

ure 2.3, Firstly a Local Quality Map (LQM) is computed using a local quality computation,

then a pooling strategy is chose to pool the LQM to a single qulity score. Considering that

different local structures in a distorted image suffer from different types and degrees of

degradations, GMSD replaces the commonly used average pooling to global variation of

LQM.
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Figure 2.3: Illustration of two-step FR-IQA Framework [54]

2.1.3 Deep Learning Based Methods

Recently, many researchers try to improve FR IQA performance using DL technology. The

ability of DL models has been proved in many Computer Vision (CV) tasks [19, 39, 15].

The good performance of these data driven models inspired researchers in IQA fields to

use DL models.

A representative method is Weighted Average Deep Image QuAlity Measure-FR (WaDIQaM-

FR) model [3]. The authors have developed both a FR verion and a NR version WaDIQaM.

Here we mainly introduce the idea behind the WaDIQaM-FR model.

Figure 2.4: WaDIQaM-FR Structure [3]

Figure2.4 shows the network structure of the WaDIQaM-FR model. The authors

adopted VGGnet as the backbone for feature extraction. VGGnet is one of the top per-

formance networks in image classification and localization tasks[42]. The WaDIQaM-FR
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model mainly uses the Siamese structure, where the weights of the feature extractor is

shared between the reference images and the distorted images. The quality aware features

are then concatenated. Two sub-tasks are designed, the first one is the patch weigh esti-

mation sub-task and the other is the patch score regression sub-task. Finally, patch quality

and patch weight are pooled into a single image quality score. The simple idea results in

superior performance.

A different DL learning framework is to learn useful image features using a pairwise

preference framework. As shown in Figure 2.5. The model tries to learn which pair of

images is better than the other.

Figure 2.5: Pairwise Preference Framework [35]

Based on the fact that image is formed by both structural regions and texture regions,

a model called Deep Image Structure and Texture Similarity (DISTS) is proposed. The

authors combine the DL model with structural similariy paradigm, at the same time,

texture invariance is also considered [9]. A combined loss is computed based on the features

extracted by VGG backbone. For comparing structural similarity, SSIM is adopted. For
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measuring texture invariance, the Gram matrix[13] is adopted. The Gram matrix is given

by:

Gl
ij =

∑
k

F l
ikF

l
jk (2.7)

where F denotes the feature map extracted by VGG backbone. The model gives state-of-

the-art performance against FR IQA models.

2.2 Reduced Reference Image Quality Assessment

The idea of RR Quality Assessment (QA) was first proposed in the 1990s [52]. The authors

try to use the concept of RR in real-time video quality monitoring. The entire system is

divided into sender side and receiver side. The original image/video is sent to the receiver

side through the visual communication channel. The RR features extracted from the

original image/video are sent to the receiver side through an ancillary channel. Then,

at the receiver side, RR quality assessment module takes the RR features and distorted

image/video as input and produces the final quality score [47]. The whole process is

depicted in the Figure 2.6.

Figure 2.6: RR QA Framework [47]

As shown in the Figure 2.6, the RR QA methods mainly rely on the features extracted

from the original image and the received distorted image for quality assessment. The

main challenge is to develop a reliable set of features that can effectively represent and

differentiate the information of the original and distorted images.

12



RR IQA algorithms are generally classified into 3 types[23]. The first type of algorithms

are developed based on the idea to model image distortions. Most of the RR algorithms in

this category are developed for specific distortion types. The second type of RR algorithms

are developed based on modeling HVS. The third type of RR algorithms mainly try to

model NSS.

A naive idea is to randomly sample pixels from the reference image at the sender side,

and compare with the corresponding pixels using MSE or PSNR at the receiver side. This

naive approach has multiple drawbacks. For example, the selected pixels might not contain

the distorted part of image. The random selection may not provide accurate summarization

of the images.

Several RR IQA algorithms are based on modeling image distortions. An RR metric

for compressed digital images and videos is proposed by Irwan et al. The local harmonic

amplitude information is extracted from edge-detected picture as reduced-reference[14].

Specifically, the authors applied Sobel operator to the input images, and the gradient im-

ages are divided into blocks. In each block Fast Fourier Transform (FFT) is applied, and

local harmonics strengths are extracted from these FFT blocks. A similar algorithm was

proposed for Motion Picture Experts Group 2 (MPEG2) video[22]. Specifically, the refer-

ence image or the distorted image is transformed to the YUV color space. For each color

channel, 4 features are considered, two for spectrum content, one for spatial content, and

one for blocking effect. At the receiver side, 12 features from the reference image and the

distorted image are compared using a Time Delay Neural Network (TDNN).The two algo-

rithms above mainly consider compression artifact. To take multiple image distortions into

account, a Hybric Image Quality Metric (HIQM) is proposed to combine blocking mea-

surement, blur measurement, and intensity masking detection, etc.[20]. The final quality

metric is the weighted linear combination of these measurements.

A few perceptual representation based RR IQA algorithms are proposed. An early work

uses a two-stage method to represent the reference or distorted image[5]. In the first stage,

a set of low level processes are applied, including color normalization, gamma function,

and projection onto some perceptual color spaces. In the second stage, structural features

around fixation points are compared for image representations. In [6], the reduced de-

scription is built according to the corresponding stages in the HVS. This process contains
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gamma function adjustment, projection to perceptual color space, luminance normaliza-

tion, Contrast Sensitivity Function (CSF) weighting, subband decomposition, component

masking and feature extraction. The process is shown in Figure 2.7.

Figure 2.7: Building Reduced Descriptor [6]

NSS based RR methods usually model the images using low level statistic models.

An early work considers using wavelet coefficients[50]. The idea is to transform the image

from spatial domain to wavelet domain, where the subbands’ coefficients are modeled using

Generalized Gaussian Density (GGD) model. The Figure 2.8 shows the feature extraction

process. The original image is represented by multiple subbands, each subband is modeled

using GGD parameters.

The GGD model is given by:

pm(x) =
β

2αΓ(1/β)
e−(|x|/α)

β

(2.8)

where, Γ(a) =
∫∞
0
ta−1e−tdt( for a > 0) is the Gamma function, and α and β are the

parameters of the GGD model. After modeling the subbands of the distorted image and

the reference image, the Kullback-Leibler Distance (KLD) is employed to determine the

quality of distorted image:

d (pm‖p) =

∫
pm(x) log

pm(x)

p(x)
dx (2.9)
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Figure 2.8: Wavelet Feature Extraction [50]

Another NSS based RR IQA method uses Divisive Normalization Transform (DNT)

based image representation[23]. For better representation, a DNT is applied to wavelet

coefficients to obtain DNT coefficients. The quality is represented by the variations of the

marginal probability distribution of the DNT coefficients. The distance between reference

marginal distribution and distorted marginal distribution is measured using KLD.

2.3 No Reference Image Quality Assessment

The NR IQA problem is fundamentally different from the FR and RR paradigms, because

no information about the pristine reference is available. Early NR IQA methods aim to

predict quality for distortion specific images. Recently, more and more general-purpose

NR IQA algorithms have appeared.

We first review some distortion specific NR IQA methods that assess the quality of given

distorted images based on specific distortion models. These models are able to measure

one or multiple distortions such as blur and noise.

Blur artifact can be detected by analyzing the strength and the spread of edges and

other fine details. The measurement can be done in either spatial domain or frequency

domain. Simple algorithms detect blur by measuring edge width or computing dominant

eigen values of covariance matrix[53]. More complex methods take HVS characteristics into
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consideration. A Just Noticeable Blur (JNB) concept is introduced[12], which accounts for

the minimum amount by which a stimulus intensity must be changed relative to back-

ground intensity in order to produce a noticeable variation in sensory experience. Based

on the concept of JNB, a perceptual blur image quality metric is proposed[18], where a

perceptual edge map is constructed from every edge map at different resolutions. Based

on the perceptual edge map, the blur artifact is used to determine the perceptual quality

of a given image based on its bluriness.

Noise is another artifact that commonly appears in images. To determine the quality

of a noisy image, measuring the level of noise is important. There are several useful noise

measurement approaches. For example, [36] uses histogram of local image variance to

determine the level of noise. While [43] use graph and Ant Colony Optimization (ACO)

to determine the noise level. An image is represented using a graph G(V,E), v ∈ V are

vertices representing patches inside an image, and e ∈ E are edges representing connections

between edges. Patches are selected to determine the noise level using the ACO algorithm.

In order to apply NR IQA algorithms in a more complex situation, multiple distortions

oriented algorithms are proposed. A basic idea is to model the quality by a weighted

combination of noise, blur and other artifacts[62]. In this method, noise level, blur level

and blocking level are firstly determined using some commonly used methods. Then the

logistics regression is used to find the optimal weight for each distortion measure. A

Spatial-Spectral Entropy-based Quality (SSEQ) index [26] use a 2-stage framework to

handle multiple distortions. In the first stage, a Support Vector Machine (SVM) is used to

determine the distortion type. Then, local spatial and spectral entropy features are used

to quantify the quality of a given image. [24] uses three objective measures to characterize

three important aspects of visual quality, which jointly determine the quality of a given

image.

All the above mentioned NR IQA algorithms measure the visual quality by modeling

specific distortions. Some work with one specific type of distortions only. Others com-

bine multiple distortions by regression. Next, an overview of general-purpose NR IQA

algorithms is given.

One way to develop general-purpose NR IQA algorithms is to use NSS. NSS based

methods usually assume that natural images occupy a small cluster in the entire space of
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all possible images, and the distortion is quantified as the distance to the natural image

cluster. Many efforts are made to utilize spatial or transform domain statistical distribution

for determining image quality. An algorithm called Blind/Referenceless Image Spatial

Quality Evaluator (BRISQUE) extracts local normalized luminance and measures image

naturalness by measuring the deviation from a natural image model[29]. In the first stage

of the proposed algorithm, the Mean Subtracted Contrast Normalized (MSCN) coefficients

are computed using:

Î(i, j) =
I(i, j)− µ(i, j)

σ(i, j) + C
(2.10)

where µ(i, j) and σ(i, j) are the mean and standard deviation of the local image. After

extracting features from images, the Asymmetric Generalized Gaussian Model (AGGD) is

used to fit the features:

fX
(
x;α, σ2

l , σ
2
r

)
=


α

(βl+βr)γ( 1
α)

exp
(
−
(
−x
βl

)α)
x < 0

α

(βl+βr)γ( 1
α)

exp
(
−
(
x
βr

)α)
x ≥ 0

(2.11)

where α is a shape parameter, σl and σr are scale parameters, and βl and βr are given by:

βl = σl

√
γ
(
1
α

)
γ
(
3
α

)
βr = σr

√
γ
(
1
α

)
γ
(
3
α

) (2.12)

where γ is the gamma function:

γ(a) =

∫ ∞
0

ta−1e−tdt a > 0 (2.13)

Fitting the extracted features using AGGD model gives a set of final features which are

used to train the Support Vector Regression (SVR) model.

Blind Image Integrity Notator using DCT Statistics (BLIINDS) is another NSS based

NR IQA method[38]. Unlike BRISQUE, BLIINDS use Discrete Cosine Transform (DCT)

Statistics. In order to quantify the sharpness or blur in an image, the statistics of frequency

domain parameters are needed, thus DCT is used to transform from original image to
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frequency domain. To quantify the structural difference between the distorted and natural

images, the kurtosis of DCT histograms is used:

κ(x) =
E(x− µ)4

σ4
(2.14)

where x denotes the DCT histograms’ value, and µ and σ are the mean and standard

deviation of the DCT histograms respectively. To quantify the directional information, for

each orientation (0◦, 45◦, 90◦ and 135◦), the anisotropy value is computed based on the

Renyi entropy:

Rθ[n] = −1

2
log

(∑
k

P̃θ[n, k]3

)
(2.15)

where P̃θ[n, k] denotes the normalized DCT coefficients, n is the spatial index, k is the

frequency index.

Let Xi = [x1, x2, . . . xn] denote the ith image’ n features, and let DMOSi be the

subjective score given to this image. The probability of P (X,DMOS) is modeled by a

multivariate Gaussian distribution and a multivariate Laplacian distribution on a training

database. The prediction given by maximizing the quantity P (DMOSi/Xi) is equivalent

to maximizing P (X,DMOS) because P (X,DMOS) = P (DMOS/X)p(X).

In [32], a Blind Image Quality Index (BIQI) is proposed, which uses a two-step frame-

work to assess the quality of a distorted image. The distortion type is determined by a

classification model before quality assessment is applied. The final quality score is given

by the weighted summation BIQI =
∑5

i=1 pi · qi. Firstly, wavelet transform is used to

compare subband coefficients which are modeled using GGD. The variance and shape pa-

rameters are used as feature representations of the distorted images. The multiclass SVM

with a Radial-Basis Function (RBF) kernel is served as the classifier to predict the dis-

tortion types based on image features. After classifying the given distorted images into

corresponding distortion categories, SVR method is used to map image features into qual-

ity scores. In [33], Distortion Identication-based Image Verity and INtegrity Evaluation

(DIIVINE) index is proposed. DIIVINE improves BIQI by replacing the wavelet transform

with the steerable pyramid transform.

In [55], unsupervised learning strategy is used to build a general-purpose NR IQA

algorithm called Codebook Representation for No-Reference Image Assessment (CORNIA).

18



The overall learning framework for CORNIA includes local feature extraction, codebook

construction, local feature encoding and feature pooling. In the first step, image patches are

extracted as feature representations for an image, where the patches are randomly selected.

To build a codebook, the unsupervised learning methods such as K-means clustering is

used. A matrix Dd×K = [D1, D2, . . . , DK ] is a visual codebook, where Di(i=1,...K) are the

centers of clusters, and d is the feature dimension of a image patch. The codebook is then

normalized to obtain unit length base vector. The normalized codebook is denoted by

D̃d×K =
[
D̃1, D̃2, . . . , D̃K

]
. In the local feature encoding process, soft-assignment coding

is used. Distance between the local descriptors (xi) and the visual codewords (D̃) is

computed using dot product. The code for a local descriptor xi is given by the following

equation:

ci = [max (si1, 0) , . . . ,max (sid, 0)

max (−si1, 0) , . . . ,max (−sid, 0)]T
(2.16)

A coefficient matrix is given by the local feature coding step: CK×N = [c1, c2, . . . , cN ] which

is used to pool to a quality score.

As introduced in Section 2.1, WaDIQaM-FR is a model proposed for FR IQA. There is

also a NR version called Deep Image QuAlity Measure-NR (DIQaM-NR) which is designed

for NR IQA. DIQaM-NR is a patch based DNN model that contains two concatenated

structures. The NR model is divided into a backbone section and a score prediction sec-

tion. In the backbone section, VGGNet is used because of its good performance in image

classification and localization tasks. The perceptual relevance features are the output from

the backbone. To compute the quality score based on the perceptual relevance features,

a weight estimation network and a quality prediction network are designed. A Fully Con-

nected (FC) network is used to learn the weight for input patch, another FC netowrk is

used to estimate the quality score for the corresponding patch. A weighted average pooling

is used to obtain the final quality score for input image.

q̂ =

Np∑
i

piyi =

∑Np
i α∗i yi∑Np
i α∗i

(2.17)

where Np is the number of patches in the image, α∗i is the weight for a patch i, yi is the
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quality score for patch i, and pi is the normalized weight given by:

pi =
α∗i∑Np
j α∗j

(2.18)

Multi-task End-to-end Optimized deep Neural network (MEON) is an NR IQA model built

by DL technology. In this method, the Neural Network (NN) is trained by two tasks. The

first task is distortion type classification which gives a probability vector as the output. The

second task combines the distortion task classification result with quality score prediction

using dot product. The overall network structure can be divided into two parts. The first

part is the backbone structure, which consists of convolutional layers, normalization layers

and max pooling layers. The second part of the network takes feature output from the

first part as input, and the two subtasks are performed jointly in this second part. Some

FC layers are used to map features to probability vectors and quality score vectors. The

dot product between the probability vectors and the quality score vectors creates the final

quality score for a distorted image.

Deep Bilinear Convolutional Neural Network (DBCNN) is another DL based methods

for NR IQA[60]. DBCNN works with both synthetically and authentically distorted images

using two streams of DNN. A pre-train method is adopted. For synthetic distortions. S-

CNN is designed by modifying VGG-16 network, S-CNN is pre-trained to classify both

distortion types and distortion levels for given images. For authentic distortions, the

VGG-16 network is pre-trained on an image classification task. Two pre-trained networks

are then combined using bilinear pooling:

B = YT
1 Y2 (2.19)

where Y1 is the output of S-CNN, Y2 is the output of VGG-16. Finally, a FC layer map

the bilinear output to a final quality score.

In [63], Meta-learning is used to develop an NR IQA model. The authors use Meta-

learning to learn prior information which is used in the general-purpose NR IQA task. For

learning prior information, a meta-learning set is constructed: Dp(τ)meta =
{
Dτns ,Dτnq

}N
n=1

,

where Dτnq is the query set, Dτns is the support set. N is the total number of tasks for

learning different distortion specific information, and k tasks are randomly selected form
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a mini-batch. The model parameters are adjusted based on the task specific gradients.

After prior information is learned using meta-learning, the NR model is fine-tuned for

general-purpose NR IQA.

Figure 2.9: Architecture of Vision Transformer [10]

Recently, ViT is proposed [10] that produces good performance of self-attention-based

architectures in Natural Language Processing (NLP). The basic idea behind the ViT is to

split images into patches and feed linear embeddings of patches into a Transformer. The

overall architecture of a ViT is shown in Figure 2.9, where the input patches are mapped

to linear embeddings using linear projection. The Transform Encoder is used to project

linear embeddings to class labels.

Based on the idea of ViT, Multi-scale Image Quality Transformer (MUSIQ) is proposed

for general-purpose NR IQA task. To support various aspect ratios and resolution inputs,

MUSIQ adopts a multi-scale representation. Hash-based 2D Spatial Embedding (HSE)

and SCale Embedding (SCE) are used in the architecuter. The original classification head

is replaced by regression head to produce a quality score.
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2.4 Degraded Reference Image Quality Assessment

To the best of our knowledge, the first work relavant to DR-IQA is the Corrupted Reference

Quality Assessment (CRQA) method.[7, 58]. In the work, the authors try to assess the

quality of a restored image without the help of the pristine reference. This process is

illustrated in Figure 2.10, where in the context of image restoration the ”process” represnts

an image restoration operator. The CRQA method assesses the quality of the restored

image by using the pair of a corrupted image and a restored image.

Figure 2.10: CRQA Paradigm [7]

Another highly relavant work is the 2stepQA algorithm[56], which attempts to predict

the quality of a compressed-after-distorted image using an NR algorithm and an FR algo-

rithm. The overall structure of the 2stepQA algorithm is shown in Figure 2.11, where the

NR IQA algorithm is directly applied on the distorted image, and the FR IQA algorithm

is responsible for assessing the quality of compressed-after-distorted image. Then, the two

quality score is combined into a final 2stepQA quality score.

Conditional knowledge distillation has also been used to handle the DR IQA problem[61],

where, the network is trained to learn from pristine reference features. The MSE loss is

used to map the features from the DR images to those from the pristine reference images.

The knowledge learned from the training phase is employed in the test phase to assess the

quality with degraded reference.
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Figure 2.11: 2stepQA Framework [56]
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Chapter 3

Degraded Reference Image Quality

Assessment

In this chapter, we aim to exploit the architecture of our DR-IQA model. Our exploration

starts from End-to-end Optimized deep neural Network using Synthetic Scores (EONSS)

[45] which is an NR IQA model designed for multiply distorted images. We combine

the backbone of EONSS and the framework of WaDIQaM-FR to create a model called

Full Reference End-to-end Optimized deep neural Network using Synthetic Scores (FR-

EONSS), which is an FR model developed for multiply distorted image. We then exploit

different variations of deep learning architectures for DR IQA. Finally, we explore the

two-step framework for DR IQA.

3.1 Full Reference Model for Multiply Distorted Im-

ages

As a first step in the development of our DR IQA method, we develop an FR model for

multiply distorted images. We call multiply distorted images the Final Distorted (FD)

images. We believe developing an FR model that can handle FD images with pristine

reference images can help build the fundation of the DR framework.
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The design of the FR model starts from EONSS which is an NR model developed for

multiply distorted images. The backbone of EONSS is used to develop the FR-EONSS

model. We believe this backbone is able to extract perceptual relevance features. In

addition, since EONSS is developed for multiply distorted images, it is a good candidate

to handle information from FD images.

Figure 3.1: FR-EONSS Backbone

The backbone structure is shown in Figure 3.1, where the backbone of the FR-EONSS

model consists of convolutional layers, General Divisive Normalization (GDN) layers, and

max pooling layers. The convolutional layers and max pooling layers used are similar to

the ones used in [19, 39, 15]. The GDN is first introduced to the IQA field in [28]. Given

an S dimensional feature map x(m,n) = [x1(m,n), · · · , xS(m,n)]T , at a spatial location

(m,n), the GDN transform is given by:

yi(m,n) =
xi(m,n)(

βi +
∑S

j=1 γijxj(m,n)2
) 1

2

(3.1)

where y(m,n) = [y1(m,n), · · · , yS(m,n)]T is the normalized feature map. γ is the weight

matrix, β is the bias vector. These parameters need to be optimized during the training

phase.

To use this backbone in FR task, we utilize a siamese network structure demonstrated

in WaDIQaM-FR. The whole structure of FR-EONSS is shown in Figure 3.2, where we use

a share-weight Convolutional Neural Network (CNN) backbone to extract features from

the reference patches and the distorted patches. We then fused the reference features and
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Figure 3.2: FR-EONSS Structure

the distorted features by concatenate these features and their differences. We use a stack

of FC layers and GDN layers for the final regression task.

We utilize Waterloo-Exploration2 database[1] to help with the development. Waterloo-

Exploration2 database is the largest IQA database so far. There are 3570 pristine images,

from which over 3 million distorted images are created with multiple distortion types and

distortion levels. We used sixty percentage of the images from the database to train the

model. The model is trained in a pair-wise fashion, where two patches cropped at the same

spatial location from a pristine reference image and anFD image and fed into the network.

3.2 DR Baseline Model Development

The first idea of developing a DL-based DR baseline model is to use the same model

structure as FR-EONSS, but with a different training method. Since DL models try to

capture the features from training data, we train a DR model using FR-EONSS structure

by feeding random DR images. We use random DR images for training for two reasons.

On the one hand, this is the first step in building a DR model, we would like to try a

model that is the simplest. On the other hand, there is no clear definition of degraded

reference. To be specific, given an FD image distorted by noise and blur, the DR image
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can be the same image distorted by noise, the same image distorted by blur, or the same

image distorted by any other distortion. What’s more, the DR image can even be an image

with completely different content or random noise.

The overall structure of the DR baseline model is the same as FR-EONSS, just that

the output of this DR baseline model is a DR score instead of an FR score.

Figure 3.3: DR-Fusion Structure

To move on further in the development of DR baseline models, we introduce a relevance

prediction branch into the structure. Since we are feeding random DR images as reference,

it is good to let the model know whether the DR image and the FD image is of the same

content. Then, the model can handle these two situations using different strategies. The

first model developed is called DR-Fusion. The overall structure is shown in Figure 3.3,

where there are three branches designed based on the perceptual relevance features. The

NR quality prediction branch produces NR scores for the reference patches and distorted

patches. The relevance prediction predicts whether the reference patch and the distorted

patch have the same content. The score fusion part combines three scores into a single DR

score. The general expression is given by:

d = f(q1, q2, r) (3.2)

where, d denotes the DR score for a distorted patch, r denotes the relevance between a

distorted patch and a reference patch, and q1 and q2 denote the NR score for a reference
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patch and a distorted patch, respectively.

The second model developed is called DR-Residual. The overall model structure for

DR-Residual is given in Figure 3.4, where there are also three branches designed based on

the perceptual relevance features, including the quality prediction branches and relevance

prediction branch. There is also a residual prediction branch that predicts the residual

between the NR score of the distorted image and the DR score. The expression is given

by:

res = f(q1, r, fm)

d = res+ q2
(3.3)

where, q1, q2, and r are defined similarly as in the DR-Fusion model. f here denotes the

residual prediction function.

Figure 3.4: DR-Residual Structure

The third model developed is called DR-Combine. The overall model structure for

DR-Combine is given in Figure 3.5, where there are four branches, each responsible for

one simple task. There are two NR score prediction branches, one relevance prediction

branch, and one branch producing the first-step DR score. The weight prediction branch

produces weights from NR scores for the reference patch and the relevance scores. Then,

these weights are used to improve the first-step DR score, resulting in a final DR score in
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the end. The equation for this model can be written as:

w = f(q1, r)

d = q2 + w ∗ d1
(3.4)

where, q1, r,and q2 have the same meanings as in the previous models. d1 is the first-step

DR score, w is the weight to improve the first-step DR score.

Figure 3.5: DR-Combine Structure

The last model developed in this series is called DR-Multitask. The overall model

structure for DR-Multitask is given in Figure 3.6, where the DR-Multitask model contains

four branches as well. We take the output from the third branch as the DR score predicted

for the distorted image. No specific assumption is made in this model, the model is designed

to figure out information for prediction DR score itself all through the entd-to-end learning

process.

For training these DR models, we also utilized the Waterloo-Exploation2 database.

Instead of pairing each FD image with one reference image, we pair each distorted image

with a few random selected DR images.
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Figure 3.6: DR-Multitask Structure

3.3 Two-Step DR Model Development

As mention above, 2stepQA framework is used to predict the quality of a compressed-

after-distorted image using the distorted image as reference. Here we propose to extend

this model for a more general DR task.

Firstly, in [56], the NR algorithm and the FR algorithm used in the implementation

of the framework are some traditional methods. For example, BRISQUE or CORNIA

are used as NR metrics in the framework, SSIM or MS-SSIM are used as FR metrics

in the framework. This idea has some drawbacks. One most significant one is that,

traditional FR metrics are designed to handle one stage distortion only. However, in our

application senario the compressed-after-distorted image has gone through at least two

stages of distortions. As such, the traditional FR methods might not handle this type of

distorted images well. Also, the performance of traditional NR and FR methods is limited.

With the development of the IQA field, more and more large scale IQA databases have

been made available. One recently designed multiply distorted IQA database has more

than 3 million images[1]. This makes it feasible to use DL technologies to improve the IQA

model performance because sufficient labelled data for training is available. Finally, the
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Figure 3.7: DRIQA Model Structure

framework in [56] can only handle compressed-after-distorted images. We aim to extend

the framework to handle more types of multiply distorted images.

To address the first problem, we have designed the FR-EONSS model which is able to

handle multiply distorted images. We adopt FR-EONSS into the 2stepQA framework, so

that the FR module in the framework has the ability to handle multiply distorted images.

The second improvement is that, we use EONSS as the NR module inside the 2stepQA

framework. Both EONSS and FR-EONSS are developed using DL technology. They are

developed using a large IQA database containing more than 3 million images. The large

database significantly boosts the performance of EONSS and FR-EONSS. For the last

problem, EONSS and FR-EONSS are developed to handle more types of multiply dis-

torted images. More specifically, EONSS is trained to handle three type of singly distorted

images (Noise, Blur, Joint Photographic Experts Group (JPEG)) and five types of multiply

distorted image (Blur-JPEG, Blur-Noise, JPEG-JPEG, Noise-JPEG, Noise-Joint Photo-

graphic Experts Group 2000 (JP2)). FR-EONSS is able to handle the above mentioned

nine types of distorted images. Using EONSS and FR-EONSS in 2stepQA framework

makes it possible to handle five types of multiply distorted images using the corresponding

DR images.

The overall structure of the proposed DR IQA model is shown in Figure 3.7. The dis-

tortion types in Distortion 1 include Blur, Noise and JPEG, while in Distortion 2 contains
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Noise, JPEG and JP2. The NR module and FR module are pre-trained. The DR IQA

module is constructed using FC layers. To train the DR IQA model, we pair each FD

image with its corresponding DR image. For example, for a given FD image distorted by

blur firstly and noise secondly, the DR image has the same content as the given FD image.

At the same time, the DR image should be distorted by blur at the same distorted level

as the blur distortion applied in the given FD image.
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Chapter 4

Performance Evaluation

In this chapter, we conduct extensive experiments to evaluate the performance of the

proposed models. We first evaluate the performance of the FR-EONSS, and compare it

with state-of-the-art FR methods on commonly used subject-rated IQA databases. Then,

we evaluate the performance of DR models based on different DL architectures, and we

compare the performance of these methods with state-of-the-art FR and NR methods.

Finally, we evaluate the performance of the proposed two-step DR methods, and compare

their performance with some state-of-the-art FR and NR methods.

4.1 FR Model Performance Evaluation

In this section, we evaluate the performance of FR-EONSS which is an FR IQA model we

developed for multiply distorted images. We evaluate the model on Waterloo-Exploration2

database test set and other commonly used singly distorted or multiply distorted databases

in the IQA field. We report the model performance mainly using Spearman’s Rank Corre-

lation Coefficient (SRCC):

ρ = 1− 6
∑
d2i

n (n2 − 1)
(4.1)

where ρ is the SRCC coefficient. di is the difference between two ranks of each observation.

n is the total number of observations. Similar results are obtained when other evaluation
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criteria such as Pearson Linear Correlation Coefficient (PLCC) are used. The results show

that the proposed FR model outperforms several state-of-the-art FR models.

4.1.1 Databases, Methods and Criteria used for Performance

Evaluation

The Waterloo Exploration2 database is used for training. Waterloo Exploration2 database

is the largest database till now in the field of IQA. There are over 3 million images, 3570

reference images in the database. It is a multiply distorted database. For the first distortion

process, each of the reference images is distorted by Blur, Noise or JPEG distortion. To

cover the whole range of visual quality, eleven distortion levels are used in this process. To

produce multiply distorted image, five distortion combinations are used, which are Blur-

JPEG, Blur-Noise, JPEG-JPEG, Noise-JPEG, and Noise-JP2. There are eleven levels in

the first distortion type and seventeen levels in the second distortion type. The database

is mainly used in the training phase. Since the images in the database have multiple

resolutions, we extract 235*235 patches from the images for training.

To labeling this database, since there are millions of images, it is impossible to employ

humans and conduct subjective test. Therefore, a novel data annotation mechanism, called

Synthetic Quality Benchmarky (SQB)[1] are developed, where the perceptual relevance

scores are create by using fused FR methods.

The databases used for testing and comparing the models are discussed here. These in-

clude Waterloo-Exploration2 database test set, Colourlab Image Database Image Quality

(CIDIQ) database, Categorical Image Quality (CSIQ) database, LIVE Release2 (LIVE

R2)) database, Tampere Image Database 2013 (TID2013) database, Video Communi-

cations Laboratory @ FER (VCLFER) database, LIVE Multiply Distorted (LIVEMD)

database, Multiply Distorted Image Database (MDID) database, Multiply Distorted Im-

age Database2013 (MDID2013) database, and Multiple Distorted IVL (MDIVL) database.

These databases are best known IQA datasets available in the public domain, widely used

for performance comparisons. They can be categorized into singly distorted databases and

multiply distorted databases.

CIDIQ is a singly distorted database containing 23 reference images[27]. Each reference
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image is distorted by six distortion types and 5 distortion levels, producing 690 singly

distorted images. All images have the resolution of 800*800. To label the distorted images,

each image is given a Mean Opinion Score (MOS) from 1 to 9. There are five levels of

scores, denoting Bad, Poor, Fair, Good, Excellent quality, respectively. The subjective

tests are carried out at two different viewing distances, thus there are two sets of scores

named CIDIQ50 and CIDIQ100, respectively.

CSIQ is a singly distorted database containing 30 reference images[21]. Each reference

image is distorted by six distortion types and four to five distortion levels. There are 5000

subjective ratings from 35 observers. The ratings are reported using the form of Difference

Mean Opinion Score (DMOS).

LIVE R2 is a singly distorted database developed by the Laboratory for Image and

Video Engineering at University of Texas at Austin, and is widely used when testing

obejective IQA algorithms[41]. There are 29 reference images. Each reference image is

distorted by five distortion types and up to five distortion levels. The total number of

distorted images is 779. Scores are given in the range of 1 to 100. Observers are asked to

use a slider to determine the quality of a given image. The subjective data is reported in

the form of DMOS.

TID2013 is another singly distorted database. It consists of 25 reference images and

3000 distorted images created from these 25 reference images. For each reference image,

there are 24 distortion types and 5 distortion levels. The resolution of images is 512*384.

The subjective test is carried out by 971 people from five different countries. The subjective

test is carried out using a tristimulus methodology [34], where two distorted images along

with their reference image are given to the observer at the same time. The observer is

asked to select the better one between the two distorted images. Each distorted image is

presented nine times and the winning image get one point. The sum of the winning points

is reported as the final MOS.

VCLFER is also a singly distorted database[57]. There are 23 reference images, each

distorted by four distortion types and six ditortion levels. The subjective rating uses single

stimulus methodology[4]. The scores are in the range from 0 to 100. The subjective data

is reported in the form of MOS.

LIVEMD is a multiply distorted database[16], and is the first database designed for
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assessing the quality of multiply distorted images. There are 15 reference images in the

database. The reference images are distorted by 3 distortion types (Gaussian blur, JPEG

compression, white Gaussian noise) at 3 distortion levels, producing 135 singly distorted

images. There are two multiple distortion combinations which are Gaussian blur followed

by JPEG compression and Gaussian noise followed by Gaussian noise. This results in 270

multiply distorted images. For subjective rating, the single stimulus strategy is used. The

score ranges from 0 to 100. Subjective scores for this database are provided in the form of

DMOS.

MDID database has 20 reference images. There are five distortion types: Gaussian

noise, contrast change, JPEG, JP2 and Gaussian blur. An image in the database is dis-

torted in three steps. Firstly, the image acquisition process is simulated, for which Gaussian

blur or contrast change is added to the original image. Secondly, the transmission process

is simulated. Starting with the image from the first step, JPEG or JP2 is added to the

image. In the final step, in order to simulate the display process, Gaussian noise is added

to the image from the second step. In each step, the distortion is added randomly. 80

distorted images are created from one reference image. Pair comparison is used to conduct

subjective ratings, for which two distorted images and one reference image are presented

to the observer, and the observer is asked to tell which distorted image has better quality.

The subjective socres are presented in the form of MOS.

MDID2013 database has 12 reference images and 324 multiply distorted images. It

contains three distortion types which are Gaussian blur, JPEG and white Gaussian noise,

and there are three distortion levels for a given distortion type. There is only one type of

multiple distortion combination (Gaussian blur followed by JPEG compression). Subjec-

tive experiment uses the single stimulus strategy, and the subjective ratings range from 0

to 1. The subjective results are reported using DMOS.

MDIVL is another multiply distorted database. There are 10 reference images and two

multiple distortion combinations in the database, which are Blur-JPEG and Noise-JPEG.

For Blur-JPEG, a reference image is firstly distorted by Blur at seven levels, then JPEG

compression is applied to the image at five different levels. For Noise-JPEG, a reference

image is distorted by Noise at ten levels and then four levels of JPEG compression is

applied to the noisy image. The above mentioned process creates 750 multiply distorted
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images. Subjective scores range from 0 to 100 rated using the single stimulus strategy.

The subjective scores are reported in the form of MOS.

4.1.2 Performance of FR Methods

Datasets/FR

Models

FR-EONSS WaDIQaM-FR IW-SSIM

LIVEMD 0.8812 0.8839 0.8836

MDID 0.9132 0.9158 0.8911

MDIVL 0.9090 0.8877 0.8588

WA AVG 0.9069 0.9031 0.8812

Table 4.1: SRCC Comparison of FR Models on Three Multiply Distorted Databases

To evaluate the performance of FR model, we use two state-of-the-art FR IQA algo-

rithms in the field: IW-SSIM and WaDIQaM-FR. We mainly use SRCC as the criteria for

evaluation. The comparison result on 3 multiply distorted database is given in Table 4.1.

WA AVG denotes Weighted Average, where the weights for each database is the number

of images in the database. From the Table, we can see that FR-EONSS has the best

performance compared to IW-SSIM and WaDIQaM-FR on three commonly used multiply

distorted databases.

The comparison result on all ten IQA databases is given in Table 4.2, where we can see

that FR-EONSS achieves competitive performance on both singly distorted databases and

multiply distorted databases. For some large IQA databases such as TID2013 and CSIQ,

FR-EONSS has better performance than other FR IQA algorithms. Although FR-EONSS

is developed mainly for multiply distorted images, some singly distorted images are added

into the training set. Eventually, FR-EONSS produces a balanced performance on both

singly distorted and multiply distorted databases.
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Datasets/FR

Models

FR-EONSS WaDIQaM-FR IW-SSIM

CIDIQ50 0.8714 0.8808 0.8484

CIDIQ100 0.8157 0.8409 0.8564

CSIQ 0.9459 0.9215 0.9212

LIVEMD 0.8812 0.8839 0.8836

LIVE2 0.9612 0.9643 0.9567

MDID 0.9132 0.9158 0.8911

MDID2013 0.7773 0.8357 0.8551

MDIVL 0.909 0.8877 0.8588

TID2013 0.8052 0.8016 0.7779

VCLFER 0.9541 0.9468 0.9163

WA AVG 0.8726 0.8725 0.8559

Table 4.2: SRCC Comparison FR Models on Ten IQA Databases

4.2 DR Baseline Performance Evaluation

In this section, details of the performance evaluation results of DR of different DL archi-

tectures are provided. The models are evaluated on the DR database: DR-LIVEMD. We

compare the models with FR and NR models when pristine reference images or degraded

reference images are given. The results show that these models have good performance

when pristine reference is given, but the performance drops significantly when the reference

is degraded.

4.2.1 Databases, Methods and Criteria used for Comparison

The DR-LIVEMD database contains 270 final distorted images. There are two distortion

combinations. The first one is Blur-Noise, and the second one is Blur-JPEG. For each final

distorted image, its degraded reference and pristine reference are both available.

The models being tested include the one with the same structure as FR-EONSS, DR-

Fusion model, DR-Residual model, DR-Combine model and DR-Multitask model. Two

38



models offer meaningful reference points in assessing the relative performances of the mod-

els under testing: FR-EONSS as the upper bound, and EONSS as the lower bound. Ideally,

the DR models should perform better than EONSS but worse than FR-EONSS. The same

as the criterion used for FR model comparison, we compare the SRCC results on the

DR-LIVEMD database.

4.2.2 Performance of DR Baseline Methods

The results of FR-EONSS, DR of different network architectures, and EONSS on DR-

LIVEMD database with pristine reference are provided in Table 4.3. From the table we

can see that DR-Residual and DR-Combine have performance comparable to FR-EONSS

when the pristine reference is given, all DR baseline models have better performance than

EONSS. Overall, DR models’ performance is good on DR-LIVEMD database when pristine

reference images are given. DR-Residual and DR-Combine models have SRCC around 0.73

which is not too far from FR-EONSS’s 0.76.

Algorithms/Data LIVEMD BN LIVEMD BJPG LIVMD ALL

FR-EONSS 0.7607 0.7717 0.7639

DR-Residual 0.7211 0.7425 0.7309

DR-Combine 0.7199 0.7646 0.7366

DR-Fusion 0.6691 0.7627 0.7132

DR-Multitask 0.5474 0.6580 0.5862

DR-Baseline 0.5355 0.5356 0.5213

EONSS 0.4641 0.4283 0.4124

Table 4.3: SRCC Comparison on DR-LIVEMD with Pristine Reference

To further verify whether the DR of different network architectures have good per-

formance when only the degraded reference is available, we test DR baseline models on

DR-LIVEMD database given degraded reference, the test results are provided in Table 4.4.

and Figure 4.1. From the Table, we notice that the performance of the DR models is worse

than NR models. This is true for all models including DR-Baseline, DR-Residual, DR-

Combine, DR-Fusion, DR-Multitask. Although, DR-Residual improves upon DR-Baseline,
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the improvement is not sufficient to outperform EONSS. Figure 4.1 gives the scatter plots

of DR-Residual, FR-EONSS and EONSS model predictions versus MOS. We can see from

the figure that FR-EONSS has good correlation with MOS in all score ranges, DR-Residual

does not correlate well with MOS in all score ranges, EONSS correlates well with MOS

only in higher score range. These results may due to the defect in the model structure, or

problems in the dataset or training process, and are worth deep investigations in the fu-

ture. To find an alternative, we propose to develop a new DR model based on the two-step

framework[56]. The earlier two-step method was proposed for handling the compressed-

after-distorted images using degraded reference. On the one hand, the application is limited

to compressed-after-distorted images. On the other hand, old fashioned FR/NR IQA al-

gorithms tuned to singly distorted images are adopted. In the next section, we provide

evaluation results of the proposed two-step DR model.

Algorithms/Data LIVEMD BN LIVEMD BJPG LIVMD ALL

FR-EONSS 0.7607 0.7717 0.7639

DR-Residual 0.4239 0.2447 0.3237

DR-Combine 0.3885 0.2554 0.2976

DR-Fusion 0.3809 0.2873 0.3058

DR-Multitask 0.4095 0.258 0.2988

DR-Baseline 0.3982 0.0439 0.1934

EONSS 0.4641 0.4283 0.4124

Table 4.4: SRCC Comparison on DR-LIVEMD with Degraded Reference

4.3 Two-Step DR Model Performance Evaluation

Two databases are used for evaluating the DR model performance. The first is DR-

LIVEMD which includes 270 multiply distorted images. Blur-JPEG and Blur-Noise are

two distortion combinations in this database. The second database is DR-MDIVL. All the

distorted images contain multiple distortions. The multiple distortion combinations are

Blur-JPEG and Noise-JPEG.
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Figure 4.1: Scatter Plots of DR-Residual, FR-EONSS, EONSS Model Predictions Versus

MOS on DR-LIVEMD with Degraded Reference

41



We evaluate the performance of the proposed two-step DR model on the above men-

tioned databases. State-of-the-art FR model FR-EONSS is considered as the upper bound

of the performance, while state-of-the-art NR model EONSS as the lower bound. The

evaluation results are given in the Table 4.5.

Data/Models Two-step DR FR-EONSS EONSS

LIVEMD ALL 0.7301 0.7639 0.4124

LIVEMD BJPG 0.7402 0.7717 0.4283

LIVEMD BN 0.7494 0.7607 0.4641

MDIVL ALL 0.9034 0.8868 0.8666

MDIVL BJPG 0.9033 0.9078 0.853

MDIVL NJPG 0.9274 0.9 0.8966

Table 4.5: SRCC Comparison on DR-LIVEMD and DR-MDIVL with Degraded Reference

To have a close comparison of the two-step DR model, FR-EONSS and EONSS. We

provide scatter plots of model predictions versus MOS on DR-LIVEMD and DR-MDIVL.

As shown in Figure 4.2, the proposed two-step DR model and FR-EONSS have good

correlation with MOS, while EONSS correlates well in the higher score range only. The

scatter plots for DR-MDIVL database are shown in Figure 4.3, where all three models

correlate well with MOS

Details of the testing procedure are provided as follows. All the images evaluated are

multiply distorted. When evaluating FR-EONSS, a pair of pristine reference and multiply

distorted images are fed into the model. When evaluating the two-step DR model, the

multiply distorted image is paired with its degraded reference. For evaluating EONSS,

only multiply distorted images are fed into the model. The results from Table 4.5 suggests

that, the proposed two-step DR model is successful. Even when only degraded reference

images are provided, the performance reaches the upper bound. In summary, the proposed

two-step DR IQA model meets all the objectives as laid out in Section 1.2, as it is able to

handle multiple distortion combinations and achieve highly competitive performance even

when the pristine reference images are not available.
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Figure 4.2: Scatter Plots of Two-Step DR Model, FR-EONSS, EONSS Versus MOS on

DR-LIVEMD with Degraded Reference
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Figure 4.3: Scatter Plots of Two-Step DR Model, FR-EONSS, EONSS Versus MOS on

DR-MDIVL with Degraded Reference
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this thesis we have focused on the new paradigm of DR IQA, which overcomes the

limitation of FR IQA approaches that require full access to the pristine reference image,

and meanwhile outperforms NR IQA in quality prediction performance. To reach this

goal, firstly, we have developed an FR-EONSS model that can handle multiply distorted

images with multiple distortion combinations. We train our FR-EONSS model on one

of the largest database in the IQA field. The experiment results have demonstrated the

competitive performance of FR-EONSS on commonly used multiply distorted databases.

Based on the general architecture of FR-EONSS, we have developed five deep neural

network architectures for DR IQA, which we call DR-Baseline, DR-Residual, DR-Combine,

DR-Fusion, DR-Multitask, respectively. According to the experimental results, these DR

models have good performance when pristine reference images are available, but the per-

formance drops significantly when the pristine reference images are not available.

We extend the two-step IQA framework by employing the EONSS and FR-EONSS

models. Our experiments have demonstrated the superior performance of the proposed

two-step DR model, which successfully fullfills our objectives.
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5.2 Future Work

The work presented in this thesis can be served as a foundation of the following future

research directions.

5.2.1 Fully Scalable DR IQA

It is desirable to develop a fully scalable DR IQA model. In the current work, the two-

step DR model is able to take degraded reference as input, but its ability is restricted by

the Waterloo Exploration2 database as the training dataset. Specifically, the number of

multiple distortion combinations is limited (Blur-JPEG, Blur-Noise, JPEG-JPEG, Noise-

JPEG, and Noise-JP2). Moreover, the distortion levels in the database is limited (eleven

distortion levels for distortion process one and seventeen distortion levels for distortion

process two). To achieve the goal of a fully scalable DR IQA model, the database can be

extended in two directions. The first is to cover more multiple distortion combinations,

and the second is to design a larger database with more distortion levels.

5.2.2 DR Video Quality Assessment (VQA)

The two-step DR IQA model proposed in this thesis can served as a basic step for the

development of a DR Video Quality Assessment (VQA) models. In this thesis, only spatial

relations between the reference and distorted images are explored. To design a DR VQA

model, firstly, a large scale multiply distortion VQA database is needed. This database

should be large enough to cover adequate distortion combinations, distortion levels, and

video contents. Apart from a large database, a model that can handle temporal relations is

needed. A direct extension of the current work is to add on top of our successful two-step

approach with an extra component that takes into account the temporal relations. More

sophisticated machine learning approaches and deep learning architectures may also be

investigated to achieve end-to-end DR VQA.
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[57] Anela Zarić, Nenad Tatalović, Nikolina Brajković, Hrvoje Hlevnjak, Matej Lončarić,
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