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Abstract

With the explosively increasing volume of hateful speech presented with images on the
Internet, it is necessary to detect hateful speech automatically. Due to the intense demand
for computation from the hateful meme detection pipeline, it is vital to classify the text
and non-text images for accelerating the speed of the multimodal hateful speech system.
This study reviews the recent development of object and text detection architectures and
categorizes them into one-stage or two-stage detectors to better compare accuracy and
efficiency. Additionally, this study proposes two datasets as the benchmarks for the binary
classification scenario to evaluate two representative object detectors and two state-of-art
text detectors on the customized datasets with two types of texts embedded in images. The
results indicate that one-stage detectors may not necessarily achieve higher throughputs
than two-stage detectors, and the performance of detectors varies depending on the type
of image texts. This thesis can contribute to further evaluation of detectors in binary
detection tasks.
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Chapter 1

Introduction

This thesis is a report of a study evaluating state-of-art object-detection and text-detection
frameworks on a binary text detection task. This study generated two datasets to simulate
the binary classification scenarios, implemented selected frameworks, and tested their per-
formance on the proposed datasets. This first chapter of the thesis presents the background
of the study, specifies the problem of the study, describes its significance, and presents an
overview of the methodology used. The chapter concludes by noting the delimitations of
the study and defining some special terms used.

1.1 Background of the Study

Since Richard Dawkins coined the term “meme” to describe small units of culture that
spread from person to person by copying or imitation in 1976 [15], netizens apply the tag
“Internet meme” to describe the propagation of items such as jokes, rumours, videos, and
websites from person to person via the Internet [16]. Internet memes can also be defined
as multimodal artifacts remixed by countless participants, employing popular culture for
public commentary [58]. As a daily part of our digital lives, Internet memes function as
a ‘media lingua franca’ [58] and appear on our social media news feeds in the form of
still images, images with a phrase, Graphic Interchange Format (GIF) and videos [86].
Specifically, the term ‘Internet memes’ in this thesis refers to the still images as Figure 1.1
shows.

Internet memes can be ‘political’, ‘branded’, or just a bit of fun, giving us a laugh [86].
Nevertheless, Internet memes can also function as the medium of propaganda for far-right
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Figure 1.1: An example of Internet memes in the form of a still image.

organizations to engage with a wider audience, ‘adopting humour, irony and ambiguity’
to inscribe ‘popular culture iconography’ with hateful messaging [3]. Thus, assessing the
offensiveness level of the sentiments of user-uploaded content has great significance for
maintaining a friendly online community. Due to the large volume of images and texts
users upload, it is inefficient to review those content manually. Consequently, an automated
solution is required to alleviate the extensiveness of online hate speech for reasons including
productivity, cost, latency and scalability.

Assessing the offensiveness level of images automatically is a multimodal (vision and
language) task in the sub-field of Visual Question Answering (VQA). Recent years have
witnessed tremendous progress and explosion of interest in the VQA task by the machine
intelligence community [78]. For instance, Facebook AI launched a competition, named
Hateful Meme Challenge [38], in 2020 to detect hateful memes consisting of both images
and text with early fusion multimodal frameworks, where the top five submissions achieved
Area Under the Receiver Operating Characteristic curve (AUROC) scores of 0.79–0.84 on
the unseen test set, significantly above the baselines [37].

In recent research, the multimodal framework is the mainstream solution to detect
hateful memes, which can be summarized as the following three steps [93, 49, 74, 59, 83]:
(a) Extract the texts and detect the entities in the images; (b) Combine the two modalities
(vision and language); (c) Assess the sentiment of the memes comprehensively. Due to
the fact that a significant part of user-uploaded images contains no text, it would waste
a considerable amount of time and computation resources to assess the sentiment of the
images with the whole multimodal framework. Thus, it is necessary to filter out non-
text images before the framework for improving the efficiency of automatic hateful memes
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(a) The classification result of Figure 1.1. (b) The localization result of Figure 1.1.

Figure 1.2: Difference in the definition of text detection.

detection.

1.2 The Problem Statement

As the primary step for numerous applications, text detection has witnessed significant
progress in the recent years [53, 67, 94, 89, 12]. However, most of the recent text detection
research defines text detection as a task to localize the texts in the images by outputting
bounding boxes as shown in Figure 1.2b. Thus, almost all state-of-art text detection models
are trained and tested on those datasets without any non-text samples, such as COCO-Text
[82], ICDAR2015 [35], MLT-2017 [62], SynthText [25] and MSRA-TD500 [88]. Therefore,
the performance of those models for binary classification task is not reported. Thus, to
explore the impact of negative samples, this thesis aims at evaluating the performance
of existing text detection algorithms in the scenario of filtering non-text images out of
user-uploaded images, i.e., to generate binary outputs as Figure 1.2a shows.

1.3 Significance of the Study

Hate speech, defined as “any communication that disparages a target group of people based
on some characteristic such as race, colour, ethnicity, gender, sexual orientation, national-
ity, religion, or other characteristic” by Nockleby [63], is harm-producing and amounts to
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a speech-act constituting harm itself [8]. However, with the development of social media,
hate speech can be expressed and spread easily in the form of Internet memes, since users
can save, post, and repost images. For instance, Facebook, a mainstream social networking
site, took an action on 9.6 million pieces of content for violating their hate speech policies
in the first quarter of 2020 [66]. At the sheer scale of the internet and the huge amount
of content, it is impossible for human administrators to inspect every data point. Conse-
quently, machine learning and artificial intelligence play a never more important role in
mitigating important societal problems by detecting malicious content [37]. Considering
the time and computation cost of automatic hate speech detection systems, binary text
detection module, sifting Internet memes from all the user-uploaded content for further
sentiment assessing, contributes to maintaining a clean online environment efficiently.

1.4 Limitations and Delimitations of the Study

Although Internet memes could combine vision and language in various forms, such as GIF
and videos, this thesis only studies on still images. In addition, blurred (Figure 1.3c) or
distorted images (Figure 1.3d) are not included in the dataset.

Additionally, for the texts in images, this thesis only considered texts in printed English.
Handwritings (Figure 1.3b) and texts in artistic fonts (Figure 1.3a) were not studied in
this study. Also, texts in languages other than English were included in this study but not
regarded as a major concern.

Moreover, this thesis only reviewed open-source object detection and text detection
algorithms published with a paper before 2020.

1.5 Definition of Terms

This thesis notates images without any texts as ‘non-text images’, and images with texts
embedded as ‘text images’. For the purpose of filtering out non-text images, the term
‘text detection‘ is defined as a binary classification task, which takes an image as input
and outputs binary results. The result is ‘true’ when the input image contains texts; the
result is ‘false’ when the input image contains no text. Consequently, the term ‘negative
samples’ in this thesis refers to non-text images.

For an object-detection system, ‘bounding box’ indicates the rectangular box generated
to present the location of the object, and ‘objectness’ stands for the confidence of the
presence of object in the bounding box.
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(a) An example of images embedded with
texts in artistic fonts.

(b) An example of images embedded with
handwriting.

(c) An example of distorted images em-
bedded with printed texts.

(d) An example of distorted images em-
bedded with printed texts.

Figure 1.3: Different types of text images not in the scope of this study.
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Chapter 2

Literature Review

This chapter is a comprehensive review of recent major works relating to object detection
and its sub-field, text detection, including their tendencies, aims, and methodologies. This
chapter also reasons why prior works in text detection usually considered only positive
samples and points out the potential influence of excluding negative samples.

As discussed in the previous chapter, this study is under the background of filtering out
non-text samples efficiently. Thus, efficiency, including model size and training/predicting
time, is the main concern when reviewing prior works. Additionally, recall is also a key
parameter. Since the ultimate goal is to maximize the use of computation resources and
time, this study tries to sift out as many negative samples as possible, while keeping all
positive samples for more processes.

2.1 Object Detection

Object detection is a computer vision task that locates visual object instances of certain
predefined categories in digital images and videos, combining image classification with
precise object localization to provide a comprehensive understanding of the image [4].
As one of the most fundamental and challenging problems in computer vision, object
detection has received great attention and achieved remarkable breakthroughs with the
rapid development of deep learning techniques [41] in recent years. Thus, it is widely
accepted that the progress of object detection has generally gone through two historical
periods: ‘traditional object detection period’ and ‘deep learning based detection period’
in the past two decades[95]. Compared to traditional object detection methods relying
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one man-crafted feature extraction by experts [64], such as VJ detector [84], SIFT [54],
HOG [14], DPM [21], deep learning techniques, especially Convolutional Neural Networks
(CNN) [40], allow computational models to learn significantly complex, subtle, and abstract
representations [50]. In the deep learning era, object detection can be categorized into two
genres: ‘two-stage detection’, which frames the detection as a ’coarse-to-fine’ process, and
‘one-stage detection’, which frames the detection as a “complete in one step” process [95].

As Figure 2.1 shows, both one-stage and two-stage object detection frameworks evolved
to achieve higher speed and accuracy in the deep learning era, which inspired the innovation
of text detection. Overall, the one-stage detection strategy has real-time speed but lower
accuracy, especially for small objects, while the two-stage detection strategy provides more
precise detection, but consumes more time. However, both two types of frameworks are
adopting advantages of each other, which blurs the boundary of one-stage and two-stage
detection.

Figure 2.1: A timeline of object detection frameworks development, including the mile-
stones of two-stage object detectors (R-CNN [24], Fast R-CNN [23], Faster R-CNN [71])
and one-stage object detectors (YOLO [68], SSD [51], Retina-Net[47]).

2.1.1 Two-stage Object Detection Frameworks

The two-stage detection methods, also called region-based methods, consist of two phases:
(1) extracting region proposals, and (2) classifying regions based on computed CNN fea-
tures. This section introduces the Region-based Convolutional Neural Networks (R-CNNs)
series of work as a representative of two-stage detection systems.
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R-CNN

R-CNN [24] is the first paper using CNN for object detection, which has a profound in-
fluence on almost all the other two-stage detection methods. R-CNN detector consists of
two modules: region proposal module and feature extraction module. The region proposal
module extracts a set of category-independent object proposals by selective search [80];
The feature extraction module feeds rescaled proposals into a CNN model to extract fea-
tures. It then classifies objects within each region with linear Support Vector Machine
(SVM) classifiers. It also regresses the bounding-boxes for precise prediction. Compared
to traditional object detection methods, R-CNN gives a 30% relative improvement over
the best previous results on the dataset PASCAL VOC 2012 [20, 1].

Figure 2.2: The framework of R-CNN [24].

Fast R-CNN

Since the publication of R-CNN[24], numerous models have been proposed to improve the
performance of R-CNNs on object detection tasks. Fast R-CNN [23] integrates the advan-
tages of R-CNN and SPPNet[28] and accelerates the computation by sharing computation.
Instead of performing a CNN forward pass for each region proposal, Fast R-CNN produces
a convolutional feature map and then extracts a fixed-length feature vector from the feature
map with a Region of Interest (RoI) pooling layer for each object proposal. Additionally,
Fast R-CNN improves the object detection task by jointly training the classifier and the
bounding box regressor by using a multi-task loss on each labelled RoI.
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Figure 2.3: The framework of Fast R-CNN [23].

Faster R-CNN

Although Fast R-CNN [23] can train VGG16 [76], a very deep detection network, 9 times
faster than R-CNN [24] and 3 times faster than SPPnet [28], its detection speed is still
limited due to the proposal detection. To breakthrough this bottleneck, Faster R-CNN[71]
was proposed shortly after the Fast R-CNN, introducing RPN to achieve nearly cost-free
region proposals and propose a training scheme to combine the Fast R-CNN and the RPN
into a unified system.

Figure 2.4: The structure or RPN [50].

In contrast to using Selective Search [80] to propose RoI, RPN introduces novel “anchor”
boxes. As Figure 2.4 shows, anchor boxes are a series of multiple scales and aspect ratios
bounding boxes, generated with a sliding fixed-size window on the shared feature maps.
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For each anchor boxes, the training scheme calculates binary classification labels according
to a certain threshold of Intersection over Union (IoU) and the ground truths. Taking those
binary classification labels and the vertices of anchor boxes as the inputs, RPN combines
the loss of binary classification and region regression for training. Thus, the Faster R-
CNN waives nearly all computational burdens of Selective Search at test-time and shares
convolutional features with the downstream detection network to simultaneously regress
region bounds and object categories scores at each location on a regular grid, which leads
to a significant improvement of efficiency and overall object detection accuracy.

Figure 2.5: The framework of Faster R-CNN [50].

2.1.2 One-stage Object Detection Frameworks

In contrast to two-stage detection systems, which apply image classifiers on hypothesized
bounding boxes to perform detection, one-stage detection systems adopt global regression
or classification strategies without region proposal networks. Therefore, one-stage detectors
are also called region-free detectors.

YOLO (You Only Look Once)

YOLO [68] was proposed as the first one-stage object detector in 2015, which converts
the object detection task into a regression problem with only a single neural network to
perform unified detection. Inspired by the GoogLeNet [79], an image classification model,
the single neural network in YOLO has 24 convolutional layers followed by 2 fully connected
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layers, which takes entire images as inputs and requires only one network evaluation. The
prediction pipeline pre-processes input images by dividing them into cells with a grid,
predicts bounding boxes for each grid cell and confidence scores for each bounding box,
and post-process the outputs with Non-Maximum Suppression (NMS) to eliminate multiple
detections.

Due to the novel framework, YOLO can be optimized end-to-end directly on detection
performance with real-time speeds and high average precision. Compared to region-based
methods, such as R-CNNs, YOLO has better performance on encoding contextual informa-
tion and distinguishing objects from backgrounds. However, the low-resolution grid limits
the performance of YOLO, especially under several scenarios, including small objects, ad-
jacent objects close to each other.

Figure 2.6: The framework of YOLO [50].

YOLO evolves. YOLOv2 [69] proposes Darknet-19, a backbone network for classifica-
tion, and adopts a series of design decisions to achieve higher detecting precision, including
batch normalization, anchor boxes, dimension clusters, fine-grained features and multi-scale
training. Inspired by ResNet [29], YOLOv3 [70] proposed Darknet-53, a deeper and robust
feature extractor, and adopts independent logistic classifiers, performing better on complex
datasets with overlapping objects. Furthermore, YOLOv4 [10] achieves even higher detec-
tion accuracy by adopting a series of “bag of freebies” and “bag of specials”. The former
concept indicates the methods changing the training strategy or increasing the training
cost only; the later concept represents the plugin modules and post-processing methods
with a small amount of inference cost yet significant improvement in the accuracy.

SSD (Single Shot MultiBox Detector)

SSD [51] is the first object detector without pixels or features resampling for bounding box
hypotheses. In contrast to YOLO [68], SSD adopts the VGG16 backbone network [76] and
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a set of default anchor boxes to detect objects of various scale and aspect ratios on multiple
feature map layers to improve the detection accuracy on small objects. Additionally, SSD
predicts object categories and offsets in bounding box locations and their corresponding
confidence scores with a small convolutional filter, instead of detecting the presence of
object categories in the default grid as YOLO.

Figure 2.7: The framework of SSD [50].

With the framework predicting on multiple feature maps, SSD increases detection speed
further while achieving high accuracy with relatively low-resolution input. Compared to
the state-of-art two-stage object detector in 2016, Faster R-CNN [71], SSD is three times
faster and achieves higher accuracy on the object detection datasets PASCAL VOC [20] and
COCO [48]. Thus, most of the subsequent one-stage object detection systems were devel-
oped based on SSD. Furthermore, DSSD (Deconvolutional Single Shot MultiBox Detector)
[22] is proposed based on SSD by adding the deconvolutional module and the prediction
module to strengthen features by increasing the resolution of the feature maps.

RetinaNet

RetinaNet [47] is a one-stage object detector using ResNet-FPN [29, 46] as the backbone
network. The main contribution of RetinaNet is introducing the Focal Loss for classification
to solve the problem of foreground-background class imbalance. Unlike two-stage detectors,
such as R-CNNs, filtering out most background locations in the first stage, i.e., region
proposal stage, most of the one-stage detectors generate a dense set of bounding boxes for
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backgrounds, which leads to extreme imbalance between positive locations and negative
locations. Focal loss helps the system to focus on the hard training examples and avoid the
vast number of easy negative examples overwhelming the detector during training by down-
weighting the loss assigned to well-classified or easy examples. Combining the advantage
of ResNet, FPN and Focal Loss, RetinaNet outperforms DSSD [22] in terms of detection
precision, especially on small and medium objects.

Figure 2.8: The architecture of RetinaNet [47].

2.2 Text Detection

Text detection, as a subfield of object detection, also exploits the witnessed advancement
in deep learning and object detection to adapt to complicated scenarios. In the classical
machine learning era, the majority of text detection methods relied on Sliding Window
[39, 11, 26] and Connected Components Analysis [56, 19]. Compared to the classical ma-
chine learning based methods, deep learning brings significant improvements in efficiency,
robustness and precision to text detection frameworks. Thus, this section focuses on only
deep learning based text detection systems.

Different from object detection, the ultimate purpose of text detection is not just to
locate the texts in images precisely, but to serve text recognition and even further appli-
cations, such as VQA [9, 57]. Therefore, recent researches on text detection, including
algorithms and datasets, are oriented by challenges in text recognition, especially the Ro-
bust Reading competition held by International Conference on Document Analysis and
Recognition (ICDAR). Furthermore, the trend of text detection and recognition is not lim-
ited to pursuing extreme performance but solving more complicated and comprehensive
problems, such as multi-language texts[61, 60], distorted images [32, 34], and texts aligned
in arbitrary shapes and orients [13]. Thus, this section aims to review text detection meth-
ods according to their performance under the scenario of classifying text and non-text
images, instead of their robustness under complicated scenarios.

13



Influenced by the categorization of text recognition, most text detection surveys classify
text detection frameworks according to the methods used in the model. Raisi et al. cat-
egorized text detection methods into bounding-box regression-based, segmentation-based,
and hybrid approaches [67]. Long et al. classified text detection methods into pixel-level,
component-level, and character-level methods [53]. Liu et al. used region proposal-based,
segmentation-based, and hybrid methods to distinguish text detection methods [50]. Lin et
al. grouped text detectors as semantic segmentation based methods, general object detec-
tion based methods, and hybrid methods [45]. Considering the study is under the scenario
of distinguishing text/non-text images efficiently, this section categorizes text detection
frameworks into one-stage and two-stage text detection.

2.2.1 Two-stage Text Detection Frameworks

The criteria to distinguish two-stage text detection algorithms are different from object
detection algorithms. The pipeline of a text detection algorithm may consist of more
than two stages, such as feature extraction, text-line generation, word partition, proposal
filtering, etc. Unlike two-stage object detectors, the first stage of a two-stage text detector
is not necessarily to be the region proposal. Thus, this study classifies a one-stage text
detector from a two-stage one by whether the detector has a text instance segmentation
phase.

EAST (Efficient and Accurate Scene Text detector)

As Figure 2.9 shows, EAST [92] consists of two stages: (a) Fully Convolutional Network
(FCN), the feature extraction stage, which produces text regions predictions directly with-
out word partition; (b) NMS, the candidate aggregation stage, which is used as the post-
processing applying thresholding on the scores of text regions to yield word or line-level
detection results.

EAST provides two geometry shapes for text regions, rotated box and quadrangle, and
corresponding loss functions to detect multi-oriented and multi-quadrilateral shapes text.

Figure 2.9: The pipeline of EAST.
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SAST(Single-Shot Arbitrarily-Shaped Text detector)

Though names as a single shot text detector, SAST [85] consists of two stages, the feature
extraction stage and the text instance segmentation stage, as Figure 2.10 shows. The
feature extraction stage uses context attention blocks

Figure 2.10: The pipeline of SAST [85].

2.2.2 One-stage Text Detection Frameworks

MSP-Net (Multi-scale Spatial Partition Network)

MSP-Net [5] is proposed to distinguish images that contain text from a large volume of
natural images, which is highly similar to this study. As Figure 2.11 shows, MSP-Net
divides images into multiple-scale squares via spatial partitions and distinguishess text
images from non-text images by simultaneously predicting the presence of texts in each
squares of images in a single forward propagation.
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Figure 2.11: The architecture of MSP-Net [5].

Due to the extreme lightweight architecture, this framework has high throughput but
limited performance, especially with those texts of extreme aspect ratios, which is hard to
capture via spatial partitions.

TextBoxes

Inspired by SSD [51], TextBoxes [43] is an end-to-end trainable one-stage text detector,
which proposes the text-box layers to solve this problem that SSD fails on text detection
due to the extreme aspect ratios of texts. The architecture is as Figure 2.12 shows.

Figure 2.12: The architecture of TextBoxes [43].
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DB (Real-time scene text detection with Differentiable Binarization)

The main contribution of DB-Net [44] is introducing a novel differentiable binarization
module (DB module) to perform an end-to-end trainable binarization process in a seg-
mentation network. The traditional segmentation-based network consists of two stages,
pixel-level prediction and post-processing algorithms, to get the bounding boxes. DB uses
two heads to produce probability map and threshold map from a FPN backbone, and
calculates the binary map from the former two maps through the DB module to directly
outputs predictions. Based on a simple segmentation network, DB achieves state-of-the-art
results in terms of both detection accuracy and speed on the different benchmarks.

Figure 2.13: The architecture of DB-Net [44].

2.3 Other Technical Innovations

Deep-learning-based architectures, especially object detection architectures, can be divided
into “head”, “neck” and “backbone” networks, where the backbone network is a term of
feature extractors, the head network indicates the method predicting and outputting ac-
cording to extracted features, and the neck networks stands for the sub-network between
the head and the backbone for better feature extraction. In this section, ResNet, a back-
bone network, and FPN, a neck network, are introduced used, which are used to build
object detectors and text detectors in this study.

2.3.1 ResNet (Residual Network)

With the development of CNN, deeper neural networks are proposed to better extract the
feature and further represent certain function classes [77] than shallower neural networks.
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However, it is difficult to train neural networks with increasing depth due to the degradation
problem, which is the phenomenon triggered by higher training error that the accuracy
gets saturated and then degrades rapidly with the network depth increasing. ResNet [29]
introduces the residual learning module to address the problem, which creates a shortcut
connection between the input and output to a CNN block to imply an identity mapping,
so that the following layers can learn the feature from the input easier from the residual.

Figure 2.14: A block using residual learning [29].

As Figure 2.14 shows, notate x as the input of the block, and F(x) as mapping of
this block. By the shortcut connection, The original mapping is recast into the residual
mapping, F(x) + x, for easier optimization, which can be realized by feed-forward neural
networks. With residual learning, ResNet into very deep neural networks by stacking
blocks. Compared to VGG [76] which can be up to 19 weight layers, ResNet can be up
to 152 weight layers. Thus, ResNet is used in various frameworks, such as R-CNNs, for
better feature extraction. In this study, I used ResNet50, the 50-layer residual network, as
the backbone network of object detectors.

2.3.2 FPN (Feature Pyramid Network)

Pyramids structures, a series of images or feature maps in a hierarchy of high to low
resolution, are considered as effective methods to representing image information since
the traditional image processing era [2]. However, it is compute and memory intensive to
build feature pyramids upon image pyramids, especially with increasingly deeper neural
networks in the deep learning era. To alleviate this problem, FPN, a top-down feature
pyramid architecture with lateral connections, is proposed to extract high-level semantic
features and detect objects at all scales with marginal extra cost [46].

18



2.3.3 ResNet + FPN

ResNet is a good candidate as the bottom-up pathway of FPN. According to the experi-
ments of running ResNets with different numbers of layers on the CIFAR-10 test set[29],
the classification error decreases as the number of layers increases until it reaches 112 lay-
ers. Considering the affordable computation resources and training time, this study uses
the ResNet50, the 50-layer ResNet, to build the backbone. 7

Figure 2.15: A block merging the lateral connection and the top-down pathway by
addition[46].

As Figure 2.15 shows, FPN consists of a bottom-up pathway, a top-down pathway
and lateral connections. The bottom-up pathway conduct feed-forward computation with
ResNet [29] to downsample and create “stages” of decreasing spatial resolution. And the
top-down pathway reuses the last stage with the nearest neighbour upsampling spatially
coarser to reconstruct the stages of higher resolution. Additionally, lateral connections
merge two feature maps of each stage to combine the higher-level semantics from the
top-down pathway and more precise locations of features from the bottom-up pathway.
Furthermore, FPN leverages the architecture as a feature pyramid and enables prediction
independently on each stage.
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Chapter 3

Methodology

This chapter explains the methods used in this quantitative study, which evaluates the
performance of object and text detectors on classifying text and non-text images. Two
datasets were generated and used as benchmarks for the binary classification task, whose
data were collected from two text detection datasets. The experimental data for perfor-
mance comparison were gathered by controlling the structure of the backbone network and
training parameters.

3.1 Dataset

Scene text and born-digital text are considered as two basic classes of texts in images,
where the former refers to text naturally present on a scene image, such as advertising
boards and signage boards; the latter refers to text that is digitally placed in a digitally
created image [89]. In this study, object detectors and text detectors were evaluated with
both two types of texts.

As discussed in Section 1.2, most text detection datasets include only positive samples.
This section introduces the source of negative samples and the method of creating new
datasets for binary text detection. To prevent the possibility that the model is learning
the difference between two datasets instead of the difference between text and non-text,
the negative samples and positive samples for experiments were selected from the same
dataset.

Since the text detection and object detection frameworks require bounding boxes as
their ground truth format, the ground truth in the training process is presented by min-
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imum bounding box — for each text instance in a sample image, its minimum bounding
box is a rectangle of the smallest area but covering every pixel of the text as Figure 3.1b
and 3.4a shows.

3.1.1 Scene Text Dataset

The dataset COCO is proposed for advancing the state-of-the-art in object recognition
by placing the question of object recognition in the context of the broader question of
scene understanding, which contains 2.5 million labelled instances of easily recognizable
91 objects types in 328k images [48]. Based COCO, COCO-Text1 annotates the text
instances in a part of samples in the dataset train20142 (the 2014 version training
dataset of COCO).

Note that COCO-Text annotates only partial positive samples in train2014, it is
incorrect to flag all the other samples in train2014 excluded from COCO-Text as neg-
ative samples. In other words, notating the whole train2014 as the universe, the set of
all positive samples is the absolute complement of the set of all negative samples, while
the samples annotated by COCO-Text is just a subset of all positive samples, which in-
dicates the absolute complement of COCO-Text contains both positive and negative sam-
ples. Thus, we cannot get a reliable source of negative samples directly by conducting set
subtraction between train2014 and COCO-Text. Therefore, we created a new dataset
for binary text detection, named as coco10003, by selecting 500 non-text images from
train2014 manually and combining those negative samples with 500 positive samples
from COCO-Text.

3.1.2 Born-digital Text Dataset

SynthText [25] is a project that provides source code4 and a dataset of background images,
bg img5, to generate born-digital text datasets synthetically. Though the bg img is

1Download: https://github.com/bgshih/cocotext/releases/download/dl/cocotext.
v2.zip

2Download: http://images.cocodataset.org/zips/train2014.zip
3Download: https://drive.google.com/file/d/163U8722lrJwKF1GermdLOXG7wrhHso2n/

view?usp=sharing
4Source code: https://github.com/ankush-me/SynthText
5Download: https://thor.robots.ox.ac.uk/˜vgg/data/scenetext/preproc/bg_img.

tar.gz
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(a) A negative sample. (b) A positive sample with its annotations.

Figure 3.1: Samples from coco1000.

supposed to be a reliable source of non-text images, it contains some images with born-
digital texts (Figure 3.2a) and scene texts (Figure 3.2b).

(a) net 19.jpg contains born-digital text. (b) leather 44.jpg contains scene text.

Figure 3.2: Examples of text images from bg img.

Based on the fact that bg img contains positive samples, we created a dataset for
born-digital text detection, named as synthtext4986, combining manually selected non-
text background images from bg img and text images from the pre-generated SynthText

6Download: https://drive.google.com/file/d/1tFQpn4KC8eSDDT8qLCcWUQivLut4M_
sT/view?usp=sharing
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dataset7. Observe that the bounding boxes in the ground truth of the pre-generated Syn-
thText dataset were presented via convex quadrilaterals instead of rectangles. For unifying
the shape of bounding boxes, the vertices of a bounding box in the synthtext498 were
generated by calculating the minimum and the maximum of the abscissa and ordinate as
Figure 3.3 shows.

Figure 3.3: Converting a convex quadrilateral bounding box into a rectangle bounding box.

(a) A negative sample. (b) A positive sample with its annotations.

Figure 3.4: Samples from synthtext498.

7Download: https://thor.robots.ox.ac.uk/˜vgg/data/scenetext/SynthText.zip
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3.2 Frameworks

As discussed in the previous chapter, this study chose Faster R-CNN [71] and RetinaNet
[47] as the milestone of two-stage and one-stage object detector to be implemented and
evaluated under the binary text detection scenario. As for text detectors, DB-Net [44] and
SAST [85] were selected as representative one-stage and two-stage frameworks, and their
pre-trained models were evaluated in this study. Additionally, both two selected object
detection frameworks were established with the same backbone network to extract the
features of input images. And the selected pre-trained models of DB-Net and SAST also
adopted the backbone network with the identical structure of the network used in object
detectors.

3.2.1 Backbone Network

As discussed in Section 2.3.3, the backbone network was built according to the FPN struc-
ture [46], where the ResNet50 [29] functioned as the bottom-up pathway.

The Structure of ResNet + FPN The structure of the backbone network is shown as
Figure 3.5. Based on the spatial pyramid hierarchy of FPN, the ResNet could be divided
into five stages. Between each stage, a shortcut connection layer matched the dimension
for residual learning. The first level of the ResNet50 was similar to the stem block in
GoogLeNet [79]. The rest of the stages were labelled as Res2 to Res4 sequentially. Each
stage halved the size of the output feature maps while maintaining the time complexity by
stacking an increasing number of 3-layer convolution blocks.

The Implementation of ResNet50 + FPN In this study, the 50-layer of ResNet
was implemented. Notating the width and height of an input image as H and W , the
stem compressed the input image to 1/4H × 1/4W with a 7 × 7 convolution, followed by
Rectified Linear Unit (ReLU) and max pooling layer (kernel size = 3× 3, stride = 2 × 2,
padding = 1× 1). The rest of the stages were labelled as Res2 to Res4 sequentially. Each
stage halved the size of the output feature maps while maintaining the time complexity by
stacking an increasing number of 3-layer convolution blocks. In every convolution block, the
first 1×1 convolution reduced the dimensions, so the 3×3 convolution reduced dimensions
to extract features with smaller dimensions for less computation, and the second 1 × 1
convolution restored the dimensions. After each convolutional layer of ResNet50 listed
in Table 3.1, batch normalization was adopted to accelerate the convergence, followed by
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Figure 3.5: The structure of the backbone network combining ResNet50 and FPN.
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ReLU activation to alleviate the vanishing gradient problem further. Notate the level of
the stage as l, then the size of the feature map at level l is 1/2lH × 1/2lW .

Due to the large memory footprint yet limited semantic features of the first stage
(stem), the FPN structure utilized the feature activations of the last residual block from
Res2 to Res5, notated as C2 to C5 sequentially for prediction. The lateral connections, 1×1
convolutional layers, unified the channel dimensions to 256 from C2 to C5. As Figure 3.5
shows, at the top of the backbone network, the output of lateral connection on C5, notated
as C ′

5, was used to generate a coarser feature map of the same size with C4 via nearest
neighbour up-sampling by a factor of 2. The up-sampled C ′

5, merged with the lateral
connection output of C4 via element-wise addition, continued to undergo up-sampling
along the top-down pathway to reconstruct finer resolution maps. This process would keep
iterating until it reached the C2 level. Then the merged maps at the second, third and
fourth level output the final feature maps, notated as P2 to P6 correspondingly, through
3×3 convolutional layers to reduce the aliasing effect of up-sampling. Additionally, P5 was
generated through a 3 × 3 convolution directly from C ′

5, while P6 and P7 were generated
via convolutions from C5. The parameters of the covolutional layers in FPN were listed in
Table 3.2.

3.2.2 Object Detection Frameworks

The main divergence between two-stage and one-stage detection frameworks is of the de-
tection head structure, which localizes and classifies the objects based on the feature maps
extracted by the backbone network. This subsection illustrates the structure of two object
detectors, emphasizing how these detection heads regress the classify.

The Two-stage Object Detection Framework: Faster R-CNN

The Structure of the Faster R-CNN Head The head of the selected two-stage object
detector, Faster RCNN, consisted of two parts, the RPN and the RoI head. In RPN, the
anchor generator first placed anchor boxes of r different aspect ratios and a specific size
on the feature map at each level. Then 4 layers of feature maps, P2 to P6, were sent to
RPN one by one. Next, the input feature map underwent a convolution, and its outputs
were used to output objectness logits and anchor deltas through another two convolutional
layers. The objectness logits were represented by r channels, indicating the logits of the
anchors of different aspect ratios on each grid cell. And the anchor deltas used 4r channels
to represent the 4 vertices of each r anchors. At each level, RPN adopted NMS algorithm
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Names Layers #Input #Output Kernel Stride Padding

Stem 2-D Convolutional 3 64 7× 7 2× 2 3× 3

Res2

Shortcut Connection 64 256 1× 1 1× 1
2-D Convolution 64 64 1× 1 1× 1
2-D Convolution 64 64 3× 3 1× 1 1× 1
2-D Convolution 64 256 1× 1 1× 1

Bottleneck Block ×2
256 64 1× 1 1× 1
64 64 3× 3 1× 1 1× 1
64 256 1× 1 1× 1

Res3

Shortcut Connection 256 512 1× 1 2× 2
2-D Convolution 256 128 1× 1 2× 2
2-D Convolution 128 128 3× 3 1× 1 1× 1
2-D Convolution 128 512 1× 1 1× 1

Bottleneck Block ×3
512 128 1× 1 1× 1
128 128 3× 3 1× 1 1× 1
128 512 1× 1 1× 1

Res4

Shortcut Connection 512 1024 1× 1 2× 2
2-D Convolution 512 256 1× 1 2× 2
2-D Convolution 256 256 3× 3 1× 1 1× 1
2-D Convolution 256 1024 1× 1 1× 1

Bottleneck Block ×5
1024 256 1× 1 1× 1
256 256 3× 3 1× 1 1× 1
256 1024 1× 1 1× 1

Res5

Shortcut Connection 1024 2048 1× 1 2× 2
2-D Convolution 1024 512 1× 1 2× 2
2-D Convolution 512 512 3× 3 1× 1 1× 1
2-D Convolution 512 2048 1× 1 1× 1

Bottleneck Block ×2
2048 512 1× 1 1× 1
512 512 3× 3 1× 1 1× 1
512 2048 1× 1 1× 1

Table 3.1: The parameters of the bottom-up pathway, ResNet50, in FPN. #Input and
#Output stands for the channel dimension of the inputs and outputs. Convolutional
blocks (as Figure 2.15 shows) are represented in merged rows with the numbers of blocks
stacked.
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Names Layers #Input #Output Kernel Stride Padding

Lateral C2 2-D Convolution 256 256 1× 1 1× 1
Output P2 2-D Convolution 256 256 3× 3 1× 1 1× 1
Lateral C3 2-D Convolution 512 256 1× 1 1× 1
Output P3 2-D Convolution 256 256 3× 3 1× 1 1× 1
Lateral C4 2-D Convolution 1024 256 1× 1 1× 1
Output P4 2-D Convolution 256 256 3× 3 1× 1 1× 1
Lateral C5 2-D Convolution 2048 256 1× 1 1× 1
Output P5 2-D Convolution 256 256 3× 3 1× 1 1× 1
Output P6 2-D Convolution 2048 256 3× 3 2× 2 1× 1
Output P7 2-D Convolution 256 256 3× 3 2× 2 1× 1

Table 3.2: The parameters of the top-down pathway and lateral connections in FPN.
#Input and #Output stands for the channel dimension of the inputs and outputs.

to rank the top-1000 regions and passed 1000 proposal boxes and objectness logits to RoI
Head. The RoI Head conducted RoI pooling with 4 layers of RoI Align to extract a small
feature map from each RoI [27], flatten sequentially and generate classification scores and
bounding box predictions through two fully connected layers. Finally, the Faster RCNN
Head output top-100 proposals through NMS and sift out proposals with objectness lower
than a certain threshold.

Implementation of the Faster R-CNN Head In this study, the anchor generator
was implemented to place anchor boxes of 3 different aspect ratios {0.5, 1, 2} and a specific
size on the feature map at each level ({32, 64, 128, 512} corresponding to feature maps
{P2, P3, P4, P5}). Thus, the objectness logits were represented by 3 channels, indicating
the logits of 3 anchors of different aspect ratios on each grid cell in RPN,. And the anchor
deltas used 3 × 4 channels to represent the 4 vertices of each 3 anchors. The parameters
of the convolutions in RPN is listed in Table 3.3.

The One-stage Object Detection Framework: RetinaNet

Structure of the RetinaNet Head Different with the Faster RCNN Head, The se-
lected one-stage object detector, RetinaNet, took the outputs {P3, P4, P5, P6, P7} from the
backbone instead of {P2, P3, P4, P5, P6}. P2 was discarded for its intensive computation
demand, while P7 was added for better detection of big objects. In RetinaNet Head, the
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Figure 3.6: The structure of Faster RCNN Head.

Names Layers #Input #Output Kernel Stride Padding

Convolution 2-D Convolution 256 256 3× 3 1× 1 1× 1
Objectness Logit 2-D Convolution 256 3 1× 1 1× 1
Anchor Delta 2-D Convolution 256 12 1× 1 1× 1

Table 3.3: The parameters of the convolutions in the RPN head.
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feature map from each pyramid level was processed in two sub-networks, the class subnet
for object classification and the box subnet for bounding box regression.

In the class and box subnet, the anchor generator generated multiple anchors of
different aspect ratios and sizes at each spatial position. In contrast to the RPN used in
Faster R-CNN, the classification subnet in RetinaNet was deeper and did not share param-
eters with the box regression subnet. The class subnet and box subnet are both consist
of 4 convolutional layers, and each convolutional layer is followed by a ReLU activation.
The class subnet predicted the probability of object presence in every anchor at each
spatial position, whereas the box subnet regressed the offsets of the generated anchors to
any nearby ground-truth object in parallel. The design of the box subnet was identical
to the classification subnet except that it output 4 channels, standing for 4 vertices of the
bounding box, per spatial location. Then, for each pyramid level, the NMS algorithm was
applied to rank and output 1000 top-scoring bounding boxes. Next, the RetinaNet Head
filtered out all the prediction results with a certain threshold.

Figure 3.7: The structure of RetinaNet Head.

Implementation of the RetinaNet Head In this study, the anchor generator at each
level was implemented to place 9 anchors at each spatial position, which were with 3
aspect ratios {1:2, 1:1, 2:1} and sizes {20, 21/3, 22/3}of the original set of 3 aspect ratios.
The parameters of convolutional layers in RetinaNet Head are listed as Table 3.4.

Verification of the Implemented Object Detectors

The accuracy of the implemented object detectors was evaluated with the AP (Average
Precision) metrics under the object detection scenario to verify the correctness of our im-
plementation. However, the performance of the Faster RCNN framework was not evaluated
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Names Layers #Input #Output Kernel Stride Padding

Class Subnet

2-D Convolution 256 256 3× 3 1× 1 1× 1
2-D Convolution 256 256 3× 3 1× 1 1× 1
2-D Convolution 256 256 3× 3 1× 1 1× 1
2-D Convolution 256 256 3× 3 1× 1 1× 1

Box Subnet

2-D Convolution 256 256 3× 3 1× 1 1× 1
2-D Convolution 256 256 3× 3 1× 1 1× 1
2-D Convolution 256 256 3× 3 1× 1 1× 1
2-D Convolution 256 256 3× 3 1× 1 1× 1

Class Score 2-D Convolution 256 720 3× 3 1× 1 1× 1
Box Prediction 2-D Convolution 256 36 3× 3 1× 1 1× 1

Table 3.4: The parameters of RetinaNet Head. #Input and #Output stand for the channel
dimension of the inputs and outputs.

with a ResNet-FPN backbone in its paper [71]. In addition, the performance of the Reti-
naNet framework was only tested on the COCO dataset by its authors Lin et al. [47].
And Lin et al. compared the accuracy of the Faster RCNN and the RetinaNet with a
101-layer version of the ResNet-FPN backbone. Thus, the implemented Faster RCNN and
RetinaNet adopting ResNet-50-FPN backbone were verified on the COCO dataset with the
metrics listed in Table 3.5. The results compared with the data of with ResNet-101-FPN
from Lin et al. were listed in the Table 3.6.

Metric Meaning

AP AP at IoU = .50 : .05 : .95
AP50 AP at IoU = .50
AP75 AP at IoU = .75
APs AP for small objects: area < 322
APm AP for medium objects: 322 < area < 962
APl AP for large objects: area > 962

Table 3.5: The metrics used for evaluating the accuracy (Average Precision) of object
detectors.

According to the data in Table 3.6, with both ResNet-50-FPN and ResNet-101-FPN,
the RetinaNet framework had a higher overall accuracy than the Faster RCNN framework,
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Backbone Framework AP AP50 AP75 APs APm APl

ResNet-101-FPN (Lin et al.)
Faster RCNN 36.2 59.1 39.0 18.2 39.0 48.2
RetinaNet 39.1 59.1 42.3 21.8 42.7 50.2

ResNet-50-FPN (mine)
Faster RCNN 32.4 51.8 35.3 14.9 33.9 41.5
RetinaNet 33.3 51.4 35.8 15.0 32.9 45.8

Table 3.6: Object detection results (bounding box AP), vs. the results in the paper [47]
on the COCO dataset.

while the former one didn’t have a higher AP50. Due to the lower error rate of 101-layer
ResNet-FPN [29], the implemented object detectors had slightly lower AP than the 101-
layer version implemented by Lin et al. Additionally, Lin et al. [47] recorded the AP of
the RetinaNet framework with the 50-layer version of the ResNet-FPN backbone, varying
from 30.5 to 35.7. And the AP of the RetinaNet detector implemented in this study (33.3)
was in that range. Thus, the implemented object detectors were verified.

3.2.3 Text Detection Frameworks

This study selected the pre-trained text detector provided by PaddleOCR8[18, 17], which
is a practical ultra lightweight OCR system, providing both libraries for text detection
and text recognition. Both two selected text detectors, SAST[85] and DB-Net[44], were
adopted ResNet50 as the backbone and trained on the dataset ICDAR2015 [35] for a fair
evaluation.

3.3 Experimental Setup

Experiments were all run on one Tesla K80 GPU, with 11441.0 MB memory, on Google
Colab9, a cloud platform of computation, with two logical CPUs, 13 GB RAM.

Additionally, the object detectors were trained on both COCO1000 and SynthText498
from the pre-trained model provided by detectron2 for 200 iterations with a learning
rate of 0.0125, and the threshold for predictionwas set as 0.7.

8Source code: https://github.com/PaddlePaddle/PaddleOCR
9https://colab.research.google.com/?utm_source=scs-index

32

https://github.com/PaddlePaddle/PaddleOCR
https://colab.research.google.com/?utm_source=scs-index


Chapter 4

Result Analysis

4.1 Experiment Results

This section lists the results of running object detectors and text detectors on two datasets.
Additionally, the reasons for the results are also explained in this section.

4.1.1 Object Detectors

Metrics Faster RCNN RetinaNet

AUROC 0.85 0.93
Precision 0.85 0.93
Specificity 0.86 0.96
Accuracy 0.82 0.77
Recall 0.78 0.57
F1 score 0.81 0.71
Throughput 2.885 2.491
Training time 542 s 529 s

(a) The results on COCO1000.

Metrics Faster RCNN RetinaNet

AUROC 0.96 0.97
Precision 0.73 0.92
Specificity 0.63 0.92
Accuracy 0.81 0.92
Recall 0.98 0.91
F1 score 0.84 0.91
Throughput 2.806 2.489
Training time 571 s 556 s

(b) The results on SynthText498.

Table 4.1: The results of object detectors on two datasets. The unit of throughput is image
per second.
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As the test results listed in Table 4.1, the Faster RCNN had an overall excellent per-
formance on both scene text images and born-digital images, whereas the RetinaNet per-
formed significantly better on the born-digital dataset yet achieved a barely satisfactory
recall and accuracy on the scene text dataset. However, although the RetinaNet had a lower
training time than the Faster RCNN as expected, the RetinaNet had a lower throughput
than the Faster RCNN, which contrasts the conclusion drawn in the literature review.

Explanation

This section provides a potential reason of why the RetinaNet had a lower throughput
than the Faster RCNN in this study, which is contrary to our expectation. As discussed
in Section 3.2.1, each stage of the backbone network halved the size of the output feature
maps. Notating the width and height of an input image as H and W , and the level of the
stage as l, then the size of the feature map at level l is 1/2lH× 1/2lW . The sizes of ResNet50
outputs were listed in Table 4.2a, and the size of FPN outputs in each level was listed in
Table 4.2b.

Names Height Width Channel

Input H W 3
C2

1/4H 1/4W 256
C3

1/8H 1/8W 512
C4

1/16H 1/16W 1024
C5

1/32H 1/32W 2048

(a) The size of ResNet50 outputs.

Names Height Width Channel

P2
1/4H 1/4W 256

P3
1/8H 1/8W 256

P4
1/16H 1/16W 256

P5
1/32H 1/32W 256

P6
1/64H 1/64W 256

P7
1/128H 1/128W 256

(b) The size of FPN outputs.

Table 4.2: The size of the outputs of ResNet50 and FPN.

In this study, the Faster RCNN detector was implemented to generate 3 anchors at
each spatial position on every level of the feature map. Thus, the Faster RCNN detector
generated 1023/4096HW anchors for an input image, which was calculated as Equation 4.1.

Nanchors =
6∑

l=2

1

2l
H × 1

2l
W × 3 =

1023

4096
HW (4.1)

And as Equation 4.2 shows, the implemented RetinaNet detector generated 9 anchors

34



at each spatial position and 3069/16384HW anchors in total for an input image.

N ′
anchors =

7∑
l=3

1

2l
H × 1

2l
W × 9 =

3069

16384
HW (4.2)

For instance, if the size of input image is 800 × 1280, then the size of P2 to P7 would
be {200 × 320, 100 × 160, 50 × 80, 25 × 40, 13 × 20, 7 × 10}, and the anchor generator of
the Faster RCNN should generate 255780 anchor boxes, while the anchor generator of
RetinaNet should generate 194970 anchor boxes. As discussed in the Section 3.2.2, though
the RetinaNet generated fewer anchors than the Faster RCNN, the RetinaNet calculated
the offsets and the objectness on each anchor box before ranking the top-scoring regions
with NMS at each level, while the Faster RCNN calculated the offsets and objectness after
the first NMS sifting the top-1000 proposals. Thus, Faster RCNN calculated the objectness
and offset of fewer anchors could be the potential reason for the observation that Faster
had a higher throughput than RetinaNet.

4.1.2 Text Detectors

Metrics DB SAST

Precision 0.50 0.87
Specificity 0.24 0.88
Accuracy 0.51 0.84
Recall 0.79 0.80
F1 score 0.61 0.83
Throughput 8.997 2.530

(a) The results on COCO1000.

Metrics DB SAST

Precision 0.56 0.83
Specificity 0.20 0.80
Accuracy 0.60 0.88
Recall 0.99 0.95
F1 score 0.72 0.89
Throughput 7.544 1.828

(b) The results on SynthText498.

Table 4.3: The results of text detectors on two datasets. The unit of throughput is image
per second.

The test results of text detectors on two types of datasets are listed in Table 4.3.
Compared to the results of object detectors, the performance of both two text detectors
appeared no significant distinction between two different types of datasets. And the SAST
performed better under the evaluation of all correctness metrics on both datasets. However,
due to the light-weighted detection head, the DB had 3 to 4 times higher throughput than
the SAST.
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4.2 Discussion

The results indicate no strong correlation between the number of stages and the perfor-
mance for the object and text detectors. The lower number of stages does not imply the
performance of the detector, such as higher throughputs or lower accuracy. For instance,
the one-stage object detector has a slightly slower inference speed than the two-stage object
detector, which is contrary to the claims of Lin et al. [47] and explained with a potential
reason in Section 4.1.1.

As for practical application on building a multimodal hateful speech detection system,
the observation with the limited dataset implies that both text detection frameworks were
good candidates to build the text or non-text classifier. Considering that most hateful
memes are categorized as born-digital images, the Faster RCNN would be an economical
choice to sift out memes from an extremely high volume of images due to the high AUROC
it obtained on the SynthText dataset. Additionally, the high accuracy of the SAST
and RetinaNet suggested that they could be a good choice for the task requiring high
precision on classifying a small number of images, such as the images uploaded by the
tagged unfriendly users.

However, the reliability of this data is impacted by the size of the datasets. And the
generalizability of the results is limited since the dataset was designed based on the text
detection datasets instead of the real user-uploaded images. In addition, the results cannot
compare the performance between a text detector and an object detector, constrained by
the methodological choices. The future studies that should be taken into account are listed
in the next chapter.
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Chapter 5

Future Work

Future works are required to obtain a more conclusive result by enriching the benchmark
datasets. Firstly, the limited size of the benchmark should be addressed by future work.
As for implementing a better classifier to distinguish text and non-text images, the deep
learning methods need large datasets to minimize both bias and variance. As for evaluating
the existing methods, testing detectors with larger datasets provide more solid results, since
the higher volume of data helps to reduce the impact of outliers. Secondly, the real-world
datasets, which are supposed to be collected from social media, would be a more valuable
benchmark to evaluate existing detectors in the scenario of classifying positive and negative
text images. User-uploaded images on the Internet are way more chaotic and complicated
than just scene text images plus born-digital images.

In addition, future works are required to draw a more informative conclusion by per-
forming a cross-sectional comparison. In other words, the results comparing text and
object detectors would have a more practical application on choosing a proper framework
for a text/non-text image classifier. It suggests further experiments, which evaluate those
detectors without implementation bias, could be done.

Furthermore, a more comprehensive review on categorizing text detection frameworks
according to the number of stages would be interesting to see. The mainstream text
detection categorization classifies text detection architectures based on the methods. Thus,
it is more challenging to define “stage” fairly and classify text detectors according to it.
This study classifies a one-stage text detector from a two-stage one simply by whether they
need text instance segmentation phases. However, this classification principle cannot be
applied to all the text detectors, since some text detectors state their frameworks including
no less than two stages yet no instance segmentation phases. For example, the Text-
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Block FCN [91] contains five phrases without any segmentation procedure: (1) salient map
generation; (2) text block generation; (3) candidate character component extraction; (4)
orientation estimation; (5) text line candidates extraction.
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