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Abstract 

For complex geological materials such as carbonates and tight sandstones having pores at several scales, 

the conventional relationships are not adequate to quantify transport properties. Therefore, it becomes 

important to study these complex rocks at the pore scale and apply relevant physics for transport properties. 

However, with the current state of imaging technology it is not possible to obtain realistic images of the rock 

having pores at several orders of magnitude in a single image. Therefore, it becomes necessary to develop 

modeling tools that can study images with unresolved porosity.  A pore network can be extracted such that 

the transport properties of the visible voids are calculated, while the interplay between micro- and macro-

porosity can be studied by modeling the unresolved pores as effective continua.  In this work, first we have 

attempted to generate three phase multiscale artificial images using PoreSpy and then devised a method of 

network extraction on these three phase images in a single step and thus created a multiscale pore network 

model using OpenPNM. Also, 3D and three-phase segmentation of real carbonate images were prepared 

where the developed algorithm was successfully tested.  A cubic grid is applied to the micropores region 

which becomes the mesh for the continua simulation with each element endowed with effective properties. 

The macropores are then stitched together with the continua scale, thus creating a hybrid hierarchical pore 

network that possess information at several scales. The multiscale pore network algorithm prepared in this 

work is fast and robust and has been tested on several 2D and 3D artificial and real rock images. Porosity, 

permeability, and formation factor have been calculated on the resulting pore networks and validated with 

the real sandstone and carbonate images. 
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1 Introduction 

1.1 Research motivation 

It is projected that even with the current progress in the development of alternative energy 

resources, oil and gas will retain the largest share in the energy mix over the next three decades 

led by demand from transportation, petrochemicals, and electric power generation. By 2040, oil 

and gas are expected to make up more than half of the global energy mix. The non-OPEC liquid 

petroleum supply is expected to expand significantly, with the majority of  growth in supply 

over the next decade coming from US tight oil [1]. The global oil production in 2019 grew by 

2.2 Mb/D, more than double its historic average [2]. In addition to that, increasing attention is 

being given by the industry to enhance the sustainability of oil and gas production, thus requiring 

maximizing the production of the existing fields. 

 

Figure 1: Global oil demand by scenario between 2010 and 2040, and declines in supply from 2019 

IEA (2020), World Energy Outlook 2020, IEA, Paris https://www.iea.org/reports/world-energy-outlook-

2020 Stated Policies Scenario (STEPS), Sustainable Development Scenario (SDS) [3]. 

https://www.iea.org/reports/world-energy-outlook-2020
https://www.iea.org/reports/world-energy-outlook-2020
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It is evident that growth in the developing economies of the world requires access to cheap 

energy supplies as increased access to modern energy, population growth, and improving living 

standards are achieved. Since energy is so important for human progress, society faces a twofold 

challenge: providing reliable and affordable energy to a growing population, while also lowering 

environmental impact, such as climate change threats. Technology holds the greatest potential 

to help society address this dual challenge [4].  

 

Transport in porous media has an important role in oil and gas recovery and aquifer 

management in naturally occurring rocks and soils [5]. Transport processes strongly depend on 

the void and solid structural arrangements since transport essentially occurs around the solid 

obstacles. However, analysis of porous materials is not straightforward. Two materials having 

the same porosity may exhibit drastically different transport rates because of differences in pore 

size, shape, and connectivity, etc. [6]. For example, because of complex sedimentary and 

diagenetic processes carbonate rocks exhibit widely varying petrophysical properties that can 

vary over short distances within the reservoir. The goal of reservoir characterization is then to 

describe the spatial distribution of petrophysical parameters such as porosity, permeability, and 

saturation. These parameters are ultimately linked through pore size. Key decisions for reservoir 

production, such as completion schemes, reservoir management strategies and enhanced oil 

recovery methods, require a rigorous understanding of the fundamental controls on fluid flow at 

the pore scale. A model that accounts for the geometry and topology of the multiscale nature of 

carbonate reservoirs is therefore a critical step in understanding the role of pore architecture in 

the fluid flow process, particularly the interplay between macropores and micropores. Therefore, 

if the pore structure is correctly represented and initial conditions are clearly understood, then 

any emergent macroscopic fluid behavior can be accurately captured.  

 

Carbonate reservoirs contain approximately 60% of the world’s oil reserves and vast 

quantities of natural gas. Carbonate reservoirs have a diverse variety of pore types, structures, 
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geometries and connectivities, resulting in large variations in the petrophysical properties and 

flow mechanics. Vugs are commonly connected to the fractures or to the matrix [7]. Carbonates 

with dominant microporosity, such as sandstone with clay, tight gas sandstones and shale with 

nanoscale, are typical rocks which can be modeled as hierarchal geological media. One of the 

defining features of carbonate reservoirs is heterogeneity caused by the presence of 

microporosity. Not accounting for microporosity causes erroneous prediction of flow and 

electrical properties, e.g., relative permeability, capillary pressure, and formation factor. Such 

omissions leads to the assumption of high mobile water saturation which cause substantial 

underestimation of hydrocarbon reserves for instance [8].  

 

Measuring the electrical resistivity of the water phase in the reservoir is a crucial tool for 

analyzing subsurface conditions. The relationship between resistivity and water content is 

described by the classic Archie’s law (to be discussed in more detail in Chapter 2).  Carbonate 

rocks commonly display non-Archie behavior attributed to porosity at difference length scales 

and the main reason for low resistivity at low water saturation in carbonates is the existence of 

connected intra-granular micro-porosity in the grain region of nearly all carbonate rocks [9]. 

This severely limits the ability of reservoir engineers to analyze the formation using the existing 

tools, which is a main motivation for better understanding the impact of microporosity in 

multiphase flow. In an oil reservoir after primary drainage most of the sub-resolution pores retain 

high brine saturation and in open hole log evaluation connected microporosity results in lower 

resistivity and thus incorrectly indicate high water saturation, this could be mistaken as a 

transition zone with overestimation of water saturation, 𝑆𝑤 resulting in lower oil estimation by 

applying Archie’s law or a transition zone may be incorrectly estimated as a 100% water zone, 

whereas a significant hydrocarbon volume may be present in the transition zone.  This can occur 

due to short circuit of resistivity measurement caused by of water filled micropores resulting in 

underestimation of oil saturation by Archie’s equation [10]. Thus, failing to correctly account 

for the microporosity where capillary bound water can cause higher 𝑆𝑤 estimates using 



4 

 

conventional open hole logs. Therefore, while resistivity measurements can be used to predict 

permeability in normal rocks, this prediction fails in microporous rocks. The realistic 3D pore 

network modeling which accurately captures the pores and throats sizes and arrangement based 

on 3D images generated by X-ray tomography could help in evaluation of the impact of 

microporosity on the electrical parameters by correctly identifying the location, amount and type 

of microporosity in the reservoir facies thus greatly improve the estimation of transport 

properties and hydrocarbon reserves [11]. 

 

Recent advances in sub-micron scale imaging are providing new opportunities to model 

micropore systems and improving the attempts of understanding their impacts on reservoir-scale 

behaviours. Moreover, experimental evidence suggests that some specific types of micropores 

are oil-bearing, but can also contribute with secondary oil recovery through a time-dependent 

spontaneous imbibition process [12]. Therefore, recovery of residual oil from micropores could 

deliver additional economic benefits if such formations are carefully developed. The 

petrophysics of microporosity is fairly well-behaved and an abundance of this pore system may 

actually enhance predictive capabilities [13]. The microporous component in many reservoirs 

may be grossly underestimated and modeling techniques based solely on depositional texture or 

macroporous component are not capable of fully capturing the interplay of multiple coaxing 

pore systems and their petrophysical responses [14]. The pore scale characterization of complex 

carbonate rock has significant importance in the context of optimizing hydrocarbon recovery 

due to structural heterogeneity which results in complex spatial fluid distributions [9]. This in 

turn dictates where and how much oil is located and aids in reserves assessment. 

 

Multiphase flow prediction in complex rocks is required to predict relative permeability 

curves which are input to reservoir scale simulations. However, this is still an area of active 

research to determine how the pore-scale configuration of various phases affects field scale 

recovery. We hypothesize that advanced pore-scale models of hierarchical porous media 
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incorporating multiple displacements, wettability conditions and different saturation paths can 

greatly contribute to improved understanding of multiphase flow behavior in complex rocks. 

The main objective of the present study/research was to develop a pore scale understanding of 

hierarchical reservoir media with the aim of enhancing oil recovery. 

 

1.2 Objectives 

The overall objective of this work was to present a new hybrid pore network extraction method. 

Since multiscale images of real porous media cannot currently be obtained from tomography 

equipment, as a first step multiscale images were artificially created that spanned several length 

scales. On the artificial images thus generated, the micropore regions was modeled as continua 

with effective properties, either obtained from network extraction of nanoscale tomographic 

image, or from correlations for related materials. The macropore networks were then stitched 

together with the continua scale, thus creating a hybrid hierarchical pore network. This approach, 

though conceptually simple, is the state of the art in multiscale PNM modeling [8], as will be 

discussed in Chapter 4.   

 

Thus, a pore network model of the hierarchical reservoir rock was obtained by extracting 

pore networks from images that possess information at several scales in a single step. Once the 

method was successfully validated, the developed modeling framework was used to evaluate 

formation properties such as porosity, permeability, and formation factor on real images.  
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2 Background 

This chapter explains the nature of the porous media and the challenges faced in modeling 

fluid flow in real porous media. Pore network modeling is a simplified representation of real 

porous media and is a suitable technique to model complex hierarchical porous media. Porous 

media is discussed in section 2.1, while Pore Network Modeling is discussed in general terms in 

section 2.2. Image Processing for digital porous media is discussed in section 2.3.  

 

2.1 Porous Media 

Porous media is ubiquitous in nature and industry, in the forms of sedimentary rocks, bones, 

teeth, and artificial media such as used in chemical reactors and Li-ion batteries where pores 

provide space to store fluids and facilitate chemical reactions, however the most economically 

important applications of porous media are in oil and gas reservoirs and in water aquifers. In this 

thesis porous media is defined as a material having pores or void spaces of variable sizes 

embedded in solid material that must be permeable to fluids of various types such as oil, water, 

and gases. Thus a  true porous material should have a specific permeability, the value of which 

can be uniquely determined by its pore geometry and should be independent of the properties of 

the penetrating fluid [15]. 

 

Two important examples of porous media and its applications are in the field of petroleum 

engineering where sedimentary rocks such as carbonates, sandstones, shales, and gas hydrate 

accumulations found in shallow marine sediments, all of which have capability to store and 

produce huge quantities of oil and gas used to meet the worlds energy needs. Reservoirs traps 

found in these sedimentary rock formations can also serve as potential CO2 storage. Another 

example is in the field of hydrology, also concerned with sedimentary rocks having large 
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aquifers where most of the world’s fresh water is stored and there is an important need to protect 

these aquifers from contaminant transport. 

 

The porous media is characterized in terms of its pore structure since the pore structure i.e., 

shape, size, orientation, and spatial arrangement of pores greatly influence the transport and 

storage capacity of porous media. The important properties which are discussed in this work for 

porous media characterization are porosity, permeability, pore size distribution, tortuosity, and 

formation factor. Hierarchical porous media is defined here as the porous media where multiple 

pore sizes with smaller and smaller pores are found as we zoom in with higher resolution. The 

pore sizes in hierarchical media could range from a high of 100 µm to low values of 100 nm and 

could be distributed like fractals i.e., self-similar shape at all scales.  

 

2.1.1 Porosity 

Porosity is an important property since it gives the storage capacity of the rock. Porosity is 

the fraction of pore volume found in a sample with a given bulk volume: 

 𝜙𝑡𝑜𝑡𝑎𝑙 =
𝑉𝑝𝑜𝑟𝑒

𝑉𝑏𝑢𝑙𝑘
 (1) 

The term ‘effective porosity’ is used to denote porosity that is available for fluid flow [14]. 

While inter-grain porosity in sandstones is a function of packing (decreases with closer packing), 

the pore size is controlled by size and packing of spheres. Sandstone porosity is affected by 

packing, sorting and cementation. Although the porosity of a pack of uniform spheres is 

independent of the grain size, in real materials such as carbonate sediments, the shape of the 

grains, presence of intragrain porosity and sorting all have a significant impact on porosity. 

While pore and throat sizes in sandstones are closely related to sedimentary particle size and 

sorting, in carbonates pore and throat sizes seldom show such a relationship. The sum of the 

porosity contributed from both the macropores and micropores is the total porosity of the sample: 
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 𝜙𝑡𝑜𝑡𝑎𝑙 =
𝑉𝑚𝑎𝑐𝑟𝑜

𝑉𝑏𝑢𝑙𝑘
+

𝑉𝑚𝑖𝑐𝑟𝑜

𝑉𝑏𝑢𝑙𝑘
= 𝜙𝑚𝑎𝑐𝑟𝑜 + 𝜙𝑚𝑖𝑐𝑟𝑜 (2) 

where 𝑉𝑚𝑎𝑐𝑟𝑜 is the volume fraction of the macro-porosity region in the sample and 𝑉𝑚𝑖𝑐𝑟𝑜 is 

the volume fraction of the matrix region in the sample.  

 

The impact of microporosity on total sample properties has been studied and it was found 

that various types of microporosity exist. Microporosity regions are important in determining 

fluid flow properties for carbonates rock showing at least one order of magnitude difference in 

the computed permeability [16].  

 

Advanced imaging techniques have revealed that the microporosity can take on a wide variety 

of forms. Cantrell [17] has identified four important types of microporosity, namely: 

microporous grains, microporous matrix, microporous fibrous to bladed cements and 

microporous equant cements. Experimental evidence reviewed by Clerke et al. [12] reveals that 

not only are specific micropores oil-bearing, but they can even contribute to secondary oil 

recovery in the field through a time-dependent spontaneous imbibition process. Pore types 

control fluid flow and are thus very important rock characterization consideration to the 

petrophysical properties of the porous media [18]. Fullmer et al. [13] using Total Pore System 

Characterization, demonstrated that limestones having more that 80% microporosity exhibit 

favorable oil recovery and lower residual oil saturation due to homogeneous nature of micro-

pore system. Remaining oil saturation values were found from primary imbibition measurements 

via water-oil centrifuge capillary pressure (𝑃𝑐) experiments.  

 

2.1.2 Microporosity 

Microporosity has been defined by different sizes according to different types of 

microporosity found in the carbonate and tight sandstone and one cutoff size cannot be assigned 
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to microporosity. Several authors have categorized microporosity as pore sizes less than some 

given particular size while using classification of micropores, and macropores [19], [13], [20], 

[18]. In this work we have adopted the definition of Bultreys et al. [21], ‘micropores are defined 

as pores which are below the resolution of the micro-CT scan in question’, thus microporosity 

in our work will be called the matrix region having pore size which is below the micro-CT 

imaging resolution.  

 

Hebert et al. [22] indicated that micropores often controls the connectivity of the sample, in 

samples tested they have found no percolating cluster where only macropores were considered 

however combining micropores with macropores resulted in a well-connected network. The 

presence of micropores increases the residual water saturation by defending from the non-

wetting phase, while also offers escape routes to the trapped nonwetting phase inside 

macropores. In Estaillades which is a micro-porous dominated carbonate and exhibits parallel 

dominated flow paths provided by intragranular pore filling nature of microporosity, Lin et al. 

[23] found that the presence of micro-porosity leads to higher initial water saturation and also 

provides additional connectivity resulting in lower residual oil saturation. However, the high 

permeability is Estaillades is a result of well-connected macroporosity network indicating 

preference of fluids to flow through such a network where percolating network of macropores 

or vugs is available [21],[24],[25].  

 

2.1.3 Permeability 

Permeability is an important rock property that relates to the rate at which hydrocarbons can 

be recovered by application of pressure such as water injection into the reservoir. Permeability 

is a function of porosity, tortuosity, and pore and throat size. Unlike porosity, permeability varies 

with grain size, as well as packing and sorting. The absolute/effective permeability, 𝐾, of a 

medium is defined by Darcy’s law: 
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𝑄

𝐴
=  

𝐾(𝑃𝑖𝑛 − 𝑃𝑜𝑢𝑡)

𝜇𝐿
 (3) 

Different rock types have a range of permeability spanning around ten orders of magnitude, 

controlled principally by the variation in throat size and connectivity of the pore space. Most 

reservoir rocks have permeabilities in the range of 1 - 1000 mD, porosities around 0.1 to 0.3 and 

corresponding pore radius around 1 to 10 𝜇𝑚 [26]. The relationship between permeability and 

pore size can be qualitatively understood by considering Hagen-Poiseuille equation for flow of 

fully developed Newtonian fluid through cylindrical pipe given by equation (4) below. Note the 

strong dependence of flow on the size of the tube 𝑅4, therefore in porous media flow through 

small pores is severely restricted even though there are a great many micropores.  

 Q =  
𝜋𝑅4∆𝑃

8𝜇𝐿
 (4) 

 

This nature of pressure driven flow in which preferential flow occurs through the connected 

macropore network affects the production flow rates in oil reservoirs having multiscale porous 

media. This type of behavior is known in the petroleum industry as dual porosity system and has 

been noted in tight naturally fractured reservoirs in which cross-flow of oil occurs from the tight 

matrix blocks into the fractured system and then produced through wellbores [27]. In cases 

where macropores are shielded by the micropores, permeability and hence flow rate can be 

drastically impacted. 

 

2.1.4 Pore size distribution 

Pore size distribution refers to the range of all the pore sizes in the sample. Mercury intrusion 

porosimetry is the most common method of measuring pore size distribution. The pore size 

obtained by this method is referred to as pore-throat size and is defined as the pore size that 

connects the larger pores. In the primary drainage process modeled in the porosimetry 

experiment the pore space is initially filled with the wetting phase. Then the non-wetting phase 
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is forced to penetrate from the inlet and the applied pressure is increased in small increments. 

Initially the non-wetting phase penetrates only the largest pores adjacent to the surface of the 

porous medium. As the non-wetting phase pressure is increased progressively more of the pore 

space is accessible until the smallest pores are penetrated. From the measured capillary pressure 

vs wetting phase saturation curve the derivative of saturation with respect to the logarithm of 

capillary pressure is used to find the throat size distribution. While the throat radius at that 

particular capillary pressure is calculated from the Washburn equation assuming contact angle 

of zero if one of the fluids is non-wetting such as mercury.  

 

Figure 2: A typical pore size distribution curve for Berea sandstone (blue) and Estaillades carbonate 

(orange)[26] 

 

An illustrative primary drainage capillary pressure curve for Berea sandstone and Estaillades 

carbonates and pore size distribution curves are shown in Figure 3 and Figure 2 respectively. 
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The Estaillades shows a dual porosity behavior with bimodal pore size distribution since the 

rock is known to contain two types of pores: well-connected intragranular macropores and 

intragranular micropores within the grains. While the Berea sandstone indicating unimodal pore 

size distribution has a homogeneous arrangement of large pores. 

 

Figure 3: A typical capillary pressure vs saturation curve for Berea sandstone (blue) and Estaillades 

carbonate (orange) [26] 

 

2.1.5 Tortuosity 

Tortuosity has been defined as the ratio of effective flow path 𝐿𝑒 , to the macroscopic length 

𝐿 (sample length): 
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𝜏 = (

𝐿𝑒

𝐿
)

2

 
(5) 

We explain below the definition of tortuosity using Fick’s law. The Fick’s law of diffusion 

for a species A in a mixture of species A and B is written as follows: 

 
𝑁𝐴 = −𝐷𝐴𝐵

𝑑𝐶𝐴

𝑑𝑋
 

(6) 

While diffusion through a porous media treated as a continuum and be written as 

 
𝑁𝐴 = −𝐷𝑒𝑓𝑓

𝑑𝐶𝐴

𝑑𝑋
 

(7) 

where 𝐷𝑒𝑓𝑓 < 𝐷𝐴𝐵, the effective diffusivity accounts for reduction in flux due to two factors, 

the presence of solid obstacles, i.e., reduction of space being taken into account by porosity and 

the additional path that the molecules must travel to avoid the solid obstacles, taken into account 

as tortuosity. Hence equation (7) can be written as:   

 
𝑁𝐴 = −𝐷𝐴𝐵  

𝜙

𝜏

𝑑𝐶𝐴

𝑑𝑋
 

(8) 

 Equating equation (7) and equation (8),  

 𝐷𝑒𝑓𝑓

𝐷𝐴𝐵
=

𝜙

𝜏
 

(9) 

 

Since obtaining tortuosity value for a porous medium is experimentally difficult, many 

correlations have been proposed based on other more easily measured parameters. In porous 

media the most applied is the Bruggemann correlation for spheres. Since the shape of the 

particles in real rocks are much more complex than simple spheres, the tortuosity value estimated 

from the Bruggemann correlation will be an underestimation and therefore in real sandstones 

we should expect higher tortuosity and lower effective diffusivity.  

 

Various forms of tortuosity has been defined [28] in the literature: 
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• Geometrical: in terms of path length 

• Electrical: in terms of electrical conductivity of medium 

• Diffusional: in terms of temporal changes in concentration as explained in this work  

• Hydraulic: normally defined in geometrical terms 

 

In tight formations, diffusional tortuosity is important because diffusion can occur through 

the microporosity with relative ease compared to fluid flow. Note that there is no size 

dependence in the definition of tortuosity. It has been demonstrated in the literature, Hedley et 

al. [28], that for a porous medium electrical and molecular diffusivities are equivalent.  

Therefore, electrical tortuosity can represent the diffusional tortuosity as explained above.  

 

2.1.6 Formation Factor and Resistivity 

The formation factor, FF measures the influence of pore structure on the resistance of the 

sample by measuring the electrical transport properties of a porous media and is related to 

porosity and pore structure.  

 
𝐹𝐹 =   

𝑅𝑜

𝑅𝑤
  

(10) 

where 𝑅𝒐 is the resistivity of water bearing formation and 𝑅𝑤 is the resistivity of formation 

water.  Note that the due to the analogy between diffusion and electrical conduction of ions, we 

can also write: 

 
𝐹𝐹 =   

𝐷𝐴𝐵

𝐷𝑒𝑓𝑓
=

𝜏

𝜙
 

(11) 

 

𝐹𝐹 is usually correlated using a more practical relationship that is the Bruggeman equation, 

known as Archie’s law: 
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 𝐹𝐹 =
𝑎

𝜙𝑚
 

(12) 

where 𝒎 is the cementation exponent, the value of 𝒎 reflects the tortuosity of current flow and 

in general its value varies with the degree of cementation as rock becomes more consolidated 

[29]. The structural parameter, 𝒂 is a cementation factor and has been attributed to the interstitial 

structure of the rock. Theoretical and experimental investigation showed that 𝒂 and 𝒎 vary 

mainly with pore geometry, hence depends on the rock type. Thus, the significance of formation 

factor is that its value is uniquely determined by the pore geometry [15]. The equation above 

when written in log format is used to make a log-log plot of FF vs 𝝓 which yields a straight line 

from where values of a and m are determined as shown in Figure 4. In petroleum industry FF vs 

𝝓 and FF vs k relationship for a particular formation is determined from laboratory 

measurements on number of core samples. The values of a and m are thus obtained for a specific 

formation from measurements of 𝑭𝑭 and 𝝓 values determined either from laboratory 

measurement on core samples or from well logs. 

 

Figure 4:  FF vs  𝝓 log-log plot of a formation to determine the formation specific parameters [30]. 
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The values of 𝑎 and 𝑚 are then used in the Archie’s equation to determine water saturation 

which is an input parameter in the calculation of oil and gas reserves. Thus, the values of 𝑎, 𝑚 

and 𝑛 used in the Archie’s equation below are critical in the determination of 𝑆𝑤 and ultimately 

oil and gas reserves.  

 

𝑆𝑤 = (
𝑅𝑤

𝑅𝑡

𝑎

𝜙𝑚
)

1
𝑛

 

(13) 

 where, 𝑅𝑡  is the resistivity of the oil-bearing formation and 𝑛 is termed as the saturation 

exponent with values close to 𝑚. The value of 𝑛 is known to depend on the wettability of the 

rock. Resistivity index 𝑅𝐼 is defined as the ratio of the resistivity of the partially water-saturated 

rock, 𝑅𝑡 , to the resistivity of the fully water-saturated rock, 𝑅𝑜: 

 
𝑅𝐼 =  

𝑅𝑡

𝑅𝑜
=  𝑆𝑤

−𝑛 
(14) 

 

Resistivity index is known to be affected by the pore structure and saturations. in one study 

it was found that 𝑅𝐼-𝑆𝑤 curve of a rock “bend upwards” in dual porosity systems, with the 

inflection point being related to the fractional partitioning of macro-porosity and micro-porosity 

[9]. In another study pore network modeling showed that the microporosity fraction influences 

Archie 𝑛 and thus 𝑆𝑤. In a real field case study, it was found that micropores have excellent 

connectivity in 3D [19]. 

 

By combining actual fluid velocity within the pores with the macroscopic velocity in Darcy’s 

law it can be shown that permeability is inversely proportional to the tortuosity. Since both the 

electrical conductivity and the permeability of a porous medium are determined by the effective 

length of the path of flow of ions. The greater this length the lower the conductivity and the 

permeability, hence as the effective length of the path of flow of ions increases tortuosity 
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increases, permeability decreases and 𝐹𝐹 increases. Formation factor is the electrical analog to 

absolute permeability, while 𝑅𝐼 is the electrical analog to relative permeability. Based on 

experimental studies on core plugs Archie concluded that there exists a relation between 𝐹𝐹 and 

𝑘 as highlighted in figure below. Bassiouni et al. suggested an empirical relationship of the 

following form [30], the relation also verified in various experimental studies.  

 𝐹𝐹 = 𝐴𝑘−𝐵 (15) 

where 𝐴 and 𝐵 are formation specific constants. Formation factor estimation method used in this 

thesis is further explained in section 4.1.3. 

 

 

Figure 5: A plot of Formation Factor vs Permeability for U.S. Gulf coast formation [30]. 
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2.2 Pore network modeling – General review 

One of the problems encountered in pore scale modeling of geological materials is the 

multiple spatial scales inherent to the pore structure of complex rocks such as carbonates and 

tight sandstone with mud. This means that it is not possible to capture the wide range of pore 

sizes in one single imaging experiment, due to limited resolution and sample volume of these 

experiments. The discrepancy between these scales, which might be several orders of magnitude, 

poses computational problem. For instance, in a carbonate or sandstone sample of 1 cm across, 

large vugs or pores may be present which are 100s 𝜇m across, combined with micro-porosity or 

clay with structure down to 0.01 𝜇m. Hence, to resolve the smallest pore space in this small rock 

sample require an analysis over six orders of magnitude (from 10−8 to 10−2 m). Therefore, it is 

useful to have a simplification that retains the connectivity of the pore spaces as well as 

geometric information [26].  

 

Pore network models (PNMs) are a suitable technique for multi-scale simulations of this kind, 

because these models describe individual pores as a single unknown element and are thus 

computationally efficient [21]. Pore-network modeling was first introduced by Fatt [31] in 1956, 

who exploited the analogy between flow in porous media and a random resistor network and 

introduced interconnectivity and spatial heterogeneity; which was in contrast to the prevailing 

representation of pore space as bundle of parallel tubes. In his two-dimensional model the 

electrical current represented flow, while the voltage difference was equivalent to the pressure 

drop. This was possible due to the analogy between Poiseuille’s law and Ohm’s law. Note that 

his ‘model’ was an analogue computer which literally consisted of wires and resistors. 

 

Pore network modeling is based on the recognition that, in many applications, an approximate 

model of a suitably large domain is more effective than a highly rigorous model of a limited 

number of pores. The modern concept of PNMs is to map the pore space onto a discrete network 
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of pores and connecting throats, then use transport algorithms based upon nodal balances (i.e., 

resistor networks) of transported fluids to run simulations. In addition to speed and simplicity, 

PNMs have some advantages over the more commonly used continuum models. PNMs can solve 

realistic saturation profiles and have a direct connection between structure and topology of the 

porous material and transport processes.  

 

In this network model, each throat represents a resistor e.g., the throat constriction causes 

resistance to flow because of its geometry, as well as the fluid properties such as viscosity. The 

resistance in PNMs is described by an appropriate pore-scale physics model, such as Hagen-

Poiseuille model for single phase flow in a cylindrical tube: 

 𝑞𝑖𝑗 =  
𝜋𝑅𝑖−𝑗

4 (𝑃𝑖 − 𝑃𝑗)

8𝜇𝐿𝑖−𝑗
 (16) 

where 𝑃𝑖 and 𝑃𝑗 are the pressures in pores 𝑖 and 𝑗, 𝐿𝑖−𝑗 and 𝑅𝑖−𝑗 are the length and radius of the 

throat (pipe) connecting pores 𝑖 and 𝑗, and 𝜇 is the fluid viscosity. Assuming each pore-throat-

pore conduit Figure 6 as a cylinder we can find the hydraulic conductance using the above 

equation (16). Then conservation of mass is applied around each pore as given in Equation (20).  
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Figure 6: A pore-throat-pore schematic diagram for hydraulic calculations 

 

The above equation for 𝑛 neighboring pores can be stated as: 

 
𝑞𝑖𝑗 = ∑ 𝑔ℎ,𝑖𝑗(𝑃𝑖 − 𝑃𝑗)

𝑛

𝑗=1

 (17) 

where 𝑞𝑖𝑗 is the flow rate from pore 𝑖 to pore 𝑗, 𝑔ℎ,𝑖𝑗 is the conduit’s hydraulic conductance 

between pores 𝑖 and 𝑗. The hydraulic conductance for each section of half pore 𝑖 , the conducting 

throat 𝑔𝑡,𝑖−𝑗, and half pore 𝑗 are calculated as three resistances in series as follows.  

 𝑔ℎ,𝑖𝑗 = (
1

𝑔𝑝,𝑖
+

1

𝑔𝑡,𝑖−𝑗
+

1

𝑔𝑝,𝑗
)

−1

 (18) 

When the pressure loss in each half pore is neglected for simplicity then the total flow rate 𝑄 

through a single pore can be generalized as: 



21 

 

 
𝑄𝑖𝑗 = ∑ 𝑔ℎ,𝑖𝑗(𝑃𝑖 − 𝑃𝑗)

𝑛

𝑗=1

 (19) 

At steady state and in absence of any source or sink terms, the net material flow through pore 

𝑖 is zero, hence Eq.(19) can be recast as: 

 
0 = ∑ 𝑔ℎ,𝑖𝑗(𝑋𝑖 − 𝑋𝑗)

𝑛

𝑖−𝑗

 (20) 

where pore 𝑖 has 𝑛 neighbors and 𝑋 is the unknown to be solved for. When the above equation 

is applied to each pore in the network it generates a system of linear equations in 𝑋 that can be 

readily solved by any matrix inversion algorithm subject to given boundary conditions.  

 

When the unknown 𝑋 represent the pressure, applying equation (20) to all pores in the 

network generates a linear system that can be solved for the pressure in each pore system. This 

result in a system of equations such that  

 𝑃 =  𝐴−1𝑏 (21) 

where 𝑃 is the unknown pressures to be solved, 𝐴 is the coefficient matrix of hydraulic 

conductance and 𝑏 is the boundary condition. Basically, equation (21) states that if the inverse 

of the coefficient matrix exists and can be found, the solution of the system of equations for 

unknown 𝑃, can be obtained by pre-multiplying the known boundary conditions vector 𝑏, by the 

inverse of the coefficient matrix, 𝐴−1.  

 

Having determined the pressures 𝑃 of all pores, the flow rate leaving the sample can be 

computed by summing the rate for all boundary pores. Once rate, 𝑄, through the entire network 

calculated by the summation of flow rates across all throats connected through the inlet (or 
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outlet) pores is known, to determine permeability coefficient use Darcy’s law with imposed 

pressure at the boundaries, 𝑃𝑖𝑛 and 𝑃𝑜𝑢𝑡 , on the network of length 𝑙: 

 𝐾 =  
𝜇𝑄𝑙

𝐴(𝑃𝑖𝑛 − 𝑃𝑜𝑢𝑡)
 

(22) 

 

Similar to the above approach for calculating permeability, the formation factor which is the 

electrical analog to the permeability is calculated using Fick’s law of ionic diffusion due to 

concentration difference. The diffusive conductance for each half pore, throat and half pore 

element are calculated by resistors in series analogy similar to equation (18) using diffusive 

conductance in place of hydraulic conductance of the form, as explained in detail in section 4.1.3  

 
𝑔𝑑 =  

𝐷𝐴𝐵𝐴

𝐿
 

(23) 

 

Assuming steady state with no generation or consumption of ions, net mass flow through a 

single pore is zero. The system of linear coupled equation is then solved to find value of 

concentration in each pore with applied concentration difference for the entire network. Having 

determined concentration in each pore the diffusive flow rate is then calculated. Once the mass 

flow rate through the entire network is known, the effective diffusivity of the whole domain is 

determined by applying Fick’s law with imposed concentration at the boundaries. The formation 

factor is finally determined as the ratio of bulk diffusivity in open space to the effective 

diffusivity of the medium.  

  

2.3 Image Processing and Analysis 

Image processing and analysis includes correcting imaging defects, image enhancement 

operation, segmentation and thresholding and processing binary images. 

The scipy.ndimage packages by SciPy.org, has been used in this thesis, the package includes a 
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number of general image processing and analysis functions that are designed to operate with 

arrays of arbitrary dimensionality. Image processing fundamentals are briefly discussed below 

[32]. 

 

2.3.1 X-ray Imaging 

The common approach to image the pore space of rocks is to use a laboratory micro-CT 

instrument that houses its own source of X-rays. The dependence of the X-ray absorption on the 

composition and geometry of an object allows to make radiographies, by placing the object in 

between an X-ray source and detector. These are basically shadow images and thus projections 

of a 3D object on a 2D plane getting 2D slices. However, by rotating the object around an axis 

and acquiring radiographies from multiple angles, the 2D slices are then stacked to construct 

three-dimensional images of the rock sample as illustrated in Figure 8. The image resolution is 

determined primarily by the proximity of the rock sample to the source. The magnification of 

the projected image is the ratio (𝑎 + 𝑏)/𝑎, see Figure 7. Thus to obtain a high resolution image, 

it is necessary to scan a smaller sample which is placed closer to the X-ray source [26] since the 

geometric magnification rapidly degrades with increasing sample size.  
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Figure 7: A simplified Illustration of a cone-beam imaging system.  

For micro-CT devices, typical X-ray energies are in the range 10 – 160 keV – with 

corresponding wavelengths 0.1 – 0.01 nm. Current micro-CT scanners produce images of around 

10003 – 20003 voxels. To obtain a representative image, the cores are normally a prepared a 

few mm across, constraining resolution to a few microns per voxel. 

 

In a bench top instrument with its own X-ray source, an electron beam strikes a target to 

produce X-rays that pass through the specimen, which is mounted on a rotating and translating 

sample holder placed in front of the X-ray detector. By accelerating an electron beam to a small 

focal spot on a metal anode, often made of tungsten here the sudden deceleration of the electrons 

produces a conical X-ray beam. This results in a geometrical magnification of the object on the 

detector. The resolution is limited by the minimal focal spot size of the X-ray tube and by the 

a 
b 

Geometric Magnification = (a +b)/a  

Source 

X-rays 

Sample 

Detector 
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geometrical magnification which can be achieved. The intensity of the transmitted X-rays, which 

can be set for characteristic energies to achieve element-specific imaging can then build up a 

series of projected views from which tomographic reconstruction can be performed as 

highlighted in the figure below. After conversion to visible light by a phosphor or channel plate 

and appropriate intensification, the projected images can be collected using conventional solid 

state detector arrays.  

 

 

Figure 8: Schematic illustration of X-ray CT acquisition and reconstruction process.  

 

2.3.2 Image Representation  

Digital representation of porous media at pore scale are basically mathematical arrays with 

values in each element. For example, in 2D binary images which comprise of ‘Pixels’, a value 

of 1 represents void and 0 represents solid. Stacks of 2D images where the third dimension 

represents the height make a 3D image in which the basic element is called a ‘Voxel’. 
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2.3.3 Correcting Imaging defects 

This describes image processing operations and procedures that can be applied to correct 

some of the defects in as-acquired images that may occur due to several causes such as: imperfect 

detectors, limitations of the optics, inadequate or non-uniform illuminations, etc. The image 

processing does not add anything to the image but only removes or reduces one portion of the 

image content so that others may be better seen or measured. The common way uses 

neighborhood averaging which replaces each pixel with average of itself and its neighbors. This 

is often described as a ‘kernel’ operation since implementation can be generalized as the sum of 

pixel values in the region multiplied by an array of numeric weights. 

 

2.3.4 Image Enhancement 

This involves enhancing the visibility of one portion of an image by suppressing the visibility 

of another portion and is done simply to make image easier to visually examine and interpret. 

Image mathematical operations such as addition, subtraction, division, and multiplication use 

two images to produce a new image. These operations are performed pixel by pixel such that the 

sum of two images contain pixels whose brightness values are sum, ratios, or differences of the 

corresponding values in the original images. Image addition is used for averaging of images to 

reduce noise. Adding images together can in some cases be helpful to create composites, which 

help to communicate complex spatial relationships. Image subtraction is used to level images by 

removing background. Subtraction is also a way to discover differences between two images. 

Multiplication operation is used to superimpose one image on another, for example to add 

texture to a surface [32] which refers to image variability or brightness values.  

 

2.3.5 Segmentation and Thresholding 

Selecting objects or features within an image is an important requirement which entails 

checking each individual pixel in the raw image to see whether it belongs to the object of interest 
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or not. The simplest way is to define a range of brightness values in the original image, select 

the pixels within this range as belonging to the foreground i.e., region of interest, which is the 

pore space, and rejecting all the other pixels to the background or the sold phase. The selection 

process is usually called thresholding. The resulting image is then displayed as a binary or two-

level image, using black and white to distinguish the regions. Image segmentation is a crucial 

step in image processing since it impacts subsequent analysis such as pore network generation. 

Image segmentation can be defined as the process of assigning a label for example, a unique 

number, to each pixel in an image such that pixels with the same label have similar 

characteristics. An illustrative example of three-phase segmentation is shown in Figure 9.  

 

The brightness histogram of the image is used for thresholding the image. The histogram 

counts pixels with each brightness, the typical image digitalization process produces values from 

0 (black) to 255 (white), producing 1-byte (8bit) values. Thus, for typical 8-bit monochrome 

image, the brightness scale represents 28 or 256 grayscale values. The image histogram, a plot 

of the number of pixels with each possible brightness level i.e., 256 possible values, is a valuable 

tool for examining the values in the image. The premise behind thresholding with the histogram 

is that a peak indicates that many pixels have nearly the same brightness and therefore represents 

the same type of object. Typically, voxels with darker shades represent the pore-space while 

brighter grayscale values correspond to solid phase. In two-phase segmentation the grayscale 

histogram consists of two distinct peaks that define the solid and void phases. In three-phase 

segmentation as used in this work there is a region that lies between the two peaks that is 

unresolved by micro-CT device and is categorized as microporosity. 
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Figure 9: A grayscale image on left showing void in light gray, grains in dark gray and matrix in the 

background with microporosity which cannot be clearly distinguished. On the right is the segmented image 

with void in white, grains in black and matrix in darker gray.  

 

2.3.6 Binary Images 

Morphological operations modify individual pixels in the binary images based on their local 

neighborhood. These operations function by dealing with array of pixels. The important 

morphological operations are Dilation, Erosion, Opening and Closing.  
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Dilation is the operation of expanding objects in an image by a specified amount and is 

accomplished by scanning through an image and replacing each 0 with a 1 if any pixel in its 

neighborhood are 1s. This adds a layer of pixels around the periphery of all features and regions, 

increasing their dimensions and sometimes cause features to merge. It can also be used to fill in 

small holes within features. Erosion removes pixels from features in an image by replacing 1s if 

it has neighbors of 0 and is used to remove pixels that do not lie within the large regions of 

brightness. The combination of an erosion followed by a dilation is called an opening operation 

and used to open gaps between just-touching images i.e., to separate touching features and for 

removing isolated pixel noise from binary images. Performing a dilation followed by an erosion 

(both with the same structuring element) is called closing. The result is to fill places where 

isolated pixels are 0s such as missing pixels within a feature. 
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Figure 10: Closing operation - Dilation of the original image followed by Erosion of the dilated image using 

the same structuring element. 
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Figure 11: Opening operation - Erosion of the original image followed by dilation of the eroded image using 

the same structuring element. 

 

2.3.7 Distance Transforms and Watershed Segmentation 

Distance transform applied to binary images results in a grayscale image with gray level 

intensities of points inside foreground regions (pixel 1) changed to show the distance to the 

closest solid boundary (background, pixel 0). Thus, showing the distance of each void voxel to 

the nearest solid voxel. The gray level intensity corresponds to Euclidean distance. Hence the 

name Euclidean distance Map as shown in Figure 12 below: 
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Figure 12: Euclidean distance transform applied to the binary image (a) on the left resulting in the (b) 

graylevel image shown on the right. 

 

Watershed segmentation is used for separating touching convex features in an image. The 

brightness values of each pixel in EDM are visualized as a physical elevation, each feature then 

appears as a mountain peak, as a result the larger features have higher peaks. Thus, watershed 

method first builds a distance map of the pore space, the pore space is then partitioned into 

regions associated with each pore by treating the distance map as a topological contour. Since 
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flooding should start from the lowest point. This minimum is obtained by applying a negation 

operation inside each catchment basin which results in the maximum becoming the minimum. 

 

In accordance with the watershed analogy, fictitious water is applied to the image, and 

collects in each basin, which become pore regions, with ridge between them becoming the throat. 

The watershed process used in this work for segmentation is explained in detail in section 3.1. 

 

 

Figure 13: Two touching objects, their distance transform and watershed segmentation showing the ridge 

line  
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3 Literature Review 

This chapter presents a literature review on pore network extraction methods and the 

current status of pore network modeling. Section 3.1 covers a review of current efforts on pore 

network extraction methods and the method developed in this thesis. Section 3.2 covers current 

multiscale pore network models for complex porous rocks, examples of which are carbonate 

rocks with lot of microporosity and clay-bearing sandstones, efforts on making representative 

models and typical output of those models are also discussed. 

 

3.1 Pore network extraction 

By definition a network representation is a partitioning of the void space to preserve 

approximately, the connectivity and other useful geometric information [26]. We will briefly 

discuss the more commonly used extraction methods where the pore network model is directly 

constructed by segmenting voids and throats of porous media using image processing 

techniques. The three common methods are medial axis, maximum ball, and watershed 

segmentation. Among the three methods, watershed segmentation in one of the most popular 

methods since it is efficient and extracted network definition provided by the watershed 

algorithm does serve as a reasonably consistent, robust, and useful characterization of the pore 

space. 

 

In the medial axis method, a pore space skeleton that runs approximately in the middle of the 

void region is identified.  The pore space skeleton is achieved by shrinking the pore space voxel 

by voxel iteratively until a cross section through a pore becomes a single voxel, thus pore bodies 

are identified as the branching points of the medial axis. While medial axis has the advantage 

that it provides direct relationship to the topology of the original image, the method suffers from 
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the disadvantage that pore space is not clearly identified i.e. geometrical pore bodies obtained 

do not necessarily coincide with the actual pore bodies [8]. 

 

The maximal ball algorithm was proposed by Silin and Patzek and later refined by Blunt and 

co-workers. In this method, spheres centered on each voxel are grown until they touch the nearby 

solid. These spheres are called maximal balls. A sphere that is larger than any other sphere that 

it overlaps uniquely defines a pore and is named an ancestor. The algorithm then builds a family 

of cascading smaller spheres and eventually finds one ball that is a child (intersection) of two 

families. This defines the throat or restriction that separates two wider regions of pore space. 

The maximal ball method suffers from two drawbacks: due to discrete nature of pore-space 

images the method can find multiple connections with spheres of apparently equal size between 

the same pores; and the unclear distinction between a pore and a throat [26].  

 

The watershed algorithm technique is one of the most popular one due to its relative ease of 

implementation and robust identification of pore and throats. This idea was first presented by 

Thompson et al. [33] and Sheppard et al. [34] but has been extended by recent work. This method 

first builds a distance map of the pore space, this is the distance from the center of a void voxel 

to the nearest solid. The pore space is then partitioned into regions associated with each pore by 

treating the distance map as a topological contour. In accordance with the watershed analogy, 

fictitious water is applied to the image, and collects in each basin, which become pore regions, 

with ridge between them becoming the throat. 

 

Rabbani et al. [35] presented an algorithm adapting watershed to rock materials and 

producing 3D and 2D networks. The main steps in their algorithm are applying a distance 

transform to binary volume data, performing median filtering for smoothing the distance 

transform, and lastly applying watershed segmentation by pixel flooding to label all detected 

pores and throats for network extraction. Gostick [36] made an improvement to the method of 
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Rabbani et al. by removing several types of spurious peaks in the distance transform that leads 

to over-segmentation in the watershed step.  This is particularly common in high porosity 

images; hence it was called the sub-network of the over-segmented watershed (SNOW). The 

steps to achieve this improvement are: The algorithms start by applying Euclidean Distance 

Transform of the segmented pore space, then filtering the distance transform with a Gaussian 

blur to reduce the number of bad peaks, removing peaks that actually fell on plateaus and saddles 

in the distance transform, removing peaks that were too near to another peak, and finally 

applying marker-based Watershed segmentation algorithm which finds local valleys in the 

inverted distance transform so that peaks become valleys. The workflow for the SNOW pore 

network extraction methodology is shown in Figure 14 below:  
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Figure 14: Basic steps of SNOW algorithm, a) a binary image, b) applying Euclidean Distance transform on 

the binary image, c) finding peaks using gaussian filter and trimming spurious peaks, d) finally applying 

marker-based watershed segmentation. 

 

The main improvement required in the current pore network extraction methods is the 

accurate representation of multiscale rock. This means by capturing the true amount and location 

of microporosity including the presence of small-scale heterogeneity such as microfractures can 

greatly improve the reliability of pore network models. Thus, in our multiscale pore network 

a b 

c d 
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extraction approach, we aim to capture the correct amount and location of microporosity in a 

single step and then by assigning average effective properties and relevant pore scale physics to 

simulate the transport behavior of real rocks. We propose that by assigning realistic geometrical 

properties and having matched porosity, permeability and, formation factor with real sample, 

we hope will lead to good estimate of transport properties for multiphase flow conditions.  

 

3.2 Multiscale pore network modeling 

When the pore structure is accurately characterized by reasonably specifying size, shape, 

connectivity, and spatial arrangement of pores and throats, pore network models have the 

potential to become a predictive technique. In recent years, significant advances have been made 

in predictive pore-network modeling, where geologically realistic networks are constructed from 

3D voxel-based images that may be generated by X-ray microtomography, confocal microscopy, 

or by 3D reconstruction informed by 2D images. Multiscale pore networks have the potential to 

model complex hierarchical porous media and systems with significant microporosity like 

carbonates. Multiscale networks recently developed represents a significant advancement over 

earlier research that concentrated on more homogeneous porous media like sandstones and 

sandpacks. Carbonates have a bimodal pore size distribution, and a far more complex wettability 

state [37] than sandstones. Carbonate rocks commonly display non-Archie behavior which has 

been attributed to porosity at different length scales, as evidenced by the anomalously low 

resistivity at lower water saturations. The main reason for this behavior in carbonates is the 

existence of connected intra-granular microporosity in the grain regions of nearly all carbonate 

rocks as explained previously in section 2.1.2.  

 

Since the traditional relationships used in petroleum industry such as Archie’s equation 

relating resistivity to saturation, Brooks-Corey for relative permeability and Carman-Kozeny for 

absolute permeability are not appropriate for carbonates and tight sandstones with mud, it 
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becomes imperative to investigate at the pore scale to gain a fundamental understanding of flow 

through porous media for finding closure relationships. Attempts previously made can be 

broadly classified into four different dual PNM approaches, since they consider both macro and 

micropores in these models, these dual PNM models can be classified as Coincident micropores, 

Parallel micropores, Explicit micropores and Averaged micropores according to the modeling 

of micropores in their approach as will be explained in detail in the following paragraphs. These 

four different approaches are shown in Figure 15 below: 

 

 

Figure 15:Representation of the dual PNM models, the Coincident micropore model (a) proposed by Berki 

[38], a cubic-lattice based network of macropores is embedded in a homogeneous microporous matrix of 

uniform properties, (b) The Parallel micropores model proposed by Baur [39] is image based and 

microporosity is added in parallel to the user defined percentage of macrothroats, (c) The Explicit 

micropores model used by Jiang [40] and Masa [41], the unresolved microporosity is modeled on high 

resolution micro-tomograph images where each individual micropore is taken into account. While in the 
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Averaged micropores model used (d) by Bultreys [42] microporosity is modeled as truncated cone micro-

link between macropores taken both in series and parallel communication to the macropores. In the 

proposed Hybrid micropores model (e) macroporosity is taken as the original shape and location by image 

analysis with its network of macropores and macrothroats, the microporosity is taken as a continuum placing 

a cubic grid while the communication between macropores and micropores is through a macropore 

surrounding rim of pores, while the solid phase (black) shown at its true location. In models (a), (b) and (d) 

shaded region represents the matrix.  

The dual pore network models to greater or lesser extend approximate microporosity and its 

connectivity with macropores. In the proposed Hybrid Micropores model developed in this work 

which may be considered as a continuation and improvement in the above four approaches, we 

take into consideration the real location of both micropores and macropores, real size of 

macropores informed by micro-CT images and the actual area of contact between the macropore 

and micropores by introducing the ‘interconnects’. The previous four approaches are discussed 

below in more detail.  

 

Berki et al. [38] built a dual pore-network model, herein referred to as the Coincident 

Micropore model, where the microporosity and macroporosity systems are considered to co-

exist in the same pore-throat-pore connections. This combined transport properties of the 

microporosity (capillary pressure, and relative permeabilities of the matrix which was 

considered homogeneous) with the pore network modeling approach used to simulate the 

secondary porosity (vugs or fractures). The model was based on generating an artificial cubic 

network of macropores while assigning average matrix (micropores) properties. Pore and throat 

dimensions of the macropore network in the model were adjusted to match the experimental 

values. Their method is unrealistic since the macropores must be fully connected for any path to 

exist through the domain.  In a real sandstone the large-scale macropores do not necessarily form 

a connected network through the domain.  The ability to bridge two disconnected macropores 

via microporous regions is crucial to properly describing the interaction between scales. Another 

attempt for modeling both the series and parallel flow was made Hakimaov et al. [43] they 
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prepared a 2D rectangular network model to represent the macro-network and then modified it 

to include microporosity by inserting the micro-network into macrothroats. They concluded that 

the existence of connected pathways through micro-pores that are fully saturated with a 

conductive phase creates ‘shortcuts’ for electrical currents which causes short circuit and, 

ultimately, lowers rock resistivity measured from log analysis. Neglecting microporosity thus 

causes erroneous prediction of flow and electrical properties, e.g., relative permeability, 

capillary pressure, and formation factor. Assumption of high mobile water saturation leads to 

underestimation of hydrocarbon reserves. However, they concluded that further work needs to 

be done to estimate Archie parameters such as saturation exponent and cementation factor [43]. 

 

A significant improvement on the Coincident Micropore PNM is the approach of Bauer et al. 

[39] called the Parallel Micropore approach. They extracted image-based network from three-

phase segmented image of micropores, macropores and solids, the microporosity from micro-

CT images of carbonate samples and added microporosity in parallel to a user-defined 

percentage of macro-throats, Figure 15. Although their method is largely image-based taking in 

account the real architecture of the macropore network, microporosity was considered to act 

only in parallel located along the macrothroats, thus present the same problem as the Coincident 

Micropore method. They suggested improvements of their method by including the real 

locations of micropores as deduced from micro-CT images so that both series and parallel 

arrangement of microporosity are taken into consideration generating a model of larger size and 

assigning better pore and throat conductance.  

 

In the Explicit micropores approach Jiang et al.[40] proposed a workflow to join PNMs 

extracted from images at different resolutions. A PNM of arbitrary volume representing the 

microporosity is statistically generated based on small network extracted from high-resolution 

imaging or modeled data. A network of macropores is subsequently fused with the microporosity 

by making a cross-scale connection between the networks. Although this is probably the most 
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rigorous and theoretically satisfying approach, the disadvantage being that the number of 

network elements can quickly become computationally prohibitive because each individual 

micro-pore is considered separately. Moreover, they have uniformly distributed fine-scale nodes 

in the model space without considering any spatial correlation. However, in complicated 

materials like carbonate rocks, correlations between micro-porosity and macro-porosity plays 

an important role in determining the transport properties and should be considered. Following 

the similar concepts, Prodanovic et al. [41] prepared an image based multiscale model in which 

they developed a two-scale algorithm and explicitly inserted rescaled micro-network into image 

analysis informed micropores regions. Since their model applies a re-scaled sandstone network 

to carbonate microporous region this technique could become computationally expensive in case 

of samples having large micropore percentages. Also, their assumption of using same physics 

for both length scales may give erroneous results.  

 

Another attempt which can be placed in the category of the Explicit micropores approach 

attempted by Mehmani et al. [44] is process-based method using Delaunay tessellation of grain 

centers, then introduced a method to integrate microporosity explicitly with interparticle 

macroporosity [44]. Although, their method was useful for the investigation of the influence of 

microporosity on the transport properties when acting in series (intergranular or pore filling) or 

in parallel (grain filling, intragranular or dissolution microporosity) to the macropores, does not 

produce representative geometrical shapes of pores. Also, their method of adding rescaled 

microporosity may become computationally intensive.  

 

Arash et al.[45] presented a Triple Pore Network model, of macropores, micropores inside solids 

and synthetically generated fractures composed into a single coupled pore network. They used 

two stage watershed segmentation to extract data from images of porous material and build a 

triple network by first building a dual PNM of macropores and fractures and then adding a PNM 

of micropores inside partially solid grains to the dual network to make a Triple network 



43 

 

composed of macro-pores, micro-pores, and fractures. They concluded that for gas flow in tight 

formations, a triple pore network model (T-PNM) better represents gas permeabilities than the 

dual models. In their model, microporosity is considered to consist of a bundle of microtubes of 

different radii, transport calculations by this approach could be complex for large size samples.  

 

In the Averaged micropore approach Bultreys et al. [8] prepared an image based multiscale 

network model and used micro-CT images of tight and heterogenous carbonate rocks to extract 

a dual pore network that in addition to macropores also included microporosity which was 

treated as a continuous porous medium. In their method, starting from three phase segmented 

image, the macropore network was extracted using the maximal ball algorithm, while the 

microporosity was modeled through a truncated cone micro-link between macropores treating 

the microporosity as a continuous porous medium. This averaging of microporous region 

properties introduced the need of cut-off length to the micro-links. The truncated cone shape 

model was used to connect two neighbouring macro-pores, thus tortuosity of the connection and 

geometric details about the bulk of the micro-porous cluster such as exact location of 

microporosity and actual connectivity are neglected, which can lead to erroneous local 

conductivities [46]. Their method, therefore, needs improvement in terms of more realistic 

averaging of micropore properties, including tortuosities and connectivity with macropores. 

 

In our approach, called ‘hybrid micropores’, which can be considered as an improvement to 

the Averaged micropores approach, is illustrated in Figure 15(e). We first aim to capture the 

correct amount and location of microporosity in a single step and then by assigning average 

effective properties and the relevant pore scale physics simulate the behavior of real rocks, the 

details of the model development will be explained in detail in the next chapter. Also, the 

proposed method when implemented on real images will enable to vary the phase properties and 

help analyze the impact on resulting transport properties. We propose that by assigning realistic 

geometrical properties to the macropore network and realistic average statistical properties to 
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the micropore regions and then matching porosity, permeability, formation factor and capillary 

pressure will lead to a good model of real rocks which can be used to estimate transport 

properties for multiphase flow conditions.  



45 

 

4 Multiscale Pore Network Modeling 

This chapter explains the methodology used in developing a multiscale pore network 

extraction method and applies it to some images for demonstration and validation. Since 

multiscale images of real porous media cannot currently be obtained from tomography 

equipment, so multiscale images have been artificially created that span several length scales for 

demonstration purpose. Section 4.1 details how on the artificial images generated, the pore 

network is extracted on these artificial images in a single step, the micropore regions are modeled 

as continua with effective properties, obtained from correlations for related materials, but could 

in principle be obtained from network extraction of nanoscale tomographic images. The 

macropore networks is then stitched together with the continua scale, thus creating a hybrid 

hierarchical pore network, the developed modeling framework is used to evaluate formation 

properties such as porosity, permeability, and formation factor. Materials and images used for 

validation is discussed in section 4.2. Results and discussion on the example applications of the 

developed model on 3D and 3-phase real images are shown in section 4.3. 

 

4.1 Hybrid-hierarchical Pore Network Modeling 

The objective of this section is developing the method of obtaining a pore network model of 

the hierarchical reservoir rock by extracting pore networks from images that only possess 

information at a single length scale explained. To achieve this goal, it was expedient to generate 

representative artificial images of carbonate rocks and tight sandstones with mud and perform 

quantitative analysis. In this work the simple 2-D and 3-D images have been created for 

demonstration purpose, examples of artificial images and network extraction are shown in this 

chapter and in Appendix B.  Examples of artificial images can also be found in Mousavi et al. 

[18].    It should be noted that these artificial images were generated during the start of the project 

to develop the workflow and in lieu of real images, these images are not rigorously generated. 
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Figure 16: Examples of three artificial images of different sizes. 

 

The main innovation of the present work is to model the matrix region as an effective 

continuum using basic finite difference calculations on a grid, while this grid is connected to the 

macro-pore network.  In this way the transport through the domain can be simulated as a 

combined effect of both the network and the continuum. Crucially, by connecting microporosity 

with macroporosity the two regions can communicate and exchange mass thus allowing the 

concentration/pressure field to be computed, so as flow travels through the macro-pore network 

as the pressure field is applied to the micropores via the new interconnections termed as 

‘interconnects’. The result of this extraction is shown briefly in Figure 17 for the same three 2D 

artificial images presented in Figure 16.  This model makes it possible to further evaluate the 

resulting impact of type and size and spatial arrangement of microporosity on total permeability, 

formation factor, resistivity index, mercury injection capillary pressure curve, porosity and 

ultimately water and oil saturations of the rock sample. 
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Figure 17: The network extraction of images shown in figure 16. 

 

By correctly mapping the distribution of microporosity across oil and gas reservoirs and its 

connectivity with macropores and vugs, a better characterization of the reservoirs is obtained. 

This in turn helps in improving the static and dynamic models of the reservoirs for field 

development planning in terms of production potential, and realistic hydrocarbon reserves 

estimates. The correct mapping of microporosity and its relationship with macroporosity also 

helps in refined water saturation calculation and consequently enable the identification of by-

passed oil pockets in the reservoirs. In our multiscale network extraction model, we are 

extracting a macropore network by using SNOW network extraction, then assigning a cubic grid 

network with average properties on the micropores matrix region identified from 3-phase 

segmented image rendered into solid, macropores and matrix regions.  Then multiscale network 

is generated by merging and stitching these two networks by using ‘interconnects’ i.e., the links 

between macro and micropores, while these interconnects have high conductance values.  

 

The details of current network extraction method are explained in section 4.1.1. We are 

extracting micropores, but we abstract the microporosity as a cubic grid i.e., continuum scale 

microporosity with constant properties throughout. This assumption is well justified. Stanely et 

al. [19] reported that there was a trend of increasing unimodal distributions as the fraction of 
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microporous matrix increases in carbonates. Fullmer et al. [13] reported highly homogeneous 

pore systems in micro-pore dominated rocks. 

 

4.1.1 Multiscale network extraction process 

Consider the schematic diagram shown in Figure 18 illustrating the hybrid network extraction 

method developed herein. The regions denoted by orange and green voxels represent the void 

pores, while the grey voxels represent microporosity. The hybrid network extraction works in 

three steps. Firstly, the pore network for the voids is found using the standard SNOW technique 

to determine which voxels in the image are associated with each pore (this is indicated by the 

orange and green colors). Second, a cubic lattice network is created using the micropore voxels 

as a template. Lastly, using basic image processing techniques such as dilation and maximum 

filters, micropore voxels around the rim of each void are identified and associated with their 

associated void, as indicated by darker shades. These voxels are then connected to the void 

network by making manual entries in the network adjacency matrix.  

 

The details of the implementation are given in a more realistic example applied to the 3-phase 

image shown in Figure 19, containing 3 voids and a small solid grain. Each of the above steps 

are illustrated sequentially in Figure 20, with the top row showing the image processing and the 

bottom row showing the corresponding network connections. To start the voids are identified 

using the watershed-based network extraction algorithm the steps of SNOW algorithm as 

explained previously in section 3.1. In step 1 pore network for voids is found, step 2 shows that 

cubic lattice is created in the microporous regions, and step 3 where basic image processing 

techniques are used to connect each micropore voxel in the rim of each void with their associated 

macropore void. As indicated by the darker shades. The last step shows when these rim voxels 

are manually connected with void and to micropores thus resulting in a merged network.  
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Figure 18: The concept of rim is shown above. In fig (a) the two pores with their surrounding rims as 

identified in step 2 of the procedure are shown. In fig (b) cubic lattice is inserted in surrounding matrix 

having all 1s as explained in step 7 and do the network extraction in the macropores regions having all 0s 

using OpenPNM network extraction algorithm.  

 

 

Figure 19: A three phase simple image with matrix in green, two connected macropores and one non-

touching vug in yellow and a grain embedded in matrix is shown in black (top left). 
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Figure 20: From left to right, a) first column show step 1 as pore network for voids is found, b) step 2 in 

second column shows cubic lattice is created in micropores, c) third column shows step 3 where, using basic 

image processing techniques micropore voxels rim of each void are identified with their associated void, as 

indicated by darker shades. (zoomed in view with connections are shown in second row) d) The fourth 

column shows the last step when these voxels are connected with void and micropores. 
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Figure 21: Example 2D and 3-phase image on a) left with green as matrix region, yellow as macropores and 

black are solid grains, and b) its network extraction is shown on the right. The value of absolute permeability 

determined was 0.775. 
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Figure 22: (a) Network extraction of a 3D and 3-phase artificial image. Macropores, interconnects (red color) 

and matrix (white), (b) below the same network with overlaid image showing solid grains. 
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4.1.2 Permeability estimation in hybrid hierarchical networks 

In this and the next section estimation of transport properties is explained on the developed 

modeling framework and is used to evaluate formation properties such as porosity, permeability, 

and formation factor. The porosity calculation method has been previously explained in section 

2.1.1.  

 

Since the transport properties of regions of microporosity cannot be obtained from the image, 

instead we use the continuum approach for these regions. In the continuum approach we ignore 

the actual details of the pore structure and abstract the media as continuum with effective 

properties. As we do not know the size or number of tubes through which fluid is flowing, we 

lump all unknown values into a single constant 𝐾𝑐𝑘 as given in Carman-Kozeny (CK) equation 

(24) which relates permeability to porosity and grain size with some measure of tortuosity, in 

this case 𝑘𝐶𝐾: 

 𝐾𝑐𝑘 =
𝑑𝑔𝑟𝑎𝑖𝑛

2  𝜙3

16𝑘𝑐𝑘(1 − 𝜙)2
 (24) 

where, 𝜙 is the porosity in the microporous region, 𝑑𝑔𝑟𝑎𝑖𝑛, is the characteristic particle size of 

microporous matrix, and 𝑘𝑐𝑘 is a fitting factor that encompasses all other aspects of the 

microporous material i.e., structural affects such as particle shape. In carbonates, unresolved 

pores that contribute to flow are typically of sizes between 0.1 to 5 microns [16]. For example, 

in our case we have taken the parameter to be 4 microns. However, for the actual porous media 

we need to enter the correct estimate of microporous region porosity and grain size. Grain sizes 

commonly used for sandstones are shown in Table 1 below: 
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Table 1: Grain sizes for sands [47]. 

Material Grade Sizes 

Gravel Coarse 20-60 mm 

 Medium 6-20 mm 

 Fine 2-6 mm 

Sand Very Coarse 1-2 mm 

 Coarse 0.5-1 mm 

 Medium 0.25-0.5 mm 

 Fine 0.1-0.25 mm 

 Very Fine 0.05-0.1 mm 

Silt Coarse 0.02-0.06 mm 

 Medium 0.06-0.02 mm 

 Fine 0.02-0.006 mm 

Clay  <0.002 mm 

 

Having determined permeability coefficient 𝐾𝑐𝑘 for the matrix regions from equation (24), 

we can estimate the hydraulic conductance for each matrix node in the microporous region using 

Darcy’s law:  

 𝑄 =
𝐾𝐶𝐾𝐴𝑣𝑥

𝐿𝑣𝑥  𝜇
Δ𝑃 

(25) 

from which we can identify the hydraulic conductance as: 

 𝑔ℎ ,𝑚𝑎𝑡𝑟𝑖𝑥 =  
𝐾𝑐𝑘 𝐴𝑣𝑥

𝐿𝑣𝑥  𝜇
 

(26) 

where 𝐴𝑣𝑥is the cross-sectional area of the voxel element, 𝐿𝑣𝑥 is the length of the voxel along 

the direction of flow, and 𝜇 the fluid viscosity. 
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The macropores in the hybrid network are connected both with other macropores via macro-

throats network and with the surrounding micropores via the interconnecting throats, this results 

in an enhanced connectivity for the sample. However, the hydraulic conductance for these 

interconnects needs to be estimated. As a first approximation we are assigning minimum 

resistance, thus maximum conductance to these interconnects so that mass transfer between 

macropores and surrounding micropores easily occurs without any resistance.  

 

A novel feature of the proposed algorithm is that we can accurately identify the exact number of 

micropores/microthroats surrounding each macropore. The total number of interconnects are 

basically the total number of micropores/microthroats which surrounds or are in direct 

communication with the macropores and links microthroats with the macrothroats and thus 

enhance the connectivity of the total network as illustrated in Figure 23 below.  

 

Figure 23: A schematic illustration of the geometrical elements in the proposed hybrid model. 



56 

 

 

Since we have identified the total number of pores/throats surrounding the macropores, these 

‘interconnects’ having been assigned minimum resistance to flow and conductance as explained 

in previously.   As geometry plays the key role in conductance calculations, we propose a shape 

which gives high conductance to the ‘interconnects’, however this will be investigated in future 

studies. This assumption is justified on the basis that the hydraulic or diffusive conductance 

should be transferred from macropore to the immediate neighbouring micropores without any 

resistance.  

 

As explained in this section above, in our hybrid multi-physics model calculating overall 

hydraulic conductance has been implemented by using Darcy’s equation in microporous regions 

and the Stokes equation in the remaining macropore region.  
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Figure 24: The figure (a) above shows that the isolated matrix region surrounded by solid (bottom left corner) 

in a rectangle shape is not connected to the combined network, whereas in (b) vug (bottom right corner) is 

connected to the surrounding matrix via interconnects shown in blue color.  

 

Having applied conductance for each throat, by using appropriate models for micropores, 

macropores and new throats conductance, we finally apply the necessary boundary conditions 

and using the StokesFlow algorithm in OpenPNM to handle the process of building the 

coefficient matrix and solving for pressures in each pore. Knowing the pressure in each pore and 

the conductance in each throat it is possible to find the volumetric flow rate entering or exiting 
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each boundary pore.  The sum of these gives 𝑄, which allow for the determination of the network 

permeability coefficient by inverting Darcy’s law: 

 
𝐾 =  

𝜇𝑄𝐿

𝐴(𝑃𝑖𝑛 −  𝑃𝑜𝑢𝑡)
  

(27) 

where 𝐾 is the absolute permeability of the hybrid network, 𝑃𝑖𝑛 and 𝑃𝑜𝑢𝑡 are arbitrary chosen 

inlet and outlet pressures, 𝐴 is the cross-sectional area of the domain normal to the flow direction 

and 𝐿 is the length of the domain in the flow direction. 

 

4.1.3 Formation factor estimation in hybrid hierarchical networks 

A good model to simulate petrophysical transport properties should not only produce the 

classically observed Archie’s behavior, but also non-Archie curves [39]. The petroleum industry 

utilizes the measurement of electrical resistivity of partially saturated rocks to estimate the 

productivity and size of oil and gas reservoirs [9]. The formation factor ( 𝐹𝐹) measured at 

complete brine saturation of the rock sample defined the electrical transport properties of the 

porous medium. The value of 𝑚, the cementation exponent in 𝐹𝐹 equation (12) reflects the 

tortuosity of the current flow and is specific to the type of microporosity, in case applied to that 

region of the sample. Due to the analogy between Ohm’s law for electrical charge transport and 

the Fick’s law for the solute particles in diffusional transport, and considering electrical and 

diffusional tortuosities are the same [28], the formation factor is also given by the ratio of 

molecular diffusion coefficient in open space 𝐷𝐴𝐵 to the effective diffusion coefficient in the 

medium 𝐷𝑒𝑓𝑓 as will be explained. 

 

The Resistivity index given by equation (14) in section 2.1.6 can be utilized to calculate the 

water saturation of a hydrocarbon bearing zone when an obvious water-bearing zone of the same 

porosity is available nearby and having water of the same salinity [48]. Empirical Archie’s laws 

describe the resistivity behavior of clean sandstones as given in equation (13).  
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In the current model to calculate Formation Factor, as a first approximation, we are estimating 

tortuosity of the matrix region using Bruggemann correlation for spheres, equation (28). The 

effective diffusivity of the matrix region is calculated from equation (31) and assigning high 

diffusive conductance for the interconnects.  

 𝜏 =  𝜙−0.5 
(28) 

 𝐷𝑒𝑓𝑓

𝐷𝐴𝐵
=   

𝜙

𝜏
 

(29) 

 
𝐷𝑒𝑓𝑓𝑉𝑥

=  
𝐷𝐴𝐵𝜙𝑚𝑎𝑡𝑟𝑖𝑥

𝜏
 

(30) 

 
𝑔𝑑𝑚𝑎𝑡𝑟𝑖𝑥

=  
𝐷𝑒𝑓𝑓𝑉𝑥

 𝐴𝑉𝑥

𝐿𝑉𝑥 
 

(31) 

 

The diffusive flow rate 𝑁𝐴 (moles/sec) with applied concentration difference at the inlet and 

outlet. Upon solving the system of coupled linear equations to find value of concentration in 

each pore by casting the equation in matrix form, once 𝑁𝐴 is known, we calculate effective 

diffusivity of the whole domain by applying the Fick’s law equation (33). 

 
𝑁𝐴 = −𝐷𝐴𝐵  

𝜙

𝜏

𝑑𝐶𝐴

𝑑𝑥
 

(32) 

 
𝐷𝑒𝑓𝑓 =  

𝑁𝐴𝐿

𝐴(𝐶𝑖𝑛 −  𝐶𝑜𝑢𝑡)
 

(33) 

The formation factor is then obtained as the ratio of bulk diffusivity in open space, 𝐷𝐴𝐵, to 

effective diffusivity of the medium, 𝐷𝑒𝑓𝑓  as follows: 

 
𝐹𝐹 =  

𝐷𝐴𝐵

𝐷𝑒𝑓𝑓
 

(34) 
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4.2 Materials and Images Used 

Validation of the developed hybrid algorithm is done by comparing porosity, absolute 

permeability and formation factor values calculated from our hybrid algorithm with the 

experimental values obtained on realistic image of sandstones and carbonate rock samples from 

different formations. The algorithm for hybrid pore network extraction has been tested first on 

a total of nine 2D images, five sandstones and four carbonates Appendix C. For sandstones we 

selected Berea Sandstone and four samples of North Sea Sandstone all of which were three-

phase segmented, for carbonates we have used Estaillades carbonate, Austin Chalk and 

Savonnieres carbonate. Further detailed validation and analysis was done on the two 3D 

carbonate samples all downloaded from www.digitalrocksportal.org, namely Massangis Juane 

Limestone and Estaillades carbonate [49]. Since for heterogeneous carbonate samples, having 

complex pore structures many pores could be disconnected in 2D models, we have used 3D 

models for validation, which should result in a better match with experimental values.  

 

These 3D samples were first segmented into the three phases namely, void, matrix and solid 

using an in-house algorithm (described in Appendix D), then network extraction and calculation 

of transport properties was done using our hybrid algorithm. Since correct segmentation plays a 

crucial role in further analysis of the sample, a close matching of matrix fraction of pore space 

obtained from the segmented images with the values in reference Bultreys et al. [49] is an 

indication that our segmentation is reliable. For Estaillades our segmentation showed matrix 

region as 46.77% contribution of porosity versus DPNM of 43.4%, while in case of Massangis 

our segmentation showed a value of 45.4 versus 38.9 from the reference case. It should be noted 

that the final network obtained by the hybrid algorithm contains information about the size, 

spatial location, and connectivity of macropores, as well as the size, spatial location of matrix 

region i.e., distribution of microporosity regions in the sample, containing unresolved 

http://www.digitalrocksportal.org/
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microporosity and the amount of connectivity of unresolved micropores in the matrix region 

with their neighboring macropores.  

 

For most of the samples our new hybrid model estimates of permeability and formation factor 

are accurate within a factor of 2 with maximum variation not more than a factor of 10 as 

explained in detail in the discussion section. We consider this reasonably successful given the 

novelty of the approach, which can be further improved with future research. We have 

demonstrated that our new hybrid model has the flexibility to accurately identify the actual 

location of the matrix region, bypass isolated pores and matrix region, has the ability 

manipulate/assign porosity and pore sizes of microporosity within the matrix region to match 

the experimental values of the samples and to accurately connect microporosity in the matrix 

region with the macroporosity region.  

 

4.3 Results and Discussion 

In this section the results of applying hybrid network extraction technique on 3D and 3-phase 

real carbonate samples of Massangis Jaune Limestone and Estaillades carbonate are discussed 

in detail. These real rocks have been widely studied and used in digital rock analysis. Network 

summary statistics are also provided below and discussion on the results are given.  
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Figure 25: (a) Massangis Juane Limestone raw image and (b) a subsection of the greyscale raw image taken 

for 3 phase segmentation (c) Three phase segmentation.  
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Figure 26: a) Macropore network in 3D and, (b) histogram of network properties for Massangis Jaune 

Limestone. 
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Figure 27: 2D slices through the three-phase segmentation of various z-direction slices of Massangis Jaune 

Limestone sample. The macroporosity fraction is approx. equal to microporosity. The microporosity type is 

both pore lining and pore filling resulting in microporosity having dominating control on transport 

properties.  
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Figure 28: 3D network of Massangis Jaune Limestone shown in Paraview. Matrix is in white, macrothroats 

in red and interconnects are shown in blue color.  
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Figure 29: (a) Estaillades raw image and (b) a greyscale subsection of the raw image taken for 3 phase 

segmentation (c) Three phase segmentation.  
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Figure 30: Estaillades carbonate a) Macropore network and b) histogram of network properties. 
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Figure 31: 2D representation of three-phase segmentation of various z-direction slices of Estaillades 

carbonate sample. The microporosity fraction is greater than macroporosity. The microporosity and 

macroporosity arrangement results in parallel dominated flow with resulting higher permeability. 
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Figure 32: Two different view angles for 3D network of Estaillades carbonate shown in Paraview. Matrix is 

in white, macrothroats in red and interconnects are shown in blue color.  
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Table 2: Network statistics for 3D and 3-phase carbonate rock samples. 

 Massangis Jaune Estaillades 

Sample size 320 X 320 X 300 210 X 210 X 240 

Voxel dimension (m) 4.53e-6 3.1e-6 

No. of macro-pores 177 46 

No. of macro-throats 186 63 

No. of micro-pores 1833311 1619963 

No. of micro-throats 4922097 4675688 

No. of interconnects 276501 82041 

Macro coordination 

number, (MCN) 

2.1 2.74 

Avg. macro-pore 

diameter µm 

6.87 12.43 

Avg. macro-throat 

diameter µm 

4.96 11.83 

Absolute 

permeability (mD) 

0.176 558 

Formation Factor 158 6.4 

Porosity (%) 

𝜙tot/𝜙𝑚𝑎𝑡𝑟𝑖𝑥/𝜙𝑚𝑎𝑐𝑟𝑜 

12.1/5.5/6.6 18.6/8.7/9.9 
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Table 3: Comparison of hybrid algorithm with the experimental values, * experimental range for this value 

is taken from [50]. 

Sample Experimental 

porosity 

Hybrid 

porosity 

Experimental 

Permeability 

(mD) 

Hybrid 

Permeability 

Experimental 

FF 

Hybrid 

FF 

Massangis 

limestone 

11.6 12.1 0.03-0.07 0.176 71-89 158 

Estaillades 

carbonate 

23 - 25 18.6 257 - 320 558 23-25* 6.4 

 

 

This study has demonstrated that for the 3D and 3-phase images the hybrid algorithm was 

successfully applied on the selected subsection of the samples and the transport calculations of 

permeability and formation factor were done using the equations given in Chapter 4. The main 

assumption used in our calculations was regarding the assignment of low resistance to flow in 

the ‘interconnects’, which provides a communication link between macropores and the 

micropores in the matrix region. The results of permeability and formation factor obtained are 

within the given tolerable range. We have explored the results in detail below and prepared 3D 

images of the network in Paraview Figure 28 and Figure 32.  

 

Massangis Jaune Limestone is an ooid-dominated grainstone containing detrital micrite and 

bioclasts. Calcite cement rims have formed around the grains, strongly reducing the pore space. 

Microporosity can be found in the partially dissolved dolomite lining the molds and in local 

ooids [49]. It can be observed from the segmented image shown in Figure 27, that the type of 

microporosity is pore lining and pore filling, which results in serial coupling between micro and 

macroporosity regions and as a result, despite having a lower percentage in total porosity, the 

microporosity dominates the flow properties in the sample. The subsection of the image selected 
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for network extraction contains 320 × 320 × 300 voxels with a resolution of 4.53 µm, 

representing a rock volume of 2.86 𝑚𝑚3. The image has 5.5% matrix voxels and 6.6% 

macropore voxels. Network characteristics are shown above in Table 2. 

 

Sensitivity of permeability and formation factor with microporosity characteristics of grain 

size and porosity values of Masssangis Limestone indicates that assigning a lower value of 

matrix porosity results in lower overall permeability and larger formation factor for the sample 

thus confirming the serial coupling. Therefore, we can conclude that there is a strong dependance 

of transport properties on porosity in the matrix region (micropores), in the analyzed sample. 

The input parameters of matrix porosity are difficult to determine since they require higher 

resolution images, in this work it is assumed that the grain size in the matrix region is below the 

image resolution, grain size has shown to have a minor impact on the overall permeability. The 

average macro coordination number (MCN) give the average number of throats connected to a 

pore body. It is observed that MCN of Massangis Limestone is lower than Estaillades carbonate 

indicating lower connectivity. The porosity values of the extracted images closely matched with 

the experimental values given for both the samples thus confirming a good three-phase 

segmentation of the samples.  

 

Our hybrid algorithm overpredicts the permeability by a factor of approximately 3 in case of 

Massangis Limestone which is within the acceptable range. However, this variation could be 

due to three factors: our assumption of circular tube geometry for the macrothroats with no 

tortuosity or surface roughness, smaller section of the image taken due to computational 

limitations and could be due to better connectivity of microporosity in the matrix region with 

the macropores, since we have assigned low resistance/high conductance to the interconnects. 

Formation factor for the Massangis limestone [51] is overpredicted by the factor of 

approximately 2 which could be the result of higher calculated porosity and permeability values. 

The histograms for pore diameter, throat diameter and throat lengths for Massangis limestone 
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sample are shown in Figure 26. The average pore diameter is 6.87𝜇𝑚. while average 

macrothroats diameter is 4.96𝜇𝑚. The histogram of pore size distribution for macropores 

indicates a unimodal pore size distribution with a long tail towards larger pore sizes for both the 

samples. The location of main peak of macropores for the two samples are also similar, however 

Estaillades carbonate sample has larger sizes of macropores.  

 

Estaillades carbonate is a monomineralic, calcite grainstone and its porosity consists of 

intergranular macropores and intragranular micropores, while microporosity makes up major 

portion of the total porosity. The subsection of the image selected for network generation 

contains 210 × 210 × 240 voxels with a resolution of 3.1 𝜇𝑚 representing a rock volume of 

0.315 𝑚𝑚3. For the 2D images we have observed that high permeability samples have high 

percentage of connected microporosity and the ratio of macro to microporosity is mostly equal 

to or less than 1. For 3D image our algorithm overpredicts permeability by a factor of 

approximately 2 for the Estaillades carbonate sample, which given the same reasons above for 

Massangis limestone, is reasonable. For the Estaillades carbonate the calculated formation factor 

is underpredicted by a factor of 3.7 but is still in the good agreement range with the experimental 

value. Estaillades carbonate has slightly higher percentage of microporosity in the sample, both 

microporosity and macroporosity here is known to act as two parallel flow systems [49] and as 

a result the impact of microporosity is not as dominant in controlling the overall flow properties 

as indicated for Massangis limestone sample. However, the parallel system and the larger sizes 

of macropores and macrothroats results in higher permeability values for the Estaillades 

carbonate sample. The histogram for Estaillades carbonate sample of pore diameter, throat 

diameter and throat length are shown in Figure 30. The average macropore diameter is 12.43 

𝜇𝑚 while average macrothroats diameter is 11.83 𝜇𝑚. 



74 

 

5 Conclusions and future work 

5.1 Conclusions 

In this work, a hybrid pore network extraction method for multiscale materials was 

successfully developed with a cubic grid applied in the matrix region which is in communication 

with the neighbouring or attached macropores and thus a hybrid multiscale network is created. 

The multiscale pore network extraction algorithm was tested on different 2D, and 3D artificial 

and real images segmented into three phases, we selected Massangis Limestone and Estaillades 

carbonate SEM images. As demonstrated previously, the algorithm is fast, less computationally 

intensive and also correctly identifies and connects the macropores with their surrounding 

micropores pores in the matrix by making new throats connections, which was the main 

objective of this exercise.  

 

On the network generated, porosity and the transport properties i.e., permeability and 

Formation Factor of the resulting merged network were calculated. Furthermore, the generated 

network was validated with real sandstones and carbonate rocks and tested for mass transfer 

accuracy.  

 

5.2 Further studies 

Further studies are suggested which should procced first with validation of the algorithm 

results using Direct Numerical Simulation techniques such as Lattice Boltzmann method where 

the governing equations of flow and transport are computed directly on the image. After 

validation, calculation of multiphase flow properties with varying various input parameters 

should be studied. 
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It is also recommended to rigorously generate massive images which could more closely 

represent real rocks. It is hypothesized that by generating massive images as recommended in 

the research work and applying the presented multiscale network extraction algorithm on these 

massive artificial images. The resulting extracted network model will represent a larger sample, 

closer to actual rock and will give fast, more reliable predictions of actual petrophysical 

properties at core scale which can be reliably input for reservoir scale simulation.  

 

Since geometry plays a ley role in conductance calculations, we recommend that different 

types of shapes be investigated regarding the geometry of the ‘interconnects’ for improved 

conductance calculations. In our case we have applied minimum resistance by assigning high 

values to the hydraulic and diffusive conductance, however these should be calculated by using 

appropriate geometry. We also recommend using a thin circular disk shaped ‘interconnects’ 

which gives minimum resistance to flow this should however be further investigated.  

 

A pore network model of the hierarchical reservoir rock should be obtained by extracting 

pore networks from images that possess information at several scales in a single step. Multiscale 

image cannot currently be obtained from tomography equipment, so massive images should be 

artificially created that span several length scales. Artificial generation of images to match 

known structural and statistical properties is a well-established technique, so this task should 

leverage such work to create images that are representative of several scales simultaneously. 

This approach is now feasible due to recent developments in high performance network 

extraction algorithms within our group, capable of managing 50003 images, or larger. 

 

Lastly, it is recommended to use the developed modeling framework to evaluate formation 

properties such as relative permeability, formation factor and resistivity index and by evaluating 

realistic water saturation values, then upscaling those properties for use in reservoir simulation. 

This will lead to enhanced reservoir characterization, resulting in application to better reservoir 
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management, production planning and improved recovery from difficult/complex oil and gas 

reservoirs. It is also proposed to use one of available reservoir simulators such as the Computer 

Modeling Group’s CMG-GEM reservoir simulator which is a commercial software and is used 

for compositional, chemical, and unconventional reservoir modeling. Another example is a 

freely available MATLAB Reservoir Simulation Toolbox. The model presented and upscaling 

results can then be validated with the data and results from the industry papers available in public 

domain. 
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Appendix A 

The steps required to generate a multiscale network from realistic segmented images are 

explained below: 

 

1. Extract regions in voids. Apply Porespy filter SNOW partitioning on void to 

get the regions of macropores. In this step SNOW algorithm uses a marker-

based watershed segmentation to partition the image into regions belonging 

to each pore. 

2. Obtain a rim of voxels around each region obtained from step 1. Dilate the 

output from step 1 using binary dilation function from skimage morphology. 

Multiplying the resulting dilation with the matrix region of the image gives 

the surrounding rim of microporous region only which is around or 

surrounding each macropore region. 

3. Combine each of the region from step1 with its rim obtained from step 2. This 

will give the required region together with its surrounding communicating 

rim. The combined output is named regrim. The concept is explained in Figure 

18.  

4. Obtain newrims which are defined as rims having the same color/number as 

its enclosing region. Apply maxfilter function from Scipy.ndimage on the 

result obtained from step 3. A maxfilter is used to diminish noise by replacing 

each voxel in the image with the maximum value found in neighborhood that 

is defined by a structuring element R – thus the local peaks retain their value 

while other voxels are overwritten with a larger value. 

5. Then multiply the result with the rim to get newrims. Here, labels the dilation 

with the same color to identify which surrounding rim (i.e., newrims) belong 
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to which region of macropore. The resulting images and networks are shown 

in Figure 20. 

6. Identify peaks of each macropore region. Thus, giving the total number of 

macropores in the image and each macropore pore peak is identified with its 

surrounding/neighboring rim. 

7. In regions where matrix is labelled as 1s and solid grains labeled as 0s, insert 

CubicTemplate function from OpenPNM in matrix region only. This gives the 

network pn_matrix in the matrix (microporosity) region.  The CubicTemplate 

returns a network of simple cubic lattice with arbitrary domain shape specified 

by a template image. All locations in the image that are marked as True are 

kept while the rest are trimmed to yield the shape. 

8. Create a new array which gives all the matrix pores that index into newrims 

and thus identify which matrix pores are besides each macropores in the 

network extraction. 

9. Make a new network in macropores region using Porespy SNOW network 

extraction function. This gives the network net1 and name it pn_void. 

10. Put labels for the matrix as ‘micropores’ and macropore regions as 

‘macropores’. Import the network pn_void and transfer all geometrical 

properties from pn_void to geom_macro. 

11. Merge the two networks together using OpenPNM merge function which 

combines multiple networks into one without stitching. The two networks 

pn_void and pn_matrix are merged into one. 

12. Merged network is renamed as ‘combo’. 

13. Define geometry objects for micropores. 

14. Make throat network connection between macropores region with its 

surrounding region of micropores in the matrix region thus enabling mass 

transfer between the two. Then, use extend function in OpenPNM to manually 
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making a list to connect pore number from cubic template to pore number in 

network extraction, thus add new throat connections for mass transfer between 

the two regions (matrix and macropores). Extend function adds throats to the 

network from a list of conns, the list numbering must point to the existing 

pores. 

15. Define geometry objects for newly created throats. 

16. Create phase and physics for each of the three geometry objects i.e., 

geom_macro, geom_micro and geom_new. 

17. Carman-Kozeny equation for estimation of Darcy permeability for each voxel 

and thus find hydraulic conductance g of the matrix for each voxel. Here, the 

procedure is treating the microporosity as a continuum and estimating the 

required transport parameter values. 

18. Once the pressure in all pores is found and flow rates through all throats is 

calculated using the OpenPNM rate method calculate effective permeability 

for the whole network using Darcy’s law. 

19. Estimate tortuosity of the matrix region by using Bruggeman correlation for 

spheres. Then calculate Formation Factor using Fick’s law on the whole 

domain. 

 

Note 1. Since Macropores numbers begin with 0 in the merged openPNM network 

combo_net, so it is required to re-number 1s to 0s and so on in list A i.e., pn 

[‘pore.macro_pore_connection] created in step 8, so that correct macropore should connect its 

surrounding micropores of same numbers/color. 
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Appendix B 

 

The artificially generated images as explained in Chapter 4, are demonstrated in the following 

pages below: 

 

S. No Generated Image Real Image 

1. 

  

 2D-2phase image, yellow is matrix, purple is grain Type I rock sample- Lime mudstone 

2. 

 
 

 2D-3phase image, void = (purple), grain = 

(yellow), matrix = (green) 

Type II rock sample – Peloidal 

dolograinstone 
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3. 

  

 2D-3phase image, void = (purple), 

grain=(yellow), matrix=(green) 

Type II rock sample – Limestone, enlarged 

vuggy porosity (touching vug) 

 

Figure 33 : Artificial image of the rock on the left compared with an actual SEM image on the right. On the 

right rock types I an II [18] are shown. 
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S. No. Generated Image Real Image 

1 

 

 

 2D-3phase image, void = (purple), grain=(yellow), 

matrix=(green) 

Type III rock sample - Low-mud packstone 

2.  

 
 

 2D-3phase image, Green is void, black are grains, 

and yellow is matrix. 

Type III rock sample – Limestone with fine to 

medium grained packstone texture, abundant 

matrix microporosity porosity=18.3%, 

permeability 545 mD. 

Figure 34: Two artificially generated 2-D and 3-phase images and real rock type III are shown in the right 

column. 
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S. No. Artificial Image 

1. 

 

 3D and three-phase image, yellow is matrix, black is solid grains and green is void 

region. 

2. 

 

 2D and two-phase image, yellow is void, black is solid grains. 

3. 

 

 2D and two-phase image, yellow is void (showing small fractures or touching vugs), 

black is matrix. 
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4. 

 

 2D and two-phase image, yellow is void, black is matrix region. 

Figure 35: A few more examples of artificially generated images. 
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Appendix C 

Selected sandstones samples and their network extraction are shown below:  

 

 

Figure 36: Selected sandstone SEM images for 2D analysis, (a) top left to right Berea sandstone, (b) North 

Sea sandstone plug 44, (c) North Sea sandstone plug 77, (d) bottom left to right North Sea sandstone plug 

130, (e) North Sea sandstone plug 367.  
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Figure 37: Berea_D_20 sandstone (a) raw image, (b) three-phase segmentation of a selected section, (c) 

network extraction and (d) histogram of network properties.  
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Figure 38: North Sea sandstone plug 44 a) Three phase segmentation, b) Macropore network and c) 

histogram of network properties 
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Figure 39: (a) North Sea sandstone plug 77 three-phase segmentation of a selected section  

 (b) network extraction and (c) histogram of network properties. 
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Figure 40: (a) North Sea sandstone plug 130 three-phase segmentation of a selected section, (b) network 

extraction and (c) histogram of network properties. 
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Figure 41: North Sea sandstone plug 367, a) Three-phase segmentation b) Macropore network and c) 

histogram of network properties.  
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 3D & 

3phase 

Artificial 

D_20_Berea North Sea 

sandstone 

Plug 44 

North Sea 

sandstone 

Plug 77 

North Sea 

sandstone 

Plug 130 

North Sea 

sandstone 

Plug 367 

No. of macro-

pores 

74 164 1660 760 1531 2977 

No. of macro-

throats  

14 48 1268 692 1158 2496 

No. of micro-

pores 

260214 617652 784468 290248 853380 861602 

No. of micro-

throats  

648272 1214622 1429890 518813 1567705 1534907 

No. of 

Interconnects 

37320 

 

8842 106254 50711 86751 165739 

Avg. macro-

pore diameter 

(µm) 

4.26/2.

0 

11.69 12.57 15.51 11.08 8.43 

Avg. macro-

throat dia 

(µm) 

1.8/1.5 10.72 11.79 13.21 9.72 6.07 

Absolute 

permeability 

(mD) 

4937 81.19 119.52 12.98 11.13 20.47 

Formation 

Factor 

38 98.55 35.35 29.96 45.69 28.49 

Porosity (%) 

∅total, 

/∅macro, /∅micro 

16.7 / 

8.6 /8.1 

63.1/ 

6.66/56.44 

32.7 / 

24.25 / 8.45 

23.38 / 

17.63 / 5.75 

29.31/18.

1/ 11.21 

25.72 / 

15.23 / 10.89 

Table 4: Summary of network statistics for 3D artificial and 2D sandstone samples. 
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The following analysis is done for 2D simulation carried out on the samples: 

 

Berea is a more homogeneous rock with narrow pore size distribution as compared to more 

complex sandstone such as North Sea Sandstone which has undergone extensive diagenesis 

resulting in wide range of pore sizes. We selected Berea since it is a standard material used in 

geosciences studies and the raw SEM image was available. We have selected the North Sea 

Sandstone samples, downloaded from digital rocks portal, since these are complex sandstone 

with wide range of pore size distribution resulting is significant percentage of microporosity 

which cannot be imaged by the high-resolution SEM as low as 0.27𝜇𝑚. Also, the experimental 

data for porosity, permeability and FF was available for these sandstones. The four North Sea 

samples selected are plugs 44, 77, 130 and 367, Scott et al, [52] have conducted detailed fluid 

flow analysis on these 2D images. Similarly for 2-D analysis on carbonate rock which typically 

represent multiple porosity systems and multimodal pore size distributions. We have selected a 

total of four samples, one Savonnieres, two Estaillades, Austin Chalk [53] downloaded from the 

Digital rock portal website where we had the option to select only non-segmented raw images 

since we need to process the raw image into a three phase segmented image. The raw jpg images 

from digital rock portal were converted to tiff format using ImageJ software.  

 

Berea Sandstone: This rock is a fine grained, fairly consolidated, and poorly sorted 

sandstone with non calcareous cement present. The range of experimental properties [54] are 

compared with the hybrid network and values of permeability and formation factor calculated 

are within the experimental values as given below. The sample has high fraction of well 

connected microporosity and high porosity within the microporosity region which is reflected 

in high permeability value: 

 

 



99 

 

Experimental 

Porosity (%) 𝐹𝐹 Permeability (mD) 

16 – 19 47 - 147 36 - 414 

 

Hybrid Algorithm 

Sample Porosity (%) 𝐹𝐹 Permeability (mD) 

Berea_D_20 63% 98.5 92.3 

 

North Sea Sandstone: Samples 44, 77 and 130 [52] used in our work are from lower Fulmar 

formation of North Sea sandstone reservoir, which is subjected to extensive diagenesis, in 

sample 130 around two-third of the porosity is microporosity which cannot be resolved. Sample 

367 is from Skagerrak formation of North Sea sandstone in which cement and clays are found 

together with secondary porosity created by partial grain dissolution. Since the available images 

were of large size, we have validated the code on various subsections of the images. The 

porosity, permeability and formation factors values calculated by hybrid algorithm for these 

samples are in close agreement with the experimental values. The larger percentage of 

microporosity is noted in samples 367 and 130 as compared to sample 44, this is reflected in 

lower overall permeabilities for these samples.   

Experimental 

Sample # Porosity (%) 𝐹𝐹 Permeability 

(mD) 

44 28.3 8.3 557 

77 14.2 25 2.7 

130 22.8 12.4 5.8 

367 16.2 21 45 
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Hybrid Algorithm 

Sample # Porosity (%), 

total, macro, micro 

𝐹𝐹 Permeability 

(mD) 

44 31.6, 22.8, 8.45 35 421 

77 22.88, 18, 4.88 28.96 12.98 

130 29.3, 18.1, 11.2 45.7 11.13 

367 25.7, 15.2, 10.5 28.49 20.47 
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Figure 42: Selected Carbonate SEM images for 2D analysis, (a) top left to right Estaillades ES32_0523 

(images downloaded from www.digitalrocksportal.org, (b) Estaillades ES32_1832, bottom left to right (c) 

Savonnieres carbonate, (d) Austin chalk. 
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Figure 43: a) Estaillades ES32_0532 three-phase segmentation of a selected section, b) network extraction 

and c) histogram of network properties. 
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Figure 44: Estaillades ES32_1832 (a) three phase segmentation of a selected section, (b) network extraction 

and (c) histogram of network properties. 
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Figure 45: Savonnieres carbonate (a) three phase segmentation of a selected section (b) network extraction 

and (c) histogram of network properties. 
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Figure 46: (a) Austin chalk three phase segmentation of a selected section, (b) network extraction and (c) 

histogram of network properties. 
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 Austin 

Chalk 

Estaillades 

ES32_0523 

Estaillades 

ES32_1852 

Savonnieres 

SAVII2_m_0162 

No. of 

macro-pores 

119 39 19 71 

No. of 

macro-throats 

11 38 9 57 

No. of 

micro-pores 

150820 11933 18614 16665 

No. of 

micro-throats 

292041 20692 35376 27533 

No. of 

Interconnects 

3713 1918 1028 4385 

Avg. macro-

pore diameter 

(µm) 

3.63 11.97 10.06 

(max=48.38) 

15.1 

Avg. macro-

throat dia (µm) 

3.28 9.33 12.61 

(max=26.4) 

13.87 

Absolute 

permeability 

(mD) 

38.44 90.35 104 284.12 

Formation 

Factor 

109.29 134.85 77.48 61.6 

Porosity % 

∅total, /∅macro, 

/∅micro 

57.2 / 

4.93 / 52.27 

12.72 / 

3.86 / 8.86 

19.97 / 8.74 

/11.23 

31.5 / 20.4 /11.1 

Table 5: Summary of network statistics for 2D carbonate samples. 
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Austin Chalk is a carbonate sample obtained from Austin chalk formation outcrop. The 

experimental values [53] and hybrid algorithm values are given below. The permeability 

calculated by hybrid algorithm is within a factor of 2.5 of experimental value, while 

experimental formation factor for this sample was not available. 

 

Experimental 

Porosity (%) FF LBM 

Permeability (mD) 

25.44 -- 16.4 

 

Hybrid Algorithm 

Porosity (%) FF Permeability 

(mD) 

Total=57, 

macro=5, 

micro=52 

109 38 

 

Estaillades Limestone A carbonate rock which exhibits a bimodal pore size distribution due 

to two types of pores present, well connected intergranular macro-pores and intragranular micro-

pores. Figure 42 shows the SEM images of the Estaillades Limestone indicating a complex pore 

structure and very fine feature not fully captured by the image. The pore diameters and throat 

diameters show a bimodal size distribution in Figure 43, and Figure 44. 

 

The high value of permeability in Estaillades sample despite of high percentage of 

microporosity indicates that the matrix region is well connected with macroporosity and has 

high internal porosity. Experimental properties are shown below [21] The permeability 
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calculated by hybrid algorithm is within a factor of 2.5 and formation factor calculated was 

within a factor of 3: 

 

Experimental 

Porosity (%) 𝐹𝐹 Permeability (mD) 

23.7 23-25 260-280 

 

Hybrid Algorithm 

Sample Porosity (%) 

∅total, 

/∅macro, /∅micro 

𝐹𝐹 Permeability 

(mD) 

ES32_1852 20, 8.7, 

11.3 

77 104 

ES32_0523 12.7, 3.8, 

8.9 

135 90 

 

Savonnieres Limestone  

Savonnieres is a layered oolithic limestone, having pore structure containing four different 

types of porosity: intergranular, intra-oolithic microporosity, and inter-granular and micro-

connected microporosity [21]. The permeability ranges between 115 – 2000 mD and porosity 

ranges from 22% to 41%. The hybrid algorithm permeability value is within a factor of 3.5 but 

close to the value in DPNM [42], while the formation factor is reasonably close to value from 

the classical PNM model. 

 

 



109 

 

Experimental 

 Porosity (%) 𝐹𝐹 Permeability 

(mD) 

Experimental 21 – 41% NA 903 

Classical 

PNM 

-- 85.7 244 

DPNM -- 13.5 268 

 

Hybrid Network  

Sample Porosity 

(%) 

𝐹𝐹 Permeability 

(mD) 

SAVII2_m_0162 31.5 61.6 284.12 
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Appendix D 

 

Filtering of Noisy Tomograms 

The network extraction method works on either generated artificial images or 3-phase images 

obtained by segmenting real SEM images into three phases i.e., having fully resolved 

macropores and vugs taken as voids, while unresolved micropores are represented by a single 

grey-scale value and grains are identified as a solid phase. This is illustrated in Figure 47 below. 

The image contains a reasonably large field of view such that transport properties can be 

representative of the real material, the micropores here are not resolved. The real sandstone SEM 

has been segmented into 3 phases i.e., void, solid and region with unresolved microporosity. 

 

Three phase segmentation method developed in-house at our research group [55] is used in 

this work. The details of the method are explained in the following steps: 

 

1. Adjust histogram of each slice to match the histogram of the entire stack.  

2. Apply non-local means filter for removing the speckle-type noise from the image.  This 

requires determining by trial and error the ideal parameters for applying non-local means 

filter, such as estimating the noise standard deviation from the noisy image. This function 

assumes the noise follows a Gaussian distribution. (Non-local filters use a large region 

of the image to transform the value of one pixel). 

3. Apply thresholds (we use two thresholds, between macro and micropore and between 

micro- and solids) obtained from grey level histograms on the image to get the 3-phase 

composite image. Apply 1st threshold for separating macropores from micropores. 

4. Apply second threshold for separating micropores from solids by applying a spatially 

constrained iterative threshold filter. 
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5. Apply local-thickness filter to the grains to remove small asperities and dendrites. 

6. Keep only the grains obtained from step (v) which are greater than a certain selected 

diameter. 

 

Figure 47: Example of a Tomography image of a sandstone material with microporosity. Top left shows a 

greyscale image where the microporosity is visible between the voids (dark) and grains (light). Bottom left 

shows the result after applying a non-local means filter. 


