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Abstract

Dynamic Sampling is a non-uniform statistical sampling strategy based on S-CAL, a
high-recall retrieval algorithm. It is used for the construction of statistical test collections
for evaluating information retrieval systems. Dynamic Sampling has been shown to lead
to comparable or better test collections compared to pooling methods, at a fraction of the
assessment effort.

In this work, we adapt a high-recall retrieval system to run a Dynamic Sampling pro-
tocol for web-scale datasets. We use this to create relevance assessments for 30 topics from
the TREC 2019 Medical Misinformation Track. We compare our relevance assessments
to qrels created using two pooling based approaches. We also compare the official NIST
qrels, which were based on ClueWeb12B (7% of the full dataset), to qrels based on the full
ClueWeb12 dataset.

Our results suggest Dynamic Sampling yields a reasonably good test collection, with
comparable or lower variance for most evaluation measures. For fixed depth measures
like Precision@K, the NIST qrels based on ClueWeb12B appear to have higher bias with
respect to the other qrels, suggesting that it might be better to use qrels based on the full
collection when possible.
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Chapter 1

Introduction

Information retrieval systems are evaluated on the basis of how well they satisfy the in-
formation needs of a user. For a particular query, an information retrieval (IR) system
returns a ranked list of documents, typically sorted in a decreasing order by a relevance
score. In IR literature these ranked lists are referred to as system results. There are a
number of evaluation measures to judge the quality of system results returned in response
to a particular information need. Almost all of these measures are calculated based on
relevance judgments for a set of documents, referred to as a test collection. High-quality
test collections are important for evaluation measures to remain as representative of the
quality of system results as possible.

The ideal test collection would have exhaustive, accurate relevance judgments for every
document in the corpus. This is obviously not feasible for the vast majority of document
collections, and hence most test collections are necessarily incomplete. The problem is
particularly acute for modern web-scale document collections, where we can only hope to
manually judge a tiny fraction of the documents.

If we can only judge a limited number of documents, the natural question that arises
is how to choose the best judgement set for review. A uniformly random sample does not
work because the number of relevant documents can be far lower than the total number of
documents, dramatically so for web-scale collections. Over the years, variants of the pooling
method have emerged as the most popular ways to select this judgement set, particularly
for tasks at the annual TREC conference. The depth-k pooling method in particular can
be considered the standard method of constructing test collections[6]. Pooling is discussed
in more detail in Chapter 2, but we introduce the idea briefly here.

TREC tracks require participants to submit their system results for each task; these
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are referred to as runs. The general idea of pooling is to select a judgement set from
the collection formed by pooling together documents from all of the participating runs.
This set, or a subset, is then sent to NIST assessors for relevance judgements. Notably,
documents that are not assessed are assumed to be not relevant; this includes all documents
not retrieved by any of the participating systems. This leads to a test collection that has
enough relevant documents, and is reasonably good for the purpose of evaluating the
participating systems.

A limitation of pooling is that by definition it only draws from the pool of runs to be
evaluated. If all the submitted runs miss a class of relevant documents for some reason,
then these will be entirely absent from the test collection. In recent work, Cormack and
Grossman argue that pooling should be replaced by “Dynamic Sampling”[6] as the way to
construct test collections. Dynamic Sampling is a non-uniform sampling strategy which
can draw from the entire document collection. It involves reviewing documents using an
active learning approach which was first developed for high-recall information retrieval.

High-recall retrieval is the problem of retrieving almost all relevant documents from a
collection with minimal human review effort. In contrast to ad-hoc search, where usually
the goal is to find any document that satisfies the information need, high-recall retrieval
systems are designed to retrieve a much larger number of relevant documents. Two impor-
tant applications that require high-recall are technology assisted review in legal contexts
and systematic reviews of clinical trials in medical literature.

Past work on high-recall retrieval problems has led to the development of algorithms
like CAL[3], AutoTAR[4], S-CAL[5] and systems like BMI1 and HiCAL[1]. The Dynamic
Sampling technique is an adaptation of the S-CAL algorithm to the domain of test col-
lection construction. Past experiments have demonstrated that using Dynamic Sampling
can lead to more accurate test collections with lower bias and comparable ability to rank
system effectiveness[11].

Dynamic Sampling has only been tried for small and moderate sized document collec-
tions so far[6][11]. This thesis extends that line of investigation by creating a test collection
for the web-scale ClueWeb12 dataset using Dynamic Sampling. In the next two sections,
we provide a brief overview of our work and the outline of the rest of the thesis.

1https://cormack.uwaterloo.ca/trecvm/
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1.1 Experiment Overview

We re-designed and extended some of the core components of an existing high-retrieval
system - HiCAL[1] - to work for the web-scale ClueWeb12 collection. The main challenges
here were wrangling the ClueWeb12 WARC data into a format suitable for a standard
classification library, and creating a multi-threaded program to score the entire document
collection as fast as possible.

The Dynamic Sampling strategy then had to be adapted to this novel setting. We
conducted a small pilot study to help inform various hyper-parameter and design choices
in the labelling protocol. The first step of our final protocol is to find 10 relevant seed
documents for every topic using the ClueWeb12 search engine provided by the Lemur
Project2. These seed documents, along with a pseudo-relevant document consisting of
the seed query, were used as the positive examples to train an initial logistic regression
classifier. The negatives examples were chosen by randomly picking 100 documents from
the corpus. The assessor then uses HiCAL to review a fixed-sized batch of the top-scoring
documents returned by the model. The model is then re-trained on these new judgments
and it re-scores the collection and the process repeats again. The model draws from an
diminishing subset of the document collection as we see more and more relevant documents.
The system prompts the reviewer to stop labelling when it determines that the stopping
criteria has been reached at the end of a batch review.

The author then spent about five weeks judging 12,693 documents for 30 topics from
the TREC 2019 Medical Misinformation Track, drawing from the entire ClueWeb12 collec-
tion. For our experiment, we only focused on making relevance judgements and comparing
them to the NIST relevance judgements. The Medical Misinformation Track also includes
judgements for credibility and correctness, which are aspects we do not investigate. The
labeling effort was discontinuous in nature due to the time it took to re-score the collection
between each batch review. On an average, it took a few hours of effort spread across 1.5
days to label each topic.

We then compared the overlap between our test collection and the TREC official test
collection. We also evaluated both collections on the basis of how they effectively they
ranked 44 runs generated by different models in the Anserini toolkit.

Our results show that Dynamic Sampling is a feasible method for creating test col-
lections for web-scale datasets, and does comparably well to pooling-based methods. Ad-
ditionally, Dynamic Sampling led to rankings with lower bias and variance for shallow

2http://boston.lti.cs.cmu.edu/Services/clueweb12/lemur.cgi
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fixed-depth measures like Precision@K and RBP@K, with K ≤ 30. A second question we
tried to answer was whether the TREC test collection, which was based on the B13 sub-
set, is good enough for the purpose of ranking retrieval systems based on how they would
perform on the full ClueWeb12 dataset. We observed that the bias for the B13 collection
was higher for a number of evaluation measures, suggesting that it might be better to use
Dynamic Sampling over the full collection instead.

1.2 Thesis Outline

The outline of the rest of this thesis is sketched out below.

In Chapter 2, we cover some background and related work. We discuss information
retrieval evaluation measures, high-recall retrieval and construction of test collections.

In Chapter 3, we describe the design and implementation of our system. We also
describe how our data was processed and set up, including the software tools built for
these purposes.

In Chapter 4, we discuss the design of our study protocol and describe how our exper-
iment was conducted.

In Chapter 5, we compare our test collection to the TREC official qrels. We also discuss
them in the context of various evaluation measures.

In Chapter 6, we conclude by discussing the results of our study, including limitations
and future work.

4



Chapter 2

Background and Related Work

2.1 Information retrieval evaluation

In this section we provide a brief overview of the most common ways to evaluate information
retrieval systems. This will include both the measures and toolkits that we use in our work.

Evaluation metrics

Precision and recall are two fundamental effectiveness measures for binary classification
problems. In the context of information retrieval, precision is the fraction of retrieved
documents which are relevant, and recall is the fraction of relevant documents which are in
the retrieved set. The set of retrieved documents for a particular query is called a system
result. System results are assumed to be sorted in decreasing order of a relevance score,
which is calculated for each document by the system based on how well it matches the
query.

Evaluation measures try to capture a system’s performance at the task of satisfying
user information needs. A standard assumption is that users examine each document in a
system result starting from the top till their information need is satisfied. A lot of measures
include a rank cutoff K, representing the assumption that the user examines only the top
K documents. Precision @ K is one of the most popular measures, measuring the fraction
of the top K documents which are relevant. Average Precision (AP) considers the rank
of each relevant document, and computes the average of Precision @ K values at each of
those ranks. Mean Average Precision (MAP) is simply AP averaged over multiple queries.
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AP and MAP can be calculated by the following formulae, where P (k) is precision at
the kth document, and rel(k) is 1 if the kth document is relevant and 0 otherwise.

AP =

∑n
k=1 P (k)× rel(k)

number of relevant documents

MAP =

∑Q
q=1 AP(q)

Q

Precision @ K captures how well a system serves a user who looks at only the top K
documents. The drawback is that it ignores the rest of the documents completely. MAP
is a better summary measure of the performance of the system at different points, but it
does not clearly correspond to plausible user behaviour. Rank-biased precision (RBP) [15]
is a measure that tries to fix these shortcomings. It has a single parameter p that is the
probability that the user will proceed to examine the next document in the system result.
The parameter p represents the persistence of the user, and it is used to derive document
weights based on the likelihood of the document being seen. Rank-biased precision is
defined as the number of relevant documents, weighted by the probability that they are
examined, divided by the expected total number of documents that the user examines.

RBP = (1− p) ·
d∑

i=1

rel(i) · pi−1

Discounted Cumulative Gain (DCG) [12] is another measure which weights highly
ranked relevant documents more than low ranked ones. Each relevant document is given a
weight of 1/ logb(i+1) where b is a parameter (commonly b = 2) which controls magnitude
of the weights, and i is the rank of the document. DCG is typically normalized by dividing
all scores by the score for the ideal ranking, so that the resulting measure (called nDCG),
has a value between 0 and 1. Calculating the ideal rankings requires knowledge of R, the
total number of relevant documents, and this is a disadvantage of nDCG when compared
to RBP.

DCGp =

p∑
i=1

rel(i)

log2(i+ 1)

Other effectiveness measures that we consider are interpolated precision at different
levels of recall and recall/precision values at various multiples of R.

6



Evaluation toolkits - trec eval and DynEval

After we create our test collections and runs, we use a couple of standard tools to eval-
uate each run against each test collection for all the measures discussed above. For test
collections created without sampling, we use trec eval1, used by the TREC community
to evaluate ad-hoc retrieval runs. For test collections created using sampling, we use
DynEval2, which is an adaptation of trec eval for statistical test collections.

2.2 Building test collections

For large datasets with millions of documents, it is not feasible to examine every document
in the collection for relevance assessment. Even examining a small random subset might
not work if the density of relevant documents is too low. Thus the central problem of
building test collections is how to intelligently select a subset of the dataset for review such
that we cover a reasonable number of relevant documents which are likely to be found by
good retrieval systems. In this section we first cover the standard variants of pooling used
by the TREC community. Then we briefly introduce active learning approaches to the
high-recall retrieval problem, and the non-uniform sampling method derived from them as
an alternative to pooling.

2.2.1 Pooling

The basic idea of pooling is to take the union of the results returned by different retrieval
systems and then assess that set for relevance. Assuming that the retrieval systems are good
enough, this ensures that enough relevant documents get included in the test collection.

The most commonly used variant of pooling is depth-k pooling, where the top scoring
k documents from each retrieval system are added for assessment. Typically a value of 100
is used for k.

A way to reduce the assessment cost further is to employ a strategy to select only a
subset of the depth-k pool for assessment. Variants of the pooling method differ in how
they select documents from the pool. Some methods use statistical sampling to draw
from the pool, and then statistically estimate the value of effectiveness measures that we
would get if the full pool were assessed[2][20]. Active learning can also be applied to

1https://trec.nist.gov/trec eval/
2https://cormack.uwaterloo.ca/sample/
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selecting documents for assessment from this pool. Move-to-front pooling[10] and bandit
methods[13] are a few examples of such strategies.

2.2.2 Dynamic Sampling

In high-recall retrieval, the goal is to find all or nearly all relevant documents in a collection
while reviewing as few documents as possible. This is similar to the central problem of
building test collections, and thus algorithms and techniques for high-recall retrieval can
be adapted to the problem of sampling documents for test collections.

Active learning[17] is a general approach for training classifiers with fewer labeled exam-
ples. The basic idea is to let the classifier choose the examples to learn from. Continuous
active learning [3][4] was one of the first protocols to use active learning to the high-recall
retrieval problem, in the context of technology-assisted review (TAR). A limitation of CAL
is that the required labeling effort is proportional to the number of relevant documents,
which typically increases with the size of the collection. S-CAL[5] improves upon that by
using sampling, leading to a protocol with O(logN) labeling cost, where N is the number
of unlabeled documents.

Dynamic Sampling[6] is S-CAL adapted to the problem of building test collections.
Dynamic Sampling leads to test collections which are superior to ones built using static
sampling strategies[6]. When compared to pooling, Dynamic Sampling has been shown
to yield test collections which have a lower bias and a similar ability to rank system
effectiveness, with much lesser assessment effort[11].

8



Chapter 3

Implementation

In this chapter, we go into the details of how our judgement system was designed and
implemented. We first also describe the ClueWeb12 dataset, and how we pre-processed it
to deal with various challenges posed by its enormous scale.

3.1 The ClueWeb12 dataset

We used the full ClueWeb12 dataset for our experiment. The ClueWeb12 dataset consists
of 733,019,372 documents, stored in WARC files. The total number of WARC files is
33,447. The size of the compressed dataset is 5.54 TB and the full uncompressed data is
27.3 TB. This is by far the largest collection that Dynamic Sampling, and CAL approaches
in general, have been tried on.

The ClueWeb12B collection was created as a representative, uniform 7% sample of
the full dataset. It was created by taking every 14th document from each WARC file
of ClueWeb12. It consists of 52,343,021 documents, stored in the same format in 33,447
WARC files. The compressed size of the dataset is 389 GB and uncompressed version is
1.95 TB.

The WARC file format is a standardized archival format used to store web crawls. In
ClueWeb12, each web page that was crawled was first converted to a WARC record. A
number of WARC records were grouped together into a single WARC file of about 1 GB,
which was then compressed using gzip. The primary unique identifier for each record is the
custom WARC-TREC-ID field in the WARC response header. This ID uniquely identifies
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the location of the WARC file containing the record, and the sequence number of the record
within that file.

3.2 Processing the data

We first distributed the full dataset roughly equally between 36 hard disks. This was done
primarily so that the scoring could be parallelized as much as possible.

We derived several secondary files from the original WARC files to make the ClueWeb12
collection fit for use with HiCAL and also to deal with scale challenges. We created
a modified version of the WARC files to make access to individual records faster. We
also derived files containing TF-IDF feature representations to prepare the collection for
scoring with models trained using the Sofia-ML library. We also created files corresponding
to several additional subsets for every WARC file, to make it trivial to do downsampling.
This also ensures that downsampling leads to reduced scoring time.

We describe each of these secondary files in detail in the following sub-sections, along
with the software tools used to create them.

3.2.1 Individually compressed WARC records

In the standard ClueWeb12 collection, each compressed WARC file was created by concate-
nating WARC records and compressing them together. There is no way to locate individual
records directly and decompress them in this format. The whole WARC file needs to be
decompressed to seek an individual record inside it. To make this process more efficient
we created a version of the WARC files in which all records are compressed individually
using gzip and then concatenated together. For each such new WARC file, we also create
an index of TREC ID to its offset in the WARC file. This gives us a way to seek individual
WARC records in a compressed WARC file without decompressing and going through the
entire file.

To do this we used the multi-purpose zchunk tool1, which internally uses the zlib
compression library. The zchunk tool was also used to create the TREC ID to WARC
offset index file.

1zchunk was written by Dr. Gordon Cormack
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3.2.2 Feature files for scoring

We used TF-IDF features as our document representations for training models and scoring
documents using the Sofia-ML library. For each WARC file, we generate the concordance
file containing the term frequency counts grouped by records. A DF file containing docu-
ment frequencies for each term that appears at least once in the WARC file is also created.
Both the concordance and the DF files were created using the zchunk tool. The DF files for
each WARC file are then hierarchically combined for every sub-directory, every directory
and every disk.

The DF file for the entire corpus contains 238.5 million terms, and is 3.5 GB in size.
In a web-scale collection, we can expect almost all terms which occur only once to be
meaningless character sequences. We pruned our DF file down to 104 million terms and
1.5 GB size by removing all such singleton terms.

The TF-IDF representations for each record in each file were then generated, using the
pruned DF file and the term frequency counts in the concordance files. The TF-IDF files
were further compacted by transforming them into a binary format, for faster scoring. We
refer to these files as compact feature binaries in the rest of the chapter.

3.2.3 Downsampling the feature files

The original Dynamic Sampling algorithm scores the document collection in every iteration,
and then selects a decreasing fraction of the B top scoring documents uniformly at random
for judgement. Here B is a hyper-parameter that specifies the strata from which we sample
at a decaying rate. Note that we score the entire collection even when we are sampling a
decreasing fraction of the top scoring documents as the labelling progresses.

For the novel setting of a web-scale document collection, we would like to not only
sample at a decaying rate but also reduce the scoring time as the algorithm progresses.
We achieve this by simulating the decaying rate of sampling by scoring only a diminishing
subset and returning all of the top K documents from it. If this subset is chosen uniformly at
random, then this is equivalent to returning a diminishing fraction of the top B documents
uniformly at random.

We created 11 diminishing subsets for the ClueWeb12 dataset, with separate files for
each. Since we need these subsets only for the scoring step, we create these new files only
for the compact feature binaries. Counting the full collection, this gives us 12 levels for
the algorithm to progress through, with each level corresponding to a decreasing sampling
rate.
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The first level is the full dataset. Each subsequent level contains half the documents
of the previous level. Since we intend to compare our judgements against the TREC 2019
Medical Misinformation qrels, we would prefer to judge more ClueWeb12B documents. In
order to get more ClueWeb12B documents for review, we also give those documents special
priority. We ensure that the full ClueWeb12B subset is present in every subset up to level
4. At that point we have reduced the subset size to 12.5% of the full dataset. To make the
level 5 subset exactly half of the current size, we removed all non-ClueWeb12B documents
and 1/8 of the ClueWeb12B documents. This gives us the level 5 subset, which is 6.25%
of ClueWeb12, and contains only ClueWeb12B documents. After this point, we continue
reducing the subset sizes by half as before. The total extra memory required by all the
subset files is at-most the size of the full collection, and the smaller files ensure the scoring
cost reduces by approximately half every time we downsample.

The naive method to create N subset files is to go through the full collection N times,
picking every second document the first time, then picking every fourth document the
second time and so on. But this requires lots of redundant reading of the records. Also,
we need a way to ensure that every ClueWeb12B document i.e. every 14th document is
present in every subset up to level 4. Instead, we use a technique that requires us to read
the collection only once and creates all subsets directly.

To create the subset files for all levels directly, we assigned a level number R to ev-
ery record, which can be calculated based on just its sequence number in a WARC file.
R denotes that this record is present in every subset up to and including level R. We
modified the program that generates the compact binary representations to output the
representation for each document Di with level number Ri to the first Ri files.

The main challenge here was to ensure that the ClueWeb12B documents all get a level
number 4 and above. We discuss the approach we used to generate the R values for our
downsampling scheme below. We first describe the formula, then our modification to give
ClueWeb12B documents priority.

Calculating the level number for each document in a WARC file

1. Let the documents in the WARC file be indexed starting from 1.

2. We want to include every 2n-th document in the n-th subset.

3. Consider the document with index number Di. If this is to be included in the n-th
subset, then Di must be divisible by 2n. We can see that this also implies Di is
included in all the subsets 1 through n− 1.

12



4. The maximum n such that a number Di is divisible by 2n is given by the count of
zeroes at the end of the binary representation of Di. Let this count be represented
by Zi.

5. This gives us a simple formula for Ri: Ri = Zi + 1

Calculating the level number for each document in a WARC file, with priority
to ClueWeb12B

1. We want to retain ClueWeb12B documents in our subsets for as long as possible.

2. The ClueWeb12B subset was created by taking every 14th document of the full col-
lection. The ClueWeb12B collection can be included till the fourth level of sampling
i.e. 1/8 of the full collection. After that, we move to 1/16 of the collection and we
need to drop some ClueWeb12B documents. We can do this by ensuring that every
14th document gets an R number of at least 4.

3. We first assign each document an R number using the previous formula.

4. Consider all the index numbers in blocks of size 16. From the formula we can see
that the R number of the 8th position will be greater than 4 and 16th position will
be greater than 5.

5. These blocks can contain ClueWeb12B documents in exactly 7 ways, which repeat.

6. The first 6 blocks contain exactly one ClueWeb12B document.

• We swap the R number of the ClueWeb12B document with the R number of
the 16th document, guaranteeing an R ≥ 5.

7. The 7th block contains two ClueWeb12B documents, one at the second position, one
at the 16th position.

• We swap the R number of the ClueWeb12B document in the second position
with the R number of the 8th document, guaranteeing an R ≥ 4.

• The 16th document already has an R ≥ 5, so we don’t need to do anything.
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3.3 On-disk HiCAL

HiCAL is an open-source system for high recall retrieval. It consists of two core components
of interest to us - the first is a web application for document assessment built using Django,
a Python web framework. The second is CAL, a C++ based backend service implementing
model training and scoring. HiCAL is best understood as a human-in-the-loop active
learning system, with the frontend providing a user interface for a human judge, and the
backend handling 1) training of a classifier based on relevance feedback from the judge
2) scoring of all documents and selection of the next judgement set. In this section we
describe how we adapted each component of HiCAL to work for our novel setting of a
web-scale document collection2. The main challenge here was to speed up the training and
re-scoring steps as much as possible, in order to ensure a quick turnaround time for the
human judge.

3.3.1 Lazy extraction of documents

Our document collection is stored as files containing individually compressed WARC records
and files containing TF-IDF feature representations for the records in a single WARC file.
Having access to the uncompressed documents is a necessity for sending them for judgment,
and would also simplify the creation of a training set in our design. However, creating an
uncompressed version of the entire collection would incur a significant storage cost of 27.3
TB. We observe that we will only ever need a tiny fraction of the documents for training
and judgement. Thus we extract the full uncompressed documents in a lazy fashion -
whenever we encounter a document ID in a training or judgement list that hasn’t been
de-compressed yet, we use zchunk to extract it from its compressed WARC file and store it
at a unique path determined by the ID. This full path is also used as the unique identifier
for documents internally, as this makes retrieval by the front-end trivial, obviating the need
for an index lookup.

3.3.2 Adapting CAL training for the ClueWeb12 collection

The training in HiCAL is initialised with just the seed query as a positive example. In our
experiment, we used an additional 10 seed positive documents gathered using an external
search engine. We added a form to HiCAL frontend to input these documents as comma-
separated TREC IDs, and also changed the training of the initial model to use them as

2For reference, the adapted version can be found at https://github.com/kshanmol/HiCAL-web-scale
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positive examples. The input TREC IDs were also first mapped to our own unique internal
IDs. Following standard CAL practice, a randomly chosen 100 documents were used as
negatives.

HiCAL uses the Sofia-ML library to train a logistic regression classifier. In HiCAL,
all document representations and classifier models are made available in-memory to allow
for faster training. This is not feasible for our setting. We instead put the training set
together in a new file and derive its TF-IDF features using the global DF file. The Sofia-
ML library is invoked for training at the command line and the trained model is output to
the corresponding session directory.

For our vocabulary size, the default trained model that Sofia-ML outputs is nearly 9
GB. It took 3.5 minutes for the training step to complete, most of which was spent in
writing the model to disk. The model file contains the weight vector for all the terms in
our vocabulary, most of which have a zero weight. We modified Sofia-ML to use a new
compact representation for the model output, only including the feature index and the
weight for terms with non-zero weight. This brought down the typical model size to under
500 KB, and reduced the training step time to 20 seconds.

3.3.3 Adapting CAL scoring for the ClueWeb12 collection

The feature representations to be scored for the full-collection cannot be stored in-memory
in our setting. Instead they are stored in files distributed roughly over 36 hard disks as
discussed in Section 3.2.2.

We use the multi-threaded myreadT program3 to parallelize scoring as much as possible.
It reads in the compact format trained model and creates 36 task queues, corresponding
to the 36 disks containing the feature files. It also creates 1000 worker threads that do
scoring, with each thread assigned to a particular task queue. The worker adds to its
queue whenever it discovers a document scoring better than the 1000th biggest score so
far. The main thread goes through these queues, inserting the records into the top 1000
overall using linear insertion.

Scoring using a single model takes about 9.5 minutes for the full collection (733 million
documents). For scoring the subsets, the time taken reduces in proportion to the size of the
subset file. So scoring the level 2 subset (365 million documents) takes about 5 minutes,
the level 3 (180 million documents) takes about 2.5 minutes, and by the time we reach
level 5, scoring takes under a minute.

3Written by Dr. Gordon Cormack
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Chapter 4

Protocol Design and Experiment

In this chapter, we describe the design of the protocol that we used to create our test
collection. We also describe the complete protocol and how we used it to label 30 topics
from the TREC 2019 Medical Misinformation collection. To adapt the general technique
of Dynamic Sampling to our setting, we had to make a number of hyper-parameter and
design choices. We decided to first conduct a short pilot study by labelling a few topics
from the TREC 2014 Web Track, which also utilises the ClueWeb12 collection. We first
discuss the pilot and how it informed the design of our protocol.

4.1 Protocol design considerations

The primary aim of the pilot study was to develop a better feel for how our system works
after being adapted for the web-scale setting. This would help us make informed design
choices for our labeling protocol and experiment setup. We first list some of the open
questions about the protocol we had before our pilot study.

• What should be the batch size of the documents sent for judgement? This defines
how many new training examples are added when the model is retrained in the active
learning loop. There have been several variants in CAL protocols, including a fixed
size of 1 and exponentially increasing batch sizes. By default the HiCAL system
retrains the model on every new judgement. But to make the system responsive for
the judge, it continues serving the top scoring documents from the previous model and
also caches any new judgements that arrived when the model was being retrained. For
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our setting, such a level of responsiveness is not feasible because Dynamic Sampling
requires us to retrain and rescore the collection after the judgement of each strata.
For the full collection, it takes at least 10 minutes for the system to finish retraining
and rescoring after it receives new judgements.

• During the course of judging documents, when should we perform downsampling on
the collection? Downsampling corresponds to decreasing the sampling rate. When-
ever we downsample, we essentially switch to a larger universe of documents to draw
from. To see as many relevant documents as possible, we want to sample from as
big a universe as possible. But if there are very few relevant documents for a topic,
we might miss them if we downsample too quickly, and might not get an accurate
estimate. Thus we want to keep downsampling, but only after we’ve seen enough
relevant documents. A second related question here is - how quickly should we down-
sample? In our setting, for some topics, we might discover a huge amount of relevant
documents. To go through them faster, it might make sense to sometimes do a double
downsampling instead.

• At what point should we stop judging documents for a given topic? Previous attempts
have used a fixed budget. We experiment with using a variable budget based on a
stopping criteria. After enough exploration, we can expect to reach a point when
the number of relevant documents in every batch starts going down. Our stopping
criteria is based on the “knee method”, where the knee is a cut-off point after which
frequency of relevant documents has become significantly lower than the frequency
of relevant document before it.

4.2 Results of the pilot study

For our pilot study, we labeled 9 topics from the TREC 2014 Web Track. We chose 5
topics with low density (less than 30 relevant documents) and 4 topics with high density
(more than 200 relevant documents) according to the NIST qrels. We labeled these with
3 different budgets - 200 documents for 3 topics, 300 documents for 4 topics and 400
documents for 2 topics. We picked a fixed batch size of 20 and slightly modified the
downsampling criteria of Dynamic Sampling to require at least 10% of the most recent
batch to be relevant. We discuss the rationale behind these choices in detail in the next
section, in the context of the final protocol.

The topic-wise breakdown of the labeling effort is given in 4.1. Our effort (DS effort)
was comparable to the NIST effort in terms of number of documents judged. We also
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compute the inter-labeler agreement for the documents that were seen by both the author
and the NIST assessors in two different ways. The standard way to measure agreement in
the literature [19] is to calculate the overlap, which is the number of documents marked
relevant by both, divided by the union of the documents marked relevant by either. This is
also known as Jaccard similarity. The other score we calculate is the percentage agreement.
This is simply the number of documents given the same label by both, divided by the
number of documents seen by both. The overall overlap is 0.5 and the overall percentage
agreement is 0.575. The overlap and agreement for topic 261 seemed notably lower. On
investigating the documents, this turned out to be because the author went with a less
strict interpretation of the topic query (“folk remedies for sore throat”).

Topic DS effort NIST effort Intersection Overlap Agreement
261 200 281 24 0 0.125
266 200 351 16 0.875 0.875
291 200 225 40 0.286 0.5
260 300 328 11 0.4 0.4545
271 300 266 2 0 0.5
272 300 367 8 0.5 0.5
290 300 259 30 0.55 0.7
282 400 334 22 0.727 0.727
285 400 284 28 0.714 0.714

Total 2600 2695 181 0.5 0.575

Table 4.1: Labeling effort (number of documents judged) and overlap by topic. The
intersection is the number of documents judged by both. Overlap is measured as the
fraction of documents marked relevant by both out of the documents marked relevant by
either, and agreement is the simple percentage agreement of labels for the intersection set.

In 4.2, we compare the number of relevant documents found in the DS effort to that in
the NIST effort. The second column, rDS, is the number of documents seen and labeled rel-
evant by the author. The third column, R̂DS, is the actual estimate of relevant documents
given by Dynamic Sampling. Following Dynamic Sampling practice [5], the estimate was
calculated by weighting each of the documents actually reviewed by the inverse of their
inclusion probability. The last column is the number of documents marked relevant in the
official NIST test collection.

Our overall estimate of total relevant documents is 3899, which is roughly 4 times
the NIST number. This suggests that Dynamic Sampling is able to explore the space of
relevant documents better with a similar effort.
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Topic rDS R̂DS RNIST

261 107 375 21
266 121 506 241
291 86 257 22
260 56 116 24
271 34 62 14
272 183 1042 227
290 52 111 30
282 192 1066 202
285 110 364 215

Total 941 3899 996

Table 4.2: Relevant documents found by the DS and NIST efforts. rDS is the actual
number labeled, and R̂DS is the estimated number of documents after weighting the labeled
documents with their inverse inclusion probability. Note - RNIST is the best effort using
depth-k pooling, but it is known by NIST that this is an underestimate.

4.3 Final experiment protocol

In this section we discuss the key design decisions we made for our protocol, and how
the pilot study informed some of them. We end with a full description of the Dynamic
Sampling protocol we arrived at in Algorithm 1.

4.3.1 Batch size

For our system, which can take between 5-10 minutes to refresh, we envision a user working
on multiple topics simultaneously. After labeling a batch of documents for a particular
topic, the backend starts the process of refreshing the model and scores. The user can
move on to a batch of documents for another topic, and work on those while a fresh batch
is being prepared for the first topic. This way the user can alternate between a few topics,
keeping them occupied productively. In [11], the authors mention that it took them an
average of 33 minutes to label 300 documents per topic. For our novel setting, we pick a
batch size of 20, which would mean each batch can be expected to take about 2 minutes
to label. A bigger batch size would keep the user occupied longer, but this comes at a cost
of refreshing the model less frequently. We expect 20 to be a reasonable batch size with
this trade-off in mind.
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4.3.2 Downsampling

There is a lot of variance in the number of relevant documents for different topics. If there
are very few relevant documents for a topic, then we want to see almost all of them. But if
there are lots of relevant documents, we’d prefer to skip redundant ones in order to explore
the corpus thoroughly and get a good statistical estimate. This involves downsampling so
that we don’t see too many documents from the same strata, which are likely to be similar.
In Dynamic Sampling, whenever the number of documents assessed relevant (R) becomes
greater than or equal to the decay threshold T , T is doubled, and this effectively halves
the sampling rate.

We note that this criteria does not factor in the recent frequency of relevant docu-
ments. If the frequency of relevant documents drops a lot at any point, this might mean
that we’ve found most of them already. In this case, we don’t want to downsample on
reaching T , so that we don’t risk missing out on the few relevant documents that possibly
remain. To factor this in, we add an additional criteria requiring the precision of the latest
batch, termed marginal precision (MP), to be at least 0.1. This would mean that we will
downsample whenever after reviewing a given batch of 20 documents, R becomes greater
than or equal to T , and there were at least 2 relevant documents in that batch.

Double downsampling

As noted earlier, we conducted the pilot with the downsampling criteria discussed above.
We noticed that in 3 topics where there were an abundant number of relevant documents,
downsampling once did not seem to suffice. We also note that during the pilot we down-
sampled down to at most level 5. On this basis we added a rule for double downsampling.
Whenever the downsampling criteria is met after reviewing at least 3 batches from a sub-
set, we check the average MP for the last 3 batches. If it is high (greater than 0.5 i.e.
more than 10 relevant documents), then we downsample twice instead of once. This new
criteria would have been satisfied at some point for each of the 3 topics that motivated us
to introduce it.

4.3.3 Stopping criteria

We are interested in trying a variable budget to counter the problem of variable relevance
densities. We first set a minimum of 300 documents for each topic i.e. 15 batches of review.
After 15 batches, we’d like to keep judging if the system keeps finding relevant documents
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and to stop when the frequency of relevant documents goes down below a certain point.
We use the following rule - after every batch, we stop if there exists a partition of the
batches such that the average MP before the partition is more than 5 times the average
MP after partition (with a minimum partition size of 5). This factors in the full history of
the MPs of every batch. If the rate at which we were seeing relevant documents for some
topic was only moderate to begin with, then this might prevent us from stopping too soon.
When this rule was retroactively applied to our pilot labelling exercise, it asked to stop for
two topics of very low density after 300 documents. It only asked to stop for one topic of
higher density, after 400 documents. This suggests that our rule is reasonably effective at
requiring stopping early only for topics with low density, and allows continued exploration
of topics with higher density.

Algorithm 1 Dynamic Sampling Protocol

1: Find ten relevant seed documents for the topic using an interactive search platform.
2: The initial training set consist of a pseudo-relevant document containing the seed query

and the 10 seed documents, all marked as “relevant”.
3: Set the batch size B to 20.
4: Set the initial decay threshold T to hyperparameter N (N = 25).
5: Temporarily augment the training set by adding 100 random documents from the

collection, labeled “not relevant”.
6: Score all documents in the current subset using a model induced from the training set.
7: Remove the random documents added in step 5.
8: Select the highest scoring B documents not previously selected.
9: Render the relevance assessments for the B documents.
10: Add the assessed documents to the training set.
11: Calculate marginal precision mp = r/B, where r is the number of relevant documents

found in this batch.
12: Check if we have reached the stopping criteria at this point. If yes, then we stop the

process. Else continue to the next step.
13: If the total number of assessed relevant documents R ≥ T and mp ≥ 0.1, double T

and downsample.
14: If average mp of last 3 batches from this subset is 0.5 or more, downsample once again.
15: Repeat 5 through 14 until the stopping criteria in 12 is met.
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4.4 Labeling effort and timeline

After the protocol was finalized, the author spent about five weeks of effort judging docu-
ments for 30 topics from the TREC 2019 Medical Misinformation Track. We found that
alternating between labeling two topics worked reasonably well. It took about a few hours
of effort spread across a day or two to finish judging a pair of topics, including time taken
to find the 10 seed documents.

It took anywhere between 15 minutes to an hour and a half to find the 10 relevant
seed documents for a single topic. The labeling process was less continuous than we had
hoped - we often had to wait for the system to finish refreshing both the models. This
behaviour was partly expected, but the system also took longer when it had to work
on refreshing two models simultaneously. When two models were refreshing on the full
collection simultaneously, it took around 12 minutes for each. When it was just one model,
it took 9.5 minutes.

We labeled a total of 12693 documents for the 30 topics, including the seed documents
found using interactive search. This means we labeled an average of 423.1 documents for
every topic. This is a comparable effort to the NIST test collection, which have a total of
13669 judgements for the same 30 topics.

Table 4.3 shows the topic-wise breakdown of the documents we labeled using Dynamic
Sampling (DS effort) and the documents NIST labeled (NIST effort). We also compute the
overlap and percentage agreement for the documents that were seen by both the author
and the NIST assessors. The overall overlap is 0.469, which is in the ballpark of the overlap
seen in the pilot study, and also comparable to the overlap observed between different NIST
assessors [19].

Note that here we only show our labeling effort and agreement for the documents
that we judged manually. This mostly just serves as a basic sanity check for the label
sets. Since we use Dynamic Sampling, our effort is effectively higher than this, and our
statistical estimates of the number of relevant documents are also higher. Those will be
discussed in comparison with the NIST test collection in the next chapter.
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Topic DS effort NIST effort Intersection Overlap Agreement
1 470 425 58 0.167 0.828
2 443 639 33 0.143 0.455
3 390 499 7 0.75 0.857
4 330 475 80 0.576 0.688
5 610 527 75 0.61 0.787
6 310 379 90 0.636 0.778
7 390 523 23 0.5 0.957
8 490 348 45 0.513 0.578
9 310 423 68 0.435 0.809
10 370 362 27 0.083 0.593
11 470 611 48 0.487 0.583
12 390 409 107 0.521 0.579
13 310 468 10 0.286 0.5
15 490 498 108 0.605 0.861
16 610 425 88 0.279 0.5
17 590 478 24 0.375 0.792
18 390 476 41 0.333 0.854
19 410 448 50 0.55 0.64
20 330 571 34 0.615 0.853
21 310 488 8 0.5 0.75
22 370 496 55 0.143 0.564
23 450 413 79 0.49 0.684
24 390 519 5 0 0.4
25 350 485 27 0.455 0.778
26 370 452 23 0.364 0.696
27 350 358 26 0.167 0.808
28 310 326 76 0.786 0.882
29 510 328 41 0.185 0.463
30 590 392 115 0.426 0.661
31 590 428 57 0.5 0.842

Total 12693 13669 1528 0.469 0.707

Table 4.3: Labeling effort (number of documents judged) and overlap by topic. The
intersection is the number of documents judged by both. Our overall overlap with the
NIST assessors is 0.469, which is in the range previously observed in literature [19].
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Chapter 5

Results and Discussion

In this chapter, we compare the relevance assessments we created using our Dynamic
Sampling protocol with the relevance assessments created by NIST assessors using pooling
for the TREC 2019 Medical Misinformation Track1. We note again that we’re comparing
the NIST and Dynamic Sampling judgements on just relevance and not the overall track
task, which includes aspects like credibility and correctness. We also note that the NIST
did graded relevance judgements, which we convert to binary relevance judgements (i.e.
relevant or not relevant) for comparisons with the Dynamic Sampling judgements, which
are binary.

In TREC parlance, the files containing relevance assessments are called “qrels”. We
use the terms “qrels” and “relevance assessments” interchangeably in the rest of the thesis.
The document corpus, the set of topics and the corresponding qrels together form a test
collection. We note again that the NIST qrels were created by drawing documents for
judgement from the smaller ClueWeb12B subset, and the Dynamic Sampling qrels were
created by drawing from the full collection. In the first section, we examine and compare
the space of documents explored by the two approaches. In the second section, we look
into how well the qrels do at the task of evaluating IR system results.

5.1 Comparing the qrels

The qrels can be compared in two ways - how many relevant documents were found in
each, and how much they agree on what kinds of documents are relevant.

1All relevance assessments can be found at https://github.com/kshanmol/2019-med-misinfo-qrels
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5.1.1 Relevant documents discovered

The number of documents which were judged relevant in the Dynamic Sampling (DS) qrels
is 2862. However, since Dynamic Sampling draws documents from diminishing subsets of
the full corpus, the estimated total is higher. Recall that the kth subset was formed by
taking a uniform random sample consisting of half of the (k − 1)th subset, starting with
the full ClueWeb12 corpus. From this we can derive a simple weighting scheme to estimate
the total number of documents based on inverse inclusion probabilities described by Pavlu
[16]. If a document Di was drawn from the kth subset, its inclusion probability is 2−(k−1)

and it is given a weight of 2k−1, starting with k = 1 for the full collection. Following this,
the estimated total number of relevant documents according to the DS qrels comes out to
be 13018.

The number of relevant documents in the NIST qrels is 2265. These qrels were drawn
from ClueWeb12B, which is a 1/14 uniform random sample of the full collection. Thus the
estimated total number of relevant documents in the full ClueWeb12 dataset according to
the NIST qrels is 14 times this i.e. 31710. The topic-wise breakdown is given in Table 5.1.

The DS estimate was lower than we expected. We expected it to be at least in the same
ball-park as the NIST estimate. There are a few possible related reasons for this, and the
explanation for the lower estimate could be a mix of all of these factors.

• First, the stopping condition was triggered too soon. The stopping condition is the
point when the average MP of recent batches is 5 times lower than the average MP
of the old batches. If we want the judgement to go on longer, we can modify the
stopping condition to require the average MP of recent batches to be even lower.

• Second, the author was stricter with the interpretation of the relevance criteria than
NIST. This could also cause the stopping condition to be triggered sooner. We can
see this when we consider the set of documents labeled by both NIST and the author.
Out of all the documents labeled relevant by NIST, the author labeled 0.531 of them
as relevant. Out of all the documents labeled relevant by the author, NIST assessors
labeled 0.802 of them as relevant. This provides some support for the possibility that
the author was stricter than NIST.

• Third, the classifier did not find enough relevant documents. This could be because
of the first two reasons, and also because of how the classifier was built. This would
imply room for improvement in various steps - document cleaning, featurization, the
model and its hyperparameters and even the seeding process. We find low classifier
quality to the most plausible explanation and discuss this further in Section 5.1.3.
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Topic rDS R̂DS rNIST R̂NIST

1 77 174 100 1400
2 62 136 220 3080
3 44 63 26 364
4 135 699 111 1554
5 126 471 85 1190
6 127 624 86 1204
7 46 67 10 140
8 238 4238 107 1498
9 109 322 39 546
10 55 94 43 602
11 122 419 190 2660
12 137 839 151 2114
13 60 109 49 686
15 121 422 52 728
16 127 479 144 2016
17 68 143 72 1008
18 72 159 18 252
19 110 334 118 1652
20 80 188 16 224
21 31 33 114 1596
22 124 419 8 112
23 141 580 85 1190
24 40 53 22 308
25 78 173 45 630
26 66 130 11 154
27 37 48 5 70
28 122 580 78 1092
29 68 138 108 1512
30 150 669 116 1624
31 89 215 36 504

Total 2862 13018 2265 31710

Table 5.1: Relevant documents found by the DS and NIST efforts. rDS and rNIST are the
number of documents seen and judged relevant. R̂DS and R̂NIST are the total estimated
number of relevant documents in ClueWeb12, derived by weighting the relevant documents
with their inverse inclusion probability.
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5.1.2 Using the NIST qrels as ground truth

Another standard way of comparing two relevance assessments is to evaluate the first with
respect to the second[19], where the latter is assumed to be the ground truth. However,
the DS and NIST qrels are not directly comparable because of two factors.

• First, the NIST qrels were drawn from just the ClueWeb12B subset. Thus for our
comparison we only consider the subset of DS qrels which belong to ClueWeb12B.
Limiting analysis to ClueWeb12B documents ensures that both qrels have a relevance
judgement, either explicit or implicit, for every document.

• Second, the documents that were judged in the DS qrels were drawn from diminishing
subsets, so they are an underestimate. We need to give each document a weight which
accounts for the potential documents we missed in the full collection. The subsets are
a uniform random sample, so we can weight the judged documents by dividing them
with their probability of being included in the subset[16]. Since the first four subsets
contain the entire ClueWeb12B subset, the probability of a ClueWeb12B document
being included in them is 1. The fifth subset contains 7/8 of ClueWeb12B, the sixth
subset contains 7/16 of ClueWeb12B and so on. Thus for documents drawn from the
fifth subset, the inclusion probability is 7/8, for the sixth subset 7/16 and so on. The
general formula for inclusion probability of a ClueWeb12B document drawn from the
kth subset is min(1, 14/2k−1), and its weight is given by the inverse of that.

After accounting for both of the above factors, we can proceed to compare the two qrels.
In the rest of the section we assume that only documents in ClueWeb12B are considered
and that documents in the DS qrels have been given the appropriate weights.

System Recall, User Recall and End-to-End Recall

There are two components working together in HiCAL - the system and the user. The
system is the classifier which selects the top scoring documents for review. The user is the
human judge who reviews the documents selected by the system and marks them as relevant
or not relevant. We’re interested in the individual performance of both components, so we
calculate the recall for both separately. These measures are termed system and user recall
respectively. We also calculate a third measure called end-to-end recall, which measures
their joint performance.
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Let B be the set of all documents in ClueWeb12B and C be the subset of DS qrels
which are a part of B. Let relDS(d) and relNIST(d) be functions which are 1 if the document
d is relevant and 0 otherwise, according to the DS and NIST qrels respectively. Let w(d) be
the weight of document d according to the inverse inclusion probability weighting scheme
described above.

System recall is a measure of the fraction of total relevant documents retrieved by
the system. It is calculated by considering all documents sent for review as relevant,
irrespective of the user’s judgement. More specifically, it is the weighted number of all
documents relevant in the ground truth (i.e. the NIST qrels) that are sent for review,
divided by rNIST, the total number of relevant documents in the ground truth.

System Recall =

∑
d∈C relNIST(d) · w(d)

rNIST

User recall is the fraction of ground truth relevant documents marked relevant by the
user, out of all the ground truth relevant documents seen by the user.

User Recall =

∑
d∈C relNIST(d) · relDS(d) · w(d)∑

d∈C relNIST(d) · w(d)

End-to-end recall is the fraction of the all ground truth relevant documents that the
system selected and the user marked relevant. Since this is a subset of the documents
selected by the system, we can expect end-to-end recall to be lower than the system recall.

End-to-End Recall =

∑
d∈C relNIST(d) · relDS(d) · w(d)

rNIST

We can see that the three measures are related to each other by the following formula:

End-to-End Recall = System Recall · User Recall

The topic-wise breakdown for user recall, end-to-end recall and system recall is given
in Table 5.2.

System recall is an indicator of how much of the NIST pool was also selected for review
by our system. The average system recall across the 30 topics was 0.353, which was lower
than previously reported in literature[19]. This indicates that we are missing relevant
documents that were found in the NIST qrels. We present a more detailed analysis of
system recall in Section 5.1.3.
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System Precision and User Precision

System precision is defined as the fraction of the retrieved documents which are relevant
in the ground truth.

System Precision =

∑
d∈C relNIST(d) · w(d)∑

d∈C w(d)

User precision is defined as the fraction of documents marked relevant by the user which
are also relevant in the ground truth.

User Precision =

∑
d∈C relNIST(d) · relDS(d) · w(d)∑

d∈C relDS(d) · w(d)

The average system precision is 0.162, which suggests that our classifier typically has a
different idea of relevance than the NIST assessors. The average user precision was 0.728,
indicating that the author was mostly in agreement about the documents that were marked
relevant by NIST assessors. Our average user precision is in the ballpark of the inter-rater
precision range of 0.605-0.819 observed by Voorhees[19].

The topic-wise breakdown for user precision and system precision is given in Table 5.2.

29



Topic User recall System recall End-to-end recall User precision System precision
1 0.286 0.07 0.02 0.286 0.084
2 0.143 0.095 0.014 1 0.233
3 1 0.115 0.115 0.75 0.071
4 0.642 0.477 0.306 0.85 0.27
5 0.735 0.4 0.294 0.781 0.149
6 0.66 0.616 0.407 0.946 0.259
7 1 0.1 0.1 0.5 0.022
8 0.631 0.607 0.383 0.976 0.079
9 0.556 0.462 0.256 0.667 0.184
10 0.083 0.279 0.023 1 0.24
11 0.5 0.2 0.1 0.95 0.242
12 0.521 0.623 0.325 1 0.356
13 0.4 0.102 0.041 0.5 0.079
15 0.639 0.692 0.442 0.92 0.214
16 0.286 0.389 0.111 0.8 0.227
17 0.429 0.097 0.042 0.75 0.06
18 0.429 0.389 0.167 0.6 0.095
19 0.564 0.331 0.186 0.957 0.307
20 0.667 0.75 0.5 0.889 0.16
21 0.5 0.035 0.018 1 0.121
22 1 0.5 0.5 0.143 0.029
23 0.615 0.459 0.282 0.706 0.203
24 0 0.045 0 0 0.03
25 0.5 0.222 0.111 0.833 0.139
26 1 0.364 0.364 0.364 0.057
27 0.5 0.4 0.2 0.2 0.041
28 0.846 0.5 0.423 0.917 0.206
29 0.2 0.231 0.046 0.714 0.236
30 0.439 0.569 0.25 0.935 0.328
31 0.529 0.472 0.25 0.9 0.137

Average 0.543 0.353 0.209 0.728 0.162

Table 5.2: Precision and recall of the DS judgements, setting the NIST judgements to be
the ground truth. To make the two judgement sets comparable, this analysis was done
on ClueWeb12B documents only. The DS documents in the analysis were also weighted
with their inverse inclusion probability, to account for them being drawn from diminishing
subsets.
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5.1.3 Case analysis for system recall

In Table 5.2 we see a lot of variance in the system recall values for different topics. In this
section we compare the topics for which the system recall was low to the topics for which
it was high, to investigate possible reasons for this difference.

We first group the 9 topics with the lowest system recall (recall ≤ 0.2) into a “Low”
category and the 8 topics with the highest system recall (recall ≥ 0.5) into a “High”
category. The two categories are shown in Table 5.3, sorted in increasing order of system
recall.

Topic Query System recall
21 acupuncture vascular dementia 0.035
24 yoga epilepsy 0.045
1 cranberries urinary tract infections 0.07
2 acupuncture insomnia 0.095
17 lumbar supports lower back pain 0.097
7 aspirin vascular dementia 0.1
13 antidepressants low-back pain 0.102
3 acupuncture epilepsy 0.115
11 exercise lower back pain 0.2

22 hydroxyzine generalized anxiety disorder 0.5
28 antibiotics whooping cough 0.5
30 aloe vera wounds 0.569
8 melatonin jet lag 0.607
6 amygdalin laetrile cancer 0.616
12 circumcision hiv 0.623
15 probiotics bacterial vaginosis 0.692
20 steroids spinal cord injury 0.75

Table 5.3: Topics with the lowest and highest system recall. We observe recurring themes
like “acupuncture”, “epilepsy”, “vascular dementia”, “lower back pain” in the topics with
low system recall, whereas each topic with high system recall appears to be unique.

The mean system recall, end-to-end recall, system precision and user precision for these
categories are shown in Table 5.4. The low recall topics fare worse in both system precision
and recall, indicating that the classifiers trained for these topics were of poorer quality.
The user recall and user precision are also lower, indicating that these topics might have
been more ambiguous for the assessor as well.
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In Table 5.5 we also compare these two categories on the basis of judgement effort
and estimate of relevant documents, R̂. The average number of documents labeled for
both categories is fairly similar. This suggests that stopping labeling too early wasn’t a
big contributing factor towards low recall. For the high recall category, the estimate of
relevant documents using the DS labels was similar to the estimate using the NIST labels,
in line with our expectations. For the lower recall category, the estimate using DS labels
was an order of magnitude lower than the estimate using NIST labels. This is a clear
indicator that the system did not find enough relevant documents for these topics, most
likely due to the classifiers not being good enough.

The Medical Misinformation topic queries have two distinct parts, a health condition
and a suggested treatment. If we look at the queries for the low recall category in Table
5.3, we notice recurring themes like acupuncture, lower back pain and epilepsy. While
judging the documents for these topics, the author observed that the system behaved in
a clearly sub-optimal way of alternating between batches that had documents discussing
either only the condition or only the treatment method. This likely happens because
of unbalanced feature weights for terms pertaining to the condition and the treatment.
For example, for the query “acupuncture epilepsy”, at a given point the classifier might
have higher weights for “acupuncture” and related terms. The resulting batch would
contain documents discussing only “acupuncture”, and would be marked not relevant,
thus reducing their weights. Now, if “epilepsy” and related terms have a higher weight,
then the next batch might only contain documents discussing epilepsy, which would also
be marked not relevant. In this way the classifier would keep getting worse. The type of
topics for which such retrieval difficulties might arise have been previously discussed in the
literature as “intersection topics” [14][18].

Thus we believe that the most likely explanation for low system recall is poor quality
classifiers for topics that have the intersection topic problem. Finding a solution for the
intersection topic problem for DS will likely lead to improvements in recall and estimates
of relevant documents. We leave this for future work.

System recall User recall End-to-end recall System precision User precision
Low 0.0954 0.473 0.05 0.107 0.6373
High 0.6071 0.675 0.4038 0.204 0.8408

Table 5.4: Mean precision and recall measures for the Low and High categories. All
measures are worse for the low system recall topics, indicating that they were difficult for
the classifier as well as the human reviewer to get right.
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Average documents labeled Mean R̂ (DS) Mean R̂ (NIST)
Low 418.11 133 1249.11
High 410 997.375 1074.5

Table 5.5: Average documents labeled and estimate of relevant documents. For the same
average effort, the number of documents found in the low recall topics was an order of
magnitude lower.

5.2 Ranking system results

A good test collection is able to generate rankings which reliably discriminate between
retrieval systems of differing quality. Relevance assessments, or qrels, play a primary role
in this. The first set of qrels we consider, which we term DS, is the one built using our
Dynamic Sampling method. DS is a statistical set of qrels, which just means that we use
knowledge of the sampling strategy and an estimator to calculate evaluation measures using
it. The second set of qrels, termed NIST is the one built using depth-k pooling by NIST
assessors for the TREC 2019 Medical Misinformation Track. We note again that these
qrels were drawn from just the ClueWeb12-B13 subset. Additionally, with the assumption
that the B13 subset is a perfectly representative sample of the full dataset, we derive a
third statistical set of qrels for the full ClueWeb12 dataset from NIST using the DynEval
estimator. We refer to this last set of qrels as NIST-A in the rest of the thesis.

The three sets of qrels represent three different approaches to building test collections
for evaluation.

• DS - Using Dynamic Sampling on the full collection to select documents for assess-
ment and deriving a statistical set of qrels using the DynEval estimator.

• NIST - Using depth-k pooling on a subset (ClueWeb12B) to select documents for
assessment and judging all of them.

• NIST-A - Creating NIST first, and then deriving a statistical set of qrels for the full
ClueWeb12 collection (also called the A collection) using the DynEval estimator.

The qrels need to be good at the task of ranking systems based on how well the systems
would do on ad-hoc retrieval tasks on the ClueWeb12 dataset. Through our ranking
experiments, we attempt to answer two questions -
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• How does a set of qrels built using Dynamic Sampling (DS) compare to ones built
using pooling (NIST, NIST-A)?

• Is a set of qrels built from a small subset (NIST) a good substitute for qrels based
on the full dataset (DS, NIST-A)? If their performances are comparable, then it is
reasonable to prefer the small subset to make selection and assessment of documents
easier.

The DynEval estimator

Relevance assessments created using statistical sampling need an estimator for the cal-
culation of various measures. StatAP[16] is a well known estimator which can calculate
standard measures like Average Precision, Precision@K using the relevance assessments of
documents and their inclusion probabilities. DynEval[8] is another estimator which cor-
rects an error in the nDCG calculation in StatAP[8] and adds more measures. We use
the DynEval estimator for evaluating runs using the DS and NIST-A qrels. For DynEval
to calculate inclusion probability p for a document correctly, we had to add 1

p
− 1 “fake”

documents to the qrels file. The relevance for the fake documents was set to -1, indicating
the document was present in the stratum but not assessed.

Evaluating bias and variance in qrels

To compare the quality of qrels, we can use them to rank a set of IR systems and compare
the rankings to each other. The ideal ranking RI would be one calculated using a complete
and fully accurate ground truth qrels. The Kendall correlation (τ) between the ranking
RQ, generated using qrels Q, and the ideal ranking RI can be used as a measure of the
quality of Q. In the absence of the ideal ground truth, we can examine the correlation of
the rankings generated by different qrels. In particular, we want our rankings to compare
favorably to the rankings generated by depth-k pooling.

Lack of accuracy in rankings can be either because bias (“lack of fairness”) or because
of variance (“lack of stability”). Simply using Kendall’s τ as a measure of ranking accuracy
does not allow us to separate out the bias and variance components in the error. Instead,
following [7], we derive bias and variance from Kendall’s τ by interpreting system rankings
to be points in Euclidean space with distance between rankings x and y given by:

δ(x, y) = 1− τ(x, y)

34



The expected squared distance between two rankings X and Y is given by:

∆(X, Y ) = Eδ2(X, Y )

The variance σ2 of a given ranking X is one half its squared distance from an indepen-
dent and identically distributed ranking X ′:

σ2(X) =
1

2
∆(X,X ′)

The bias of a ranking X is measured with respect to another ranking Y , which is
independent but not necessarily identically distributed. The squared bias is the remaining
squared distance between X and Y after the individual variances are subtracted:

b2(X, Y ) = ∆(X, Y )− σ2(X)− σ2(Y )

We can approximate the selection of a different set of 30 topics from the universe of
all topics by sampling with replacement from the 30 topics we assessed. This is referred
to as bootstrap re-sampling in the literature[7]. This allows us to get different sets of
rankings using the same qrels. These rankings can be interpreted as being drawn from a
hyper-sphere with diameter proportional to the square root of variance of the qrels. The
distance between different hyper-spheres give us the bias between two different qrels.

5.2.1 A preliminary ranking experiment

For our first ranking experiment, we created 8 runs using the Anserini toolkit and then
ranked them using 6 different effectiveness measures for each of the 3 qrels. The runs were
created by distinct searchers initiated by picking from the following choices-

• Query - Either the topic description or the topic narrative

• Ranking model - Either the BM25 model or the QLD model

• Query expansion model - Either no query expansion or the RM3 model

The 6 measures chosen were Mean Average Precision (MAP), Precision @ 30, Recall @
R, Recall @ R + 100, Recall @ 2R, Recall @ 2R + 100. MAP based rankings gives us an
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idea of how the qrels perform for a measure calculated over the entire run while Precision
@ 30 based rankings do the same for a shallow depth measure.

The NIST system results were calculated on runs of depth 1000 generated on the
ClueWeb12-B13 subset, and the NIST-A and DS system results were calculated on runs
of depth 1000 generated on the full ClueWeb12 dataset. Additionally, we also generated
system results based on run of depth 10,000 for NIST-A and DS. This might make the
system results from NIST-A and DS more comparable to the system results from NIST,
since their corresponding runs are from the full dataset, which is an order of magnitude
larger than the B13 subset.

For the smaller runs, we observe that DS has lower variance than NIST-A for all
measures (Table 5.6). Thus the DS rankings appear more stable here. The NIST-A/NIST
pair has higher bias than the NIST-A/DS pair, suggesting that the qrels built from only a
subset leads to more bias when compared to collections based on the full dataset.

When the run sizes are increased to 10,000 for NIST-A and DS, we see that the difference
in variance between NIST-A and DS comes down (Table 5.7). This suggests that DS
provides stabler rankings than NIST-A only when the ranking measure is calculated over
shallower depths. We will examine this trend in detail in the next section using more runs.
The bias between NIST-A and NIST remains high compared to the bias between NIST-A
and DS. We retain the run size of 10,000 for NIST-A and DS in the rest of the ranking
experiments.

Measure Sigma Bias
NIST-A DS NIST NIST-A/DS NIST-A/NIST DS/NIST

MAP 0.3076 0.1825 0.2181 0.152 0.2359 0.1418
P@30 0.4981 0.3307 0.2037 0.5218 0.6064 0.3961

recall@R 0.2663 0.2501 0.2085 0.1754 0.1367 0.1488
recall@R+100 0.2547 0.1909 0.1848 0.0876 0.1678 0.1214

recall@2R 0.2604 0.2285 0.2116 0.1937 0.2423 0.25
recall@2R+100 0.2643 0.2057 0.1703 0.1387 0.1908 0.1302

Table 5.6: Bias and variance in rankings for 8 runs (Runs of size 1000 for all qrels). We
observe that DS has lower variance than NIST-A, indicating stabler rankings. DS also
has lower bias than NIST with respect to NIST-A, indicating it is a better substitute for
NIST-A than NIST.
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Measure Sigma Bias
NIST-A DS NIST NIST-A/DS NIST-A/NIST DS/NIST

MAP 0.2068 0.1627 0.2151 0.1031 0.2106 0.1715
P@30 0.4961 0.3306 0.2024 0.5294 0.6054 0.3954

recall@R 0.2298 0.2517 0.2089 0.184 0.1423 0.1464
recall@R+100 0.2399 0.2016 0.1854 0.062 0.1625 0.1136

recall@2R 0.2342 0.2283 0.2129 0.0418 0.2263 0.2691
recall@2R+100 0.2156 0.232 0.1717 0.1205 0.2523 0.1859

Table 5.7: Bias and variance for 8 runs (Run size 10000 for DS and NIST-A, 1000 for
NIST). The variance for NIST-A drops and becomes more comparable to DS, but NIST
remains more biased than DS with respect to NIST-A.

5.2.2 Extended ranking experiment

For our main ranking experiment, we created 44 runs using the Anserini toolkit and then
ranked them using all measures available in DynEval for each of the 3 qrels. The runs were
created by searchers initiated with distinct combinations of the following choices -

• Query - Either the topic description or the topic narrative

• Ranking model - BM25, QLD, QLJM, I(n)L2, SPL, F2Exp, F2Log

• Query expansion model - Either no query expansion or one of RM3, BM25PRF,
axiomatic semantic matching.

The BM25PRF query expansion can only be used with the BM25 ranking model. This
gives us a total of 44 distinct and valid parameter combinations, from which we generate
44 runs for our ranking experiment.

We rank these runs based on all measures in the DynEval program. This gives us 72
rankings i.e. system results for each of the qrels. From the observation that the rankings
based on measures with shallower depth behaved differently in our preliminary experiment,
we divide the 72 measures into three categories. The first group consists of all the variable
and full depth measures. The second and third groups consist of all the measures which
are calculated for a fixed depth, with the second group containing the shallow cutoffs
(K <= 30) and the third group containing the deeper cutoffs (K >= 100).
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We observe that for shallow fixed-depth measures (Table 5.9), the variance of both DS
and NIST-A rankings are noticeably higher than NIST, but the variance of DS is lower
than the variance of NIST-A. The bias between the NIST-A/DS pairs is lower than the bias
between NIST-A/NIST pairs, suggesting that NIST would have more bias with respect to
a golden ranking.

For deeper fixed-depth measures (Table 5.10), the absolute variance and bias reduce
substantially for both NIST-A and DS. The variance of NIST-A becomes lower than or
comparable to the variance of DS. The bias between the NIST-A/DS pairs remain lower
than the bias between NIST-A/NIST pairs.

To our surprise, for variable and full depth measures (Table 5.8), the trends observed
in the preliminary ranking experiment reversed. NIST-A has lower or comparable variance
than DS and the NIST-A/NIST pair has lower or comparable bias than the DS/NIST-A
pair.
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Measure Sigma Bias
NIST-A DS NIST NIST-A/DS NIST-A/NIST DS/NIST

map 0.1862 0.2018 0.1755 0.162 0.1789 0.2245
ndcg 0.1597 0.1964 0.158 0.1662 0.1591 0.1932
P@R 0.1794 0.2066 0.1775 0.1948 0.1532 0.2395

RBP@R 0.1659 0.1915 0.1652 0.1829 0.1351 0.2263
iprec at recall@0.20 0.2251 0.2465 0.1997 0.1873 0.1689 0.2333
iprec at recall@0.60 0.183 0.1994 0.2196 0.1872 0.1525 0.2297
iprec at recall@1.00 0.3369 0.297 0.3246 0.6324 0.2917 0.5474

Rprec*0.25 0.2356 0.253 0.2003 0.3165 0.2024 0.3539
Rprec*1.00 0.1805 0.207 0.1772 0.196 0.152 0.2373
Rprec*4.00 0.1623 0.1906 0.1804 0.1868 0.1772 0.2161
Rrecall*0.25 0.2353 0.2529 0.1997 0.3164 0.2045 0.3529

Rrecall*0.25+100 0.2013 0.1944 0.1879 0.2566 0.2357 0.2399
Rrecall*1.00 0.1797 0.2073 0.1777 0.1943 0.1501 0.2379

Rrecall*1.00+100 0.1733 0.1835 0.1814 0.1743 0.1314 0.1831
Rrecall*4.00 0.1621 0.1914 0.1814 0.1863 0.1731 0.2175

Rrecall*4.00+100 0.1634 0.1929 0.1803 0.1663 0.1701 0.2503
Rgain*0.25 0.2366 0.2533 0.2004 0.3142 0.2027 0.3546
Rgain*1.00 0.1806 0.2076 0.1772 0.1943 0.151 0.238
Rgain*4.00 0.1623 0.1907 0.181 0.1839 0.1759 0.2116

Table 5.8: Bias and variance for 44 runs (Variable and full depth measures). The variance
numbers are comparable, with NIST-A having a lower variance for more of the measures.
NIST-A/NIST bias is also comparable or lower than NIST-A/DS.
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Measure Sigma Bias
NIST-A DS NIST NIST-A/DS NIST-A/NIST DS/NIST

P@5 0.484 0.4286 0.2201 0.6633 0.8203 0.6445
P@10 0.4934 0.3823 0.201 0.5515 0.6945 0.5066
P@15 0.4435 0.3461 0.1917 0.5852 0.6371 0.4563
P@20 0.3957 0.2992 0.1884 0.5396 0.5678 0.3958
P@30 0.4133 0.3057 0.1892 0.4024 0.4534 0.3502

relative P@5 0.4826 0.4291 0.2197 0.663 0.8217 0.6432
relative P@10 0.4926 0.3851 0.1982 0.5461 0.6862 0.5054
relative P@15 0.4429 0.3458 0.1845 0.5865 0.6387 0.4521
relative P@20 0.3975 0.3005 0.1816 0.5386 0.5691 0.4023
relative P@30 0.4114 0.3067 0.19 0.4018 0.4664 0.3752

RBP@5 0.5222 0.3989 0.1928 0.5894 0.676 0.5716
RBP@10 0.4701 0.3447 0.1802 0.5029 0.5627 0.4502
RBP@15 0.4252 0.3219 0.1763 0.4361 0.4903 0.3858
RBP@20 0.391 0.3086 0.176 0.3993 0.4419 0.3368
RBP@30 0.3465 0.295 0.1761 0.3345 0.3839 0.2731

Table 5.9: Bias and variance for 44 runs (Fixed-depth measures with K ≤ 30). DS variance
is lower consistently than NIST-A for these measures, and DS/NIST-A bias is also lower
than NIST-A/NIST bias.

40



Measure Sigma Bias
NIST-A DS NIST NIST-A/DS NIST-A/NIST DS/NIST

P@100 0.2775 0.2943 0.1878 0.3191 0.3844 0.2892
P@200 0.2226 0.2581 0.1748 0.1704 0.3823 0.3227
P@500 0.2242 0.2424 0.1536 0.1659 0.3649 0.3876
P@1000 0.1908 0.2444 0.1513 0.211 0.3302 0.4097

relative P@100 0.2775 0.2606 0.1849 0.3245 0.3339 0.2594
relative P@200 0.216 0.2053 0.1757 0.1958 0.2659 0.202
relative P@500 0.211 0.1751 0.1619 0.1701 0.2573 0.2784
relative P@1000 0.1833 0.1882 0.1619 0.1591 0.3137 0.3273

RBP@100 0.2316 0.2559 0.1754 0.1897 0.3139 0.2158
RBP@200 0.2101 0.2411 0.1697 0.1279 0.3084 0.2645
RBP@500 0.1906 0.2281 0.1556 0.1396 0.2834 0.3191
RBP@1000 0.1708 0.2207 0.1502 0.1652 0.2659 0.3406

Table 5.10: Bias and variance for 44 runs (Fixed-depth measures with K ≥ 100). NIST
variance is comparable or lower than DS for these measures, but the DS/NIST-A biases
remain consistently lower than NIST-A/NIST biases.

DS/NIST-A NIST-A/NIST NIST/DS
Fixed depth (K ≤ 30) 0.3961 0.3376 0.5364
Fixed depth (K ≥ 100) 0.7977 0.6609 0.6714

Variable / full depth 0.7523 0.8118 0.7148

Table 5.11: Average Kendall’s τ for each measure group. For the deeper fixed depth and
variable/full-depth metrics, we see that the DS rankings are reasonably well correlated to
the NIST-A rankings. The correlation for shallow fixed depth metrics is much lower, but
DS does better than NIST with respect to NIST-A.

5.2.3 Discussion

Overall, we observe a higher magnitude of error than reported previous experiments in the
literature [7]. One explanation of this could be that the Anserini searchers we use to create
runs are too similar to each other, making it harder to discriminate between them while
ranking. Nevertheless, we observe some trends in the variance of the three qrels and the
bias between them, with respect to different types of measures. We discuss these in the
context of the two questions we’re trying to answer.
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Dynamic Sampling compared to pooling methods

How does DS, created using Dynamic Sampling, compare to the two qrels created using
pooling? While the errors are highest for shallow fixed-depth measures, DS still has lower
variance than NIST-A. For all other measures, DS has similar or slightly higher variance
compared to NIST-A and NIST.

When considering shallow depth measures, Kendall’s τ (Table 5.11) seems to be low for
all pairs of qrels, but noticeably higher for pairs involving DS. Except for the shallow depth
measures, DS seems to provide reasonably similar rankings compared to the pooling-based
qrels. Overall these results suggest that DS is a reasonable collection for the purpose
of ranking different retrieval systems, with the advantage of having lower variance for
shallow-depth measures.

Subset based collection compared to collections based on full dataset

How does NIST, which is based on the B13 subset, compare to qrels based on the full
dataset? If NIST has a comparable performance, then it might make sense to always just
use a subset like ClueWeb12B instead of full web-scale collections like ClueWeb12. Using a
subset would reduce the computational cost for operations like generating runs for pooling,
re-training the classifier in Dynamic Sampling.

For variable and full-depth measures, the bias in the DS pairs seems to be higher than
the bias between NIST-A/NIST pair. No pair seems to consistently have the lowest bias.
We observe that for fixed-depth measures (Tables 5.9 and 5.10), the bias between NIST-A
and NIST is always higher than the bias between NIST-A and DS. This suggests that the
NIST rankings might have more bias with respect to the golden ranking, at least for this
category of evaluation measures. Overall, it is unclear if using a subset is always a good
idea. With methods like Dynamic Sampling available, it might be a better idea to always
draw from the full collection.
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Chapter 6

Conclusion

In this thesis, we adapted an existing high recall retrieval system to run a Dynamic Sam-
pling protocol for the purpose of building a test collection for the ClueWeb12 dataset. To
fine-tune our protocol, we conducted a pilot study in which we labeled documents for 9
topics from the TREC 2014 Web Track. For our main experiment, we used our adapted
system to create a statistical test collection for 30 topics from the TREC 2019 Medical
Misinformation Track.

To evaluate our test collection, which we term DS, we compared it to two other test
collections based on the depth-k pooling method. The first collection, NIST, is the official
test collection judged by NIST assessors for the ClueWeb12B collection, based on pooling
the runs submitted for the Medical Misinformation task. The second collection, NIST-
A, is a statistical version of the NIST collection which was extended using the DynEval
estimator, for the purpose of evaluating run performances on the full ClueWeb12 dataset.

We used the three collections to rank 44 distinct runs created using the Anserini toolkit,
and compared the rankings by examining their Kendall’s τ . Further, we separated out the
ranking error into bias and variance components. We did this for rankings created using all
effectiveness measures available in the DynEval estimator. DS provides reasonably similar
rankings to NIST and NIST-A, with lower variance for shallow fixed-depth measures. For
all fixed-depth measures, DS also has lower bias than NIST with respect to NIST-A.
Overall, our results suggest that using Dynamic Sampling is no worse than using depth-k
pooling for the construction of test collections for web-scale datasets.

43



6.1 Future Work

There are many avenues of further exploration in the implementation of our system, pro-
tocol design as well as experiment design.

• Generalizing the system design - Our system is designed to be run on a single large
server, which has compute and storage capacities exceeding that of commodity hard-
ware. In future work, our framework could be adapted for cloud services like AWS
or Microsoft Azure, which could make the system more accessible.

• Other web-scale datasets - For our research, we used the ClueWeb12 dataset and
topics from the TREC 2019 Medical Misinformation task. Other large scale web
collections, like the Common Crawl dataset, have also been used in various TREC
tracks. It might be interesting to study the performance of Dynamic Sampling on
these alternate datasets like Common Crawl1. Additionally, in our study, the TREC
task was based on ClueWeb12B. Directly comparing the performance of Dynamic
Sampling on a task where pooling was used to create qrels for the full ClueWeb12
dataset would provide a more comprehensive picture.

• Intersection topics - We observed that “intersection topics” might be proving difficult
for our system, bringing down both the classifier quality and system recall. It is worth
investigating potential protocols and classification algorithms which do not face this
problem.

• Model refresh time - While labeling the assessor has to wait for up to 10 minutes for
the full collection to be scored. A modification could be to maintain a cache of the
top 10000 scoring documents, and only re-score and return a batch from this cache
if the assessor runs out of documents to label. The full collection can be re-scored
by the latest model by a background process.

• Learned prior for DynEval - In our work, we used DynEval just as a extended version
of StatAP. DynEval also allows us to harness a learned model estimating the value
of a particular measure like P@k, leading to a lower variance estimate [8].

• Improving Precision@k - It has been observed in previous work that Precision@k
increases with collection size. Higher Precision@k might indicate the presence of
more good quality relevant documents in the collection. Precision@k1 for a large

1https://commoncrawl.org/
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collection (of size n1) has been found to be approximately equal to Precision@k2 for
a small subset (of size n2), where:

k1 + 1

n1

=
k2 + 1

n2

[9]

Preliminary experiments done by us suggest that the relation holds true for ClueWeb12
and ClueWeb12B as well. It would be interesting to study this further as more good
quality documents would be another reason to favour large collections.

The above are some of the important potential improvements we noted during the
course of our study. Applying these lessons will help further with the overarching goal of
building effective Dynamic Sampling systems for the creation of high quality test collections
in the context of web-scale datasets.
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Appendix A

Topic descriptions

A.1 Medical Misinformation Track 2019 topics

Topic
1 query cranberries urinary tract infections

description Can cranberries prevent urinary tract infections?
narrative Symptoms of a urinary tract infection (UTI) include

burning while urinating and a persistent urge to uri-
nate. Relevant documents should discuss the effec-
tiveness of consuming cranberries or cranberry juice
for prevention of UTIs. This topic is specifically about
prevention rather than treatment of an existing infec-
tion.

2 query acupuncture insomnia
description Can acupuncture be a solution to insomnia?
narrative Acupuncture has been used to ease issues that can

cause sleeplessness (insomnia) such as anxiety and
stress. A relevant document should discuss whether
acupuncture can treat insomnia.

3 query acupuncture epilepsy
description Can acupuncture be effective for people with epilepsy?
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narrative Acupuncture, a traditional Chinese treatment which is
applied by inserting thin needles in certain locations of
body, has been used as a treatment for epilepsy. There
are reports that it reduces the regularity and severity
of epileptic episodes (seizures). A relevant document
should discuss whether acupuncture can be used to
treat epilepsy or control seizures and epilepsy symp-
toms

4 query honey wound
description Can honey be used to heal wounds?
narrative Honey has been suggested as a treatment for a variety

of health issues and also been claimed to be a rem-
edy for acute or chronic wounds. Relevant documents
discuss whether topically applied honey is effective for
healing wounds.

5 query acupuncture migraine
description Can acupuncture prevent migraines?
narrative Acupuncture has been suggested to be an effective

treatment for episodic migraine. Relevant documents
discuss whether acupuncture can reduce the frequency
of migraine attacks. Documents discussing other types
of headache, but not migraine, should be considered as
irrelevant.

6 query amygdalin laetrile cancer
description Is amygdalin or laetrile an effective cancer treatment?
narrative Amygdalin, also known as Vitamin B17 and as its

semi-synthetic form Laetrile, is claimed to be used
as a potential treatment for cancer. A relevant doc-
ument discusses whether Amygdalin or Laetrile is a
useful treatment of cancer. Relevant documents might
also discuss consumption of foods containing Amyg-
dalin such as raw nuts and fruit pits as an effective
cancer treatment.

7 query aspirin vascular dementia
description Can aspirin improve the lives of people with vascular

dementia?
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narrative Vascular dementia is a brain disorder that occurs as a
result of dysfunction in the vascular system that car-
ries blood to the brain. It is suggested that aspirin can
help to improve the vascular system and benefit peo-
ple with dementia. Relevant documents should discuss
whether aspirin could be used as a treatment to help
people with vascular dementia and reduce severity of
its symptoms. Documents that don’t discuss the effec-
tiveness of aspirin for treating vascular dementia but
discuss other dementia related issues such as Alzheimer
and Lewy Bodies should be regarded as irrelevant

8 query melatonin jet lag
description Can melatonin be used to reduce jet lag?
narrative Jet lag is a fatigue and sleep disorder caused by air

travel across several time zones. It has been suggested
that melatonin can be used to reduce or prevent the
effects of jet lag. Relevant documents should discuss
whether taking melatonin can be effective for treating
jet lag.

9 query ear drops remove ear wax
description Can ear drops remove ear wax?
narrative Build up of ear wax can cause problems, e.g. hearing

loss, and may require interventions such as syringing.
Different types of ear drops have been suggested to be
useful to soften ear wax and be used to remove it. A
relevant document should discuss the effectiveness of
any type of ear drops in removing ear wax.

10 query gene therapy sickle cell
description Can gene therapy prevent complications caused by

sickle cell disease?
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narrative Sickle cell disease (SCD) is an inherited blood disorder
that affects the development of healthy red blood cells
and causes red blood cells to change their form from
a normal round shape to a crescent and rigid shape.
People with sickle cell disease have fewer healthy blood
cells, which can affect their oxygen carrying capacity
and lead to serious or life-threatening complications.
Gene therapy, as a newly advanced field, is claimed to
be helpful for this disease. A relevant document dis-
cusses using gene therapy for preventing the symptoms
and complications of SCD.

11 query exercise lower back pain
description Can exercises relieve lower back pain?
narrative Lower back pain is a common health issue. It can be

chronic, acute or sub-acute with no identifiable cause.
There are several exercises claiming reduction in non-
specific low-back pain. A relevant document discusses
whether exercises are helpful in reducing chronic or
sub-acute low-back pain. The documents that do not
mention non-acute low-back pain (i.e. chronic or sub-
acute) should be regarded as not relevant.

12 query circumcision hiv
description Is male circumcision helpful in reducing heterosexual

men’s chances of getting HIV?
narrative Relevant documents will discuss the effectiveness of

male circumcision, the surgical removal of some or all
of the foreskin of the penis, for reducing the risk of
heterosexual men becoming infected by HIV.

13 query antidepressants low-back pain
description Find documents that discuss using antidepressants for

helping to manage or relieve lower back pain.
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narrative Lower back pain is a common health problem which
mostly doesn’t have an identifiable cause. Antidepres-
sants such as Tofranil, Anafranil and many others,
are widely used by people with low-back pain in an
attempt to relieve the pain and help with sleep. A
relevant document should discuss, in the context of
low-back pain, whether antidepressants can be used to
manage pain, help people sleep, or increase productiv-
ity.

15 query probiotics bacterial vaginosis
description Can probiotics treat bacterial vaginosis?
narrative Bacterial vaginosis (BV) is a mild bacterial infection of

the vagina. Consumption of probiotic medicines (e.g.
pills, tablets) or probiotic rich products (e.g. yogurt)
has been suggested as cure for BV. Relevant docu-
ments discuss the effectiveness of probiotics for treat-
ing BV.

16 query magnesium muscle cramps
description Can magnesium prevent muscle cramps?
narrative Muscle cramps, which occur in different skeleton mus-

cles, are seen more frequently in older ages, pregnant
women, and during exercise, but may also occur in any
setting. One possible treatment suggested is consum-
ing products containing magnesium, such as magne-
sium rich food or magnesium supplements. A relevant
document should discuss whether or not magnesium
consumption can prevent muscle cramps.

17 query lumbar supports lower back pain
description Can lumbar supports treat or prevent lower back pain?
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narrative Lumbar supports, also called as lumbar back support,
lumbar spine support, corsets and braces, are wearable
products that are introduced for treatment of lower
back pain by providing support to the spine. Relevant
documents discuss the effectiveness of lumbar supports
in preventing new occurrences of or treating existing
low-back pain. Documents that don’t discuss the effec-
tiveness of lumbar supports for low-back pain but for
other spine issues, e.g. neck pain, should be regarded
as irrelevant.

18 query electrical stimulation male urinary incontinence
description Can electrical stimulation devices treat male urinary

incontinence?
narrative Electric stimulation using non-implanted devices is

suggested as a treatment for male urinary incontinence
(urine leakage). A relevant document should discuss
whether electrical stimulation with such devices can
prevent urine leakage, or treat urinary incontinence in
men.

19 query honey children cough
description Can honey offer relief from cough symptoms in chil-

dren?
narrative Relevant documents should discuss the effectiveness of

using honey for relieving cough symptoms in children.
20 query steroids spinal cord injury

description Can steroids be used as a treatment for spinal cord
injury?

narrative Relevant documents should discuss whether or not the
steroid, methylprednisolone, is helpful for acute spinal
cord injury.

21 query acupuncture vascular dementia
description Can acupuncture treat vascular dementia?
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narrative Dementia is a set of symptoms associated with loss of
memory or thinking skills. Vascular dementia (VaD)
is a subclass of dementia that occurs when the cir-
culation system fails to carry enough blood to the
brain. Among other interventions having side ef-
fects, acupuncture is said to be an effective treatment
of VaD. A relevant document discusses whether or
not acupuncture is an effective treatment for VaD.
Documents discussing other types of dementia (e.g.
Alzheimer, Lewy Bodies) should be regarded as irrel-
evant.

22 query hydroxyzine generalized anxiety disorder
description How effective is hydroxyzine (also known as Atarax)

for treating generalized anxiety disorder?
narrative Anxiety disorder is a common class of psychiatric dis-

orders covering generalized anxiety disorder (GAD),
panic attack, and phobia related disorders such as
Acrophobia. Relevant documents should discuss the
effectiveness of hydroxyzine (also sold under different
brand names such as Atarax) for treating GAD or con-
trolling GAD related anxiety, but may or may not
mention other types of anxiety disorders.

23 query insulin gestational diabetes
description Is insulin an effective treatment for gestational dia-

betes?
narrative Gestational diabetes (also known as gestational dia-

betes mellitus or GDM) is a subclass of diabetes that
occurs during pregnancy and usually goes away af-
ter birth. However, GDM may have harmful conse-
quences to the baby during birth and one solution sug-
gested is insulin injections or anti-diabetic medicines.
A relevant document discusses whether insulin or other
anti-diabetic pharmacological medicines can be used
to treat GDM. Documents not discussing GDM, but
other types of diabetes (i.e. Type I and Type II),
should be regarded as irrelevant.

24 query yoga epilepsy
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description Can yoga control epilepsy?
narrative It has been suggested that some types of yoga involv-

ing postural and breathing exercises can help to control
epileptic episodes and treat epilepsy. Relevant docu-
ments discuss whether yoga is effective at controlling
epilepsy and helps to reduce the frequency or duration
of seizures.

25 query fish oil ulcerative colitis
description Can fish oil be used to maintain the remission of ul-

cerative colitis?
narrative Ulcerative Colitis (UC) is an inflammatory disease af-

fecting the rectum and colon and can eventually cause
internal wounds. It has been suggested that fish oil
can be used for people with UC to manage its symp-
toms. Relevant documents should discuss whether fish
oil can be an effective solution to managing symptoms
of UC.

26 query vaccine common cold
description Can vaccines prevent the common cold?
narrative The common cold is a viral infection with common

symptoms such as sneezing, runny nose, sore throat
etc. and is different than the flu (influenza). Relevant
documents should discuss whether vaccines can pre-
vent the common cold. Documents not discussing the
effectiveness of vaccines on the common cold, e.g. they
discuss influenza, should be regarded as not relevant.

27 query antibiotics children wet cough
description Can antibiotics be used as a treatment for wet cough

(productive or chesty cough) in children?
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narrative Wet cough, also known as a productive cough or chesty
cough, is a cough that produces mucus or phlegm. In
children, when a wet cough is persistent (e.g. for four
weeks) it is considered a symptom of bacterial or vi-
ral infection that needs attention. Relevant documents
discuss whether or not antibiotics can heal wet cough.
Documents not discussing the effectiveness of antibi-
otics for persistent wet cough but for issues such as
whooping cough, or ones not mentioning its effect on
children should be regarded as irrelevant.

28 query antibiotics whooping cough
description Can antibiotics be used as a treatment for whooping

cough (pertussis)?
narrative Pertussis (whooping cough) is a bacterial infection that

causes episodes of acute cough and can lead to death.
Relevant documents discuss the effectiveness of antibi-
otics to treat pertussis.

29 query antibiotics children pneumonia
description Can antibiotics be use to treat community acquired

pneumonia in children?
narrative Antibiotics have been suggested as a treatment for chil-

dren diagnosed with community acquired pneumonia,
which is a different health issue than hospital acquired
pneumonia. A relevant document should discuss this
claim, whether or not antibiotics can heal children with
pneumonia acquired outside hospitals. Documents dis-
cussing only hospital acquired pneumonia (nosocomial
pneumonia) should be regarded as irrelevant.

30 query aloe vera wounds
description Can you apply aloe vera to treat wounds?
narrative Aloe vera is a cactus-like plant that has been used in

cosmetic and skin care products. It has been suggested
that aloe vera is useful as a wound remedy. Relevant
documents discuss whether aloe vera, topically applied
as a gel or cream, can heal wounds.

31 query exercise hot flashes night sweats menopause
description Are exercises helpful in reducing hot flashes and night

sweats in menopausal women?
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narrative Exercising has been suggested to ease vasomotor
menopausal symptoms such as hot flashes/flushes and
night sweats. Relevant documents discuss whether or
not exercise can help to reduce hot flashes and night
sweats in menopausal women.

Table A.1: Medical Misinformation Track 2019 topics
judged during the experiment

A.2 Web Track 2014 topics (Pilot study)
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Topic
260 query the american revolutionary

description Find a list of the major battles of the American Rev-
olution.

261 query folk remedies sore throat
description What folk remedies are there for soothing a sore

throat?
266 query symptoms of heart attack

description What are the symptoms of a heart attack in both men
and women?

271 query halloween activities for middle school
description What activities are good for middle-school-aged chil-

dren to celebrate Halloween?
272 query dreams interpretation

description Find data on how to generally interpret dreams.
282 query nasa interplanetary missions

description What interplanetary missions has NASA implemented
or has planned?

285 query magnesium rich food
description Which foods are rich in magnesium?

290 query norway spruce
description How do you identify a Norway Spruce?

291 query sangre de cristo mountains
description What are some cities/destinations within the Sangre

de Cristo mountains region?

Table A.2: Web Track 2014 topics judged during the pilot study
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Appendix B

Full metric tables

B.1 Rank Correlations

DS/NIST-A NIST-A/NIST NIST/DS
map 0.8478 0.797 0.759
ndcg 0.8076 0.8478 0.778
P@R 0.7865 0.833 0.7548

relative P@R 0.7865 0.833 0.7548
RBP@R 0.8182 0.8562 0.7632

iprec at recall@0.00 0.1755 0.4123 0.1501
iprec at recall@0.10 0.6892 0.8076 0.6533
iprec at recall@0.20 0.8076 0.8203 0.7463
iprec at recall@0.30 0.7548 0.7907 0.7696
iprec at recall@0.40 0.7949 0.814 0.7949
iprec at recall@0.50 0.8372 0.8309 0.7696
iprec at recall@0.60 0.8076 0.8393 0.7696
iprec at recall@0.70 0.8372 0.8499 0.7801
iprec at recall@0.80 0.8203 0.8372 0.7674
iprec at recall@0.90 0.685 0.7717 0.7104
iprec at recall@1.00 0.2558 0.6448 0.3488

Rprec 0.7865 0.833 0.7548
Rprec*0.25 0.6512 0.7949 0.611
Rprec*0.50 0.7696 0.8753 0.7378
Rprec*1.00 0.7865 0.833 0.7548
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DS/NIST-A NIST-A/NIST NIST/DS
Rprec*2.00 0.8161 0.8076 0.7759
Rprec*4.00 0.8013 0.8182 0.759
Rprec*8.00 0.7949 0.8372 0.6998
Rrecall*0.25 0.6512 0.7949 0.611

Rrecall*0.25+100 0.74 0.7632 0.7653
Rrecall*0.50 0.7696 0.8753 0.7378

Rrecall*0.50+100 0.7632 0.7865 0.7822
Rrecall*1.00 0.7865 0.833 0.7548

Rrecall*1.00+100 0.8161 0.8626 0.797
Rrecall*2.00 0.8161 0.8076 0.7759

Rrecall*2.00+100 0.8288 0.8393 0.8034
Rrecall*4.00 0.7992 0.8203 0.7632

Rrecall*4.00+100 0.833 0.8055 0.7188
Rrecall*8.00 0.7949 0.8351 0.6977

Rrecall*8.00+100 0.7865 0.8436 0.6934
Rgain*0.25 0.6512 0.7949 0.611
Rgain*0.50 0.7696 0.8753 0.7378
Rgain*1.00 0.7865 0.833 0.7548
Rgain*2.00 0.8161 0.8076 0.7759
Rgain*4.00 0.8013 0.8182 0.7632
Rgain*8.00 0.7949 0.8351 0.6977

set P 0.7252 0.8245 0.6131
set recall 0.7357 0.8351 0.7653

set relative P 0.7357 0.8351 0.7653
set F 0.7336 0.8203 0.6173

P@5 0.1649 0.0275 0.3002
P@10 0.3383 0.2072 0.463
P@15 0.315 0.2939 0.5349
P@20 0.4228 0.3805 0.6195
P@30 0.5412 0.5053 0.6512

relative P@5 0.1649 0.0254 0.2981
relative P@10 0.3383 0.2199 0.4545
relative P@15 0.315 0.2854 0.5307
relative P@20 0.4228 0.3805 0.6237
relative P@30 0.5412 0.4863 0.6195

RBP@5 0.2283 0.2241 0.37
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DS/NIST-A NIST-A/NIST NIST/DS
RBP@10 0.4123 0.3869 0.5391
RBP@15 0.5264 0.5032 0.6385
RBP@20 0.5729 0.5307 0.6871
RBP@30 0.6364 0.6068 0.7167

P@100 0.6765 0.5877 0.6913
P@200 0.8266 0.5941 0.6364
P@500 0.8182 0.6047 0.5793
P@1000 0.7928 0.6216 0.5455

relative P@100 0.6512 0.6596 0.7505
relative P@200 0.7949 0.7463 0.8118
relative P@500 0.8457 0.7294 0.7019
relative P@1000 0.8182 0.6681 0.63

RBP@100 0.797 0.666 0.7548
RBP@200 0.871 0.666 0.7061
RBP@500 0.8457 0.6998 0.63
RBP@1000 0.8351 0.6871 0.6195

Table B.1: Kendall’s τ for 44 runs - all metrics

B.2 Variance and Bias

Measure Sigma Bias
NIST-A DS NIST NIST-A/DS NIST-A/NIST DS/NIST

map 0.1862 0.2018 0.1755 0.162 0.1789 0.2245
ndcg 0.1597 0.1964 0.158 0.1662 0.1591 0.1932
P@R 0.1794 0.2066 0.1775 0.1948 0.1532 0.2395

relative P@R 0.1806 0.2066 0.1768 0.1918 0.148 0.239
RBP@R 0.1659 0.1915 0.1652 0.1829 0.1351 0.2263

iprec at recall@0.00 0.4785 0.403 0.2559 0.6089 0.5024 0.7153
iprec at recall@0.10 0.23 0.2657 0.1805 0.2966 0.1821 0.3365
iprec at recall@0.20 0.2251 0.2465 0.1997 0.1873 0.1689 0.2333
iprec at recall@0.30 0.2178 0.2357 0.2061 0.199 0.1713 0.2088
iprec at recall@0.40 0.2028 0.2246 0.2123 0.2104 0.1736 0.1982
iprec at recall@0.50 0.1964 0.2103 0.2213 0.1822 0.1495 0.2212
iprec at recall@0.60 0.183 0.1994 0.2196 0.1872 0.1525 0.2297
iprec at recall@0.70 0.1826 0.1923 0.2329 0.1771 0.1659 0.2121
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Measure Sigma Bias
NIST-A DS NIST NIST-A/DS NIST-A/NIST DS/NIST

iprec at recall@0.80 0.1741 0.2083 0.2028 0.1997 0.1721 0.2593
iprec at recall@0.90 0.1838 0.1762 0.2144 0.2984 0.2104 0.2725
iprec at recall@1.00 0.3369 0.297 0.3246 0.6324 0.2917 0.5474

Rprec 0.1795 0.2072 0.1768 0.1951 0.1525 0.2388
Rprec*0.25 0.2356 0.253 0.2003 0.3165 0.2024 0.3539
Rprec*0.50 0.1967 0.222 0.1755 0.2257 0.1312 0.2531
Rprec*1.00 0.1805 0.207 0.1772 0.196 0.152 0.2373
Rprec*2.00 0.1612 0.1942 0.1758 0.1697 0.1707 0.226
Rprec*4.00 0.1623 0.1906 0.1804 0.1868 0.1772 0.2161
Rprec*8.00 0.1685 0.205 0.1773 0.1901 0.1536 0.2659
Rrecall*0.25 0.2353 0.2529 0.1997 0.3164 0.2045 0.3529

Rrecall*0.25+100 0.2013 0.1944 0.1879 0.2566 0.2357 0.2399
Rrecall*0.50 0.1985 0.2225 0.1754 0.2242 0.1287 0.2535

Rrecall*0.50+100 0.1825 0.1829 0.1849 0.2199 0.1818 0.2135
Rrecall*1.00 0.1797 0.2073 0.1777 0.1943 0.1501 0.2379

Rrecall*1.00+100 0.1733 0.1835 0.1814 0.1743 0.1314 0.1831
Rrecall*2.00 0.1619 0.1935 0.1755 0.1712 0.1707 0.2272

Rrecall*2.00+100 0.1635 0.1865 0.1796 0.1713 0.1625 0.1973
Rrecall*4.00 0.1621 0.1914 0.1814 0.1863 0.1731 0.2175

Rrecall*4.00+100 0.1634 0.1929 0.1803 0.1663 0.1701 0.2503
Rrecall*8.00 0.1688 0.2069 0.1759 0.1875 0.1544 0.2638

Rrecall*8.00+100 0.1663 0.2083 0.1686 0.196 0.1494 0.2666
Rgain*0.25 0.2366 0.2533 0.2004 0.3142 0.2027 0.3546
Rgain*0.50 0.197 0.2233 0.1766 0.2235 0.1292 0.2559
Rgain*1.00 0.1806 0.2076 0.1772 0.1943 0.151 0.238
Rgain*2.00 0.1618 0.193 0.1752 0.1701 0.1718 0.2249
Rgain*4.00 0.1623 0.1907 0.181 0.1839 0.1759 0.2116
Rgain*8.00 0.1679 0.2049 0.1765 0.1878 0.1547 0.2659

set P 0.1561 0.2931 0.1521 0.2052 0.1731 0.3072
set recall 0.1652 0.2181 0.1628 0.2314 0.1514 0.2214

set relative P 0.1649 0.2189 0.1618 0.2291 0.1494 0.2226
set F 0.1548 0.2831 0.1503 0.2032 0.1703 0.305

P@5 0.484 0.4286 0.2201 0.6633 0.8203 0.6445
P@10 0.4934 0.3823 0.201 0.5515 0.6945 0.5066
P@15 0.4435 0.3461 0.1917 0.5852 0.6371 0.4563
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Measure Sigma Bias
NIST-A DS NIST NIST-A/DS NIST-A/NIST DS/NIST

P@20 0.3957 0.2992 0.1884 0.5396 0.5678 0.3958
P@30 0.4133 0.3057 0.1892 0.4024 0.4534 0.3502

relative P@5 0.4826 0.4291 0.2197 0.663 0.8217 0.6432
relative P@10 0.4926 0.3851 0.1982 0.5461 0.6862 0.5054
relative P@15 0.4429 0.3458 0.1845 0.5865 0.6387 0.4521
relative P@20 0.3975 0.3005 0.1816 0.5386 0.5691 0.4023
relative P@30 0.4114 0.3067 0.19 0.4018 0.4664 0.3752

RBP@5 0.5222 0.3989 0.1928 0.5894 0.676 0.5716
RBP@10 0.4701 0.3447 0.1802 0.5029 0.5627 0.4502
RBP@15 0.4252 0.3219 0.1763 0.4361 0.4903 0.3858
RBP@20 0.391 0.3086 0.176 0.3993 0.4419 0.3368
RBP@30 0.3465 0.295 0.1761 0.3345 0.3839 0.2731

P@100 0.2775 0.2943 0.1878 0.3191 0.3844 0.2892
P@200 0.2226 0.2581 0.1748 0.1704 0.3823 0.3227
P@500 0.2242 0.2424 0.1536 0.1659 0.3649 0.3876
P@1000 0.1908 0.2444 0.1513 0.211 0.3302 0.4097

relative P@100 0.2775 0.2606 0.1849 0.3245 0.3339 0.2594
relative P@200 0.216 0.2053 0.1757 0.1958 0.2659 0.202
relative P@500 0.211 0.1751 0.1619 0.1701 0.2573 0.2784
relative P@1000 0.1833 0.1882 0.1619 0.1591 0.3137 0.3273

RBP@100 0.2316 0.2559 0.1754 0.1897 0.3139 0.2158
RBP@200 0.2101 0.2411 0.1697 0.1279 0.3084 0.2645
RBP@500 0.1906 0.2281 0.1556 0.1396 0.2834 0.3191
RBP@1000 0.1708 0.2207 0.1502 0.1652 0.2659 0.3406

Table B.2: Bias and variance for 44 runs - all metrics

B.3 Average Differences

Measure Average Value Mean Difference (%age)
NIST-A DS NIST DS vs NIST-A NIST-A vs NIST NIST vs DS

map 0.1874 0.2013 0.2073 7.42% -9.62% 3.00%
ndcg 0.5422 0.5827 0.5068 7.47% 6.99% -13.03%
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Measure Average Value Mean Difference (%age)
NIST-A DS NIST DS vs NIST-A NIST-A vs NIST NIST vs DS

P@R 0.2414 0.239 0.2422 -0.97% -0.34% 1.32%
relative P@R 0.2414 0.239 0.2422 -0.97% -0.34% 1.32%

RBP@R 0.204 0.2003 0.2027 -1.81% 0.64% 1.19%
iprec at recall@0.00 1.3272 0.8453 0.6378 -36.31% 108.11% -24.55%
iprec at recall@0.10 0.4912 0.4449 0.4453 -9.43% 10.33% 0.08%
iprec at recall@0.20 0.3678 0.3441 0.3478 -6.45% 5.73% 1.10%
iprec at recall@0.30 0.2957 0.2837 0.2837 -4.05% 4.21% 0.01%
iprec at recall@0.40 0.2472 0.2308 0.2361 -6.63% 4.73% 2.26%
iprec at recall@0.50 0.2015 0.1888 0.1934 -6.31% 4.18% 2.45%
iprec at recall@0.60 0.1539 0.1518 0.1515 -1.31% 1.56% -0.22%
iprec at recall@0.70 0.1092 0.1171 0.1089 7.29% 0.20% -6.98%
iprec at recall@0.80 0.0706 0.0862 0.0725 22.05% -2.63% -15.86%
iprec at recall@0.90 0.0303 0.0492 0.0347 62.30% -12.79% -29.35%
iprec at recall@1.00 0.0036 0.0104 0.0049 188.88% -25.64% -53.45%

Rprec 0.2414 0.239 0.2422 -0.97% -0.34% 1.32%
Rprec*0.25 0.3524 0.3612 0.3576 2.49% -1.46% -0.98%
Rprec*0.50 0.3086 0.3029 0.3102 -1.84% -0.53% 2.42%
Rprec*1.00 0.2414 0.239 0.2422 -0.97% -0.34% 1.32%
Rprec*2.00 0.1787 0.1741 0.1739 -2.58% 2.77% -0.12%
Rprec*4.00 0.1214 0.1146 0.1179 -5.58% 3.00% 2.82%
Rprec*8.00 0.0732 0.0707 0.073 -3.33% 0.17% 3.27%
Rrecall*0.25 0.0881 0.0903 0.0894 2.50% -1.46% -0.99%

Rrecall*0.25+100 0.1333 0.1841 0.3631 38.15% -63.30% 97.22%
Rrecall*0.50 0.1543 0.1514 0.1551 -1.84% -0.53% 2.42%

Rrecall*0.50+100 0.1887 0.2281 0.3859 20.86% -51.09% 69.17%
Rrecall*1.00 0.2414 0.239 0.2422 -0.97% -0.34% 1.32%

Rrecall*1.00+100 0.2682 0.292 0.4249 8.86% -36.88% 45.55%
Rrecall*2.00 0.3575 0.3483 0.3478 -2.58% 2.77% -0.12%

Rrecall*2.00+100 0.3751 0.3842 0.4825 2.43% -22.27% 25.59%
Rrecall*4.00 0.4856 0.4585 0.4715 -5.57% 3.00% 2.82%

Rrecall*4.00+100 0.4957 0.4788 0.5556 -3.40% -10.79% 16.04%
Rrecall*8.00 0.5852 0.5657 0.5842 -3.33% 0.17% 3.27%

Rrecall*8.00+100 0.5885 0.5777 0.6269 -1.83% -6.13% 8.51%
Rgain*0.25 0.0881 0.0903 0.0894 2.50% -1.47% -0.99%
Rgain*0.50 0.1543 0.1514 0.1551 -1.83% -0.53% 2.41%
Rgain*1.00 0.2413 0.239 0.2422 -0.96% -0.34% 1.31%
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Measure Average Value Mean Difference (%age)
NIST-A DS NIST DS vs NIST-A NIST-A vs NIST NIST vs DS

Rgain*2.00 0.3574 0.3483 0.3478 -2.56% 2.76% -0.13%
Rgain*4.00 0.4855 0.4585 0.4714 -5.56% 3.00% 2.80%
Rgain*8.00 0.5851 0.5657 0.5841 -3.31% 0.17% 3.25%

set P 0.0673 0.0341 0.0508 -49.41% 32.63% 49.05%
set recall 0.6719 0.7846 0.7049 16.77% -4.68% -10.16%

set relative P 0.6719 0.7846 0.7049 16.77% -4.68% -10.16%
set F 0.1175 0.0599 0.0919 -48.98% 27.88% 53.27%

P@5 0.4433 0.4779 0.4379 7.79% 1.25% -8.37%
P@10 0.4497 0.4423 0.3973 -1.65% 13.17% -10.16%
P@15 0.4759 0.4212 0.3712 -11.48% 28.21% -11.88%
P@20 0.4677 0.4071 0.3507 -12.96% 33.36% -13.85%
P@30 0.4547 0.3868 0.3205 -14.93% 41.88% -17.15%

relative P@5 0.4433 0.4779 0.4379 7.79% 1.24% -8.37%
relative P@10 0.4497 0.4423 0.4003 -1.65% 12.33% -9.48%
relative P@15 0.4759 0.4212 0.3815 -11.48% 24.72% -9.42%
relative P@20 0.4677 0.4071 0.3713 -12.96% 25.98% -8.80%
relative P@30 0.4547 0.3868 0.3612 -14.93% 25.87% -6.61%

RBP@5 0.4621 0.4712 0.41 1.98% 12.69% -12.98%
RBP@10 0.4582 0.4256 0.3668 -7.11% 24.91% -13.81%
RBP@15 0.4533 0.4014 0.337 -11.44% 34.48% -16.03%
RBP@20 0.4474 0.3842 0.3142 -14.13% 42.42% -18.24%
RBP@30 0.4361 0.3592 0.2799 -17.64% 55.79% -22.07%

P@100 0.413 0.3107 0.2098 -24.78% 96.84% -32.46%
P@200 0.3738 0.2593 0.149 -30.61% 150.90% -42.56%
P@500 0.3041 0.191 0.0844 -37.21% 260.26% -55.79%
P@1000 0.241 0.1394 0.0508 -42.15% 374.54% -63.58%

relative P@100 0.4143 0.3332 0.36 -19.58% 15.09% 8.04%
relative P@200 0.3852 0.3166 0.4516 -17.82% -14.70% 42.66%
relative P@500 0.3566 0.3476 0.6048 -2.50% -41.05% 73.97%
relative P@1000 0.3514 0.4414 0.7049 25.60% -50.14% 59.70%

RBP@100 0.3823 0.2775 0.176 -27.41% 117.20% -36.58%
RBP@200 0.3364 0.2271 0.1235 -32.49% 172.29% -45.60%
RBP@500 0.263 0.1612 0.0695 -38.71% 278.59% -56.90%
RBP@1000 0.2045 0.1164 0.041 -43.06% 398.35% -64.76%
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Measure Average Value Mean Difference (%age)
NIST-A DS NIST DS vs NIST-A NIST-A vs NIST NIST vs DS

Table B.3: Average values and differences for 44 runs -
all metrics
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