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Abstract 

Manufacturing managers have the option of improving their operations through practices 

such as setup time reduction or quaiity improvement. Making improvements requires the 

investment of resources. For the purpose of determining the level of investments in each 

practice, projects are normally assumed to be independent, and are justified on the basis of 

the expected retuni; from the improvements. This research investigates the effects of this 

implicit assumption of independence between improvement practices on optimal 

investment decisions. To answer the question of whether improvement practices interact 

with each other, and if so, whether the effect of the interaction is significant to the 

investment decision, a model of a manufacturing system was developed. in the modei, the 

independent variables are the levels of investment in each of two improvernent practices 

and the performance rneasure of the system is relevant expected operating costs. For the 

purpases of this study, the two improvement practices i~nplemented in the model are setup 

time reduction and quality irnprovement. 

The model developed here draws primarily upon two previous models. The first, by 

Porteus [1985], adapted an Economic Order Quantity model to include investments in 

setup reduction, and was later extended [Porteus, 19861 to include investrnents in quaiity 

improvement. In these models. when the EOQ for a system was caiculated, cotai costs 

were rninimized as a function of order quantity, investment in setup reduction and 

investment in quaiity improvement. A limitation of Porteus' EOQ-based model is that it 

neglected WIP holding costs, which can be substantial in manufacturing systems. 

Kmarka r  [1987] developed a mode1 based on the M/M/; queuing system which 

predicted WIP levels in a system, and with this model was able to calculate an order 

quantity which minimizes total costs of the system, although no work has been found on 

reducing setup tines or improving quaiity with this type of model. In this research an 

M/G/l queuing model was used to represent a manufacturing ce11 and estimate WIP levek. 

Stochastic service times include setup time and time for rework of defective units in each 



batch processed, with these quantities king the independent variabIes of the model. By 

linking the levels of the independent variables to IeveIs of investment necessary to achieve 

those values, a total expected relevant cost for the system can be estimated, and used as an 

objective function to optimize setup times and defect rates. 

This model has been used to detennine optimum investrnent strategies for cases where 

batch size is fixed or variable, and where the investment-improvement function for each 

decision variable is Iinear or strictly convex. Analytic and numerical results have been 

obtained. 

By comparing optimal levels of the decision variables when each practice is explicitly 

assumed independent of the other to when the optimization is performed simultaneously, 

the question of whether interactions between practices can be answered. The research 

question has been answered in the affirmative: each case of this mode1 shows that 

interactions between the improvement practices exist, and if ignored, these interactions 

can lead to significant levels of over-investment. The most significant factor in 

determining the potential levels of over-investment has been found to be the form of the 

investment-improvement function, which is also one of the empincalIy l e s t  understood 

elements of this model. 
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Chapter 1 : Introduction 

This research is concemed with understanding optimal investment decisions when making 

simultaneous improvements. specifically in setup reduction and quality improvement, on a 

manufacturing system. It will be shown that these improvement practices can interact in a 

manufacniring system, and these interactions can lead to incorrect investment decisions if they 

are not taken into account. The consequence of these incorrect investrnent decisions is that 

more resources wouid be invested than are warranted, with potentially serious levels of over- 

investment occurring. Gaining insight into how simultaneous improvements might interact, 

the impact of such interaction on system performance, and the resulting effects on investment 

decisions is the primary focus of this research. This study models setup time reduction and 

quality irnprovement in the context of an existing, repetitive lot-based discrete manufacturing 

system. 

To illustrate this idea, consider a manufacturing system being studied for potential 

improvements. A manufacturing engineer might propose a setup time reduction projeci and 

develop an investment proposal for the most appropriate level of investment in this particular 

system. Meanwhiie, a quality engineer examines the same systern and proposes an appropriate 

investment in a quality improvement project. Both investment proposals go to a decision 

maker who evaluates them against the firm's investment critena as separate, independent 

projects. Suppose that both proposals are accepted and are implemented sequentially. The 

first project implemented starts with the manufacturing system in its initial state and 

significantly improves the system. The expected level of benefits, such as WIP reduction, 

should be obtained. 

The second project is then implemented on a system much different than that assumed in the 

investment proposal. Since there are. for instance, Iess total WIP costs in the already 
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improved system, there is less potential for savings and the expected level of benefits for the 

second project will not likely be obtained. Thus, becausc of the implicit assumption of 

independence between the two investment proposals, more investment may be made than was 

justified. 

WIP reduction is mentioned here because it has been identified as one of the most significant 

cost savings attributable to irnprovement practices such as setup reduction and quality 

improvement [Primrose, 19921. As well, Boucher [1984] has stated that "observation of large 

scale discrete parts production facilities will show that the largest component of inventory cost 

is work-in-process inventory". Sirnilarly, andytic modeling by Karrrtarkar 119871 produced 

example results showing a holding cost of WIP inventory of eight times the cost of holding 

finished goods inventory. Since WIP is a function of server utilization, which itself is a 

function of setup and quality levels, investing in setup reduction and quality improvement 

would be expected to reduce server utiIization and, ultimately, WIP level. Due to the relative 

magnitude of the cost of holding WJP, it should be included in any model for investment in 

setup and quality improvements, as is done in this research. 

The previous example shows how erroneous decisions c m  occur when investing in multiple, 

simultaneous manufacturing improvement practices without taking into account how the 

improvements interact. The thrust of the remainder of this dissertation is to develop a model 

of a rnanufacturing system for use in studying costs and benefits of investing in manufacturing 

improvements. This mode1 is then used to examine the sources and magnitudes of potential 

errors in the decision process resuiting from neglecting interactive effects. 

1.2 Manufac furing lmprovement Practices 

There have been a number of philosophies introduced in North America over the last decade 

or so which promise to improve the competitiveness of manufacturers implementing them. 

Sorne of the more common philosophies rnight be listed as: 



Lean Production [Womack et al., 19901 

Toyota Production System [Shingo, 19921 

Just In Time (JIT) [Monden, 19931 

Continuous Improvement [Bake jian, 19931 

Distinguishing among these philosophies tends to be difficult since they share important 

attributes. For instance. al1 require that setup time be minimized, that quality be improved and 

that material handling be minimized, among other comrnon practices. While these 

philosophies have been widely publicized, there is evidence that there is significant 

oppominity left for implementation. For instance. Billesbach [1991] found that as recently as 

1990. only 1 io 2% of American manufacturers had effectively implernented Just-In-Time 

production. 

More recently, philosophies such as Fractal Manufacturing [Warnecke, 19931, Agile 

Manufacturing Montgomery and Levine, 19961 and Next Generation Manufacturing [Agility 

Forum, 19971 have corne into the fore. Each of these philosophies, however, demands that 

production operations have been made flexible (i.e., lot sizes effectively reduced to one 

through elimination of setup times) and predictable (Le., quality improved to the point where 

each operation is done right the first time). For exarnple, as Hilton and Gill [1994] point out, 

"Manufacniring process development is a cntical element in achieving agility." Setup 

reduction and quality improvernent still remain at the core of competitive manufacturing 

philosophies. 

The importance of setup reduction and quality improvernent has also k e n  demonstrated 

empirically . In a study of automotive component and electronics manufacturing firms, Fader 

[1992] showed that manufacturing firms which utilized improvement practices such as setup 

reduction and quality improvement had significantly higher total factor productivities than 

firms in the same industries which did not. In turn, Porter [1991] has argued that the 

productivity of a country's manufacturing sector is a key determinant of the standard of living 

of a nation. As well, there is a substantial body of anecdotal evidence (for instance, see 
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[1986]) that these rnanufacturing improvement practices provide significant compctitivc 

benefits at the individual frrm level. 

The amount of improvement possible. and the economics of that improvrment. in a givrii 

factory. wili depend on the puticular circumstances in thar hcility. However. Shinzo [ 19S9.  

p7 151 was able to draw the general conclusions that "no transition to a [JIT] systsrn c m  occur 

without drastic reductions in setup tirnes" and "when implementing the [JIT] systrm. 

t!ierefcre. wc must challenge ourselires to achieve zero defects." Furthcr. White [ 1993) i i ~  ;m 

rmpirical study of 1035 American rnanufacturing f m  found thai setup reduct ion and qualit'. 

improvenent were the two most frequenr ly used pract ices. 

Because setup reduction and quality improvement have been drmonstratrd to: 

1 . provide significant competit ive advantase to h m s  impiement ing t hem. 

2 .  are key CO most recrnt manuhcicturing philosophies. 

3. are the most commonly implemented improvement practicrs. and 

4. appear to be not as widely implemented as might be expectrd. 

they have been chosen to be the two illustrative practices uscd in this stuclu. Thrsr pr;icricc~ 

~ipplied to a manufacturing systern provide t hr benefits of reduçcd invcnrory holding ic>\( h. 

reduced production lead times. reducçci resource utilizar ion and grrarr r predisr abilit y O i 

system performance. By examining two ùnprovement practices topether. potenticil 

interactions between the practices may be studied. 



1.2.1 Setup Reduction 

Often in manufacturing, a common machine is used to perform an operation on a number of 

different products by using adjustments or tooling specialized for each job. As each job 

reaches the operation, it requires the operation to be shut down for a penod of tirne to 

perform a setup. 

Because the server (usually the machine which performs the operation) is occupied while 

setup is taking place, it is not available to process jobs. For a given number of jobs. longer 

setup times means the server is busy a greater proportion of time. This proportion of busy 

time is known as the utilization of the server, and it cm be seen that by reducing setup times, 

the utilization of the server will decrease. 

M i l e  traditional manufacturing practice stnves to maximize utilization of equipment [Shingo, 

19921, higher utilization has a detrimental side effect. From ba5c q~euing theory [Tijms, 

19941 it is known that increased utilization of a server results in greater expected numbers of 

jobs waiting in the queue for the server. These jobs represent WIP inventories, which are 

expensive to maintain. By reducing setup times, server utilization decreases and WIP levels 

and costs decrease as well. 

Another benefit of reduced setups predicted by queuing theory is that the throughput time of 

jobs through the system also decreases [Tijms, 19941. This improves customer service since 

specially-ordered products can be delivered with shorter lead times. 

Irnproving setup times typically requires a firm to invest resources in training, equipment 

modifications or layout changes. However. reduction of WIP inventories represents a 

quantifiable benefit which cm be used to heip justiw the expenditure of those resources. The 

mode1 developed in this research will be used to predict the costs and benefits of making these 

improvement investments, and will be used to explore optimal solutions. 



1.2.2 Quaiity Improvement 

The other practice of interest in this research is that of qudity improvement. If we consider a 

production system which has imperfect quality, the operation must work longer to 

compensate for the scrap and rework required to produce a given output level as compared 

with a system with perfect quality. This extra work causes higher server utilization in the 

sarne way as longer setups. By improving quality, server utilization will be expected to drop 

and result in the same benefits (reduced WIP inventories and faster throughput) as are 

achieved by reducing setup times. Also as  with setup reduction, resources are typically 

required to improve quality, but these resources can be baianced against the gains from 

reduced WIP costs. 



1.3 Modeling Strategy 

To understand the nature of improvements and to mesure their impact, two aspects of a 

system need to be rnodeled: physicai and economic. The physical system is characterized by 

the need to capture setup times, quality defect rework times and WIP levels, as well as  

including manufacturing system parameters such as arriva1 and service times of jobs. A 

schematic diagram of the model is shown in Figure 1.1. In its barest form, it is a systern 

consisting of a single manufacturing operation. Production lots of matenal arrive into the 

system, queue-up for service, are served and Ieave the system. In tum. the servicing of each 

lot consists of a setup operation on the processor, processing of each of the units in the lot, 

inspection of each unit and a rework operation on each defective unit found. 

1 l 
I 1 

f Unbatch Process Inspect Rebarch f 

Batches 
Enter 

Server 

Figure 1.1: Mode1 of Physiclil System 

The economic system model is superimposed upon the physical system model in order to 

capture the costs of investments in improvement practices and the benefits derived in terms of 

reduced operating costs. Such a model is shown in Figure 1.2. lnputs are the amount of 

investmen t in each improvement practice, which are translated in to setup time and quality 

level changes in the physical system mode]. The physical system mode1 uses these variables to 



predict WIP level which, in tum. is translated into operating cos& in the econornic system 

model. By changing the levels of the two decision variables, changes to the total system 

operating cost c m  be estimated. 

Investment Operating 
Level Economic Cost 

)i Mode1 D 

Level 1 Time 4 4 Level 
..-----S. 

1 J 

Batches -------- Batches 

Enter Queue Server Leave 

W Setup 

Figure 1.2: Model of Economic System 

Quality 

This type of cornpound model can then be used to determine investment decisions which 

result in minimum total costs for the manufacturing system. By comparing optimal investment 

levels for the cases where the improvement practices are assumed to be independent in terms 

of their effects on system performance and wherc they c m  potentially interact, the existence 

and significance of interactions can be examined and the magnitude of investment errors can 

be estimated. 

For simplicity, the model will only consider a single production cell. Likewise, only a single 

product is considered. Since implementation time of setup and quality projects is typically 

much shorter than investment amortization periods used in industry, transient penods in the 

production system are not considered. 



1.4 Organization of Remainder of Dissertation 

In summary. the issues to be addressed in this study are: 

It is hypothesized that simuItaneous improvements in setup time and quality level will 

interact when considering the performance of a manufacturing system. What impact may 

this interaction have on economic system performance? 

Interactions between improvernents will also affect the decision to implement these 

practices. How might implementation decisions (i.e., investment levels) change when 

interactions are taken into account? What are the potential magnitudes of errors if they 

are notT 

Which factors affect the magnitudes of these potential erron? 

Developing a model to capture this potential interaction and gaining insight into these 

questions is the objective of this research. 

Chapter 2 presents a review of the literature relevant to the issues outlined in this 

introduction. It also shows how components of previous models can be adapted for use in 

exarnining the research issues in this study. Chapter 3 presents the development of an analytic 

mode1 of the system shown schematically in Figures 1.1 and 1.2 for a specific case. With this 

model, a solution is obtained which provides insight into the interactive nature of the 

improvement practices and the consequences for decision makers. Assumptions in the basic 

model of Chapter 3 regarding the forrn of the investment-improvement hinction used in the 

economic model and whether production batch size is treated as a parameter or variable are 

then sequentially relaxed. The resulting variations of the basic model are then analyzed in 

Chapters 4,5 and 6 and implications for the investrnent decision making process are 

examined. Overall results are summarized in Chapter 7, conclusions are drawn and 

recommendations are made for future research. 



Chapter 2. Literature Review 

In order to examine the behaviour of simultaneous setup reduction and quality improvement 

projects on a production system, a model must be developed. This chapter examines previous 

models of the setup and quaiity improvernent process in manufacturing systems, explains why 

these models are not directly suitable for the current research problem, and discusses aspects 

of other models which will be utilized in this research. 

2.1 EOQ-Based Setup and Quality lmprovement Modeis 

Setup reduction practices gained popularity in North Arnerican manufacturing in the early 

1980's [Hall, 19831. Arguments justifying investments in setup reduction at that tirne were 

intuitive and empirical in nature [e.g., Hall, 1983; Schonberger, 19821. This changed, 

however, when Porteus [1985] introduced an Economic Order Quantity (EOQ) mode1 which 

included setup reduction as a decision variable. A short explanation of his mode1 is given here 

as much subsequent work relies on extension of this basic model. 

In the classic EOQ model, two costs are considered: the cost of placing orders (setup cost) 

and the cost of holding finished goods cycle stock inventory. A manufacturing systern is 

assurned to have a fixed production demand per period, D, which is produced in lots of size 

Q. The processing of each lot involves a setup operation, each of which costs K. The penod 

cost of performing setups then becomes K . DIQ. Average finished goods cycle stock 

inventory is assumed to be QI2 in systems with constant demand. Given a period holding cost 

rate hl cycle inventory holding cost is then h 412. These two costs, as well as total cost, are 

plotted as a function of lot size in Figure 2.1. 
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Figure 2.1: Setup. Inventory and Total Costs in EOQ Mode1 

Total cos  in the EOQ mode1 is the sum of the setup and inventory costs and becornes: 

By setting the first derivative of the total cost with respect to lot size to zero, the optimal lot 

size, or economic order quantity, Q*, is: 

So far in this mode1 setup cost has been assumed to be a fixed parameter. In light of industnal 

practice, however, Porteus conjectured that setup cost could be reduced by investing in setup 

reduction projects. Accordingly, he introduced an investment function to relate the cost of 

performing a setup (K) to the amount invested in setup reduction, a ~ .  One case modeled by 

Porteus was the logarithmic investment function: 



F o r O c K I &  

where & z unreduced setup cost 

a, b are positive constants 

The one-time investment cost of rnaking improvements was amortized into an undiscounted 

period cost through the use of a capitalized cost of capital, i. The new total cost for the 

systern including setup reduction then became: 

+ hQ 
TC(Q, K) = - - + ia , (K) 

Q 2 

By minimizing TC with respect to both lot size, Q, and setup cost, K, Porteus found the 

optimal values for these two variables to be: 

K* = min K,,- ' D 3  
In the event that no setup reduction takes place, the optimal lot size is the same as that 

predicted by the EOQ formula in Equation 2.1.2. However, if setup reduction 1s indicated, 

the optimal Iot size will decrease. 

This basic mode1 has been adapted and expanded by Porteus and a number of other 

researchers. A surnmary of these adapted models (including Economic Production Quantity 

(EPQ) based models) is presented in Table 2.1. 



Table 2.1: Adaptations of Porteus' 1985 Model 

- -  1 porteus [1986b] 1 EOQ Setup and Quality ] 

Au thor 
Porteus [ 1 986a] 

Mode1 and Extensions 

Billington [1987] 
Spence and Porteus [ 19871 
Zangwill [1987] 
Keller and Noori [ 19881 
Rogers [ 19891 

1 Cheng [l99 la] 1 EPQ with Geometric Programming 1 Quality 1 

Decision Variable 

Cheng [1989] 

Freeland et al. [ 19901 
Goyal and Gunasekaran [1990] 
Nasri et al. [ 1 9901 

Discounted EOQ, Optimal sales rate 1 Setup 

EPQ with & w/o Discounting; 
Multiproduct Capacitated EOQ 
Dynamic Lot Sizing 
(Q,r) Inventory Mode1 
General Convex and Concave 
hvestment Functions 

I I Solution I I 

Setup 
Setup 
Setup 
Setup 
Setup 

EPQ with Geometric Programming 
Solution 
Multiproduct EOQ 
Multistage EOQ 
EOQ with Stochastic Lead Times 

Cheng [ 199 I b] 

Kim et al. [1992] 

Setup and Quality 

Setup 
Setup 
Setup 

Kim and Arinze [ 19921 
Trevino et al. [I993] 
Hwang et al. [1993] 
Hong et al. [ 19931 
Me kler [ 1 9931 
Moon [1994] 
Diaby [1995] 
Hong and Hayya [1995] 
Min and Chen il9951 

Solution 
EOQ with Geometric Programming 

EPQ with several hvestment 
Functions 

Quality 

1 EPQ results put into Expert systern 
EPO mode1 based on Em~irical Data 
Multiproduct Capacitated EOQ 
Dynamic Lot Sizing 
Dynamic Lot Sizing 
Multiproduct Capacitated EOQ 
Dynamic Lot Sizing 
EOQ with Budget Constraint 
EOQ 

Setup 

Setup 
Setup 
Setup and Quality 
Setup and Quality 
Setup 
Setup and Quality 
Setup 
Setup and Quality 
Setup and Holding 

Banerjee et al. [ 19961 
Lee et al. [1996] 

1 Geometric Programming Solution 1 I 

Soesilo and Min [1996] 
Sarker and Coates [1997] 

Multiproduct Capacitated EOQ 
EOQ with Geometric Programrning 

- 

Setup 
Quality 

Solution 
EOQ 
EPQ with Variable Leadtimes and 

Quaiity 
Setup 
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A separate line of EOQ based models which study improvement to setup and/or quality via 

learning has also arisen from Porteus' 1985 model. Kanvan et al. [1988] introduced an EOQ 

model in which setup costs decreased according to a learning curve function as the number of 

setups performed accumulated. Replogle [1988] developed a sirnilar model, followed by 

Cheng il99 Ic], each using a somewhat different learning curve function than Karwan et al. 

Cheng followed his model with an EPQ model with setup learning [1994]. An EOQ model 

with 'rnyopic' setup learning, that is, where optimal lot size is only estimated one lot into the 

future, was recently provided by Racharnadugu and Tan [1997]. Improvement of quality 

through leaming in an EOQ model has also been investigated, by Ocana and Zemel [1996]. 

Whi!e these variants of Porteus' original model study the effects of setup and quality 

improvement on a production system, they implicitly assume that improvements occur without 

capital expenditure. Similarly, Fine and Porteus [1989] had developed an EOQ model with 

leming in setup and quality improvement. but with the assumption that leaming was induced 

through small nonsapital stochastically-timed expendinires. As the objective of this research 

is to examine possible interactions between investment projects in setup and quality, these 

learning-based rnodels have little applicability. 

Another evolutionary path of Porteus' original model are for those models which have been 

adapted into multi-item inventory models, for instance. Hong and Hayya [1992] (with varying 

demanas), Hong et al. [1992] (with setup investment) and Hong et al. [1996] (with one time 

vs. dynamic investment in setup). Gallego and Moon [1992] and [1995] have also considered 

rnulti-item economic lot scheduling problems with investment in setup time reduction. 

Similarly, Sung and Lee [1995] studied setup time reduction using a dynamic lot sizing model. 

While perhaps capturing a  greater degree of the complexity of real-world production systems, 

these multi-item models have also b e n  found to be too mathernatically cornplex to obtain 

analytic solutions for optimum investment levels, so that their utility in this research is limited. 

A feature common to al1 the EOQ-based models is that they are based on cost. An implication 

of using a cost bais  is that utilization of the server is not modeled as a function of the decision 

variables. For instance. as setup times are reduced, service time of each batch should drop 
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and server utilization is thus reduced. In the EOQ-based models, however. setup time is not 

considered explicitly, and server utilization is not predicted. 

Knowledge of server utilization is important in this study because, as is known from basic 

queuing theory (e-g., Tijms [1994]), utilization is strongly correlated with queue lengths and 

WIP inventories. WIP inventory levels are arguably more important to manufacturing system 

costs than the finished goods cycle stock inventories used in EOQ based models Boucher, 

1984; Primrose, 19921. For example, Karmarkar [1987] modeled WIP levels in a lot-based 

manufacturing system and found that for typical parameter values, the holding cost of W P  

inventory was eight times as great as the cost of holding finished goods inventory. Because of 

this significant difference in the magnitude of costs, a model should take into account the cost 

of holding WIP. which EOQ based models do not. Furthermore, even if an EOQ model were 

to be adapted to consider the cost of WIP, being cost-based it would still fail to capture the 

changes to server utilization, and ultimately WIP level. expected from changes to the setup 

and quality decision variables. 

For these reasons EOQ based rnodels are not appropriate as the basis of a model for this 

study. However, elernents of these models, such as treatment of setup and quality. investment 

functions and amortization of investment costs will be utilized in this research and are 

discussed in greater detail in subsequent sections of this chapter. 



2.2 inclusion of  WlP lnventories 

WIP reduction c m  be one of the larger sources of benefits for setup reduction projects 

[Boucher, 1984; Karmarkar, 1987; Primrose, 19921. Surprisingly, only one setup reduction 

model bas been found which links improvements in setup times to changes in WIP holding 

costs [Yang and Deane. 19931, and none which link quality improvement to WIP. 

Two approaches to including WIP have been found in the literature: rnodeling WIP as a 

parameter, and estirnating it as a function of the decision variables. The first approach, 

treating WIP as a constant parameter, was used by Goya1 and Gunasekaran [1990] who 

recognized the significance of WIP costs and included hem in their multistage economic 

production quantity (EPQ) model. Similady, Hong [1994] developed a multi-product EPQ 

model which included both WIP costs and setup reduction. However, neither of these models 

treated WIP as a function of server utilization. As such, the expected linkage between 

changes to the decision variables and changes to WIP levels are not captured, so no benefits 

are obtained from WIP reduction. 

A second approach to including WIP is to treat it as a function of the decision variables of the 

model. Karmarkar [1987] created a model with this property by modeling a manufactunng 

system as a queuing system. In his model he assumed that a Stream of jobs arrived to the 

system and were batched into lots before being advanced to the server for processing. The 

server required a new setup before each lot was processed. ~ i t h  this model he was able to 

show that for small lot sizes, system WIP level increased due to the large numbers of setups 

performed while large lot sizes also caused high WIP levels due to the arnount of materiai 

waiting in the batching operation and in the server. There was found to be a lot size which 

minimizes WIP level in the system. This behaviour is shown in Figure 2.2. 



I + 
Batch Size 

Figure 2.2: WIP Inventory as a function of Batch Size (following Kmarkar [1987]) 

A limitation of this work is that an M/M/l type queue (exponentially-distributed interarrival 

and processing times, single semer) was assumed. This assumption may not be reasonable 

since the mean service time changes, as the decision variables are changed, and the service 

time distribution would not be expected to remain exponential. Fortunateiy, this difficulty can 

be overcome by empioying the M/G/I type queue (general distribution of service times), for 

which analytic results are available [Buzacott and Shanthikumar 19931. In fact, this is the 

approach taken by Yang and Deane [1993] who used an M/G/l queuing model as the bais of 

a system to optirnize batch size and setup reduction investment. With this model, they were 

able to show in general that there are diminishing retums from investment in setup reduction, 

but solutions for batch sizes and investment levels were not obtained, nor was any specific 

investment functional form used. 

Two other recent adaptations to Kannarkar's 1987 model were found which exarnined optimal 

batch size in a system with W. Lambrecht et al. [1996] modeled a system in which jobs 

arrived individuaily and were batched before processing. They were able to develop solutions 

for the two cases of deterministic and Poisson arrivals with deterministic processing tirnes. 

Tielemans and Kurk [1996] developed an approxirnate solution for a system with Erlang 



interarrival times of batches and general processing tirnes. Xeither of these models attempted 

to optimize setup time or quality level in addition to batch size. 

Liu and Yang [1996] developed a renewal-theory model of a single semer system in which a 

fraction of jobs were processed imperfectly, of which some could be reworked. This led to a 

system in which new jobs queued for service, as well as rework jobs. Service times included 

random processing times of units. which depended upon whether the unit was new or being 

reworked, and a random setup time for the semer. This mode1 was used to show that there is 

an optimal batch size which minimizes operating costs. although an analytic solution was not 

provided for this optimum batch size, nor was the possibility of investing in quality or setup 

improvement examined. 

While no model has been found in the literature which determined optimum levels of 

investment in setup and quality improvernent, the components necessary to create such model 

exist. Yang and Deane [1993] demonstrated that the use of an M/G/I queue to capture WIP 

costs while postulating the existence of an optimal setup time. Liu and Yang [1996] showed 

that the service time of a queuing model can include setup time and time for dealing with 

quality problems. Thus, a queuing modei can f o m  the bais  of the physical system mode1 

shown in Figure 1.1. This model will estimate WIP levels as a function of setup times and 

quaiity levels. 



2.3 Additional Aspects of the Mode1 

In addition to modelling the basic manufacturing system as a queue, the following aspects also 

need to be considered: 

Treatment of setup and quality decision variables. 

Relationship of investments in improvements to levels of the decision variables. 

Comparing capital costs to period costs. 

The rernaining subsections of this chapter will address previous work in each of these model 

characteristics. 

2.3.1 Modelling Setup and Quality Improvements 

Almost al1 the models listed in Table 2.1 dealt with the setup variable in terms of setup cost 

rather than setup time. An example of the inclusion of setup time in a model was given by 

Spence and Porteus [1987] who examined how setup time reduction increases system capacity 

by recognizing that setup times influence the utilization of the semer. They included setup 

time as one component of service time for each batch processed, where service time of the 

batch was the sum of senip tirne and the time to process each of the units making up the 

batch. Karmarkar [1987] dealt with setup time in a similar rnanner. His model of a queuing 

system with variable lot sizes assumed that a setup was performed at the beginning of service 

of each batch. 

Bane jee et al. [ 1 9961 produced a model in whic h the primary decision variable was setup 

cost, but the corresponding setup time was used as an optimization constraint on system 

utilization. As his model was based on the EOQ model, the objective function was expressed 

in terms of cost, which explains why the primary decision variable was senip cost. The need 

for a constraint on system utilization (that is, average utilization of the system must be less 
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than 100%) expressed in ternis of setup time, however. is puzzling. Intuitively, one would 

expect that in its initial state, the production system will be utilized less than 100%. Since 

setup tirne reduction will only decrease system utilization, it is not known when this constraint 

would ever become binding. 

Spence and Porteus [1987], Kannarkar [1987] and others such as Yang and Deane [1993] 

and Liu and Yang [1996], used models which assumed that each batch of work entering 

processing has setup time adcied to processing time for the batch. Ultimately, this treatment of 

setup times is intuitively reasonable, and will be used in this study. 

Quality, on the other hand, has been modelled in a variety of ways. Porteus [1986b], followed 

by Rosenblatt and Lee [1986] and Hong et al. [1993], assumed that a manufacturing process 

is brought 'in-control' (that is. makes acceptable product) after each setup. When processing 

individual parts in each batch, the process is assumed to go 'out of control' (that is, produces 

defectives) with a given probability for each part processed. Once out of control, the process 

stays out of control and continues to make defective units. The larger the batch, the greater 

the chance that the process will go out of control, and the greater the expected nurnber of 

defective units produced. 

One difficulty with this approach is that the effect of poor quaiity becomes a function of two 

variables: the probabiliiy of the process going out of control with each unit processed, and the 

batch size. This issue can cloud the distinction between changes in system performance 

brought about by changes to quality level and changes to setup times. For instance, reduced 

setup times c m  lead to smaller batch sizes, which in tum will result in fewer defects even 

though the quality decision variable (probability of the process going out of control with each 

unit produced) was not changed. This behaviour in a mode1 makes the task of discovering 

interactive behaviour between the two decision variables very difficult due to this built-in 

interaction between setup time and quality performance. 
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Along lines opposite to that of Porteus [1986b] is Soesilo and Min [1996], who developed an 

EOQ-based model in which quality was the decision variable, and affected setup cost through 

a power-function relationship. This model was developed to represent situations such as the 

manufacture of microprocessors where the quality of the product is measured by the rated 

speed of the rnicroprocessor, which is determined to a significant extent by the care taken in, 

and consequently the cost of, the setup operations when producing these components. Just as 

in Poneus' model, this representation explicitly links setup and quality levels. 

Another approach to modelling quaiity, used by Cheng [1989, 199 1 a,b], Hwang et al. [ 1993) 

and Moon [1994], was to assume that a fixed fraction of production was defective. This 

might corne about in a production system, for instance. if a fixed fraction of production is 

found defective and sent back to the server for rework regardless of whether a unit had been 

previously reworked. Given this assumption. the server would need to process more unis in 

order to meet a target of demand of good units. By improving quality, the number of 

defective units decreases which reduces service time for each batch. Reduced service times 

result in lower server utilization and less expected WIP, providing a benefit to offset the cost 

of improving quality. 

Liu and Yang [1996] extended this idea by assuming that defective items can be divided 

according to whether they are reworked or discarded. Each outcome was given a fixed 

probability of occurring. Furthemore, reworked items are assumed to be good, or discarded 

after rework, with a fixed probability. In order to develop solutions, Liu and Yang resorted to 

renewal theory with which they were able to show an optimum batch size exists which 

maximizes profit, although the value of the batch size must be calculated numerically. 

Investment in quality improvement was not considered in this model. 

A variation of Cheng's [1989, 1991a,b], Hwang et a1.k [1993] and Moon's [1994] approach is 

to add the assumption that defective units can only be reworked once. Such an approach was 

used by Goya1 and Gunasekaran [1990]. A consequence of this modified assumption is that 



22 

the mathematical complexity of the resulting model is reduced. For the sake of simplicity. this 

approach will be used to model quality level in this study. 

2.3.2 Relating lnvestrnents to Improvements 

In order to make improvements to setup and quality levels in a manufactunng operation, 

investment is assumed necessary. In practice, there will be a finite number of improvement 

projects which will be considered for implementation, each of which will have an expected 

benefit for a given cost. Figure 2.3 shows an exarnple of the relationship between the 

expected benefit and required investment for a number of projects under study. 

Q d i t y  
bvel h Potentid Project 

'Efficient Frontief 

Figure 2.3: Investment vs. Improvement, Discrete Project Case 

For instance, Leschke [1996] in a series of case studies was able to develop a classification 

scheme for setup reduction projects, dividing projects into "product level," "process level" and 

"policy level," depending upon whether the project affects the setup time for a single product 

(e.g., such as adapting a single die for a single product to a standardized shut-height), al1 the 

products in a single production ce11 (e.g., adding automatic die clarnping to a stamping press 

which produces many products) or many production cells (e.g., training teams to reduce setup 
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time in al1 production cells in a factory). Even under this classification system, as al1 potential 

projects regardless of category are aggregated, the cost-benefit structure will approach that 

shown in Figure 2.3. 

As shown in Figure 2.3, some projects will provide a greater degree of irnprovement for a 

given investment than others. Decision makers will choose from arnong those projects giving 

the greatest benefit at each level of investment. The set of these choices will f o m  the 

'efficient frontier', which represents the investrnent-improvement function for the discrete 

projects case. 

As the number of improvement projects considered is increased, the number of points on the 

'efficient frontier' will also tend to increase. Through this process the investment function 

might be expected to eventually assume the shape of a srnooth, continuous function such as 

tbat shown in Figure 2.4. 

Figure 2.4: Continuous Case Investment-Improvernent Function 

Setup or 
Quality 
Level 

Given this assumption that the investment-improvement function cm be approximated by a 

smooth, continuous curve, it c m  be conveniently represented by anaiytic functions for use in 

mathematical models. For example, Poneus' mode1 [1985] approximated setup cost 

A 

+ 
Investment 
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altematively with logarithmic and power functions of the investment in setup reduction. 

These foms were not only relatively simple mathernatical!y, but also captured the idea of 

declining marginal returns as increased levels of investment are reached. 

As Porteus' work was expanded by others, a number of other functional forms have been 

proposed by various authors. Table 2.2 presents a summary of the types of functions found in 

the literature. four of which are shown schematically in Figure 2.5. 

Setup or 
Quality 
Level T Setup or ' 

Qualiiy 
Level 

Seîup or 
Qurility 
Level 

lnvestment 

Logarithmic or Exponential 

4 
Setup or 
Quaiity 
LeveI 

e.g., Setup Cost = a/lAb 

investrnent 

e.g., Setup Cost = ( l +abA(-bi)/ 
( 1 +aeA(-bi)) 

Power 

r 

lnvestment 
- - 

lnvestrnent 

Logistic 

Figure 2.5: Shapes of Representative Investment Functions 



Table 2.2: Investment-Improvement Functions Found in the Literature 

Author 1 Functional Form 

Chakravarty and Shtub [1985] 1 Arbitrary Discrete and Continuous 

Porteus [1985] 1 Logarithrnic*, Power 

Porteus [ 1986b] 1 Logarithrnic 

Porteus [1986a] 

Billington [1987] 1 Exponential*, Linear (both with upper and lower bounds) 

General Convex, Piecewise Linear 

Keller and Noori [ 19881 1 Logarithrnic, Power 

Spence and Porteus [1987] 

Rogers [1989] 1 Linear, Arbitrary Convex and Concave 

Logari thrnic 

Kim et al. [ 19921 ( Linear. Parabolic, Logarithmic*, Exponential*, Logistic, 

Cheng [1989] I Power 

Nasri et al. [ 1 9901 

Cheng [1991a], [1991b] 

Trevino et al. [ 19931 1 Empirical Step, Exponential 

Logari thmic 

Power 

Kim and Arinze [1992] 

Hwang et al. [1993] 1 Power 

Step 
Linear, Exponential. Logistic 

Hong et al. [1993] 

I 

Diaby [1995] 1 Logarithmic, Power 

Exponential and Power 

Moon [ 19941 Power 

1 

Lee et al. [ t 9961 1 ~ o w e r  

Hong and Hayya [ 19951 

Min and Chen 119951 

Banejee et al. [1996] 

Arbitrary Convex and Concave 

Arbitrary Convex 

Exponential 

Soesilo and Min [1996] 

1 I 

* Logarithrnic and exponential hnctions represent the sarne relationship expressed in ternis of 
different decision variables (setup cost vs. investrnent). Kim et al. (19921 presents separate 
logarithrnic and exponential functional forms due to his use of different upper and lower 

Power 

Sarker and Coates [ 19971 

- - 

bounds built into the functions. 

Exponential 



The choice of the functional form used appears to be pnmarily for reasons of mathematical 

tractability in the analysis. For insiance, Cheng [1989), [199 la] and [199 1 b], Hwang et al. 

[1993], Moon 119941, Lee et al. [1996] and Soesilo and Min [1996] analyzed their models 

with geometric prograrnrning rnethods, and consequently used a power function to represent 

the investment-improvernent function as power functions are amenable to geometric 

programrning formulations. 

To generalize, the majority of investment functions used by previous authors c m  be classed 

into two categories: constant retums to scale (Le., linear) or decreasing retums to scale (i.e., 

convex, such as exponential or power functions). These two types of investment functions 

will be employed in this study, although the particular form of a convex investment function 

wiil be left until the analysis of Chapter 5. 

2.3.3 Comparing Capital To Period Costs 

An assumption, used implicitly or explicitly, by the authors of the models listed in Table 2.1 is 

that a one-time capital investment is made at the beginning of the project to bring about the 

improvement in the production system. In the mode1 developed in this research, this cost is 

balanced against the benefits obtained from reduced WIP levels. An issue needing to be 

addressed is that the investment in improvements is a one-time cost while the benefits accrue 

over time. The magnitude of a one-time cost is not directly comparable to the periodic 

econornic benefits obtained from the improvement(s). 

Two approaches may be taken to make the costs and benefits comparable. The first approach 

is to discount the Stream of periodic benefits to a present value and determine the net present 

value (NPV) of the improvement project. This approach has been used by Poneus [1986a], 

Billington [1987] and Rogers [1989]. Due to the mathematical complexity of the NPV 

calculation, these authors were only able to offer algorithms for the problem solution and 

present numeric examples. 
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The other approach is to convert the investment into an amortized period cost. and work with 

the total period operating costs of the system under study. This approach has been used by a11 

the researchers listed in Table 2.1 with the exception of Porteus [1986a]. (Billington [1987] 

and Rogers [1989] used both the NPV and amortization approaches and found the resuits to 

be very similar.) 

Authors who used the amortization approach did so for an infinite number of study periods. 

except for Trevino et al. [1993] who used a 5 year amortization period (although conversion 

from finite to infinite number of periods is easily accomplished. e.g., see Fraser et al. (19971). 

With this approach, most authors were able to obtain analytic solutions to the problem of 

finding optimal levels of the decision variables. 

Following the experience of the majority of previous researchers, costs of capital investments 

are dealt with by assuming the one-time investment in improvements is amortized over an 

infinite time span while savings also accrue over an infinite time span. Use of this approach 

increases the Iikelihood of obtaining analytic results while, as Billington [1987] and Rogers 

(19891 found, provide optimal solutions not significantly different from those obtained 

numerically through a NPV approach. 



2.4 Discussion 

Based on the findings of the review of the iiterature, the research issues of this snidy can be 

examined by building a model with the following characteristics: 

Use of an M/G/l queuing model to estimate WIP inventory level as a function of the 

decision variables. 

Setup time modelled as a given amount of time added to the service time of each batch of 

materid. 

Quality level modelled as a fixed probability of production found defective after 

processing and retumed to the server for a single rework. 

An investment-improvement function to relate an investment in improvements to the level 

of each decision variabre. 

Amortization of the one-time improvement investments over an infinite time span to 

convert investments to period costs. 

Models incorporating some. but not all, of these characteristics were found in the literature. 

Of these models, none have been used to examine how setup and quality might interact when 

considering the performance of the manufacturing system and how such interactions might 

affect the decision to make improvements. Creating such a mode1 and explonng rhese 

questions will represent the contribution of this research. 

In the next chapter, these components will be assembled into a.mode1 of a manufacturing 

system which will be used to explore the issues outlined in this snidy. 



Chapter 3: Modeling 

In this chapter a mathematical model of a production system is developed. The purpose of 

this model is to study how changes to both setup time and quality level rnight interact to affect 

the economic performance of the system, and to gain insight into how this potential 

interaction may affect management decisions to invest in those two improvement practices. 

In an effort to manage the complexity of the solutions, and to gain additional insight into the 

behaviour of the optimal investment decisions, four variants of the basic model will be studied. 

Two types of investment function, linear and convex, will be used. Batch size will also have 

two treatments, as a fixed parameter and as a decision variable. This leads to the following 

combinations which are studied in this dissertation: 

Linear Investment Functions, Fixed Batch Size (this chapter) 

Linear Investment Functions, Variable Batch Size (Chapter 4) 

Convex Investment Functions, Fixed Batch Size (Chapter 5) 

Convex Investment Functions, Variable Barch Size (Chapter 6) 

The basic mode1 is developed in this chapter. and results are obtained for the Linear 

Investment Function, Fixed Batch Size case. 

The schematic mode1 of the systern from Figure 1.2 is repeated in Figure 3.1. In this system, 

work arrives in batches, waits in the queue, is processed, and leaves the systern. Upstream 

operations are aggregated as an arriva1 process to this cell, and downstrearn operations can be 

ignored by assuming that once work is completed it leaves the ce11 and has no more effect 

upon it. 
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Figure 3.1: Schematic of Manufacturing System 

Economic 
Mode1 

By modeling the manufacturing system as a queuing system, WIP inventories can be estimated 

as a function of the decision variables: setup time and quality level. The economic model 

superimposed upon this physical mode1 converts the levels of the decision variables into costs 

of investments in improvemenü and the WIP level into an inventory holding cost. Selecting 

levels of the decision variables which balance the cost of investing against the benefit obtained 

from WIP reduction provides the minimum operating cost for the system and the optimal 

investment decision. The existence of interactions can then be determined by comparing 

optimal investment decisions when decision variables are optimized individually or 

simultaneously. 

Operating 
Cost 
m 

The remaining sections of this chapter will describe the model assumptions. develop the 

physical and economic models for this system, and determine optimum investment decisions. 

By cornparhg the results for a case where investments in each practice are assumed 

independent to a case where potentiai interactions are considered, the effect of interactions on 

investment decisioris will be determined. 
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with a fixed probability of being defective. This probability cm only be reduced by investing 

in quality improvement. 

Previous models (e.g., see Table 2.1) have included batch size as a decision variable. While 

treating batch size as a variable will yield a ncher model, it also results in a substantial increase 

in mathematical complexity of the solution process and a corresponding decrease in the 

number of closed-form results which cm be obtained. For these reasons, this research 

considers models with both fixed batch sizes (Chapters 3 and 5) and variable batch sizes 

(Chapters 4 and 6). 

Tijms [1994] has described the Poisson process to be a reasonable representation of the arriva1 

of jobs in a manufacturing system, and this assumption will be used here. Processing times 

will be assumed stochastic and are described with a general service time distribution. With 

these two assumptions, this system can be modelled on the physicai level as a WGII type 

queue, which will be used to predict steady-state flow time for matenal in the cell. By 

invoking Little's Law [Tijms, 19941, the flow time is related to the WIP level of the system. 

Only steady-state conditions will be studied in this model. Intervention in the system (i.e., 

implementation of improvement practices) is assumed to require insignificant time. and full 

benefits are accrued immediately. 

An economic model is superimposed upon the physical model by attaching costs to investment 

in setup and quality improvernents and to the cost of holding WIP inventories. Processing and 

materiai costs are assumed to be independent of changes in setup and quality levels, so these 

costs are not included in the economic model. Of the functions found in the literature to relate 

investrnent to improvement, the linear function will be used in this chapter in order to facilitate 

examination of the behaviour of the system while Iimiting the mathematical complexity of the 

model at this stage. A more complex investment function, a convex function, is studied in 

Chapters 5 and 6. 



3 3 

It is assumed that WIP holding costs are proportional to the number of batches in the queue 

plus any batch undergoing processing. since only complete batches are transported into and 

out of the cell. While there will be some completed units within the batch undergoing 

processing which would be expected to have a higher economic value. it is assumed that the 

value of the batch will only increase once al1 its units are completed, at which time the batch 

leaves the ceII. 

The remaining sections of this chapter develop the mathematical models of this system and 

add further assumptions as needed. 

3.2 Mode1 of Physical System 

3.2.1 Nomenclature 

The following set of symbols will be used in the mathematical models of this section. The first 

group are the basic parameters used in the model: 

D arriva1 rate of job orders [uni ts/period] 

Q lot size of batches [unitshatchl 

'2: time to do each setupt [period/batch] 

r probability of producing defective unit? 1%) 
X processing time for each unit [periodhnit] 

The subsequent group represent derived quantities used in the modeling: 

S processing time for each batch [period] 

W time a unit spends in the system [period] 

h arriva1 rate of batches of jobs (= D/Q) [batches/period] 

P utilization rate of server (= D E[S]/Q) Lw 
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(The i. notation indicates the decision variables in this model, namely, setup tirne and quality 

level.) 

The processing time of each unit, X, is a random variable with a positive, generd distribution. 

The variables S and W are also positive random variables which are derived as functions of X. 

3.2.2 Development of Mode1 

The physical system is modelled as an MG/l queue. It is assumed that complete batches 

arrive to the system according to a Poisson arriva1 process. A first-corne. first-serve discipline 

is used in the queue. As well, batches are kept intact (Le., no splitting or combining batches) 

dunng their time in the system. 

As each batch enters the server for processing it causes a new setup of the server. Setup is 

followed by processing each of the individual units and then by rework of the fraction of items 

found to be defective. It is assumed that defective units are only reworked once and that the 

reworking time and initial processing time have the same distribution. The setup operation 

occupies the server for a set time, T. during which no processing can take place. The batch 

service time, S, is then the sum of these times: 

By assuming processing times are independent and identically distributed, and that they are 

also independent of setup tirnes, the expected service tirne, E[S], can be written as: 
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(The notation E[m] and E[*'] is used to represent the first and second moments, respectively, 

of the variable and will be used in subsequent equations.) 

For the second moment of service times. consider the variance of S: 

V ~ ~ [ S I  = Var r + X, + x2+ ...+ xQ) + (xp+I + xQ+, +-+xQ+a)] [ ( 

Which. due to independence of setup and processing times. can be wntten as: 

Now. rearranging Var[S] = E[s'] - E[s]' for E[s'] and substituting gives: 

Equation 3.2.2 provides for the general case in which setup tirne is a random variable. 

However, in this study it will be assumed to be deterministic as a simplification measure, 

which results in the relationship in Equation 3.2.3: 

From the M/G/l queue, the expected time in the system for a randorn customer is given as 

[Buzacott and Shanthikumar, 19931: 



Which for this system becomes: 

where E[S] and E[s'] are as given in Equations 3.2.1 and 3.2.2 and the identities h. = D/Q and 

p = D/Q E[S] were used. 

The level of WIP, that is, the expected number of batches in the system is related to the 

expected time in the system E[W] from Equation 3.2.5 by invoking Little's Law [Tijms, 

19941, Le., E[WIP] = h E[w. Thus, given the setup time and quality level, this mode1 can 

predict the WIP level of the manufactunng system. 



3.3 Economic System Model 

An economic model is now developed to capture the cost of improving the two decision 

variables, setup time and quality level, and the economic benefit to the system from reduced 

WIP levels. Since costs must be compared on the basis of equivalent time frames, the 

economic model may consider costs on a per-period basis or in terms of a present worth. This 

study uses the former, per-period costs, although costs can easily be converted into an 

equivalent present wonh, if desired. 

3.3.1 Nomenclature 

The following symbols are introduced: 

setup time of initiai system 

normalized setup time (= T/T~)  

initial defect rate 

nomalized defect rate (= r/ro) 

holding cost rate for WIP inventory 

effective interest rate on investment 

investment in setup reduction 

investment in quality improvement 

setup investment function siope parameter 

quality investment function dope parameter 

[period] 

[O<T5 11 

P l  
[ O I R <  11 

[$/uni t/period] 

[%/period] 

[$, one time cost] 

[S, one time cost] 

[period/$] 

[%/SI 

3.3.2 Model Development 

There are a variety of costs one might include in characterizing a production system. One 

particular view is to break down the costs into the following categories: 

Raw Material 

Direct Labour 



System Overhead 

WIP Holding Cost 

Cost of Investing in Improvernents 

The fint, raw material, is a fixed cost per period since it has been assumed that demand per 

period is fixed and reworking defective items does not require extra material. 

Direct labour is a variable cost in the long term. However, due to the practical difficulties in 

adjusting labour supply to compensate for small changes in server utilization resulting from 

improvements to the system, direct labour is assumed to be a fixed cost per period. Sirnilarly. 

overhead costs for this production ce11 will be assumed to be fixed per period. 

This leaves the cost of holding W P  and the cost of investing in improvements as the two 

variable costs in this rnodel. The primary effect on the server of decreasing setup times and 

defect rates is to reduce batch service times (E[S]). and hence, server utilization (since 

utilization = hE[S]). From basic queuing theory it is known that decreased server utilization 

results in decreased queue length; so cost of holding WIP inventory is directiy affected by 

improvements to the system. 

This model assumes that improvements occur immediately after one-time capital investments 

are made. However. WIP holding cost is a period cost. To make the two costs comparable, a 

Capitaiized Cost formula Raser  et al., 19971 is used to convert the one-tirne investment 

values into period costs, i.e.. 

Where: A = period cost of investment 

1 = amount of investment 

i = period interest rate 
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This formula assumes the cost of the investment is spread over an infinite time span. This in 

itself is not realistic, however, for finite study penods an effective interest rate (i.) c m  be 

detennined from the Capital Recovery factor (i, = (NP, i%, N) Fraser, 19971) and used in 

Equation 3.3.1. 

The average time spent in the system by each batch (E[W]) was given in Equation 3.2.5. 

Multiplying by the arriva1 rate of units to the system @) yields the average number of units of 

WIP inventory (via Little's Law), which can then be used to determine average WIP holding 

cost with the help of a holding cost rate (h). Thus. WIP holding cost per period becomes: 

The expected total period cost for the system. E[TC], is the sum of these costs and can be 

written as: 

E[TC] = h D E[W] + (Is + IQ) i + {Fixed Costs} 

where E[W] is from Equation 3.2.5. 

The first term in 3.3.3 represents the cost of holding WIP while the second represents the 

period cost of investing in improvements. The remaining costs in the system have been 

assumed not to be affected by changes in setup or quaiity level and are aggregated into the 

" {Fixed Costs } "  term. 

In order to relate investments in improvements to the level of the setup time and defect rate in 

this model, an investment function is necessary. The linear investrnent function is used in this 

chapter and in Chapter 4, while a convex investment function is examined in Chapters 5 and 6. 

The linear investment function is shown graphically in Figures 3.3a and 3.3b for setup and 

quality. respectively. 



t Setup Tirne (T) Defect Rate (r) 

Investment in 
Setup Reduction 

Investment in 
Quali ty Improvement 

Figures 3.3a and 3.3b: Investment Functions for Senip and Quality Improvement 

The investment-improvement functions can be wntten as: 

where the parameters 'a' and 'b' represent the marginal rate of improvement from investments 

in each factor. A greater value of these parameters represents a lower marginal cost of 

making improvements to each factor. It may be noted that a property of the linear investment 

function is that returns to scale are constant, that is, each increment of improvement has a 

constant cost. The convex investment function, discussed in Chapters 5 and 6, differs 

primarily in that it exhibits declining retums to scale behaviour. 

Using normalized values for setup time and defect rate (i.e., T = TITO; R = dro; O < T, R I 1) 

changes these to: 



Substituting 3.3.Sa. 3.3.5b and 3.2.4 into 3.3.3 gives the expression for the expected total cost 

per period: 

% [r' + (1 + ~)Q{E[x'] + 2=E[X] + (1 + ~)QE[x]~} - (1 + ~')QE[x]'] 
= 

2(i - % {T + (1 + ~)QE[~I})  

1 

The " (Fixed Costs}" îerm has been omitted since it is a constant with respect to the decision 

variables and does not affect optimization results. 

This equation, which includes the first and second moments of service time developed in 

Equations 3.2.1 and 3.2.2, predicts the expected cost of operating the manufacturing system 

shown in Figure 3.2 as a hnction of setup and quality levels, T and R. By establishing this 

relationship, levels of setup and quality can be found which minirnize costs. This will be done 

in the next section. 



3.4 'Naive ' ln vestment Decisions 

The example investment situation described in Chapter 1 is now re-exarnined and the decision 

strategies that would be applied in such a situation are developed more formally. To recap, a 

quality engineer was charged with the task of proposing investment projects which improve 

quality while a manufactunng engineer was responsible for suggesting projects to reduce 

setup times. The separate project proposais were then forwarded to Company management 

for evaluation and approved or rejected based on their expected economic performance. An 

implicit assumption used by the decision maker was that the projects were independent of 

each other and could be correctly evaluated separately . 

With the EFC] function developed in the last section, optimal investment decisions 

appropriate for such projects under the assumption of independence of projecü are now 

determined. Figure 3.4 shows the E[TC] function plotted as a funciion of investment in the 

two decision variables. This function behaves nicely due to the EPC] function (Equation 

3.3.6) being a second-order function of the decision variables. As such. critical points 

representing local minima within the feasible space of each decision variable (cg., 

O 5 T 5 1 and O I R S 1) will also represent the global minimizer of E[TC]. 

Consider the case of irnprovement in setup tirne done. The goal is to find the setup time 

which minimizes E[TC]. The partial derivative of E[TC] with respect to the nomalized setup 

time T is detennined and set to zero: 
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Figure 3.4: Shape of E[TC) Function vs. Decision Variables. 

Solving Equation 3.4.1 for T provides two critical values: 

Checking the second derivative shows the minimum EFC] occurs at: 

A consequence of the use of the linear investment function is that three different investment 

decisions are possible for each factor, narnely: 



1) No Investment (Le., T*, R* = 1) 

2) Some Investment (Le., O < T*, R* < 1) 

3) Full Investment (Le., T*, R* = 0) 

Where T*, R* are the optimal normalized setup time and defect rate. 

There are two 'transitions' between these three cases, namely, between "No" and "Some" 

investment, and between "Some" and "Fuil" investment- The location of these transitions c m  

thought of as boundaries between the different investment decisions, in which the boundaries 

fall at the points where exactly a) no investment. and b) full investment occur. These points 

correspond to T* = 1 and T* = O respectively for the setup function and will be defined as 

the investrnent 'boundaries' in the following sections. 

The transitions between the three investment decisions are a function of the parameter values 

in a system. Intuitively, one will expect that as the marginal cost of improving setup time 

increases, less and less setup improvement will be called for until the optimal decision will be 

to do no setup reduction. Similady. as the marginal cost of reducing setup time drops, more 

setup reduction will be called for until setup is completely eliminated. This idea can be 

expressed in terrns of cntical values of the slope of the investment function curve, 'a.' For 

instance, rearranging Equation 3.4.3 provides an expression for the critical pararneter 'a*' as a 

function of T*: 

Quality level is not being changed in this case, so the variable R will be set to 1 (i.e., set to 

initial quality level). 



A more convenient way to express this critical value is in ternis of the cost to eliminate al1 

setup, ?da*. Rearranging 3.4.4 in terms of this value gives: 

Rernembering that the transitions between the investment decision cases occurred when 

optimal setup time T* = O or 1 exactly, the expressions for the location of the two investment 

boundaries becomes: 

a) No investment Boundary (i.e., T* = 1) 

b) Full Investmen Boundary (i.e., T* = O) 

That is, if the cost to eliminate a11 setup is greater than rda*lF.,, no investment should take 

place. Similarly, if the cost is less than rda*lr4, al1 setup time should be eliminated. 

Between these boundaries, setup time should be reduced but not eliminated to rninimize total 

system operating costs. 
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A sirnilar process in terms of defect rates yields the following equations for the critical costs to 

elirninate defects: 

a) No Investment Boundary (Le., R* = 1) 

b) Full Investment Boundary (i.e., R* = O) 

A convenient method of depicting the decision boundaries for the two factors is with the 

decision rnatrix shown in Figure 3.5. This decision matrix is used in the following manner. 

For a given manufacturing system under study, the engineers involved estimate the costs to 

eliminate both setup times and defects. These two costs are then plotted as a point,  da, 

r&), on this decision matrix. Where this point falls on this matrix relative to the decision 

boundaries determines the relevant investment decision. For instance, a point falling in the 

Iower left zone indicates an optimal decision to fully eliminate both setup time and defects. 
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Figure 3.5: Schematic of Decision Matnx based on Costs to Eliminate Setup/Defects. 

To surnmarize, in the case where projects are implicitly assumed to be independent of each 

other, each project has two critical costs of irnprovement. If the cost of improving a practice 

falls below the critical cost of making full improvements, then the maximum arnount is 

invested in that practice. If the cost falls above the critical cost of making no improvements, 

then no investment is made. If the cost fails between the two cntical values, then some 

investment is optimal. Investment in both the practices studied here, setup time reduction and 

quality improvement, is optimized by this strategy. 

Unfortunately, there is a flaw in this method of making investment decisions. The two 

projects appear to the decision maker to be unconnected to each other and might reasonably 

be assumed independent for capital allocation decisions. However, both decision variables 

affect the physical system in the same way, that is, improvement of both setup times and 
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quality levels reduce server utilization, which in Nm reduces WIP levels and costs. Since the 

system costs are a function of both decision variables, implementing both setup time and 

quality level changes on the system simultaneously will alter the total system operating cosü 

in ways not predicted in the individual project proposals. Because the operating costs 

assumed in the project proposals do not take simultaneous implementation of the decision 

variables into account. the optimal investment levels calculated in the proposals may not be 

correct. The next section will study the case when changes to both decision variables are 

considered. The difference in optimal decisions between the two approaches ('naive' vs. 

'infomed') will then be exarnined to estimate the likelihood of making incorrect investment 

decisions and the significance of the errors involved. 



3.5 'lnformed' Decision Making 

To avoid the potential enor described in the previous section, the expected total cost function 

must be optimized simultaneously for both decision variables in this problem. This will be the 

focus of this section. 

3.5.1 Bivariate Optimization 

The problern at hand is to find the point of minimum expected total cost subject to the 

constrain ts: 

a) Setup time 2 O 

b) Defect rate 2 0 

c) Setup time I Q 

d) Defect rate I ro 

The fint pair of constraints are non-negativity on the setup tirne and defect rate while the 

second pair stem frorn the assumption that the system will not degenerate from the initial 

conditions, that is, setup time and defect rates will not become worse than their original levels. 

The two decision variables then can range from O to Q and O to ro. respectively. The space 

defined by these ranges becomes the feasible region for the decision variables in this problem. 

A sketch of the feasible region is shown in Figure 3.6. Initially the system starts with values 

of (Q, ro) for setup and quality (upper right corner on the sketch) and moves down and to the 

left as improvements are made. 



Setup Time (r) 

Defect Rate (r) 
Initial State 

Figure 3.6: Feasible Region of E[TC] Optimization Problern. 
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To determine the necessary condition for the minimum expected total cost, the partial 

derivatives of the E[TC] function are set to zero to discover where any critical points might 

exist. 

b..-..-.-..-.-.-.--...... of System 
(20. ro) 

Feasible 
Region for i 
Decision 
Variables 

Before solving this system, the sufficient condition is determined by examining the 

determinant of the Hessian of the ECK] function: 

det H(E[TC]) = - 
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Because this determinant is negative for al1 feasible parameter values, the Hessian is indefinite 

and the E[TC] function cannot be convex. Due to this lack of convexity. if a critical point 

occurred within the feasible region, it would not represent a local minimum of E[TC]. 

Therefore, it is concluded that a minimum expected total cost will always occur on the 

boundary of the feasible region of the problem. Furthemore, the non-convex nature of the 

E[TC] function precludes the use of convex programming techniques such as the Karush- 

Kuhn-Tucker method to determine analytically the optimal values of the decision variables 

[Peressini et al., 19881. Because conventional optirnization approaches are not applicable 

here, optima must be determined through a more fundamental approach which takes into 

account the special features of this problem. Such an approach is presented in the next 

section. 

3.5.2 Investment Boundary Approach to Bivariate Optimization 

The lack of convexity of the E[TC] function leads to the conclusion that optimal setup and 

quality levels must fa11 on the perimeter of the feasible region. shown in Figure 3.6. The first 

observation to be made from this conclusion is that the 'invest some in both' decision at the 

center region of the matrix in Figure 3.5 will never be optimal. For the 'some-some' decision 

to represent a minimum, a critical point within the feasible region would have to occur at a 

point of local convexity of the E[TC] function, and this cannot happen. 

The second observation is that on the perimeter of the feasible region, one or both decision 

variables must assume their maximum or minimum lirnit, that is, 'no' investment or 'full' 

investment. This knowledge that one decision variable is forced to its lirniting value will be 

exploited to delineate the different optimal decisions (i.e., where 'no' or 'full' investrnent is 

optimal) which occur, and to set a frarnework for finding the conditions which lead to these 

different decisions. This section develops this analysis. 
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In re-exarnining the feasible region for the decision variables shown in Figure 3.6, the 'lefi' and 

'right' boundaries (Le., setup time r = O and Q) represent the decisions to invest fully and to 

invest nothing in setup reduction, respectively. Similady, the 'top' and 'bottom' boundaries 

(i.e., defect rate r = r~ and 0) represent the decision to invest none and invest fully in quality 

improvernent, respectively. 

Four clearly defined investment decisions exist at the corners of the feasible region. Since the 

value of both decision variables is known at each of these points. the analysis will start at these 

points and will then be extended to the sides of the feasible region. The four cases may then 

be listed as: 

Case 1: Invest Fully in Both (i.e., T* = O, R* = 0) 

Case 2: Invest None in Both (Le., T* =1, R* = 1)  

Case 3: Invest Fully in Setup, None in Quality (i.e., T* = O, R* = 1) 

Case 4: Invest Fully in Quality, None in Setup (i.e., T* = 1, R* = 0) 

As in the previous section, for a given set of problem parameters each of these cases will 

cccur at critical values of the marginal cost to make improvements in each decision variable. 

For instance, consider for a moment cases 2 and 3. In both of these cases quality is not 

changed from its original level, so it is held constant as setup time is varied. Since setup time 

is the only variable in this instance, optimal setup time T* can be determined by a sirnilar 

process as was used to develop Equation 3.4.3. Leaving the quality level, R, unevaluated 

gives: 

Rearranging once again for rda* gives: 



A similar process for quality level equations yields: 

A decision matrix analogous to that shown in Figure 3.5 will be generated by exarnining the 

four cases and the cntical  da*, r&* ratios in each case. At this point, a terminology will be 

introduced to represent these various critical values. Let: 

BXy,, P cntical investment cost to reduce a decision variable to zero 

Where: x = Factor (S i setup, Q = quality) 

y = Investment in that Factor 

O = No Investment Boundary 

1 = Full Investment Boundary 

z = Investment in the other Factor 

O = No Investment 

1 = Full Investment 

Then the investment boundaries for the four cases become: 



Case 1: Invest Fully in Both (Le., T* = O, R* = 0) 

Case 2: Invest None in Both (i.e., T* = 1, R* = 1) 

Case 3: Invest Fully in Setup, None in Quality (i.e., T* = O. Rt = 1) 



Case 4: Invest Fully in Quality, None in Senip (i.e., T* = 1, R* = 0) 

These points have been drawn on the new decision matrix as shown in Figure 3.7. 

Cost to 
Eliminate 
De fects 

-'Cases 3 and 4 

Cost to 
Eliminate 
Setup 

Figure 3.7: Initial Points on Decision Mauix 



Suppose a candidate manufacturing systern is evaluated and found to fall on the decision 

matrix in Figure 3.7 at the point called "Case 1 ". This case represents the optimal decision to 

invest fully in both setup and quality to completely improve them. Similady, if the candidate 

system fell at "Case 2", the optimal decision would be to invest nothing in either improvement 

practice. Intuitively, it is expected that points falling below and to the left of "Case 1" should 

continue to result in an 'invest fully in both' decision, since the marginal cost of making 

improvements in each practice is decreasing in this direction. Sirnilarly. points above and to 

the nght of "Case 2" should continue to represent an 'invest none in both' decision since 

marginal costs are increasing. This intuitive result will be derived more formally below. 

Cost to 
Eliminate t 
De fects 

Point B 

..\ 
Point C 

Case 1 
Point A 

Cost to 
Elirninate 
Setup 

Figure 3.8: Development of Decision Boundary 
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Consider the decision boundary for the 'invest fully in setup' decision. This boundary must 

contain the points "Case 1" and "Case 3", which are shown in Figure 3.8. At "Case l u ,  the 

decision is to invest fully in quality (along with setup). Below the point "Case 1 ", the marginal 

cost of improving quality falls, so if the optimal decision at "Case 1" is to invest fully in 

quality. the optimal decision will still be to invest fully in quality below that point. 

Suppose point 'A' falls on a line directly below "Case 1" as indicated in Figure 3.8. Being 

below "Case 1 ", the quality investment decision will not change along this line (i.e., it will 

continue to be to 'invest fully'). Since the level of investment in quality does not change 

along this line. and since on the vertical line the marginal cost of improving setup does not 

change, the decision boundary for 'full investment' in setup will lie along this line. 

Similarly, point 'B' on a vertical line above "Case 3" can be considered. Upward along this 

line the marginal cost of improving quality increases, so the optimal decision for quaiity will 

continue to be to 'invest none' along this line. As the marginal cost of improving setup does 

not change on the vertical line, this line will represent another section of the decision boundary 

for 'full investment' in setup reduction. 

Between "Case 1" and "Case 3", the decision boundary line can be plotted parametrically. At 

"Case 1" the optimal quality level, R*, is zero (i.e., al1 defects are eliminated) while at "Case 

3" the optimal level becomes one. Point 'C' will represent the parametric point ( B ~ ~ , ~ ,  B ~ ~ . ~ )  

for O 5 R S 1 where B ' , .~  is from Equation 3.5.4 and EiQ~., is from Equation 3.5.5 when T = 1. 

The line traced by point 'C' as R varies from zero to one then represents this segment of the 

'full investment ' decision boundary for setup reduction. 

By considering the points where the optimal investment in setup is 'invest none' (i.e., "Case 2" 

and "Case 4")- this process can be repeated to develop the 'invest none' decision boundaries 

for setup reduction. The completed boundaries on setup decisions are shown in Figures 3.9a 

and 3.9b. Because the relative positions of the points for "Case 3" and "Case 4" may be 
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reversed. two 'shapes' cm result for the setup boundaries. which is why the boundaries may 

appear as in either figure. 

Fdlowing an analogous procedure for quality will lead to the quality boundaries shown in 

Figure 3.10a (corresponding to the positions of the points "Case 3" and "Case 4" in Figure 

3.9a) or Figure 3.1 Ob (corresponding to Figure 3.9b). 

By combining the decision matrices of Figures 3.9a and 3.10% the bivariate decision matrix is 

obtained, and is s h o w  in Figure 3.1 1. (Combining Figures 3.9b and 3. lob would lead to a 

similar matrix with the points "Case 3" and "Case 4" reversed.) 

Figure 3.5 is also redrawn as Figure 3.12 in the same scde as Figure 3.1 1 in order to compare 

how decisions change for the cases where setup and quality are assumed to interact, and 

where they are considered independent of one another. 

Two prirnary differences between the two systems (Figures 3.1 1 and 3.12) occur. The first is 

that when interactive effecü between setup and quaiity irnprovements are considered the 

boundaries separating investment decisions will tend to shift to points where the marginal cost 

of making improvements is less. For instance, a cornparison of the 'invest fully in both' region 

(lower left corner) shows this region to be smaller in the case where interactions are 

considered. This means that full investment in both practices only takes place if the cost of 

making these improvements is less, when interactive effects are considered. 

The second significant difference when interactions are considered is that the 'some-some' 

investment decision region disappears from the matnx. This is a consequence of the non- 

convexity of the EPC] function (Equation 3.5.2). Optimal solutions must represent extreme 

points in the feasible region of the decision variables (shown in Figure 3.6), i.e., points which 

fa11 on the perimeter of the feasible region. Since no points inside the perimeter of the feasible 

region cm represent optimal solutions. the decision matrix will not show a 'some-some' 

investrnent region. 
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Figure 3.9a: Decision Boundaries for Setup Investment Alone 
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Figure 3.9b: Decision Boundaries for Setup Investment Alone (altemate configuration) 
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Figure 3.10b: Decision Boundaries for Quality Investment Alone (altemate configuration) 
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Figure 3.12: Decision Boundaries for Setup and Quality Investment, Neglecting Interactions. 



62 

The lack of a 'some-some' optimum investment region is a resuit of using a linear (Le., 

constant retums to scale) investment-improvement function. as will be dernonstrated in 

Chapter 5. In that chapter a decreasing retums to scale investment function is studied and a 

large 'some-some' optimum decision region is found on the decision matrix. 

Returning to the example problem in which a quality and a manufacturing engineer were 

considering improvement projects in isolation of each other, these decision matrices show that 

since the regions of the 'independent' decision matrix are larger, the engineers are more likely 

to invest more money than if interactive behaviour is considered, and are less likely to realize 

the expected level of benefits. 

These results show that setup reduction and quality improvement practices interact when they 

are implemented simultaneously on a manufacturing system. A result of the existence of this 

interaction is that over-investment cm take place if the interaction is not taken into account. 

The next section will examine the factors which influence the potential of making an 

erroneous decision. and the magnitude of the potential over-invesnent. 



3.6 Magnitude of Decision Error 

In re-examining the example investment problem, the last section showed how decisions can 

be made erroneously, leading to investment of more resources than are justified. In this 

section, the factors which affect the magnitude of this potential error will be examined. 

3.6.1 Analytic Examination of Decision Error 

The factors affecting how much the decision shifts cm be examined analytically in this case. 

Consider for the moment the setup decision boundaries as shown in Figure 3.13. The term 

'Decision Error' will be loosely defined here as the prospect of coming to an erroneous 

investment decision when neglecting potential interactions. One way of examining Decision 

Error is to look at the amount of shift of the investment boundaries in the 'informed' case 

relative to the 'naive' case. The greater the shift in boundaries, the larger the regions where 

non-optimal investments take place and the greater the prospect of Decision Error occumng 

in investment decisions. 

The shift in boundaries can be examined rnathematically. If a term 'Boundary Shift' is coined, 

it can be defined as the relative amount that each boundary shifts from the 'naive' case to the 

most shifted value in the 'informed' case. This function then provides an indication (from O to 

1) of how much the boundary has shifted as a result of considenng interactions, with higher 

values reflecting a greater shift and hence a greater likelihood of a decision maker reaching an 

incorrect investment decision by ignoring interactive effects. 

Following this definition, Boundary Shift (for the setup case) cm be expressed mathematically 

as: 



Boundary Shift = BO, - ~5.1 (no-invest boundary), or B:, - %l (full-invest boundary) 
B O., B& 

Cost to 
Eliminate 
Defects 

4 * 
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Figure 3.13: Boundary Shift between 'Naive' and 'Informed' Boundaries. 

By returning to Equations 3.5.6 through 3.5.9, this Boundary Shift terni can be determined 

analytically. For instance, for the setup time decision variable, full investment boundary, 



Boundary Shift = 
~ s o  - B?, 

DS 

The sensitivity of the Decision Emor to each parameter in the problem can be determined by 

checking the sign of the partial derivatives. A surnmary of the results for setup time Boundary 

Shift is given in Table 3.1. Increasing each of the parameten increases the Decision Error, 

with the exception of Batch Size. Q. (This result is intuitively reasonable since increasing 

each of the parameters other than Batch Size increases system utilization, whiie increased 

Batch Size leads to fewer setups and decreased system utilization, as will be shown next.) 

Funhermore, the sensitivity of the Decision Error to the systern utilization, p. can be 

determined. Because of the way the variable Boundary Shift was defined. it cannot be writren 

specifically in terms of utilization. However, the total denvative of Boundary Shift with 

respect to utilization cm be expressed as in Equation 3.6.2: 

The various partial derivatives with respect to utilization cm be evaluated from the definition 

of utiIization: 



Table 3.1: Partial Derivatives for Sensitivity of Setup Time Decision Error 

Variable Boundary S hift 

Derivative 

Higher Demand 
(Dl 

aBS(T) , O 
aD 

s i z e  

-- - . - - - - - - - 

Initial aBS(T) , O Rate (ro) ara 

aBS(T) < O 
JQ 

Higher Mean 
Service Tirne 

aBS(T) , O 
~ E [ x ]  

Utilization Derivative Product Term 

Higher Initial 
SetupTime(r0) 

Table 3.1 also sumrnarizes the signs of each of the denvatives in Equation 3.6.2, as well as the 

signs of the product terms. Since each of the product ternis is positive, the total drrivative of 

Boundary Shift with respect to system utilization is positive, indicating that decision makers 

will be more prone to making excess investments in improvements to a system as  the system is 

more heavil y utilized. 

aBS(T) , O 
&, 

The concept of Decision Error can be shown graphicaily as well. Refer again to the decision 

matrices shown in Figure 3.1 1 and Figure 3.12. Considering the setup reduction decision 

boundaries done for the moment, the 'naive' (ignoring interaction; Figure 3.12) and 'infomed' 

(including interaction; Figure 3.1 1)  decision boundaries coincide for higher levels of cost to 

eliminate defects (top portion of chart), while the 'informed' boundaries shift to the left as the 

cost to eliminate defects drops. This is because as the cost drops, investing in quality 
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improvement provides benefits to the system (i-e., lower utilization of the semer resulting in 

lower WIP costs) at a lower cost than investing in setup reduction. and so becomes the 

preferred investment. Since some gains have already been achieved. there is less potential 

benefit from investrnent in setup reduction. The boundaries shift to the left, reflecting the 

greater difficulty justifying investment in that factor. 

Figures 3.14a and 3.14b show the differences between these 'naive' vs. 'informed' boundaries 

for the cases of 'No Investment' and 'Full Investment' decisions. As cari be seen, the shifting 

of the 'informed' boundaries relative to the 'naive' boundaries creates significant regions in 

which the investment decision changes from "Invest Some" to "Invest None" and "Invest 

Fully " to "Invest Some". In each case the 'informed' decision results in less investment than 

the 'naive' decision. and hence. lower expected total operating costs for the system. Shaded 

areas in Figures 3.14a and b represent the regions where optimal investment drops. This 

behaviour is a general result for this system while the degree of change to the boundaries will 

depend on the parameter values in a particular system. 
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Figures 3.14a and 3.14b: Changes in "Full Investment" and "No Investment" Boundaries. 

(The shaded areas represent regions of over-investment when interactions are ignored.) 



3.6.2 Sensitivity Analysis 

To help understand how the various parameters in this mode1 affect this concept of Decision 

Error, a numerical sensitivity analysis has been performed. In this section the sensitivity 

analysis is given for the case of a linear investment function and fixed batch size; subsequent 

chapters will give similar analyses for cases with convex investment functions and variable 

batch sizes. 

The parameter values for the base case and deviations are given in Table 3.2. These values 

are adapted from exarnple values used by Porteus [1986b], Spence and Porteus [ 19871 and 

Kim et al. [1992]. The nominal levels (base case) result in a system utilization of 0.93. Since 

Demand, Batch Size, Defect Rate and Setup Time affect system utilization, the upper and 

lower Ievels of these parameters have been selected such that the high and low values change 

system utilization by 0.05 above and below the base utilization (e.g., from 0.88 to 0.98). The 

other variables studied, Holding Cost Rate. Interest Rate and Processing Time Coefficient of 

Variation, do not affect system utilization. 

Table 3.2: Parameter Levels for Sensitivity Analysis 

I Parame ter 1 1 Nominal 1 Upper 1 Lower 1 
Demand 
Batch Size 
Defect Rate 
se tu^ Time 
Holding Cost Rate 
Interest Rate 

1 Expected Service Time ( E[X] = 1 6.67E-06 ( (fixed) 1 1 

D =  
- - 

ro = 
'in = 

Processing Time Coeff. 
of Variation 

h = 
I = 

1OOOOO 
1OOO 
0.24 

0.001 

cv = 

10 
0.25 

105000 
650 

0.32 
0.0015 

O. 5 

95000 
2000 
O. 16 

0.000 
100 
0.5 

1 
0.01 

1 O 



A definition of over-investment is sreated as: 

(a ' 2 ) -  ' Nai ve' investmen t-' Informed' investrnent 
Over-Investrnent - - - 

' Informed' investmen t 

With this definition. the optimal level of investment is determined under both the 'naive' 

(univariate) and 'informed' (bivariate) assumptions for a given combination of setup 

elimination cost  da) and defect elimination cost (r&). If the optimal investment level in 

both cases coincides, over-investrnent is zero. If optimal investment in the 'naive' case is 

greater than that of the 'informed' case, over-investment is positive. It should be noted that 

since a ratio is involved, small optimal levels of 'informed' investment can lead to very high 

relative levels of over-investment. while the absolute b e l s  of over-investment may be more 

modest. 

As was shown through Equation 3.6.2 and Table 3.1, investments in one practice lead to 

'informed' investments in the other practice equal to or less than 'naive' investments in that 

practice (i.e., equal investments or over-investment; never under-investment). With this 

result, investment level cornparisons need only be made in regions of the decision matrix 

where the 'naive' strategy calls for investrnent in both practices. Any area where no 

investment is called for in one practice under the 'naive' strategy will also cal1 for no 

investment in that practice under the 'informed' strategy. Such areas will lead to equal 

investment under the two strategies. 

To examine the over-investment behaviour of this system, optimal investment levels for both 

strategies were cdculated at each point in a grid covenng the regions of the decision matrix 

where investment in both practices was called for in the 'naive',strategy. Numericd 

investigation during calculation of over-investment frequencies showed that the optimal 

investment levels were well behaved over the studied space, varying smoothly from no 

investment to full investment as a function of the costs to improve each practice. 

Consequently, optimal investment levels were calculated at each of 5 1 equally spaced values 
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for the cost to eliminate setup a d  the cost to eliminate defects, ranging from a value of zero 

to the value representing the "no-invest" boundary for that practice in the 'naive8 case. This 

led to a grid of 2601 (= 5 1') points covenng the decision matrîx where the 'naive' strategy 

called for investment. 

Frequencies of these over-investment levels can be tabulated, such as given in Table 3.3. It is 

seen that the magnitudes of over-investment c m  be significant. 

By sequentially changing each parameter to the upper and lower levels given in Table 3.2, 

similar frequencies of over-investment c m  be calculated to examine the sensitivity of the 

system to each parameter. Such calculations have been performed and the results are given 

graphically in Figures 3.15 to 3.2 1. 

Table 3.3: Frequency of Over-Investments 

Over-Investment LeveI 1 Frequency of observances1 
( ercenta e of O timal investment) 

- - 

P g p 1 (n=260i)  1 
1 

The first four graphs are for the pararneters which affect system utilization (i.e., demand, 

batch size, defect rate and setup time). As each parameter goes from the low-utilization level 

(i-e., low demand, high batch size, low defect rate and low setup time) to the high-utilization 
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Figure 3.15: Sensitivity of Decision Error to Demand Leveis 

1 OLow Batch Size 1 

Figure 3.16: Sensitivity of Decision Error to Batch Size 
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Figure 3.17: Sensitivity of Decision Error to Defect Rate 
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Figure 3.18: Sensitivity of Decision Error to Setup Time 
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Figure 3.19: Sensitivity of Decision Error to Holding Cost Rate 

[ O  High Interest Rate / l 

Figure 3.20: Sensitivity of Decision Error to Interest Rate 



level, the over-investment frequency distributions shift to the right, indicating that the mean 

over-investment level increases. This result corresponds to the analytic result described in 

Equation 3.6.2. that is, the decision error increases as system utilization increases. 

Figures 3.19 and 3.20 show the effects of changes to the holding cost rate and the interest 

rate. It can be seen that the rnean over-investment shifts in opposite directions as the 

parameters go from low to high levels. This is expected since increased holding costs would 

lead to higher investment levels (since greater benefits are obtained from each unit of 

inventory reduction) while increased interest rates would Iead to lower investment levels (due 

to higher costs for each unit of improvement). 

The direction of the shift in mean over-investment can also be explained. Referring to 

Equations 3.5.6a through 3.5.9b, it can be seen anaiytically that the location of each decision 

boundary is proportional to the ratio Mi (i.e., the ratio of holding cost rate to interest rate). 

As either holding cost rate decreases or interest rate increases. the location of the decision 

boundaries decrease in proportion. This decrease shifts the regions of over-investment to 

areas of lower costs of making improvements. Similady, as the boundaries shift towards the 

origin. the area of the regions where over-investmenr takes place decreases. These two trends 

tend to lower the levels and likeiihood of over-investment and thus reduce the mean level of 

over-investment, as shown in Figures 3.19 and 3.20. 



O Hig h Roces s in g Variance 1 l 

Figure 3.21: Sensitivity of Decision Error to Processing Time Variance 

The effect of changing the coefficient of variation (cv) of the unit processing time (X) on 

over-investment was aiso exarnined (Figure 3.2 1). Essentially, no difference is seen in the 

over-investment frequencies. This can be explained by considering the definition of cv of 

batch service time (neglecting setup tirne and rework for the moment): 

Where Var[S] = Q Var[X] 

E[Sl = Q W I  
Q = batch size 



Now. consider the second moment of the batch service time. E[s~], 

and, rearranging 3.6.3 for Var[S], 

giving, 

E[s'] = E[s]'(~ + cv[slZ) 

and substituting 3.6.4 yields. 

This equation expresses the second moment of batch service time as a function of batch size 

(Q) and unit processing tirne coefficient of variation (cv[X]). By substituting it into the 

expected WIP cost (from Equation 3.3.6), we obtain the following: 



The effect of changes to cv[X] on expected WIP costs might be demonstrated by considering 

a numerical example. Suppose that Q is selected to be 1 0  (the nominal example value from 

Table 3.2). Also. suppose that cv[X] changes from 1 to O. e-g., such as a case in which 

processing time changes from being exponentially distributed to k ing  deterministic. The 

quantity in the parentheses in the numerator of the first tenn of 3.6.6, i.e., 

will change from a value of 1 .O1 to 1 as the variability of processing times is changed over 

this quite wide range. 

Because the second tenn of 3.6.6 is not affected by changes to cv[X], the expected WIP 

holding cost will change by less than O. 1% in this numencal exarnple. While optimal 

investment decisions will change as costs change, as expected costs are so insensitive to 

changes in unit processing time coefficient of variation when batch sizes are relatively large, 

investment decisions will also be insensitive to changes in this parameter. 

This result for batch service time coefficient of variation is suspected to be less that that seen 

in practice, but this difference is not expected to affect the general conclusions drawn from the 

model. To illustrate this claim. suppose that batch service time variance was reduced to its 

limit, i.e., to zero. Service time would then be deterministic, and the second moment, E[s~], 

would equal E[s]'. Expected waiting time in the system, EW], from Equation 3.2.4 would 

then be: 



Clearly, queuing behaviour would still occur, and be strongly affected by system utilization. 

Queue length, and hence the level of WIP holding costs available to justify investment in 

improvements, will decrease as batch service tirne variance decreases, but the rei ationships 

between system utilization and setup and quality improvements will be qualitativeiy the same. 

Therefore, even if the service time mode1 used in this research does not adequately capture the 

processing time variances typically found in manufacturing systems, the insights regarding 

investment decision behaviour discovered in this research are stiIl expected to be valid. 

In summary, this section has used the linear investment function/fixed batch size mode1 of a 

manufacturing ce11 to show that ignoring interactions can lead to significant levels of over- 

investment. It was shown that the factors which affect system utilization (narnely, demand, 

batch size, setup time and defect rate) also affect the potential decision error, with increased 

decision error associated with increased utilization. A numericd sensitivity analysis ha 

supported these results, as well as showing that mean over-investment is also affected by the 

ratio of holding cost rate to interest rate. Over-investment, however, appears to be essentially 

insensitive to the processing time coefficient of variation. 



3.7 Discussion 

In the previous sections a mathematical model was developed to represent the process of 

making simultaneous setup and quaiity improvements to a manufactunng system, and to 

predict how those changes affect the operating cost of the systern. This model is 

characterized by having an M/G/I queue to estimate WIP levels in the system, linear 

investment-improvement Functions for setup and qudity, and investment cosü amortized 

through the use of the Capital Cost formula. 

This model could not be optimized analytically through conventional methods to determine 

simultaneously the best level of the two decision vanables due to the non-convexity of the 

expected total cost function. It was concluded that no local optima exist within the feasible 

region for the decision variables. so each optimum is characterized by falling on the boundary 

of the feasible decision space. However. by studying the points where investment decisions 

changed, the optimal improvement decision strategy for this system was determined. 

To determine the optimal improvement strategy, the critical points where discontinuities exist 

in optimal investment levels were found. These discontinuities represent the 'boundaries' on 

investment decisions (e-g., such as where the optimal investment decision changes from 

investing 'some' to investing 'none'). By examining the difference in the location of these 

decision boundaries between the case where investments in the two decision variables were 

assumed independent and where possible interactions were considered, it was determined that 

setup and quality improvements interact. In terms of investment strategy, it was shown that 

rhis interaction cari produce a significant chance of over-investing, and the magnitude of the 

over-investment c m  be drarnatic. Neglecting the effect of the interaction always results in a 

level of investment equal to or greater than that when the interaction is not considered. 



8 1 

It was also shown that the factors which increase the utilization of the server also increase the 

risk of over-investing in improvement practices. Thus, on more heavily utilized systems there 

is a greater risk of investing more than is justified if interactions are not considered. 

A numerical sensitivity analysis found that the rnean level of over-investment increased with 

increases in product demand, initial setup time, initial defect raie, and interest rate, increased 

with decreases in batch size and inventory holding cost rate, and was insensitive to changes in 

processing time variance. 

A non-intuitive result. that a 'some-some' investment is never optimal. was also found. As will 

be shown in Chapter 5, this result is due to the use of the linear investment function, which led 

to a non-convex total cost function. 

Earlier literature [e.g., Hall, 1983; Schonberger, 19821 recognized empirically that optimal 

batch sizes decrease as improvements are made and ihat batch size reduction is an important 

variable in the reduction of WIP inventories. With the advent of EOQ-based models, Porteus 

[1986b] also showed optimal batch size to be affected strongly by the setup and quality levels 

of the system. While EOQ-based models neglect WIP costs, Karmarkar LI9871 showed that 

optimal batch size sirnilady decreases as system utilization drops (as in the case where setup 

and quality improvements are made) in models including WIP inventories. In this Chapter, 

batch size was modeled as a fixed parameter, while empincal and andyticai evidence suggesü 

that optimal batch sizes change significantly as system improvements are made. Chapter 4 

investigates the behaviour of the system when batch size is a decision variable. 



Chapter 4: Variable Batch Size, Linear lnvestment Function 

In this chapter, the expected total cost (E[TC]) mode1 of the last chapter (Equation 3.3.6) has 

been extended to study the case in which batch size is a decision variable rather than a 

parameter. This produces a system in three decision variables: setup time (T), defect rate (R) 

and batch size (Q). The linear investment-irnprovement function is used in this chapter while 

systems with convex investment functions are studied in subsequent chapters. 

Reductions in batch size have been linked to reductions in setup times in both empirical 

studies [e.g., Schonberger, 1982: Hall, 19831 and analytical analyses [e-g., Poneus, 1986bl. 

Karmarkar [1987] has also demonstrated that WIP level, and hence WIP costs, in a 

rnanufacturing system are very dependent on batch size. Since the mode1 developed in this 

study balances swings in W[P costs against investrnents in improvements to the system, batch 

size is expected to be an important variable in minimizing total system costs. For this reason, 

the effect of variable batch size on optimal investment decisions is studied in this chapter. 

As a variable, batch size is inherently different than setup time or quality level. Changing 

setup time or quality level requires an investment of resources, while changes to batch size is 

assumed to require no investment. Because of the empincal evidence discussed in Chapter 2 

linking setup time and batch size reductions, these two variables are optimized together. As 

was done in the last chapter, two specific cases are examined: the 'naive' investment decision 

case where investments in setup and quality are assumed to be independent of one another, 

and the 'informed' investment decision case where investments in both practices are 

considered simultaneously. Differences between optimal decisions in the two cases indicate 

the existence of interactions between the two improvement practices. 

In the next section, the optimal solution for the 'naive' case is developed, followed by the 

solution for the 'informed' case in Section 4.2. Section 4.3 examines the decision error in this 
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mode1 version, a s  well as providing a sensitivity analysis. Finally, the results from this mode1 

are discussed in Section 4.4. 

4.1 'Naive' ln vestment Decisions 

Just as in the analysis of the previous chapter, in the 'naive' case the two improvement 

practices, setup and quality improvement. are assumed to be independent of one another in 

terms of their effects on both the physical and economic systems. Optimal investment 

decisions are found by determining the strategies for each variable which minimize expected 

total costs of the sysrem. 

By linking batch size optimization to setup time optimization, two types of independent 

investment projects are considered: optimal investment in setup time reduction, with batch 

size as a secondary optimization variable, and, optimal investment in quality improvement. 

Each of these cases is addressed in the following sub-sections. 

4.1.1 Setup Time and Batch Size Optimization 

In this case, the expected total cost is assumed to be a function of two decision variables, T 

and Q, only. Quality level, R. is treated as a parameter with its value set to the initial defect 

rate for the system (Le., R = 1). 

Before looking for critical points, the Hessian of the EVC] of the system can be examined to 

determine if the total cost function is convex in the feasible region of the decision variables. 

The determinant of the Hessian of E[TC] is: 



h4~'h'~$1 + &)E[X'] - (1 + R ' ~ ) E [ X ] ' ] ~  
det H(E[Tc](T, Q)) = - 

(1 - P ) ~  
1 0  

This result shows that the Hessian is indefinite under al1 circumstances so that the E[TC] 

function is always nontonvex. If any critical points exist in the system, they cannot represent 

local minima. Because of this result, the global minimum of the constrained optirnization 

problem must fa11 on the boundary of the feasible region (shown in Figure 4.1). 

Batch Size (Q) 

FeasibIe 
Region for 
Decision 
Variables 

- ' Setup Tirne (T) 

Figure 4.1: FeasibIe Region for (T, Q) Optimization 

No method has been found to analyticaily rninimize a constrained, non-cosvex function. 

Fonunately, the location of feasible values for the optimal combinations of T and Q can be 

determined from heuristic arguments. The following Properties will be used to help constmct 

the optimal solution to this problem. 

Property 4.1: The values of (T, Q) which result in minimum EVC] fa11 on the boundaries of 

the feasible region. 

Proof: From Equation 4.1.1. no local minima can exist, thus global minima must fail on the 

boundary of the feasible region. 
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Property 4.2: The values of (T, Q) which minimize E[TC] do not occur where Q = W. 

Proof: From Equations 3.2-1.3.2.3 and 3.2.5. the limit of expected waiting time becornes: 

D% + D(l + ~){E[x'] + ZrE[X] + (1 + ~)QE[xI'} - DU + r')E[x12 
= Iim 
Q+= (1- D x  - D(1 + ~)E[x]) 

Thus. expected waiting time increases to infinity as Q -+ m. Since E[TC] is proportional to 

expected waiting times, Q + - implies E[TC] + - which clearly cannot lead to a minimum. I 

Property 4.3: The values of (T, Q) which minimize E[TC] do not occur where T = O and 

Q > 1 (i.e., along left boundary of Figure 4.1). 

Proof: Equation 3.2.5 for the expected waiting time can be rearranged (for T = O) as: 

Clearly, the expected waiting time is an increasing function in Q when T = 0, and since the 

expected total cost is proportional to Q, EVC] is not minimized for any values of Q > 1 when 

T =  0. I 



Corollary 4.3: When T = O. E[TC] is minimized at Q = 1. 

Proof: Given that a minimum E[TC] cannot occur for Q > 1 (Property 4.3), it must occur at 

Q =  1. 1 

Property 4.4: The values of (T, Q) which minimize E[TC] must occur along the lines T = 1 

(Le., along right boundary of feasible region) or Q = 1 (i.e., along bottom boundary). 

Proof: By Properties 4.1.4.2 and 4.3, the global minimum cannot reside anywhere else on 

the feasible region. I 

These Properties, especially Property 4.4, greatly simplify the task of finding expressions for 

optima1 values of the decision variables since either the value of T is fixed, or the value of Q is 

fixed. Two optimal investment decisions then exist in this system: 

1. Don't Invest, Le.. T* = 1, Q* > 1 ' 
2. Invest, Le., T* < 1 ,  Q* = 1 

(This list excludes the trivial case where optimal batch size in the initial, unimproved system is 

one. In such a case, there would be lirnited WIP inventory costs to justify investrnent in setup 

reduction.) 

Since each of these optimal decisions is fixed in one variable, each case becomes an 

optimization problem in one variable. The optimal values of the decision variables cm be 

found through the calculus of minimization: 

Case 1: T* = 1, Q* > 1 (Le., 'Don't Invest') 

The necessary condition is: 

1 For reference, it may be repeated here that the normalized setup time, T, falls in the range [O, I ]  while the 
batch size, Q, falls in the range [ l ,  -1. 



From which the optimum batch size is found as: 

WhiIe the sufficient condition becomes: 

So that Q* from (4.1.2) minimizes E[TC]. 

Case 2: T* c 1, Q* = 1 (Le., ' Invest') 

The necessary condition becomes: 

From which the optimum setup time is found as: 



The sufficient condition becomes: 

Now thai the behaviour of these two cases is defined, the next question is where, as a function 

of the cost of eliminating setup times, rda, does the optimum decision change from 'Don't 

Invest' to 'Invest'? The following Propenies will be used to answer this question. 

Property 4.5: E[TC] in the 'Don't Invest' case is constant with respect to sda 

Proof: Substituting T = 1 (Le., representing no investment) into the EFC] function gives: 

Inspection shows this expression does not contain the 'a* parameter, so diat EVC] is constant 

with respect to  da. I 

Property 4.6: EFC] in the 'Invest' case is increasing in  da. 

Proof: Substituting Q = 1 into the EFC] function gives: 



Since O 2 T* < 1, the last terni in this function shows that E[TC] is linearly increasing in rda. 
m 

Property 4.7: E[TC] for the 'Don't Invest' case crosses the E[TC] for the 'Invest' case in 

exactly one location. 

Proof: i )  Assume rda = O. Since the cost of eliminating setup time is zero, the 'Invest' case 

strategy will be to totally eliminate setup time (Le., T* = O). Then, 



ii) Assume -rda + m. 

lim E[TCIh,, 
s,/a+= 

for T < 1. Thus, when ?da + a, E[TC]IM, in,,, c E~C]I, , ,  since E[TC]bn.i I,,,~ remains at a 

finite level independent of M a  due to Property 4.5. 

Sinre the E[TC] function in the 'Don't Invest' case is constant with respect to rda, and in the 

'Invest' case is linearly increasing in zda (Property 4.6), and since the E[TC] of the 'Invest' 

case is lower than that of the 'Don't Invest' case for rda = O but is higher when rda -t .P. the 

two E[TC] functions must cross for a single value of rda, denoted rda*. 

t = lim 
r,/a+= 

Property 4.8: The value d a *  described in Property 4.7 represents the location where the 

optimal investment decision changes from 'Invest' to 'Don't Invest'. 

- i  DT'T; + D(l + ~,){E[x'] + ZTr,E[X] + (1 + ~ , ) E [ X ] ~ ) -  D(1+ ~ , ? ) E [ x ] ~  ' 

2(1 - DR, - D(l + ~,)E[x]) 

\ 1 =O +TT~ + D ( l +  rO)EIX] + i (1-  T)- 
a 

I 

Proof: By definition. the optimal investment decision is the one which rninirnizes E[TC]. By 

Property 4.7, E[TC] is minimized by the 'Invest' decision over the range O I rda 5 rda* and 

by the 'Don't Invest' decision over the range rda* S rda < -. Thus, the optimal investment 

decision changes at rda*. I 

Property 4.9: The value  da* is located where the value of the two E[TC] functions is equai. 



ProoE Since the two E[TC] functions cross at a single location (Property 4.7). they must 

assume the same value at that location. Since this location also represents the point at which 

the optimal investment decision changes (Property 4.8), this point must occur when the two 

E[TC]s are equal. 1 

Property 4.9 alIows the calculation of the value  da*, that is, the location of the decision 

boundary between the two optimal decision cases. Equating the expected total costs gives: 



Where T* and Q* are from Equations 4.1.3 and 4.1.2, respectively. 

These results can be incorporated into a decision matrix sirnilar to that of the last chapter. 

Such a graph is shown in Figure 4.2. 



Cost to 
Eliminate 
Defects 

Invest i Don't Invest 
in Setup, j in Setup, 
Q * =  1 j Q * > l  
T* < 1 i T*=I  

Cost to 
Elirninate 
Setup 

Figure 4.2: Decision Matrix for Setup Investment, 'Naive' Case. 

To the left of the value rda*, given in Equation 4.1.4. the optimal strategy is to invest in senip 

reduction such that Q* = I and T* is as given in Equation 4.1.3. To the right of this boundary 

value, the optimal strategy is to invest nothing so that T* = 1 and Q* is as given in Equation 

4.1.2. 

Intuitively, these results can be explained in this way. When the cost to elirninate setup (?da) 

is relatively high, the optimal decision is to do nothing, i.e., 'Don't Invest'. As this cost 

decreases, the point will be reached where the first increment of investment is justified and 

setup time is reduced. Reduced setup time leads to a lower optimum batch size, which 

provides additional cost savings. These extra savings justify more setup reduction which leads 

to smaller batch sizes and yet more savings. In effect, this is a system with positive feedback. 

Since this mode1 assumes the linear investment function holds, .the marginal cost of improving 

setup time is constant. Once the first increment of investment takes place, each additional 



increment is also justified until batch size is reduced to one, in which case no further 

reductions in batch size are possible so no additional reductions in setup time would resuit. 

The optimum investrnent decision is then either to not invest at al1 in setup reduction. or to 

invest until batch size is reduced to a single unit, confinning the analytic development of this 

section. When investment is made, setup time will be reduced substantially but may not reach 

zero. This is because batch size cannot be reduced below a single unit so there will always be 

some WIP in the system and the last bit of WIP savings cannot be realized to justify total 

elimination of setup time. Numerical experiments have shown that the optimal setup time is 

quite srnall. typically T* < 0.00 1. For practical purposes this optimal setup time can be 

assumed to be not significantly different from zero (i.e., T* = O), and the equivalent optimal 

decision is to 'Invest Fully'. 

4.1.2 Quality Level Optimization 

The second part of the 'naive' case is to consider investments in quality improvement. Since 

quality improvement is assumed to be independent of setup times and batch sizes, total costs 

of the system are optimized with respect to the single variable R. Setup tirne is assumed to be 

maintained at the initial level (i.e., T = 1), and batch size. Q, is left as a parameter. 

Under these conditions. investment decisions for quality are the same as was determined in 

Section 3.4 of the last chapter. The critical values for costs of eliminating defects were given 

in Equations 3.4.7. Figure 4.3 illustrates where these boundaries fa11 on the decision matrix. 

Superimposing the matrices of Figures 4.2 and 4.3 provides the final decision matrix for the 

'Naive' investment case, as shown in Figure 4.4. 



Cost to 
Eliminate 
Defects 

Invest None 
in Quality 

Invest Some 
in Quality 

Invest FuIIy 
in Quality 

Cost to 
Eliminate 
Setup 

Figure 4.3: Decision Matrix for Quality Investment, 'Naive' Case. 

Cost to 
Elirninate 
Defects 

Invest in Setup, 
Invest None 
in Quality 

Invest in Setup, 
Invest Some 
in  Quality 

Invest None 
in Both 

Don't Invest 
in Setup, 
Invest Some 
in Quality 

lnvest in Setup 
Invest FulIy 
in Quality 

i Don't Invest 
i in Setup, 
i InvestFully 
i in Quality 

Cost to 
Eliminate 
Setup 

Figure 4.4: Complete Decision Matrix for 'Naive' Investment Case. 



This completed 'naive' case decision rnatrix is analogous to that of Figure 3.4 of the last 

chapter. The difference is that this decision matnx only contains regions for six different 

optimal decisions; because of the linkage between setup time reduction and batch size, in this 

system it is never optimal to invest 'some' in setup reduction. 

In the next section, the 'informed' case decision rnatrix is developed for cornparison with the 

'naive' case mauix developed here. 



4.2 'Informed' Investmenf Decisions 

In this section, optimal investment decisions are determined for the 'informed' case, that is, 

for the case where total costs are minirnized simultaneously over the three decision variables. 

4.2.1 Convexity of the E[TC] function in three variables 

Once again, the optimal investment decision is the one which minirnizes the expected total 

cost of operating the production system. As a first test, the E[TC] function in three variables 

is examined for convexity by checking the determinant of the principal minors of the Hessian 

of the E[TC] function. 

The complexity of the full Hessian of three variables can be dispensed with by utilizing the 

property that a function is convex when its Hessian matxix is positive definite (or serni- 

definite). In the three variable case, the Hessian matrix is positive definite if and only if al1 its 

principal minors are stnctly positive (or positive semi-definite if the first two are strictly 

positive and the third equals zero). [Peressini, et al. 19881 

In this case, the second principal minor (AI) is: 

This equation will be recognized as being equivalent to Equation 3.5.2, so that 



Because the second principal minor is strictly negative for al1 parameter values. the Hessian 

matrix cannot become positive definite and the E[TC] function is nowhere convex. Even if 

cntical points are found within the feasible space of this problern, they could not represent 

minima of the expected total cost. So, as with the bivariate optimization problem of the 1 s t  

chapter, the optimal values of the decision variables must fall on the boundaries of the feasible 

region for this problern. 

4.2.2 Development of Decision Matrùr 

A decision matrix similar to that of Section 3.5 is developed here for the 'informed' case of this 

model. As the total cost function here is aiso non-convex, the decision rnatrix will be 

developed through arguments regarding the behaviour of optimal decisions under different 

circumstances. 

Because of the complexity of the decision matrix in this trivariate case, the complete matrix is 

given now as Figure 4.5. Justification for this matrix will proceed below. in which each of the 

discrete decision boundary segments labeled on Figure 4.5 is developed mathematically. 

Boundary Segment I 

To start with, consider a case when the cost of eliminating defects, r&, is arbitrarily high. In 

this case, the optimal decision regarding quaiity improvement would be to invest nothing, so 

that R* = 1. This situation is then equivalent to that of Section 4.1.1, that is, the optirnization 

problem is to minimize E[TC) as a function of T and Q alone. 



Cost to A 
Eliminate 
Defects 

Cost to 
Eliminate 
Setup 

Figure 4.5: 'Informed' Case Decision Matrix Showing Boundary Segments 

(Note: Roman numerais refer to line segments discussed in the text.) 

Two optimal decisions will then exist. For low values of rda, the optimal levels of the 

decision variables are (T* = 0, Q* = 1, R* = 1), with T* determined from Equation 4.1.3. and 

for high values of rda the optimal decision is (T* = 1, Q* > 1, R* = 1 ) where Q* is given by 

Equation 4.1.2. The boundary between these two decisions occurs at rda* given by Equation 

4.1.4. Since rda* does not depend on r&, this boundary will plot as a vertical line on the 

decision matrix, as long as R* = 1. 



Boundarv Segments II and III 

As r& decreases, the cost of improving quality decreases. At sorne point the optimal decision 

will change from no investment in quality improvement (Le., R* = 1 ) to some investment (Le., 

R* < 1). 

Starting from a high level of r&, two cases can be differentiated: rda below rda*, and, rda 

above Ma* .  As was shown in Section 4.1.1, each of these cases resulted in a different 

optimal decision. The effect of decreasing r& in each of these cases will be exarnined now. 

Case 1 : w a  < Ma* (i.e., T* = 0, Q* = 1) 

For simplicity, suppose t!at rda = O is considered first (i.e., cost of eliminating setup time is 

zero). Optimal setup time will then be zero, optimal batch size will continue to be one unit 

and with these two variables fixed, the location of the quaiity investment boundaries can be 

found from Equation 3.5.5. here with T* = O and Q* = 1: 

The boundary for the 'no investment' in quality decision (Le., R* = 1, Boundary Segment II) 

fdls at: 



And the boundary for the 'full investment' in quality decision (Le.. R* = O, Boundary Segment 

III) falls at: 

As will be shown in the example numencally-derived decision matrices of the next section, the 

position of these boundaries is so close to the horizontal mis that when plotted to scale they 

are indistinguishable from the axis. 

Case 2: rda s rda* (Le., T* = 1, Q* s 1) 

For an arbitrarily large value of sda. the optimal decision will be to not invest in setup 

reduction, fixing f * at one. Under this condition, optimal batch size. Q*, from Equation 4.1.2 

can be restated as a function of R* as: 



IO2 

Since Q* is not a function of rda or r&, it assumes a fixed value for any value of R*. R*, on 

the other hand, is a function of r d  and Q*. R* can be shown to be a minimizer of E[TC] by 

examining the sufficient condition: 

Since Equation 4.2.7 is non-negative for any feasible value of Q, or R, EVC] is convex in R. 

Critical points will represent minirnizers of the E[TC], and the optimal investment decision. 

First, note that three sub-cases can be distinguished: 

1. high r d ,  leading to R* = 1 (Le., no investment) 

2. low r&, leading to R* = O (i.e., full investment) 

3. moderate r d ,  leading to O c R* c 1 (i.e., some investment) 

Boundary Segment IV 

The first sub-case, where r& is high and R* = 1, was discussed in Section 4.1.1 where Q* was 

determined in Equation 4.1.2. The location of the boundary between this sub-case and the 

third sub-case, where sorne investment takes place, can be found in the same manner as in 

Chapter 3. Using Q* from Equation 4.1.2 (which is invariant to r&), R* is set to one and 

r&* calculated from Equation 3.5.5 becomes: 



It can be seen that the location of this quality decision boundary does not include a rda term 

so that this boundary will lie horizontally on the decision matrix over the range 

rda* < rda < - (where rda* is given in Equation 4.1.4). 

Boundw Segment V 

The second sub-case, for low r&, is treated similarly. Equation 4.1.2 for Q* when R* = O 

rather than 1 becomes: 

The 'full investment' boundary in this subcase is also found from Equation 3.5.5 by setting 

R* = O and using Q* from 4.2.8: 



The third sub-case. which represents the decision region bounded by Boundary Segments IV, 

V and VI, involves simultaneous optimization over R and Q. The necessary conditions are: 

(4.2.1 Ob) 

Solving these equations simultaneously Ieads to an eighth-order polynornial for Q*, which, 

when written out takes up approximately one page. An anaiytic solution for this equation has 

not been found. The solution for R* is similarly complicated and will be left for the moment, 

but it will be noted that Equations 4.2.1 O are independent of i da so solutions will not change 

along (horizontal) lines of constant rdb. Algonthms will be presented to solve for these 

variables in the discussion of Boundary Segments VI and W. below. 



By invoking Property 4.9 of the last section. that is. that E[TC] is continuous over the 

decision matrix. the remaining boundaries can be developed. 

Boundary Segments VI and VII 

The 'vertical' boundary, that is the boundary between the optimal decision to invest nothing in 

setup or to invest in setup and decrease batch size to one unit, can be extended for two more 

cases, for the range (T* = 1. O < R* < 1 ) and (T* = 1, R* = O). These two cases are 

developed as: 

u Case 1 : Over range - 
b * l , i.e., Boundary Segment VI 

T'=I.R'= 1 

Property 4.9 provides that E[TCIkh = E[TCIiéI. It is known that on the left TL= TL*, 

QL* = 1. RL* = 1 while on the right of the boundary TR+ = 1. QR = QR*. O < RR* < 1. 

Substituting these values into the E[TC] function (Equation 3.3.6) yields 



Equating E[TC],,rl to E[TCli,rl and reananging yields: 

This equation is still in terms of the unknown values TL*, RR* and QR*, which are functions of 

r d *  and rda*. The solution to this system for rdb* as a function of a a *  (i.e.. finding the 

position of the boundary in terms of the vertical and horizontal axes of the decision matrix) 

involves solving an eighth-order polynomial equation, which is anaiyticdly impractical. 

However, an algorithm may be used to plot the location of the boundary on the decision 

matrix: 



Algorithm 4.1 : Detemination of Boundary Segment VI 

1) Choose a value R*, O < R* c 1 

2) find r d *  from Equation 4.2.3 

3) find Q* from Equation 4.1.2 

4) substitute values for R*, r d * ,  Q* into Equation 4.2.1 1 b to calculate E[TCInght 

5) equate E[TCIngh, to E[TC]i,r, as in 4.2.12 and solve for  da* 

6 )  plot r&* vs. ?da* for the range of O < R* < 1 in Step 1. 

With this algonthm, the location of decision boundary representing Boundary Segment VI can 

be calculated and plotted. 

Case 2: Over range - 
b * 

, Le., Boundary Segment VI1 

In this case it is assumed that the regions in the lower left of the decision matrix (where Q* = 

1 and R* < 1 )  are of insignificant size and are ignored. Since RR* has a constant value of 1 in 

this region, and QR* also assumes a constant value. using the assumption chat TL* = O and 

Property 4.9 for continuous total costs across the decision space leads to: 



1 O8 

Because none of the parameters in this equation other than the first depend on r&* or rda*, 

this result leads to a decision boundary which is linear over the range 

Oc- and can be plotted directly as a function of  da*, representing 
b * 

Tm=l.R'=r) 

Boundary Segment W in Figure 4.5. 

By assuming that the boundaries at (i.e., Boundary Segments 
T'=O.Re=I Te=O.R*=O 

II and III) are independent of i da, they will plot horizontally on the decision matrix from the 

value rda = O until the 'no-invest' boundary for setup is reached. Together, these Boundary 

Segments complete the decision matrix. as shown in Figure 4.6. 

Comparing this decision matrix to that of the 'naive' case in the last section shows two major 

differences. First, the boundary between not investing and investing in setup curves to the left 

as the cost of improving quality decreases. As the cost of improving quality decreases, and 

the amount of irnprovement pexformed on quality increases, the decision to invest in setup 

reduction only occurs for lower and lower marginal costs of making setup improvements. This 

corresponds to the leftward shift seen in the setup decision boundaries in the bivariate case of 

Chapter 3. Thus. an interaction between the practices is seen in this trivariate case as weli. 

The second signifiant difference between the 'naive' and 'informed' decision matrices is that in 

the latter when investrnent is called for in setup reduction, improvements only occur in quality 

when the cost of making those improvements is dramatically lower than when no setup 

improvement has occurred. 

The next section will illustrate the differences between these two cases through numerical 

examples and will estimate the magnitudes of decision errors. 
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Figure 4.6: Completed Decision Matrix for 'Informed' Case. 



4.3 Decision Error and Sensitivity 

Iust as in the cornparison between the 'naive' and 'informed' cases in the 1 s t  chapter where 

batch size was fixed, the system with a variable batch size also shows interactions between 

improvement practices, and suggests over-investment is the consequence of ignoring these 

interactions. This section will examine this decision error and its sensitivity to various system 

parameters. 

4.3.1 Decision Error 

Due to the complexity of the shapes of the various decision regions on the decision matrices, 

analytic expressions for the decision error have not been found. Instead, numerical cases will 

be examined. 

The Figures in this section are based upon the example problem parameters given in Table 3.2. 

To ease comparisons, al1 decision matrices are plotted to a normalized scale such that the 

point where investment starts to take place in the 'naive' case is scaled to the value of one. 

This scaling pennits the shapes of the decision matrices under different circumstances to be 

more easily compared since the relative sizes will change as parameter values change. 

To begin with, the decision matrices for setup reduction under the 'naive' (Figure 4.7) and 

'informed' (Figure 4.8) cases have k e n  plotted. These graphs were calculated numerically, 

and show the fullhone investrnent decision behaviour predicted in the analytic derivations of 

the last two sections. Figure 4.8 shows the three Boundary Segments (i-e., 1. VI and VLI) 

described in Figure 4.5, as well as a tiny deviation where Boundary Segment VI1 meets the 

horizontal a i s .  This deviation is due to optimal setup tirne, T*, being slightly different from 

zero in this region while the analytic derivation of the last section made the assumption that 

T* was equal to zero. The degradation of solution accuracy due to this assumption is not felt 

to be significant. 
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Figure 4.7: Normalized 'Naive' Case Setup Investment Decisions 
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Figure 4.8: Normalized 'Informed' Case Setup Investment Decisions 



112 

The 'naive' and 'informed' setup boundaries are overlaid in Figure 4.9. The region between the 

two boundaries is the area of the matrix in which investment will be made if interactions are 

ignored, but no investment will be made if interactions are considered. This region may be 

thought of as where the setup investment decision error occurs. 

Figures 4.10 and 4.1 1 similarly show the boundaries in the 'naive' and infonned' cases, 

respectively. for investment in quality. The most striking aspect of Figure 4.1 1 is that in the 

region where investment is made in setup reduction (i.e., above and to the left of the "J" 

boundary), there is no investment in quality improvement. This behaviour is a consequence of 

the linear investment function and the non-convex total cost function. It may aiso be observed 

that in the 'informed' case, Boundary Segments II and III from Figure 4.5 are not visible. 

These boundaries do exist in Figure 4.1 1,  but are so close to the axis that they are not visible 

at the scale of the plot. 

1 

Cost of Eliminating Setup Ti 

Figure 4.9: Difference in Setup Investment Decisions, 'Naive' to 'Informed' Cases 
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Figure 4.1 1: Nomalized 'Informed' Case Quality Investment Decisions 
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The differences in the regions between the 'naive' and 'informed cases for quality investment 

are plotted in Figure 4.12. Here, there are fairly substantial sized areas where considering 

interactions will change the optimal investment decision from 'invest some' to 'invest none', or 

'invest fully' to 'invest none'. Comparing Figures 4.9 and 4.12 shows that in the region of the 

decision matrix where the 'naive' strategy calls for at least sorne investment in both practices 

(i.e., over the rectangle bounded by ((0,0), (0,I ), (1 ,  l ) ,  (1 ,O)}), ignoring potential interactions 

leads to either over-investment in setup reduction, or over-investment in quaiity irnprovement. 

1 

Cos t of Ehnnating Setup Tim 

Figure 4.12: Difference in Quality Investment Decisions, 'Naive' to 'Informed' Cases 

The frequencies of various levels of over-investment (Le., for the 'naive' case relative to the 

'informed' case) for this numencal example have been caiculated and are surnmarized in Table 

4.1. Once again, the levels of potentiai over-investment are significant. As in the mode1 from 

Chapter 3 in which batch size was fixed, no situations exist in which ignonng interactions 

leads to under-investment. 



Table 4.1 Frequencies of Over-Investment from Numencal Example 

4.3.2 Sensitivities 

Over-Investment Level 
(percentage of optimal investment) 

b 

< 5% 

The sensitivity of the distributions of over-investrnent to changes in Demand (Figure 4.13). 

Initial Defect Rate (Figure 4. I ) ,  Initial Setup Time (Figure 4.15). Holding Cost Rate (Figure 

4.18), Interest Rate (Figure 4.19) and Processing Time Coefficient of Variation (Figure 4.20) 

has been calculated using the low and high values of each parameter given in Table 3.2. The 

Frequenc y of Observances 
(n = 2601) 

1 

1 8% 

histograms of these distributions are presented below. 

Changes to the three parameters which affect systern utilization, narnely demand, initial defect 

rate and initiai setup time, show little or no effect on the distributions of over-investment 

(Figures 4.12,4.14 and 4.15, respectively). To investigate why, the changes in decision 

boundary positions have been plotted for the setup reduction boundaries (Figure 4.16) and 

quality improvement boundaries (Figure 4.17). These two Figures are plotted for high and 

low values of demand, and Figures plotted for high and low values of initial setup times and 

initial defect rates show similar behaviour. 
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Figure 4.13: Sensitivity of Decision Error Distribution to Demand Changes 
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Figure 4.14: Sensitivity of Decision Error Distribution to Defect Rate Changes 
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Figure 4.15: Sensitivity of Decision Error Distribution to Setup Time Changes 

As shown in Figure 4.16, as demand increases, only the very bottom of the decision boundary 

shifts, and shifts to the left. This results in decreasing the size of the region where setup 

investment is called for (Le., the upper left region) and slightly increases the size of the region 

where decision error takes place. Hence, for setup reduction, increasing demand leads to 

increased leveIs of decision error. 

Figure 4.17 shows the changes to the investment regions for quality improvement as dernand 

increases. There are two separate regions here where the investment decision changes. In the 

region on the Ieft, the optimal decision changes from 'invest none' to 'invest fully' as demand 

increases. This suggests a decreased level of decision error. The other region, on the right, 

has the optimal investment decision go from 'invest fully' to 'invest some' as demand increases. 

This would suggest a higher level of decision error as demand increases. Together, it is not 

clear whether there will be a net increase in the over-investment distributions for quality 

improvement, or a net decrease as demand increases, nor is there a clear indication of how the 

net over-investment distribution for both setup and quality will behave as demand is changed. 
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Figure 4.16: Decision Matrix for High and Low Demand Rates 
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A further factor to explain the lack of sensitivity is that the size of the regions where changes 

in optimal decisions take place is relatively smail compared to the size of the decision matrix. 

Since the distribution of over-investments shown in the sensitivity graphs use matrix area as a 

measure of frequency, limited changes in graph areas will lead to limited changes in over- 

investment frequencies. 

Since changes to demand lead to ambiguous conclusions regarding the distribution of over- 

investment, the lack of sensitivity to this parameter shown in the distributions of Figure 4.13 is 

not surprising. As well, since setup times and defect rates have a similar effect on the 

underlying queuing model used in this research, that is, increases in each of these three 

parameters lead to increased system utilization, queue Iengths and WIP holding costs, the lack 

of sensitivity of the over-investment distributions to changes in initial defect rate (Figure 4.14) 

and initial setup time (Figure 4.15) are consistent with the lack of sensitivity to demand. 

The sensitivity of decision errors to changes in holding cost rate and interest rate is shown in 

Figures 4.18 and 4.19, respectively. These graphs show a significant effect on distributions of 

over-investments due to the relative changes in costs of holding WIP inventories vs. the costs 

of making improvements as these two parameten are changed. The sensitivities shown here 

are consistent in direction with those of the model from Chapter 3 (Figures 3.14e and 3.149, 

and for the same reasons. Iust as in the results of Chapter 3, opposing sensitivities are found 

for holding cosi rate and interest rate. These parameters affect the locations of the decision 

boundaries according to the ratio h/i (Le., the ratio of holding cost rate to interest rate), so the 

opposite sensitivities found here are expected. 



Low Holding Cost  

OveRnves t m n t  

Figure 4.18: Sensitivity of Decision Error Distribution to Holding Cost Changes 
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Figure 4.19: Sensitivity of Decision Error Distribution to Interest Rate Changes 
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Figure 4.20: Sensitivity of Decision Error Distribution to Processing Variance Changes 

The final sensitivity case studied is that for processing time variance, with the distribution of 

over-investments shown in Figure 4.20. Little or no sensitivity is seen in this graph. There 

are two explanations for this result, both having to do with the'behaviour of batch size over 

the decision matrix. When the cost of setup reduction is relatively high, no setup reduction 

takes place ( e g .  the lower right region of the decision matnx) and optimal batch size is 

relatively large. Under this condition, batch service time coefficient of variation becomes 

quite small. as was demonstrated in Equations 3.6.3 through 3.6.6 of the last chapter. 

The other region of the decision matrix, where investment takes place in setup reduction, has 

an optimal bztch size of one unit. Under this condition, queue length will be a function of 

batch processing time variance, but WIP costs are minimal since each batch of work in the 

queue represents only a single unit. These minimal changes to WIP cost will lead to minimal 

changes in optimal investment decisions as a function of processing time variance, and hence, 

little or no sensitivity as is shown in Figure 4.20. 



4.4 Discussion 

In this chapter, the expected total cost (E[TC]) mode1 of Chapter 3 was extended to include a 

third decision variable: batch size. Ernpincal evidence suggests that batch size changes are 

strongly linked to changes in setup time, and since batch size changes are assumed to not 

require capital investment, the batch size variable was optirnized with the setup time variable. 

Again, two investment strategies were exarnined: the 'naive' strategy in which optimal 

investment decisions were calculated for setup improvement and quality irnprovernent 

independently of each other, and the 'informed' strategy in which investment Ievels in setup 

and quality were optimized simuItaneously. 

in the 'naive' case, the E[TC] function was shown to be always nonconvex in terms of the 

setup and batch size decision variables. Conventional convex optimization rnethods were not 

applicable. However, through the development of a series of Properties, it was shown that 

this system has two optimal decisions: 1 )  'Don't Invest', in which no investment is made in 

setup reduction and an optimal batch size, Q* > 1 (in general) results, or, 2) 'Invest', in which 

enough investment is made in setup reduction to reduce the optimum batch size to one unit. 

In numerical experiments, it was shown that in the 'invest' case, setup time was essentially 

reduced to zero, Le., the optimal decision is to invest fully. It may be noted here also thar 

E[TC] is convex in Q alone. Optimal 'naive' investment in quaiity is the sarne as in Chapter 3. 

that is, optimal decisions cm be 'invest none', 'invest some', or, 'invest fully', depending on the 

parameter values in the particular problem. 

The 'informed' case optimization was similarly challenging due to the continued non-convexity 

of the EVC] function. A 'piece-wise' approach was taken to develop the decision matrix and 

closed-fom expressions for the location of the decision boundaries could not be obtained in 

al1 instances due io the increasingly complex mathematics of the system. 



Cornparison of the two cases shows that, just as in Chapter 3, the improvement practices 

interact with each other, and over-investments of significant magnitude cm result if this 

information is not taken into account. Both the 'naive' and 'informed' cases show binary 

investment in setup reduction: either no investment takes place, or effectively full investrnent 

is called for. Batch size shows similar behaviour, either batch size is some significant quantity, 

or it is one unit. 

Decisions to invest in quality improvernent were sirnilady extrerne. If investment in setup was 

called for, no investment would take place in quality. unless the cost of making quaiity 

improvements was very close to zero. 

This eitherlor investment behaviour is not intuitive, and would not be expected in practice. 

The expianation is that the linear investment function tends to bias the system towards non- 

convexity and extreme point optima. A similar system with a convex investment function is 

studied in Chapter 6.  and depending upon the degree of convexity of the investrnent function, 

does not show such extreme behaviour. 

It was also found that for the entire area of the decision matnx where the 'naive' strategy calls 

for investment in both practices, over-investment occurred in either setup or quality 

irnprovement. There is no region where the 'naive' and 'informed' strategies cal1 for the same 

optimal investment levels. 

Distributions of over-investments when interactions are ignored were found to be essentidly 

insensitive to changes in systern demand, initial setup time, initial defect rate and processing 

time variance. The insensitivity to processing time variance is a result of reduction of batch 

processing time coeffient of variation for larger batch sizes, and due to there being very littie 

queue and hence very litde effect on the system when batch size is one unit. Changes to the 

other parameters. demand and initial setup and quality levels do affect the location of the 

boundaries where investment decisions change, but when scales are normalized (as is the case 

in the cornparison of over-investment levels), the decision matrices show little sensitivity to 



changes in these parameters (Le., the shapes of the decision matrices do not change very 

much). 

Over-investment distributions are sensitive, however, to changes in the holding cost and 

interest rates. just as was found in Chapter 3. 

In the next chapter. the model of Chapter 3 is extended to include a convex investment 

function, with fixed batch size, while the effects of variable batch size are again examined in 

Chapter 6. which also uses a convex investment function. 



Chapter 5: Fixed Batch Size, Convex lnvestment Function 

In this chapter, a system characterized by fixed batch size and a convex investment- 

improvernent function is exarnined. Intuitively, a convex investment function is more 

appealing than the linear investment function since it represents the situation where each 

increment of improvement to the production system requires ever-increasing increments of 

investment. Decision variables, once again, are setup time (T) and quality level (R). 

5.1 Convex ln vestment Function 

As was described in Chapter 2, a number of investment functions have been used in the 

literature. Table 2.2 provided a sumrnary. The choice of the functional form used seems to be 

related prirnarily to the solution method used. For instance, models which were solved via 

geornetric programming al1 used a power function form for the investment function. In fact, 

with the exception of a step-function used by Trevino et al. [1993], none of the papers listed 

in Table 2.2 refer to any empirical measurements of setup or quality improvement costs as a 

bais for selection of the forms of investment functions used. There appears to be no 

compelling reason to select one functional forrn over another. 

Since there is no 'best' investment function, a search can be made for a function with the most 

useful properties. To start this search, the following criteria are specified for an acceptable 

convex investrnent function, I(T,R): 

1 ) Non-negativi ty, Le., 



2) Zero initial investment, Le., 

I = O  for T, R = 1 

3) Positive improvements from investment, i.e., 

4) Strict convexity, Le., 

In addition to meeting these criteria, an investment function should keep the mathematical 

cornplexity of the overall expected total cost function to a minimum so that the likelihood of 

obtaining useful analytic solutions is increased. To examine this issue, the E[TC] function of 

Equation 3.3.3 is reproduced here: 

In order to minimize E[TC], the first derivatives of this function are taken and set to zero. 

For the purposes of brevity, only the denvation in terms of the setup time decision variable 

will be given in this section; denvation in terms of quality level is similar. The derivative with 

respect to setup time becomes: 

Substitution of the expected waiting time function, EIW], and simplifying gives: 



E[S] is a first order polynomial in terms of T (from Equation 3.2. l), while E[s'] is a second 

order polynomial in T (from Equation 3.2.3). Examination of the first three terms in 5.1.6 

shows that they are second order pclynomials in T. while the degree of the last term will 

depend upon the specific investment function chosen. Since the coefficient of that term is 

already a second order polynomial. if the derivative of the investment function is not 'zeroth' 

order in T. the complexity of the whole equation increases. To illustrate this idea, suppose 

that aI&T had the form a, + a,T (where a,, a, are arbitrary coefficients). The last term in 

5.1.6 would then be a third order polynomial in T, requiring so!urion of a cubic equation. As 

the order of Is(T) increases. so does the order of dE[S]/dT and aE[TC]/dT. 

In light of these considerations for investment function behaviour, the following form for an 

investment function (in this case for setup reduction) is proposed: 

where a,. a ,  . a, are arbitrary constants. 

Taking the derivative and substituting into 5.1.6 gives: 
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Examination of this equation shows that it is a second order polynomial in T. Thus, the 

investment function 5.1.7 does not increase the order of the derivative of the E[TC] system, 

or the difficulty in obtaining a solution. 

The form of this function is illustrated in Figure 5.1. The pararneter - determines the 
1 - P 

location of the intercept of the curve with the investment axis, and represents the amount of 

investrnent necessary to completely eliminate setup time. It is anaiogous to the 

quantity associated with the Iinear investrnent function of the previous chapters. The 

convexity of the investment function is controlled by the magnitude of the al pararneter 

relative to the % parameter. 

O 0.2 0.4 0.6 0.8 1 

Decision Variable Value 

Figure 5.1: Convexity of hvestment Function by value of ai/% 

This investment function fonn is influenced by the utilization, p, of the production system. 

For instance. as utilization increases, the level of investment necessary to make improvements 

also increases, as shown in Figure 5.2. Intuitively, this behavior can be justified in the 
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following way. In a setup reduction project, typical tasks would be activities such as 

modifying tooling to provide standardized clamping or having operators rehearse better setup 

procedures. In a system with low utilization, making the system available for physical 

modifications as well as operator practice sessions is not difficult. However, with higher 

utilization improvement tasks would increasingl y involve conflicts with production and would 

require additional resources or overtime, each representing higher costs, to cornplete the same 

level of improvements in a similar time frame. A similar type of behaviour was found by Kim 

[1990] in an EPQ-based rnodel. That mode1 predicted investrnent in setup reduction 

becorning increasingly more difficult to justify as server utilization increased. Thus, an 

investment function dependent upon system utilization is seen as reasonable. 

1 lnvestment Level 

Oecision VaRable Value 

Figure 5.2: Dependence of Investment Function on System Utilization 

The coefficients a,, a , ,  a, in 5.1.7 must be selected such that the criteria for an acceptable 

investrnent function (i.e., Equations 5.1.1 through 5.1.4) are satisfied. The constraints on 

these coefficients are developed here with the help of the four criteria: 



2 )  Zero initial investment, i.e., 

I = 0  f o r T = I  

a , + a , + a , = O  

or a2  = - (a, + a , )  

when T  = O 

3) Positive improvernents from investment, Le., 

Let Z =  1  - A( l  + Rro)QE[X] ( 1  - p) = ( Z -  )croT); then, 

a1 [a, - 2(ao + ~,)T](z- &TI +[a0 + alT - (a0 + a l ) ~ ' l &  
-S= c O 
dT (1  - pl2 
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This expression relates the values of the coefficients a0 and al. To refine this relationship, 

consider the quantity [Z - 2ZT + h r o ~ ' ] :  

This suggests that there is at least one sign change in the range [0.1]. To find the location of 

the zero of [Z - 2ZT + ~ T , T ~ ] ,  denoted 'Î' , the quadratic formula is used to find a single root 

in [0,1] at: 

and Equation 5.1.1 1 can be rearranged in terms of a,/% as: 

[AT, - 2ZT + h r , ~ ~ ]  
> - for T C T S I  

[Z - ~ Z T  + h r , ~ ~ ]  

Equation 5.1.12 forms a constraint on the value alfa. This constraint is sketched over the 

range O < T 5 1 in Figure 5.3. 



Figure 5.3: Constraints on 5 from Positive-Return-frorn-Investment Criteria 
a0 

Since the variable T can Vary over the range [O. 11, and the constraints 5.1.12 must be satisfied 

for al1 values of T, the term ai/% must satisfy: 

These expressions provide both an upper and lower bound on the value of a&. 



4) Strict convexity, i.e., 

implies that 

(a, + a ,  )(Z - h r , ~ ) '  + Ar&, - 2(ao + ~ , ) T ] ( z  - hr,T) 

+ h2r;[a, + a,T - (a, + a , )T2]  > O 

Both this constraint and 51-13  impose an upper bound on al/%. A question arises of which 

(if either) constraint is tighter, or, altemately, which (if either) of these upper bounds is 

redundant. To answer this question, consider the upper bound constraint from 5.1.13, along 

wi th some aigebraic rearrangements: 



The first term in the last line will be recognized as the right hand side of 5.1.14. Thus, the 

constraint 5.1.14 is tighter than 5.1.13 by one unit. Therefore, the convexity condition (Le., 

Equation 5.1.14) will impose a tight upper bound on al/% and the upper bound from S. 1.13 is 

redundant. 

To summarize. a satisfactory investment-improvement function for setup reduction is given 

by : 

a, + a ,  T - (a, + a , ) ~ ~  
1, = 

1 - P  

- 

a0 Z(Z - Ar,) 

where Z = 1 - )i(l + Rr,)QE[X] 

By a completely analogous procedure, a convex investment function for quality improvement, 

IQ, which exhibits the same behavior as shown in Figures 5.2 can be developed as: 



where Y = 1 - )~(TT, + QE[X]) 

With these convex investment functions, the E[TC] function is cornplete and will now be used 

to analyse the 'naive' and 'informed' investment cases. 



5.2 'Naïve' lnvesfment Decisians 

Once again. the 'naive' investment decision case is the one in which investments in setup 

reduction and quality improvement are made independently of each other. For each practice. 

optimal investments are calculated while assurning no investment takes place in the other. 

Then. for setup time, E[TC] is minimized with respect to T through the necessary condition: 

+ h ~ . ' r i  [(1 + r i  )E[x]' - ( 1  

The sufficient condition is checked by substituting 5.2.1 into the second derivative of E[TC]: 

So that 5.2.1 is the setup time which minirnizes E[TC]. 



The decision boundaries are found in terms of a, which reflects the cost of eliminating a11 

setup time in the convex investment function of Equation 5.1.15. (This value is analogous to 

the value sda used in the linear investment function of Chapters 3 and 4.) Rearranging 5.2.1 

for %* gives: 

The 'no-invest' boundary occurs when T* = 1 ,  or, 

-~Q' (D(I  + r,)E[X] - I X D T , ~  + ia,)  - D~,(D'T;~ + 2 ~ i a , )  (5.2.3) 

+ ~ ' r , h ~ [ ( l  + r 0 ) ~ [ x 2 ]  + ((Q - I)( l  + r,)* + 2(1 + r , )  - ~ ) E [ x ] ~ ]  1 
While the 'full-invest' boundary occurs at T* = O, or 



Optimal investment in quality is found similady. The necessary condition on E[TC] with 

respect to R is: 

1 - AT, R* = + 1 1 
X 

D r ~ E I X 1  DQr~E[X] J ~ D ~ ( Q  + I)~;E[X]' + 2i(bo + b , )  

3 2 [ 2i(b0 + b ,  )[Q - Dro]' - D hro QE[X][Q - DT~IE[X'] + ?E[x]'] 

(5.2.5) 
(b, + b ,  )[24 - 2Dro - DQE[X]] + b l [ ~  - Dr, - DQE[X]] 

In the convex investment function for quality improvement (Equation 5.1.16). bo represents 

the cost of eliminating defects. analogous to the r& term of the previous two chapters. It is 

found by rearranging 5.2.5 as: 

The 'no-invest' boundary occurs at R* = 1, or: 



2[DrO + DQE[X] - Q][D' h r , r ,~ [x ]  - ib, ] - 2DQroE[X]ibl 

And the 'full-invest' boundary occurs at R* = O, or: 

2 [ ~ r ,  + DQE[X] - Q ] [ D ' ~ ~ ~ ~ ~ E [ X ]  - ib,] - 2DQroE[X]ib1 (5.2.8) 

The 'naive' case boundaries (Equations 5.2.3. 5.2.4. 5.2.7 and 5.2.8) can then be plotted on a 

decision matrix, as shown in Figure 5.4. It may be noted that this 'naive' case decision rnatrix 

is similar to that of Chapter 3 where a linear investment funciion was used. The idea of the 

sensitivity of decision matrices to the assumed investment function will be discussed in greater 

detail in Chapter 7. 
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Figure 5.4: Schematic of Decision Matnx for 'Naive' Investrnent Case. 



5.3 'Informed' ln vestment Decisions 

In the 'informe& case. improvements to setup and quality are considered simultaneously. The 

objective is then to minimize E[TC] as a bivariate function of setup time and defect rate. In 

this section the convexity of the EPC]  function is examined, then an appropriate optimization 

method is used to determine where the decision boundaries lie. 

5.3.1 Convexity of E[TC] 

In minimiring the expected total cost of the system, it is necessary to determine the 

conditions, if any, under which the EVC] function is convex, and where locally optimal 

solutions might exist. The first step taken here will be to test the convexity of the E[TC] 

function in two variables. setup time (T) and quality Ievel (R). There is some degree of choice 

of convexity of the investment function, govemed by the selection of the values of the ai/ao 

and bl/bo parameters. Since the object of this chapter is to study the behaviour of the E[TC] 

system with a convex investment function, these parameters will be set to the level which 

maximizes the convexity of the investrnent functions. This level was determined as the lower 

bound in Equation 5.1.13, Le., that the investment functions are most convex when ail% and 

bi/bo are set to the value -2. Using these values, the EVC] function is: 

The Hessian of this system becomes: 



Convexity requires the principal minors of this system to be positive, i.e., 

A = det H(E[Tc]) > O 

Inserting the E[TC] function , the first principal minor becomes: 

which is seen upon inspection to be stnctly positive. The second principal minor, A , ,  

becomes: 

det H(E[TC]) = [ ~ 6 i 2 a , b , ~ ' ( l  - ~ [ r ,  + ( 1  + ~,)QE[x]J* + D6h'rir; ( ~ a r [ ~ ]  - E[x]')' 

+ 8 D 3 h i ~ a r [ ~ ] ( ~ r 0  b, + ~ ~ Q ' E [ x ] ( I  - hr , ) )a , }  

+ [I - l ( r ,  + QE[x]))~E[x] - [I - h(r, + Q ~ [ ~ I ) ] ' ) }  

+ { 8 ~ ' h i r , r ~ b , ( ~ [ ~ ' ]  - ~,E[x]')} 

+ { 2 ~ ' h r i  ( 4iQb, - ZD'~~Q~;E[X]' - D'~~;E[X']')}] 

This equation can aIso be broken into components for analysis: 

det H(E[TC]) = 2, + Z, + Z, + Z, 
where: 



The sign of the overail expression is not apparent upon inspection. To determine the sign, 

each of the components of 5.3.4 wili be examined in tum. First, however, to assist in 

evduation of the terms in this fùnction, a series of inequalities is derived from the defined 

bounds on system utilization (i.e., O 5 p < 1). Each of these inequaiities follows from those on 

the previous lines. Starting with utilization, we have: 

Equation 5.3.5a can also be expressed as: 
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Now the components of 5.3.4 can be exarnined to detemine their signs. The first component, 

z,, was: 

The first term of ZI is always positive by 5.3.5b, while the second is always non-negative. 

Sirnilarly, the third term is non-negative by 5.3%. Overall, Zi is always strictly positive. 

The second component, Zz, was: 

The sign of this component depends upon the relative magnitudes of the tems in the 

parentheses: 

From 5.3.5b and 5.3.6, the value of terni2 must be in the range [O, 1). By Equation 5.3.5b, 

tem3 must be in the range [-1, O). In the case of each term assuming its lowest value, terml 

= 1 (since Q 2 1). term2 = O and term3 = - 1. so that Zz = O. For any other possible value for 

each of these three terms, 22 > O. Thus, the second component of 5.3.4 is non-negative. 

For the tems in component Z3, 



The non-negativity of variance is used, i.e., 

( r,, the initial defect rate, is constrained to be less than 100%, as well as being non-negative.) 

Using 5.3.7, it can be seen that Z3 is non-negative as well. 

For the last component, Zq, 

consider the definition for the square of the coefficient of variation, cv, 

Then, Zq can be written as: 



since: 0 2  D E [ X ] <  1 

OCr ,< l  

Q21 

An intuitive cornparison c m  be made of the magnitudes of the terms in 5.3.9. The interest 

rate for investments. i, is likely to be of order 0(10-l) as will the coefficient of variation 

squared, cv2. Unit holding cost, h, might be of order O(loO). The final parameter, bo, 

approximates the investment necessary to cornpletely eliminate defects from the system, so 

would likely be of order 0(103) or greater. Since this parameter so completely dominates the 

magnitude of the others, it is reasonable to conclude that 5.3.9. and hence & will in practice 

be positive. 

Therefore, since a11 the groups of terms in 5.3.4 can be assumed to be non-negative or 

positive, it can be concluded that the second principal minor is always positive and E[TC] is 

always convex in terms of setup time and defect rate. 

5.3.2 Bivariate Minimization of E[TC] 

Since E[TC] is convex in T and R. any critical points found will represent minirnizers of total 

cost. To locate critical points, the necessary condition applied and optima are found from the 

simultaneous solution of the system: 

Which, after simplification, yields: 



hll3r0 h ~ ~ r  
{T E[x]'(Q - 1) + ~ E [ X ' ]  - QE[x](~D'?, - 2iao) + ~ r , ( h ~  + ia, + ib,) 

2 

As Equation 5.3.4 showed, any solution to 5.3.10 will represent a minirnizer of E[TC], and an 

optimal investment strategy. Unfortunately, due to the complexity of this non-linear systern, 

no analytic sohtion to 5.3.10 has been found. 

This result can be used, however, to derive some of the behaviour of the decision matrix. 

First of all, Equation 5.3.4 showed that the E[TC] function is convex in setup time and defect 

rate. This would indicate that the decision matrix must have a significant region where the 

'sorne-some' investment decision is optimized, as a result of convexity. 
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Furthermore, the results from Equations 5.2.3 and 5.2.3 indicate that when there is a high cost 

of improving quality (Le., when no investment takes place in quality improvement), three 

optimal setup investment decisions occur (e.g., invest none, invest some and invest fully), 

depending on the cost of eliminating setup time. Similady, for high cosü of improving setup, 

Equations 5.2.7 and 5.2.8 show that three optimal quality investment decisions occur (e-g., 

invest none, invest some and invest fully). 

It may easily be shown that if Equations 5.2.1 through 5.2.4 were re-derived assuming R = O 

(Le.. full investment had taken place in quality improvement), setup improvements would still 

have three optimal decisions: invest none, some and full. As well. assuming T = O for 

Equations 5.2.5 through 5.2.8 (Le., full invest in setup), it could be shown that the three 

optimal decisions will exist for quality improvement. 

Together, these arguments show that the 'infomed' decision matrix will contain regions for 

the nine separate optimal decisions (Le., 'full-full', 'full-some', ... , 'none-none') represented in 

the decision matrix for the 'naive' case, although the sizes of the regions will change. 

The boundaries for the 'infomed' decision rnatrix can be developed as follows. 

1) Setup Boundaries 

a) No investment in Quality (Le., R* = 1) 

This is the 'naive' case where the boundaries were given as Equations 5.2.3 and 5.2.4, i.e., 



No invest boundarv 

-~Q' (D(I  + ro)EIX] - I X D T , ~  + ia , )  - DT,(D~T;~ + 2 ~ i a , )  (5.3.1 la) 

Full invest boundarv 

- 2 4 ' ( ~ ( 1  + r,)E[X] - l ) ( ~ r , h  + ia,)  - ~ s , ( ~ ' r ; h  + 2 ~ i a , )  (5.3.1 1 b) 

+ ~ ' r ~ h ~ [ ( l  + r 0 ) ~ [ x 2 ]  + ((Q - 1)(1+ r,)' + 2(1 + r,) - z)E[x]'] 

b) Full investment in Quality (i.e., R* = O) 

These boundanes can be developed by re-deriving Equations 5.2.1 through 5.2.1 under the 

assumption that R* = O. Optimal setup time becomes: 



No invest boundarv 

+~Q'(DE[x] - IXDT,~ + ia, ) + DT~(D'T;~ + 2 ~ i a , )  

Full invest boundarv 

- 
( ~ ' r i h  + ZQia,) 

a0 *l T*=(),R*=O - + I - ~ Q ~ ( D E [ x ]  - l X ~ r , h  + i a , )  
2Qi ZQ~DT, 

(5.3.13b) 

- ~ r , ( ~ ' r i h  + î ~ i a ! )  + D~T,~Q[E[X' ]  + (Q - I)E[x]'] + 2QiIXOb, 

It may be observed that these two boundaries are linear functions of the cost to eliminate 

defects. bo. These sections of the boundaries will plot as diagonal lines on the decision rnatrix. 

C) Some investment in Quality (i.e., O c R* c 1) 

This case is more complex since it involves the simultaneous solution to Equations 5.3.10. An 

analytic solution has not been found, but an algorithm can be used to plot the boundary for 

given numerical values for the model's parameters. 



Algori thm 5.1 : No-invest boundary (i.e., T* = 1 ) 

1 )  choose R*, O I R* I 1 

2) substitute R* and T* = 1 into Equations 5.3.10a and 5.3. lob. (This yields 

two equations in two unknowns. a and bo.) 

3) solve simultaneously for (Q, bo)* 

4) plot point (a, bo)* on decision matrix 

5) repeat from Step 1 for next value of R* 

(In practice, numerical expenments have shown this portion of the boundary to be curved just 

as the rnid-portion of the setup boundary in the 'informed' case of Chapter 4 was curved, e-g., 

such as is shown in Figure 5.5.) 

These results can be used to develop the no-invest and full-invest boundaries for setup time 

reduction over the range of cost to eliminate defects of zero to infinite. The general shape of 

these boundaries is shown in Figure 5.5. 

1 

O 1 1 

O 1 

Cos t of ElinPnating Setup Tm 

1 

Figure 5.5: 'Informed' Case Setup Decision Boundaries 
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2) Quality Boundaries 

The decision boundaries for quality investment are developed in a manner similar to that used 

for the setup boundaries. Three cases are delineated, namely, 'no'. 'full' and 'some' investment 

in quality improvernent, and are given below: 

a) No investment in Senip (Le., T* = 1) 

This is the 'naive' case where the boundaries were given as Equations 5.2.7 and 5.2.8, Le., 

No invest boundarv 

1 
= - [2ib, + D%,?E[x]' h ( ~  + 1)] + bo y R'=I.T*= I . 

1 

~ [ D T ,  + DQE[X] - QID' h r o r 0 ~ [ x ]  - ib, ] - 2DQroE[X]ib, 

Full invest boundary 

= 1 [2ib, + D'~:E[X]' h(Q + l)] + b~ ? R*=O.T*=I - 
1 iDQr, E[X] 

~ [ D T ,  + DQE[X] - Q ~ D ~  h r , r , ~ [ ~ ]  - ib, ] - 2DQr,E[X]ib, 



b) Full investment in Setup (Le., T* = 0) 

These boundaries can be developed by re-denving Equations 5.2.5 through 5.2.8 under the 

assumption that T* = O. Optimal setup time becomes 

R* = 1 + Q 1 X 
DroELX] DroEIX] J ~ D ?  (Q + I)~;E[X]' + 2i(b, + b , )  

/ 2i(b, + b , )  - D'~~;E[X][E[X'] + ZE[X]'] 

No invest boundarv 

Full invest boundary 



It may be observed that these two boundaries are linear functions of the cost to eliminate 

setup time, ao. These sections of the boundaries will plot as diagonal lines on the decision 

matrix. 

c) Some investment in Setup (i.e., O c T* c 1) 

This case is more complex since it involves the simultaneous solution to Equations 5.3.10. An 

analytic solution has not been found, but an algorithm can be used to plot the boundary for 

given numerical values for the model's parameters. 

Algonthm 5.2: No-invest boundary (Le., T* = I ) 

1)  choose T*, O < T* S 1 

2) substitute T* and R* = 1 into Equations 5.3.10a and 5.3.10b. (This yields 

two equations in two unknowns, and bo.) 

3) solve simultaneously for (ao, bo)* 

4) plot point (a, bo)* on decision matrix 

5) repeat from Step 1 for next value of T* 

Using these results a decision matrix for quality can be drawn and is shown in Figure 5.6. 

Combining Figures 5.5 and 5.6 leads to the complete 'informed case decision matrix, given as 

Figure 5.7. The most striking difierence between this decision matrix and Figure 3.1 1 from 

Chapter 3's 'informed' case decision matnx is that a large 'some-some' optimal decision region 

exists here but did not exist in the mode1 using the linear investment function. This 

discrepancy suggests that the form of the investment function plays a large role in the optimal 

investment decisions in a system. 



No-l nws t 
Boundary 

Ful l - ln~s  t 
I 
1 / Boundary 

Cos t of Elhinating Setup Tirrr: 

Figure 5.6: 'Informed' Case Quaiity Decision Boundaries 

Inest Some in Setup, None in 
None in Quality 60th 

None in 
Inwst Some in Setup, Setup, 

Some in 
Quality 

None in Setup, Full in Quality 

%,est Fully in 00th Cos  t of ElirRnatuig Setup Tm 

Figure 5.7: Completed Decision Matrix for 'Informed' Case 



5.4: Decision Error and Sensitivity Analysis 

5.4.1 Decision Error 

Analytic determination of an expression for decision error in this version of the mode1 has not 

been possible due to the complexity of the decision matrix in the 'informed' case. As in the 

last chapter, cornparisons will be made based upon numerical examples. Example problem 

parameters are al1 taken from Table 3.2. 

Figure 5.8 shows how the setup boundaries change from the 'naive' to 'informed' cases. Due 

to the convexity of the investment function. this decision matrix contains a relatively large 

region for 'some' investment. In the "some setup over-investment" region, the optimal 

investment changes from investing 'some' to investing 'none' as interactions are considered. 

The "full setup over-investrnent" region has the optimal investment change from investing 

'fully' to investing 'some'. In each case the effect of ignoring interactions is that over- 

investment is possible. No regions on this rnatrix would lead to under-investment. 

Quality decisions behave similariy, and are shown in Figure 5.9. Again there are two regions 

of substantial size on the decision matrix where ignoring interactions will lead to over- 

investment. Combining Figures 5.8 and 5.9 would show that there are significant fractions of 

the overall decision matrix where over-investment errors c m  take place, but not over al1 the 

matrix. This is on contrat to the more extreme behaviours of the rnodels from Chapters 3 

and 4 where the majority of the decision matrix area would be prone to decision error. This 

result aiso suggests that the form of the investment function is very important in decision 

making. 

Frequencies of over-investrnent were calculated using the sample parameter values in Table 

3.2, and are presented in Table 5.1. As in previous chapters, the magnitudes of potential 

over-investments are significant. 
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'Some' Setup 
&r- Imestment 
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Figure 5.8: Differences in Setup Investment Decisions, 'Naive' to 'Informed' Cases 
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Figure 5.9: Differences in Quality Investment Decisions, 'Naive' to 'Infomed' Cases 



Table 5.1: Frequency of Over-investment Levels 

I Over-lnvestrnent Level 1 Frequency of observances1 

5.4.2 Sensitivity Analysis 

(percentage of optimal investment) 
c 5% 

Distributions of over-investment have been calculated for the high and low parameter values 

given in Table 3.2 to evaluate the sensitivity of decision error to each of the input parameters 

in the model. 

(n = 260 1) 
18% 

The sensitivities for the four parameters which affect system utilization, Demand, Batch Size, 

Initial Defect Rate and Initiai Setup Time, are graphed as Figures 5.10.5.1 1 , 5 1 2  and 5.13, 

respectively. Consistent with the results from Chapter 3, the level of each of these parameters 

which increases system utilization (i.e., high demand, low batch size, high defect rate, high 

setup time) also shifts the distributions of over-investments upward. This is the same result as 

was found in Chapter 3 and corresponds to the analytic results derived there, that is, as 

utilization increases, so does Decision Error. 



1 Overinves tnient 
L 

Figure 5.10: Distribution of Over-Investment as a Function of Demand 

8Wo , 
Il b w  Batch Size 

< 5% 50- 100% 15o-2w0 250-3m0 350-400% 

Overinves trrien t 

Figure 5.1 1: Distribution of Over-Investment as a Function of Batch Size 



Figure 5.12: Distribution of Over-Investment as a Function of Initial Defect Rate 

Overinves tmnt 

Figure 5.13: Distribution of Over-Investment as a Function of Initial Setup Time 



1 High Holding Cost 

Overinves t a n  t 
l 

Figure 5.14: Distribution of Over-Investment as a Function of Holding Cost Rate 
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Figure 5.15: Distribution of Over-Investment as a Function of Interest Rate 
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. h w  Rocessing Variance 

1 O Hig h Rocess ing Variance 

Figure 5.16: Distribution of Over-Investment as a Function of Processing Time Variance 

Low inv.  Fcn. Convexiiy 

50 - 1W0 150-200% 250-300% 3 5 0 - W o  

Overinves tmn t 

Figure 5.17: Distribution of Over-Investment as a Function of Investment Function Convexity 

Figures 5.14 and 5.15 show the sensitivities for holding cost and interest rates, respectively. 

These sensitivities are similar to those in the rnodels of Chapters 3 and 4, and for the sarne 
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reasons. Similarly, there is essentially no sensitivity to processing time coefficient of variation 

(Figure 5.16) as the batch service time in this mode1 is insensitive to the unit processing time 

variance for relatively large batch sizes, as in Chapter 3. 

Sensitivity to investment function convexity (Figure 5.17), however, is quite significant. The 

explanation can be found in the decision matrices for low and high levels of investment 

function convexity. shown in Figures 5.18 and 5.19, respectively. As the investment function 

becomes more convex, so does the EFC] function. The potential for an optimal investrnent 

decision being 'some-some' increases with the increasing EPC] convexity, resulting in the 

area of the 'some-some' region increasing to occupy a greater fraction of the decision matnx. 

As this happens. the curvature of the decision boundaries decreases and regions where 

decision error occurs shnnk. The net result is a decrease in the distribution of over- 

investment frequencies, as shown in Figure 5.17. 

1 

N o d i z e d  Cost to Eiiminate Setup 

Figure 5.18: 'Informed' Decision Matrix for Low Investrnent Function Convexity 



'Som-Som' 
inves t m n t  
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1 
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Figure 5.19: 'Informed' Decision Matnx for High Investment Function Convexity 



5.5: Discussion 

In this chapter, the basic model of Chapter 3 was extended to include convex, rather than 

linear, investment functions. The first section of this chapter discussed the types of convex 

investment functions found in the literature, why there is no compelling reason to choose any 

particular form of a function and ultimately developed a convex function mathematically 

suited to the queuing-based mode1 used in this research. 

The system with a convex investment Function showed many of the same behavioun ùiat were 

exhibited in the model of Chapter 3. Optimal investment levels for setup and quaiity could lx 

'none', 'some' or 'full' just as in Chapter 3. The most striking differences between the results of 

the two chapters is that the 'informed' case boundaries curved smoothly, rather than being 

piece-wise linear, and, the 'informed' decision matrix showed a region of 'some-some' 

investment as optimal. 

The curved vs. piece-wise linear boundaries no doubt are due to a greater degree of convexity 

in the E[TC] function resulting from the convex investment function. The E[TC] function of 

Chapter 3 was strictly nonconvex (in two variables), forcing extreme-point optima. That 

non-convexity explains the decision boundaries being 'kinked' as decisions change. The E[TC] 

function in this chapter, on the other hand. has a range in which it is convex, so that as 

problem parameters change, the decision boundary cm follow a smoothly curving path. 

The second behaviour seen, the existence of the 'some-some' optimal decision region confim 

the speculation in Chapter 3 that the non-intuitive lack of such an optimal decision in that 

chapter was due to the linear investment function. 

This result, dong with the sensitivity to the convexity of the investment function shown in 

Figure 5.17 suggest that the fom of the investment function strongly influences the output of 

the model. The role of the investment function will be discussed in greater detail in Chapter 7. 



Chapter 6: Variable Batch Size, Convex lnvestment Function 

In this, the last analysis chapter, a model is considered in which the convex investment 

function from Chapter 5 is used and batch size is assumed to be an optimization variable. Due 

to the complexity of this model, general analytic solutions have not been obtained. Instead, 

results corne from numerical examples, which show behaviour similar to that found in the 

rnodels of previous chapters. As in the previous chapters. optimal decisions are compared 

between a 'naive' case (ignoring potential interaction) and an 'informed' case (allowing 

potential interactions). 

6.1 'Naive ' lnvestment Decisions 

The 'naive' case assumes that optimal investment levels will be determined for setup and 

quality improvements independently of each other. As in Chapter 4, because of the strong 

empirical link between setup reduction and batch size, batch size is optimized with setup time. 

The two optimization problems in this case are to 1) optimize investment in setup time 

reduction along with batch size, and , 2 )  optimize investment in quality irnprovement. These 

problems are studied in tum. 

6.1.1 Setup and Batch Optimization 

The objective in this sub-case is to minimize total costs simultaneously with respect to setup 

time (T) and batch size (Q). Before examining the necessary conditions, the convexity of the 

system c m  be determined through the sufficiency condition. To manage the complexity of the 

expressions, investment function convexity parameters were selected maximum convexity, Le., 

al = -2 a0 and bl = -2 bo. Then, for convexity, E[TC] must satisfy: 



i )  Positive first principal minor of Hessian, Ai 

ii) Non-negative second principal rninor of Hessian, A2 

These two conditions become, for the rnodei of this chapter. 

and, 

ii) 
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While each of the tenns of 6.1.2a is positive, so that A, is positive, the sign of 6.1.2b is much 

more difficult to determine analytically from this expression. Instead, a numerical evaluation 

has been performed. A Monte Carlo simulation was developed according to Algorithm 6.1, 

using pararneter values selected uniformly over the ranges given in Table 6.1. 

Algorithm 6.1 : Monte Carlo Simulation for E[TC] Convexity Check 

1. SampIe values for parameters D, TO, ro, h, i, cv, a, bo according to uniform 

distribution with endpoints given in Table 6.1 

2. Calculate upper and lower bounds for a lho  and biho from Equations 5.1.15 and 

5.1.16 (bounds on investment function convexity ) 

2.1. If upper and lower bounds for either ai/% or bl/bo overlap (i.e., investment 

function is infeasible), go to Step 1 

2.2. Sample al/% and bl/bo uniformly over their feasible ranges 

3. Calculate utilization. If p 2 1,  go to S tep 1 

4. Calculate values for minors from Equations 6.1.2a and 6.1.2b 

5. Repeat from Step 1 until required number of points are obtained. 

Table 6.1 Monte Carlo Simulation Parameter Ranges 

Parameter 
D 

a0 

, bo 
a h 0  

b h o  

Lower Limit 
20.000 

Upper Limit 
200.000 

1,000 
1,000 
-2 

-2 

1,000,000 
1,000,000 
from Equation 
5.1.15 
from Equation 



The simulation was run until 5000 points had been obtained (this number was arbitrarily 

chosen). A histogram of the frequency of the results for the first principal minor is given as 

Figure 6.1. Most values, > 8 1 % in this exarnple, are positive, indicating that in a significant 

number of cases the E[TC] function is convex with respect to setup time alone, and it has 

local minima for values of T between O and 1 (Le.. where 'some' investment is optimal). (This 

result differs from Equation 6.1.2a since the Monte Carlo simulation also sampled for the 

investment function convexity parameters al and bi.) 

Magnitude of Minor 

Figure 6.1: Frequencies of First Principal Minor Observations from Monte Carlo Simulation 

The results for the second principal minor are given in Figure 6.2. The distribution in this case 

is primarily non-positive (1.5% of values king positive). indicating EVC] as a function of 

setup time and batch sizes is convex only over a small region of the decision space, but can be 

convex. This result suggests that a 'some' investment decision can be optimal in the (T, Q) 

system, but will be relatively small compared to the 'full' investment region. 
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Figure 6.2: Frequencies of Second Principal Minor Observations from Monte Carlo 

Simulation 

Indeed, a numerically generated decision matnx, Figure 6.3, using the example pararneter 

values given in Table 3.2 confirms this prediction. There is a region of 'some' investment. but 

it is relatively narrow compared to the 'full' investment region. in contrat, Say, to the sizes of 

the corresponding regions in the 'naive' case decision matrices of Figures 5.4 or 3.4. (The 

system in Chapter 3 was strictly nonsonvex and there was no 'some' investment region.) The 

axes in Figure 6.3, and subsequent decision matrices. are normalized such that 'naive' case no- 

investment boundaries fa11 at a norrnalized value of one on the respective axes. 
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Figure 6.3: Normalized Decision Matrix for Optimal Investments in Setup, 'Naive' Case 

(costs are nomalized such that the no-invest boundary falls at cost = 1). 

6.1.2 Quality Optimization 

Determining the optimal investment in quality improvement is done just as in Chapter 5. 

Investment boundaries, from Equations 5.2.7 and 5.2.8, are: 

The 'no-invest' boundary occun at R* = 1, or: 

~ [ D T ,  + DQE[X] - Q][D' h r o r , ~ [ ~ ]  - ib, ] - ZDQr&[XIib, 



And the 'full-invest' boundary occurs at R* = O, or: 

1 
b, 4 ,.=, = F i b ,  + D'<E[X]' h ( ~  + 1)] + 

I iDQr, E[X] 

~[DT,  + DQE[X] - Q][D~ h r , r , ~ [ ~ ]  - ib, ] - 2DQroE[X]ib, 

Using numerical values from Table 3.2, these boundaries are plotted in Figure 6.4. Figure 6.5 

completes the decision matrix for the 'naive' case by overlapping Figures 6.3 and 6.4 to the 

define regions of optimal investment for both setup and quality. This 'naive' case decision 

matrix is similar to those of Chapters 3 and 5. with the prirnary difference k ing  the three 

regions involving 'some' investment in setup reduction are relatively narrow in this system. 

1 
l 

No-lnes t 
Boundary 

Full-lnties t 
Boundary 

[ 

O 1 1 1 

O 1 

Cost of Ehhating Setup T m  

Figure 6.4: Normalized Decision Matrix for Optimal Invesmients in Quality, 'Naive' Case. 
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Figure 6.5: Completed Decision Matrix for 'Naive' Case. 

None in Setup, 
Full in Quality 



6.2 'Informed' Case 

In the 'informed' case, decisions are optimized simuitaneously over the three variables, T, R 

and Q. Exarnining the sufficiency condition first, E[TC] is convex if Equations 6.1.1 a and 

6.1.1 b are satisfied and the third principal rninor, A,, is non-negative, Le., 

Evaluating this deteminant analytically for sign is impractical; written out. 6.2.1 takes up 19 

pages. Again, a Monte Car10 simulation was performed according to Algorithm 6.1, 

modifying step 4 to calculate the value of 6.2.1. The results of this simulation are surnmarized 

in Figure 6.6. 

l Magnitude o f  Minor 

Figure 6.6: Frequencies of Third Principal Minor Observations from Monte Car10 Simulation 



This principal minor is also negative the vast majority of the time (>94% in this example), 

indicating non-convexity of the E[TC] most of the time. However, the other two principal 

rninon must be considered when determining convexity. In examining the 5000 cases from 

the Monte Carlo simulation, al1 three principal minors were simultaneously positive only twice 

(i.e., 0.04%). This result suggests that an optimal 'some-some' decision can exist. but is rare. 

Sirnilar to the 'naive' case, the decision boundaries c m  be caiculated numerically given 

example parameter levels. Figure 6.7 shows the decision boundaries for setup investment 

while Figure 6.8 shows the boundaries for quality investment decisions. Overlaying Figures 

6.7 and 6.8 yields the completed decision matnx for the 'informed' case, as given in Figure 6.9. 

This matrix shows the 'some-some' decision region occupies a narrow strip in the center of the 

matrix, consistent with the low frequency of E[TC] convexity predicted by the Monte Carlo 

simulation. 

1 

Cos t of Elirrrinating Setup Ti 

1 

Figure 6.7: Setup Decision Boundaiies for 'Informed' Case. 
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Figure 6.8: Quality Decision Boundaries for 'Informed' Case. 
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Figure 6.9: Completed Decision Matrix for 'Informed' Case. 

Elements of the shape of the decision matrix in Figure 6.9 are also seen in the 'infomed' case 

decision matrices of the previous chapters. For instance, on the right of the matrix, the three 
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regions for invesring 'none', 'some', and 'fully' in quality are consistent with the regions 

predicted analytically with other versions of the model. The "J" shape of the setup boundaries 

is consistent with the results of Chapter 4 where batch size was a variable but the Iinear 

investment function was used. Since one would expect that using the convex investment 

function would lead to the EVC] function being more convex, intuitively. a region of 'some' 

investment in setup would be expected, as is found between the two setup boundaries. Sol 

although this decision matrix was generated numerically for a single example, its shape is 

expected to be the genenc shape for the variable batchkonvex investment function model. 



6.3 Decision Error and Sensitivity 

6.3.1 Decision Error 

Due to the cornplexity of the solution to this model, analytic determination of an expression 

for the 'decision enor' has not k e n  possible. Instead, a numerical evaluation for the example 

case from Table 3.2 has been perfomed. Using these example parameters, optimal investment 

decisions have been calculated as functions of the costs to improve setup and improve quality. 

under both the assumption of no interactions ('naive' case) and dlowing interactions 

('informed' case). These numerical results were then used to constnict the respective decision 

matrices to permit the cornparisons between cases in this section. 

The difference in optimal investment decisions due to interactions c m  be illustrated by 

cornparhg the 'naive' and 'informed' decision matrices. To assist in making this cornparison, 

the case of optimal setup decisions alone is considered fint, followed by the case of optimal 

quality decisions alone. When combined, these two cases fom the complete decision rnatrix. 

Figure 6.10 shows the setup investment decision boundaries for both the 'naive' case from 

Figure 6.3 and the 'informed' case from Figure 6.7 overlaid on the same graph. The region 

between the straight ('naive' case) and curved ('informed' case) boundaries represents where 

the optimal investrnent decision changes. Since the 'informed' case boundaries always fa11 on 

or to the left (Le., at lower costs of improvement) of the 'naive' case boundaries, ignoring 

interactions always results in equal- or over-investments, never under-investment. 

Quality decision boundanes are compared in the same way. In Figure 6.1 1, the 'naive' and 

'infomed' boundaries for quaiity investment decisions from Figures 6.4 and 6.8, respectively, 

are overlaid. 



Cost of Ehhating Setup T i  

Figure 6.10: Regions of Setup Over-Investrnent. 'Naive' to 'Informed' Case 

O 1 

Cost of E h h a t i n g  Setup T i  

Figure 6.11: Regions of Quality Over-Investment, 'Naive' to 'Informed' Case 

(Note: Roman numerals indicate regions described in the text.) 

To assist in the description of the changes in optimal investment levels. five sub-regions are 

shown in Figure 6.1 1. nurnbered 1 through V (the dotted line represents the setup no-invest 



boundary, which is where 'informed' case quality investment decisions start to deviate from 

'naive' case decisions). The five sub-regions cm be described as: 

Sub-Region 'Naive' Case Investment 'Inforrned' Case Investment 

1 'Some' 'None' 

II Full' 'None' 

III 'Some' 'Some', but less than 'Naive' Case 

IV 'FulI' 'Some' 

V 'Full' 'Full' 

In four of these five sub-regions, ignoring interactions leads to higher investment levels then 

when they are considered, while equivalent investments result in the fifth sub-region. Again. 

the result of ignoring interactions is making investmenü of the sarne or greater magnitude than 

when they are considered. 

The magnitudes of potential over-investments have been tabulated for this example and are 

summarized in Table 6.1. As in previous chapters, these values are calculated by cornparing 

optimal investment levels predicted by the two cases over the area of the decision rnatrix 

where the 'naive' strategy called for investing 'some' or 'fully' in both improvement practices. 

This form of the model, with convex investment functions and variable batch size, also shows 

significant levels of over-investment are possible. 



Table 6.1: Frequency of Over-investment Levels 

6.3.2 Sensitivity Analysis 

Over-Investment Level 
(percentage of optimal investment) 

< 5% 
5 - 50% 

50 - 100% 
100 - 150% 
150 - 200% 

Similar to the models in the previous chapters, the decision error from ignonng interactions 

with this version of the model was examined for sensitivity to the various parameters in the 

model. The first parameter studied was demand. High and low levels were as given in Table 

3.2. The resulting distribution of over-investment are given in Figure 6.12. 

Frequency of Observances 
(n = 2601) 

19% 
26% 
28% 
6% 
3% 

Figure 6.12: Distribution of Over-investment as a Function of Demand 



I 
O 0.2 0.4 0.6 0.8 i 1.2 

N o d i z e d  Cost to Eliminate Setup 
I 

Figure 6.13: 'Informed' Decision Matrix for Low Demand 

0.2 0.4 0.6 0.8 1 1.2 

NormaiM Cost to Elirrinate Setup 

Figure 6.14: 'Informed' Decision Matrix for High Demand 
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From Figure 6.12, there does seem to be sensitivity to demand, with increasing demand 

shifting the distribution of over-investment to higher levels. To investigate the reason behind 

this shift, the decision matrices for the 'infomed' cases with low and high demand are given as 

Figures 6.13 and 6.14, respectively. Three primary differences are seen in these figures. First, 

the curvature of the setup boundaries (e.g., the "J" curves) increases with demand, and the 

boundaxies intersect the axis at a location of lower cost of making improvements. 

The second difference is that the 'full-invest' boundary for quality investment moves down, to 

a position of lower cost of making improvements, just as the boundary for setup had done. 

The third difference between the matrices is that the regions for 'some-invest' in setup have 

decreased in size. This would suggest the E[TC] function becomes iess convex as Demand 

increases. 

To help see how these changes affect the decision error, the 'naive' and 'infonned' case 

boundaries for setup are plotted in Figure 6.15 for both low and high Demand levels. Since 

the area enclosed by these curves represents the region where setup over-investment takes 

place, the size of the region corresponds to a likelihood of over-investrnent in setup. Figure 

6.15 shows that as Demand goes from low (dotted line) to high (solid Iine), the size of this 

region increases. 

The corresponding graph has been drawn for quality improvements, and is given as Figure 

6.16. Since, when normalized, the quality 'no-invest' boundary goes from the points (0,O) to 

(1,1) regardless of Demand level, only the 'full-invest' boundaries have k e n  drawn. The 

region where decision error occurs is that triangular area bounded by the horizontal and 

diagonal components of the decision boundaries, and by the quality cost axis. In this instance, 

going from low to high Demand has led to a decrease in the area of the region where qudity 

decision error occurs. 
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Figure 6.15: Differences in Setup Boundanes. Low to High Dernand 
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Normaiized Cost to Eliminate Setup 

Figure 6.16: Differences in Quality Boundaries, Low to High Demand 



Since an increase in demand simultaneously increases the size of the region where setup 

decision error occurs, but decreases the size of the region where quality decision error occurs. 

no clear conclusion can be drawn on the sensitivity of decision error to demand. It would 

appear that the sensitivity would depend on the relative changes in the sizes of these areas, 

which is not known in general from the exampies calculated here. 

The distribution of decision errors for the next parameter, initial defect rate, ro, is given in 

Figure 6.17. This distribution shows a more significant shift from Iower levels of over- 

investment to higher levels as ro goes from low to high. To examine the possible reason for 

this, the 'informed' decision matrices for the low and high initial defect rate cases are presented 

as Figures 6.18 and 6.19, respectively. These decision matrices show the sarne behaviour as 

those for changes in demand; the curvature of the setup boundary increases, the 'full' 

investment boundary for quality drops and the 'some' investment regions for setup become 

more narrow. These behaviors irnply the sarne changes to the areas of the decision error as 

when demand was varied: the size of the region of setup over-investment increases while the 

size of the region of quality over-investment decreases. No generai conclusion cm be drawn 

about the sensitivities of the decision error to the initial defect rate. 

I 

[O Hig h ûefect Rate 1 

Figure 6.17: Distribution of Over-investment as a Function of Defect Rate 
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Figure 6.18: 'Informed' Decision Matnx for Low Initial Defect Rate 

O 0.2 0.4 0.6 0.8 1 1.2 

Nomelaed Cost to Elinimate Setup 
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Figure 6.19: 'Informed' Decision Matrix for High Initial Defect Rate 



187 

The sensitivity of the over-investment distributions to changes in initiai setup time. ro, is 

shown in Figure 6.20. Essentially no sensitivity is seen. The decision matrices for low and 

high initial setup time are given as Figures 6.21 and 6.22, respectively, and appear to be very 

sirnilar, if not identical. It is hypothesized that the reason for this indifference is that 

investment in setup is almost binary: either no investment or full investment occurs. Since 

these decision matrices are normalized at the point where investment starts to take place, and 

since over-investment is calculated in relative terms, the scaling performed to create these 

measures factors out the sensitivity to initial setup times. 

1. Law Setup Tm 1 i 

Overinves trnent 

Figure 6.20: Distribution of Over-investment as a Function of Setup Time 
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Figure 6.21: 'Informed' Decision Matrix for Low Initial Setup Time 

O 0.2 0.4 0.6 0.8 1 1.2 

Norrnaiized Cost to Elhinate Setup 

Figure 6.22: 'Informed' Decision Matrix for High Initial Setup Time 

Figures 6.23 and 6.24 give the distributions of over-investment for low and high holding cost 

rates and interest rates, respectively. The (relatively small) sensitivities seen are the sarne as 
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those for the other foms of the mode1 in previous chapters: the sensitivities are in opposite 

directions with lower holding costs leading to lower average over-investments. 

1 O High Holding Cost  1 

Figure 6.23: Distribution of Over-investment as a Function of Holding Cost Rate 

Figure 6.24: Distribution of Over-investment as a Funciion of Interest Rate 
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The sensitivity with respect to processing time coefficient of variation is given in Figure 6.25. 

Just as in the other chapters, batch service time coefficient of variation is relatively insensitive 

to this parameter. 

O High Processing Variance I l 

1 < 5% 50- 1 W o  ISO-2w0 2 5 0 - 3 W o  350-400% 

Overinves t m n t  

Figure 6.25: Distribution of Over-investment as a Function of Processing Time Variance 

I 
1 Low hv. Fcn. C o n v e i y  l 1 O High Inv. Fcn. Convexity 

Overinves t m n  t 

Figure 6.26: Distribution of Over-investrnent as a Function of Investment Function Convexity 
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The last parameter to be considered is the convexity of the investment functions. Figure 6.26 

shows the distributions of over-investment as the investment function convexity was varied 

from Iow to high. From this graph, there is significant sensitivity to this parameter. 

To help understand why, the 'infomed' decision matrices are given as Figures 6.27 and 6.28. 

These figures show significant differences, with the most ciramatic k ing  the size of the 'some- 

some' investment region. In the low convexity case this region appears to have collapsed 

completely, while in the high convexity case it occupies the largest area of the decision matrix. 

This behaviour is expected. As the convexity of the investment function decreases, the 

function will eventually become linear, which is the case studied in Chapter 4. In that f o n  of 

the model, investment in setup reduction was either to invest enough to reduce batch size to 

one unit, or no investment was optimal, Le., there was essentially no 'some' investment 

decision for setup. This behaviour is represented in Figure 6.27 by the lack of regions for 

'some' investment in setup. A difference between Figure 6.27 and Figure 4.6 for the 'infomed' 

decision matrix from the model using a linear investment function is that the quality 

boundaries in the 'invest-fully' in setup region were much lower than they are here. It can be 

noted. however. that the quality boundaries in Figure 6.27 are discontinuous across the setup 

decision boundary, and that in the limit as the investment function became linear, could tend 

towards the decision matrix developed in Chapter 4. 

In Figure 6.28. the 'some-some' decision region has expanded to fiIl much of the decision 

matnx. This result can be explained by considering what would happen if the investment 

function became very convex. In such a limit, the cost of making the last increment of 

improvement to setup or quality would reach infinity, so the decision to 'invest-fully' in setup 

or quality would never be optimal. The decision matrix would then include only two 

decisions: 'invest-none' in practice, or 'invest-some', and the 'some-some' region would fil1 the 

area from the ongin to the (1,l) point on these normalized graphs. 

Considering the sites of the areas on these figures where over-investment takes place, it can 

be seen that as investment function convexity increases, the size of the regions where over- 

investment takes place decrease. This trend suggests that the distribution of over-investments 



shown in Figure 6.26 is explained by the expected sensitivity of the system to changes in 

investment function convexity. 

I 

O 1 

Nomialized Cost to m a t e  Setup 

Figure 6.27: 'Informed' Decision Matrix for Low Investment Function Convexity 

O 0.2 0.4 0.6 O. 8 1 12 

Norrnalized Cost to m a t e  Setup 

Figure 6.28: 'Informed' Decision Matrix for High Investment Function Convexity 



6.4: Discussion 

This chapter examined the most complex case in this dissertation: a model with variable batch 

sizes and a convex investrnent function. Due to the complexity of the system, few analytic 

results were obtained and numerical examples had to be relied upon. 

Once again, a 'naive' case in which optimal investments in setup time (with batch size as a 

secondary optimization variable) were detennined independendy of optimum investments in 

quality improvement, was compared to an 'informed' case in which the three decision variables 

were optimized simultaneously. Just as in the previous three chapters, setup and quality 

improvements were found to interact, with the interaction leading to a significant chance of 

over-investment if it is ignored. 

The behaviour of the 'informed' decision matrix is consistent with that seen in the previous 

chapters. There is a primary, "J"-shaped decision boundary through the matnx, sirnilar to that 

found in Chapter 4 where batch sizes were variable, but the investment function was linear. 

The behaviour of the optimum investment in setup reduction similarly tended towards extreme 

points, with optimum decisions to invest either 'fully' or 'none',. but with a narrow region 

where 'some' investment was called for. This behaviour was again due to the influence of the 

variable batch size. As setup time reduction takes place, optimum batch size drops which 

provides additional benefït for more setup reduction. 

The relationship between optimal investments in setup and quality, however, were not as 

extreme as that found in Chapter 4. In that chapter, if investment took place in setup 

reduction, there was essentially no investment called for in quality improvement. In this 

chapter, there was investment in quality in the region where the optimal decision is to invest 

fully in setup reduction, although the size of the sub-regions for quality investment were 

smaller than the comparable regions in Chapter 5 (convex investment function, fixed batch 

size). This difference is a result of the use of the convex investment function in the model of 
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this chapter. The convex investment function leads to the EFC] function k ing  convex under 

some circumstances. When this happens, 'some' investment in setup and quality is optimal. 

Also similar to Chapter 4 were the results of the sensitivity analysis. Decision Error had only 

Iimited sensitivities to the problem parameters, with the exception of the convexity of the 

investment function, to which it was very sensitive. Examination of the decision matrices 

under conditions of low and high investment function convexity showed dramatic changes in 

relative areas of the various regions. As convexity increased, so did the sizes of the areas 

representing 'some' investment as optimal. (In the other direction, as convexity decreased, the 

decision matnx approaches that of Chapter 4, in which the linear investment function was 

used.) A consequence of this shift in area sizes is that the prospect of the decision maker 

over-investing if interactions are ignored decreases since the areas of the decision matrix 

where Decision Error occurs shrink as convexity of the investment functions increase. 

These results further underscore a conclusion that the shape of the investrnent function used is 

very important to the investment decision making process, and has a very large impact upon 

the prospect for over-investing and the magnitudes of the over-invesmients. 

The final chapter. Chapter 7, summarizes the results of this dissenation, draws conclusions 

and makes recommendations for future research. 



Chapter 7 Discussion, Conclusions and Further Research 

This dissertation has studied the role of interactions between two simultaneously implemented 

improvement practices, namely setup reduction and quality improvement. on optimal 

investment decisions. A model of a manufacturing ce11 with WIP inventories was created. and 

four versions of the model were exarnined in Chapters 3 through 6,  leading to a number of 

results. This chapter summarizes the results of this research, draws conclusions and offers 

some directions for future research. 

7.1 Discussion 

To examine the effects of possible interactions on investment decisions, a new model was 

developed based on an M/G/I queuing model with setup time and quality level as the primary 

decision variables. In contrat to the previous EOQ-based models, which based benefits from 

improvements on savings of finished goods cycle-stock inventories, this queuing-based model 

estimated expected levels of WIP inventories and costs. WIP is expected to provide a more 

representative reflection of overall manufacturing inventory costs than finished goods cycle 

stock [e.g.. Boucher, 1984; Primrose, 19921. The development of this model was presented 

in Chapter 3. 

Two key assumptions made in the model deal with the treatment of the batch size variable and 

the assumed relationship between levels of investments and the resulting levels of 

improvements to the system. Because these assumptions were expected to have a significant 

impact upon the model predictions, different variations of the mode1 were created with 

different treatments of these factors. Two types of batch size were considered: batch size as a 

fixed parameter in the model and batch size as a decision variable. Sirnilarly, two types of 

investment function were considered: linea. (i.e., constant retums to scale) and convex (i.e., 

decreasing retums to scale). These two factors of two levels each resulted in four possible 
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combinations, each of which has been studied through a different variant of the model. The 

four model variants were each developed and analysed in separate Chapters: 

Fixed batch size, linear investment function (Chapter 3). 

Variable batch size, linear investment function (Chapter 4). 

Fixed batch size, convex investment function (Chapter 5). 

Variable batch size, convex investment function (Chapter 6). 

To assist in presentation of the model results, new ternis were advanced. For instance, it was 

found that investment decisions for each improvement practice could be classified into three 

categories: a) 'invest none', in which no investment takes place, b) 'invest fully', in which a 

maximum possible investment is made, or, c) 'invest some', for optimum investments between 

the previous two categories. It was found that the optimal investment decision for a given 

improvement practice can be expressed as a hinction of cost to fully improve that practice, 

which is a quantity easily detennined from the investment function. Using this cost, the two 

interfaces between the three categories (Le., between 'invest none' and 'invest some', and 

between 'invest some' and 'invest full y' decisions), temed the 'decision boundaries', can be 

described as a function of the other problem parameters. These boundaries represent the 

locations where the optimal investment decisions for a practice change as the cost of 

improving that practice increases or decreases. 

As the objective of this research was to examine the effects of possible interactions on 

investment decisions, comparisons were made between optimal decisions predicted for two 

cases. The fint case, the 'naive' case, determined optimal investment decisions based on the 

assumption that the two practices were independent of each other. This case did not include 

the effects of any interactions in predicted decisions. The second case, the 'informe& case, 

optimized the model simultaneously over the two practices. With simuItaneous optirnization, 

any interactive effects were included in optimal decisions. Differences between the optimal 

investment predictions of each case are then assumed to be the result of interaction. 



Since there were two improvement practices, these categories of optimal decisions can be 

plotted on a two-dimensionai graph, called the 'decision matnx.' By plotting the decision 

boundaries for each practice against the costs of making improvements to each practice, a 

decision matrix is developed. The decision matrix shows ail optimal investment decisions as 

regions on the graph (e.g., 'invest none' in setup and 'invest some' in quality, etc.). By 

comparing the sizes and shapes of the corresponding regions between decision matrices for 

different models, changes to the structure of optimal investment decisions can be quickly 

determined. 

Differences in the areas of the various regions between the decision matrices are the result of 

interactive behaviour. The interpretation of theses differences is that one investment decision 

is optimal under a given set of circumstances if interactions are ignored (the 'naive' case), but a 

different investment is optimal if interactions are considered (the 'informed' case). This 

discrepancy in optimal decisions is termed the 'decision error', and the different model variants 

of each analysis chapter have been used to develop relationships usehil for examining this 

concept of 'decision error.' 

The mathematical complexity of each model variation increases as one goes down the list 

given above. In the first case, fixed batch size and linear investment function, optimal 

decisions and decision errors were determined analytically, while in the last case, variable 

batch size and convex investment function, most of the results were obtained through 

numericd means. For instance, in Chapter 3, relationships for the location of the decision 

boundaries on the decision matrix were developed analytically. Formulas were also developed 

for 'boundary shift', that is, how much each decision boundary moves to a location of lower 

costs when investments are made in the other practice (i.e., as a consequence of interactive 

behaviour). These formulas show that this is the genenc behaviour for the system with a 

linear investment function and fixed batch size, regardless of parameter settings. Figure 7.1 

illustrates the concept of 'boundary shift' for the 'no invest' boundary on setup reduction. 



'rnfomrrd' 
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Figure 7.1: 'Boundary Shift' for Senip 'No Invest' Decision Boundary 

(for linear investment functionh'ixed batch size model of Chapter 3) 

In the model variations of the remaining chapters, it became necessary to develop increasing 

portions of model results though numerical exarnples. While numerical examples do not 

provide general results, patterns consistent with those developed analytically in Chapter 3 

were seen throughout Chapters 4 through 6. For example, consider the concept of 'boundary 

shift'. In Chapter 3, analytic results showed that the decision boundaries for one practice shift 

toward lower cost values as the cost of improving the other practice decreases. In Chapters 4 

and 5, closed-form solutions were developed for the extreme ends of the decision boundaries 

which also showed this behaviour, although the center section of the boundaries had to be 

plotted nurnerically . In Chapter 6, only numerically-denved boundaries could be obtained, 

which also showed this behaviour in al1 examples studied The similarity across the findings 

for each case provides evidence that this 'boundary shift' is a generic behaviour. nlustrations 

of the 'boundary shift' for the setup reduction 'no invest' boundary are given in Figures 7.2a ,b 

and c for the models of Chapters 4,s and 6, respectively. 
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Figure 7.2 'No Invest' Setup Reduction Boundaries Showing 'Boundary Shift' 



200 

Indeed, an intuitive explanation cap also be given for 'boundary shift'. Consider one practice, 

setup reduction. If the cost of improving the other practice, quality improvement, is very 

high, no improvement will be made in the quality improvement. Al1 the 'waste' in the system 

(i.e., W P  holding costs for this model) can be used to justify investment in setup reduction, 

and the investment boundaries for setup reduction will fall at certain costs of improving setup 

(i.e., dong the horizontal axis of the decision matrix). Now suppose that the cost of 

irnproving quality was reduced to the point where the optimal decision is to 'invest fully' and 

eliminate all defects. The time the server formerly spent reworking defective uni& is now 

freed, decreasing system utilization and reducing queue length and WIP costs. In this state the 

system contains less 'waste' in the form of WIP inventories, so setup reduction will only be 

justified at lower costs than when quality was not improved. The investment boundaries for 

setup will shift to lower cost of improvement levels as the cost of improvements in quality 

decreases. Repeating this argument with the practices reversed will lead to the same 

conclusion for the shift of quality irnprovement boundaries. Thus, the 'boundary shift' 

predicted analytically and numerically in Chapters 3 through 6 is the expected general result 

for this model. 

'Boundary shift' is a useful intermediate result for predicting implications for management 

decisions. At relatively high costs of improvements, the decision boundaries for the 'naive' 

and 'informed cases coincide. As the costs decrease. more improvements will take place in 

each practice, and result in 'boundary shift' in the 'informed' case. (The 'naive' case assumes 

improvement practices are independent of each other so determination of a boundary position 

for one practice will not consider any investments in the other practice and no 'boundary shift' 

will occur.) The analytic results of Chapters 3 through 5 show that 'boundary shift' always 

occurs in the same direction, that is, towards positions of lower costs of improvements. while 

the numerical examples in Chapter 6 aiso support this finding. .Thus, it is logicai to conclude 

the 'informed' case will always cal1 for optimum investrnent levels of the sarne or smaller 

amounts than the 'naive' case. Regions on the decision matrix where the 'informed' (with 

'boundary shifts') and 'naive' (without 'boundary shifts') decision boundaries have diverged 

represent the regions where decision error occurs, Le., where the optimal investmen t decision 
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predicted by the 'naive' and 'infonned' strategies differ. The net result of 'boundary shift' is 

that if a project fails in one of these regions, a manager using the 'naive' strategy and ignoring 

potential interactions will over-invest in improvements compared to a manager using the 

'informed' strategy . 

The level of over-investment in improvement projects when using the 'naive' strategy can be 

quite significant. For instance, for the model variant of each Chapter. the levels of over- 

investments were calculated and frequencies were determined and categorized. They are 

presented in Table 7.1. Over-investment was calculated by finding the difference between 

'naive' and 'infonned' case optimum investment levels and normalizing with respect to the 

'informed' case level. Levels of over-investment were calculated at discrete points uniformiy 

distributed over the decision matrix for the region where the 'naive' strategy calls for 

investments in both practices, and frequencies of these values were determined for the 

categories presented in Table 7.1. Since over-investment is defined as a relative measure, it 

should be kept in mind that a small level of 'informed' case optimal investment in some 

instances Ieads to a dramatic level of over-investment (e.g., in the hundreds of percent), 

although in absolute terms the over-investment is much more modest. Nevertheless, not only 

does each variation of the model predict a great potentiai for over-investment when the 'naive' 

strategy is used, but the levels of over-investment are quite substantial as well. The most 

frequent levels of over-investment seen in these examples were between 5 and 50%. or 

between 50 and 100%. 

The potential for over-investment was affected by the form of the model, as wel1 as by 

parameter levels, but was quite substantial in every exarnple. For instance, in the example 

frequencies of over-investment of Table 7.1, if over-investment levels above 5% are 

considered significant, there was better than an 80% potential in each form of the model to 

over-invest if interactions are ignored. 
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Table 7.1: Relative Levels of Over-Investment from Mode1 Variation of Each Chapter 

(from numerical example using parameters of Table 3.2) 

Xnvestment Batch 
LineadVariabIe Conveflixed ConvexNariable 

Batch Batch Batch 
(Chapter 4) (Chapter 5) (Chapter 6) 

Sensitivity analyses were also performed. In general, changes to parameten which increase 

system utilization (Le., increasing demand, initial defect rates and setup tirnes or decreasing 

batch sizes), also increase the potential for making over-investments, dong with shifting the 

frequencies of the levels of over-investments upwards. Holding costs and interest rates had 

opposite effects on over-investment, with a higher holding cost rate or a lower interest raie 

leading to increased over-investment frequencies. The two model variants with a convex 

investment function were very sensi-ve to changes in the investment function convexity, with 

greater convexity leading to smaller levels over-investment. The final parameter studied in the 

sensitivity analyses was unit processing time coefficient of variation, for which no sensitivity in 

model output was found. This result came as soinething of a sup i se  since a stochastic 

service time model was derived in Chapter 3 specifically to capture the effects of processing 

time variance. The explanation for this lack of sensitivity has to do with the summing of 

independent and identically distributed unit processing times acting to reduce the batch service 

time coefficient of variation for batches made up of large numbers of individual units. While 

the resulting batch service time variances were less than might have been expected at the 
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outset of this research, this difference is not expected to affect the general conclusions drawn 

from the model. 

In systems where batch size was treated as a variable, ihere was found to be a very strong 

linkage between batch size and setup time. In the rnajority of instances the expected total cost 

function was non-convex with respect to the batch and setup variables. Consequently, the 

minimum total cost values generaily occurred at extreme points of these two decision 

variables. For the cases with a linear investment function, or a convex investment function of 

smaller levels of convexity. if any investment in setup reduction was justified. essentially full 

investment in setup reduction is optimum, with the resulting optimum batch size k ing  

reduced to one unit. In these cases, investment in setup reduction tended to be 'al1 or nothing', 

with a corresponding quantum change in optimal batch sizes. Quality and batch size, on the 

other hand, did not show this extreme behaviour, and continuous changes in variable values 

were seen across regions of 'some' investment in quaiity improvement. 

Ultimately, the results of this dissertation show that the shape (Le., the relationship between 

the level of investment made and the resulting level of improvement) of the investment 

functions has a serious impact upon the optimum investment decisions in simultaneous 

improvement projects. As was rnentioned in the literature review, very littie data was found 

regarding the form of empirical investment functions. In light of these research results, this 

lack of knowledge may have a significant unforeseen impact on investment decisions. 



7.2 Conclusions 

Based on the foregoing summary of this dissertation, the following conclusions have been 

drawn from this research: 

1) The two irnprovement practices considered in the mode1 of this research, setup time 

reduction and quality improvement, can interact under a wide variety of circumstances to 

affect the economic performance of the system. This interaction can Iead to over-investments 

of significant magnitude if not taken into account wheo investment decisions are made. 

2) The form of the investment function strongly affects optimal decisions and the potential for 

decision error. When using a linear investment function, a 'some-some' investment decision 

was shown to never be optimal. With a convex investment function, distributions of over- 

investment frequencies were found to be very sensitive to changes in the investment function 

convexity parameter. Greater convexity of the investment function led to the 'some-some' 

optimal decision region on the decision matrix increasing in size, and the potential for over- 

investment decreasing. Since very little is known empirically about the forrn of investment 

functions, decision makers face a significant risk of making incorrect decisions because of the 

uncertainty surrounding investment functions and their effect on optimal decisions. 

3) The risk of this decision error was also affected by system utilization, with greater levels of 

decision enor associated with higher utilizations. Distributions of over-investment 

frequencies were sensitive to the system parameters which affected utilization, namely, 

product demand, batch size, initial setup time and quality level, although systems with variable 

batch sizes were found to be less sensitive to these parameters than systems with fixed batch 

sizes. As these parameters changed such that utilization increised, the potential for over- 

investment increases. Thus, a decision maker studying a more fully utilized system faces a 

greater risk of decision error. 



4) No instances were predicted or found in which under-investment occurs, that is, where the 

consequence of ignoring interactions is investing less than in the case where interactions are 

ailowed for. Ignoring interactions always leads to investments of equal or greater magnitude 

than when interactions are considered. 

5) Optimal batch size and setup times are strongly linked. Setup reduction led to drarnatic 

decreases in optimal batch size. to an optimal batch size of a single unit, while quality 

improvement leads to more modest decreases. This is in contrast to the results for previous 

EOQ-based models which, in general, never predicted that single-unit batch sizes were 

optimal. The fact that these two types of models make such different predictions raises 

validity issues which must be kept in mind by decision rnakers. 

6) This phenomenon of decision emor and risk of significant Ieveis of over-investment was 

robust to al1 the variations of the model studied here. It occurred whether batch size was 

fixed or variable, or whether a linear or convex investment function was used. This result 

suggests that this type of decision error may be quite wide-spread. 

7) Lot-size and investment/improvernent models of production systems cm be implemented 

using queuing models such as the M/G/1 queue. Use of queuing models provides a richer 

modeling environment compared to the EOQEPQ models which have k e n  widely used 

previously since a queuing-based model can capture features of a production system such as 

process variability and WIP inventories. 



7.3 Moirlel Limitations 

As with any model, those used in this research made a number of simplifying assumptions 

which place implicit limits upon how model results rnay validly be used. These limitations are 

briefly discussed here. 

1) Physical Mode1 

a )  Setup Time. Modeling of setup time, that is, assuming each batch entenng service requires 

a setup of fixed length, is consistent with that of most previous researchers mentioned in the 

literature review. This model does not capture randomness of setup times or differences in 

setup times between different products, which may be seen in actual production systems. 

b) QuaMy. There is a considerable divergence in the modeling of quality arnong previous 

models found in the literature. This suggests a sirnilady broad treatment of defect handling 

practices in industry. The assumptions used for quality in the model of this dissertation may 

not represent accurately a wide cross-section of industrial practice, but is expected to include 

the basic trend that as quality improves, fewer system resources must be expended. 

c) Service Time. The service tirne model has been discussed in Section 3.6. While it probably 

does not accurately capture service time variation seen in typical production systems, its use 

still leads to queuing behaviour so that results will be qualitatively valid. 

d)  Single Server/Single Product. Only a single server was modeled. This limitation precludes 

the model from addressing behaviours resulting from interaction with upstream and 

downstrearn operations nomally found in a production system. Sirnilarly, only a single 

product was assumed, which permitted arbitrary selection of batch sizes in Chapters 4 and 6.  



2) Economic Model 

a)  Production Costs. Only WIP inventory holding costs were considered as relevant 

production costs. While WIP cost has been identified by Primrose [1992] as being the most 

important benefit from setup and quality improvement, it is by no rneans the only one. 

Including additional benefits (cost reductions) in a cost model is likely to show greater 

investments are justified, although the interactive trends found here are unlikely to change. 

6) Invesîment-Improvement Funcfions. One of the major conclusions of this research is that 

the forrn of the investment functions plays a very signifiant role in mode1 predictions. 

Obviously, valid model output depends upon the validity of the investment fùnction used. 

c )  lnvestment Amortication. This model, just as most of the EOQ-based models found in the 

literature, used a very simple financial justification mode1 for capital investment. As most 

firms will use more forma1 methods to evaluate investment projects, the point at which an 

investment is deemed acceptable will probably shift when using such methods. Since both 

setup and quality projects would be subjected to the same evduation methods, the 

observations found here for investment decisions are expected to hold. 

3) Analytic vs. Numerical Results. 

Many of the behaviours found in this research were shown through closed-fonn solutions of 

the various forms of the basic model. For instance, 'boundary shift' was shown to be a general 

result in Chapters 3,4 and 5 through analytic solutions. Since 'boundary shift' led to the 

concept of decision error as a result of ignoring potential interactions, conclusions regarding 

decision error are valid regardless of parameter values (excepting, of course, for trivial 

values). 

Results for the model of Chapter 6, however, had to be obtained through numencal examples 

due to the mathematical complexity of that model. While results of numerical examples are 
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functions of the particular parameter values used, al1 results in Chapter 6 showed the same 

trends as those found in the analytically-solved models of the previous chapters. This 

outcome does not prove the results seen in Chapter 6 are generic, but it does provide evidence 

of that. 

Al1 numencal examples in this dissertation were based on exarnple parameter values given in 

Table 3.2. These values were adapted from examples found in the literature (for exarnple, 

from Porteus [ 1986b], Spence and Porteus [1987] and Kim et al. [ 1992]), as well being 

representative of the discrete products manufacturing systems the author has worked in. 

In summary, the ability to make quantitative predictions with this model, for exarnple, 

determining optimal investment ieveis in a given manufacturing improvement project, is 

limited because of the number of simplifying assumptions used. However, the qualitative 

conclusions drawn. such as the nsk of decision error and the importance of investment 

function form. are expected to be valid and generalizable for many manufacturing systems, 

while recognizing the mode1 limitations described above. 



7.4 Future Research 

The model developed in this research has significant potential for king extended and further 

evolved. These are some possibilities for future research: 

1) Empirical Validation. There are seen to be three main opportunities to apply empirical 

validation to this research, namely. to the investment function form, to the process variance 

modeling and to the economic model formulation, in addition to an overdl validation of the 

model concIusions. Each of these opportunities is discussed in tum. 

a) Invesiment Funcrion F o m .  This study found that the f o m  of the investment function had 

a very significant effect on optimal decisions and potential decision errors. Quite a number of 

investment function forms have been proposed in the literature (e.g., see Table 2.2), although 

very Iittle literature was found which provides empirical data for costs of improving these 

practices. Validating the investment functions is a necessary step in validating the overdl 

mode1 . 

b) Process Variance Modeling. As was mentioned in the Discussion, the results of each form 

of the mode1 used in this study were found to be insensitive to the coefficient of variation of 

unit processing times. This result was not expected, and in hindsight can be explained by the 

dampinp of the variation of service time in large batches of work. Empirical evidence would 

suggest that processing time variance for batches of work in many production systems is 

significant, and it appears the processing time model in this study does not adequately capture 

processing tirne variance. Developing and validating an improved processing time model 

based on empirical data is another opportunity to further this research. 

c) Econornic Mode1 Formulation. The economic (cost) model formulation used here was 

quite simple. AI1 cos& were due to one-time capital investments, amortized over an infinite 

time period and resulting in immediate improvements to the system. Benefits were due only 
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to reductions in mean WIP inventories, with an assumption of no other benefits such as labour 

or material savings, increased system capacity or flexibility, etc., due to the improvements 

made. The extent of these assumptions may mean the model does not adequately represent 

typical industriai practice. The effect of these econornic assumptions on mode1 predictions 

should be investigated. 

2) Non-Capital Improvements. To expand upon one of the points in the previous 

recommendation, there is evidence to suggest that setup times in sorne situations can be 

reduced by 50% or more "with very little cost" Keschke, 19961. If the assumption is made 

that these types of non-capital induced improvements occur through a learning process, then 

use of a learning model, such as those discussed in the Literature Review, combined with a 

capital investment function may provide an opportunity to explore a richer model of the 

improvernent practice decision process. 

3) Multi-ItemlMu!tiStage Models. This research assumed a single, uniform product was 

made in a single cell, that total annual demand could be divided into equally-sized batches, 

that setup times, defect rates and processing times are uniform across dl batches and, in two 

cases, that batch sizes can be arbitrarily set. These assumptions prohibit asking questions such 

as how improvement efforts should be allocated over various products, or how improvement 

efforts should be ailocated to each ce11 in a production system. Developing models capable of 

answering these questions would be expected to lead to significant managerial insights. 

4) Alternative Improvement Practices. In this study a mode1 was developed which 

incorporated two improvement practices so that the existence and effects of interactions couid 

be investigated. The two practices used, setup and quality improvement, were chosen because 

they were found to be the most frequently used practices in industry. However, they are by 

no means the only improvement practices available, or employed. Determining if other 

practices exhibit similar behaviour and whether the level or type of decision error changes as 

more practices are simultaneously irnplemented would also provide useful mmagenal insights. 
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5) Cornparisons to Results of Other Models. A significant literature has developed for 

EOQ-based models with setup andor quality improvements (e.g., see Table 2.1). These 

models have been used to make predictions of optimal batch sizes, investment decisions and 

resource allocation strategies, among other things. The results of these EOQ models may be 

compared to those of the queuing-based model developed here. For instance, Kim [1990, 

p85] found with an EPQ-based model that optimum investment levels decrease as system 

utilization increases, while in a queuing-based model, increasing utilization Ieads to increasing 

WIP costs which justify greater levels of investments. Similady, optimum batch sizes 

predicted by EOQ-based rnodels are unlikely to be reduced to a single unit, while the models 

in this study frequently predicted a unit optimal batch. These, and any other. discrepancies 

between results of each type of model should be investigated. 

6) Alternate Quality/Setup Improvement Models. The literature review showed that 

quality improvements have been modeled in a number of ways, for instance, with assumptions 

about rework versus scrapping of defectives, that rework is processed by the primary or 

secondary semer, or that the probability of a process going 'out-of-control' is affected by the 

length of the production run or the care taken in the setup operation. The choice of quality 

model is expected to have senous implications for the predicted optimal investment decisions. 

For example, Porteus' [1986b] treatment of quality assumed that after a setup, the process 

was 'in-control'. making good product. With each unit processed, there is a fixed probability 

of the process going 'out-of-control', and producing defects. Smaller batch sizes will lead to 

better average quality in such a model. Suppose that quality were modeled in this way with 

the linear investment functionlvariable batch size model of Chapter 4. If setup improvement is 

made, batch size is reduced to one unit, which would always be 'in-control' (i.e., good). Al1 

defects would be eliminated without any investment in quality improvement. Obviously, the 

modeling of quality. and likely setup. play an important role in predicting optimal investment 

decisions. 



The contribution of this research has been to provide a greater understanding of investment 

decisions for simultaneous improvements to existing manufacturing systems. The significance 

of the consequences of making investment decisions without considering interactive effects 

between practices was also demonstrated, as was the value of using information about 

interactions. Relevant gaps in existing knowledge on this subject have been identified and 

recommendations were made for future study. In the process, this research h a  also 

developed new mathematical models of manufacturing systems for the purpose of studying the 

effects of making improvements to the systems. 
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