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Abstract

This work considers the load-balancing problem in dense racks running microsecond-
scale services. In such a system, balancing the load among hundreds to thousands of cores
requires making millions of scheduling decisions per second. Achieving this throughput
while providing microsecond-scale tail latency and high availability is extremely challeng-
ing. To address this challenge, we design a fully distributed load-balancing framework.
In this framework, servers cooperatively balance the load in the system. We model the
interactions among servers as a cooperative stochastic game. In this game, servers make
scheduling decisions upon receiving and completing tasks. When a server receives a task,
it decides whether to keep the task or migrate the task to another server. Moreover, when
a server completes a task, it decides if it needs to steal a task from another server. We
propose a distributed multi-agent learning algorithm to find the game’s parametric Nash
equilibrium. Our proposed algorithm enables servers to make scheduling decisions in tens
of nanoseconds based on (possibly outdated) estimates of the load on other servers. We
implement and deploy our distributed load-balancing algorithm on a rack-scale computer
with 264 physical cores. We compare our load balancing algorithm with state-of-the-art
load balancing disciplines. Our proposed solution provides up to 20% more throughput at
low tail latency than widely used load balancing policies.
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Chapter 1

Introduction

Today’s datacenter applications such as web search, machine translation, and e-commerce
fan out requests to hundreds of software services. Hence, end-to-end response times are
determined by the slowest response from each of these services [19]. These applications
have strict service-level objectives (SLO) [8], often defined in terms of end-to-end tail
latency [85]. To meet stringent user-facing SLOs, datacenters services must provide high
throughput at tail latencies as low as a few hundred microseconds [8].

Optimizing latency of microsecond-scale services demands efficient queue management
and task scheduling techniques. To this end, there have been considerable works on data
plane operating systems for multi-core machines [10, 94, 96, 87, 51, 33]. These operating
systems provide low overhead services to microsecond-scale latency-sensitive applications.
For instance, Shinjuku [94] exploits hardware virtualization techniques to implement low
overhead processor sharing, and ZygOS implements low overhead work-stealing to improve
distributed First-Come-First-Serve. Unfortunately, these methods do not scale beyond a
single multi-core server.

Modern datacenter racks consists of up to thousands of processing units. Scheduling
microsecond-scale tasks in such a system is challenging for several reasons. First, the
scheduler must schedule millions of tasks per second with low scheduling latency. Second,
scheduling decisions should not lead to load imbalance throughout the rack in that load
imbalance results in long-tail latencies [17, 12, 131]. Third, the scheduler should consider
heterogeneity and adapt to variations both in tasks and rack resources. Existing solutions
suffer from high scheduling latency and low scheduling throughput [88, 103, 13, 23, 40, 92],
rely on randomized scheduling policies which are suboptimal in heterogeneous systems
[36, 80, 135], or are oblivious to fluctuations in computational resources [132].
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To the best of our knowledge, RackSched [135] is the latest rack-scale scheduler designed
for microsecond-scale services. RackSched implements a centralized scheduler inside the
Top of Rack (ToR) switch. This poses additional functionality to the switch and possibly
degrades the networking throughput [76]. Moreover, since switch has limited computa-
tional resources, RackSched implements power-of-2-choices, which could be inefficient in
heterogenous systems [132, 106].

This thesis presents Malcolm, a dynamic distributed load balancer designed for microsecond-
scale workloads. Malcolm is a heterogeneity-aware distributed load balancer that leverages
multi-agent systems to make optimal scheduling decisions for millions of tasks per second
with tens of nanoseconds overhead.

Malcolm takes advantage of a stochastic game in which servers are the players, their
actions are the scheduling decisions they make, and they are rewarded based on the quality
of these decisions. In this game, servers collaboratively minimize the temporal load imbal-
ance throughout the rack with minimum communication overhead. Servers are allowed to
migrate incoming tasks to other servers in the rack and steal tasks from each other. To
make optimal migration and stealing decisions, servers periodically broadcast their load to
one another. Hence, servers make decisions based on possibly outdated load information.
Moreover, individual payoff functions are designed to capture the game’s global objective:
load balancing the rack with minimum networking overhead.

Our key insights are: (a) load balancing at microsecond-scale can be performed in a fully
decentralized manner with infrequent communications using software-based solution; and
(b) handcrafted machine learning can be effectively exploited to find optimal distributed
load balancing policies for microsecond-scale services.

In summary, we make the following contributions.

� Distributed load-balancing architecture §3. We provide the architecture of our the
distributed load-balancing framework. This architecture enables independent servers to
balance the load between themselves.

� Distributed load-balancing game §4. We model the interactions between indepen-
dent servers as a Markov potential game and analyze Markov Nash equilibrium strategies
in the game.

� Distributed policy optimization §5–§6. We design and implement a fully decen-
tralized multi agent learning algorithm to find optimal solution of the game.

� Implementation §6. We implement a prototype of our load balancing framework. We
also perform a set of implementation level optimizations to enable multi-agent learning
at microsecond-scale deployment.
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� Performance, scalability, and adaptivity §7. We evaluate the performance, scala-
bility, and adaptivity of Malcolm using a variety of experiments on a rack-scale computer.
In our experiments, Malcolm can provide up to 20 % more throughput at low tail latency
compared to state-of-the-art load-balancing policies.
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Chapter 2

Background and motivation

To process user requests, popular datacenter applications such as web search, e-commerce,
and social networks rely on responses from thousands of services. In such applications,
end-to-end response times are dictated by the slowest response [19]. To guarantee fast
responses, datacenter services are governed by strict service-level objectives (SLOs). To
meet these SLOs, it is imperative to provide high throughput at microsecond-scale latency
[8]. This is particularly important for tasks with service times in the range of several to tens
of microseconds. For such tasks, datacenters systems are expected to support tail-latency
SLOs that are a small multiple of task service times.

To optimize the latency of microsecond-scale workloads, efficient queue management
and task scheduling have become paramount [8]. There has been significant work on
microsecond-scale schedulers for multi-core servers [10, 94, 96, 87, 17, 51, 33]. For example,
ZygOS uses work stealing to reduce tail latency [94], and Shinjuku leverages hardware sup-
port for virtualization to implement microsecond-scale preemptive scheduling [51]. While
these solutions achieve microsecond-scale tail latencies for a single machine, they cannot
schedule tasks across multiple machines.

2.1 Rack-scale architecture

A typical high-density datacenter rack can comprise thousands of interconnected, hetero-
geneous computing units. In a traditional rack, dense blade servers are connected together
via one or two top-of-rack (ToR) switches. In the emerging rack-scale architectures, a
disaggregated rack hosts a dense pool of compute, memory, and storage blades, all inter-
connected by a high-bandwidth network fabric. In such architectures, servers are replaced
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by racks as the basic building blocks of datacenters. Examples of rack-scale architecture
include proposals from industry (Intel [1], Google [4], Microsoft [2], and HP [55]) and
academia [7, 95, 86, 16, 53, 61, 105].

The increasing rack density poses new challenges for designing rack-scale schedulers.
In a rack with 1000 cores and average service time of twenty microseconds, the scheduler
must handle, on average, 50 million tasks per second to fully utilize the rack. Hence, the
scheduler needs to make one scheduling decision every twenty nanoseconds. In addition to
providing high scheduling throughput and low scheduling latency, a rack-scale scheduler
has to guarantee high scheduling quality (i.e., supporting microsecond-scale tail latencies
for each task). If tasks are simply scheduled to random servers, there will be temporal load
imbalance between servers, which in turn causes long tail latencies for the entire system
[135].

2.2 Centralized scheduling

Centralized first-come-first-serve (cFCFS) scheduling policy minimizes tail latency of work-
loads with light-tail distribution[107]. In a multi-core machine, a single core is capable
of running a centralized scheduler. However, the requirements for centralized rack-scale
scheduler exceed the capabilities of a general-purpose processor. To address this challenge,
RackSched [135] proposes a two-layer hierarchical scheduler. This two-layer scheduler con-
sists of a high-level inter-server scheduler and low-level intra-server schedulers. Each intra-
server schedules requests on cores in a single server. The inter-server scheduler balances
the load between servers. To accomplish centralized rack-scale scheduling, RackSched im-
plements the inter-server scheduler inside the ToR programmable switch. The key benefit
of this approach is that the ToR switch is on the path of all tasks sent to the rack. Hence,
the ToR switch can schedule tasks at line rate.

RackSched design suffers from three main limitations. First, RackSched requires pro-
grammable switch, which limits its deployment in racks without programmable switches.
Second, RackSched imposes additional functionality to ToR switch. Offloading computa-
tion to the switch data plane could ultimately degrade network throughput [76]. Third,
due to restricted computational and memory resources available in a programmable switch,
RackSched cannot implement cFCFS. Consequently, authors in [135] implement power-of-
d-choices to approximate cFCFS. In power-of-d-choices, the inter-server scheduler queries d
random servers for each arriving task. The scheduler then sends the task to the server with
the lowest load among the d queried servers. The default d in RackSched implementation
is 2.
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2.2.1 Power-of-d-choices in heterogeneous systems

Power-of-d choices is delay optimal in heavy traffic [70]. However, in general, power-of-d is
unstable in heterogeneous systems [132, 106]. Moreover, being delay optimal in the heavy
traffic regime 1 is a coarse metric. Empirically, load balancing policies that are heavy-traffic
delay optimal can perform very poorly [134]. To demonstrate this, we use simulations on
representative workloads to evaluate power-of-d-choices in a heterogeneous system. For
the simulations, we use two service time distributions: (a) exponential distribution with
mean 20 µs (Exp(20)), which represents low-dispersion workloads, and (b) bimodal distri-
bution with 95% of service times follow Exp(20), and the other 5% follow Exp(400), which
represents high-dispersion workloads. There are two fast servers and fourteen slow servers.
Each fast server has 16 workers, and each slow server has two workers. The intra-server
scheduler for all servers is cFCFS.

Figure 2.1 compares ideal cFCFS against power-of-d-choices for inter-server scheduling.
The figure shows that power-of-2-choices fails to stabilize the system at loads as low 65%

1For a formal definition, look at appendix B.
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for both workloads. The maximum sustainable load decreases as the number of queried
servers decreases. This is mainly because power-of-d-choices cannot balance the load among
heterogeneous servers as the scheduler probes fast servers at the same rate as slow servers.
This can be seen in Figure 2.2, which depicts total number of tasks (waiting and being
served) in fast and slow servers over time at 85% load for Exp(20) workload under power-
of-4-choices. The total number of tasks in the fast servers is close to 15, while the load on
slow servers fluctuates between 40 to 60 tasks.

2.2.2 Join-Shortest-Queue (JSQ)

JSQ is a bufferless scheduler in which tasks are immediately sent to the server with the
shortest queue length. Although this approach eliminates the queue inside the scheduler, it
has several drawbacks. First, queue length is not a competent indicator of load on servers
[134, 88], specially when tasks are heterogeneous. Second, upon every arrival, the scheduler
needs to probe the load on all servers. Therefore, compared to cFCFS, JSQ introduces
additional network overhead. This can be mitigated by probing the load on servers less
frequently. However, when load information are delayed, always sending to the server with
shortest queue length is not optimal [122, 132].

R2P2 and Hovercraft [58, 57] use Join-Bounded-Shortest-Queue (JBSQ) to load balance
microsecond-scale remote procedure calls. JBSQ is a variant of JSQ in which servers have
bounded queues. In JBSQ, among the queues with empty slots, requests are routed to the
one with the shortest queue length. If there is no such a queue, R2P2 delays the assignment
of the requests and stores them inside a centralized queue. This centralized queue can be
implemented in either software or a programmable switch.

Compared to JSQ, JBSQ offers lower tail latency for two reasons. First, queue length
in JSQ is not a fine indicator of the waiting time. Delayed assignment of tasks mitigates
this inaccuracy [88]. However, bounding the queue length only alleviates the shortcomings
of JSQ. Moreover, finding the optimal value for the maximum queue size is an unanswered
question.

2.2.3 Centralized scheduling and network delay

Even if cFCFS could be implemented in a programmable switch, it is not clear whether
cFCFS is optimal in terms of tail latency when network delays are a non-negligible fraction
of service times. To realize cFCFS, the centralized scheduler must queue all incoming tasks
and has to be notified every time a server finishes a task. This takes a round-trip time

7
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Figure 2.3: cFCFS with network delay.

(RTT) of at least few microseconds2, during which the server remains idle. This would be
a noticeable overhead for workloads with average service times in the range of several to a
few tens of microseconds. Figure 2.3 illustrates achievable tail latencies by cFCFS under
different RTTs for the two representative workloads. As network latency increases, the
maximum sustainable utilization of the system dramatically decreases.

2.3 Distributed scheduling

One natural solution for solving the scalability limits of centralized scheduling is using
multiple distributed schedulers. Distributed scheduling (a) offers appealing scalability
features (b) and provides high-availability.

2.3.1 Client-based scheduling

One alternative to centralized scheduling is distributed, client-based scheduling. In this
approach, clients query servers and make scheduling decisions for each of their tasks. This
approach has three major drawbacks. First, for every system reconfiguration, all clients
have to be notified. This has high system overhead when there are a large number of
clients. Second, to minimize the overheads of probing, each client can only probe a fraction
of servers. As a result, clients may have to schedule tasks based on out-of-date load
information, leading to low scheduling quality. Finally, client-based load balancing can
lead to an undesirable race condition in which clients compete for service. When clients
selfishly schedule their tasks to minimize their own tail latencies, the system becomes
unstable at loads as low as 50% [34, 35].

2State-of-the-art datacenter networking stacks offer host-to-host RTT of about 4 µs [52].
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2.3.2 Distributed Dispatchers

Another alternative is distributed, server-based scheduling. In this approach, multiple
dedicated servers schedule tasks in the cluster. This approach addresses many drawbacks
of the client-based solution.

State-of-the-art schedulers designed for second and millisecond scale tasks, like Sparrow
[88], Omega [103], and Apollo [13] follow the same approach and distribute scheduling
among multiple servers. However, these distributed schedulers do not meet the latency
and throughput requirements of microsecond scale workloads in rack-scale computers.

For instance, to make up for the poor performance of load metric in power-of-d, that is,
queue length, Sparrow [88] schedules requests using late binding. Late binding is a variant
of power-of-d in which the scheduler delays scheduling until one out of d selected servers
becomes available to run the task. Although this approach works well with millisecond scale
workloads, as we discussed earlier, delayed scheduling harms the latency of microsecond
scale services.

Apollo exploits a distributed estimation-based scheduler for scheduling heterogeneous
workloads ranging from millisecond to a few hundred seconds [13]. Apollo schedulers
schedule each task on a server which minimizes the estimated completion time of that
task. To estimate task completion times, schedulers need to have an up-to-date view of the
system, that is, resource availability and load on servers. Considering cluster throughput
for microsecond scale workloads, this comes with a considerable system overhead.

One simple solution for building a distributed scheduler is replicating a static centralized
load balancing policy. For example, both JSQ and power-of-d-choices can be deployed in
multiple dispatchers. Replicating JSQ and power-of-d-choices, however, suffers from a
major drawback: herd behavior [132, 81]. This means that multiple schedulers decide that
a single server is the optimal destination of their tasks which overloads that server. This
will lead to a poor delay performance [109].

To deal with this issue, authors in [109, 132] propose for dispatchers to keep local
estimates of queue lengths for each server. However, estimating the queue length of each
server when tasks are heterogeneous and system configurations are changing is challenging.

2.3.3 Malcolm

To fill the gap between traditional task schedulers and modern microsecond-scale tasks, in
this thesis, we propose an adaptive, distributed scheduling framework for rack-scale com-
puters. In our proposed framework, all servers in the rack collectively balance the load
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between themselves. We model the interactions among servers as a cooperative stochastic
game, and use robust, game-theoretic analysis to provide qualitative performance guar-
antees. Furthermore, to find the game’s parametric Nash equilibrium, we design and
implement a distributed multi-agent learning algorithm. In our proposed solution, servers
make scheduling decisions in tens of nanoseconds based on (possibly out-of-date) estimates
of the load on other servers. Our implementation allows decentralized coordination among
servers through infrequent network communications.
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Chapter 3

Malcolm Architecture

In this chapter, we present Malcolm architecture. Malcolm is a distributed, hierarchical
rack-scale scheduler. Malcolm consists of distributed schedulers for inter-server load bal-
ancing and intra-server centralized schedulers. Centralized intra-server schedulers schedule
tasks on worker threads. Distributed inter-server schedulers cooperatively balance the load
between servers. Figure 3.1 illustrates the key components of Malcolm architecture.

3.1 Intra-server Scheduling

Each server runs multiple worker threads to execute tasks. Malcolm uses a centralized
queue to buffer incoming tasks. Using a centralized queue outperforms per-worker queues
for microsecond-scale workloads [51]. To schedule tasks between workers, there are two
main policies: (a) first-come-first-served (FCFS) and (b) processor sharing (PS). Under
FCFS, a worker finishes a task before starting a new one. Under PS, workers context
switch between tasks to fairly divide processing capacity between all tasks.

Tail latency and service-time distribution. FCFS minimizes tail latency for tasks
with light-tailed service-time distributions [107]. And PS minimize tail latency for heavy-
tailed workloads [123]. Unfortunately, there is no static, work-conserving policy that min-
imizes tail latency of both workloads. Policies that perform well under light-tailed work-
loads perform poorly under heavy-tailed workloads, and vice versa [123]. Among existing
solutions, ZygOS [94] approximates cFCFS, while Shinjuku [51] implements PS. Malcolm
is orthogonal to these works. The Malcolm design allows both solutions to be deployed.
However, the default scheduler in Malcolm is FCFS.

11
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Figure 3.1: Overview of Malcolm architecture.

FCFS and high-dispersion workloads. Optimality of FCFS for light-tailed service-
time distributions holds even if distributions have high dispersion. This is illustrated in
Figure 3.2 for two representative distributions: (a) HyperExp-1 is a hyperexponential
distribution with 50% of service times following Exp(10) and the other 50% following
Exp(1000) and (b) HyperExp-2 is a hyperexponential distribution with 99.9% of service
times following Exp(25) and the remaining 0.1% following Exp(25025).

For HyperExp-1, FCFS achieves lower tail latency compared to PS for both 99th-
percentile (3.2a) and 99.99th-percentile (3.2b) . For HyperExp-2, PS achieves lower 99th-
percentile latencies (3.2c) compared to FCFS. However, in HyperExp-2, only 0.1 percent of
the tasks have long service times. Therefore, the 99th-percentile latency does not capture
the effect of scheduling these tasks. Intuitively, PS hurts the latency of longer-running
tasks. For HyperExp-2, FCFS outperforms PS (3.2d) in terms of 99.99th-percentile latency.
We also note that in these simulations, the context-switching overhead is assumed to be
zero, which favors PS policy.

3.2 Inter-server Load Balancing

Servers in the rack are interconnected by a high-bandwidth, low-latency network fabric.
Servers can be heterogeneous with different computing capacities. Servers exploit userspace

12
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Figure 3.2: Tail latency for high-dispersion workloads.

networking stacks to bypass kernel, reducing communication overhead. Clients send their
tasks to servers. Different servers can receive tasks at different rates. Servers collectively
balance the load in the rack at per-task granularity.

Load balancing. Upon receiving a new task, the load balancer decides whether to
accept the task or migrate it to another server §4. This decision is made based on servers’
(possibly out-of-date) loads. The load balancer can migrate incoming tasks to less loaded
servers when the local load is higher than the load on other servers. Accepted tasks will
be scheduled between worker threads by the intra-server scheduler. After processing each
task by a worker thread, the load balancer can decide if it needs to steal tasks from other
servers. Work-stealing decisions on task completions complement the migration decisions
on task arrivals.

Policy optimization. The load balancer uses an adaptive policy to make migration
and work-stealing decisions. This policy is periodically updated by the policy optimizer
based on the past decisions and current load differences (§5). To make these updates,
policy optimizers communicate by sending heartbeat messages to one another. This allows
policy optimizers to reach consensus on optimal rack-scale load balancing policy. The goal
of the policy optimizer is to minimize load imbalance among servers with the minimum
number of required migrations and work stealing requests.
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Load estimation. The load imbalance between two servers is captured by the absolute
difference between their loads. When both servers and tasks are homogenous, queue length
is an accurate indicator of load on servers. The queue length, however, is not a useful metric
in heterogeneous systems. An equal number of waiting tasks on two servers, A and B, does
not necessarily mean that the loads on two servers are equal. If A is twice as fast as B,
or some tasks are shorter than others, the queue length is not a fine indicator of load.
To account for heterogeneity, a more reliable metric is the queue length weighted by the
inverse of service rate [104, 132]. This metric closely approximates the expected wait time
of the last task in the queue [104]. To estimate service rate, each worker thread maintains a
moving average of the inverse of task service times. Average service rate is then estimated
by the sum of these moving averages. When tasks are heterogeneous, each worker thread
maintains a moving average of inverse service times for each task type.

Instantaneous vs. average load. Temporal load imbalance among servers results
in higher tail latency for microsecond-scale workloads. Intuitively, if we can minimize the
temporal imbalance, in expectation, the oldest tasks at any given time will finish at almost
the same time. Therefore, the main objective of the inter-server scheduler is to balance
instantaneous loads over time. This is different from balancing long-term average loads.
The former leads to the latter but not vice versa. Two servers could have equal long-term
average loads, while their instantaneous loads are different at any given time. While prior
work has focused on balancing long-term average loads [113, 43, 42, 108, 93], Malcolm
focuses on balancing instantaneous loads to minimize tail latency for microsecond-scale
workloads.
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Chapter 4

The Distributed Load-balancing
Game

In this section, we present the distributed load-balancing game as a framework to balance
the load on servers in a rack-scale computer.

Tasks arrive at different servers at different rates. Upon receiving a task, a server
decides whether to keep the task or migrate it to another server. Different servers can
have different computational capacities. Upon completing a task, a server decides if it
needs to steal a task from another server. The state of the game evolves as scheduling
decisions collectively shape the load on different servers. Servers calculate their payoffs
considering penalties for system load imbalance and task migrations. The goal for servers
is to independently find their optimal scheduling policy that maximizes their long-term
payoff. We present the game as a stochastic game.

4.1 Background

A game represented in normal form provides a description of the payoff of every agent
for every state of the game. In normal form games, the state only depends on players’
combined actions. A repeated game is a normal form game that is played several times by
the same set of agents. The game which is played repeatedly is usually called the stage
game. When the game is repeated infinitely, the agents’ objectives are either maximizing
average or discounted payoff.
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Stochastic games (also known as Markov games) generalize both Markov decision pro-
cesses (MDPs) and repeated games. An MDP is a stochastic game that a single agent
plays, and a repeated game is a stochastic game with a single game state. Intuitively, a
stochastic game is a set of normal form games. Players play a game from this set. At any
round, the played game depends on the game which is played at the previous round and
on all agents’ actions, which is defined as the state of the game. The game played at a
given round is called a stage game.

The game starts at a random state and follows these steps: During round r, players
simultaneously take action. At the end of the round, each player receives a payoff that
depends on all players’ actions and the game state. Finally, the state transitions to the
next state.

4.2 Game Formulation

We model the distributed load-balancing as a stochastic game. The game consists of
N heterogeneous servers, represented by N agents. Time is divided into rounds1. For
microsecond-scale workloads, the duration of each round could be tens to hundreds of
nanoseconds. At each round, server i receives a new task with probability pi and completes
a task with probability qi. This, in essence, assumes that inter-arrival times and task service
times have geometric distribution. We relax these assumptions later when we present our
multi-agent learning algorithm.

Upon receiving a new task, a server decides whether to accept the task or migrate it
to another server. This decision could be made based on (possibly outdated) estimates
of the load on servers. An accepted task is put in the server’s first-come-first-serve task
queue. Once a server completes a task, it could decide if it needs to steal a task from
another server. Work-stealing decisions on task completions complement the migration
decisions on task arrivals. When the load is not balanced, servers migrate incoming tasks
to less-loaded servers. Migration decisions could be suboptimal because the information
is propagated with a non-zero delay. Moreover, load estimates on servers could become
inaccurate if the system goes through unexpected changes. Hence, if migration decisions
are sub-optimal, then the less-loaded server can start stealing tasks from other servers.

1For the ease of explanation, we present the game as a discrete-time stochastic game. Our analysis
extends easily to continuous-time setting.
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4.2.1 Load Metric

A system is load balanced if at every round, all servers have roughly the same load. In
homogeneous systems, the load on a server is captured by the length of its queue. In such
systems, assigning an incoming task to the server with the shortest queue balances the load
among servers, an approach widely known as join the shortest queue (JSQ). However, queue
length is not an accurate indicator of load on servers in the presence of heterogeniety either
in tasks or computational resources. Consider a system with two servers, A and B, where
A is much faster than B. Suppose that A has one task more than B. Sending a newly
arrived task to B equalizes the queue lengths, but it will likely lead to an imbalanced
system in the future. To account for heterogeneity, a better metric is the length of the
queue weighted by the inverse of the average service rate [104, 132]. Average service rates
can be computed dynamically to reflect fluctuations in tasks execution times and servers’
computational capabilities. With this metric, incoming tasks are assigned to servers with
the shortest expected completion time, a policy that is known as shortest expected delay
(SED) routing [104].

4.2.2 States and Actions

The state of each server represents its load. The load on server i at round r is estimated
by xi,r = Li,r/µi,r, where Li,r and µi,r are the queue length and service rate of server i
at round r, respectively. The load on a server increases if it accepts new incoming tasks,
or if it receives migrated tasks from others. Similarly, the load on a server decreases if
other servers steal tasks from it, or if it finishes a task. The state of the game at round
r is defined to be xr = (x1,r, . . . , xN,r). The game state evolves over time as agents make
scheduling decisions.

We denote the set of scheduling actions taken by agent i at round r by ai,r. At round
r, the set is empty if server i neither receives a new task nor completes one. It has one
element if i either receives a new task or completes one. And it has two elements if i
both receives a task and completes one. For example, suppose that server 1 receives a new
task at round 10 and completes a running task at the same round. If server 1 accepts the
incoming task and steals another one from server 2, then a1,10 = {accept, steal from 2}. We
use ar = (a1,r, . . . , aN,r) to aggregate all actions taken by all servers at round r.
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4.2.3 Strategies

A strategy provides a complete description of how an agent plays the game. Let hr =
(x0, a0, x1, a1, . . . , xr) denote the history of the game at round r. For every possible history,
a deterministic strategy prescribes a single action. To allow randomization, a behavioral
strategy specifies a probability distribution over actions for any given history. In the dis-
tributed load-balancing game, a behavioral strategy returns two probability distributions,
one over migration actions and one over work-stealing actions. The domain of deterministic
and behavioral strategies is exponentially large as there are exponentially many different
histories. To narrow the domain, we focus on a specific class of behavioral strategies called
stationary strategies.

A stationary strategy depends only on the final state of each history. This enables
servers to take scheduling actions based on the current system load and not the history
of states and actions. For example, on the arrival of a new task, an overloaded server
could randomly pick two other servers and migrate the new task to the one with the lowest
load. Similarly, a server could start stealing tasks once its load falls below a (dynamic)
threshold. As can be seen in these examples, stationary strategies form a rich class of
scheduling policies, which includes well-known policies such as power-of-d-choices, JIQ,
and JBT.

4.2.4 Payoffs

The payoff function of agent i at round r is defined as ui(xr, ar) = −Ii(xr)−Ci(ar). With
this game, we want servers to have almost the same share of the load at any time. We
want to achieve this objective with the minimum number of migrations. Therefore, payoff
function captures two costs: the cost of load imbalance, I, and the cost of task migrations,
C. For C, we use a linear function to penalize each migration with a constant average cost.
The load-imbalance function, I, is motivated by the degree-of-queue-imbalance metric
[134]. We define the load-imbalance cost function as:

Ii(xr) =
1

N − 1

∑
j,k

|xj,r − xk,r|.

When all servers have the exact same share of the load, the load imbalance is zero. The
load-imbalance cost function captures the main goal of servers, which is to balance the
load in the system at every round. The inclusion of migration cost in the payoff function
ensures that this goal is achieved with the minimum number of migrations. It is important
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to note here that balancing instantaneous loads at every round is different from balancing
long-term average loads. The former leads to the latter but not the other way around.

Let πi denote the strategy of agent i, and let π−i = (π1, . . . , πi−1, πi+1, . . . , πN) represent
the strategy of all agents other than i 2. The value function represents the long-term value
of a state x for agent i under strategy π = (πi, π−i), and it is defined as:

V π
i (x) = E

[
∞∑
r=0

δrui(xr, ar) | ar ∼ π, x0 = x

]
.

Where V π
i (x) is the value of agent i under strategy π starting at state x, and δ is the

discount factor. This function captures the expected payoff in state x plus the expected
discounted sum of future payoffs. Payoffs in the future are discounted because, all being
equal, agents prefer performance sooner rather than later.

4.3 Equilibrium

Nash Equilibrium. Agents optimize their scheduling strategies to maximize their ex-
pected long-term payoff. Agents would play their best responses if they knew exactly how
other agents will play the game. Formally, agent i’s best response to the strategy of others,
π−i, is a strategy π∗i that satisfies the following equation for all states x.

π∗i = arg max
πi

V
(πi,π−i)
i (x).

Agents do not generally know what strategies the other agents will adopt. Therefore, to
analyze the outcome of the game, the notion of best response cannot be used by itself.
Instead, it can be leveraged to define a stronger notion called Nash equilibrium. A Nash
equilibrium of a stochastic game is a strategy profile π∗ that satisfies the following equation
for all agents i and states x.

π∗i = arg max
πi

V
(πi,π

∗
−i)

i (x).

Intuitively, a Nash equilibrium is a strategy profile in which no agent benefits from unilat-
erally changing their strategy, even if they knew the strategies of others.

2Throughout this thesis, we use subscript −i to refer to all agents other than agent i.
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4.3.1 Equilibrium Analysis

In general, the problem of finding a Nash equilibrium is computationally expensive. The-
oretically, the complexity of computing a sample Nash equilibrium of a general-sum finite
game with two or more agents is known to be PPAD-complete [18]. In practice, it is a
common belief that in the worst case, computing a sample Nash equilibrium takes time
that is exponential in the size of the game. Fortunately, a Nash equilibrium could be com-
puted in polynomial time for the distributed load-balancing game. This is because, as we
show in the rest of this section, the distributed load-balancing game is a Markov potential
game (MPG). And for an MPG, a Nash equilibrium can be obtained in polynomial time
by solving a corresponding MDP [69].

Definition 1. A stochastic game is said to be an MPG if there is a potential function, Φ,
which satisfies the following condition for all agents i, states x, policies πi, π

′
i, and π−i.

V i
x(πi, π−i)− V i

x(π′i, π−i) = Φx(πi, π−i)− Φx(π
′
i, π−i).

Informally, in an MPG, the incentives of all agents to change their strategies can be
expressed in a single global function, called the potential function. It is easy to see that
the following potential function satisfies the condition in the definition of MPG games for
the distributed load-balancing game

φ(x, a) = −Ii(x)−
∑
i

Ci(a).

Φx(π) = E

[
∞∑
r=0

δrφ(xr, ar) | ar ∼ π, x0 = x

]
.

(4.1)

Claim 1. The distributed load balancing game is a Markov Potential game with the poten-
tial function Φ(·) defined in Equation (4.1).

Proof. See appendix (§A.1).

Using this potential function, the problem of finding a Nash equilibrium is reducible to
the following optimal control problem for all states x [69].

maximize
π

Φx(π).

Although this optimal control problem can be solved in polynomial time, the order of
the polynomial might be too large for the theoretically efficient algorithms to be practical
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[89, 64]. To allow practical solutions, we assume that agents’ strategies lie in a parametric
set. Given a parameter vector w, a parametric strategy πw(x) maps states x to distributions
over actions. This assumption simplifies derivations, allowing practical use of function
approximation for finding near-optimal policies.

With parametric functions, the original optimal control problem is replaced with the
following parametric problem.

maximize
w

Φx(πw). (4.2)

If parametric strategies are expressive enough, we can expect to achieve arbitrarily close
performance to that of the optimal non-parametric solution. Given some mild assump-
tions, which are satisfied by the distributed load-balancing game 3, the parametric optimal
control problem (4.2) is guaranteed to have a solution [69]. This solution constitutes a
parametric Nash Equilibrium of the distributed load-balancing game. To find the optimal
parametric strategies, in the next section, we present a novel distributed multi-agent learn-
ing algorithm. Our proposed distributed algorithm solves the centralized control problem
(4.2) in a distributed manner and can be implemented and deployed in practice.

3For proofs, see appendix (§A.1).
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Chapter 5

Algorithm

This chapter presents the distributed algorithm we propose and deploy to solve the dis-
tributed load balancing game. The game can be solved using optimal control, centralized
or decentralized optimization, and multi-agent reinforcement learning (MARL). We solve
the distributed load balancing game using MARL because it allows the load balancer to
adapt to the changes in the rack and requires no prior information about the underlying
system. The proposed algorithm is online, fully distributed, and simple to deploy.

5.1 Single-Agent Reinforcement Learning

An RL agent learns through interacting with an environment where at every round, r,
the agent observes a state, xr, takes action, ar, receives a payoff, ur, and state transitions
to xr+1. State transitions and payoff function are assumed to have the Markov property,
that is, xr+1 and ur only depend on current state and action, xr and ar. Agent actions
are sampled from her policy, π(x, a), which is a mapping from each state-action pair to
the probability of taking that action in that state. Generally, the RL agent has no prior
knowledge of the state transition and payoff functions and learns them through trials and
errors. The goal of agent is learning a policy, π(·), that maximizes the expected discounted
sum of payoffs, J(π) = Eπ[R] where R =

∑
r γ

ru(xr, ar) is the return, and γ is the discount
factor.
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5.1.1 Q-Learning

Q-learning [119] is one of the most popular methods in reinforcement learning. Q-learning
takes advantage of the action-value function for policy π which is defined as the expected
return starting at a state, taking an action, and following policy π afterwards: Qπ(x, a) =
Eπ[R|x0 = x, a0 = a]. Q-learning agent directly learns the optimal action-value function,
Q∗(x, a) = maxπQ

π(x, a). The optimal action-value function can be recursively written as
Q∗(xr, ar) = E[u(xr, ar) + maxaQ(xr+1, a)]. Hence, for every (state, action, payoff, next
state) the agent observes, (xr, ar, ur, xr+1), she can update her prediction of the optimal
value function using temporal-difference (TD) learning [110]:

Q(xr, ar)← Q(xr, ar) + αδr

δr = ur + max
a
Q(xr+1, a)−Q(xr, ar)

(5.1)

where α is the learning rate, and δr is called the TD error. The standard Q-learning
algorithm uses a look-up table to store values, making it impractical for continuous or large
action-state spaces. Therefore, the action-value function can be estimated using function
approximation techniques such as neural networks [83]. The optimal action at a given state
is the action that maximizes the action-value function at that state. When action space is
large, deriving the optimal action using the value function is computationally expensive.

5.1.2 Policy Gradient

Policy gradient methods directly learn the optimal policy, πw(·), which is parametrized
with the parameter vector w. Since the objective is maximizing the expected return,
policy gradient algorithms use gradient ascent to move policy parameters w toward the
direction suggested by the gradient of the objective, i.e., ∇wJ(w). Gradient of the expected
return can be derived using policy gradient theorem [111]:

∇wJ(w) = Eπ [Qπ(x, a)∇w lnπw(a, x)] (5.2)

Policy gradient methods often differ with each other on how they compute Qπ(x, a).
Monte Carlo policy gradient, REINFORCE [124], uses simple unbiased monte carlo sam-
pling to estimate action-value function, that is, R =

∑
r γ

rur. REINFORCE works because
the expectation of sample return is equal to the action-value function. Another class of
policy gradient methods directly learn an approximation of action-value function. This
approximation is called the critic, the policy is called the actor, and the method is named
actor-critic.
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5.2 Multi-agent Reinforcement Learning

The most trivial way to apply RL to the multi-agent setting is to let each agent learn
independently using Q-learning, or a policy gradient algorithm [112, 28]. However, since
agents are updating their policies independent from one another, the environment becomes
non-stationary from each agent point of view [67, 28]. Hence, independent Q-learning is not
guaranteed to converge in a general multi-agent system. Moreover, policy gradient methods
are notorious for having high variance estimation of the gradient. Since the agent payoff
in a multi-agent system depends on the action of all agents, conditioning the action-value
function of each agent only on her own actions increases this variance [67].

5.2.1 Centralized Agent

One way to deal with multi-agent settings’ difficulties is to train a centralized policy for
all agents. The centralized policy observes the state, receives the payoff of all agents, and
selects each agent’s action. The problem reduces to a single MDP, and all single-agent RL
methods become applicable. However, the centralized architecture suffers from scalability
issues and is not suitable to solve the distributed load balancing game.

5.2.2 Centralized training, decentralized execution

To address the challenges of multi-agent learning, a popular approach is centralized training
with decentralized execution (CTDE) [67, 29, 28]. In this approach, agents are trained in a
centralized manner, but they execute their learned policies in a decentralized manner based
on their local observations. A primary motivation behind this approach is that, during
centralized learning, actions taken by all agents are known. This makes the environment
stationary even as the policies change.

One way to implement CTDE is to train a centralized critic offline using a simulator.
This method is not practically appealing, because a simulator might not be available, or the
system might have time-varying dynamics. Another option is to implement a centralized
controller that communicates with all agents to train a centralized critic. This method
is also not desirable for two reasons. First, it is not robust as the centralized controller
becomes a single point of failure. Second, it is not scalable as requiring all agents to
communicate with a single controller could cause long network delays.
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5.2.3 Decentralized training, decentralized execution

To meet the requirements of an adaptive microsecond-scale scheduler, Malcolm adapts a
decentralized approach to training. In particular, the load-balancing policies are trained
separately in a decentralized manner. Each server learns a separate critic and a separate
policy. First, learning an action-value function could be expensive in terms of compu-
tational and communication costs. To avoid these costs, policy optimizers directly learn
a parametrized value function, V π

θi
. Second, to train these parametrized value functions,

policy optimizers use the stage potential function as payoff(Equation (4.1)).

To allow each policy optimizer to locally calculate the potential function, they period-
ically broadcast heartbeat messages. As we show in §7.4, these broadcasts could happen
very infrequently. In each heartbeat message, servers include their load and the number
of tasks they migrated or stole. Network delays or lost packets could cause individually
learned value functions to drift away from one another. To address this challenge, policy
optimizers occasionally perform a consensus update: θi = 1

N

∑
j∈N θj. After each consensus

update, policy optimizers reach an agreement on the global parametrized value function.

The pseudocode of our proposed distributed policy-optimization algorithm is shown in
Algorithm (1). Note that the steps for updating actor and critic parameters are based on
temporal-difference learning [110].

To learn parameterized value functions, for every (current state, next state, payoff)
observation, i.e. (xr, xr+1, φr), critics are minimizing the following loss:

L(θi) =
1

2
||V π

θi
(xr)− (φr + γV π

θi
(xr+1))||2.

ur + γV π
θi

(xr+1) is a estimate of V π
θi

(xr) and is called the bootstrapped estimate. Using
gradient descent, the update rule can be written as:

θi ← θi + α(φr + γVθi(xr+1)− Vθi(xr))∇θiVθi .

Where α is the learning rate.

Moreover, actors are trained using policy gradient theorem (Equation (5.2)). Note that
Qπ(xr, ar) in Equation (5.2) is equivalent to ur+V

π
θi

(xr+1). To reduce the gradient estimate
variance, actors subtract V π

θi
(xr) from Qπ(xr, ar) [110]. The update rule for actors can be

written as:
wi ← wi + β · δr · ∇wi

log πwi
(ar, xr)

Where β is the learning rate and δr = φr + γVθi(xr+1)− Vθi(xr).
In the next chapter, we discuss the implementation details of our proposed algorithm

which makes it feasible for microsecond-scale deployment.
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Algorithm 1: Distributed Policy Optimization

Input: α critic learning rate, β policies learning rate.
Randomly initialize θi, wi; ∀i ∈ N .
repeat

Decentralized execution step:
for all agent i ∈ N do

Take action according to πwi
(xr)

end
State transitions to xr+1

Decentralized training step:
for all i ∈ N do

Compute global payoff, φr (Equation (4.1))
δr ← φr + γVθi(xr+1)− Vθi(xr)
Critic: θi ← θi + α · δr · ∇θiVθi
Actor: wi ← wi + β · δr · ∇wi

log πwi
(ar, xr)

end
Decentralized consensus step:
for all i ∈ N do

if r ≡ 0 (mod C) then
θi ← 1

N

∑
j∈N θj

end

end

until;

5.2.4 Discussion: MARL for Markov Potential Games

Efficient learning in Markov potential games are rapidly attracting attention [69, 78, 79,
72, 32, 62]. Mguni et.al. in [78] propose independent policy optimzation for mean-field
potential games. [69] reduces the MPG into a team game and allows agents to learn inde-
pendently using the potential as the global reward. Authors in [79] propose a decentralized
actor-critic algorithm with consensus step. Agents independently optimize their policies
and cooperatively learn the potential function. The latter involves a consensus between all
agents. More recently, [62, 32] study the convergence of independent policy gradient meth-
ods for MPGs. The intuition behind this study is: individual value functions are aligned
with the potential function. Hence, moving toward the direction suggested by the gradient
of expected return is aligned with moving in the direction suggested by the gradient of
potential function.
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Chapter 6

Implementation

We have implemented a prototype for Malcolm in 4000 LOC of C++. The code of Malcolm
is open-source and available at https://anonymous.4open.science/r/Malcom-A3E2/.

6.1 Load Balancing

6.1.1 User-space networking

To provide low-latency host-to-host communication, Malcolm uses eRPC [52], a general-
purpose yet high-performance remote-procedure-call library. eRPC provides exceptional
networking performance on lossy networks, implements congestion control, and handles
packet losses. eRPC takes advantage of user-space networking stacks, such as DPDK [31]
and RDMA [3].

Modern datacenter network hardware provides microsecond-scale latency at very high
throughput. Exploiting this remarkable speed requires changing how applications com-
monly access the network. Traditionally, applications use the heavy-weight networking
stacks of the kernel. Consequently, applications must invoke system calls to access the
NIC. System calls are not cost-free in that they require a context switch from userspace
to the kernel space. Furthermore, with kernel space networking, usually, packets are deliv-
ered using interrupts. However, Linux interrupts are known to add considerable costs [51].
Userspace networking eliminates syscalls by removing the kernel involvement after the ini-
tial setup. During the initial setup, the NIC’s packet queues are mapped to the application
memory space. Therefore, the userspace library can disable interrupts and polls the NIC
queues instead. Then, sending and receiving packets takes place using MMIO instructions.
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6.1.2 Intra-server scheduling

Malcolm’s design allows recent dataplane operating systems and intra-server schedulers
such as ZygOS [94] and Shinjuku [51] to be deployed for scheduling tasks between worker
threads. Malcolm is orthogonal to these works. However, we implement a default task
scheduler based on cFCFS discipline.

6.1.3 Inter-server scheduling

In our implementation, we use a gateway thread. The gateway thread is responsible for
networking, intra-server scheduling, and inter-server load balancing. The gateway thread
runs eRPC event loop to receive tasks and send responses. On arrival of each task, the
gateway consults the migration policy to decide whether to accept the task or migrate it to
another server. For a rack with n servers, the migration policy is represented by a n−way
categorical distribution. One of events in this distribution corresponds to accepting the
task. The remaining n − 1 ones corresponds to the events where the gateway decides to
send the task to each of n− 1 neighbours.

Consulting the policy then involves sampling an event from this categorical distribution.
Based on measurements on our machines (see §7.1), this takes only tens of nanoseconds. If
the task is accepted, the gateway pushes the task to a lock-free task queue. Worker threads
busy wait on the task queue. Once a task is pushed to the queue, one idle worker, if there
is any, dequeues the task. Once the task is completed, and a response is ready to be sent,
the gateway consults the work-stealing policy to decide whether to send a work-stealing
request to other servers. Consulting the work-stealing policy is similar to consulting the
migration policy.

6.2 Policy Optimization

Malcolm dedicates a policy thread to update policy parameters and update migration
and work-stealing distributions based on the latest load information. First, the policy
thread runs Algorithm (1) to update policy parameters at fixed intervals. The length of
these policy-optimization intervals is a configurable parameter of Malcolm. By default, this
parameter is set to 1.6 ms. Between two updates, the policy parameters remain unchanged.
Second, based on the latest broadcasted loads, the policy thread periodically updates the
migration and work-stealing categorical distributions. The frequency of these updates is

28



also a configurable parameter of Malcolm. The default value for this parameter is 100
µs. Between two updates, the probability mass functions of migration and work-stealing
distributions do not change.

It is trivial to show that every sub-chain of a Markov chain is a Markov chain. Hence,
if we update server policies once in a while, the model proposed in §4 remains Markovian.
As a result, servers can broadcast their load to each other only at specific times. We call
the time between every two consecutive loads broadcast a window. This will allow agents
to select their strategies via infrequent message passing.

6.2.1 Updating policy parameters

Delegating decision-making at microsecond scale to an RL agent requires the following two
conditions. First, consulting the agent to update migration and work-stealing distribu-
tions should not incur more than a few hundred nanoseconds cost. Second, updating the
policy parameters should not add more than a few microsecond overheads to the system.
Unfortunately, existing machine learning frameworks fall short of these conditions.

Libraries such as PyTorch [91] and Tensorflow [6] sacrifice performance for programma-
bility. Among other techniques, these libraries often use automatic differentiation to com-
pute gradients. This makes it easy for programmers to implement their models without
worrying about gradient calculations. However, it comes at a great performance cost,
specially when models are small.

In Malcolm, we use linear function approximation for the critic and the actor1. As
a result, closed-form formulas for gradient updates can be easily derived. We implement
Algorithm (1) using these closed-form formulas in about 600 lines of C++ code. To speed
up vector-vector multiplications, our implementation uses x86 SIMD instructions, which
are available in most datacenter servers. For comparison, we also implement Algorithm (1)
using PyTorch C++ front-end. Table 6.1 compares the execution time of updating policy
parameters and calculating migration and work-stealing distributions in Malcolm against
the PyTorch implementation.

6.2.2 Caching gradients for mini-batches

It is commonly known that using minibatch stochastic optimization methods is beneficial
for training function approximators [41, 125]. However, batching means that the agent

1The actor also uses a softmax. The softmax creates a probability distribution over actions. Moreover,
it provides appealing exploration/exploitation tradeoff.
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Malcolm PyTroch

Rack Size 4 8 16 32 4 8 16 32

Updating Distributions 0.1 0.1 0.2 0.5 34 34 34 34

Updating Parameters 0.5 0.9 2 8 40 40 40 42

Table 6.1: Average execution time in microseconds.

updates its parameters only at specific points in time. Consequently, the agent only incurs
the learning cost at times which are a multiple of the batch size. Therefore, there will be
an undesirable trade-off between the minimum window length and the batch size. To break
this cost down, we compute and cache gradients of the agent’s parameters at every window.
At the end of the batch, we update the parameters using the cached gradients and AdamW
optimization algorithm [66]. By doing so, the cost of policy parameter optimization is
amortized over several smaller gradient update calculations.

6.2.3 Incremental calculation of probabilities

We also amortize the cost of calculating migration and work-stealing probabilities over
several smaller computations.

Let πi denote the strategy of agent i, and x be the state of the game. The linear policy
can be written as:

πi(x) = σ(Wix+Bi︸ ︷︷ ︸
fi(x)

)

Where σ(·) is the softmax function, Wi is the N × N matrix of weights, and B is the
N × 1 vector of biases. It is trivial to see that the computational complexity of computing
strategy given vector of states and matrices of weights is o(N2). Moreover, computing
a state strategy can be decoupled into two consecutive steps: (a) Applying the affine
transformation, fi(·), (b) applying the softmax function, σ(·). Now, assume that only the
jth element of the state vector, xj, changes. We can write :

xj+ = x+ ∆xj · ej

Where ej is a vector with all elements equal to zero except the jth, which is one. And, ∆xj

is the change in the jth element. To compute the strategy of the new state vector, xj+, we
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Rack size 4 8 16 32

Incremental prob. updates 7 12 22 43

Incremental para. updates 40 70 159 547

Table 6.2: Cost break down in nanoseconds

first compute fi(x
j+):

fi(x
j+) = f

(
x+ ∆xj · ej

)
= Wi

(
x+ ∆xjej

)
+Bi

= ∆xjWiej +Wix+Bi

= ∆xjWiej + fi(x)

= ∆xjcolj(Wi) + fi(x)

(6.1)

Hence, if we know fi(x), computing fi(x
j+) can be reduced to calculating ∆xjcolj(Wi)

with o(N) running time. If the entire state vector changes, we can follow the same approach
as 6.1 and apply the affine transformation step by step:

fi(x
+) = fi(x) +

∑
j∈N

∆xjcolj(Wi) (6.2)

Therefore, on every load update a server receives, we use equation 6.1 and build the
next state’s strategy gradually. This will allow us to take advantage of the unutilized time
between received load update messages. With N = 8, vectorized implementation of each
incremental update only takes 12 ns. This negligible overhead will be hidden by the lag
between load update messages sent by different neighbors. At the end of the window, to
compute next the strategy of next state, the agent only needs to apply the second step of
policy update, that is, applying the softmax function.

Table 6.2 summarizes the cost breakdown of the aforementioned cost optimizations on
our testbed (see §7.1). Amortizing the total computation cost over multiple incremental
computations enables us to: (a) update the probability mass functions of migration and
work-stealing distributions at the time granularity of tens of microseconds and (b) update
the policy parameters at the time granularity of a few hundreds of microseconds.
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Chapter 7

Evaluation

We use a diverse set of synthetic and real-world benchmarks to evaluate the performance of
Malcolm on a variety of heterogeneous and homogeneous rack configurations. Furthermore,
we evaluate the scalability and adaptability of Malcolm.

7.1 Experimental Methodology

7.1.1 Experimental environment.

Our experimental environment consists of two high-performance and one low-power ma-
chines connected through an NVIDIA Mellanox SB7800 switch. Each high-performance
machine has 1TB DDR4 main memory and 128 physical cores (2 × AMD EPYC 7H12),
each operating at 2.6 GHz. The low-power machine has 64GB DDR4 memory and an
8-core CPU (AMD EPYC 3201) operating at 1.5 GHz. Each physical core is pinned to a
single worker thread. Each machine has a dual-port 100Gb/s NIC (Mellanox MT27800).
All NIC ports are configured to run in the InfiniBand mode.

All machines run Ubuntu LTS 20.04 distribution with Linux kernel version 5.4.0-90.
On each machine, we allocate 8 GB of 2 MB huge pages, required by eRPC. We pin each
thread to a single core using linux pthread setaffinity np system call. Morever, we use
userspace CPU frequency scaling governor and set all cores frequency to max.

Since our testbed consists of three physical servers, we run multiple virtual servers
on each physical server to evaluate the performance of Malcolm on multi-server racks.
With eRPC, the difference between communication latencies when servers run on the same
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Client/Server Request Size (B) Median Latency (µs) Tail (99th) Latency (µs)

Same
Machine

64 3.9 4.4
256 3.8 4.4
1024 3.9 4.4

Separate
Machines

64 4.2 4.8
256 4.2 4.8
1024 4.2 4.8

Table 7.1: Communication latency for eRPC requests.

machine and when they run on separate machines is negligible. Table 7.1 provides measured
end-to-end latencies for 250k eRPC requests sent from a client process to a server process.
The client pings the server in a closed-loop manner, that is, the client waits to receive
a response before sending a new request. When the server runs on a separate physical
machine, the median latency is 4.2 µs. When the server runs on the same machine as the
client, the median latency is 3.8-3.9 µs. The difference is about 7%.

7.1.2 Synthetic benchmarks

For synthetic benchmarks, we use the following four workloads.

� Exp(50) is an exponential distribution with mean equal to 50 µs. This benchmark
represents single-type workloads (e.g., single-query data storage services).

� Bimodal(90:50, 10:500) is a multimodal distribution where 90% of tasks take 50 µs, and
the remaining 10% take 500µs. This benchmark represents multi-type workloads (e.g.,
get and range queries to key-value storage systems).

� HyperExp-1(50:50, 50:500) is a hyperexponential distribution where 50% of service
times are sampled from Exp(50), and the remaining 50% are sampled from Exp(500).
Hyperexponential distributions are popular choices in performance evaluation studies to
model highly variable workloads [99, 15, 117]. Compared to Bimodal, this benchmark is
more realistic as it replaces constant service times with exponentially distributed service
times with different means.

� HyperExp-2(75:50, 20:500, 5:5000) is a hyperexponential distribution where 75% of ser-
vice times follow Exp(50), 20% follow Exp(500), and 5% follow Exp(5000). This bench-
mark represents workloads with more diverse types (e.g., get, range, and join queries to
a database).
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7.1.3 Real-world benchmark

We use RocksDB [22] as a real-world benchmark to evaluate the performance of Malcolm.
RocksDB is an open-source production-scale key-value store developed by Facebook. We
create a dictionary of one million key-value pairs. Using this dictionary, we create a
set of replicated RocksDB databases. Clients send GET(n) queries to servers with n
randomly selected keys. Servers then respond with n corresponding values. We consider the
following two benchmarks. First, RocksDB-1 has 90% GET(16) queries and 10% GET(64)
queries. Second, RocksDB-2 has 50% GET(16) queries and 50% GET(64) queries. On our
machines, the average service time of each GET(16) and GET(64) is about 30 µs and 100
µs, respectively.

7.1.4 Load generation

To ensure accurate tail-latency measurements at heavy load, clients are implemented as
open-loop load generators [102]. In all of the experiments, inter-arrival times are expo-
nentially distributed. Furthermore, we measure the end-to-end requests completion time
latency at clients. Tail latencies are calculated using the entire data obtained by all clients.
Clients run from within the rack and use eRPC to communicate with servers.

7.1.5 Alternative baselines

We compare the performance, stability, and efficiency of Malcolm against the following
alternative load balancing mechanisms.

� Client-based power-of-2. For each task, clients randomly select two servers and send
the task to the one with shorter queue length. Power-of-2-choices is a popular scheduling
mechanism, and variants of it have been widely used in practice [135, 100, 84, 88, 82].
However, power-of-d could perform poorly in the presence of heterogeneity, either in
service time distributions or in server rates.

� Join-shortest-queue (JSQ). Distributed dispatchers forward each new task to the
server with the shortest queue length. R2P2 [58] and HovercRaft [57] use a variant
of JSQ, called join-bounded-shortest-queue (JBSQ). In JBSQ, queues have bounded
capacity, and if there is no empty slot in any queue, the task waits in the dispatcher’s
queue. One of the main drawbacks of JSQ and JBSQ is that several dispatchers could
send their tasks to the same server, a concept commonly known as ”herd behavior.”
The other drawback is that a single dispatcher could send consecutive tasks to the same
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server before new server loads are propagated through the network. To avoid drawbacks,
Malcolm dynamically coordinates load-balancing strategies between servers.

� Join-below-threshold (JBT). Distributed dispatchers forward each new task to a
randomly selected server with queue length below a fixed threshold. If no such server
exists, the task is forwarded to a random server. Although centralized JBT is proved to
be throughput optimal in heavy-traffic regimes, the optimal threshold is a function of the
load on servers and approaches infinity as load increases [106]. Moreover, similar to JSQ,
decentralized JBT suffers from herd behavior and infrequent information propagation.
Finally, JBT with a fixed threshold on queue lengths performs poorly in the presence
of heterogeneity as queue length does not represent the load on a server when different
servers have different computing powers.

Load propagation. For client-based power-of-2, servers piggyback their load informa-
tion with responses to clients. For JBT and JSQ, servers periodically broadcast the length
of their task queue. The period of these broadcasts is equal in JBT, JSQ, and Malcolm. We
show later in §7.4.1 that although JBT and JSQ perform relatively good with up-to-date
load information, they exhibit poor performance when load information is out-of-date.

7.2 Performance

We compare the performance of Malcolm against alternative load-balancing mechanisms
in terms of 99th-percentile latency. Note that since load imbalance leads to long tail
latencies [17, 12, 131], tail latency is a good measure of load imbalance as well as quality
of scheduler’s decisions. For this, we use synthetic and real-world workloads and consider
homogeneous and heterogeneous configurations.

7.2.1 Synthetic workloads.

First, we consider a homogeneous rack with 8 servers, each of which with 8 worker threads.
Figure 7.1 compares the tail latency of Malcolm against other baselines under different
loads. For all benchmarks, Malcolm outperforms other baselines. For Exp, Malcolm main-
tains low tail latency at up to 1180 KTPS load, whereas the other baselines cannot exceed
1100 KTPS. Note that the maximum theoretical load for Exp is 1280 KTPS (= 64 × 20
KTPS). For Bimodal, HyperExp-1, and HyperExp-2, this value is about 674, 233, and
166 KTPS, respectively. Figure 7.1 shows that Malcolm can achieve low latency under
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Figure 7.1: 99th-percentile latency for synthetic workloads in homogeneous rack.

up to maximum load of 92%, 90%, 90%, and 85% for Exp, Bimodal, HyperExp-1, and
HyperExp-2, respectively.

Malcolm supports higher throughput at lower tail latencies because it minimizes tem-
poral load imbalance among servers. JSQ and JBT perform poorly as they suffer from herd
behavior and infrequent information propagation. These affect Malcolm to a much lesser
extent as servers in Malcolm coordinate their load-balancing strategies. In other words,
servers in Malcolm converge to a Nash equilibrium. Herd behavior is not an equilibrium be-
cause at least one server benefits from her strategy. Client-based power-of-2 also performs
poorly because at any given time, each client has up-to-date information on a fraction of
servers that have piggybacked their loads to the client. This could lead to low quality
scheduling decisions. Moreover, the client performs poorly for high-dispersion service-time
distributions as power-of-2 is negatively affected by heterogeneity, even in tasks.

Next, we consider a heterogeneous rack with two fast and nine slow servers. Each fast
server has 14 worker threads, and each slow server enjoys four worker threads. Figure 7.2
shows tail latency of different baselines under different loads. Malcolm again outperforms
all the alternative baselines for all workloads. Compared to other baselines, for lower
loads, Malcolm improves tail latency by up to a factor of two. And for the same tail
latency, Malcolm achieves up to 20% more throughput. Malcolm can reach a maximum
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Figure 7.2: 99th-percentile latency for synthetic workloads in heterogeneous rack.

load of up to 91%, 91%, 90%, and 93% at low tail latency for Exp, Bimodal, HyperExp-1,
and HyperExp-2, respectively. Client-based power-of-2 performs very poorly for all the
benchmarks. This behavior is expected in a heterogeneous rack as discussed in §2. Herd
behavior and infrequent information propagation degrade performance of JSQ and JBT.
Performance degradation is less for workloads with higher average service time because
load information are fresher for a fixed load-propagation period.

7.2.2 Real-world workloads.

We use the same homogeneous and heterogeneous configurations to evaluate the perfor-
mance of Malcolm for RocksDB benchmarks. Figure 7.3 compares 99th-percentile latency
of different baselines for the homogeneous rack configuration1. Malcolm outperforms all
other baselines for both workloads by learning optimal coordinated load-balancing strategy
which minimizes load imbalance among servers. In doing so, Malcolm provides up to 10%
more throughput at lower tail latency. Client-based power-of-2 performs poorly due to het-
erogeneity in task types. JBT also performs poorly because of infrequent load propagation
and herd behavior. Figure 7.4 illustrates the results for the heterogeneous configuration.

1JSQ is omitted because it performs very poorly for this workload.
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Figure 7.3: 99th-percentile latency for RocksDB benchmarks in homogeneous rack.
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Figure 7.4: 99th-percentile latency for RocksDB benchmarks in heterogeneous rack.

Malcolm again outperforms other baselines by providing up to 20% more throughput for
a fixed tail latency. Client-based power-of-2 load balancer performs poorly as both tasks
and servers are heterogeneous.

7.2.3 Load imbalance

Malcolm outperforms alternative baselines for all benchmarks since Malcolm minimizes
instantaneous load imbalance between servers. To show this, we consider a heterogeneous
rack with two fast and 6 slow servers. Each fast server runs 14 worker threads, and each
slow server runs four workers. Figure 7.5 depicts average load in terms of expected wait
time on fast and slow servers over a period of 1 second at 85% load. As illustrated by
this figure, Malcolm equalizes instantaneous load of fast and slow servers in about 100 ms.
Client-based power-of-2 fails to stabilize the system as the load on slow servers grows over
time. JSQ and JBT stabilize the system but fail to avoid load imbalance among servers.
This is mainly because the two policies are sensitive to the frequency of load-information
propagation. Moreover, queue length is not an adequate indicator of load in the presence
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Figure 7.5: Load over time for different load schedulers.

of heterogeneity.

7.2.4 Comparison Against RackSched

We compare Malcolm against RackSched [135] and centralized FCFS using simulations2.
We simulate the same homogeneous and heterogeneous configurations in §7.2. For each
experiment, similar to the real-deployment experiments, we generate tasks in an open-
loop manner. We report tail-latency results for the first 100K tasks that are created.
This ensures that tail-latency results include latency of tasks with the same service-time
distribution as intended in the workload.

To simulate RackSched, we implement an ideal centralized power-of-2 scheduler with
load piggybacking (i.e., network delay is assumed to be zero). For RackSched, we also
implement PS policy for intra-server scheduling. The preemption interval is set to 500
µs. We also simulate ideal cFCFS as a reference for the theoretically optimal policy. The
results for RackSched and cFCFS do not capture any network or system overheads. For
Malcolm, we present data from actual deployments.

2We do not have access to a programmable switch.
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The results are shown in Figure 7.6. The 99th-percentile latency of ideal RackSched
quickly goes up as the load increases for both homogeneous and heterogeneous configura-
tions. One reason for this is that RackSched uses power-of-2 choices. In general, power-
of-2-choices is unstable in the presence of heterogeneity, both in service times and service
rates. The other reason for this is that RackSched uses PS for intra-server scheduling.
PS hurts the latency of longer-running tasks. In fact, if the preemption interval decreases
simulations take longer. This is mainly because longer-running tasks stay in the system
for a longer periods of time. Malcolm, on the other hand, keeps tail latency low for both
configurations even at the heavy-traffic load by dynamically equalizing the load on fast
and slow servers.
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Figure 7.6: RackSched (sim.) vs. Malcolm (real deployment).

7.3 Scalability Analysis

We conduct two experiments to measure the scalability of Malcolm and its implemen-
tation. First, we fix the number of worker threads per server to six and increase the
number of servers. Second, we fix the number of servers to two and increase the number
of worker threads. In the first experiment, clients generate synthetic workloads according
to Exp(250). In the second experiment, service times follow Exp(50). We are interested in
the 99th-percentile latency of tasks.

Figure 7.7a shows the results for the first experiment. As can be seen, the throughput
of Malcolm increases almost linearly as more servers are added. For Exp (250), with six
worker threads, the theoretical maximum throughput for 8, 16, 24, and 32 servers is 192,
384, 576, and 768 KTPS, respectively. For all configurations, the load can reach up to
95% at a tail latency that is only a few multiples of the average service time. Figure 7.7b
illustrates the result of the second experiment. As can be seen again, the throughput of
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our user-space intra-server scheduler increases almost linearly up to 16 worker threads.
Beyond that, an extra inter-server scheduler has to be added to each server.
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Figure 7.7: Scalability of Malcolm.

7.4 Adaptability

Malcolm is a dynamic load balancer that learns to adapt to variations in computational
resources as well tasks service times. Moreover, Malcolm learns to load balance the system
with infrequent load information sharing.

7.4.1 Sensitivity to load-broadcasting period

So far, in all experiments, we set the length of the load-broadcasting (and policy-updating)
period to 100 µs. In this section, we study the performance of Malcolm under different
period lengths. We compare the results against JBT and JSQ. We consider a homogeneous
rack with 8 servers, each running 8 worker threads. Clients generate tasks according to
Exp(50) at 85% load. Figure 7.8 shows the measured 99th-percentile latency achieved by
Malcolm, JBT, and JSQ for different load-broadcasting intervals. As can be seen, with
Malcolm, the tail latency remains low for load-balancing intervals as long as 1 ms. The
main reason for this is that the policy optimizers in Malcolm, in the process of learning
optimal cooperative load-balancing policy, implicitly learn the system dynamics for any
fixed load-balancing interval. As a result, the learned policy automatically encodes load
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dynamics for different scheduling decisions at the given load-balancing frequency. This,
however, is not the case for JBT and JSQ, as they both fail to provide acceptable tail
latencies as the length of the load-broadcasting period increases.
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Figure 7.8: Tail latency measurement for different load-broadcasting intervals.

7.4.2 Sensitivity to fluctuations in load and service rate

We study the adaptability of Malcolm when servers’ arrival rate or service rate changes.
We consider a rack with three types of servers – fast servers with eight workers, medium
servers with six workers, and slow servers with four workers. The rack consists of 12 servers,
four of each type. Service times follow Exp(50). We conduct two experiments. First, we
fix the load at 540 KTPS. We start by equally dividing the traffic between all servers.
At time t, we change the shape of the traffic by sending 60% of all tasks to fast servers.
Figure 7.9a shows the load in terms of expected wait time on different server types before
and after the change. It can be seen that the load on fast servers increases; however, the
system quickly adapts and learns to minimize load imbalance.

Second, we set the initial arrival rate to 360 KTPS. The initial traffic is equally divided
between servers. At time t, the arrival rate increases to 540 KTPS. The additional 180
KTPS are routed to the fast servers. Although the load on fast servers initially increases,
the system quickly converges to an equilibrium where load imbalance is very small.

Third, we fix the load and slow down the fast servers by 50%. Figure 7.9c shows the
load on different server types before and after the change. The load on fast servers initially
increases but quickly converges to other servers.

In the experiments, Malcolm learns to adapt to the changes in the system parameters.
Additionally, Malcolm’s immediate response to drastic changes does not make the system
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Figure 7.9: Sensitivity to arrival and service rates.

unstable. Note that average loads reflect the changes with some delay. This has two main
reasons. First, we use the exponential moving average to track server loads. It is commonly
known that moving averages reflect changes with some delay. The second reason is the
delay associated with the nature of queuing systems. It takes some time for the task queues
to reflect the changes in arrival and service rates.
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Chapter 8

Related Works

Load balancing in distributed systems has been extensively studied before. Most of the
theoretical works in the literature study the behavior of a centralized scheduler [134, 45,
44, 47, 82, 63]. Centralized models either use a centralized dispatcher [63], or reduce
the distributed load balancing problem into several centralized ones [39]. Despite their
simplicity, due to the scalability issues, implementing a centralized load balancer is almost
infeasible in practice.

Wierman and Zwart [123] have shown that there is no static work-conserving schedul-
ing policy that minimizes tail latency of both heavy-and light-tailed workloads. On the
one hand, First-Come-First-Serve–FCFS–optimizes tail latency of workloads with light-tail
distribution [107]. On the other hand, Processor Sharing–PS–and Shortest Remaining Pro-
cessing Time–SRPT–are known to minimize tail latency of heavy-tailed workloads [123].

Based on the workload distributions, the latest works in the system community exploit
either of the following. (a) centralized FCFS for low-dispersion workloads, (b) PS for
high-dispersion workloads [94, 51, 135].

ZygOS [94] approximates cFCFS via frequent work stealing. Shinjuku [51] implements
processor sharing with either single or multi-queue policies. The single queue policy places
all incoming tasks into a single FCFS queue. The dispatcher in the multi-queue policy keeps
one queue per task type. Incoming tasks are separated based on their types and placed
into their corresponding queues. On every dispatching decision, the Shinjuku dispatcher
selects a non-empty queue and dequeues the task at the head of that very queue.

Ideal cFCFS requires a centralized scheduler that queues incoming tasks and dispatches
one task every time a worker becomes idle in the cluster. The centralized scheduler needs
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to have enough memory to queue all incoming tasks. This centralized scheduler does not
scale well and quickly becomes the system bottleneck.

Join-Shortest-Queue (JSQ) is one the most popular load balancing disciplines [58, 57,
38, 126]. In this policy, tasks are immediately dispatched to the server with the shortest
queue length. Hence, JSQ is a bufferless scheduler with zero dispatching delay. When
load information is up-to-date, a single dispatcher JSQ minimizes the mean execution time
of tasks in homogenous systems [25, 126, 121, 30]. However, when load information is
outdated, joining the shortest queue is not always optimal [81, 132].

R2P2 and Hovercraft [58, 57] load balance microsecond-scale remote procedure calls. To
do so, R2P2 implements a centralized Join-Shortest-Bounded-Queue load balancing policy
in either software or a programmable switch. JBSQ is a variant of JSQ where servers have
bounded queues. Since queue length is not a fine indicator of load on servers [88], both
JBSQ and JSQ suffer from poor load metrics.

Zhang et al. in [130] introduce a variant of JSQ called Min-Worker-Set (MWS) to
load balance serverless platforms. In Min-Worker-Set, the task is scheduled on the virtual
machine that minimizes queueing time, execution time, and cold starts. Blowfish [56] uses
JSQ to load balance requests between shard replicas in a distributed data store.

Join-Idle-Queue (JIQ) is another popular load balancing policy [68, 49]. In JIQ, the
dispatcher assigns tasks only to idle servers, if there is any, or to a randomly selected server.
Although JIQ is not delay optimal in heavy traffic, it performs strictly better than random
scheduling [133].

Power-of-d-choices has been widely used in practice for load balancing [88, 100, 84, 135].
The power-of-d dispatcher queries d randomly selected servers and sends the incoming task
to the least loaded one [82]. This approach is proved to yield short queues in homogeneous
systems. However, in general, power-of-d-choices is unstable in heterogeneous systems
[37, 132]. In addition, short queues are not necessarily equivalent to low latency because
the queue length is not a fine indicator of the waiting time. However, power-of-d involves
prohibitive message passing between the servers and dispatchers. This communication
overhead becomes restrictive when network delays are comparable to execution times.
Moreover, with multiple power-of-d dispatchers, the system can suffer from herd behavior.

To mitigate these issues, more recently, sparrow [88] authors introduced late-binding.
With late binding, the dispatcher queries d servers, but servers will not immediately re-
spond. Alternatively, each server puts a reservation for the dispatcher’s request at the end
of its task queue. Once the reservation reaches the head of the queue, the server requests
the task from the dispatcher. The dispatcher schedules the task on the first responding
server. EC-Cache [98] is a cluster-level caching mechanism that uses late-binding to load
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balance I/O requests. More recently, authors in [45] analytically studied the response time
of late-binding when arrivals have Poisson distribution. Late binding is suboptimal when
tasks execution times are comparable to network delay (see §2.2.3).

Nasir et al. in [84] adapt power-of-d-choices to distributed stream processing engines.
In doing so, each scheduler estimates its own load on workers. Then, each worker only tries
to load balance only its own load on all servers. The intuition is: if all schedulers keep
their own share of the load balanced among all servers, the system remains load balanced.
Chaos [100] is a distributed graph processing system. To keep all the storage engines busy,
Chaos proposes a batching technique that is inspired by power-of-d-choices.

Authors in [37] adapt power-of-d choices to heterogeneous systems. To do so, servers
are qualitatively categorized into two groups, namely, fast and slow servers. Instead of
choosing d servers, df and ds servers are chosen from fast and slow servers, respectively.
Then, the load balancer tries to utilize fast idle servers, if there are any. Otherwise, the load
balancer chooses idle slow servers with probability ps or busy fast servers with probability
1− ps. If there is no idle server among queried servers, with probability pf a fast server is
chosen for job placement and with probability 1− pf a slow one. Although this approach
addresses some drawbacks of power-of-d-choices, categorizing servers into fast and slow
servers is not always practical.

To the best of our knowledge, Racksched [135] is the latest rack-scale scheduler designed
for microsecond-scale services. RackSched implements a centralized scheduler inside the
Top of Rack switch. The design suffers from several drawbacks. First, offloading additional
computation to the ToR switch could degrade network throughput [76]. Second, the ToR
switch has limited memory and computational capacities. Hence, RackSched implements
power-of-d-choices to approximate cFCFS.

Distributed versions of JSQ and power-of-d-choices suffers from herd behavior (see
§2.3.2). To deal with this issue, in C3 [109], dispatchers keep local estimates of queue
length on each server.

Local Shortest Queue (LSQ) [115] is a load balancing policy that is introduced to deal
with outdated load information on servers. Under the LSQ framework, each dispatcher
keeps its local estimate of server queue lengths and schedules tasks on the shortest among
them.

Join-Below-Threshold (JBT) is another load balancing technique that has been studied
recently in the literature [47, 133]. In JBT, the dispatcher keeps track of servers whose
load is below a threshold. New tasks are assigned to servers that are randomly picked
from the below-threshold list. If there is no server with a load below the threshold, the
task will be dispatched to a random server. Zhou et al. in [133] extend this approach
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to heterogeneous systems: each server reports its service rate to the dispatcher. The
dispatcher then chooses servers from the below-threshold list in proportion to servers’
service rates. This approach solves the communication overhead of power-of-d and accounts
for heterogeneity. Nevertheless, the system still suffers from herd behavior when there are
multiple dispatchers. Moreover, the optimal threshold is a function of arrival rate and
tends to infinity as the arrival rate increases.

Apollo deploys an optimistic distributed scheduler for scheduling workloads ranging
from millisecond to a few hundred seconds [13]. In Apollo, each task is scheduled on a
server which minimizes the estimated completion time of the task. Apollo schedulers hold
an up-to-date view of the system. This information, that is, resource availability and load
on servers, is used for estimating task completion times. Omega [103] is another optimistic
scheduler. In Omega, if two schedulers concurrently send their tasks to the same server, the
server only accepts one of them. Hence, Omega avoids herd behavior when communication
delay is a negligible fraction of computation cost.

The diversity of applications, on the one hand, and the heterogeneity of datacenter
resources, on the other hand, makes scheduling a difficult problem. Moreover, interference
between colocated workloads makes the problem more difficult. Paragon [20] is a hetero-
geneity and interference aware scheduler. Paragon is a greedy scheduler that schedules
tasks on servers with minimum interference. PARTIES [14] is another QoS aware resource
management framework that makes sharing a node between several latency-critical appli-
cations possible. Heracles [65] is a feedback-based controller that collocates batch tasks on
the same machines. None of the existing QoS-aware schedulers meets the requirements of
a high throughput low latency microsecond scale scheduler.

Dean and Barroso in [19] propose hedge requests where clients send requests to more
than one worker. Once the client receives the response, it cancels other outstanding re-
quests. Authors in [101] explore load balancing in systems where multiple processors share
memory. Quincy [48] is a task-level scheduler that balances data locality, starvation free-
dom, and fairness. Dremel [77] is a hierarchical scheduler that decomposes each query into
a serving tree.

Hadoop fair scheduler [128] implements a centralized scheduler for the entire cluster.
Facebook Corona scheduler [5], Mesos [46], and Yarn [116] are other examples of centralized
schedulers.

There have also been several attempts to incorporate game theory for load balancing.
Most of these methods are static and minimize the average completion time of tasks [108,
43, 42, 93]. Furthermore, the majority of these works rely on clients for load balancing
servers [43, 42, 26]. Hence, none of these attempts are suitable for microsecond-scale
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deployment.

Authors in [43] model the static load balancing as a cooperative game. In this model,
servers are heterogeneous, and tasks are homogenous. Each computer is modeled as an
M/M/1 queue. The objective is to minimize the average execution time of tasks.

Grosu et al. in [42] model the load balancing in a heterogeneous system as a non-
cooperative game. In this model, clients are responsible for load balancing servers. Similar
to [43], clients are minimizing the mean execution time of their tasks.

[26] studies the convergence time to Nash Equilibrium in a load balancing model where
jobs are players and play selfishly to minimize their cost. Subrata et.al in [108] model load
balancing in computational grids as a non-cooperative game. The grid is assumed to be
heterogeneous. The players in this game are dispatchers who selfishly minimize the mean
execution time of their tasks. Hence, dispatchers are competing for resources. However,
when clients selfishly minimize their requests completion times, the system can become
unstable at loads as low as 50%.

Yun and Proutiere in [127] study distributed load balancing in a heterogeneous cluster
where service rate depends not only on servers but on users as well. In this model, servers
are sharing their resources in time among their clients using a processor sharing policy. In
the beginning, clients randomly choose a server, and afterward, periodically probe other
servers and migrate their task if migration improves their service rate. Authors characterize
this system as a game where players are clients who are updating their strategy. Also, it has
been proved that when the number of clients is fixed, this system has a pure strategy nash
equilibrium, which is also proportionally fair when the user population is large enough.

Reinforcement learning has also been investigated for scheduling and resource man-
agement. FIRM [97] is a resource management framework that leverages reinforcement
learning for identifying applications that are causing resource contention and resources
which are in contention. Decima [71] uses RL to learn the best scheduling policy consider-
ing workload characteristics.

Tosounidis et al. in [114] study a load balancing strategy in a data center network
using deep Q-learning with software-defined networking management technology. The Q-
learner agent in this paper forms a centralized scheduler that uses the SDN feature, that
is, decoupled control plane from the data plane. The state of the system is defined using
an N by N matrix and a vector representing the utilization of servers. The reward function
is defined to maximize system throughput.

The database community has also explored machine learning for optimizing database
queries [118, 75, 60]. Neo [73] uses machine learning to generate query execution plans.
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SageDB [59] takes advantage of machine learning to learn the optimal query plans. ReJOIN
[74] uses reinforcement learning to optimize join order selection.
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Chapter 9

Future Works and Conclusion

9.1 Future Works

9.1.1 Beyond single rack

Malcolm can be scaled beyond a single rack. To do so, Malcolm can be deployed in a
hierarchical manner. Each rack plays the role of a server in the distributed load balancing
game. And one server per rack plays the role of the load-balancer. Within each rack,
servers play the distributed load-balancing game together. Across racks, load-balancer
servers play the load-balancing game together. Design, analysis, and implantation of this
hierarchical datacenter-scale scheduler are promising directions for future work.

9.1.2 Reconfiguration

If a server fails or a new server is added, other Malcolm servers should learn new load
balancing policies. We have shown in §7 that Malcolm servers learn to stabilize the system
in less than a few hundreds of milliseconds. This fast convergence to a near-optimal
load-balancing strategy allows Malcolm servers to quickly adapt to configuration changes.
Implementation of policy reconfiguration is a future work.
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9.1.3 Single-digit microsecond-scale workloads

Malcolm can be effectively exploited for load balancing single-digit microsecond-scale tasks.
Malcolm is orthogonal to dataplane operating systems such as ZygOS [94] and Shinjuku
[50]. Hence, Malcolm can be used in conjunction with these intra-server tasks schedulers
to schedule single-digit microsecond-scale workloads. Moreover, Malcolm can be imple-
mented inside userspace networking stacks such as eRPC [52]. Furthermore, one could
also implement Malcolm in programmable network hardware accelerators such as smart
network interface cards (smartNIC) or FPGA-based NICs.

9.1.4 Communication cost

In Malcolm, we approximated communication cost (see §4) using linear cost model. This
was enabled by the low latency high bandwidth networking subsystem (see Table 7.1).
When end-to-end latencies have high variance or non-deterministic average, one should
dynamically approximate the communication cost. Exploiting Malcolm in a system with
high dispersion end-to-end network delay is an interesting direction for future works.

9.2 Conclusion

We presented Malcolm, a distributed rack-scale scheduler designed for microsecond scale
services. Malcolm is a heterogeneity-aware and dynamic load balancer. We modeled inter-
actions between servers as a stochastic cooperative game. We proved that the distributed
load balancing game is a Markov Potential Game. Hence, optimal scheduling strategies
can be obtained in polynomial time. We proposed a fully decentralized learning algorithm
to find optimal policies in this game. In the algorithm, agents take advantage of the global
potential function. To coordinate their strategy, servers periodically broadcast their load
over the network. We evaluated Malcolm in a rack-scale computer using a variety of real-
world and synthetic benchmarks. Malcolm provides up to 20% higher throughput at low
tail latency compared to state-of-the-art load balancers.
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Appendix A

Proofs

A.1 Proof of Potential Property

Claim 2. The distributed load balancing game defined in §4 is a Markov Potential game
with the potential function Φ(·) defined in Equation (4.1).

Proof. The proof is based on Theorem 2 in [69].
First, we write the individual payoffs function as the summation of the stage potential
function and a term which is non common between all players (condition (i) of Theorem 2
in [69]):

ui(x, a) = φ(x, a) +
∑
j 6=i

Cj(aj).

Second, the gradiant of non common term
∑

j 6=iCj(aj) with respect to state is zero (con-
dition (ii) of Theorem 2 in [69]):

∇x

[∑
j 6=i

Cj(aj)

]
= 0 → E

[
∇x

[∑
j 6=i

Cj(aj)

]]
= 0.

Moreover, the payoff is a proper function. A function is said to be proper if: i)
∃x such that E[f(x)] > −∞, ii) ∀x → E[f(x)] < ∞. The second condition clearly holds
by definition for the payoff function in that it is always non-positive. The first condition
holds by setting the xi,r to t = 0 when the cluster starts with zero tasks in the servers’ queue.
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Finally, we show that the level sets {E[ui(xi,r, ai,r)] ≥ B}∞t=0 are non-empty for some
scalar B and {(xi,r, ai,r)}∞r=0 in support of the trajectory induced by the game.

E[ui(xi,r, ai,r)] = E

[
− 1

N − 1

∑
j,k

|xj,r − xk,r| − Ci(ai,r)

]
≥ B

⇐⇒ E

[
1

N − 1

∑
j,k

|xj,r − xk,r|+ Ci(ai,r)

]
< −B

Furthermore,

E

[
1

N − 1

∑
j,k

|xj,r − xk,r|+ Ci(ai,r)

]
≤

[
1

N − 1

∑
j,k

E |xj,r − xk,r|+ c

]

≤

[
1

N − 1

∑
j,k

[E[xj,r] + E[xk,r]] + c

]
≤ 2N max ({E[xr,k]}k∈N) + c

Assuming that queue lengths are bounded, which is always true in practice, the maximum
load remains bounded. This guarantees that the game defined in §4 has a parametric nash
equilibrium. Moreover, the distributed load balancing game defined in §4 is a Markov
Potential game with the potential function Φ(·) defined in Equation (4.1)

68



Appendix B

Definitions

B.1 Heavy-traffic delay optimality

Consider a queuing system with N servers. In this system, λΣ and σ2
Σ denote the mean and

variance of the arrival process. Assume that the mean and variance of service time process
of server i are µi and v2

i , respectively. Let µΣ
.
=
∑N

i=1 µi and v2
Σ
.
=
∑N

i=1 v
2
i . Moreover, let

ε
.
= µΣ − λΣ.

Definition 2. A load balancing policy is heavy-traffic delay optimal in steady-state if the
steady-state queue length vector Q̄ε satisfies

lim sup
ε↓0

εE

[∑
i∈N

Q̄i

]
≤ σ2

Σ + v2
Σ

2
.
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