
WRR based Two-Level Slice
Scheduler for 5G RAN Sharing in

the context of Neutral Host

by

Yekta Demirci

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2022

© Yekta Demirci 2022

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the
thesis, including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

We investigate the sub-channel sharing problem in the context of Neutral Host Radio
Access Network (RAN) slicing. We consider a single user Multiple Input Multiple
Output system where each Virtual Network Operator (VNO) brings their own sub-
channels and they use the RAN infrastructure in a common way. We assume that
the power budget is constant per Physical Resource Block (PRB). We consider only
the Downlink and a system made of one single cell. We assume the RAN infrastruc-
ture is operated by the Neutral Host. First, we consider the State of the Art (SOA),
static sub-channel allocation where the VNOs are allocated only the sub-channels they
brought. In the case of SOA, if a VNO experiences no traffic then the sub-channels
will remain idle and the resources would be wasted. Considering this we propose a
two-level-slice scheduler to utilize the idle resources better than the SOA. We imple-
ment the proposed scheduler in an open-source RAN platform, Open-Air-Interface
(OAI). We provide detailed set-up guides for the OAI platform in emulation and with
Commercial-Off-The-Shelf (COTS) hardware. Finally we compare the performance
of the SOA and the proposed scheduler in terms of system throughput and delay in
four different scenarios. The proposed two-level-slice scheduler provides strictly less
delay than the SOA in all the experiments.

iii

Acknowledgements

Anneme ve aileme...

To my family and to my mother who will keep living in our hearts and memories...

I would like express my thanks to my supervisors Professor Mahesh Tripunitara and
Professor Catherine Rosenberg for providing me a chance to conduct real research
and supporting me through my one of the most challenging times.

I also thank my amazing friends who supported me thoroughly during my journey. I
could not be where I am without your help. I kindly express my gratitude to you in
my heart.

iv

Table of Contents

List of Figures viii

List of Abbreviations x

1 Introduction 1

1.1 Overview . 1

1.2 Outline . 4

2 Related Work 5

2.1 Literature Review . 5

2.1.1 Network sharing in 4G . 5

2.1.2 RAN sharing in the context of NH 6

2.1.3 Network slicing in 5G . 7

2.1.4 RAN slicing frameworks . 7

2.1.5 SLAs in the context of RAN sharing 7

3 The RAN Model and the Schedulers 9

3.1 The RAN model . 9

3.2 The Slice-Schedulers . 11

3.2.1 The State of the Art . 11

3.2.2 The proposed Two-Level-Scheduler 13

4 The Open-Air-Interface (OAI) platform 15

4.1 Kernel configuration . 17

v

4.2 OAI nFAPI emulation mode . 18

4.2.1 Configuring the EPC . 19

4.2.2 Configuring the eNB and the UEs 21

4.2.3 Configuring the flexRAN controller 25

4.2.4 Running the EPC, the flexRAN controller, the eNB and the
UEs in the emulator mode . 26

4.3 OAI with bladeRF and COTS UEs 29

4.3.1 Configuring the bladeRF device 29

4.3.2 Configuring the EPC . 30

4.3.3 Configuring the COTS UEs and the SIM cards 32

4.3.4 Configuring the eNB . 34

4.3.5 Configuring the flexRAN controller 37

4.3.6 Running the flexRAN, the EPC, the eNB on bladeRF and con-
necting the COTS UEs . 37

5 Implementation of the schedulers 40

5.1 The State of the Art . 40

5.2 The proposed Two-Level Scheduler 41

5.2.1 Examination of the wrr dl algorithm 42

6 The experiments and the performance comparison of the schedulers 45

6.1 The experimental set-up . 45

6.1.1 UDP servers-clients . 49

6.1.2 The traffic generator . 49

6.1.3 Sampling MCS values . 51

6.1.4 Triggering HARQ re-transmission 53

6.2 The experimental scenarios . 54

6.3 Results . 55

6.3.1 Average Throughput . 55

6.3.2 Average Transmission time of a packet 61

7 Conclusion 66

vi

References 67

vii

List of Figures

1.1 5G network architecture with network slicing 2

2.1 MOCN vs network slicing . 6

3.1 Time structure . 9

3.2 Physical Resource Block (PRB) . 10

3.3 Organization of the DL buffers at the BS 10

4.1 Interface names and IP addresses of the configured components . . . 19

4.2 VM instance connected via Bridged Adapter 20

4.3 How the terminals look like after running all the components successfully 28

4.4 Interface names and IP addresses of the configured components . . . 29

4.5 SIM card reader & writer device . 32

4.6 SIM card reader & writer application 33

4.7 How the terminals look like after running all the components success-
fully and a COTS UE establishes a connection 39

5.1 Run times of wrr dl function . 43

6.1 The components used for the experiments 45

6.2 Packet generation diagram . 51

6.3 The MCS distribution which is taken from [1] 52

6.4 The MCS distribution obtained from running myRand sub-routine
10000 times . 53

6.5 The average throughput for the first experimental scenario 56

6.6 The average throughput for the second experimental scenario 56

viii

6.7 Ratio of RBGidle/RBGtotal for the first experimental scenario 57

6.8 Ratio of RBGidle/RBGtotal for the second experimental scenario . . . 58

6.9 The average throughput for the third experimental scenario 59

6.10 The average throughput for the fourth experimental scenario 59

6.11 Ratio of RBGidle/RBGtotal for the third experimental scenario 60

6.12 Ratio of RBGidle/RBGtotal for the fourth experimental scenario . . . 60

6.13 Average transmission time of the packets for the first experimental
scenario . 62

6.14 Average transmission time of the packets for the second experimental
scenario . 63

6.15 Average transmission time of the packets for the third experimental
scenario . 64

6.16 Average transmission time of the packets for the fourth experimental
scenario . 65

ix

List of Abbreviations

3GPP 3rd Generation Partnership Project

4G 4th Generation

5G 5th Generation

ARQ Automatic Repeat Request

BSS Business Support System

CAPEX CAPital EXpenditure

CN Core Network

COTS Commercial Off-The-Shelf

CPU Central Processing Unit

CQI Channel Quality Indicator

DCI Downlink Control Information

DCN Dedicated Core Network

DL Down-Link

eMBB enhanced Mobile BroadBand

EMM Enterprise Mobility Management

eNB Evolved Node B

ePC Evolved Packet Core

x

ETSI European Telecommunications Standards Institute

FDD Frequency Division Duplex

FEC Forward Error Correction

gNB NR Node B

HARQ Hybrid Automatic Repeat Request

HSS Home Subscriber Server

ICCID Integrated Circuit Card IDentifier

IMSI International Mobile Subscriber Identity

IP Internet Protocol

KI Individual subscriber authentication Key

LAN Local Area Network

LTE Long-Term Evolution

M-MIMO Massive-Multiple Input Multiple Output

MANO MANagement and Orchestration

MCC Mobile Country Code

MCS Modulation and Coding Scheme

mIoT massive Internet of Things

MNC Mobile Network Code

MSIN Mobile Subscriber Identification Number

nFAPI network Functional Application Platform Interface

NFV Network Functions Virtualization

NR New Radio

xi

O-RAN Open-Radio Access Network

OAI Open Air Interface

OPc Operator Code

OPEX OPerating EXpenses

OS Operating System

OSS Operational Support System

PLMN Public Land Mobile Network

PRB Physical Resource Block

QoS Quality of Service

RAN Radio Access Network

RAT Radio Access Technology

RBG Resource Block Group

REST REpresentational State Transfer

RRC Radio Resource Control

SC Software Community

SDR Software Defined Radio

SIM Subscriber Identity Module

SISO Single Input Single Output

SLA Service Level Agreement

TDD Time Division Duplex

UE User Equipment

UL Up-Link

URLLC Ultra-Reliable Low Latency Communications

xii

USB Universal Serial Bus

USIM Universal Subscriber Identity Module

USRP Universal Software Radio Peripheral

VM Virtual Machine

VNO Virtual Network Operator

WRR Weighted Round Robin

xiii

Chapter 1

Introduction

1.1 Overview

Fifth Generation (5G) networks are embracing the Network Function Virtualiza-
tion (NFV) which consists of decomposing large monolithic network functions into
software-based modular network functionalities [2]. This empowers network slicing
which is about creating several end-to-end logical networks on top of a common physi-
cal infrastructure. From a business perspective, network slicing enables new offerings.
Two such offerings are external slicing to industrial/business customers and external
slicing to Virtual Network Operators (VNOs) in a Neutral Host (NH) context. Slicing
can also be used internally to enable an operator to offer different classes of service.

In this thesis, we focus on external slicing in the context of a NH where an infras-
tructure owner provides Radio Access Network (RAN) service to different VNOs at
a venue. The venue can be a university campus, a shopping mall or a hospital. More
precisely, the infrastructure owner which we call the NH in the following, provides
RAN infrastructure composed of Base Band Units (BBU), Radio Units (RUs), coaxial
cables and power to the VNOs whereas the VNOs bring their own spectrum. The
VNOs share the RAN infrastructure to offer cellular service for their subscribers in
the venue. Consequently, the NH provides cellular service to the subscribers of VNOs
using the common infrastructure and the spectrum brought by the VNOs. The NH
and the VNOs can communicate using the Operation/Business Support System (OS-
S/BSS) unit. The OSS/BSS unit is responsible for the management of the slices and
it can work as a bridge between the NH and the VNOs via some Application Pro-
gramming Interface (API). Some of the Core Network (CN) functions can be either
in common or can be slice-specific as can be seen in Figure 1.1. More information
about the CN functions as well as the 5G network architecture can be found in [3]

1

from where Figure 1.1 is derived.

Figure 1.1: 5G network architecture with network slicing

Designing and operating a NH is not without challenge. Some of the challenges are

• Creating the process to start and close new slices (for new VNOs).

• Resource management during operation.

• Design of enforceable Service Level Agreements (SLAs) between the VNOs and
the NH.

• Ensuring data-privacy among different VNOs as they access to a common in-
frastructure.

In this thesis we focus on the challenge of resource management among the slices
owned by different VNOs in the Downlink (DL) of a single cell using single user Single
Input Single Output (SISO) system. As the VNOs share a common infrastructure,
it is important to ensure that operation of a VNO is not affected by the traffic of
others. In other words, different slice owners should be able to use their resources

2

concurrently without interfering with each other and there should be an isolation
between different slices.

In the NH context, the State Of the Art (SOA) is to restrict the use of the spectrum to
the VNO that brings it. There is a scheduler per slice that allocates the corresponding
Physical Resource Blocks (PRB) to the User Equipments (UE)s of the VNO. In
this thesis we consider a Round Robin (RR)-based algorithm for that scheduler. A
PRB is a two-dimensional radio resource which consists of frequency and time. The
frequency domain is represented in terms of some sub-channels and the time domain
is represented in terms of sub-frame.

Even though the SOA provides perfect isolation in terms of sub-channel usage between
different slices, it has some limitations. For instance, if a VNO has no-traffic, then its
sub-channels would be wasted. Therefore in this thesis we ask the following research
question: Can the VNOs share their sub-channels and can a scheduler be designed
that has the following properties:

• C1: Do not give any resources of VNO q away if any of the VNO’s subscribers
have any non-empty DL buffers at the base station. (This provides isolation)

• C2: Do not waste any PRBs if at least one subscriber has non-empty DL buffer
at the base station. (This provides better performance)

• C3: Free riders (i.e. VNOs that have more traffic load per sub-channel than
others) should not be overly rewarded even if it is understood that Condition 2
(C2) implies that free riders will benefit.

To answer this question we propose a two-level scheduler where the first level scheduler
adopts a Weighted Round Robin (WRR)-based algorithm to allocate sub-channels to
the slices. Once the first level scheduling is completed, the second level scheduler
allocates the PRBs consist of the allocated sub-channels to the UEs of the respective
VNO based on a RR-based algorithm at a given sub-frame.

Specifically, we make the following contributions:

• We propose a two-level scheduler which embraces Weighted Round Robin (WRR)
algorithm.

• We implement the proposed scheduler in a platform called Open-Air-Interface
(OAI) and contribute to an open-source project.

• We design and run several experiments to compare the performance of the
proposed scheduler to the SOA in the OAI emulation.

3

• We provide also detailed guides to set-up a private Long-Term Evolution (LTE)
network in the emulation mode as well as with COTS UEs and bladeRF Software
Defined Radio (SDR) hardware.

1.2 Outline

The remainder of the thesis is structured as follows. In Chapter 2, we provide the
literature survey. In Chapter 3, we provide the system model and the slice schedulers.
In Chapter 4, we introduce an open-source RAN platform called OpenAirInterface
(OAI) and we explain how to set-up a private LTE network with network slicing
both in the emulation and with actual COTS hardware. In Chapter 5, we explain
how we implemented the proposed scheduler in OAI. In Chapter 6, we compare the
performances of the slice schedulers. In Chapter 7, we conclude the thesis and discuss
some future research directions.

4

Chapter 2

Related Work

2.1 Literature Review

2.1.1 Network sharing in 4G

Network slicing in 5G, inherits some existing network sharing solutions from 4G and
enhances them with end-to-end partitioning to provide higher levels of isolation. For
instance, 4G offers the concept of Dedicated Core Network (DCN) which enables
deploying more than one DCN within a Public Land Mobile Network (PLMN) [2].
Each DCN can be dedicated to a specific type of application or subscriber where
control and user plane functions can be customized depending on different needs. Yet,
DCN selection is performed by the control plane function of the default DCN which
results poor isolation between different DCNs. Considering RAN sharing, 4G offers
the concept of Multi-Operator Core Network (MOCN) where different operators can
use the same RAN infrastructure. The shared RAN forwards the traffic of different
operators to their corresponding CNs. However there is no isolation provided between
different network operators at the RAN-site [4]. Moreover, as it can be seen in figure
2.1 (the figure 2.1 is inspired from [4]), MOCN provides only a domain level sharing
unlike network slicing in 5G.

To sum up, 4G provides some network sharing solutions at specific domain levels,
however none of these solutions provide an end-to-end partitioning like the notion of
“network slicing” in 5G. Additionally, in 4G there is no explicit way to distinguish
traffics with different requirements which generated from the same UE. This creates
a problem if a UE would need to connect to different slices to meet various service
requirements. Therefore, it is not possible to fully embody network slicing in 4G.
However, some early frameworks are implemented where a UE can only connect to a

5

single slice.

Figure 2.1: MOCN vs network slicing

2.1.2 RAN sharing in the context of NH

The authors in [5] conceived a small cells wireless network deployment framework at
a venue where the customers share the spectrum. On top of the conceived framework,
they also provide a complementary business model, referred as NH micro operator
that leverages a single shared wireless infrastructure. In [6], the authors proposed
an orchestration and Virtual Infrastructure Management (VIM) solution to address
some of the open questions identified by European Telecommunications Standards
Institute (ETSI) in order to pave the way for 5G NH settings. In [7], the creators
of flexRAN platform provided a solution that combines a NH based shared small-cell
infrastructure with a common pool of spectrum for dynamic sharing. They proposed
a shared spectrum access architecture which uses a reinforcement learning-based dy-
namic pricing mechanism to mediate access to the shared spectrum.

6

2.1.3 Network slicing in 5G

Network slicing concept has drawn considerable attention from both academia and the
industry. The early publications highlight how the network slicing would shape 5G
and the challenges ahead as well as some possible research directions [2], [8], [9]. These
papers provide a high level overview of network slicing at the different domains of 5G
networks. There are also some works which specifically target radio access domain
such as [10]. Unlike the other papers, the authors considered the unique resource of
RAN spectrum, and they explained some possible configurations for Layer 1 (L1),
L2, L3. However, all of these papers provide only a high level conceptual work and
there is still no gold standard for 5G RAN slicing architecture [8].

2.1.4 RAN slicing frameworks

The authors in [11] proposed a Software Defined RAN platform called FlexRAN.
FlexRAN provides a flexible control plane designed with support for real-time RAN
control applications, following the NFV principles [11]. Besides its NFV based char-
acteristics, the flexRAN platform also supports slicing at the RAN domain. With the
flexRAN framework, an UE can connect to a single slice therefore this platform can
be considered as an early prototype for 5G RAN slicing. In [12] the authors extended
the functionalities of the proposed platform further. Recently, the authors from Uni-
versity of Utah [13] published a paper where they implemented a network controller
with RAN slicing functionalities based on the O-RAN SC specifications. Even though
they make a discussion about 5G, they used 4G RAT in their experiments.

2.1.5 SLAs in the context of RAN sharing

Considering SLAs in the context of 5G network slicing, there have been some publi-
cations, as well. The authors in [14] mentioned the importance of enforcing network
slicing and they explicitly considered RAN. The authors in [15] considered an end-
to-end SLA which is expected to define reliability, availability and performance of
the delivered telecommunication services. The authors in [16] proposed an adapta-
tion algorithm to create an abstraction layer to allocate radio resources to the slices
based on minimizing deviations from some requirements such as latency, coverage,
energy efficiency. In another work [17], the authors examined three distinct service
requirements and proposed a slice scheduling solution. In [18] the authors revised
the SLA-related models and workflows for the case of 5G slicing and proposed an
adaptive Quality of Service (QoS) parameter computation formula for mapping of
low-level metrics to high-level parameters. However none of these works took into

7

account the fact that physical channel conditions may vary beyond the control of the
slice provider. Therefore guaranteeing some performance-based metrics might be in-
feasible in real life scenarios. Our proposed two-level scheduler guarantees a resource
based objective rather than a performance based one.

8

Chapter 3

The RAN Model and the
Schedulers

3.1 The RAN model

We consider a system made of one single cell. We use a Single User Multiple Input
Multiple Output (SU-MIMO) system. We focus on the DownLink (DL).

Figure 3.1: Time structure

We consider a frame made of T sub-frames as in Figure 3.1. We consider a PRB as a
two dimensional radio resource which is made of one sub-channel and one sub-frame
as it can be seen in Figure 3.2, additionally we assume a power per PRB = Pc. With
a sub-frame periodicity, the eNB sends Downlink Control Indicator (DCI) messages
which we call “scheduling maps”. The purpose of the scheduling maps are to inform
the UEs about the PRBs they are allocated in the next sub-frame so that they can
listen to their respective PRB and decode their DL data correctly.

9

Figure 3.2: Physical Resource Block (PRB)

We consider Q VNOs where each VNO brings its sub-channels. Let Cq be the number
of sub-channels brought by VNO q. Let mq be the number of UEs of VNOq. We
consider that each VNO has a slice where each slice has a Meta-Buffer (MB). More
precisely we consider the following buffer organization at the Base Station (BS).

Figure 3.3: Organization of the DL buffers at the BS

The minimum number of PRBs to be allocated at a time may vary depending on the
configuration of the Radio Access Technology (RAT) (e.g. 3 or 5 PRBs) To avoid
confusion, we assume in the following discussion that we can allocate individual PRBs.

10

3.2 The Slice-Schedulers

We consider two slice schedulers: (i) The State Of the Art and (ii) the proposed
two-level scheduler.

Let Cq be the set of sub-channels brought by VNO q, where

|Cq| = Cq

3.2.1 The State of the Art

The State Of the Art (SOA) scheduler statically allocates the sub-channels Cq to VNO
q and this allocation does not change in time. In other words, UEs of VNO q can
only be allocated the PRBs that consist of Cq at a given sub-frame. More formally:

PRB(c,t) is allocated to the meta-buffer of VNO q if and only if c ∈ Cq,∀t ∈ {1, .., T}
Since the allocation of Cq does not vary in time and Cq is known apriori, the SOA
scheduler is only required to allocate the PRBs that consist of Cq to the UEs of VNO
q at a given sub-frame. We call the scheduler that allocates PRBs to the UEs as the
“low-level scheduler” in the following.

The Low-level scheduler:

There is a separate low-level scheduler for each VNO. The low-level scheduler allo-
cates the PRBs that consist of Cq to the UEs of VNO q based on Round Robin (RR)
at every sub-frame. There exists a vector of UEs belonging to VNO q. The RR-based
algorithm allocates PRBs to the UEs starting from a pointer position (based on the
previous frame) which makes a cycle over the vector. The pointer makes a circular
cycle with modulo (mq) meaning that when the pointer reaches to the end of the
vector, it goes back to the first index. More specifically, at the end of sub-frame t− 1
if the pointer was on UE x, then at the beginning of sub-frame t the pointer will point
to UE x+1 (modulo mq). If an UE has no bits in its buffer nor any re-transmission
request then the scheduler will skip allocating a PRB to this UE and it will continue
with the RR cycle.

Let Uq be the set of UEs belonging to VNO q and let prr be the pointer that points
to an UE in Uq.

Uq = {u1q, u2q, ..., umq−1
q , umq

q }

11

∀ sub-frame f, do the following at the low-level scheduler of VNO q:

Algorithm 1: The low-level scheduler: A Round Robin algorithm

1 while (PRBs (composed of Cq) at MetaBufferq >0) AND (Bits to be
transmitted at MetaBufferq >0) do

2 Update prr to point to the next element in Uq (modulo mq);
3 if The UE pointed by prr requests HARQ re-transmission then
4 Call HARQ re-transmission sub-routine;
5 Update # of available PRBs at MetaBufferq;

6 else
7 if Bits in the buffer of the UE pointed by prr >0 then
8 Allocate one available PRB to the UE pointed by prr;
9 Free some bits from the UE buffer according to the CQI value of

the UE;
10 Update # of bits to be transmitted at MetaBufferq;
11 Update # of available PRBs at MetaBufferq;

At the line 4 of Algorithm 1, we use HARQ sub-routine. HARQ stands for Hybrid-
Automatic Repeat reQuest. It is a combination of Automatic Repeat reQuest (ARQ)
and Forward Error Correction (FEC) protocols. HARQ is a fairly complicated process
and its implementation differs for DL/UpLink (UL) or Frequency Division Duplex
(FDD) or Time Division Duplex (TDD). As a part of the ARQ protocol, when a
transmitter sends a packet then it starts a timer to track a timeout period. If the
transmitter does not receive any Acknowledgement (ACK) from the receiver before
the timeout period, then it re-transmits the packet. As a part of the FEC protocol,
the receiver can combine two or more received packets to recover a corrupted packet.
The detailed implementation of a HARQ process is beyond the scope of this work,
however the following 3GPP document [19] can be referred for further information
about HARQ process in LTE-RAT system.

At the line 9 of Algorithm 1, we use Channel Quality Indicator (CQI). CQI is reported
from an UE to the base station to state how the physical channel quality is. According
to the CQI value, the base station inserts varying amount of bits from the UE buffers
into a PRB. If the channel conditions are good, the base station can achieve better
code-rates than a bad channel meaning that less redundancy bits are inserted into a
PRB. As less redundancy occurs during channel coding, more bits can be sent from
the UE buffers. The relation between the CQI and the code rate is determined based
on a table provided by 3GPP. The 3GPP document [20] can be referred for further
information about CQI and channel coding for a LTE-RAT system.

12

3.2.2 The proposed Two-Level-Scheduler

The proposed 2-Level-Scheduler consist of two schedulers: (i) the meta-scheduler
which allocates PRBs to the MBs of the slices at a given sub-frame, (ii) the low-level
scheduler which allocates the given PRBs for a slice to the respective UEs.

Meta-scheduler

The meta-scheduler adopts a Weighted Round Robin (WRR) algorithm to allocate
some PRBs to the meta buffers of VNO q. Let W be the vector of all the weights
where wq be the weight of VNO q. wq can be determined based on the ratio between
the number of sub-channels VNO q brings and the total number of sub-channels used
in the system.

W = {w1, w2, ..., wQ−1, wQ}

W =

Q∑
q=1

wq

Wwrr = {11, ..., 1w1 , 21, ..., 2w2 , ..., Q1, ..., QwQ
}

Based on W , the meta scheduler creates a vector Wwrr with the length of W . Each
VNO has a certain number of opportunity to be allocated a PRB based on its weight.
Let pwrr be a pointer that points to an element in Wwrr. Then, the pointer makes
a cycle of length W and VNO q gets wq opportunity to be allocated a PRB. The
elements of Wwrr represent the Meta Buffers (MBs) of the VNOs. Consequently, the
pointer pwrr makes a cycle over the Wwrr with modulo W .

The meta-scheduler follows the Algorithm 2 at the beginning of each sub-frame. It is
assumed that the following information is known apriori before running Algorithm 2.

• C : The set of all the sub-channels used in the DL.

• Wwrr : The vector that encodes the weights of the VNOs.

• pwrr : The pointer which points to an element in W .

13

At the beginning of ∀ sub-frame f, do the following:

Algorithm 2: The meta-scheduler: A WRR algorithm

1 Get the DL buffer status of each UEs ;
2 Get the HARQ process status ;
3 Get the current CQI values reported by the UEs ;
4 for Each Meta-Buffer (MB) do
5 for Each UE attached to the MB do
6 if HARQ re-transmission is needed for the current UE then
7 Calculate the # of required PRBs for re-transmission with the old

CQI value used in the first transmission

8 Calculate the # of required PRBs for the UE with the current CQI ;

9 Calculate # of PRBs needed per MB ;
10 Calculate the # of PRBs needed in total ;
11 while (Available PRBs >0) AND (total # of PRBs needed >0) do
12 Update pwrr to point to the next element in Uwrr (modulo |C|);
13 if # of PRBs needed for the pointed MB >0 then
14 Allocate one available PRB to the MB;
15 Update the # of PRBs needed for the MB ;
16 Update the # of PRBs needed in total ;

17 for Each MB do
18 Call the low-level scheduler sub-routine ;

Low-level scheduler

The low-level scheduler of the proposed Two-Level-Scheduler is the same as the low-
level scheduler of SOA. It is the RR-based algorithm given in Algorithm 1. However
it is important to mention that, in the case of SOA, the PRBs allocated to the UEs of
VNO q always consist of Cq. Whereas in the proposed scheduler, the PRBs allocated
to VNO q are distributed based on the WRR algorithm. Therefore the PRBs may
not be consisted of Cq.

14

Chapter 4

The Open-Air-Interface (OAI)
platform

Open-Air-Interface (OAI) is an open-source Software-Defined Radio (SDR) frame-
work developed by EUROCOM to provide a flexible platform for 4G and 5G research.
Initially, the OAI is developed for 4G RAT. It provides a full stack eNB that can be
run either in emulation or on COTS hardware. Besides the eNB, OAI also offers UE,
Evolved Packet Core (EPC) and real-time RAN controller FlexRAN. The FlexRAN
controller is an interface between the eNB and the infrastructure administrator to
change configuration of the eNB on the fly (e.g downlink-uplink schedulers, used
bandwidth etc.).

Using OAI, it is possible to set-up a RAN in various modes. The full-stack eNB can
be run on a COTS SDR (e.g bladeRF, NI B210) where COTS UEs can be used with
the eNB. Additionally, the platform offers network Functional Application Platform
Interface (nFAPI) emulation. nFAPI is a functional split between the MAC and PHY
layers that enables virtualization of the MAC functions [21]. One of the important
MAC functions is the radio resource allocation to UEs and with virtualization it is
possible to run the MAC functions on different vendor equipment. nFAPI is provided
by the Small Cell Forum to provide inter-operability and innovation among the differ-
ent vendors. It leverages the architecture split of Option 6 specified by 3GPP which
is provided in [22]. Different split options describe how the functions can be deployed
at different logical nodes (e.g. Radio Unit) and how these logical nodes interrelate to
one another. Consequently, OAI-nFAPI emulator provides an almost full-stack eNB
with the exception of PHY layer. It is possible to run the emulation with EPC (S1-
mode) or without EPC (noS1 mode). Furthermore, OAI eNB and FlexRAN support
RAN slicing. This feature can be considered as a prototype for 5G slicing since an
UE can only be attached to a single slice and it is not possible to fully embrace all

15

the 5G slicing features with the eNB, yet.

Considering the 5G RAT, EUROCOM released a full-stack Stand-Alone (SA) gNB in
the summer of 2021. However, by the time of writing this thesis, it does not support
RAN slicing, yet. Furthermore, gNB (RAN) controller is still under development and
it is not available either.

In this work, OAI platform is used to implement the proposed scheduler. The first
reason of choosing OAI is that, it offers a full-stack eNB application & a real-time
RAN controller. Additionally, both of the eNB and RAN controller applications
support slicing at the RAN level. Secondly, the OAI platform provides an open-source
repository which enables huge flexibility in terms of implementing new algorithms on
top of the existing full-stack system. Thirdly, the OAI platform offers both emulation
and non-emulation that runs on COTS hardware. Therefore it is possible to test the
system in various configurations. Finally, the OAI platform for the 4G RAT is stable
and there have been several papers in the academia where OAI platform is used; [11],
[8], [12], [17], [23], [24], [25], [26], [27], [28], [29], [30], [31], [32], [33].

OAI 4G RAT is a SISO, LTE only system. We configured it in two ways (i) nFAPI
emulation with EPC (S1-mode) and (ii) with COTS hardware. The components used
in the emulation mode can be seen in Figure 4.1. In this first configuration, we emulate
a full-stack private LTE network without the realization of the physical layer. We run
an EPC, eNB, flexRAN controller and several UEs. Then we create a traffic between
the UEs and the EPC. Further information about the number of UEs and the traffic
generation can be found in Section 6. In the case of COTS hardware configuration,
we used the components given in Figure 4.4. In this second configuration, we run
Radio Unit (RU) part of the eNB on bladeRF SDR and connected a COTS UE to it.

The nFAPI emulation has the following advantages:

• The emulation provides an almost full-stack eNB platform with the exception
of PHY layer.

• The source code is open-source and open to be manipulated. This gives full
control over the eNB implementation.

• It provides many MAC layer functionalities including different HARQ re-transmission
depending on the configuration.

• It supports multiple UE connection.

• It is possible to run an application on top of the emulated UEs to create DL
traffic.

• It supports flexRAN controller and RAN slicing.

16

The nFAPI emulation has the following disadvantages:

• The nFAPI emulator does not provide a physical channel simulation.

• There is another mode of emulation (phy simulators) which emulates an RF
unit and some physical channel models. However, it supports only a single UE.

Consequently, the nFAPI emulator can be useful to test any functionality down to
the MAC layer. Even though it does not provide a physical channel simulation, the
physical channel characteristics can be partially mimicked by changing the CQI values
reported to the MAC layer and dropping some packets received by the UEs.

In the following, how to set-up both OAI-nFAPI emulation and the COTS hardware
with OAI are explained.

4.1 Kernel configuration

Before setting up the the OAI platform, the very first thing is to configure the Op-
erating System (OS) kernel Ubuntu OS is required to run the OAI platform. Firstly,
install Ubuntu 20.04.

Ubuntu 2 0 . 0 4 . 3 LTS

Then the next thing is to install the low-latency kernel.

$ sudo apt -get install linux -image -lowlatency linux -headers -

lowlatency

It is required to choose the low-latency kernel every-time you boot the OS unless you
permanently change the default kernel. The running kernel can be checked with the
following command:

$ uname -r

4.15.0 -156 - lowlatency

Then the next step is to disable CPU frequency scaling. For the sake of simplicity
and to avoid synchronizing issues, we use the maximum frequency that the computer
can support with the following: (It is required to scale the CPUs every-time
the computer is rebooted)

$ for GOVERNOR in /sys/devices/system/cpu/cpu*/ cpufreq/

scaling_governor; \

do \

echo "performance" | sudo tee $GOVERNOR; \

done

17

After successfully setting the CPU scaling, CPUs should be working with the maxi-
mum supported frequency without much variation. It can be checked by:

$ watch grep \"cpu MHz\" /proc/cpuinfo

Given the current kernel is low-latency and the CPUs are working almost at a constant
frequency, then the kernel setup is completed.

For further information, the following web-page can be used: https://gitlab.

eurecom.fr/oai/openairinterface5g/-/wikis/OpenAirKernelMainSetup

4.2 OAI nFAPI emulation mode

It is possible to emulate eNBs and UEs down to nFAPI (layer 2). In other words, it is
possible to emulate almost the full-stack of an eNB and UEs without the realization
of physical layer or without needing any SDR or COT UE. The physical layer is
replicated with some hard-coded MCS values and the rest of the stacks run as normal.

The nFAPI emulator can be run with or without an EPC (noS1 or S1 mode), how-
ever I found some bugs in the noS1-nFAPI emulator and I have reported them
to the OAI community: https://lists.eurecom.fr/sympa/arc/openair5g-user/
2021-05/msg00053.html. Due to the bugs, I used S1-nFAPI emulator (with EPC).

18

https://gitlab.eurecom.fr/oai/openairinterface5g/-/wikis/OpenAirKernelMainSetup
https://gitlab.eurecom.fr/oai/openairinterface5g/-/wikis/OpenAirKernelMainSetup
https://lists.eurecom.fr/sympa/arc/openair5g-user/2021-05/msg00053.html
https://lists.eurecom.fr/sympa/arc/openair5g-user/2021-05/msg00053.html

Figure 4.1: Interface names and IP addresses of the configured components

4.2.1 Configuring the EPC

Besides the eNB and UEs, OAI also offers an EPC solution. However, configuring
the OAI EPC is fairly complex. I couldn’t manage to configure the OAI EPC and
decided to use srsEPC. It is lightweight enough to run on a virtual machine and it is
easier to configure compared to OAI EPC.

Firstly, a virtual machine application is needed. In this work, (VM) VirtualBox,
v6.1.26 is used. Once virtual machine is up and running, make sure its network is
attached by a “BridgedAdapter”. It can be enabled under Network settings.

19

Figure 4.2: VM instance connected via Bridged Adapter

Once the VM is up and running, the following can be used to install and configure
the srsEPC: https://docs.srsran.com/en/latest/usermanuals/source/srsepc/
source/2_epc_getstarted.html

There are 3 main points to be careful:

1. Home Subscriber Server (HSS) database (user db.csv) must match the used
USIM .conf file. Configuration of the .conf file is explained under the config-
uring UE part. Each UE should be added to the HSS respectively.

• MCC: 208

• MNC: 92

• MSIN: 0000000001

• Key: 8baf473f2f8fd09487cccbd7097c6862

• OPC: e734f8734007d6c5ce7a0508809e7e9c

It is required to populate the entries in the HSS database, according to the
number of UEs desired to be configured.

2. It is required to update the IP addresses of the mme and spgw. They can be
assigned as they are initiated. For instance, if the VM has the IP adress of
129.97.228.188, simply run the following:

20

https://docs.srsran.com/en/latest/usermanuals/source/srsepc/source/2_epc_getstarted.html
https://docs.srsran.com/en/latest/usermanuals/source/srsepc/source/2_epc_getstarted.html

$ sudo srsepc –mme.mme bind addr 129.97.228.188 –spgw.gtpu bind addr 129.97.228.188

3. Every-time the device running EPC is rebooted, it is required to perform
IP masquerading, otherwise you may experience packet forwarding issues at
the EPC-side. It is explained further in the https://docs.srsran.com/en/

latest/usermanuals/source/srsepc/source/2_epc_getstarted.html

4.2.2 Configuring the eNB and the UEs

In the official documentations, it is recommended to use a separate computer for eNB,
UEs and the EPC to avoid synchronization issues. However, in this guide everything
is run on the same machine.

Before starting, make sure the computer is connected to the internet via Local Area
Network (LAN), cable connection. Wireless connection may not work with OAI
setup.

Firstly, download the OAI source codes for eNB and UE.

$ git clone https :// gitlab.eurecom.fr/oai/openairinterface5g/

enb_folder

$ cd enb_folder

$ git checkout -f develop

$ cd ..

$ cp -Rf enb_folder ue_folder

Then populate USIM information inside the ue folder. Ideally speaking, it is possible
to emulate up to 256 UEs. However, the maximum number of UEs are bounded by the
CPU power. In the default mode, the emulator can populate up to 4 UEs. In order
to enable populating up to 256 UEs, it is required to change platform constants.h
script both in enb and ue folders.

Edit enb_folder/openair2/COMMON/platform_constants.h

Edit ue_folder/openair2/COMMON/platform_constants.h

Append the following definitions in platform constants.h scripts both for end and
ue folders.

...

#include "LTE_asn_constant.h"

#include "NR_asn_constant.h"

#define NR_MAXDRB 14

#define UE EXPANSION <- Add this

#define LARGE SCALE <- Add this

...

21

https://docs.srsran.com/en/latest/usermanuals/source/srsepc/source/2_epc_getstarted.html
https://docs.srsran.com/en/latest/usermanuals/source/srsepc/source/2_epc_getstarted.html

It is important to populate UE instances with unique MSIN values in the configuration
files. Another important point is that SIM information must match the HSS database
of the EPC for each UE.

$ cd ue_folder

Edit openair3/NAS/TOOLS/ue_eurecom_test_sfr.conf

UE0:

{

USER: {

IMEI ="356113022094149";

MANUFACTURER =" EURECOM ";

MODEL ="LTE Android PC";

PIN ="0000";

};

SIM: {

MSIN="0000000001";

USIM_API_K ="8 baf473f2f8fd09487cccbd7097c6862 ";

OPC=" e734f8734007d6c5ce7a0508809e7e9c ";

MSISDN ="33611123456";

};

...

};

UE1: <- You can append new UEs like this

{

...

SIM: {

MSIN="0000000002"; <- Modify Here

USIM_API_K ="8 baf473f2f8fd09487cccbd7097c6862 ";

OPC=" e734f8734007d6c5ce7a0508809e7e9c ";

MSISDN ="33611123456";

};

...

};

...

As the next step, IP addresses should be configured. ”lo” interface (internal loopback
of the OS) is used for the communication between eNB and UEs. In order to arrange
correct IPs for the UEs do the followings:

$ cd ue_folder

Edit ci -scripts/conf_files/ue.nfapi.conf

L1s = (

{

num_cc = 1;

tr_n_preference = "nfapi ";

22

local n if name = "lo"; <- Modify Here

remote n address = "127.0.0.2"; <-

local n address = "127.0.0.1"; <-

local_n_portc = 50000;

remote_n_portc = 50001;

local_n_portd = 50010;

remote_n_portd = 50011;

}

);

In order to configure the conf file for the eNB:

$ cd enb_folder

Edit ci -scripts/conf_files/rcc.band7.tm1.nfapi.conf

• IP adresses of the UEs and the eNBs

MACRLCs = (

{

num_cc = 1;

local s if name = "lo:"; <- Modify Here

remote s address = "127.0.0.1"; <-

local s address = "127.0.0.2"; <-

local_s_portc = 50001;

remote_s_portc = 50000;

local_s_portd = 50011;

remote_s_portd = 50010;

tr_s_preference = "nfapi ";

tr_n_preference = "local_RRC ";

}

);

• mme ip address is the IP address of the EPC which is under MME parame-
ters. In this explanation, the IP is 129.97.228.188.

• Under NETWORK INTERFACES, it is required to change the interface that
connects eNB to the EPC. Use Bridged Adapter for the Virtual Machine where
the EPC runs. In order to find the respective interface name and the IP address,
you can run ifconfig in the terminal of the host and the virtual machines. In
this guide, the interface name is eno1 and the IP adress is 129.97.228.182 for the
LAN connection of the host machine whereas the IP adress is 129.97.228.188
for the virtual machine.

23

$ ifconfig

eno1: flags =4163<UP ,BROADCAST ,RUNNING ,MULTICAST > mtu 1500

inet 129.97.228.182 netmask 255.255.254.0 broadcast

129.97.229.255

...

////////// MME parameters:

mme_ip_address = ({

ipv4 = "129.97.228.188"; <- Modify Here

ipv6 = "192:168:30::17";

active = "yes";

preference = "ipv4";

}

);

NETWORK_INTERFACES :

{

ENB_INTERFACE_NAME_FOR_S1_MME = "eno1"; <- Modify

ENB_IPV4_ADDRESS_FOR_S1_MME = "129.97.228.182"; <-

ENB_INTERFACE_NAME_FOR_S1U = "eno1"; <-

ENB_IPV4_ADDRESS_FOR_S1U = "129.97.228.182"; <-

ENB_PORT_FOR_S1U = 2152; # Spec 2152

ENB_IPV4_ADDRESS_FOR_X2C = "129.97.228.182"; <-

ENB_PORT_FOR_X2C = 36422; # Spec

36422

};

If flexRAN app is required to be run, add the followings to the end of the file
(rcc.band7.tm1.nfapi.conf)

NETWORK CONTROLLER : <- Add the entire section

{

FLEXRAN ENABLED = "yes"; <- Modify Here

FLEXRAN INTERFACE NAME = "lo"; <-

FLEXRAN IPV4 ADDRESS = "127.0.0.3"; <-

FLEXRAN_PORT = 2210;

FLEXRAN_CACHE = "/mnt/oai_agent_cache ";

FLEXRAN_AWAIT_RECONF = "no";

};

Then you can build your eNB and UEs.

To build the eNB:

$ cd enb_folder/cmake_targets/

$./ build_oai -I --eNB

To build the UE:

24

$ cd ue_folder/cmake_targets/

$./ build_oai -I --UE

Once the UEs are compiled, you need to copy UE binaries (ue.nvram, .ue emm.nvram,
.usim.nvram binaries for each UE) from ue folder/targets/bin file to ue folder/cmake targets
file (they might be hidden files).

Once these steps are completed, eNB and UE emulator should be ready to be run.

4.2.3 Configuring the flexRAN controller

Source code of flexRAN controller can be found using the following link: https:

//gitlab.eurecom.fr/flexran/flexran-rtc flexRAN uses Pistache libraries for
its REST framework. By the time of flexRAN being coded, the Pistache library was
written in C11. However, the current Pistache requires C17. During the compilation
of flexRAN, this causes problems since the authors hard-coded to checkout to “de-
velop” branch of Pistache in the installation script. However, the current “develop”
branch is quite different than the “develop” branch used during the implementation
of flexRAN. Therefore, it is required to change the branch of the Pistache to an old
commit like “efe54d9e53a5e257da03d27ce6a644643f31cb1d” to properly compile the
flexRAN controller. In order to do that:

$ cd flexran -rtc -master/tools

Edit install_dependencies

function install_pistache {

echo "Installing pistache"

git clone https :// github.com/oktal/pistache.git

cd pistache || exit

git checkout -f efe54d9e53a5e257da03d27ce6a644643f31cb1d <- Modify Here

mkdir build

cd build

cmake -G "Unix Makefiles" -DCMAKE_BUILD_TYPE=Release ..

make

sudo make install

cd -

}

Once the branch of Pistache is edited, you can return to flexran-rtc-master folder and
run the build flexran rtc.sh script. Then flexRAN controller should be ready to be
run.

25

https://gitlab.eurecom.fr/flexran/flexran-rtc
https://gitlab.eurecom.fr/flexran/flexran-rtc

4.2.4 Running the EPC, the flexRAN controller, the eNB
and the UEs in the emulator mode

1. Firstly, make sure the low-latency kernel is running and the CPUs are scaled
properly as described in the Kernel configuration.

2. Then, start the EPC in the virtual machine.

3. Then, start flexRAN controller.

4. Finally, run eNB & UE as described below.

Connect to the virtual machine via ssh and start the EPC (assuming the IP of the
VM is 129.97.228.188: Start EPC:

$ sudo srsepc --mme.mme_bind_addr 129.97.228.188 --spgw.

gtpu_bind_addr 129.97.228.188

Start flexRAN:

$ cd flexran -rtc -master/tools

$ sudo ./ run_flexran_rtc.sh

Start eNB:

$ cd enb_folder/cmake_targets

$ sudo -E ./ ran_build/build/lte -softmodem -O ../ci -scripts/

conf_files/rcc.band7.tm1.nfapi.conf

Start UEs (You may need to change −−num−ues flag depending on the number of
UE required to be run):

$ cd ue_folder/cmake_targets

$ sudo -E ./ ran_build/build/lte -uesoftmodem -O ../ci -scripts/

conf_files/ue.nfapi.conf --L2-emul 3 --num -ues 4 --nums_ue_thread

1 --nokrnmod 1

If everything runs correctly, UEs should establish RRC connections and the UE in-
terfaces should show up once you type ifconfig in the terminal. The names should
be oaitun ue1, oaitun ue2 ... oaitun ue4. After that, some traffic can be generated
between the UEs and the EPC using iperf application. It is possible to create simul-
taneous traffic. To create a DL traffic between the EPC and the UE1:

At a terminal of the host that runs UEs

$ iperf -B 10.0.1.2 -u -s -i 1 -fm -p 5002

At a terminal of the virtual machine that runs EPC:

26

$ iperf -c 10.0.1.2 -u -t 30 -b 3M -i 1 -fm -B 10.0.1.1 -p 5002

As an example, the following bash script is given to create traffic simultaneously by 4
UEs. Name, password and the IP of the VM instance may vary as well as the number
of UEs in the setup. In this tutorial, the VM instance name is epc, the password is
**** and the IP adress is 129.97.228.188.

ip1=$(/sbin/ip -o -4 addr list oaitun_ue1 | awk '{print $4}' | cut -

d/ -f1)

ip2=$(/sbin/ip -o -4 addr list oaitun_ue2 | awk '{print $4}' | cut -

d/ -f1)

ip3=$(/sbin/ip -o -4 addr list oaitun_ue3 | awk '{print $4}' | cut -

d/ -f1)

ip4=$(/sbin/ip -o -4 addr list oaitun_ue4 | awk '{print $4}' | cut -

d/ -f1)

iperf -B $ip1 -u -s -i 1 -fm -p 5002 &

iperf -B $ip2 -u -s -i 1 -fm -p 5003 &

iperf -B $ip3 -u -s -i 1 -fm -p 5004 &

iperf -B $ip4 -u -s -i 1 -fm -p 5005 &

sshpass -p **** ssh epc@129 .97.228.188 iperf -c $ip1 -u -t 10 -b 9M

-i 1 -fm -p 5002 &

sshpass -p **** ssh epc@129 .97.228.188 iperf -c $ip2 -u -t 10 -b 9M

-i 1 -fm -p 5003 &

sshpass -p **** ssh epc@129 .97.228.188 iperf -c $ip3 -u -t 10 -b 9M

-i 1 -fm -p 5004 &

sshpass -p **** ssh epc@129 .97.228.188 iperf -c $ip4 -u -t 10 -b 9M

-i 1 -fm -p 5005 &

Using the Northbound API of flexRAN, it is possible to create and configure slices
on the fly. It is possible to change slice and UE scheduling algorithms, the UE-sliec
associations and many other features. More information about the north-bound API
can be found here: https://mosaic5g.io/apidocs/flexran/

Once all the steps are successfully completed, the terminal should look similar to the
Figure 4.3

27

https://mosaic5g.io/apidocs/flexran/

Figure 4.3: How the terminals look like after running all the components successfully

For further information about nFAPI emulation, the following web-page can be re-
ferred: https://gitlab.eurecom.fr/oai/openairinterface5g/-/blob/master/doc/
L2NFAPI_S1.md However, the setup given there is quite different than the one de-
scribed in this paper. As long as the IP addresses are set correctly, it is possible to
run EPC, UE and eNB-flexRAN on separate machines.

28

https://gitlab.eurecom.fr/oai/openairinterface5g/-/blob/master/doc/L2NFAPI_S1.md
https://gitlab.eurecom.fr/oai/openairinterface5g/-/blob/master/doc/L2NFAPI_S1.md

4.3 OAI with bladeRF and COTS UEs

Figure 4.4: Interface names and IP addresses of the configured components

Configuring the eNB with a COTS hardware and connecting COTS UEs (e.g smart-
phones) is more challenging than configuring the emulation mode. Normally, EU-
ROCOM works with Ettus USRP B210 device and its configuration scripts are up-
to-date. However due to the long shipment time of USRP B210, we decided to use
with bladeRF 2.0 micro xA4 device. The problem with the bladeRF is that the
configuration guide provided by EUROCOM is not up-to-dated and there is no any
other configuration tutorial out there to the best of my knowledge. As the OAI plat-
form evolved in time, the tutorials have not been updated, therefore there are several
details involved to configure the hardware setup.

4.3.1 Configuring the bladeRF device

A version of Ubuntu 20 is required for the bladeRF application. Once a version
Ubuntu 20 is up and running, the dependencies of bladeRF application can be in-
stalled:

$ sudo apt -get install libusb -1.0-0-dev libusb -1.0 -0 build -essential

cmake libncurses5 -dev libtecla1 libtecla -dev pkg -config git wget

Then install the bladeRF application:

$ sudo add -apt -repository ppa:nuandllc/bladerf

$ sudo apt -get update

$ sudo apt -get install bladerf

$ sudo apt -get install bladerf -fpga -hostedxa4

29

It is required to update FX3 firmware and fpga images. The latest versions can be
downloaded from

• http://www.nuand.com/fx3_images/

• http://www.nuand.com/fpga_images/

Then install the images. (Depending on the root permissions, you may not be able
to upload (write) the images. In this case you need to give write permission to the
USB port that you are using.)

$ sudo bladeRF -cli -f bladeRF_fw_latest.img

$ sudo bladeRF -cli -L hostedx40 -latest.rbf

After running these steps, the bladrf application should be ready. Plug your bladeRF
device to the computer and make the calibrations by following the instructions given
in https://www.nuand.com/calibration, you can see your device information by:

$ sudo bladeRF -cli -i

info

After completing these steps, bladeRF device should be ready to be used. Even
though the guide (README) provided by OAI is out of date, it can be found in
enb folder/targets/ARCH/BLADERF .

4.3.2 Configuring the EPC

Configuring the srsEPC for the non-emulation mode is slightly different than the one
described in Configuring the EPC because of a bug in the OAI eNB. Due to the bug,
it cannot be installe from the ppa repository directly but it is required to be build
from the source code.

Download the source codes of srsRAN then edit the nas.cc script.

$ git clone https :// github.com/srsran/srsRAN.git srs

Edit srs/srsepc/src/mme/nas.cc

It is required to comment out the codes within the if (m emm ctx.state...) state-
ment. The statement is around line 1070 but it may vary in different git branches.
The problem is: The OAI eNB crashes if the EPC sends EMM information while the
UE is in the deregistered state. In the OAI open-forum, the authors solved this issue
by disabling to send downlink nas transport message in the OAI EPC. We follow
the same approach with srsEPC. Disabling this message does not interfere with the
other stages of connection between the UE and the eNB.

30

http://www.nuand.com/fx3_images/
http://www.nuand.com/fpga_images/
https://www.nuand.com/calibration

if (act_bearer.eps_bearer_id < 5 || act_bearer.eps_bearer_id > 15) {

m_logger.error ("EPS Bearer ID out of range ");

return false;

}

/* <- Comment out from here

if (m emm ctx.state == EMM STATE DEREGISTERED) {
// Attach requested from attach request

m_gtpc ->send_modify_bearer_request(

m_emm_ctx.imsi , act_bearer.eps_bearer_id , &m_esm_ctx[

act_bearer.eps_bearer_id]. enb_fteid);

// Send reply to EMM Info to UE

srsran :: unique_byte_buffer_t nas_tx = srsran :: make_byte_buffer ()

;

if (nas_tx == nullptr) {

m_logger.error ("Couldn 't allocate PDU in %s().", __FUNCTION__)

;

return false;

}

pack_emm_information(nas_tx.get());

m_s1ap ->send_downlink_nas_transport(

m_ecm_ctx.enb_ue_s1ap_id , m_ecm_ctx.mme_ue_s1ap_id , nas_tx.

get(), m_ecm_ctx.enb_sri);

srsran :: console (" Sending EMM Information\n");

m_logger.info(" Sending EMM Information ");

}

*/ <- To here

m_emm_ctx.state = EMM_STATE_REGISTERED;

return true;

Install the srsran dependencies:

$ sudo apt -get install build -essential cmake libfftw3 -dev libmbedtls

-dev libboost -program -options -dev libconfig ++-dev libsctp -dev

After editing the nas.cc and installing dependencies, install the srsEPC using CMake:

$ cd srs

$ mkdir build

$ cd build

$ cmake ../

$ make

$ make srsepc

$ sudo make install

$ sudo srsran_install_configs.sh use

31

After this, the srsEPC should be installed. You can configure the HSS database by
adding the USIM information as it is described in Configuring the EPC. Then the
srsEPC is ready to be run.

4.3.3 Configuring the COTS UEs and the SIM cards

It is required to configure the SIM cards according to the USIM entries of HSS
database. The SIM card reader & writer application is provided by the device vendor.
Windows OS is required to run the application.

Once the SmartCard reader device is plugged to the computer, use the following third
party software to configure SIM cards. I uploaded the application to my personal
github.

https://github.com/YektaDemirci/OYSIMwrite

Figure 4.5: SIM card reader & writer device

Likewise the emulator mode, we can use the same USIM information for the COTS
UEs. Fill the variables highlighted with the red-boxes in figure 4.6. ICCID and IMSI
information must be unique for each UE whereas KI, OPC and PLMN information
can be the same. Once SIM cards are successfully written, “Write Card Success!”
message can be seen at the left bottom part of the app.

32

https://github.com/YektaDemirci/OYSIMwrite

Figure 4.6: SIM card reader & writer application

After configuring the SIM cards, it is required to configure the COTS UEs. We are
going to use LTE RAT in band-7. We need to update these configurations manually
to make UE discover the eNB. In this work LG Velvet, LM-G900UM2 COTS UEs
are used.

Depending on the UE model, the “HiddenMenu” code may vary. In order to access
LG Velvet “ HiddenMenu” use the following code:

#∗462633∗#900#

Then navigate to RAT selection and choose “LTE only”:

F i e ld Test−>Modem Set t ings−>RAT Se l e c t i on−>LTE only

After choosing “LTE only”, update the band. You should navigate to LTE BAND,
enable Band7 then scrool down and click to “Save” button.

F i e ld Test−>Modem Set t ings−>Band Se l e c t i on−>LTE BAND−>#Enable Band7

Now exit the “HiddenMenu”. Once eNB starts running, the phone should be able
to detect the MIB signals. Yet, to establish an RRC connection and to access to
the internet, it is required to set-up an Access Point Name (APN). The default APN

33

name is “srsapn” in srsEPC . The APN name in the COTS phone must match the
APN name at the EPC. Navigate to APN settings on the UE:

Set t ings−>Network−>Mobile networks−>Access Point Names−>Add APN

Set the following variables and “Save”

• Name: oai

• APN: srsapn

• MCC: 208

• MNC: 92

• APN typle: default,mms,supl

After setting-up the APN, the phone should be able to connect to the internet. Now
the COTS UEs are ready to successfully establish a connection with the eNB.

4.3.4 Configuring the eNB

Download the eNB source codes and switch to the develop branch.

$ git clone https :// gitlab.eurecom.fr/oai/openairinterface5g/

enb_folder

$ cd enb_folder

$ git checkout -f develop

The script to build eNB with bladeRF was written for the bladeRF 1.0 devices.
However, in this work we use bladeRF 2.0 which does not support DC calibrating.
Therefore we need to make a small edit on the bladeRF helper source codes, oth-
erwise it throws an error during the eNB compilation. It is required to turn-off the
DC calibration. Navigate to bladerf lib.c in the enb folder and comment out the if
condition which is right after calibrate line. It is around line 1128 but it may vary
depending on the branch.

$ cd enb_folder

Edit /targets/ARCH/BLADERF/USERSPACE/LIB/bladerf_lib.c

...

if ((status=bladerf_enable_module(brf ->dev , BLADERF_MODULE_RX ,

true)) != 0) {

fprintf(stderr ," Failed to enable RX module: %s\n",

bladerf_strerror(status));

34

brf_error(status);

} else

printf ("[BRF] RX module enabled \n");

// calibrate

/* <- Comment out from here

if ((status=bladerf calibrate dc(brf->dev, BLADERF DC CAL LPF TUNING)) != 0 ||

...

...

){

fprintf(stderr , "[BRF] error calibrating\n");

brf_error(status);

} else

printf ("[BRF] calibration OK\n");

*/ <- To here

bladerf_log_set_verbosity(get_brf_log_level(openair0_cfg ->

log_level));

...

Build eNB with the following commands. Unlike the emulator mode, it is required to
compile with the “-w BLADERF” flag.

$ cd enb_folder/cmake_targets

$./ build_oai --eNB -w BLADERF

The conf file for the bladeRF (enb-band7-5mhz.conf) is located at the following lo-
cation. Move this conf file to the conf files folder.

$ cd enb_folder/configuration/bladeRF

Move enb -band7 -5mhz.conf to enb_folder/ci-scripts/conf_files

Edit the following variables in the enb-band7-5mhz.conf file:

• plmn list

• mme ip address

• NETWORK INTERFACES

• THREAD STRUCT

• RUs

...

plmn_list = (

mcc = 208; mnc = 92; mnc length = 2;

35

);

...

..

////////// MME parameters:

mme ip address = ({ ipv4 = "129.97.228.188";

ipv6 = "192:168:30::17";

active = "yes";

preference = "ipv4";

}

);

NETWORK_INTERFACES :

{

ENB INTERFACE NAME FOR S1 MME = "eno1";

ENB IPV4 ADDRESS FOR S1 MME = "129.97.228.182";

ENB INTERFACE NAME FOR S1U = "eno1";

ENB IPV4 ADDRESS FOR S1U = "129.97.228.182";

ENB_PORT_FOR_S1U = 2152; # Spec 2152

ENB IPV4 ADDRESS FOR X2C = "129.97.228.182";

ENB_PORT_FOR_X2C = 36422; # Spec

36422

};

...

...

THREAD_STRUCT = (

{

parallel config = "PARALLEL SINGLE THREAD";

worker config = "WORKER ENABLE";

}

);

...

...

RUs = (

{

local_rf = "yes";

nb_tx = 1;

nb_rx = 1;

att tx = 66;

att rx = 66;

bands = [7];

max_pdschReferenceSignalPower = -28;

max rxgain = 117;

eNB_instances = [0];

}

);

...

36

In order to have a proper performance it is required to adjust att tx, att rx, max rxgain
according to the setup. After completing all the steps, if the UE connects to the eNB
but cannot connect to the internet it might be because of the badly configured gains.

4.3.5 Configuring the flexRAN controller

Configuring the flexRAN controller for the hardware setup is the same as the emula-
tion mode. It is possible to follow the exact same steps as Section 4.2.3.

4.3.6 Running the flexRAN, the EPC, the eNB on bladeRF
and connecting the COTS UEs

Once the following steps are done, it is possible to run the eNB with the bladeRF
device and to connect the COTS UEs.

• Configuring the bladeRF device

• Configuring the srsEPC

• Configuring the SIM cards and the COTs UEs

• Configuring the eNB.

• Installing the flexRAN

“Terminator” application can be used to open multiple terminals and manage all the
applications (bladeRF, eNB, flexRAN, srsEPC) from one window.

Firstly, turn on the airplane mode in the UEs. Then start the VM and run the
EPC. It is required to enable packet forwarding at the EPC side. Otherwise, Linux
will block the packets sent from the EPC and phones will not have an access to the
internet. Assuming the VM has the IP adress of 129.97.228.188 and the interface
name of enp3s0, first enable packet forwarding:

$ cd /srs/srsepc

$ sudo srsepc_if_masq.sh enp3s0

Then start the EPC:

$ sudo srsepc --mme.mme_bind_addr 129.97.228.188 --spgw.

gtpu_bind_addr 129.97.228.188

Then, start flexRAN:

37

$ cd flexran -rtc -master/tools

$ sudo ./ run_flexran_rtc.sh

Then start the eNB:

$ cd enb_folder/cmake_targets

$ sudo -E ./ ran_build/build/lte -softmodem -O ../ci -scripts/

conf_files/enb -band7 -5mhz.conf --T_stdout 0

Then start the tracer:

$ cd enb_folder/common/utils/T/tracer

$./enb -d ../ T_messages.txt

Once the eNB is up and running, turn off the airplane mode on your UEs. After that,
the UE should automatically connect to the eNB. Once everything runs smoothly,
the terminal should look like the Figure given in 4.7. 15Mbps can be achieved with a
single UE if everything is set correctly. If the phone connects to the eNB but cannot
access to the internet it might be because of the physical channel. Adjust att tx,
att rx, max rxgain variables according to your setup in the “enb-band7-5mhz.conf”
file. Additionally, control if the packet forwarding is enabled at the EPC, using
srsepc if masq.sh. It is possible to establish multiple UE attachments to the eNB
as long as HSS is set-up accordingly at the EPC-side. However, we couldn’t make
multiple UEs work properly because of the following:

• The down-link channel was very poor. Even though I used several different gains
(including the automatic gain controller provided by the bladeRF) and several
different channels, the down-link was not consistent. Even if I could obtain a
good DL channel for a single UE, the channel quality for other UEs were very
poor. Furthermore, once I changed the UE location slightly, the connection
between the UE and the eNB got lost and random hand-overs were triggered.
In short, we couldn’t make multiple phones work with COTS hardware.

38

Figure 4.7: How the terminals look like after running all the components successfully
and a COTS UE establishes a connection

39

Chapter 5

Implementation of the schedulers

5.1 The State of the Art

The OAI platform already provides the SOA. It is possible to create multiple slices
and assign sub-channels exclusively to each slice. Then each slice uses a RR algorithm
to allocate the PRBs to their corresponding UEs. The RR algorithm provided by OAI
is quite similar to the one given in Algorithm 1. Power budget per PRB can either
be configured in the initial conf file or it can be changed using flexRAN controller
on the fly.

Considering a 5MHz channel where half of the spectrum is used for DL and the other
half is used for UL, there would be 50PRBs per sub-frame with 15kHZ sub-carrier
spacing. Considering 4G RAT, 3 PRBs will form a single Resource Block Group
(RBG) hence there would be 17 RBGs at a given sub-frame. As an example, the
following “slice.json” file can be used to create two static slices where the first slice
would have the RBGs with the indices from 0 to 6 and the second slice would have
RBGs with the indices from 9 to 15 for all sub-frames.

{

"dl": {

"algorithm ": "Static",

"slices ": [

{

"id": 0,

"static ": {

"posLow ": 0,

"posHigh ": 6

}

},

{

40

"id": 1,

"static ": {

"posLow ": 9,

"posHigh ": 15

}

}

]

}

}

DL slice configuration can be updated on the fly by sending this json file to north-
bound of flexRAN controller using the following curl command:

$ curl -X POST http ://127.0.0.1:9999/ slice/enb/-1 --data -binary "

@slice3.json"

5.2 The proposed Two-Level Scheduler

The proposed two-level scheduler is not provided by the OAI platform therefore we
implemented Algorithm 2 at the eNB side. Furthermore, to be able to use the pro-
posed scheduler with the flexRAN controller, we made some additions to flexRAN
source codes, as well.

The implemented functions can be found under the following link, however a team
access is required to access them:

https://gitlab.com/oai-wrr/wrr_source_codes/-/tree/main

flexRAN and eNB communicates through Google protobuffs. Therefore the first step
is to manipulate the config common.proto scripts both at the eNB and flexRAN
sides. Both proto scripts should be the same. I introduced a single variable called
“weight” to denote the WRR weight of a slice.

#Edit enb_folder/openair2/ENB_APP/MESSAGES/V2/config_common.proto

#Edit flexran -rtc -master/src/MESSAGES/V2/config_common.proto

There is no further addition needed for the flexRAN-side. However, we need to
manipulate a few more scripts at the eNB-side.

In order for eNB to deploy the commands administered by the flexRAN, we need to
manipulate the flexran agent ran api.c script and update the following four func-
tions:

1. flexran get dl slice algo

2. flexran set dl slice algo

41

https://gitlab.com/oai-wrr/wrr_source_codes/-/tree/main

3. flexran create dl slice

4. flexran get dl slice

Edit enb_folder/openair2/ENB_APP/flexran_agent_ran_api.c

Then, there are two more scripts to be manipulated. The first one is slicing.h where
the variables used for Algorithm 2 are declared. The second one is slicing.c where
Algorithm 2 is implemented.

In the slicing.h header file, the following new variables are declared,:

1. wrr slice param t;

2. wrr dl init;

In the slicing.c script, the following new functions are created:

1. wrr dl init

2. addmod wrr slice dl

3. wrr dl

4. wrr destroy

5. remove wrr slice dl

6. next slice list looped

Edit enb_folder/openair2/LAYER2/MAC/slicing/slicing.h

Edit enb_folder/openair2/LAYER2/MAC/slicing/slicing.c

wrr dl is the function that eNB runs at every-subframe to allocate PRBs first to the
slices and then to the UEs. It is the implementation of the pseudo-code given in
Algorithm (2).

5.2.1 Examination of the wrr dl algorithm

RBGs are allocated to the UEs with a period of sub-frame which corresponds to 1ms
in LTE-RAT. Therefore the wrr dl algorithm should run less than 1ms.

Run time of wrr dl function linearly depends on the number of UEs and the number
of slices. If the number of UEs are M and the number of slices are N , then the wrr dl

42

function will have the big O as O(M ∗N). In order to see the run-time characteristic
of the wrr dl function, timespec struct of C language with pthread getcpuclockid() is
used. The time difference between right after wrr dl functions starts and right before
it terminates is calculated. An equal amount of traffic per second is generated for
the system and 4̃5000 samples are collected. The mean value of the collected samples
can be seen in Figure 5.1 for various number of UEs and slices. The run times are in
microseconds for the given number of UEs and slices.

Figure 5.1: Run times of wrr dl function

The following snapshot provides an example to configure WRR based slices using
FlexRAN. The following json file can be used to create 2 slices where the first slice
has a weight of 4 and the second slice has a weight of 3.

{

"dl": {

"algorithm ": "WRR",

"slices ": [

{

"id": 0,

"wrr": {

"weight ": 4

}

43

},

{

"id": 1,

"wrr": {

"weight ": 3

}

}

]

},

"ul": {

"algorithm ": "None"

}

}

This would result with a WRR vector (Wwrr) of {0, 0, 0, 0, 1, 1, 1} where the elements
of the vector represent ID of the slices. Assuming the json file is named as “slice.json′′,
it can be sent to northbound of flexRAN app using the following command:

$ curl -X POST http ://127.0.0.1:9999/ slice/enb/-1 --data -binary "

@slice.json"

Considering a 5MHz channel where half of the spectrum is used for DL and the other
half is used for UL, there would be 50PRBs per sub-frame with 15kHZ sub-carrier
spacing. Considering 4G RAT, 3 PRBs will form a Resource Block Group (RBG)
hence there would be 17 RBGs at a given sub-frame. With the given json file above,
there will be two slices (slice 0 and slice 1) with the weights of 4 and 3 respectively.
Consequently the wrr dl function allocates the RBGs to the slices as follows (the
snapshot is taken at frame 747, from subframe 2 to subframe 4 where the slices had
full buffers):

Frame.Subframe 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
747.2 0 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0
747.3 0 1 1 1 0 0 0 0 1 1 1 0 0 0 0 1 1
747.4 1 0 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0

44

Chapter 6

The experiments and the
performance comparison of the
schedulers

6.1 The experimental set-up

Figure 6.1: The components used for the experiments

As it was explained in the Section 4, OAI-nFAPI emulator can emulate multiple UEs.
The UE emulator assigns a unique IP address for the each UE instance, hence it
is possible to create DL traffic from EPC to the each UE, respectively. In order
to create a controlled traffic, we implement a pair of UDP client-server as well as

45

a traffic generator in Python language. Additionally, as it is not feasible to run
all the components manually, we provide a bash script that automates most of the
experimental steps. Once the EPC, flexRAN controller, eNB & UE emulators are
started then the bash script can be executed to conduct an experiment. The bash
script takes seven inputs and executes the following steps:

1. Create some slices for the DL (either static or wrr) by sending “POST” curl to
flexRAN controller

2. Initialize UDP servers (one for each UE instance)

3. Initialize UDP clients (one for each UE instance)

4. Initialize the traffic generator

5. Sleep for the experiment duration (seconds)

6. Terminate the eNB and UE emulators as well as the UDP clients and servers

The bash script needs to be run at the UE-side. Assuming the EPC runs at a machine
called “epc2” with IP adress of 129.97.228.199 and the eNB runs at a machine called
“ydemirci” with the IP address of 129.97.228.172, then the bash script is going to be
as follows:

#Inputs: 1. <Number of UEs(int)>

2. <Packet length(int)>

3. <Number of UEs(int)>

4. <Lambda weights(string)>

5. <Number of UEs per slice(string)>

6. <Gama(int)>

7. <Experiment Duration(int)>

An example use of the script:

#./exp.sh 15 1500 3 "1,1,1" "5,5,5" 2954 15

#In case if any server is left open

declare -i k=5002

for ((c=1; c<=$1; c++))

do

#PID of the process

pid=$(lsof -i :$k| awk '{print $2}' | sed -n '2p')

46

#Kill it, in case if the server does not close

kill -9 $pid &

k=$((k + 1))

done

#Kill the UE clients in case if any left open

sshpass -p pw ssh epc2@129.97.228.199 \

" echo \"pw\" | sudo -S kill -9 \

\$(ps -aux | grep \"python3 client\" | awk '{print \$2}')"

sleep 0.5

#Create 3 static slices

sshpass -p pw ssh ydemirci@129.97.228.172 \

"cd Desktop/flex && curl -X POST \

http://127.0.0.1:9999/slice/enb/-1 --data-binary \"@slice1.json\" "

sleep 1

#Create 3 wrr slices

sshpass -p pw ssh ydemirci@129.97.228.172 \

"cd Desktop/flex && curl -X POST \

http://127.0.0.1:9999/slice/enb/-1 --data-binary \"@slice2.json\" "

sleep 1

#Assign UEs to the respective slices

sshpass -p pw ssh ydemirci@129.97.228.172 \

"cd Desktop/flex && curl -X POST \

http://127.0.0.1:9999/ue_slice_assoc/enb/-1 --data-binary \"@change.json\" "

sleep 1

#Create the UDP servers for the UEs

declare -i x=5002

for ((c=1; c<=$1; c++))

do

#interface name of the UE

ueName=$(printf 'oaitun_ue%d' $c)

#IP of the UE

ip=$(/sbin/ip -o -4 addr list $ueName | awk '{print $4}' | cut -d/ -f1)

python3 server.py $ip $x &

sleep 0.05

47

x=$((x + 1))

done

sleep 0.01

#Create the UDP clients for the UEs

declare -i y=5002

declare -i q=6000

for ((c=1; c<=$1; c++))

do

#interface name of the UE

ueName=$(printf 'oaitun_ue%d' $c)

#IP of the UE

ip=$(/sbin/ip -o -4 addr list $ueName | awk '{print $4}' | cut -d/ -f1)

sshpass -p pw ssh epc2@129.97.228.199 python3 client.py $ip $y $2 $q &

y=$((y + 1))

q=$((q + 1))

sleep 0.1

done

sleep 0.01

#Initialize the traffic generator

sshpass -p pw ssh epc2@129.97.228.199 python3 trafficGenerator.py

$3 $4 $5 $6 $7 $2 &

#Let the experiment run for the given time duration

sleep $7

echo "Killing the eNB and the servers"

#Kill eNB

sshpass -p pw ssh ydemirci@129.97.228.172 \

" echo \"pw\" | sudo -S kill -9 \

\$(ps -aux | grep ./ran_build | awk '{print \$2}'| sed -n '2p')"

#Kill the UE

pidUE=$(ps -aux | grep ./ran_build | awk '{print $2}'| sed -n '2p')

echo "pw" | sudo -S kill -9 $pidUE

48

#Kill the UE servers

declare -i z=5002

for ((c=1; c<=$1; c++))

do

#PID of the process

pid=$(lsof -i :$z| awk '{print $2}' | sed -n '2p')

#Kill it, in case if the server does not close

echo "pw" | sudo -S kill -9 $pid

z=$((z + 1))

done

6.1.1 UDP servers-clients

We implement a very straightforward UDP server and client using Python. For each
UE instance, a pair of a server and a client are initialized. The clients run at the
EPC-side whereas the servers run at the UE-side.

Whenever a packet is generated by the traffic generator, it is sent to one of the clients.
Then the client forwards the packet to the eNB and the eNB sends the packet to the
respective server (UE-instance). Consequently, it is possible to create simultaneous
DL traffic over the emulated LTE-network for multiple UEs.

6.1.2 The traffic generator

We implement a traffic generator where the inter-arrival time of the packets are ex-
ponentially decaying and the packet size is fixed. Consequently, the traffic generation
model is a Poisson process with M/D/1 queuing. The generation of a packet at a
time is not dependent on the previous time-states hence the traffic generation is a
memoryless process. Once the UDP clients and servers are up, the traffic generator is
run at the EPC-side by the bash script. The traffic generator takes five inputs. The

49

pseudo-code for the traffic generator can be seen in Algorithm (3)

Algorithm 3: The traffic generator

Input: 1. sliceList
2. lambdaValues
3. UEsInSlices
3. Gama
4. experimentDuration
5. packetSize

1 Get currentTime ;
2 startTime = currentTime ;
3 sentTime = currentTime ;
4 sampledInterval = expovariate(Gama) ;
5 while ((currentTime - starTime) < experimentDuration) do
6 if (currentTime-sentTime) > sampledInterval then
7 sentTime = currentTime ;
8 sampledInterval = expovariate (Gama) ;
9 selectedSlice = choices (sliceList , lamdaValues, k=1) ;

10 select a UE from the selectedSlice ;
11 Send a packet to the selected UE (a packet size of packetSize) ;

12 Update currentTime ;

expovariate given in the line 4 and 8 of Algorithm (3) is a method provided by “ran-
dom” library of Python. It is possible to sample an inter-arrival time with exponential
decaying distribution using expovariate(). It takes Lambda as the input.

Once a packet is generated, a slice is randomly selected according to the weights given
by lambdaV alues. choice() method provided by “random” library of Python can be
used to randomly select a slice. choice() method returns a randomly selected element
from the first given sequence (sliceList) with the probability distribution given by the
second sequence (lambdaValues). Once a slice is selected, then a UE can be chosen
with an equal probability among the UEs of the slice.

50

Figure 6.2: Packet generation diagram

6.1.3 Sampling MCS values

Since the nFAPI emulator does not provide the PHY layer, the CQI/MCS values are
hard-coded with some constants (MCS value of 28) in the source codes. In order to
understand the impacts of CQI/MCS values better, we decided to sample the MCS
values rather than using the hard-coded constant value.

The MCS values can be manipulated by changing the eNB UE stats− > dlsch mcs1
variable given in the eNB scheduler dlsch.c script:

$ cd enb_folder/openair2/LAYER2/MAC

$ Edit eNB_scheduler_dlsch.c

We implement a sub-routines called myRand which samples new MCS values for
all the UEs attached to the eNB once it is called. The sub-routine can be called
in varying periodicity (e.g. every x sub-frame or every frame). The probability of
sampling a specific MCS value depends on the MCS distribution given in Figure 6.3.

51

This distribution is taken from [1] which is published in EURASIP Journal on Wireless
Communications and Networking (2017). The authors collected MCS values reported
by some UEs during busy hours from a real LTE network. They mentioned that MCS
10 and 17 are very close to their adjacent MCS in terms of spectral efficiency and are
hence not utilized in the network. Consequently, the probability of sampling MCS 10
or 17 is considered as 0.

Figure 6.3: The MCS distribution which is taken from [1]

We run the myRand sub-routine 10000 times and aggregated the occurrence of each
index. The obtained probability distribution can be seen in Figure 6.4 which is
consistent with distribution given in Figure 6.3

52

Figure 6.4: The MCS distribution obtained from running myRand sub-routine 10000
times

6.1.4 Triggering HARQ re-transmission

As aforementioned, the nFAPI emulator does not provide a physical channel model.
Consequently, the transmission from eNB to the UEs occurs through wired connec-
tion. Therefore no packet loss occurs during the transmission from eNB to the UEs.
This is clearly not the case in a wireless channel. In order to compensate this flaw
and to mimic the characteristics of a wireless channel, we decided to drop the packets
received by the UEs intentionally and trigger HARQ re-transmissions.

In the default configuration, the UEs are hard-coded to send ACK. In order to change
this and send NACK with some probability, we manipulate the phy stub UE.c script:

$ cd ue_folder/openair2/PHY_INTERFACE

$ Edit phy_stub_UE.c

In order to send NACK (in FDD mode), it is required to manipulate pdu− >
harq indication fdd rel13.harq tb n[0] variable in fill uci harq indication UE MAC()
function. The default value is hard-coded as “1”. If this value is changed to “2”, UE
will send a NACK instead of an ACK. This will trigger HARQ re-transmission at the
eNB-side for the next sub-frame. There are two important points to be careful before
manipulating the ACK messages:

1. If the UE sends a NACK during the initial attachment to the eNB, then the UE
may not be able to establish a connection at all. Therefore, it is important to
start sending NACK once all the UEs have successfully established a connection
to the eNB.

53

2. Depending on the configuration, HARQ can be encoded to a more than 1 byte
(e.g. 2 bytes). In such a case it is required to change both of the bytes to “2”.

6.2 The experimental scenarios

We consider three VNOs and three UEs per each VNO. Depending on the amount
of sub-channels brought by the VNOs and the traffic load variation, we consider four
different scenarios:

1. In the first scenario, all the VNOs bring the same amount of sub-channels and
experience similar traffic loads.

2. In the second scenario, the third VNO brings less sub-channels than the others,
however the traffic load is still the same among the VNOs.

3. In the third scenario, all the VNOs bring the same amount of sub-channels
however the third VNO experiences significantly more traffic than the others.

4. In the forth scenario, the third VNO brings less amount of sub-channels and it
experiences significantly more traffic than the others.

In other words, the first two VNOs show similar characteristics in all the scenarios.
Whereas the third VNO behaves as a free-rider except the first scenario. For each
scenario:

• MCS values are hard-coded as 28 for all the UEs.

• BLock Error Rate (BLER) is set as 0, hence no packet corruption or loss occurs
during the packet transmission from eNB to UEs.

• There are three slices (3 VNOs).

• Each VNO has three active UEs.

• αq variable represents the sub-channels brought by the VNO q.

• pq variable represents the probability of forwarding a generated packet to slice
q.

• 3 PRBs form a single RBGs at a given sub-frame.

• A packet length is 1500 bytes.

54

Exps: MCS BLER # of slices UEs per slice αq pq # of RBGS per sub-frame

1 28 0 3 3 α1 = α2 = α3 p1 = p2 = p3 15

2 28 0 3 3 α1 = α2 = 1.667α3 p1 = p2 = p3 13

3 28 0 3 3 α1 = α2 = α3 10p1 = 10p2 = p3 15

4 28 0 3 3 α1 = α2 = 1.667α3 10p1 = 10p2 = p3 13

Table 6.1: The experimental scenarios

The experiments are run considering a confidence interval. At time t = 0, we consider
a booting period for 10 seconds where the system is initialized. Then, we start
recording the data with a period of 30 seconds. At the end of a period, we check if
the new period varies less than 5% of the former period. If so, we use the data from
the new period, otherwise the experiment continues.

We consider 2 metrics:

1. Average system throughput which is the total number of bytes sent by eNB and
acknowledged by an UE per second.

2. Average transmission time of a packet. This is the difference between the time-
stamp when a packet is received by a UE and the time-stamp when the packet
is sent from the EPC.

6.3 Results

6.3.1 Average Throughput

Experiment 1 and 2

The first and the second experiments are run for the following λ values respectively.

λ ∈ {1150, 1532, 1916, 2300, 2682}

λ ∈ {770, 1056, 1343, 1630, 1916}

Even though the same λ is used for the proposed scheduler or the SOA, a negligible
difference may occur in terms of average generated packet per second, due to the
non-stochastic nature of the ”random” library of Python.

The average system throughput is almost the same for both of the experiments, as
it can be seen in Figure 6.5 and 6.6. The proposed algorithm does not provide any
better throughput than the SOA.

55

Figure 6.5: The average throughput for the first experimental scenario

Figure 6.6: The average throughput for the second experimental scenario

56

The average ratios of the number of idle RBGs divided by the total number of RBGs
at a given sub-frame are given in Figure 6.7 and 6.8. Under low traffic conditions,
the ratios are almost identical for both the SOA and the proposed scheduler. As
the traffic load increases, the proposed scheduler utilizes more RBGs. However, the
difference can be considered negligible except the case when λ = 1916 for slice 3, for
experiment 2. As the traffic increases, the sub-channels of the third slice become not
sufficient in the case of static sharing. Therefore, the proposed scheduler starts to
utilize more RBGs.

Figure 6.7: Ratio of RBGidle/RBGtotal for the first experimental scenario

57

Figure 6.8: Ratio of RBGidle/RBGtotal for the second experimental scenario

Experiment 3 and 4

The third and the fourth experiments are run for the following λ values respectively.

λ ∈ {253, 453, 653, 853, 1053}

λ ∈ {300, 400, 500, 600, 700}

The lambda values are chosen considering the point where the third slice starts ex-
periencing significant delays compared to the other two slices.

The average throughput characteristics for the third and the fourth experiments are
similar to the first two experiments as they are given in Figure 6.9 and 6.10. Both
the SOA and the proposed scheduler provide similar average throughput.

58

Figure 6.9: The average throughput for the third experimental scenario

Figure 6.10: The average throughput for the fourth experimental scenario

59

In the case of RBG utilization per sub-frame, both the SOA and the proposed sched-
uler show similar RBG utilization under low-traffic. As the traffic load increases, the
proposed scheduler utilizes more RBGs. However, this happens due to the third slice
which brings less sub-channels but more traffic.

Figure 6.11: Ratio of RBGidle/RBGtotal for the third experimental scenario

Figure 6.12: Ratio of RBGidle/RBGtotal for the fourth experimental scenario

60

6.3.2 Average Transmission time of a packet

In order to measure the transmission time of a packet, time-stamps are obtained at
the application layer once a packet is sent from the EPC and once it is received by
the UEs. Since the UEs and the EPC are running on different host machines, it
is required to synchronize the clocks of the machines. For this purpose, Network
Time Protocol (NTP) is used. The machine that hosts the UEs synchronizes to the
machine that hosts the EPC. In other words, the EPC machine works as a NTP
server whereas the UE machine is the client. In order to measure the transmission
time, the time-stamp is encoded into a packet right before it is sent from the EPC.
Once this packet is received by the UE, the current time stamp is recorded. Then
the time-stamp encoded into the packet is subtracted from the current time stamp
to find the transmission time. NTP provides precision in milliseconds.

Experiment 1 and 2

The λ (packet/sec) values used for the experiment 1 and 2 are the followings, respec-
tively:

λ ∈ {1150, 1532, 1916, 2300, 2682}

λ ∈ {770, 1056, 1343, 1630, 1916}

In the first and the second experiments, regardless of the used λ values, the proposed
scheduler provides strictly less transmission time than the SOA as it can be seen in
Figure 6.13 and 6.14 for all the slices. Especially, in the second experiment, once a
certain traffic load is passed, the transmission time significantly increases for the the
third slice in the case of static sharing.

61

Figure 6.13: Average transmission time of the packets for the first experimental
scenario

62

Figure 6.14: Average transmission time of the packets for the second experimental
scenario

Experiment 3 and 4

The lambda (packet/sec) values for experiment 3 and 4 are the following, respectively:

λ ∈ {253, 453, 653, 853, 1053}

λ ∈ {300, 400, 500, 600, 700}

Likewise the first two experiments, the proposed scheduler provides strictly less delay
than the SOA for the given traffic loads as it can be seen in Figure 6.15 and 6.16.

63

Figure 6.15: Average transmission time of the packets for the third experimental
scenario

64

Figure 6.16: Average transmission time of the packets for the fourth experimental
scenario

In short, it can be concluded that the proposed scheduler provides less delay than the
SOA for all the slices under different traffic loads. Especially, once a certain amount
of traffic load is passed, the proposed scheduler provides significantly less delay than
the SOA, for the third slice. This might be undesirable to the first two slices which
bring more resource but less traffic. Nonetheless, all the slices achieve less delay with
the proposed scheduler compared to the SOA.

65

Chapter 7

Conclusion

We propose a two level slice scheduler for RAN sharing in the context of Neutral
Host and we analyze the average throughput and packet transmission time compared
to the SOA. The SOA embraces a static channel allocation to the VNOs whereas
the proposed two-level-scheduler embraces a WRR sharing. The results show that
the proposed scheduler provides similar average throughput compared to the SOA.
However, in the case of packet transmission time, the proposed scheduler provides
less delay for all the slices than the SOA for the given traffic-loads. After passing
a certain traffic-load, the proposed scheduler provides significantly less delay for the
slice which brings less resources but more traffic. Considering this may lead to a
free-riding problem, it might be undesired. Nonetheless, all the slices achieve less
delay with the proposed scheduler compared to the SOA.

Besides the proposed algorithm, we also create detailed configuration guides to set-up
OAI platform both in nFAPI emulation and with COTS hardware.

Even though the proposed scheduler provides less delay for all the slices under certain
traffic loads, it favors the slices that experience more traffic than the slices with less
traffic. This may lead to a free-rider problem which would discourage some VNOs
to participate in the RAN sharing setting. As a future work, we are planning to
provide another slice-scheduler where we enhance the two-level-scheduler in terms of
“fairness”. With the enhancement, when a VNO would not use its chance of acquiring
a PRB, the scheduler will give the priority to the slices which have less tendency
to free-ride. Additionally, we are going to use a different method than NTP to
synchronize the computers for achieving higher precision for the delay measurements.

66

References

[1] Bartelt et al. “5G transport network requirements for the next generation fron-
thaul interface”. EURASIP Journal on Wireless Communications and Network-
ing, 2017.

[2] S. Zhang. “An Overview of Network Slicing for 5G”. IEEE Wireless Communi-
cations, 26(3), June 2019.

[3] 3GPP. “System Architecture for the 5G System, v.16.8.0”. 2021.

[4] ETSI TS. “LTE Network sharing Architecture and functional description”.

[5] M. G. Kibria et al. “Shared Spectrum Access Communications: A Neutral Host
Micro Operator Approach”. IEEE Journal on Selected Areas in Communications,
35(8):1741 – 1753, May 2017.

[6] G. Baldoni et al. “Edge Computing Enhancements in an NFV-based Ecosystem
for 5G Neutral Hosts”. IEEE Conference on Network Function Virtualization
and Software Defined Networks (NFV-SDN), November 2018.

[7] X. Foukas et al. “Iris: Deep Reinforcement Learning Driven Shared Spectrum
Access Architecture for Indoor Neutral-Host Small Cells”. IEEE Journal on
Selected Areas in Communications, 37(8):1820 – 1837, July 2019.

[8] X. Foukas et al. “Network Slicing in 5G: Survey and Challenges”. IEEE Com-
munications Magazine, 55(5):94–100, May 2017.

[9] J. Ordonez-Lucena et al. “Slicing for 5G with SDN/NFV: Concepts, Archi-
tectures, and Challenges”. IEEE Communications Magazine, 55(5):80–87, May
2017.

[10] R. Ferrus et al. “On 5G Radio Access Network Slicing: Radio Interface Protocol
Features and Configuration”. IEEE Communications Magazine, 56(5):184–192,
May 2018.

67

[11] X. Foukas et al. “FlexRAN: A Flexible and Programmable Platform for Software-
Defined Radio Access Networks”. Proceedings of the 12th International on Con-
ference on emerging Networking EXperiments and Technologies, pages 427–441,
December 2016.

[12] X. Foukas et al. “Orion: RAN slicing for a flexible and cost-effective multi-service
mobile network architecture”. Proceedings of the 23rd Annual International Con-
ference on mobile Computing and Networking (MobiCom), pages 127–140, 2017.

[13] D. Johnson et al. “NexRAN: Closed-loop RAN slicing in POWDER - A top-to-
bottom open-source open-RAN use case”. The 15th ACM Workshop on Wire-
less Network Testbeds, Experimental evaluation & CHaracterization (WiNTECH
2021), 2021.

[14] A. Ksentini et al. “Toward Enforcing Network Slicing on RAN: Flexibility and
Resources Abstraction”. IEEE Communications Magazine, 55(6), June 2017.

[15] M. A. Habibi et al. “The Structure of Service Level Agreement of Slice-based
5G Network”. IEEE International Symposium on Personal, Indoor and Mobile
Radio Communications, September 2018.

[16] B. Khodapanah et al. “Fulfillment of Service Level Agreements via Slice-Aware
Radio Resource Management in 5G Networks”. IEEE 87th Vehicular Technology
Conference, June 2018.

[17] R. Schmidt et al. “Slice Scheduling with QoS-Guarantee towards 5G”. IEEE
Global Communications Conference, December 2019.

[18] A. Papageorgiou et al. “SLA Management Procedures in 5G Slicing-based Sys-
tems”. European Conference on Networks and Communications, June 2020.

[19] 3GPP. “Evolved Universal Terrestrial Radio Access Medium Access Control
protocol specification, v.16.6.0”. 2021.

[20] 3GPP. “Evolved Universal Terrestrial Radio Access Physical layer procedures,
v.16.7.1”. 2021.

[21] Small Cell Forum. “5G FAPI: Network Monitor Mode API, scf224.10.01”. 2020.

[22] 3GPP. “Study on CU-DU lower layer split for NR, v15.0.0”. 2017.

[23] Navid Nikaein et al. “OpenAirInterface: A flexible platform for 5G research”.
ACM SIGCOMM Computer Communication Review, 44(5):33–38, June 2020.

68

[24] Q. Wang et al. “Enable Advanced QoS-Aware Network Slicing in 5G Networks for
Slice-Based Media Use Cases”. IEEE Transactions on Broadcasting, 65(2):444–
453, June 2019.

[25] Robert Schmidt et al. “FlexVRAN: A flexible controller for virtualized RAN over
heterogeneous deployments”. ICC 2019-2019 IEEE International Conference on
Communications (ICC), 2019.

[26] X. Vasilakos et al. “ElasticSDK: A Monitoring Software Development Kit for
enabling Data-driven Management and Control in 5G”. IEEE/IFIP Network
Operations and Management Symposium, 2020.

[27] M. Irazabal et al. “Dynamic buffer sizing and pacing as enablers of 5G low-
latency services”. IEEE transactions on mobile computing, 2020.

[28] A. Ksentini et al. “Providing low latency guarantees for slicing-ready 5G systems
via two-level MAC scheduling”. IEEE Network, 32(6):116 – 123, November 2018.

[29] K. Katsalis et al. “JOX: An event-driven orchestrator for 5G network slicing”.
IEEE/IFIP Network Operations and Management Symposium, pages 1–9, April
2018.

[30] M. Irazabal et al. “Preventing RLC Buffer Sojourn Delays in 5G”. IEEE Access,
9:39466–39488, March 2021.

[31] N. Makris et al. “Cloud-based Convergence of Heterogeneous RANs in 5G Dis-
aggregated Architectures”. IEEE International Conference on Communications
(ICC), pages 1–6, May 2018.

[32] B.Z. Hsieh et al. “Design of a UE-specific uplink scheduler for narrowband
Internet-of-Things (NB-IoT) systems”. International Conference on Intelligent
Green Building and Smart Grid (IGBSG), pages 1–5, April 2018.

[33] S. Khatibi et al. “Modelling and implementation of virtual radio resources man-
agement for 5G Cloud RAN”. EURASIP Journal on Wireless Communications
and Networking, 9:1–16, Dec 2017.

[34] “ETSI GS NFV-MAN” 001 v1.1.1. “Network Functions Virtualisation (NFV);
Management and Orchestration”. 2014.

[35] O-RAN Alliance. “O-RAN Architecture Overview”.

69

	List of Figures
	List of Abbreviations
	Introduction
	Overview
	Outline

	Related Work
	Literature Review
	Network sharing in 4G
	RAN sharing in the context of NH
	Network slicing in 5G
	RAN slicing frameworks
	SLAs in the context of RAN sharing

	The RAN Model and the Schedulers
	The RAN model
	The Slice-Schedulers
	The State of the Art
	The proposed Two-Level-Scheduler

	The Open-Air-Interface (OAI) platform
	Kernel configuration
	OAI nFAPI emulation mode
	Configuring the EPC
	Configuring the eNB and the UEs
	Configuring the flexRAN controller
	Running the EPC, the flexRAN controller, the eNB and the UEs in the emulator mode

	OAI with bladeRF and COTS UEs
	Configuring the bladeRF device
	Configuring the EPC
	Configuring the COTS UEs and the SIM cards
	Configuring the eNB
	Configuring the flexRAN controller
	Running the flexRAN, the EPC, the eNB on bladeRF and connecting the COTS UEs

	Implementation of the schedulers
	The State of the Art
	The proposed Two-Level Scheduler
	Examination of the wrr_dl algorithm

	The experiments and the performance comparison of the schedulers
	The experimental set-up
	UDP servers-clients
	The traffic generator
	Sampling MCS values
	Triggering HARQ re-transmission

	The experimental scenarios
	Results
	Average Throughput
	Average Transmission time of a packet

	Conclusion
	References

