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Abstract 

Recent developments in wind energy extraction methods from vortex-induced vibration (VIV) have 

fueled the research into vortex shedding behaviour. The vortex shedding map is vital for the consistent 

use of normalized amplitude and wavelength to validate the predicting power of forced vibration 

experiments. However, there is a lack of demonstrated methods of generating this map at Reynolds 

numbers feasible for energy generation due to the high computational cost and complex dynamics. 

Leveraging data-driven methods addresses the limitations of the traditional experimental vortex 

shedding map generation, which requires large amounts of data and intensive supervision that is 

unsuitable for many applications and Reynolds numbers. This thesis presents a data-driven approach for 

generating vortex shedding maps of a cylinder undergoing forced vibration that requires less data and 

supervision while accurately extracting the underlying vortex structure patterns.  

The quantitative analysis in this dissertation requires the univariate time series signatures of local fluid 

flow measurements in the wake of an oscillating cylinder experiencing forced vibration. The datasets 

were extracted from a 2-dimensional computational fluid dynamic (CFD) simulation of a cylinder 

oscillating at various normalized amplitude and wavelength parameters conducted at two discrete 

Reynolds numbers of 4000 and 10,000. First, the validity of clustering local flow measurements was 

demonstrated by proposing a vortex shedding mode classification strategy using supervised machine 

learning models of random forest and 𝑘-nearest neighbour models, which achieved 99.3% and 99.8% 

classification accuracy using the velocity sensors orientated transverse to the pre-dominant flow (𝑢𝑦), 

respectively. Next, the dataset of local flow measurement of the 𝑦-component of velocity was used to 

develop the procedure of generating vortex shedding maps using unsupervised clustering techniques. The 

clustering task was conducted on subsequences of repeated patterns from the whole time series extracted 

using the novel matrix profile method. The vortex shedding map was validated by reproducing a 

benchmark map produced at a low Reynolds number. The method was extended to a higher Reynolds 

number case of vortex shedding and demonstrated the insight gained into the underlying dynamical 

regimes of the physical system. The proposed multi-step clustering methods denoted Hybrid Method B, 

combining Density-Based Clustering Based on Connected Regions with High Density (DBSCAN) and 

Agglomerative algorithms, and Hybrid Method C, combining 𝑘-Means and Agglomerative algorithms 

demonstrated the ability to extract meaningful clusters from more complex vortex structures that become 

increasingly indistinguishable. The data-driven methods yield exceptional performance and versatility, 

which significantly improves the map generation method while reducing the data input and supervision 

required.  
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Chapter 1  

Introduction 

Vortex shedding is an aerodynamic phenomenon when fluid flows around a bluff body, such as a cylinder. 

Vortex shedding produces unbalanced forces acting on the structure, which causes vortex-induced 

vibrations (VIV). The majority of research regarding the effects of vortex shedding has been on reducing 

the unbalanced forces for applications suffering from the phenomenon. VIV arises in many domains, such 

as the design of skyscrapers, pipelines [1], offshore structures [2], bridges [3], and tube bank heat 

exchangers [4]. A prominent example of VIV mitigation is the helical strakes added to the exterior of tall 

smokestacks or chimneys, as shown in Figure 1.1 [5]. 

 

Figure 1.1. Helical strakes on smoke towers for the mitigation of VIV [6]. 

Bladeless wind turbines are a new concept of wind harvesting machines that utilize VIV to oscillate a 

vertical cylinder. Instead of reducing the oscillations, the main principle of bladeless wind turbines is to 

take advantage of bluff bodies' natural phenomenon to extract renewable energy from the motion.  

The generation and shedding of large coherent vortex structures occur in distinct modes. The most 

common modes are 2S, described by two single opposingly spinning vortices shed per oscillating period, 

and 2P, described by a pair of opposing spinning vortices shed per oscillating period. The hydrodynamic 

signatures of the unsteady wake behind the bluff body depend on the body's intrinsic properties and 

movement.  

Forced vibration experiments are often used to study vortex shedding behaviour and rely on 

consistent use of the non-dimensional parameters of the prescribed motion. Morse and Williamson [7] 
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produced a vortex shedding map for the normalized amplitude–wavelength plane by conducting 

numerous forced vibration experiments at a Reynolds number of 4000. The authors conducted 5860 

experimental runs in a water channel to obtain high-resolution vortex shedding regimes, as shown in 

Figure 1.2.  

 

Figure 1.2. Forced vibration vortex shedding map in normalized amplitude–wavelength space [7]. 

1.1 Objectives 

The main objective of the thesis was to develop a data-driven approach to generating vortex shedding 

maps for a cylinder under prescribed motion. This larger objective was discretized into three smaller 

goals: namely, 

1. Validate the use of local flow measurements for vortex shedding identification.  

2. Develop data-driven methods and validate their performance in the vortex shedding map 

using a reference case at a low Reynolds Number. 

3. Extend the method from Objective 2. to generate a vortex shedding map at a higher Reynolds 

number case.  

A quantitative comparison of various machine learning models trained using differing simulated vortex 

shedding local flow measurements and corresponding feature noise analysis provided an effective wake 

classification strategy to satisfy the first objective. Next, Objective 2 was satisfied by developing an 

unsupervised clustering method to extract a low number of well-defined clusters that are rooted in the 

flow physics of the low Reynolds number case to reproduce the benchmark vortex shedding map. Finally, 

the final objective was met by generating vortex shedding maps using the methods from Objective 2. for 

higher Reynolds numbers and discussing the insights gained on the underlying dynamical regimes of the 

physical system.  
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1.2 Contributions 

The effort of this dissertation deviates from previous work concerning vortex shedding mode 

classification by demonstrating the gains of representing local fluid measurements in the frequency 

domain for the application of oscillating cylinders. Also, the frequency domain feature vectors method 

was expanded for higher complexity vortex modes. The results highlight the ability of the proposed 

schema to accurately identify vortex structures in the wake of an oscillating cylinder with reduced input 

data and computational resource required, which provides validation for the unsupervised clustering of 

local flow measurements.  

Previous unsupervised clustering approaches have shown promising results for identifying and 

dissection of vortex shedding modes. However, the methods require extensive input data to compute the 

entire flow field. This dissertation's effort addresses the opportunity to develop a data-driven method 

using unsupervised clustering of vortex shedding modes from local flow signatures sampled in the wake. 

Furthermore, the primary contribution of this method is its use in generating vortex shedding maps for 

high Reynolds numbers, which have been limited in literature due to the increased computational cost 

and complex dynamics. The unsupervised clustering approach used in this effort varies from previous 

studies by clustering local flow measurements and leveraging the benefits of other flow field sensors.  

1.3 Thesis Organization 

The structure of this dissertation includes an introduction, a background, literature review, methodology 

and the remaining chapters are divided into three sections: 1) Mode Classification using Machine 

Learning (Chapter 5), 2) Vortex Shedding Map Generation at Low Reynolds Number (Chapter 6), and 3) 

Vortex shedding map Generation at High Reynolds Number (Chapter 7). 

The contents of these chapters are summarized as follows: 

• Chapter 5 presents an effective wake classification strategy, applying machine learning models 

trained using fluid sensor data. The demonstrated ability to classify vortex shedding modes using 

the local flow measurement dataset structure is a pivotal proof-of-concept for applying the 

following clustering analysis.  

• Chapter 6 details the method for generating vortex shedding maps using unsupervised clustering. 

The results of the vortex shedding map generation method are compared to a pre-existing map to 

validate the method's reproducibility for its’ application to unknown regimes.   

• Chapter 7 extends the vortex shedding map generation method to an unknown map domain and 

quantifies the performance of the clustering method for more complex flow regimes.  
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Chapter 2  

Background  

2.1 Introduction 

This chapter presents an overview of the fundamental concepts of vortex-induced vibration (VIV) due to 

vortex shedding and time series clustering. Vortex-induced vibration is first introduced through the 

theoretical analysis and the subsequent free and forced experimental vibration setups used to study the 

vortex shedding modes. Next, time series clustering is discussed, emphasizing subsequence clustering, 

which is the focus of this thesis. The aspects of the clustering analysis are presented, including explaining 

the roles of time series representation, similarity measures, clustering algorithms, and evaluation metrics 

on the analysis. 

2.2 Vortex-Induced Vibration 

The phenomenon of vortex-induced vibrations due to vortex shedding of bluff bodies is introduced first 

with a theoretical analysis of a fixed cylinder. Next, the two primary methodologies used to study VIV 

are introduced, focusing on forced vibration and its implications in investigating vortex shedding modes 

at varying Reynold numbers.  

2.2.1 Theory  

The theoretical analysis for a simplified two-dimensional fixed cylinder in uniform flow allows for a 

preliminary understanding of vortex-induced vibrations. The vortex-induced vibration for a cylinder of 

uniform diameter, 𝐷, in crossflow, 𝑈, with transverse oscillation motion is illustrated in Figure 2.1. 

 

Figure 2.1. Illustration of a cylinder in free stream and sinusoidal vertical motion. 
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The parameters of interest for vortex-induced vibration include the Reynolds number (Re), oscillation 

amplitude (𝐴), oscillation wavelength (𝜆), and oscillation frequency (𝑓). The Reynolds number for the 

case of a cylinder in crossflow is defined in Equation (2.1). 

𝑅𝑒 =
𝜌𝑈𝐷

𝜇
 

(2.1) 

The Reynolds number is a function of the fluid density, 𝜌, and fluid viscosity, 𝜇. The oscillation amplitude 

is normalized using the diameter of the cylinder to obtain a non-dimensional amplitude of the sinusoidal 

motion, 𝐴∗, described in Equation (2.2). 

𝐴∗ =
𝐴

𝐷
 

(2.2) 

The oscillation wavelength is converted to the non-dimensional parameter of the normalized wavelength, 

𝜆∗, using the cylinder's diameter and the frequency representation defined in Equation (2.3). 

𝜆∗ =
𝜆

𝐷
=

𝑈

𝑓𝐷
 

(2.3) 

Under sinusoidal forcing, the motion of the cylinder in the vertical axis is approximated by a sinusoidal 

function represented by, 

𝑦(𝑡) = 𝐴 sin(𝜔𝑆𝑡 −  𝜙) (2.4) 

 

where 𝜔𝑆 = 2𝜋𝑓𝑠 is the circular vortex shedding frequency as a function of the dominant vortex shedding 

frequency, 𝑓𝑠, and the phase shift of the oscillation, 𝜙. The dominant vortex shedding frequency, 𝑓𝑠, is 

defined based on its relationship to the free stream velocity and diameter as 

𝑓𝑠  = 𝑆𝑡
𝑈

𝐷
 

(2.5) 

where 𝑆𝑡 is the Strouhal number [8]. The Strouhal number represents the ratio of a characteristic flow 

time to a characteristic oscillation time. The force acting on the cylinder from the vortex shedding is 

quantified by a lift force that acts traverse to the flow direction. The lift force per unit length is represented 

by the sinusoidal function in Equation (2.6). 

𝐹𝐿(𝑡) =
1

2
𝜌𝑈2𝐷𝐶𝐿 sin(𝜔𝑆𝑡 −  𝜑) 

(2.6) 

The lift force can be redefined in dimensionless form using the time-varying coefficient of lift by 

rearranging Equation (2.6). 

𝐶𝐿(𝑡) =
𝐹𝐿(𝑡)

1/2𝜌𝑈2𝐷
 

(2.7) 

The drag force acting on the cylinder is another useful parameter in the vortex shedding effect, primarily 

for two-dimensional vibration analysis. The drag coefficient is defined by Equation (2.8) 

𝐶𝐷(𝑡) =
𝐹𝐷(𝑡)

1/2𝜌𝑈2𝐷
 

(2.8) 

2.2.1.1 Effect of Reynolds Number 

The Reynolds number directly affects the vortex shedding behaviour of a fixed cylinder. Vortex shedding 

can be analyzed from the perspective of the Strouhal number and its relationship with the Reynolds 
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Number. The Strouhal number for a stationary two-dimensional cylinder with varying Reynolds numbers 

is shown in Figure 2.2. 

 

Figure 2.2. Strouhal Number and Reynolds Number relationship [9]. 

The following regimes are outlined by analyzing the changes of Strouhal number and the corresponding 

vortex shedding behaviour: 

1. No vortex shedding is present for minimal Reynolds numbers, Re ≲ 40, and the flow patterns 

vary from creeping flow to recirculation in the wake. At this low Reynolds number, the Strouhal 

number is equal to zero.  

2. The regime between Reynolds number 40 ≲ Re ≲ 300, vortex shedding occurs with Laminar 

Vortex Streets and increasing Strouhal number and lift coefficient.  

3. For the range of Reynolds number 300 ≲ Re ≲250,000 vortex shedding persists and contains 

several dynamic changes while the Strouhal number stays relatively constant 𝑆𝑡 ≈ 0.2. 

4. The regime between Reynolds number 250,000 ≲ Re ≲500,000, vortex shedding disappears for 

smooth cylinders with low turbulence stream. 

5. The final domain is associated with a high Reynolds number, Re ≳ 10^6, where fully turbulent 

vortex shedding occurs at a higher Strouhal number 𝑆𝑡 ≈ 0.26. 

The regimes distinguished have the approximate flow fields summarized in Table 2.1. 
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Table 2.1: Flow Regimes for Stationary Smooth Cylinders in Crossflow 

Flow Illustration Description 
Reynolds/Strouhal 

Number 

 

Unseparated Flow. 

 

𝑅𝑒 ≲ 40 

𝑆t = 0 

 

Recirculation in the wake. 

 

 

Braid vortices are roughly 

parallel to the incoming 

flow [10]. 

 

Laminar vortex shedding. 
40 ≲ Re ≲ 300 

𝑆𝑡 ∝ 𝑅𝑒 

 

Turbulence on vortex 

shedding. 

 

300 ≲ Re ≲250,000 

𝑆𝑡 ≈ 0.2 

 

Turbulent boundary layer 

transition, no shedding 

behaviour. 

250,000 ≲ Re 

≲500,000 

 

Re-established turbulent 

vortex shedding. 

Re ≳ 10^6 

𝑆𝑡 ≈ 0.26 
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Two regions have been proposed to study vortex shedding divided by a critical Reynolds Number [10]. 

The first region, regarded as subcritical, is typically below 𝑅𝑒 ≈ 1000, which includes the first regime 

of vortex shedding onset by instabilities at Reynolds number 𝑅𝑒 ≈ 40 [10]. The subsequent instability 

occurs around 𝑅𝑒 ≈ 300 which introduces turbulence in the wake. The next region, regarded as the 

critical regime, begins at approximately 𝑅𝑒 ≈ 250,000, where the boundary layer transitions from 

laminar to turbulent, affecting the flow separation points and the process of vortex formation [10]. A 

significant drop in drag coefficient marks the onset of the critical regime, referenced as the drag crisis, 

which increases as the Reynolds number increases over the regime [10]. Above this regime is the 

supercritical regime, which begins at approximately 𝑅𝑒 ≈ 106 which includes the re-establishment of 

the turbulent vortex shedding.  

These outlined regimes are approximations of the two-dimensional flow dynamics in the wake of a 

stationary cylinder, and the onset of each regime is sensitive to a variety of factors such as surface 

roughness and turbulence intensity of the free stream. The Reynolds number has similar effects on a 

cylinder free to oscillate in the transverse direction. Specifically, the Reynolds number affects the 

boundary layer's development and the separation points for the moving cylinder.  

2.2.2 Free and Forced Vibration  

There are two primary methodologies to study vortex-induced vibration for a mounted cylinder of circular 

diameter in uniform crossflow: namely, free and forced vibration. A free vibration experiment of VIV 

allows the cylinder to oscillate due to the external and unbalanced forces produced by the fluid [10]. The 

structure will vibrate corresponding to the vortex shedding mode, oscillating amplitude, and frequency 

when under synchronization conditions. The oscillating cylinder for free vibration is modelling by 

mounting the cylinder on linear springs with constant 𝑘, a linear damper with constant 𝑏, and cylinder 

mass, 𝑚, as shown in Figure 2.3. 

 

Figure 2.3. Modelled cylinder for transverse oscillations in crossflow. 

The equation of motion for the vibrations of an elastically mounted cylinder is defined by Equation (2.9). 

𝑚
𝑑2

𝑑𝑡2
𝑦(𝑡) + 𝑏

𝑑

𝑑𝑡
𝑦(𝑡) + 𝑘 ∙ 𝑦(𝑡) = 𝐹(𝑡) 

(2.9) 
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The fluid force is denoted by 𝐹(𝑡) is comprised of two parts: namely, the component in phase with 

velocity and the component in phase with the acceleration [10].  

Forced vibrations models, which are considered in this study, are used to approximate the free 

vibration model described by prescribing the oscillatory motion of the cylinder. Forced vibration models 

are used in experiments to better control the oscillations through resonance and dampening. The studies 

using forced vibration are often conducted in the parameter space of non-dimensional frequency and 

amplitude to standardize the motion of frequency, 𝑓, amplitude, 𝐴, and incoming flow velocity, 𝑈 [11].  

2.2.2.1 Wake Excitation Regions and Lock-in 

Free vibrations occur in the wake excitation (positive energy) regime, where the vibration energy is only 

transferred from the fluid energy marked by positive lift coefficients in phase with the velocity [10]. In 

forced vibration, the wake capture region is present where the vortices match the frequency of the cylinder 

vibration as opposed to the Strouhal frequency. The positive energy and wake capture regions are shown 

in Figure 2.4.   

 

Figure 2.4. Free vibration and forced vibration in fluid-structure energy transfer regions.  [10]. 

The overlap of the wake capture and wake excitation regions is called the lock-in region. The lock-in 

region is a state of resonance.  

2.2.2.2 Forced Vibration for the Study of Free Vibration  

The forced vibration experiments provide insights into free vibration vortex shedding modes by exploring 

the parameter space to match flow-induced vibration patterns. Previous studies discovered limitations of 

forced vibration experiments that observed negative fluid excitation where free vibration was expected 

to occur [12]. Morse and Williamson [13] addressed the debate of the validity of the predicting power of 

forced vibration by finding that thorough matching of amplitude, frequency, and Reynolds number 

resulted in consistent fluid forces. The forced vibration model used in this dissertation was controlled 

with respect to matching the non-dimensional amplitude and frequency with special consideration of 

Reynolds number to justify the use of this model. 

2.2.3 Vortex Shedding Modes 

The generation and shedding of large coherent vortex structures occur in distinct modes. The vortex 

shedding patterns produced by two-dimensional investigations will be the focus of the following review.  



 

10 

 

Williamson and Roshko [14] built upon the fundamental study of Bishop and Hassan [15] to explore 

the vortex shedding patterns from a forced oscillation of a cylinder. Williamson and Roshko [14] studied 

the parameter space by varying the Reynolds number from 300 to 1000 to generate a map of the 

synchronized patterns observed. The vortex shedding modes identified near the lock-in regions are 

denoted as C(2S), 2S, 2P, and P+S, as shown in Figure 2.6. The mode 2S is described by two single 

opposingly spinning vortices shed per oscillating period, and 2P, characterized by a pair of opposing 

spinning vortices shed per oscillating period. The mode C(2S) is similar to the 2S vortex structure as 

smaller vortices coalesce in the near field to produce the larger structures in the far-field. A P+S mode is 

an asymmetric form of the 2P mode described by a pair of vortices and a single vortex shed per oscillating 

period. An additional vortex shedding mode denoted as 2P+2S comprises two pairs of opposingly 

spinning vortices separated by two single vortices being shed. The boundary between P+S and 2P was 

well established for Reynolds number 300 - 1000, but the sensitivity to Reynolds number of these modes 

produced the P+S mode in the 2P region for Reynolds number 𝑅𝑒 < 300. 

Morse and Williamson [7] expanded the work Williamson and Roshko [14] to Re = 4000 to produce 

an extensive map of the vortex shedding modes. The authors conducted 5680 experimental runs in the 

parameter space to investigate areas of interest. The existence of the C(2S), 2S, 2P, and P+S modes was 

confirmed in the regions expected. The authors identified a new mode at the transition boundary of the 

2S and 2P modes named '2P Overlap' or reduced '2PO'. The 2PO mode is described by two pairs of 

vortices being shed per cycle with one vortex in each oscillation much weaker and intermittently switches 

between the 2S and 2P modes. The weaker secondary vortex decays rapidly as the vortices travel 

downstream, resembling 2S. The fluid excitation represented by force in phase with velocity determines 

which modes should be expected for free vibration. The fluid excitation of the P+S mode was measured 

to be strongly negative, concluding that this mode would not appear for free vibration cases. The 

boundaries of the vortex shedding modes were outlined in the normalized amplitude-wavelength plane, 

as shown in Figure 2.5. 

 

Figure 2.5. Vortex shedding map in the normalized amplitude–wavelength plane for forced vibration 

[7]. 
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2.2.4 Vortex Shedding Modes at High Reynolds Number 

Forced vibration analysis has been implemented for high Reynolds cases. Wu et al. [16] studied vortex 

shedding patterns between Reynolds number 35,000 - 130,000 using computational fluid dynamic 

simulations. The authors observed the first transition at approximately 𝑅𝑒 ≈ 4000 where the 2S and 2P 

mode was identified. A transitional mode between 2S and 2P was identified and named by the authors 

quasi-2P which aligns with the 2PO identified by Morse and Williamson [7]. At higher Reynolds 

numbers, 2S patterns were observed at 𝑅𝑒 =  35,000 and 2P at 𝑅𝑒 = 50,000 and 55,000. A 2P mode 

was observed in most cycles at 𝑅𝑒 = 65,000 with occasional 1P+2S patterns. A P+S mode was observed 

at 𝑅𝑒 =  70,000 but was only shed on one side and occasional on both sides but not defined enough for 

mode classification. A relatively stable mode identified as 2P+4S was observed at 𝑅𝑒 =  78,000. The 

mode is described by a pair of vortices and two single vortices being shed, in that order, on each side of 

the oscillation. A similar 2P + 4S mode was observed at 𝑅𝑒 = 110,000 and 120,000, but the order of 

shedding differed, a single vortex followed by a pair of vortices was shed then the final single vortex was 

shed. The authors identified a final highly regular mode at 𝑅𝑒 = 130,000 denoted 2P+8S. 

The work by Wu et al. [16] was extended by Zhang et al. [17] to study the effect of turbulence 

intensity on the vortex shedding modes. The authors utilized the same CFD methodology for the 

simulation of forced vibration but experimented with three levels of free-stream turbulence intensity 

(0.2%, 1%, 5%). The termed quasi-2P vortex shedding mode, or 2PO in the terminology of Morse and 

Williamson [7], was observed at Re = 30,000 across all turbulence intensities though the strength and 

cohesiveness decreased for greater intensities. The vortex shedding patterns begin to differ between 

turbulence intensities at the Reynolds number 50,000. Two vortex shedding patterns was observed for 

the lowest turbulence intensity case, P+QP and T+QT, where "Q" represents the same quasi-state such 

that one of the vortices is weaker than the rest. At turbulence intensity of 1%, the P+QP mode transforms 

into a P+S mode due to the increased diffusion, which causes the weaker vortex in the QP portion to 

cancel with the stronger vortex to create a single S vortex. At Reynolds number 𝑅𝑒 = 70,000, a vortex 

structure denoted T+S+P is observed clearly at turbulence intensity 0.2%, which dissipates to a T+P mode 

at intensity 1%. Similarly, to the 𝑅𝑒 = 50,000 case, no uniform vortex shedding behaviour was observed 

for the highest turbulence intensity 5%. For the last case at Reynold number 𝑅𝑒 = 100,000, the vortex 

mode T+S+S+T was observed at turbulence intensity 0.2% and a T+QT+S mode for turbulence intensity 

1%. At the turbulence intensity of 5%, the vortex structures become elongated due to the high flow 

velocity of the free steam and significantly mixed due to the high turbulence energy. The general 

conclusion taken from the study is that when the Reynolds number increases, the number of vortices shed 

each oscillation increases. Furthermore, the turbulence intensity of the incoming stream has a dissipation 

effect that causes the vortices to become weaker and increasingly difficult to distinguish. 

The idealized point vortex representation of the standard wake modes, where the strength of the 

vortex is denoted Γ, is shown in Figure 2.6. 
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(a) Ideal 2S wake mode. 

 

 
(b) Ideal 2P wake mode. 

 

 
(c) Ideal 2PO wake mode, where Γ2, Γ4 <   Γ1, Γ3. 

 

 
(d) Ideal P+S wake mode. 



 

13 

 

 

 
(e) Ideal 2P+2S wake mode. 

Figure 2.6. Point vortex models for the wake regimes of (a) 2S, (b) 2P, and (c) 2PO, (d) P+S, (e) 

2P+2S. 

2.3 Time Series Clustering 

Machine learning is the process of leveraging statistical models trained on data to answer questions and 

provide insight for data mining tasks. Machine learning tasks are organized into three main categories 

depending on the inputs: namely, supervised, unsupervised, and reinforcement learning. Unsupervised 

learning uses the input data structure to provide insights without referencing labels associated with the 

data. Unsupervised learning is often referred to as data mining, and if the input data is assumed to have 

discrete structures, the task is referred to as clustering.  

Clustering analysis is a subset of unsupervised machine learning in which a dataset is decomposed 

into groups, or "clusters," based on detected shared structures in the data. The unsupervised nature of 

clustering means there is limited external information on the data structure other than the intrinsic 

properties. Clustering analysis applied to time series data has recently increased importance due to the 

onset of cloud computing and big data capable of storing large amounts of data in the fields of 

environmental science, medicine, finance, engineering, and politics. Clustering and unsupervised 

machine learning have gained prevalence due to the cost of labelling. The performance of supervised 

machine learning models depends significantly on the quality of the labels provided, and the cost of 

acquiring the labels and cleaning incorrectly labelled samples comes at a high cost, making supervised 

methods unpractical.  

A time series is a sequence of data points indexed at specific points in time denoted,  𝑋𝑡 =

 {𝑋(𝑡)}, 𝑡 ∈ 𝑇, where the observation at the time, 𝑡, is a subset of allowed timesteps, 𝑇. The literature's 

time series clustering approach is discretized into three main categories: whole time series, subsequence, 

and time point clustering. 

  

Figure 2.7. Taxonomy of time series clustering approaches. 

Time Series Clustering

Whole Time 
Series

Subsequence Time Point
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Whole-time series clustering utilizes the entire series length as the clustering object.  The approach of 

whole-time series clustering often relies on dimensionality reduction due to the complexity of distance 

metrics [18]. Subsequence time series clustering extracts shorter sequences from the entire time series as 

the objects for clustering. Sequences can be extracted using a sliding window or novel data mining 

techniques such as shapelet/motif discovery [19]. Timepoint clustering incorporates the temporal 

proximity of the time series data with the values as the clustering objects [18].  

2.3.1 Subsequence Time Series Clustering 

Subsequence time series clustering is clustering frequent patterns within a more extended time series. 

Shapelet/motif discovery is the process of identifying frequent patterns within a time series and has been 

actively researched in the data mining community. The nomenclature of motif discovery is often used in 

the computational biology application of shapelet discovery [20]. The term motif originates from finding 

DNA motifs that are nucleic acid sequence patterns with biological significance [21]. The application of 

pattern discovery has extended beyond the biological field to severe weather prediction [22], wind 

generation [23], face image recognition [24], motion graphs [25], and electrocardiogram (ECG) anomaly 

detection [26]. An example of a motif within a time series is shown in Figure 2.8. 

 

Figure 2.8. Example of a motif discovered in original time series. 

Subsequence time series clustering is suitable for the application of classifying vortex shedding modes 

since the specific patterns can be identified from full-time series where there may be non-steady-state 

behaviour of the sign. Furthermore, multiple shedding modes may be present in a time series, and sub 

sequencing isolates the wanted behaviour.  

In the field of subsequence time series clustering, Keogh and Lin [27] published a pivotal study that 

claimed that clustering of time-series subsequences is meaningless. Specifically, the subsequence clusters 

extracted by any clustering algorithm are essentially random. The authors demonstrated that for 

subsequences extracted using a sliding window, the global mean for the clusters is a straight line. This 

fact implies that the weighted average of 𝑘 clusters must sum to a straight line as well. The linear 

constraint on the dataset is not trivial for all datasets, invalidating most subsequence clustering research. 

Depending on the dataset, extracting subsequences using a sliding window can yield many trivial matches 

that produce a dense clustering subspace.  

The importance of motif/pattern discovery in the application of subsequence clustering is apparent 

to overcome the constraints of sliding window extraction. Motif extraction addresses the meaningless 

claim by explicitly disregarding trivial matches in the mining procedure and defining a subset of the data 

instead of the entire dataset. Chen [28] investigated the meaningless claim and attributed the problems to 

using Euclidean distances for clustering shape-based similarities. Special consideration is required for 
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using Euclidean distances in clustering analysis or the use of shape-based distance metrics such as 

Dynamic Time Warping.   

The data mining field has developed numerous time series motif discovery algorithms which vary 

in methodology based on the designed application. Torkamani and Lohweg [29] surveyed time series 

motif discovery algorithms. The algorithms for motif discovery depend on the algorithmic exactness, low 

dimensional representation, and the similarity measure [30].  

2.3.2 Cluster Analysis 

The cluster analysis of time series clustering contains four main components in the process: namely, the 

representation of the time-series data, similarity/dissimilarity measures, clustering algorithms, and 

evaluation metrics.  

 

Figure 2.9. Taxonomy of cluster analysis. 

2.3.3 Time Series Representation  

The effectiveness of the cluster analysis greatly relies on the representation of the time series objects. The 

entire time series object can be utilized for the clustering task, but dimensionality reduction can achieve 

performance gains.  

Dimensionality reduction is essential in machine learning pre-processing because it decreases time 

and space complexity offering more detailed exploration and visualization, and produces a simpler model. 

A simpler clustering model offers many benefits, such as improved generalizability to unseen instances, 

robustness to noise and outliers, and reduced training samples. Time series representation through 

dimensionality reduction is often used for the time series clustering category of whole-time series but is 

not restricted [18]. Using representation methods for time series is to characterize the data in a lower 

dimension through feature extraction that preserves the global structure. Time series representation 

transforms a time series 𝑋𝑡 =  {𝑥1, 𝑥2, … , 𝑥𝑡 , … 𝑥𝑇} into a lower dimension 𝑋′𝑡 =

 {𝑥′1, 𝑥′2, … , 𝑥′𝑡, … 𝑥′𝑇′} where 𝑇′ < 𝑇 . 

Reducing the dimensionality of the time series can benefit clustering analysis by reducing the 

memory costs and speeding up clustering by reducing computational cost for distance calculation [18]. 

There are four basic categories of time series representation: namely, data-adaptive, non-data adaptive, 

model-based, and data-dictated. Data adaptive representation selects a standard representation for all the 

instances in the dataset based on the minimum global reconstruction error [31]. Data-adaptive methods 

include Symbolic Aggregate Approximation (SAX) [32] and Piecewise Linear Approximation (PLA). 

Conversely, the non-data adaptive approach constructs an approximate representation based on the local 

properties of the dataset. Examples of non-data adaptive methods include Discrete Fourier Transform 
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Representation

Similarity/Dissi
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(DFT), Discrete Wavelet Transform (DWT), and Discrete Cosine Transform (DCT). Model-based 

methods represent the time series as the parameters of an underlying model that produced the sets. Data-

dictated representation methods automatically determine the compression ratio of the raw time series. 

The Clipped method is an example of a data-dictated method. The non-data adaptive example of DCT 

for time series representation methods is presented for this application due to their heritage in natural and 

stationary signals [18].  

2.3.3.1 Discrete Fourier and Cosine Transforms  

The discrete Fourier transform is derived using a Fourier analysis which expresses a signal as a 

summation of the frequency spectrum components. An example of the decomposition of a signal in both 

the time and frequency domain is shown in Figure 2.10. 

 

Figure 2.10. Signal representation and decomposition in the time and frequency domain. 

The discrete Fourier transform is calculated by using the discrete parts of the transform. The DFT is a 

non-data adaptive method and uses spectral analysis. The algorithm can be quickly determined using the 

fast Fourier transform that computes the matrix in 𝑂(𝑛 log 𝑛) time [33]. The discrete cosine transform is 

similar to the discrete Fourier transform in the sense that it represents the time series in its components 

but instead uses the sum of the cosine terms only.   

2.3.4 Similarity Measure 

Traditional clustering approaches rely on quantifying the similarity or dissimilarity between the time 

series to combine into similar clusters. The following section will discuss similarity measures on the 

application of univariate time series. The objectives of the distance measures are subdivided into three 

main sections. 

 

Figure 2.11. Taxonomy of distance measures. 
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2.3.4.1.1 Similarity in Time 

The similarity in time distance objectives calculates the similarity based on the time steps relating to time 

series that are highly correlated. The similarity in time measures is also known as lock-step metrics since 

the distance is calculated by comparing the 𝑖-th point of one time series to the 𝑖-th point of another series. 

The similarity in time distances can be computationally expensive for large raw time series since the 

distance is calculated for each time step. An example of similarity in time distance concerning time series 

is the Minkowski distance and its special cases of Euclidean and Manhattan distances.  

Minkowski Distance 

The Minkowski distance is a generalized distance metric which, considering two time series, 𝑋𝑖𝑇 =

 {𝑥𝑖1, 𝑥𝑗2, … , 𝑥𝑖𝑇}, and 𝑋𝑗𝑇 =  {𝑥𝑗1, 𝑥𝑗2, … , 𝑥𝑗𝑇}, is calculated by Equation (2.10). 

𝑑(𝑋𝑖𝑇 , 𝑋𝑗𝑇) =  (∑|𝑥𝑖𝑘 − 𝑥𝑗𝑘|
𝑝

𝑇

𝑘=1

)

1/𝑝

 (2.10) 

The variable 𝑝 can be substituted to generate varying distance metrics such as Manhattan (𝑝 = 1) and 

Euclidean  (𝑝 = 2). 

Manhattan (City block) Distance 

The Manhattan distance or city block attributes its namesake from calculating the absolute distance 

between points or the distance between blocks in a city [34]. The Manhattan distance between the time 

series 𝑋𝑖𝑇 and 𝑋𝑗𝑇 is defined by Equation (2.11) generated by substituting 𝑝 = 1 into Equation (2.10). 

𝑑(𝑋𝑖𝑇 , 𝑋𝑗𝑇) =  |𝑥𝑖1 − 𝑥𝑗1| + |𝑥𝑖2 − 𝑥𝑗2| + ⋯ + |𝑥𝑖𝑇 − 𝑥𝑗𝑇| (2.11) 

Euclidean Distance 

The most popular distance measure is the Euclidean distance, often referred to as a one-to-one distance. 

The meaning of one-to-one refers to the calculation of the distance of each point in sequential order. The 

Euclidean distance is calculated by substituting 𝑝 = 2 into Equation (2.10), yielding Equation (2.12)[34]. 

𝑑(𝑋𝑖𝑇 , 𝑋𝑗𝑇) =  √(𝑥𝑖1 − 𝑥𝑗1)2 + (𝑥𝑖2 − 𝑥𝑗2)2 + ⋯ + (𝑥𝑖𝑇 − 𝑥𝑗𝑇)2 (2.12) 

The Euclidean and Manhattan distance share the mathematical properties of being non-negative and 

possessing the identity of indiscernible. The identity means the distance to an object to itself will be zero. 

Furthermore, both measures are symmetric, implying that the distance will be the same regardless of the 

order.   

The advantages of the Minkowski-based metrics are the linear complexity and the ease of 

implementation. The use of these metrics, and specifically Euclidean distance, are competitive in 

clustering but have limitations to exposure to noise and misalignments in time.  

Correlation  

Correlation-based distances are another type of similarity in time metric and consider the time series 

object as a vector to compute the distance. The correlation implementation for two time series, 𝑢 and 𝑣, 

follows the vector notation  

𝑑(𝑢, 𝑣) =  1 −
(𝑢 − 𝑢̅) ∙ (𝑣 − 𝑣̅)

|𝑢 − 𝑢̅||𝑣 − 𝑣̅|
 (2.13) 
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where 𝑢̅ and 𝑣̅ are the mean of the vectors. The |𝑥| denotes the Euclidean length of the vector. 

Cosine Similarity 

The cosine similarity measures the similarity of the vectors by effectively calculating the angle between 

the vectors. 

𝑑(𝑢, 𝑣) =  
𝑢 ∙ 𝑣

|𝑢||𝑣|
 (2.14) 

Since the cosine measure quantifies the orientation of the vectors, it is useful when the magnitude and 

weights are trivial such as when the time series objects are represented as frequencies.  

2.3.4.1.2 Similarity in Shape 

Distance measures that quantify similarity in shape will find similar patterns of change regardless of time 

points. The similarity in shape measures is also known as elastic metrics since the distance can be 

calculated by comparing a single point to many other points or to no other points. An example of a 

similarity in shape metric is the elastic method of Dynamic Time Warping (DTW).  

Dynamic Time Warping  

Dynamic time warping (DTW) is an elastic measure that addresses the limitations of one-to-one metrics 

of the similarity in time category. Dynamic time warping determines a warping path of the time axis 

between the time series to achieve the best alignment, minimizing the distance. An 𝑛 x 𝑚 matrix is 

constructed between the time series of lengths 𝑛 and 𝑚, 𝑋𝑖 =  {𝑥𝑖1, 𝑥𝑗2, … , 𝑥𝑖𝑛}, and 𝑋𝑗 =

 {𝑥𝑗1, 𝑥𝑗2, … , 𝑥𝑗𝑚}, of the distances between each point, often in Euclidean distance.  

𝑑𝑖𝑠𝑡𝑀𝑎𝑡𝑟𝑖𝑥(𝑋𝑖 , 𝑋𝑗) =  [

𝑑(𝑥𝑖1, 𝑥𝑗1) ⋯ 𝑑(𝑥𝑖1, 𝑥𝑗𝑚)

⋮ ⋱ ⋮
𝑑(𝑥𝑖𝑛, 𝑥𝑗1) ⋯ 𝑑(𝑥𝑖𝑛, 𝑥𝑗𝑚)

] 

The objective of dynamic time warping is to find the warping path, 𝑊 =  {𝑤1, 𝑤2, … , 𝑤𝑘}, where 

max(𝑚, 𝑛) ≤ 𝑘 ≤ 𝑚 + 𝑛 − 1, which minimizes the distance between the time series objects [35]. The 

dynamic time warping distance is defined as the associated continuous element path that minimizes the 

function in equation (2.15). 

𝑑(𝑋𝑖 , 𝑋𝑗) =  𝑚𝑖𝑛√∑ 𝑤𝑘

𝐾

𝑘=1

 (2.15) 

The computation of the distance matrix and the warping path is expensive and often uses dynamic 

programming for its computation [18].  Dynamic time warping has the advantage over the similarity in 

time measures of handling objects of varying lengths and time series out of phase but still have similar 

shapes.  
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Figure 2.12. Differences in distance measurements between Euclidean and Dynamic Time Warping 

[36]. 

The selection of suitable distance metrics is controversial in the data mining community and requires 

attention for each application [18]. The trade-off between speed and accuracy is considered in the 

selection process as the computational cost varies for the complexity of the time series objects. Another 

challenge in selecting the distance measures is the compatibility of measures based on the time series 

representation method.  

2.3.5 Clustering Algorithm 

Clustering algorithms handling time series data are separated into two main approaches: conventional 

and hybrid. Conventional methods of time series clustering include partitioning, hierarchical, density-

based, and model-based algorithms. This subsection will briefly introduce each of the traditional cluster 

methods and an example of a hybrid method.  

2.3.5.1 Partitioning 

Partitioning methods of clustering decompose the data into a specified number of partitions, 𝑘, by using 

an iterative relocation technique. Most partitioning-based methods use a distance metric to group the data 

elements into clusters. Partition methods specify the number of groups before clustering, which can either 

be obtained from domain knowledge or through optimization of clusters numbers. Partitioning methods 

can be associated with high computational costs with large datasets due to the enumeration of partitions. 

The specification of the partitions limits the data-driven implementation of this method without domain 

information. Analytical methods avoid the partition limitation by specifying multiple partitions and 

selecting the best clustering quality result. The two main partitioning clustering algorithms are 𝑘-Means 

and 𝑘-Medoids.   

The 𝑘-means algorithm is a centroid-based method where the mean of the elements represents the 

cluster. The algorithm groups elements by minimizing the distance between the other elements in the set 

with respect to the cluster centroid. The 𝑘-Medoids algorithm is a medoid-based method meaning that 

the prototype element associated with the minimum dissimilarity between the other members represents 

the cluster. The two partitioning algorithms differ in that 𝑘-Means aims to minimize the cluster sum-of-

squares while 𝑘-Medoids try to minimize the sum of distances between each point to the medoid. 

Furthermore, 𝑘-Medoids selects a cluster member as the medoid while 𝑘-Means selects the mean as the 

center, which may not be represented in the data. The differences in the cluster representation of the 𝑘 -

Means and 𝑘 -Medoids algorithm is illustrated in Figure 2.13. 
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(a) 

 
(b) 

Figure 2.13. Illustration of the clustering representation of (a) 𝑘 -Means and (b) 𝑘-Medoids. 

The use of a cluster member as the medoid allows any distance metric to be used for 𝑘-Medoids as well 

as more robustness to noise and outliers [37]. The methods of 𝑘-means and 𝑘-medoids produce "hard" 

clusters, meaning that each element can only be a member of one cluster.  

2.3.5.2 Hierarchical 

Hierarchical methods decomposed the data set using a hierarchical decomposition resembling tree 

methods. Hierarchical methods are helpful in applications where additional visualization of the clustering 

procedure is beneficial through dendrograms, which illustrates the tree structure.  

The formation of hierarchical decomposition can either be bottom-up (agglomerative) or top-down 

(divisive). Divisive methods begin by grouping all elements into a single cluster and iteratively 

subdividing the members into corresponding clusters. Conversely, agglomerative methods form clusters 

by initializing each element as an individual cluster and iteratively merging these clusters into larger 

groups. A similarity measure or distance conducts the merging of clusters, and each cluster is ensured to 

have at least one member due to the bottom-up nature. Agglomerative methods suffer from scalability 

limitations for larger datasets due to their quadratic complexity and the restriction of changing clusters 

once assigned [38]. Agglomerative hierarchical clustering is more widely used because of the increased 

difficulty of finding optimal splits for divisive clustering. Agglomerative clustering only considers 𝑛 2⁄  

merges in the first step compared to the 2𝑛 − 1 possible splits for top down methods.  

2.3.5.3 Density-based 

Density-based methods produce cluster based on the density of the data subspace, with clusters of dense 

objects separated by low density subspaces. Density-based methods cluster based on a representation of 

density in the data alternatively from partition and hierarchical methods, which cluster based on spherical-

shaped cluster distribution. Density-Based Clustering Based on Connected Regions with High Density 

(DBSCAN) assigns clusters based on the density of neighbouring elements [39]. The DBSCAN method 

has several advantages for the application to flow field data, such as the algorithm does not require prior 
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information on the number of clusters. Furthermore, the method determines clusters of arbitrary shapes 

in contrast to the circular cluster shapes of other methods, which benefits the high dynamics of the wake.  

2.3.5.4 Model-Based 

Model-based clustering algorithms cluster based on recomposed models fitted to the cluster data that 

represent the entire dataset. Gaussian Mixture Models learn a probabilistic representation of the data by 

splitting the dataset into numerous Gaussian probability distributions with varying means and covariances 

[40]. Self-Organizing Maps (SOM) is an unsupervised learning method using neural networks first 

introduced by Kohonen [41]. SOM models the inherited structures in the dataset by mapping them into a 

low-dimensional feature space where clusters are extracted. 

2.3.5.5 Hybrid Methods 

A subset of the clustering analysis research is hybrid clustering which implements multiple clustering 

techniques to improve results. Most methods implement the costly similarity in shape distance metrics 

with a reduced dataset known as subclusters represented by a prototype [42], [43].  

Aghabozorgi et al. [44] proposed a two-stage hybrid clustering algorithm that produced subclusters 

based on similarity in time using a hierarchical algorithm. At the data reduction stage, the authors' first 

step produced a dataset of the subclusters generated by the Cluster Affinity Search Technique (CAST) 

clustering algorithm to group first-level data. The clusters were generated based on the similarity in time, 

measured using Euclidean distance. Each subcluster is represented by a time series prototype which is 

the most typical time series from the subclustered set based on the affinity factor. The next phase, referred 

to as the clustering step, grouped the subclusters into the final sets. The subclusters were clustered using 

the 𝑘-Medoids method by computing the distances similarity in shape. The similarity in shape was 

determined using dynamic time warping on the reduced dataset of prototypes. Based on the subcluster 

labels of the entire dataset, the final clusters could be worked backward from the final stage. The varying 

phases and subclusters generated in the analysis are shown in Figure 2.14. 

 

Figure 2.14. Clustering phases implemented in the two-phase method [44]. 
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2.3.6 Evaluation Metric 

Evaluating clustering techniques based on the generated clusters is vital for quantifiable and meaningful 

results. The quality of clusters can be evaluated using visualization and scalar accuracy measures.  

Scalar accuracy indices evaluate cluster quality by generating a numerical value that represents the 

accuracy and validity of the classified clusters. Scalar measures comprise external and internal indices. 

An external index measures the quality of the generated cluster based on the reference to external class 

value labels of the actual cluster distribution. External indices cannot be used for unsupervised clustering 

tasks due to the absence of external information leading to the introduction of internal indices. Internal 

evaluation indices use the intrinsic information of the dataset to determine clustering performance and 

are referred to as an unsupervised metric since external data are not required.  

The clustering quality is typically scored using the internal index based on two parameters: 

compactness and separation. Compactness measures how close the objects within the same cluster relate 

to each other, known as intra-cluster similarity  [45]. Separation measures how well separated a cluster is 

from other clusters [45], known as an inter-cluster similarity. Many internal indices are proposed in the 

literature, such as Calinski–Harabasz, root mean square standard deviation, semi partial R-squared, R-

Squared, Davies–Bouldin, Dunn index, Hubert-Levin (C-index), Silhouette, CDbw-Index [46]. 

2.3.6.1 Inertia 

The most common internal evaluation method is inertia or sum of squared error (SSE). The inertia value 

is the sum of the distances of all the cluster elements to the cluster's centroid. The intuition of the 

calculation of inertia for a distinct cluster is illustrated in Figure 2.15. 

 

Figure 2.15. Illustration of the inertia metric for a cluster. 

The inertia value gives insight into the compactness of the clusters, with a lower bound of zero, indicating 

that all the elements of the clusters are identical. The inertia of the clustering analysis provides no 

information on the clusters' separation to other sets, and thus the development of further internal measures 

has been developed in the literature.  

2.3.6.2 Silhouette Index 

The silhouette coefficient was first introduced by Rousseeuw in 1987 [47]. The silhouette coefficient 

measures the similarity of an element to its cluster (compactness) compared to the other sets (separation). 

Suppose a dataset {𝐷}, of 𝑛 objects partitioned into 𝑘 groups, {𝐶1, … , 𝐶𝑖, … , 𝐶𝑗, … 𝐶𝑘}. The silhouette 
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coefficient is illustrated with the cluster subsets 𝐶𝑖 and 𝐶𝑗 from the total subspace of clusters 𝐶𝑘 with the 

corresponding members 𝑋𝑖 and 𝑋𝑗 as shown in Figure 2.16. 

 

Figure 2.16. Illustration of the silhouette coefficient for two clusters. 

The compactness of the cluster is quantified by the parameter, 𝑎, which is the mean distance between a 

sample and all the points within the same set (compactness). The value 𝑎 is calculated for each cluster 𝐶𝑘 

and its members 𝑋𝑘 using Equation (2.16). 

𝑎 = 𝑚𝑒𝑎𝑛(𝐶𝑘)(𝑑𝑖𝑠𝑡(𝑋𝑘 , 𝑋𝑘)) (2.16) 

 

The separation of the cluster to the other sets is calculated using the parameter, 𝑏, which is the mean 

distance from the sample to all the other points in the next nearest cluster (separation). The value 𝑏 is 

calculated for the sample member 𝑥𝑖 to all the members of the other set 𝑋𝑗 using Equation (2.17). 

𝑏 = 𝑚𝑒𝑎𝑛(𝑋𝑖,   𝐶𝑗)(𝑑𝑖𝑠𝑡(𝑥𝑖,   𝑋𝑗)) (2.17) 

 

The silhouette coefficient is calculated using the parameters 𝑎 and 𝑏 using Equation (2.18). 

𝑆𝑖𝑙ℎ𝑜𝑢𝑒𝑡𝑡𝑒 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 =
𝑏 − 𝑎

𝑚𝑎𝑥𝑖𝑚𝑢𝑚(𝑎, 𝑏)
 

(2.18) 

 

The value of the silhouette index is bounded between -1 and 1. A lower value of 𝑎 represents a compact 

cluster with a lower average distance between the points to a single element in the set. A more 

considerable value of 𝑏 represents clusters with a more significant average distance between a sample 

element. Therefore, as the silhouette approaches 1, the cluster containing the sample element will be far 

from the following cluster but compact within the elements of the same cluster. Negative values of the 

silhouette coefficient represent the sample element being closer to the elements in another cluster than to 

the assigned elements.  

The quality of the clustering analysis can be quantified using the average silhouette coefficient value 

for all the objects in the cluster, then computing the average silhouette coefficient for the entire cluster 

dataset.  
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2.3.6.3 Dunn Index 

The Dunn index was first introduced by Dunn in 1974 [48]. The Dunn index is the ratio of the minimum 

distance between clusters (inter) and the maximum distance within a cluster (intra). To quantify the Dunn 

index, consider the same cluster subsets 𝐶𝑖 and 𝐶𝑗 with the corresponding members 𝑋𝑖 and 𝑋𝑗 as shown 

in Figure 2.17. 

 

Figure 2.17. Illustration of the Dunn index for two clusters. 

The Dunn index is calculated using the distances in Equation (2.19). 

𝐷𝑢𝑛𝑛𝐼𝑛𝑑𝑒𝑥 =
𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑖𝑛𝑡𝑒𝑟𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑖𝑛𝑡𝑟𝑎𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒
=   

 min(𝐶𝑖,   𝐶𝑗)(𝑑𝑖𝑠𝑡(𝑋𝑖 ,   𝑋𝑗))

max(𝐶𝑘)(𝑑𝑖𝑠𝑡(𝑋𝑘 , 𝑋𝑘))
 

(2.19) 

 

The Dunn index should be maximized such that the minimum intercluster distance is more considerable 

(separated clusters) and the maximum intracluster distance is small (compact clusters). 
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Chapter 3  

Literature Review 

Since its discovery, vortex shedding of bluff bodies has been an extensive area of research. The research 

area has recently gained interest with novel wind energy extraction methods from VIV, such as bladeless 

wind turbines [49] and the Vortex-Induced Vibration Aquatic Clean Energy (VIVACE) generator [50]. 

This literature review aims to position the contributions of this study, specifically in the generation of 

vortex shedding maps, and to apply novel data-driven methods for higher Reynolds number cases of 

vortex shedding.  

3.1 Vortex Shedding Map Generation 

Vortex shedding experiments conducted using forced vibration rely on consistent use of the non-

dimensional parameters of the prescribed amplitude and frequency of the oscillations. The vortex 

shedding map is vital for understanding the cylinder kinematics and its application to energy extraction 

for VIV generators. The map provides information on energy excitation, which yields the positive energy 

transfer from the fluid to the body. The positive fluid excitation in the map is critical to ensure the validity 

of forced vibration experiments application to free vibration cases. 

Williamson and Roshko [14] developed the first amplitude and frequency map that studied vortex 

shedding modes beyond the fundamental synchronization. The authors conducted numerous experiments 

in a towing tank and identified vortex structures in the cylinder wake vortices using aluminum particles 

for flow visualization. The experiments sampled the parameter space for the range of Reynolds numbers 

from 300 to 4000.  

Morse and Williamson [7] expanded the investigation by Williamson and Roshko [14] in the 

parameter space by performing a total of 5680 experimental runs in a water channel that produced roughly 

500 hours' worth of data. Digital particle image velocimetry (DPIV) was used to visualize the wake 

regimes with high resolution (1600 x 1200 pixels) images taken at 10 and 20 milliseconds intervals. The 

determination of various regimes required a coupled analysis of the flow images and the fluid force 

measurements by the experimental apparatus. The authors used the abrupt jumps in the fluid forces, which 

indicated transitions into different regimes, to define the boundaries of the shedding map. For the more 

complex transition states between vortex shedding modes, the total fluid forces could not identify the 

modes, which required the investigation of the vortex phase. The methodology of generating the vortex 

shedding map by Morse and Williamson [7] required large amounts of data in the form of the fluid forces 

and its decomposition into vortex force and potential force alongside the referencing to the fluid flow 

images of the wake. The visual inspection relied on an expert to manually identify the spatiotemporal 



 

26 

 

patterns, which may be possible for low-Reynolds numbers but has limitations for more complex flow 

regimes associated with higher Reynolds numbers. 

The previous studies are the extent of research in generating vortex shedding maps and are limited 

to low Reynolds number 𝑅𝑒 ≤ 4000. The lack of investigations in generalizing the vortex shedding 

behaviour in the parameter space at a higher Reynolds number may be attributed to the more complex 

dynamics. Wu et al. [16] studied vortex shedding patterns between Reynolds number 35,000 - 130,000 

and identified several relatively stable modes, including 2S, 2P, 2PO, P+S, and 2P+4S. Due to instability 

and variations between cycles, the authors noted the inability to generalize some vortex shedding patterns, 

including Reynolds number 60,000 - 75,000. Zhang et al. [17] echoed this limitation at the highest free 

stream turbulence intensity (5%); the vortex structure was indistinguishable in the flow field due to the 

large amounts of mixing from the increased dissipation energy. The authors found that the turbulence 

intensity of the incoming stream has a dissipation effect that causes the vortices to become weaker and 

increasingly difficult to distinguish. 

VIV energy harvesting machines are expected to operate at a higher Reynolds number 𝑅𝑒 > 4000 

to achieve feasible energy generation. The benefits of having a vortex shedding map at higher Reynolds 

numbers are reiterated, but there is a lack of demonstrated methods of generating this map because of the 

high computational cost and complex dynamics.  

3.2 Data-Driven Methods for Vortex Shedding  

The traditional method of generating vortex shedding maps requires large amounts of data in the form of 

fluid forces, resolved flow images, and visual inspection from an expert [7], [51]–[54]. Data-driven 

methods for identifying and clustering distinct flow regimes from high-dimensional, time-resolved flow 

fields provide a versatile and automated approach to improve confidence intervals while reducing input 

information. 

3.2.1 Vortex Shedding Mode Classification  

Machine learning models have been applied to vortex mode classification problems using two main 

methods: identifying global flow structures and classifying local flow signatures. This literature review 

will focus on the latter due to global methods' limited insight into classifying different vortex modes [55]–

[57]. 

3.2.1.1 Machine Learning using Local Flow Measurements. 

The use of local flow signatures for classification is divided into two main applications: namely directly 

using sensor time-series data and feature extraction from sensor time series into a new feature space. 

Colvert et al. [58] used local vorticity measurements to train a neural network to classify global vortex 

structures generated by an oscillating airfoil. The authors performed a multi-label classification task 

between three vortex modes (2S, 2P+4S, 2P+2S) and achieved minimal error with a network of 34 hidden 

layers and corresponding classification accuracy of 99%. The work of Colvert et al. was expanded by 

Alsalman et al. [59], who used the exact local sensor measurements and trained neural network but 

investigated the effect of different data sensors and sensor array configurations in the flow field. 

Wang and Hemati [60] extracted relevant features in the frequency domain obtained from vorticity 

time series data of a fish-like airfoil shape. The authors computed the frequency spectra from the time 

series signals using a fast Fourier transform (FFT). The frequency spectrum was then fitted with a 
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Gaussian bell curve to produce the features used for their wake classification: namely, the mean 

frequency, 𝜇, amplitude, 𝐴, and standard deviation, 𝜎. Wang and Hemati used a relatively simple machine 

learning model of 𝑘 nearest neighbours and achieved a classification accuracy of over 90% for all the 

experiments. The authors demonstrated that by converting the time series data into a different feature 

space, the classification problem could be simplified by significantly reducing the computational 

resources at the cost of a slight accuracy reduction. Using the frequency domain signatures allows better 

implementation for real-time applications since the entire time series data is not required. The model 

showed promising results but was tested on a simple classification task involving only the 2S and 2P 

vortex modes. The addition of more complex modes may reduce the separation in the frequency feature 

space and require more complex machine learning models to achieve a comparable classification 

accuracy. Additionally, this study was biologically themed conducted on an airfoil to mimic a fish-like 

body wake generation and not a cylinder as in the bladeless wind turbine. 

3.2.1.2 Local Measurement Data Selection. 

The standard fluid measurement used for wake classification is the magnitude of vorticity [58], [60]. The 

traditional thinking is that vorticity, a measurement of the local fluid rotation, will provide a clear 

signature of the rotating wakes. Alsalman et al. [59] compared the results of several neural networks 

trained on time series data using the vorticity, 𝑥- and 𝑦 -components of flow velocity, and flow speed 

sensors. The authors found that the 𝑦 component of the velocity gave a higher classification accuracy 

than that of vorticity, even for shallow networks. Alsalman et al. demonstrated that measuring the velocity 

component transverse to the streamwise flow direction provides the best classification signatures. The 

authors used the entire time series for classification, and the same gains have not been demonstrated using 

feature extraction methods on an oscillating cylinder.  

3.2.2 Vortex Shedding Mode Clustering  

Recently in literature, the benefits of the data-driven method of clustering on high dimensional time-

resolved flow fields have been gaining attention, specifically for identifying and grouping distinct flow 

dynamics of vortex shedding from VIV.  

Huera-Huarte and Vernet [61] applied fuzzy clustering on digital particle image velocimetry (DPIV) 

data for the vortex shedding of a flexible cylinder. Proper orthogonal decomposition (POD) was used to 

reduce the dimensionality of the image data to identify patterns. The method adequately identified the 2S 

and 2P modes at two elevations along the long flexible cylinder exposed to crossflow of Reynolds 

numbers 1,200 - 12,000. The work by Huera-Huarte and Vernet [61] provides a pertinent application of 

clustering on vortex shedding structures for an oscillating cylinder. However, the clustering analysis was 

only utilized to identify the 2S and 2P modes for the free vibration experiment. The parameter space of 

amplitude and frequency was not explored since the experiment considered the free vibration of the 

cylinder. Furthermore, the entire vorticity flow field was required for clustering, despite the use of POD 

to reduce the data dimensions. 

Menon and Mittal [62] studied pitching airfoil wake dynamics using clustering methods to identify 

and track vortices. The main objective of this study was to analyze the force production on the foil from 

local vortical regions using the force and moment partitioning method (FMPM). The proper application 

of this method requires the vortex regions near the airfoil to be accurately isolated. The authors used the 

clustering analysis to isolate and track the vortices primarily in the leading-edge and trailing edge due to 

their overall effects on pitching airfoils. The authors used the DBSCAN clustering algorithm for the 

analysis based on its advantages for flow field clustering. The dataset is comprised of the vorticity fields 



 

28 

 

from forced vibration CFD simulations of an oscillating airfoil. The pitching frequency and amplitude 

parameter space were sampled extensively for the varying vortex dynamics. The authors demonstrated 

the utility of this methodology for the investigation of the dynamic influence of the vortex-induced forces. 

Another effort directed for clustering vortex shedding modes was conducted by Calvet et al. [63] to 

cluster the vortex wakes of bio-inspired propulsors. The authors generated the flow fields behind an 

oscillating foil using CFD at a Reynolds Number of 106. The vorticity flow field in the wake was reduced 

using an autoencoder and then clustered using the 𝑘-means++ algorithm. The autoencoder consisted of a 

deep convolutional autoencoder to extract features from the images of the vorticity fields. The authors 

selected the 𝑘-means++ algorithm after comparing the results of 𝑘-Medoids, hierarchical clustering, and 

DBSCAN, which all showed no improvement over 𝑘-means++. The combination of feature extraction 

using the autoencoder and clustering based on the latent space produced an exception method for 

identifying wake kinematics. The autoencoder was first trained on a simple one degree-of-freedom 

labelled dataset of known vortex shedding modes to quantify the accuracy of the classification. The vortex 

wake patterns corresponding to the airfoil application included 2P+4S, 2P+2S, and 2S. Even with a low 

number of latent space parameters, the clustering achieved 100% accuracy of the modes. The trained 

autoencoder was then applied to an unlabeled dataset of a two-degree-of-freedom oscillating airfoil with 

more complex modes. In this case, the wake classifications and the number of clusters are unknown. The 

quality of the clusters was evaluated both on the silhouette index and visual inspection. The optimal 

number of clusters for this case was determined to be six through the elbow method, silhouette index, and 

visual classification of the modes. The authors obtained insights on the vortex dynamics from the clusters 

successfully. The cluster strategy used by the authors is similar to the one implemented in this study in 

that the clustering technique was determined for a more straightforward problem of vortex shedding and 

extrapolated to more complex problems. The success of the authors provides a basis for the methodology 

used in this study. However, the authors highlight the limitations of the investigation, which greatly 

depend on the input data used to train the autoencoder and clustering algorithm. The authors draw 

attention that the results may be corrupted for vortex modes associated with larger amplitudes due to the 

low density of these cases in the training set. The width of the wakes carried a strong influence in the 

clustering algorithm, so there is a need to train the algorithm to cluster based on parameters of the overall 

vortex pattern. Furthermore, the autoencoder was tuned for the performance of the simply one degree-of-

freedom case, and despite the promising results, the extrapolation of the autoencoders for more complex 

vortex wakes is an area of concern. 

3.3 Summary 

In reviewing the literature, it was observed that the traditional method used for generating vortex shedding 

mode maps requires large amounts of data and intensive supervision. An opportunity was identified to 

implement a versatile and automated data-driven approach that addresses these limitations. Furthermore, 

there is a lack of proposed methods of generating the vortex shedding mode map at higher Reynolds 

numbers due to the increased computational cost and complex dynamics. 

Previous studies implementing machine learning techniques have demonstrated improvement over 

the classical method of identifying wake structures from the resolved flow field. The literature shows 

promising results using local measurements transformed into the frequency domain as feature vectors in 

vortex mode classification. However, a lack of studies was identified in applying this method to higher 

complexity vortex modes generated by an oscillating cylinder. Furthermore, the performance gain using 

the 𝑦- velocity component has not been demonstrated using the frequency feature space for an oscillating 

cylinder.  
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The literature review of studies using unsupervised clustering approaches shows promising results 

for identifying and dissection of vortex shedding modes. However, the methods require extensive input 

data to compute the entire flow field, which was then reduced using varying feature extraction methods. 

The literature identified an opportunity to reduce the input data required by using a local measurement 

approach to cluster the vortex shedding modes. Studies using clustering all shared the similarity of 

resolving the vorticity field, but there was a lack of studies investigating the benefits of other flow field 

measurements. The application of clustering techniques to discover varying vortex shedding modes in an 

extensively sampled amplitude and frequency parameter space has not been demonstrated. Furthermore, 

the clustering research for VIV has mainly been regarding pitching airfoils, and the same results have not 

been investigated for the vortex shedding dynamics of an oscillating cylinder. 

This study aims to address the deficiency outlined in the literature by comparing machine learning 

methods for the classification of complex vortex shedding modes using frequency-domain feature 

extraction and investigating the effects of data corruption for an oscillating cylinder. Additionally, the 

absence of a methodology of using clustering techniques for the generation of vortex shedding maps will 

be addressed in this study. 
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Chapter 4  

Methodology 

The main objective of this study is discretized into three goals which are addressed in the following three 

chapters. Chapter 5 provides an effective wake classification strategy by comparing various machine 

learning models trained using differing simulated vortex shedding local flow measurements and 

corresponding feature noise analysis. Chapter 6 addressed developing a data-driven method by presenting 

various unsupervised clustering techniques and demonstrating the method's performance through cluster 

analysis evaluation metrics and reproduction of the benchmark vortex shedding map. The methods 

presented in Chapter 6 are then extended in Chapter 7 to provide insights on the underlying dynamical 

regimes of a higher Reynolds number case by generating corresponding vortex shedding maps. 

4.1 Datasets 

The analysis in this dissertation requires the univariate time series signatures of local flow measurements 

in the wake of an oscillating cylinder experiencing forced vibration. Two main datasets were used in the 

following sections: 

• Chapter 5: Internal dataset for publication [64]. 

• Chapter 6 and Chapter 7: Vortex shedding in a turbulent wake obtained from Kaggle [65]. 

The datasets resolved the turbulent wake behind an oscillating cylinder using numerical 2-dimensional 

computational fluid dynamic (CFD) simulations in OpenFOAMv2006.  

The geometry of a cylinder of constant diameter, 𝐷, subject to an incident flow with a mean velocity, 𝑈, 

in the streamwise (or, 𝑥) direction was considered in this study. A slice along the 𝑥 and 𝑦 plane was used 

to generate the 2-dimensional CFD simulations based on the reduced computational demands and 

demonstrated the ability to capture the main features of the response. Though the turbulent wake is a 3-

dimensional and multi-scale phenomenon, 2-dimensional simulations can capture the vortex shedding 

patterns, amplitude, phase, and frequency of VIV. The 2-dimensional domain and boundary conditions 

used for the numerical study are shown in Figure 4.1. 
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Figure 4.1. Domain and boundary conditions used for the 2D simulation (Not to scale). 

The sensors' signal measurements were recorded along six sampling lines located downstream in the 

wake of the oscillating cylinder, as shown in Figure 4.1. The sampling lines were orthogonal to the 𝑥-

axis at streamwise distances of 2𝐷, 4𝐷, 6𝐷, 8𝐷, 10𝐷, 12𝐷. Each sampling line recorded flow field 

measurements at 1000 locations along the line, illustrated in Figure 4.2. 

 

Figure 4.2. CFD sampling lines in the cylinder wake. 

From the simulations, the data from four types of sensors were recorded: namely, flow speed, |𝑢|, the 𝑥-

component of velocity, 𝑢𝑥, the 𝑦-component of velocity, 𝑢𝑦, and the vorticity, 𝜔. The components of 

velocity in the 𝑥- and 𝑦-directions are derived from the 2-dimensional velocity vector 𝑢̂ = 𝑢𝑥𝑖̂ + 𝑢𝑦𝑗.̂ 

The flow speed, |𝑢|, is defined as the magnitude of the flow velocity vector, 𝑢̂. The quantity of vorticity 
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is defined as the rotation of a fluid element determined by the curl of the velocity vector, 𝜔̂ =  ∇ × 𝑢̂. In 

this study, the vorticity vector derived from the 2-dimensional flow only has a non-zero component in 

the 𝑧-direction given by 𝜔 =  (
𝜕𝑢𝑦

𝜕𝑥
−

𝜕𝑢𝑥

𝜕𝑦
) 𝑘̂ [66]. An example of the 𝑥-velocity component data signal 

taken along the sampling line is shown in Figure 4.3 with the corresponding CFD vorticity color map. 

 

 

 
Figure 4.3. Sample vorticity colour maps and 𝑥-velocity component sensor signals for the three wake 

modes: 2S (top), 2P, (middle), and 2PO (bottom). 

4.1.1 Dataset A 

The dataset used in Chapter 5 used the RANS equation and 𝑘 − 𝜔 shear stress transport (SST) turbulence 

model. A structured, hexahedral, body-fitted mesh was generated around the cylinder. The total number 

of cells in the mesh was 147,200. To match Morse and Williamson [7] original experimental setup, the 

sinusoidal movement of the cylinder is prescribed, and the motion is diffused into the structured mesh. 

Second-order accuracy was achieved in both spatial and temporal schemes.  

The first dataset conducted numerous CFD simulations to generate the flow of three distinct wake 

modes. The three vortex shedding modes included two wakes modes (2S, 2P) and a transition mode 

(2PO). The simulations were conducted at the Reynolds number, Re = 4000 (corresponding to 𝐷 = 0.3m 

and 𝑈 = 0.2ms-1) to match the experimental investigation by Morse and Williamson. The non-

dimensional groups used to ensure the simulations were conducted for each distinct mode are summarized 

in Table 4.1. 
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Table 4.1: Vortex Mode Parameters and Non-dimensional Groups 

 𝑅𝑒 𝐴∗ 𝜆∗ 

2S 4000 0.7 4 

2P 4000 0.8 8 

2PO 4000 0.8 5.8 

 

The sensor measurements were recorded over 500 timesteps with a time step size of 0.5 seconds, resulting 

in a time series length of 250 seconds. The unit of time was converted into a non-dimensional parameter 

derived using the free stream velocity, 𝑈, and diameter of the cylinder, 𝐷. 

4.1.2 Dataset B 

The dataset used for the clustering analysis in Chapter 6 and Chapter 7 used the new schemes of the k-𝜔 

SST. Numerous CFD simulations were conducted to provide a higher density sampling of the parameter 

space of forced oscillating outlined by Morse and Williamson [7]. Furthermore, the simulations were 

conducted at Reynolds numbers 1000, 4000 and 10,000. The Reynolds number data at 4000 was used in 

Chapter 6 to match the experimental setup of Morse and Williamson [7] and validate the vortex shedding 

map generation procedure referencing the benchmark map. The Reynolds number data at 10,000 was 

used in Chapter 7 to extend the map generation method to unknown vortex shedding regimes.  

The sensors' measurements varied slightly from the dataset used in Chapter 5 as the time series data 

were sampled every 0.25 seconds for a total of 100 seconds at the exact locations in the wake. Despite 

the smaller time series length of the signal, regular patterns are still observed in the data to be used in the 

cluster analysis.  

4.2 Mode Classification 

The classification of vortex shedding modes utilized the time series local measurements transformed into 

a reduced feature vector for the subsequent classification using supervised machine learning models. This 

subsection discusses the preprocessing conducted on the raw time series dataset and the machine learning 

models used in this study.   

4.2.1 Preprocessing 

The datasets from each sampling line were combined after a generalizability study was conducted to 

ensure that little information was lost by training a model on the entire set compared to individual sets. 

The 𝑘-NN model used by Wang and Hemati [60] was implemented, 𝑘 =5, based on its heritage in wake 

classification. When combining the datasets, the testing accuracy only decreased by 8.19% and 0.93% 

for the 𝑥- and 𝑦- velocity component sensors, respectively. The more considerable loss of the 𝑥-velocity 

was justified due to the overall lower accuracy results removed in further analysis. 

The time series data collected from the CFD simulations were preprocessed to prepare the data for 

feature extraction and training. The 𝑥-velocity component sensor dataset was preprocessed by removing 

the mean free stream velocity of 0.2 𝑚𝑠−1. Many of the 1000 points along the sample line had minor 

fluctuations due to the absence of vortex formation. To extract the relevant information from the sampling 

line, 100 sampling locations were chosen along the line that showed the largest variance from peak to 

trough in the time series data.  
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The signals were converted into wake signatures using the protocol developed by Wang and Hemati 

[60]. The FFT was conducted on the time series to decompose the signal into its frequency domain 

components. An example of the frequency spectrum of three vortex shedding modes is shown in Figure 

4.4. 

  
(a) 2S (b) 2P 

 
(c) 2PO 

Figure 4.4. Frequency spectrum for (a) 2S, (b) 2P, and (c) 2PO vortex shedding modes. 

The feature vector was determined using the Gaussian fit function parameters, which included the mean 

frequency, 𝜇, standard deviation, 𝜎, and the amplitude of the curve, 𝐴. The parameters are shown in a 

sample case in Figure 4.5. 



 

35 

 

 

Figure 4.5. Frequency domain feature vector given by the Gaussian fit parameters. 

This frequency-domain feature vector combined with vortex shedding mode labels was used as the 

machine learning models' input. 

4.2.2 Machine Learning Models 

Machine learning algorithms are founded on using optimization techniques to build a representative 

model to fit a set of data and, in this case, make label classifications. Supervised machine learning 

algorithms supply the machine learning algorithms with labelled data from a supervisor/expert. Six 

supervised machine learning models were investigated for classification: logistic regression, support 

vector machines, decision tree, random forest, multilayer perceptron (MLP), and 𝑘-nearest neighbours 

(𝑘-NN). Traditional machine learning methods were selected based on the objective to provide a robust 

solution with reduced input data and computational complexity. The six machine learning models offer 

more straightforward implementations and can achieve solutions with smaller training datasets. Each 

machine learning model's learning parameters (hyper-parameters) were tuned to determine the best 

bias/variance trade-off model. Cross-validation was conducted for the hyperparameter tuning stage and 

repeated on the training set to give insight into the model's generalizability and the predictive performance 

on the application to new datasets. The investigation was conducted by splitting each dataset into 70/30 

training and testing splits. The cross-validation method implemented in this study was 5-fold cross-

validation. 

4.3 Clustering Analysis 

The methodology of unsupervised clustering can be subjective, and the quality of the results depends 

significantly on the specificity of numerous options. The choices selected for the cluster analysis will 

follow the aspects listed below [38]: 

1. Objects to be clustered. 

2. Measurements/variables to be used. 

3. Standardization of variables. 

4. Similarity/dissimilarity measure. 

5. Clustering Method. 

6. Number of Clusters. 

7. Clustering evaluation. 
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8. Interpretation of clusters. 

This subsection presents the methodology used to address all of the aspects of cluster analysis to produce 

meaningful results. 

4.3.1 Preprocessing  

Standardizing the input space is a typical preprocessing step in machine learning applications to enhance 

performance by transforming the features to the same unit and scale. In time series clustering, 

standardization can improve the ability of clustering algorithms to produce clusters by removing offsets 

and amplitude scaling. The standardization implementation depends on the clustering techniques and 

similarity measures utilized; for example, Gaussian mixture models and the dissimilarity metric 

Mahalanobis distance are invariant to affine transformations [38].  

The implementation of preprocessing techniques should be evaluated for the specific use case and 

input data since it may introduce biases. For signal data with small variance, standardization and 

normalization methods may intensify noise with the scaling of the amplitude. In this study, the raw time 

series signal data is closely centred at zero 𝑦 position distance, small relative variance, and amplitude 

scale are similar between classes. The implementation of preprocessing was determined based on the 

suitability of the different methods and metrics utilized in this study. Time series data is standardized 

using 𝑧-score (𝑧-normalization), which removes offset translations and amplitude scaling. For the time 

series 𝑋𝑡 = {𝑥1, 𝑥2, … 𝑥𝑡 , … , 𝑥𝑇}, 𝑧-normalization is defined in Equation (4.1). 

𝑋𝑡
′ =  

𝑋𝑡 − 𝜇𝑡

𝜎𝑡
 

(4.1) 

4.3.2 Streamwise Analysis 

The signals' variance was investigated to determine the effect of Reynolds number, streamwise location, 

and vortex shedding modes on the signal information. For 2S modes, the variance along the sampling 

lines remains relatively constant between varying Reynolds numbers. The sensor variance along the 

sampling lines in the wake of the oscillating cylinder is shown in Figure 4.6. 

 

Figure 4.6. Sensor variance of streamwise sampling lines for 2S modes at (𝜆∗, 𝐴∗) = (4, 0.1) for Re = 

4000, 10,000. 
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The sampling line at 2D shows the most significant spike of variance at the midpoint, where most of the 

vortex shedding behaviour is present. The sequential sampling of lines further downstream of the cylinder 

shows a constant dissipation effect. Dissipation results in lower variance, specifically in the 10D and 12D 

cases where little signal is recorded by the sensors. The relative strength of the signals as the vortex 

structures travel downstream is seen in the supplementary video provided for the Kaggle dataset [67].  

Considering signals that resemble the 2P mode, a more considerable change is observed in the 

variance behaviour in the sampling lines. The main difference is the more significant dissipation effect 

of the Reynolds Number of downstream sampling lines for the 2P modes. The variance of the sensors 

along the sampling lines for the low Reynolds number case, Re = 4000, is shown in Figure 4.7. 

 

Figure 4.7. Sensor variance of streamwise sampling lines for 2P modes at (𝜆∗, 𝐴∗) = (6, 0.3) for Re = 

4000. 

Strong signals are observed for the low Reynolds number case up to 8D and weak signals for the 

subsequence downstream sampling lines. Conversely, the sensor variance of the 2P mode for the higher 

Reynolds number case, Re = 10,000, is shown in Figure 4.8 

 

Figure 4.8. Sensor variance of streamwise sampling lines for 2P modes  (𝜆∗, 𝐴∗) = (6, 0.3) for Re = 

10,000. 
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The sampling lines at 2D, 4D, and 6D show relatively strong signals as the vortex structures travel 

downstream. The subsequent downstream sampling lines show little signal variance starting at 8D from 

the cylinder.  

In summary, for the low Reynolds number case, the data recorded along the sampling line 6D was 

used for the clustering analysis due to the balance of being far enough downstream to have developed 

wake mode signals and not too far downstream that the dissipation effect corrupts the signals. For the 

high Reynolds number case, the data recorded along the sampling line 4D was used for the clustering 

analysis due to the strong signals of developed wake modes with minimal dissipation effect 

4.3.3 Subsequence Data Mining 

This study's selected time series motif extraction method is conducted using the matrix profile. The matrix 

profile, first presented by Yeh et al. [68], is a novel algorithm for the time series subsequence all-pairs-

similarity-search. The algorithm uses a fast similarity search algorithm under 𝑧-normalized Euclidean 

distance. The method is simple, parameter-free, and exact, meaning no false positive or false dismissals 

are provided. The matrix profile has been implemented for various applications since its inception due to 

its versatility, simplicity, and scalability. These applications include temporary rules of retail product 

sales [69], ECG anomaly detection [70], and the internet of things for industrial machines [71]. 

The matrix profile records the distances of a subsequence with sliding window length, 𝑚, to all other 

subsequences of the same length. The matrix profile contains two components: namely, a distance profile 

and a profile index. The distance profile is the vector of minimum Euclidean distance, and the profile 

index is the first nearest neighbour's index. An example of the matrix profile is illustrated with the original 

time series in Figure 4.9. 

 

Figure 4.9. Matrix profile example. 

The matrix profile can be obtained naively using the computed distance matrix for all pairs of 

subsequences of length 𝑚 of the time series of length 𝑛, as shown in Figure 4.10. 
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Figure 4.10. Distance matrix to obtain matrix profile, modified from [72]. 

The minimum distance of each column, not including null diagonal values, produces the matrix profile 

vector representing the distance between each subsequence and its nearest neighbour. The entire distance 

matrix would be computationally expensive to compute, and therefore the majority of the work has been 

developing algorithms for this search [68].  

Reading the matrix profile gives an insight into the patterns and anomalies of the time series. 

Relatively low values indicate that there must be a relatively similar subsequence within the time series. 

Therefore, low values of the matrix profile correspond to motifs discovered in the sequence. Relatively 

high values mean that the subsequence has no other subsequence similar in distance and thus is an 

anomaly. Analyzing the matrix profile for the example in Figure 4.9, the relatively high values at the 

beginning of the sequence indicate unique subsequences that are not shown in the time series again. The 

anomaly logically confirms the non-steady-state nature at the beginning of vortex shedding when the 

shedding mode has not yet been reached. The lowest values in the profile show the prominent 

subsequence shown in the raw time series and can be extracted as the time series motif for this case. The 

specified length of the sliding window affects the value of the extracted motif and should be selected 

carefully for the intended application.  

4.3.4 Proposed Clustering Methods 

The selection of clustering algorithms is an integral step in the clustering analysis procedure, and special 

consideration is required for the application and dataset. Clustering algorithms handling time series data 

are separated into two main approaches: conventional and hybrid. Conventional methods of time series 

clustering include partitioning, hierarchical, density-based, and model-based algorithms. The algorithms 

that performed the best for applying clustering time series subsequence of vortex shedding were selected 

for analysis in this study. The algorithms selected included three traditional single-step and three proposed 

hybrid methods.  
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4.3.4.1 Traditional Clustering Methods 

Traditional single-step clustering methods were selected based on the demonstrated clustering 

performance. The traditional clustering methods include the partitioning method of 𝑘-Means, the 

hierarchical method of agglomerative, and finally, 𝑘-Means applied to the discrete cosine transformed 

time series data. 

The 𝑘-Means method was selected based on its demonstrated ability to extract highly separated 

clusters. The 𝑘-Means algorithm was implemented using scikit-learn [73] with the 𝑘-means++ 

initialization method to select initial cluster centers that are distant, resulting in better results than random 

initialization by avoiding local minimums [74]. The hierarchical method of agglomerative was 

implemented using scikit-learn [73]. The hyperparameters associated with the best balance of evaluation 

metrics for the agglomerative algorithm were using complete linkage and cosine affinity distance. The 

final method of DCT representation using 𝑘-Means algorithm was implemented using the same 

hyperparameters of the raw time series. 

4.3.4.2 Hybrid Clustering Methods 

The clustering performance of ordinary methods can be improved using multi-step clustering methods, 

regarded as hybrid methods [42]–[44], [75]. The objective of hybrid methods is to first conduct a pre 

clustering phase that produces a large number of separate clusters that are then merged using a final 

clustering method to provide the number of desired clusters. The hybrid methods perform the best 

clustering when the silhouette index is maximized in the pre-clustering phase indicating that the high 

resolution of clusters captures discretely separated clusters. The silhouette index is expected to reduce in 

the final clustering stage as the clusters are merged to produce more general clusters that provide insight 

into the overarching patterns, increasing the Dunn index value. 

Most hybrid methods use varying distance metrics for each step, usually a similarity in time distance 

for the pre-clustering and a shape-based similarity distance for the final clustering. The block diagram of 

the proposed two-step hybrid clustering method is shown in Figure 4.11. 

 

Figure 4.11. Block diagram for the proposed hybrid algorithms. 
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The advantage of multi-step clustering is the ability to calculate the computationally expensive dynamic 

time warping similarity matrix on the reduced dataset of prototypes from the first clustering step. The 

clustering results obtained using the DTW distance provide an advantage for shape-based clustering 

analysis. An example of the varying clustering stages with the corresponding similarity distances is 

illustrated in Figure 4.12. 

 

Figure 4.12. Example of the hybrid clustering procedure. 

Three hybrid methods are proposed in this study.  The first hybrid method, denoted Hybrid Method A, is 

derived from a similar method proposed by Aghabozorgi et al. [44]. The clustering method implemented 

by the authors used the Cluster Affinity Search Technique (CAST) clustering algorithm to create 

subclusters. The subclusters were then grouped further using the 𝑘-Medoids clustering algorithm on the 

reduced dataset. The CAST algorithm is considered a portioning method based on its sequential clustering 

approach [76]. The clustering method implemented in this study uses the 𝑘-Medoids clustering algorithm 

to generate subclusters in the first step based on its advantageous clustering performance. 

The following hybrid method, denoted Hybrid B, uses a combination of DBSCAN and 

agglomerative clustering algorithms. The DBSCAN method provides an advantageous initial clustering 

step since the clusters are automatically determined based on the input data structures. The DBSCAN 

method was used to group the entire dataset into subclusters that were then clustered into the final number 

of groups using the agglomerative algorithm. The hierarchical method of the agglomerative algorithm 

was selected based on its clustering performance as a single implementation. Other methods performed 

similarly to agglomerative as a single step, but the hierarchical method had the advantage of less 

sensitivity to input data. The algorithm was implemented from the clustering module of scikit-learn [73]. 

The DBSCAN algorithm only requires two parameters: namely, the number of minimum samples and 

radii. These parameters represent the core samples which is a subset of the data which includes a 

minimum number of samples, min_samples, that are within a distance radii, 𝜀. The samples that are not 
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a core sample and are further than 𝜀 distance from any core sample are considered an outlier by the 

algorithm. The parameters found using a grid search yielded the best performing algorithm was three 

radii, 𝜀, and five minimum number of samples.  

The final hybrid method proposed in this study, denoted Hybrid C, was conceptualized by combining 

the best-performing single-step clustering analysis into a multi-step method. The hybrid method uses the 

𝑘-Means algorithm for the pre-clustering phase and the agglomerative method for the final clustering. 
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Chapter 5  

Mode Classification using Machine Learning 

This study directly targets the overlapping machine learning and fluid dynamics application of efficiently 

and accurately classifying wakes identified by Brunton et al. [77]. This section's objective was achieved 

by quantitatively comparing the various machine learning models trained using differing simulation data 

and, second, quantifying the effects of data corruption on the models' performance in the feature noise 

analysis. 

5.1 Machine Learning Model Performance 

The frequency-domain feature space for each of the local measurement sensors is shown in Figure 5.1. 

  
(a) Flow Speed, |𝑢| (b) 𝑥-velocity component, 𝑢𝑥 

  
(c) 𝑦-velocity component, 𝑢𝑦 (d) vorticity, 𝜔 

Figure 5.1. Frequency feature space of vortex shedding classes using (a) flow Speed, |𝑢|, (b) 𝑥 

velocity component, 𝑢𝑥, (c) 𝑦 velocity component, 𝑢𝑦, and (d) vorticity, 𝜔. 
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Figure 5.1 shows the 𝑦-component of velocity produces feature vectors that separate the vortex shedding 

modes the best in the feature space compared to other sensor measurements. The separation in classes 

aids the models to better identify the signatures of each class which will result in increased testing 

accuracy. 

Several machine learning models were evaluated using the classification accuracy during the cross-

validation and testing phases. The cross-validation scores give insight into the models' behaviour with 

new datasets and reveal the bias/variance behaviours. The mean and standard deviation of the cross-

validation scores were plotted for each machine learning model trained using the four local 

measurements, as shown in Figure 5.2. 

 

Figure 5.2. Cross-validation scores for each of the local measurement sensor data used to train a variety 

of machine learning models. 

The models that generally performed the best in terms of mean cross-validation scores were the decision 

tree, random forest, MLP, and 𝑘-NN. Despite the acceptable accuracy scores, the decision tree and MLP 

models showed the most considerable variation in scores. The larger variation in cross-validation scores 

demonstrates that these models tend to be more sensitive to input data. Random forest and 𝑘-nearest 

neighbours performed better concerning the mean accuracy and robustness. Next, the testing accuracy of 

each of the combinations of machine learning models and input data was evaluated on the testing dataset 

held out during training. The testing accuracy results are summarized in Table 5.1. 

Table 5.1: Testing Accuracy of Machine Learning Models 

Machine Learning Models 

 LR SVM DT RF MLP 𝑘-NN 

|𝑢| 46.3 48.3 68.3 70.2 56.1 72.4 

𝑢𝑥 52.0 69.1 64.4 78.3 76.3 78.0 

𝑢𝑦 80.6 91.3 96.7 99.3 98.3 99.8 

𝜔 54.4 53.7 82.2 86.1 75.2 84.4 
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The 𝑦-component of velocity local measurement sensor dataset demonstrated the highest cross-validation 

scores and testing accuracies across all the machine learning models, which confirms the results of 

Alsalman et al. [59]. The improved performance of velocity sensors oriented transverse to the incident 

flow direction compared to the classically used vorticity measurement may be attributed to the added 

noise of the 𝑥-component of velocity in the vorticity measurement. In vortex shedding behind a cylinder, 

the source of the vortices is the generation of the 𝑦-component of velocity since the incident (free-stream) 

velocity was directed along the streamwise (or 𝑥 -) direction. 

Overall, the relatively high testing accuracies confirm the viability of using the frequency domain 

signatures in the application of classifying vortex shedding modes proposed by Wang and Hemati [60]. 

The input frequency-domain feature vectors resulted in the maximum testing accuracy of 99.3% and 

99.8% using random forest and 𝑘-nearest neighbour models. The testing accuracy reported by Alsalman 

et al. [59] using the entire time series dataset to train a neural network was 100% at a depth of 10 layers. 

The reduction of 0.7% in testing accuracy obtained in this study was considered acceptable due to the 

considerable reduction of computational resources and input data required to build the classifier. The 𝑘-

nearest neighbours model provided the overall highest testing accuracy of 99.8%, which was an 

improvement from the 98% accuracy achieved with a similar model by Wang and Hemati. The improved 

accuracy was attributed to more explicit input data that created a more distinct library of the wake types. 

The classification algorithms selected to continue analysis were decision tree, random forest, multi-layer 

perceptron, and 𝑘-nearest neighbours. 

5.2 Feature Noise Analysis 

Machine learning algorithms are built to model the input data used to develop the classifier. The 

resolution of experimental fluid sensor data will never match that of numerical studies, and increased 

noise will impact the classification performance for real-world applications. The feature noise analysis 

evaluates the impact of increasing feature corruption on the selected machine learning models' accuracy. 

Small transformations were applied to the existing training and testing sets to simulate the data from noisy 

sensors. The noise was added in varying combinations to the training and testing sets. A control group 

used for comparison was generated by not introducing noise. Three additional experiments were 

generated based on varying which sets received noise: namely, Train Clean/Test Clean (CvC), Train 

Clean/Test Dirty (CvD), Train Dirty/Test Clean (DvC), and Train Dirty/Test Dirty (DvD). A portion of 

the instances in each dataset was sampled to be transformed. The varying portions were 5%, 10%, 15%, 

and 20% [78]. Each experiment was conducted five times to demonstrate the variability of the models. 

The selected models' robustness to data corruption for flow classification is shown in Figure 5.3. 
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(a) Decision Tree (b) Random Forest 

  
(c) MLP (d) 𝑘-NN 

Figure 5.3. Feature noise testing accuracy results for classifiers (a) Decision tree, (b) Random Forest, 

(c) MLP, and (d) 𝑘-NN 

The specific method to include data corruption was achieved by adding a corresponding noise value to 

each element in the sampled feature vectors. The noise value was randomly selected from a Gaussian 

distribution fitted to each of the features. Gaussian noise distribution emulates the noisy data from sensors 

by assuming the error associated with the sensor results in a probabilistic distribution of values centred 

at the true reading [59]. 

The testing accuracy results in Figure 5.3 show that an increased level of feature noise corresponds 

to an accuracy decrease for all the noise cases. The first two cases of CvC and DvC show a relatively 

constant accuracy for each model over the range of noise levels, with the decision tree classifier most 

susceptible. The decision tree model showed variance in testing accuracy even with no noise, which is 

attributed to the algorithm's low bias, high variance nature which tends to overfit input data. The 

remaining two cases (CvD, DvD) show a constant decrease in testing accuracy with an increased noise 

level. The importance of testing the models with clean data is apparent with the reduced performance of 

all the models. The most considerable reduction in accuracy is attributed to the 𝑘-NN model (21.2%) for 

the CvD case at 20% noise. The reduction of accuracy for the 𝑘-NN model indicates that the 𝑘 value 

selected during clean hyperparameter tuning is too small, making the algorithm sensitive to noise. The 𝑘 

-NN model after hyperparameter tuning had 𝑘 = 1 and used the standardized Euclidean distance metric. 

The random forest testing accuracy reduced the least amount with a maximum reduction of 11.7% for the 

CvD case at 20% noise. The random forest performs better under attribute noise due to the ensemble 

algorithm it implements. The algorithm produces an improved model with a low variance while retaining 

the low bias by aggregating the results of many weaker classifiers with low bias/high variance. After 

hyperparameter tuning, the algorithm consisted of 107 estimators using the Gini splitting criterion and a 

maximum depth of 52 for the weak learning trees.  
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Summarizing the results of the machine model performance and the noise analysis, the random forest 

classification algorithm was determined to have the best balance of high testing accuracy and robustness 

to data corruption. Furthermore, the model built using the 𝑦-component velocity provided the best 

performance in testing accuracy and noise accuracy reduction. 

5.3 Summary 

This section presents an effective wake classification strategy, applying machine learning models trained 

using fluid sensor data. The results demonstrate the proposed strategy's performance to identify vortex 

structures from a reduced input feature space accurately. The 𝑦-component of the velocity (𝑢𝑦) achieved 

the most improved testing accuracy (>15%) compared to the next best quantity, vorticity, which 

demonstrates the improved feature space separation from the sensor. The highest testing accuracy 

reported using the 𝑦-component of velocity was 99.3% and 99.8% using the random forest and 𝑘-nearest 

neighbour models, respectively. The noise analysis on the four best-performing trained models revealed 

that the random forest algorithm was the most robust to data corruption, with a maximum reduction of 

11.7% for the CvD case at the maximum noise level. The importance of higher resolution experimental 

data for testing the models is apparent from all the models' reduced performance. Combining the results, 

the random forest classification algorithm (consisting of 107 estimators) was determined as the most 

advantageous machine learning model due to the balance of testing accuracy and reduced effect from 

noise. 

The method of identifying the wake modes through only the structure of the dataset of local flow 

measurements is validated through the presentation of this wake classification strategy. The classification 

task acts as a proof of concept of the validity of the application of the following clustering analysis. 

Furthermore, the use of the 𝑦-component of the velocity (𝑢𝑦) dataset will provide the best feature 

separation that is imperative for clustering of time series data.  
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Chapter 6  

Vortex Shedding Map Generation at Low 

Reynolds Number  

In this chapter, several unsupervised clustering methods are applied to a low Reynolds number case of 

vortex shedding from an oscillating cylinder to reproduce the benchmark regime map [7]. Each of the 

clustering methods is compared based on clustering performance and quality of the vortex shedding maps. 

The main contribution of this chapter is to validate the clustering methods to reproduce the mode regimes 

and provide valuable insights on the vortex shedding behaviour at each node.  

6.1 Methodology 

The clustering methods considered include single-step traditional methods and multistep (hybrid) 

clustering approaches selected based on their demonstrated clustering performance of time series data.  

The dataset of extracted subsequences was then clustered using each method and compared using 

various parameters. First, the generated clusters were validated using visual inspection for the quality and 

generalizability of the clusters. The clustering performance was quantified using the internal indices of 

silhouette and Dunn index.  

The distribution of clusters was visually displayed using a bi-dimensional embedding of the time 

series using 𝑡-distributed Stochastic Neighbor Embedding (𝑡-SNE). The nonlinear dimensionality 

reduction method of 𝑡-SNE developed by Maaten and Hinton [79] provides an improved map for 

visualization of high-dimensional data that reveals the data structures at many scales. The datasets are 

mapped into two components to be displayed in a scatterplot of the various clusters. The two vector 

components generated by the embedding aims to preserve the structure of the high-dimensional data in 

the low-dimensional map, specifically preserving the local structures achieved using the non-linear 

mapping.  

Finally, the vortex shedding maps were generated using the proportion of clusters that decomposed 

each node into the primary and secondary time series signatures identified by the clustering methods. 

This method of generating the vortex shedding maps provides a detailed description of each mode and 

the expected time series pattern at each node in the normalized amplitude and wavelength plane. 
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6.1.1 Data Exploration 

The dataset obtained from the Kaggle dataset [65] sampled the non-dimensional parameter space along a 

grid of 5 sampling lines. The following locations on the reference vortex shedding map produced by 

Morse and Williamson [7] were used to generate the clustering dataset due to observed vortex shedding 

behaviour in the signals.  

 

Figure 6.1. Dataset sampled nodes overlaid on reference normalized amplitude–wavelength plane [7]. 

The sampling nodes were selected for stable vortex shedding behaviour and included three vortex 

shedding modes: 2S, 2P, and 2PO. Nodes on the frequency sampling line of 𝜆∗ = 4 was excluded due to 

the proximity of the points to the C(2S) to 2S transition, where no cohesive patterns are observed in the 

data. The lack of distinct transition between the C(2S) and pure 2S mode was reported as the least distinct 

boundary compared to any modes by Morse and Williamson [7]. The data points in the C(2S) region were 

carefully selected due to the small vortices that coalesce in the near wake detected by the sampling line 

at 6D.  

The expected labels were assigned based on the time series signal's position from the vortex shedding 

map to produce the expected clusters shown in Figure 6.2. The shaded regions show the maximum and 

minimum values of the signals over the time steps.  
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Figure 6.2. Clusters associated with vortex shedding map labels. 

Repeated patterns are observed in the time series data shown in Figure 6.2 once the signal reaches a steady 

state. The subsequence extraction method aims to isolate these repeated patterns for the clustering 

analysis.  

6.1.2 Subsequence Extraction 

The subsequences in the data were mined using the matrix profile motif extraction method. The specified 

window size for the algorithm was set to the equivalent of 64 time steps to represent a total of at least two 

cycles of oscillation. Selecting the sliding window to capture multiple oscillations will improve clustering 

results by producing more constant and representative patterns. An example of the subsequences 

extracted using the matrix profile procedure is shown in Figure 6.3.  
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(a) 2S 

 
(b) 2PO 

Figure 6.3. Example of motif extraction for signals that resemble (a) 2S and (b) 2PO. 

 

The subsequence extraction is performed on all of the raw time series to extract the single representative 

pattern for the clustering analysis.  

6.1.3 Number of Clusters 

The number of clusters specified in the cluster algorithms was selected to five, considering the domain 

knowledge that three distinct vortex shedding modes should be present in the data, as shown in Figure 

6.1. The two additional clusters were designated for separating transitional modes such as 2PO and any 

noise or outlier points identified in the clustering procedure.  

6.2 Proposed Traditional Clustering Methods 

The following section presents the clustering performance of the selected traditional clustering methods 

through the internal evaluation metrics, cluster plots, latent space cluster distribution, and generated 

vortex shedding map.    

6.2.1 𝑘-Means 

The first clustering method considered was the partitioning algorithm 𝑘-Means. The clustering 

performance was quantified using the internal metrics of silhouette and Dunn index, and the results are 

summarized in Table 6.1. 
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Table 6.1: Clustering Performance Metrics of 𝑘-Means Method at Re = 4000 

Clustering 

Algorithm 
Initialization Method 

Evaluation Metric 

Sil Dunn 

k-Means k-Means++ 0.6559 0.15295 

 

The relatively high evaluation metrics indicate that the clusters generated are sufficiently separate and 

compact. The quality of the clusters can be visually analyzed from the time series subsequence clusters 

shown in Figure 6.4. 

 

Figure 6.4. Generated clusters by 𝑘-Means method at Re = 4000. 

The generated cluster distribution was visualized using the bi-dimensional embedding method of 𝑡-

distributed stochastic neighbour embedding (𝑡-SNE). The two-dimensional latent space of the generated 

clusters using 𝑘-Means is shown in Figure 6.5. 
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Figure 6.5. Cluster 𝑡-SNE distribution at Re = 4000 using 𝑘-Means. 

The similarities of cluster 1 and cluster 5 are shown in the distribution in the 𝑡-SNE space in Figure 6.5. 

The clusters have a similar double peak behaviour synonymous with 2P and 2PO, but the clustering 

algorithm isolated the slight ramping of the peak denoted in cluster 1 at the edge of the cluster bunch. 

The sinusoidal signal denoted in cluster 3 shares little resemblance to the other clusters shown by the 

sparse subspace the clusters occupy in the 𝑡-SNE space. 

The vortex shedding maps were generated based on the proportion of identified clusters candidates 

at each mode. A primary and secondary vortex shedding mode was identified for each node in the 

nondimensional amplitude and wavelength space. This method of generating the map allows the 

identification of strongly clustered nodes and intermittent modes in the parameter space. The primary and 

secondary clusters identified at each node and the corresponding percentage of each are summarized in 

Table 6.2. 

Table 6.2: Vortex Shedding Map Cluster Candidates for 𝑘-Means at Re = 4000 

𝝀∗ A* 
Cluster Candidate Candidate Proportion [%] 

Primary Secondary Primary Secondary 

2 0.1 3 4 85.7 9.5 

2 0.3 2 5 95.2 4.8 

2 0.5 5 2 52.4 47.6 

4 0.1 3 - 100 - 

4 0.7 4 - 100 - 

4 0.9 4 - 100 - 

6 0.3 5 - 100 - 

6 0.5 5 1 90.5 9.5 

6 0.7 1 5 61.9 38.1 

 

The vortex shedding map was then plotted with the primary cluster candidates identified, as shown in 

Figure 6.6. 
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Figure 6.6. Vortex shedding map using 𝑘-Means method at Re = 4000. 

The vortex shedding map produced identified several regions of similar vortex shedding behaviours. First, 

the generated cluster 1 is designated to the node at (𝜆∗, 𝐴∗) = (6,0.7) resembling a 2PO mode with a 

reduced first peak in the pattern. Cluster 2 is primarily for the low-wavelength case 𝜆∗ = 2 with it 

occurring mainly at 𝐴∗ = 0.3 and as the secondary mode at 𝐴∗ = 0.5. The low amplitude, 𝐴∗ = 0.1, space 

exhibits the regular sinusoidal pattern indicative of 2S behaviour under the identification of cluster 3. A 

similar sinusoidal pattern is observed with cluster 4, differing by a lower observed amplitude in the signal. 

Finally, cluster 5 is primarily located at 𝜆∗ = 6 at 𝐴∗ = (0.3, 0.5) with an additional split located at 

(𝜆∗, 𝐴∗) = (2,0.5). The additional node shows a rather weak identification due to the switching between 

cluster 5 and cluster 2.  

6.2.2 Agglomerative 

The following traditional clustering algorithm implemented was the hierarchical algorithm of 

agglomerative. The internal indices used to quantify the clustering performance are summarized in Table 

6.3. 

Table 6.3: Clustering Performance Metrics of Agglomerative Method at Re = 4000 

Clustering Algorithm Linkage Affinity Distance 
Evaluation Metric 

Sil Dunn 

Agglomerative Complete Cosine 0.6794 0.61721 
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The agglomerative method produces clusters with a much larger Dunn index indicating the quality of the 

groups. The clusters associated with the evaluation metrics are shown in Figure 6.7. 

 

Figure 6.7. Generated clusters by Agglomerative (complete, cosine) method at Re = 4000. 

The hierarchical method of the agglomerative algorithm provides a great visualization of the time series 

clustering procedure, as shown in Figure 6.8. 

 

Figure 6.8. Agglomerative dendrogram at level p = 3. 
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The algorithm's clustering approach can be seen further in the distribution of clusters in the two-

dimensional latent space shown in Figure 6.9. 

 

Figure 6.9. Cluster 𝑡-SNE distribution using the agglomerative method at Re = 4000. 

The latent space clearly shows the distinction of the generated clusters, specifically for clusters 2, 3 and 

4. The sample selected for cluster 5 enhabits the subspace of cluster 1, which may be due to the higher 

amplitude and longer wavelength of this sample. Although the sample point denoted as cluster 5 seems 

to better fit within the cluster 1 subspace, the effect of this class can be observed in the vortex shedding 

map. The primary and secondary clusters identified at each node and the corresponding percentage of 

each are summarized in Table 6.4. 

Table 6.4: Vortex Shedding Map Cluster Candidates for Agglomerative Re = 4000. 

𝝀∗ A* 
Cluster Candidate Candidate Proportion [%] 

Primary Secondary Primary Secondary 

2 0.1 3 1 85.7 9.5 

2 0.3 4 2 95.2 4.8 

2 0.5 2 4 52.4 47.6 

4 0.1 3  100  

4 0.7 1  100  

4 0.9 1  100  

6 0.3 2  100  

6 0.5 2  100  

6 0.7 2  100  

 

The vortex shedding map was then plotted with the primary cluster candidates identified, as shown in 

Figure 6.14. 
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Figure 6.10. Vortex shedding map using the agglomerative method at Re = 4000. 

The vortex shedding map isolates several similar regions of subsequence patterns, as seen in the 𝑘-Means 

method. The patterns similar to the signature expected for the 2S mode were observed for clusters 1 and 

3, only varying by amplitude. A group of nodes identified as cluster 2 on the sampling line 𝜆∗ = 6 

demonstrated the double peak of the pair of vortices being shed from the 2P mode.  

6.2.3 Discrete Cosine Transform Representation with 𝑘-Means  

The final clustering method repeated the use of the 𝑘-Means algorithm but was trained on the time series 

dataset represented using the discrete cosine transform (DCT). The clustering performance for the 

reduced dataset using the discrete cosine transform is summarised in Table 6.5. 

Table 6.5: Clustering Performance Metrics of DCT dataset using 𝑘-Means Method at Re = 4000 

Representation 

Method 
Clustering Algorithm 

Evaluation Metric 

Sil Dunn 

DCT 𝑘-Means 0.6559 0.15295 

 

The clusters identified using the 𝑘-Means algorithm trained on the transformed dataset are shown in 

Figure 6.11. 
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Figure 6.11. Generated clusters by 𝑘-Means method on DCT dataset at Re = 4000. 

The samples of each cluster resemble the results of the 𝑘-Means method on the raw subsequence dataset. 

Both methods adequately identified the periodic sinusoidal signals of the 2S mode and even the double-

peaked signals of 2P and 2PO. The cluster distribution produced in the two-dimensional latent space 

generated using 𝑡-SNE is shown in Figure 6.12.  

 

Figure 6.12. Cluster 𝑡-SNE distribution at Re = 4000 using 𝑘-Means on DCT dataset. 

The primary and secondary clusters identified at each node and the corresponding percentage of each are 

summarized in Table 6.6. 
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Table 6.6: Vortex Shedding Map Cluster Candidates for 𝑘-Means on DCT dataset Re = 4000 

𝝀∗ A* 
Cluster Candidate Candidate Proportion [%] 

Primary Secondary Primary Secondary 

2 0.1 3 4 85.7 9.5 

2 0.3 1 2 95.2 4.8 

2 0.5 2 1 52.4 47.6 

4 0.1 3  100  

4 0.7 4  100  

4 0.9 4  100  

6 0.3 2  100  

6 0.5 2 5 90.5 9.5 

6 0.7 5 2 61.9 38.1 

 

The primary cluster candidates with the corresponding proportion were plotted on the normalized 

amplitude wavelength plot shown in Figure 6.13. 

 

Figure 6.13. Vortex shedding map using 𝑘-Means method on DCT dataset at Re = 4000. 
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The vortex shedding map with the DCT representation of the dataset and 𝑘-Means algorithm share many 

similarities, including the identification of the isolated 2PO mode located at (𝜆∗, 𝐴∗) = (6,0.7).  

6.3 Proposed Hybrid Clustering Methods 

Three hybrid methods are proposed in this study for the cluster analysis, and each is compared based on 

internal evaluation metrics, cluster plots, latent space cluster distribution, and generated vortex shedding 

map.   

6.3.1 Hybrid Method A 

The results of the hybrid method A are presented in sequential order of the pre-clustering and final 

clustering phases. Unlike the implementation of 𝑘-Medoids in single-step clustering analysis, the number 

of clusters generated in the first step is unbounded, and the optimum number of clusters must be selected. 

The evaluation metrics of silhouette and Dunn index for an increasing number of clusters are shown in 

Figure 6.14.  

 

Figure 6.14. Evaluation metrics for the number of clusters generated using 𝑘-Medoids. 

The optimum number of clusters was determined to be 30 since the multi-step approach maximizes the 

separation of the clusters for the first stage.  

The final clustering step combines the reduced dataset using the dynamic time warping (DTW) 

distance and the 𝑘-Medoids algorithm. The number of clusters for the final step is defined as the same 

for the single-step clustering methods at five. The clustering performance results of both phases are 

summarized in Table 6.7. 

Table 6.7: Clustering Performance Metrics of Hybrid A Method at Re = 4000 

Phase Clustering Algorithm Number of Clusters 
Evaluation Metric 

Sil Dunn 

1: Pre-Clustering k-Medoids 30 0.6565 0.05469 

2: Final Clustering k-Medoids 5 0.4971 0.01430 
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The pre-clustering phase isolates discretely separated clusters identified by the relatively high silhouette 

index. However, the performance of the evaluation metric decreases for the merged clusters in the final 

clustering phase. The explanation of the reduced clustering performance can be determined by the plotted 

cluster samples of Hybrid A,  shown in Figure 6.15. 

 

Figure 6.15. Generated clusters using the Hybrid A method at Re = 4000. 

The procedure of clustering based on similarity in shape using dynamic time warping is seen in the 

samples of cluster 3 in Figure 6.15. The samples in cluster 3 all share relatively similar shapes but are 

out-of-phase with each other, a product of simply using the splices of the subsequences extracted from 

the more extended raw time series data. The poor performance of the Dunn index is attributed to the out-

of-phase samples in cluster 3, as the calculation of the Dunn index uses the pairwise distances of the 

samples. The underlying clustering approach was visualized by the two-dimensional latent space of the 

generated clusters using Hybrid A, shown in Figure 6.16. 
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Figure 6.16. Cluster t-SNE distribution using Hybrid A method at Re = 4000. 

The primary and secondary clusters identified at each node and the corresponding percentage of each are 

summarized in Table 6.8. 

Table 6.8: Vortex Shedding Map Cluster Candidates for Hybrid A at Re = 4000 

𝝀∗ A* 
Cluster Candidate 

Candidate Proportion 

[%] 

Primary Secondary Primary Secondary 

2 0.1 4 3 85.7 14.3 

2 0.3 3 5 95.2 4.8 

2 0.5 5 3 52.4 47.6 

4 0.1 4  100  

4 0.7 3 1 85.7 14.3 

4 0.9 1  100  

6 0.3 5  100  

6 0.5 5 2 90.5 9.5 

6 0.7 5 2 66.7 33.3 

 

Using the primary cluster candidates and the associated weights of the clusters identified at each node, 

the normalized amplitude and wavelength plane were populated in Figure 6.17. 
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Figure 6.17. Vortex shedding map using Hybrid A method at Re = 4000. 

The vortex shedding map produced identifies several varying regions of vortex shedding behaviour. First, 

the generated cluster 1 is designated to the node at (𝜆∗, 𝐴∗) = (6,0.7) which resembles a 2P mode but with 

a reduced first peak in the pattern. Cluster 2 is primarily for the low-frequency case 𝜆∗ = 2 with it 

occurring mainly at 𝐴∗ = 0.3 and as the secondary mode at 𝐴∗ = 0.5. The low amplitude, 𝐴∗ = 0.1, space 

exhibits cluster 3, the regular sinusoidal pattern indicative of 2S behaviour. A similar sinusoidal pattern 

is observed with cluster 4, differing by a lower observed amplitude in the signal. Finally, cluster 5 is 

primarily located at 𝜆∗ = 6 at 𝐴∗ = (0.3, 0.5) with an additional split located at (𝜆∗, 𝐴∗) = (2,0.5). The 

additional node shows a rather weak identification due to the switching between the modes of cluster 5 

and cluster 2.  

6.3.2 Hybrid Method B 

The clustering analysis results are presented for the corresponding phases using DBSCAN as the pre-

clustering phase and agglomerative for the final merging of clusters. The DBSCAN algorithm identified 

six clusters with three samples considered outliers. A prototype represents each of the six clusters 

identified in the pre-clustering phase. The prototype of each cluster represents the time series that 

minimizes the pairwise distances between itself with the other cluster members. The reduced dataset of 

prototypes is then used for the final clustering stage.  

The final clustering is conducted on the prototype dataset to merge similar samples to the desired 

number of clusters. Dynamic time warping is used for the distance matrix, which is less computationally 

expensive on the reduced dataset. The distance matrix is then used in the agglomerative algorithm with 

the tuned complete initialization method. The clustering performance results of both phases are 

summarized in Table 6.9. 
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Table 6.9: Clustering Performance Metrics of Hybrid B Method at Re = 4000 

Phase Clustering Algorithm Number of Clusters 
Evaluation Metric 

Sil Dunn 

1: Pre-Clustering DBSCAN 6 (3 Noise Points) 0.7185 0.36049 

2: Final Clustering Agglomerative 5 0.7031 0.39836 

 

The DBSCAN algorithm in the pre-clustering phase produced well-separated clusters resulting in a high 

silhouette index. The final merging step improved the Dunn index marginally at the cost of a slight 

reduction of silhouette index. The generated clusters merged for the entire dataset are shown in Figure 

6.18. 

 

Figure 6.18. Generated clusters by Hybrid B method at Re = 4000. 

The dataset reduction using the 𝑡-SNE method differs from other cases since the DBSCAN algorithm 

identifies noise points removed from the dataset in the analysis. The latent space for the noise-reduced 

dataset is shown in Figure 6.19. 
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Figure 6.19.Cluster t-SNE distribution using Hybrid B method at Re = 4000. 

The primary and secondary clusters identified at each node and the corresponding percentage of each are 

summarized in Table 6.10. 

Table 6.10: Vortex Shedding Map Cluster Candidates for Hybrid B at Re = 4000 

𝝀∗ A* 
Cluster Candidate 

Candidate Proportion 

[%] 

Primary Secondary Primary Secondary 

2 0.1 1  100  

2 0.3 5 4 95.2 4.8 

2 0.5 4 3 52.4 47.6 

4 0.1 1  100  

4 0.7 2  100  

4 0.9 2  100  

6 0.3 4  100  

6 0.5 4  100  

6 0.7 4  100  

 

The associated vortex shedding map was generated based on the primary cluster candidates and the 

proportions of cluster samples at each node shown in Figure 6.20. 
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Figure 6.20. Vortex shedding map using Hybrid B method at Re = 4000. 

Using the Hybrid B method, the generated regime map shares its overall structure with the other methods. 

The nodes along the line 𝜆∗ = 6 all belong to the primary mode identified in cluster 4 that resembles the 

2P mode. The low amplitude nodes along the horizontal line 𝐴∗ = 0.1 share cluster 1. The sinusoidal 

mode with lower amplitude is located at  (𝜆∗, 𝐴∗) = (4,0.7) and (𝜆∗, 𝐴∗) = (6,0.9). Finally, the node located 

at (𝜆∗, 𝐴∗) = (2,0.5) is comprised of two modes labelled by cluster 4 and cluster 3.  

6.3.3 Hybrid Method C 

The pre-clustering and final clustering phase results are presented for the last proposed hybrid methods. 

The 𝑘-Means algorithm used in the first phase requires the optimum number of clusters to maximize the 

silhouette index. The evaluation metrics of silhouette and Dunn index for an increasing number of clusters 

are shown in Figure 6.21. 
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Figure 6.21. Evaluation metrics for the number of clusters generated using 𝑘-Means. 

The optimum number of clusters for the pre-clustering phase was 20 as it maximized the silhouette index 

representing well-separated clusters. The corresponding clustering performance results of both phases are 

summarized in Table 6.11. 

Table 6.11: Clustering Performance Metrics of Hybrid C Method at Re = 4000 

Phase Clustering Algorithm Number of Clusters 
Evaluation Metric 

Sil Dunn 

1: Pre-Clustering k-Means 20 0.7464 0.09175 

2: Final Clustering Agglomerative 5 0.5336 0.11211 

 

The evaluation metrics indicate the quality of clustering in each stage, primarily the significantly 

separated clusters in the first stage and the more general clusters merged in the final stage. The merging 

of clusters results in an observed decrease in the silhouette index but improves the performance of the 

Dunn index. The final cluster performance can be observed in the merging clusters generated by the 

hybrid method in Figure 6.22. 
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Figure 6.22. Generated clusters by Hybrid C method at Re = 4000. 

The clusters generated overall capture unique and separated subsequence patterns between them. The 

relatively poor performance in the Dunn index can be identified by the low number of samples identified 

in cluster 2 and variation in signal in cluster 1. The behaviour of the clustering algorithm in generating 

the groups can be visualized in the latent space of the dataset converted using 𝑡-SNE shown in Figure 

6.23. 

 

Figure 6.23. Cluster t-SNE distribution using Hybrid C method at Re = 4000. 

The primary and secondary clusters identified at each node and the corresponding percentage of each are 

summarized in Table 6.12. 
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Table 6.12: Vortex Shedding Map Cluster Candidates for Hybrid C at Re = 4000. 

𝝀∗ A* 
Cluster Candidate 

Candidate Proportion 

[%] 

Primary Secondary Primary Secondary 

2 0.1 1 2 85.7 14.3 

2 0.3 4 3 95.2 4.8 

2 0.5 3 4 52.4 47.6 

4 0.1 1  100  

4 0.7 1  100  

4 0.9 5  100  

6 0.3 3  100  

6 0.5 3  100  

6 0.7 3  100  

 

The associated vortex shedding map was generated based on the primary cluster candidates and the 

proportions of cluster samples at each node shown in Figure 6.24. 

 

Figure 6.24. Vortex shedding map using Hybrid C method at Re = 4000. 
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6.4 Discussion  

The results show that each clustering method offers varying benefits and procedures to the unsupervised 

clustering task. The respective performance of each method and corresponding qualitative attributes are 

discussed in this section culminating in an analysis of the vortex shedding  

6.4.1 Traditional Methods 

The partitioning method selected, 𝑘-Means, is a classical clustering method that offers many benefits and 

limitations for its implementation in this study. A benefit of using partition methods is the relatively 

simple algorithm implementation, which makes the clusters generated intuitive. The partitioning 

methods, 𝑘-Means and 𝑘-Medoids, have a linear time complexity 𝑂(𝑛) with the number of data objects, 

𝑛 [80]. Partitioning methods have limitations that may affect the implementation of these methods in this 

clustering analysis. First, the nature of the algorithm requires the number of partitions to be specified in 

the initialization. The number of partitions can be obtained either through domain knowledge or by 

optimizing cluster numbers. The data-driven goal of this study lends the specification of clusters as a 

limitation as the required domain knowledge restricts the application of this method for high Reynolds 

number cases.  

The partitioning methods implicitly assume the cluster's shape to be spherical, often visualized as a 

circle in two dimensions, centred at the mean or medoid. The shape of the clusters can reduce the 

performance of the clusters as the natural clusters are not guaranteed to be circular. Despite the tuning of 

the initialization method of the partitioning algorithms, the clustering results can vary between training 

instances. The initialization of the cluster centers is an integral step in partitioning algorithms, resulting 

in the method being sensitive to the input data. Furthermore, the mean or medoids of the clusters can be 

influenced by outliers that have a similar reduction in cluster performance.  

Hierarchical methods offer some improvements over the previous partitioning methods. The 

hierarchical algorithm does not necessarily require the number of partitions specified, as the hierarchy 

structure can be spliced at the appropriate level to extract the clusters. The hierarchical methods have the 

shared benefit as partitioning methods that are simple to implement, and the clustering algorithm is 

relatively intuitive. Furthermore, hierarchical methods have a great visualization power, especially for 

time series clustering using the generated dendrograms for the generated clusters. Conversely, 

hierarchical methods have limitations that can affect the clustering performance in this study. The 

complexity of agglomerative algorithms for hierarchical clustering is considered quadratic, 𝑂(𝑛2) [38]. 

The increased computational complexity of hierarchical algorithms restricts the scalability of these 

methods for larger datasets. Another drawback of hierarchical methods is the sequential approach of 

merging clusters in the algorithm, which does not allow samples to be reassigned once merged.  

Representing the time series data in a reduced dimension can achieve clustering performance gains 

in many applications because of the reduced complexity and generally more straightforward clustering 

model. The discrete cosine transform represents the time series in the frequency subspace by the 

summation of cosine terms of the spectrum. Representing the data by a frequency function may yield 

benefits for time series cases with increased noise and fluctuations as expected for high Reynolds number 

cases in this study. The reduced dataset was clustered using the 𝑘-Means method to quantify its effect on 

clustering.  

The benefits and limitations of the selected ordinary clustering methods are summarized in Table 

6.13. 
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Table 6.13: Pros and Cons of Ordinary Clustering Methods 

 Pros Cons 

Partitioning 

Methods 

(𝒌 -Means) 

• Easy implementation. 

• Linear time and space 

complexity. 

• Reassignment of samples. 

• Number of partitions 

specified. 

• Sensitive to input data, 

initial seeds, and 

outliers. 

Hierarchical 

Methods 

(Agglomerative) 

• Easy Implementation. 

• Hierarchy dendrogram allows 

for improved visualization and 

selection of clusters. 

• Cannot reassign 

erroneous merges of 

samples. 

• High time complexity. 

 

6.4.1.1 Evaluation Metrics 

The traditional clustering methods are compared based on the clustering evaluation metrics summarized 

in Table 6.14. 

Table 6.14: Comparison of Ordinary Clustering Methods Based on The Silhouette and Dunn Indices 

Type Clustering Algorithm 
Representation 

Method 
Parameters 

Evaluation Metric 

Sil Dunn 

Partitioning 𝑘-Means Raw Time Series k-Means++ 0.6559 0.15295 

Hierarchical Agglomerative Raw Time Series Complete, cosine 0.6794 0.61721 

Partitioning 𝑘-Means 
Discrete Cosine 

Transform (DCT) 
k-Means++ 0.6559 0.15295 

 

The representation method of DCT shows identical clustering performance compared to the 𝑘-Means 

method trained using the raw time series data. Although there was no clustering performance 

improvement over the 𝑘-Means method trained using the raw time series, the similar clustering validates 

the use of the DCT as a data reduction method and is selected for its expected gains for the higher 

Reynolds number cases. 

The hierarchical method of the agglomerative algorithm exceeds the performance of the partitioning 

methods in both a slight improvement of silhouette index and a more dramatic increase in Dunn index. 

Although high Dunn is desirable for separate and highly compact clusters, the objective of maximizing 

the Dunn index can result in very few samples being clustered together, which achieved high compactness 

at the risk of generalizability. The clusters generated by the agglomerative algorithm shown in Figure 6.7 

show the limitations of the high Dunn index as Cluster 5 has fewer samples than the other clusters. In this 

case, the limited number of clusters affects the other clusters as samples of the other clustering methods 

identified as 2PO are lost in the crowded clusters generated by the agglomerative method. Despite the 

risk of generalizability and the effect on the vortex shedding map generated, the clustering performance 

of the agglomerative algorithm is still competitive and is considered for the high Reynolds number case.  
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6.4.1.2 Visual Analysis  

The single-step methods using ordinary clustering are validated in the generation of vortex shedding maps 

by comparing them to the reference map produced by Morse and Williamson [7]. The vortex shedding 

map produced using the raw 𝑘-Means method is overlaid with the regimes in the reference map as shown 

in Figure 6.25. 

Figure 6.25. Overlaid benchmark regimes on vortex shedding map produced with 𝑘-Means at Re = 

4000. 

The overall groups generated by the clustering method fit within the expected regimes produced by Morse 

and Williamson [7]. The specific case of 𝑘-Means, both with raw and DCT time series, isolate a cluster 

designated for the 2PO mode. Cluster number 4 and 5 both exclusively inhabit the regions of 2S and 2P 

modes in the benchmark map. The C(2S) region shows more variation in the assigned cluster numbers. 

The nodes located in this region at low values of non-dimensional amplitude 𝐴∗ < 0.2 are strongly 

controlled by the clear sinusoidal cluster of number 3.  

The similarities of the vortex shedding maps produced are apparent in the map generated with the 

agglomerative algorithm overlaid with the reference map regions, as shown in Figure 6.26. 

2S 

2PO 

C(2S) 

2P 
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Figure 6.26. Overlaid benchmark regimes on vortex shedding map produced with agglomerative at Re = 

4000. 

The general regions identified by cluster 4 and cluster 2 fit within the expected modes of 2P and 2S, 

respectively. In this case, the cluster in the 2PO region is designated cluster 4, which is not unexpected 

as the vortex shedding behaviour of 2PO is similar to 2P and can switch intermittently. 

6.4.2 Hybrid Methods 

The hybrid methods proposed in this thesis all have varying attributes that make them desirable or 

inherent limitations. Hybrid Method A implements two stages of the partitioning algorithm 𝑘-Medoids. 

The partitioning method shares the benefits of noted for 𝑘-Means of simple implementation and linear 

time complexity 𝑂(𝑛) with the number of data objects 𝑛 [80]. The partitioning method is limited by the 

initialization method, which can produce varying clustering results between training instances. The 𝑘-

Medoids algorithm is considered an improvement over k-Means concerning the robustness of the 

methods. The improved robustness from the 𝑘-Medoids is attributed to the objective function using the 

median sample as the cluster center. The performance gain of 𝑘-Medoids is debated in the data mining 

community, especially for cases with increased dimensionality of the centroids, such as the case of this 

study of time series clusters [81]. As with all partitioning methods, the number of clusters is required in 

the initialization, which is a limitation in this data-driven study due to the restriction of domain 

knowledge. 

The method implemented in Hybrid B uses DBSCAN for the initial clustering and agglomerative 

for final clustering. An advantage of DBSCAN is the limited number of parameters required to be 

initialized, which does not include the number of partitions. The DBSCAN algorithm excels in defining 

highly separated clusters with unbounded application parameters and identifying outliers. The 

hierarchical method shares the benefits and limitations previously discussed.  

Hybrid method C was specifically designed for optimal clustering performance based on the search 

of ordinary clustering methods. Independently, both the 𝑘-Means and Agglomerative provide excellent 

clustering results shown in the analysis of single-stage clustering.  

2S 
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Table 6.15: Pros and Cons of Hybrid Clustering Methods 

 Pros Cons 

Hybrid A 

(𝒌 -Medoids) 
• Easy implementation. 

• Linear time and space 

complexity. 

• Reassignment of samples. 

• Number of partitions 

specified. 

• Sensitive to input data, 

initial seeds, and outliers. 

Hybrid B 

(DBSCAN, 

Agglomerative) 

• Minimal parameters. 

• Automatic outlier detection. 

• Arbitrary cluster shapes. 

• Easy Implementation. 

• Hierarchy dendrogram 

allows for improved 

visualization and selection of 

clusters. 

• Cannot reassign 

erroneous merges of 

samples. 

• High time complexity. 

Hybrid C (𝒌-

Means, 

Agglomerative) 

• Easy implementation. 

• Hierarchy dendrogram 

allows for improved 

visualization and selection of 

clusters. 

• Number of partitions 

specified. 

• Sensitive to input data, 

initial seeds, and outliers. 

 

 

6.4.2.1 Evaluation Metrics  

The hybrid methods are compared based on the clustering evaluation metrics that are summarized in 

Table 6.16. 

Table 6.16: Comparison of Hybrid Clustering Methods Based on The Silhouette and Dunn Indices 

Clustering 

Method 

Pre-Clustering 

Algorithm 

Final Clustering 

Algorithm 

Evaluation Metric 

Sil Dunn 

Hybrid A 𝑘-Medoids 𝑘-Medoids 0.4971 0.01430 

Hybrid B DBSCAN Agglomerative 0.7031 0.39836 

Hybrid C 𝑘-Means Agglomerative 0.5336 0.11211 

 

The best performing hybrid method concerning silhouette and Dunn index is Hybrid B which has a 31.8% 

and 255% respective increase over the following best Hybrid C method. The high silhouette index 

highlights the ability of the DBSCAN method to produce highly separate clusters and reject noise points 

in the subspace. The Dunn index was marginally improved using agglomeration in the final clustering 

phase, producing more general clusters. The apparent poor clustering performance of Hybrid A from the 

low Dunn index is attributed to the use of DTW in the final clustering step. The implementation of DTW 

with the 𝑘-Medoids algorithm performed excellently to cluster shape-like patterns that were out of phase 

with each other. The calculation of the Dunn index uses the pairwise distances of the samples, which 

results in a low value for the out-of-phase samples. 



 

75 

 

6.4.2.2 Visual Analysis  

The hybrid method's ability to generate accurate vortex shedding maps was validated by comparing them 

to the reference map produced by Morse and Williamson [7]. The vortex shedding map produced using 

the Hybrid B method is overlaid with the regimes in the reference map, as shown in Figure 6.27. 

Figure 6.27. Overlaid benchmark regimes on vortex shedding map produced with Hybrid B at Re = 

4000. 

The groups of clusters identified by the method overall fit within the expected regions produced by Morse 

and Williamson [7]. The corresponding pure 2S and 2P regions are inhabited with cluster 2 and cluster 4 

points. Although the 2PO mode does not have a distinct cluster identification, the vortex shedding patterns 

at this node can exhibit both pure 2P signals and intermittent 2PO modes. Similar to all of the clustering 

methods presented, variation in the groups of clusters in the C(2S) regime is observed. The nodes located 

in this region at low values of non-dimensional amplitude 𝐴∗ < 0.2 contains the regular sinusoidal pattern 

of cluster 1 strictly.  

In many of the vortex shedding maps produced, the clusters identified at locations (𝜆∗, 𝐴∗) = (2, 0.3) 

and (𝜆∗, 𝐴∗) = (2, 0.5) show signals resembling that of the 2P mode, which is unexpected in this region. 

The seemingly misclassification is attributed to the C(2S) small vortices that coalesce in the near wake, 

which can corrupt the patterns in the data. Furthermore, the force in phase with acceleration contour graph 

produced by Morse and Williamson [7] provides more insight on the vortex shedding behaviour at these 

points, as shown in Figure 6.28. 
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C(2S) 

2P 



 

76 

 

 

Figure 6.28. Force in phase with acceleration, 𝐶𝑦𝑐𝑜𝑠𝜙,  contour graph at Re = 4000 [7]. 

The two points of interest, specifically the node located at (𝜆∗, 𝐴∗) = (2, 0.5) is located at a point where 

many force in phase contours merge. The highly positive phase with acceleration may be the cause of the 

observed varying vortex shedding behaviour seen in this unstable region of the map.  

6.5 Summary  

This chapter presents a combination of unsupervised clustering strategies applied to a benchmark low 

Reynolds number case of vortex shedding for an oscillating cylinder. The quality of the clustering analysis 

was evaluated using internal clustering metrics, visual analysis of the clusters, and finally exploring the 

patterns of the generated vortex shedding maps.  

Table 6.17: Final Clustering Performance Metrics of Proposed Methods at Re = 4000 

Type Clustering Algorithm Representation Method 
Evaluation Metric 

Sil Dunn 

Partitioning k-Means Raw Time Series 0.6559 0.15295 

Hierarchical Agglomerative Raw Time Series 0.6794 0.61721 

Partitioning k-Means Discrete Cosine Transform (DCT) 0.6559 0.15295 

Hybrid k-Medoids/k-Medoids Raw Time Series 0.4971 0.01430 

Hybrid DBSCAN/Agglomerative Raw Time Series 0.7031 0.39836 

Hybrid k-Means/Agglomerative Raw Time Series 0.5336 0.11211 

 

The results of the data-driven methods for generating vortex shedding maps were determined to agree 

with the benchmark regime map produced by Morse and Williamson [7]. The regimes maps and 

corresponding clusters reveal the underlying signatures of each mode based only on the local flow 
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measurements of the 𝑦-component of velocity. The cluster candidates used to plot the regime map provide 

additional information on the primary and secondary modes at each node in the parameter space. The 

additional vortex shedding information in the map provides more precise distinctions between the modes 

and expected behaviour. The clustering performance and satisfactory agreement with the reference map 

validate the use of the clustering methods for the application of vortex shedding map generation for an 

oscillating cylinder at a low Reynolds number.  

In conclusion, this chapter addressed the objective of implementing a data-driven approach that 

requires less input data and supervision through local flow measurements and unsupervised clustering. 

The presented methods are extended in Chapter 7 to produce vortex shedding maps to an application of 

high Reynolds numbers with more complex vortex structures that become indistinguishable from 

traditional methods.  
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Chapter 7  

Vortex Shedding Map at High Reynolds 

Number  

In this chapter, the unsupervised clustering methods validated in Chapter 6 for the low Reynolds number 

case are extended to a higher Reynolds number case to produce a vortex shedding map for more complex 

flow regimes.  

The main contributions of this chapter include gaining insights into the underlying dynamical 

regimes of the vortex shedding through the map generation. Secondly, quantify the clustering 

performance to extract meaningful patterns from the local flow field experiencing increased instability 

and mixing due to the increased dissipation energy of the flow.  

7.1 Methodology 

A similar methodology was implemented in this chapter to study the vortex shedding map generation of 

the clustering methods. The subsequence from the local flow time series data was extracted using the 

same method as the low Reynolds number. The clustering analysis was then performed using the ordinary 

and hybrid methods presented in Chapter 6. The performance of each clustering method was quantified 

using the internal evaluation metrics and visually validated using the subsequence plots. Additionally, 

insight on the cluster generation was gained from the distribution of clusters in the 𝑡-SNE embedded 

latent space. Finally, the vortex shedding maps were generated using the proportion of clusters that 

decomposed each node into the primary and secondary time series signatures identified by the clustering 

methods.  

7.1.1 Data Exploration 

The high Reynolds number dataset [65] sampled the normalized amplitude–wavelength plane of forced 

oscillations along five sampling lines. The nodes selected in this parameter space for the cluster analysis 

are shown in Figure 7.1 based on the observed vortex shedding behaviour.  
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Figure 7.1. Dataset sampled nodes in normalized amplitude–wavelength plane [7]. 

The clustering dataset included more nodes from the normalized amplitude and wavelength space due to 

the observed patterns in the local measurements. The repeated patterns in the local flow measurements 

were then isolated using the subsequence extraction method.  

7.1.2 Subsequence Extraction 

The quality of extracted subsequences for the high Reynolds number cases is pivotal in the clustering 

results since more fluctuating signals are observed. The window size used for the matrix profile algorithm 

was confirmed for applying the high Reynolds number case by visual inspection of a relatively consistent 

pattern and a variable pattern signal shown in Figure 7.2. 
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(a) (𝜆∗, 𝐴∗) = (0.5, 6) 

 
(b) (𝜆∗, 𝐴∗) = (0.9, 4) 

Figure 7.2. Motif extraction for high Reynolds number signals of (a) consistent pattern observed at 

(𝜆∗, 𝐴∗) = (0.5, 6) and (b) a realtively unstable signal observed at (𝜆∗, 𝐴∗) = (0.9, 4). 

 

The window size of 64 extracts meaningful patterns from the sample signals even with an unstable signal 

shown in Figure 7.2 (b). Smaller window sizes would not capture the repeated global patterns, and more 

oversized windows would not extract valuable patterns to aid in the clustering analysis.  

7.2 Proposed Traditional Clustering Methods 

Applying the clustering methods selected from the low Reynolds number cases requires the number of 

clusters to be specified. Since this study limits the domain knowledge required for map generation, the 

optimum number of clusters must be determined. The number of clusters should optimize the clustering 

performance and the insights that can be extracted through clustering. To ensure that the generated 

clusters can provide value in the map generation, a limit of 10 clusters is specified. A rule of thumb 

method of determining the number of clusters is by using the size of the training dataset such that the 

number of clusters is equal to √𝑛 2⁄  for a dataset of 𝑛 instances [34]. This approximation expects to have 

each cluster with  √2𝑛 samples in each. Applying this simple method yields an estimated number of 

clusters of 11 which qualifies the set limit of 10 clusters for our application.  

7.2.1 𝑘-Means 

The first step in implementing the 𝑘-Means method was determining the number of clusters to consider 

for this case. The number of clusters selected was nine due to the balanced evaluation metrics of silhouette 
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and Dunn index. The 𝑘-Means method validated in the previous chapter was implemented using the same 

initialization method of 𝑘-means++. The clustering performance for the high Reynolds number case was 

quantified using the internal metrics summarized in Table 7.1. 

Table 7.1: Clustering Performance Metrics of 𝑘-Means Method at Re = 10,000 

Clustering Algorithm 
Evaluation Metric 

Sil Dunn 

k-Means 0.5750 0.49261 

 

The evaluation metrics of the clusters indicate a good balance between the silhouette and Dunn index, 

which should result in well-clustered samples. The corresponding clusters generated are shown in Figure 

7.3. 

 

Figure 7.3. Generated clusters by 𝑘-Means method at Re= 10,000. 

From the generated clusters, some patterns begin to appear. Clusters 7 and 9 show a similar pattern of 

regular sinusoid action with prominent peaks and troughs in the signal. A similar pattern with low 

amplitude is observed in cluster 6. The expected pattern of the 2PO mode is observed in cluster 2 and 

cluster 4, highlighted by a smaller peak in-between the peaks. More irregular signals are highlighted in 

clusters 1, 3, 5, 8. Despite the variations in the signals of clusters 1 and 8, an underlying pattern persists 

of smaller dual-peaks. Clusters 3 and 5 show a more regular smaller amplitude sinusoid action of the 

clusters. The cluster distribution in the bi-dimensional embedding latent space generated using 𝑡-SNE is 

shown in Figure 7.4. 
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Figure 7.4. Cluster t-SNE distribution at Re = 10,000 using k-Means. 

The primary and secondary clusters identified at each node and the corresponding percentage of each are 

summarized in Table 7.2. 

Table 7.2: Vortex Shedding Map Cluster Candidates for 𝑘-Means at Re = 10,000 

𝝀∗ A* 
Cluster Candidate Candidate Proportion [%] 

Primary Secondary Primary Secondary 

2 0.1 1  100  

2 0.3 1  100  

4 0.1 6  100  

4 0.3 5 3 52.4 47.6 

4 0.7 8  100  

4 0.9 9 7 52.4 47.6 

6 0.3 3  100  

6 0.5 8  100  

6 0.7 2  100  

6 0.9 4 1 81 14.3 

8 0.5 3 8 81 19 

10 0.7 5  100  

10 0.9 5  100  

 

The primary clusters and the relative weight of each label are plotted together on the map shown in Figure 

7.5. 
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Figure 7.5. Vortex shedding map using 𝑘-Means method at Re = 10,000. 

There are a few groups of clusters in the non-dimensional amplitude and wavelength plane of similar 

clusters. First, the two nodes located on the 𝜆∗ = 10 line are both identified by cluster number 5. A similar 

mode to cluster 5 identified as cluster 3 is shown in the proximity at locations (𝜆∗, 𝐴∗)  = (6,0.3) and (8, 

0.5). The smaller non-dimensional amplitude values along the line 𝜆∗ = 2 exhibits the behaviour denoted 

by cluster 1, which is a more irregular pattern. The similarities of clusters 3 and 5 are shown by the split 

distribution of the node located at (𝜆∗, 𝐴∗)  = (4,0.3), which evenly shares the weight of both clusters. 

The highly regular clusters 7 and 9 are identified at the node (𝜆∗, 𝐴∗)  = (4,0.9) which corresponds to a 

strong 2S behavior.  

7.2.2 Agglomerative 

The validated agglomerative method was built using the same complete linkage and cosine affinity 

distance as the method used for the low Reynolds number. The internal indices used to quantify the 

clustering performance are summarized in Table 7.3. 

Table 7.3: Clustering Performance Metrics of Agglomerative Method at Re = 10,000 

Clustering Algorithm 
Evaluation Metric 

Sil Dunn 

Agglomerative 0.5760 0.51160 

 

The clusters associated with the evaluation metrics are shown in Figure 7.6 
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Figure 7.6. Generated clusters by Agglomerative (complete, cosine) method at Re = 10,000. 

The clusters generated using the agglomerative procedure share many similarities to the clusters of the 

𝑘-Means method. A sub-peak in-between cycles synonymous with the 2PO mode is identified in clusters 

1 and 3. Pure modes were identified in Clusters 1, 3, 5, 7, and 9, with slight variation in the samples. 

Inconsistent patterns are observed in Clusters 4 and 5, where the clusters would benefit from additionally 

merging. Additional insight on the clustering procedure can be obtained by the cluster distribution in the 

two-dimensional 𝑡-SNE latent space shown in Figure 7.7. 

 

Figure 7.7. Cluster t-SNE distribution using the agglomerative method at Re = 10,000. 
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The clusters of interest, 4 and 5, are relatively close in the latent subspace. Cluster 5 has a relatively low 

number of samples, and the samples included in cluster 4 seem to be inconsistent with the density of the 

latent space. The primary and secondary clusters identified at each node and the corresponding percentage 

of each are summarized in Table 7.4. 

Table 7.4: Vortex Shedding Map Cluster Candidates for Agglomerative Re = 4000 

𝝀∗ A* 
Cluster Candidate Candidate Proportion [%] 

Primary Secondary Primary Secondary 

2 0.1 8  100  

2 0.3 8  100  

4 0.1 3  100  

4 0.3 6 4 52.4 47.6 

4 0.7 2 1 81 19 

4 0.9 5 4 52.4 47.6 

6 0.3 9  100  

6 0.5 7  100  

6 0.7 1  100  

6 0.9 3 2 61.9 19 

8 0.5 4 7 81 19 

10 0.7 6  100  

10 0.9 6  100  

 

The vortex shedding map was then plotted with the primary cluster candidates identified, as shown in 

Figure 7.8. 

 

Figure 7.8. Vortex shedding map using the agglomerative method at Re = 10,000. 

The areas of interest in this map include the similarly clusters nodes located on the 𝜆∗ = 10 line, which 

shares the cluster number 6.  The similarities of clusters 4 and 5 are shown by the split distribution of the 
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node located at (𝜆∗, 𝐴∗)  = (4,0.9), which evenly shares the weight of both clusters. Cluster number 3 is 

identified in the parameter space at two unique locations, (𝜆∗, 𝐴∗)  = (6,0.9) and (𝜆∗, 𝐴∗)  = (4,0.1). The 

cluster pattern is mainly identified in the lower amplitude case as the cluster shares weight with cluster 2 

at the higher amplitude node. These nodes highlight the enhanced vortex shedding behavior identification 

ability using the primary and secondary cluster candidates and the relative observed weights of each.  

7.2.3 DCT Time Series Representation with k-Means  

The clustering method implemented by representing the time series data using the discrete cosine 

transform then clustered using 𝑘-Means was selected for this analysis. The clustering performance for 

the reduced dataset using the discrete cosine transform is summarised in Table 7.5. 

Table 7.5: Clustering Performance Metrics of DCT dataset using 𝑘-Means Method at Re = 10,000 

Representation 

Method 
Clustering Algorithm 

Evaluation Metric 

Sil Dunn 

DCT 𝑘-Means 0.5938 0.49347 

 

The clusters identified using the 𝑘-Means algorithm trained on the transformed dataset are shown in 

Figure 7.9. 

 

Figure 7.9. Generated clusters by 𝑘-Means method on DCT dataset at Re = 10,000. 

The cluster distribution produced in the two-dimensional latent space generated using 𝑡-SNE is shown in 

Figure 7.10. 
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Figure 7.10. Cluster 𝑡-SNE distribution at Re = 10,000 using 𝑘-Means on DCT dataset. 

The primary and secondary clusters identified at each node and the corresponding percentage of each are 

summarized in Table 7.6. 

Table 7.6: Vortex Shedding Map Cluster Candidates for 𝑘-Mean on DCT dataset Re = 10,000 

𝝀∗ A* 
Cluster Candidate Candidate Proportion [%] 

Primary Secondary Primary Secondary 

2 0.1 1  100  

2 0.3 1  100  

4 0.1 3  100  

4 0.3 6 5 52.4 47.6 

4 0.7 2  100  

4 0.9 7 8 52.4 47.6 

6 0.3 4  100  

6 0.5 2  100  

6 0.7 2  100  

6 0.9 9 1 81 14.3 

8 0.5 5 2 81 19 

10 0.7 6  100  

10 0.9 6  100  

 

The corresponding vortex shedding map produced with the primary cluster candidates and the nodes in 

the non-dimensional amplitude and wavelength plane is shown in Figure 7.11. 
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Figure 7.11. Vortex shedding map using 𝑘-Means method on DCT dataset at Re = 10,000. 

The map produced using the DCT and 𝑘-Means method shares many identified clusters in the 𝑘-Means 

method trained using the raw time series.  

7.3 Proposed Hybrid Clustering Methods 

The three hybrid methods validated in Chapter 6 are compared based on internal evaluation metrics, 

cluster plots, latent space cluster distribution, and generated vortex shedding map.   

7.3.1 Hybrid Method A 

The first step in implementing the hybrid method is to determine the number of clusters that produce the 

first stage's optimum performance. The evaluation metrics of silhouette and Dunn index for an increasing 

number of clusters are shown in Figure 7.12 

 

Figure 7.12. Evaluation metrics for the number of clusters generated using 𝑘-Medoids. 
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The optimum number of clusters was determined to be 30 since the multi-step approach maximizes the 

separation of the clusters for the first stage. The clustering performance results of both phases are 

summarized in Table 7.7. 

Table 7.7: Clustering Performance Metrics of Hybrid A Method at Re = 10,000 

Phase Clustering Algorithm Number of Clusters 
Evaluation Metric 

Sil Dunn 

1: Pre-Clustering k-Medoids 30 0.8624 0.04957 

2: Final Clustering k-Medoids 6 0.3675 0.19489 

 

The generated clusters using the Hybrid A method in the final clustering phase are shown in Figure 7.13 

 

Figure 7.13. Generated clusters using the Hybrid A method at Re = 10,000. 

Visually inspecting the generated clusters, the hybrid method misses clustered samples. The intermediate 

peak pattern is lost in the clusters, the samples being included in both cluster 2 and cluster 5. The samples 

included in Cluster 5 show minimal consistent patterns associated uniquely with the cluster. The inability 

of the clustering method to produce separate and compact clusters is demonstrated with the low Reynolds 

number in Table 7.7. The basis of the clustering procedure can be additionally investigated using the two-

dimensional latent space of the generated clusters using Hybrid A is shown in Figure 7.14. 



 

90 

 

 

Figure 7.14. Cluster t-SNE distribution using Hybrid A method at Re = 10,000. 

The poor clustering performance, specifically for cluster 5, is shown in the latent space in Figure 7.14. 

The samples included as cluster 5 span a large region with a relatively low density of points. As the 

underlying patterns differ, other clustering methods split up this subspace with multiple clusters. The 

primary and secondary clusters identified at each node and the corresponding percentage of each are 

summarized in Table 7.8. 

Table 7.8: Vortex Shedding Map Cluster Candidates for Hybrid A at Re = 10,000 

𝝀∗ A* 
Cluster Candidate Candidate Proportion [%] 

Primary Secondary Primary Secondary 

2 0.1 3  100  

2 0.3 3  100  

4 0.1 4  100  

4 0.3 6  100  

4 0.7 5  100  

4 0.9 2  100  

6 0.3 1  100  

6 0.5 5  100  

6 0.7 2  100  

6 0.9 5 3 81 14.3 

8 0.5 1 4 81 19 

10 0.7 1  100  

10 0.9 1  100  

 

The vortex shedding map produced by the primary cluster candidates and the corresponding weights is 

shown in Figure 7.15 
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Figure 7.15. Vortex shedding map using Hybrid A method at Re = 10,000. 

The map produced by the Hybrid A method produces very distinct groups of similar clusters. The region 

along 𝜆∗ = 6, 8, 10 all exhibit the cluster 1 behaviour of dual peak signals. The region at higher 

amplitudes and 𝜆∗ = 4, 6 contain the signatures of clusters 2 and 5. Finally, the lower amplitude and 

wavelength nodes, including 𝜆∗ < 5 and 𝐴∗ < 0.4 contains the cluster numbers 3, 4, and 6.  

7.3.2 Hybrid Method B  

The number of clusters in the pre-clustering phase is not required to be determined since the DBSCAN 

algorithm automatically finds the optimum number and corresponding noise points. The algorithm found 

14 separate clusters and 30 noise points. The clustering performance results of both phases are 

summarized in Table 7.9. 

Table 7.9: Clustering Performance Metrics of Hybrid B Method at Re = 10,000 

Phase Clustering Algorithm Number of Clusters 
Evaluation Metric 

Sil Dunn 

1: Pre-Clustering DBSCAN 14 (30 Noise Points) 0.7250 0.20279 

2: Final Clustering Agglomerative 6 0.4822 0.31561 

 

The generated clusters merged for the entire dataset are shown in Figure 7.16. 
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Figure 7.16. Generated clusters by Hybrid B method at Re = 10,000. 

The cluster samples in each label demonstrated the hybrid method B's ability to extract similar shape 

patterns. Cluster 3 contains out-of-phase samples, but the similarity in shape is observed between the 

patterns. The dataset reduction using the 𝑡-SNE method differs from other cases since the DBSCAN 

algorithm identifies noise points that were removed from the dataset in the analysis. The latent space for 

the noise-reduced dataset is shown in Figure 7.17. 

 

Figure 7.17. Cluster t-SNE distribution using Hybrid B method at Re = 10,000. 

The primary and secondary clusters identified at each node and the corresponding percentage of each are 

summarized in Table 7.10. 
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Table 7.10: Vortex Shedding Map Cluster Candidates for Hybrid B at Re = 10,000 

𝝀∗ A* 
Cluster Candidate Candidate Proportion [%] 

Primary Secondary Primary Secondary 

2 0.1 6  100  

2 0.3 6  100  

4 0.1 1  100  

4 0.3 3  100  

4 0.7 3  100  

4 0.9 5 4 58.8 41.2 

6 0.3 2  100  

6 0.5 3  100  

6 0.7 3  100  

6 0.9 1  100  

8 0.5 2  100  

10 0.7 2  100  

10 0.9 2  100  

 

The associated vortex shedding map was generated based on the primary cluster candidates and the 

proportions of cluster samples at each node shown in Figure 7.18. 

 

Figure 7.18. Vortex shedding map using Hybrid B method at Re = 10,000. 

The map produced using the Hybrid B method highlights distinct regions of similar cluster results. A 

regime of cluster number 2 is located along 𝜆∗ = 6, 8, 10, which exhibits a dual peak signal behaviour. 

The middle of the graph contains the members of cluster 3, which contains the signal resembling the 2PO 

mode with the smaller secondary peak.  
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7.3.3 Hybrid Method C 

The pre-clustering phase requires the number of clusters which was determined by the varying evaluation 

metrics for increasing clusters shown in Figure 7.19. 

 

Figure 7.19. Evaluation metrics for the number of clusters generated using 𝑘-Means. 

The optimum number of clusters was determined to be 30 since the multi-step approach maximizes the 

separation of the clusters for the first stage. The clustering performance results of both phases are 

summarized in Table 7.11. 

Table 7.11: Clustering Performance Metrics of Hybrid B Method at Re = 10,000 

Phase 
Clustering 

Algorithm 
Number of Clusters 

Evaluation Metric 

Sil Dunn 

1: Pre-

Clustering 
k-Means 30 0.8693 0.05395 

2: Final 

Clustering 
Agglomerative 9 0.4694 0.28585 

 

In the final cluster phase, the merged cluster labels produced the subsequence clusters shown in Figure 

7.20. 
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Figure 7.20. Generated clusters by Hybrid C method at Re = 10,000. 

The patterns of interest in the generated clusters include the resemblance of a 2S mode for clusters 5 and 

8. Clusters 1, 3, and 6 include more irregular signals, but an underlying pattern of smaller dual peaks can 

be distinguished. Finally, cluster numbers 4, 7, and 9 exhibits strong 2PO behaviour. The distribution of 

clusters generated from the algorithm can be visualized represented using the latent space embedding 

from 𝑡-SNE shown in Figure 7.21. 

 

Figure 7.21. Cluster t-SNE distribution using Hybrid C method at Re = 10,000. 

The primary and secondary clusters identified at each node and the corresponding percentage of each are 

summarized in Table 7.12. 
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Table 7.12: Vortex Shedding Map Cluster Candidates for Hybrid C at Re = 10,000 

𝝀∗ A* 
Cluster Candidate Candidate Proportion [%] 

Primary Secondary Primary Secondary 

2 0.1 6  100  

2 0.3 6  100  

4 0.1 2  100  

4 0.3 4  100  

4 0.7 1  100  

4 0.9 8 5 52.4 47.6 

6 0.3 3  100  

6 0.5 1  100  

6 0.7 4  100  

6 0.9 9 1 61.9 19 

8 0.5 3 2 81 19 

10 0.7 3  100  

10 0.9 3  100  

 

The associated vortex shedding map was generated based on the primary cluster candidates and the 

proportions of cluster samples at each node shown in Figure 7.22. 

 

Figure 7.22. Vortex shedding map using Hybrid C method at Re = 10,000. 

The map generated can be used to find areas of similar cluster behaviour. Specifically, we see a similar 

region to the other hybrid methods along 𝜆∗ = 6, 8, 10, which exhibits a dual peak signal behaviour.  
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7.4 Discussion 

The selected clustering methods validated in Chapter 6 were implemented for the case of a high Reynolds 

number. The clustering method's ability to produce separate and compact clusters was determined by the 

internal evaluation metrics summarised in Table 7.13. 

Table 7.13: Final Clustering Performance Metrics of Proposed Methods at Re = 10,000 

Type Clustering Algorithm Representation Method 
Evaluation Metric 

Sil Dunn 

Partitioning 𝑘-Means Raw Time Series 0.5750 0.49261 

Hierarchical Agglomerative Raw Time Series 0.5760 0.51160 

Partitioning 𝑘-Means Discrete Cosine Transform (DCT) 0.5938 0.49347 

Hybrid 𝑘-Medoids/𝑘-Medoids Raw Time Series 0.3675 0.19489 

Hybrid DBSCAN/Agglomerative Raw Time Series 0.4822 0.31561 

Hybrid 𝑘-Means/Agglomerative Raw Time Series 0.4694 0.28585 

 

The ordinary clustering methods outperformed the hybrid methods regarding the evaluation metrics of 

silhouette and Dunn index. The reduced clustering performance of the hybrid methods is attributed to the 

use of dynamic time warping (DTW) in the final clustering phase, which groups signals based on shape 

and not on time. The pairwise distance calculation in the silhouette and Dunn index will score time series 

poorly if the patterns are out of phase, even if the shape is consistent in the cluster.  

Generally, the clusters produced using the hybrid methods are more similar based on shape than the 

ordinary methods. The similarity in shape of the hybrid methods will yield better vortex shedding maps 

based on signature shapes. The improved vortex shedding maps are observed in the plotted domain of 

non-dimensional amplitude and wavelength. The maps generated using the ordinary methods are more 

sporadic and require an increased number of clusters to summarize the vortex shedding behaviour.  

Despite the lower overall evaluation metrics, it was determined that hybrid methods outperformed 

single-stage methods in the quality of the clusters based on similarity of shape and the lower number of 

clusters required to represent the data. Investigating the hybrid methods further, the clusters of Hybrid A 

were the poorest performing, and many samples were deemed incorrectly clustered in the generated 

labels. Specifically, the samples of clusters 2 and 5 showed minimal consistent patterns associated 

uniquely with the cluster. Furthermore, the 𝑡-SNE latent space demonstrated the limited clustering 

performance with large regions of relatively low density being clustered. The poor performance is 

attributed to the use of the 𝑘-Medoids method in both stages of the hybrid method. The limitations of the 

𝑘-Medoids method were discussed in Chapter 6 with its sensitivity to input data, initial seeds, and outliers. 

The combination of the same clustering method compounded the limitations and provided no additional 

benefit in the performance.  

The various regions of vortex shedding behaviour at high Reynolds numbers can be obtained by 

analyzing the produced cluster maps. The non-dimensional amplitude and wavelength plane populated 

with the corresponding clusters derived using Hybrid Method B is shown in Figure 7.23. 
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Figure 7.23. Vortex shedding map regions using the Hybrid B method at Re = 10,000. 

The coloured regions provide a qualitative visualization of similar vortex shedding behaviour. The two-

level shaded coloured regions are used to proxy the confidence levels of the expected cluster numbers in 

each zone. Two independent regions are located at the top of the map (𝜆∗, 𝐴∗) = (4,0.9) and (𝜆∗, 𝐴∗) = 

(6,0.9) with consistent vortex shedding signals. The former node signal is periodic with distinct peaks 

that resemble the 2S mode. The second node signal, denoted with cluster number 1, indicates the 2PO 

mode with a subpeak in-between the relative peaks generated by the weaker vortex structure. The samples 

in cluster 1 include samples closer to that of cluster 5 located at the previous node, which indicates a level 

of overlap between the vortex structures. A larger group of nodes with the same cluster number was 

identified in the middle of the map, 3 < 𝜆∗ < 7  and 0.2 < 𝐴∗ < 0.8. Cluster 3 follows differing 

variations of 2PO and 2P of dual peak and sub-peaks in oscillating actions. The region defined by cluster 

2 resembles the signal of the P+S mode determined from the smoothed dual-peak of the oppositely 

spinning vortices of the P mode and the single peak of the S mode passing the sensor. The clusters 

identified at the nodes along 𝜆∗ = 2 and node (𝜆∗, 𝐴∗) = (4,0.1) are not consistent with a global region of 

clusters and the field flow behaviour is expected to be chaotic.  
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The cluster map produced using hybrid method C also outlines various regions of similar fluid flow 

behaviour. The non-dimensional amplitude and wavelength plane populated with the corresponding 

clusters derived using Hybrid Method C is shown in Figure 7.24. 

 

Figure 7.24. Vortex shedding map regions using the Hybrid C method at Re = 10,000. 

The coherent vortex shedding patterns identified in the map first includes the 2S behaviour at the node 

(𝜆∗, 𝐴∗) = (4,0.9). Nearby, two strong 2PO clusters were identified at  (𝜆∗, 𝐴∗) = (6,0.9) and (𝜆∗, 𝐴∗) = 

(4,0.7) demonstrated by a weaker vortex being shed in between the oscillations. The former point of 

cluster 9 shares the similarity in shape but at high peak amplitudes compared to cluster 4. The largest 

region of similar behaviour is identified by cluster 3, which dominates the higher wavelength portion of 

the subspace. The signals in cluster 3 demonstrate the behaviour of 2P but appear to have less defined 

twin peaks. Finally, a region in low amplitude nodes was identified resembling the 2S mode at lower 

amplitudes compared to that of node (𝜆∗, 𝐴∗) = (4,0.9).  

From a flow physics perspective, the vortex shedding maps at high Reynolds numbers provide novel 

insights into the underlying vortex structure interactions. The higher Reynolds number and associated 

higher flow energy seemed to produce more variation signals and a dissipation effect. The dissipation 

effect is a product of effectively less viscous flow, which increases flow mixing and creates a more 

homogenous flow. The signals appeared smooth, with samples with twin peaks not as defined as the low 
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Reynolds number case at 4000. Furthermore, the high Reynolds number was observed to create more 

noise in the vortex shedding map with an increased number of nodes with no visible patterns due to the 

coalescence of vortices. Overall, the signals of the high Reynolds number case were of the larger 

amplitude of the 𝑦-component of velocity measurement. Specifically, the 2S behaviour showed large 

amplitudes between peaks in the signals, which aided in identifying these clusters.  

The high Reynolds case has clear regions of the 2PO mode demonstrated by the signals of clusters 

4 and 9, which show the two pairs of vortices being shed per cycle with one vortex in each oscillation 

much weaker. The transition mode is in close proximity to the observed P+S signal behaviour of cluster 

3 demonstrated by the dual peak of the P mode being separated with a single peak from the S mode. The 

source of the P+S mode may be attributed to the increased flow energy of high Reynolds number, which 

is decomposing 2P modes shed close to the cylinder into a single P and S mode. The devolution of the 

2P mode would have to be rapid as the sampling line of the dataset is located at a distance of 4D in the 

wake of the cylinder. If the decomposition of the 2P mode is the mechanism by which the P+S mode 

appears in the dataset, it would have little effect on the global behaviour of the cylinder due to the 

observed rapid decay.  

7.5 Summary 

The chapter presents the application of the validated unsupervised clustering strategies to a case of high 

Reynolds number where the mapped domain is unknown to gain insights into the complex flow regimes. 

The quality of the clustering analysis was evaluated using internal clustering metrics, visual analysis of 

the clusters, and finally exploring the patterns of the generated vortex shedding maps.  

The hybrid methods B and C were determined to provide the best results by outperforming single-

stage methods in the quality of the clusters based on similarity of shape. The vortex shedding maps 

produced by the two hybrid methods provided valuable insights into the underlying dynamical regimes 

of the physical system. Specifically, the Reynolds case of 10,000 has similar vortex shedding modes as 

the low Reynolds number dataset, including the identified 2S and 2PO modes. The region of the map 

previously inhabited with 2P modes was observed to be comprised of the majority P+S modes. Overall, 

the flow physics derived from the cluster analysis demonstrates the increased dissipation effect of high 

Reynolds number flows, resulting in more variation and smoothing of the flow signals.  

In conclusion, this chapter presented the use case of the data-driven vortex shedding map generating 

method using the reduced data source of local flow measurement of the 𝑦-component of velocity. The 

ability to extract meaningful clusters from more complex vortex structures that become increasingly 

indistinguishable was demonstrated using hybrid methods B and C. This data-driven method's versatility 

and performance yield exceptional results and significantly improve the vortex shedding map generation 

method due to reducing the data input and supervision required.  
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Chapter 8  

Conclusions and Future Work 

This thesis developed a data-driven approach for generating vortex shedding maps of a cylinder 

undergoing forced vibration. The wake classification strategy using machine learning (Chapter 5) 

demonstrated the ability to differentiate global vortex structures from local flow measurements in the 

wake of an oscillating cylinder. The unsupervised clustering of local flow measurement time series 

subsequences reproduced the benchmark vortex shedding map at Reynolds number 4000 (Chapter 6). 

The clustering method developed was then extrapolated to a high Reynolds number to produce a 

previously absent vortex shedding map (Chapter 7).  

The presented wake classification strategy demonstrated the ability to identify global vortex 

structures using local flow signatures in Chapter 5. The proposed strategy demonstrated its accuracy in 

identifying vortex structures from a reduced input feature space. The improved feature space separation 

from using 𝑦-component of the velocity (𝑢𝑦) sensors result in the most improved testing accuracy (>15%) 

compared to the next best quantity, vorticity. The feature vector dataset derived from the 𝑦-component 

of the velocity (𝑢𝑦) sensors achieved testing accuracies of 99.3% and 99.8% using the random forest and 

𝑘-nearest neighbour models, respectively. The four best performing machine learning models were 

selected for noise analysis which revealed that the random forest algorithm was the most robust to data 

corruption with a maximum reduction of 11.7% for the CvD case at the maximum noise level. Combining 

the results, the random forest classification algorithm (consisting of 107 estimators) was determined as 

the most advantageous machine learning model due to the balance of testing accuracy and reduced effect 

from noise. The strategy of wake classification provides a valuable tool that can be implemented in 

experimental setups to aid in controlling the behaviour of an oscillating cylinder. The methods were 

illustrated with the example of a bladeless wind turbine, but we believe that the methods apply more 

generally to any case of classification of vortex shedding. Additionally, the classification task acts as a 

vital proof of concept that the global vortex shedding modes can be deduced from the structure of the 

local flow measurements time series dataset. Furthermore, the use of the 𝑦-component of the velocity 

(𝑢𝑦) dataset will provide the best feature separation imperative for clustering time series data. 

The procedure of generating vortex shedding maps using novel unsupervised subsequence clustering 

methods was presented and validated for the case of a low Reynolds number of 4000 in Chapter 6. Several 

clustering methods were selected and compared for the clustering task of subsequences extracted from 

the 𝑦-component of the velocity (𝑢𝑦) time series data. The published vortex shedding map by Morse and 

Williamson [7] at Reynolds number 4000 was used to validate the maps generated using the data-driven 

methods. The clustering results of the proposed methods demonstrated their ability to extract meaningful 

clusters that represented the underlying flow physics of the varying modes. The application of the 

clustering analysis to produce regime maps provided satisfactory agreement with the reference map by 

Morse and Williamson [7]. The proposed methods were then extended in Chapter 7 to quantify their 

performance to produce vortex shedding maps at high Reynolds numbers with more complex vortex 

structures. The vortex shedding maps produced at high Reynolds number provided novel insights on the 

underlying vortex structure interactions and identified numerous regions of similar patterns despite 

increased instability. The clustering procedure in the generation of vortex shedding maps offers a method 
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that requires less data and supervision without resolving the entire flow field. The method was 

implemented on the vortex shedding patterns of an oscillating cylinder, but the method could create value 

for any vortex shedding behaviour.  

8.1 Future work 

This thesis provides insight into how data-driven methods can be leveraged to identify and cluster vortex 

shedding signatures to produce vortex shedding maps, which are integral in the study of the VIV 

phenomenon. The results of the wake classification strategy could be expanded for more complex 

shedding modes or conducted at varying Reynolds numbers where the flow transitions into even more 

complex flow regimes. Furthermore, the noise analysis could be extended to higher levels of corruption 

or explore other sensor noise representations.  

The next step in this stream of research is to extensively sample the normalized amplitude 

wavelength plane, specifically around the areas of transition zones, to gain a higher resolution of the 

cluster regions. There is also an opportunity to repeat the clustering procedure on numerical data obtained 

with large-eddy simulations (LES), which would provide higher resolution fluid measurement data. The 

improved resolution of the vortex structures is expected only to benefit the clustering and classification 

results. Finally, the frequency domain feature vector utilized in the wake classification method in Chapter 

5 could be applied to the clustering technique to compare the clustering results from two varying methods.  
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