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Abstract

One of the applications of AI lies in developing intelligent systems for safe on-road driving,
other than building and perfecting self-driving vehicles, and many others. Driving Scene
Understanding (DSU) is one such area where AI algorithms can be used to infer the current
actions of driver, pedestrians, nearby vehicles, etc. to improve the on-road decision making
capability of the in-vehicle driver. Another related front of technological advancement in
transportation is the production and development of electric vehicles. A future with battery
electric vehicle and safe driving necessitates the creation of AI algorithms which not only
assist in increasing the on-road safety but are also energy efficient.

This thesis is an attempt towards developing such an energy efficient AI model for
DSU using Spiking Neural Networks (SNNs). Low power neuromorphic hardware (e.g.
Intel’s Loihi) can be leveraged for the deployment of such SNNs which offer low inference
latency and energy efficiency. Out of a number of ways to build SNNs, an established
method is to first train an Artificial Neural Network (ANN) with traditional neurons (e.g.
ReLU) and then replace those neurons with spiking neurons (e.g. Integrate & Fire neurons)
along with some other network modifications. Therefore, Chapter 4 first presents a 3D-
CNN based ANN model, and identifies the appropriate spatial resolution and temporal
depth of the incoming video frames for DSU. Through extensive experiments, it was found
that MaxPooling performs better than AveragePooling in such a 3D-CNNs based model;
however there exists no method to convert a network with MaxPooling layers into an SNN
which can be entirely deployed on a specialized neuromorphic hardware.

Chapter 6 presents two novel approaches to implement MaxPooling on a neuromorphic
hardware; thus facilitating the conversion of networks with MaxPooling layers to fully
neuromorphic-hardware compatible SNNs. These approaches have been tested with 2D-
CNNs based SNNs for image recognition, and can be extended to the 3D-CNNs based
SNNs as well; thus, theoretically realizing an energy efficient SNN for DSU.
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Chapter 1

Introduction

As per WHO [83], the number of deaths due to traffic accidents has risen steadily from
1.15 million in year 2000 to 1.35 million in year 2016; more people die due to road traffic
injuries than from HIV/AIDS, tuberculosis or diarrhoeal diseases. Another WHO review
[81] grimly reports that between 20 and 50 million people sustain non-fatal injuries in road
accidents, in addition to the death of approximately 1.3 million people each year. This ur-
gently calls for the development of AI systems (preferably in-vehicle deployable) which can
mitigate road traffic accidents and increase on-road safety. Driving Scene Understanding
(DSU) is one such avenue where AI algorithms can be used to infer the on-road driving
scenarios in real-time, e.g. identification of taking turns, lane change, stop, etc.; thereby
helping the in-vehicle driver (and/or nearby vehicles) to take quick and informed driving
decisions.

However, the usage of current generation power-hungry AI algorithms for DSU is not
the optimal way for the future ahead of us. Training the computationally expensive large
AI models have a large carbon footprint [35]. Some studies report a release of up to or even
more than 78,000 pounds of emissions [3] or even 626,000 pounds of carbon dioxide emis-
sions [106, 70]. Accordingly, these AI models consume significant energy during inference
mode as well. With the projected rise in the sale of electric vehicles (30% electric vehicles
of all passenger cars by the year 2032) [93] , there arises a need to develop energy efficient
AI models to prolong the battery life. Overall, the need of AI algorithms to increase the
on-road driving safety in combination with their requirement to be energy efficient for their
optimal deployment in electric vehicles, constitutes the motivation behind this thesis.
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1.1 What are Spiking Neural Networks?

Our brain consumes 20W of power; and as mentioned above, present-day AI systems
which try to imitate our brain end up consuming millions of Joules of energy while being
trained and deployed, despite efforts being made to lower down the energy consumption
(Fig. 5 in [114]). The computational units of the brain, i.e. our neurons encode and
process information in terms of action potentials, informally called spikes. The highly
optimized anatomy of the brain and the sparse spiking enables it to process information by
consuming just 20W of power or less, whereas, a cortical simulation on IBM Blue Gene/P
supercomputer consumes 2.9MW of power [37]. Spiking neurons mathematically model
the physiological behavior of biological neurons, and the network built out of them closely
imitates the information processing in the human brain. Such a network of spiking neurons
is called Spiking Neural Networks (SNN) - the next (3rd) generation of neural networks;
consequently, they offer a promise of low power AI. A comparison between the energy
consumption of SNNs and Deep Neural Networks (DNNs) is provided in the section 2.3.1.
A short one minute video tour encapsulating the above paragraphs is recommended here
(video submitted by me to the UW GRADflix 2021 competition).

Following are the five ways to build SNNs for deep learning (paraphrased from [87]).

1. Binarization of ANNs - traditional ANNs are trained with binary activation functions,
information processing is still synchronous [44, 52, 92]

2. Conversion from ANNs - traditional ANNs are first trained with back-propagation,
followed by replacing the analog/rate neurons with spiking neurons [24, 40, 98, 94]

3. Constrained training of ANNs - traditional ANNs are trained together with the con-
straints accounting for the properties of spiking neurons [27, 45, 46]

4. Supervised training of SNNs - directly training SNNs with spikes using variations of
back-propagation e.g. using surrogate gradient descent techniques [14, 96, 72, 59, 79]

5. Unsupervised training of SNNs - directly training SNNs using STDP [10, 102] to
effect a more biologically realistic training [51, 109]

In this work, I leverage the “Conversion from ANNs” (a.k.a. ANN-to-SNN conversion)
method to build SNNs for DSU. For the same, a 3D-CNNs based ANN is first trained (for
DSU task) with ReLU neurons using the conventional error back-propagation algorithm
and then converted to an SNN using the NengoDL library [91].

2
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1.2 Thesis Contributions

Contributions of this work can be summarized in the following points:

1. Presentation of a 3D-CNNs based network for DSU with a new state-of-the-art results
on Honda Research Institute Driving Dataset (HDD). This contribution shows the
advantage of 3D-CNNs over the prevalent Conv+LSTM based architectures for DSU.

2. Identification of appropriate spatial resolution and temporal depth of the input video
frames for DSU with respect to a variety of driving situations. This analysis for DSU
is first of its kind, providing insights into the spatial resolution and temporal depth
parameters with which one can begin the experiments.

3. Introduction of a new accuracy metric ASiST@x to evaluate the performance of a
model for continuous activity/scene recognition (applicable to DSU as well). Current
metrics e.g. Average Precision do not convey any information about when a particular
driving scene was recognized after its true transition; ASiST@x fills this gap.

4. Presentation of two novel methods to implement spiking-MaxPooling on a neuromor-
phic hardware (here Intel’s Loihi chip). Currently, none of the MaxPooling methods
for SNNs are deployable on a neuromorphic hardware; these two being the first.

5. Demonstration of the deployment of an SNN (for image recognition) with MaxPooling
layers on a neuromorphic hardware (here Loihi boards). No SNN with MaxPooling
layers have been deployed on a neuromorphic hardware so far; this being the first.

6. Presentation of a 3D-CNNs based SNN for DSU. All the five contributions above to-
gether culminate into designing of an entirely spiking 3D-CNNs based SNN for DSU,
which is theoretically entirely deployable on Loihi boards but couldn’t be evaluated
(reasons described in Chapter 7).

1.3 Thesis Organization

Chapter 2 next presents the necessary background to review this thesis. Chapter 3 presents
a prologue to the Chapter 4 which outlines the 3D-CNNs based ANN for DSU and other
details. Chapter 5 then presents a prologue to the Chapter 6 which discusses about two
novel methods for spiking-MaxPooling. Chapter 7 then combines the learnings from Chap-
ter 4 and 6 to present a 3D-CNNs based SNN with spiking-MaxPooling layers for DSU.
Chapter 8 then finally concludes this thesis with the direction for future work.
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Chapter 2

Background Review

This chapter presents the basic details to review this thesis. In accordance with the ANN-
to-SNN conversion method for building SNNs, I will start with the specifics for building
a 3D-CNN based ANN, followed by the details of its conversion to an SNN; herein I will
briefly introduce Nengo. I will then talk about the Neuromorphic Hardware and the Nengo
ecosystem.

2.1 Artificial Neural Networks

Artificial Neural Networks (ANNs) are inspired from the biological neural networks in the
brain. They constitute of weighted interconnected layers of neurons through which non-
linear functions get computed. They can be considered as universal function approximators
[84, 5, 42], where the input is fed-forward through the layers until the final output layer.
Various types of layers constituting a typical ANN are described below.

2.1.1 Convolutional Layer

Convolutional layer is composed of locally connected weights (also known as kernels or
filters) which are convolved over the patches of input data (or the previous layer’s acti-
vation values). These kernels operate on locally present features, and convolution of such
kernels over the entirety of input/intermediate activations maps attempts to determine the
presence of those features at different locations. The weights of the kernels are learned as
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part of the error back-propagation algorithm. During convolutions, the kernel weights are
kept fixed and shared across the different locations in the input/intermediate-activations.

2D-Convolutional Layer

2D-Convolutional layer is designed for working with 2D spatial inputs e.g. images. The ker-
nels represent features in two spatial dimensions, namely height/rows and width/columns.
Consider a 2D input (image or activation map from the previous layer) I of shape (R,C,N)
where R,C, and N denote the number of rows, columns, and channels in the input I;
r ∈ [0, R), c ∈ [0, C), and n ∈ [0, N). Let K be a kernel bank of shape (KR, KC , KN , KK)
where KR, KC , KN , and KK denote the number of rows, columns, channels, and number
of kernels respectively in the kernel bank; kr ∈ [0, KR), kc ∈ [0, KC), kn ∈ [0, KN), and
kk ∈ [0, KK). Let biaskk ∈ R denote the bias value associated with the kernel kk. Note
that KN = N . Following Eq. 2.1 describes the 2D convolution operation:

O(r, c, kk) =

KR−1∑
kr=0

KC−1∑
kc=0

KN−1∑
kn=0

(

I(r + kr, c+ kc, kn)×K(KR − kr − 1, KC − kc − 1, kn, kk)) + biaskk

(2.1)

where O(r, c, kk) is the output after convolution operation. Note that the kernelK is flipped
while convolving, however, this is not required during implementation because flipping has
no effect on the learning process in the network.

3D-Convolutional Layer

3D-Convolutional layer is designed for working with 3D spatial and temporal inputs; two
dimensions denote the spatial aspects and the remaining one dimension denote the tem-
poral aspects. However, sometimes 3D-Convolution is also used for 3D all-spatial inputs,
e.g. medical images, fMRI scans, etc. Consider a 3D input (spatiotemporal video or in-
termediate activation maps) I of shape (T,R,C,N), i.e. an extra temporal dimension T
prepended to (R,C,N) where T denotes the number of temporal frames, t ∈ [0, T ), rest
of the definitions same as in the previous section. Similarly, let K be a kernel bank of
shape (KT , KR, KC , KN , KK) where KT denotes the number of temporal frames consid-
ered in the kernel K, kt ∈ [0, KT ), rest of the definitions same as in the previous section.
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Let biaskk ∈ R denote the bias value associated with the kernel kk. Here too KN = N .
Following Eq. 2.2 describes the 3D convolution operation:

O(t, r, c, kk) =

KT−1∑
kt=0

KR−1∑
kr=0

KC−1∑
kc=0

KN−1∑
kn=0

(

I(t+ kt, r + kr, c+ kc, kn)×
K(KT − kt − 1, KR − kr − 1, KC − kc − 1, kn, kk)) + biaskk

(2.2)

where O(t, r, c, kk) is the output after convolution operation.

2.1.2 Nonlinear Layer

This layer introduces nonlinearity in the ANNs, absence of which would result in ANNs
being a cascading sequence of linear transformations only. Such a layer generally follows
a weighted layer e.g. convolutional layer, and are correspondent to the layer of neurons.
Most commonly used nonlinearity is the ReLU(.) activation function. Mathematically:

ReLU(x) = max(x, 0) where x ∈ R (2.3)

2.1.3 Pooling Layer

Pooling operation is typically used to downsample the intermediate feature maps. In
addition, it also introduces translational invariance into the feature maps. Translational
invariance means that the pooled output mostly remains unchanged upon small spatial
translations of the input (or features in the input). Two pooling operations widely used
are: AveragePooling and MaxPooling, generally applied next to the nonlinearity layer.

AveragePooling

AveragePooling takes an average of the inputs in a pooling window of a given dimension,
e.g. 2D. It has the effect of smoothing out the intermediate feature maps. Mathematically,
it can be written as follows (PR, PC - are the 2D pooling window’s rows and columns
dimensions, pr ∈ [0, PR), pc ∈ [0, PC), refer section 2.1.1 for rest of the symbols):
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O(r, c, kk) =
PR,PC
mean
pr,pc=0

I(r + pr, c+ pc, kk) (2.4)

Note that in AveragePooling, all the values in a pooling window have a contribution.

MaxPooling

MaxPooling takes a max of the inputs in a pooling window of a given dimension, e.g. 2D.
It is useful in detecting sharp features (e.g. edges), where AveragePooling might falter.
Mathematically, it can be written as follows (PR, PC - are the 2D pooling window’s rows and
columns dimensions, pr ∈ [0, PR), pc ∈ [0, PC), refer section 2.1.1 for rest of the symbols):

O(r, c, kk) =
PR,PC
max

pr,pc=0
I(r + pr, c+ pc, kk) (2.5)

Note that in MaxPooling, only the maximum value in a pooling window has a contribution.

2.1.4 Dropout Layer

Dropout layer is added as a simple and effective regularization technique to prevent over-
fitting of the ANNs. Based on a set probability pd, it randomly disables those many
neurons in proportion and scales the output of the rest by 1

1−pd
. This helps keep the

expected sum of the weights same regardless of dropout and enables the usage of the
same network for training and test. Note that during test/inference, dropout is not used.
Randomly disabling the neurons helps in the prevention of learning correlated features,
and emphasizes on learning of discriminatory features which independently contribute to
the task’s objective.

2.1.5 Dense Layer

Dense layer is a fully connected layer of neurons and is commonly used in ANNs. Each
neuron in a dense layer is connected to every neuron in the previous layer through weighted
connections. The weighted sum with bias added is fed to the neuron’s nonlinear activation
function (section 2.1.2) and the output is forwarded next. Consider W ∈ Rm×n as the
matrix of connection weights from a previous layer with m neurons to the current layer
with n neurons, b ∈ Rn as the vector of neurons’ biases in the current layer, and I ∈ Rm
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as the vector of inputs (or activations) from the previous layer; then mathematically, the
operation executed by the Dense layer can be written as follows (Eq. 2.6):

O = σ(I ×W + b) (2.6)

where σ is the nonlinear activation function e.g. ReLU and O ∈ Rn is the vector of activation
output from the current layer’s neurons.

2.1.6 Learning Network Parameters

Upon creation of an ANN model, its parameters i.e. weights (W ) and biases (b) are
randomly initialized as per a chosen distribution, e.g. W ∼ N (µ = 0, σ = 0.05), b = ~0.
While training the model, they are learned via an iterative gradient descent algorithm - an
optimization algorithm to decrease the error between the true values (obtained beforehand)
and the estimated values (obtained from the yet unoptimized model); the error is modeled
as a differentiable loss function ∼ L(Y, Ŷ ). Y is the true/target output and Ŷ is the
estimated output, L(.) is the loss function e.g. Categorical Cross Entropy (Eq. 2.7):

L(.) = − 1

S

S∑
s=1

C∑
i=1

ys(i)× log(ŷs(i)) (2.7)

for C number of classes, S number of samples, ys ∈ Y and ŷs ∈ Ŷ are the true/target
and predicted vector outputs for the sth sample, ys(i) and ŷs(i) are the ith element of the
vectors ys and ŷs respectively. The aim is to bring the values of vector ŷs as close as possible
to the values of vector ys, for which one needs to minimize the loss function L(.). Loss
function minimization is done by iteratively calculating the gradient of L(.) with respect
to W and b and updating W and b as per the Eq. 2.8 and Eq. 2.9 respectively; note that
Ŷ = f(W, b, I) where I is the input to the model.

W ← W − η ∂L
∂W

(2.8)

b← b− η∂L
∂b

(2.9)

In the above equations 2.8 and 2.9, η is the learning rate - a tunable hyper-parameter.
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2.2 Spiking Neural Networks (SNNs)

As described in section 2.2, SNNs are biologically inspired neural networks composed of
spiking neurons which generate discrete spikes at certain time-steps based on their voltage
dynamics; thus, the SNNs are inherently dynamical in nature. For each new static input,
they are executed for a certain number of time-steps to let the neuron dynamics evolve (by
keeping the static input fixed for those many number of time-steps). For a dynamic input,
the SNNs dynamics evolve as the discretized time progresses, which makes it very suitable
for addressing online tasks. The information processing in SNNs is sparse, asynchronous,
and parallel.

There are a number of spiking neuron models with varying dynamics’ complexity based
on their biological realism. Hodgkin-Huxley neuron model [38] is a conductance-based
spatial neuron model which governs the propagation of action potentials (i.e. spikes) along
the axon through mathematical equations of voltage-gated ionic channels; thus, it has a
high degree of complexity in its voltage dynamics. A few other neuron models similar to
Hodgkin-Huxley neuron model but with comparatively simpler dynamics can be found in
[113, 4]. Other examples of point neuron models (i.e. no spatial component) are Integrate
& Fire (IF) neuron model [58] and Leaky Integrate & Fire (LIF) neuron model [58, 112]
described below.

2.2.1 Integrate & Fire (IF) Neuron Model

IF neuron model is a spiking neuron model whose membrane potential (or the voltage
V (t)) evolves by the following equation:

Cm
dV (t)

dt
= I(t) when V (t) < Vth (2.10)

V (t)← 0 when V (t) ≥ Vth for tth ≤ t ≤ tth + τref (2.11)

where Cm is the membrane capacitance, I(t) is the external input current, Vth is the
threshold potential, τref is the refractory period, and tth is the time-step when V (t) reaches
or crosses the Vth. For time-steps when V (t) < Vth, Eq. 2.10 governs the voltage dynamics,
and as soon as V (t) reaches or crosses the Vth, the IF model emits a spike and V (t) is reset
to 0 - and stays at 0 i.e. the resting potential (Eq. 2.11) for τref period of time-steps.
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2.2.2 Leaky Integrate & Fire (LIF) Neuron Model

LIF neuron model is another spiking neuron model whose membrane potential (or the
voltage V (t)) evolves by the following equations:

Cm
dV (t)

dt
=
−1

Rm

(V (t)− Vrest) + I(t) when V (t) < Vth (2.12)

V (t)← 0 when V (t) ≥ Vth for tth ≤ t ≤ tth + τref (2.13)

where Rm and Cm are the membrane resistance and capacitance, Vrest is the resting po-
tential (generally assumed to be 0), Vth is the threshold potential, I(t) is external input
current (due to the post-synaptic current and injected current - if any), τref is refractory
period, and tth is the time-step when V (t) reaches or crosses the Vth. Comparing Eq. 2.10
and Eq. 2.12, an extra term −1

Rm
(V (t) − Vrest) in Eq. 2.12 can be easily noted; this extra

term is the leak current i.e. loss/diffusion of ions through the membrane, hence the name
“Leaky” Integrate and Fire. For time-steps when V (t) < Vth, Eq. 2.12 governs the voltage
dynamics, and as soon as V (t) reaches or crosses the Vth, the LIF model emits a spike and
V (t) is reset to 0 - and stays at 0 i.e. the resting potential (Eq. 2.13) for τref period of
time-steps.

(a) Low-pass filter plots (b) Representing activation as current

Figure 2.1: (a) shows the low-pass filter plots of Eq. 2.14 for different values of τ , (b) shows
the noisy current-based representation of the activation value 0.25 for different values of
the synaptic time constant τ ∈ {0.005, 0.020}.
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2.2.3 Representing Activation Values as Currents in SNNs

As described in above sections, spiking neuron models emit discrete spikes, effectively a
spike train - a vector of 1s and 0s when simulated over certain number of time-steps. 1 =⇒
spike emitted in a particular time-step, 0 =⇒ no spike emitted i.e. the neuron’s V (t) is
either building up or it is in refractory period during those time-steps. When leveraging the
ANN-to-SNN conversion method for building SNNs, we need to represent the continuous
activation values (in ANNs) in SNNs as well. We can do that by synapsing/filtering the
spike train with a low pass filter - the resulting signal (a.k.a. post-synaptic current) is
noisy, but approximately represents the continuous activation values. Following Eq. 2.14
describes impulse response function of a standard low pass filter:

f(t) =
1

τ
exp

(
−t
τ

)
(2.14)

where τ is the time constant of the filter. Fig. 2.1a shows the synaptic filter’s plot (Eq.
2.14) with respect to time and varying time-constants τ . Fig. 2.1b shows the representation
of continuous-valued activations through a (noisy) current obtained by synapsing/filtering
a spike train through a low-pass filter with τ = 0.005. Note that as the filter’s time-constant
τ is increased, the post-synaptic current gets smoother, but takes longer to settle.

1

2

3

0.5

0.25
Neuron

(a) Example spiking network (b) Weighted summation result

Figure 2.2: (a) shows a spiking network of three neurons. Neuron 1 and 2 output spikes
which are filtered and subsequently weighted with the connection weights 0.5 and 0.25
respectively. The weighted signals get summed up while being input to Neuron 3. (b)
shows the weighted summation of two input signals to Neuron 3.

11



2.2.4 Weighted Transformations in SNNs

Other than representing activations through spiking activity, another integral aspect of
ANNs that needs to be accounted in SNNs is the weighted summation of output activations.
This can be done by setting the weights on the connections between spiking neurons, as
shown in Fig. 2.2a. The resulting output signal (i.e. the weighted sum of input activations)
can be fed forward to the next connected spiking neuron. By means of such weighted
linear-transformations and non-linear spiking activity of the neurons, non-linear functions
get computed through the cascading network of spiking neurons. Fig. 2.2b shows the
output signal obtained from the example network shown in Fig. 2.2a.

2.3 Neuromorphic Hardware

To reap the full potential of SNNs, we need Neuromorphic Hardware as a substrate for their
deployment. Traditional von Neumann architecture (Fig. 2.3) has a clear separation of the
computing unit (ALU) from memory, which introduces latency in fetching stored values
for computation. This further manifests into von Neumann bottleneck (a.k.a. memory
bottleneck) where processing of the computing tasks is hindered due to the bandwidth
limitation of memory access. The CPU often does the computation on data faster and
then has to wait for the next batch of incoming data. Thus, much energy is spent on
moving the data across the processors and memory through buses, than actually spent on
doing the computations with it. Despite improvements made by introducing cache, non-
uniform memory access (NUMA) architecture, parallel processing in GPUs, etc., execution
of AI algorithms on von Neumann based architectures is inefficient due to high energy
consumption and latency [49, 114], irrespective of being in training or inference mode.

Neuromorphic Hardware is based on the brain-inspired architecture where synapse (or
memory) and compute are local to each other [68, 78]; this enables such a non-von Neumann
hardware to avoid memory bottleneck and carry out massively parallel computations in
an asynchronous event-based manner. Such local arrangement also dramatically reduces
the need to move data around (note: decreased latency); thus, Neuromorphic Hardware
is highly energy efficient [108, 78]. Fig. 2.4 shows an illustration of a basic concept of a
neuromorphic architecture (adapted from [76]). Neuromorphic Hardware owes its energy
efficiency to the non-volatile memory devices e.g. resistive RAM (RRAM) [33, 17], phase-
change RAM (PCRAM), conductive-bridge RAM (CBRAM) [55], OxRAM [13], etc.

A number of neuromorphic hardware currently existing are: IBM TrueNorth chip [73],
Stanford NeuroGrid [7], Braindrop chip [77], Manchester SpiNNaker [30], Intel Loihi chip
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Figure 2.3: von Neumann Architecture

[21], Darwin Neural Processing Unit [101], ROLLS chip [88], DYNAPs [74], and Heidelberg
BrainScaleS system which uses wafer-scale above-threshold analogue neural circuits [95].

2.3.1 Energy Efficiency

On one hand where the cortical simulation of 1.617 billion neurons and 8.87 trillion synapses
on IBM Blue Gene/P supercomputer [2] with 147, 456 CPUs and 144TB of main memory
consumes 2.9MW of power [37], our brain with 86 billion neurons and 150 trillion synapses
consumes just 20W of power [50]. Neuromorphic hardware consume energy in the orders
of pico-joules (pJ) per spike [67, 90, 19, 71]. When put to real-world tasks, it was shown
that Loihi (a neuromorphic chip) can classify odor samples within 3 ms of time with a
consumption of less than 1 mJ of energy [47]. In a keyword spotting task, [12] reported 0.27
mJ of energy consumed per inference on Loihi compared to 29.8 mJ on GPU. Similarly, for
image retrieval task, [66] reported a high energy consumption of 52.399 mJ (and 37.399 mJ)
per example on NVIDIA V100 (and NVIDIA T4) GPU compared to 2.996 mJ (and 12.17
mJ) with SNNs on Loihi executed for 16 (and 128) time-steps. For image segmentation,
[85] reported an energy consumption of 30 mJ on GPU and 10 mJ on Loihi per inference.
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Figure 2.4: Basic abstraction of a non-von Neumann Neuromorphic Architecture

2.4 Nengo Ecosystem

Nengo ecosystem is a collection of python libraries (primarily based on Neural Engineering
Framework [26, 103]) for building and simulating spiking networks - developed at Centre
for Theoretical Neuroscience, University of Waterloo; and actively maintained by Applied
Brain Research. Among the constituent libraries, following are the ones used for this work.

2.4.1 Nengo Core

Nengo Core [104, 6] is a foundational library in Nengo ecosystem for building and simulat-
ing large-scale spiking networks (or neural models) and underlies the other libraries. Net-
works built with Nengo Core can be deployed on CPUs/GPUs/Loihi/SpiNNaker/FPGA
[9] depending on the choice of the simulator.

2.4.2 NengoDL

NengoDL is a simulator for executing deep learning based spiking networks (or SNNs) on
CPUs/GPUs [91]. It uses TensorFlow in the backend to optimize the model parameters
using standard deep learning algorithms and assists in ANN-to-SNN conversion (i.e. from
TensorFlow non-spiking models to Nengo SNNs).

2.4.3 NengoLoihi

NengoLoihi is a backend simulator for executing spiking networks on Intel’s Loihi boards.
It uses the Intel’s NxSDK API (proprietary to Intel) to communicate with the Loihi chips.
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2.5 Driving Scene Understanding

Briefly introduced in Chapter 1, within the scope of this thesis, Driving Scene Under-
standing (DSU) can be defined as the recognition of ongoing on-road driving scenarios [89]
as and when the input data arrives. In a broader scope, Driving Scene Understanding
is different from the regular Scene Understanding; Driving Scene Understanding may in-
clude e.g. predicting the trajectory of on-road vehicles/pedestrians etc., whereas Scene
Understanding encompasses the extraction and meaningful representation of the semantic
information/relationship shared by the objects in a 3D dynamic scene [86], e.g. describing
the activities happening in an elevator, generating meaningful text/audio to the visuals of
an ongoing game, etc. Here, in the context of DSU, the on-road driving scenarios are e.g.
the ego (short for egocentric) vehicle taking a left/right turn, ego vehicle changing lanes,
ego vehicle coming to a stop due to the traffic lights, stop signs, or due to the on-road
pedestrians, etc. (more scenarios in the Tables 4.2, 4.3, and 4.4). The task is to identify
what’s happening in the current scene of interest. The input data can be visual input (e.g.
from mounted cameras), vehicle sensor readings (e.g. from speedometer, steering wheel
angle, etc.), LiDAR data, etc. Due to the discrete nature of the computer programs, one
needs to sample the input data at a certain rate e.g. videos sampled at 30FPS, sensor data
sampled at 30Hz, and recognize an on-going driving scene right at the arrival of the input
data (in the discretized time-step). To recognize scenes, AI models e.g. Conv+LSTM
based architectures [89, 29, 110] are widely used and many others; this thesis focuses on
the 3D-CNNs based models. More details on the DSU task can be found in section 4.1.1.

2.6 Conclusion

This chapter introduced the basics to understand the foundations of this thesis. With the
goal of building a Spiking Neural Network for Driving Scene Understanding using the ANN-
to-SNN conversion method, this chapter first presented the building blocks of ANNs (CNNs
in this thesis’ case) and training them in section 2.1, followed by the building blocks of
SNNs in section 2.2. In accordance with the goal to also deploy the SNNs on neuromorphic
hardware, section 2.3 briefly introduced and discussed its architecture. Section 2.4 then
next introduced the Nengo ecosystem of different libraries to build, simulate, and deploy
the SNNs on a neuromorphic hardware (here Intel’s Loihi). Section 2.5 finally described
the Driving Scene Understanding task in this thesis’ scope.
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Chapter 3

Foreword to Article 1 in Chapter 4

The goal of this thesis is to build a Spiking Neural Network for Driving Scene Understanding
using the ANN-to-SNN conversion method. Therefore, to build a suitable ANN first,
Article 1 in Chapter 4 presents the rationale behind the choice of the ANN, appropriate
configuration (i.e. metadata) of the input data, and the evaluation metric. Learnings from
the Chapter 4 will be useful later to build the desired SNN.

Foreword

Driving Scene Understanding is a broad field which addresses the problem of recognizing a
variety of on-road situations; namely driver behaviour/intention recognition, driver-action
causal reasoning, pedestrians’ and nearby vehicles’ intention recognition, etc. Many exist-
ing works propose excellent AI based solutions to these interesting problems by leveraging
visual data along with other modalities. However, very few researchers venture into deter-
mining the necessary metadata of the visual inputs to their models. Chapter 4 attempts
to put forward some useful insights about the required spatial resolution and temporal
context/depth of the visual data for Driving Scene Understanding (DSU). It also presents
a 3D-CNNs based network for DSU with a new state-of-the-art results on the Honda Re-
search Institute Driving Dataset (HDD) - on visual data alone. Further, this chapter
introduces a new accuracy metric ASiST@x for measuring the network’s performance on
continuous scene/activity recognition.
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Chapter 4

Driving Scene Understanding using
3D-CNNs based ANN

4.1 Introduction

With the ubiquitous use of AI in every walk of life, the transportation domain is not
untouched by it; AI is increasingly finding its varied usage in autonomous and semi-
autonomous vehicles. In a future of hybrid transportation where more and more of human-
driven vehicles and self-driven vehicles would share the road, there arises a need to recog-
nize a driving scene for better contextual communication among vehicles to make informed
driving decisions, thereby, increasing the on-road safety. Therefore, researchers employ a
variety of modalities e.g. visual data, Controller Area Network (CAN) bus data, LiDAR
data, GPS data, etc. to understand a driving scene, with the visual data being the pri-
mary modality. This work has been published at the Canadian Conference on Artificial
Intelligence - 2021 [32].

4.1.1 Driving Scene Understanding

In the context of Driving Scene Understanding, a number of works have been done; each of
which addresses different subsets of problems in this broad domain. Authors in [8, 39, 25]
leverage Hidden Markov Models for driver intention recognition. Recently, Casas et al.
[16] put forward a fully convolutional neural network method for predicting the driving
intent of other vehicles in the context of self-driving ones. For the task at hand, they
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leveraged the 3D point clouds produced by the mounted LiDAR and dynamic maps of
environment containing lanes, intersections, etc. Frossard et al. [29] proposed the usage of
a Convolutional-Recurrent architecture for detecting the turn signals and flashers in video
sequences. A few [97, 11] have also attempted to understand and predict the pedestrian
intentions to improve the Driver Intention Recognition systems. Torstensson et al. [110]
proposed a Convolutional and LSTM based network to predict the actions of the in-vehicle
driver. In a work related to Driving Action Anticipation, Aliakbarian et al. [1] introduced
a new dataset: VIENA2 and proposed a multi-modal LSTM based network to forecast
driver actions from visual and sensor data.

A recently published dataset by Ramanishka et al. [89]: Honda Research Institute
Driving Dataset (HDD) which they benchmark for a variety of driving scenes, has gained
traction of late for the task of Driving Scene Understanding due to its rich annotations and
temporally aligned visual-sensor data. Xu et al. [116] used this dataset to evaluate their
new recurrent architecture for a variety of online action-detection tasks (including driving
scenes). The authors in both the papers [89, 116] used a Convolutional network coupled
with a Recurrent architecture for recognizing the driver actions from visual as well as the
CAN bus sensor data. The HDD dataset was further studied by Li et al. [61] to identify the
causal reasons for the human drivers to stop on-road. This dataset was also employed for
interaction modeling between ego-car and other on-road objects (e.g. pedestrians, lanes,
traffic light) by using Graph Convolutional Networks [62]. Owing to the popularity and
variety, we use the HDD dataset along with VIENA2 for our experiments.

4.1.2 3D-CNNs

Visual data forms an important modality for Driving Scene Understanding and Convolu-
tional networks are critical to learning spatial representations. While most of the works
use pre-trained 2D-CNNs (primarily on ImageNet) to extract spatial features, followed by
the usage of Recurrent networks for learning temporal dynamics; researchers have largely
ignored 3D-CNNs based models for Driving Scene Understanding. 3D-CNNs based models
can jointly learn the spatial and temporal representations in a video [111, 23, 22] and can
also be used for human action recognition [48]. Another missing aspect of most of the
works is the absence of insights in the necessary spatial and temporal resolution of visual
inputs for Driving Scene Understanding. One can expect higher spatial resolution to be
favourable performance-wise; however, it comes with an added cost of increased compu-
tational complexity, thus, high power requirements. Increased prior temporal context to
understand an ongoing driving scene might introduce irrelevant past contextual details
(e.g. lane changes are quicker than U-turns). In addition, the joint contribution of higher
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spatial resolution and increased temporal context also poses hardware implications during
training and deployment.

Therefore, we build a Convolutional 3D (C3D) [111] inspired 3D-CNN based network
and investigate the degree of the required spatial resolution and temporal depth for Driving
Scene Understanding. C3D is one of the best established architectures for a variety of video
based tasks and our improved results with it shows its efficacy. Since Tran et al. [111]
already did exhaustive hyper-parameter search while building their C3D architecture, we
reuse their findings in building our model and focus on the less studied spatial and temporal
resolution need instead. We will revisit with a short discussion on the C3D architecture’s
hyper-parameters in Chapter 8 (Conclusion and Future Work).

4.1.3 Contributions

This chapter’s contribution is three fold, summarised below.

• We demonstrate superior results on the visual data alone with our C3D inspired
3D-CNNs based architecture

• Given a model, we attempt to identify the optimum spatial resolution and tempo-
ral context/depth of the input necessary for recognizing a variety of driving scenes
(collectively) in general setting

• We introduce a new accuracy metric ASiST@x which jointly measures the accuracy
of recognizing scenes within a certain time as well as the recognition continuity of
ongoing scenes

We organize this chapter as follows. In Section 4.2 we define the specifics of our exper-
iments, followed by the experimental details in Section 4.3. We then present and analyse
our results in Section 4.4 followed by consolidating our findings in the conclusion Section
4.5.

4.2 Experiment Specifics

In this section we formally describe the elements of our designed experiments. We begin
by defining the term Temporal Context/Depth, followed by defining the term Spatial
Resolution, and end this section with a description of our 3D-CNNs based model.
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Figure 4.1: Our Model’s Architecture; “3D-Conv, 64” implies 64 filters in the
3D-Convolutional layer

4.2.1 Temporal Context/Depth

The RGB video data is composed of a continuous sequence of frames fm where m ∈
[1, · · · , N ]; N is the total number of frames in the video, usually at 30 FPS. We can label
each of the frames fm sequentially to denote various temporally arranged ongoing driving
scenes. Let Fi,j be a contiguous sequence of consecutive frames fm where m ∈ [i, · · · , j].
We therefore build a sliding window Fi,i+l−1 of l frames where the task is to predict the
label of the last frame fi+l−1; the label denotes the ongoing driving scene in the current
frame fi+l−1 in the context of past l− 1 frames. We slide the window one frame at a time.
Contrary to [89, 116] where authors first construct a sequence of 90 frames and then predict
the labels of each frame in one go, our formulation is more favourable and responsive to
the time critical on-road situations, as it recognizes the ongoing driving scene immediately
upon arrival of a new frame. We mention this parameter l as the Temporal Depth. In
our experiments, we consider three different values of l ∈ {16, 24, 32}; what should be the
optimum l?

4.2.2 Spatial Resolution

Irrespective of the various Neural Network models to learn the spatial features, the question
remains: what should be the appropriate spatial resolution of the input frames? Towards
this cause, we resize the frames to varying spatial resolutions; low resolution: 36×64 pixels,
medium resolution: 72 × 128 pixels, and high resolution: 108 × 192 pixels, and conduct
extensive experiments. The first dimension corresponds to the number of rows and second
dimension corresponds to the number of columns in the RGB frames.
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4.2.3 3D-CNN based Model

To benchmark our findings we build our model (Figure 4.1) based on the C3D architecture
proposed by Tran et al. [111]. Each of the Convolutional layers has a kernel size of (3, 3, 3).
The Max-Pooling size is set to (2, 2, 2) except for the first pooling layer where it is set to
(1, 2, 2). The first dimension of the kernel size and pool size correspond to the temporal
dimension, last two dimensions correspond to the spatial dimension. The strides for the
Convolutional layers are set to (1, 1, 1) and that for the Max-Pooling layers are set as
the pool size. The number of neurons in each of the non-output Dense layers is set to
2048. All the neurons in our model are ReLU neurons, except for the output layer which
has softmax activation. To prevent overfitting, we L2 regularize the kernels and keep the
dropout probability = 0.25. The learning rate is fixed at 0.0001 and we use the optimizer
Adam [54] to train our network. In accordance with [89, 116] we also use Focal Loss [64]
(with γ = 2.0) as the loss function to account for the class imbalance problem in the HDD
dataset.

4.3 Experiments

In this section we describe the details of our conducted experiments. We begin by a short
introduction of the VIENA2 and the HDD dataset, followed by the experiment methodol-
ogy. Note that we used only the visual data, and sampled the frames at 3 FPS for both
datasets (authors in [89, 116, 62] sample the HDD dataset at 3 FPS).

4.3.1 VIENA2 Dataset

The VIENA2 dataset consists of multiple 5 seconds long labelled video clips (30 FPS,
1280× 1920 pixels resolution, ≈ 8.5 hours total) along with the aligned sensor data (speed
and steering angle) collected from the GTA V video game for five different driving Sce-
narios; namely (1) Driver Maneuvers (DM ≈ 2h45m), (2) Accidents (AC ≈ 1h25m), (3)
Traffic Rules (TR ≈ 1h30m), (4) Pedestrian Intentions (PI ≈ 1h10m), and (5) Front Car
Intentions (FCI ≈ 1h45m). For each of the 5 scenarios, there are 3 different splits: Day-
time split, Weather split, and Random split; we use the Random split (70% training clips,
30% test clips). Note that due to only 5 seconds long clips, we could not experiment for
l = {24, 32}.
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HDD
Layer 0

HDD
Layer 1

VIENA2 - Random split
Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

Training 113 105 3 2 2 2 2

Inference 79 82 2 1 1 1 1

Table 4.1: Average run-time (rounded) in minutes of E108×192,16 for the HDD and
VIENA2 dataset. Note that the training was done in parallel on 4 GPUs, but the

inference was done on a single GPU.

4.3.2 Honda Research Institute Driving Dataset (HDD)

The HDD dataset [89] is a real world largest public dataset (till date [62]) containing 104
hours of egocentric driving data with per frame annotation. It has video data (30 FPS,
720× 1280 pixels resolution) and CAN Bus sensor data for 137 driving sessions (avg. span
45 minutes); 100 sessions are used for training and rest for testing. This dataset has 4
“Layers” of annotation for Driving Scene Understanding; namely: Goal-Oriented Action,
Stimulus-Driven Action, Cause, and Attention (authors in [89] use the term “Layer” to
denote groups of semantically related driving scenes). We experiment on two annotation
layers: Layer 0 - Goal-Oriented Action and Layer 1 - Cause. We do not use the
CAN Bus sensor data.

4.3.3 Model Execution

We conduct a number of experiments with VIENA2 (5 runs each) and both Layers of
the HDD dataset (3 runs each), where each experiment corresponds to a combination
of a spatial resolution and a temporal depth. Across all the experiments, the model
hyper-parameters are kept constant for fair comparison; only the spatial resolution and
the temporal depth is varied. For convenience, we mention each experiment as Er×c,l
where r × c ∈ {36× 64, 72× 128, 108× 192} pixels resolution, and l ∈ {16, 24, 32} frames
temporal depth. Thus, the shape of input to our model is (batch size, l, r, c, 3) where 3
is the RGB channel dimension. The experiments are executed on nodes with 4 NVIDIA
V100 32GB GPUs. For the HDD and VIENA2 dataset, 1 epoch’s training and inference
run-time figures (averaged across runs) of the best performing experiment E108×192,16 are
mentioned in Table 4.1. Since the authors [1, 89, 116, 62] (with whom we compare our
results later) do not provide run-time estimates of their experiments, we are unable to
present a comparison. Our code is publicly available 1.

1https://github.com/R-Gaurav/DSU-3D-CNNs
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Scenario 1: DM Scenario 2: AC Scenario 3: TR Scenario 4: PI Scenario 5: FCI

FF SS LL RR CL CR AC AP AA NA SR PR WD CD DO CR SS AS NP FF SS LL RR CL CR
E36×64,16 72.9 95.4 88.1 88.2 59.7 76.3 85.9 68.7 41.3 96.2 98.7 46.4 58.0 71.6 45.1 53.3 39.6 62.1 60.0 80.1 84.4 64.7 66.4 31.0 1.8
E72×128,16 83.2 95.7 84.7 83.9 68.9 82.9 81.0 55.4 50.8 95.9 100 50.4 57.7 69.0 36.9 52.1 36.8 75.1 67.0 80.4 88.6 70.8 66.4 36.8 0.0
E108×192,16 79.4 95.2 76.5 72.8 65.1 76.6 73.6 70.3 45.1 92.6 99.0 54.6 49.3 68.6 41.5 68.3 26.8 71.2 58.5 71.3 92.8 69.5 69.2 47.7 1.8

[1] 88.0 97.2 95.8 90.4 64.9 65.4 86.1 80.5 80.2 100 95.1 40.0 75.0 85.7 48.6 78.2 76.6 63.6 74.1 91.2 83.5 84.6 81.4 59.4 66.8

Table 4.2: VIENA2 accuracy scores for all 5 Scenarios - Random split; DM - Driver
Maneuvers, AC - Accidents, TR - Traffic Rules, PI - Pedestrian Intentions, FCI - Front
Car Intentions. For respective class acronyms (e.g. FF, SS, AP, NP, etc.) definition, refer

Section 2.1 of [1].

4.4 Results & Analysis

Here, we present our results (averaged across runs) and analyse them to get insights in
the optimal spatial and temporal resolution required for understanding a variety of driving
scenes. We begin by proving the efficacy of 3D-CNNs over existing approaches, followed
by analysing the per-frame ASiST@x plots of all Er×c,l collectively on the HDD dataset.

4.4.1 VIENA2 Dataset Results

We present our results for the VIENA2 dataset in Table 4.2, where we compare our class-
wise accuracy scores (obtained with Er×c,16) with that of Aliakbarian et al. [1] (obtained
on the visual and sensor data, at the end of the 5th second). In the experiments Er×c,16, we
found that the class-wise accuracy scores for each Scenario plateaus after the 50th epoch,
with slight fluctuations later (total number of epochs run - 64). Since the motive of these
experiments was to find perceptible differences in the performance of each spatial resolution,
we chose not to report the highest class-wise accuracy scores obtained at different epochs;
rather we report the results of the 64th epoch for all of the Er×c,16 for a fair comparison. As
can be seen in Table 4.2, scores across different Er×c,16 do not lead to a conclusive evidence
about which spatial resolution is superior (we observed similar ambiguity with the highest
class-wise accuracy scores too). We attribute this inconclusiveness to the small scale of the
dataset; each Scenario is just 1 hour to 3 hours in total. However, it is observable that our
3 FPS visual only 3D-CNNs based model outperforms the 30 FPS multi-modal pre-trained
CNN-LSTM based model for few classes, which shows its efficacy.
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AP results: Layer 0 - Goal Oriented Action Layer mAP

Methods
Right
Turn

Itr.
Pass.

Merge
Left
Lane

Change

Right
Lane

Branch

Right
Lane

Change

Left
Turn

Crs.
Pass.

Rail.
Pass.

Left
Lane

Branch

U-
Turn

[89] 54.43 65.74 4.86 27.84 1.77 26.11 57.79 16.08 2.56 25.76 13.65 26.96
[116] 57.3 63.5 3.5 28.4 10.5 37.8 57.0 11.0 0.5 31.8 25.4 29.7
[62] 71.7 72.8 10.6 53.4 3.1 44.7 64.8 14.6 2.9 52.2 15.8 37.0

Ours 70.13 78.14 12.18 55.26 9.91 46.41 66.82 13.53 0.59 46.51 12.17 37.42

Table 4.3: Average Precision (AP) results for HDD Layer 0. Itr. Pass.: Intersection
Passing; Crs. Pass.: Crosswalk Passing; Rail. Pass.: Railroad Passing; mAP: mean

Average Precision

AP results: Layer 1 - Cause Layer mAP

Methods Congestion Sign
Traffic
Light

Crossing
Vehicle

Parked
Car

Pedestrian

[89] 39.72 46.83 45.31 NA 7.24 2.15 28.25
Ours 76.84 47.19 67.70 17.42 2.29 4.54 39.71

Table 4.4: Average Precision (AP) results for HDD Layer 1. While calculating and
comparing our mAP, AP of Crossing Vehicle is not accounted as it was not reported

in [89]

4.4.2 HDD Dataset Results

Authors in [89, 116, 62] chose to report the Average Precision (AP) scores of each driving
scene in a Layer; for comparison, we do the same. We executed the experiments Er×c,l
for both layers, Layer 0: Goal-Oriented Action and Layer 1: Cause, for varying number of
epochs (10 to 16). Upon observing the inference mean Average Precision (mAP) scores at
the end of each epoch we found that it plateaus (with minimal variations) after 6th epoch
in all the experiments. Therefore we present and analyse the AP, mAP, and ASiST@x
scores obtained at the end of 7th epoch (this also helps towards fair comparison of different
Er×c,l).

AP and mAP Score Analysis

Tables 4.3 and 4.4 show the AP results of the experiment E108×192,16 for Layer 0 and Layer
1 respectively. In Table 4.3, we see that our results vastly outperform the ones [89, 116]
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obtained by the coupled Convolutional-Recurrent based models. Results of [62] are closer
to ours because it corresponds to their online C3D framework. It is notable that they [62]
obtained their results with input clips of 20 frames and a resolution of 224 × 224 pixels,
whereas, our results with 16 frames clip and ≈ 60% smaller resolution beats theirs in
almost half of the driving scenes. In Table 4.4 we compare our visual only results with [89]
obtained on the visual and CAN Bus sensor data (due to the absence of their results on
visual data alone). Here also we note that our visual only model beats their multi-modal
coupled Convolutional-Recurrent model; thus showing the efficacy of our 3D-CNNs based
model to effectively capture the spatiotemporal features.

Algorithm 1: ASiST@x metric calculation

Input : K, Array [lti], and [lpi ]
Output: lmatched at x, fcount at x

1 Initialization:
2 len lt ← Length of [lti]
3 x← 0 /* Relative index of next frame since a scene’s transition */

4 lmatched at x← [0, · · · , 0] /* Array of zeros of length K + 1 */

5 fcount at x← [0, · · · , 0] /* Array of zeros of length K + 1 */

6 for i← 1 to len lt do
7 if lti 6= lti−1 then
8 /* Scene transition detected */

9 x← 0 /* Relative index since scene transition set to 0 */

10 end if
11 if x <= K then
12 fcount at x[x]← fcount at x[x] + 1
13 if lpi = lti then
14 lmatched at x[x]← lmatched at x[x] + 1
15 end if

16 end if
17 x← x+ 1

18 end for
19 return lmatched at x, fcount at x
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ASiST@x Analysis

Due to the absence of per-frame accuracy metrics for both Layers of the HDD dataset,
we are first to analyse them. To define the ASiST@x metric (Accuracy at the xth frame
Since Scene Transition), let us start by denoting the true label and predicted label of each
frame fi as lti and lpi respectively. Here, instead of calculating the conventional accuracy
metric by comparing the aligned true and predicted label of each frame (which apart from
being a high level abstract metric, is also not suitable for a heavily imbalanced dataset),
we calculate it in the following way. In a sequence of true labels of a driving session, a
scene transition occurs at the frame index i (i.e. in frame fi) when lti is not equal to lti−1.
Thus, a contiguous sequence of same valued true labels ltm where m ∈ [i, · · · , j] denotes an
ongoing driving scene in the frame sequence Fi,j (i.e. the scene starts and ends at the frame
index i and j respectively). Let K denote the number of next frames since the index i at
which the scene has transitioned. Note that the set of K frames does not include the frame
fi; therefore, after including fi in the set, the total number of frames in consideration for
analysis increases to K+1 . Also, a scene can be of smaller duration than K (next) frames,
i.e. j < i+K, therefore, the actual number of scene frames into consideration is n+1 where
n = min(j − i,K). Next, let us define two zero-valued arrays: lmatched at x = [0, · · · , 0]
and fcount at x = [0, · · · , 0] each of shape K + 1. At index x, the lmatched at x array
stores the count of occurrences when lpi+x = lti+x and fcount at x array stores the count of
frames (since the scene transition) at index i+x for x ∈ [0, · · · , n]. Note that if lpi+x = lti+x
at x = 0, then it implies that the driving scene was correctly recognized right at its apt
transition. Also, if lpi+x = lti+x at x > 0, it is possible that the scene was recognized first at
an earlier index in range [i, · · · , i+x−1]. For a session, we define ASiST@x = lmatched at x

fcount at x

(element wise division) after computing the lmatched at x and fcount at x for its scenes.
Thus, the metric ASiST@x not only measures the efficacy of a model to recognize a scene
at the xth frame after its true transition, but also implicitly measures the continuity of
recognizing an occurring scene. In other words, ASiST@x scores tell us the percentage of
scenes (that are at least x+ 1 frames long) that have been recognized by the model by the
arrival of the xth frame since its transition.

In Algorithm 1 we present an efficient implementation for calculating the ASiST@x
metric. After obtaining the lmatched at x and fcount at x arrays for each of the test

sessions in the HDD dataset, we calculate the overall ASiST@x =

∑
session

lmatched at x∑
session

fcount at x
(element

wise summation, element wise division). Note that during ASiST@x scores calculation, the
scene transition from an ongoing event (e.g. left turn) to the background class (i.e. no
ongoing event) is also considered. It can be inferred from our definition of the ASiST@x
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Elements governing the ASiST@x curve form Effect on ASiST@x curve form
x ∈ [0, · · · ,K]

Scene duration
compared to
K + 1 frames

xth frame at which the
scene is recognized first

Recognition
continuity:
Continuous

or Irregular?

All < K + 1
All scenes recognized

right at x = 0
Continuous

ASiST@x = 100% ∀ x up to a certain
value, then the curve drops to 0

—"— —"—
Irregular

after x = k
ASiST@x = 100% ∀ x ∈ [0, · · · , k],
then curve wiggles and drops to 0

—"—
Scenes recognized at x ≥ 0,
some not recognized at all

Continuous
ASiST@x < 100% at x = 0, then curve
rises (may wiggle and reach 100% if in-
dividual duration vary), then drops to 0

—"— —"—
Irregular

after x = k

ASiST@x < 100% at x = 0 then curve
rises (may wiggle and reach 100% if in-
dividual duration vary) then wiggles,

and drops to 0
Some (or None) <
K + 1, rest ≥ K + 1

All scenes recognized
right at x=0

Continuous ASiST@x = 100% ∀ x

—"— —"—
Irregular

after x = k
ASiST@x = 100% ∀ x ∈ [0, · · · , k],

then curve wiggles

—"—
Scenes recognized at x ≥ 0,
some not recognized at all

Continuous

ASiST@x < 100% at x = 0, then curve
rises (may wiggle and reach 100% if few
scenes’ duration < K + 1), and peaks
and may plateau/wiggle/fall slightly

—"— —"—
Irregular

after x = k

ASiST@x < 100% at x = 0, then curve
rises up to x = k, but does not reach

100% if k < all scenes’ duration (other-
wise may reach 100%), and then wiggles

Table 4.5: Influence of the governing elements on ASiST@x curve form. Note: Above
analysis is subject to variability due to the stochasticity of scenes duration and the value

of k.
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metric that it is governed by three elements, namely: (1) Duration of the scenes, (2) xth

frame at which the scene transition is recognized, and (3) Recognition continuity of an
occurring scene. The Table 4.5 details down the effect of these three governing elements on
the curve form of the ASiST@x metric. It is apparent from the analysis in Table 4.5 that
in general setting, the curves should ideally plateau at a high value as early as possible
(with respect to x). Figure 4.2a and Figure 4.2b correspond to the ASiST@x scores for
Layers 0 and 1 respectively. We set K = 12 for Layer 0 and K = 45 for Layer 1 since our
frame sampling rate is set to 3 FPS and we found the mean duration of the scenes in the
respective layers to be 3.82s (std: 2.77s) and 14.57s (std: 18.05s).

(a) HDD Layer 0: Goal-Oriented Action (b) HDD Layer 1: Cause

Figure 4.2: ASiST@x plots for HDD dataset layers. Line corresponding to the best
performing combination is in black. Best viewed in color.

In Fig. 4.2a we see that at x = 0, E108×192,24 outperforms others by recognizing 55.02%
of the Layer 0 driving scenes right at their true transition. At x = 1, this combination of
spatial and temporal resolution again outperforms others by recognizing a scene transition
1 frame later (than its true transition) or 1 frame into its predicted transition (i.e. at the
next frame if the scene transition was already recognized at x = 0) in 68.71% of the scenes
(E108×192,16 performs nearly same - 68.24%). However, for x >= 2, E108×192,16 emerges as
the clear winner. Considering its ASiST@3 score, our model takes only 1 second of time
(since the true start of scenes) to correctly recognize a scene transition or an occurring
scene (if the scene transition was recognized earlier) in 78.86% of all Layer 0 scenes. With
respect to its ASiST@4 score, this combination of spatial and temporal resolution again
enables our model to detect a scene transition at or earlier than 1.33 seconds (since true
start) in 81.34% of all Layer 0 scenes which are at least 5 frames long (@ 3 FPS). We see
that ASiST@x curves for all Er×c,l keep rising, do not wiggle perceptibly, and do not fall
within the range of K. This relates strongly to the analysis present in second last row of
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the Table 4.5, thus hinting towards our model’s ability (∀ Er×c,l) to continually recognize
an occurring scene (after recognizing its transition earlier) apart from recognizing few extra
scene transitions in the later frames. With respect to the scenes duration, we found that
35.41% of all scenes (in Layer 0 test data) had window size < K + 1 and 25.78% had
window size < 10 frames.

In Fig. 4.2b, we see similar ASiST@x curve form for Layer 1 driving scenes, except
that the curves are not as smooth as those in Fig. 4.2a. Considering the ASiST@0 score,
we again see that E108×192,24 outperforms all others by achieving 44.78% score, but soon
E108×192,16 takes over (at x = 3) and outperforms rest at higher values of x. From ASiST@3
score of E108×192,16 we see that it is able to recognize a scene transition at or earlier than 1s
in 55.12% of all Layer 1 scenes which are at least 4 frames long (@ 3 FPS). We also see that
E108×192,32 strongly contends with E108×192,16 at values of x > 15. This hints that increased
temporal context might be necessary for recognizing longer duration scenes (recollect that
mean duration of Layer 1 scenes is 14.57s), but since the Layer 1 scenes’ duration are
highly variable (std: 18.05s), it cannot be conclusively established. The ASiST@x curves
for all Er×c,l keep rising and seemingly plateau at values of x closer to K and perceptibly
wiggle too. This wiggliness can be attributed to one or more of the following reasons: (1) it
can be an image artefact due to the packing of comparatively (with respect to Figure 4.2a)
large number of frames-since-transition, (2) it can be due to the highly variable duration
of Layer 1 scenes - implying many scenes end earlier, (3) it can be due to the possible
discontinuity in recognizing ongoing scenes. With respect to scenes duration, we found
44.95% and 33.72% of scenes (in Layer 1 test data) which were smaller than K + 1 and 30
frames respectively.

Effect Analysis of Spatial Resolution and Temporal Depth

Here we study the individual effects of spatial resolution and temporal depth variation on
mAP while keeping the other constant. Figure 4.3a shows an increasing trend in the mAP
scores for both Layers and different temporal depths as the spatial resolution increases.
This suggests using higher spatial resolution inputs but it comes with an increased cost of
computational requirements. Also, we found in Section 4.4.2 that a resolution of 108×192
pixels suffices the performance of 224 × 224 pixels resolution. Upon observing the class-
wise AP scores, we found that increasing spatial resolution helps in better recognition
of Left Lane Change, Right Lane Change, Left Lane Branch, Sign, Traffic Light, and
Crossing Vehicle. In Figure 4.3b we do not see a definitive trend in the mAP scores
as the temporal depth increases. Upon observing the class-wise AP scores for certain
fixed spatial resolutions, we found that increased temporal depths resulted slightly better
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(a) Varying Spatial Resolution (SR) (b) Varying Temporal Depth (TD)

Figure 4.3: Individual effect of varying the Spatial Resolution and Temporal Depth.
Layer 0 and Layer 1 are color coded. Best viewed in color.

performance for recognizing U-turn, Right Lane Change, Left Lane Change, and Crossing
Vehicle. This subtly suggests that the determination of an ideal temporal depth is driving
scene dependent, however this hypothesis requires further investigation. Since the mAP
(in Figure 4.3b) does not strongly depend on the temporal depth, and the mAP scores
with 16 frames temporal depth is higher or comparable to others, we favour the 16 frames
temporal depth due to lesser computations. Conclusively, it can be said that a combination
of 108 × 192 pixels spatial resolution and 16 frames temporal depth performs best for
recognizing real time driving scenes in general setting.

4.5 Conclusion

From our extensively conducted experiments, we showed the success of our C3D inspired
3D-CNNs based model for Driving Scene Understanding. Our visuals only model was
found to be comparable and outperformed a variety of visual and multi-modal Driving
Scene Understanding approaches as seen in Tables 4.2, 4.3, and 4.4. In accordance with
our intention to determining the scene transitions right at their onset, we introduced the
ASiST@x metric to evaluate the efficacy of our approach. This metric can be extended
to other datasets and different types of tasks as well which deal with the problem of
continuous activity/scene recognition. We found that our model achieves ASiST@0 scores
of 55.02% and 44.78% for Layers 0 and 1 of the HDD dataset respectively with an input
resolution of 108× 192 pixels and a temporal depth of 24 frames. In addition, our model
takes just 1s of time (at 3 FPS) since the true start of scenes to correctly recognize scene
transitions in 78.86% and 55.12% of Layer 0 and Layer 1 driving scenes respectively. We
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experimentally found the combination of 108×192 pixels resolution and 16 frames temporal
depth to be the best among other combinations for recognizing real time driving scenes
in the largest real world public dataset. Owing to the demonstrated success of 3D-CNNs,
we surmise that creation of multi-modal frameworks (to incorporate e.g. CAN Bus sensor
data) with 3D-CNNs would push the results further. One can also explore increasing the
Convolutional kernel size and developing shallower architectures to keep the number of
trainable parameters in check, thereby leveraging higher spatial resolutions and examining
the effect of shorter temporal depths. In addition, one may also segregate the HDD dataset
scenes into groups with sufficiently varying means and low standard deviation (of scenes
duration) to study the effect of temporal depths in detail, apart from developing more
explicit metrics for detecting continuity in driving scene recognition. Finally, we hope that
our insights in the necessary spatial resolution and temporal depth serve as the initial
considerations when researchers toil over choosing these hyper-parameters.
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Chapter 5

Foreword to Article 2 in Chapter 6

Article 2 in Chapter 6 presents two neuromorphic hardware-friendly methods for imple-
menting MaxPooling in SNNs. Such methods can be used to assist in the ANN-to-SNN
conversion of the 3D-CNNs based model with 3D-MaxPooling layers (in Chapter 4) to an
SNN which is entirely deployable on a neuromorphic hardware.

Foreword

Spiking Neural Networks (SNNs) are an emerging domain of biologically inspired neural
networks that have shown promise for low-power AI. A number of methods exist for build-
ing deep SNNs, with Artificial Neural Network (ANN)-to-SNN conversion being highly
successful. MaxPooling layers in Convolutional Neural Networks (CNNs) are an inte-
gral component to downsample the intermediate feature maps, but the absence of their
hardware-friendly spiking equivalents limits such CNNs’ conversion to deep SNNs. In this
chapter, we present two hardware-friendly methods to implement MaxPooling in deep
SNNs, thus facilitating easy conversion of CNNs with MaxPooling layers to SNNs. In
a first, we also execute SNNs with spiking-MaxPooling layers on Intel’s Loihi neuromor-
phic hardware (with MNIST, FMNIST, & CIFAR10 dataset); thus, showing the feasibility
of our approach. As mentioned in the previous paragraph, such spiking-MaxPooling ap-
proaches can also be used to implement 3D-MaxPooling in 3D-CNNs based SNNs. We
note that SNNs with AveragePooling layers are easily (and entirely) deployable on neuro-
morphic hardware. However, the same 3D-CNNs based model, but with AveragePooling
layers (which can be converted to AveragePooling based SNNs) performed poorly than
MaxPooling based 3D-CNNs (more in Chapter 7); hence the need of spiking-MaxPooling.
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Chapter 6

Spiking Approximations of
MaxPooling in SNNs

6.1 Introduction

Artificial Neural Networks (ANNs) have established themselves as the de-facto tool for a
variety of Artificial Intelligence (AI) tasks. And the flagship performance of CNNs for image
recognition/classification has remained unparalleled so far. However, their limitations in
the aspects of energy consumption, robustness against noisy inputs, etc. has attracted
interest in developing their spiking counterparts. Spiking Neural Networks (SNNs) offer
a promise of low power AI and have shown to be more robust against noisy inputs [105],
perturbations to the weights [60], and adversarial attacks [99, 100]. Out of a number of
ways to build SNNs [87] (section 2.2), the ANN-to-SNN conversion method has been highly
effective for building deep SNNs. In this method, one first trains an ANN with traditional
rate neurons (e.g. ReLU) and then replaces those rate neurons with spiking neurons, along
with the other required modifications of weights [98], etc. For our work, we consider this
ANN-to-SNN conversion paradigm to build deep SNNs.

MaxPooling in CNNs is a common method to downsample the intermediate feature
maps obtained from Convolutional layers. One can also use AveragePooling or Strided
Convolution to downsample the feature maps; however, the choice of the pooling method
is contextual [15], and MaxPooling is generally found to give better performance. That
said, [15] also found that “depending on the data and features, either max or average
pooling may perform best”. Several architectures e.g. ResNet-50 (-152) [36], Xception
[20], EfficientNet [107] which form the backbone of different methods to achieve SoTA
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results on ImageNet, use a mix of Max and AveragePooling layers (or GlobalMax/Average
Pooling layers).

However, the conversion of CNNs with MaxPooling layers to SNNs is a convoluted
process. MaxPooling in SNNs has been a long-standing problem and only a handful of
approaches exist for the same. [41] present three approaches for MaxPooling in SNNs;
where they design a pooling gate to monitor the spiking neurons’ activities (in a pooling
window) and dynamically connect one of the neurons to the output neuron based on their
criteria for the maximally firing neuron. Such a gating mechanism is leveraged by [94] too,
where they employ a finite impulse response filter to control the gating function and do
MaxPooling in SNNs; [53] too use the same. Few other works [69, 118, 82, 63, 75] leverage a
Time-To-First-Spike based temporal Winner Take All (WTA) mechanism (or its variants)
to do MaxPooling in SNNs; where the earliest occurring spike in a pooling area is sent to
the next layer, with rest of the neurons (in the pooling area) reset to blocked. Similarly,
[65] employ a lateral inhibition based method to do MaxPooling in SNNs. In another
novel approach, [80] select a neuron (in the pooling region) with the highest membrane
potential to output the spikes; they do a soft reset (i.e. reset by subtraction) of the firing
neuron’s membrane potential. They also propose a hardware architecture for their method
of MaxPooling. However, none of the above methods have been evaluated on a specialised
neuromorphic hardware (e.g. Loihi [21]), with the exception of WTA (but on FPGA [82]).

The conversion of CNNs with AveragePooling layers is trivial, as the AveragePooling
layers can be modeled as convolution operation in the SNNs. Thus, a number of works
replace the MaxPooling layers with AveragePooling layers [115, 98, 18, 31, 56, 57, 117, 43]
or with Strided Convolutional layers [28, 85] in their network; often leading to weaker ANNs
[94]. Overall, this dearth of spiking-MaxPooling approaches in SNNs and the neuromorphic
hardware-unfriendliness of the existing ones motivated us to build spiking equivalents of
the MaxPooling operation which can be entirely deployed on a neuromorphic hardware
(e.g. Loihi). Our contributions are outlined below:

• We propose two methods to do MaxPooling in SNNs, and evaluate them on the Loihi
neuromorphic chip

• In a first, we also deploy deep SNNs with MaxPooling layers on the Loihi boards
with one of our methods

We next lay out our Methods of spiking-MaxPooling, followed by the Experiments &
Results section, and a Discussion on the result analysis and adaptability of our methods.
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6.2 Methods

In this section we present our proposed methods of spiking-MaxPooling. We start with
each method’s elemental details, followed by their Proof-of-Concept Demonstration on the
Loihi chip. Henceforth, otherwise stated, all the instances of “neurons” are Integrate &
Fire (IF) spiking neurons.

6.2.1 Method 1: MAX join-Op

MAX join-Op (MJOP) based spiking-MaxPooling leverages the low level NxCore APIs
made available through the NxSDK tool (to program the Loihi chips) by Intel; thus, this
method is Loihi hardware dependent. A single Loihi chip consists of 128 Neuro-Cores,
where each Neuro-Core implements 1024 Single Compartment (SC) spiking units. Each
compartment can be simulated as an individual neuron or can become part of a Multi-
Compartment (MC) neuron. Each MC neuron is a binary tree of single compartments,
where each node (a compartment) can have at most two child nodes/dendrites (also com-
partments). Note that a MC neuron cannot span across two or more Neuro-Cores; rather
is limited to just one Neuro-Core. Thus, a MC neuron can have a maximum of 1024
SC. Through each connection between the compartments (in a MC neuron), the two state
variables: current (U) and voltage (V ) can flow. Thus, a compartment can communicate
either its U or V to its parent compartment. The parent compartment incorporates the
state variables from its dendrites with its own U by following a join operation defined for
its dendritic connections. Note that, an external U can be injected to each compartment
(including the root compartment) in a MC neuron, thereby enabling them to spike (pro-
vided their V reaches the threshold). Also, note that the neurons (MC or SC) in a Loihi
chip communicate via spikes only; they cannot exchange U or V directly, which falls in
line with the biological neurons.

Fig. 6.1 shows an example of a MC neuron communicating its spikes to a SC neuron.
The MC neuron has a binary tree structure, with the root node (i.e. soma compartment C)
having two child leaf nodes (dendrite compartments A and B). In Loihi, each compartment’s
voltage i.e. X.V [t] (X can be a soma or its dendrites) is updated by the following rule:

X.V [t] = X.V [t− 1]× (1− decay) +X.dV [t] (6.1)

where the value of X.dV [t] is found by applying the specific join operation (join-Op) e.g.
ADD, MAX, MIN, etc. over its current X.U [t] and the state variables from its dendrites.
We leverage this MC neuron creation functionality and the MAX join-Op for realizing
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Figure 6.1: SC: Single Compartment, MC: Multi-Compartment. Wiggly arrows denote
post-synaptic current due to the incoming spikes; Dotted straight arrow shows the resulting
spike-train due to C’s spiking activity; Dotted curved line over 3 arrows shows the 3 join-Op
arguments.

spiking-MaxPooling (on Loihi boards) in deep SNNs. We next explain the MAX join-Op
in the context of the MC neuron in Fig. 6.1. We begin by defining a few terms first: X.U [t]
and X.bias denote the input current and bias current (respectively) of a compartment X.
X.U ′[t] is the sum of X.U [t] and X.bias. A[t] (and B[t]) is the output of the child dendrite
A (and B), which can either be A.V [t] or A.U ′[t] (and B.V [t] or B.U ′[t]) depending upon
which state variable we want to work with; we choose U . NxSDK defines the MAX join-Op
as (X being C here):

C.dV [t] = max(C.U ′[t], A[t], B[t]) (6.2)

We expand and simplify the Eq. 6.2 by assuming X.bias = 0 for X ∈ {C, A, B} and setting
the child compartments A and B to output current instead of V (to its parent C). Thus,
A[t] = A.U ′[t] and B[t] = B.U ′[t]. Eq. 6.2 simplifies as:

C.dV [t] = max(C.U ′[t], A[t], B[t]) (6.3)

= max(C.U [t] + C.bias, A[t], B[t]) (6.4)

= max(C.U [t], A.U ′[t], B.U ′[t]) (6.5)

= max(C.U [t], A.U [t], B.U [t]) (6.6)

Thus, in MJOP case, the root compartment (i.e. soma) C’s voltage dynamics is governed
by the maximum of the input currents to it (from external source and its dendrites A &
B).

MJOP Net for MaxPooling:

In a conventional CNN architecture, MaxPooling is done over the activations of the pre-
ceding Convolutional layer rate-neurons. In an SNN, we can represent those real-valued
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Figure 6.2: MJOP Net. SC: Single Compartment, MC: Multi-Compartment Neuron, MP:
2× 2 MaxPooling Window. Integers (1, 2, 3, 4) simply show a one-to-one correspondence.

activations (of rate-neurons) by passing the corresponding spiking-neurons’ spike-trains
through a low-pass filter (also known as filtering/synapsing). In other words, the synapsed
spikes i.e. the post-synaptic current U represents the activation. We leverage this char-
acteristic of SNNs and feed the individual currents Ui (in a pooling window) to a MAX
join-Op configured MC neuron. Note that the number of compartments in the MC neuron
should be equal to the size of the pooling window.

For a 2 × 2 MaxPooling window, we construct a MC neuron with 4 compartments
as shown in the Fig. 6.2. The outgoing spikes from each neuron in a pooling window
induce a post-synaptic current U in the respective individual compartments (bias current
of each compartment is set to 0). Each of the compartments (except the root/soma) is
set to communicate its U to its parent. The leaf node/compartment 4 upon receiving
the post-synaptic current updates its V and communicates the received U to its parent 3.
Compartment 3 then computes the MAX of the current from its child 4 and the incoming
post-synaptic current, updates its V , and communicates the resulting maximum U to
its parent 2. Note that in this network, MAX join-Op is executed over two arguments.
Compartments 2 and 1 repeat this same process; except that the compartment 1 has no
parent to communicate the MAX U so far. The soma compartment 1 then spikes at a
rate corresponding to the maximum input post-synaptic U depending on its configuration,
instead of outputting max U .
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Proof-of-Concept Demonstration:

In MJOP Net, a running MAX of input currents Ui is maintained, which is finally fed to
the root/soma compartment. Mathematically:

Uout = F (G(max(U1,max(U2,max(U3, U4))))) (6.7)

where Ui is the input current to compartment i, G is the non-linear dynamical function of U
governing the voltage dynamics (thus, the spiking output) of soma, F is the synaptic filter
applied on the spike outputs of soma. Since the soma does not communicate the computed
max current, rather its spikes to the next neuron (if connected), there arises a need to
properly scale the synapsed spikes i.e. Uout to match “True Max U” (= max(U1, U2, U3, U4)
computed without spiking neurons on a non-neuromorphic hardware). We next execute the
MJOP Net (in Fig. 6.2) on the Loihi chip. The net consists of a MAX join-Op configured
MC neuron of 4 compartments receiving periodic spiking inputs (spike amplitude 1, with
time-periods of 10, 8, 4, and 6 - a possible case when receiving the spike outputs of
pooled neurons in a preceding Convolutional layer in an SNN). We set a probe on soma
(compartment 1) and filter its output spikes. In Fig. 6.4a we see that the “Scaled Uout”
matches the “True Max U” closely; the “Average U” is lower than the estimated max.

6.2.2 Method 2: Absolute Value based Associative Max

The representation of the real-valued activations of the rate-neurons as currents in SNNs
inspires our second method as well. The Absolute Value based Associative Max (AVAM)
method of spiking-MaxPooling is hardware independent and leverages the following two
properties of the max function.

max(a, b) =
a+ b

2
+
|a− b|

2
(6.8)

max(a1, a2, a3, · · · , an) = max(max(a1, a2),

· · · ,max(an−1, an))
(6.9)

where ai, a, b ∈ R and n ∈ N; Eq. 6.9 holds due to the Associative Property of max().
In Eq. 6.8, the average term a+b

2
(a linear operation) can be easily calculated by the

connection weights from the neurons representing those values (i.e. a and b); the challenge
is to calculate the non-linear absolute value function i.e. |.|. One can use the Neural
Engineering Framework (NEF) principles [26] to estimate the |.| function by employing
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Figure 6.3: MFR: Max Firing Rate; Node: A programming construct to either represent
a value or sum the inputs, and forward the same.

a network of Ensembles of neurons. However, the number of neurons required in each
Ensemble can be large (100s or more); thus, this method is not scalable. For the same
reasons, a direct calculation of the max() using NEF principles is not desirable.

Estimation of |.| function:

Therefore, we rather take a unique approach of using the tuning curves to estimate the
|.| function. Tuning curves characterize the activation (i.e. firing rate) profile of neurons
with respect to the input stimulus. In NEF, these curves depend on the neuron type and
properties (e.g. max firing rate φ, representational radius r, etc.). Upon configuring an
Ensemble of two IF neurons properly (e.g. φ = 200Hz, r = 2.5), one can obtain desirable
tuning curves as shown in the Fig. 6.3a, which resembles the plot of the |.| function; we
leverage the same to estimate the absolute value of a signed scalar input. In our example
(Fig. 6.3a), “Neuron 1” (and “Neuron 2”) is tuned to fire at φ = 200Hz when 2.5 (and−2.5)
is fed to the Ensemble. Thus, irrespective of the sign of the input values ∈ [−r, · · · , r], we
receive a positive firing rate from either neuron. Therefore, for an input r (or −r), we can
filter the spiking output from the corresponding neuron (the other outputs 0) to obtain φ
and scale it with r

φ
(i.e. φ× r

φ
) to estimate |r|. Note that for such a system of two neurons,

one needs to pre-determine a max firing rate φ and the approximate representational radius
r. If the magnitude of the input value is lesser (or larger) than r, then this system produces
a noisier (and saturated) output.
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(a) MJOP Net Uout (b) AVAM Net Uout

Figure 6.4: “MJOP Net Uout” is the synapsed/filtered spiking output from the soma. It is
scaled by 1.1 (to obtain “Scaled Uout”) to match the “True Max U” = max(U1, U2, U3, U4)
closely. “AVAM Net Uout” are the outputs from Node O (in Fig. 6.5) for different radii r.
For r = 0.25 and 0.20, the Uout matches the “True Max U” = max(U1, U2, U3, U4) closely.

Estimation of max(a, b):

The above method of estimating the |.| function can be incorporated with the average term
calculation to construct a network as shown in the Fig. 6.3b to estimate the max(a, b). In
Fig. 6.3b, Nodes A and B represent and output the values a and b respectively as currents.
They are directly connected to the Node O with a connection weight of 1/2 each. Thus,
their scaled output i.e. a/2 and b/2 gets summed up at Node O to result in (a + b)/2.
Nodes A and B are also connected to an Ensemble of two Neurons, 1 and 2 (whose tuning
curves are similar to that in Fig. 6.3a and their representational radius r ≈ (|a − b|)/2)
with a connection weight of 1/2 and −1/2 respectively, such that the sum (a− b)/2 fed to
the Ensemble. Note that r can be heuristically set without knowing the values of a and b
(shown later). Depending on the sign of the sum (a− b)/2, either the Neuron 1 or Neuron
2 spikes at a frequency φ (the other outputs 0). Therefore, after filtering the spike outputs
to obtain φ and scaling it with r

φ
(= φ× r

φ
) through the weighted connection to the Node

O, r is sent. The Node O then finally accumulates the inputs, i.e. a+b
2

+ r ≈ a+b
2

+ |a−b|
2

which is approximately equal to the max(a, b) and relays the same.

Proof-of-Concept Demonstration:

For a 2×2 MaxPooling window, we can compute themax(a1, a2, a3, a4) asmax(max(a1, a2),
max(a3, a4)) using the Associative Property of max(). We therefore construct the AVAM
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Figure 6.5: AVAM Net for 2× 2 MaxPooling. MP: 2× 2 MaxPooling Window. Edges are
color coded; refer Fig. 6.3b legend.

Net, shown in Fig. 6.5 with four spiking inputs (firing time-period = 10, 8, 4, 6) con-
nected to the individual Nodes. Note that the filtered spikes i.e. currents Ui are being
fed to the Nodes (here ai = Ui) and they relay the same to the next connected compo-
nents. In this hierarchical network, max(a1, a2) and max(a3, a4) gets estimated at the
Nodes P and Q respectively. They forward the same and Node O finally estimates the
max(max(a1, a2),max(a3, a4)). Three instances of this AVAM Net are executed on the
Loihi chip with IF neurons’ φ fixed to 500Hz and r ∈ {0.20, 0.25, 0.30}. In each in-
stance, all the neurons in each Ensemble had the same φ and r. Each instance’s estimated
max(U1, U2, U3, U4) i.e. “AVAM Net Uout” (for a corresponding r) is shown in the Fig.
6.4b. We see that r’s value around 0.25 (for a fixed φ) does a fair job of approximating
the “True Max U”; as well as, the estimated max U are higher than the Average U .

One should note that ideally, the output current from a MaxPooling window (of spiking
neurons) should be the current due to the maximally firing neuron (i.e. “Ideal Max U”).
However, the MJOP and AVAM spiking-MaxPooling methods compute the instantaneous
max of all incoming currents (in a pooling window) at each time-step, which is not equiv-
alent to the “Ideal Max U”. It is possible that the instantaneous max of currents could
be higher than the ideal max when a slower spiking neuron fires recently than the maxi-
mally firing neuron. This holds true with “True Max U” as well; however, we defined it
as max() of currents in the spirit of MaxPooling in ANNs. Therefore, our methods are
approximations of the ideal MaxPooling in SNNs.
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6.2.3 Heuristics for scale (MJOP) and radius (AVAM)

As seen in the Proof-of-Concept Demonstration sections, one needs to properly scale
the Uout in case of MJOP Net and set the radius parameter in AVAM Net to correctly
approximate the “True Max U”. For a fixed configuration of compartments/neurons in the
MJOP and AVAM Net, the value of scale and radius depends on the group of inputs Ui.
Recollect that in the MJOP Net, the soma compartment spikes at a rate corresponding to
the maximum input Ui, and the output Uout needs to be scaled accordingly. And in the
AVAM Net, the radius should be heuristically chosen to be equal to |a−b|/2 for estimating
the max(a, b) (where a and b are the inputs Ui). The inputs Ui in turn depend on the
periodicity (or the Inter-Spike Interval (ISI)) of the incoming individual spike trains. We
note here that the maximum and minimum value of Ui can be 1 (with spike amplitude
= 1, ISI = 1) and 0 (with the corresponding neuron not spiking at all) respectively. This
implies that the maximum value of the difference of two Uis can be 1, i.e. radius ≤ 1
always. This holds true for the radius value of the Ensemble neurons further in the
AVAM Net hierarchy. Moreover, many or all of the neurons in a pooling window may spike
with ISI > 1, which would further lower down the radius value.

One can heuristically choose the scale and radius values by analysing the ISI distribu-
tion of the neurons in a model’s Conv layer (preceding the MaxPooling layer) for a dataset;
although, these values may be required to be tuned further. We therefore conduct a toy ex-
periment where we collect the ISIs of 2048 neurons in a Conv layer (of one of our converted
SNNs) for 1000 training images of MNIST and CIFAR10 each, and construct the respec-
tive ISI distributions (averaged across 1000 images). From each distribution, we obtain 256
groups of randomly sampled ISIs (group size 4) and filter the respective spiking inputs to
create 256 groups of {U1, U2, U3, U4}. We next compute the “True Max U” and “Estimated
Max U” for different values of scale and radius in the MJOP & AVAM Net respectively,
and analyse their effects (refer Fig. 6.6). Note that the “Average” U values (synonymous
to AveragePooling) are ≤ the respective estimated max U . The high correlation of the
true and estimated U obtained for a varied group of spiking inputs shows the efficacy of
our spiking-MaxPooling methods. For our MJOP & AVAM Net, scale value around 2.0
and a radius value around 0.3 fairly approximates the “True Max U”. Note that in the
AVAM Net, ideally, the radius of each Ensemble’s neurons should be set independently
to estimate the varying |a− b|/2, however for simplicity, we keep it same.
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Figure 6.6: Scatter-Plots of MJOP & AVAM Net Outputs over spiking inputs (their ISI’s
in groups of 4). s: Scale, r: Radius. Correlation Coefficients: (1, a) 0.98; (1, b) 0.99; (2,
a) 0.99, (2, b) 0.95.

6.3 Experiments & Results

We next describe the experiments conducted with the MJOP and AVAM methods of
spiking-MaxPooling. In accordance with the ANN-to-SNN conversion paradigm, we first
train a rate-neuron (ReLU) based model and then convert it to a spiking network (of IF
spiking neurons). We use the NengoDL library [91] for training, conversion, and inference;
and the NengoLoihi library for deploying the SNNs on the Loihi boards. While training the
models we ensure that they are properly tuned to account for the firing-rate quantization
of IF spiking neurons. In the converted SNNs, we do the MaxPooling operation via our
proposed methods of spiking-MaxPooling Nets. We use MNIST, FMNIST, and CIFAR10
datasets (normalized [−1, 1]) and conduct experiments with 3 different architectures (Fig.
6.7). For simplicity, we fix the MaxPooling window to 2× 2 in all architectures.
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c. Architecture 3

Figure 6.7: CNN Architectures. “Conv2D, x” ⇒ “x” number of filters in the Conv layer;
“Dropout, x” ⇒ “x” dropout probability. In each architecture, Conv layer strides = (1, 1),
kernel size = (3, 3) (except the first Conv layer with kernel size = (1, 1)); 2×2 MaxPooling
window; 128 neurons in Dense layer; no activation in the Output layer; no bias in all
layers except Dense. MaxPool layers in all architectures have no padding; Conv layers too
have no padding except in Architecture 3. For experiments with MNIST & FMNIST, the
colored blocks in Architecture 3 are removed to account for their smaller image size than
CIFAR10.
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Figure 6.8: MAX join-Op based MaxPooling. For a MaxPool layer in an architecture, the
preceding Conv layer’s channels are each flattened and mapped to a single Neuro-Core.
Each Neuro-Core has an Ensemble of MJOP Net configured MC neurons. Post execution
of MJOP Nets on Neuro-Cores, the flattened vectors are reshaped to channels and passed
to the next Conv layer.
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Architecture 1 Architecture 2 Architecture 3
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Sa Sb Sc Ra Rb Rc Rd Sa Sb Sc Ra Rb Rc Rd Ra Rb Rc Rd

CIFAR10 60.2 60.6 48.7 55.0 55.1 51.8 60.4 60.5 60.7 59.5 65.3 64.9 38.8 55.7 51.8 26.3 64.1 64.6 65.0 64.2 83.7 82.8 69.6 82.7 82.7 82.7 81.3

MNIST 98.8 98.8 98.2 98.2 98.2 98.2 98.7 98.7 98.7 98.6 99.1 98.7 98.3 97.9 98.0 97.2 98.8 98.8 98.8 98.9 99.3 99.4 98.9 99.3 99.4 99.4 99.4

FMNIST 91.0 90.5 87.3 88.0 88.1 88.0 90.2 90.2 90.3 89.4 89.9 89.5 79.5 86.4 86.3 85.8 89.0 89.2 89.1 88.3 93.4 93.2 91.6 93.2 93.3 93.4 93.2

Table 6.1: Accuracy Results (%). NSR: Non-Spiking ReLU results; TMS: True-Max U
SNN’s results; MAS: Max-to-Avg SNN’s results; MJOP & AVAM: Spiking-MaxPooling
SNN’s results. For CIFAR10 Sa, Sb, Sc (scale) are 1.0, 2.0, 5.0; for MNIST they are
1.0, 1.2, 2.0; for FMNIST they are 1.0, 1.5, 2.0 resp. Ra, Rb, Rc, Rd (radius) ∀ datasets are
0.20, 0.25, 0.30, 1.0 resp. As expected, Rd = 1.0 results in accuracy loss, since difference of
Ui is not always ≈ 1.0; thus, poor approximation of max Ui.

6.3.1 Common settings in MJOP and AVAM methods

For our proposed spiking-MaxPooling methods, each Conv-channel is flattened and the
2 × 2 pooling window inputs are grouped in sizes of 4, and passed next to the layer of
MJOP Nets or AVAM Nets depending on the choice of spiking-MaxPooling. The outputs
from the individual Nets are collected in a channel wise manner and passed to the next
Conv layer. While flattening the channels and passing the pooled inputs to the spiking-
MaxPooling layer, and subsequently while collecting the outputs, one has to properly
arrange the inputs and outputs to preserve the 2× 2 MaxPooling layout.

6.3.2 Model Details

The first Conv layer in each architecture (in Fig. 6.7) has a kernel size of (1, 1) which acts
a pixel-value to spike converter. For training each architecture, we use the Adam optimizer
with a learning rate of 1e−3 and a decay of 1e−4, and use the Categorical Crossentropy

loss function with logits. For MNIST, Architectures 1, 2, and 3 were trained for 8 epochs
each; for CIFAR10, 1 and 2 were trained for 64 epochs each, and 3 for 164 epochs; and for
FMNIST, 1 and 2 were trained for 24 epochs each, and 3 for 64 epochs. The training was
done on the NVIDIA Tesla P100 GPUs. During inference with SNNs, the individual test
images (irrespective of the dataset) were presented for 50, 60, and 120 time-steps to the
Architectures 1, 2, and 3 respectively.
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6.3.3 SNNs with MJOP Net based spiking-MaxPooling

Since MJOP method is Loihi dependent (and not supported on the GPUs), we execute the
converted SNNs straightaway on the Loihi boards in inference mode. Fig. 6.8 shows an
example of how MJOP spiking-MaxPooling can be done in any arbitrary architecture. The
individual channels of the preceding Conv layer are flattened and mapped to a Neuro-Core
each. Each Neuro-Core has an Ensemble of MAX join-Op configured MC neurons (with 4
compartments as shown in Fig. 6.2) to do the 2×2 MaxPooling. The outputs (quartered in
length) from each Ensemble deployed on individual Neuro-Cores are collected and reshaped
as individual channels, and fed to the next Conv layer. This process is repeated for any
additional MaxPooling layers in the network. While deploying the architectures on the
Loihi boards, the first Conv layer and the last “Output” layer are executed Off-Chip;
rest of the layers run On-Chip. Inference is done over all the test images in each dataset
for varying scale values. Due to the Loihi hardware resource constraints and no support
for same padding (in Conv layers) in NengoLoihi (1.1.0.dev0), we were unable to execute
Architecture 3 on the Loihi boards. Table 6.1 shows the accuracy results for Architectures
1 and 2 (both executed on Loihi boards).

6.3.4 SNNs with AVAM Net based spiking-MaxPooling

AVAM method of spiking-MaxPooling is hardware independent. Although the individual
AVAM Nets with varying radii were executed on Loihi (Fig. 6.4b), executing SNNs with
them on the Loihi boards gets challenging due to the AVAM Net layers exceeding the
maximum supported number of input and output axons on the Loihi hardware. Therefore,
we execute the SNNs with AVAM method of spiking-MaxPooling on GPUs only. Similar
to the case of MJOP Net based SNNs, the individual channels in the preceding Conv layer
are flattened and the pooling window’s grouped values (in sizes of 4) are passed to the layer
of AVAM Nets to estimate the max values; which are then collected, reshaped as channels,
and forwarded next. This process is repeated for any additional MaxPooling layers in the
network. In the experiments with each of the three architectures, φ is set to 250Hz, and
the radius value is varied; Table 6.1 shows the accuracy results.
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6.4 Discussion

6.4.1 Table 6.1 Result Analysis

To evaluate the efficacy of SNNs with our proposed methods of spiking-MaxPooling, we
compare it against the results obtained with “True Max U” based SNNs (column TMS)
and its ReLU based non-spiking counterpart (column NSR, with TensorFlow), as well as
with SNNs where MaxPooling layers are replaced with AveragePooling layers after training
(column MAS, only Ensembles and associated connections removed in AVAM Net). In case
of MNIST, the MJOP based SNNs perform similar to their non-spiking counterpart and
“True Max U” based SNN across all the architectures. In case of FMNIST, the performance
drop of MJOP based SNNs is noticeable; and in case of CIFAR10, they perform very poorly.
One reason for the accuracy drop is the Loihi hardware constraints i.e. 8-bit quantization
of the network weights and fixed-point arithmetic. We found the other reason in case of
CIFAR10 to be the highly varying ISI distribution (of Conv layer neurons) across the test
images – possibly due to color channels (resulting in highly variable neuron activations).
This prevented the choice of a scale value to generalize well across all the test images.
For MNIST (and to a large extent for FMNIST), we found the ISI distribution of Conv
layer neurons to be light-tailed and mostly similar across the test images. More details on
the ISI distribution in supplementary material (Appendix A). In a separate experiment,
setting two different scale values (2 and 1.5) for the corresponding MaxPooling layers in
Architecture 2 for FMNIST did not improve the results. Overall, although the MJOP
based SNNs were successfully deployed on Loihi, the MJOP spiking-MaxPooling seems
suboptimal due to its poor generalizability. For its optimal performance, the maximally
firing neuron in each pooling window (in a preceding Conv layer) should have (nearly) same
ISI for a consistent effect of scale value. On the other hand, AVAM based SNNs perform
at par with their non-spiking counterpart and the “True Max U” based SNN across all the
three datasets and architectures. An important distinction between the MJOP & AVAM
methods is that the MJOP method estimates the “True Max U” indirectly by scaling
the Uout (note that this Uout corresponds to the maximum input Ui), whereas the AVAM
method estimates the “True Max U” directly from the group of Ui, which makes the
AVAM spiking-MaxPooling more robust and effective; and its optimal performance with
the same set of radius values across all the three datasets and architectures promises its
generalizability. It is interesting to note that in some cases AVAM based SNNs perform
better than their non-spiking counterpart and/or “True Max U” based SNNs. Also, the
SNNs with AveragePooling layers (column MAS) perform poorly compared to all other
networks.
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6.4.2 Adapting MJOP & AVAM spiking-MaxPooling

Our proposed methods of spiking-MaxPooling are suitable for the rate-based SNNs which
represent activations as currents (i.e. filtered/synapsed spikes). SNNs which do not filter
the spike trains and work directly on binary spikes [98, 34, . . . ], cannot adapt our proposed
methods; this holds true for Time-To-First-Spike based SNNs as well. With respect to the
scalability of the MJOP and AVAM Net against the size of pooled inputs, it is linear.
For an r × c MaxPooling window (where r, c ∈ N), the number of compartments/neurons
required in the MJOP and AVAM Net is r × c and 2× (r × c)− 2 respectively. However,
with the increase in number of neurons in the hierarchical AVAM Net, the estimated max
output may get noisier; although, this doesn’t hold true for MJOP based method. AVAM
Net based spiking-MaxPooling is deployable on any neuromorphic hardware that supports
weighted connections and spiking neurons. In our MJOP based SNNs experiments, each
channel of a Conv layer (prior to a MaxPooling layer) was small enough in dimensions such
that the flattened vector was of size ≤ 1024, thus easily mapped to a Neuro-Core. If the
channel’s dimensions are sufficiently large and the flattened vector’s size is > 1024, then
one needs to spatially split the channel and properly map it to more than one Neuro-Core
such that no pooling window (thus the corresponding MC neuron) spans across two or
more Neuro-Cores, as Loihi restricts the creation of a MC neuron on one Neuro-Core only.
However, such a procedure need not be followed with AVAM based SNNs (if deployed on
GPUs).

6.5 Conclusion

To our best knowledge, this work is a first to present two different hardware-friendly meth-
ods of spiking-MaxPooling operation in SNNs, with their evaluation on Loihi. In a first,
we also deployed SNNs with MaxPooling layers (via MJOP method) on the Loihi boards.
For the appropriate choice of tunable scale and radius values in MJOP & AVAM Net
respectively, we also presented a heuristic method. The Proof-of-Concept Demonstrations
on Loihi show that our work makes successful strides towards providing a solution to the
MaxPooling problem in SNNs. This also opens up avenues for building hardware ready
SNNs with MaxPooling layers without compromising on the quality (otherwise due to re-
placing MaxPooling with AveragePooling). One immediate future direction of our work is
to evaluate the deployment of AVAM based SNNs on a neuromorphic hardware. Next, we
hope that our work encourages efforts towards developing other hardware-friendly methods
of spiking-MaxPooling.
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Chapter 7

3D-CNNs based SNN for Driving
Scene Understanding

In this chapter, we leverage the findings in Chapter 4 and 6 to build a 3D-CNN based SNN
with spiking-MaxPooling layers for Driving Scene Understanding. I use AVAM Net instead
of MJOP Net to implement spiking-MaxPooling in the SNN built because AVAM Net is
better performing, hardware independent, more generalizable and robust than MJOP Net.
Although the aim was to deploy such an SNN on Loihi boards, I was unable to do so because
of the present limitation of Loihi hardware (section 6.3.4) - in the context of AVAM Net
based SNNs. As well as, with the MJOP Net, it would have been very challenging to tune
the scale parameter, thus producing suboptimal results; apart from the technical/design
complications in deploying such a large SNN (≈ 10M parameters or more) on the limited
cloud-access to the Loihi boards. It was therefore decided to deploy the SNN on GPU.

AVAM based SNNs take significant amount to time to compile, possibly due to extra
large number of connections in the AVAM Net spiking-MaxPooling layers. In Chapter 6,
the AVAM based SNNs for image classification with Architecture 1 (Fig. 6.7a), 2 (Fig.
6.7b), and 3 (Fig. 6.7c) took around 8 minutes, 35 minutes, and 7 hours respectively
to compile. Note that the compile time depends on the depth of the network (and the
number of MaxPooling layers) and the size of the input activation maps, and not just on
the number of model parameters. Therefore, I trained the 3D-CNNs based ANN (Fig. 4.1)
on the HDD dataset with the smallest video-input resolution of 36× 64 frame size and 16
frames temporal depth; total number of trainable parameters ≈ 10M. Upon converting it
to an SNN and replacing the MaxPooling layers with AVAM Net spiking-MaxPooling, it
unfortunately did not compile in reasonable time (it ran for weeks - close to a month). Thus,
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although the AVAM based SNN is theoretically entirely deployable on a neuromorphic/non-
neuromorphic hardware, I was unable to produce the AVAM based SNN’s results for the
DSU task.
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Figure 7.1: AVAM Net for 2 × 2 × 2 MaxPooling. MP: 2 × 2 × 2 MaxPooling Window.
Edges are color coded; refer Fig. 6.3b legend.

7.1 Proof of Concept Demonstration

However, I present a Proof-Of-Concept Demonstration of the AVAM Net for 2 × 2 × 2
spiking-MaxPooling (Fig. 7.1, in the 3D-CNNs based SNN) executed on a Loihi chip. The
ISI of the 8 spiking inputs are 10, 8, 4, 6, 10, 8, 4, 6. Three instances of this AVAM Net
are executed with IF neurons φ fixed to 250Hz and r ∈ {0.10, 0.15, 0.20}. The estimated
max(U1, U2, U3, U4, U5, U6, U7, U8) i.e. “AVAM Net Uout” (for a corresponding r) is
shown in the Fig. 7.2. We see that for a value of r = 0.10, the hierarchical AVAM Net (in
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Figure 7.2: “AVAM Net Uout” are the outputs from the Node O in Fig. 7.1 for varying radii
r. For r = 0.10, the Uout (blue) very closely matches the “True Max U” (red). φ = 250Hz.

Fig. 7.1) very closely approximates the “True Max U”; as well as, the estimated max U
are higher than the Average U .

7.2 Results with SNNs for DSU

Table 7.1 and 7.2 shows the results for experiments with the HDD dataset Layer 0 and 1
respectively - 36×64 sized frames and 16 frames temporal depth. Note that the settings in
section 4.2.3 were used to train the 3D-CNNs based ANNs. Row NSR-MP (and NSR-AP)
results are obtained with ReLU based non-spiking counterpart ANN with MaxPooling (and
AveragePooling). Results with SNNs where non-spiking MaxPooling is done (i.e. “True
Max U” based SNNs) and where AveragePooling is done (i.e. AveragePooling based SNNs)
are shown in rows TMS-x and APS-x respectively (where x is the test data presentation
time-steps i.e. 40 and 60). In the Table 7.1 and 7.2, it can be seen that experiments
with NSR-MP achieve better scores than NSR-AP, thus, MaxPooling is better than Aver-
agePooling in this context. Experiments with TMS-60 achieve a closer result to NSR-MP
(and overall a better mAP score in Table 7.1); it is evident that increasing the presentation
time-steps helps achieve better scores. Note that in Table 7.1, experiments with APS-x
fail to produce reasonable scores on the test data; however, increasing the presentation
time-steps might help. Given the successful Proof of Concept Demonstration (Fig. 7.2)
for 2 × 2 × 2 MaxPooling with the hierarchical AVAM Net in Fig. 7.1, entirely spiking
AVAM based SNNs (with a suitable choice of radius and max firing rate φ) can achieve
the NSR-MP based scores with a sufficient enough test data presentation time-steps. Al-
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though, as mentioned earlier (in the second paragraph of this chapter), this AVAM based
SNN for DSU couldn’t be executed on a GPU in reasonable time - owing to the modified
3D-CNNs based SNN’s high computational complexity due to the large number of connec-
tions in the AVAM spiking-MaxPooling layers. This is one evident limitation of AVAM
spiking-MaxPooling which needs to be addressed in a future work.

AP results: Layer 0 - Goal Oriented Action Layer mAP

Methods
Right
Turn

Itr.
Pass.

Merge
Left
Lane

Change

Right
Lane

Branch

Right
Lane

Change

Left
Turn

Crs
Pass.

Rail.
Pass.

Left
Lane

Branch

U-
Turn

NSR-MP 67.85 71.72 4.43 35.13 1.33 28.45 61.25 8.33 0.28 25.26 14.34 28.94
TMS-40 57.28 51.73 5.87 26.30 0.50 25.18 51.02 7.31 0.21 24.57 16.53 24.23
TMS-60 63.97 65.35 7.11 35.26 1.00 35.21 59.76 9.39 0.21 33.23 20.21 30.06
NSR-AP 63.10 68.62 4.73 27.77 0.80 19.39 60.14 6.79 0.30 9.86 13.92 25.04
APS-40 2.30 6.58 0.12 0.43 0.12 0.45 2.62 0.15 0.04 0.17 0.50 1.23
APS-60 18.02 37.90 1.77 6.50 0.15 6.65 29.74 1.07 0.07 3.96 0.57 9.67

Table 7.1: Average Precision (AP) results for HDD Layer 0 obtained from different SNNs.
Itr. Pass.: Intersection Passing; Crs. Pass.: Crosswalk Passing; Rail. Pass.: Rail-
road Passing; mAP: mean Average Precision. NSR-MP: Non-Spiking ReLU based
ANN with MaxPooling layers, NSR-AP: Non-Spiking ReLU based ANN with Average
Pooling layers, TMS-x: “True Max U” based SNNs with MaxPooling layers, APS-
x: AveragePooling based SNNs (obtained from ANN with AveragePooling layers). x in
TMS-x and APS-x denote the presentation time-steps of the test data; here x = 40, 60.

AP results: Layer 1 - Cause Layer mAP

Methods Congestion Sign
Traffic
Light

Crossing
Vehicle

Parked
Car

Pedestrian

NSR-MP 62.51 27.19 63.35 15.71 2.91 2.86 29.09
NSR-AP 64.07 23.82 52.51 11.49 4.21 3.73 26.64
TMS-40 33.54 23.87 44.04 6.17 2.59 1.58 18.63
TMS-60 51.60 30.41 54.37 8.14 4.35 2.28 25.19

Table 7.2: Average Precision (AP) results for HDD Layer 1 obtained from different
SNNs. mAP: mean Average Precision. NSR-MP: Non-Spiking ReLU based ANN with
MaxPooling layers, NSR-AP: Non-Spiking ReLU based ANN with Average Pooling lay-
ers, TMS-x: “True Max U” based SNNs with MaxPooling layers. x in TMS-x denote
the presentation time-steps of the test data; here x = 40, 60.
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Chapter 8

Conclusion and Future Work

This thesis presented a compilation of work necessary to develop an energy efficient SNN
for Driving Scene Understanding task. After setting the motivation in Chapter 1 and the
necessary background in Chapter 2, Chapter 4 introduced a 3D-CNNs based ANN for
DSU (contribution 1 in section 1.2), along with some insights in the necessary spatial and
temporal resolution for a new state-of-the-art results on the HDD dataset (contribution 2
in section 1.2). Contribution 1 reinforced the importance of 3D-CNNs over Conv+LSTM
based architectures for DSU. Contribution 2 empirically provided a set of initial values of
the input video’s spatial resolution and temporal depth parameters for DSU; this would be
helpful to other researchers to begin their experiments with. Note that it is not necessary
that our proposed values of the input video’s parameters would be successfully applied
right out of the box to other datasets and models, however, our extensive experiments
provide a strong foundation for the choice of these parameters which can be tuned later.
Contribution 3 provided a new metric “ASiST@x” which overcomes the limitation of the
widely used metrics e.g. Average Precision, Accuracy, etc. to measure not only when a
particular scene was recognized, but also if the scene recognition was continuous.

However, in accordance with the ANN-to-SNN conversion method, an SNN - entirely
deployable on a neuromorphic hardware couldn’t be developed due to the absence of spik-
ing versions of the MaxPooling layers in the 3D-CNNs based ANN. Therefore, Chapter 6
introduced two novel methods of spiking-MaxPooling in a first which are entirely deploy-
able on Loihi (contribution 4 in section 1.2). These two methods i.e. MJOP and AVAM are
linearly scalable with the size of MaxPooling window, and applicable to any Conv net (e.g.
2D-CNNs, 3D-CNNs). However, tuning the MJOP nets becomes a challenge when the
image dataset has color channels and the AVAM net’s output gets noisier with the increase
in MaxPooling size. Nonetheless, the SNNs incorporating these spiking-MaxPooling meth-
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ods achieved comparable results to their ANN counterpart on the image classification task
(contribution 5 in section 1.2). In a first, these SNNs with spiking-MaxPooling layers were
also deployed on Loihi - a neuromorphic hardware; so far none of the available MaxPooling
methods in SNNs were successful to do so. Bringing together the foundations from Chapter
4 and Chapter 6, Chapter 7 attempted to build an SNN with AVAM spiking-MaxPooling
- entirely deployable on a neuromorphic hardware (contribution 6 in section 1.2); however,
due to very high compile time of AVAM based SNNs, it couldn’t be evaluated.

The immediate future work would be to explore approaches for lowering down the large
number of extra connections in the AVAM spiking-MaxPooling layers; thereby lowering
down the compilation time. Apart from this, one can also look for other efficient methods
for spiking-MaxPooling. Another important research direction would be to look into low-
ering down the presentation time-steps of incoming test data for a faster inference time. In
section 4.1.2, we reused the C3D architecture’s hyper-parameters [111] for our experiments.
The kernel size in C3D network - d × 3 × 3 was varied for d ∈ {1, 3, 5, 7} where d is the
temporal depth. Tran et al. [111] found that a value of d = 3 performs the best (we use
the same) and d = 1 performs worst due to the lack of motion modelling. However, certain
driving scenarios e.g. U-turn can take significantly longer time to complete. Will a higher
value of d be helpful (do note that one needs to consider the frame sampling rate as well
while experimenting with d)? Similarly, while implementing 3D MaxPooling Tran et al.
[111] fixed the pooling temporal depth p to 1 for the first pooling layer, and 2 for the rest
of the pooling layers; and also found that not merging the temporal information too early
(i.e. p = 1 in the first pooling layer) helps to achieve better performance. Will p = 1 for
the next pooling layers too - in the context of Driving Scene Understanding help? Such an
exploration of the kernel’s temporal depth d and pooling temporal depth p is left for the
future work.
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Appendix A

Supplementary material of ISI Plots
for Spiking-MaxPooling

A.1 ISI DISTRIBUTION PLOTS

Herein, we plot the ISI distributions of the Conv layer neurons (random and 2048 in
number) of 36 test images of all the three datasets each with respect to the Architectures
1 and 2, to support our claims in the paper. The plots correspond to the Conv layers
prior to the MaxPooling layers only and are obtained from “True Max U” based SNNs. As
mentioned in the paper, for the optimal performance of MJOP Net, the maximally firing
neuron in each pooling window should have nearly same ISI for a consistent effect of the
scale value. If the ISIs of maximally firing neurons are very different, a single scale value
doesn’t generalize well (as the scale value is dependent on Ui).

Therefore, for the datasets where ISI distributions are light-tailed and mostly similar
across the test images, a suitable choice of scale value generalizes well (across the test im-
ages), thus desirable performance of MJOP based SNNs. Light-tailed distribution implies
that most of the neurons fire at lower ISIs and those ISIs are nearly same (as will be seen
in the case of MNIST and to a large extent in FMNIST dataset), thus a high probability of
(nearly) same ISI of maximally firing neurons in MaxPooling windows. Datasets for which
the distributions are fat-tailed and are varied across the test images (as will be seen in case
of CIFAR10 dataset), a chosen scale value doesn’t generalize well; thus making it difficult
to tune the scale parameter. Moreover, in case of a deeper architecture, a poor approx-
imation of an earlier MaxPooling layer due to a suboptimal scale value further degrades
the approximation of later MaxPooling layers. Following are the ISI distribution plots:
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A.1.1 Plots for Architecture 1 - MNIST - Conv 1: Fig. A.1

Figure A.1: Arch. 1, MNIST, Conv 1. ISI distributions are light-tailed and similar.
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A.1.2 Plots for Architecture 1 - FMNIST - Conv 1: Fig. A.2

Figure A.2: Arch. 1, FMNIST, Conv 1. Most ISI distributions are light-tailed and mostly
similar.
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A.1.3 Plots for Architecture 1 - CIFAR10 - Conv 1: Fig. A.3

Figure A.3: Arch. 1, CIFAR10, Conv 1. ISI distributions are dissimilar and mostly fat-
tailed.
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A.1.4 Plots for Architecture 2 - MNIST - Conv 1: Fig. A.4

Figure A.4: Arch. 2, MNIST, Conv 1. ISI distributions are light-tailed and similar.
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A.1.5 Plots for Architecture 2 - MNIST - Conv 2: Fig. A.5

Figure A.5: Arch. 2, MNIST, Conv 2. ISI distributions are not very similar, and not very
light-tailed.
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A.1.6 Plots for Architecture 2 - FMNIST - Conv 1: Fig. A.6

Figure A.6: Arch. 2, FMNIST, Conv 1. ISI distributions are almost light-tailed and mostly
similar.
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A.1.7 Plots for Architecture 2 - FMNIST - Conv 2: Fig. A.7

Figure A.7: Arch. 2, FMNIST, Conv 2. ISI distributions are light-tailed and similar.
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A.1.8 Plots for Architecture 2 - CIFAR10 - Conv 1: Fig. A.8

Figure A.8: Arch. 2, CIFAR10, Conv 1. ISI distributions dissimilar and fat-tailed.
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A.1.9 Plots for Architecture 2 - CIFAR10 - Conv 2: Fig. A.9

Figure A.9: Arch. 2, CIFAR10, Conv 2. ISI distributions are light-tailed and similar.
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