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Abstract

The 1T polytype of the van der Waals material TaS2, has been studied extensively
as a strongly correlated system. Exhibiting several different charge density wave (CDW)
states, the phase diagram of 1T-TaS2 has been explored for close to fifty years, as the forces
driving the formation of the charge modulation and determining the characteristics of each
of the phases, have been elucidated. In recent years, interest in this system has concerned
expanding the phase diagram, with the bulk equilibrium states being further probed and
manipulated. While much of the research has focused on the low-temperatures phase,
where 1T-TaS2 has emerged as a test bed for Mott physics, as the material is thinned
towards the 2D limit, its phase diagram shows significant deviations from that of the bulk
system, even in the higher temperature range. Optoelectronic maps of ultrathin (< 10 nm
thick) 1T-TaS2 have indicated the presence of non-equilibrium CDW phases within the
hysteresis region of the nearly commensurate (NC) to commensurate (C) transition. The
work in this thesis investigates the nature of these non-equilibrium phases, and in doing
so, further elucidates the phase diagram of ultrathin 1T-TaS2.

We perform scanning tunneling microscopy (STM) on exfoliated ultrathin flakes of
1T-TaS2 within the NC-C hysteresis window. Imaging exfoliated flakes using STM poses
certain difficulties. Specifically, STM is very sensitive to surface contamination and is ill-
suited for locating a specific region of interest in a sample with micron scale dimensions. We
address the challenges associated with performing STM on exfoliated materials, utilizing a
simple device design that allows for the in situ measurement of both the electrical properties
of an exfoliated flake and the topography of the flake. With such a device design, it is
possible to correlate changes in electronic structure with changes in the bulk properties of
the material.

When imaging ultrathin 1T-TaS2 within the NC-C transition region, we find that rather
than possessing distinct electronic order, the topography of the flake indicates the pres-
ence of intertwined, irregularly shaped NC-like and C-like domains. After applying lateral
electrical signals to the sample, we image changes in the geometric arrangement of the
different regions. The ability to measure the change in electronic structure with the appli-
cation of a driving signal provides an invaluable perspective on the evolution of the CDW
phases in the material at the nanoscale. Inhomogeneity similar to what we measure in
ultrathin 1T-TaS2, has been seen in related strongly correlated systems, such as perovskite
manganites and doped Mott insulators. Starting with a phase separation model to simu-
late the observed inhomogeneity, we incorporate ideas derived from percolation theory to
explore the relationship between the electronic structure present in ultrathin 1T-TaS2 and
its bulk resistivity. With this model, we are able to qualitatively reproduce many of the
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features observed when driving the inhomogeneous CDW state. These results highlight the
importance of understanding the role of phase competition in determining the properties
of strongly correlated systems.
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Chapter 1

Introduction

Dimensionality plays an integral role in determining the properties of a system. While in
the past, research into 2D phenomenon has depended largely on the engineering of quasi-
2D systems [2], with the isolation of graphene via mechanical exfoliation, the experimental
expertise became available to probe the effect of dimensionality on many layered van der
Waals materials [3–5]. Insulators, semiconductors, superconductors, and other materials
possessing different exotic properties, have all been isolated and studied [6]. Furthermore,
with the development of polymer transfer techniques, the possibility of assembling multiple
2D materials into heterostructures has opened up a new avenue for the engineering of
systems possessing novel and interesting physics [7].

Strongly correlated electronic systems exhibit rich phase diagrams often characterized
by competing phases with different kinds of order [8]. Charge, spin, lattice, and orbital
degrees of freedom can all play a part and contribute to the existence of a variety of
states exhibiting a range of bulk properties, including high-temperature superconductivity
[9] and electronic inhomogeneity [10, 11]. Inhomogeneity at the nanoscale, arising from
non-statistical fluctuations, has been observed in many complex systems. In this context,
we adopt the definition of complexity outlined in [8] and [12]: in a complex system where
many particles interact, the properties of the system are not entirely determined by those
of the constituent components, but instead correlations betweens the particles give rise
to emergent behaviours. The origins of these novel behaviours can be traced to both the
properties of the equilibrium phases involved and the nature of the competition between
them. Beyond being interesting from a purely fundamental perspective, when two equilib-
rium states with vastly different properties are nearly degenerate, small external stimuli
that serve to drive a phase transition between the two states have the potential to produce
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a large change in bulk observables [13]. Harnessing this behaviour could lead to advances
in sensing and memory technologies.

The 1T polytype of the transition metal dichalcogenide (TMD) TaS2 has been studied
extensively, due to the variety of charge density wave (CDW) phases it exhibits [14]. Each
of the equilibrium CDW phases displays distinct properties. Characterizing the many
behaviours of these states, and determining the origin of the features of the different CDW
phases, has been the basis of research into 1T-TaS2 for almost fifty years. In particular,
the low-temperature phase of 1T-TaS2 has attracted significant interest due to the strong
electron correlations it exhibits. Within a certain temperature region, the phase is believed
to behave as a Mott insulator [15, 16]. Furthermore, the low-temperature phase is amenable
to perturbation, and the exploration and manipulation of this state has motivated 1T-TaS2
as a test bed for Mott physics. While significant effort has been devoted to characterizing
the low-temperature phase of this material, with many competing equilibrium phases, 1T-
TaS2 is sensitive to a wide range of external stimuli in many temperature regimes. The
expansion of the phase diagram of 1T-TaS2 by thinning the material to the ultrathin limit
is the primary focus of this thesis.

1.1 Thesis overview

This thesis is organized as follows. The rest of this chapter begins by introducing charge
density waves (CDW), describing phenomenologically their basic characteristics, and the
origins of CDW phases. A short introduction to the transition metal dichalcogenide (TMD)
studied in this thesis, the 1T polytype of TaS2, is then given. After introducing the equi-
librium CDW phases observed in this system, and the differences in their bulk properties,
we discuss some of the efforts in the literature to expand the phase diagram of 1T-TaS2.
Lastly, the fundamentals of the principle measurement technique used throughout this
work, scanning tunneling microscopy (STM), are presented.

Chapter 2 expands upon the nature of the equilibrium phases in 1T-TaS2, with par-
ticular emphasis on how these phases are observed and analyzed using STM. The phe-
nomenological Ginzburg-Landau theory for CDWs is summarized, with the primary goal
of introducing useful notation for describing CDW phases. Armed with this description of
CDWs, we present data that illustrates the characteristics of the two bulk CDW phases
that are observed within the temperature range studied in this thesis: the nearly com-
mensurate (NC)-commensurate (C) transition region. Through explaining this data, we
introduce some general STM analysis techniques. Lastly, some of the considerations re-
quired for imaging exfoliated ultrathin flakes of 1T-TaS2 with STM are discussed, and a
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device design is presented that consists of an ultrathin flake integrated into a nanodevice.
The design allows for the in situ measurement of both the bulk electrical properties of the
sample and the topography of the integrated flake, making it possible to correlate changes
in electrical behaviour with changes in electronic structure.

Utilizing the device design described in the previous chapter, Chapter 3 presents results
pertaining to the CDW phases observed in exfoliated ultrathin flakes of 1T-TaS2. The
electrical properties of ultrathin flakes of 1T-TaS2 are discussed, and a brief overview of
the literature pertaining to possible explanations for these properties is given. Results
of STM measurements on ultrathin flakes are then presented. A state with electronic
inhomogeneity is imaged using STM and manipulated through the application of lateral
electrical signals to the sample. The evolution of the state is captured over multiple STM
scans. This study is the first work conducted on the electronic structure of exfoliated
ultrathin flakes of 1T-TaS2 at the atomic scale within the NC-C transition temperature
range.

In Chapter 4 a model of phase separation is utilized for explaining the nature of the
inhomogeneous state observed in the previous chapter. After outlining some of the basic
thermodynamics underpinning phase separation, the dynamics of the separation process
are modelled, producing microstructures consisting of the constituent phases arranged in
a variety of geometric patterns. This model is extended to qualitatively reproduce some of
the changes observed when the inhomogeneous state is manipulated.

1.2 Background

1.2.1 Charge density waves

Figure 1.1 depicts a simple 1D model that can be used to describe the formation of a
charge density wave [17]. A collection of particles connected by harmonic springs interacts
with a potential. The atoms possess a periodicity with the lattice constant a0, while the
potential oscillates with the wavelength b. Depending on the strength of the potential,
if it is energetically favourable, the system of particles will distort and form a periodic
superstructure with the new wavelength a. If this new periodicity is a rational fraction of
the periodicity of the potential, then the superstructure is said to have locked in to the
underlying potential, forming a commensurate superstructure. However, if the potential
is not sufficiently strong, the harmonic term describing the interaction between pairs of
atoms dominates, and the system will not lock in, forming an incommensurate modulation.
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Figure 1.1: Commensurate and incommensurate lattice modulations. (a) The orange curve
demonstrates a possible distortion that modulates a one-dimensional chain of atoms such
that the resulting structure forms a CDW (red curve) commensurate with the potential
with wavelength b. (b) The blue curve demonstrates a possible distortion that modulates a
one-dimensional chain of atoms such that the resulting structure forms an incommensurate
superstructure. The gray dotted lines mark the locations of the modulated lattice relative
to the underlying potential, demonstrating the incommensurability of the two.
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This basic picture describes many different systems with different dimensionalities, in-
cluding the adsorption of atoms on a surface, the intercalation of a van der Waals material
with another compound, or a 3D structure with two interpenetrating lattices. In certain
condensed matter systems, rather than stemming from two distinct chemical species, the
interaction can arise between conduction electrons and their corresponding atomic lattice.
In this case, a periodic lattice distortion (PLD) is coupled with a modulation of the con-
duction electron density, forming what is called a charge density wave (CDW). Assuming
the density is cosinusoidally modulated, the wave can be written as [18]

ρ (r) = ρ0 (r) [1 + φ0 cos (q0r + φ)] , (1.1)

where φ0, q0, and φ are the amplitude, wave vector and phase of the CDW, and ρ0 (r)
represents the unmodulated density. The function describing the accompanying PLD itself,
is then given by,

un = u0 sin (n|q0|a0 + φ) , (1.2)

where the index n runs over each of the atoms in the 1D chain, u0 represents the magnitude
of the atomic displacement, and a0 is the unperturbed lattice constant. In Figure 1.1a,
the orange curve represents a possible lattice distortion that results in the formation of
a commensurate superstructure. The resulting modulation in charge density, ρ, is given
by the red curve. Figure 1.1b demonstrates an example of an incommensurate lattice
distortion; the modulation generated by the blue curve results in a superstructure that
does not align with the underlying potential.

The different lenses through which CDW formation is viewed can be delineated based
on whether the CDW phase exhibits long-range order or short-range order. In the long-
coherence-length picture, it is natural to view the CDW as a distortion in k space, with
the Fermi surface playing a significant role. On the other hand, when the CDW displays a
shorter coherence length, the local environment becomes more relevant, and CDW forma-
tion can be discussed in terms of local interactions, such as through a chemical bonding
picture or through Mott physics. The mechanisms of CDW formation can also be differen-
tiated based upon the fundamental nature of the interaction that stabilizes the CDW state.
When studying a distortion rooted in k space, the Peierls instability, which is based on
electron-phonon coupling, is often discussed as the driving force behind the CDW forma-
tion. In other cases, electron-electron interactions, such as the Coulombic forces observed
in Mott physics, will be the driver.

An understanding of the bulk CDW phases in the class of materials studied in this
thesis, layered Ta dichalcogenides, is an active field of research [19–23]. Elucidating the
origin of the CDW phases in these materials is not the goal of this thesis, but in the
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remainder of this section we present the typical outline of the CDW problem in 1D using
a mean field theory of a coupled electron-phonon system, [24, 25], for the purposes of
introducing the reader to the considerations that guide CDW formation. After giving
some of the governing equations for the energetics of a 1D CDW system, we summarize
the basic results, leading to an instability condition for the qualitative prediction of CDW
formation. While a complete microscopic theory for understanding CDW phases in 2D
systems remains elusive, we describe some of the considerations that distinguish the 2D
problem from the 1D problem, and provide some intuition for understanding a 2D CDW
material, like 1T-TAS2. The goal of this introduction is to provide the reader with a brief
overview of many of the concepts found in the CDW literature, specifically the Peierls
instability, the giant Kohn anomaly and Fermi surface nesting. While the widespread
applicability of these models to real-world materials is questionable [26], they provide a
useful framework for discussing many of the interactions behind the formation of CDWs.
In a later section, Section 1.2.2, we round out this survey of CDW formation by discussing
the origins of CDW phases in the primary material system studied in this thesis, 1T-TaS2,
in terms of a local bonding picture and Mott physics. Much of this material follows the
presentation in [18] and [24].

The Peierls instability

The tendency for a 1D system to distort and form a CDW is often defined as a Peierls
instability, and is a consequence of electron-phonon coupling. In a Peierls distortion, a
modulation of an atomic lattice, and the formation of a CDW, opens a gap at the Fermi
surface, lowering the energy of occupied states while raising the energy of unoccupied
states (Figure 1.2). If this energy gain is larger than the Coulombic and elastic energy
cost accompanying the distortion, this modified lattice represents the ground state of the
system. In this context CDW and PLD are used interchangeably; rather than viewing this
instability as being electronically driven the formation of a CDW is seen as a structural
phase transition where the charge modulation and the lattice distortion go hand in hand.1

To describe the energetics of the coupled electron-phonon system, we start with a
Fröhlich Hamiltonian in second quantized form [27],

H =
∑
k

εka
+
k ak +

∑
q

~ωqb
+
q bq + 1√

N

∑
k,q

gqa
+
k+qak

(
b+
−q + bq

)
, (1.3)

1It is important to note that even in cases where electron-electron interactions drive CDW formation,
a PLD is still commonly observed.
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Figure 1.2: Effect of the Peierls instability on the electronic dispersion curve. A gap is
opened up in the dispersion curve of a one-dimensional system with the formation of a
CDW (orange curve). The dispersion curve of the undistorted system is given by the black
dashed line.

where εk is the energy of the electronic state k, a+
k and ak are creation and annihilation

operators for k, ωq is the frequency of the phonon mode q, b+
q and bq are the creation

and annihilation operators for q, gq is the electron-phonon coupling constant, and N is
the number of lattice sites per unit length. The first and second terms of this Hamiltonian
describe the electronic and phonon spectra respectively, while the last term captures the
coupling between the different electron and phonon modes, where the wave vector is con-
served. To evaluate the favourability of CDW formation, we need to consider the changes
in the electronic energy spectrum, and the induced lattice strain. From second order per-
turbation theory, the change in the electronic energy due to the CDW is related to the
potential νq formed by the static displacement, uq, of the phonon mode q that accompanies
the modulation:

δEband = −|νq|2χ0 (q) . (1.4)
The function χ0 (q) is the non-interacting electronic susceptibility and is defined as,

χ0 (q) = 1
L

∑
k

fk+q − fk
εk − εk+q

> 0, (1.5)

where fk is the value of the Fermi function for the energy f (εk) and L is the length of
the one-dimensional system. Lastly, the energy of the lattice strain associated with the
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phonon displacement is given by,

δElattice = 1
2Mω2

qu
2
q. (1.6)

where M is the mass of the ions in the 1D chain. If δEband + δElattice < 0, CDW formation
is favoured, where the wave vector of the resulting modulation is defined as q0.

The susceptibility defined in Equation 1.5 is directly related to the electronic energy
gain, and thus is a useful parameter for comparing CDW formation in different regimes.
Consider the case of a 1D chain of atoms described by the lattice constant a0, with a
half-filled band, and assuming a tight-binding dispersion, εk = −EF cos (ka0), with the
Fermi energy EF and the Fermi vector |kF | = π/2a0. For this system, the susceptibility is
found to diverge as a function of temperature when evaluated at q = 2kF , specifically in
the limit where EF/kBT is large:

χ0 (2kF , T ) = 1
2N (0) ln

(2.28EF
kBT

)
, (1.7)

where N (0) is the density of states at EF .2 The temperature-dependent peaking of χ0 has
a large impact on the energy gain defined by Equation 1.4, and results in a renormalization
of the phonon mode around 2kF . At the transition temperature this mode is softened, a
phenomenon known as the giant Kohn anomaly. The renormalized phonon frequency is
given by,

ω̃2
q = ω2

q

(
1−

4g2
q

~ωq

χ0 (q)
)
. (1.8)

A complete softening of the phonon mode at the wave vector q0 = 2kF corresponds to a
frozen-in lattice distortion, the formation of the CDW. When this occurs, the wavelength
of the density wave, q0 is,

λ0 = 2π
|q0|

= π

|kF |
. (1.9)

Therefore, the wavelength of the CDW is found to be dependent on the Fermi wave vector
kF . Considering kF is unrelated to the underlying crystal lattice, being determined by the
filling of the electronic bands in k space, the CDW arising from the Peierls instability is
typically incommensurate with the 1D chain of atoms.

2The concept of "density of states" is discussed in greater detail in Section 1.2.3 in the context of the
meaning of the data collected using scanning tunneling microscopy.
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From Equation 1.8, one can derive a simple condition for determining whether CDW
formation in a 1D system is favourable:

4g2
q

~ωq

− 2Uq + Vq ≥
1

χ0 (q) , (1.10)

where the additional electronic energy parameters Uq and Vq, the Coulomb and exchange
interactions respectively, are included. In this condition, all of the relevant microscopic
parameters are assumed to be independent of k. This condition is sufficiently reliable to be
employed in practice, and reinforces some basic intuition regarding the Peierls instability:
CDW formation is favoured by a strong electron-phonon coupling (gq), a strong exchange
interaction (Vq), a weak Coulomb interaction (Uq), a small lattice strain (ωq), and by a
large non-interacting susceptibility (χ0(q)).

2D charge density wave systems and Fermi surface nesting

The situation becomes more complicated when considering CDW formation in 2D systems.
In particular, the role of the non-interacting electronic susceptibility and the shape of
the Fermi surface play substantially different roles depending on the dimensionality of
the system. In discussing the formation of a CDW in a 1D chain of atoms we have
highlighted the importance of the non-interacting electronic susceptibility. The energy gain
associated with CDW formation is related to the logarithmic divergence of the susceptibility
at the transition temperature. In 2D, the peaking of the susceptibility is both weaker and
broader, spread out over a range of wave vectors. Consequently, the susceptibility plays
a significantly smaller role in driving CDW formation in 2D materials compared to 1D
systems.

The Peierls instability can be discussed in the context of the shape of the Fermi surface.
In 3D k space the Fermi surface of a 1D chain of atoms is planar, and is located at the
same location where discontinuities are formed in the energy dispersion curves after the
charge modulation (Figure 1.2). Fermi surface nesting occurs when a part of the Fermi
surface is displaced by a vector q0 such that it can be completely superimposed on another
portion of the Fermi surface. Therefore, for a 1D system, Fermi surface nesting is perfect
in that all points on the Fermi surface can be mapped onto another portion of the contour
(Figure 1.3a). For a system with perfect Fermi surface nesting, the gap created at the
Fermi energy is complete (at T = 0). On the other hand, for a two dimensional system,
the Fermi surface typically has a more complex geometry (Figure 1.3b), and Fermi surface
nesting will be partial. In this case, some spectral density will exist within the CDW gap
(N (0) > 0). As a result, the Fermi surface also plays a significantly smaller role in driving
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Figure 1.3: (a) A cross-section of the planar Fermi surface of a 1D chain of atoms. The blue
vectors corresponding to q0 perfectly map one part of the Fermi surface on another. (b)
A cross-section of a cylindrical Fermi surface in a 2D system. The Fermi surface nesting,
represented by the blue vector, is incomplete.

CDW formation compared to in 1D systems. A comparison between CDW formation in 1D
and 2D systems is summarized in Table 1.1. Although the relative importance of the forces
that drive CDW formation in 1D and 2D systems may differ, many of the general concepts
and terminology, (the Peierls instability, Fermi surface nesting, giant Kohn anomaly), can
be used in describing experimental results pertaining to CDW phases in 2D systems.

1D 2 D
Fermi surface:

Geometry Planar Cylindrical
Nesting Perfect Partial

Electronic susceptibility:
q dependence log divergence weak peaking
T dependence log divergence weak peaking
Kohn anomaly lage, sharp small, broad

CDW energy gap complete partial

Table 1.1
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Figure 1.4: (a) The unit cell of 1T-TaS2. (b) The unit cell of 1T-TaS2 viewed along the
a axis. This view illustrates the S-Ta-S trilayer building block of the material. (c) A
top view of 1T-TaS2 illustrating the arrangement of Ta atoms within a single layer of the
material. This figure was generated using the software package described in [28], from the
crystallographic data collected in [29].

1.2.2 1T-TaS2: structure, charge density wave phases and elec-
trical properties

The transition metal dichalcogenide (TMD) TaS2 is a van der Waals material that exists
as multiple polytypes, differing based on the stacking of a trilayer S-Ta-S building block.
The 2H and 1T polytypes are the most widely studied, as both configurations form CDW
phases. In the 2H polytype, the trilayer adopts a trigonal prismatic geometry, while in
the 1T polytype, the Ta are octahedrally coordinated. The 2H polytype is the equilibrium
form of TaS2, while the 1T polytype can be synthesized by quenching the material from
above 1073 K in a chalcogen rich atmosphere. Different views of the crystal structure of
1T-TaS2 are given in Figure 1.4. As with all van der Waals systems, the layers of the crystal
are held together with van der Waals forces, making it possible to isolate thin flakes of
the material through mechanical exfoliation [30–32]. Elucidating emergent properties of
1T-TaS2 in the 2D limit is the primary research goal of this thesis.

1T-TaS2 has been extensively studied due to its rich phase diagram comprising a variety
of charge density wave phases [14]. All of the CDW phases in 1T-TaS2 are triple CDWs,
consisting of the superposition of three distinct 1D charge modulations.3 The system
undergoes a series of successive first-order phase transitions upon cooling: starting as a
normal metal,4 it forms an incommensurate CDW (IC) at ∼ 543 K, a nearly commensurate

3As opposed to a single CDW, which is composed of a single modulation frequency mode.
4It is challenging to study the region of the phase diagram of 1T-TaS2 where it exists as a normal metal

as the material undergoes a structural phase change to the 2H polytype in this temperature range.
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Figure 1.5: The evolution of the CDW phases in 1T-TaS2 with thermal cycling. The region
in orange corresponds to hysteresis observed between the NC-C phase transition.

CDW (NC) at ∼ 353 K, and lastly a commensurate CDW (C) at ∼ 183 K. Each of the
equilibrium phases of 1T-TaS2 has a characteristic electronic, structural and orbital order
[33], and a jump in resistivity is observed with each transition as the material becomes more
insulating as it is cooled. The resistivities of the NC and C phase differ by approximately
one order of magnitude (see, for example, Figure 3.1 in Section 3.2). When the material is
warmed from the C phase, the transition to the NC state progresses through the T phase,
a state with a similar resistivity to the NC phase but a different electronic structure. The
transition to the T phase occurs at 223 K and the full transition to the NC phase occurs at
283 K. Figure 1.5 presents the series of phase transitions observed as 1T-TaS2 is thermally
cycled. As is often seen with first-order phase transitions, when the sample is warmed
from the C phase, hysteresis is observed in the NC-C phase transtion (orange shading in
Figure 1.5).

The NC phase is an incommensurate modulation, but one whose wave vector nearly
satisfies commensurability. In the IC phase, the CDW is aligned with the atomic lattice
vector. When the material is cooled towards the C phase, the incommensurate modulation
changes, rotating away from the underlying lattice, forming the NC state. As the system
is cooled further, the NC state continuously evolves, becoming more commensurate, until
the transition to the fully commensurate state occurs. Therefore, the charge ordering of
the NC phase is variable, with different parameters reported in the literature dependent
on the temperature at which the measurements were taken. When the CDW modulation
is nearly commensurate, harmonics of the fundamental wave vector give rise to electronic
features known in the literature as domain walls. The T phase is characteristically similar
to the NC phase, being an incommensurate CDW state with a wave vector that is nearly
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Phase Temperature (K) θ (◦) Description
Normal T > 543 No CDW exists.

Incommensurate (IC) 543 > T > 353 0 Incommensurate CDW aligned
with underlying lattice.

Nearly commensurate (NC) 283 < T < 353 (warming) 11− 13 CDW with hexagonal
domain structure.353 > T > 183 (cooling)

Triclinic (T) 223 < T < 283 (warming) 12-13 CDW with quasi-1D domain
structure.

Commensurate (C) T < 223 (warming) 13.9 Commensurate CDW.
T < 183 (cooling)

Table 1.2: CDW phases in 1T-TaS2. The T phase has not been typically measured upon
cooling. Furthermore, the upper boundary of the temperature range in which the T phase
is observed upon warming should be considered approximate.

commensurate with the underlying system. However, the domain walls observed in the
T phase exhibit a lower symmetry compared to the NC phase.5 Given the similarities
between the T and NC phases, the T phase is often ignored in the phase diagram of
1T-TaS2, especially when the focus is on the electrical properties of the different phases.
Table 1.2 summarizes the characteristics of the different bulk CDW phases in 1T-TaS2.

CDW formation in 1T−TaS2

Earlier in this chapter we discussed some of the interactions that govern the formation
of a CDW state in a material. In this section, we delve deeper into the origins of the
CDW phases in 1T-TaS2 specfically. Below the NC-C transition temperature, in the com-
mensurate CDW region of the 1T-TaS2 phase diagram, x-ray photoelectron spectroscopy
(XPS) and STM measurements reveal the coexistence of multiple Ta valencies that differ
by up to 0.4 electrons per atom. The presence of inequivalent Ta sites suggests that local
bonding plays a pronounced role in the formation of the commensurate CDW. Based on
the modelling of local bonding energies, it is now understood that the Ta lattice distorts
as depicted in Figure 2.1, with 13 Ta atoms forming a star-shaped cluster. This distortion
results in the occupied Ta 5d t2g energy levels being split into three submanifolds and a
net decrease in energy [34–37].

While the above, qualitative description of CDW formation in 1T-TaS2 is generally
accepted, a complete understanding of the bulk phases in 1T-TaS2 is still very much an

5A more detailed description of each of the equilibrium CDW phases of 1T-TaS2 is provided in Chapter 2
of this thesis.
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open question. Recent results in the literature have delved into the nature of the low-
temperature, insulating phase, and the correlation between CDW stacking and the bulk
properties of the material. Evidence exists both for the low-temperature phase constituting
a Mott insulator [15, 16, 34, 35, 38], and for the electrical behaviour arising from band
insulating behaviour due to the dimerization of adjacent layers of the material, akin to an
interlayer Peierls-like distortion [19, 20, 39]. The phase diagram of 1T-TaS2 is diverse, with
a complexity that arises from the existence of different competing interactions. This debate
as to the origin of the low-temperature insulating state has prompted further study into
whether the phase diagram of 1T-TaS2 exhibits even greater complexity than previously
thought.

Having discussed the qualitative behaviour underlying the Peierls instability, we con-
clude this section by introducing the basics of Mott physics for completeness. A Mott
insulator is a system that behaves as an insulator despite having an unfilled valence band.
This behaviour stems from electron-electron correlations, and demonstrates the interplay
between the potential energy cost of electron localization, and the kinetic energy of elec-
tron delocalization. This interplay is captured by the Hubbard model, expressed by the
Hamiltonian,

H = −
∑
〈ij〉,σ

tij
(
c+
iσcjσ + c+

jσciσ
)

+ U
∑
i

ni↑ni↓. (1.11)

The first term in Equation 1.11 describes electron hopping between neighbours i and j,
while the second term encompasses the Coulombic repulsion that exist when two electrons
with opposite spins are located in the same atomic orbital.6 It is the electron hopping
that gives rise to conduction in the Hubbard model. When taking into account only the
on-site repulsive contribution of the second term (i.e. where t = 0), each atomic orbital in
the energy spectrum of the system is split, based upon the electron occupation number.
When an atomic orbital is singly occupied, the energy is given by ε. Adding a second
electron to the orbital comes with the energy cost U , producing a stepwise function. When
t is finite, the split energy levels centred at ε and ε + U broaden, with a width given by
the strength of the hopping parameter and the number of neighbours participating in the
hopping (Figure 1.6). The bulk electrical behaviour of the system will depend on the ratio
of the parameters U and t. If the split bands overlap, the material will behave as a metal.
However, in the event a gap is formed between the bands, as in Figure 1.6, the material
will display the electrical behaviour of an insulator, despite the fact that the valence shell
is not completely filled. In the context of 1T-TaS2, the periodic lattice distortion that
accompanies the CDW formation in the C phase results in the localization of an electron

6In the Hubbard model, the tight binding approximation is assumed.
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Figure 1.6: The band structure of a Mott insulator. From the Hubbard Hamiltonian, the
hopping of electrons gives rise to subbands centred at the atomic energy level, ε, and the
sum of ε and the on-site repulsion parameter U . The width of the subband depends upon
the strength of the hopping, t, and the number of neighbours, z. The density of states is
represented by ρ.

on the central Ta atom in the star-shaped cluster. It is because of this electron localization
that 1T-TaS2 garnered initial interest for exhibiting the properties of a Mott insulator [35].

Non-equilibrium CDW phases

Moving beyond the equilibrium phases of 1T-TaS2, the phase diagram is expanded through
the application of certain external stimuli or by modifying select material parameters.
By applying pressure or by chemically doping the Mott insulating C phase, the material
becomes superconducting at low temperatures [32, 40, 41]. Through voltage pulses applied
normal to the crystal surface via a metallic tip [42, 43], or through laser photoexcitation[44,
45], non-equilibrium hidden states, possessing distinctive electronic textures, are accessed.
The characterization and manipulation of these states have motivated 1T-TaS2 as a test
bed for the exploration of novel avenues of Mott physics.
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1.2.3 Scanning tunneling microscopy

Lastly, we introduce some of the fundamental principles behind the primary experimental
technique used in this thesis, scanning tunneling microscopy (STM). Scanning probe mi-
croscopy (SPM) describes a set of experimental techniques that consist of rastering a tip,
whose properties will vary depending on the specific technique being employed, across the
surface of a sample. Based upon the interactions between the tip and the surface, different
types of information about the sample is obtained. This family of techniques is inherently
a surface probe and thus does not necessarily convey any information concerning any bulk
material properties. STM is a well known SPM technique that uses the fundamental prin-
ciple of quantum tunneling to probe the electronic spectrum of the surface of the sample
being measured. In STM a metallic tip is brought into close contact with a conductive
sample and is rastered across the surface as the current that arises due to quantum tunnel-
ing is measured. This tunneling current is translated into topographic information with a
resolution on the atomic length scale. In addition to spatial resolution, it is also possible to
obtain energy resolution as well, providing information about how the electronic spectrum
of a material varies in real-space. This type of experiment is called scanning tunneling
spectroscopy (STS). In this section we introduce some of the theoretical underpinnings of
STM experiments. For a more exhaustive treatment of the subject we refer the reader to
some of the numerous textbooks written on the subject [46–49].

Quantum tunneling

One of the more interesting results encountered in quantum mechanics is the ability for a
particle with kinetic energy E, to pass through a potential energy barrier V0, even in the
case where E < V0. The wavefunction of a particle incident on a potential barrier will
contain some finite magnitude beyond the barrier, i.e. the particle has the capability of
tunneling through the barrier. Figure 1.7 establishes the parameters of the one-dimensional
tunneling problem. A particle with energy, E, and whose wavefunction is given by ψ = eikz,
is incident upon a potential barrier with a height given by V = V0. We start with the one-
dimensional, time-independent Schrödinger equation,

~2

2m
∂2

∂z2ψ (z) = [V (z)− E]ψ (z) . (1.12)

Inserting the wave function of the incident particle, ψ, defined as the plane wave above,

− ~2

2mk2 = V (z)− E, (1.13)
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Figure 1.7: Quantum tunneling through a one-dimensional potential barrier. (Top) A
particle with energy E is incident upon a potential barrier with height V0. (Bottom) The
wavefunction of the particle decays exponentially within the barrier region, and exists
beyond the barrier despite the fact that E < V0. This behaviour is classically forbidden.

where k is then given by,

k =
√

2m
~2 [E − V (z)]. (1.14)

Treating each region, I, II and III in Figure 1.7, individually, in regions I and III, V = 0, and
thus the solution is an oscillating plane wave with k =

√
(2m/~2)E. Within the barrier,

V = V0 and thus k, as defined in Equation 1.14, is imaginary. Defining the variable κ by
k = iκ,

κ =
√

2m
~2 (V0 − E). (1.15)

Consequently, within region II of Figure 1.7, with the initial ansatz for ψ as the equation
of a plane wave, the wavefunction of the particle is ψ = e−κz. In classical mechanics, the
particle would never be found in the barrier region when E < V0. However, in quantum
mechanics, the wavefunction exists within the barrier, where it decays exponentially as a
function of distance, z, a process known as tunneling.

The general solution for the tunneling problem discussed above consists of linear com-
binations of left travelling and right travelling waves. The ansatz for the wavefunction,
ψ = eikz, described a wave incident upon the barrier. Left travelling waves correspond to
reflections off of the barrier into region I, and also off the potential drop between region II
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and region III. Therefore, the full solution is given by,

ψ (z) =


Aeikz +Be−ikz z > 0, region I
Ce−κz +Deκz 0 ≤ z ≤ d, region II
Feikz z > d, region III.

(1.16)

The coefficients, A, B, C, D and F can be solved by considering the boundary conditions
at the region interfaces. The coefficient F gives the magnitude of the wavefunction beyond
the barrier, and it can be shown that the absolute square of this coefficient is related to
the flow of the tunneling electric current:

T = |F |2 = 4k2κ2

(k2 + κ2)2 sinh2 (κd) + 4k2κ2
, (1.17)

where T is referred to as the transmission factor. In the regime where κd � 1, Equa-
tion 1.17 can be simplified using the identity sinh2 κd ≈ 1

4e
2κd, giving,

T ∝ e−2κd. (1.18)

Therefore, the transmission factor is exponentially dependent on the width of the barrier,
d.

The work function of a material, Φ, is defined as the amount of energy required for an
electron to be removed from the surface of the material into the vacuum. If the vacuum
reference energy is set as zero, then at T = 0, the Fermi energy is given by EF = −Φ.
When two metal surfaces are in close proximity to each other but not touching, then a
small voltage difference across the metals will induce the flow of a tunneling current, where,
from Equation 1.18, we know that,

I ∝ e−2κz. (1.19)

From Equation 1.14, k =
√

2m/~2 [E − V (z)] =
√

2mΦ/~2. In typical metals, Φ ∼ 5 eV
and thus 2k ≈ 1 Å−1. Therefore, for each increase in distance z by 1 Å, the tunneling
current decreases by an order of magnitude. It is this relationship that enables the scanning
tunneling microscope to provide atomic resolution: because of the exponential dependence
of I on the distance z, changes in the tunneling current will correspond to changes in
distance on the order of the atomic scale.

Density of states

When discussing the magnitude of tunneling current measured in the STM it is useful to
consider the concept of the density of states. The density of states is defined as the number
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of electronic states in a system within the range (E,E + dE), and can be expressed by,

dN (E,E + dE) = ρ (E) dE. (1.20)

The number of states within a finite energy range can then be counted using this definition,

N (Ebottom, Etop) =
∫ Etop

Ebottom

ρ (E) dE =
∫ Etop

Ebottom

∑
n

δ (E − En) dE, (1.21)

where the Dirac delta function δ was used to enumerate over all states n with En ∈
[Ebottom, Etop]. Given the spatial nature of STM imaging, it is useful to normalize the
density of states by weighting the quantity based on the probability of a particle to be at
position r, given by |ψ (r) |2:

ρ (E, r) =
∑
n

|ψn (r) |2δ (E − En) . (1.22)

This normalized distribution is known as the local density of states (LDOS).

Tunneling current in STM

Different modifications can be made to the basic toy problem discussed above to determine
a quantitative understanding of quantum tunneling in the context of STM. The details of
these modifications are not strictly necessary for the reader to follow the rest of this thesis,
but we present some of the main concepts here to provide a more complete picture of the
STM experiment. Bardeen examined tunneling within the context of metal-insulator-metal
junctions [50], but his model can be transferred to the STM problem. Using his approach,
the tip-plus-barrier system and sample-plus-barrier system are treated as separate compo-
nents to be solved independently, and then scattering from the tip states to the sample
states is evaluated within time-dependent perturbation theory. The tunneling current is
found to be,

I = 4πe
~

∫ eV

0
ρtip (ε− eV ) ρsample (ε)T (ε, V, d) dε. (1.23)

In Equation 1.23 the current represents a convolution of both the states in the sample and
the states in the tip. Consequently, in order to obtain quantitative information about the
electronic structure of the sample, the tip must be fully characterized. The integral runs
over the bias window and the transmission factor depends on the energy of the tunneling
electron, ε, the bias voltage, V , and the width of the tunneling barrier. Figure 1.8a illus-
trates the effect of the bias voltage on the barrier potential, and the resulting modification
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Figure 1.8: (a) The effect of a bias voltage on the potential barrier and on the relative
energies of the occupied and unoccupied states of both the tip and the sample. (b) A
schematic demonstrating most of the characteristics of quantum tunneling in the context
of STM.

of the transmission factor. For an electron with energy ε, an effective barrier Φeff can be
defined,

Φeff = Φtip + Φsample

2 + eV

2 − ε. (1.24)

Incorporating this effective barrier height into the equation for the transmission factor
gives,

T (ε, V, d) ∝ exp
−2d

√√√√2m
~2

(
Φtip + Φsample

2 + eV

2 − ε
) . (1.25)

Figure 1.8b incorporates many of the components of Equation 1.25 and presents a more
complete picture of the tunneling problem in STM. The block energy diagram on the left
corresponds to the density of states of the tip, ρt, while that on the right represents the
density of states of the sample ρs. As depicted, the density of states of both the tip and
the sample are not constant but vary with energy. As a bias voltage is applied, the sample
states are shifted by eV . Elastic tunneling occurs between occupied states in the tip and
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unoccupied states in the sample. The magnitude of the tunneling current is dependent on
the transmission factor, represented by the horizontal green arrows, with states close to
EF having a larger transmission factor compared to states far from EF (Equation 1.18).
The shape of the potential barrier is determined by the work functions of the tip and the
sample, and by the applied bias.

The transmission factor depends not only upon the width of the barrier, but also on
the magnitude of the bias voltage and the energy of the tunneling electrons. If the bias
voltage is sufficiently small, eV � Φ, the energy dependence of the transmission factor
can be replaced by a constant average energy, ε̄ = EF,tip + EF,sample/2 = eV/2, and thus
in Equation 1.23, T can be moved outside of the integral. Furthermore, if the density of
states of the tip is assumed to be constant, then ρtip can also be moved in front of the
integral, leaving the tunneling current proportional to the voltage V and the density of
states of the sample. Consequently, when low bias voltages are used, the tunneling current
measured in STM is considered to be a probe of the surface density of states.

Constant current mode

The most common mode of STM operation, and the mode utilized throughout the thesis, is
the constant current mode. During STM imaging a bias voltage is applied to a metallic tip
relative to the sample being studied, and the tip is rastered across the surface of the sample
as the tunneling current is measured (Figure 1.9a). The movement of the tip is facilitated
by applying control voltages to a piezoelectric crystal on which the tip is mounted. In the
constant current experiment, a current setpoint is fixed and a feedback loop is engaged in
order to maintain the measured tunneling current at the setpoint by continuously adjusting
the height of the tip as it is rastered. The experiment begins by approaching the sample
with the biased tip until a tunneling current is detected, typically when the tip is within a
few Ångstroms of the surface. For a homogeneous metallic system, the LDOS is expected
to oscillate with the periodicity of the underlying atomic lattice. Due to the oscillating
LDOS, engaging the feedback loop will result in the oscillatory motion of the tip at the
same periodicity of the lattice in order to maintain the tunneling current setpoint. In this
fashion, information about the LDOS is translated into topographic data. A schematic of
this procedure is outlined in Figure 1.9b.7

7The schematic in Figure 1.9b includes a scan taken of the Si (111) (2 × 1) reconstruction. For infor-
mation pertaining to this sample and the experimental technique used to prepare it, see Appendix B.
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Figure 1.9: (a) A schematic of the circuit diagram for the measurement of the tunneling
current. The bias is applied between the tip and the sample. (b) The constant current
mode of operation in STM. Based on the measurement of the raw tunneling current, the
height of the tip is adjusted in order that the current is fixed at a constant value. In this
fashion, the current is translated into topographic information, as illustrated for one and
two dimensions in (i) and (ii). (ii) presents an STM scan taken of the Si (111) (2 × 1)
reconstruction.
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Chapter 2

Scanning tunneling microscopy of
1T−TaS2

2.1 Introduction

Since its development in 1982 [51], scanning tunneling microscopy (STM) has proven to
be an invaluable tool for probing the electronic structure of conductive materials. The
formation of a charge density wave (CDW) in a compound has a profound effect on both
the molecular structure and the electronic spectrum of the system. Therefore, STM, in
combination with other structural probes such as x-ray diffraction (XRD) and transmission
electron microscopy (TEM), enables a full structural characterization of the CDW phases
of many different compounds.

STM has been particularly useful in clarifying the nature of the CDW phases in 1T-
TaS2. For example, the domain-like structure observed in the nearly commensurate phase
was only clarified through STM experiments. While the basic structural properties of
the phase could be determined by both TEM and XRD, both the symmetries and the
amplitude of the modulation envelope that exists on top of the CDW phase could only be
observed by a technique that probed the electronic structure with nanoscopic resolution.
Furthermore, through scanning tunneling spectroscopy (STS) experiments, which allow for
both energy and spatial resolution, the density of states within topological features present
in the different phases could be measured. These experiments provided an understanding
as to the role of domain walls in determining the conductivity of the different phases.

In this chapter we present STM data of the bulk equilibrium phases of 1T-TaS2, specif-
ically focussing on the nearly commensurate (NC) and commensurate (C) phases. Starting
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with a description of the different phases in the context of Ginzburg-Landau theory, we
then discuss the differences between the two states, and how these differences manifest
themselves in STM images. Through analyzing the STM images of the bulk phases, we
introduce the reader to the techniques utilized throughout this thesis for interpreting STM
data. After describing how the bulk equilibrium phases appear in STM, we shift our focus
to experiments on ultrathin flakes of 1T-TaS2. We introduce the challenges associated
with imaging exfoliated ultrathin flakes of 1T-TaS2 and then conclude the chapter with a
description of a device design that facilitates the measurement of both STM topography
and the electrical properties of a sample in situ.

2.2 Charge ordering in 1T−TaS2
The phase diagram of 1T−TaS2 comprises multiple CDW phases, each possessing charac-
teristic charge ordering in real-space. In the previous chapter of this thesis, we introduced
the different CDW phases of 1T-TaS2, describing the nature and origin of both the lat-
tice distortion and the charge modulation. In this section, we describe the features of the
equilibrium CDW phases in more detail, focusing on how these features are observed using
STM. In particular, we provide a more complete description of the commensurate (C) and
nearly commensurate (NC) phases using the notation and framework established by the
Ginzburg-Landau theory of CDWs.

2.2.1 Ginzburg-Landau theory and charge density wave phase
transitions

In 1975, McMillan applied the phenomenological Ginzburg-Landau (GL) theory to the
study of phase transitions in CDW materials [52]. After writing a Landau free energy
describing the system, this seminal work explored the incommensurate (IC)-commensurate
(C) phase transitions observed in both the 1T and 2H polytypes of the Ta dichalcogenides.
The theory was applied for different potential CDW configurations, including a single
incommensurate CDW, a single commensurate CDW, and triple CDWs of both types.
This description of the different CDW phases did not include the effect of higher order
harmonic modes in the charge density, which were subsequently taken into account for
triple CDWs by Nakanishi and Shiba [53, 54]. Only after including higher order harmonics
was the free energy minimum corresponding to the NC phase recovered, and the IC-C
phase transition in the Ta dichalcogenides correctly predicted to be first-order as opposed
to second-order.
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To describe the CDW phase transitions in 1T-TaS2 an appropriate order parameter
is the charge density of the conduction electrons. The GL free energy is written as an
expansion of powers of this order parameter,1

F =
∫
d2r

[
a (r)α2 (r)− b (r)α3 (r) + c (r)α4 (r)

+ d (r)
(
|ψ1 (r)ψ2 (r) |2 + |ψ2 (r)ψ3 (r) |2 + |ψ3 (r)ψ1 (r) |2

)
+

∑
i=1,2,3

ψ∗i (r) ei (−i∇)ψi (r)
 , (2.1)

where the coefficients a (r), b (r), c (r), and d (r) have the same periodicity of the lattice
and thus can be written as

c (r) = c0 + c1
∑
i

eiGi·r. (2.2)

It is assumed that only a (r) has a temperature dependence. The order parameter used
in the above expression, α (r), consists of a sum of three complex order parameters, ψ1,2,3,
the three components of the triple CDW,

α (r) = Re [ψ1 (r) + ψ2 (r) + ψ3 (r)] . (2.3)

This composite order parameter is related to the charge density of the system by:

ρ (r) = ρ0 (r) [1 + α (r)] , 2 (2.4)

where ρ0 (r) represents the unmodulated density. In solving the integral in Equation 2.1,
it is convenient to express the order parameters, ψi (r), as:

ψi (r) = φi (r) eQ(i)·r. (2.5)

In this expression, any superstructure present in the CDW is captured by the modulation
envelope φi (r), while the phase and orientation of the CDW is given by the exponential
term. For the case where a CDW phase has a constant amplitude, φi (r) does not vary
spatially, giving

ψi (r) = φ0eQ
(i)·r. (2.6)

1In this chapter we will only consider the free energy within a single layer of the material. For a
treatment of interlayer coupling see, for example, [55].

2Note the similarity between Equation 2.4 and Equation 1.1 in Chapter 1 of this thesis.
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In Landau theory, the free energy is minimized for the order parameters ψi (r) to
determine the equilibrium phases. A simple illustrative example from McMillan is given in
the footnote below to demonstrate the mechanics of the theory.3 We refer the reader to the
original works by McMillan and Nakanishi and Shiba for more detailed derivations of the
application of GL theory to the determination of equilibrium CDW phases in the layered
Ta dichalcogenides. However, in subsequent sections we discuss some of the consequences
of these works, with an emphasis on the information that can be gleaned by drawing the
connection between some of the details of the theory and what is observed in the STM of
CDW materials.

2.2.2 The commensurate phase

In a commensurate CDW, the wave vectors of the charge modulation can be expressed as
integer multiples of the underlying atomic lattice vectors:

µQ
(i)
C − νQ

(i+1)
C = Gi (i = 1, 2, 3) , (2.11)

for a triple CDW. The above equation is written in reciprocal space: Q
(i)
C (i = 1, 2, 3) is

the ith component of the reciprocal CDW wave vector, Gi are the reciprocal atomic lattice
3We present the minimization for the transition from a normal state to a single incommensurate CDW.

For an incommensurate CDW the order parameters defined in Equation 2.5 become,

ψ1 (r) = φ0eQ
(1)
I
·r, ψ2 = ψ3 = 0. (2.7)

The free energy defined in Equation 2.1 is integrated over a plane of unit area giving,

F = 1
2a0φ

2
0 + 3

8c0φ
4
0. (2.8)

The minima of this equation correspond to,

φ0 =
{

0 T > T ?, the normal state
(−2a0/3c0)1/2

T < T ?, the incommensurate state.
(2.9)

where the transition temperature is defined to be T ?. With the above dependency of the order parameter
on temperature, the transition from a normal state to a single incommensurate CDW is found to be second
order, and the free energy in the incommensurate phase is calculated as,

F = 1
2a0φ

2
0,I + 3

8c0φ
4
0,I = −a

2
0

6c0
. (2.10)

This simple example demonstrates the utility of Ginzburg-Landau theory in predicting the temperatures,
free energies, and orders of different CDW phase transitions.
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Figure 2.1: Characteristic features of the CDW in 1T-TaS2. The periodic lattice distor-
tion accompanying the charge modulation forms a star-shaped cluster, as indicated by
the grey vectors in the rightmost pattern. The dotted and dashed vectors illustrate the
commensurability condition for 1T-TaS2 and the resulting CDW wave vectors, respectively.

vectors, and µ and ν are integers. In 1T-TaS2, a commensurate CDW phase is observed
satisfying the commensurability condition in Equation 2.11 with µ = 3 and ν = 1. In
this phase, the CDW wave vector is not aligned with the atomic lattice wave vector but
is rotated at an angle of 13.9◦ relative to the underlying lattice, and the magnitude of the
CDW wavelength is equal to

√
13a, where a is the magnitude of the atomic lattice vector:

|Q(i)
C | = Gi/

√
µ2 + µν + ν2. (2.12)

Figure 2.1 illustrates many of the observed features in real-space of the commensurate
CDW in 1T−TaS2. The underlying, hexagonal lattice corresponds to the network of Ta
atoms in a single layer of the material. The star pattern overlaid on the lattice illustrates
the lattice distortion that accompanies the commensurate CDW formation. This distortion
was previously discussed in Section 1.2.2 of this thesis. The orientation of the specific
distortion vectors for each atom are given in grey in the rightmost pattern. The maximum
of the CDW is indicated by the blue circles at the centre of each star. In STM images of
all of the equilibrium phases of 1T−TaS2, it is the symmetry associated with these star-
shaped clusters that is reflected in the features with the largest amplitude (Figure 2.2).
The commensurability condition satisfied in 1T-TaS2 and the resulting CDW wave vectors
are represented in Figure 2.1 by the dotted and dashed vectors respectively.
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Figure 2.2: The C CDW phase in bulk 1T−TaS2 taken at 77 K. The FFT of the scan is
also given. The peaks circled in grey correspond to the fundamental CDW modes, while
those circled in orange correspond to the negative Fourier components of the fundamental
modes. Scale bar = 7 nm, Vt = 0.57 V, Iset = 0.19 nA.
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The relation between the wave vectors of the commensurate CDW and the reciprocal
lattice wave vectors is clearly evident in a fast Fourier Transform (FFT) of an STM im-
age of the commensurate phase that resolves the atomic lattice in addition to the charge
modulation.4 Figure 2.3 presents an STM scan of the C phase in 1T-TaS2 with atomic
resolution. In this particular scan, the tip is irregular, distorting the appearance of the
CDW maximum (Section 2.3.1). The reciprocal CDW wave vectors and the reciprocal
lattice vectors are labelled in blue and red respectively in the FFT given in Figure 2.3b.
The commensurability condition is directly represented in the FFT: for example, one can
see that G2 = 3Q(2)

C −Q
(3)
C .

Discommensurations are observed in both the C and NC phases of 1T-TaS2 and play an
4The Fourier transform (FT) is an effective technique for analyzing periodic information that converts

temporal or spatial data into an equivalent representation in the frequency domain. While a detailed
treatment of the FT is not required given the scope of this thesis, we introduce some of the basic concepts
to facilitate an understanding of the FTs presented in this work. Throughout this thesis, fast Fourier
transforms (FFTs) will be used to analyze and discuss a variety of STM images.
The FFT is an algorithm that implements the discrete Fourier transform (DFT) efficiently. A DFT will

produce of series of N complex numbers, Xk, from a series of N equally spaced samples of a function,
{x0, x1, · · · , xN−1},

Xk =
N−1∑
n=0

xne−i2πkn/N , k = 0, 1, · · · , N − 1. (2.13)

The inverse transformation is given by,

xn = 1
N

N−1∑
k=0

Xkei2πkn/N . (2.14)

Comparing this transformation with that corresponding to the continuous complex Fourier series,

x (t) =
∫ ∞
−∞

cneinω0t, (2.15)

one can see that the DFT represents a discretization of the continuous transform into N equally spaced
bins in the interval [0, 2π), each bin separated by the angle (ω0t) = 2π k

N .
The STM measures variations in the electronic structure of a material in real-space. A FT of a function

in space transforms the data into reciprocal space. Most of the samples measured in this thesis possess
a hexagonal lattice. The reciprocal lattice of a hexagonal lattice is also hexagonal, rotated by 60◦ from
the original lattice basis vectors. Consequently, the FFT of a hexagonal lattice will produce a hexagonal
pattern (see, for example, Figure 2.2). By interconverting between the amplitudes in the FFT and the
real-space domain one can calculate the wave vectors of the lattice represented by the FFT. Interconversion
between the FFT domain and real-space requires knowledge of parameters related to the image resolution
(i.e. the number of data points taken for each row and each column).
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Figure 2.3: The C CDW phase in bulk 1T−TaS2 with atomic resolution, taken at 77 K
with a PtIr tip. In this particular scan the tip is asymmetric, giving a distorted appearance
to the CDW maxima (see Section 2.3.1). The FFT of the STM scan is also given. Scale
bar = 3.3 nm, Vt = −1.00 V, Iset = 0.60 nA.
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important role in determining the bulk electrical properties of each state [56–58].5 In both
phases, the discommensurations consist of a phase slip along at least one of the components
of the CDW; at the discommensuration the CDW is offset by an atomic lattice vector. Such
a topological defect is observed in Figure 2.3 and is highlighted in yellow. The phase slip is
most easily seen by looking along a line of CDW maxima, as highlighted in red. When the
line hits the discommensuration, the maxima of the CDW shift. Furthermore, within the
discommensurations the amplitude of the CDW is less than what is seen throughout the
rest of the phase. While the discommensurations in both phases are superficially similar,
electronically the local density of states (LDOS) within these features differ substantially,
as revealed by STS experiments [56, 57]. In the C phase, electron correlations result in a
gap in the LDOS localized at the center of the discommensurations. On the other hand,
in the more conductive NC phase, it is believed that the discommensurations themselves
contain the charge carrying states.

2.2.3 The nearly commensurate phase

McMillan’s seminal work describing the triple CDW found in 1T-TaS2 correctly predicted
the ground state commensurate CDW phase, but found the IC-C phase transition to be
second-order. This result contradicted the existing experimental evidence that indicated
the transition was in first-order in nature. Nakanishi and Shiba, starting from the descrip-
tion of the CDW given by McMillan, incorporated harmonics that arise when the CDW
wave vectors are nearly commensurate but do not perfectly satisfy the commensurability
condition. With the inclusion of these harmonics, the theory correctly predicts both the
equilibrium NC CDW phase and the correct order for the IC-C phase transition.

When the wave vector of the CDW phase is incommensurate with the underlying lattice
but still close to the commensurate wave vector, then higher order harmonics are induced by
the fundamental mode. Rewriting Equation 2.5, one can expand the modulation function
φ (r) in terms of the difference vectors q(i) = Q(i) −Q

(i)
C (Figure 2.4a),

φ (r) ∝ eq(i)·r. (2.16)

These harmonics form a hexagonal lattice themselves, with the lattice points written as

q
(i)
lmn = lk(i) +mk(i+1) + nk(i+2) + q(i), (2.17)

5Regarding terminology, throughout this thesis "discommensurations" and "domain walls" will generally
be used interchangeably, though when describing the C phase we will exclusively refer to these features as
discommensurations.
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Figure 2.4: Relations between the wave vectors of an arbitrary CDW phase. (a) The
displacement vectors are defined as the difference between the measured fundamental CDW
wave vector and the expected fundamental wave vector of the commensurate state. (b)
Harmonics arise when the CDW wave vector is nearly commensurate that result in the
appearance of domains. These modes can be defined using q(i) and form a regular lattice.

where k(i) = 3q(i) − q(i+1), and q(i) is defined as above (Figure 2.4c). Note that in the
definition of k(i), the linear coefficients for the difference vectors are equivalent to the
factors in the commensurability condition for 1T-TaS2 (µ = 3, ν = 1). The complete
sequence of k(i) and q

(i)
lmn (i = 1, 2, 3) are generated with the cyclic replacement of the

indices. Using this notation, a general CDW phase, as defined by the modulation function
φi (r), is given by

φi (r) =
∑

l,m,n≥0
l·m·n=0

∆(i)
lmneiq

(i)
lmn
·r. (2.18)

The harmonics are indexed by the integers l, m, and n, and the point ∆(i)
000 corresponds

to the fundamental wave vector of the ith component of the triple CDW. To determine
the equilibrium phase of the system, i.e. the absolute minimum of the free energy, the
non-linear coupled equations,

∂F

∂∆(i)
lmn

= 0, (2.19)
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are solved for different values of q(i). By taking into account a suitably large number
of harmonics, Nakanishi and Shiba corrected recovered the successive first-order phase
transitions in 1T-TaS2 and predicted the wave vector of the NC state as Q(i)

NC ' 0.248Gi−
0.060Gi+2.

From the calculated modulation envelope, the NC phase is predicted to have a domain-
like structure. Figure 2.5 presents an STM image of the NC CDW phase of 1T-TaS2
measured on a bulk sample. The characteristic feature of the NC phase is the appearance
of domains, arranged in an approximately hexagonal lattice. These domains result in a
"textured" superstructure, as evident in the STM image given in Figure 2.5. The FFT of
the STM image contains satellite peaks surrounding the fundamental modes of the CDW.
These satellite peaks have a correspondence with the harmonics discussed above. The
orientation of the satellite peaks relative to the fundamental wave vectors determines the
size and symmetry of the domains.

Figure 2.6 presents an STM of the NC phase with atomic resolution. As discussed,
in the NC phase, the CDW wave vectors do not satisfy commensurability; the magnitude
and angle of the wave vectors are such that there does not exist a pair (µ, ν) such that
µQ

(i)
C − νQ

(i+1)
C = Gi (i = 1, 2, 3). The FFT of the STM image corroborates this result.

Using the analysis pipeline described later in this thesis (Section 2.3), the magnitude of the
CDW wave vector was measured to be 1.179 nm, in agreement with the value reported in
the literature (1.173 ± 0.11 nm [59]). Furthermore, the angle of the CDW wave vector to
the lattice wave vector was measured to be 12.3◦, also in agreement with what is expected
for the NC phase.

Chiral orientations of the commensurate phase

When 1T-TaS2 undergoes a phase transition from the IC phase to the NC phase, two chiral
orientations are possible. As discussed in Section 1.2.2, in the IC phase the CDW wave
vector is oriented along the same direction as the atomic lattice wave vector, while in the
NC phase, the CDW is rotated away from the atomic lattice at an angle that is dependent
on the temperature of the system (∼ 11◦−13◦). There are two possible chiral orientations,
designated as α and β in the literature, corresponding to whether the CDW is rotated either
clockwise or counterclockwise. Figure 2.7 schematically illustrates the two different chiral
phases. In Figure 2.7a, the atomic and CDW lattice are pictured in reciprocal space, with
the CDW lattice corresponding to the inner hexagon, and the atomic lattice represented
by the outer hexagon. In the IC phase, the two lattices are aligned. When the CDW is
oriented at an angle to the atomic lattice, two different chiral representations are possible,
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Figure 2.5: The NC CDW phase in bulk 1T−TaS2, taken at 240 K with a PtIr tip. The
FFT of the scan is also given. Scale bar = 11 nm, Vt = 5 mV, Iset = 1.50 nA.

34



Figure 2.6: The NC CDW phase in bulk 1T−TaS2 with atomic resolution, taken at 240 K
with a PtIr tip. The FFT of the scan is also given. Scale bar = 3.8 nm, Vt = 10 mV,
Iset = 1.95 nA.
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Figure 2.7: Chiral orientations in 1T-TaS2. Starting from the IC phase, where the CDW
components are aligned with the lattice vectors, there are two possible orientations of the
NC and C phase depending on whether the CDW wave vector is rotated clockwise (β) or
counterclockwise (α). In the top portion of the figure, the relation between the CDW and
the atomic lattices are given in reciprocal space, while in the bottom, the two resulting
CDW states are pictured.
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as illustrated by the two distinct star cluster tiling (Figure 2.7b). Both chiral orientations
are energetically equivalent, and have been previously observed to exist within the same
sample [60, 61]. Furthermore, interconversion between the two different orientations has
been shown via femtosecond laser pulses [60].

2.3 Analyzing STM images of a layered material

Qualitative analysis of STM images and their corresponding FFTs yield specific infor-
mation related to the system. Symmetries present within the lattice, as well as certain
characteristics of the phase being studied, such as the presence or absence of a domain
superstructure, are readily determined from a qualitative analysis. For most of the discus-
sion in this thesis, this level of analysis is sufficient, but occasionally quantitative details
are required. In this section we discuss some additional techniques used to analyze STM
images of layered materials.

Figure 2.8 presents a common analysis pipeline utilized throughout this thesis. In
this pipeline, the following operations are performed: filtering, windowing, calibration and
padding.

Filtering

Filtering is a helpful tool for removing certain artifacts from the image or for isolating
certain components in the Fourier analysis. In the pipeline depicted, a low pass Butterworth
filter is used to remove high frequency noise from the image. Given the diameter of the
filter d, the value of the filter at the pixel (x, y) is defined as:

f ((x, y)) = 1
1 +

(
r
d

)2n , (2.20)

for some value of n, where r is the distance from the pixel (x, y) to the centre of the filter.
This form of filter produces the mask depicted in Figure 2.9a.

Windowing

The discrete Fourier transfrom (DFT) assumes the input function is periodic. In the event
the input is aperiodic, the DFT algorithm imposes periodic boundary conditions which
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Figure 2.9: Tools for analysing the Fourier transform. (a) The Butterworth filter given by
Equation 2.20. (b) The Kaiser windowing function defined for different values of β.

can result in discrete jumps in the input signal at the edges. These discontinuities give
rise to artifacts that can obscure the desired information in the measured FFT. In order to
remove these artifacts, a windowing function is used. The goal of the windowing function
is to smoothly bring the value of the input signal to 0 at the edges, thus removing any
discontinuities when the DFT is applied. A common windowing function is the Kaiser
window, given by

w(n) = I0

β
√√√√1− 4n2

(M − 1)2

 /I0(β), (2.21)

where I0 is the modified zeroth-order Bessel function and −M−1
2 ≤ n ≤ M−1

2 . A plot of
the one-dimensional Kaiser window for different values of β is given in Figure 2.9a. As the
value of β is increased the amplitude of the window goes to 0 at the edges. An example of
the effect of applying the Kaiser window to an STM scan and the resulting improvements
in the FFT is given in Figure 2.8 panel (i).

Calibration

There are numerous external parameters in STM experiments that can lead to a distortion
in the measured image. Numerous techniques exist for both correcting for distortion in real-
time as the data is being collected, and for removing the distortion during post-processing
[62–65]. One of the simplest forms of calibration involves modifying an image by applying
a transformation determined from scanning the lattice of a reference sample. Based upon
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the deviation of the measured reference lattice constants from the known values in the
literature, the required Affine transformation for correcting the scan is calculated.

In STM scans in this work where both the CDW superlattice and the underlying atomic
lattice are resolved, the atomic lattice itself can be used as the reference standard. The
distortions associated with CDW formation are sufficiently small compared to the atomic
lattice parameters, that in images where the atomic lattice is resolved, one can use the
lattice to find the transformation required to reproduce the expected wave vectors. After
applying this transformation to the entire image, the CDW wave vectors can be accurately
measured. In the event that the atomic lattice is not resolved, a transformation can be
determined through a separate measurement of a reference sample such as highly oriented
pyrolytic graphite (HOPG) or gold. This calibration amounts to correcting for linear
asymmetries present in the experimental set up (for example, asymmetries in the STM
scanner) when the measurements were conducted.

Padding

Ultimately, the resolution of the Fourier transform is given by the width of each bin in
the DFT. In order to distinguish one peak from a second they need to be one bin apart.
However, when determining the location of a single peak in the FFT, interpolation can be
used to provide a more exact location of the maximum. This is accomplished during the
transform itself by padding the signal with zeroes (see Figure 2.8 panel (ii)).

2.3.1 Image distortions

Amplitude and phase variations

When measuring layered materials with a lattice structure dominated by three Fourier
components, an irregular tip can dramatically affect the appearance of the surface elec-
tronic state [65, 66]. A layered material with a hexagonal lattice can be viewed as the
superposition of three sinusoidal waves oriented 120◦ apart, with the maxima in the lattice
occurring at the intersections of the waves. When the tip is irregular, the convolution of
the tip and the sample deviates from the simple three-fold structure observed in the ideal
case. In the event the tip is doubled, the resulting STM image consists of the superposi-
tion of two scans of the surface with different phases and amplitudes. The image will still
be dominated by three Fourier components, but unlike in the ideal case, the phases and
amplitudes of the different Fourier modes can vary.
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Figure 2.10: Phasing effects in systems with threefold symmetry.
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Figure 2.11: Amplitude variation that arises from an irregular tip. If one Fourier compo-
nent has a larger amplitude compared to the other, the CDW lattice will be superimposed
on lines oriented perpendicular to the norm of the wave front of the amplified Fourier
mode. Scale bar = 4 nm, Vt = −0.55 V, Iset = 0.27 nA.

The effect described above is demonstrated in Figure 2.10. The lattice depicted consists
of three sin waves oriented 120◦ apart. When all of the phases are equal, the resulting STM
image consist of spherically symmetric maxima at the intersections of the waves. If we allow
the phase of one of the waves to vary (in Figure 2.10 the phase of the wave with a horizontal
wave front), the appearance of the lattice changes. Similarly, if the amplitude of one of the
Fourier components is adjusted, the character of the resulting STM scan becomes more
linear, oriented perpendicular to the wave vector of the dominant mode (Figure 2.11).

Thermal drift

In the Omicron LT-STM used throughout this thesis, there is a heater attached to the
sample stage allowing for experiments to be conducted in a wide range of temperatures.
When in measurement mode, the sample stage is not in strong thermal contact with the
cryostat, and with the heating element turned on, there is a potential for the existence of
thermal gradients. These gradients can cause a slight motion of the system components,
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Figure 2.12: The effects of thermal drift. Scans will appear either compressed or elongated
depending on the alignment of the scan direction relative to the thermal drift vector. The
arrows overlaid on the images correspond to the scan directions. Scale bar = 1.25 nm,
Vt = −0.50 V, Iset = 0.05 nA. These scans were taken with a PtIr tip at 190 K.

called thermal drift. Given that STM scans are being conducted at the nanoscale, this
thermal drift will manifest itself as a distortion in the captured image. Scans are performed
in both the up and down directions, and by comparing the two images one can approximate
the direction of the thermal drift vector. When the scan direction is oriented along the
same axis as the drift vector the lattice will appear elongated, while when the scan direction
is opposite that of the vector, the lattice will be compressed. Figure 2.12 demonstrates this
effect. Thermal drift can be corrected both in real-time and also through post-processing
[62–64], but in most cases it is best to simply wait for the system to fully thermalize prior
to conducting any experiments.

2.4 Scanning tunneling microscopy of 1T−TaS2 in the
ultrathin limit

With an understanding of the features associated with the different bulk equilibrium phases
of 1T-TaS2, and how these features appear when imaged using STM, we now turn our
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attention to examining flakes of this particular Ta dichalcogenide in the ultrathin limit.
We define the ultrathin limit as flakes that are less than 10 nm thick (∼ 20 TaS2 layers).
Imaging exfoliated flakes presents its own challenges that have been tackled in the literature
in various ways. In this section we start by briefly commenting on the motivation for
probing the properties of ultrathin 1T-TaS2 and then survey some of the challenges observed
in the literature for performing STM on exfoliated, ultrathin flakes. Lastly, we present a
device design that facilitates both the imaging of an exfoliated flake and the measurement
of the flake’s bulk electrical properties in situ.

The characteristics of the charge ordering along the c-axis in 1T-TaS2 (the axis perpen-
dicular to the plane of the 2D sheets), have been studied both experimentally and using a
modification of the GL theory introduced in Section 2.2.1 [23, 55, 67, 68]. It is found that
in the low temperature phase, dimerization occurs, where within a given bilayer the CDW
are stacked such that the maxima in each star cluster are aligned along the c-axis. The
bilayers themselves stack in one of three possible orientations, randomly selected. In the
NC phase, where the discommensurations form a hexagonal lattice, the three-dimensional
unit cell is found to encompass thirteen layers of the material [55]. It is important to
note that even in its most basic form, without including any interlayer interactions, GL
theory predicts each of the different superstructures that define the bulk phases in 1T-
TaS2. While the theory fails to find distinctions between bulk phases and phases found
in a monolayer of 1T-TaS2, results exist that demonstrate the importance of considering
the three-dimensional charge ordering [21, 22, 33, 69, 70]. Consequently, thinning 1T-TaS2
towards the 2D limit is expected to modify the behaviours of the system and potentially
alter its phase diagram.

2.4.1 Isolating and imaging van der Waals materials

Imaging exfoliated van der Waals materials using STM presents several challenges. The
cleanliness of the sample is paramount to successful imaging, and the exfoliation procedure
has the tendency to introduce contaminants to the surface of the material. Consequently,
throughout the literature, the majority of the STM experiments on van der Waals materials
have been conducted on samples that are capable of being cleaned. For example, graphene
flakes can be successfully imaged following heating at 623 K for three hours under an
argon and hydrogen atmosphere [71], a process that can be accomplished in a standard
preparation chamber connected to an STM in ultrahigh vacuum.

The condition of the surface also deteriorates if the sample is air sensitive. 1T-TaS2
is known to oxidize when exposed to atmosphere. Consequently, a sample that has been
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fabricated in ambient conditions is impossible to STM successfully [72]. Therefore, to im-
age ultrathin flakes of 1T-TaS2, the samples must be fabricated under an inert and dry
atmosphere and must be measured under ultrahigh vacuum. For van der Waals materi-
als that are air sensitive, another technique for preserving the integrity of the sample is
to cap the exfoliated flake with another material, often a second van der Waals system.
This method has been used successfully to fabricate samples for transport experiments.
Furthermore, assembling complex heterostructures out of multiple van der Waals systems
has been shown to produce devices that can exhibit exotic physics [6, 7]. While capping
the material of interest would seem to preclude the possibility of imaging the sample us-
ing STM, if the capping flake is a monolayer, tunneling electrons can probe the structure
beneath the topmost layer [73, 74].

In order to integrate an exfoliated flake into a device geometry that allows for transport
measurements to be performed, additional considerations need to be taken into account.
As mentioned above, the assembly of van der Waals systems into heterostructures is a
promising field in its own right, and the methodologies applied to create these samples
can be used to transfer an exfoliated flake into a previously fabricated electrode configura-
tion. It is difficult to exfoliate ultrathin flakes that are of lateral dimensions larger than a
few microns in area, limiting the possibilities for electrode design and creating the added
challenge of locating the flake once it transferred. Furthermore, in order to be able to
perform transport experiments in situ, a conduction channel through the flake needs to
be clearly defined. This requirement entails incorporating an insulating substrate in the
device geometry. The presence of an insulating surface creates a hazard for the STM tip
as the sample is scanned and necessitates a device geometry that allows for fine control
over navigation of the tip to regions of interest.

Lastly, it is important to note again that STM is a surface probe. Therefore, in order
to correlate bulk properties with data collected using STM, the surface topography needs
to reflect the bulk composition of the material. Of particular importance regarding STM
experiments of 1T-TaS2 are the effects of surface pinning on the equilibrium CDW phases
and whether distinct surface and bulk CDW phases can coexist. While some experiments
addressing this question have been performed on bulk samples of 1T-TaS2 ([21, 75]), no
studies have been conducted on ultrathin flakes.

2.4.2 Device design

In this section we present a device design that addresses the difficulties discussed in the
preceding section and thus facilitates the imaging of exfoliated ultrathin flakes of 1T-TaS2.
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As previously mentioned, ultrathin flakes of 1T-TaS2 are difficult to image with STM due
to the instability of the material in air. Furthermore, 1T-TaS2 samples cannot be cleaned
in situ. It was observed that the material will undergo a structural phase transition to
the 2H polytype when heated above 500 K. Consequently, previous STM experiments
on bulk 1T-TaS2 have typically relied upon either in situ cleaving of crystals to expose
a clean surface [59, 76–78] or capping the material with graphene [73]. In this work, in
order to maintain the integrity of the surface of the flake, the 1T-TaS2 samples studied are
fabricated using a polymer transfer technique under an inert atmosphere. Furthermore,
all STM experiments are performed with a commercial Omicron low-temperature-STM in
ultrahigh vacuum. Consequently, the samples are only exposed to air during wire bonding,
prior to being loaded into the STM (∼ 5 min).6

To facilitate coarse navigation to the flake, we utilize a telescope attached to an optical
port of the STM. In the initial device design for measuring the CDW phases of exfoliated
flakes, a gold pad was lithographically written with a hole in its centre. While thin micron
sized flakes are not visible using any optical tools situated outside the STM, the contrast
between the hole and the gold can be discerned with the attached telescope. An exfoliated
flake was then transferred such that it spanned the hole in the contact pad. Consequently,
when the tip was aligned with the hole, the flake could be approached with no chance of
crashing into the insulating substrate (Figure 2.13). Future iterations of devices maintained
this general concept of using optical contrast in order to approach with the STM tip within
a few microns of a region of interest.

In the initial device design described above there did not exist a conduction channel
that would allow for transport measurements to be performed on the transferred flake. A
modified electrode design that facilitates measuring the electrical properties of the flake
is given in Figure 2.14b. Gold contacts that are separated by a 2 µm wide gap are litho-
graphically defined on a SiO2/Si substrate. Hexagonal boron nitride (hBN) is transferred
first, spanning the gap, followed by an ultrathin flake of 1T-TaS2 that makes contact with
the gold pads on either side of the gap. The hBN provides a more electronically clean and
atomically flat substrate compared to the SiO2 surface. Markers written on the gold con-
tact pads using electron beam lithography are visible underneath the transferred flake and
allow for fine navigation to regions of interest. With this electrode design, initial contact in
the vicinity of the flake is facilitated by patterning gold regions with different thicknesses
such that the contrast between the two gold layers can be used for coarse navigation. Fig-
ure 2.14a presents an atomic force microscopy scan depicting the basic electrode design.
The array of navigation markers, comprised of single and double headed arrows as well

6A recent result in the literature, [73], found that the oxidation of the 1T-TaS2 surface occurs on a
timescale of around 47 minutes.
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Figure 2.13: Coarse navigation in the STM. The tip is aligned with a hole in the gold pad.
Once a flake is transferred such that it spans the hole, the device can be approached safely.

as plus symbols and squares, is visible on the thin portion of the gold contact pads. The
contrast between the thick and thin gold regions is clearly visible in the optical images
provided in Figure 2.14b panels (II) and (III).

The general procedure for the exfoliation and transfer of van der Waals materials is given
below. Single crystals of 1T-TaS2 are grown by chemical vapor transport with iodine as
the transport agent . The exfoliation and transfer of all 2D materials is performed inside
a N2 filled glovebox with O2 and H2O partial pressures below 0.1 ppm. The materials
are exfoliated using Scotch tape and transferred on top of each other. In the transfer
procedure, the piece of tape with the exfoliated flakes is first pressed onto a thin film of
polypropylene carbonate (PPC). The PPC film with the exfoliated flakes is then transferred
onto a polydimethylsiloxane (PDMS) stamp on a glass slide. After locating a suitable flake
on the film, the selected flake is aligned with its desired location on the device electrodes
using a home-built microscope set-up, and then brought into contact with the substrate.
The substrate is then heated, causing the PPC to peal off the glass slide, transferring
the flake and the polymer to the device. The PPC is then removed using chloroform.
A schematic depicting this procedure is given in Figure 2.14b. With this procedure any
combination of van der Waals materials can be sequentially transferred. For example, as
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Figure 2.14: Basic device design and fabrication procedure. (a) An atomic force microscopy
image illustrating the navigation markers written with electron beam lithography and the
gold pads of different thicknesses. (b) A schematic of the polymer transfer procedure
described in the main text. Hexagonal boron nitride was not used as the substrate in the
sample pictured in the optical images in panels (I)-(III).
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previously mentioned, hBN can be used to provide for a more ideal substrate. Additionally,
few-layer graphite flakes can be transferred on either side of the conduction channel to serve
as contacts for the 1T-TaS2 flakes. For a more detailed step-by-step procedure of all of the
steps in the fabrication process see Appendix A.

Figure 2.15 illustrates the basic navigation methodology used for imaging regions of
interest on the transferred flake. After the initial approach with the tip, wide STM scans
are taken until a marker is identified. Subsequent scans serve to chart out a route to
the conduction channel. Once the channel has been located, imaging of the CDW phase
commences. Despite the processing difficulties described throughout this section, and the
exposure of the samples to various chemicals during fabrication, the exfoliated flakes are
sufficiently free of contaminants to resolve the CDW superstructures characteristic of the
bulk phases of 1T-TaS2. While every attempt is made to avoid surface contamination, the
non-ideal conditions make it challenging to maintain a stable tunneling junction with the
tip. Applying a voltage pulse to the STM tip is a standard procedure for ridding the tip
of contaminants and for achieving a stable imaging condition. Unfortunately, pulsing the
tip over 1T-TaS2 results in the violent creation of non-uniform pits in the topmost layers
of the flake directly underneath the tip. While this technique has the potential to expose
a clean surface, it is difficult to control, and is ultimately too destructive. Consequently,
success is only achieved by preparing the tip prior to imaging the 1T-TaS2 flake (e.g. by
pulsing the tip over a region with no interest) and by then mapping out a navigational
path that avoids existing surface contamination.

2.5 Conclusion

In summary, we have described the features of the commensurate and nearly commensurate
CDW phases in 1T-TaS2 observed using STM. Starting from the GL theory of CDW
phase transitions, we have discussed how the appearance of satellite peaks surrounding the
fundamental CDW modes in the fast Fourier transform of an STM image of 1T-TaS2 can
serve as a signature of the nearly commensurate phase. Additionally, we have presented
a device design that allows for the measurement of both the topography of an exfoliated
ultrathin flake of 1T-TaS2 and the electrical properties of the flake in situ. With this
device design, we have demonstrated the ability to repeatedly navigate to specific regions
of interest on the flake, allowing for the measurement of the flake topography before and
after electrical signals are applied to the device.

Ideally one would be able to perform spectroscopy on the ultrathin samples to obtain
information regarding the local density of states of the material. However, we observed
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Figure 2.15: Fine navigation in the STM. After the initial approach with the STM tip,
a wide scan is taken to orient where on the flake the tip has made contact (I). Markers
written on the gold pads are visible in the topographic scan. Once a marker is identified, a
course is charted to the conduction channel, the edges of which are also visible through the
flake (II). A specific area within the conduction channel can be continuously imaged over
the lifetime of the sample (III), by identifying the location of the area of interest relative
to the markers nearest to the channel. (I) and (II) were taken at 260 K while scan (III)
was taken at 77 K. (I) Vt = 0.75 V, Iset = 0.20 nA. (II) Vt = 0.75 V, Iset = 0.20 nA. (III)
Vt = −2.04 V, Iset = 1.11 nA.
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that the condition of the exfoliated flakes we studied prevented us from maintaining the tip
stability required for such an experiment. Navigation would typically consist of finding a
path relatively free of contaminants and taking as few scans as possible while maneuvering
towards the conduction channel. While we were unable to conduct energy resolved exper-
iments, as demonstrated in this chapter, a large amount of information can be obtained
based solely on topography. Utilizing the language of GL theory, the symmetries of an arbi-
trary CDW phase can be enumerated and discussed. 1T−TaS2 has long been studied due
to the variety of CDW phases exhibited and identifying the characteristic superstructures
associated with each phase provides valuable insight into the state of the material.

51



Chapter 3

Observation and manipulation of an
electronically inhomogeneous state in
ultrathin 1T−TaS2

3.1 Introduction

The phase diagrams of systems exhibiting strong electron correlations are typically com-
prised of many possible equilibrium states, whose origins and properties are often surpris-
ing. One classic example is the perovskite manganites, where competition between different
magnetic states, in the presence of quenched disorder, gives rise to a phase separated state
where percolative physics is integral in explaining observed colossal magnetoresistance [11,
79–81]. In manganites there exists two competing phases separated by a first-order phase
transition: a ferromagnetic metallic phase (FM), and an antiferromagnetic insulating phase
(AFI). In the presence of quenched disorder, the hysteresis region associated with the FM-
AFI transition is modified and inhomogeneity is observed [82, 83]. While short-length
correlations still exist, the global phase is glassy in nature, exhibiting both FM and AFI
regions. As a result of this mixture of metallic and insulating domains, the electrical bulk
behaviour of the system can be described via percolation theory [84, 85]. Furthermore, it
is observed that small perturbations, such as magnetic fields, can result in large changes in
the electrical properties of the system, as only small fields are required to align the mag-
netic moments in nano-sized clusters. Consequently, as a function of these perturbations,
colossal magnetoresistance is observed.

The phase diagram of 1T-TaS2, exhibits some similarities to that of manganites. As dis-
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cussed in detail in Chapters 1 and 2 of this thesis, this Ta dichalcogenide has a particularly
rich phase diagram with multiple CDW equilibrium phases, each possessing different elec-
trical characteristics. When the material is cooled it transitions from a normal metal to an
incommensurate CDW (IC) at ∼ 545 K, a nearly commensurate CDW (NC) at ∼ 355 K,
and a commensurate CDW (C) at ∼ 185 K, becoming more insulating with each phase
transition. While much of the research in the literature concerning 1T-TaS2 has focussed
on bulk crystals of the material, the phase diagram is further expanded when the material
is thinned to the ultrathin limit (< 10 nm thick). Previous work in ultrathin flakes of
1T-TaS2 have focussed on the electrical behaviour of the material within the hysteresis
region of the NC-C transition. It was found that the resistivity of the material can be
bidirectionally switched, driven reversibly through intermediate states whose resistivities
lie between the extrema values associated with the NC and C states [30, 86–88]. The mi-
croscopic nature of these non-equilibrium intermediate phases remains an open question,
with some debate persisting whether these states are unique metastable states, possessing
electronic and structural order characteristically different than bulk 1T-TaS2 phases, or in-
stead whether they are composed of domains of bulk equilibrium states. Experiments in the
literature have attempted to elucidate the spatial characteristics of these non-equilibrium
states [86, 89, 90], but no experiment has probed the electronic structure at the nanoscale.

Sections 1.2.2 and 2.4 of this thesis briefly introduced the role stacking plays in the
formation of the equilibrium CDW phases. In this chapter, we expand on this discussion
as we aim to clarify the microscopic nature of the CDW states in the hysteresis region of
the NC-C phase transition of ultrathin 1T-TaS2. After describing the electrical behaviour
of ultrathin devices, we then attempt to correlate this behaviour with changes in electronic
structure. Exfoliated flakes are imaged with scanning tunneling microscopy (STM), uti-
lizing the device design presented in Section 2.4.2. Additionally, we image changes in the
measured electronic structure after the application of lateral electrical signals and after
repeated rastering of the STM tip.

3.2 Electrical properties of ultrathin 1T−TaS2
In bulk flakes of 1T-TaS2, measurements of the temperature dependent resistivity through
the NC-C transition are hysteretic. As the material is thinned, the hysteresis region exhibits
marked changes. In the ultrathin regime, stepwise transitions are observed (Figure 3.1),
and, as the 2D limit is approached, the region widens until at a thickness of ∼ 2 nm (∼ 4
atomic layers), the jump in the resistivity disappears altogether [31]. Within the NC-C
transition region, it has been observed that phase transitions can be induced by applying
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Figure 3.1: Temperature dependent resistance of a bulk flake of 1T-TaS2 (top) and of an
ultrathin flake of 1T-TaS2 (bottom). The inset shows a schematic of the circuit used to
measure the resistance. The material stack consists of 1T-TaS2 (green)-hBN (orange)-Au
(gold)-SiO2 (brown).
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a) b)

Figure 3.2: (a) AC driving measurement circuit. (b) Circuit for measuring the resistance
of the device.

lateral voltage signals across the sample. In the case of bulk flakes, this electrical driving is
volatile in nature and unidirectional. By applying a lateral voltage to the high-resistance
C phase, a transition can be induced into the NC phase, but in order to recover the initial
C state, the temperature of the sample needs to be adjusted. On the other hand, it
has been demonstrated that by thinning the material to the ultrathin limit, bidirectional,
non-volatile switching of 1T-TaS2 is possible. Furthermore, non-equilibrium phases, with
resistances that lie between that of the extrema associated with the NC and C phases, can
be accessed that are metastable [86].

In this section, transport measurements are presented that are representative of the
electrical behaviour of ultrathin 1T-TaS2 described above. The data was collected from
an ultrathin sample with a thickness of ∼ 8 nm. The electrode geometry utilized was the
same as that described in Section 2.4.2, with graphite flakes transferred to serve as contacts
to the 1T-TaS2 flake. After cooling the sample from above the NC-C phase transition to
170 K, non-equilibrium resistance states are driven to by applying a series of linear sweeps
of a lateral voltage signal across the sample. At 170 K the ground state of the system is
the C phase, with the NC phase being metastable.1 The maximum voltage applied during
the driving was ramped up as the resistance of the material increased. The resistance
of the device was measured using a four-terminal constant current circuit that does not
exclude the contact resistance (Figure 3.2b). Driving the sample was attempted with both
DC and AC signals. For all DC voltage sweeps, a Keithley Source Measurement Unit
(Keithley 2401 or Keithley 2450) was used to apply the bias voltage and to measure the

1See Section 4.2 for a more detailed discussion of the thermodynamics of ultrathin 1T-TaS2 in this
temperature range.
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resulting current. For the traces plotted in Figure 3.3, the DC sweep rate was 0.05 V/s. AC
measurements were performed with an SR830 lockin, with a signal frequency of 17.8 Hz.
The circuit included a current divider in order to protect the lockin from excessive current
(Figure 3.2a).

Figure 3.3 presents two different driving experiments. In Figure 3.3a the sample was
driven with multiple DC sweeps, while in Figure 3.3b, lateral AC sweeps were applied.
In general, the electrical behaviour observed reproduces that seen in the literature for
ultrathin flakes of 1T-TaS2. As the voltage is increased within a single sweep, drops in the
current (i.e. jumps in the resistance) are observed. The driving process appears stochastic,
in the sense that for some sweeps the resistance remains constant, while for others it
changes more dramatically in a manner not obviously correlated to the voltage applied.
At a certain critical value the resistance saturates. Once the resistance no longer increases
and the voltage is ramped to larger values, the resistance in the sample eventually drops,
and under the right conditions the material returns to a lower resistance state (drives 8
and 9). Between drives 7 and 8 the sample sat overnight and the bulk resistance of the
device increased, indicative of the metastability of the intermediate states.

The AC driving presented in Figure 3.3b displays many of the same features observed
with the DC driving. As the AC voltage sweeps are applied, the resistance increases until
it saturates at an intermediate resistance state. In Figure 3.3b, the solid lines represent
sequential sweeps, and the sample sat overnight between sweeps 4 and 5. The dashed pink
trace represents a single sweep, in which the maximum voltage was immediately set to
5 V. The maximum resistance reached using a single AC sweep is approximately the same
as that obtained using multiple sweeps, and is also the same resistance value driven to
using a DC signal. The same single sweep pink trace is displayed in Figure 3.3a in blue.
However, using an AC voltage, the saturated state is reached at a lower maximum voltage
value, and with less stochastic variability.

Figure 3.4 demonstrates repeated toggling between the low-resistance state and the
intermediate resistance state. When driving towards the intermediate resistance state, an
AC signal is applied, while when driving back to the low-resistance state a DC signal is
used. This data clearly demonstrates the saturation of the bulk resistivity as the flake is
driven towards the C state, at a value calculated to be 70.9 ± 3.4 kΩ. In the measure-
ments displayed in Figure 3.4a, a maximum AC voltage of 5 V was applied to the device.
However, in Figure 3.4c the voltage was ramped to 7 V. Despite the increased voltage,
the resistivity of the sample remained fixed at the saturation value. In previous results
from the literature [86], the authors were unable to drive the flake entirely back to the
low-resistance state, no matter what voltage was applied, as the sample transitioned again
to a higher resistivity as the voltage was swept back to 0 V (Figure 3.5b and c). However,
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Figure 3.3: (a) Driving by applying a lateral DC bias. The sample sat overnight between
drive 7 and drive 8. The blue trace, labelled with an asterisk, is a drive performed by ap-
plying a lateral AC bias (see Figure 3.4b panel i) and indicates the high and low-resistance
states of the sample. (b) Driving by applying a lateral AC bias (V = Vrms). The sample
sat overnight between drive 4 and drive 5. The pink trace, labelled with an asterisk, is the
same as the AC drive in (a) illustrating how the high and low-resistance states do not vary
whether a DC or AC bias is used. In all plots, the direction of the voltage sweep coincides
with a transition from a low to a high-resistance state (e.g. as illustrated in Drive 1 of
(b)), unless otherwise indicated by arrows.
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Figure 3.4: (a) Experimental data demonstrating bidirectional switching of the bulk re-
sistance. The resistance is repeatedly toggled between a low-resistance state comparable
to that obtained when cooling the sample from above the NC-C phase transition (black
dashed line), and a high-resistance intermediate state. The resistance of the state reached
by warming the sample from 77 K is given by the green dashed line. (b) The individual
traces outlined in the dashed boxes in (a). Driving to the high-resistance states (orange
curves) was performed by applying an AC bias while driving to the low-resistance state
(blue curves) was performed by applying a DC bias. The critical current at which the
transition from the high to the low-resistance state occurs is approximately equal in all
three plots, as indicated by the dashed black line. (c) Attempting to drive the device
further by going to a greater AC voltage. Using only a lateral AC bias, we were unable to
drive the sample from the high-resistance state to the low-resistance state. As the voltage
was swept back to 0 V the sample returned to the high-resistance state.
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Figure 3.4a demonstrates the ability to repeatedly drive to the saturation resistivity and
then back to the low-resistance state. Driving completely to the low-resistance state was
accomplished by sweeping the DC signal to a higher voltage and at a faster rate (0.50 V/s),
compared to the experiment presented in Figure 3.3a. A detailed study of the dynamics of
the driving process is beyond the scope of the experiments described in this section, but
these results indicate that such a study is potentially an avenue worth pursuing.

3.2.1 Non-equilibrium resistance states

Previous scanning optoelectronic measurements of both bulk and ultrathin samples of
1T-TaS2, taken within the hysteresis region of the NC-C transition, have demonstrated
spatial inhomogeneity at the micron length scale [86, 89, 90]. Upon both cooling and
warming the sample, optoelectronic maps indicate the presence of mixed states, revealing
that different regions of the sample transition at different temperatures. This result is not
uncommon for first-order phase transitions, where nucleation can depend strongly on the
local environment, and long-lasting metastable states are observed.

Patel et al. (2020) were the first to attempt to correlate electrical behaviour of ultra-
thin 1T-TaS2 within the NC-C transition region with structural information regarding the
phases of the material at the microscopic scale [86]. The device measured in those ex-
periments consisted of the stacked heterostructure (1T-TaS2)-(WSe2)-(graphene), ordered
from top to bottom. When this structure is illuminated with a laser, a vertical photocur-
rent is generated underneath the laser spot. The magnitude of the current depends on the
phase of 1T-TaS2, and thus the state of the ultrathin flake can be mapped by rastering the
laser across the heterostructure, with the resolution of the map determined by the laser
spot size. An ultrathin flake of 1T-TaS2 was mapped as the temperature of the sample
was varied and as electrical signals were applied across the device in a manner similar to
what was described above. Figure 3.5 presents data showing optoelectronic maps taken
as the flake was bidirectionally driven. The red in the maps corresponds to regions of the
flake in the low-resistance state while the blue corresponds to high-resistance areas. Fig-
ures 3.5a and b corresponds to the applied voltage sweeps, while Figure 3.5c presents how
the bulk resistivity of the sample changed after each individual voltage ramp. In general,
the authors found that the flake transitioned from the NC phase to the C phase unevenly
as a function of temperature, but relatively uniformly as the flake was driven electrically.
Ultimately, these experiments were limited by the resolution of the scanning laser set up.
In the subsequent section we present data collected using STM that aims to clarify the
nanoscopic nature of the CDW states in the hysteresis region of the NC-C phase transition
of ultrathin 1T-TaS2, and how these CDW states evolve as electrical signals are applied.

59



Figure 3.5: (a) Lateral voltage sweeps with a DC signal. As the voltage is increased, the
material transitions to states with higher resistivities, resulting in drops in the current
measured. (b) Driving in the opposite direction. At a certain critical voltage, the flake is
driven towards the low-resistance state. When the voltage is swept back towards 0 there is
a partial transition back to a higher resistance state. (c) Multiple driving runs indicating
how the material is toggled between two intermediate states. (d) Scanning photocurrent
maps demonstrating the spatial evolution of the flake during driving. This figure was taken
from personal correspondence (T. Patel). A modified version of this figure was presented
in [86].
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Figure 3.6: Measuring the topography of an ultrathin flake of 1T-TaS2. The different van
der Waals materials are overlayed on an optical image of the device. In this sample a bulk
flake of 1T-TaS2 was transferred along with the thin flake, though only the thin flake spans
the gap in the gold electrodes. (i) Top-down optical view of the device.

3.3 Electronic inhomogeneity in ultrathin 1T−TaS2
The STM data presented throughout this section was taken from an approximately 8 nm
thick flake with lateral dimensions of 5 µm by 10 µm. The sample was cooled from 260 K,
where it is in an incommensurate state, to 170 K, within the NC-C transition hysteresis
region. Figure 3.6 illustrates the geometry of the device. In this particular sample, a bulk
flake of 1T-TaS2 was transferred along with the thin flake, though the bulk flake did not
encroach upon the conductance channel.

Topography was measured both where the flake lies on the gold contact pad (Figure 3.7)
and also within the conductance channel where the flake lies on hBN (Figure 3.9).2 On both
the contact pad and the hBN, the imaged topography exhibits spatial inhomogeneity with
two distinct region types, distinguishable by the presence or absence of bright, characteristic

2The image in the centre panel of Figure 3.7 was generated by applying a Sobel filter to the raw data
(the left panel). Applying a two dimensional Sobel filter amounts to taking the gradient of the image, and
is useful for identifying edges. In figure Figure 3.7, only a vertical Sobel filter, given by the kernal1 0 −1

2 0 −2
1 0 −1

 (3.1)

was applied to produce the centre panel.
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Figure 3.7: (Left) A wide STM scan comprised of two distinct region types. In the top left
and bottom right there are NC-like regions with visible striations, while a C-like region
with no striations runs from the bottom left to the top right. The C region also contains
filaments. Scale bar = 70 nm, Vt = 0.30 V, Iset = 1.40 nA. (Middle) The image generated
by applying a horizontal Sobel filter to the flattened, raw data to extract the gradient of
the scan along the horizontal axis. (Right) A schematic delineating the different regions
visible in the STM scan.
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striations. These striations are reminiscent of the domain walls present in the bulk NC
phase of 1T-TaS2 [59, 76], and thus, throughout this work, we use the label "NC-like" to
identify the regions where striations are observed, and "C-like" to identify the other region
type. It is important to note that the observed state is not simply an NC state with
asymmetrically arranged domain walls nor is it an NC state with a domain wall period
different from the equilibrium NC value as has been previously suggested [86, 88], but
rather the state is specifically composed of defined, irregularly shaped NC-like and C-like
domains. With the STM scans indicating the presence of domains on a nanoscopic length
scale, the optoelectronic maps with micron resolution discussed in the previous section can
be interpreted as presenting an average of the NC-like and C-like volume fractions present
within the laser spot size. Within the C-like region in Figure 3.7 filament structures are
also observed that are irregularly arranged.

In the top left and bottom right of each panel of Figure 3.7, NC-like regions exist
containing striations, while running from the bottom left of the image to the top right,
a C-like region is observed. Fast Fourier transforms (FFTs) of each region (Figure 3.8)
support this identification. The FFTs of the NC-like regions contain satellite peaks in
addition to the fundamental CDW modes. The presence of satellite peaks is indicative of
domains, and is consistent with what is observed in the bulk NC phase of 1T-TaS2 [59].
In the FFT of the C-like region only the fundamental, 3-fold symmetric CDW modes are
observed.

To properly reset 1T-TaS2 such that it is definitively in the NC state, the sample
needs to be heated above the NC-IC transition temperature. However, we only heated the
material to 260 K due to limitations in our experimental set-up. Therefore, for the data
collected when the system was cooled to 170 K from 260 K, it is reasonable to expect some
residues of the T phase to be present. The domain walls in the NC-like region in Figure 3.8
lack three-fold symmetry and are instead similar to the discommensurations observed in
the bulk T phase [68, 91]. Ginzburg-Landau theory is often used for describing a triple
CDW material, like 1T-TaS2, with wave vectors Q(i), i = (1, 2, 3) [54, 92]. All of the bulk
phases of 1T-TaS2 are known to satisfy the triple-Q condition, Q(1) + Q(2) + Q(3) = 0.
While the wave vectors of the C, NC and IC phases are oriented 120◦ degrees apart, in the
T phase this constraint is relaxed [23]. The fundamental CDW wave vectors in the NC-like
region found in Figure 3.8 have the same characterization as the T phase, in that they
satisfy the triple-Q condition and the angles between the wave vectors are not equal to
120◦. The width of each domain is approximately 4.4 nm as determined from the location
of the most prominent satellite peak in the FFT. Given the thermal history of the sample
it is not surprising that features characteristic of the T phase were observed.

The existence of electronic inhomogeneity provides evidence that CDW formation in
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Figure 3.8: (Top) A detail of the C-like region outlined in yellow in Figure 3.7, and its
corresponding FFT. Only the fundamental CDW modes are visible in the FFT. A line cut
through the circled peak indicates the absence of a satellite peak. Scale bar = 9 nm, Vt =
−0.30 V, Iset = 1.40 nA. (Bottom) A detail of an NC-like region similar to that outlined in
blue in Figure 3.7„ and its corresponding FFT. The FFT contains the fundamental CDW
modes as well as satellite peaks, as evident in a line cut through the circled peak. The
presence of a satellite peak is indicative of the NC phase. Scale bar = 11 nm, Vt = 0.40 V,
Iset = 0.60 nA.
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ultrathin 1T-TaS2 stems from local interactions. The presence of a CDW phase at all
implies that even at elevated temperatures, a Peierls instability along the c axis is not
likely the dominant interaction driving CDW formation. This observation is in agreement
with theory that demonstrates that the CDW phases of 1T-TaS2 can arise from purely
intralayer interactions [23], and experiment [19, 21, 75] which finds the existence of isolated
CDW phases at the surface of bulk crystals. The observation of electronic variation in the
CDW state that is stable over an extended period of time further supports the dependency
of the CDW phase in ultrathin 1T-TaS2 on the local environment. In the quasi-2D limit,
defects in the electronic crystal would play a significant role in determining the properties
of 1T-TaS2, compared to in bulk samples of the material [31, 93]. The role of defects in
determining the structure of the CDW phase in ultrathin 1T-ceTaS2 is discussed in further
detail in Section 4.3.

3.3.1 The coexistence of chiral states

In the topographic scan of the flake taken where it lay on hBN (Figure 3.9) we observe
the presence of a mirror domain wall in the CDW phase. With its own lattice parameters
and symmetry, the CDW phase can be described as an electronic crystal. In addition to
the typical lattice definitions associated with a crystal, the CDW phase can also possesses
various defects. We have already discussed the discommensurations present in both the C
and the NC phase of 1T-TaS2, but here we find the existence of another common defect
observed in crystals, a mirror twin boundary. As described in Section 2.2.3, there are two
possible chiral orientations of the C and NC phase. In Figure 3.9 we observe a boundary,
outlined in red, that separates a region in one chiral orientation from a region in the other
orientation. The FFT of an area where both chiralities are present will consist of the
superposition of the fundamental CDW modes for each orientation (Figure 3.10) resulting
in the appearance of 12 peaks where each pair of peaks corresponding to the same CDW
fundamental mode (Q(1) or Q(2) or Q(3)) are separated by an angle ≈ 2× 13.9◦ = 27.8◦.
A detail of the boundary wall is given in Figure 3.11 along with the FFT of the image. As
expected, the FFT contains 12 peaks.

3.4 Electrically driven and tip induced phase transi-
tions

To perform bidirectional resistance switching, we first navigate to a region of the flake
within the conduction channel where the flake lies on hBN (Figure 3.9). NC-like and C-
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Figure 3.9: (a) (Left) A wide STM scan comprised of two distinct region types. In the
top left and bottom right there are NC-like regions with visible striations, while a C-like
region with no striations runs from the bottom left to the top right. The C region also
contains filaments. Two chiral orientations of the CDW are observed, labelled α and β.
Scale bar = 30 nm, Vt = 0.30 V, Iset = 1.40 nA. (Right) A schematic delineating the
different regions visible in the STM scan.

Figure 3.10: The presence of a mirror twin boundary (represented schematically in the left
panel of the figure) causes the appearance of 12 peaks in the FFT (right panel). In the C
phase, the pairs of peaks are separated by 27.8◦, twice the angle between the CDW wave
vector and the atomic lattice vector.
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Figure 3.11: (Left) A mirror twin boundary is observed in an ultrathin sample of 1T-TaS2.
Scale bar = 8 nm, Vt = 0.44 V, Iset = 0.75 nA. (Right) FFT of the same region. Twelve
peaks are visible indicating the coexistence of the two different chiral orientations of the
CDW in 1T-TaS2. The angle between the two vectors indicated is equal to ∼ 27.5◦.

like regions similar to those observed in the topography scans of the flake sitting on gold
are observed. There are defects in the image that are similar to the etch pits measured by
Yamaguchi et al. (1997) [72]. These pits grow with repeated scanning of the tip. In the
context of this work, these defect sites provide a set of markers for tracking the evolution
of the different features of the CDW phase.

We initially start in the low-resistance state at 170 K, and run a series of linear sweeps of
laterally applied voltage, as described in Section 3.2 of this thesis. Figure 3.12b illustrates
one set of STM images taken before and after a set of electrical signals were applied. In this
particular case, a DC voltage was applied with a sweep rate of 0.05 V/s, and the maximum
voltage set was 4 V. After the voltage sweeps, the measured resistance had increased by
only ∼ 1% (Figure 3.12a). Similar to Figure 3.7, distinct NC-like and C-like regions are
observed prior to applying a bias across the sample, and the C region also contains filament
structures. After electrically driving the flake, the NC region now dominates the image. It
is important to recognize that an STM scan of a single area (150 nm×150 nm) of the flake
will not provide quantitative data regarding the total volume fractions of the two domain
types. Simulations discussed in Chapter 4 will illustrate how changes in the inhomogeneous
phase across the entire sample can result in bidirectional resistance switching.

In addition to the changes caused by the application of an electric field, we also observe
interconversion between the domain types as a consequence of the rastering tip. The
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Figure 3.12: (a) The IV traces measured while electrically driving the sample. In this
instance the resistance only increased by ∼ 1%. (b) STM scans illustrating the change in
the phase separated state with the application of a bias. Scale bar = 30 nm, Vt = 0.30 V,
Iset = 1.40 nA. Initially there is a mix of the C-like and NC-like phases. After a bias is
applied across the sample, the NC region dominates.
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Figure 3.13: Consecutive STM scans demonstrating the effect of tip rastering on the phase
separated state. The initial state (left) is identical to the "after" state given in Figure 3.12b.
Scanning with the tip resulted in sections of the NC-like phase to be converted to the C-like
phase. Scale bar = 30 nm, Vt = 0.30 V, Iset = 1.40 nA.

scans given in Figure 3.13 were taken following the electrical driving and illustrate the
effect of the tip on the phase separated state. With repeated scanning of the tip, at a
tunneling voltage of Vt = 0.3 V, NC-like regions of the sample within the scanning area
were converted to C-like regions. Unlike what is observed during the electrical driving,
the overall resistance of the sample did not change from one scan to the next, indicating
that the observed differences in the scans were due to the local perturbation of the tip as
opposed to part of a global thermodynamic process.

The scans in both Figure 3.7 and Figure 3.9 contain additional features we have labelled
"filaments". These structures bear some similarity to the striations observed in the NC-
like domains and are sensitive to perturbations. Both the scanning of the STM tip and
the application of a lateral electric field change the arrangement of the filaments within
the scan window. Whether these features represent sparse residual boundaries of NC-like
domains or an entirely separate structure, warrants future study.[94]

The evolution of the state due to driving can be clearly seen in the changes in the FFTs
of consecutive STM scans (Figure 3.14). Initially, the FFT contains 12 peaks. There are
two possible chiral orientations of the CDW that arise in 1T-TaS2, often referred to in the
literature as the α and β orientations [60]. The initial STM scan in Figure 3.12 contains
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Figure 3.14: (Top) FFTs of the STM scans in Figure 3.12b, and of the final state following
repeated rastering with the tip. The FFTs with colored dots in the top left hand cor-
ner correspond to the STM scans with the same colored dot. (Bottom) Schematics that
demonstrate how the state is evolving. Initially the state consists of a mixture of α and
β domains and thus 12 peaks are observed in the FFT. After electrical driving, only one
orientation remains, with the state being dominated by the NC phase. The FFT now con-
sists of the fundamental modes of a single orientation of the CDW with a visible satellite
peak. Lastly, after continuous scanning with the tip, the NC region has been converted to
the C phase. Consequently, in the FFT the satellite peak has now disappeared.
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a mirror domain wall separating an NC-like region of the CDW in the α orientation from
a C-like region of the CDW in the β orientation. Consequently, both chiral modes are
observed in the FFT of the image, resulting in the appearance of 12 peaks (Figure 3.10).
After electrically driving the sample, the NC region dominates the image and thus the FFT
now only contains 6 peaks, representing a single orientation of the CDW. Consistent with
the prevalence of the NC-like region in the image, a satellite peak in the FFT is visible. As
the area is continuously scanned, the NC region is gradually converted into C, and thus in
the FFT of the final scan the satellite peak is no longer present.

3.5 Conclusion

We have demonstrated the electrical behaviour of ultrathin flakes of 1T-TaS2. As 1T-TaS2
is thinned towards the 2D limit, the hysteresis region of the NC-C transition broadens, with
the transition occurring in stepwise fashion. Within the hysteresis region, the material can
be driven to states possessing a resistivity between that of the C and NC states by applying
lateral electrical signals. However, the material is not able to be driven entirely to the C
phase, with the resistivity eventually reaching a maximum at an intermediate value. We
found that by using an AC voltage, the resistivity saturation point was reached with less
stochastic variability and at a lower applied voltage compared to when using a DC signal. In
addition to driving the flake towards the C phase, driving back towards the low-resistance
state can be accomplished by continuing to ramp up the voltage signal until a transition is
observed. By using an AC signal to drive the material to the saturation point, and then a
DC voltage to drive the material back towards the NC phase, we were able to repeatedly
toggle between the intermediate resistance state and the low-resistance state.

Using the device design outlined in Chapter 2 of this thesis, we then measured the
topography of exfoliated ultrathin flakes of 1T-TaS2. We focussed on the temperature
range of the NC-C hysteresis region, with the goal of imaging both the equilibrium CDW
phases present, as well as the non-equilibrium phases accessing by applying an electric
field. Rather than constituting a novel phase with an electronic structure different than
the bulk equilibrium phases, we found ultrathin 1T-TaS2 to exist in a state with electronic
inhomogeneity. We imaged two distinct region types, which could be differentiated based
upon whether they contained discommensurations reminiscent of those observed in the
NC phase. After applying an electrical signal to this inhomogeneous state, we were able
to measure the rearrangement of these domains. Additionally, changes in the state were
also observed after repeated scanning with the STM tip. In both cases, these results
demonstrate the ability to manipulate, and measure in real-space, electronic phase domains
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at the nanoscale. In Chapter 4 of this theory we apply a model of phase separation
to qualitative relate this manipulation of an inhomogeneous electronic state to the bulk
electrical properties observed in ultrathin 1T-TaS2.
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Chapter 4

Phase separation in ultrathin
1T−TaS2

4.1 Introduction

Given the temperature at which the STM measurements in Chapter 3 were performed, and
the similarities between the features observed and the known, characteristic structure of
the phases present in bulk 1T-TaS2, we believe the data indicates that within the NC-C
hysteresis region of the phase diagram, the ultrathin flakes studied in this thesis are in
a phase separated state. In general, phase separation and electronic inhomogeneity at
both the nanoscale and the mesoscale is often a consequence of the complexity within
a system [95–97]. Hysteresis in an observable through a first-order phase transition is
typically indicative of the presence of superheating/supercooling [98]. Within the hysteresis
region, the two phases involved in the transition are nearly degenerate and can coexist,
forming a phase separated state characterized by a complex microstructure consisting of
intertwined domains of the ground state of the system and the nearly degenerate metastable
state. The data presented in Figure 3.7 and Figure 3.9 provides evidence for the presence
of phase separation in ultrathin 1T-TaS2, with the electronic state imaged comprising
irregularly shaped domains of C-like and NC-like regions of a size on the order of hundreds
of nanometers.

Additional evidence for the presence of phase separation in ultrathin 1T-TaS2 can be
found in the thickness dependent resistivity of the material over the same temperature
range. As described in Section 3.2, the NC-C transition region in ultrathin flakes exhibits
different characteristics compared to what is observed in bulk samples. When the material
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is thinned, stepwise transitions appear, and in the 2D limit the discontinuous jump in the
resistivity is not observed at all [31]. This result is potentially consistent with a disorder-
induced phase separated state [80], and suggests that ultrathin flakes of 1T-TaS2 cooled
below the NC-C transition temperature are prone to spatial inhomogeneity..

Considering the evidence for the existence of phase separation in 1T-TaS2, in this
chapter we delve deeper into the dynamics of this process. To understand the conditions
that give rise to phase separation we first discuss the thermodynamics of a system with a
free energy profile that consists of a double well potential, using the liquid-vapour phase
transition of CO2 as an illustrative example. After reviewing the fundamentals of phase
separation, we develop and apply a model of phase separation to elucidate the mechanism
behind the bidirectional resistance switching discussed in Chapter 3 of this thesis.

4.2 Phase separation: Nucleation and spinodal de-
composition

The coexistence of two phases is not uncommon in first-order phase transitions. There can
exist a region within the phase diagram of a system where a heterogeneous state consisting
of domains of multiple phases is energetically more stable compared to a homogeneous
phase. A common example is the liquid-vapour phase transition in CO2, a system whose
free energy, F (T, V,N), consists of a double well potential. In such a system, there exists
two local minima corresponding to two distinct homogeneous phases. The free energy of
the heterogeneous state, Fhet, defined as a mixture of the two homogeneous phases, is given
by:

Fhet = cIFI + cIIFII . (4.1)
By the lever rule, used to determine the fraction of each phase in a binary equilibrium
state,

cI = VII − V
VII − VI

, cII = V − VI
VII − VI

, (4.2)

and thus the free energy of the heterogeneous state is equal to

Fhet = VII − V
VII − VI

FI + V − VI
VII − VI

FII . (4.3)

Equation 4.3 describes the line that is tangent to both F (T, VI , N) and F (T, VII , N).
Figure 4.1 presents the free energy of CO2 where the dashed line represents the free energy
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of the heterogeneous state.1

The segment of the curve where the heterogeneous state is the free energy minimum is
defined as the binodal region, and is given by the total shaded area in Figure 4.1. In this
region, the homogeneous phase is not necessarily unstable, but rather is metastable. A
metastable phase is unstable to finite perturbations, perturbations large enough to eclipse
the energy barrier between the metastable local minimum and the ground state of the
system, but is potentially stable to infinitesimal changes. The area of the curve shaded
in blue defines the spinodal region, the subset of the binodal region where the system
is unstable to even infinitesimal changes in a state variable. This region has a negative
curvature in F (T, V,N),

∂2F (T, V,N)
∂V 2 < 0 (4.7)

Figure 4.2 schematically demonstrates the evolution of the free energy of 1T-TaS2
specifically as temperature is varied. When the system is cooled, two effects are observed:
the C phase becomes the ground state, and the lattice parameters of the NC phase are
modified (see dotted line in Figure 4.2). While the C phase is the new global minimum, the
NC state is still metastable with the existence of an energy barrier separating NC phase
from the C phase. The free energy of the system is also modified as the material is thinned.
As 1T-TaS2 is exfoliated to the 2D limit, the barrier separating the NC phase from the C
phase increases. Experimentally, this manifests in the broadening of the NC-C hysteresis
region. The picture described above only considers the existence of the homogeneous NC
and C phases, but there is nothing that precludes the possibility for a phase separated

1The free energy CO2 is modelled by the van der Waals equation of state, given in its extensive form
as, (

p+ N2a

V 2

)
(V −Nb) = NRT, (4.4)

where a and b are constants that can be interpreted as the average interaction between gas particles and
the volume excluded by a mole of particles respectively. The Helmholtz free energy can then be written
as,

F (T, V,N) = −NkBT
[
1 + log

(V −Nb′)T 3/2

N

]
− a′N2

V
, (4.5)

where the reduced form of the constants a and b, a′ and b′ have been used. Simplifying Equation 4.5 by
making the volume and free energy intensive, and by using the reduced units ṽ = v/vc, T̃ = T/Tc, and
f̃ = f/kBTc, we arrive at the form of the free energy plotted in Figure 4.1,

f̃
(
T̃ , ṽ

)
= −T̃

[
1 + log (ṽ − 1/3) T̃ 3/2

]
− 9

8ṽ . (4.6)
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Figure 4.1: The free energy CO2 as given by the van der Waals equation of state. The inset
presents different isotherms of CO2 around the critical temperature of the liquid-vapour
phase transition (∼ 304 K). The isotherms were modelled using the van der Waals equation
of state (see Equation 4.4) and the isotherm corresponding to the critical temperature is
given by the thick red line.
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Figure 4.2: A schematic demonstrating the change in the free energy of 1T-TaS2 as the
material is thinned. Thinning 1T-TaS2 causes the barrier between the NC and C phases
to increase, enhancing the metastability of the NC phase as the temperature is cooled.
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state to exist.
The coexistence of different phases has been observed in systems such as binary alloys

and block copolymers. When a system is rapidly quenched below a critical temperature into
a region of the phase diagram with competing phases, those phases form a phase separated
state. Two mechanisms for the emergence of phase separation are commonly discussed:
nucleation and spinodal decomposition. Nucleation describes the growth of droplets of
one phase within another due to large fluctuations in the value of the characteristic order
parameter that describes the phase. Conversely, spinodal decomposition, as the name
implies, concerns the instability of the homogeneous phase to infinitessimal long-wavelength
fluctuations in the order parameter.

Nucleation is often discussed as the competition between the energy benefit obtained
from the increase in the volume of a domain, and the cost associated with the formation of
a domain wall. The energetics of nucleation are captured by comparing the surface energy
cost associated with the presence of a domain wall, and the energy benefit of the increase
in the volume of the domain as it grows. The difference in free energy between the system
with one droplet and the system with zero droplets is phenomenologically given by:

∆F (R) = 4πσR2 − 4
3πεR

3 (4.8)

where R is the radius of the droplet, and σ and ε are the surface free energy per unit
area and the bulk free energy per unit volume respectively. There exists a critical radius,
RC = σ/ε at which point this energy difference is maximized. For droplets with R < RC

the surface free energy cost dominates, and consequently the droplet would shrink and
disappear. However, for R > RC the size of the droplet increases.

The value of the parameters σ and ε depend upon the state of the system. In the spin-
odal decomposition regime, σ vanishes, and thus the homogeneous state with no droplets is
unstable towards even infinitesimal fluctuations in the order parameter. Based on the rela-
tionship between these parameters we can construct an cartoon phase diagram schematic,
as depicted in Figure 4.3. In the grey region between the coexistence curve and the spin-
odal, the homogeneous phase is metastable, and with large enough fluctuations, nucleation
can occur. When the system is quenched from Ti to Tq in the blue region, under the
spinodal curve, the homogeneous phase is unstable to even infinitessimal fluctuations, re-
sulting in spinodal decomposition into a microstructure with concentrations Cα and Cβ of
the two constituent phases. We define an order parameter based on the concentration of
each constituent phase

ψ (r, t) = c (r, t)− c0, (4.9)
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Figure 4.3: (a) Schematic of the phase diagram of a material that undergoes phase separa-
tion. The temperature of the system is plotted along the y-axis while the concentration of
the constituent phases is plotted along the x-axis. The coexistence curve is represented by
the solid line, while the spinodal curve is represented by the dashed line. (b) The evolution
of a microstructure through phase separation. The dark regions represent one constituent
phase, while the light regions represent the other phase. Coarsening of the different regions
occurs after the initial formation of a phase separated state.

where c (r, t) is the concentration of one of the phases at time t, and c0 is the average
concentration over the entire system. This order parameter is useful for characterizing the
state of the system and is useful for defining the free energy functional of the system.

4.2.1 The Cahn-Hilliard Equation

Figure4.3b presents a schematic of the development of a microstructure, comprising in-
tertwined domains of the constituent phases. The dynamics describing the formation of
this microstructure were simulated using the Cahn-Hilliard equation [99, 100]. The Cahn-
Hilliard free energy functional is of the form:

F {ψ (r)} =
∫
ddr

{1
2 (∇ψ)2 + f (ψ (r))

}
. (4.10)

The gradient term corresponds to the energy cost associated with having changes in the
phase concentration, i.e. domains, while f (ψ) represents the bulk free energy per unit
volume of a homogeneous system.

The dynamics of the order parameter are characterized by diffusion in a chemical po-
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tential gradient, where it is assumed that material is conserved,

∂ψ

∂t
+∇ · j = 0. (4.11)

The current, j, is defined phenomenologically as,

j = −M∇ ∂F

∂ψ (r) , (4.12)

where the parameterM represents mobility. Plugging 4.12 into 4.11 gives the Cahn-Hilliard
equation:

∂ψ

∂t
= M∇2

[
∂f

∂ψ
−∇2ψ

]
. (4.13)

Figure 4.4a presents different examples of phase separated states, simulated using the
Cahn-Hilliard equation, each starting from a different initial average concentration. In
these simulations, the two-dimensional system is initialized with the value of the order
parameter being given by the average concentration c0, and then random fluctuations
about the mean are generated at random lattice points. The system is then allowed to
evolve according to Equation 4.13. What is observed is the separation of the system into
a state comprised entirely of the two constituent domains, the two minima in the free
energy diagram, followed by coarsening of the different regions (see Figure 4.3b). The
initial concentration value fixes the final concentrations of each domain type. Depending
on these volume fractions, the resulting microstructure displays different features. With
equal amounts of each domain type, the microstructure consists of an intertwined pattern.
As the volume fraction of one of the phases is increased, the final microstructure contains
droplets of the phase with the smaller volume fraction dispersed throughout the other
domain type.

4.2.2 The Y −∇ transformation

To relate the geometric structure of a given phase separated state to the bulk resistivity
of the system, we calculate a resistance for each microstructure by discretizing the image
into a 2D resistor network, and applying the algorithm outlined in Frank and Lobb (1988).
[102]. The building blocks of the algorithm consists of the standard transformations for
determining equivalent conductances of multiple resistors in series and multiple resistors
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Figure 4.4: (a) Microstructures formed at various starting C phase concentrations. The
structures were generated using the materials knowledge system package in Python [101].
(b) The resistances calculated for the different microstructures generated. The three curves
correspond to three different methods for defining contact electrodes (see main text).
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Figure 4.5: (a) The main steps in the algorithm operating piecewise on a 2D resistor
network to calculate an equivalent resistance [102]. Each step of the algorithm uses two
instances of the Y −∇ transformation (see orange box in (b)). (b) The transformations used
to find an equivalent resistance for a 2D resistor network. (Black box) (Top) Equivalent
resistance for two resistors in series. (Middle) Equivalent resistance for two resistors in
parallel (Bottom) The Y − ∇ transformation that allows for the deconstruction of a 2D
resistor network. (Orange box) The sequence of steps repeated to deconstruct a 2D resistor
network.
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in parallel, as well as the Y −∇ transformation (Figure 4.5b black box):

Series resistors : Gs = G1G2

G1 +G2
(4.14)

Parallel resistors : Gp = G1 +G2 (4.15)

Y-∇ :


G1 = GBGC

[
1
GA

+ 1
GB

+ 1
GC

]
G2 = GCGA

[
1
GA

+ 1
GB

+ 1
GC

]
G3 = GAGB

[
1
GA

+ 1
GB

+ 1
GC

] (4.16)

Continuously applying the transformation outlined in the orange box, as demonstrated in
Figure 4.5a, an equivalent resistance is determined for a given 2D resistor network.

With the algorithm defined as in Figure 4.5a, an equivalent resistance is found assuming
contacts exist at the bottom left and top right node. Depending on the size of the simula-
tion, finite size effects could play a part in determining the resistance of the network, with
the result being overly sensitive to the arrangement of the microstructure directly adjacent
to the contacts. The consequences of these effects are visible in Figure 4.4b, where the dif-
ferent traces correspond to three different ways of defining the contacts. For the case of the
blue trace, the contacts are defined as discussed above, the resistance is determined from
the bottom left node of the network to the top right. In the case of the orange and green
traces, contacts are defined to be blocks of nodes as opposed to the single corner node,
with the former comprising the entire leftmost and rightmost columns of nodes, and the
latter consisting of a block of 1/10 of the nodes. While finite size effects are undesirable,
they describe a realistic scenario potentially observed with the ultrathin samples measured
earlier in this chapter. Essentially these effects would correspond to a "weak link" contact
description, where the ultrathin flakes are not contacted uniformly. Ultimately, for the sim-
ulations performed later in this chapter, the definition of the contacts is largely irrelevant,
as rather than comparing unrelated microstructures, the bulk resistances are calculated for
a continuously evolving phase separated state, and thus the changes in resistance are less
dramatic.

4.3 Time-dependent Ginzburg-Landau theory

With the Cahn-Hilliard equation it is assumed that the order parameter is conserved.
Consequently, phase separation emerges naturally from the parameters of the problem. A
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more accurate model would allow for the order parameter to vary, such as time-dependent
Ginzburg-Landau theory (TDGL) [103]. The governing equation in TDGL is,

∂u

∂t
= −Γ∂F

∂u
(4.17)

where Γ is a damping parameter, u is the order parameter, and F is a Landau free energy
representative of the system being modelled. Starting from a Landau free energy F with
minima at u = 0 (the C phase) and u = 1 (the NC phase), we introduce the phenomeno-
logical parameter f to tune the stability of the C phase relative to the NC phase by tilting
the free energy potential:

F (u) = a2

2 u
2(1− u)2 + fu2(3− 2u) + 1

2(∇u)2, (4.18)

The model is initialized to a random, inhomogeneous microstructure and the system
is then allowed to evolve according to Equation 4.17. Without introducing disorder, the
system will form either the homogeneous C or NC phase, depending on the value of the
tilt parameter, f . However, if disorder is introduced into the model in the form of pinning
centres, impurity sites where the order parameter is reset to u = 1 at the end of each time
step, then a phase separated state is generated. In the quasi-2D limit, defect sites of this
kind would play a significant role in determining the properties of 1T-TaS2, compared to
in bulk samples of the material [31]. Under these conditions, a phase separated structure
containing intertwined C and NC phase domains is generated. The NC domains are situ-
ated around clusters of pinning centers, and the relative volume fractions of the two phases
depend on both f and the total number of impurity sites introduced (Figure 4.6a).

4.4 Bidirectional resistance switching of a system in
a phase separated state

The data collected in this work does not preclude the possibility that the system possesses
symmetry not probed by the STM experiments above, or that the driving of the inhomoge-
neous electronic state involves a continuous evolution towards the C phase. An example of
such an evolution would be one that proceeds through a modification of the domain period
in NC-like regions with the creation or annihilation of domain walls. However, many of
the features observed in the bidirectional resistance switching of ultrathin 1T-TaS2 can be
explained in the context of the system being in a phase separated state. For a sample of
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Figure 4.6: (a) Microstructures formed at various values of the tilting parameter f . (b)
The resistances calculated for microstructures generated from different values of f and
initial C phase volume fractions (v0).
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1T-TaS2 in a phase separated state, the bulk resistivity is determined by the arrangement
of the NC-like and C-like domains and their relative volume fractions, with the initial
volume fractions being set by the temperature of the sample. The bidirectional resistance
switching emerges from the competition between the NC and C phases. It is observed
that an applied electric field modifies the balance of competition between the two states,
stabilizing the C phase relative to the NC phase up to some critical value, at which point
breakdown of the C phase occurs. The fundamental microscopic mechanism that couples
the applied electric field to the observed charge orders remains an open question, with a
number of possibilities put forward in the literature. Regarding the transition of the C
phase to the NC phase, Joule heating [30], carrier-driven breakdown [87], and a modifi-
cation of the interlayer stacking [42, 43] have all been proposed as potential mechanisms,
while Patel et al. (2020), [86], suggested that conversion of the NC phase to the C phase
is facilitated by the stabilization of the C phase due to its greater polarizability.

Regardless of the underlying mechanism involved, starting from when the sample is in
the low-resistance state, one can imagine the driving proceeding through different stages,
each depending upon the voltage drop across the flake. Given the non-uniformity of the
charge ordering in a phase separated state, the voltage drop varies spatially across the
sample. When the flake is in the low-resistance state, there exists a percolative NC path,
and the majority of the applied voltage drops across the NC region spanning the flake.
The applied electric field stabilizes the C phase relative to the NC phase, causing the C
state volume fraction to increase, until the percolative NC path no longer exists, and the
resistance subsequently increases. As the volume fraction of the C phase continues to grow,
less of the applied voltage drops across NC domains. Consequently, the driving saturates
at a certain intermediate C volume fraction, at the point when the majority of the voltage
drops across C domains. Once the resistance saturates, as the voltage is increased, current
flow through the C domains increases as well. At a certain critical current, breakdown
of the C domains occurs, and the metallic percolative path is again formed, causing the
resistance to drop. Once this breakdown occurs, the voltage again drops across the NC
domains, and consequently it is possible to observe a transition back into a more resistive
state. This picture is corroborated by the results in the literature mentioned in Section 3.2
and discussed in Figure 3.4, where the authors were unable to drive the sample entirely
back to the low-resistance state.

Figure 4.7 schematically represents the evolution of the inhomogeneous state described
above. As in Section 4.2.1 on the Cahn-Hilliard equation, the microstructure is discretized
into a 2D resistor network with NC and C nodes. Initially, the system is considered to
be in a state with a relatively small C phase volume fraction, as depicted in Figure 4.7a.
Due to the coexistence of the C and NC phase domains, the voltage applied across the
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Figure 4.7: (a) The system is discretized and modeled as a 2D resistor network. The
resistance of the microstructure is calculated using the algorithm pictorially represented
in Figure 4.5. (b) The voltage dropping across the NC nodes will follow some distribution
P (V ) (top). NC nodes with a value beyond the threshold value V ∗ are converted to C,
changing the distribution of the voltage drops (bottom).

87



sample will not drop homogeneously but will depend on the geometric arrangement of the
microstructure. Consequently, the voltage drop across the complete set of NC regions will
have some distribution P (V ). As a voltage is applied to the sample, the voltage drop across
some of the NC nodes exceeds a certain critical value V ∗ resulting in those NC nodes in
the resistor network to become C. When this conversion occurs the distribution of the
voltage across the NC nodes changes (Figure 4.7b). Eventually, the voltage drop across
none of the NC nodes will exceed V ∗, and the system will have reached an equilibrium
state independent of V .

This evolution of the inhomogeneous state is approximated in the simulations by first
introducing a limiting value ulim = 0.5 below which the order parameter is depinned from
an impurity site, meaning it is not reset to u = 1 at the end of each time step. With
this modification, the final microstructure generated from the time evolution of the system
becomes dependent on the initial C phase volume fraction, v0, in addition to the tilting
parameter and the number of pinning centers. For small values of v0 (v0 ≤ 0.40), the
system evolves to a percolated NC phase, with a resistivity comparable to that of the
homogeneous NC phase, while for larger v0, the system goes to the C phase. This result
is demonstrated in Figure 4.6b, where the resistance of the generated microstructure is
calculated for different sets of values of v0 and f . The driving model is completed by
adding a second set of threshold parameters, fc and uc, to control the conversion of C
nodes to NC nodes. When f = fc, nodes where the order parameter is greater than uc are
converted to u = 1, the NC phase.

Utilizing the model described above, we qualitatively reproduce the main features ob-
served during the electrical driving. The linear voltage sweep is simulated by a linear sweep
of f . The stabilization of the C phase relative to the NC phase corresponds to an increase
in the parameter f . Figure 4.8b illustrates a simulated sweep starting from a microstruc-
ture that is predominantly in the NC phase. Examples of the simulated microstructures
generated during the sweep are given in Figure 4.8d, panels (i-vii). As f is increased, some
of the pinning centers are depinned, causing the volume fraction of the C phase (orange
domains) in Figure 4.8d) to increase, and resulting in an increase in the bulk resistance.
When f is swept back to its initial value, the state the system returns to is different than
its initial state, as the steady-state solution depends on both the value of f and on the
history of the material. Figure 4.8c demonstrates a sweep starting from the predominantly
C phase from Figure 4.8d, panel (vii). Once f is increased to fc, NC domains form around
clusters of pinning centres (Figure 4.8d panel (ix)). The state of the system when f is re-
turned to its initial value has a significantly larger volume fraction of NC regions compared
to the initial microstructure, and thus a lower resistance, demonstrating the bistability of
the C and NC phase mixture.
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Figure 4.8: (a) A simulated electrical driving sweep using the TDGL model described in
the text. Starting from a state predominantly in the NC phase, f is increased, resulting
in the conversion of some NC regions to C domains. In the simulated sweep f plays the
role of the applied voltage in the electrical driving. The Roman numerals labelling the
points in the sweep refer to the corresponding microstructures in (c). (b) Continuing the
sweep from (a), starting from a microstructure that is predominantly C, f is swept until
f = fc, at which point C regions are converted to NC domains that form around clusters
of pinning centers. (c) Examples of the simulated microstructures generated in sweeps (a)
and (b). u = 0 represents the C phase, while u = 1 is the NC phase.
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As evidenced in Figure 4.8b, multiple sweeps to the same voltage value will continuously
manipulate the state of the material. Assuming the maximum voltage set is less than
the voltage at which breakdown of the C domains occurs, the material will be driven
to some intermediate state with a higher resistance compared to the initial state. With
this consideration in mind, applying a lateral AC bias across the sample will drive the
material more efficiently than a DC bias, as when using an AC signal multiple sweeps
are performed. As previously discussed, Figure 3.3 demonstrates this behavior. Using
an AC bias, the sample is driven to the saturation resistance level more directly, and at
lower voltages compared to when a DC bias is used. Whether there exists an alternative
explanation for the enhancement observed when using an AC voltage, one that is based
upon the underlying microscopic mechanism that facilitates the electrical driving, is beyond
the scope of this work.

4.5 Conclusion

In summary, a model of phase separation has been used to explore the connections between
the electronic inhomogeneity present in ultrathin 1T-TaS2 and the bulk resistivity of the
sample. Starting with a spatially varying order parameter representing the CDW state
of the material, and a double well Landau free energy, we allowed the system to evolve
according to time-dependent Ginzburg Landau theory. Without introducing disorder, only
the homogeneous C or NC phase was realized. However, after incorporating disorder into
the system, in the form of pinning centres fixed to the NC phase, a phase separated
state was obtained. This state possessed inhomogeneity with distinct regions of the two
constituent phases corresponding to the two minima in the double well potential.

To simulate the electrical driving described in Chapter 3, the model was extended by
incorporating ideas from percolation theory. In the electrical driving, it is observed that
an electric field stabilizes the C phase relative to the NC phase, up until a critical value
at which point breakdown of the NC phase occurs. To simulate this behaviour, a phe-
nomenological parameter, f , was introduced to control the tilt of the free energy potential,
and thus the relative energies of the two minima. Additional critical parameters were used
to define when the pinning centres of the order parameter would become unpinned, and
at what critical electrical field, breakdown of the NC phase to the C phase would occur.
The voltage signals used to manipulate the inhomogeneous state were then simulated by
sweeping the value of f . Employing this model, percolative like behaviour was observed.
When a NC path across the sample existed, the resistivity measured would be comparable
to the low-resistance state, as the NC phase was converted to the C phase, eventually the
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percolative path was disrupted resulting in a jump in the resistance. In this fashion, the
model qualitatively reproduced the multistability of different states and the accessing of
states with resistivities that lie between that of the low and high-resistance phases.

The model described above does not explicitly allow for the rearrangement of the NC
and C domains as the location of the pinning centres essentially fixes the geometric ar-
rangement of the regions. Thermal noise and Joule heating effects stemming from the
flow of charge carriers are not included, but would result in a more complete picture that
might allow for the possibility of the rearrangement of the microstructure. Despite this
limitation, the model does recreate many of the essential features of the observed driving.
These results highlight the importance of considering phase separation when probing the
origin of bulk properties. For example, many of the characteristics of the emergent bidirec-
tional resistance switching elucidated in this chapter, can be explained when considering
the system to be originating in a phase separated state.
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Chapter 5

Summary and Outlook

In many respects, exfoliated materials in the 2D limit are ideal systems to image with
scanning tunneling microscopy (STM). Such materials are naturally atomically flat, and
depending on the specific material being studied, can possess relatively unreactive surfaces.
The two primary challenges associated with imaging such flakes is the difficulty navigating
to a flake of interest in the STM and the presence of contamination introduced during
the exfoliation procedure. By taking advantage of the optical contrast between different
materials, or films of the same material but with different thicknesses, we were able to
design a device geometry that allowed for the facile location of flakes with micron sized
lateral dimensions. With the first iteration of devices described in Section 2.4.2, where a
gold pad is fabricated with a hole in the centre across which a flake is transferred, the flake
could be located within minutes of approaching the surface. Furthermore, the work in this
thesis demonstrates that exfoliated samples are sufficiently clear of contamination to be
probed with STM after minimal heating. Although we were unsuccessful maintaining a tip
suitable for scanning tunneling spectroscopy (STS) measurements, it was possible to follow
paths to regions of interests that were sufficiently free of contamination that the regions
could be imaged successfully. The techniques described in this thesis for imaging 1T-TaS2
can be applied to the measurement of any exfoliated, conductive 2D material.

Within the NC-C hysteresis region of ultrathin 1T-TaS2, electrical measurements re-
veal the presence of non-equilibrium phases with resistivities that lie between the values
associated with the equilibrium C and NC phases. It has been suggested in the literature
that these states represent novel phases present only in ultrathin flakes of the material and
possess an electronic structure different than that of the equilibrium bulk phases. Using
a device design that not only allowed for the navigation to specific regions of interest on
a flake, but also enabled the measurement of the bulk electrical properties of the flake in
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situ, we studied ultrathin flakes of 1T-TaS2 in the hysteresis region of the NC-C phase
transition with the goal of determining the electronic structure of these non-equilibrium
states. Within the hysteresis region of the NC-C phase transition, we found ultrathin 1T-
TaS2 to exist in a state with electronic inhomogeneity. This inhomogeneous state contained
distinct domains with features reminiscent of the bulk NC and C phases. The presence
of electronic inhomogeneity in 1T-TaS2 is indicative of the competition between different
equilibrium states. The geometric arrangement of the constituent phases within the in-
homogeneous state was found to be amenable to perturbation through the application of
lateral electrical signals. Consequently, we were able to measure the evolution of the state
as a function of applied electric field. The images collected demonstrate the ability to
both observe and manipulate phase domains at the nanoscale. Further work would involve
a more detailed mapping of the phase diagram of ultrathin 1T-TaS2 than what was pre-
sented in this thesis, including a thickness dependent study. By capturing the full range of
phases possible for flakes of increasing thicknesses, the role of stacking in 1T-TaS2 could
potentially be probed. One limitation of such a study would be that STM is ultimately
a surface probe. Consequently, if the changes in the phase diagram can not be correlated
with bulk properties of the material, then one can not be certain that the surface does not
exhibit a phase distinct from that of the bulk material.

Inspired by the phase coexistence present in other correlated electronic systems, a model
of phase separation was used to explore the possible connections between the electronic
inhomogeneity present in 1T-TaS2 and the bulk resistivity of the material. By attempting
to correlate the STM data with the bulk electrical behaviour of ultrathin 1T-TaS2, we
endeavoured to address the limitation of STM described above. Starting from a Landau
free energy representative of a double well potential, a phase separated state was realized by
incorporating disorder in the form of pinning centres where the phase was fixed to the low-
resistance NC state. These pinning centres can be interpreted as the discommensurations
in the NC phase. After obtaining an inhomogeneous state, the evolution of the state with
the application of an electric field was modelled based on some of the ideas of percolation
theory. Many of the features observed in the electrical behaviour of ultrathin 1T-TaS2
are reproduced with this simple model. In particular, the saturation of the resistance at
an intermediate value less than the resistivity of the high-resistance C phase is explained.
Furthermore, the multistability of microstructures with different volume fractions of the
constituent phases at a given temperature is realized.

Both the electrical behaviour observed in ultrathin flakes of 1T-TaS2, and the presence
of inhomogeneity, are similar to that observed in perovskite manganites and other corre-
lated materials, such as vanadium oxides [104–107], and doped Mott insulators [96]. All of
these compounds are characterized by competing metallic and insulating phases that give
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rise to mesoscopic structural inhomogeneity. The macroscopic behaviour in these systems
is directly related to the inhomogeneity present at smaller length scales. While many of the
fundamental characteristics observed in manganites, vanadium oxides and doped Mott in-
sulators are similar, the nature of the phases comprising the inhomogeneous state, and the
stimuli required to manipulate the different phases, vary depending upon the factors un-
derlying the metal-insulator transition. Unlike in the correlated systems mentioned above,
in the case of 1T-TaS2, the competition exists specifically between distinct CDW phases.
Further study is warranted in the NC-C transition temperature range to probe the nature
of the inhomogeneous state of 1T-TaS2 in greater detail. However, the results presented in
this thesis emphasize the complexity in the phase diagram of 1T-TaS2, and demonstrate
the importance of understanding the characteristics of its phase competition morphologies
in order to identify potential applications for this material.
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Introduction

The appendices are organized as follows. In Appendix A additional details are provided re-
garding the device fabrication and measurement setup of the work presented in Chapters 2
and 3 of this thesis. Appendix B and Appendix C concern separate scanning tunneling
microscopy experiments. While these measurements are secondary to the work described
in this thesis, they hopefully contain some useful techniques and practical considerations
that are of assistance in performing scanning tunneling microscopy successfully.
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Appendix A

Fabrication and measurement details

A.1 Fabrication Details

A.1.1 Synthesis of 1T-TaS2

Single crystals of 1T-TaS2 were grown by chemical vapor transport with iodine as the
transport agent. High-purity Ta (3.5 N) and S (3.5 N) were mixed in chemical stoichiometry
and heated at 1123 K for 4 days in an evacuated quartz tube. The harvested TaS2 powders
and iodine (density: 5 mg/cm3) were then sealed in another quartz tube and heated for 2
weeks in a two-zone furnace, where the source and growth zones were held at 1173 K and
1073 K, respectively. The tubes were then rapidly quenched in cold water to retain the 1T
phase.

A.1.2 Electrode fabrication

Electrodes were fabricated on an SiO2 (285 nm)/Si substrate. Standard electron beam
lithography and e-beam metal deposition techniques were used to fabricate 20 µm×20 µm
pads of Au (12 nm)/Ti (3 nm). An array of 1 µm size markers (Au (7 nm)/Ti (3 nm))
spaced 2 µm apart was deposited on top of the pads. The pads were contacted by larger
120 µm × 55 µm contacts of Au (60 nm)/Ti (10 nm), fabricated using mask-less pho-
tolithography and e-beam deposition.
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A.1.3 2D material transfer procedure

To prevent oxidation of the 1T-TaS2 flakes the exfoliation and transfer of 2D materials
was done inside a N2 filled glovebox with O2 and H2O partial pressures below 0.1 ppm.
The materials were exfoliated and transferred sequentially on top of each other using the
following method:

1. A bulk crystal of the 2D material is exfoliated onto a piece of Scotch tape.

2. A polypropylene carbonate (PPC) thin film is prepared by spin coating (1600 RPM,
30 sec) PPC in an anisole solution (15% PPC by weight) on a glass cover slide. The
Scotch tape with the exfoliated flakes is pressed onto the thin film of PPC and then
peeled off.

3. The PPC thin film is transferred onto a polydimethylsiloxane (PDMS) stamp sitting
on a glass slide.

4. A home-built setup utilizing a motorized arm attached to a microscope is used to
identify a suitable flake on the PPC film.

5. The selected flake is aligned with the fabricated electrodes as desired and brought
into contact with the substrate. The substrate is then heated to 363 K, causing the
PPC to melt and peal off of the glass slide at the point of contact, transferring the
flake and PPC film to the substrate.

6. The heater is switched off and the electrodes with the transferred flake and PPC
are put into a vacuum chamber for 30 min. before the PPC is washed away in a
chloroform bath, leaving only the flake on the substrate.

7. The sample is then rinsed with acetone and isopropanol.

A.2 STM measurements

All STM measurements were performed with an Omicron LT-STM outfitted with four
electrical contacts. STM topography was taken in constant-current mode with the bias
applied to the tip. Commercial, chemically etched tungsten tips were used for all of the
images displayed in this thesis, unless otherwise noted. PtIr tips were prepared by cutting
PtIr wire and then mounted into an empty tip holder. The samples were heated to 388 K
prior to being transferred to the STM chamber.
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Appendix B

Cross-sectional scanning tunneling
microscopy

Cross-sectional scanning tunneling microscopy (xSTM) is an experimental technique useful
for preparing clean surfaces of semiconductor crystals. A standard STM technique for
obtaining a pristine sample is to cleave a crystal in situ, exposing a clean surface to image.
In xSTM, this technique is adapted for semiconductor wafers. The sample of interested
is mounted upright and held in place such that the wafer can be cleaved with a knock of
the wobblestick traditionally used to shuttle STM samples through the different chambers
of the instrument. A scribe mark is made on the edge of the wafer to facilitate the
cleaving of the sample. This method exposes a cross-section of the wafer, opening up the
possibilities for a variety of experiments [108, 109]. For example, it can be used to measure
surfaces not readily grown [110], mapping the topography and band structures of interfaces
of heterostructures [111], probing local effects induced by dopants [112], and measuring
compositional spatial variations due to clustering in alloys [113]. In this appendix we
first demonstrate the technique of xSTM by presenting data collected from imaging a
non-standard cleaved silicon surface, Si (111). We then present preliminary results from
attempts to study interfaces of a III-V heterostructure grown via molecular beam epitaxy
(MBE). While these experiments ultimately did not prove fruitful, they demonstrate some
of the possibilities and limitations of xSTM. All of the STM scans presented were taken at
77 K.
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Figure B.1: Schematic of the xSTM set-up. In the figure, a pool cue is used to represent
the STM wobblestick.

B.1 Si (111) (2× 1) reconstruction

The cleaved Si (111) surface undergoes a (2 × 1) reconstruction [114].1 As shown in Fig-
ure B.2b, deeper layers of atoms remain in their standard positions, while the topography
of the top two layers more closely resembles the Si (110) plane. The displacement of the
atoms in the topmost layers results in the observed chain structure outlined in black in
Figure B.2a. These chains are associated with the formation of π-bonded surface states.
Figure B.2c is an STM scan of the cleaved Si (111) surface. The chain of atoms in the
topmost layer is imaged. In this particular scan, a grain boundary in the surface is also
clearly resolved.

The xSTM technique is a facile method for preparing a pristine silicon sample [110].
Given the relative ease of cleaving the wafer, a chamber not explicitly designed for this
form of sample preparation can be readily adapted. In our case, after machining a sample
plate specifically designed to vertically mount a wafer, the cleaving was accomplished
simply using the basic wobblestick already present in the preparation chamber of the
STM essentially as a pool cue (Figure B.1) The resulting surface is ideal for calibration
measurements as the measured lattice displays true atomic resolution, and the tunneling
gap achieved is exceptionally stable. Additionally, on Si (111) the xSTM method produces
large, flat terraces, opening the possibility of utilizing this technique to locate and probe

1In Wood’s notation, the surface structure is given as multiples of the standard unit cell.
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Figure B.2: The Si (111) (2× 1) surface reconstruction. (a) Top view. (b) Side view. The
atoms are colour and size coded to reflect the different planes of the crystal. (c) The chains
of Si atoms (outlined in black in (a)) are imaged in STM. In this particular scan, a grain
boundary is also resolved. Scale bar = 0.64 nm, Vt = 1.20 V, Iset = 0.15 nA.
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dopants in silicon. The protrusions and depressions in the scan given in Figure B.3a
correspond to local disruptions in the atomic structure, such as those caused by the presence
of dopants or lattice defects.

B.2 III-V heterostructures

The ability to grow an epitaxial Al layer on a III-V heterostructure is important for the re-
alization of devices that require the semiconductor to be proximitized. In the experiments
described in this section, epitaxial Al was grown on a InGaAs buffer with a InP substrate.
We attempted to adapt the xSTM technique to probe the Al/InGaAs interface with the
goal of determining both the interface quality and whether the Al formed a eutectic with
the buffer layer. Given that the substrate is a binary compound while the buffer layer is
ternary, one would expect more defects in the buffer layer compared to the InP. These
defects would have an effect on the cleaving of the wafer. In the bottom scan in Figure B.4
the InP/InGaAs interface is clearly identifiable due to the abrupt change in the cleavage
pattern. The yellow, dashed line in Figure B.4 marks the location of the interface. Al-
though the interface between the substrate and the buffer layer was clearly visible, the Al
interface was not distinguishable from an amorphous layer present at the surface of the
wafer (top scan in Figure B.4). This result demonstrates some of the limitations of the
xSTM technique for probing features near the surface of the wafer. The cleavage process
is inherently damaging. While deep within the exposed cross-section, large atomically flat
terraces can be located, close to the surface of the wafer, the quality of the cleaved edge is
significantly less ideal.
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Figure B.3: (Top) Wide terraces are exposed by the xSTM method. On the Si (111) (2×1)
surface one can see protrusions and depressions potentially relating to exposed defects and
implanted dopants. Scale bar = 20 nm, Vt = 1.20 V, Iset = 0.35 nA.. (Bottom) Two
different orientations of the reconstruction are visible, as indicated by the purple and
orange arrows. In this sample, the prepared surface was significantly more damaged with
visible cracks. Scale bar = 10 nm, Vt = 2.00 V, Iset = 0.34 nA.
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Figure B.4: Cross-section of a III-V heterostructure with epitaxial aluminum on the surface.
The interface between the binary substrate InP and the ternary buffer layer In0.5Ga0.5As
is marked in yellow. In the top STM scan there exists an amorphous layer that obscures
the Al layer. (Top) Scale bar = 40 nm, Vt = 3.00 V, Iset = 0.20 nA. (Bottom) Scale bar
= 100 nm, Vt = 4.00 V, Iset = 0.20 nA.
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Appendix C

Additional distortion effects in
scanning tunneling microscopy

C.1 Hysteretic noise

C.1.1 Au (111)

Au (111) is known to undergo a surface reconstruction and exhibit a characteristic surface
state with a herringbone geometry (Figure C.2a) [115]. This sample serves as a useful
reference for performing scanning tunneling spectroscopy (STS) experiments, as there is
a step in the spectroscopy ( dI

dV
) curve at ≈ 0.45 V. Therefore, Au (111) can be used to

calibrate the tip before and after an STS experiment is performed on an unknown sample:
by measuring the stepwise dI

dV
, one can confirm that the density of states of the tip is indeed

flat.
We image a Au (111) film grown on mica. All scans were taken at 77 K. In the scans

shown in Figure C.1, we observe a form of hysteretic noise. A blurring or streaking occurs
at the front of both the forward scan (orange region) and the backward scan (blue region).
The blurring was observed as either a fall or a rise in individual line scans. If in the forward
direction the effect is seen as a gradual falling, then in the reverse scan it is observed as a
gradual rising, and vice versa. This effect was observed over a wide range of parameters,
including large variations in scan speeds and the implementation of delay times at the start
and end of each scan line.

After cleaning the sample in the preparation chamber with extensive heating, and
allowing for the pressure in the chamber to reach normal levels, the hysteresis noise was
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Figure C.1: Hysteretic noise observed when measuring Au (111). Scale bar = 27 nm,
Vt = −0.50 V, Iset = 0.40 nA.

no longer visible in the scan. Figure C.2a presents a wide scan of the clean Au (111)
surface, demonstrating the herringbone superstructure on multiple terraces. Details of the
surface before and after the cleaning are given in Figure C.2b, top and bottom respectively.
This example illustrates how contamination on the tip or the sample can manifest itself in
unintuitive ways.

C.2 Signs of an irregular tip

C.2.1 Si (111)

Doubling of features When modelling the tunneling current it is commonly assumed
that there is only a single source of tunneling electrons from the end of the tip and that
the tip possesses spherical symmetry. With these assumption, the measured topography
reflects the symmetries of the electronic structure of the sample. In practice, tunneling can
occur from multiple atoms on the tip, resulting in artifacts to appear in the topographic
scans. The most common evidence for the presence of a non-ideal tip is the multiplying
of surface features. This effect is most evident on protruding surface elements, such as
either a step or a terrace, or an adsorbed species. The STM scans of Si (111) presented in
Figure C.3 exhibit both the doubling of surface adatoms, and that of a step in the sample.
Not all surface features may be multiplied, depending on the height offset between the
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Figure C.2: The Au (111) surface demonstrating the herringbone surface state. The scans
on the right illustrate the effects of heating the sample on the observed hysteretic noise
depicted in Figure C.1. (Left) Scale bar = 7.6 nm, Vt = −0.05 V, Iset = 0.90 nA. (Top)
Scale bar = 2.8 nm, Vt = −0.40 V, Iset = 0.10 nA. (Bottom) Scale bar = 4.55 nm,
Vt = −0.01 V, Iset = 0.70 nA.
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Figure C.3: The multiplying of surface features due to an irregular tip. Scale bar = 10 nm,
Vt = 2.00 V, Iset = 0.20 nA.

different atoms of the tip involved in tunneling. This example serves as another reminder
that the data collected via STM is a convolution of the tip and the sample. Therefore, the
presence of an irregular tip will have consequences on the resulting scan.
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