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Abstract

Underutilization of FPGA resources is a significant challenge in deploying FPGAs as neural
network accelerators. We propose an FPGA-optimized systolic array architecture improv-
ing the CNN inference throughput by orders of magnitude compared to an un-partitioned
systolic array through parallelism-aware partitioning of on-chip resources. We fracture the
FPGA into multiple square systolic arrays and formulate the placement of these arrays
as a 2D knapsack problem. We simulate the cycle counts needed for each neural net-
work layer given different systolic array sizes using cycle-accurate systolic array simulator
- SCALESim. We generate physical implementation and operating frequencies of systolic
arrays placed in uniformly staggered locations on Xilinx VU37P and VU9P Ultrascale+
platforms. We use the cycle and frequency information in an optimizer coupling CMA-ES
evolutionary algorithm and a simple 2D Knapsack solver to discover packable and routable
partitioned designs to maximize throughput. Our experiments’ most significant perfor-
mance improvement comes from the implementation of layers with large kernel sizes. We
demonstrate that inference throughput gain of 7-22.7x is possible with a 1.2-7.6 x sacrifice
of latency. Our optimization tool can achieve up to 8x higher throughput gain on eight
MLPerf benchmark network topologies. Our tool also generates designs across various
latency and throughput combinations, providing a wide degree of design selection.
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Chapter 1

Introduction

With the slowdown of Moore’s law of technology [32, 2], transistor size reduction has
plateaued while the demand for computing power becomes more significant than ever.
In recent years, the rapid adoption of convolution neural networks has allowed machine
learning to be adopted across various fields, including recommendation systems, classifica-
tion tasks, and natural language processing [28, 16, 6]. Due to the unique power-efficient
and programmable computing substrate, Field Programmable Gate Arrays (FPGAs) have
emerged as a potential candidate for post-Moore’s law computing in data centers where
high throughput operation with low power consumption is a significant concern [9, 12, 15].
Over the past decade, FPGA chips have become a popular choice of accelerators or spe-
cialized processors [15] in enormous data centers.

FPGA vendors have implemented various features in both software and hardware sides
targeting domain-specific applications where one such area is artificial intelligence (AI).
Due to the growing interest in using FPGAs as machine learning accelerators, FPGA ven-
dors have fine-tuned the underlying fabrics to increase the computation capability of their
products. One of the significant changes is more specialized hard blocks to improve in-
ference performance. Intel introduced Stratix 10 NX, a 14nm FPGA platform including
AT tensor blocks allowing 143 int8 TOPS at its peak performance in the fabric, allow-
ing comparable performance to 12nm GPUs [I1]. The AT tensor blocks on this platform
are specially tuned arrays of lower-precision multipliers targeting throughput focused Al
inference applications [11] offering comparable performance to GPU. Xilinx Ultrascale+
platform features hard blocks such as DSP48, BRAM18, and the URAM288. On VU37P
and VU9P, Xilinx includes three Super Logic Regions (SLR) connected via Super Long
Line (SLL) routing allowing each SLR to communicate with its neighboring SLR. Xilinx



also introduces Versal FPGAs [62] in 2020, featuring an Al engine with an array of VLIW
SIMD high-performance processors aimed at 5G and DNN applications.

However, it is still up to the applications engineers to utilize all these resources on the
FPGA device to develop an efficient implementation for processing the computation of a
neural network. The most dominant workloads in a Convolution Neural Network (CNN)
are convolution operations with different filter dimensions. A systolic array is one of the
most efficient hardware implementations for this workload. The underlying requirement
is to convert a convolution operation into a matrix-matrix multiplication where systolic
arrays can exploit the data-reuse nature of such multiplication. A systolic array replaces
a single processor with a tightly coupled processing elements network. The significant
benefit of using a systolic array is reducing direct memory access via a carefully planned
data flow, encouraging the exploitation of neighboring data reuse. Previous works have
implemented CNN accelerators using systolic arrays with their clever tweaks targeting
different performance metrics, including but not limited to latency and throughput [65, 12,

, 40, 46].

The first motivation of this work is to consider the FPGA architecture when providing
the corresponding systolic array implementation. To fully utilize an FPGA device, it
is essential to understand the underlying components in the fabric and carefully craft the
hardware implementation with that knowledge. We target the Xilinx Ultrascale+ platform,
where we apply double data packing and floor-planning according to the specification of
DSP48E2 hard blocks available on the device.

The second motivation of this work is to explore how to close the utilization gap while
maxing out the throughput bandwidth available in each of those DSP blocks. As FPGA
manufacturers produce larger and larger chips targeting data centers, it is crucial to make
sure that we can efficiently utilize all the resources available on the chip. It is not easy
since different neural networks have different topologies, filters dimensions, and workload
distribution. Relying on a one-size-fits-all architecture will inevitably cause a mismatch
between computation power supply and demand, resulting in under-utilization.

This work’s last motivation is to develop a standard workflow to achieve a throughput
focus FPGA-optimized multi systolic array implementation across different neural network
topologies. To achieve this, we must determine how to distribute the workload from differ-
ent layers of computations across all resources of the FPGA chip. One must also consider
the effect of systolic array placement given the irregular DSP layout of the underlying
FPGA fabric to achieve high-frequency performance. We abstract the FPGA hardware
and neural network topology considerations in our optimization flow.

One may naively reason to build one large systolic array to implement the computation



and map each layer to that array. This results in severe under-utilization due to mismatches
between array size and layer compute requirements [19]. On top of that, in the latest
Ultrascale+ platform from Xilinx, some of the larger FPGAs have multiple logic regions
connected via a slow interconnection between each region [(1].

Supertile [50], a state-of-the-art CNN accelerator, provides an architecture with three
processors for convolution layers and one dedicated to fully-connected layers. Their de-
sign achieves a very high clock rate at 720 MHz with multi-stage processing to balance
the throughput and latency. However, they carefully selected the parameters configuring
their design without an automatic workflow. This limits their work on CNN with a nested
structure similar to GoogleNet. Researchers have proposed new networks with new archi-
tecture components and different design philosophies in the ever-changing Al field. It is
not feasible to keep up when a sinking time cost is needed to adjust the parameters for an
efficient implementation carefully.

AutoSA [54], a state-of-the-art polyhedral compiler for systolic array, provides an end-
to-end flow compilation framework for generating systolic arrays on FPGA, including I/0
control. Their result presents designs operating at 250 MHz on the Xilinx Alveo U250
platform. However, the DSP blocks in that platform can operate at a peak frequency of
775 MHz, meaning the throughput bandwidth of these DSPs is not fully utilized.

Our key insight is to formulate physical DSP constraints as a 2D knapsack problem to
determine the final systolic array placement. We perform array sizing using a binary search
and maximal rectangles algorithm [29] [18], a polynomial-time 2D knapsack algorithm,
to find the greatest number of systolic array partitions that can fit on the chip. Our
workflow uses these array dimensions and their identified placement from the maximal
rectangles algorithm to determine the maximum clock frequency of each partition. The
optimization flow generates a solution that minimizes the latency of the slowest partition,
hence maximizing overall throughput.

Another critical insight is to treat each SLR as its unique grid and limit the multi-
systolic array design within each SLR region. We can then replicate the same design onto
each SLR, allowing a linear gain in throughput performance. This allows us to explore
more design options in the optimization flow as we further split each SLR into smaller
replicating regions. We can also avoid the slow SLR interconnection within one design,
negatively impacting the final frequency performance.

We adopt an approach where layers are grouped and mapped to independent systolic
arrays implemented on the same FPGA. We develop a systolic array implementation with
simple AXI support for 1/O using Verilog. We develop a frequency-aware workflow that
partitions the FPGA into multiple square systolic arrays and assigns adjacent layers to



these partitions with evolutionary techniques.

Summary

1. We create an automatic workflow to synthesize, place and route systolic arrays of
different sizes in every staggering location on both the Xilinx VU9P and VU37P
Ultrascale+ platforms.

2. We introduce an optimization formulation for generating square systolic arrays and
assigning neural network layers into partitions.

3. We use a flexible systolic array RTL generator to create a placement-aware frequency
model for the optimization flow. These generated systolic arrays operate between
approximately 630-820 MHz,

4. We introduce a workflow combining an evolutionary algorithm, binary search, and
a 2D rectangular packing algorithm to create a frequency- and placement-aware op-
timization flow. Partitioned solutions designed by this workflow operate between
550-670 MHz.



Chapter 2

Background

2.1 Convolution Neural Networks

Convolution neural networks (CNN) are among the most common deep neural network
architectures in the machine-learning landscape. Extensive exploration in this type of
architecture allows CNNs to become the gold standard of image classification tasks since

winning the ImageNet Challenge [31] in 2012. Over the years, researchers have researched
applying CNN in different fields, including speech recognition [60, 5], sentiment analysis
[27, 19], gesture recognition [0, 39], traffic forecasting [33, 38], medical pattern recognition
[41, 30, 7] and etc.

Traditionally, a CNN consists of three significant layer types 1) convolution layers,
2) pooling layers, and 3) fully connected layers. In convolution layers, the primary re-
sponsibility is feature extraction via multiple small learning kernels. Several parameters
dictate their behaviors, such as padding, stride, and kernel sizes. A few hundred kernels
in each convolution layer contribute to the high computation demand. We provide simple
pseudocode of a convolution layer in Algorithm 1.

When we calculate the size of the output feature map, we can take the striding and
padding parameter into account by following Equation 2.1, where W is the size of the input
feature map, F' is the size of the filter, P is the number of padding, S is the number of
strides, and K is the number of kernels. If the result from Equation 2.1 is not an integer,
it indicates that the parameters are invalid.

>|<I/V—F+2P

K
S+1

(2.1)
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Algorithm 1: A pseudocode for simple 2D convolution operation

Data: Input feature map I(z;,y;), Kernel K(xy,yx); assuming the K(0,0) locate
at the middle of the kernel where the height and width are (hy, wy)

Result: Output feature map O(z,, y,)
for y; = 0 to max(y;) do
for x; = 0 to max(z;) do
sum = 0;
for i = —hk to hk do

for j = —wy, to wy do

| sum = sum + K(j,i) % I(x — j,y — i);

end
end
O(z,y) = sum;
end
end

As shown in Algorithm 1, the underlying calculation processes are multiplication and
accumulative addition of the results from the multiplication. One common trick is trans-
forming the entire convolution layer into one matrix multiplication for efficient hardware
implementation. Given an Input feature map of [20 * 20] with three channels and 64 [3 * 3]
filters, we can perform such transformation by following these steps:

1. We stretch every local block of pixels [3%3%3] into a column vector of size 3x3%3 = 27.

2. We then repeat this process for (20 — 3 + 1)? = 324 locations along the width and
height and pack all these 324 column vectors to form matrix M of size [27 % 324].

3. We stretch each filter into a row vector of size 3 * 3 x 3 = 27 and combine all 64
vectors into to form matrix Mg of size [64 * 27].

4. We can now find the convolution result by multiplying My and M;, forming the
resulting matrix Mo of size [27 % 324].

5. The result can then be reshaped back to the proper dimension [18 * 18 * 64].

This is a typical implementation pattern for a forward passing convolution layer.



Pooling layers are similar to the convolution layer, but each filter performs a specific
function like max-pooling or average pooling. Their principal responsibility is to reduce
dimensionality and exploit the locality of the pixel pool. We provide a simple pseudocode
representation in Algorithm 2.

Algorithm 2: A pseudocode for pooling layers
Data: Input feature map - I(x;,y;), Pooling Kernel K (zy, yx)
Result: Output feature map - O(x,, y,)
for y; = 0 to max(y;) do

for x; = 0 to max(z;) do

if AveragePooling then

acc = 0;

for ¢ = —hy, to h;, do

for j = —wy to wy do
| acc = acc+ I(z —j,y —i);
end

end

O(z,y) = acc/(hy * wy);
end

if MazPooling then

for i = —hk to hk do

[

for j = —wy, to wy do
| mazValue = max(max, I(x — j,y —1));
end
end
O(z,y) = mazxValue;
end
end

end

Finally, the fully connected layers are the brute force layer in a CNN. They are similar
to the output layer of the multilayer perceptron (MLP). Effectively, the operation here is
matrix-vector multiplication. In this layer, the neurons apply a linear transformation to
the input vector using a weights matrix. The output vector O(z) equals to the dot product
of the weight matrix w and input vector x where the dimension of x is N plus the bias



term wy as shown in Equation 2.2

N

O(z) =Y (wz; + wp) (2.2)

=1

This simple dot product operation allows the fully connected layers to aggregate all the
information for feature extraction and generate the final classification result.

2.1.1 CNNs benchmark

Different CNNs come with different topologies, and we introduce the CNNs we include in
the CNN topology dataset. AlexNet [31] is the first CNN that implements the Rectified
Linear Units (ReLUs) as their activation functions and contains dropout layers. AlexNet
contains five convolution layers and three fully connected layers. GoogleNet [52] introduces
the inception module that reduces the number of tunable parameters from Alexnet’s 60
million to 5 million without sacrificing accuracy with even deeper network architecture,
as illustrated in Figure 2.1. However, the accuracy improvement diminishes, and the
difficulty of training rapidly increases as a neural network increases its depth. ResNet-50
[25] addresses this issue by adding the concept of residual learning into the architecture by
adding shortcut connections.

R
caafeedadfgdiged

Figure 2.1: An overview of the entire GoogleNet V1 [52]

There are also other CNNs proposed with a focus on their technical aspect, for example,
object detection. Ross Girshick et al. [21] developed the Regions-with-CNN-features (R-
CNN) system introducing the use of a selective search algorithm [53] in a region proposal
to bypass the difficulty of selecting the classifying regions. Due to the long execution time
of the selective search method, Ross Girshick also proposed the Fast R-CNN [20], which
uses CNN the generate a feature map before using the same selective search algorithm.
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The latest update on R-CNN is Faster R-CNN from Shaoqing Ren et al.’s work [15]. It
achieves near real-time performance by eliminating the selective search and letting the
network learn the region proposals. You Only Look Once (YOLO) [11] is another example
that focuses on the speed of object detection where it uses a single convolution network to
predict both the bounding boxes and the classification of those boxes from the complete
image instead of multiple individual regions.

MobileNets from Andrew et al. [26] focus on enhancing the efficiency of CNNs for edge
devices. This class of efficient models achieves very similar accuracy compared to popular
networks like GoogleNet with fewer parameters.

2.2 Systolic Arrays

A systolic array is a type of hardware architecture where homogeneous computation ele-
ments, referred to as “units”, are connected in a regular geometric fashion with pipelined
computation [31]. Figure 2.2 presents a 4x4 systolic array connecting all the processing
element (PE) units squarely. These architectures are highly efficient as they extensively
exploit data reuse. Due to their efficiency in convolution and matrix multiplication oper-
ations, systolic arrays have become the building blocks of neural network accelerators in
systems such as Microsoft Brainwave [15] and Google’s TPU [3].

INPUT INPUT INPUT INPUT

INPUT | PE : PE : PE : PE
INPUT | PE : PE : PE : PE
-
INPUT | PE : PE : PE : PE
- ~N ~N ~N
INPUT | PE : PE : PE : PE
o

Systolic Array

\\
Vi
NS
Vi
NS
Vi
NS
Vi
NS

> OUTPUT

» OUTPUT

> OUTPUT

= 1 1 1/

» OUTPUT

Figure 2.2: A high level overview a traditional 4x4 systolic array.

The performance of a systolic array depends on the underlying hardware architecture
and dimensions. In this work, the systolic arrays closely follow a conventional systolic



array design: processing elements take in two multiplier inputs (a, b) and an init (or flush)
signal and are composed of a multiply-accumulate unit and a drain pipeline with a valid
bit.

Under-utilization vs. Performance Gain

A fundamental limitation of mapping CNNs to systolic arrays is the threat of low array
utilization. Since the computation workload in each layer is different, a one-size-fits-all
systolic array will inevitably cause under-utilization. In Figure 2.3, we plot the percentage
of the idle array and the cycle count needed against the size of the systolic array for
the first convolution layer of GoogleNet V1 using SCALESim [17]. SCALESim [17] is a
CNN accelerator simulator that provides a cycle-accurate timing based on a systolic array
architecture.

100
17
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fury
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._.
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r40
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Cycle Count (Logarithm Scale)

r20

12
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Systolic Array Dimension

Figure 2.3: Under-utilization percentage and cycle count against systolic array size.

As we can see, more arrays stay idle as the systolic array dimension increase, whereas
the gain in cycle count becomes minimal. SCALESim [17] simulates the controller for
feeding data into the systolic array in the simulation. Due to the implementation of the
controller having a coarser update step-size, SCALESim use the same controller to feed a
set of systolic arrays with different dimensions result in a mismatch. The unusual spikes
in Figure 2.3 come from this quantization effect of SCALESim.
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2.3 Xilinx Ultrascale Platform

We target the VU37P and VU9P chips on the Xilinx UltraScale platform. Some features
specific to this platform allow us to realize a high-performance systolic array design on
these chips.

Super Logic Regions (SLRs)

To accommodate the rapidly increasing capacity of Look-up Tables (LUTS), registers,
Random Access Memory (RAM), and Digital Signal Processing (DSP) Blocks, manufac-
turers need to produce larger dies. Xilinx proposed their Large FPGA Methodology back
in 2012, suggesting the architecture that mounts multiple SLR components on a passive
silicon interposer where the SLR components connect to its adjacent SLR components
via high-bandwidth, low latency connections called Stacked Silicon Interconnect (SSI)[01].
On VU37P and VU9P, there are three SLRs on both of the dies. Each SLR region con-
tains multiple clock regions where the LUTs, RAMs, and DSP slices reside in a column
arrangement. A device view of the die is provided in Figure 2.4.

11



Figure 2.4: Device view of VU37P and VU9P

UltraScale DSP resource

We construct the systolic array by utilizing the DSP slices on the FPGA. There are 6840
and 9024 DSP slices on VU37P and VU9P, respectively [57]. The DSP slices we are
targeting are DSP/8E2, an update of DSP/8E1 from the 7-series FPGA. Some important
improvements include a wider multiplier with 27 x 18 and a wider pre-adder width of
27 bits. On top of improvements in the DSP computation capability, DSP resources are
organized as a DSP tile on the device [58]. Each tile contains one 36K Block RAM, five
configurable logic blocks (CLBs), and two DSP/8E2 slices, as illustrated in Figure 2.5.
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Figure 2.5: A structured view of a DSP tile on Xilinx UltraScale Platform

For VU37P, each SLR contains 24 clock regions with eight columns and four rows of
DSP slices. In each SLR region, 32 columns of DSPs are spread across all clock regions in
an asymmetry fashion. Each column in each SLR region has 94 rows meaning that each
SLR region contains 32 x 94 = 3008 DSP blocks. For VU9P, each SLR contains 30 clock
regions with six columns and five rows of DSP slices. There are 19 columns of DSPs in
each SLR region spread across all clock regions. Each column in each SLR region has 120
rows meaning that each SLR region contains 19 x 120 = 2280 DSP blocks.

UltraScale memory resource

We utilize the on-chip memory to supply the data flowing into the systolic array. Instead
of relying on the distributed RAM, we mainly depend on the block RAM hard blocks due
to the better local connectivity, as shown in Figure 2.5. The specific hardblock we infer is
RAMBS36FE2 which is also an update from their 7-series variant. These BRAMs consist of
a 36Kbit storage area and two independent access ports [59]. We can treat these BRAMs
as two independent 16Kb BRAM.

Other than the readily available BRAMsS, the target device also provides UltraRAM and
HBM DRAM in applications requiring more on-chip memory. UltraRAM is also compatible
with the physical columnar architecture on the FPGA dies. Each clock region contains
one column of 16 rows of UltraRAM blocks. UltraRAM is another flexible, high-density
288Kb memory block meaning that each UltraRAM block has 8 x the capacity of a BRAM.
However, the UltraRAM blocks have only one clock input and only support reading or
writing per port per cycle.
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Besides the memory embedded in the columnar architecture, VU37P also provides
another memory stack - High Bandwidth Memory (HBM). Its physical location on the die
was shown at the bottom of the device view in Figure 2.4. These memories can only be
accessed via the 16 x 16 AXI crossbar and require a specific AXI High Bandwidth Memory
Controller for data transactions. We have summaries of the amount of on-chip memory
available on VU37P and VU9P in Table 2.1

Table 2.1: Memory Resource Summary on VU37 and VU9P

VU37P VU9P

BRAM (Mb) 709  75.9
UltraRAM (Mb) ~ 270.0  270.0
HBM (GB) 8 -

2.4 Evolutionary algorithm

An Evolutionary algorithm [55, 22] is a class of algorithms that generates a set of individual
candidates in every evolution to evaluate the problem space. These algorithms take inspi-
ration from biological evolution with the idea of survival of the fittest. On an abstract level,
the algorithm uses an objective function (fitness function) to evaluate the performance of
candidates in each evolution. This type of algorithm selects top-performing candidates via
the deterministicSurvivorSelection procedure and evolves the distribution representative
of the solution space. The algorithm then produces the next generation of candidates
with better fitness. This process repeats until future generations stop improving or the
algorithm meets a user-defined termination condition.

This technique has been shown to solve complex Black Box optimization problems.
The actual implementation is not bound to a specific agent or environment. The signifi-
cant difference between different implementations depends on the Adaptation Policy, which
determines how to pick the next generation, and the mathematical approach to estimate
the expected reward for each generation. The Adaptation Policy affects the final quality
of the solution by determining how to refine candidate solutions throughout the series of
evolution steps. A set of mutations must be performed in each step to produce an en-
semble of potential solution models. Evolution Strategy is effective for applications where
the computation of gradients is intractable, allowing it to be a more robust solution com-
pared to the traditional Re-enforcement Learning with back-propagation. In Covariance
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Matriz Adaptation Evolution Strategy (CMA-ES), the algorithm can discover the problem
structure by representing the candidate solution as a distribution of random variables.

2.4.1 Covariance Matrix Adaptation Evolution Strategy

We also experiment on two other optimization techniques - Simple Genetic Algorithm and
Hyperopt before picking CMA-ES.

Simple Genetic Algorithm starts with an initial population pool where a global cost
function is used to evaluate each individual. The algorithms then pick the portion of the
population with the highest fitness score to create a mating pool where we perform a
crossover operation between each set of the mating population to create a new generation
of offspring. We then apply random mutation in the offspring and repeat the process until
reaching a user-defined ending condition.

Hyperopt [3] is a library that provides parallelization infrastructure and three specific
algorithms implementation, including 1) random search, 2) Tree of Parzen Estimators
(TPE), and 3) Adaptive TPE to conduct Sequential model-based Bayesian optimization
for hyperparameter optimization.

Our previous work [12] reveals that CMA-ES produces the best quality of results com-
pared to these two techniques when adapted into a similar type of optimization problem.

In a simple Evolution Strategy, we sample the current generation of candidates from
a normal distribution with a mean p; and a fixed standard deviation o. After evaluating
the fitness of the entire population, we set ;11 to be the best solution in the current
population. We then sampled the next generation of candidates from this new normal
distribution with ;41 and o.

The most significant difference of CMA-ES compared to the simple Evolution Strategy
is that its Adaptation Policy allows adjustment to the search space for the next genera-
tion. This clever insight enables the algorithm to spread out and cover more search space
when compared to the Simple Genetic Algorithm, which has a static noise and spread pa-
rameter across generations. CMA-ES samples the candidates from a multivariate normal
distribution and its formal description is provided in Equation 2.3 [23].

1'1-11 ~ l; + O',LN(O,CZ) for k € 1, ey A (23)

In Equation 2.3, 2%, is the k-th candidate in generation ¢ + 1; y; is the mean of the
search distribution at generation i; o; is the standard deviation of the search distribution
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at generation 7; o; is the standard deviation of the search distribution at generation ¢
and C; is the covariance matrix of the search distribution at generation i. N(0,C;) is the
multivariate normal distribution with zero mean and the covariance matrix C;. At last, A
is the population size of each generation.

CMA-ES iteratively samples new generations of candidates via updating u, o, and C
based on the population’s fitness in the last generation. Instead of calculating the exact
C, CMA-ES use the maximum likelihood estimate of the covariance matrix C. For a set
of N two-dimensional random samplings (z,y), we estimate the two-dimensional C by
calculating the following terms:

o= Y (2.4)
1 N
Hy = Z Y (2.5)
1 & )

o= 3 Dol — ) (2.6)

7 =3 2= ) 2.)

Ooy = 35 — 1) (95 — 1) 2.8)

N 4

However, the five terms p,, jty, 04, 0y, 04, only provide us the estimate of two-dimensional
covariance matrix in the current generation. To adjust and move the search space across
the 2D plane, CMA-ES tweaks the covariance matrix update. CMA-ES achieves this by
estimating the covariance matrix of the next generation by using a certain amount of best
sampling from the current generation. It first calculates the x and y mean of the Ny
samplings in the current generation.

x; (2.9)



Nbest
>y (2.10)

best =1

1

mean, =

To estimate the 2-dimensional covariance matrix for the next generation, we need three
covariance terms: o, o, and og,.

1 Npest
Oy = (z; — mean,)? (2.11)
Nbest —1
1 Npest
0y =% Z (y; — mean,)? (2.12)
best =1
Nbest
1
Opy = Z (x; — meany)(y; — mean,) (2.13)
best =1

The clever trick here is to calculate the average value of the selective Np.s; samplings
in Equations 2.9 and 2.10 instead of using the average value over the entire population.
This trick allows the algorithm to adjust the search space by estimating the covariance
matrix of the next generation. Suppose we use the average value of the entire current
generation. In that case, the result is just an estimation of the covariance matrix of the
current generation, which does not help the algorithm adjust its search space. Finally,
CMA-ES samples a new set of candidates from this new covariance matrix constructed
with the updated mean mean,, mean, and o,, oy, 04y.

We apply CMA-ES on a shifted second-order Schaffer function, a standard testing func-
tion for black-box optimization [50, 14, 22], to visually demonstrate how a two-dimensional
CMA-ES evolve across its early generations in Figure 2.6. Equation 2.14 defines a second-
order Schaffer function where its global minimum locates at (0, 0).

sin®(z% — y?) — 0.5
[1+0.001(z2 — y?)]?

f(z,y) =05+ (2.14)

We represent the best candidate of the current generation as a red dot and the best
candidate of the last generation as a dot. All the other samplings in that generation
are represented as transparent blue dots. The global optimal in Figure 2.6 resides in the
brightest spot at the bottom left corner - (-2, —2).
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Figure 2.6: A visual presentation of CMA-ES candidates per generation

In Figure 2.6, the algorithm expands its search space starting at generation 3. By
generation 9, the best candidates had already reached proximity to the global optimal.

We borrow an open-source python implementation of CMA-ES [21].

2.5 KnapSack Optimization Algorithm

The 2D knapsack is a family of problems in combinatorial optimization [I]. The general
definition of the knapsack problem is “Given n items, each of a given size, and some bins
of a certain capacity. Determine an assignment from item to bins using as few bins as

18



possible.” [1, 10] When applied to a 2D space, this rectangular space is referred to as the
“knapsack”. The problem has been proven to be NP-hard [10]; a brute force approach
with O(4°") runtime complexity [37] is the only way to find the optimal solution.

2.5.1 Maximal Rectangles Algorithm

The maximal rectangles algorithm [29] is a polynomial-time O(n?) greedy algorithm for
solving the 2D knapsack problem. This algorithm is an improvement from the Guillotine
algorithm, another rectangular bin packing algorithm based on the Guillotine split place-
ment. The Guillotine split placement places the rectangles to the corner of a free knapsack
and then splits the remaining L-shaped space into two disjoint free rectangles via either a
horizontal or a vertical cut, as illustrated in Figure 2.7.

. o

N

4

Vertical Cut

Placing a new Remaining Free
rectangle Space

Horizontal Cut

Figure 2.7: A visual presentation of guillotine split placement

The Guillotine algorithm starts with one new rectangular bin. It then performs the
Guillotine split placement and creates a list of pairwise disjoint rectangles representing the
remaining free space of such bin. It then iteratively repeats the cutting and replaces the
original rectangular area with the two smaller rectangular spaces. This procedure then
continues until none of the spaces in the list can fit the next item. The algorithm then
works on the next bin if there is any.

The maximal rectangles algorithm is very similar to the Guillotine algorithm. However,
it tweaks the Guillotine split placement procedure by considering both possible splits and
adding both the rectangular space into the list. The variation of the maximal rectangles
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algorithm will always pack the largest item in the queue in each iteration. The algorithm
also ends when there are no more items to pack or more room in the bin.

In our optimizer, we adapt an open-source python implementation of the KnapSack
algorithm called RectPack library [18].
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Chapter 3

Our Proposal

3.1 Overall Architecture

This section proposes a throughput-optimized FPGA-based CNN accelerator using systolic
array partitions. Next, we introduce splitting the FPGA into smaller replicating regions
for further design exploration.

3.1.1 Multi Systolic Array Architecture

We present an overview of the accelerator’s architecture in Figure 3.1. The architecture
consists of multiple square systolic arrays where each systolic array partition operates at
its optimal frequency with its separate clock input. Larger systolic array partitions usually
operate at a lower frequency to avoid timing violations. If all the partitions follow the same
clock input, the smaller partitions are not operating at their highest possible frequency.
We, therefore, separate each partition’s clock input, allowing all partitions to operate at
their optimal frequency to improve the overall throughput performance. We first split the
workload of a CNN into several groups continuously, meaning that each group will contain
consecutive layers. We then assign each workload grouping to one systolic array partition.
The whole architecture then processes the CNN in a pipelined fashion. We decide on
this splitting method for these significant reasons 1) ensure high utilization of the FPGA
resources, 2) simplify design space for optimization, and 3) allow independent frequency
optimization for each array.
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Figure 3.1: A visual presentation of the pipeline in the partitioned architecture.

Each systolic array operates at different frequencies while communicating to its neigh-
boring arrays using the AXI interface. The AXI interfaces will adopt the global clock at
400 MHz syncing across all channels while the computation array uses a separate clock
domain operating at around 600-700 MHz. Since the on-chip memory resource are limited,
and CNNs with millions of parameters will easily exceed the storage capacity on the FPGA
die, we need to stream the pixel and weight inputs from the external RAM to our systolic
arrays.

We focus on using square-shaped systolic arrays since most of the CNNs’ layers have
square-sized kernels. Matching the array and kernel shape allows simpler and direct data
movement where we can equally exploit data reuse along the horizontal and vertical axis
in the systolic array.

3.1.2 Device Logic Region Splitting Technique

This section describes how we plan to explore designs targeting different regions on different
FPGA die. We observe that we can exploit FPGA symmetry across SLRs and replicate
designs. Instead of spreading the workload overall 3 SLRs, we configure our optimizer to
only spread the workload on one SLR and half of one SLR. For results using one SLR,
we convert the result to a full-chip design by replicating the smaller design three times,
yielding the 3x replicating designs. We also convert the result to a full-chip design using
half of the SLR by replicating the design six times, yielding the 6x replicating designs.
We explore all of these design spaces by changing the configuration file of the optimizer.
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To realize this replication concept in the optimizer, we create different KnapSack profiles
for VU37P and VU9P. xcvu37p-full is the basic design with no replication and spreading

partitions onto the full FPGA die. xcvu37p-3-times produce the 3x replicating design
focusing on putting all partitions in one SLR region. Both xcvu37p-6-times-x and

xcvu37p-6-times-y produce the 6x replicating design by splitting each SLR region in
half along the x-axis and y-axis, respectively.

xcvu37p-6-times-y

>32

Y
xcvu37p-3-times  xcvu37p-full 90

Figure 3.2: Visual representation of Knapsack profile modeling VU37P

However, each region is not symmetrical along the x-axis. Eleven columns are lo-
cated in clock regions X0 — X2, and eight in clock regions X3 — X5. =xcvu9p-full and

xcvu9p-3-times follow similar ideas as xcvu37p-full and xcvu37p-3-times generat-

ing the non-replicating designs and the 3x replicating designs respectively. xcvu9p-6-times-x-1
restrict the design to the left side of the SLR region, including clock region X0 — X2 with 11
columns of DSPs. xcvu9p-6-times-x-r restrict the design to the right side of the SLR

region, including clock region X3 — X5 with eight columns of DSPs. xcvu9p-6-times-y
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produce the 6x replicating design by splitting each SLR region half along the y-axis.

xcvu9p-3-times xcvu9p-full

%19

Xcvu9p-6-times-y Xcvu9p-6-times-x-r 120

Figure 3.3: Visual representing of Knapsack profile modeling VU9P

The complete configuration files targeting VU37P and VU9P are attached in Appendix
D and E with the exact command to recreate the dataset we use for the analysis and result
chapter.

3.2 Problem Formulation

This section introduces the challenges we encountered when reaching the proposed archi-
tecture on an FPGA. Next, we summarize all the constraints and combine them into one
formulation.

3.2.1 Challenges

The proposed architecture has a huge design space and many tunable parameters. To
obtain a feasible implementation with optimized throughput performance, we must consider
the placement constraints and frequency performance implied by the underlying FPGA
fabrics.
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Mapping Computations to Partitions

To correctly map a CNN’s computation to multiple partitions, we must tackle the problem
of 1) splitting neural network layers across the arrays on the chip (workload allocation)
and 2) sizing multiple systolic arrays (resource allocation). However, we cannot resolve
these two problems separately. The optimal amount of resources allocated to a partition
depends on the amount of workload allocated to this partition, while the optimal amount of
workload allocated to this partition depends on the resources available. We create a nested
loop design with CMA-ES to jointly search for the best resource and workload allocation
to tackle this entangling problem.

Placement Constraints

Assuming we now have a set of adequately sized systolic arrays, we still need to place and
route each systolic array on the FPGA chip for the final design implementation. Unlike the
previous architecture in Chan et al. [12], which relies on a limited 1D shape having a fixed
9x 1920 thin rectangular structure, fitting multiple arrays with arbitrary dimensions comes
with the problem of “overlapping.” When overlapping happens, the two partitions fight for
the same resource on the FPGA dies, producing infeasible placement and implementation
failure. One may argue that we can use the sum of area to determine whether a placement
is possible. However, overlapping can still happen even when the total area sum of each
partition is smaller than the area available in the grid, as shown in Figure 3.4.

4x4
4x4
5x5
2x2 2X2
/
Overlap

Figure 3.4: A representation when overlapping occurs.

Avoiding overlapping objects is a primary consideration under the 2D knapsack problem
formulation. We, therefore, model our DSP placement into a 2D knapsack problem. We
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model each partition as a unique object and the available DSP grid area as the knapsack.
We also constrain each partition to be orthogonal to the edge of the knapsack, i.e., the
edges of square partitions must be parallel to the edges of the bounding box. We abstract
each SLR on the VU37P as a 64x94 bin and each SLR on VU9P as a 19x120 bin. This
unique abstraction mimics the physical arrangement of DSP48E2 blocks on both chips.
Thus, the 2D knapsack problem formulation for this case becomes: “Given a set p of
square partition side lengths, determine whether all the squares in p can be packed into
three X XY bins where the X and Y values vary depending on the target chip.” While bin
packing can introduce DSP wastage, most of our experiments with 100% DSP utilization
fail in the routing stage.

Frequency Optimization

On top of fitting all the partitions on the FPGA, the placement of each partition can lead
to varying operating frequencies for each systolic array. We demonstrate this property in
Figures 3.5 and 3.6, presenting the frequency data when a 2x2 systolic array being placed
across the clock region X3Y0 to X5Y4 of VU9IP. We collect the frequency data in the
report after placing and routing a 2x2 systolic array in every staggering location with a
step size of 1 in both the vertical and horizontal directions. In Figure 3.5, we visualize the
impact of different placement on the operating frequency of a systolic array. The yellower
region represents a placed design with a higher operating frequency, whereas a block with
a red block represents a design with a relatively lower operating frequency.

Frequency Heatmap for a 2x2 systolic array on VU9P

900
850
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700

Figure 3.5: A heatmap representation of the operating frequency of a 2x2 systolic array
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In Figure 3.6, we visualize the distribution of those frequencies in Figure 3.5. We can
see that the frequency can vary from 678 MHz to 908 MHz depending on its placement on
the FPGA die, even for a small 2x2 systolic array.

Frequency Distribution for a 2x2 systolic array on VU9P

25 Average = 780.22 MHz
Median = 765.70 MHz
0=>52.40 MHz

0 680 700 720 740 760 780 800 820 840 860 880 900
Frequency (MHz)

Figure 3.6: A distribution histogram of the operating frequency of a 2x2 systolic array

In Figure 3.7, we can see this trend continues when we collect the frequency data for
systolic arrays with larger dimensions. This frequency discrepancy is most likely due to the
interleaving column arrangement of different hard blocks controlled by the manufacturer.
A shift on the DSP placement constraints also alters the available LUTs, RAMs, and other
hard blocks to be used in place and route, causing a different placement and routing result
and thus affecting the frequency performance. This 230 MHz frequency gap leaves us
considerable room for improvement to determine the best placement for each partition.
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Figure 3.7: A heatmap visualization of frequencies collected covering clock region X3Y0
to X5Y4 on VU9IP for systolic array size from 4x4 up to 14x14.
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We present two implementations of the same 8 x8 systolic array subjecting to the same
area constraints using the same source code. Using the recommended implementation flow
suggested in Xilinx documentation, the implementation achieves operating frequency at
482 MHz, while the design using our custom Tecl script can achieve an implementation
that operates at 576 MHz. We accomplish this by 1) selectively pre-routing some most
critical paths before routing the entire design and 2) using a placement profile to force
Vivido to place in a more congested fashion with our specific floorplanning constraints.
This is another room for improvement for operating frequency.

Figure 3.8: A side-by-side device view of the same 8x8 systolic array implemented by
Vivado 2018.3 with default non-project flow (left) and own custom TCL flow (right).

To achieve the best frequency for each partition, we obtain a similar set of frequency
distribution as we present in Figure 3.5 for every dimension of the systolic array on every
possible placement. We then incorporate this data set into our optimization workflow.
Since building this data set is tedious and time-consuming, we have developed custom
scripts to speed up this one-time process.

3.2.2 Complete Formulation

The proposed architecture has a huge design space and many tunable parameters. To
obtain a feasible implementation with optimized throughput performance, we must consider
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the placement constraints and frequency performance implied by the underlying FPGA
fabrics.

We provide a complete formulation, as shown in Equations 3.1 to 3.6, by combining 1)
the overall architecture design, 2) the “packability” constraint, and 3) frequency optimiza-
tion concern.

min | max ;} frchc[ﬂz]’][i ][]x]] . subject to: (3.1)
Va,plz] > 2 & plr]%2 =0 & KZ_I plz]? < MaxPEUnit (3.2)
v, lfz] > 1 & Kzl i[z]] = N (3.3)

Vi, 0 < cplt] < cofz] + pla] < W (3.4)

V2,0 < ¢y[z] < cy[z] +pla] < H (3.5)

V pairs(i, j) € & where i # j, R(i) N R(j) = 0 (3.6)

We provide the definition of the variables from Equation 3.1 to Equation 3.6 in Table 3.1
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Table 3.1: Variable definitions from Equation 3.1 to Equation 3.6

Variable Definition

x Index of the partition
cyc[]]] The timing model for the systolic array implementing a particular
network layer
freq(][] The frequency model for a given systolic array size and location
plz] The dimension of the square array corresponding to partition x
[[z] The set of layers mapped to the partition x
clx] The representation of the location assignment containing the xy

coordinate (c;[z], ¢,[x]) of the bottom-left corners of partition x
MaxPEUnit The maximum available number of PE units available on the either
chip. MaxPFEUnit = 13680 for VU9P and MaxzPEUnit = 17280

for VU37P
w The width of the knapsack
The the height of the knapsack
R(z) The geometry 2D region covering the partition x where R(z) =

([ca[z], calz] + plall, [ey[a], ¢yla] + pla]]

The 2D knapsack problem formulation is used to evaluate whether the constraint in
Equations 3.4 to 3.6 is satisfied. Equations 3.4 and 3.5 restrict every partition to be
within the boundary of the knapsack. Equations 3.6 prohibit the occurrence of overlapping
between any pair of partitions. In the end, the optimizer needs to provide us a design
solution containing a list of layers assigned to each partition (1), a list of dimensions for
each partition (p), and a list of bounding boxes for each partition (c¢); in other words, a
floorplan for a fully partitioned systolic array design. We can also change the bin dimension
and the number of bins in Equations 3.4 and 3.5 to optimize specific clock regions instead
of the whole SLR region on the die.

3.3 Workflow

This section provides an overview of our workflow containing two major stages - database
generation and optimization. Then, we introduce what kind of data we need for the
optimization and how to generate them. Finally, we explain the different variations of
optimization we perform with our optimizer.
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In Figure 3.9, we provide a high-level overview of the entire workflow. We use custom
scripts to generate the required cycle, cycl][], frequency, freq[|[] data and the design check-
point (DCP), .dep files in stage 1 — Database Generation. The data is then used in stage
2 — Optimization. We search for a legal and optimized partitioned design in the second
stage. We then realize the design by re-using the design checkpoint files from stage 1 to
reassemble the design on the target device.

Database Generation . —
> Optimizer
Neural Systolic Bounding
Network Array Boxes
Topology Config Constraint Optimized

([x], plx], c[x])

Systolic Array

SCALESIm e Vivado

Systolic * Place and Route

Simulator -
Vivado
Place and Route Input Output

RAM RAM

l
[ el jlgis [EEEJ

Partitioned Systolic

[cyc[][] :| |: .dep :l Array Implementation

\ J

Figure 3.9: High-level diagram of the entire workflow.

3.3.1 Stage 1 — Database Generation

We present an overview of how we use each abstract input to create the database needed by
the optimizer in Figure 3.9. We use two different sets of data to construct the database. We
use SCALESim to build the cycle model - cycles]][], and the systolic array RTL generator
to construct the frequency model - freq[][].

1. Cycle Modeling: To solve the optimization problem, we require an efficient method
for calculating the number of cycles (cycle[][]) needed to compute the outputs for a
layer given a systolic array configuration. To avoid doing RTL simulation for every

32



layer in every network with every possible array, we use SCALESim [17], a convolu-
tional neural network simulator that provides cycle-accurate timing simulations for
different accelerator configurations as shown in Figure ?7?7. We provide SCALESim,
the neural network topologies from MLPerf [13] and our configurations of the systolic
arrays as input. This yields a pre-computed cycle dataset for every possible com-
bination of layer type (convolution and fully-connected) and square systolic array
size. We create custom scripts in Python to interface with SCALESim to automate
and speed up the workflow. To cover more possible dimensions, we focus on even
dimensions, increasing the systolic size N by a step size of 2.

. Frequency Modelling: To accurately estimate the expected frequency of an N x
N systolic array on the target device, we develop custom Tcl scripts to scan the
entire SLR systematically. We synthesize and place a square array within boundaries
defined by a square Pblock of DSPs for a given dimension and location on the SLR.
This process is repeated for every valid location across the SLR regions on VU37P
and VU9P in a staggering fashion. We then collect all the timing summary reports
and extract the necessary timing information. This empirical data set allows us to
predict the maximum F,,, of any candidate systolic array on the VU37P and VU9P.

. Design Checkpoint Generation: Our custom Tcl scripts synthesize, place and
route all the systolic arrays under the out-of-context mode using the non-project
flow in Vivado 2018.3. We generate a checkpoint file of the design after the routing
stage. This file preserves the exact placement and routing paths of all the LUTSs
and hard blocks in the systolic array. We can then re-apply these files directly to
assemble the final design containing multiple systolic arrays. This approach allows
us to maintain the frequency performance of each partition from the frequency data
collection phase to the final re-assembly stage. We can guarantee the feasibility of
the final design since each of the partitions has been successfully placed and routed
in a previous stage.

3.3.2 Stage 2 — Optimization

Approach to 2D Partitioning

At a high level, our approach to 2D partitioning is inspired by the 1D partitioning approach
proposed in our previous work [12]. Given a partition count K, the evolutionary algorithm
we use CMA-ES to solve the optimization problem by assigning layers” workload to parti-
tions (layers allocation). In each iteration of CMA-ES, we perform greedy partition sizing
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(resource allocation) on each population. We iteratively assign more processing elements
(PE) to the bottleneck partition until no spare PE is available. Using the pre-computed
cycle and frequency models, we calculate the cost of each population in terms of the run-
time of the bottleneck partition. We then feed the cost back into the CMA-ES algorithm,
and it will generate a new generation of layer assignments based on the given score. In
Figure 3.10, we present the high-level overview of both the layer and resource allocation,
indicating the data flow between the two main loops in our optimizer.

Optimized

Partition Count K j l—>(][x] plx], c[x])

Evolutionary Algorithm

. cyclyllplx]]
c[x] ] i p (maxx (Zyel[xl FredlplxIlielx]] ))

(
[ plx] ] T l Assignment

Floorplan & Binary Search [ [[x] ]
Resource

Assignment Greedy

Algorithm

Resource Resource
allocation assignment

( plx1)
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Figure 3.10: The optimization loop finds layer assignment [[x], resource allocation p|x],
and placement allocation c[z] for a partition size K.

The sizing of each partition depends on the two following components:

e Binary Search: We use a binary search to find the maximum number of PE units
that yield a resource assignment that is packable using the maximal rectangles al-
gorithm on the specified layout constraint. We exploit the monotonic relationship
between the number of allocated processing units and the packability of the corre-
sponding assignment to achieve an optimal result. We use the maximal rectangles
algorithm due to its fast polynomial runtime and availability in an existing soft-
ware package, rectpack [18]. For most packable solutions, some DSP wastage will
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be inevitable due to irregularities in the layout. The higher frequency of operation
compensates for this. Furthermore, CMA-ES naturally decreases DSP wastage when
solutions evolve to maximize throughput.

e Square Partition Sizing: We sweep across partition sizes in both dimensions with
a step size of 2. This step size is selected since we allow double packing of two uint8
inputs on each DSP block, treating one DSP block as two systolic array PE units.

Variations of the 2D Partitioning Algorithm

We evaluate the following three variations of the 2D partitioning algorithm target design.
The design shorthand name is shown in brackets.

1. Unconstrained Partition Sizing (Unconstrained): To determine the upper bound
for throughput and latency improvements achievable by square partitioning, we evalu-
ate the case where the chip (i.e., the 2D knapsack bin) is infinitely sized for placement
freedom. The only limitation is that the number of PE units must be less than or
equal to 17280, the number of DSPs on a VU37P. For VU9P, the PE units must be
less than or equal to 13680.

2. DSP Placement Aware Sizing: We use the maximal rectangles algorithm to
determine whether a resource allocation is feasible and can be packed onto the chip.

(a)

Unbounded Frequency (Unbounded): When calculating the frequency of each
systolic array, the optimizer only considers the array dimensions. The expected
Fq: for one systolic array dimension is calculated as the average frequency
across all positions on the board. The best result generated by this variation of
the optimization process does not have the most accurate performance repre-
sentation when we realize these designs on the target FPGA chip. The solution
generated by this variation is packable, but the throughput is usually lower than
the Unconstrained variant.

Bounded Frequency (Bounded): When calculating the frequency of each sys-
tolic array, both the array’s dimensions and the placement location, provided
by the maximal rectangles algorithm, are considered. This variation’s packable
solution generates the most accurate performance metrics when the design is
placed and routed on the FPGA.
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Figure 3.11 compares packing plans generated by each of the variations for MobileNets.
The red boundaries signify DSP grid boundaries, magenta squares represent the slowest
bottleneck partition, and the cyan squares represent non-bottleneck partitions. All three
PE grids presented here are subject to the same dimensions. In most cases, packing aware-
ness reduces DSP utilization but produces routable implementations, while 100% DSP
utilization usually leads to unroutable designs or designs operating at very low frequencies.

Unconstrained Bounded Unbounded
I 19-22 24-27
650MHz 1-2 646MHz 1-2
680MHz 708MHz
9-12 13-18 1418 19-23
664MHz 661MHz 679MHz 663MHz
1
13 4-5 6-8 57 813 5-7 813
665MHz 715MHz 657MHz 666MHz 660MHz 658MHz 659MHz
Unconstrained Unbonded Bounded
Throughput (Img/s) 1795 1698 (-5.4%) 1800 (+0.27%)
DSP Wastage 5.11% 13.78% 15.04%

Figure 3.11: Comparison between solutions generated by Unconstrained (left), Bounded
(middle), and Unbounded (right).

Unconstrained provides a non-packable design with the second-best throughput. How-
ever, these designs are usually not optimized and provide a poor performance estimation
since the design is usually very congested and has no placement guidance. Therefore, so-
lutions generated by this variation are not feasible and will fail the routing stage. In our
experiment, the very few that pass the routing stage result in a design operating at a low
frequency of ~140 MHz. After enabling the maximal rectangles algorithm, we can see that
all the partitions will nicely fit into the PE grid boundaries for design in Unbounded and
Bounded designs. In this specific case, Unbounded can provide a packable design while suf-
fering throughput performance loss, while Bounded design is packable and has the highest
throughput out of the three. We observe that packing awareness reduces DSP usage but
produces more valid and routable solutions by leaving resource space on other hard blocks
and routing.
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Chapter 4

Implementations

4.1 Systolic Array Implementation

This section provides a detailed description of the specific systolic array architecture im-
plementation. We also introduce how we inferred the various hard blocks available from
the Xilinx Ultrascale+ family to construct the components needed in the systolic array.

4.1.1 Systolic Array Architecture

We present an overview of the systolic array architecture used in this work in Figure 4.1

with the data flow. The and blue arrows represent the data flow of the pixel matrix
- A and the weight matrix - B, respectively. The red arrows represent the data flow of
the output matrix - D. Each block represents processing elements while the other

blocks represent a mem block. The black arrows represent the data flow from the AXI
interface to s2mm and mm2s to the AXI interface.
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Figure 4.1: A high level overview of all the data flow in a 4x4 systolic array.

We code this implementation in a combination of SystemVerilog and Verilog. We
develop and run testbenches in ModelSim 2020.1 to demonstrate the functional correctness
of computing different matrix sizes and the first layer of GooglLeNetV1. We identify a
matrix multiplication of D = AB as having the pixel matrix A multiplied by the weight
matrix B, giving us the result matrix D. There are four major components in our systolic
array:

e On-chip IO handling: Each array has an s2mm component responsible for trans-
lating serial input into pixel and weight input responding to each row and column
of the PE array matrix. In contrast, the mm2s component repacks output from
each row back to one serial output. These components follow the reference AXI con-
nection, allowing easy communication and utilizing RAMBI18E2 available on Xilinx
UltraScale architecture.

e Computation handling: Each array design can accommodate flexible square di-
mensions where each of the PE acts as multiply and accumulate (MAC) unit in a
traditional systolic array design. We infer all the PEs as DSP48E2 hard blocks on
VU37P and VU9P. Besides the simple input of one pixel per row, our computation
array can also handle the double-packing of int8 pixel input.

e Variable Pipeline between PEs: To achieve high operating frequency, we have
configurable pipeline stages between each PE block row-wise and column-wise. By
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splitting the connection between each PE into multiple shorter paths, we can lower
the routing difficulty significantly. This turns out to be one of the main contributors
to retaining a high operating frequency even at larger dimensions.

e Controller handling: Each array has a controller unit to handle all the data coming
to and from the AXI stream interfaces and the array. This configurable controller
controls data movement from the IO unit to the computation unit by manipulating
the reading and writing addresses to avoid excessive use of shift registers.

The final design generated from the optimizer will contain multiple partitions where
each partition is a whole systolic array unit containing all the components mentioned above.
Only two AXI interfaces from the first partition’s s2mm unit and the last partition’s mm2s
connect to the die’s I/0.

4.1.2 Systolic Array Coding Overview

We can split the major modules of the codebase into the Verilog/System Verilog Code,
Custom Scripts for database generation, Functional Simulation Scripts, and Vivado Specific
Scripts.

The Verilog/System Verilog Code module includes all the hardware codes used to con-
struct the systolic array. The final tope level module cpsa mm top.sv combines multiple
memory modules and the array module to achieve a fully functional matrix multiplication
systolic array with 1/O support.

The Functional Simulation Scripts module provides scripts allowing the user to eas-
ily configure the dimension of a systolic array and the target matrix to be computed for
functional simulation. We can test the array and the array with memory support indepen-
dently.

The Custom Scripts for database generation and Vivado Specific Scripts modules pro-
vide scripts allowing the user to automatically generate the frequency model by creating
all the necessary files, including the placement constraint files and Verilog code to sweep
over systolic arrays with different dimensions across the staggered location.

A more detailed overview of the codebase is attached in Appendix C.
CNN mapping to the hardware domain

Knowing that we can use matrix multiplication to replace the convolution operation, we
design a systolic array that computes matrix multiplication effectively. We decide on an
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output-stationary square systolic array and handle the matrix multiplication with unsigned
8-bit Multiply-Accumulate (MAC) units. Each MAC unit will be abstracted as a Processing
Element in the Verilog implementation. To realize the MAC unit, we decided to pack
every two of them into one DSP/8E2 hardblock by splitting the DSP’s I/O data port into
upper and lower bits. To supply the array with pixel and weight data, we implement one
RAMBS36E2 for every DSP48E2 hardblock along the row and column. To retrieve the
output of the systolic array, we add a column of RAMB36FE2 to store all the output from
all the DSP hardblocks.

Processing Elements

We exploit the interface feature of SystemVerilog to create a public interface for inferring
different processing elements. We abstract the usage of PE with a public interface in the
pe_interface module. This allows developers to easily swap different internal imple-
mentations of the processing elements without affecting the overall architecture, which
controls the input and output RAMs and the interconnection pipeline. Each PE in the
systolic array is linked together using the general PE_interface containing the following
parameters:

1. the type of input data to each processing element, DATA_TYPE,
2. whether the input data is signed, SIGNED,

3. the width of the input data, DATA_WIDTH,

4. the width of the output data, ACC_DATA_WIDTH,

5. the latency incurred in each processing element, LATENCY,

6. the number of input data from the channel A, NUM_A, and

7. the number of input data from the channel B, NUM_B.

For the current implementation and results presented in this work, we follow the settings
in Table 4.1.
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Table 4.1: Our parameter setting used

DATA TYPE SIGNED DATA WIDTH ACC_DATA WIDTH

UINTR False 8 16
LATENCY NUM_A NUM_B
4 2 1

To infer the internal implementation, we also need to define the value of PE_PLUGIN
through a header file. By defining the PE PLUGIN as xilinx dsp48e2 double uint8,
we perform a double packing of two UINTS integers from the A channel, which mul-
tiply and accumulate with the single UINTS8 from the B channel. Also, we use the
(* use_dsp48 = "yes" *) keyword to infer each processing element as a DSP48E2 hard
block on the FPGA die.

Block RAMs

To infer the internal implementation for each of the block memory, we use both the
(* use bram = "yes" *) and (* ram style = "block" *) keyword to infer each mem
module to a RAMBI18 hard block. On top of the keyword, we also have to force the data
width parameter to be 32. Failure to do so will result in configurable logic blocks being
used instead of a dedicated RAMBI18 hard block. This will negatively impact the max
frequency achievable in the final place-and-route design in our experiments.

Controller

We embed a controller in the cpsamm top module to accommodate different matrix di-
mensions. Firstly, the controller sends the correct read addresses at the correct cycle to
each mem module in the s2mm module, considering the inter-row and inter-column pipeline
between each PEs. Next, the controller needs to fire the init signal at the proper cycle,
ensuring the accumulation in each processing element is correct. Lastly, the controller is
responsible for resetting the array and getting ready for the following data patch.

4.2 Optimizer Implementation

This section provides a more detailed overview of the optimizer codebase consisting of
three stages - 1) parser, 2) processor, and 3) output generation. Then, we focus on the
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processing stage to explain how we generate and update the layer and resource assignment.
We also cover the necessary decoding and encoding detail on the format of layer assignment
to interface with the CMA-ES interface. Finally, we cover how we generate the whole data
set for further analysis.

4.2.1 Parser

On top of the cycle dataset - cycl][] and the frequency dataset - freq[][], the optimizer need
two more configuration files in YAML Ain’t Markup Language (YAML) format.

The first configuration file contains a list of possible placement profiles. These profiles
are essential for configuring the KnapSack solver in the processing stage. We created each
profile by referencing the datasheet of the specific FPGA dies, considering the physical
placement of the DSP block on the die. We provide examples and guidance to create
profiles in Appendix A.

The second configuration file is a general configuration that contains six different sec-
tions of parameters controlling how the optimizer behaves. We provide a more detailed
explanation of each section in Appendix B.

4.2.2 Processor

The central insight here is that we split the processing into three steps (1) layer assignment,
(2) resource allocation, and (3) running the Maximal Rectangles algorithm. This allows
the search complexity of layer assignment to be decoupled from resource allocation and
incorporated with frequency related-metrics into the cost function of each sampling. CMA-
ES handles the layer assignment process and the resource allocation step cost in polynomial
time. Once we have a fixed layer assignment [[x], we can determine resource allocation
plz] in a greedy, optimal manner. This is possible only because (1) we observe that the
scaling trends of cycle count for each layer in the cycles[][] cycle dataset are monotonically
decreasing as a function of systolic array size, and (2) we focus on minimizing the maximum
cycle count across all partitions. After defining the layer assignment [[z] and the resource
allocation p[z], the RectPack library handles the packable check. Finally, the location
assignment c[z] is used to search for the operating frequency of each partition. Depending
on the variation of the optimizer, we calculate the final cost scores based on l[z], p[z], and
clx] and return them to CMA-ES for continued optimization.
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Layer Assignment translation

To translate the discrete layer assignment [[z] into an N-dimension real-value vector suiting
the sampling format of CMA-ES, we construct [[z] as a list of sizes k — 1 for a k grouping
layer assignment. Each value in the list has to be a real value ranging from 0 to 1. Each
value represents the consecutive percentage of layers being assigned in each group. We
multiply the real value with the total number of layers in a network and round off the
value to an integer for each grouping. That integer will then represent the number of
layers in that grouping. To calculate the number of layers assigned to the last grouping,
we assign all remaining layers to the last group. An example of such encoding conversion
is provided in Equations 4.1 to 4.3. Since there are only k — 1 real values, this allows us
to reduce the complexity of the problem by one dimension.

Assuming k = 3 and Number Of Layers = 58, (4.1)
=(k-1)=2 (42)
if sampling = [0.27,0.27], then 1[x] = [15, 15, 28] (4.3)

Inevitably, some layer assignment encodings cannot be translated properly. We define
an illegal layer assignment encoding if either condition is met:

1. the sum of layer count does not equal the number of layers in the network and

2. the amount of layer assigned to any group equal to zero.

To guide CMA-ES to navigate to explore legal layer assignments, we add a penalty offset to
the cost of each illegal layer assignment found. This mechanism allows CMA-ES to avoid
illegal sampling in early iteration and focus more iterations on exploring legal solutions
yielding better-optimized results.

Resource Allocation
After the CMA-ES sampling provides a layer assignment, we compute resource allocation

in polynomial time. Once we know which set of layers are assigned to which partition {[z],
we determine resource allocation p[z| in a greedy, optimal manner. We add one step of
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processing elements to the partition with the highest cycle count. The iterative process of
resource allocation is illustrated in Algorithm 3.

Algorithm 3: Overview of the Greedy Sizing Algorithm
PEStep = ProcessingElementStep p[x] = (PEStep, ..., PEStep);
LimitFlag = False;
while !LimitFlag do

2’ = max,(cyclz]) ; /* Find the bottleneck partition */
plz']+ = PEStep ; /* Increase allocation to bottleneck partition */
cycla’] = 37 ey cycles[y][p[z'] ;. /* Recount cycles for partition z’ */

if Zpeep[x,] pe? > MazimumProcessingElements then
| LimutFlag = True
end

end
return plz;

In the case of DSP Placement Aware Sizing optimization, we use binary search to
look for the maximum amount of PE that is still packable. We reuse the greedy allocation
in Algorithm 3 and check whether the resource allocation is packable using the Mazimal
Rectangles Algorithm. We then adjust the maximum number of PE in the allocation
process until we reach a packable resource allocation and have the max amount of PE. The
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pseudocode of the binary search algorithm can be found in Algorithm 4.

Algorithm 4: Overview of the binary search algorithm

while /converge do

b+ 17280/2 ; /* Lower bound of the binary search */
up < 17280 ; /* Upper bound of the binary search */
while (b # up do

mid <— (Ib+ up)/2;

plz] < GreedySizingAlgorithm(mid);

isPackable, c[x] < RectPack(l[x], p[z]);

if isPackable then

‘ up < mad;
else
‘ Ib < mid,
end
end
end

return [[x], p[z], c[z];

Variation Flow

For variant Unconstrained Partition Sizing, the cost function only needs the layer
assignment - [[z] and resource allocation - p[z] to calculate the cycle count in the bottleneck
partition. We then feedback the cycle count to CMA-ES as the cost of each sampling.
For variant DSP Placement Aware Sizing with Unbounded Frequency, the cost
function requires the layer assignment - [[z], resource allocation - p[z]. We determine
the operating frequency of each partition by taking the average frequency of all arrays of
the same size across different placement locations. For variant DSP Placement Aware
Sizing with Bounded Frequency, the cost function requires the layer assignment -
l[z], resource allocation - p[z], and placement location - c[z]. We determine the operating
frequency of each partition by combining their placement location and systolic array size
from the frequency dataset - frequency[][] We then calculate the compute time of each
partition as cyclecount /operating frequency and feedback the compute time as the cost of
each sampling for both DSP Placement Aware Sizing variations. We summarize all of
these variations and present them in Figure 4.2
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Figure 4.2: A progress representation on how [[z|, p[x] and ¢[x] are generated for each
variation

4.2.3 Output Generation

To avoid writing conflicts on the resulting CSV file, we save statistics of each iteration in
the runtime memory. Each run’s related statistic is dumped on the dedicated CSV file
according to the configuration file’s 'PATH’ section when the CMA-ES reaches the last
iteration. In each iteration, we collect the following data:

1. Trial count,
2. Tteration (generation) count,
3. Name of the network,

4. Partition count (k),
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10.
11.
12.
13.
14.
15.

16.

To pick a specific design depending on their metrics, we develop analysis scripts using
a python notebook to select 1) the most balanced design, 2) the design with the highest
throughput, and 3) the design with the lowest latency. The notebook allows us to plot
figures quickly and promptly dive into more in-depth analysis. Using a python notebook
also demonstrates how we collect all the statistics and guide how end-users navigate all

. Time spent in this iteration (seconds),

. Layer assignment of the best design in this iteration (I[z]),

Resource allocation of the best design in this iteration (p[x]),

. Placement location of each partition of the best design (c[z]),

Frequencies of each partition of the best design in this iteration,
Latencies of the best design in this iteration,

Compute times of the best design in this iteration in ms,
Throughput of the best design in this iteration in ms,

DSP utilization of best design,

LUT utilization of best design,

Throughput Gain compared to a fully mapped design, and

Latency Penalty compared to a fully mapped design.

the results.

After picking a specific design, we combined all the DCP files for each partition. We
used Vivado to generate the final design that contains all linked partitions as one complete

design.
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Chapter 5

Results and Discussion

In this chapter, we first analyze the overall performance of our optimizer, including its
runtime and quality of result (QoR). Then, we analyze the routability and throughput
improvement of the FPGA design implementation. Finally, we compare our results to
state-of-the-art related work.

5.1 Optimizer Performance

5.1.1 Optimizer Runtime

We collect the runtime information on a machine equipped with Ryzen 9 5950x with 16
cores and 32 GB of DDR4 RAM. We have 3075 different flavors for both VU9P and VU37P.
The dataset of VUIP takes 153 mins (~2.5 hours), and the dataset of VU37P takes 210
mins (~3.5 hours). These datasets include all the different Knapsack settings and neural
network targets mentioned in Section 2.1. The optimizer needs to process 100 samplings
in each iteration, including the layer allocation translation, greedy sizing algorithm, and
the maximal rectangular algorithm depending on the variations.

We summarize the runtime data of each iteration in our optimization flow covering all
the 6150 different flavors in Figure 5.1. We group the runtime data by their respective
KnapSack setting and organize the data spread using a Box Plot in Figure 5.1. We can see
many outliers in our data set as represented. These outliers can add up to 200 seconds of
runtime per iteration, and we filter these outliers in the follow-up analysis in Figures 5.2
and 5.3. One of the biggest reasons the dataset contains many outliers is that when the
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value of k is high enough; it takes more iterations in the binary search process to reach
a packable design. The optimizer then needs to run the maximal rectangular algorithm
multiple times to decide the placement of those k partitions.
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Figure 5.1: Iteration runtime against different KnapSack profiles

In Figures 5.2 and 5.3, we clean up the dataset and present the average runtime of
each iteration against different KnapSack profiles and neural networks. In Figure 5.2,
the iteration runtime trend matches the number of available DSPs in each of the profile,
where the largest knapsack profile xcvu37p-full and xcvu9p-full require 60 seconds
on average per iteration.

49



601 '\\ vu37P
S 401 o h
c
S
O 201
2
)
E O , — —— —
'g xcvu37p-full Xxcvu37p-3-times xcvu37p-6-times-x xcvu37p-6-times-y
=}
& 601 VU9P
c
°
1S 40+
—
Q /
=

20 ° .

xcvuép-full xcvu9p—'3—times xcvu9p—6ltimes-x-r xcvu9p—6'»times—x—| xcvu9p—é-times—y

KnapSack Profile

Figure 5.2: Average Iteration runtime against different KnapSack profiles

In Figure 5.3, the iteration runtime trend also matches the number of layers in a neural
network. When the network is shallower, the permutation of possible layer groupings and
the maximum £ value is small.
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Figure 5.3: Average Iteration runtime against different networks

can see that both the dimension of the 2D KnapSack profile and the number of

layers in the target network together increase iteration runtime since both contribute to
the complexity of the optimization problem space.
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Another interesting finding is that we can train the CMA-ES algorithm to focus on
legal solutions by adopting the penalty offset mechanism to enforce the legal encoding
mentioned in Section 4.2.2. In Figure 5.4, we present the percentage of legal samplings
per iteration. The data presented in the plot are from the optimization run on Faster-
RCNN with xcvud7p-6-times-y and xcvu9p-6-times-y where 10 < k < 22. We can
see that even most runs start with no legal sampling. Once the population discovers a
legal sampling, the algorithm can rapidly increase the percentage of legal sampling in the
population. We can confirm that our penalty offset mechanism allows the optimization to
spend more iterations with a population where 80% of its samplings are legal. In lower k
values, the optimizer can achieve nearly 100% legal sampling in its later iterations.
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Figure 5.4: Legal design percentage per iteration trend

ol



5.1.2 Design Quality

To evaluate the quality of our design, we define a baseline designs as the design that uses
all the DSPs available in a given grid for one systolic array as the fully-mapped design.
The fully-mapped design operates in a non-pipelined fashion, processing each layer one
by one. We then calculate the throughput gain and latency penalty of every design against
the throughput and latency of the fully-mapped design.

Overall Solution Quality Metrics

Table 5.1 and Table 5.2 shows the performance of the best non-replicated and replicated
full-chip solutions generated by our partitioning algorithm on VU37P and VU9P, respec-
tively. Designs in Table 5.1 and Table 5.2 were selected due to having the highest through-
put, lowest latency, or most significant throughput gain to latency penalty ratio. These
tables illustrate the upper bounds of performance realizable with our workflow and achiev-
able performance gains using smaller replicated designs. We observe that these smaller-
scale replicated designs achieve up to 4x higher throughput, albeit at a higher latency
than those using all 3 SLRs.
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Table 5.1: Solution Performance on VU37P

Non-Replicated

6x-Replicated

Topology Selection K Tput (img/s) Lat. (ms) K Tput (img/s) Lat. (ms)

Max Tput. 8 280 28.48 8 1098 43.7
AlexNet Min Lat. 3 261 11.46 3 1066 16.88
Balanced 3 261 11.46 3 1066 16.88

Max Tput. 8 5820 1.37 8 16481 2.91

AlphaGoZero  Min Lat. 3 5031 0.6 3 15014 1.2
Balanced 4 5820 0.69 3 15014 1.2
Max Tput. 17 1206 14.09 19 2284 49.89
Faster R-CNN  Min Lat. 3 446 6.71 3 1609 11.19
Balanced 785 10.18 3 1609 11.19
Max Tput. 29 2993 9.69 18 6035 17.89

GoogLeNetVl  Min Lat. 1001 2.99 3 3903 4.61
Balanced 1924 4.68 3 3903 4.61
Max Tput. 22 3582 6.14 22 10488 12.58

MobileNet Min Lat. 3 1003 2.99 3 4752 3.79
Balanced 17 3347 5.08 3 4752 3.79

Max Tput. 8 1385 5.78 8 9092 5.28

NCF Rec. Min Lat. 4 1383 2.89 4 9085 2.64
Balanced 4 1383 2.89 4 9085 2.64

Max Tput. 26 1436 18.1 26 2259 69.06

ResNet-50 V1 Min Lat. 3 385 7.79 3 1384 13.0
Balanced 9 712 12.63 3 1384 13.0

Max Tput. 9 879 10.23 7 2911 14.43

Tiny-YOLO Min Lat. 4 859 4.65 3 2373 7.58
Min Lat. 4 859 4.65 3 2373 7.58
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Table 5.2: Solution Performance on VU9P

Non-Replicated 6x-Replicated
Topology Selection K Tput (img/s) Lat. (ms) K Tput (img/s) Lat. (ms)

Max Tput. 12 324 37.02 20 1639 73.2
AlexNet Min Lat. 6 298 20.12 3 1149 15.66
Balanced 6 294 20.37 3 1149 15.66

Max Tput. 8 1404 5.7 3 12221 1.47

AlphaGoZero  Min Lat. 3 1268 2.36 3 12221 1.47
Balanced 3 1268 2.36 3 12221 1.47

Max Tput. 12 324 37.02 20 1639 73.2
Faster R-CNN  Min Lat. 6 298 20.12 3 1149 15.66
Balanced 6 294 20.37 3 1149 15.66
Max Tput. 8 836 9.57 29 4216 41.27

GoogLeNetVl  Min Lat. 3 355 8.44 3 2845 6.33
Balanced 8 836 9.57 3 2845 6.33
Max Tput. 25 3358 7.44 24 8408 17.13

MobileNet Min Lat. 14 2550 5.49 3 3831 4.7
Balanced 12 1489 8.06 6 5249 6.86
Max Tput. 8 734 10.88 8 4342 11.05

NCF Rec. Min Lat. 4 734 5.44 3 4333 4.15
Balanced 4 734 5.44 3 4333 4.15

Max Tput. 27 1008 26.77 24 1708 84.3
ResNet-50 V1 Min Lat. 11 760 14.46 3 1006 17.88
Balanced 9 359 25.06 3 1006 17.88
Max Tput. 6 270 22.22 8 2163 22.18
Tiny-YOLO Min Lat. 3 226 13.23 3 1650 10.91
Balanced 3 226 13.23 3 1574 11.43

Solution Floorplans Overview

Figure 5.5 shows the designs generated by our partitioning algorithm for each topology on
VU37P under the xcvu3d7p-6-times-y profile. Figure 5.6 shows the designs generated
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by our partitioning algorithm for each topology on VU9P under the xcvu9p-6-times-y
profile. Each cyan block represents a partition, and the magenta block represents the
bottleneck partition. A bottleneck partition is a partition that takes the longest execution
time to finish the workload assigned to it. Since data can only move into the next partition
when it finishes up its workload, the bottleneck partition ultimately determines the final
throughput performance of the whole pipeline. The white space represents unused DSPs.
The number on each block is the set of layers mapped to that partition. For example, in
Figure 5.5(a), the first four layers of AlexNet are assigned to the cyan partition with 1-4
on it; the fifth and sixth layers are assigned to the magenta bottleneck partition with 5-6
on it, and the remaining layers are assigned to the cyan partition with 7-8 on it.

In Figures 5.5 and 5.6, the optimizer discovers that only 3-7 partitions achieve the
most balanced performance. Many floorplans waste ~18-29% of available DSPs to trade
for higher operating frequency. We observe that the full-chip designs of MobileNet and
ResNet-50 V1 on VU37P result in smaller wastage on available DSPs at 17% and 10%),
respectively, as shown in Figure 5.5. We hypothesize that this is due to the relatively more
balanced workload across the network, allowing our optimizer to generate better designs at
a higher partition count. This allows more room for better placement optimization leading
to higher DSPs utilization in the same grid.
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a) AlexNet b) AlphaGoZero ) FasterRCNN
d) GoogLeNetV1 ) MobileNet ) NCF Rec
) ResNet-50 V1 h) YOLO Tiny

Figure 5.5: Partitioned solutions of every topology with the xcvu37p-6-times-y profile
on VU3TP
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a) AlexNet b) AlphaGoZero ) FasterRCNN
(d) GoogLeNetV1 ) MobileNet ) NCF Rec

(g) ResNet-50 V1 (h) YOLO Tiny

Figure 5.6: Partitioned solutions of every topology with the xcvu9p-6-times-y profile
on VU9P
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Balancing Throughput Gain and Latency Penalty

Figures 5.7 and 5.8 explore the relationship between throughput and latency for each
topology targeting VU37P and VU9P as we increase the partition number in each design.
Each data point represents an increment of one partition. We compute the throughput
gain and latency penalty ratios, which compare our partitioned solutions’ throughput (in
img/s) and latency (in seconds) to the fully-mapped design.

Firstly, none of the generated solutions have a lower latency or throughput than the
fully-mapped systolic array.

Secondly, we observe a monotonic increase in throughput for all network topologies and
partitioning algorithm variations as the number of partitions increases until a certain point.
There exists a partition count above which latency increases with negligible improvements
in throughput for all topologies. We can find this optimal partition count in Figure 5.7 by
tracing each plot line up to the point where the slope of the line is approaching infinity, or
in other words, a vertical line. Forcing the design to have more partitions after this optimal
point results in a negative trade-off where the latency penalty outweighs our throughput
gains.

Thirdly, we confirm that deeper networks can achieve better throughput gains in higher
partition count than shallower networks. We can achieve relatively high throughput gains
for deep networks like MobileNet and GoogLeNetV1 (more than 20x). Due to insuffi-
cient parallelizability, shallow networks like AlexNet, AlphaGoZero, and Yolo-Tiny can-
not achieve such high throughput gains. The shallower networks reach saturation at low
partition counts (3—4), while deeper networks reach saturation at much higher partition
counts (13+). This demonstrates that deeper networks benefit more from our partitioning.
Similar trends exist for all three algorithm variations.
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Figure 5.7: Latency penalty vs. Throughput gain by partitioning algorithm variation on
VU3TP.
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Figure 5.8: Latency penalty vs. Throughput gain by partitioning algorithm variation on
VU9P.

To quantify performance that balances throughput and latency, we calculate the ratio
between throughput gain and latency penalty for each solution. Figures 5.9 and 5.10 show
the best solution generated by each algorithm variation for each topology based on this
ratio. In other words, we pick the design achieving the most balanced design in Figures
5.7 and 5.8 and present them in a bar chart format.

For most topologies, the unconstrained variation of the algorithm generates better
solutions than the DSP Placement Aware Sizing algorithms. This difference in perfor-
mance shows that resource wastage caused by the packing process decreases throughput
and increases latency. Counter-intuitively, but favorable to our proposed approach, for
ResNet-50 V1, we find the best solution in terms of throughput gain to latency penalty
ratio in the bounded variation of the partitioning algorithm. We hypothesize that this
is due to the solution’s relatively high number of partitions, as seen in Figure 5.5. This
allows the algorithm more freedom to choose where to place the partitions; it can achieve
superior placements concerning frequency.
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Figure 5.9: Ratio of Throughput gain to Latency penalty as a partitioning algorithm
variation on VU37P.
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Figure 5.10: Ratio of Throughput gain to Latency penalty as a partitioning algorithm
variation on VU9P.
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5.2 FPGA Implementation Result

5.2.1 Routability

Figure 5.11 shows a comparison of one of our software-generated partitioning workflow
floorplans and its placed and routed implementation on the VU37P. We restrict the avail-
able area of this design to half of the SLR on VU37P horizontally. The performance in
Figure 5.11 is placed in the left half of the SLRO region. The awareness of DSP locations
in the partitioning algorithm allows us to successfully map processing elements to only half
of the SLRO region on the VU37P. With double inter-processing element pipeline stages,
the complete GoogLeNetV1 design uses 90% of DSP48E2s, 59% of CLB LUTs, and 51% of
CLB registers.

12-38
654MHz

1-11
654MHz

High Bandwidth Memory

Figure 5.11: A side-by-side comparison of software floorplan (left) and Vivado’s placed and
routed implementation on VU37P (right) with GoogLeNetV1.

Figure 5.12 shows a comparison of one of our software-generated floorplans with its
placed and routed implementation on the VU9P. We restrict the available area of this
design to half of the SLR on VU9P vertically. The implementation in Figure 5.12 is placed
in the lower half of the SLRO region. The full GoogLeNetV1 design uses 82% of DSP48E2s,
45% of CLB LUTSs, and 42% of CLB registers.
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Figure 5.12: A side-by-side comparison of software floorplan (left) and Vivado’s placed and
routed implementation on VUIP (right) with GoogLeNetV1.

One of the significant obstacles to implementing these designs is routing congestion.
While the 2D knapsack accounts for DSP placement, the physical implementation must
consider register usage, the placement of LUTs, CLBs, and the local memory blocks.
Figure 5.13 shows the trade-off between operating frequency and systolic array dimension.
We observe that frequency degradation as a larger systolic array passes place and route.
Vivado needs to go through several Global Rip-up and Reroute stages, even for the smaller
systolic arrays. Changes like the number of inter-processing pipeline stages have a large
impact on the overall F,,, of the design. This trend is observed as the partition size
increases. While utilizing 100% DSPs of an SLR region may intuitively seem like the
optimal approach for maximizing system throughput, our observations show that a single
systolic array approaching 64x90 pass place and route exhibits significantly lower F,q,
at &~ 140 MHz. These observations reaffirm that smaller, replicated systolic array designs
have much higher operating frequency, delivering better throughput.
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Figure 5.13: Systolic Array Dimension vs. Operating Frequency on VU9P (bottom) and
VUS3TP (top). An overall 20.6% and 26.7% frequency drop can be observed in VU37P and
VU9P, respectively.

Furthermore, our framework generates systolic array designs that operate at a high
frequency than other tools such as AutoDNNchip [63] at 220 MHz and AutoSA [51] at 300
MHz. Our optimization generates designs favoring systolic array operating in the range of

550-670 MHz.

5.2.2 Demo on PYNQ

PYNQ is an open-source project from Xilinx, allowing developers to create a high-performance
application on the Zynq, Zynq UltraScale+, and the Alveo platform. It combines a lot of
IPs and interface into Python libraries and opens the possibility for hardware developers
to present their designs to be used by the broadest possible audience.

In this demo, we use Jupyter Notebook as the software interface to interact with the
systolic array to accelerate the operation in the first convolution layer of GoogleNetV1
via our proposed architecture in the previous sections. We construct the demonstration
using Xilinx’s Python productivity for Zynq (PYNQ) Z2 development board from the
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TUL Corporation, as shown in Figure 5.14. This board also come with a 650MHz dual-
core Cortex-A9 processor handling all the network connection and hosting the Jupyter
Notebook web server under a Linux kernel as a System-On-Chip (SOC) system.

Figure 5.14: An PYNQ Z2 development board from TUL Corp. [13]

The significant difference of the FPGA chip on the PYNQ-Z2 board is that the DSP
hard blocks are DSP48F1 from the Xilinx 7-series platform. The 220 DSP/8FE1s have a
smaller multiplier where it can only perform a 25 x 18 multiplication. This restricts our
systolic array dimension up to 20 x 20. To verify and test our design on the PYNQ-Z2
board, we need to synthesize an overlay with the systolic array and the AXI controller,
as illustrated in Figure 5.15. In the PYNQ terminology, an overlay is the programmable
FPGA designs developers can create to accelerate the software application. We then load
the overlay in the Jupyter Notebook to interact with the systolic array in a python envi-
ronment. We present a high-level system overview of the whole demo in Figure 5.16.
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Figure 5.15: A overview of the customized systolic array and AXI controller overlay

Dual Core Cortex-A9 xc7z020

Jupyter Notebook

A Python

A
Y Y

Systolic Array Overlay

Linux Kernel AXI

Figure 5.16: A high-level system overview of the PYNQ-Z2 demo

We synthesize our systolic array design with different dimensions and accelerate the
operations on the first convolution layer of GoogleNetV1. We record the exact cycle count
needed to finish the operation on each dimension and compare our data against the es-

timated cycle count obtained from SCALESim. We summarize the comparison in Figure
5.17.
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Figure 5.17: SCALESim estimation and actual systolic array operating cycle count against
systolic array dimension

In Figure 5.17, we can see that SCALESim estimation overshoots when the dimension
is relatively small. However, the estimation becomes more accurate to the cycle count
record in the actual implementation after the array dimension is higher than a 10 x 10
array. We can also see that the actual cycle count is always smaller than the estimation

from SCALESim.
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Chapter 6

Conclusions & Future Directions

6.1 Conclusions

We present an algorithm partitioning Xilinx FPGA capacity across multiple square sys-
tolic arrays and boosting neural network inference throughput by up to 32.5x compared
to a single unpartitioned systolic array. This algorithm uses CMA-ES to assign layers to
systolic array partitions and a novel resource allocation algorithm that uses a 2D knapsack
algorithm to size these partitions such that each partition achieves an optimal placement.
We also present a complete workflow that generates performance-optimized, frequency-
aware floorplans that can be routed on the Xilinx VU37P and VU9P FPGA. By collecting
frequency data for systolic arrays at various locations on the die, our workflow can opti-
mize for compute time and achieve operating frequencies of between 550 and 670 MHz.
When compared to results presented by prior work, our solutions demonstrate significant
improvements in throughput and frequency, thus validating the effectiveness of our work-
flow.

6.2 Future Directions

This project is the first step in creating a workflow to automate partitioned Systolic Array
design with careful placement consideration. Beyond relying on Xilinx’s architecture and
software, we plan to extend this work to more platforms, and possible integration with
Multi-Level Intermediate Representation (MLIR) [37].
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6.2.1 Wider Platform Support

The current implementation focuses on Xilinx’s Ultrascale+ platform, where the database
generation and synthesis process rely on the Xilinx Vivado toolchain. However, Xilinx is
not the only manufacturer of FPGA chips. Intel and Archonix are both FPGA companies
working on the data center FPGA accelerator, where they have their own processing unit
implementation. For example, Intel’s latest Agilex FPGA has a configurable DSP engine
with variable precision allowing them. Achronix’s latest Speedster7t FPGA has machine
learning processors (MLP) blocks constructed by a massively parallel array of computing
elements with up to 32 multipliers operating up to 750 MHz. One promising direction is to
extend the current code base to support different manufacturers’ hardblocks and perform
a performance analysis between the implementations.

6.2.2 MLIR Integration

The MLIR project provides a framework to construct reusable and extensible compiler
infrastructure as an extension from the LLVM project [36]. TensorFlow [!] is an end-
to-end open-source machine learning platform that uses MLIR as its foundation to build
many of its utilities and tools. Integrating this optimizer with MLIR can further software
abstraction for a more extensible and robust FPGA backend compiler. Instead of taking
high-level topology of different CNNs, the optimizer can be extended to optimize for the
dialets in MLIR, allowing more accurate designs.
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Appendix A

RECTPACK profiles example and
guide

Each profile must provide two attribute: 1) width height multiplier and 2) DSP_dimensions .

The width height multiplier represents the ratio of how many input is packed in each
row versus each column. In our case, we enable double packing on each row, and the ratio
we use is 2 : 1. The DSP_dimensions contains the list of dimensions for each bin in the
KnapSack model. In Listing A.1, we consider each SLRs as their own bin. For VU37P,
there are 94 DSP48E2 hard blocks in each column, and each SLR contains 32 columns.
For VU9P, there are 120 DSP48E2 hard blocks in each column, and each SLR contains 19
columns. This level of abstraction allows us to create more profiles targeting specific time
regions on the FPGA die.

1 xcvu3d7p—full: # Name of the profile

2 # 2 for double packing in the horizontal axis
3 width_height _multiplier: [2, 1]

; DSP _diemsnsions: [[32, 94], [32, 94], [32, 94]]

s xcvu9p—full: # Name of the profile

7 # 2 for double packing in the horizontal axis
width_height _multiplier: [2, 1]

o DSP _diemsnsions: [[19, 120], [19, 120], [19, 120]]

Listing A.1: KnapSack profiles example on VU37P and VU9P
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Appendix B

Optimizer configuration file detail

This configuration file is a general configuration that contains six different sections of
parameters:

1.
2.

3.

OPTIMIZER - configure how the many resources the optimizer will use
PATH - configure the path to all the datasets and results

CNN - configure the convolution neural network-related parameters

. FPGA - configure the max amount of processing elements available

CMA-ES - configure parameters for CMA-ES and the parameters for frequency set-
ting

RECTPACK - configure which profile will be used and whether the placement re-
striction will be respected

OPTIMIZER This section contains two parameters: 1) the number of trials an opti-
mizer can attempt when the optimizer discovers no good design and 2) the number of
threads allowed.

PATH This section contains four path parameters:

1.

dump_path - location of the resulting CSV
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2. topologies_path - location of CSV files describing topologies of CNNs
3. freq.data path - location of the CSV files containing the frequency dataset - freqg(][]

4. cycle_ data path - location of the CSV files containing the cycle dataset - cycl][]

CNN This section contains a list of information regarding the target of each neural
network. For each network target, three information are needed:

1. name of the neural network
2. the number of layers in the neural network

3. the maximum group count - k that optimizer will split the network workload into

The value of k is usually to set half of the number of layers in the network. When the value
of k is equal to the number of layers, each layer gets its grouping. From our experiments,
the optimal k value is found when it is equal to or less than half of the layer in the network.

FPGA This section contains only one parameter - the number of available processing
elements on the FPGA die. When using all 3 SLRs on VU37P and VU9P, the value should
be set to 17280 = (32 % 2) %« 90 * 3 and 13680 = (19 * 2) % 120 * 3 respectively. In cases
where specific clock regions need to be focused, we can adjust the value of this parameter
accordingly. The configuration file accepts a list of available processing elements count,
and the optimizer parser will automatically match the correct count value to the available
KnapSack profile.

CMA-ES This section contains a list of parameters to configure the CMA-ES model,
including;:

1. Population Size (pop_size) - Number of off-springs sampled in each iteration
2. Maximum Iteration (max_iteration) - Number of iterations the CMA-ES can last

3. Sigma (sigma) - Value of the sigma for the initial normal distribution used in CMA-

ES

4. Penalty Offset (penalty_ offset) - Value of penalty value used in the cost function

80



5. Processing elements steps (pe_step) - Size of the steps used in the resource assignment
process

On top of configuration for CMA-ES, the frequency optimization setting is also included in
this section. There are three major settings, 1) enable frequency_score ,2) frequency_type

and 3) fall back frequency . When frequency optimization is enabled and frequency_type

equals to unbounded , the optimizer will generate designs in the Unbounded Frequency
variation. When frequency optimization is enabled and frequency_type equalsto bounded ,

the optimizer will generate designs in the Bounded Frequency variation. fall back frequency
is used whenever a frequency needed does not exist in the frequency database and no es-
timation can be provided.

RECKPACK This section contains a list of KnapSack profiles and all the packing strate-
gies the optimizer will go through. The two packing strategies being supported right
now are unconstrained leading to the Unconstrained Partition Sizing variant; and
placement_aware leading to both Packing-Aware variant.

The parser use both the configuration files to generate a set of flavours. The set of
flavours is constructed by having all the combinations of:

1. Each networks

2. Each unique valid k value

3. Each possible frequency setting
4. Each packing strategies

5. Each KnapSack profiles

The optimizer then spawns multiple processing instances for each thread available. This
set of flavors is then passed to each processing instance.
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Appendix C

Systolic Array Codebase Overview

In Figure C.1, we represent an overview of how the codebase works together. All the

components that are platform-specific are highlighted in red.

Verilog/ System Verilog Code

Process Elements Interface

pe_interface.sv

pe_wrapper.sv

Process Elements
Implementation

Xilinx DSP48E1

Xilinx DSP48E2

Memory Management

mm2s.sv

s2mm.sv

CPSA

cpsa_mm_top.sv

Custom Script

{ fmax_sweep_dcp.py }

{ fmax_sweep_result_collection.py J

{ full_design_compile.py }

— cpsa_mm_top_th.sv }»‘

t

mem.sv

e

Array

array.sv

’I

7

t

gen_array_defines.svh

[ generated_localparams.svh }

‘ gen_cpsa_localparams.svh ‘

Vivado Specific Scripts

utility.tcl

xilinx_full_design.tcl

| xilinx_ks_dcp_partition.tcl

il

Functional Simulation Script

Makefile

N

+»| test-cpsa_mm_top_ks_tb

| test-array_tb

il

Figure C.1: An overview of the systolic array code base.
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The Verilog/System Verilog Code module includes all the hardware codes used to con-
struct the systolic array. We abstract the usage of processing elements with a public
interface in pe_interface.sv. This allows us to define the target function of the pro-
cessing element easily. array.sv describes how each processing element are connected to
form a computation unit and can refer to a specific processing element implementation via
gen_array defines.svh . To achieve a fully functional design, the final cpsa_mm top.sv

module contains multiple memory module mm2s.sv, s2mm.sv and mem.sv together with
the array.sv.

In this repository, we also provide scripts allowing the user to easily configure the
dimension of a systolic array and the target matrix to be computed in the Makefile.
User can choose to functional verify only the array via test-array tb text case or the

full implementation with memory control via test-cpsa mm top ks tb text case.

This repository also contains all the custom scripts that we use to create the fre-
quency model. fmax sweep dcp.py creates all the necessary files, including the place-
ment constraint files and Verilog code to sweep over systolic arrays with different dimen-
sions across the staggered location. fmax_sweep_result_collection.py extracts all the
timing info and reorganizes all the results back to a comma-separated values (CSV) file
for the optimizer. After the optimizer proposes an optimized design in the next stage,
full design compile.py will search for the correct DCP files and recompile the final
design.
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Appendix D

YAML configuration file targeting
VU9IP

D.1 From the Command Line

Running python3 ks optimizer.py --config vu37p.yaml --execute True will auto-
matically set up all the directories and start the optimization process.

Running python3 ks optimizer.py --config vu37p.yaml --execute False will au-
tomatically set up all the directories and provide basic statistic on the quantity of flavours
that will be optimized.

The definition of the RECTPACK profiles use in the Listing D.1 are provided in the Listing
D.2.

1 # Optimizer Parameters

> OPTIL:

3 max_trials: 10

1 threads: 12

¢ # Path Parameters

» PATH:

8 dump_path: 'results/VU9P'

9 topologies_path: 'database/topologies/'
10 freq_data_path: 'database/frequency_data/vu9p/'
11 cycle_data_path: 'database/cycle_data/'
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12

13 # DNN Parameters
14 DNN

15 nets: |

16 ['FasterRCNN', 46, 23],

, MaxK

'mobilenet', 27, 27],
'yolo_tiny', 10, 9],
'googlenet', 58, 29],
'alexnet', 8, 8],
'AlphaGoZero', 8, 8],
'ncf_rec', 8, 8],

[
[
[
20 [
[
[
[

24 ]

6 # FPGA Parameters

27 FPGA

28 max_pe_units: |

29 12960, # 18%2 *x 120 =«
30 4320, # 18%x2 *x 120

31 2400, # 10x2 *x 120

32 1920, # 8%2 *x 120

33 2160 # 18*%2 x 60

34 ]

36 # CMA-es Parameters

37 CIV[A—ES

a8 target_cols: |

39 '"DRAM_cycle'
10 ]

1 seedings: |

12 '"optimised'

13 ]

14 pop_size: [100]

15 max_iteration: [10000]

16 sigma: [0.5]

a7 penalty _offset: [100000000]
48 pe_step: [2]
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resnet_50_v1', 53, 27]

3

NumOfLayers



1

6

# CMA-es Parameters for frequency

FREQUENCY SETTING:
enable _frequency_s

True,
False

]

# this setting is

frequency type: |
'"unbounded ',
"bounded '

]

fall _back_frequenc
500

]

s # RectPack Parameters

s RECTPACK:

rectpack _configs: |
"xcvu9p -full ',
'"xcvu9p -3-times ',
'xcvu9p -6-times -x-
'"xcvu9p -6-times -x-
'xcvu9p -6-times -y'

]

packing strategies: |
'"unconstrained ',

! 1 3 1
dsp_placement_aware_sizing

core:

[

optimiztion

only applied if
enable_frequency_score = True

y: |

1
1,
1
r 9

Listing D.1: Configuration profiles on the VU9P run

# Considering all 3 SLRs region

xcvu9p—full:
width_height _multiplie
DSP _diemsnsion: [[19

# Considering 1 SLR region

r: [2,
120] ,
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[19,

120] ,

(19,
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8

9

10

17

18

19

20

r xcvu9p—3—times:

width_height _multiplier: [2, 1]
DSP _diemsnsion: [[19, 120]]

# Considering 1/2 SLR (half in x-axis, X0 to X2)

> xevu9p—6—times—x—1:

width_height _multiplier: [2, 1]
DSP _diemsnsion: [[11, 120]]

# Considering 1/2 SLR (half in x-axis, X3 to X5)
xcvu9p—6—times—x—r:

width_height _multiplier: [2, 1]

DSP _diemsnsion: [[8, 120]]

# Considering 1/2 SLR (half in y-axis)
xcvu9p—6—times—y:
width_height _multiplier: [2, 1]
DSP _diemsnsion: [[18, 60]]

Listing D.2: KnapSack profiles modelling VU9P
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Appendix E

YAML configuration file targeting
VU37P

E.1 From the Command Line

Running python3 ks optimizer.py --config vu9p.yaml --execute True will auto-
matically set up all the directories and start the optimization process.

Running python3 ks optimizer.py --config vu9p.yaml --execute False will auto-
matically set up all the directories and provide basic statistic on the quantity of flavours
that will be optimized.

The definition of the RECTPACK profiles use in the Listing E.1 are provided in the Listing
E.2.

1 # Optimizer Parameters

> OPTIL:

3 max_trials: 10

1 threads: 12

¢ # Path Parameters

» PATH:

8 dump_path: 'results/VU37P'

9 topologies_path: 'database/topologies/'
10 freq_data_path: 'database/frequency_data/vu37p/'
11 cycle_data_path: 'database/cycle_data/'
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12

13 # DNN Parameters

12 DNN:

15 nets: |

16 ['FasterRCNN', 46, 23], # NameOfDNN, NumOfLayers
, MaxK

'mobilenet', 27, 27],

'yolo_tiny', 10, 9],

'googlenet', 58, 29],

'alexnet', 8, 8],

'AlphaGoZero', 8, 8],

'ncf_rec', 8, 8],

'resnet_50_v1', 53, 27]

[
[
[
20 [
[
[
[

24 ]

6 # FPGA Parameters

27 FPGA:

28 # We pick a maximum of 17280 systolic units for
consistency with Chan et. al.

29 max_pe_units: |

30 17280, # 32x2 x 90 *x 3

31 5760, # 32%2 *x 90

32 2880, # 16%2 *x 90

33 1408, # 16%x2 x 44

34 2816 # 32%2 *x 44

35 ]

36

s7 # CMA-es Parameters

ss CMA-ES:

39 target_cols: |

10 '"DRAM_cycle'

41 ]

12 seedings: |

43 '"optimised'

44 ]

15 pop_size: [100]

16 max_iteration: [10000]

a7 sigma: [0.5]
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penalty _offset: [100000000]
pe_step: [2]

# CMA-es Parameters for frequency optimiztion
FREQUENCY SETTING:
enable _frequency _score: |
True ,
False
]
# this setting is only applied if
enable_frequency_score = True
frequency _type: |
'"unbounded ',
'"bounded'
]
fall_back _frequency: |
500
]

¢c # RectPack Parameters

67 REGFPACK

68

rectpack _configs: |
"xcvud7p -full',
'xcvu3d7p -3-times ',
'xcvu37p -6-times -x',
'xcvud7p -6-times -y',
"xcvud7p -12-times -x-y ',

]

packing strategies: |
'unconstrained ',
'"dsp_placement_aware_sizing'

Listing E.1: Configuration profiles on the VU37P run

# Considering all 3 SLRs region
xcvud7p—full:

width_height _multiplier: [2, 1]
DSP_diemsnsion: [[32, 90], [32, 90], [32, 90]]
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6
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9

# Considering 1 SLR region

 xcvud7p—3—times:

width_height _multiplier: [2, 1]
DSP _diemsnsion: [[32, 90]]

# Considering 1/2 SLR (half in x-axis)
xcvu3d7p—6—times—x:
width_height _multiplier: [2, 1]
DSP _diemsnsion: [[16, 90]]

# Considering 1/2 SLR (half in y-axis)
xcvu3d7p—6—times—y:
width_height _multiplier: [2, 1]
DSP _diemsnsion: [[32, 45]]

Listing E.2: KnapSack profiles modelling VU37P
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