
Quantitative Analyses of Software
Product Lines

by

Rafael Ernesto Olaechea Velazco

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Computer Science

Waterloo, Ontario, Canada, 2022

© Rafael Ernesto Olaechea Velazco 2022

Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the
Examining Committee is by majority vote.

External Examiner: Dr. Juergen Dingel
Professor, School of Computing, Queen's University

Supervisor(s): Dr. Joanne Atlee
Professor, School of Computer Science, University of Waterloo
Dr. Krzysztof Czarnecki
Professor, Department of Electrical and Computer
Engineering, University of Waterloo

Internal Member: Dr. David Toman
Professor, School of Computer Science, University of Waterloo

Internal Member: Dr. Richard Trefler
Associate Professor, School of Computer Science, University of Waterloo

Internal-External Member: Dr. Arie Gurfinkel
Associate Professor, Department of Electrical and Computer
Engineering, University of Waterloo

ii

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Abstract

A software product-line (SPL) is a family of related software systems that are jointly
developed and reuse a set of shared assets. Each individual software system in an SPL is
called a software product and includes a set of mandatory and optional features, which are
independent units of functionality. Software-analysis techniques, such as model checking,
analyze a model of a software system to determine whether the software system satisfies its
requirements. Because many software-analysis techniques are computationally intensive,
and the number of software products in an SPL grows exponentially with the number of
features in an SPL, it tends to be very time consuming to individually analyze each product
of an SPL. Family-based analyses have adapted standard software-analysis techniques (e.g.,
model checking, type checking) to simultaneously analyze all of the software products in
an SPL, reusing partial analysis results between different software products to speed up
the analysis. However, these family-based analyses verify only the functional requirements
of an SPL, and we are interested in analyzing the quality of service that different software
products in an SPL would exhibit. Quantitative analyses of a software system model (e.g.,
of a weighted transition system) can estimate how long a system will take to reach its goal,
how much energy a system will consume, and so on. Quantitative analyses are known to be
computationally intensive. In this thesis, we investigate whether executing a family-based
quantitative analysis on a model of an SPL is faster than individually analyzing every
software product of the SPL.

First, we present a family-based trace-checking analysis that facilitates the reconfig-
uration of a dynamic software product line (DSPL), which is a type of SPL in which
features can be activated or deactivated at runtime. We assessed whether executing the
family-based trace-checking analysis is faster than executing the trace-checking analysis on
every software product in three case studies. Our results indicated that the family-based
trace checking analysis, when combined with simple data-abstraction over an SPL model’s
quality-attribute values to facilitate sharing of partial-analysis results, is between 1.4 and
7.7 times faster than individually analyzing each software product. This suggests that
abstraction over the quality-attribute values is key to make family-based trace-checking
analysis efficient.

Second, we consider an SPL’s maximum long-term average value of a quality attribute
(e.g., because it represents the long-term rate of energy consumption of the system). Specif-
ically, the maximum limit-average cost of a weighted transition represents an upper bound
on the long-term average value of a quality attribute over an infinite execution of the
system. Because computing the maximum limit-average cost of a software system is com-
putationally intensive, we developed a family-based analysis that simultaneously computes

iv

the maximum limit-average cost for each software product in an SPL. We assessed its per-
formance compared to individually analyzing each software product in two case studies.
Our results suggest that our family-based analysis will perform best in SPLs in which many
products share the same set of strongly connected components.

Finally, because both of our family-based analyses require as input a timed (weighted)
behaviour model of a Software Product Line, we present a method to learn such a timed
(weighted) behaviour model. Specifically, the objective is to learn, for each transition t, a
regression function that maps a software product to a real-valued weight that represents the
duration of transition t ’s execution in that software product. We apply supervised learning
techniques, linear regression and regularized linear regression, to learn such functions. We
assessed the accuracy of the learnt models against ground truth in two different SPL and
also compared the accuracy of our method against two different state-of-the-art methods:
Perfume and a Performance-Influence model. Our results indicate that the accuracy of our
learnt models ranged from a mean error of 3.8% to a mean error of 193.0%. Our learnt
models were most accurate for those transitions whose execution times had low variance
across repeated executions of the transition in the same software product, and in which
there is a linear relationship between the transition’s execution time and the presence of
features in a software product.

v

Acknowledgements

I would like to thank Prof. Joanne Atlee for all her guidance during my graduate studies.
She taught me how to do research, how to present my research, and how to choose appro-
priate research questions. I would also like to thank my other supervisor, Prof. Krzysztof
Czarnecki, for his guidance and feedback.

I would like to thank my thesis committee: Prof. David Toman, Prof. Richard Trefler,
and Prof. Arie Gurfinkel, for providing me with feedback that lead me to improve this
thesis. I would also like to thank, Dr. Axel Legay and Dr. Uli Farhrenberg, for hosting
me for a research visit in France that was very enjoyable and lead to the first paper that
forms part of this thesis.

I would also like to thank my labmates, both from the GSD Lab and WatForm, for
their feedback and for making my graduate school experience enjoyable. Finally, I would
like to thank my family for all their support during my graduate studies.

vi

Table of Contents

List of Tables x

List of Figures xi

1 Introduction 1

1.1 Motivation . 1

1.2 Thesis Overview and Contributions . 3

1.3 Thesis Organization . 5

2 Background 6

2.1 Software Product Lines . 6

2.2 Behaviour Models . 8

2.3 Dynamic Software Product Lines . 11

2.4 Promela, Featured Promela, and ProVeLines 12

2.4.1 Promela . 12

2.4.2 Featured Promela . 13

2.4.3 ProVeLines . 14

3 Trace Checking for Dynamic Software Product Lines 15

3.1 Running Example . 17

3.2 Background . 18

vii

3.2.1 Trace Checking . 19

3.3 Approach . 19

3.3.1 Family-based Trace Checking . 19

3.4 Evaluation . 23

3.4.1 Subject Systems . 23

3.4.2 Experimental Setup . 24

3.4.3 Results and Discussion . 25

3.5 Data Abstraction . 26

3.5.1 Soundness of Data Abstraction . 27

3.5.2 Results and Discussion . 29

3.6 Related Work . 29

3.7 Conclusions . 31

4 Long-term Average Cost in Featured Transition Systems 32

4.1 Background . 33

4.1.1 Limit-Average Cost . 33

4.1.2 Strongly Connected Components (SCCs) 34

4.2 Motivating Example . 35

4.3 Family-Based Limit-Average Computation 37

4.3.1 Featured Finishing Times . 39

4.3.2 Strongly Connected Components of a Featured Transition System . 46

4.3.3 Maximum Average-Weight Cycle Computation 51

4.4 Implementation and Evaluation . 56

4.4.1 Subject Systems . 57

4.4.2 Results . 59

4.4.3 Discussion . 61

4.5 Related Work . 62

4.6 Conclusions and Future Work . 64

viii

5 Learning Timed Featured Transition Systems 65

5.1 Approach . 67

5.1.1 Linear Regression . 68

5.1.2 Regularized Linear Regression . 71

5.2 Evaluation . 72

5.2.1 Subject Systems . 73

5.2.2 Experimental Methods . 74

5.2.3 RQ-1 Accuracy of Transition Time Estimates 75

5.2.4 RQ-2 Comparison against Accuracy of Perfume Transition-Time Es-
timates . 78

5.2.5 RQ-3 Accuracy of trace time estimates 82

5.2.6 Threats to validity . 86

5.3 Related Work . 87

5.4 Conclusions . 88

6 Conclusions and Future Work 89

References 94

ix

List of Tables

3.1 Average time taken by product-based, family-based, and abstract family-
based trace checking. 25

4.1 Maximum limit-average values for the taxi example. Pickup-N is abbre-
viated as PN, Release-N is abbreviated as RN, airport is abbreviated as
AP, extended pickup location is abbreviated as PE, and extended release
location is abbreviated as RE. 59

4.2 Average time taken by the family-based and product-based maximum limit-
average computation for the taxi and the mine pump controller examples . 60

5.1 Accuracy (normalized mean absolute error) of per-transition execution-time
estimates for Autonomoose and X264. 77

5.2 Normalized mean absolute error of the overall execution-time estimates for
X264 and Autonomoose. 84

x

List of Figures

2.1 Feature model for an Unmanned Aerial Vehicle (UAV) Software Product
Line. 7

2.2 A featured transition system for the Unmanned Aerial Vehicle SPL. Feature
expressions corresponding to each transition are displayed in red. Tran-
sitions that are not labelled with a feature expression are included in all
products. 9

2.3 A weighted featured transition system for the Unmanned Aerial Vehicle
SPL. Feature expressions corresponding to each transition are displayed in
red and weights in black. 11

2.4 The fPromela specification of an example SPL that has two features. In
the product that includes both Feature A and Feature B, variable i is in-
cremented by three on each iteration of the loop, whereas in the rest of the
products variable i is incremented by two on each iteration of the loop. . 13

3.1 A weighted featured transition system for the unmanned aerial vehicle DSPL. 18

4.1 Taxi-shuttle example . 36

4.2 WFTS which implements several grant/ request scenarios. 38

4.3 Featured finishing-times tree for the FTS from Fig. 4.2. It maps feature
expressions to the finishing times of nodes. In the lower path state s2 has
a higher finishing time than initial state s0, so s2 is unreachable in the
products associated with such path. 38

4.4 Featured SCC tree for the FTS of Fig. 4.2. As in Fig. 4.2, state s2 and
its associated SCC are unreachable in all the products associated with the
feature expression ¬(G ∨ A). 38

xi

4.5 A depiction of two paths that are associated with Formula 4.8 and state s*:
the red path is the maximum weight path of length |SCC| from source state
sstart to state s* and the green path is the maximum weight path of length
k from source state sstart to state s* (for the minimizing k). The maximum
average-weight cycle is the cycle in black and has length |SCC| − k. The
average weight of steps in the maximum average-weight cycle is given by
the weight of the red path, WeightMWP(|SCC|, s∗), minus the weight of
the green path, WeigthMWP(k, s∗), divided by the length of the maximum
average-weight cycle, |SCC| − k. 54

4.6 Part of the fPromela specification of the taxi-shuttle example 58

5.1 An example linear regression task: estimating transition t ’s execution time
for the different software products of the Unmanned Air Vehicle SPL (intro-
duced in Chapter 2). Each labelled example in the training set comprises:
the software product of one of transition t ’s executions from the training set
that is represented by a row in the matrix X, and a measurement of one of
transition t ’s execution times in that software product that is represented
by a corresponding element in vector y. The objective of linear regression is
to identify a vector of weights, w, that minimizes the “distance” – as esti-
mated by a Loss Function – between Xw and y. In ordinary least squares
regression, this corresponds to minimizing (Xw − Y)Transpose(Xw − Y). . . 69

5.2 Histograms showing the average accuracy of our per-transition execution-
time estimates for Autonomoose and X264. 76

5.3 Ilustration of the relationships between a transition’s execution-time esti-
mate from our approach and from Perfume. 80

5.4 Graph showing both Perfume and our approach’s execution-time estimates
for the transitions in three software products (the software products for
which our approach had best, median, and worst accuracy). Perfume’s
mean execution-time estimates are marked as a red dot and the standard
deviation is represented by a red error bar. Our approach’s execution-time
estimates are marked with a black X. The grey error bars represent Perfume's
minimum and maximum execution-time estimates. 83

xii

5.5 Bar chart of the standard deviations of the execution times of transitions
in the subject systems: X264 and Autonomoose. Along the x-axis, transi-
tions are listed from left to right in decreasing order of the standard devia-
tions of their execution times. The bar color represents the accuracy of our
execution-time estimates for that transition: green represents a NMAE of
less than 30%, yellow represents a NMAE between 30% and 50%, and red
represents a NMAE greater than 50%. 85

xiii

Chapter 1

Introduction

1.1 Motivation

Software product-line (SPL) engineering is a methodology for developing a family of
related software-intensive systems while taking advantage of the commonalities between
the individual systems [29]. A set of features – that is, units of functionality - are identified
and created when developing an SPL. Features can be either mandatory or optional. A
software configuration comprises all of the mandatory features and a subset of the optional
features. Each individual system that is part of the SPL is denoted a software product.
Each software product is associated with a corresponding configuration, which lists the set
of features that the software product includes.

Standard software-analysis techniques, such as software model checking [4], analyze
a software system (or a model of a software system) to determine whether it satisfies
its requirements. As many software-analysis techniques are computationally expensive
and the number of software products in an SPL grows exponentially with the number of
features in an SPL, it is generally too time consuming to analyze individually each software
product of an SPL. Family-based analyses adapt standard software-analysis techniques
to simultaneously analyze all of the configurations of a software system, reusing partial
analysis results across different configurations to speed up the analysis. For example,
software model checking [4] is an automated decision procedure that analyzes a model
of a software system, typically a state-transition model, to determine whether the system
satisfies its functional requirements, typically expressed as temporal logic formulas [36]. To
develop a family-based model-checking algorithm, Classen et al. [26] introduced a featured
transition system (FTS), which represents, in a unified model, the state-transition models

1

of all the products of an SPL. They show that by analyzing the aforementioned FTS they
can determine which products of an SPL satisfy a given temporal logic formula, and they
also show, through a series of case studies, that such analysis is faster than separately
model checking each individual SPL product. Family-based analyses have been developed
for type checking [69], real-time model checking [31], SAT-based model checking [6], and
probabilistic model-checking [105].

However, these family-based analysis techniques verify only the functional requirements
of an SPL, whereas we are interested in analyzing as well the quality of service that the
different software products in an SPL would exhibit. Quality attributes [49] represent how
well a software system performs its functionality with respect to different facets of quality
(e.g., how quickly the system performs its functionality, how much energy it consumes
during execution, and how reliably it performs its functionality). For every relevant quality
attribute, a system typically must satisfy some minimum quality requirement (specified as
a constraint) and otherwise optimize performance on such quality attribute.

Many research projects address the problem of searching for software products that are
optimal with respect to multiple, possibly conflicting, quality attributes [51, 54, 59, 95].
These tools predict the values of quality attributes for each software product based on
a coarse-grained model. This coarse-grained model associates each feature with a static
impact on each of the quality attributes. This model then simply aggregates (using simple
arithmetic functions) each feature's impact to obtain a coarse estimate of each quality
attribute for a configuration. Because a coarse-grained model accounts only for a feature's
static contribution to a a quality attribute, these tools cannot account for fluctuations in
a quality attribute due to changes in the execution environment or changes in the usage
patterns of the system. For example, the energy consumption of an Unmanned Air Vehicle
(UAV) depends not only on which features its configuration includes, but also on the
actions executed by such system at runtime (e.g., activating the global positioning system
sensors, taking photos, and so on).

An alternative approach is to augment a state-transition model of a system, which
models the individual steps of that system's execution, with information about the impact
of the execution of each transition on each quality aspect of interest. For example, in a
state-transition model of the aforementioned Unmanned Air Vehicle, one transition could
correspond to the UAV identifying its location based on GPS information and take 12 time
units to execute, another transition could correspond to the UAV planning its path and
take 28 time units to execute, and so on. To permit reasoning about the quality aspects of a
system, weighted transition system models extend transition-system models by annotating
their transitions with weights [4] that represent the effect that executing transitions have
on quality aspects of interest. For example, a weight could represent the amount of energy

2

consumed by executing a transition or the time taken to execute a transition.

Quantitative analyses [20, 55] of these weighted transition systems permit estimating
how much energy a system will consume [19], determining the how long will a system take
to achieve its goal [15, 64], estimating by how much the system implementation deviates
from its specification [16], and so on. It is generally believed that analysis of these weighted
transition systems can provide a more accurate estimate of a software product's quality-
attribute values than a static estimate based only on which features are present in the
software product [50, 98]. However, quantitative analyses of these weighted transition
systems can be computationally intensive.

Because family-based analyses of SPL's behaviour models have been shown to be faster
than analyzing each software product individually [6, 26], we hypothesized that:

Hypothesis: Executing a family-based quantitative analysis of an SPL will tend
to be faster than separately executing the quantitative analysis for every soft-
ware product of the SPL.

1.2 Thesis Overview and Contributions

In this thesis, we investigated this hypothesis by developing two family-based quantitative
analyses of SPLs, a trace checking family-based analysis [87] and a worst-case long-term
average family-based analysis [88], and by assessing their performance on case studies.
Additionally, because manually creating these models is challenging, we explored how to
extract a weighted behaviour model of an SPL from a set of execution traces of a sample
of the software products in an SPL and we assessed accuracy of those extracted models.

Thesis Statement: performing a family-based quantitative analysis on a model
of an SPL can be faster than separately performing the quantitative analysis on
every software product of the SPL, especially when combined with abstraction
over the quality-attribute values.

The scope of applicability of this thesis is restricted to annotative software product lines.
An annotative [102] software product line is a software product line that is implemented
by annotating parts of artifacts (e.g., a transition model or source code) to indicate which
products will include such part of the artifact. Thus, a software product line that is
implemented via an FTS is an annotative software product line. Additionally, the scope

3

of applicability of this thesis is restricted to boolean SPLs. A boolean SPL is a software
product line in which a feature can either be part or not be part of a configuration, and in
which a configuration can have at most a single instance of a feature.

First, in Chapter 3, we present a family-based trace-checking analysis to facilitate the
reconfiguration of dynamic software product lines (DSPLs) [60], which are a special type of
SPL in which features can be enabled or disabled at runtime. As the execution environment
of a DSPL changes, a different DSPL's configuration can become optimal with respect to
quality of service. Because a DSPL has to make reconfiguration decisions at runtime, any
analysis that is performed at runtime to determine which configuration would be ideal
under the observed environment must execute quickly to be useful. Trace checking [43] is
a lightweight quality-assurance technique that analyzes a quality of service that a (single)
software system would provide over an observed execution trace. We assessed our hypoth-
esis that a family-based trace-checking analysis would be an efficient improvement over
analyzing all configurations of a DSPL. And found that the family-based analysis was not
always faster because the differences in quality-of-service provided by many of the DSPL's
configurations varied only slightly but each variation introduced a new diversion in the
family-based analysis. To address this problem, we introduced a simple data-abstraction
over the values of quality attributes to facilitate sharing of partial analysis results in our
family-based approach. With the data abstraction, our family-based analysis was between
1.4 and 7.7 times faster than analyzing each configuration individually in all case studies.

In Chapter 4, we present a family-based analysis to compute the worst-case long-term
average of a quality-attribute value for an SPL. The limit-average cost of a weighted ex-
ecution trace is the average of the weights of the trace as the length of the trace goes to
infinity. It can represent an upper bound on the long-term rate of energy consumed, or
the degree of correctness of a software implementation. The standard algorithm [107] to
compute the worst-case limit-average cost consists of a two-step process: first it computes
the strongly connected components in a transition system, and then it identifies the high-
est mean-weight cycle in each strongly connected component. As we describe in detail
in Chapter 4, we modified this algorithm to simultaneously analyze all of the software
products of an SPL instead of separately analyzing each software product. We assessed
the performance of our family-based algorithm compared to the cost of analyzing every
product individually on two case studies. We obtained mixed results: our family-based
approach is slightly faster than analyzing every product when the SPL has repetition in
its behaviour and has a small number of states, whereas it is slower when the SPL with a
large number of control states and a complex behaviour model.

Finally, in Chapter 5 we present a method to learn a timed (weighted) behaviour model
of a software product line, which our analyses of quality attributes require as input. The

4

objective is to learn, for each transition, a weight function that maps software products
to real-valued weights, so that the output of such function, when applied to an individual
software product, is an accurate estimate of the transition's weight in that individual
product. We apply supervised learning methods to learn, for each transition, a regression
function that estimates how long the transition will take to execute in each software product
that includes it. To assess the accuracy of transitions' execution-time estimates obtained
by our proposed method, with respect to the observed execution-time of the transition
in individual software products, we performed two case studies: a self-driving car and an
open-source video encoder. Our results indicate that our approach produces WFTS models
that can predict the time that each transition takes to execute in a software product with
a mean error that ranges from 3.8% to 193.0%. We discuss the reasons for such large
disparities in our estimate's accuracy, and identify an inverse relationship between the
relative standard deviation of the execution times of a transition and the accuracy of our
method in estimating its execution time. Despite the inaccuracies in the estimates for
individual transitions, we are able to leverage our transition execution-time estimates and
a count of the number of times each transition is executed to predict the overall execution
time of an SPL product on an input task (e.g., encoding a video or compressing a file) with
high accuracy, which is comparable to the accuracy obtained by a state-of-the-art method
[98] that bases its estimates only on which features are present in a software product and
on observing a sample of software products execute the input task (e.g., encoding a video
or compressing a file). We also compare the accuracy of our per-transition execution-time
estimates versus the accuracy of estimates obtained by Perfume [86], which is a state-of-
the-art tool to extract timed behaviour models (i.e., a weighted transition system model)
from timed execution traces.

1.3 Thesis Organization

The rest of this thesis consists of five chapters. In Chapter 2, we present background
concepts that are used throughout the entire thesis. Chapter 3 presents a family-based
trace-checking analysis for dynamic software product lines, Chapter 4 presents a family-
based analysis for the worst-case long-term average value of a quality attribute of a software
product line, and Chapter 5 presents a method to learn a timed behaviour model (WFTS)
of a Software Product Line. In Chapter 6, we present our conclusions and future work.
We discuss the related work in each chapter of the thesis.

5

Chapter 2

Background

In this chapter we introduce notation and background concepts that are used throughout
the thesis. In Section 2.1 we present a summary of software product-line (SPL) concepts
and models. In Section 2.2 we present an overview of formalisms to model the behaviour
of software systems. In Section 2.3 we review dynamic software product lines (DSPLs).
Finnally, in Section 2.4 we summarize a modelling language and tool that permit repre-
senting and analyzing software product line models.

2.1 Software Product Lines

Software product-line (SPL) engineering is a methodology to efficiently develop a collection
of similar software systems from a set of core assets [29]. In SPL engineering, reuse of assets
is planned and managed to take advantage of the commonalities that different software
systems in the same domain share. When developing a set of related software systems,
following an SPL engineering methodology can be beneficial because the software systems
can be developed, tested, and maintained faster and more cheaply [94].

The development of a software product line is divided into the activities of domain
engineering and application engineering. The goal of domain engineering is to analyze the
problems for which the SPL is targeted, and to then identify and create a set of common
assets that will be used across all or most of the systems in the SPL. The outcomes
of domain engineering are: a variability model, a set of common requirements, a common
platform, implementation components, and a test suite. In contrast, the goal of application
engineering is to create a specific software system while re-using the existing platform

6

Unmanned	Aerial	Vehicle

Additional	Motor

Computer
Vision

GPS

Navigation

Figure 2.1: Feature model for an Unmanned Aerial Vehicle (UAV) Software Product Line.

and assets. In application engineering, the common assets are combined with each other
and with product-specific assets to create an individual software system. Each individual
software system is called a software product.

A software product line includes a set of features, which is a coherent unit of user-
visible functionality. In the context of SPLs, a feature is a coherent unit of user-visible
functionality. A feature can be either mandatory or optional. A software configuration
comprises of mandatory features and a selected subset of optional features. The set of
features that are included in a specific software product comprise that product's software
configuration. We show the definition of a software product line below:

Definition 1 A software product line comprises a set of boolean features that can be
mandatory or optional. Let N be the set of all features in a software product line. A
software configuration is a subset of features px ⊆ N and the resulting software system
composed of those features (features in px) is called a product. The family of products
represented by the SPL is the set of products defined by allowable configurations ⊆ 2N .

However, not all combinations of features are valid software configurations. A feature
model [66] is used to distinguish between valid and invalid software configurations. A fea-
ture model is visually represented as a hierarchical tree-like diagram whose nodes represent
the features of an SPL and whose edges represent dependencies (or constraints) between

7

features. Figure 2.1 shows a feature model for an example Unmanned Aerial Vehicle (UAV)
SPL. The Unmanned Aerial Vehicle SPL has four features: Additional Motor (M), Navi-
gation (N), Global Positioning System (GPS), and Computer Vision (CV). A white circle
indicates that a feature is optional (e.g., the Additional Motor feature) and a black circle
indicates that a feature is mandatory (e.g,. the Navigation feature). The black semi-circle
below the node for feature Navigation indicates that at least one of its child features,
Global Positioning System or Computer Vision, must be selected in any configuration that
includes feature Navigation. We show the definition of a feature model below:

Definition 2 A feature model is represented as d = (N,PX) where N is the set of
all features and PX ⊆ P (N) is a subset of the power set of N that represents all valid
configurations.

Analysis of software product lines can be categorized into family-based or product-
based [102]. Product-based analysis techniques analyze each possible product (or a sample
subset of products) individually, whereas a family-based analysis is performed on a single
model that represents all of the products in an SPL.

2.2 Behaviour Models

Transition systems are traditionally used to model and analyze the behaviour of software
systems. A transition system (TS) contains a set of states of computation and transitions
that capture allowable progressions of execution from one state of computation to another
in response to the occurrence of actions. A set of initial states represent the possible
starting states of a system’s execution. More formally:

Definition 3 A transition system (TS) is a tuple ts = (S, I, A, T), where S is a set
of states, I ⊆ S is a set of initial states, A is a set of actions, and T ⊆ S ×A× S is a set
of transitions.

An execution π of a transition system is an alternating sequence of states and actions,
π = s0α1s1α2 . . ., such that s0 ∈ I and for all execution steps (si, αi+1, si+1) ∈ π corresponds
to some transition in T . Additionally, each action can be labelled as either a system action
(!) or an environment action (?).

A transition system represents the behavior of a single software product, whereas a soft-
ware product line has many software product variants. To compactly model the behaviour

8

S1

S4

S0

t1: T?

t6:D?

S2

S3

t2: N!
[GPS]

t3: N!
[CV ⋀ ¬ GPS]

t4: F! [CV ⋀ ¬ GPS]

t5: F! [GPS]

t7:C!

Figure 2.2: A featured transition system for the Unmanned Aerial Vehicle SPL. Feature
expressions corresponding to each transition are displayed in red. Transitions that are not
labelled with a feature expression are included in all products.

of all the products of an SPL in a single model, Classen et al. [26] introduce featured tran-
sition systems (FTS). Each optional feature is represented by a boolean feature variable,
whose value denotes whether the feature is present (true) or not (false) in a product's con-
figuration. Thus, a software configuration can be represented by an assignment of values to
all the feature variables. Each transition is either i) annotated with a feature expression —
a propositional formula ranging over feature variables — that denotes the set of products
that exhibit that transition, or ii) is not annotated with a feature expression to denote that
every product includes that transition. For example, the feature expression GPS ∧ CV
denotes all the configurations that include both feature Global Positioning System (GPS)
and feature Computer Vision (CV). More formally:

Definition 4 A featured transition system (FTS) is a tuple fts = (S, I, A, T, d, γ),
where (S, I, A, T) is a transition system, d = (N,PX) is a feature model, and γ : T →
P (N) labels each transition with a feature expression.

FTSs unify the transition systems of all the products of an SPL into a single annotated
transition system. The FTS provides “a 150% model” of all the states and transitions in

9

an SPL's products – that is, it includes more transitions and states than are required for
any of the SPL's individual products.

Software product lines that are implemented by annotating parts of an artifact (e.g., the
transition model) with feature expressions to indicate which products will include such part
(e.g., a specific transition) of the artifact are called annotation-based software product lines
[102]. Thus, an SPL that is implemented through an FTS is an annotation-based software
product line.

Figure 2.2 shows an FTS for a simple Unmanned Air Vehicle (UAV) product line.
The UAV is assigned missions to either find and follow a target or to deliver a package.
Environment action T? models a mission to find and follow a target, whereas environment
action D? models a mission to deliver a package. Each transition is labeled with a feature
expression, which is displayed in red, that indicates in which configurations that transition
is present. For example, transition t3 is labelled with feature expression CV ∧ ¬GPS
to indicate that transition t3 will be present only in configurations that include feature
Computer Vision and that do not include feature Global Positioning System. A transition
system for a specific software configuration can be derived from the FTS model by including
only the transitions whose feature expressions are satisfied by the configuration’s feature-
variable assignment. For example, the transition system for a configuration that includes
only the feature GPS would exhibit only transitions t1, t2, t5, t6, and t7. The operation of
deriving a transition system for a specific software configuration from a featured transition
system is called “projecting” the featured transition system onto the software configuration.
More formally:

Definition 5 The projection of a Featured Transition System fts = (S, I, A, T, d, γ)
onto a software configuration p is given by the transition system ts = (S, I, A, Tp) where
Tp = {t ∈ T | p |= γ(t)}.

To model the quality aspects of a system, transition systems (and featured transition
systems) are extended with weights [4]. Transitions are annotated with a weight (also
called a reward in the context of probabilistic model checking) that represents the effect
of executing a transition on a quality aspect of interest. For example, the weight could
represent the amount of energy consumed by executing a transition. The sum of weights
in an execution trace then represents the total amount of energy consumed during that
execution trace. A weighted transition system (WTS) models the quality of service (for a
specific quality) on all transitions in a single configuration of an SPL, whereas a weighted
featured transition system (WFTS) models the quality of service on all transitions in all
configurations of an SPL. More formally:

10

S1

S4

S0

t1: T?

t6:D?

S2

S3

t2: N! [GPS] 5

t3: N!
[CV ⋀ ¬ GPS] 2

t4: F! [CV ⋀ ¬ GPS]
1

t5: F! [GPS] 1

t8:C! [M] 1

t7:C! [¬ M] 3

Figure 2.3: A weighted featured transition system for the Unmanned Aerial Vehicle SPL.
Feature expressions corresponding to each transition are displayed in red and weights in
black.

Definition 6 A Weighted Featured Transition System (WFTS) is a tuple wfts =
(S, I, A, T, d, γ,W), where (S, I, A, T, d, γ) is an FTS and W : T → (P (N) → R) is a
function that annotates each transition with a mapping from software products to weight
values.

Figure 2.3 shows a weighted featured transition system for the Unmanned Air Vehicle
SPL. Each transition is annotated with a number that represents the cost of executing it.

2.3 Dynamic Software Product Lines

Dynamic software product lines (DSPL) have been developed [60] to permit re-configuring
an SPL at runtime by enabling or disabling features on the fly, so that an SPL product
can adapt to a changing environment, to changing user goals, and to failed components.
Andersson and Bosch [3] show, through a series of industrial case studies, that there are
companies using traditional SPL engineering to perform SPL runtime reconfiguration to
satisfy changing quality requirements or hardware failures (or updates). DSPL research

11

leverages SPL engineering tools, processes, and concepts to facilitate building and testing
systems that can adapt at runtime. In traditional software product-line engineering, vari-
ability is resolved at design time by selecting which of an SPLs optional features to include
in the product being derived. In contrast, in a dynamic software product line, variability
can be resolved and can be changed at runtime by dynamically activating or deactivating
features.

Lee and Kang [74] introduce a feature-based approach for building a software system
that can reconfigure itself at runtime (e.g., in essence a DSPL). They propose to group
features into binding units, where each binding unit is assigned a time (either design-time,
installation, or runtime) for when it can be activated (that is, when it will be decided
whether to make its functionality active).

We show the definition of a Dynamic Software Product Line below:

Definition 7 A Dynamic Software Product Line (DSPL) is a special type of Soft-
ware Product Line that is extended with an active configuration. An active configuration
represents the software product that is currently executing. The active configuration can be
changed at runtime by activating or deactivating individual features at runtime, resulting
in a change in the product that is executing from the product corresponding to the old active
configuration to the product corresponding to the new active configuration.

2.4 Promela, Featured Promela, and ProVeLines

In this subsection we give a brief overview of Promela, that is a modelling language that
supports the modelling of software systems to enable model checking on them. We also
summarize Feature Promela, which is an extension of Promela to represent behavioural
models of software product lines. Finally, we provide an overview of ProVeLines, which is
a family-based model checker for software product line models.

2.4.1 Promela

Promela [61] is a modeling language that was created to model distributed systems so that
their correctness can then be verified using a model checker. Promela is the input language
for the model checker SPIN [62].

A Promela program consists of processes, message channels, and variables. A process
type is declared by using the keyword proctype followed by the name of the process type,

12

1 typedef features {
2 bool FeatureA;

3 bool FeatureB;

4 };
5 features f;

6 int i = 0;

7 proctype simpleproc() {
8 do ::

9 if :: f.FeatureA && f.FeatureB;

10 i = i + 3;

11 :: else;

12 i = i + 2;

13 fi;

14 od;

15 }

Figure 2.4: The fPromela specification of an example SPL that has two features. In the
product that includes both Feature A and Feature B, variable i is incremented by three
on each iteration of the loop, whereas in the rest of the products variable i is incremented
by two on each iteration of the loop.

a list of arguments enclosed in parenthesis, followed by the body of the process enclosed in
curly brackets. The body of the process consists of a sequence of statements and declara-
tions. The available statements are those generally provided by imperative programming
languages (e.g., if statements, arithmetic operations, goto statements, assignments, and
so on). The variables declared in the body of the process definition have “process scope”
whereas variables declared outside a process definition have a global scope. Message chan-
nels can be used to communicate between processes and to synchronize the execution of
different processes. Promela programs can include the instantiation of multiple processes.
The execution of a Promela program is the parallel execution of each one of the instanti-
ated processes. A full description of Promela is given in [62]. We note that a transition
system can be represented by a Promela program.

2.4.2 Featured Promela

Featured Promela (fPromela) [25] extends Promela with “feature expressions” to permit
representing featured transition systems. In an fPromela program, a structure denoted

13

“features” (a “C-style” struct) must be declared and each feature must be declared as
a boolean variable inside that structure. Additionally, “if statements” in an fPromela
program can be used to indicate that certain statements are executable only in products
that satisfy certain feature expressions. More concretely, an “if statement” in an fPromela
program can be either: i) a standard Promela “if statement” whose condition clauses do
not refer to the “features structure” at all, or ii) a special “if statement” whose condition
clauses comprise only feature expressions and the “else” keyword.

Figure 2.4 shows the fPromela code of a very simple example SPL that has two features:
feature A and feature B. First, the program includes a declaration of a structure denoted
“features” that includes two feature variables – one for Feature A and one for Feature B
(lines 1-5). Second, a global variable i is created and initialized to zero (line 6). Third, a
process type of name “simpleproc” that consists of a loop that executes an “if statement”
is declared (lines 7-15). Finally, the first condition of the “if statement” is composed of
the feature expression “f.FeatureA && f.FeatureB” to indicate that only products that
satisfy the respective feature expression can execute that branch (lines 9-10). Thus, only
products that satisfy “f.FeatureA && f.FeatureB” will execute the statement “i = i + 3”
(line 10). The rest of the products would execute the statement “i = i + 2” that is part
of the “else” branch of the “if statement” (lines 11-12). A full description of fPromela is
given in [25]. We note that Classen et al. [25] prove that any featured transition system
can be represented as an fPromela program and vice versa.

2.4.3 ProVeLines

ProVeLines [30] is a tool that performs family-based model checking of software product
line models. It takes as input the behaviour model of a software product line represented
as an fPromela program, and a feature model associated with that software product line
that is represented either in Textual Variability Language (TVL) or as a boolean formula
in conjunctive normal form (CNF). If the feature model is given as a TVL file, ProVeLines
converts it into a boolean formula in conjunctive normal form before performing family-
based model checking. ProVeLines can then verify whether all products of the given SPL
satisfy a Linear Temporal Logic (LTL) formula or not. ProVeLines also provides facilities to
parse fPromela programs and build your own family-based analysis on top of it. ProVeLines
provides two options to represent feature expressions: Ordered Binary Decision Diagrams
(BDDs) [12] or as boolean formulas in Conjunctive Normal Form. In this thesis, we use
Ordered Binary Decision Diagrams to represent feature expressions. ProVeLines uses the
Colorado University Decision Diagram (CUDD) [100] library to implement and manipulate
BDDs. A more thorough description of ProVeLines is given in [25] and [30].

14

Chapter 3

Trace Checking for Dynamic
Software Product Lines

An important objective of a dynamic software product line (DSPL) is to continually provide
optimal quality of service while operating in a changing environment and changing usage
patterns. As we discussed in Chapter 2, a DSPL has a set of optional features — units
of functionality — that can be activated or deactivated at runtime; and a large but fixed
number of configurations, which are defined by the set of active optional features. As the
environment in which a DSPL is executing changes, the configuration can likewise change,
in order to maintain optimal quality of service. A DSPL would benefit from knowing how
each of its configurations would have performed (with respect to quality-of-service) in the
recent past, as input to the decision of whether it should reconfigure and (if so) what the
target configuration should be.

Dynamic software product lines need to adapt, at runtime, to a changing environment,
changing user goals, or their own internal failures. To decide whether to reconfigure a sys-
tem, existing approaches periodically analyze, at runtime, using computationally intensive
techniques such as probabilistic model checking, the expected quality of service that each
configuration would provide [13, 80]. Because these analyses are executed at runtime and
analyze a large number of configurations, the efficiency of these analyses is a major concern
[42, 44, 81].

We are interested in improving the efficiency of analyzing all configurations by using
trace checking to analyze the performance (with respect to quality-of-service) of configu-
rations as applied to an observed execution trace. Trace checking is a lightweight quality-
assurance technique that analyzes a single execution of a software system to determine

15

whether the system satisfies its requirements on the observed execution. Trace checking
has been applied to estimate the quality of service provided by a single software system
on an observed execution trace [43]. Because the number of configurations of a DSPL
increases exponentially with the number of optional features, performing a trace-checking
analysis on every configuration of a DSPL can be time consuming.

In this chapter, we propose a family-based analysis that analyzes all the configurations
simultaneously to speed up the analysis. We note that our family-based analysis does not
have better worst-case complexity than product-based trace analysis, but instead we obtain
a speed up based on potential sharing of partial-analysis results across different software
products. Different configurations react to environment input, which is modelled by en-
vironment actions as indicated in Chapter 2, in different ways: transitioning to different
states of computation and exhibiting different qualities of service. Our family-based trace-
checking algorithm needs to track how the execution of different groups of configurations
would have progressed if they had been executing, that is to which state(s) they would
have transitioned and what quality-of-service they would have provided. As the execution
of many software configurations (over a given trace) can have common behaviours, our
algorithm groups together sets of software configurations that would result in the same
system state and the same accumulated reward.

We evaluated the efficiency of our family-based analysis on three case studies taken
from the literature. Our basic family-based analysis of the DSPL is between 1.1 and
5.7 times faster than analyzing each configuration individually in two out of the three
case studies. The quality-of-service performance of many configurations vary only slightly
between each other, which negatively impacts the ability of our family-based analysis to
group together different configurations and reuse partial-analysis results across different
configurations. Thus, we introduce a simple data abstraction over the values of quality
attributes to facilitate sharing of partial-analysis results across different configurations,
by clustering similar quality-of-service values together. With the data abstraction, our
family-based analysis is between 1.4 and 7.7 times faster than the sum of analyzing each
configuration individually in all case studies.

The main contributions of this chapter are:

• A family-based trace-checking algorithm (and its implementation) that analyzes the
quality of service that every configuration of a DSPL would have provided over the
recent system input.

• An evaluation of the empirical efficiency of such analysis on three DSPL case studies
taken from the literature.

16

• Improvement over our initial analysis by applying a simple data abstraction over the
values of quality attributes, which improves the efficiency of our family-based trace
checking algorithm.

The rest of the chapter is organized as follows. In Section 3.1 we introduce an example
DSPL that is used as a running example throughout the rest of the chapter, in Section 3.2
we review trace checking, and in Section 3.3 we present our family-based trace checking
algorithm. In Section 3.4 we present the results of our evaluations and discuss our findings,
and in Section 3.5 we present a data abstraction on the transitions’ quality-attribute values
and discuss how it impacts the efficiency of our analysis. In Section 3.6 we describe related
work, and in Section 3.7 we present our conclusions.

3.1 Running Example

In Chapter 1 and Chapter 2 we introduced a running example that consists of an Unmanned
Aerial Vehicle (UAV) that has to satisfy a series of mission requests that are either searching
for a target or delivering a package to a specified location. We will use such example to
illustrate how the active configuration of a DSPL can affect its runtime quality-of-service.
This UAV has three optional features that can be activated or deactivated at runtime to
help it complete its missions: a Global Positioning System (GPS) that can help it determine
its location, a Computer Vision (CV) subsystem that can aid it with navigation, and an
additional Motor (M) that can be activated to provide additional power.

When the UAV receives a mission to search for a target, the UAV can navigate towards
the target either by relying exclusively on the computer vision subsystem or by relying on
a combination of the GPS and the computer vision subsystem. A key objective for the
UAV is to minimize the rate of energy consumption while still successfully completing its
assigned missions. The GPS consumes energy at a high rate, so the UAV should activate
the GPS only when it is necessary to locate its target. If the environment visibility is good,
the computer vision subsystem will suffice to successfully guide the UAV to its target. If
the UAV encounters an environment with low visibility, the UAV will require combining
information from both the GPS and the computer vision subsystem to successfully reach
its target.

Additionally, the UAV can be requested to deliver a package to a specified location. If
the package is heavy, then the UAV may need to engage the extra motor, but at the cost
of consuming more energy. If the package is light, the UAV would consume less energy by

17

S1

S4

S0

t1: T?

t6:D?

S2

S3

t2: N! [GPS]
5

t4: F! [CV ⋀ ¬ GPS]
1

t5: F! [GPS] 1

t8:C! [M] 1

t7:C! [¬M] 3

t3: N!
[CV ⋀ ¬ GPS] 2

Figure 3.1: A weighted featured transition system for the unmanned aerial vehicle DSPL.

keeping the additional motor idle. Thus the ideal configuration of the DSPL varies with
the conditions of the environment.

Figure 3.1 shows the weighted featured transition system for our running example of the
Unmanned Air Vehicle (UAV) DSPL (it is exactly the same as the Figure 2.3 from Chapter
2, but we repeat it here for the convenience of the reader). As we stated in Chapter 2,
the different mission assignments are modeled as environment actions: T? for a mission to
search for a target and D? for a mission to deliver an object to a specific location. The
responses of the UAV are modeled as system actions: N ! for navigating to its target, C! for
carrying an object to its destination, and F ! for following its target. The weights represent
the units of energy consumed by the execution of each transition.

3.2 Background

In this section we review trace checking. An overview of transition systems, featured
transition systems, weighted featured transition systems, and dynamic software product
lines is already given in Section 2.2 and Section 2.3 of Chapter 2.

18

3.2.1 Trace Checking

Trace checking [40, 43] is a lightweight formal-analysis method that analyzes whether an
observed execution trace of a system satisfies the system’s functional or quality-of-service
requirements. Trace checking can compute summary statistics, such as sum or average,
about the weights associated with an execution trace of a weighted transition system [43].
These summary statistics can represent the quality of service provided by a configuration
of a DSPL (represented by a weighted transition system) over an observed execution trace.
For example, the sum of the weights over an execution trace of a system can represent the
total amount of energy consumed during the execution of such system. We are interested in
comparing the summary statistics of a DSPL’s current configuration against the summary
statistics of the DSPL’s other configurations, in order to determine if the DSPL would
perform with a better quality-of-service in another configuration. An observed execution
trace can be simulated over different configurations of a DSPL (e.g., different weighted
transition systems) to estimate the quality of service that each configuration would have
provided. However, as the number of configurations of a DSPL grows exponentially with
the number of features of a DSPL, this approach might be too time consuming when the
number of features of a DSPL is large because it would require trace checking up to 2N

products where N is the number of features of the DSPL.

3.3 Approach

In this section we present a family-based algorithm that estimates the quality of service
that each configuration of a DSPL would have provided over an observed execution trace.
Subsequently, we extend this approach with data abstraction to improve its runtime per-
formance.

3.3.1 Family-based Trace Checking

Different configurations react to environment inputs, which are represented as environment
actions as stated in Chapter 2, in different ways — transitioning to different states of com-
putation and exhibiting different qualities of service. Thus a family-based trace-checking
algorithm needs to track how each configuration’s execution would have progressed with
respect to its sequence of states as well as its performance (quality of service). Our algo-
rithm maintains a custom data structure that tracks for each software configuration the
accumulated reward and system state that would result from the execution of that software

19

Alg. 1: Family-based simulation of a DSPL

Procedure Simulate-FTS-Execution(Trace)
1 Input: Trace = s0α0s1, s1α1s2 . . .
2 Output: L: A set of tuples of state, feature expression, and accumulated reward.
3 begin
4 L ← {(s0,>, 0)}
5 for each st = si, αi, si+1 ∈ Trace
6 L′ ← {}
7 if IsEnvironmentAction (αi) then
8 for each (s, γ, r) ∈ L, t =(s, β, sdst) ∈ T, αi = β
9 MergeTriplets(L′ , (sdst,γ ∧ γ(t), r +W (t)))
10 else
11 for each (s, γ, r) ∈ L, t =(s, β, sdst) ∈ T s.t. γ ∧ γ(t) 6|= ⊥

and IsSystemAction(β)
12 MergeTriplets(L′ , (sdst, γ ∧ γ(t), r +W (t)))
13 end-if
14 L ← L′

15 return L
16 end
Procedure MergeTriplets (M, (s, γ, r))
17 begin
18 if ∃ψ s.t. (s, ψ, r) ∈ M then
19 M ← M \ {(s, ψ, r)}
20 M ← M ∪ {(s, γ ∨ ψ, r)}
21 else
22 M ← M ∪ {(s, γ, r)}
23 end-if
24 end

configuration in response to a sequence of environment inputs: as the execution of many
software configurations (over a given trace) can have common behaviours, our algorithm
groups together sets of software configurations that would result in the same system state
and same accumulated reward.

The custom data structure L records triplets of feature expressions, system state, and
accumulated reward. The algorithm updates the data structure as actions from the exe-

20

cution trace are processed. It refines (splits) a tuple when different configurations in its
feature expression would result in different accumulated rewards or system state. For ex-
ample, a tuple < >, s0, 0 > with feature expression > (representing all configurations),
system state s0, and an accumulated reward of 0 would be split into two different tuples
after processing action N !: tuple < GPS, s2, 5 > resulting from the execution of transition
t2, which has a weight of 5; and tuple < CV ∧¬GPS, s3, 2 > resulting from the execution
of transition t3, which has a weight of 2. Similarly, the algorithm merges tuples if they
share the same accumulated reward and resulting system state after processing an action;
the feature expression in the merged tuple is the disjunction of feature expressions from
the tuples being merged.

Our algorithm is listed in Algorithm 1. It starts by initializing the custom data struc-
ture L to contain a single triplet consisting of the feature expression > (representing all
configurations)1, the initial state, and an accumulated reward of zero (line 4). The algo-
rithm then sequentially considers each action in the observed trace and determines the
transitions that it triggers in all configurations.

When an environment action α is encountered (line 7), the algorithm determines the
next state of execution of each configuration as a result of executing the transitions trig-
gered by the configurations’ respective current states and the action α. For each tuple
< s, γ, r > in L and for each transition t triggered by action α (line 8), a new tuple is
generated that applies the effects of t. The generated triplet < sdst, γ ∧ γ(t), r + W (t) >,
has resulting state sdst (the destination state of transition t); feature expression γ ∧ γ(t)
(the conjunction of the tuple’s feature expression γ and t’s feature expression γ(t), which
corresponds to the set of products that would reach state sdst); and accumulated reward
r + W (t). For example, if L comprises two tuples < so, GPS, 10 > and < so,¬GPS, 6 >
when environment action D? occurs (which would trigger transition t6), then two new
tuples would be generated: < s4, GPS, 10 > and < s4,¬GPS, 6 > as transition t6 has
destination state s4 and a weight of 0.

As we saw in lines 1-9, when the current configuration reacts to an environment action
α, the algorithm determines how other configurations react to the same event. In contrast,
when the current configuration executes a system action, other configurations may execute
different system actions (lines 11-14). Specifically, when the current configuration executes
a system action α (line 10), our algorithm, for each tuple < s, γ, r > in L (line 11), considers
any transition t that has a matching source state s and whose feature expression γ(t) is

1The algorithm uses feature expressions to represent sets of configurations. Our implementation of
the algorithm uses Ordered Binary Decision Diagrams (BDDs) [12] to encode feature expressions. More
concretely, our implementation of the algorithm uses the Colorado University Decision Diagram (CUDD)
[100] library to implement and manipulate BDDs that represent feature expressions.

21

compatible with the tuple’s feature expression (γ) (lines 11-12), to generate a new tuple
(line 12).

After processing an action, the resulting triplets are collected into a new version of L,
denoted L′ . The procedure MergeTriplets is responsible for updating L’ as new tuples are
generated. MergeTriplets verifies whether a given pair of system state s and accumulated
reward r already exists in M. If it does, then it updates the existing feature expression
associated with them in L (ψ) to a new feature expression that is the disjunction of ψ and
the new feature expression γ (lines 19-20). If the pair s and r doesn’t already exist in some
tuple in L’, then the algorithm updates L’ to include the new tuple (s, γ, r) (line 22). We
note that our algorithm uses Ordered Binary Decision Diagrams (BDDs) [12] to represent
feature expressions.

Consider the execution trace s0,T?,s1,N!,s2,F!,s0 for a system whose current configura-
tion contains only feature GPS.

Our algorithm first processes environment action T?, which triggers transition t1 that
has destination state s1 and a weight of 0. Thus, the algorithm updates data structure L
to comprise a single tuple that has feature expression >, representing all configurations,
system state s1, and an accumulated reward of 0: < >, s1, 0 >. The next transition,
s1,N!,s2, contains a system action, so the algorithm identifies all the transitions that origi-
nate from s1, and are compatible with feature expression > – that is transitions t2 and t3.
Our algorithm determines compatibility by performing a call to satisfiability (SAT) solver
MiniSat [37] to check whether the corresponding boolean formula (γ ∧ γ(t)) is satisfiable
or not. For each one of those two transitions, the algorithm computes a tuple of feature
expression, resulting system state, and accumulated reward: < GPS, s2, 5 > for transition
t2 and < CV ∧ ¬GPS, s3, 2 > for transition t5. The algorithm attempts to merge these
two tuples, but is unable to do so as they have different system states and accumulated
rewards. To process the next action F!, which is a system action, the algorithm identi-
fies all system transitions that either originate from s2 and are compatible with feature
expression GPS, or that originate from s3 and are compatible with feature expression
CV ∧¬GPS. These are transitions t5 and t4. After the algorithm computes the resulting
tuples for those transitions, the custom data structure L comprises triplets < GPS, 1, 6 >
and < CV ∧ ¬GPS, 1, 3 >. These results suggest that a configuration that satisfies the
feature expression CV ∧ ¬GPS will consume 50% less energy than a configuration that
consists of only feature GPS. We hypothesize that this information could be useful to a
DSPL to decide whether it would be advantageous to reconfigure.

We implemented our family-based algorithm by extending ProVeLines [30], which is
a family-based model checker for software product line models. We give a brief overview

22

of ProVeLines in subsection 2.4.3. We also extended ProVeLines with a product-based
analysis that performs trace checking on the execution of each configuration of an SPL
individually. The product-based approach generates each product and then performs a
separate complete simulation of each product over the observed trace.

As mentioned earlier, our algorithm uses algorithm uses Ordered Binary Decision Di-
agrams (BDDs) [12] to encode the boolean formulas that represent feature expressions.
Specifically, our implementation of the algorithm uses the Colorado University Decision
Diagram (CUDD) [100] to manipulate and implement BDDs. Additionally, to determine
whether a boolean formula is satisfiable or not, our algorithm performs calls to satisfiability
solver MiniSat [37] .

The family-based algorithm takes time O(|Trace| ∗ |T | ∗ 4|N |), where |Trace| is the
size of the trace, |T | is the number of transitions in the FTS, and |N | is the number of
features in the DSPL; This includes the complexity of the SAT calls (O(2|N |) per call). The
product-based trace-checking approach takes time O(|Trace| ∗ |T | ∗2|N |). As we mentioned
earlier, the potential reduction in execution time are not based on an improvement in the
worst-case execution time but instead on sharing of partial-analysis results.

3.4 Evaluation

We assess the efficiency of our analysis technique on three subject systems taken from
the literature: a tele-assistance system, a small e-commerce system, and an elevator sys-
tem. We compare the performance of our family-based algorithm against a product-based
analysis that analyzes each configuration individually. We implemented the product-based
trace checking analysis by extending ProVeLines, which is the same tool that we extended
to implement the family-based analysis. We discuss hypotheses for why our family-based
analyses performs better on some systems than on others.

3.4.1 Subject Systems

The first case study is a tele-assistance system (taken from [106]). The tele-assistance
system monitors a patient with a chronic condition to remotely manage his condition. The
system collects vital parameters from the patient and sends those parameters to a medical-
analysis service. Based on the results of the medical analysis, the system either calls an
alarm service to dispatch help to the patient or maintains/modifies the current medication
dosage being given to the patient. Additionally, the system allows the patient to press

23

a button to call an alarm service. The system can call three different medical analysis
services and three different alarm services. Each one of those services has a different cost
and cost is the quality of interest. We manually translated a model of this system into
a version of Promela (Featured Promela – see subsection 2.4.2) for a brief overview of it)
that is extended with support for features [26]. This system has six features that can form
nine configurations.

A second case study is an e-commerce application taken from [46]. The application al-
lows users to compare prices of products found in a local store with prices of those products
on the web and in nearby stores. The application provides alternative implementations
for recognizing the barcode of products and for determining the location of the user. It
also provides optional features such as sorting results by distance to the user’s location.
Each implementation of a feature is annotated with the amount of time it would take
to execute it. We manually translated a model of this system into a version of Promela
(Featured Promela – see subsection 2.4.2) that is extended with support for features [26].
This application has seven features that can form 24 configurations.

A third case study is a model of an elevator system developed by Plath and Ryan [93]
and extended by Classen et al. [27]. The elevator has features such as Park, which sends
the elevator to a specific floor when idle, and Shuttle, which makes the elevator move to
its target floor without stopping. The elevator system exhibits more functional variability
than the other two systems. We use a version of the elevator system that has two passengers
and four floors. The elevator model has eight features and 256 configurations.

3.4.2 Experimental Setup

We generated 20 random traces for each subject system. We set the length of the traces
at 20,000 transitions for the tele-assistance system and at 150,000 transitions for the e-
commerce application.

The elevator system has much more nondeterminism than the other two systems, which
means that our trace checking has to keep track of a much larger number of possible system
states and takes longer to analyze the system. Thus in the elevator case study, we used a
much smaller trace that consists of a sequence of 10 target floor choices (for each of two
passengers) — that is, our trace records the floors that each of the two passengers will
request when they enter the elevator up to ten times per passenger.

For each subject system, we executed our family-based algorithm and the product-based
approach 20 times on each trace and recorded the time taken by each execution.

24

Table 3.1: Average time taken by product-based, family-based, and abstract family-based
trace checking.

System #
features

configu-
rations

#
states

Product-based anal-
ysis (seconds)1

Family-based
analysis (sec-
onds)1

Family-based
analysis with
abstraction
(seconds)1

Tele-Assistance 6 9 51 2.22 ± 0.02 2.56* ± 0.03 1.60* ± 0.02

E-Commerce 7 24 15 4.15 ± 0.36 3.73* ± 0.40 0.54* ± 0.07

Elevator 8 256 217 69.81 ± 31.03 12.33* ± 3.18 12.33* ± 3.18

1mean ± standard deviation
* Denotes a statistical significant difference compared to the product-based analysis
(based on a t-test with p=0.05).

We executed both analyses on a Macbook Pro with 8 GB of RAM, and with an 2.7
GHz Intel Core i5 processor.

3.4.3 Results and Discussion

Table 3.1 shows the average and standard deviation for the time taken by our family-based
analysis and by the product-based analysis for each one of the three subject systems.

Our family-based trace-checking analysis is 5.7 times faster than the product-based
analysis on the elevator system, and is 1.1 times faster on the e-commerce system, but it is
1.2 times slower for the tele-assistance system. For both the tele-assistance system and the
e-commerce system, we observe little to no reduction in execution time for family-based
analysis — which is somewhat surprising given the savings observed in other family-based
analyses (e.g., [27, 26]). The elevator’s analysis time has a large overall standard deviation,
but the standard deviation of the time to analyze each individual trace (20 times) is very
low (not shown). This suggests that each trace causes the trace checking algorithm to
explore a significantly different number of configurations and states.

In the e-commerce and the tele-assistance systems, every feature directly impacts the
transitions’ weights, and most transitions exhibit different weights for many configurations.
This could explain why, for those two systems, most configurations would generate different
accumulated rewards in the analyzed traces and the family-based would perform poorly on
them. In contrast, in the elevator system only transitions that cause the elevator to move
between floors have a non-zero weight. We observed that for the elevator system many
configurations would share the same accumulated reward in the analyzed traces. Thus, we

25

hypothesize that the sharing of accumulated reward values across different configurations
is the key aspect that permits a family-based trace-checking algorithm to obtain a large
speed-up when analyzing a DSPL. From analyzing these results, we hypothesize that our
analysis will perform well on other systems that have only a few different values for their
transitions’ weights.

3.5 Data Abstraction

Family-based analyses typically outperform product-based analyses, because they can reuse
partial-analysis results that apply across multiple products. When analyzing quality-of-
service values, different products might result in quality-of-service values (accumulated
rewards) that differ by small amounts, while being identical in every other aspect (e.g.,
same resulting state), which prevents a family-based algorithm from reusing partial-analysis
results across those products. However, for some systems, it may be acceptable to disre-
gard small differences in quality-of-service values when making reconfiguration decisions.
Thus, we use data abstraction on the value of transition weights to reduce the number of
weights and test our hypothesis that few distinct weights in the model leads to an improved
performance of the family-based analysis.

Specifically, we categorize transitions into those with a high weight (e.g., high-energy
consumption in the example DSPL) and those with a low weight (e.g., low-energy con-
sumption in the example DSPL). Our algorithm then calculates the number of high-weight
and low-weight transitions that each set of configurations would have executed (i.e., lines
8 and 12 of our algorithm tracks the number of high and low cost transitions executed
instead of tracking the accumulated weight of executed transitions). Our algorithm is then
able to group two configurations together if they would have executed the same number of
high-weight and low-weight transitions (lines 18-20), even if they would have resulted in
slightly different concrete accumulated rewards.

We applied data abstraction to the three case studies in the following manner. For
the tele-assistance system we manually partitioned transitions into those with low-cost,
high-cost, or zero-cost. For the e-commerce application, we manually classified features
(represented as transitions) into those that were fast and those that were slow. For the
elevator system, we set the cost of moving the elevator one floor to one unit, so we do not
use any data abstraction in that study.

The abstraction of the transitions’ weights into either Zero, Low, or High gives rise to
an abstract product. An abstract product, denoted pA, consists of the weighted transition

26

system associated with product p, but with each one of the transition’s weights replaced
by either Zero, Low, or High. The accumulated cost of executing an abstract product PA

over a specific trace is then given by the number of high-cost transitions executed and the
number of low-cost transitions executed.

3.5.1 Soundness of Data Abstraction

The set of possible concrete costs of executing a transition t ∈ T comprises all natural
numbers used as weights in the FTS; we call this set CT . The set of possible concrete
values for the accumulated cost of executing a trace π comprises all natural numbers; we
call this set CAcum. The usual operations of =, <,≤ and + are available between members
of these concrete sets.

The set of possible abstract costs of executing a transition t ∈ T comprises the values
Zero, Low, or High, which we denote as the set AT . The accumulated abstract cost of
executing a trace π is represented by a tuple, a =< High, Low >, that consists of a pair
of natural numbers representing the number of high-cost and low-cost transitions executed
in a trace. We call the set of all possible tuples AAcum. Given a tuple a =< High, Low >,
we use the notation a.High to reference the first element of tuple a and a.Low to reference
the second element of a.

An abstraction function, denoted α, maps concrete values (elements of Ct) to one of
three abstract values: ∅, Low, or High. The minimum concrete value that is mapped to
Low is denoted LLB and the maximum is denoted LUB. The minimum concrete value
that is mapped to High is denoted HLB, and the maximum is denoted HUB. We note that
∅ ≤ LLB ≤ LUB ≤ HLB ≤ HUB.

We define an abstract addition operator, +A, that adds an element of AAcum and an
element of At, to produce an element of AAcum:

a1 +A 0 = a1

a1 +A Low = < a1.High, a1.Low + 1 >
a1 +A High = < a1.High+ 1, a1.Low >

We define an abstract comparison operator, denoted <A, that compares two abstract
accumulated costs, a1 and a2, to determine whether a1 is less than a2, a2 is less than a1,
or that a1 and a2 are incomparable:

27

a1 <A a2 If (a1.High ∗HUB + a1.Low ∗ LUB) < (a2.High ∗HLB + a2.Low ∗ LLB)
a1 >A a2 If (a1.High ∗HLB + a1.Low ∗ LLB) > (a2.High ∗HUB + a2.Low ∗ LUB)
a1 ≡A a2 Otherwise

Additionally, we define a concretization function, denoted δ, that maps abstract accu-
mulated costs to the set of possible corresponding concrete accumulated costs:

δ(a1) = {x ∈ N |(a1.High ∗HUB + a1.Low ∗ LUB) ≥ x ≥
(a1.High ∗HLB + a1.Low ∗ LLB)}

We should note that we have simplified the concretization function by making it output a
contiguous set, which is an over-approximation of the set of possible concrete values that
can correspond to an accumulated cost.

We can now proceed to prove the soundness of the data abstraction that we have used
in this Chapter.

Theorem 1 Let a1 be the accumulated abstract cost incurred by abstract product pA1 when
executed on an input trace π, and let a2 be the accumulated abstract cost incurred by another
abstract product pA2 when executed on the same trace π. Let c1 be the accumulated concrete
cost incurred by the original product p1 when executed on the same trace π, and let c2 be
the concrete cost incurred by the original product p2 when executed on the same trace π. If
a1 <A a2, then c1 < c2.

Proof:

Assume that a1 <A a2 is true.

Since c1 ≤ max δ(a1), then c1 ≤ (a1.High ∗HUB + a1.Low ∗ LUB).

Since c2 ≥ min δ(a2), then c2 ≥ (a2.High ∗HLB + a2.Low ∗ LLB)

Since a1 <A a2, then (a1.High ∗HUB+ a1.Low ∗LUB) < (a2.High ∗HLB+ a2.Low ∗
LLB).

∴ c1 ≤ (a1.High ∗HUB + a1.Low ∗ LUB) < (a2.High ∗HLB + a2.Low ∗ LLB) ≤ c2

∴ c1 < c2

28

3.5.2 Results and Discussion

Our family-based algorithm, with data abstraction, performs better and is faster than
the product-based analysis for all three case studies. Specifically, our algorithm is 1.39
times faster than the product-based approach2 for the tele-assistance system and 7.7 times
faster for the e-commerce system (for the elevator system no data abstraction is possible as
weights are already abstracted to two values: zero versus one). Because we are comparing
the arithmetic means of two normal distributions, we use the t-test to determine whether
their differences are statistically significant. Based on a t-test (p=0.05) these differences are
statistically significant for all three systems. These results suggest that data abstraction
can speed-up family-based analysis of DSPLs.

In the above description, we have only considered analysis of a single quality attribute.
Our approach can be extended to multiple quality attributes by introducing a vector of
weights for each transition. However, when analyzing multiple quality attributes simulta-
neously aggressive abstraction would be necessary as otherwise every configuration could
provide a slightly different vector of accumulated rewards, and family-based analysis is less
likely to outperform product-based analysis.

3.6 Related Work

A class of approaches [21, 90, 91] associate with each feature or adaptation a static value
for quality of service or a static value for cost or resource usage. These values represent a
feature’s entire contribution to the system’s quality of service in these analyses. Whether
These values apply (or not) depends on whether (or not) the feature is active in a config-
uration. Approach [90, 91] uses a genetic algorithm to search for an optimal configuration
that optimizes for quality of service within current resource constraints. At runtime, the
availability of resources is monitored, and a change in resource constraints may trigger a
new runtime search for a more optimal configuration, in terms of the sum of the feature’s
contribution to the quality of service (i.e., using a coarse-grained model of a configuration’s
quality of service). In contrast, our models of features record how a feature’s contributions
to quality of service can vary with the features’ behaviour and actions (i.e., depending
on which transitions are executed) during a feature’s execution. This allows for a more
accurate assessment of a system’s quality that takes into account not only changes of

2We compare against the concrete product-based trace checking algorithm because the abstraction on
weight values has no effect on the execution time of the product-based trace checking algorithm.

29

the operating environment but also changes in the executing system, and how a feature’s
contribution to a system’s quality-of-services changes as the environment changes.

In approaches that use Discrete-Time Markov Chain (DTMC) models with rewards
[13, 41, 47], some transition probabilities and rewards are represented as uncertain vari-
ables, which are updated at runtime in response to changes to the system’s configuration or
environment. Calinescu et al. [13] present a self-adaptive system that periodically updates
such a model at runtime and verifies, using computationally-intensive probabilistic model
checking, whether its quality-of-service requirements will continue to be met. If not, it
exhaustively analyzes each one of its configurations to reconfigure to the optimal one. The
work of Gerasimou et al. [44] improves such analysis performance by caching previously
seen configurations and preemptively analyzing configurations that will likely be encoun-
tered. To reduce runtime analysis time, Filieri et al. [41, 42] compute, at design-time, a
single polynomial expression (consisting of constants and variables) that can represent the
quality of service (e.g., reliability, energy consumption) of any system configuration and
environment; this expression can be efficiently re-evaluated at runtime when estimates for
the variables’s values are updated. Similarly, Ghezzi et al. [47] model a DSPL as a sequence
diagram (which is transformed to an equivalent DTMC) where features can introduce new
transitions and are assumed to be independent. They leverage the analysis of Filieri et al.
[42] to compute a polynomial for the base DSPL and for each feature, which allows them to
efficiently evaluate the quality of service of any configuration at runtime. Their approach
still uses a static-cost model of the quality-of-service of a DSPL by using a static value of
quality of service per feature, representing the feature’s entire contribution to the system’s
quality of service. In contrast, our work does not assume features to be independent, per-
mits transitions to depend on multiple features, and permits the execution of transitions
to impact the estimated quality-of-service values.

Proactive adaptation [80] uses nondeterminism to model the latency of each adaptation,
the uncertainty about the future states of the environment, and the choices among the
different adaptations. At runtime, the probabilistic model checker PRISM [72] is used to
decide which adaptation maximizes the overall utility over a small look-ahead period. In
contrast, instead of attempting to predict the future, our approach uses the recent past
as a proxy to the environment’s near-future behaviour and selects the configuration that
would have performed the best in the recent past. For scalability, Moreno et al. [79] adapt
an approximate optimization algorithm to find near-optimal configurations much faster.
There exist different schools of thought about how to best predict the future: probabilistic
models versus the recent past. The usefulness of the former approach depends on the
ability to create probabilistic models. At the least, the recent past can be used while the
probabilistic model is being learned.

30

To decide whether to reconfigure a system, existing approaches maintain and update
a model of the system’s environment at runtime, and then periodically analyze — using
computationally intensive techniques such as probabilistic model checking — the expected
quality of service that each configuration would provide [13, 80]. The efficiency of these
analyses is a major concern as they are performed at runtime and they analyze a large
number of configurations. Researchers have improved the scalability of these analyses by
performing part of the computation in advance and sharing partial-analysis results across
multiple configurations [42, 81], by performing an approximate analysis that returns the
best configuration found (so far) after a fixed amount of time has elapsed [79], and by
identifying near-optimal configurations [44]. Despite these optimizations, quickly ana-
lyzing the quality of service that every configuration would provide remains challenging.
Alternatively, other approaches use static-cost models that estimate the impact that each
adaptation [14] or each activation/deactivation of a feature [91] would have on the quality
of service. These simpler models can be analyzed much faster, however they do not capture
how the environment affects the performance of the system nor the interactions between
multiple features.

3.7 Conclusions

We have presented a family-based trace-checking analysis that estimates the quality of
service that each configuration of a DSPL would provide. We have assessed the efficiency
of such a family-based analysis on three case studies from the literature. Without data
abstraction, our family-based analysis faster than analyzing each configuration individu-
ally in only one system because of the lack of sharing of partial-analysis results across
configurations due to slight differences in quality-of-service performance. With a simple
data abstraction, the efficiency of our family-based analysis improves substantially and our
analysis is between 1.4 and 7.7 times faster than analyzing each configuration individually,
an improvement which could be significant given that the analysis is to be performed at
runtime.

31

Chapter 4

Long-term Average Cost in Featured
Transition Systems

As mentioned in Section 2.1, the techniques for analyzing software product lines can be
categorized into family-based or product-based A family-based analysis is performed on
a single model that represents all the possible products in an SPL. Thus, family-based
approaches avoid some of the redundant computations that are inherent in product-based
analyses; but they require that standard analysis algorithms be adapted to accommodate
variability in the SPL model.

In this chapter, we focus on an analysis of quality attributes, called limit average, which
computes a long-term average of a quality attribute for a product [68, 107]. We adapt the
limit-average algorithm in order to perform a family-based analysis that computes the limit
average of a quality attribute for every product in a software product line that is modelled
as a weighted featured transition system.

Our contributions in this chapter include:

• A family-based algorithm that analyzes a model of an SPL that models every prod-
uct and simultaneously computes the limit average for a quality attribute for every
product.

• An implementation of the family-based algorithm.

• An evaluation of the speed-up of our family-based approach versus the product-based
approach.

32

4.1 Background

4.1.1 Limit-Average Cost

The limit-average cost [107] expresses the average cost of a quality attribute over the steps
in a single infinite execution of a weighted transition system. Thus, if the weight of an
execution step represents the consumption of a resource during that execution step, then
the limit average represents the long-term average rate of resource consumption per step
along a single (infinite) execution trace.

Definition 8 Given an infinite execution trace π = s0α1s1α2 . . . of a weighted transition
system, consider a corresponding infinite sequence of weights w(π) = v0v1 . . . where vi =
W (si, αi+1, si+1). The limit average cost for trace π is then defined to be1

LimAvg(π) = lim inf
n→∞

1

n

n∑
i=0

vi .

The maximum limit average [107] cost of a weighted transition system is the maximum
cost among the limit average costs for all of its execution traces. By computing the
minimum and maximum limit-average cost of a weighted transition system whose weights
represent, for example, energy consumption, we obtain the best-case and worst-case long-
term rates of energy consumption for the system. In contrast, the worst-case execution cost
of a weighted transition system comprises the sum of the maximal costs (weights) along
an infinite execution trace of the system, which could be infinite or could be impacted by
one-time costs that are irrelevant in the long term. A maximum limit-average cost over
an infinite execution trace is impacted only by those costs that are incurred an infinite
number of times within the trace. Thus, the maximum limit-average cost is better suited
to represent the long-term cost of a continually executing system, where one-time costs
have minimal impact over time and can be ignored.

The maximum limit-average cost can be computed by a two-phase algorithm [107]:
the first phase computes the set of strongly connected components; then the second phase
identifies for each strongly connected component the cycle with the highest average-weight.
Finally, the average weight of the highest-average-weight cycle that is reachable
from the initial state is the maximum limit-average cost for the weighted transition

1We note that we use the limit of the infimnum of the formula instead of the limit of the formula to
ensure that such limit always exists.

33

system. In the rest of this chapter, we will interchangeably use the terms “average weight
of the highest-average-weight cycle that is reachable from the initial state” and “maximum
limit-average cost”.

4.1.2 Strongly Connected Components (SCCs)

A strongly connected component (SCC) is a maximal set of nodes in a graph such that there
exists a directed path between every pair of nodes in the set [33]. Any cycle in a graph will
be contained within an SCC. Hence by searching for the maximum average-weight cycle
within each SCC of a graph, we obtain the maximum average-weight cycle of the full graph
[107].

The standard algorithm [33, 96] for computing the SCCs of a graph G = (V,E) proceeds
as follows:

First, the algorithm performs a depth-first search of the graph and computes for each
node its finishing time in the depth-first search. We state the definition of the finishing
time of a node in a depth-firsth search below.

Definition 9 Let G = (V,E) be a directed graph where V is a set of nodes and E is a
set of directed edges between nodes. In a depth-first search exploration of G the finishing
time, FinishingT ime(v), of a node v is the temporal order in which the node v-plus all
of the nodes that a depth-first-search from v can reach-has been fully explored.

Thus, the first node that is finished being explored (a leaf node) has a finishing time of 1,
and the last node that is finished being explored has a finishing time of |V |. The finishing
time of a node, FinishingT ime(v), ranges from 1 to |V |.

Second, the algorithm then processes the nodes in decreasing finishing times. It starts
with the node v whose FinishingT ime(v) = |V | and computes the set of nodes that can
be reached from v in the transpose of the graph (i.e., the graph that has the same nodes
and edges but with reversed edge directions). This set of nodes corresponds to an SCC
[33].

Finally, the algorithm then removes this SCC from the graph and processes the remain-
ing nodes in decreasing order of finishing times until each node has been assigned to an
SCC. Different depth-first searches may result in different finishing-times, but this does
not affect the final set of SCCs. The algorithm takes time O(V + E).

In order to compute the maximum limit-average cost of a weighted graph, one needs
to identify the highest average-weight cycle within each SCC of the graph. This is usually

34

done using Karp's algorithm [68]. For each SCC, Karp’s algorithm chooses an arbitrary
“source state” sstart and then iteratively computes a function F that associates with each
state v in the SCC and each path length k ∈ {0, . . . , (n − 1)} (where n is the size of the
SCC) the maximal weight of a path of length k from sstart to v. By Karp's theorem [68],
the weight of the maximal average-weight cycle is given as:

max
v

min
k<n

F
(
n, v
)
− F

(
k, v
)

n− k
(4.1)

In this formula, the expression F
(
n, v
)
−F

(
k, v
)

, when evaluated on the maximizing state

v and the minimizing path-length k, represents the total cost of the maximal average-weight
cycle in the SCC from state v to itself; and the denominator n − k represents the length
(number of edges) of the maximal average-weight cycle (also evaluated on the maximizing
v and minimizing k). Karp’s algorithm to compute the maximal average-weight cycle takes
time O(V × E).

The above algorithm applies to a simple weighted graph. In the rest of this Chapter,
we extend the algorithm to apply to a weighted featured transition system.

4.2 Motivating Example

Figure 4.1 shows a small weighted featured transition system for a combined taxi and
shuttle service. The shuttle service (feature S) picks up passengers from several pickup
locations and delivers them to the airport, or picks up passengers at the airport and drops
them off at several city locations. The taxi service (feature T) can transport passengers
between city locations, and not just to and from the airport. There are three pickup and
three release locations in the city, one of which is accessible only to vehicles that have an
extra license (feature L). The weights on the transitions show their cost: positive numbers
are income and negative numbers are expenses.

This example SPL has three features, S, T and L, giving rise to eight products (as
the feature model allows all possible products in this example): ∅, {L}, {S}, {T}, {L, S},
{L, T}, {S, T}, and {L, S, T}. An interesting problem is to compute the maximal income
for each product; the maximum limit-average cost is an approximation of this maximal
income.

A product-based analysis reveals that each product has exactly one SCC that can be
reached from the initial state (where the initial state is Airport-P: the vehicle is at the
airport pickup).

35

Pickup-ext

Pickup-1

Pickup-2

Airport-P

Release-ext

Release-1

Release-2

Airport-R

13.316.6

17.522.5

12.515

−2

−2

−5

−2

[S
]

15
[S

]
15

[S
]

1
5 [S

]
1
5

[T] 30 [T] 30

[T] 30
[T] 30

[T] 30

[T
] 30

Figure 4.1: Taxi-shuttle example. In addition to the feature guards shown, all dotted
transitions are guarded by the feature L. States refer to the current location of the vehicle.

In product p = ∅ there are two cycles:

Airport-P → Release-1 → Pickup-1 → Airport-R → Airport-P (4.2)

Airport-P → Release-2 → Pickup-2 → Airport-R → Airport-P (4.3)

Their average weights are 10.38 and 12.17, respectively (rounded to two decimal places),
hence cycle (4.3) between the airport and city location 2 provides the maximal income.

In p = {L} there are three cycles: the cycles listed above plus a third:

Airport-P → Release-ext → Pickup-ext → Airport-R → Airport-P (4.4)

But the average weight of the steps in the third cycle is only 10.30, so cycle (4.3) is still
the most profitable.

In p = {S}, there are five cycles: in addition to cycles (4.2) and (4.3) above, there are
three other cycles:

Airport-P → Release-2 → Release-1 → Pickup-1 → Airport-R → Airport-P (4.5)

Airport-P → Release-1 → Pickup-1 → Pickup-2 → Airport-R → Airport-P (4.6)

Airport-P → Release-2 → Release-1 → Pickup-1 → Pickup-2 → Airport-R → Airport-P
(4.7)

36

Their average weights are 11.63, 11.63, and 12.88, respectively; hence for a purely shuttle
product, cycle (4.7), which picks up and releases passengers at both city locations, is most
profitable.

Similar analyses can be done for the remaining five products. However, a family-based
analysis that computes SCCs and maximum average-weight cycles for all products at once
would be preferable. We will come back to this example in Section 4.4.

4.3 Family-Based Limit-Average Computation

We want to compute the maximum limit-average cost for each product in a software product
line. We propose a family-based algorithm that re-uses partial computation results that
apply to multiple products. The algorithm starts by computing SCCs for all products
(subsections 4.3.1 and 4.3.2) and then for each SCC in each product it computes the
maximum average-cost cycle (subsection 4.3.3).

The computation of SCCs requires exploring the transpose of the WFTS graph in
reverse order of the finishing times of states in a depth-first search. In the rest of this
chapter, we will use the term finishing time of a state to refer to the temporal order in
which the state and all of its descendants are finished being explored in a depth-first search
(starting from an initial node s0). As a first step in subsection 4.3.1, we compute and store
a mapping from sets of products to finishing times of states in a depth-first search. An
example of such a mapping is shown in Figure 4.3, where node s0 has the highest finishing
time if feature G or A is present and node s2 has the highest finishing time otherwise.
In subsection 4.3.2, we use such a mapping to compute the SCCs in an adapted version
of the standard algorithm to compute SCCs. This algorithm explores a tree like the one
in Figure 4.3 in a breadth-first manner and computes a featured set of SCCs for each set
of finishing times of nodes, producing a tree like the one shown in Figure 4.4; the latter
represents the set of SCCs that different feature combinations induce (we will explain such
a figure in subsection 4.3.2).

In order to illustrate the family-based SCC computation, we introduce a tiny SPL,
modelled as a WFTS in Fig. 4.2, of an arbiter granting access to a shared resource. In
one product, representing the basic system without features, access is granted only after a
request has been received. A second product always grants access, whether or not a request
exists (represented by transitions labelled with feature expression G). A third product
alternates between granting access and not granting access (represented by transitions
labelled with feature expression A).

37

s0 s1

s2 s3

req / 0

grant / 0serve / 0

grant [G] / -1

Revoke Grant [A] / 0
grant [G ∨A] / -1

req [G ∨A] / 0

Figure 4.2: WFTS which implements several grant/ request scenarios.

Root

s0

s2

s2

s0

s1

s1

s3

s3

G ∨A

¬(G ∨A)

Figure 4.3: Featured finishing-times tree for the FTS from Fig. 4.2. It maps feature
expressions to the finishing times of nodes. In the lower path state s2 has a higher finishing
time than initial state s0, so s2 is unreachable in the products associated with such path.

Root

s0 : G ∨A
s1 : G ∨A
s2 : G ∨A
s3 : G ∨A

s0 : ⊥
s1 : ⊥
s2 : ⊥
s3 : ⊥

s0 : ⊥
s1 : ⊥
s2 : ⊥
s3 : ⊥

s0 : ⊥
s1 : ⊥
s2 : ⊥
s3 : ⊥

s0 : ⊥
s1 : ⊥
s2 : ¬(G∨A)
s3 : ⊥

s0 : ¬(G∨A)
s1 : ¬(G∨A)
s2 : ⊥
s3 : ¬(G∨A)

s0 : ⊥
s1 : ⊥
s2 : ⊥
s3 : ⊥

s0 : ⊥
s1 : ⊥
s2 : ⊥
s3 : ⊥

s0

s2

s2

s0

s1

s1

s3

s3

G ∨A

¬(G ∨A)

Figure 4.4: Featured SCC tree for the FTS of Fig. 4.2. As in Fig. 4.2, state s2 and its
associated SCC are unreachable in all the products associated with the feature expression
¬(G ∨ A).

38

Each of these products satisfies the functional requirements of the system, namely that
a request always leads to granted access. However the user may prefer one solution over
another because of the solution’s qualitative properties; for example she might want to
minimize the number of unnecessary grants. This preference is encoded as weights on the
transitions, such that a penalty of −1 is given every time a grant is given without having
been requested.

4.3.1 Featured Finishing Times

The second phase of the standard algorithm for computing the SCCs of a graph expects as
input the finishing times of the graph’s nodes in a depth-first search starting from an initial
node s0. However, a featured transition system represents a set of transition systems, each
with a different set of transitions, which can give rise to different finishing times for its
states. For example, the basic product in Fig. 4.2 (without feature A nor G) with initial
state s0 would have the following finishing times for each state2:

FinishingT ime(s3) = 1, F inishingT ime(s1) = 2, F inishingT ime(s0) = 3, F inishingT ime(s2) = 4 ,

whereas in any product that includes feature A, state s0 has the highest finishing time:

FinishingT ime(s3) = 1, F inishingT ime(s1) = 2, F inishingT ime(s2) = 3, F inishingT ime(s0) = 4 .

As a first step, given a weighted featured transition system, we construct a tree that
represents the finishing times of states for every product.

In such a featured finishing-times tree, each path from the root to a leaf node represents
a unique set of finishing times for the states in a featured transition system. The tree is
annotated with feature-expression labels on edges, associating products with the states'
finishing times. Specifically, a tree node representing state s at level d in the tree means
that the finishing time of state s is |S| − d+ 1 in all products that satisfy the conjunction
of the feature expressions along the path from the root to the node. If the path goes all
the way from root to a leaf node, then the set of products satisfying the path's feature
expression (i.e., the conjunction of the feature expressions along the path from the root to
the node) share an identical set of finishing times in a depth-first exploration starting from
the initial state.

2In general, the “finishing times” of the nodes in a depth-first exploration of a graph are not necessarily
unique – they will depend on the order in which transitions and states are explored when multiple tran-
sitions/states can be chosen for exploration. However, our algorithm always chooses the transition/state
to explore next in the same fixed order when multiple states/transitions are available to explore – so this
yields unique “finishing times’.

39

For example, the WFTS from Fig. 4.2 gives rise to the featured finishing-times tree
shown in Fig. 4.3. This tree assigns one set of “finishing times” to all products that contain
either feature G or A, and another set of “finishing times” to products that contain neither
feature. In products that contain either feature G or A, state s0 has a finishing time of
|S| − d + 1 = 4 − 1 + 1 = 4, state s2 has a finishing time of 4 − 2 + 1 = 3, state s1 has a
finishing-time of 4− 3 + 1 = 2, and state s3 has a finishing time of 4− 4 + 1 = 1.

Definition 10 Let fts =(S, I, A, T, d, γ) be a featured transition system. A featured
finishing-times tree for fts consists of a tree TF = (V,E) of height n = |S| where V is
a set of vertices and E is a set of edges, a node labelling function `v : (V \ root)→ S and
a function `e : E → B(N) which labels each edge with a feature expression. Let squared
brackets around a feature expression (e.g., JG∨AK) denote the set of software configurations
that satisfy the feature expression. We recall from Definition 1 that px is the set of all valid
software configurations. The tree TF satisfies the following conditions:

• All leaf nodes are at level |S| of the tree.
• For any path v0, . . . , vn from the root to a leaf node, each node vi is mapped to a

unique state: ∀i, j ∈ {1 . . . n}, i 6= j : `v(vi) 6= `v(vj). A path from the root to a leaf
node represents a set of products that share the same finishing times for its nodes.

• The configurations associated with the outgoing edges labels are disjoint: ∀(u, v),
(u,w) ∈ E,w 6= v : J`e((u, v))K ∩ J`e((u,w))K = ∅.

• For any product p and level i, there exists a (necessarily unique) path v0, . . . , vi from
the root to the path’s node at level i such that the product p is contained within
the set of configurations represented by the conjunction of the feature expressions
along the edges of the path: ∀p ∈ px, i ∈ {1, . . . , n} : ∃! path v0, . . . , vi : p ∈⋂i−1
j=0J`e((vj, vj+1))K.

• For any product p, level i, and the unique path from the root v0, . . . , vi such that p ∈⋂i−1
j=0J`e((vj, vj+1))K, the finishing times in the projection fts|p of the states `v(v1), . . . ,

`v(vi) are n, . . . , n− i+ 1, respectively.

The featured finishing-times tree is built in two phases. In the first phase (performed
by Algorithm 2), a featured depth-first search explores all states of an FTS and computes
a temporal ordering for when a state and all its DFS descendants are explored, depending
on feature expressions. The second phase (shown in Algorithm 3) uses this information to
construct a featured finishing-times tree in a breadth-first manner.

In Algorithm 2, unlike in a standard depth-first search algorithm, states are not marked
as visited with a boolean flag but instead with a feature expression representing under which
set of products have they been visited. Hence Algorithm 2 stores and updates an array

40

Alg. 2: Depth-first search for a Featured transition system

1 Global: FinishingTimes: Array[state] of a set of < feature expression,
finishing time>

2 Procedure DFS-FTS (fts)
3 Input: fts = (S, I, A, T, d, γ) : A featured transition system
4 Local: Unexplored: Array[state] of feature expression (represents the products

for which a state not yet been explored)
5 begin
6 for each u ∈ S
7 Unexplored[u] ← >
8 FinishingTimes[u] ← ∅
9 time ← 0
10 for each u ∈ S
11 if Unexplored[u] is satisfiable then
12 DFS-FTS-Visit(fts, u, Unexplored[u], Unexplored, time)
13 end-if
14 end
15
16 Procedure DFS-FTS-Visit(fts, u, λu, Unexplored, time)
17 Input: fts: A featured transition system
18 Input: u: A state to explore
19 Input: λu: A feature expression indicating for which products to explore state u.
20 Input/Output: Unexplored: Array[state] of feature expression (represents

the products for which a state not yet been explored)
21 Input/Output: time: A counter that is incremented as each vertex is explored
22 begin
23 Exploring ← Unexplored[u] ∧ λu
24 Unexplored[u]← Unexplored[u] ∧¬λu
25 for each t=(u, v, λt) ∈ T
26 NextFExp ← λt ∧ λu
27 if (Unexplored[v] ∧ NextFexp) is satisfiable then
28 DFS-FTS-Visit(fts, v, NextFexp, Unexplored, time)
29 end-if
30 time ← time + 1
31 FinishingTimes[u].insert(<Exploring, time>)
32 end

41

Unexplored of boolean formulas: Each array index of Unexplored represents a unique state
in the FTS, and the state’s corresponding array element is a feature expression representing
the products for which the state has not been explored.

Algorithm 2 starts by initializing the array Unexplored to true (all products) for each
state (lines 6-8). It also initializes the global array FinishingTimes to the empty set for
each state (lines 6-8). This array will later be used to store a set of pairs of feature
expressions and finishing times for each state. The algorithm then initializes a counter,
denoted time, that will be incremented each time a state is finished being explored (line
9). The algorithm then iterates over all states, and for each state that has not been fully
explored it calls the subroutine DFS-FTS-Visit, passing as parameters that state and the
feature expression representing that state’s set of unexplored products, a reference to array
Unexplored, and a reference to variable time (lines 10-12).

The subroutine DFS-FTS-Visit starts by updating (reducing) the set of unexplored
products for its given state u (lines 23-24) because it will start exploring (i.e., perform a
new depth-first search) from the input state u, with products that satisfy the input feature
expression. This way the algorithm ensures termination by preventing the state u from
being explored again with those products. Then it iterates over each outgoing edge from
the state u and checks if there are products

1. that satisfy the input feature expression,

2. that satisfy the feature expression associated with the outgoing transition, and

3. in which the destination state has not been explored (i.e., if λu ∧ λt∧ Unexplored[v]
is satisfiable; We note that our algorithm checks if such a formula is satisfiable by
performing a call to satisfiability (SAT) solver MiniSat [37].) (lines 26-27).

If so, then it recursively calls itself to explore the destination state. Finally, once all
outgoing edges from the state u have been explored, it increments the time counter and
sets the finishing time for the input state u and feature expression Exploring to the current
time counter (lines 30-31) – this is achieved by inserting the tuple < Exploring, time > to
the set associated with state u in array FinisingT imes. This feature expression represents
the products for which state u and all its descendants have been fully explored at timestep
time. The array FinishingT imes contains the featured finishing-times for each state in
the FTS and is the output of Algorithm 2.

Once the feature-based depth-first ordering of states has been computed, this data can
be used to construct the featured finishing-times tree for the FTS. This is done by iterating

42

over the states in reverse order of their finishing-times, recursively adding a new child to
a tree node whenever a new pair (s, λ) is found for which the conjunction of the following
formulae is satisfiable (lines 18-21 in Algorithm 3):

1. λ,

2. the negation of the disjunction of the feature expressions on the edges from the tree
node to its other children, and

3. the feature expression associated with the path from the root to the current tree node

The check is performed to ensure that each path in the featured finishing-times tree from
the root to a tree node’s child nodes represents a disjoint nonempty set of software prod-
ucts. The procedure is shown in Algorithm 3 and two auxiliary procedures are shown in
Algorithm 4.

The algorithm starts by initializing a local variable, denoted Tree, with an empty root
node and adding the root node to a queue, denoted Q, of tree nodes to explore (lines
6-9). The algorithm then enters a loop where it processes tree nodes from the queue and
computes all their children (lines 11-24). Finally, the algorithm returns a fully populated
featured finishing-times tree.

For a given tree node, denoted TreeNode, the algorithm identifies all the children of
TreeNode by iterating over the finishing-times that are lower than TreeNode’s maximum
finishing-time number in decreasing order (lines 16-24). The goal of lines 16-24 is to identify
which states will exhibit a finishing time that is one unit less than TreeNode’s finishing time
and for which products they will exhibit such value for its finishing time. The algorithm
searches for pairs of states and feature expressions (u, λ) = FinishingTimesInverse(i) such
that the feature expression (λ) combined with the negation of all other edges leaving the
tree node is satisfiable (line 16-24). We note that our algorithms determine if such formula
is satisfiable by performing a call to satisfiability solver MiniSat [37]. By incorporating
the negation of the feature expressions of all other edges leaving the node into the feature
expression (which is temporally stored in variable NotChildren), this algorithm ensures
that the sets of products associated with each of TreeNode’s outgoing edges are disjoint. If
the feature expression is satisfiable, then it adds a new child node to the tree (line 19) and
updates the expression representing the negation of all edges leaving the tree node (line
22) and records the new node’s maxFTime to be j (which represents the finishing-time of
state u in all products that satisfy λ ∧ λ1), so that later when processing this new node
only states with a lower finishing-time than it are searched. The algorithm then adds the
new tree node to the queue (line 21). After all children for a tree node have been identified

43

Alg. 3: Building a featured finishing-times tree for an FTS

1 Procedure ComputeFeaturedTree(FinishingTimesInverse, MaximumFTime)
2 Input: FinishingTimesInverse: A function that given a number returns the

state and feature expression associated with it in FinishingTimes.
3 Input: MaximumFTime: The maximum finishing time in FinishingTimes.
4 Output: Tree: A featured finishing-times tree
5 begin
6 Q ← Empty Queue
7 Tree ← New Tree()
8 Tree.root.maxFTime ← MaximumFTime
9 Q.add(Tree.root)
10 while (¬Q.isEmpty())
11 TreeNode ← Q.pop()
12 λ1 ← FeatureExpressionFromRoot(Tree, TreeNode)
13 max ← TreeNode.maxFTime
14 notChildren ← >
15 j ← max -1
16 while (j > 0)
17 u, λ ← FinishingTimesInverse(j)
18 if (λ ∧ notChildren ∧ λ1 is satisfiable) then
19 NewTreeNode ← CreateNode(Tree, TreeNode, u,

λ ∧ notChildren)
20 NewTreeNode.maxFTime ← j
21 Q.add(NewTreeNode)
22 notChildren ← notChildren ∧ ¬λ
23 end-if
24 j ← j − 1
25 return Tree
26 end

44

Alg. 4: Auxiliary procedures for Algorithm 3

1 Procedure CreateNode(Tree, ParentNode, State, λ)
2 Input: Tree: A featured finishing-times tree
3 Input: ParentNode: A tree node
4 Input: State: A state to associate with the new node
5 Input: λ: A feature expression
6 Output: A new tree node
7 begin
8 NewNode ← New Node()
9 ParentNode.addChild(NewNode)
10 Tree.StateLabel(NewNode) ← State
11 Tree.EdgeLabel(ParentNode, NewNode) ← λ
12 return NewNode
13 end
14
15 Procedure FeatureExpressionFromRoot(Tree, Node)
16 Input: Tree: A featured finishing-times tree
17 Input: Node: A tree node
18 Output: A feature expression
19 begin
20 if Node = Tree.root then
21 return >
22 else
23 return Tree.EdgeLabel(Parent(Node), Node) ∧

FeatureExpressionFromRoot(Tree, Parent(Node))
24 end-if
25 end

45

and added to the queue (i.e., when the expression in line 18 is unsatisfiable), the nodes
remaining in the queue are processed (line 11). As we mentioned earlier, our algorithms
determine if a formula is satisfiable by performing a call to satisfiability solver MiniSat
[37].

This algorithm uses two auxiliary procedures: CreateNode (called in line 19) and Fea-
tureExpressionFromRoot (called in line 12), which are listed in Algorithm 4. The purpose
of procedure CreateNode is to create and insert a new tree node into a featured finishing-
times tree. The purpose of procedure FeatureExpressionFromRoot is to compute the feature
expression associated with a path in a featured finishing-times tree from the root of the
tree to the input node. The procedure outputs the constructed feature expression.

4.3.2 Strongly Connected Components of a Featured Transition
System

The goal of the standard algorithm for computing SCCs [33] is to partition the vertices of
a graph into a set of strongly connected components (we recall that an SCC is a maximal
set of vertices such that each vertex is reachable from any other vertex in that set). In
the context of this work, the set of SCCs is different for different software products, which
have different sets of states and transitions. In this work, we have adapted the standard
algorithm for computing SCCs [33] to compute the SCCs for an FTS. Our adapted algo-
rithm accepts as input a featured finishing-times tree. The output of the algorithm is a set
of SCCs for each path in the featured finishing-times tree, which we call a featured SCC
tree. We use the word featured to name this tree because it associates SCCs to software
products that satisfy specified feature expressions.

As an example of the algorithm’s output, the (very simple) featured SCC tree of the
grant/request WFTS is displayed in Fig. 4.4. Its tree structure is the same as the featured
finishing-times tree (shown in Figure 4.3), but now the states are labeled with a mapping
from S → P (N) that specifies which states are part of the SCC found starting at that
state or the empty relationship if no SCC starts at that state. Each rectangle in Fig. 4.4
represents a (featured) SCC (or the empty relationship if no SCC starts at its associated
state). For example, the rectangle associated with state s0 in the upper path lists all states
and associates every state with G ∨ A. This indicates that, for all products that satisfy
G ∨ A, an SCC comprising all states starts at s0. We note that Figure 4.4 includes an
SCC that is not reachable from the initial state: the SCC associated with state s2 in the
bottom path is not reachable from the initial state because state s2 itself is not reachable
from the initial state in the products that satisfy ¬(G ∨ A).

46

Alg. 5: Computing strongly connected components for an FTS given a featured
finishing-times tree for the FTS.

1 Procedure FeaturedSCCs (fts, Tree)
2 Input: fts = (S, I, A, T, d, γ): a featured transition system
3 Input: Tree: a featured finishing-times tree
4 Output: RC: A function from tree nodes to featured SCCs
5 begin
6 NodesToExplore ← Empty stack of triplets of <tree node, state,

feature expression >
7 ReachabilityStack ← Empty stack of mappings of S → B(N)
8 for each e = (Tree.root, u) ∈ Tree.Edges
9 InPrevSCC ← new array of size |S| of feature

expressions (initialized to ⊥)
10 λstart ← Tree.EdgeLabel(e)
11 sstart ← Tree.StateLabel(u)
12 NodesToExplore.push(<u, sstart, λstart>)
13 ReachabilityStack.push(InPrevSCC)
14 while ¬ (NodesToExplore.isEmpty()) do
15 <y, s, λ >← NodesToExplore.peek()
16 Visited(y)← True
17 if λ ∧ ¬ InPrevSCC(s) is satisfiable then
18 RC(y) ← VisitDFS-For-SCC(fts, s, λ ∧ ¬ InPrevSCC(s),

InPrevSCC)
19 for each s ∈ S
20 InPrevSCC(s) ← InPrevSCC(s) ∨ RC(y)(s)
21 end-if
22 Choose v in Children(y) with Visited(v)=False
23 if no such v exists then:
24 NodesToExplore.Pop();
25 InPrevSCC ← ReachabilityStack.Pop()
26 else
27 NodesToExplore.push(<v, Tree.StateLabel(v),

λ ∧ Tree.EdgeLabel(y,v)>)
28 ReachabilityStack.push(CopyOf(InPrevSCC))
29 end-if
30 return RC
31 end

47

The algorithm to compute the featured SCCs is shown as Algorithm 5. In the standard
SCC algorithm, a boolean array keeps track of which states (vertices) have already been
assigned to an SCC. In the case of computing SCCs for an FTS, which states belong to
an SCC depends on which product the SCC is being computed for. Thus, the algorithm
uses an array InPrevSCC, indexed by states in S, of feature expressions to keep track of
the products for which a state has already been assigned to an SCC. Each child node of
the root of the featured finishing-times tree is allocated an InPrevSCC array, initialized to
⊥ for every element (line 9) to represent that no state has yet been assigned to an SCC
for any software product.

Algorithm 5 starts by successively exploring each outgoing edge from the root of the
tree (line 8). Because the set of states already assigned to an SCC change as the algorithm
explores different nodes of the featured finishing-times tree, the algorithm uses a stack,
denoted ReachabilityStack, to push and pop different versions of InPrevSCC as the algo-
rithm processes different nodes of the featured finishing-times tree (lines 9, 13, 25, 28). The
algorithm uses a second stack, denoted NodesToExplore, to keep track of the nodes still
left to explore. For each path from the Tree root, the algorithm initializes InPrevSCC and
then adds to NodesToExplore a triplet consisting of the path’s child node of the Tree root,
its associated state, and its feature expression label (lines 9-12); the feature expression
represents for which products the node’s state would exhibit the highest finishing-time in
a depth-first exploration.

The algorithm then enters a loop where elements of the NodesToExplore stack are
processed (lines 14-29), which corresponds to a depth-first exploration of the featured
finishing-times tree. At the start of each iteration, a triplet <y, s, λ > of tree node, state,
and feature expression respectively, is peeked from the stack (without being popped). The
feature expression λ is compared to InPrevSCC (s), which contains the set of products for
which the given state has already assigned to an SCC, and if there exist products that
satisfy λ and that do not satisfy InPrevSCC (s), then a new featured SCC is computed by
calling VisitDFS-For-SCC (line 17-18) and storing the result in RC(y), which is a function
mapping tree nodes to featured SCCs.

The set of products associated with an SCC for each state, represented by InPrevSCC,
is then updated with the newly identified SCC (line 19-20). After processing the current
tree node, the algorithm looks for a child that has not been explored (line 22). If no such
child exists, then the current element is popped from the NodesToExplore stack (line 24)
and InPrevSCC is assigned to an element popped from the ReachabilityStack, which would
represent the states already assigned to an SCC when the algorithm first encountered tree
node u (line 25). Otherwise, a triplet is built for < the child node v, its state label, and
the conjunction of the feature expression λ for the path from the Tree root to current Tree

48

node y and the feature expression associated with the edge from Tree node u to child node
v > and is pushed onto the NodesToExplore stack (lines 26-27). The algorithm contin-
ues processing triplets in the NodesToExplore stack until it is empty and the complete
finishing-times tree has been explored.

We recall that in the standard algorithm to compute the SCCs of a graph, the SCCs
are identified by successively computing the set of states reachable from a source state u in
the transpose of the graph, where the source states are selected by iterating over all states
of the graph in decreasing finishing time (considering only the states that have not already
been assigned to an SCC). The auxiliary procedure VisitDFS-For-SCC computes the set
of states that are reachable from a given state s in the transpose of the FTS, parameterized
by feature expressions. This is inspired by the “symbolic” reachability algorithm of [26],
except that here we exclude from the search the states that have already been assigned to
a previous SCCs. The procedure is shown as Algorithm 6.

Algorithm 6 takes as input an initial state, a feature expression, and a featured set
of excluded states (i.e., InPrevSCC) and computes the featured set of states that are
reachable, in all products that satisfy the input feature expression, without going through
any of the excluded states. This modified reachability algorithm returns a featured set of
states: a mapping of states to feature expressions representing the set of states reachable
under a given product. This represents a featured SCC in which the set of states that are
members of the SCC depends on the software product.

Algorithm 6 starts by initializing the featured SCC that will be computed, denoted
FSCC, to comprise only the input state and the input feature expression (line 8). It then
proceeds to compute, for the products that satisfy the input feature expression (λstart), (1)
which states are reachable from the input state in those products, and (2) in which subset
of those products are those states reachable.

To compute this modified reachability relationship, the algorithm uses the stack States-
FExpToExplore, comprising tuples of <state, feature expression>, to track the states that
it must explore and for which products it must explore them. The algorithm initializes
the stack StatesFExpToExplore by pushing the tuple of the input state and input feature
expression < sstart, λstart > onto it (lines 9-10).

The algorithm then enters a loop where it processes the elements of this stack (lines
11-25). The algorithm peeks at the top element < s, px > of the stack and iterates
through each transition that starts at state s, and whose corresponding feature expression
is satisfiable in conjunction with px (lines 14-18) and checks whether exploring < sdst, px∧
γ(t) > could result in an update (expansion) to the reachability relationship represented by
FSCC, specifically to FSCC(sdst). Because sdst in products that have already been added

49

Alg. 6: Reachability computation for the transpose of an FTS, excluding states
already assigned to an SCC.

1 Procedure VisitDFS-For-SCC(fts, sstart, λstart, InPrevSCC)
2 Input: fts = (S, I, A, T, d, γ): featured transition system
3 Input: sstart: initial state of the SCC
4 Input: λstart: feature expression associated with state sstart in the SCC
5 Input: InPrevSCC : S → B(N): the (featured) set of states that have

already been assigned to an SCC
6 Output: FSCC : S → B(N): A featured SCC.
7 begin
8 FSCC ← {(sstart, λstart)}
9 StatesFExpToExplore ← Empty stack of tuples of < state,

feature expression >
10 StatesFExpToExplore.push((sstart, λstart))
11 while (¬StatesFExpToExplore.isEmpty()) do
12 < s, px > ← Stack.peek()
13 new ← Empty set of tuples of < state, feature expression >
14 for each t = (s, α, sdst) ∈ T such that px ∧ γ(t) is satisfiable
15 newFExp ← px ∧ γ(t)
16 if newFexp ∧¬ InPrevSCC(sdst) ∧¬ FSCC(sdst) is satisfiable then
17 new.add(< sdst, newFexp>)
18 end-if
19 if new = ∅ then
20 pop(StatesFExpToExplore);
21 else
22 Choose <sNext, pxNext> ∈ new
23 FSCC(sNext) ← FSCC(sNext) ∨ (pxNext ∧ ¬ InPrevSCC(sNext))
24 StatesFExpToExplore.push(<sNext, pxNext ∧ ¬ InPrevSCC(s)>)
25 end-if
26 return FSCC
27 end

50

to other SCCs (i.e., products in JInPrevSCC(sdst)K) or that already belong to the SCC
being computed (i.e., products in JFSCC(sdst)K) should not be (re) added to the SCC being
computed, the algorithm first checks whether px∧γ(t)∧¬InPrevSCC(sdst)∧¬FSCC(sdst)
is satisfiable (lines 15-16). If so, it adds the tuple < sdst, px ∧ γ(t) > to the set new (line
17).

After processing all those transitions, if the set new is empty – that is, there are no new
elements to explore from the current state – then the algorithm pops the top element of
the stack (line 20). Otherwise it takes a state and feature expression that is a new element,
updates FSCC with it, and pushes the new element onto the stack (lines 22-24). It then
continues processing elements of the stack until no more remain and finally returns FSCC.

4.3.3 Maximum Average-Weight Cycle Computation

Finally, for the SCCs identified in Algorithm 6, we need to determine their maximum
average-weight cycles. We adapt Karp's original algorithm [68], which determines the
maximum average-weight cycle in an SCC, to be feature-aware. We show the adapted
algorithm in Algorithm 7.

In Karp's original algorithm, an arbitrary “source state” u is chosen. The algorithm
uses a function F that records for each state v and for each possible path length k ∈
{0 . . . |SCC|} the maximum weight of a path of length exactly k from the “source state”
u to state v. This function F is computed in an iterative manner, and is then used to
determine the average-weight of the maximum average-weight cycle.

We adapt Karp’s algorithm to compute the average-weight of the maximum average-
weight cycle of a featured SCC of a featured transition system. Therefore, our approach
needs to adapt the algorithm to output a different average weight for each set of products.
Specifically, our algorithm inputs a features a featured SCC and outputs a set C of tuples
< λ,w >, which records that the products that satisfy the feature expression λ in the
featured SCC have a maximum average-weight cycle with a average weight of w.

In the following paragraphs, we describe our adapted algorithm. Note that the maxi-
mum weight of a path of length exactly k from the “source state” to a state v will vary for
each product or set of products. Thus, our approach adapts function F to be a relation,
denoted WeightMWP (“MWP” is an abbreviation for Maximum Weight Path), that com-
prises tuples < k, v, λ, w >, where feature expression λ represents a set of products, and w
is the maximum weight of a path from the “source state” sstart to state v of length exactly
k.

51

Alg. 7: Computation of the maximum average-weight cycle in a featured SCC.

1 Procedure Average-Cycle-SCC(wfts, FSCC, sstart)
2 Input: wfts = (S, I, A, T, d, γ, W): a weighted featured transition system
3 Input: FSCC: S → B(N): a featured SCC
4 Input: sstart: initial state of the featured SCC
5 Output: C: B(N)→ R: a featured average weight of the maximum average-weight cycle
6 begin
7 FSCCStates = {s|s ∈ S, FSCC(s) 6|= ⊥}
8 WeightMWP ← ∅
9 for k = 0, . . . , |FSCCStates| and s ∈ FSCCStates\{sstart}
10 WeightMWP.Insert(< k, s, FSCC(s), −∞ >)
11 WeightMWP.Insert(<0, sstart, FSCC(sstart), 0 >)
12 for k = 1, . . . , |FSCCStates|
13 for each s ∈ FSCCStates
14 for each t = (stsrc , α,s) ∈ T such that FSCC(stsrc) 6|= ⊥
15 λ1 = γ(t)
16 for each λ2, wλ2 , λ3, wλ3 such that < k, s, λ2, wλ2 >∈ WeightMWP and

< k − 1, stsrc , λ3, wλ3 >∈ WeightMWP
17 if λ1 ∧ λ2 ∧ λ3 6|= ⊥ and wλ3 +W (t) > wλ2 then
18 WeightMWP.insert(< k, s, λ2 ∧ λ3 ∧ λ1, wλ3 +W (t) >)
19 WeightMWP.insert(< k, s, λ2 ∧ ¬(λ3 ∧ λ1), wλ2 >)
20 WeightMWP.remove(< k, s, λ2, wλ2 >)
21 end-if
22 M ← ∅
23 C ← {< FSCC(sstart),−∞ >}
24 for each s ∈ FSCCStates
25 M.insert(< s, FSCC(s),+∞ >)
26 for k = 0, . . . , |FSCCStates| − 1
27 for each λ1, w1, λ2, w2, λ3, w3 such that < s, λ1, w1 >∈M and

< |FSCCStates|, s, λ2, w2 >∈ WeightMWP and < k, s, λ3, w3 >∈ WeightMWP
28 if λ1 ∧ λ2 ∧ λ3 6|= ⊥ and w1 > (w2 − w3)/(|FSCCStates|− k) then
29 M.insert(< s, λ1 ∧ λ2 ∧ λ3, (w2 − w3)/(|FSCCStates|− k) >)
30 M.insert(< s, λ1 ∧ ¬(λ2 ∧ λ3), w1 >)
31 M.remove(< s, λ1, w1 >)
32 end-if
33 for each λ1, w1, λ2, w2 such that < λ1, w1 >∈ C and < s, λ2, w2 >∈M
34 if λ1 ∧ λ2 6|= ⊥ and w1 < w2

35 C.insert(< λ1 ∧ λ2, w2 >)
36 C.insert(< λ1 ∧ ¬λ2, w1 >)
37 C.remove(< λ1, w1 >)
38 end-if
39 return C
40 end

52

First, our algorithm initializes relation WeightMWP, such that for each state s (except
source state sstart) and for all the products that satisfy feature expression FSCC(s) (for
which state s is part of the SCC), the maximum weight of a path of length exactly k
(for k ranging from 0 to |FSCCStates|) from the “source state” sstart to state s is set to
−∞ (lines 9-10). Unlike Karp’s algorithm, which chooses an arbitrary “source state”, we
choose the “initial state” of the SCC, denoted sstart, as the “source state”. Because the
set of products in which sstart is part of the SCC will be a superset of the set of products
for which any other state is part of the SCC, this ensures that sstart will be present in all
products that are part of the SCC. To complete the initialization of relation WeightMWP,
our algorithm inserts tuple <0, sstart, FSCC(sstart), 0 > to represent that the state sstart
can be reached from itself through a path of length and weight 0 (the empty path) for all
products in which state sstart is part of the featured SCC (line 11).

Next, our algorithm iterates over all transitions of the weighted featured transition
system to refine relation WeightMWP. For each transition t and each value of k, the algo-
rithm updates the weight associated with the triplet < k, s, λ > in relation WeightMWP
if a higher-cost path from the “source state” exists – that is, if the sum of the cost of exe-
cuting transition t and the weight of a k− 1 length path from sstart to transition t ’s source
state stsrc is higher than the weight that is currently associated with triplet < k, s, λ > (line
16-20). Note that for products in which transition t does not exist, the weight associated
with the tuple stays the same. This concludes the description of the calculation of relation
WeightMWP.

To explain the next two loops of the algorithm, we recall Karp’s theorem that is pre-
sented as Formula 4.1 in this chapter’s introduction, but to align the notation with the
algorithm we rename certain variables:

max
s

min
k<|SCC|

WeightMWP [|SCC|, s]−WeightMWP [k, s]

|SCC| − k
(4.8)

• Karp shows that in any SCC there exists a state s∗ that is part of the maximum
average-weight cycle in the SCC such that

mink<|SCC|
WeightMWP [|SCC|, s∗]−WeightMWP [k, s∗]

|SCC| − k

equals the average weight of steps in the maximum average-weight cycle. Figure 4.5
shows the paths that are associated with state s∗: the path shown in red is the path
of length |SCC| from sstart to s∗ whose total weight is WeightMWP [|SCC|, s∗]; the
path shown in green is the path of length k (for the minimizing k) from sstart to s∗

53

sstart

s*

Path of length |SCC|

Path of length k

Maximum average-weight
cycle

Figure 4.5: A depiction of two paths that are associated with Formula 4.8 and state s*:
the red path is the maximum weight path of length |SCC| from source state sstart to state
s* and the green path is the maximum weight path of length k from source state sstart to
state s* (for the minimizing k). The maximum average-weight cycle is the cycle in black
and has length |SCC| − k. The average weight of steps in the maximum average-weight
cycle is given by the weight of the red path, WeightMWP(|SCC|, s∗), minus the weight of
the green path, WeigthMWP(k, s∗), divided by the length of the maximum average-weight
cycle, |SCC| − k.

whose total weight is WeightMWP [k, s∗]. The maximum average-weight cycle will
be of length |SCC|−k, where k is the minimizing k. The total weight of the maximum
average-weight cycle will be equal to the weight of the red path minus the weight of
the green path. The average weight of steps in the maximum average-weight cycle
will be the total weight divided by |SCC| − k.

• For any state, sother, the expression

min
k<|SCC|

WeightMWP [|SCC|, sother]−WeightMWP [k, sother]

|SCC| − k

is less than or equal to the average weight of steps in the maximum average-weight
cycle because:

– If there does not exist a path of length |SCC| from sstart to sother, then the
expression WeightMWP [|SCC|, sother] will equal −∞. Consequently,
mink<|SCC|[(WeightMWP [|SCC|, sother] − WeightMWP [k, sother])/(|SCC| −
k)] will be less than the average weight of steps in the maximum average-weight
cycle.

54

– If there does exist a path of length |SCC| from sstart to sother, then this path
must include a cycle, which we denote as cother.

By removing the cycle cother from such path, we obtain a path of length (|SCC|−
|cother|) from sstart to sother whose total weight is WeightMWP [|SCC|, sother]
minus the total weight of cycle cother.

Because WeightMWP [|SCC|−|cother|, sother] is equal to the maximum weight of
a path from sstart to sother of length (|SCC|−|cother|), thenWeightMWP [|SCC|−
|cother|, sother] is greater than or equal to WeightMWP [|SCC|, sother] minus the
total weight of cycle cother.

So, WeightMWP [|SCC|, sother]−WeightMWP [|SCC| − |cother|, sother] is less
than or equal to the total weight of cycle cother.

By dividing such expression by the length of the cycle cother (i.e.,|cother|), we
obtain that

(WeightMWP [|SCC|, sother]−WeightMWP [|SCC| − |cother|, sother])/(|cother|)

is less than or equal to the average weight of steps in cycle cother.

Because mink<|SCC| . . . takes a minimum across all possible values of k, and the
aforementioned expression can be obtained by replacing k with |SCC|− |cother|,
then mink<|SCC| . . . is less than or equal to the average weight of steps in cycle
cother.

Because the average weight of steps in cycle cother is less than or equal to the
average weight of steps in the maximum average-weight cycle,

min
k<|SCC|

[(WeightMWP [|SCC|, sother]−WeightMWP [k, sother])/(|SCC| − k)]

will be less than or equal to the average weight of steps in the maximum average-
weight cycle.

Because Formula 4.8 calculates the maximum value of mink<|SCC|[WeightMWP . . .]
across all states s in the SCC, this implies that the value of Formula 4.8 equals the average-
weight of steps in the maximum average-weight cycle of an SCC.

Returning to our algorithm (line 22), the next step is to determine for each state
scandidate whether it can play the role of s∗: that is, whether there exists a maximum-
weight path from sstart to scandidate of length |FSCCStates|, and whether there exists a
maximum average-weight cycle from scandidate to scandidate in the tail of such a path. As we
previously explained, the expression

mink<|SCC|[(WeightMWP [|SCC|, s]−WeightMWP [k, s])/(|SCC| − k)]

55

equals the average weight of steps in the maximum average-weight cycle for state s = s∗,
and is less than or equal to the average weight of steps in the maximum average-weight
cycle for all other states. Because the value of this expression will vary for different sets
of products, our algorithm records these weights in a relation, denoted M, that comprises
tuples < s, λ, w >, where for state s in all products satisfying feature expression λ, the
value of the aforementioned expression is w.

To compute relation M, the algorithm first initializes M to +∞ for all states in the
SCC and all products for which state s is part of the SCC (line 25). For each possible value
of k (between zero and |FSCCStates|− 1), the algorithm checks if there are any products
λ for which (WeightMWP (|FSCCStates|, s)−WeightMWP (k, s))/(|FSCCStates|−k)
is less than the weight w currently stored as tuple < s, λ, w > in M, and if so the algorithm
updates M (lines 28-32).

The last loop of the algorithm identifies the state s∗ that maximizes the expression

mink<|FSCCStates|
(WeightMWP (|FSCCStates|, s)−WeightMWP (k, s))

(|FSCCStates| − k)

thereby identifying the average weight of steps in the maximum average-weight cycle.
Because this value varies for different products, the algorithm uses a relation, denoted C,
of tuples < λ,w >, where w is the maximum value of mink<|FSCCStates| . . . across all states
in all products that satisfy feature expression λ.

To compute relation C, the algorithm first initializes C to −∞ for all products (line
23). Using the average weights of cycles in relation M, the algorithm checks if there are
any products and states s in M that have a cycle with a higher average weight than the
value associated with those products in C. If so, it updates the value associated with those
products in C (lines 34-37), so that C records the “maximum” value of M across all states
for each set of products. Once the algorithm has iterated over all states in the featured
SCC, the calculation of C is complete and the algorithm returns C (line 39).

4.4 Implementation and Evaluation

We have implemented our algorithms within ProVeLines (see subsection 2.4.3 for a brief
overview of ProVeLines), a product line of verifiers for SPLs [30]. ProVeLines takes
as input a specification written in fPromela (see subsection 2.4.2 for a brief overview of
fPromela), a feature-aware extension of the Promela language [62] (see subsection 2.4.1 for
a brief overview of Promela), which we have extended further to specify transition weights.

56

We have modified the code of ProVeLines to include weights on transitions and to perform
family-based and product-based computations of the maximum average-cycle algorithm.

As an example, Fig. 4.6 shows part of our extended fPromela specification of the taxi-
shuttle example from Section 4.2. The three features Shuttle, Taxi and License are declared
at the beginning of the file (lines 1-6). The main process is called “taxi” as indicated by
the line “active proctype taxi() {” (lines 9-22). Inside such process, we show a transition
from AirportR (Airport dropoff location) to AirportP (Airport pick up location) annotated
with a weight of -5 (lines 11-12). Another transition in the shown snippet is from Pick-Up
location one directly to Pick-Up location two (lines 13-18); this transition is guarded by
feature Shuttle and annotated with a weight of 15.

As we have previously mentioned, our algorithm determines whether a formula is sat-
isfiable by performing a call to satisfiability solver MiniSat [37], which has a run time
complexity of O(2N) where N is the the number of variables in the formula. We recall
that our algorithms use feature expressions to represent sets of configurations. Our imple-
mentation of the algorithms use Ordered Binary Decision Diagrams (BDDs) [12] to encode
feature expressions. More concretely, our implementation of the algorithms use the Col-
orado University Decision Diagram (CUDD) [100] library to implement and manipulate
BDDs that represent feature expressions. We also note that our family-based maximum
limit-average algorithm does not improve the worst-case computational complexity com-
pared to individually computing the maximum limit-average for each software product.

4.4.1 Subject Systems

For testing and experiments, we used a generalization of the taxi-shuttle example from
Section 4.2 in which the number of extra licenses is parameterized. This variant has N
different extra-license features L1, . . . , LN , each with their own Pickup-exti and Release-
exti states and transitions that are guarded by the feature Li. For our experiments, N
ranged from one to eleven.

As a second case study, we created a WFTS representing a mine pump controller, based
on an example in [28]. The original example models a system that controls a water pump
to balance the levels of water and methane in a mine shaft. The water level needs to be
low for operation; and high levels of methane can lead to an explosion, and thus need to be
avoided. The system consists of a water pump, a methane sensor, and a command module
that activates or deactivates the water pump. It is modeled as the parallel composition of
five individual FTSs, which model the command module, the user (who sends start/stop
commands), the methane alarm, the water sensor, and the methane sensor. The original

57

1 typedef features {
2 bool Shuttle;

3 bool Taxi;

4 bool License

5 };
6 features f;

7 int current = 0;

8 ...

9 active proctype taxi() {
10 do ::

11 if :: (current == AIRPORTR);

12 current = AIRPORTP [-5];

13 :: (current == PICKUP1);

14 if :: f.Shuttle;

15 current = PICKUP2 [15];

16 :: !f.Shuttle;

17 skip;

18 fi;

19 ...

20 fi;

21 od;

22 }

Figure 4.6: Part of the fPromela specification of the taxi-shuttle example

58

Table 4.1: Maximum limit-average values for the taxi example. Pickup-N is abbreviated
as PN, Release-N is abbreviated as RN, airport is abbreviated as AP, extended pickup
location is abbreviated as PE, and extended release location is abbreviated as RE.

Product Maximum Limit-Average Cycle

∅ 12.17 AP→R2→P2→AR→AP
{L} 12.17 AP→R2→P2→AR→AP
{S} 12.88 AP→R2→R1→P1→P2→AR→AP
{T} 14.00 P1→R2→P2→R1→P1
{L, S} 13.30 AP→R2→R1→RE →PE→P1→P2→AR→AP
{L, T} 14.00 P1→R2→P2→R1→P1
{S, T} 14.33 P1→P2→R1→P1
{L, S, T} 14.60 PE→P1→P2→R1→RE→PE

mine pump controller example had nine features [28]. We adapted the original version of
the mine pump controller example to use only two features as additional features caused our
analysis to take too much time (over 24 hours). Our WFTS of the mine pump controller has
two optional features (the command module and the methane sensor) and four products;
and we annotated transitions in the main module with artificial weights. The ProveLines
encoding of the mine pump controller example has 9441 different states.

4.4.2 Results

In Table 4.1, we report the complete results of the maximum limit average for all products
of the extended taxi example from Section 4.2. The first column describes each product,
the second column states the maximum limit-average value for each product, and the third
column lists an example cycle in each product with the given maximum limit-average value
(Pickup-N is abbreviated as PN, Release-N is abbreviated as RN, airport is abbreviated
as AP, extended pickup location is abbreviated as PE, and extended release location is
abbreviated as RE).

Table 4.2 shows the running times for both family-based and product-based maximum
limit average analyses of both the parameterized taxi example and the mine pump controller
example. We ran both the family-based and product-based analyses ten times each and
show the average times and standard deviations. Table 4.2 also shows the average speedup
obtained by the family-based approach analysis versus the product-based analysis. We
executed both analyses on a Macbook Pro with 8 GB of RAM, and with an 2.7 GHz Intel

59

Table 4.2: Average time taken by the family-based and product-based maximum limit-
average computation for the taxi and the mine pump controller examples

.
features # products # states family-based

(seconds)a
product-based
(seconds)a

speedup

Parameterized taxi example

3 8 52 0.25 ± 4.57 % 0.27 ± 9.44 % 1.08
4 16 75 0.30 ± 3.47 % 0.56 ± 1.64 % 1.87
5 32 98 0.44 ± 2.99 % 1.04 ± 9.04 % 2.36
6 64 121 0.80 ± 4.15 % 2.19 ± 2.19 % 2.74
7 128 144 1.83 ± 13.2 % 4.89 ± 1.36 % 2.67
8 256 167 3.86 ± 1.07 % 10.6 ± 2.01 % 2.75
9 512 190 10.8 ± 8.95 % 23.3 ± 2.10 % 2.16
10 1024 213 24.6 ± 6.26 % 51.0 ± 1.94 % 2.07
11 2048 236 63.3 ± 5.05 % 115 ± 1.79 % 1.82
12 4096 259 142 ± 5.27 % 252 ± 1.47 % 1.77
13 8192 282 308 ± 1.55 % 554 ± 1.33 % 1.80

Mine pump controller example

2 4 9441 292 ± 2.79 % 111 ± 7.61 % 0.38

aMean ± Stdandard Deviation

60

Core i5 processor.

For the parameterized taxi example, our family-based approach is approximately twice
as fast as the product-based approach, albeit the difference in speed decreases as the number
of features increases beyond ten. Our family-based analysis is not much faster than the
product-based analysis in the parameterized taxi examples with fewer than five features.
This could be due to the overhead required to execute our family-based analysis (e.g.,
setting up the data structures). For the mine pump controller, however, the family-based
analysis takes more than twice as long as the product-based analysis.

4.4.3 Discussion

Our results for the parameterized taxi example are as expected. In the taxi example,
featured SCCs are shared across different software products, so that a single computation
over a featured SCC provides results that can be re-used across multiple products. This
can explain why the required time is reduced when using a family based-approach versus
a product-based approach.

The mine pump controller example has very few products, and SCCs are not shared
across products. Hence the family-based approach fails to “lump” products into families
and is, thus, slower than the product-based analysis. Additionally, this example has a
much larger state space than the taxi example, hence both product-based and family-
based analysis take much longer to execute when applied to the mine pump example than
when applied to the taxi example.

By profiling our implementation and measuring the execution times of the various steps
involved in our approach, we found that computing the maximum average-weight cycle for
featured SCCs takes most of the time in the family-based approach. As mentioned in
subsection 4.1.1, the algorithm to compute the maximum average-weight cycle takes time
O(V × E), so it is not surprising that executing this algorithm takes most of the time.

Most importantly, we found that for our mine-pump controller example, different prod-
ucts induce different sets of finishing times, and that there is very little sharing of finishing
times across products of featured SCCs. Therefore, the family-based approach does not im-
prove the performance for this example, and the overhead introduced by the family-based
approach means it is substantially slower than the product-based analysis.

This suggests that a key aspect that determines whether the family-based analysis will
be faster than a product-based approach is whether multiple products in the SPL will
induce the same set of finishing times (and thus share similar strongly connected compo-
nents). As further evidence of this hypothesis, in the taxi example, all products shared

61

the same set of strongly connected components and the family-based analysis performed
much better in it. As such, it is possible that the results of the featured finishing-times tree
could be used to decide whether to proceed with a family-based analysis or a product-based
analysis. This warrants further investigation.

4.5 Related Work

Product-Line Analysis Lauenroth et al. [73] introduce an algorithm to verify a product
line, represented as an I/O automaton with optional transitions annotated with features,
against properties expressed in computational tree logic (CTL). Their algorithm checks
that every possible I/O automaton that can be derived satisfies a given CTL property.
Lauenroth et al. mention that CTL properties of the form EG f1 can be checked by
restricting the automaton and checking if all non-trivial strongly connected components
(SCCs) of this restricted automaton can be reached from the initial state. They then adapt
this algorithm by replacing the computation of SCCs with a procedure to find a path to
a cycle, keeping track of the features required along such a path to a cycle. In our case
we are instead interested in finding the maximum average-cost cycle for each product or
set of products. Hence our family-based analysis computes (featured) strongly connected
components whereas Lauenroth et al.’s tool only searches for reachable cycles to perform
CTL model checking. Their approach does not analyze models that include weights. They
do not compare the performance of their family-based approach with respect to a product-
based approach.

Classen et al. [26] adapt the standard algorithm for model checking transition sys-
tems with respect to properties expressed in linear temporal logic (LTL) to enable analysis
of a product line represented as a featured transition system. Their family-based model
checker that analyzes a product-line model is between 2 and 38 times faster than analyzing
individually the corresponding model of each product. Although they represent products
symbolically, they still represent the featured transition system using explicit states and
transitions. In subsequent work, Classen et al. [24] extend their approach to featured
transition systems represented symbolically. They adapt the algorithm for model checking
CTL properties to a family-based approach and show speed-ups of several orders of mag-
nitude faster than verifying each product individually. More recently, Ben-David et al. [6]
have adapted SAT-based model checking of safety properties to a family-based approach
and showed that their model-checker is substantially faster than the methods developed
by Classen et al.

In follow-up work, Cordy et al.[32] show how to perform family-based model checking of

62

software product lines that have been extended with: i) numeric feature attributes and ii)
multi-features – the ability to have multiple instances of a feature. In their work, transitions
are annotated with expressions that range over features, feature attributes, and feature
cardinalities instead of being annotated with only with feature expressions (i.e., boolean
formulas ranging over features). Because of the need to support non-boolean formulas, they
use Satisfiability Modulo Theory (SMT) solver Z3 [35] to implement their family-based SPL
model checking algorithm. As an alternative, they implement their family-based SPL model
checking algorithm by using a pre-processing step that converts non-boolean formulas into
boolean formulas by introducing intermediate variables and associated boolean constraints
to represent numeric constraints. They compare the execution time of this two methods in
model-checking five different properties of a satellite communication module case study and
conclude that the pre-processing method is between 92 and 171 times faster than the Z3-
based method. They then compare the execution time of their pre-processing family-based
model checking method against the execution time of analyzing each product individually
for one case study – a model of the sieve of Erasothenes that checks for primes in numbers
between 1 and n, with n ranging from 30 to 48. Their results are inconclusive – for values
of n around 30 both methods take approximately the same time, whereas as n increases
to 50 the family-based model checking algorithm is up to two times faster than analyzing
each product individually. Unlike our approach, they do not associate numeric values to
the execution of transitions.

Additionally, Cordy et al. [31] present a method to perform family-based analysis of real-
time software product lines. They introduce Featured Timed Automata that is an extension
of Timed Automata, which is the standard formalism that is used to model and verify real-
time systems with continuous time. Featured Timed Automata support modelling the
different software products of an SPL in a single timed model. They implement a family-
based model checking algorithm for real-time software product lines, that are expressed
as a featured timed automata, for a subset of Timed Computational Tree Logic (TCTL).
They compare the execution time of their family-based model checking method against the
execution time of model checking each software product individually for a single case study
and obtain mixed results: their family-based approach is 2.0 times slower than analyzing
each product individually for an instance of the case study with 6 features, whereas it is
2.1 and 5.5 times faster than analyzing each product individually for instances of the case
study with 10 and 13 features respectively.

Limit-Average Cost Quantitative methods are important in performance analysis [63],
reliability analysis [97], and other areas of software engineering. Long-term average val-
ues (i.e, maximum/minimum limit average) are often used, for example, to measure mean

63

time between failures or average power consumption [55, 58]. Karp’s [68] algorithm is the
standard way to compute the maximum (or minimum) limit-average cost of executing a
weighted state-transition model. The maximum limit-average cost ignores one-time costs
that might have minimal impact over time in a continually executing system, so it can ac-
curately represent the long-term average cost of system execution for those type of systems.
We are not aware of any family-based analysis methods which compute the limit-average
cost for all products in a software product line.

4.6 Conclusions and Future Work

We have introduced a family-based algorithm to compute the maximum limit average of
quality attributes in a software product line. Our algorithm is based on featured extensions
of the standard algorithms for computing maximum limit average and is able to compute
the maximum limit average of quality attributes for all products in one run.

We have implemented our algorithm by extending ProVeLines, an existing tool for
model checking software product lines, to include capabilities to compute the maximum
limit average for product line models annotated with weights on transitions. We have
used our implementation to evaluate our approach by comparing the performance of our
algorithm against a product-based (enumerative) approach.

We have shown that our family-based approach speeds up analysis compared to a
product-based analysis for one SPL that has a large number of products and whose products
share the same strongly connected components; our family-based approach increases the
speed of analysis by a factor of two. For the other SPL that we analyzed, our family-based
approach is slower than a product-based approach. This SPL has more states, a more
complex behaviour, and fewer products, which is known to be less cost-effective to analyze
using family-based techniques. Moreover each product tends to have different strongly
connected components, which limits the extent to which our family-based approach can
reuse partial results across different software products. We think that our family-based
approach will perform best for SPLs in which many products share the same set of strongly
connected components. Furthermore, the results of the featured finishing-times tree (i.e.,
how much sharing of finishing-times there is across different products) could potentially be
used to determine, at an early stage in the analysis of the WFTS, whether a family-based
or product-base computation of the SPL’s maximum limit average will be more efficient.

64

Chapter 5

Learning Timed Featured Transition
Systems

As we discussed in Chapter 2, a timed (or weighted) transition system model extends
a state-transition system model with weights on each transition, which can represent the
time taken (e.g., [78]) or the consumption of a resource (cost) due to the transition's execu-
tion. Model checkers can then analyze a timed state-transition system model to determine
whether a software system will satisfy it’s timing requirements. However, obtaining ac-
curate timing models is a key barrier to the efficacy of timed model checking and is even
more challenging for a software product line because a transition's execution time can vary
among different software products. One can manually annotate an untimed transition
model with manually derived estimates of transitions' costs, but such estimates are sus-
pect. There exist automated approaches that extract an untimed behaviour model from a
system's execution traces [8, 75, 77]; and Perfume [86] and Timed K-Tail [92] adapt these
approaches ([8] and [77]) to extract a timed transition system and a timed automaton,
respectively. Both Perfume and Timed K-Tail simultaneously learn a model of a system's
behaviour as well as the timing performance of the system — whereas in some cases a
behaviour model might be available and we would be interested in learning only the timing
attributes.

Currently, state-of-the-art methods learn a Performance-Influence model [98] for a soft-
ware product line that estimates a product’s execution time based on the static contribu-
tions of the product’s features and feature combinations to the product’s execution time.
The Performance-Influence model does not model the internal computation steps of the
SPL, but instead estimates how long would each software product takes to execute a cer-
tain task – such as encoding a set of videos, or compressing a set of files – solely based

65

on which features are present in a software product. We hypothesize that obtaining a
more fine-grained model that estimates how long each transition will take to execute in
each software product can lead to models that permit more precise analysis (such as model
checking of timing requirements of a software product line). In this chapter, we present an
approach to learn an accurate timed state-transition model for a software product line and
an evaluation of our hypothesis. The presence or absence of a feature in a software product
can impact whether a transition will be available in a product and how long it will take the
transition to execute. For example, in the Unmanned Air Vehicle (UAV) SPL, a transition
that causes the UAV to follow a certain target might be available only in the products
that include both the feature Computer Vision (CV) and the feature Global Positioning
Systems (GPS). Thus, a timed state-transition model for an SPL must include a function
that maps a software product and a transition to how long it would take to execute that
transition in that product.

In this chapter, we propose an approach that learns the weights for an SPL’s weighted
behavioural model (i.e., a weighted featured transition system model) from a set of exe-
cution traces from a sample of the software products. Specifically, we apply supervised
learning techniques (Linear Regression and Regularized Linear Regression) to learn, for
each transition, a regression function that estimates how much time the transition will
take to execute in each software product that includes it. We assessed the accuracy of
our approach using two subject systems: X264, an open source video encoding system,
and Autonomoose, a self-driving system. We compared our approach against two different
state-of-the-art methods: a Performance-Influence model [98] and Perfume [86].

The result is a timed transition model whose predicted weight on each transition in
each product has a mean error that ranges from 3.8% to 193.0% when applied to the
subject systems. However, our method’s estimates of the overall execution times of an
SPL product executing an input task, have an accuracy that is similar to that obtained by
the existing Performance-Influence model [98] whose estimates are based on the features
(and feature combinations) that are present in that product.

Our contributions are:

• We present and evaluate for the first time a method to learn timed behaviour models
for software product lines.

• We evaluate the quality of the learnt timed models of an SPL.

• We compare the accuracy of our method’s learnt models to two different the state-of-
the-art methods: a Performance-Influence model [98], which estimates the execution

66

time of an SPL product on an input task, and Perfume [86], which is a tool that learns
a timed behaviour model from timed execution traces of a single software system.

The rest of the Chapter is organized as follows. In Section 5.1 we describe our approach,
in Section 5.2 we describe our evaluation methodology and we discuss our empirical results,
in Section 5.3 we discuss related work, and in Section 5.4 we present our conclusions.

5.1 Approach

Our objective is to learn, for each transition t in a timed state-transition model, a function
that predicts the transition's execution time in each software product of a product line. We
choose to analyze each transition independently of other transitions – that is, we create |T |
distinct learning problems where |T | is the number of transitions in the featured transition
system. Our approach takes as input a featured transition system (FTS), which is an
untimed behaviour model of an SPL, and a set of timed execution traces of a sample of
software products. Our approach produces |T | compact functions, where each function
predicts the execution time of one transition in every software product in which that
transition is available. In the rest of this section, we describe the learning of the function
for an individual transition t ∈ T .

We set up our learning task as a regression task. Regression is a type of supervised
learning in which the objective is to learn a function, denoted f, that best fits a set of
observed input/output pairs {(~x1, y1), (~x2, y2), . . .}, where each pair consists of a vector of
input-variable values and a single numerical output value. Ideally, when the learnt function
f is subsequently applied to the input of an unseen input/output pair, the function's output
matches the pair's output (e.g., ideally f(~x) = y for all pairs). The set of input/output
pairs used to learn the function f is called a training set. A separate set of input/output
pairs, called a testing set, is used to evaluate the accuracy of the learnt function.

We need to convert the input to our approach (a set of timed execution traces) into
the input expected by the regression task for transition t (a set of input/output pairs).
First, we extract from the traces all execution steps that involve the execution of transition
t. We emphasize that each transition t can execute multiple times in an execution trace
and each one of its executions can take a different amount of time. For each extracted
execution step, we generate an input/output pair that comprises the software product that
executed that step, represented as a characteristic function on the set of features, and the
duration of that execution step. Specifically, each input consists of a vector of |F | boolean
variables ~x = [x1, x2 . . . x|F |] where the i th input variable denotes whether the ith feature

67

of the SPL is present in the product. For example in the Unmanned Air Vehicle SPL, the
input/output pair (~x = [x1 = 1, x2 = 0, x3 = 0], y = 10) would represent an execution of
transition t in a product consisting exclusively of feature GPS (i.e., feature “1”), where
that execution of transition t took 10 time units to complete. We randomly partition these
input/output pairs into a training set and a testing set.

In the following two subsections we describe how we apply Linear Regression and
Regularized Linear Regression [103, 104] to learn a function ft that estimates more generally
the execution time of a transition t in each product of an SPL.

5.1.1 Linear Regression

Linear Regression [9] is a widely used regression method in which the learnt function is
linear in its input variables. The learnt function is called a linear regression function: it
relates a weighted sum of the input variables plus a fixed constant to an estimated value
of the output variable. In our case, the weights w1, . . . , w|F | represent estimates of each
feature's contribution to transition t 's execution time, and the fixed constant w0 represents
the baseline time that transition t takes to execute. Thus, the learnt function ft estimates
transition t 's execution time in each product of a software product line with |F | features;
it has the following form:

ft(~x = [x1, x2 . . . x|F |]) = w0 +

|F |∑
i=1

wi × xi

The objective is then to find the “best” vector of weights ~w = w0, w1, . . . , w|F | such that
the linear regression function ft provides the best prediction of t 's execution time in each
software product of the SPL. To quantify how well a linear regression function, ft, fits a
training set TrainingSet = {(~x1, y1)(~x2, y2) . . .} of pairs of software products and one of
the execution times of transition t for that product, our approach uses a loss function that
measures the squared difference between the function's prediction of t 's execution time
ft(xi) and t 's observed execution time yi:∑

(~x,y)∈TrainingSet

(ft(~x)− y)2

Our approach uses the ordinary least squares (OLS) method to identify the linear regression
function whose corresponding weight vector minimizes the value of the loss function on the
training set. This method identifies the weight vector by solving a set of matrix equations

68

1

0 1 1

0 1 1
0 1 0
0 1 0

1 1 W0

W1

W2

W3

1

1
1
1

1
805

800

795

385

412

X w Y
Baseline execution time

for the transition

Extra column of 1s

A software product

Figure 5.1: An example linear regression task: estimating transition t ’s execution time for
the different software products of the Unmanned Air Vehicle SPL (introduced in Chapter
2). Each labelled example in the training set comprises: the software product of one of
transition t ’s executions from the training set that is represented by a row in the matrix X,
and a measurement of one of transition t ’s execution times in that software product that
is represented by a corresponding element in vector y. The objective of linear regression is
to identify a vector of weights, w, that minimizes the “distance” – as estimated by a Loss
Function – between Xw and y. In ordinary least squares regression, this corresponds to
minimizing (Xw − Y)Transpose(Xw − Y).

such that the derivative of the loss function with respect to the weight vector is equal
to zero. We note that using the squared differences as the loss function simplifies the
calculations to determine the optimal weight vector, and the sum of squared differences is
the most widely used loss function in regression for that reason.

Figure 5.1 illustrates how our approach applies linear regression to estimate the exe-
cution time of a transition t in different software products of an Unmanned Air Vehicle
SPL. We recall that the Unmanned Air Vehicle SPL, which was introduced in Chapter 2,
has three optional features: GPS, Computer Vision, and Additional Motor. A matrix X
is used to represent the software products (inputs) in the training set, a vector Y is used
to represent transition t ’s observed execution times (outputs) in the training set, and a
vector of weights w is used to represent the regression function ft.

Each row of matrix X represents the software product (input) of one of t ’s execution
from the training set. The first element of a row is “1” – this “1” is included because the
regression function ft includes a “base weight” w0 that is added regardless of whether any

69

input-variable (denoting features in the respective product, in our case) is true or not 1;
The second element of a row is “1” if the product represented by that row has feature GPS
and 0 otherwise; the third element of a row is “1” if the product represented by that row
has feature Computer Vision and 0 otherwise; and the fourth element of a row is “1” if
the product represented by that row has feature Additional Motor and 0 otherwise. The
training set is comprised of five input/output pairs, so matrix X and vector Y have five
rows. As an example, consider the fourth row of Matrix X, “010” excluding the initial “1”,
and the fourth row of vector Y, 412. They represent one instance of transition t ’s execution
in product “010” – that is, the product comprising exclusively of feature Computer Vision
– taking 412 ms to execute.

As we mentioned earlier, in ordinarily least squares regression the objective is to find
the optimal vector of weights, ~w = w0, . . . , w4, so as to minimize the “squared differences”
between transition t ’s estimated execution times and transtion t ’s observed execution times.
By using the matrix representation, this becomes equivalent to finding the vector of weights
that minimizes (Xw − Y)Transpose(Xw − Y).

Accommodating Non-linear Contributions

A linear-regression function is most accurate if the relationship between the input-variable
values and the corresponding value of the output variable is linear. However, certain
feature combinations may have an outsized positive or negative influence on a transition's
execution time because of feature interactions. For example, imagine that transition t
takes 20 time units to execute in every software product that includes both feature GPS
and feature Computer Vision, whereas it only takes 5 time units to execute in any other
software product. Transition t 's execution time would depend on the presence of feature
GPS and feature Computer Vision video in a non-linear way: t 's execution time would be
given by the formula 5 + 15 ∗ x1 ∗ x2, where x1, x2 are feature variables corresponding to
feature GPS and feature Computer Vision.

We incorporate these non-linear relationships into our linear regression models by in-
troducing additional “synthetic” input variables that represent feature combinations. For
example, we introduce a “synthetic” input variable x|F |+1 = x1×x2 that represents whether
both feature GPS and feature Computer Vision are present in a software product. As most

1We recall that the regression function ft is given by ft(~x = [x1, x2 . . . x|F |]) = w0 +
∑|F |

i=1 wi × xi.
Consider the product denoted by the fourth row [1, 0, 1, 0] of matrix X in Figure 5.1, which comprises
exclusively of feature Computer Vision. The fourth row of the vector obtained by the matrix multiplication
Xw is then 1∗w0+0∗w1+1∗w2+0∗w3 = 1∗w0+1∗w2 = w0+w2, which is equivalent to ft(~x = [1, 0, 1, 0]).

70

non-functional interactions among features involve only a few features, we introduce a “syn-
thetic” input variables only for each pairwise feature combination. We then apply ordinary
least squares with two different sets of input variables: the original input variables (denoted
OLS), and the original input variables plus the “synthetic” input variables that represent
pairwise feature combinations (denoted OLS-PAIRS).

Overfitting and Cross-Validation

A regression function might learn accidental patterns that occur only in the training set,
and these patterns could cause the regression function to be accurate with respect to the
training set but not generalize to unseen inputs (e.g., unseen software products). In such
case, the regression function is overfitting [53] the training set. In the case of linear regres-
sion, as we introduce more “synthetic” input variables, the input variables are increasingly
interdependent and overfitting becomes more prevalent. In the most extreme case, for each
software product in the training set there exists a corresponding input variable that is true
in the training set only for that software product; ordinarily least squares could then learn
a regression function that is in essence a look-up table – that has perfect accuracy with
respect to the training set but that does not generalize to other software products.

Therefore, to decide whether to use OLS or OLS-PAIRS as inputs for our linear regres-
sion problem, we must find a balance between the benefits of representing more non-linear
relationships versus the risk of overfitting. K-fold cross-validation [53] is a machine-learning
technique that permits us to determine which of the two inputs provides the best trade-off.
In K -fold cross-validation, the training set is partitioned into k equal subgroups. Training
is performed on K-1 groups, while the accuracy of the learning method is assessed on the
remaining subgroup, denoted a validation set. This process is repeated K times, each time
using a different subgroup as the validation set, and the average validation accuracy is
calculated. As the validation set is not used for training, a method that performs well
through overfitting will tend to have a low validation accuracy. The method that obtains
the highest validation accuracy is then selected.

5.1.2 Regularized Linear Regression

Regularized linear regression is a variant of linear regression in which simpler regression
functions are favored over more complex functions, so that the learnt regression function
is easier to understand and does not overfit the training set. To estimate a regression
function's complexity, some metric (i.e., a distance function) on its weight vector is used.

71

The objective is then to identify a weight vector whose corresponding linear regression
function minimizes not only the value of the loss function on the training set but also
minimizes the value of the weight vector's metric. A parameter, denoted λ, controls the
relative importance of each of these two factors and its value is chosen through K -fold
cross-validation. More concretely, the objective is to minimize the value of the formula∑

(x,y)∈TrainingSet

(ft(x)− y)2 + λL(w)

where L is a metric (i.e., a distance function) on the weight vector ~w. As in standard linear
regression, the ideal weight vector is then computed by solving a set of matrix equations.

Our approach uses two types of regularized linear regression: Least Absolute Shrinkage
Operations (LASSO) regression [103], and Ridge Regression [104]. In LASSO regression,
the metric (i.e., a distance function) on the weights is the sum of the absolute values
of the weights (but excluding the fixed constant that is represented by w0), whereas in
Ridge regression the metric (i.e., a distance function) on the weights is the sum of the
squares of the weights (but excluding the fixed constant that is represented by w0). Lasso
regression tends to zero the weights associated with input variables (e.g., a feature or a
pairwise feature combination) that do not have a significant effect on the output variable,
whereas Ridge regression tends to reduce the magnitude of those weights but not force
them to zero. For each individual learning problem, our approach chooses between linear
regression, LASSO regression, and Ridge regression based on their respective validation
error during K-fold cross-validation.

To summarize, we set up a learning problem for each transition t ∈ T , and the output
is a regression function ft for each transition t that estimates transition t’s execution time
in each software product of the SPL.

5.2 Evaluation

We assess the quality of the obtained timed state-transition models by answering the
following three research questions:

RQ-1 How accurate are our estimates of a transition's execution time?

RQ-2 How do our estimates of a transition's execution time (in a specific product) compare,
in terms of accuracy, with the estimates obtained by Perfume [86], which is a tool
that obtains a timed state-transition model by analyzing timed traces of a single
software product?

72

RQ-3 Does the learnt model, projected onto individual software products, accurately es-
timate the execution times of execution traces? How does the accuracy of such an
overall estimate compare to the accuracy of state-of-the-art methods [98], which base
their estimates only on which features are present in a software product?

The objective of RQ-1 is to assess the accuracy of our estimates with respect to ground
truth; RQ-2 compares the accuracy of the cost estimations produced using our approach
against the accuracy of the estimates obtained by the closest state-of-the-art method to
learn timed behavioural models [86]. RQ-3 compares our per-transition execution-time
estimates against the state-of-the-art in estimating non-functional properties of products
in a product line [98]. The state-of-the-art method that we compare our approach against
in RQ-2 is different from the state-of-the-art method used in RQ-3 because we could not
find a method that learns timed state-transition models of SPLs, and we selected the closest
most-relevant related work for comparison in each study.

5.2.1 Subject Systems

Our approach requires as input a Software Product Line that includes both a featured
transition system model, an executable software system for each software product, and a
mapping between transitions in the featured transition system model and their execution
in the software system. Most SPLs that are used to evaluate SPL research results do not
include a featured transition model [98] or do not include an executable software system [28]
Thus, to evaluate our approach we used the following two subject systems: X264, an open-
source video encoder, and Autonomoose, a self-driving car developed at the University of
Waterloo. For both subject systems, we had to create the featured state-transition model.

The first subject system is the open-source video encoder X264. X264 receives as input
a raw video, analyzes each video frame, and encodes each video frame into a compressed
representation. X264 accepts multiple runtime options that control how the video will
be encoded. For example the option “B-Frame” controls whether a video frame can be
compressed by referencing both the preceding and subsequent video frames or only by
referencing the preceding video frames. We treat each option of X264 as a software feature
and consider X264 an SPL. X264 has twelve features and 2304 software products.

X264 did not have a pre-existing featured state-transition model (or any state-transition
model), so we reverse engineered one. To facilitate the understanding of the X264 codebase
and ease the reverse-engineering task, we used an early version of X264 (revision 8), which
has a much smaller codebase, and we backported features into it from later revisions

73

(from revisions 134, 251, 318, and 1197). We semi-automatically created a featured state-
transition model for X264 using our domain knowledge and aided by the tool Synoptic [8].
We modified the code of X264 to record the executions of transitions from our featured
state-transition model and their duration, so that when X264 encodes a video it generates
a timed execution trace. The FTS we created for X264 has 21 transitions and 14 states.

The second subject system is Autonomoose, which is a self-driving car developed at
the University of Waterloo. Autonomoose is a reactive system that periodically executes
a sense-analyze-actuate loop. Autonomoose comprises a set of modules, which correspond
to software features; the modules communicate with each other through publish/subscribe
messaging. Each module executes as an independent process and implements a single unit
of functionality. For example, the Localizer module periodically estimates the car's current
location and publishes the estimate. The autonomous-vehicle software has been tested both
in an actual car and in a simulation environment. Our experiments were performed only
in the simulation environment. Autonomoose has six features and 32 software products.

Autonomoose did not have an FTS, so we manually reverse engineered one. As several
modules execute in parallel, there is an exponential number of possible interleavings of their
executions in each sense-analyze-actuate loop. To facilitate the analysis of Autonomoose,
we modified Autonomoose so that modules execute sequentially in each execution loop. We
built an FTS model in which the execution of each module corresponds to the execution of
a transition. We instrumented Autonomoose to record a timed execution trace each time
it executes. The FTS we created for Autonomoose has seven transitions and five states.

5.2.2 Experimental Methods

As explained in Section 5.1, our approach requires as input a set of execution traces from
a sample of software configurations. For each subject system, we randomly partitioned all
the software configurations into a training set (20% of the software configurations and their
corresponding execution traces) which constituted the input to our approach, and a test set
(the remaining 80% of configurations and their traces) that we used exclusively to assess
the accuracy of the learnt timing models. We chose to use only 20% of the configurations
for training because we are interested in determining whether our method can learn accu-
rate timing models from a small subset of the software configurations of an SPL. As the
accuracy of the learnt timing function can vary depending on which configurations are part
of the training set, we repeated the entire learning procedure ten times using a different
training/testing set partition each time. Thus, we learnt ten different timing models for
each transition, separately evaluated the accuracy of each one of these timing models, and

74

reported the mean values of the accuracy indicators when evaluating our learnt models.
The standard deviation of the accuracy indicator across the ten different training sets was
small: in average it was 0.82% for X264 and 35.1% for Autonomooose.

To generate the execution traces, we executed every configuration of X264 on three
videos taken from the MPEG-4 test set, and executed each configuration/video pair ten
times. We executed the X264 configurations on a computer with 32 gigabytes of of memory,
a 2.8GHz AMD Opteron Processor 2439 SE with 6 cores, running Ubuntu version 16.04.5.
Similarly, we executed every configuration of Autonomoose in three driving scenarios (e.g.,
test cases) and executed each configuration/scenario pair ten times. We executed the
Autonomooose configurations on a computer with 16 gigabytes of memory, a 3.3GHz AMD
Processor FX-8370E with 8 cores as its CPU, running Ubuntu version 16.04.5. We should
note that we executed every possible configuration of the subject systems to obtain a
thorough evaluation of our learnt model's accuracy (that is, the test set comprised every
configuration that was not part of the training set); whereas when applying our method in
practice, only the configurations that comprise the training set would be executed.

We chose to randomly select the software configurations that comprise the training set.
Alternatively, we could have followed the approach of Siegmund et. al. [98] in selecting
the software configurations such that they include configurations with and without each
feature, and with and without each possible pairwise feature-combination, to facilitate
learning a more accurate model. However, that approach assumes that one is able to
choose the software products that comprise the training set and this might not always
be possible; in some situations we are given a set of existing execution traces for a set
of software products. We think that using a random set of configurations as the training
set better reflects the challenges of learning in such a situation. Moreover, Kaltenecker et
al. [65] showed that selecting a random set of configurations as the training set results
in learning a more accurate model than using heuristics, such as done by Siegmund et al.
[98].

5.2.3 RQ-1 Accuracy of Transition Time Estimates

The goal of this research question is to evaluate the accuracy of the learnt per-transition
execution-time estimates with respect to ground truth. We assessed the accuracy of the
execution-time estimates, for each transition t, by comparing the estimated times against
each transition’s actual execution times, for all instances of the transition in all execution
traces of all configurations in the test set. We chose to use the mean absolute error (MAE)
as our accuracy indicator because it is an easy-to-interpret measure of accuracy. The mean

75

Accuracy of X264 transition's execution time estimates

Normalized mean absolute error (%)

of

 tr
an

si
tio

ns

0 20 40 60 80 100

0
2

4
6

8

Accuracy of Autonomoose transition's execution time estimates

Normalized mean absolute error (%)

of

 tr
an

si
tio

ns

0 50 100 150 200

0
1

2

Figure 5.2: Histograms showing the average accuracy of our per-transition execution-time
estimates for Autonomoose and X264.

absolute error represents how far off, on average, transition t 's estimated execution time
is from its actual execution time. To obtain a measure of the relative error, we calculate
normalized mean absolute error (NMAE) of our execution time estimate for a transition t
by dividing the transition's mean absolute error by the average execution-time of transition
t in the entire test set 2.

Our method is capable of learning timing functions with a NMAE of less than 30% for 16
out of the 21 transitions of X264 but for only 2 out of the 7 transitions of the Autonomoose
software system. Figure 5.2 shows a histogram that summarizes the accuracy of the learnt
timing functions across all transitions. Each bin represents the number of transitions
whose corresponding timing function had a normalized mean absolute error in a certain
range (e.g., 0% to 10%, 10% to 20%, and so on).

Table 5.1 lists the NMAE for the transitions in which our method obtained the best,
median and worst accuracy (taken over all executions of each transition), listing the mean
and the standard deviation for each NMAE. Thus, the average NMAE of our method’s
execution time estimates for X264's transitions was 21.9% whereas it was 80.3% for Au-
tonomoose's transitions. The accuracy of our method’s timing predictions varies substan-

2An alternative approach would have been to use the average prediction error ([50] and [98]), in which
the estimation error is divided by the actual value of the quantity being estimated (i.e., the time taken
by an execution of a transition in our case). We did not use the average prediction error because it is not
well-defined when the estimated quantity has a value of zero as was the case for the execution of some
transitions in both Autonomoose and X264.

76

T
ra

n
si

ti
on

/
S
of

tw
ar

e
S
y
st

em
X

26
4

X
26

4
A

u
to

n
om

o
os

e
A

u
to

n
om

o
os

e
T

ra
in

in
g1

T
es

ti
n
g1

T
ra

in
in

g1
T

es
ti

n
g1

T
ra

n
si

ti
on

w
it

h
b

es
t

N
M

A
E

3.
8%
±

9.
8

%
3.

8
%
±

6.
0

%
16

.0
%
±

36
.2

%
18

.0
%
±

21
.6

%
T

ra
n
si

ti
on

w
it

h
m

ed
ia

n
N

M
A

E
17

.3
%
±

17
.9

%
17

.2
%
±

17
.7

%
23

.2
%
±

21
.5

%
63

.3
%
±

72
.5

%
T

ra
n
si

ti
on

w
it

h
w

or
st

N
M

A
E

81
.7

%
±

16
2.

1%
81

.7
%
±

17
0.

0
%

19
2.

0
%
±

73
0.

9
%

19
3.

0
%
±

73
2.

7
%

A
v
e
ra

g
e

N
M

A
E

a
cr

o
ss

a
ll

tr
a
n
si

ti
o
n
s

21
.8

%
±

20
.1

%
21

.9
%
±

20
.1

%
72

.2
%
±

72
.4

%
80

.3
%
±

66
.8

%

1
n
or

m
al

iz
ed

m
ea

n
ab

so
lu

te
er

ro
r
±

st
an

d
ar

d
d
ev

ia
ti

on

T
ab

le
5.

1:
A

cc
u
ra

cy
(n

or
m

al
iz

ed
m

ea
n

ab
so

lu
te

er
ro

r)
of

p
er

-t
ra

n
si

ti
on

ex
ec

u
ti

on
-t

im
e

es
ti

m
at

es
fo

r
A

u
-

to
n
om

o
os

e
an

d
X

26
4.

77

tially based on the transition whose execution time is being predicted. Specifically, the
standard deviation of the NMAE, measured across all transitions, was 20.1% for X264 and
66.8% for Autonomoose. We think that our approach produces more accurate estimates for
the X264 system than for the Autonomoose system because the number of configurations
of Autonomoose is too small for our approach to effectively learn how each feature impacts
a transition’s execution times (Autonomoose has a total of 32 configurations whereas X264
has 2034 configurations). In Section 5.2.5 we discuss in more detail possible reasons why
our approach is more accurate on the X264 system than on the Autonomoose system.

5.2.4 RQ-2 Comparison against Accuracy of Perfume Transition-
Time Estimates

The goal of this research question is to compare the accuracy of the models obtained by
our approach against the accuracy of models obtained by state-of-art methods. There is
no other tool that learns timed behaviour models of software product lines. The closest
related work is Perfume [86]: a tool that learns a timed behaviour model – a timed state-
transition model – from a set of timed execution traces of a software system (i.e., a single
product). Thus, we compare the accuracy of the models learned by our method against
the accuracy of the models learned by Perfume.

Perfume and our method differ in multiple ways that complicate their comparison:

• Expect slightly different input. Perfume is not product-line aware but instead
analyzes execution traces from a single software product and outputs a single cor-
responding timed state-transition system. In contrast, our method takes as input
an untimed state-transition model, analyzes the execution traces of a collection of
software products, and outputs a single timed model that estimates the timing of
transitions in all the products of a product line.

• Produce slightly different outputs. Perfume infers not only the execution time of
each transition but also infers the state-transition model itself. Specifically, Perfume
starts by creating a timed state-transition model whose transitions are exactly the
set of steps in the input traces (i.e., a tree-like timed state-transition model), and
then iteratively merges states and transitions based on which other transitions appear
after them and how long they take to execute. The result is typically a model that
is less compact than a model created by hand. As a result, a single transition in our
timed featured transition system can correspond to multiple transitions in the timed
state-transition output by Perfume. Moreover, Perfume outputs either a number or

78

an interval as the estimated execution time for each transition and a relative count
that represents how often the transition was executed in the input trace, whereas our
method outputs a single number as the estimate for the execution time of a transition
in a given product.

In order to compare the two approaches despite their mismatches in inputs and outputs,
the evaluation design needed to accommodate these mismatches.

Firstly, Perfume learns models of a single product, whereas our method learns a product-
line model. Therefore, we randomly selected ten software configurations of each subject
system from the test set, with the intent of comparing for each configuration the Perfume
learnt model against the corresponding projection of our method's learnt model projected
onto that configuration's product.

Secondly, we executed Perfume on the sets of timed execution traces associated with
each configuration, so that Perfume learnt a timed behaviour model for each selected
configuration. We attempted to encourage Perfume to produce more compact models.
Because Perfume learns the structure of a state-transition model as well as transitions’
execution times, it requires as input a large number of execution traces. Rather than feed
Perfume a number of long traces, we split execution traces into a large set of sub-traces
that represent executions of a key section of the subject system based on our domain
knowledge of the subject system. For example, in the X264 case study, the sub-traces
correspond to the analysis of a video frame to decide how to encode it, whereas in the
Autonomoose case study the sub-traces correspond to a full sense-plan-act loop. Given an
input of shorter execution subtraces, Perfume is better able to generate models that identify
multiple executions of the same code as being instances of the same transition, so that it
is easier to identify which transitions in the Perfume models correspond to transitions in
our approach’s models.

Thirdly, to compare, for each of the ten selected configurations, the projection from the
learnt timed FTS against Perfume’s learnt timed-transition model, we first had to identify
for each transition in our timed FTS that is present in one of the ten configurations, the
set of corresponding transitions in the timed-transition model output by Perfume for that
configuration. A transition t in our approach’s model could correspond to either a single
transition in Perfume’s model or to multiple transitions in Perfume’s model. Moreover,
each transition in a Perfume model could be labelled with either a single number or labelled
with an interval. To enable a comparison, for each transition t in our approach’s model
we computed a single weight (the mean and standard deviation) for the weights on the
corresponding transition(s) in the Perfume model. Specifically, the four cases are as follows:

79

Perfume’s estimate

A B
50 ms

Our approach’s estimate

A B
40 ms

(a) The case where a transition in the FTS corresponds to a single transition in Pefume’s
model that has a single numeric weight.

Perfume’s estimates

A1 B1
50 ms

Our approach’s estimate

A B
40 ms A2 B2

40 ms

A3 B3
38 ms

(b) The case where a transition in the FTS corresponds to multiple transitions in
Pefume’s model, each with a different numeric weight.

Our approach’s estimate Perfume’s estimate

A B

[35 ms to 50 ms]

A B

40 ms

(c) The case where a transition in the FTS corresponds to a single transition in Pefume’s
model that has an interval weight.

Perfume’s estimates

A1 B1
50 ms

Our approach’s estimate

A B
40 ms

A2 B2
[30 ms to 40 ms]

A3 B3

[28 ms to 35 ms]

A4 B4
20 ms

(d) The case where a transition in the FTS corresponds to multiple transitions in
Pefume’s model, with some transitions having a numeric weight and some having an
interval weight.

Figure 5.3: Ilustration of the relationships between a transition’s execution-time estimate
from our approach and from Perfume.

80

• A transition t in our approach’s model may correspond to a single transition in
Perfume’s model that is labelled with a single numeric weight. Figure 5.3a illustrates
this case by showing a transition in Perfume’s model with a numeric weight of 50
milliseconds that corresponds to transition t in our approach’s model. In this case,
the mean of Perfume’s execution-time estimates for transition t is equal to its numeric
weight and its standard deviation is equal to zero.

• A transition t in our approach’s model may correspond to multiple transitions in
Perfume’s model, each with a different numeric weight. Figure 5.3b illustrates this
case by showing three transitions in Perfume’s model, each with a different numeric
weight, that correspond to transition t in our approach’s model. To enable a com-
parison, we compute the mean and standard deviation of the transition estimates
weighted by the number of times the transition executes in the traces. For example,
if each of the Perfume model’s transitions in Figure 5.3b executed twice in the traces,
we would compute the mean and standard deviation of the bag {50, 50, 40, 40, 38, 38}
to obtain Perfume’s estimate for that transition.

• A transition t in our approach’s model may correspond to a single transition in
Perfume’s model that is labelled with an interval weight. Figure 5.3c illustrates this
case by showing a transition in Perfume’s model with an interval weight of between 35
and 50 that corresponds to transition t in our approach’s model. Intervals are more
difficult to compare against. We make the simplifying assumption that the interval
represents a uniform distribution of possible weights, and we compute a mean and
standard deviation based on n uniformly distributed numbers in the interval where
n is the number of times the transition executes in the input traces. For example, if
the transition in 5.3c, which is labelled with an interval from 35 to 50 milliseconds,
executed four times in the input traces, we would compute the mean and standard
deviation of the set {35, 40, 45, 50}.

• A transition t in our approach’s model may correspond to multiple transitions in
Perfume’s model, some with a numeric weight and some with an interval weight.
Figure 5.3d illustrates this case by showing four transitions in Perfume’s model that
correspond to transition t in our approach’s model, with two of those transitions
having a numeric weight and the other two transitions having an interval weight.
We generate a single mean weight and standard deviation as follows. For each of
the corresponding transitions (in the Perfume model) that is labelled with a single
numeric weight, we generate a collection of n instance of that numeric weight, where
n is the number of times that transition executes in the input traces. For each
corresponding transition (in the Perfume) that is labelled with an interval weight, we

81

generate a collection of n numbers that are uniformly distributed within the interval,
where n is the number of times the transition executes in the input traces. We then
calculate the mean and standard deviation of the numbers within these collections to
obtain the mean and standard deviation of Perfume’s execution-time estimates for
transition t. For example, consider the transitions (in the Perfume model) in Figure
5.3d, and assume that the transition that is labelled with numeric weight “50” is
executed three times, that the transition that is labelled with numeric weight “20”
is executed two times, that the transition that is labelled with the interval “30ms
to 40ms” is executed two times, and that the transition labelled with the interval
“28ms to 35ms” is executed three times. Then we would compute the mean and
standard deviation of the bag of weights {50, 50, 50, 20, 20, 32.5, 47.5, 28, 31.5, 35} to
obtain Perfume’s execution-time estimate for transition t.

In this manner, for each transition and software configuration pair, we obtain the mean
and standard deviation of Perfume’s execution-time estimates for it. We can then compare
it against our method's estimates for the same transition and software configuration pair.

In Figure 5.4 we show our method's and Perfume's execution-time estimates for the
transitions from three of the ten software configurations: the software configurations in
which our method estimates had the best, median, and worst accuracy. For each transition,
Perfume's mean execution-time estimate is marked with a red dot and the red error bar
represents the standard deviation; and the grey error bar represents Perfume's maximum
and minimum execution-time estimates for that transition. Our method's execution-time
estimate for each transition is represented by a black X.

We can observe that in the case of X264 most of our execution-time estimates are within
one standard deviation of Perfume's estimates. In contrast, in the case of Autonomoose,
we observe that many of our estimates are more than one standard deviation away from
Perfume's estimates. However, the best and median case of Autonomoose look very similar,
so its worst case might just be an outlier.

5.2.5 RQ-3 Accuracy of trace time estimates

As we discussed in Subsection 5.2.3, the per-transition execution time estimates provided
by our approach are not very accurate or precise. Other approaches [50, 65, 82, 98, 99]
learn a static estimate of how long will a software product take to execute over a given
execution trace (input) based on which features are present in the software product instead
of computing an estimate based on which parts (transitions) of the system the trace exercise

82

X X X X X

X

X0

40

80

120

Transitions

E
xe

cu
tio

n
T

im
e

(m
s)

Autonomoose (best)

X X X X X

X

X0

50

100

Transitions

E
xe

cu
tio

n
T

im
e

(m
s)

Autonomoose (median)

X
X X

X

X

X

0

5

10

15

Transitions

E
xe

cu
tio

n
T

im
e

(m
s)

Autonomoose (worst)

X

X

X
X

X

X

X

X

X

X

X X X X0

50

100

150

Transitions

E
xe

cu
tio

n
T

im
e

(m
s)

X264 (best)

X

X
X

X

X X

X X

X X

X
X

X

0

25

50

75

100

Transitions

E
xe

cu
tio

n
T

im
e

(m
s)

X264 (median)

X

X
X

X

X X X X X X X X X X X X X X X0

200

400

600

Transitions

E
xe

cu
tio

n
T

im
e

(m
s)

X264 (worst)

Figure 5.4: Graph showing both Perfume and our approach’s execution-time estimates
for the transitions in three software products (the software products for which our ap-
proach had best, median, and worst accuracy). Perfume’s mean execution-time estimates
are marked as a red dot and the standard deviation is represented by a red error bar.
Our approach’s execution-time estimates are marked with a black X. The grey error bars
represent Perfume's minimum and maximum execution-time estimates.

83

Table 5.2: Normalized mean absolute error of the overall execution-time estimates for X264
and Autonomoose.

Method / Software System X264 Autonomoose
Based on per-transition estimates 0.62%±0.47% 42.15%±45.65%
Based on Performance-Influence model [98] 7.49%± 8.38% 29.37%±37.49%

and the execution-time estimates of those parts of the system. We hypothesize that we can
leverage our per-transition execution time estimates to obtain a more accurate estimate
of the overall execution time of a software product over an execution trace (e.g, encoding
a video). If this hypothesis would be true, it would suggest that it could be beneficial
to use finer-grained weighed model instead of Performance-Influence model to estimate
the execution times of different software products. We test this hypothesis by comparing
the accuracy of estimates of the execution time of a software product over an execution
trace obtained by the Performance-Influence model [98], against estimates derived from
our per-transition execution-time estimates.

As mentioned earlier, the Performance-Influence model [98] is a representative approach
of the methods that estimate the overall execution time of a software product over an
execution trace based on which features are present in the software product. Because our
method provides per-transition execution-time estimates, we need to compute the estimate
of a software product over an execution trace: by multiplying the number of executions of
each transition in the trace by the estimated execution time of that transition. We then
compare the accuracy of such estimates against the accuracy of the estimates obtained by
Performance-Influence model [98] and against ground truth (the actual execution times).

We used the same two subject systems, Autonomoose and X264, as in the other research
questions in this comparison. We recorded the overall execution time of X264 on each of
three videos (input traces) for each product in the training set and testing set, and similarly
we recorded the overall execution time of Autonomoose on each of three driving scenarios
(input traces) for each product in the training set and testing set. We executed the learning
algorithm of the Performance-Influence model approach [98] on the training set to obtain
regression functions that estimate the execution time of each software product on each
one of the respective three input traces. Similarly, our approach’s per-transition execution
time estimates were learnt using only the training set. We assessed the accuracy of our
approach’s overall execution-time estimates compared against ground truth and compared
against the Performance-Influence model [98] estimates with respect to the execution times
over the input traces of the software products that comprise the testing set. As in RQ-1,
we use the normalized mean absolute error (NMAE) as our accuracy indicator because it

84

Standard deviation of the execution time of X264's transitions

0
10

0
20

0
30

0
40

0
50

0

Transitions

R
el

at
iv

e
st

an
da

rd
 d

ev
ia

tio
n

of
 th

e
ex

ec
ut

io
n

tim
e

(%
)

Standard deviation of the execution time of Autonomoose's transitions

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0

Transitions

R
el

at
iv

e
st

an
da

rd
 d

ev
ia

tio
n

of
 th

e
ex

ec
ut

io
n

tim
e

(%
)

Figure 5.5: Bar chart of the standard deviations of the execution times of transitions in
the subject systems: X264 and Autonomoose. Along the x-axis, transitions are listed from
left to right in decreasing order of the standard deviations of their execution times. The
bar color represents the accuracy of our execution-time estimates for that transition: green
represents a NMAE of less than 30%, yellow represents a NMAE between 30% and 50%,
and red represents a NMAE greater than 50%.

is an easy-to-interpret measure of accuracy. We calculate the mean NMAE across all the
executions of all software products in the testing set and across all inputs (i.e., all three
videos for X264 and all three driving scenarios for Autonomoose).

A summary of the results of this comparison is shown in Table 5.2 . Specifically, we show
the normalized mean absolute error for both our method and the Performance-Influence
model approach. We show the average NMAE of the estimates of the execution time of
software products that comprise the testing set. Our method can accurately estimate how
long a X264 software product will execute (e.g., encode a software video), but our method
estimates are not very accurate for Autonomoose. Our method obtains a normalized mean
average error of only 0.62 % for X264, whereas our method obtains a normalized mean
average error of 42.15% for Autonomoose.

Obtaining much better accuracy for X264 than for Autonomoose is expected because
we have more accurate per-transition timing estimates of X264's transitions than of Au-
tonomoose's transitions.

The accuracy of our per-transition estimates varied substantially across different tran-
sitions. This was the case for both subject systems. We hypothesize that such variation is

85

caused by the variation in the standard deviation of the execution times of each transition.
Figure 5.5 shows the relative standard deviations of the execution times of each transition;
the transitions are arranged along the x-axis in decreasing order of the standard deviation
in the values of their execution times. Each bar is color coded according to the accuracy in
our estimate of the transition's weight: green indicates a NMAE of less than 30%, yellow
indicates a NMAE between 30% and 50%, and red indicates a NMAE greater than 50%.
For both X264 and Autonomooose we observe that as the relative standard deviation of
the execution times of transitions increases, the error in our execution-time estimates (e.g.
the NMAE) increases. This correlation seems intuitive – if there is a lot of variation in the
cost of a transition's execution due to context, the input data being processed, etc. then
it is difficult to learn accurate values for the transition's weight. Whether there is high
variance in the cost of a transition's execution varies by SPL, product, and transition.

We hypothesize that we were able to obtain much higher accuracies in our estimates
of the weights on transitions in the X264 model than in our estimates of the weights
on Autonomooose's transitions because the number of software configurations in the Au-
tonomoose SPL is too small for our method to effectively learn how different features impact
the execution time of each transition (the Autonomoose SPL has 32 products whereas the
X264 SPL has 2034 products).

It is noteworthy that although our estimates of each transition's weight have relatively
low accuracy, our estimates of the overall execution times of complete traces (e.g., encoding
a video for the X264 case study) are relatively good. This could be due to the errors in
the estimates cancelling each other out when combining the estimates for all executed
transitions into an estimate for a single execution trace.

5.2.6 Threats to validity

Our results are based on only two software product lines, and the conclusions might not
generalize to other software product lines. To mitigate this threat, we chose two SPLs from
two different domains. Both SPLs had fewer than thirteen features, so our results might
not generalize to much larger SPLs. We had to reverse engineer the FTSs for both SPLs,
and this might affect whether our results are valid for an FTS that is created as part of
the development of an SPL.

The results that we obtained could have been affected by chance (e.g., a “lucky” training
set or an abnormal execution of the subject system). To minimize this threat, we repeated
all experiments ten times with a different training set and testing set. For the same
reason, we executed each SPL ten times on each of the three different “input traces” when

86

generating the timed execution traces. However, we did not vary the relative size of the
training set compared to the evaluation set, and this could have affected the results. Also
the execution traces used to generate the test and training set might not cover all possible
executions paths of the subject systems.

The configurations that comprised the training sets were selected randomly. A special
or systematic sampling of the configuration space might have provided more accurate
learning – for example, selecting the configurations with the minimum/maximum number
of features to be part of the training set. Thus, our conclusions might not generalize to
techniques that perform “smart sampling” of the SPLs configurations to obtain the training
set.

5.3 Related Work

There exist many methods that automatically extract untimed behaviour models from a
system's execution traces [7, 8, 45, 75, 76, 77]. For example, Synoptic [8] infers a state-
transition model from a set of observed execution traces, while also ensuring that the
state-transition model satisfies a set of temporal invariants that are mined from the ob-
served execution traces. Synoptic starts with a given state-transition model whose set of
transitions is the set of steps in the observed traces, and then iteratively merges states and
transitions to obtain a more compact and general state-transition model. More recently,
Perfume [86] extends Synoptic to infer a timed state-transition model from a set of timed
execution traces. Perfume works by mining a set of timed properties (e.g., by instantiating
timed requirement patterns [71]) that are valid across all execution traces. Perfume then
searches for a compact timed transition system that can generate traces similar to the
observed traces and that satisfies the mined timed properties. Similarly, Timed K-Tail
[92] extends GK-Tail [76] to generate a timed automaton from a set of timed execution
traces. None of these methods have been adapted to analyze execution traces from a set
of software products [98].

The work of Siegmund et al. [98] learns a Performance-Influence model for an SPL
that predicts how long each software product will execute by assigning (through learn-
ing) a static weight to each feature and to some feature combinations that represents the
feature’s contribution to the product’s execution time. The estimated execution time for
a software product becomes the sum of the weights of all features and feature combina-
tions that are present in that software product. We note that their method learns the
execution of a software product over a “representative task” – such as encoding a video,
or compressing a file. Their approach uses a coarser level of granularity than our method,

87

as it learns the impact that each feature or feature combination will have on the overall
execution time of a software product, whereas our method learns the impact that a feature
or feature combination will have on the execution time of each transition. Their approach
ignores the effect that changing user-input or changing environmental conditions can have
the execution time of an SPL at runtime. Subsequent papers [83, 84, 85] focus on find-
ing optimal software configurations based on these coarse-grained models of a product's
execution time.

5.4 Conclusions

Analysts need accurate and precise timed models of systems and SPLs to assess whether
the modelled systems satisfy timing properties. Learning timed behaviour models from
execution traces for an SPL is a very challenging task, and the results of our approach is
mixed with respect to the accuracy of our learnt models. We showed that our method seems
promising for SPLs with a large number of products, and whose transitions' execution times
do not have excessive variance across repeated executions, and whose transitions' execution
times are a linear function of the features present in a software configuration. Through
our analysis of RQ-3, we showed that these learnt timed behaviour models can potentially
facilitate analysis of the timing behaviour of SPLs, by helping to estimate how long will
an SPL configuration take to execute a certain execution trace.

88

Chapter 6

Conclusions and Future Work

Quantitative analyses of weighted transition systems permit estimating the quality-attribute
values that a software system will exhibit during its execution. Quantitative analyses can
be computationally intensive and the number of products in an SPL grows exponentially
with the number of features in the SPL; thus analyzing every product in an SPL is challeng-
ing. In this thesis, we investigated the efficiency of performing family-based quantitative
analyses of quality-attribute values that each product of an SPL exhibits.

First, we considered quality-attribute values for a dynamic software product line that
is executing in a rapidly changing environment. As the environment changes, the prod-
uct that is optimal with respect to its quality-attribute values might also change. Thus,
we proposed and implemented a family-based trace-checking analysis that estimates, at
runtime, the quality-attribute values that the different products of a dynamic software
product line would have exhibited over recent inputs, to facilitate reconfiguration of the
dynamic software product line to the optimal product. We obtained mixed results with
respect to the performance benefit of such family-based analysis compared to individually
analyzing each software configuration. Our results indicate that the family-based trace-
checking analysis, without any data abstraction, is not faster than individually analyzing
each product for two of the three case studies in which many of the configurations exhib-
ited similar but slightly different quality-of-service values. Because many configurations
would yield similar but slightly different quality-of-service values, there was little sharing
of partial-analysis results in those two case studies. However, we showed that by adding
a simple data abstraction, which categorized transitions into high-cost and low-cost tran-
sitions, the performance of the family-based trace-checking analysis improved such that
it was between 1.4 and 7.7 times faster than individually analyzing each product. This
suggests that abstraction over the values of the quality attributes is key to permit our

89

family-based trace-checking analysis to reuse partial-analysis results, and thus provide a
speedup compared to analyzing each product individually.

Second, sometimes what is important for the users of an SPL is the worst-case long-term
average value of a quality attribute (e.g., because it represents the long-term rate of energy
consumption of the system). Specifically, the maximum limit-average cost of executing a
weighted state-transition model can represent the worst-case long-term average value of a
quality attribute over an infinite execution of the system. Because computing the maximum
limit-average cost of a product is computationally intensive, we developed a family-based
analysis that simultaneously computes the maximum limit-average cost for each software
product in an SPL. We assess its performance against analyzing each product individually
in two case studies. Again, we obtained mixed results: our family-based approach increased
the speed of analysis by a factor of two in one SPL with a large number of products, a small
number of control states, and whose products shared the same set of strongly connected
components; whereas our analysis was slower than the product-based approach in the other
SPL that had fewer products but included a rich control behaviour. Our results suggest
that our family-based analysis will perform better in SPLs in which many products share
the same set of strongly connected components. It might be beneficial to use partial results
from our family-based analysis (e.g., how much sharing of state’s “finishing times” there
is across software products) to decide whether to proceed with a family-based analysis or
a product-based analysis for a specific SPL.

Third, analyses of a system’s quality attributes, including our analyses, require as
input a weighted behaviour model of an SPL. But manually developing an SPL’s weighted
behaviour model is tedious and error-prone: it requires creating a model that estimates the
weight associated with a transition’s execution for each product of the SPL. We explored
how to learn the weights for an SPL's weighted behaviour model (i.e., a weighted featured
transition system model) from a set of execution traces from a sample of the software
products of an SPL. Specifically, we applied supervised learning techniques to learn, for
each transition, a regression function that estimates how much time the transition will take
to execute in each software product that includes the transition. We assessed the accuracy
of the learnt transition execution-time estimates on two SPLs, over which the accuracy
of our learnt model ranged from a mean error of 3.8% to a mean error of 193.0%. Our
method performed best for those transitions whose execution-times (1) have low variance
across repeated executions of the transition in the same product and (2) is a linear function
of the features present in a software product. We also compared the accuracy our learnt
per-transition execution time estimates against the estimates from a state-of-the-art tool
(Perfume [86]) that extracts a weighted transition system model for an individual software
product by analyzing its individual execution traces. We showed that we could achieve

90

an accuracy comparable to the accuracy obtained by Perfume, even though we base our
estimates on the execution of a sample of software products and not on the execution of the
software product from which Perfume was extracting the weighted transition model. We
also compared the accuracy of of our learnt weighted featured transition system models’
estimates against the state-of-the-art Performance-Influence model [98] by comparing their
estimates of the time to execute an execution trace, and against ground truth. The accuracy
of our learnt weighted featured transition system models’ estimates of the time to execute
an execution trace was similar to the accuracy of the estimates obtained by the state-of-
the-art Performance-Influence model [98].

In summary, the main contributions of this thesis are:

• A family-based trace-checking algorithm (and its implementation) that analyzes the
quality of service that each configuration of a DSPL would have exhibited over recent
system inputs.

• An evaluation of the efficiency of such an analysis on three DSPL case studies taken
from the literature. Our results suggest that abstraction over the values of the quality-
attribute values is key to enable efficient family-based trace checking analysis of the
quality attributes.

• Improvement over our initial trace-checking algorithm by applying a simple data
abstraction over the values of quality attributes.

• A family-based algorithm (and its implementation) that analyzes a model of an SPL
and computes the worst-case limit-average value for a quality attribute.

• An evaluation of the speed-up of such a family-based algorithm versus the product-
based algorithm. Our results suggest that our family-based analysis will perform best
for SPLs in which many of the products share the same set of strongly connected
components.

• We present and evaluate for the first time a method to learn timed behaviour models
for software product lines.

• An evaluation of the quality of the learnt weighted featured transition systems mod-
els of an SPL. Our results indicate that the accuracy of the learnt models is best
for SPLs in which there is a linear relationship between its transitions’ execution
times and the features that are present in a software configuration, and for SPLs in
which its transitions’ execution times do not have excessive variance across repeated
executions.

91

• A comparison of our method to the state-of-the-art methods for extracting Performance-
Influence models of a software product line and methods for learning timed behaviour
models from timed execution traces.

The family-based analysis of a quality attribute of an SPL can in some cases be faster
than the corresponding analysis of each individual software product. However, a key chal-
lenge is the difficulty in reusing partial-analysis results across different software products
because the products can have slightly different quality-attribute values. Data abstrac-
tion of quality-attribute values might improve the performance of a family-based analysis
of an SPL's quality attributes by making many products share the same abstract quality-
attribute values, and thus facilitate the reuse of partial-analysis results. A promising line of
future inquiry is to explore the role that data abstraction over quality-attribute values can
play in improving the performance of family-based analyses of an SPL's quality attribute.
Specific types of quality attributes will evolve in certain unique ways (e.g., time increases
monotonically, the battery level of a system has an upper bound). We think that, by
studying specialized data abstractions for different types of quality attributes, researchers
will be able to ease the task of identifying suitable abstractions for quality attributes that
permit faster but also accurate analyses. It would be beneficial to study the trade-off be-
tween abstraction over quality-attribute values against the accuracy of the analysis results
with respect to identifying the configuration with optimal quality-of-service.

A second line of future work is to further assess whether our family-based analysis of the
maximum limit-average cost performs best in SPLs that have many products that share
the same set of strongly connected components as more SPL models becomes available. We
could also assess whether using partial-results from our family-based analysis to determine
on which set of products to perform a family-based analysis (e.g., only on those products
that share most of their SCCs) and individually analyze the rest of the products would
speed up the analysis.

A third line of future work that extends our work on learning timed behaviour models
of software product lines would be to identify the causes for variance among the execution
times of the same transition even in the same product. This variance could be caused by: i)
noise in the measurement of the execution time, ii) varying complexities of the transition’s
action based on inputs, iii) varying execution times due to prior actions or transitions,
environmental conditions, or input trace. This future exploration could help to identify
more precisely in which type of SPLs our learning approach will perform best.

Additionally, it might be possible to incorporate domain knowledge about which non-
linear variables (e.g., the presence of specific feature combinations) are likely to impact a
transition’s execution time, and incorporate such knowledge into the learning algorithm.

92

Manually selecting which feature combinations to incorporate as input into the learning
algorithm might result in better accuracy compared to including every possible pairwise
feature combination as input to the learning algorithm.

93

References

[1] Software Engineering for Self-Adaptive Systems II - International Seminar, Dagstuhl
Castle, Germany, October 24-29, 2010 Revised Selected and Invited Papers, 2010.

[2] Rajeev Alur and David L. Dill. A theory of timed automata. Theor.Comput.Sci.,
126(2):183–235, apr 1994.

[3] J. Andersson and J. Bosch. Development and use of dynamic product-line architec-
tures. IEE Proceedings - Software, 152(1):15–28, Feb 2005.

[4] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking. The MIT
Press, 2008.

[5] Gerd Behrmann, Alexandre David, Kim G. Larsen, John Hakansson, Paul Petterson,
Wang Yi, and Martijn Hendriks. Uppaal 4.0. In Proceedings of the 3rd International
Conference on the Quantitative Evaluation of Systems, QEST ’06, pages 125–126,
Washington, DC, USA, 2006. IEEE Computer Society.

[6] Shoham Ben-David, Baruch Sterin, Joanne M. Atlee, and Sandy Beidu. Symbolic
model checking of product-line requirements using sat-based methods. In ICSE,
pages 189–199. IEEE Press, 2015.

[7] I. Beschastnikh, Y. Brun, J. Abrahamson, M. D. Ernst, and A. Krishnamurthy.
Using declarative specification to improve the understanding, extensibility, and com-
parison of model-inference algorithms. IEEE Transactions on Software Engineering,
41(4):408–428, April 2015.

[8] Ivan Beschastnikh, Yuriy Brun, Sigurd Schneider, Michael Sloan, and Michael D.
Ernst. Leveraging existing instrumentation to automatically infer invariant-
constrained models. In Proceedings of the 19th ACM SIGSOFT Symposium and
the 13th European Conference on Foundations of Software Engineering, ESEC/FSE
’11, pages 267–277, New York, NY, USA, 2011. ACM.

94

[9] Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer-Verlag,
Berlin, Heidelberg, 2006.

[10] Christopher M. Bishop. Pattern Recognition and Machine Learning (Information
Science and Statistics). Springer-Verlag, Berlin, Heidelberg, 2006.

[11] Udi Boker, Krishnendu Chatterjee, Thomas A. Henzinger, and Orna Kupferman.
Temporal specifications with accumulative values. ACM Trans. Comput. Log.,
15(4):27:1–25, 2014.

[12] Randal E. Bryant. Symbolic boolean manipulation with ordered binary-decision
diagrams. 24(3), 1992.

[13] Radu Calinescu, Lars Grunske, Marta Kwiatkowska, Raffaela Mirandola, and Gior-
dano Tamburrelli. Dynamic qos management and optimization in service-based sys-
tems. IEEE Trans. Softw. Eng., 37(3):387–409, 2011.

[14] Javier Camara, Antonia Lopes, David Garlan, and Bradley R. Schmerl. Impact
models for architecture-based self-adaptive systems. In Formal Aspects of Component
Software - 11th International Symposium, FACS 2014, 2014.

[15] Sérgio Vale Aguiar Campos, Edmund M. Clarke, Wilfredo R. Marrero, and Marius
Minea. Verifying the performance of the pci local bus using symbolic techniques.
In Proceedings of the 1995 International Conference on Computer Design: VLSI in
Computers and Processors, ICCD ’95, pages 72–78, Washington, DC, USA, 1995.
IEEE Computer Society.

[16] Pavol Černý, Martin Chmeĺık, Thomas A. Henzinger, and Arjun Radhakrishna. In-
terface simulation distances. Theor. Comput. Sci., 560:348–363, 2014.

[17] Pavol Černý, Thomas A. Henzinger, and Arjun Radhakrishna. Simulation distances.
Theor. Comput. Sci., 413(1):21–35, January 2012.

[18] Pavol Černý, Thomas A. Henzinger, and Arjun Radhakrishna. Quantitative abstrac-
tion refinement. In Giacobazzi and Cousot [48], pages 115–128.

[19] Krishnendu Chatterjee, Monika Henzinger, Sebastian Krinninger, and Danupon
Nanongkai. Polynomial-time algorithms for energy games with special weight struc-
tures. Algorithmica, 70(3):457–492, November 2014.

95

[20] Krishnendu Chatterjee, Andreas Pavlogiannis, and Yaron Velner. Quantitative inter-
procedural analysis. In Proceedings of the 42Nd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’15, pages 539–551,
New York, NY, USA, 2015. ACM.

[21] Shang-Wen Cheng and David Garlan. Stitch: A language for architecture-based
self-adaptation. J. Syst. Softw., 85(12):2860–2875, December 2012.

[22] Philipp Chrszon, Clemens Dubslaff, Sascha Kluppelholz, and Christel Baier. Family-
based modeling and analysis for probabilistic systems — featuring profeat. In
Proceedings of the 19th International Conference on Fundamental Approaches to
Software Engineering - Volume 9633, pages 287–304, New York, NY, USA, 2016.
Springer-Verlag New York, Inc.

[23] Edmund M. Clarke, Jr., Orna Grumberg, and Doron A. Peled. Model Checking. MIT
Press, Cambridge, MA, USA, 1999.

[24] Andreas Classen, Maxime Cordy, Patrick Heymans, Axel Legay, and Pierre-Yves
Schobbens. Formal semantics, modular specification, and symbolic verification of
product-line behaviour. Sci. Comput. Program., 80:416–439, 2014.

[25] Andreas Classen, Maxime Cordy, Patrick Heymans, Pierre-Yves Schobbens, and Axel
Legay. Model Checking for Software Product Lines with SNIP. International Journal
on Software Tools for Technology Transfer, 2012.

[26] Andreas Classen, Maxime Cordy, Pierre-Yves Schobbens, Patrick Heymans, Axel
Legay, and Jean-Francois Raskin. Featured transition systems: Foundations for
verifying variability-intensive systems and their application to LTL model checking.
IEEE Trans. Softw. Eng., 39(8):1069–1089, August 2013.

[27] Andreas Classen, Patrick Heymans, Pierre-Yves Schobbens, and Axel Legay. Sym-
bolic model checking of software product lines. In Proc. of the 33rd International
Conference on Software Engineering, ICSE ’11, 2011.

[28] Andreas Classen, Patrick Heymans, Pierre-Yves Schobbens, Axel Legay, and Jean-
François Raskin. Model checking lots of systems: Efficient verification of temporal
properties in software product lines. In ICSE, pages 335–344. ACM, 2010.

[29] Paul Clements and Linda Northrop. Software Product Lines: Practices and Patterns.
Addison-Wesley, Boston, MA, USA, 2001.

96

[30] Maxime Cordy, Andreas Classen, Patrick Heymans, Pierre-Yves Schobbens, and Axel
Legay. Provelines: A product line of verifiers for software product lines. In Proc. of
the 17th International Software Product Line Conference, SPLC, 2013.

[31] Maxime Cordy, Pierre-Yves Schobbens, Patrick Heymans, and Axel Legay. Be-
havioural modelling and verification of real-time software product lines. In Pro-
ceedings of the 16th International Software Product Line Conference - Volume 1,
SPLC ’12, pages 66–75, 2012.

[32] Maxime Cordy, Pierre-Yves Schobbens, Patrick Heymans, and Axel Legay. Beyond
boolean product-line model checking: Dealing with feature attributes and multi-
features. In 2013 35th International Conference on Software Engineering (ICSE),
pages 472–481, 2013.

[33] Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E. Leiserson.
Introduction to Algorithms. McGraw-Hill, 2nd edition, 2001.

[34] Pedro R. D’Argenio and Hernán C. Melgratti, editors. CONCUR 2013 - Concurrency
Theory - 24th International Conference, CONCUR 2013, Buenos Aires, Argentina,
August 27-30, 2013. Proceedings, volume 8052 of LNCS. Springer, 2013.

[35] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver.
TACAS’08/ETAPS’08, page 337340, Berlin, Heidelberg, 2008. Springer-Verlag.

[36] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Patterns in property specifications
for finite-state verification. In Proceedings of the 1999 International Conference on
Software Engineering (IEEE Cat. No.99CB37002), pages 411–420, May 1999.

[37] Niklas En and Niklas Srensson. An extensible sat-solver. In Enrico Giunchiglia
and Armando Tacchella, editors, SAT, volume 2919 of Lecture Notes in Computer
Science. Springer, 2003.

[38] Uli Fahrenberg and Axel Legay. General quantitative specification theories with
modal transition systems. Acta Inf., 51(5):261–295, 2014.

[39] Uli Fahrenberg and Axel Legay. The quantitative linear-time-branching-time spec-
trum. Theor. Comput. Sci., 538:54–69, 2014.

[40] Miguel Felder and Angelo Morzenti. Validating real-time systems by history-checking
trio specifications. In Proc. of the 14th International Conference on Software Engi-
neering, ICSE ’92, 1992.

97

[41] A. Filieri, G. Tamburrelli, and C. Ghezzi. Supporting self-adaptation via quantitative
verification and sensitivity analysis at run time. IEEE Transactions on Software
Engineering, 42(1):75–99, Jan 2016.

[42] Antonio Filieri, Carlo Ghezzi, and Giordano Tamburrelli. Run-time efficient proba-
bilistic model checking. In Proc. of the 33rd International Conference on Software
Engineering, ICSE ’11, 2011.

[43] Bernd Finkbeiner, Sriram Sankaranarayanan, and Henny B. Sipma. Collecting statis-
tics over runtime executions. Form. Methods Syst. Des., 27(3):253–274, November
2005.

[44] Simos Gerasimou, Radu Calinescu, and Alec Banks. Efficient runtime quantitative
verification using caching, lookahead, and nearly-optimal reconfiguration. In Proc.
of the 9th International Symposium on Software Engineering for Adaptive and Self-
Managing Systems, 2014.

[45] Carlo Ghezzi, Mauro Pezzè, Michele Sama, and Giordano Tamburrelli. Mining be-
havior models from user-intensive web applications. In Proceedings of the 36th Inter-
national Conference on Software Engineering, ICSE 2014, pages 277–287, New York,
NY, USA, 2014. ACM.

[46] Carlo Ghezzi, Leandro Sales Pinto, Paola Spoletini, and Giordano Tamburrelli. Man-
aging non-functional uncertainty via model-driven adaptivity. In Proc. of the 2013
International Conference on Software Engineering, ICSE ’13, 2013.

[47] Carlo Ghezzi and Amir Molzam Sharifloo. Dealing with non-functional requirements
for adaptive systems via dynamic software product-lines. In Software Engineering
for Self-Adaptive Systems II - International Seminar, Dagstuhl Castle, Germany,
October 24-29, 2010. [1].

[48] Roberto Giacobazzi and Radhia Cousot, editors. The 40th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL ’13, Rome,
Italy - January 23 - 25, 2013. ACM, 2013.

[49] M. Glinz. On non-functional requirements. In Requirements Engineering Conference,
2007. RE ’07. 15th IEEE International, pages 21–26, 2007.

[50] J. Guo, K. Czarnecki, S. Apel, N. Siegmund, and A. Wasowski. Variability-aware
performance prediction: A statistical learning approach. In 2013 28th IEEE/ACM

98

International Conference on Automated Software Engineering (ASE), pages 301–311,
Nov 2013.

[51] Jianmei Guo, Jules White, Guangxin Wang, Jian Li, and Yinglin Wang. A genetic al-
gorithm for optimized feature selection with resource constraints in software product
lines. J. Syst. Softw., 84(12):2208–2221, December 2011.

[52] Svein Hallsteinsen, Erlend Stav, Arnor Solberg, and Jacqueline Floch. Using product
line techniques to build adaptive systems. In Proc. of the 10th International on
Software Product Line Conference, SPLC ’06, 2006.

[53] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Statistical
Learning. Springer Series in Statistics. Springer New York Inc., New York, NY, USA,
2001.

[54] Christopher Henard, Mike Papadakis, Mark Harman, and Yves Le Traon. Combining
multi-objective search and constraint solving for configuring large software product
lines. In Proceedings of the 37th International Conference on Software Engineering -
Volume 1, ICSE ’15, pages 517–528, Piscataway, NJ, USA, 2015. IEEE Press.

[55] Thomas A. Henzinger. Quantitative reactive modeling and verification. Computer
Science - R&D, 28(4):331–344, 2013.

[56] Thomas A. Henzinger, Zohar Manna, and Amir Pnueli. Timed transition systems. In
Proceedings of the Real-Time: Theory in Practice, REX Workshop, pages 226–251,
Berlin, Heidelberg, 1992. Springer-Verlag.

[57] Thomas A. Henzinger and Jan Otop. From model checking to model measuring. In
D’Argenio and Melgratti [34], pages 273–287.

[58] Thomas A. Henzinger and Joseph Sifakis. The discipline of embedded systems design.
IEEE Computer, 40(10):32–40, 2007.

[59] Robert M. Hierons, Miqing Li, Xiaohui Liu, Sergio Segura, and Wei Zheng. Sip:
Optimal product selection from feature models using many-objective evolutionary
optimization. ACM Trans. Softw. Eng. Methodol., 25(2):17:1–17:39, April 2016.

[60] Mike Hinchey, Sooyong Park, and Klaus Schmid. Building dynamic software product
lines. Computer, 45:22–26, 2012.

[61] Gerard J. Holzmann. Design and Validation of Computer Protocols. Prentice-Hall,
Inc., USA, 1990.

99

[62] Gerard J. Holzmann. The SPIN Model Checker - primer and reference manual.
Addison-Wesley, 2004.

[63] Raj Jain. The art of computer systems performance analysis. Wiley, 1991.

[64] Jonas Finnemann Jensen, Kim Guldstrand Larsen, Jǐŕı Srba, and Lars Kaerlund
Oestergaard. Efficient model-checking of weighted ctl with upper-bound constraints.
Int. J. Softw. Tools Technol. Transf., 18(4):409–426, August 2016.

[65] Christian Kaltenecker, Alexander Grebhahn, Norbert Siegmund, Jianmei Guo, and
Sven Apel. Distance-based sampling of software configuration spaces. In Proceedings
of the 41st International Conference on Software Engineering, ICSE 2019, Montreal,
QC, Canada, May 25-31, 2019, pages 1084–1094. IEEE / ACM, 2019.

[66] Kyo C Kang, Sholom G. Cohen, James A. Hess, William E. Novak, and A. Spencer
Peterson. Feature-Oriented Domain Analysis feasibility study. Technical report,
SEI-CMU, 1990.

[67] Kyo C Kang, Sholom G. Cohen, James A. Hess, William E. Novak, and A. Spencer
Peterson. Feature-Oriented Domain Analysis (FODA) feasibility study. Technical
report, Software Engineering Institute - CMU, 1990.

[68] Richard M. Karp. A characterization of the minimum cycle mean in a digraph. Discr.
Math., 23:309–311, 1978.

[69] Christian Kästner, Klaus Ostermann, and Sebastian Erdweg. A variability-aware
module system. In Proceedings of the ACM International Conference on Object
Oriented Programming Systems Languages and Applications, OOPSLA ’12, pages
773–792, New York, NY, USA, 2012. ACM.

[70] Jeffrey O. Kephart and David M. Chess. The vision of autonomic computing. Com-
puter, 36(1):41–50, January 2003.

[71] Sascha Konrad and Betty H. C. Cheng. Real-time specification patterns. In Proceed-
ings of the 27th International Conference on Software Engineering, ICSE ’05, pages
372–381, New York, NY, USA, 2005. ACM.

[72] Marta Kwiatkowska, Gethin Norman, and David Parker. Prism: Probabilistic model
checking for performance and reliability analysis. SIGMETRICS Perform. Eval.
Rev., 36(4):40–45, March 2009.

100

[73] Kim Lauenroth, Klaus Pohl, and Simon Toehning. Model checking of domain arti-
facts in product line engineering. In ASE, pages 269–280. IEEE Computer Society,
2009.

[74] Jaejoon Lee and Kyo C. Kang. A feature-oriented approach to developing dynam-
ically reconfigurable products in product line engineering. In Proceedings of the
10th International on Software Product Line Conference, SPLC ’06, pages 131–140,
Washington, DC, USA, 2006. IEEE Computer Society.

[75] David Lo, Leonardo Mariani, and Pezze Mauro. Automatic steering of behavioral
model inference. In Proceedings of the the 7th Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on The Foundations of
Software Engineering, ESEC/FSE ’09, pages 345–354, New York, NY, USA, 2009.
ACM.

[76] Davide Lorenzoli, Leonardo Mariani, and Mauro Pezzè. Automatic generation of
software behavioral models. In Proceedings of the 30th International Conference on
Software Engineering, ICSE ’08, pages 501–510, New York, NY, USA, 2008. ACM.

[77] L. Mariani, M. Pezze, and M. Santoro. Gk-tail+ an efficient approach to learn
software models. IEEE Transactions on Software Engineering, 43(8):738, 10 2017.

[78] Nicolas Markey and Philippe Schnoebelen. Symbolic model checking for simply-
timed systems. In Yassine Lakhnech and Sergio Yovine, editors, Formal Techniques,
Modelling and Analysis of Timed and Fault-Tolerant Systems, pages 102–117, Berlin,
Heidelberg, 2004. Springer Berlin Heidelberg.

[79] G. A. Moreno, O. Strichman, S. Chaki, and R. Vaisman. Decision-making with
cross-entropy for self-adaptation. In 12th International Symposium on Software En-
gineering for Adaptive and Self-Managing Systems (SEAMS), May 2017.

[80] Gabriel A. Moreno, Javier Camara, David Garlan, and Bradley Schmerl. Proactive
self-adaptation under uncertainty: A probabilistic model checking approach. In Proc.
of the 2015 10th Joint Meeting on Foundations of Software Engineering, ESEC/FSE
2015, 2015.

[81] Gabriel A. Moreno, Javier Camara, David Garlan, and Bradley R. Schmerl. Effi-
cient decision-making under uncertainty for proactive self-adaptation. In 2016 IEEE
International Conference on Autonomic Computing, 2016.

101

[82] Vivek Nair, Tim Menzies, Norbert Siegmund, and Sven Apel. Using bad learners to
find good configurations. In Proceedings of the 2017 11th Joint Meeting on Founda-
tions of Software Engineering, ESEC/FSE 2017, page 257267, New York, NY, USA,
2017. Association for Computing Machinery.

[83] Vivek Nair, Tim Menzies, Norbert Siegmund, and Sven Apel. Using bad learners to
find good configurations. In Proceedings of the 2017 11th Joint Meeting on Foun-
dations of Software Engineering, ESEC/FSE 2017, pages 257–267, New York, NY,
USA, 2017. ACM.

[84] Vivek Nair, Tim Menzies, Norbert Siegmund, and Sven Apel. Faster discovery of
faster system configurations with spectral learning. Automated Software Engineering,
25(2):247–277, Jun 2018.

[85] Jeho Oh, Don Batory, Margaret Myers, and Norbert Siegmund. Finding near-optimal
configurations in product lines by random sampling. In Proceedings of the 2017 11th
Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2017, pages 61–
71, New York, NY, USA, 2017. ACM.

[86] Tony Ohmann, Kevin Thai, Ivan Beschastnikh, and Yuriy Brun. Mining precise
performance-aware behavioral models from existing instrumentation. In Companion
Proceedings of the 36th International Conference on Software Engineering, ICSE
Companion 2014, pages 484–487, New York, NY, USA, 2014. ACM.

[87] Rafael Olaechea, Joanne Atlee, Axel Legay, and Uli Fahrenberg. Trace checking for
dynamic software product lines. In Proceedings of the 13th International Conference
on Software Engineering for Adaptive and Self-Managing Systems, SEAMS ’18, pages
69–75, New York, NY, USA, 2018. ACM.

[88] Rafael Olaechea, Uli Fahrenberg, Joanne M. Atlee, and Axel Legay. Long-term
average cost in featured transition systems. In Proceedings of the 20th International
Systems and Software Product Line Conference, SPLC ’16, pages 109–118, New York,
NY, USA, 2016. ACM.

[89] Peyman Oreizy, Nenad Medvidovic, and Richard N. Taylor. Architecture-based run-
time software evolution. In Proceedings of the 20th International Conference on
Software Engineering, ICSE ’98, pages 177–186, Washington, DC, USA, 1998. IEEE
Computer Society.

102

[90] Gustavo G. Pascual, Roberto E. Lopez-Herrejon, Mónica Pinto, Lidia Fuentes, and
Alexander Egyed. Applying multiobjective evolutionary algorithms to dynamic soft-
ware product lines for reconfiguring mobile applications. J. Syst. Softw., 103(C):392–
411, May 2015.

[91] Gustavo G. Pascual, Mónica Pinto, and Lidia Fuentes. Run-time adaptation of mobile
applications using genetic algorithms. In Proc. of the 8th International Symposium
on Software Engineering for Adaptive and Self-Managing Systems, SEAMS ’13, 2013.

[92] F. Pastore, D. Micucci, and L. Mariani. Timed k-tail: Automatic inference of timed
automata. In 2017 IEEE International Conference on Software Testing, Verification
and Validation (ICST), pages 401–411, March 2017.

[93] Malte Plath and Mark Ryan. Feature integration using a feature construct. Sci.
Comput. Program., 41(1):53–84, September 2001.

[94] Klaus Pohl, Gunter Bckle, and Frank J van der Linden. Software Product Line
Engineering: Foundations, Principles and Techniques. Springer-Verlag, Berlin, Hei-
delberg, 2005.

[95] A. S. Sayyad, J. Ingram, T. Menzies, and H. Ammar. Scalable product line config-
uration: A straw to break the camel’s back. In 2013 28th IEEE/ACM International
Conference on Automated Software Engineering (ASE), pages 465–474, Nov 2013.

[96] Micha Sharir. A strong-connectivity algorithm and its applications in data flow
analysis. Computers And Mathematics with Applications, 7(1):67–72, 1981.

[97] Sol M. Shatz, Jia-Ping Wang, and Masanori Goto. Task allocation for maximizing
reliability of distributed computer systems. IEEE Trans. Computers, 41(9):1156–
1168, 1992.

[98] Norbert Siegmund, Alexander Grebhahn, Sven Apel, and Christian Kastner.
Performance-influence models for highly configurable systems. In Proceedings of the
2015 10th Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2015,
pages 284–294, New York, NY, USA, 2015. ACM.

[99] Norbert Siegmund, Sergiy S. Kolesnikov, Christian Kastner, Sven Apel, Don Ba-
tory, Marko Rosenmuller, and Gunter Saake. Predicting performance via automated
feature-interaction detection. In Proceedings of the 34th International Conference on
Software Engineering, ICSE ’12, page 167177. IEEE Press, 2012.

103

[100] Fabio Somenzi. CUDD: CU Decision Diagram Package. https://add-lib.scce.

info/assets/documents/cudd-manual.pdf, accessed 2021-09-09.

[101] M. H. ter Beek, A. Legay, A. Lluch Lafuente, and A. Vandin. Statistical analysis of
probabilistic models of software product lines with quantitative constraints. In Proc.
of the 19th International Conference on Software Product Line, SPLC ’15, 2015.

[102] Thomas Thum, Sven Apel, Christian Kastner, Ina Schaefer, and Gunter Saake. A
classification and survey of analysis strategies for software product lines. ACM Com-
put. Surv., 47(1):6:1–6:45, June 2014.

[103] R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the royal
statistical society series b-methodological, 58:267–288, 1996.

[104] Andrey N. Tikhonov and Vasiliy Y. Arsenin. Solutions of ill-posed problems. V. H.
Winston & Sons, Washington, D.C.: John Wiley & Sons, New York, 1977. Trans-
lated from the Russian, Preface by translation editor Fritz John, Scripta Series in
Mathematics.

[105] Mahsa Varshosaz and Ramtin Khosravi. Discrete time markov chain families: Mod-
eling and verification of probabilistic software product lines. In Proceedings of the
17th International Software Product Line Conference Co-located Workshops, SPLC
’13 Workshops, pages 34–41, New York, NY, USA, 2013. ACM.

[106] Danny Weyns and Radu Calinescu. Tele assistance: A self-adaptive service-based
system examplar. In Proc. of the 10th International Symposium on Software Engi-
neering for Adaptive and Self-Managing Systems, SEAMS ’15, 2015.

[107] Uri Zwick and Mike Paterson. The complexity of mean payoff games on graphs.
Theor. Comput. Sci., 158:343–359, 1996.

104

https://add-lib.scce.info/assets/documents/cudd-manual.pdf
https://add-lib.scce.info/assets/documents/cudd-manual.pdf

	List of Tables
	List of Figures
	Introduction
	Motivation
	Thesis Overview and Contributions
	Thesis Organization

	Background
	Software Product Lines
	Behaviour Models
	Dynamic Software Product Lines
	Promela, Featured Promela, and ProVeLines
	Promela
	Featured Promela
	ProVeLines

	Trace Checking for Dynamic Software Product Lines
	Running Example
	Background
	Trace Checking

	Approach
	Family-based Trace Checking

	Evaluation
	Subject Systems
	Experimental Setup
	Results and Discussion

	Data Abstraction
	Soundness of Data Abstraction
	Results and Discussion

	Related Work
	Conclusions

	Long-term Average Cost in Featured Transition Systems
	Background
	Limit-Average Cost
	Strongly Connected Components (SCCs)

	Motivating Example
	Family-Based Limit-Average Computation
	Featured Finishing Times
	Strongly Connected Components of a Featured Transition System
	Maximum Average-Weight Cycle Computation

	Implementation and Evaluation
	Subject Systems
	Results
	Discussion

	Related Work
	Conclusions and Future Work

	Learning Timed Featured Transition Systems
	Approach
	Linear Regression
	Regularized Linear Regression

	 Evaluation
	Subject Systems
	Experimental Methods
	RQ-1 Accuracy of Transition Time Estimates
	RQ-2 Comparison against Accuracy of Perfume Transition-Time Estimates
	RQ-3 Accuracy of trace time estimates
	Threats to validity

	Related Work
	Conclusions

	Conclusions and Future Work
	References

