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Abstract

Medical imaging serves to diagnose and monitor illnesses in clinical settings. Several
modalities such as X-Ray and Ultrasound have become ubiquitous due to their high util-
ity. Photoacoustic microscopy, based on the photoacoustic effect originally discovered by
Alexander Graham Bell, is sensitive to optical absorption contrast. This is highly useful
in biomedical applications where the endogenous absorption contrast of tissue can directly
be imaged, enabling label-free microscopy. Applications include histological assessment of
tissue in support of cancerous tissue resection surgeries, as well as the functional imaging
applications of blood oxygen saturation (sOs) and metabolic rate (MRO2) imaging. Re-
cently, Photoacoustic Remote Sensing Microscopy (PARS), an all-optical implementation
of photoacoustic microscopy, was pioneered by Parsin Haji Reza.

This thesis makes three main contributions supporting the development of PARS mi-
croscopy. The first is the creation of an inverse model designed to solve for the concentra-
tions of individual chromophores when imaged using several excitation wavelengths. To
achieve this, constraints and considerations specific to PARS are designed and employed.
The inverse model allows for the concentrations of oxy- and deoxyhemoglobin to be solved
for, enabling sO, estimation. This was performed in-vivo in an ocular setting, demon-
strating the first non-contact photoacoustic measurement of sO, in the eye. The second
contribution is an in-depth experimental study of Stimulated Raman Scattering (SRS) in
single-mode optical fiber as a means of generating multi-wavelength light from a conven-
tional single-wavelength laser source. Effects associated with several laser parameters and
properties of optical fiber are studied. Results of this study will find use in the appa-
ratus design for nearly any multi-wavelength PARS application, typically where imaged
absorbers must be unmixed, and in particular, in sO, estimation. The final contribution is
the development of a novel unsupervised time-domain feature-learning algorithm, designed
to learn characteristic signal shapes. This allowed tissue sub-components to be discerned
in PARS imagery of both unstained human breast tissue on slides and freshly resected
murine brain tissue without the need to use multiple excitation wavelengths nor have any
prior knowledge of the time-domain characteristics associated with individual components.

The contributions made in this thesis represent significant steps towards the use of
PARS for a broad range of applications where unmixing, or more specifically, discerning
underlying components of the imaged target is required — beyond sOs estimation or em-
ulation of standard histological techniques. Furthermore, the improved understanding of
how SRS can be used to generate additional excitation wavelengths opens the door to
imaging an abundance of bio-molecules, thus broadening the scope and richness of the
gamut of targets that PARS is capable of imaging.
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Chapter 1

Introduction

1.1 Motivation

Medical imaging broadly serves as a set of powerful diagnostic tools, non-invasively giving
medical care providers valuable information that cannot be obtained otherwise. Signs of
many ailments and abnormalities are hidden by skin, layers of tissues, and bone on human
or other animal patients [4, 5]. This necessitates medical imaging as a means of informing
clinicians of the status of the patients they treat. For example, things as commonplace
as monitoring the health and development of a fetus while in the womb are vastly aided
by ultrasonic imaging [6, 7]. A more specialized example of medical imaging is the use of
magnetic resonance imaging (MRI) to assess the brain and spinal cord for damage following
trauma or due to disease [8—11].

Many medical imaging modalities already exist; however, there remains a need for
continued research and development of new modalities and techniques. Several common
modalities include ultrasound imaging [6, 12, 13], x-ray imaging [14, 15] (and computed to-
mography [16, 17]), and magnetic resonance imaging [18, 19]. Optical imaging, which uses
light from the ultraviolet—visible-infrared range of the spectrum, avoids exposing patients
to ionizing radiation (such as x-rays), providing a safer diagnostic tool [20]. Furthermore,
because of the many ways in which different soft tissues interact with light (scattering and
absorption), optical imaging techniques are especially well suited to biomedical applica-
tions [20]. Optical imaging modalities include optical coherence tomography [21-24], light
microscopy / photography (e.g., bright-field [25], dark-field [26, 27], phase-contrast [28,
29], fundus photography [30-33]), confocal microscopy [34, 35], light sheet microscopy [36—
38], fluorescence microscopy [39-41], Raman microscopy [42, 43], and lastly photoacoustic
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microscopy (PAM) [44, 45]. PAM is sensitive to absorbed light, a rather unique source of
contrast not accessible by other modalities. Conventionally, PAM relies on contact-based
detection via an ultrasonic transducer [45, 46], a significant disadvantage to the modality.
Though PAM has shown much use in imaging the eye [46-49], it is not a perfect solution.
Contact-based detection may increase the risk of infection, abrasion, or may cause patient
discomfort. Additionally, the applied pressure to the eye has an influence on the ocular
vasculature function [46].

Photoacoustic Remote Sensing Microscopy (PARS) [3, 50-63], is a novel biomedical
imaging modality based on the photoacoustic effect (like the broader field of photoacoustic
microscopy). PARS offers a non-contact method of imaging absorption contrast, providing
the benefits of general PAM without its disadvantages. Additionally, PARS, and pho-
toacoustic microscopy in general, allow for label-free microscopy, not requiring the use of
exogenous dyes or labels to provide contrast. These characteristics make PARS an excellent
candidate for clinical use.

Nonetheless, as a new modality, a need for much development remains. Main areas of
improvement are in developments supporting chromophore-selectivity (allowing PARS to
be usable as a clinical diagnostic tool) and feature extraction (improving PARS imaging
contrast and extracting as much information from PARS images / time-domain signals
as possible for potential improvements to chromophore-selectivity and for enriching the
presentable informational content PARS microscopy affords).

1.2 Thesis Objectives

The overarching goal of this thesis is to research and make developments to PARS mi-
croscopy for the purpose of enabling chromophore-selective imaging. The ability to differ-
entiate chromophores is one of the main advantages of photoacoustic microscopy compared
to other modalities, and thus developing this attribute in PARS is a logical research step.

Several chromophores are of clinical importance. For example, the concentrations of
oxy- and deoxyhemoglobin (HbOy and Hb) are necessary to estimate blood oxygen sat-
uration (sOj) [5]. The ability to quantitatively image HbOy and Hb and subsequently
estimate blood oxygenation at the capillary-level is of great importance in ophthalmology
as a diagnostic tool for several diseases [64], cancer-related research [65, 66], and pharma-
ceutical research [67]. Additionally, the ability to selectively image biological structures
that would conventionally be stained by hematoxylin and eosin (H&E) [68], the gold stan-
dard in histopathology, for viewing on a bright-field microscope for cancer diagnosis and



resection surgery, could eliminate time-consuming steps in resection surgeries and may al-
low PARS to be used as an intraoperative microscope. Indeed, much effort has been made
in recent years towards achieving this goal in PARS [53, 55, 56, 58, 60, 69, 70].

The objective of enabling chromophore-selective imaging is achieved in three main ways:

1. Development of an unmixing algorithm with specific considerations for minimizing
estimation error covariance, while addressing multiple effects inherent to PARS mi-
CTOSCOPY.

2. Comprehensive assessment and characterization of Stimulated Raman Scattering
in optical fiber as a means for generating multi-wavelength light from a single-
wavelength source. This multi-wavelength light source is necessary for efficient multi-
wavelength imaging, offering wavelength tunability and high pulse repetition rates,
allowing for future work on chromophore unmixing.

3. Development of a feature extraction technique for PARS microscopy, capable of la-
belling biologically significant structures in histological samples.

1.3 Thesis Organization

This thesis is organised as follows:

e Chapter 2 gives background and literature review on the subjects of general pho-
toacoustic microscopy, PARS microscopy, inverse problems, optical effects in optical
fibers (including stimulated Raman scattering), techniques for extracting informa-
tion from PARS time-domain signals, and finally dimensionality reduction & feature
extraction in the context of signal processing.

e Chapter 3 explores chromophore-selectivity, or unmixing, in PARS through multi-
wavelength imaging. Firstly, unmixing is posed as an inverse problem, and a theoret-
ical forward model is constructed. Considerations and constraints are added to the
model to improve accuracy. A study seeking to optimally select wavelengths for given
pairs of chromophores is conducted. Finally, initial unmixing results are presented,
illustrating both the achievements and shortcomings of the proposed method.

e Chapter 4 discusses experiments and simulations involving stimulated Raman scat-
tering in optical fiber as a means of multi-wavelength light generation. This effect



is comprehensively studied in several fiber types. Measured results are compared to
expectations based on theory as well as simulated results.

Chapter 5 explores techniques for extracting information beyond what the cur-
rent state-of-the-art methods are able to from PARS time-domain signals. Imaging
contrast is improved, revealing tissue structures that otherwise lacked definition. A
feature extraction technique is developed, which enables differentiation and labelling
of various tissue structures.

Chapter 6 concludes the thesis and provides thorough insights and discussion re-
garding the direction of future work.



Chapter 2

Background & Literature Review

This chapter gives background and literature review on a range of subjects including general
photoacoustic microscopy, PARS microscopy, inverse problems, optical effects in optical
fibers, existing techniques for extracting information from PARS time-domain signals, and
finally dimensionality reduction & feature extraction in the context of signal processing.

Although this thesis is about developments towards chromophore-selectivity in PARS,
each contribution relies on background in other areas. For context, a broad background on
the photoacoustic effect, photoacoustic microscopy, and PARS is given before going into
the detailed background required for each of the works presented in this thesis.

2.1 Photoacoustic Microscopy

This thesis mainly focuses on addressing problems of unmixing and feature extraction
in Photoacoustic Remote Sensing (PARS) Microscopy, with applications of in-vivo blood
oxygen saturation estimation and virtual labelling of unstained tissue, rather than the
detailed physics underlying the photoacoustic effect and PARS. As such, this section seeks
to give the reader a broad background on the field of photoacoustic microscopy and to
present a model for PARS as a basis for understanding the measured PARS signals (as a
function of the target) that will be worked with throughout the thesis.

The photoacoustic effect was discovered in 1880 by Alexander Graham Bell [71]. This
discovery enabled the generation of acoustic waves from absorbed light. Based on this
effect, the field of photoacoustic microscopy (PAM) emerged [44, 45]. The premise is
that a modulated, highly intense light source is directed onto the target or tissue being
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imaged. Due to the intrinsic or extrinsic (added) absorption characteristics of the target,
a portion of the light is absorbed. This results in a localized rapid rise in temperature.
Thermo-elastic expansion ensues, resulting in the generation of ultrasonic waves. These
waves propagate to the surface of the target where they are measured using an ultrasonic
transducer [45, 72].

Generally, light from a pulsed laser is focused onto target in what is known as optical-
resolution PAM (OR-PAM) [73-76], whereby the imaging resolution is limited by the
focal spot size of the light beam. The case where the acoustic focus of the transducer
is tighter than the focal spot of the light beam is known as acoustic-resolution PAM (AR-
PAM) [77, 78]. To achieve greater penetration depth in the target, the modulated light
source can be made quite diffuse to provide wide-field illumination. This configuration is
known as photoacoustic tomography (PAT) [79-81]. Again, the resolution of the system is
determined by the ultrasonic transducer. Note that in all cases, an ultrasonic transducer,
physically coupled to the target through contact, is used to detect the induced sound waves.
This coupling is required because the acoustic impedance mismatch between tissue and air
is too great for effective sonic transmission in a non-contact manner.

The requirement for contact-based detection can be problematic. To accommodate this,
targets are often immersed in a coupling fluid such as water, or an ultrasonic couplant gel
is used. This is acceptable for certain situations — such as with smaller targets including
rodents where either a part or the whole of the animal can be immersed in water — but is
cumbersome at best for practical applications involving humans. Generally, PAM systems
for imaging thick tissues require a reflection-mode arrangement, where both the excitation
light and the acoustic detection system are placed on the same side of the tissue. This calls
for complex ultrasonic transducers, such as ring arrays [82-84], allowing the excitation light
to transmit through the central opening to the tissue. Furthermore, because the transducer
is in contact with the tissue, bulk is added, causing difficulty in intra-operative usages.

Several non-contact detection schemes have been proposed for measuring photoacoustic
pressures [50, 85-92]; however, the majority rely on interferometry to detect microscopic
vibrations at the surface of the tissue, imposing a significant limitation to the architecture.
The main limitation is a susceptibility to errors resulting from small changes in the optical
path length. When imaging living targets, subtle movements resulting from breathing and
even the pulse of the heart become significant. Photoacoustic Remote Sensing (PARS) [3,
50-63] pioneered by Parsin Haji Reza, is an all-optical, non-interferometric implementation
of photoacoustic microscopy. Much information is given in the seminal article [50]. PARS
offers a non-contact method of imaging absorption contrast, providing the benefits of PAM
without its disadvantages.
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Figure 2.1: A simplified schematic of the PARS microscope is shown here. Abbreviated
component labels are: Polarizing Beam Splitter (PBS), Quarter-wave Plate (QWP), Photo-
diode (PD), Long-pass Filter (LP Filter), and Data Acquisition Card / System (DAQ).
Briefly, light from both the excitation and detection lasers are combined (via the dichroic
mirror) before reaching the imaged sample. The back-reflected (notice direction of arrow-
heads) detection beam is directed to the photo-diode (using polarization, controlled by
the polarizing beam splitter and the quarter-wave plate), where it is measured as a time-
domain signal and recorded by the DAQ. Additional details are given in [50].

Briefly, PARS replaces the ultrasonic transducer of conventional PAM methods with
a co-focused continuous-wave laser, known as the detection laser. For reference, a sim-
plified schematic of the PARS microscope is shown in Figure 2.1. When excitation light
is absorbed, localized heating and subsequent pressure generation via the photoacoustic
effect occurs. The generated pressure and heat results in modulations to the local refrac-
tive index, thereby modulating the amount of back-reflected detection laser light. These
modulations are detected by a photo-diode and are recorded digitally by a data acqui-
sition (DAQ) card. Often, an in-line electronic band-pass filter is employed to remove
high-frequency noise and zero the DC level of the signals. More details regarding signal
formation are given in Section 2.1.1.



The absorption characteristics of biological chromophores (absorbers) vary by wave-
length, and can be quite specific [45, 72]. This means that specific chromophores can
be targeted by appropriately selecting the excitation wavelength. Examples of such chro-
mophores / bio-media include melanin, hemoglobin, DNA and lipids. Beyond structural
imaging applications, the ability to target specific chromophores enables functional imag-
ing, revealing information on physiological activity / parameters such as blood oxygen
saturation (sOs) [5]. Further background on this is presented in Section 2.2. Again, select-
ing specific chromophores based on their absorption requires the use of a multi-wavelength
light source. To produce multi-wavelength light, Stimulated Raman Scattering (SRS) [93,
94] can be used. This effect is introduced in Section 2.3.

2.1.1 Photoacoustic Remote Sensing Signal Formation

This section describes the formation of PARS signals. Understanding this mechanism is
important for Chapter 5, where the characteristics of PARS signals are analysed.

A PARS time-domain signal begins with the interaction between the focused continuous-
wave detection laser beam and the imaged target. Some of the light striking the target
is reflected backwards, propagating back through the microscope objective and making
its way to the detection photo-diode. The ratio of back-reflected light can be calculated
based on the intensity reflection co-efficient, R. In the ideal case of normal incidence on
the target,

No — Ny 2
No + Ny

(2.1)

for a medium with refractive index n; above the target (air, oil, or water), and a target
with refractive index ns.

When the excitation laser pulses, light is directed to the target, where a portion of that
light is absorbed, according to the absorption spectrum or absorption coefficient at the
excitation wavelength, p,(Ae;). When light is absorbed, energy is transferred to the target,
resulting in localized heating and subsequent pressure generation via the photoacoustic
effect [71]. The generated pressure and heat results in modulations to the local refractive
index, thereby causing modulations in the amount of back-reflected detection laser light.
If the refractive index is modulated by dn, then the modulation in the intensity reflection

co-efficient is ) )
Ng — Ny

N9 + Ny

ng + 0n — ny
ng + on + ny

AR = (2.2)




After some algebraic manipulation and approximations [50], this becomes

When a refractive index step is present at the boundary of the absorber, then the back-
reflected intensity modulations are approximately proportional to the modulations in the
absorber’s refractive index, dn, which itself is proportional to the generated initial pressure.
However, in the case that a refractive index step is not present, i.e., no—n; = 0, the intensity
modulations become dependant on higher-order terms beyond what the approximation in
equation Equation (2.3) shows [50].

The modulations in the back-reflected detection laser light are detected and electroni-
cally amplified by the detection photo-diode, before being sampled over time and recorded
digitally by a data acquisition (DAQ) card. For the purposes of forming an image, these
signals need to be projected to scalar values. On page 24 of Section 2.4, conventional
projection methods are described.

In more detail, the change in refractive index, dn, is described by the elasto-optic rela-
tion [50, 95], and is dependent on several parameters including the elasto-optic coefficient,
n (about 0.32 for water), pressure, p(x,t), at position x and time ¢, mass density, p, and
the speed of sound in the medium, v,. According to the elasto-optic relation,

nip(x,t
5 = AP E) (2.4)
2pv7
Note that the initial photoacoustic pressure, pg, is a function of the optical excitation
fluence, ¢.,, the optical absorption coefficient, u,, and the material-dependant Gruneisen

parameter, I, [5] such that

po = Ddepfta- (2.5)
If one considers optical absorption saturation — a non-linear effect, normally seen as a
limitation within the field of PAM, but that has been taken advantage of to aid in blood
oxygen saturating estimation [96] — the optical absorption coefficient can be modified to
Hao
a = 9 26
Mo =17 T (2.6)

for nominal absorption, i, optical intensity, /, and saturation intensity, Iq.

Overall, Equations (2.3) to (2.6) can be combined to form a generalized model describing
the modulations in the back-reflected detection laser light:

e, | 0
nnil'o (1 T I]
AR ~ sat (

2pv2

ny — na). (2.7)
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While this model provides more detail than is often practically usable, given that many
of the material properties are unknown in applications where PARS is used, it is provided
here for completeness.

2.2 Inverse Problems and Unmixing

This section discusses the theory of forward and inverse processes, and specifically deriving
inverse models for the purpose of estimation [97-102]. The theory discussed here is applied
in Chapter 3 where chromophore unmixing for PARS is explored.

General Inverse Problems

Consider a physical process whereby some underlying information or characteristics deter-
mine or lead to other observable characteristics. This is known as a forward process [97].
The underlying information is often referred to as the state, represented here by x, and the
observations or measurements are represented here by y. For example, consider a wooden
bar on a xylophone. The bar has some characteristics — the size or shape, thickness,
stiffness, density, etc. — which determine how it will vibrate when struck by a mallet. The
forward process here is the manifestation of the characteristics of the bar in the sound the
bar makes when played.

Forward problems are closely related to forward processes and perhaps differ only tech-
nically. Given a model, f(x), a mathematical description of a forward process, the act of
predicting the observable characteristics is a forward problem. Continuing with the same
example, the forward problem would be the act of predicting the sound a xylophone bar
would make when it is struck, based on the knowledge of its underlying characteristics
(geometry, stiffness, etc.), . Forward problems tend to be relatively straightforward in
the sense that if an accurate model is available, predicting derived quantities (i.e., an es-
timate 7/, denoted by the hat symbol above) is as simple as direct evaluation of the model
y=flz).

By contrast, inverse problems are the act of inferring the underlying characteristics of
some physical system based on observations produced through a forward process [97]. This
would be the act of estimating the underlying characteristics, x, of a xylophone bar based
on an observed sound it made when struck, y. Inverse problems tend to be relatively diffi-
cult. Almost no forward processes are invertible; however, most inverse problems are still
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tractable and estimated solutions can be found. In general, models are only an approxi-
mation of the real world, neglecting (losing) some information. Mathematically, functions
(forward models) are invertible if and only if they are injective and surjective (i.e., bijec-
tive), meaning that they are one-to-one on their domain. For example, if f(z;) = f(z;) for
x; # x;, then f(x) is not invertible, and the information differentiating x; from z; is lost.
Note, mathematical problems where a unique solution exists are referred to as being well-
posed, whereas problems that either have no solution or have many (non-unique) solutions
are termed ill-posed [97]. Additionally, noise, v, is often present in measured observations,
ie,y= f(x) = g(x) + v, thus corrupting the observations to some extent and presenting
an additional challenge. In any forward process that removes information (either because
it is not bijective, or because noise is present), the forward model is not invertible. In these
cases, the inverse problem is approached by estimating the solution.

Unmixing Problems

A class of forward processes exists, known as mixing problems, whereby several signals,
perhaps represented as entries of a vector, ¥ = [z1, .. ., xn}T, are combined and are observed
as a mixed signal: y = f(Z). A simple example of this would be several sounds occurring
at once and being heard together. In this case, the forward process, f(), often referred to
as a mixing model, would be well represented as a weighted sum of the individual sounds /
signals,

f(Z) = Zﬁiiﬂz‘, (2.8)

with weights, 3;, determined, for example, by the proximity to the sound source. In fact, a
classical example of this is The Cocktail Party Problem, defined initially by E. C. Cherry
[103, 104] and studied by many others [105, 106]. Imagine that at a cocktail party there are
many people standing around talking. Our ears pick-up everyone’s voices at once; however,
if we try to listen to any particular person, our brain is amazingly capable of ignoring the
other voices and somewhat isolating the single speaker we wish to hear (i.e., isolating just
one of ;). Here, the forward (mixing) process is the sonic combination of everybody’s
speech, and the inverse problem is the isolation of a particular speaker’s voice. The inverse
problem of isolating components of a mixed signal is referred to as signal unmizing.

As was mentioned, the goal when solving inverse problems is to isolate the individual
components of a mixed signal. More specifically, in the case that the characteristics of
each of the constituent parts is known ahead of time (prior information), the goal becomes
to estimate the abundance, or relative abundance, of each constituent part. In PARS,
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generally the concentration, expressed as ¢; for absorber 7, rather than abundance as such,
is desired. Thus, in the context of PARS, we replace ¥ with ¢. For example, for oxyhe-
moglobin, HbOs, the concentration would be expressed as cpgpo,. Note that concentration
is related to abundance through the volume of a defined region, assuming concentration is
homogeneous in the region. For abundance a and volume V', the concentration is ¢ = a/V.
In the context of PARS, the region can be thought of as the excited region within a sample.

The type of information generally available beforehand when solving inverse problems
is the spectral characteristics of the targets. In daily life, we can relate this concept to
the colour of objects around us, and our ability to discern, separate, or unmix them; for
example, telling ripe vs. unripe fruit apart based on their colour. Another excellent ex-
ample is discerning the instruments heard in a song. Each instrument has unique spectral
and time-varying characteristics, known as the timbre, largely determined by the relative
strengths of the harmonics of the fundamental tone being played. In the context of photoa-
coustic microscopy, where the main contrast mechanism is based on optical absorption, the
targets’ absorption spectra are the main characteristic by which they may be discerned.
By definition, for a single chromophore, the absorption coefficient, ,, is

[ = EC, (2.9)

for optical extinction € and concentration c¢. The absorption coefficient is often expressed
as a function of wavelength, A, thereby defining the absorption spectrum, p,(A). The PARS
microscope effectively samples the combined absorption of several chromophores spectrally
at the excitation wavelength, \.., constituting a forward (mixing) process. Two relevant
absorption spectra are those of oxy- and deoxyhemoglobin, for which the molar extinction
spectra, (), are shown in Figure 2.2,

Due to the duality between spectral and temporal or spectral and spatial measurements,
in many cases, either long integration-time measurements or multiple measurements are re-
quired to resolve spectral characteristics. In other words, generally speaking, the temporal
and the spectral sensitivity of any instrument are inverses of each other, related to the fun-
damental limitation referred to as the uncertainty principle [108]. The PARS microscope
has spectral sensitivity determined by the spectrum of the excitation laser used. Gener-
ally, a narrow-band excitation is used, thus allowing for precise sampling of the absorption
spectra of targets. However, to reveal information from more of the absorption spectra,
and to ultimately discern target absorbers, additional measurements at other excitation
wavelengths are required. Chapter 4 studies Stimulated Raman scattering, a means of
generating broad, comb-spectrum light from a narrow-band light source, namely a 532 nm
laser. The peaks from the generated comb-spectra can be isolated via band-pass filtering
for the purpose of spectral sampling in PARS and subsequent unmixing.
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Figure 2.2: The molar extinction spectra of oxyhemoglobin (red) and deoxyhemoglobin
(blue). Note that the absorption coefficient, p,, is related to extinction, €, through con-
centration, ¢, via Equation (2.9). Data sourced from [107].

Unmixing with PARS

As was explained, the forward process in PARS is the measurement of optical absorption.
Equation (2.9) defines the absorption coefficient for a single absorber; however, in practice
(especially in situations where unmixing is desired), there are several absorbers present.
To accommodate for that, Equation (2.9) can be modified to include the contributions of
several absorbers via a sum, weighted by the concentration of each absorber. Thus, the
combined absorption coefficient is

Mo =Y i, (2.10)

for absorbers indexed by ¢. Note that up to an arbitrary proportionality constant, «,
wholly dependant on the characteristics of the specific PARS microscope used, the PARS
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signal amplitude, s, (left without concrete definition here), is equivalent to the combined
absorption: s = ay, = ia, where the notation, =, signifies equality for some arbitrary
proportionality. A suitable definition for the PARS signal amplitude is not inherently
obvious and is touched upon in Section 2.4 and further explored in Chapter 5 in the
context of feature extraction and in Section 6.1 as future work. Equation (2.10) forms
a basic forward model for PARS. Again, as was explained, to gain information encoded
by the absorption spectra of the targets, imaging at multiple excitation wavelengths is
necessary. Thus, to extend Equation (2.10) such that PARS measurements are made at
multiple wavelengths, a matrix-based representation is used,

fta( A1) er(M) rog(h) e En(M) | [
5’% _'a - MG(A]) = 51()\j) G|, (211)
| a(Am) | [ e1(An) - en(Am) | [Cn]
or more simply,
5= ji, = EC. (2.12)

E is a matrix of extinction coefficients; however, in the context of general unmixing prob-
lems, it is referred to as the mizing matriz, describing how the underlying sought-after
variables (¢;) are mixed or combined in the observed measurements. Framing PARS as a
general mixing / unmixing problem, we have the forward model defined as

§= f(¢) = E¢. (2.13)

To solve, if the forward model is invertible, the matrix inverse can directly be applied.
In this case the estimated concentrations, ¢, would be given by

Z=E"3 (2.14)

If the system is over-constrained (more measurements than unknowns), then the pseudo-
inverse [109-111] can be applied to produce an estimate,

o

— E*3, (2.15)

analogous to a best-fit solution. Note that the problem may be ill-posed, in the case that
measurements are not consistent with the forward model (no solution exists); however, the
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pseudo-inverse, as in Equation (2.15), can be applied, yielding the closest solution that is
consistent with the forward model. Another way the problem may be ill-posed is if the
system is under-constrained — meaning that too few measurements are present relative to
the degrees of freedom, and therefore the system has (many) non-unique solutions. Again,
the pseudo-inverse can be applied in this case, yielding in the least-norm solution from
the set of all solutions [97]. Alternatively, constraints based on knowledge of the problem
could be included to arrive at an improved estimate. A solution via Tikhonov regularization
can then be employed [112, 113] by reformulating as a least squares problem with added
constraints. The solution would be found by minimizing an expression of the form

Z = arg mm{ |5 B+ wi\I/,-(E)}, (2.16)

for constraint weights w; and functions W;() imposing constraints on ¢.

Real-world targets imaged by a PARS microscope, especially in future clinical / pre-
clinical settings, are complex in the sense that they are composed of many chromophores,
each with their own absorption characteristics. To extract clinically relevant information
from the PARS images of such targets, chromophore-selectivity is necessary. In histological
tissue samples, when imaged using a 266 nm (UV) excitation laser, the extreme contrast
between the absorption peak of DNA at UV wavelengths and the absorption of other
chromophores means that the images dominantly show DNA, or cell nuclei, contrast. This
contrast resembles that of hematoxylin staining, which normally colours cell nuclei a purple-
blue [68]. To mimic H&E staining, contrast from cytochromes in the extracellular matrix is
required. This remains a challenge that may be solved through multi-wavelength imaging
and subsequent unmixing. As mentioned in the introduction (Chapter 1), one of the main
applications areas of PARS where unmixing is required is the estimation of blood oxygen
saturation (sOg) at the scale of micro-vasculature, and in-vivo. This has an abundance of
applications in the field of ophthalmology [64, 114-117], as well as cancer-related [65, 6]
and pharmaceutical research [67]. Although the act of calculating sOs is rather trivial,

§0p = — 02 (2.17)
CHbO, T+ CHb

the real challenge here is in estimating the concentrations of HbO, and Hb.

The task of estimating sO, has been approached for more than a decade by many
research groups within the broad field of photoacoustic microscopy [3, 62, 63, 79, 96,
118-130]; however, nearly all reports use contact-based PAM. Indeed, many advancements
have been made with PAM including in-vivo real-time functional sOy measurement [122]
and highly detailed single red blood cell sOs imaging [121], able to resolve sub-cellular
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details. Nonetheless, reviews [79, 123] on the subjects of unmixing and functional photoa-
coustic microscopy explain that many challenges still remain, including spectral colouring
(whereby excitation light is absorbed by chromophores other than hemoglobin, degrading
measurements of blood oxygenation), noise from detection electronics, image reconstruc-
tion artefacts, laser power fluctuation, and animal motion. All of these challenges exist for
sOy estimation with PARS and will need to be addressed as the technology is developed.

In contrast to the large quantity of work on sOs estimation using contact-based PAM,
relatively few reports [3, 62, 63, 118-120] using PARS (non-contact) have been made. The
author of this thesis was involved with most of these. Given that PARS was only recently
pioneered, sOy estimation remains a challenge that requires further research and devel-
opment. Chapter 3 broadly explores chromophore unmixing in PARS and in Section 3.3
applies the developments to in-vivo sO, estimation.

2.3 Optical Effects in Optical Fibers

This section discusses several optical effects which occur in optical fibers. The study of one
particular effect, stimulated Raman scattering, is the primary subject of Chapter 4 due
to its utility in producing multi-wavelength light, enabling multi-wavelength imaging. In
Chapter 3, the use of stimulated Raman scattering for multi-wavelength imaging in PARS
is discussed.

It is assumed that the reader has a basic familiarity and understanding of optics when
reading this section; however, if not, [131, 132] are good starting points.

2.3.1 Optical Fiber

Optical fiber is a thin cylindrical conduit for light, which allows light to propagate from one
end to the other based on the principle of total internal reflection. More specifically, optical
fibers act as wave-guides for light. Optical fibers have an internal core at one refractive
index (n;), a cladding surrounding it at a smaller refractive index (ng, where ny > ns),
and finally a protective sheathing or jacket on top of that. Fibers of this type are called
step-index fibers, but graded-index fibers are also available, in which the refractive index
from the core to the cladding changes gradually. In this thesis, only step-index fibers are
used. Generally, optical fibers are made from fused silica with added dopants, used to alter
the refractive index in the core and cladding.
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As light propagates through optical fiber, some power is lost. These losses are char-
acterized by the fiber attenuation. Fiber attenuation is mostly due to Rayleigh scattering
caused by non-uniformities frozen into the fiber [94]. The Rayleigh cross section has 1/\*
dependence [133], meaning that for short wavelengths Rayleigh scattering and attenuation
is high, whereas for near-infrared (NIR) and infrared (IR) it is relatively low. This makes
optical fiber more suitable for IR transmission, hence the widespread use of IR for dig-
ital optical communication. Interestingly enough, this is also the dominant reason that
the sky appears blue: short-wavelength light such as UV and blue light are scattered,
whereas other wavelengths are transmitted. Furthermore, sunrises and sunsets are reddish
because we observe light that has transmitted through a large section of the atmosphere,
causing short-wave components to be scattered (removed), leaving behind only the long-
wave components we see as orange and red. Regarding attenuation in optical fiber, in
addition to Rayleigh scattering, there are other factors such as molecular absorption with
specific absorption bands associated with various bonds; however, these details are of little
importance for the work presented in this thesis.

Formally, fiber attenuation is defined based on the following. For power, F,, at the
proximal end of a fiber of length L, the transmitted power (observed at the distal end),
Pr, is given by

Pr = Pyexp (—al), (2.18)

where « is the attenuation constant of the fiber, encapsulating losses from all sources. It
is common to report attenuation in units of dB/km, using

10 Pr
Qg = —flog10 (E) ~ 4.343¢, (2.19)

to relate aqp to a [94].

Another effect which occurs in optical fibers is chromatic dispersion: the separation
of light by wavelength or frequency. This is most readily seen in white light, separating
into its constituent wavelengths after transmission through a prism, or through droplets of
water in the formation of rainbows. This is also a major effect in lenses where, generally,
designers attempt to mitigate it for improved image quality. Essentially, the index of
refraction has wavelength-dependence, meaning that light of different wavelengths travels
at different speeds within any given medium and thereby splits. In optical fibers, this
means that a multi-wavelength pulse of light travelling down the fiber will separate by
wavelength, each arriving at the end of the fiber at slightly different times. In most media,
longer-wavelength light travels faster than shorter-wavelength light. This is called normal
chromatic dispersion. It is also possible for the opposite to occur, which is called anomalous
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chromatic dispersion. Chromatic dispersion in optical fibers tends to present itself as an
issue for relatively short pulses travelling in relatively long fibers. As will be discussed
in Chapter 4, this effect becomes significant for pico-second-scale pulses in fibers longer
than 1 m, but it is generally not significant for nano-second-scale pulses in fibers as long
as 100 m [94]. This effect is prominent in digital optical communication, where fibers are
significantly longer than those used and discussed in this thesis.

Due to the wave-nature of light, propagation in optical fibers occurs in vibrational
modes of the electro-magnetic field. These vibrational modes are much akin to those of a
drum-head, an elastic membrane stretched over a circular rim. The motion of the mem-
brane is constrained at the edge / rim, thus causing vibrational waves propagating outwards
from the center to be reflected back inwards, leading to resonance and the emergence of
characteristic vibrational modes based on the geometry and mechanical attributes of the
membrane. Much like the rim of a drum, an optical fiber constrains the vibrations in the
associated electro-magnetic field (light), thus confining the waves to the inside of the fiber
and again leading to the emergence of characteristic vibrational modes determined by the
wavelength of the propagating light, the geometry of the fiber, and the refractive indices
of the core and cladding (akin to the mechanical impedance of a drum head and the rim).
For sufficiently narrow (small radius) cores or correspondingly large wavelength light, only
the fundamental mode will propagate. This is referred to as single-mode operation. Where
multiple modes propagate is referred to as multi-mode operation.

2.3.2 Raman Scattering

Generally, refractive index is thought of as having real and imaginary parts, describing
the speed and attenuation of a light wave as it travels though a given medium, and is
dependant on the vacuum wavelength () or equivalently, the angular frequency (w). This
is valid for linear scattering processes such as Rayleigh and more generally, Mie scattering.
However, all dielectrics become non-linear for intense electromagnetic fields, and thus there
exists an intensity-dependence of the refractive index. This is explained by higher-order
(namely third order in the case of silica) electric susceptibility terms [134]. This non-
linearity gives rise to non-linear scattering, where the scattered wavelength is not equal to
the incident wavelength. In addition, inelastic scattering is also possible, where energy is
transferred from the optical field to the medium, which is inherently a non-linear process
(meaning the wavelength changes here too). Raman scattering is an example of inelastic
scattering, whereby an incident photon (referred to as pump radiation) is annihilated to
create a photon at a lower frequency (referred to as Stokes radiation) and an optical phonon,
vibrational energy gained by the non-linear medium. This effect was discovered by C. V.
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Figure 2.3: Jablonski diagrams of Spontaneous Raman Scattering (left) and Stimulated
Raman Scattering (right) Processes. In the spontaneous case, a single pump photon inter-
acts with the medium, resulting in a single Stokes photon being emitted. In the stimulated
case, a pump and Stokes photon interact simultaneously with the medium, resulting in two
Stokes photons being emitted.

Raman in 1928 [93]. This process is illustrated quantum-mechanically via a Jablonski
diagram in the left panel of Figure 2.3.

The process of Raman scattering naturally occurs, in a spontaneous manner, scattering
a small fraction of photons, corresponding to a factor of roughly 10 of the optical power
[94]. In this case, it is referred to as Spontaneous Raman scattering. The Raman gain
spectrum, gg(€2), describes the pump-to-Stokes conversion as a function of frequency shift
from pump (incident) to Stokes (emitted) waves, Q = w, —ws. Figure 2.4 shows the Raman
gain spectrum for fused silica, the base-material found in optical fibers. The Raman gain
spectrum of optical fibers varies depending on the specific dopants used [94].

The Raman gain spectrum of many media has relatively narrow-band peaks, enabling
Raman scattering as a spectroscopic tool. This is known as Raman spectroscopy [136—138].
In contrast to this, the Raman gain spectrum of fused silica is fairly broad, as a result of
the amorphous (rather than crystalline) structure of fused silica, which in turn causes the
spreading of molecular vibration frequencies and a broad Raman gain spectrum [139].

19



09 _

0.8 - _

0.7 - b

0.6 b

05 _

Raman Gain (normalized)

0 500 1000 1500
Frequency Shift (cm")

Figure 2.4: The Raman gain spectrum, gg(2), of fused silica specifies the rate of conversion
per unit length for specific frequency shifts, 2. Plot adapted from [135]. This can be
thought of as being analogous to the likelihood of specific frequency shifts occurring as
a result of Raman scattering. Notice the dominant peaks at a shift of roughly 400 cm™!
or 13 THz. The gain spectrum is normalized such that gr = 1 x 1073 W/m at a pump
wavelength of A, =1 pum. Note that g scales inversely with A,,.

In addition to the spontaneous case, stimulated emission is also possible, whereby a
pump and a Stokes photon interact simultaneously, causing two Stokes photons to be
emitted. In this case, the rate of pump-to-Stokes conversion is greatly increased compared
to spontaneous Raman scattering [94]. This process is illustrated in the right panel of
Figure 2.3 and is referred to as Stimulated Raman scattering (SRS).

The growth of the Stokes wave intensity, /4, over distance, z, can be described by

dI
dz

where [, is the pump intensity. Additional effects of attenuation and the loss of pump
intensity as a result of SRS conversion to the Stokes wave are at play however, and affect
the SRS process. Attenuation has already been described in Equations (2.18) and (2.19).
The decrease in pump intensity as a result of SRS conversion to the Stokes wave is equal
and opposite to the intensity growth, of Equation (2.20), in the Stokes wave, adjusted for
the change in frequency (noting that photon energy, £ = hw, is proportional to frequency,
and thus for single photon changes in frequency, the change in energy and thus wave

= gR[pIsa (220)

20



intensity must be proportional to the ratio of frequencies, before and after). By including
these effects, Equation (2.20) becomes the coupled differential equation

dl,
= gR]pIs - 053187
dz
4l N (2.21)
d_zp = —w—igRIpls — oy,

for attenuation constants oy, and o for pump and Stokes frequencies respectively.

In optical fibers, SRS can arise as a result of spontaneous Raman scattering. If high-
intensity light causes even a few photons to be Raman shifted, those Stokes photons can
then induce stimulated Raman scattering, continuing the process, creating more and more
Stokes photons. Raman scattering, and even more so stimulated Raman scattering, is not
noticed in every-day life because of the dependence on intensity for these non-linear effects
to become prominent. Optical fibers however, create a fairly ideal scenario for Raman
scattering and SRS to occur for two reasons:

1. light is confined to a small cross-sectional area (roughly the area of the core for
single-mode operation), meaning that the intensity is greatly increased, and

2. fibers allow light to propagate over long distances, making for long interaction lengths
and increased probability of initial Raman scattering and subsequent stimulated Ra-
man scattering.

If the intensity of the Stokes wave becomes great enough, photons of the Stokes wave
may themselves be Raman shifted, creating a second, higher-order Stokes wave. This
creates a cascading effect, whereby each new Stokes wave acts as a pump, leading to the
creation of additional higher-order Stokes and resulting in a comb spectrum.

As was already described, chromatic dispersion in optical fibers causes light of different
wavelengths to separate. This can limit the cascading effect, because the SRS process
requires both the pump and Stokes waves (different wavelengths) to overlap within the
fiber. Chromatic dispersion manifests itself as a mismatch in group velocity between the
pump and Stokes waves, vy, and vgs. The length over which the pump and Stokes waves
overlap, called the walk-off length, Ly, can be calculated as

Ly = T0/|7{(Zol — v;sll

(2.22)

Y

where Tj is the temporal pulse width. Generally, pulse walk-off is not a strong effect except
for the cases where long fibers (hundreds of meters) or short pulses (pico-second-scale) are
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used. For nano-second-scale pulses, walk-off lengths are generally greater than 100 m,
longer than the fibers worked with in Chapter 4.

Other non-linear optical effects are known to compete with SRS. In particular, for
pulses in the nano-second range or longer, Stimulated Brillouin Scattering (SBS) is the
main competing effect, causing light conversion to backwards propagating waves [94, 140].
This effect is fairly insignificant for pulses near to 1 ns, likely having a minimal impact
on the studies described in this thesis, where 1.5 ns and 3 ns pulses are used. For sub-
nano-second pulses, the effects of SBS are effectively eliminated; however, other 3"¢ order
non-linearities such as self-phase modulation (SPM) [141], cross-phase modulation (XPM)
[142], and four-wave mixing (FWM) [143] become the dominant competing effects [94].
These effects will become significant in Chapter 4 where the effects of laser parameters on
multi-wavelength generation through SRS are explored.

SRS in single-mode optical fiber has been well-studied by the physics and optics com-
munity. Significant works and findings include:

e measurement of the Raman gain spectrum [144],

e the notion of critical power [145] (input pump power such that Stokes equals pump
intensity),

e a reduction in critical power by up to a factor of 2 through by using polarization-
maintaining fiber [146],

e coupled SRS simulation and experimental validation [147, 148]

e transient modelling of SRS, showing a femto-second time-response [149, 150],

e studies on the effects of temperature on SRS, showing colder temperature are gener-
ally yield more stable and higher-order Stokes waves [151, 152],

e high-order Stokes wave generation [153], and

e studies on pico-second SRS using infrared light, which show temporal pulse erosion
and separation [154—156], an effect observed through simulation later in this thesis,
in Section 4.3.2.

Within the field of photoacoustic microscopy, SRS has found significant use in multi-
wavelength imaging applications. The first use in PAM [157] proved effective by enabling
coloured ink to be differentiated by using multiple excitation wavelengths. Later, the same
research group increased the range of generated wavelengths by employing a large mode-
area photonic crystal fiber [158]. SRS has also been used to generate several wavelengths
for the purpose of multi-focus imaging [159], taking advantage of chromatic aberration in
refractive objective lenses. Most prominently, SRS is used in PAM for functional in-vivo
imaging applications [122, 160, 161]. Indeed, within this thesis, Chapter 3 explores the
use of multi-wavelength imaging in PARS to enable chromophore-specificity and functional
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imaging, and Chapter 4 comprehensively studies SRS for the purpose of creating such a
multi-wavelength excitation source for PARS or other imaging modalities.

2.4 PARS Time-Domain Signal Information Extrac-
tion and Dimensionality Reduction Techniques

While Section 2.1.1 described the formation of PARS signals (observed as time-domain
signals), this section discusses the state-of-the-art methods for extracting information from
these signals. Understanding this mechanism becomes critical in Chapter 5 where the shape
and characteristics of the time-domain signals are analysed. Additionally, the subjects of
feature extraction and dimensionality reduction [162-166] are discussed and become the
foundation for the methods developed in Chapter 5.

Before introducing the standard methods of extracting information from PARS time-
domain signals, some notation is established to give the broader problems of feature ex-
traction and dimensionality reduction context. For given measurements / data, z; € R”
(i.e., n-dimensional data), it is desirable to extract meaningful information y; € R™ from
it. Abstractly, this is achieved through some transformation, g(), such that

Ui = g(Ti). (2.23)

Nearly always, the extracted information, y; is of a lower dimension than the original mea-
surements, i.e., m < n. In this case the process is referred to as dimensionality reduction.

As part of the PARS mechanism (schematic shown in Figure 2.1), optical signals in
the back-reflected light of the detection laser carry information to a photo-diode, which
converts this signal to an electrical one that is then recorded via a data acquisition (DAQ)
card. This constitutes the measurement of PARS time-domain signals. Once this is done,
the next step in the image formation pipeline is to extract information from these TD
signals. Converting the time-domain signals to scalar values is referred to as time-domain
signal projection [50] and is a very extreme case of dimensionality reduction. In the context
of the abstract information extraction formulation of Equation (2.23), the dimensionality
of the extracted information is m = 1. Conventionally, in prior reports of PARS [50, 70,
167], projection has been achieved using either one of two methods:

1. Hilbert Transform, or

2. Maximum minus Minimum of the signal.
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Both of these approaches seek to produce values that are proportional to the amount of
absorbed energy — a logical objective, given that imaging contrast in PARS is based on
optical absorption.

The first method, the Hilbert Transform [168], has been used in a variety of other modal-
ities before its use in PARS, in cases where a signal envelope is desired. Some such modali-
ties include ultrasound imaging [169—171], optical-coherence-tomography (OCT) [172-175],
and OR-PAM [176-178]. From the Hilbert Transform, the amplitude of the envelope can
be extracted by means of evaluating the maximum minus the minimum. Explicitly, for
PARS TD signal, s(¢), and Hilbert Transform represented by H{-}, the projection is

Projgipet ($(1)) := max (H {S(t)}) — min (H {s(t)}) : (2.24)

Computing the Hilbert Transform, especially as many as several millions of times to recon-
struct a PARS image (which may have 20 million time-domain signals, one associated with
each pixel) is a computationally expensive task and tends to yield results fairly similar to
those of the second method, Maximum minus Minimum.

The Maximum minus Minimum of the signal is an intuitive method for finding the
amplitude. The projection is defined explicitly as

Projyray - vin(s(t)) := max (s(t)) — min (s(t)) . (2.25)

Computationally, it is much less expensive than the Hilbert Transform method, making it
more suitable for real-time imaging applications. Nonetheless, this method is inherently
sensitive to outliers and noise (the extreme values of a signal could very easily be outliers
or simply a result of noise), giving rise to some negative aspects of its performance.

The most fundamental shortcoming of both the Hilbert Transform method and the
Maximum minus Minimum method is that they reduce entire (high-dimensional) TD sig-
nals simply to scalar representations. This is very extreme dimensionality reduction, surely
discarding much of the information present in TD signals. Additionally, with only a scalar
representation, almost no insight or specific information about the target can be identified
after projection. Therefore, there is an unmet need for improved methods for extracting
information from PARS TD signals that reduce the dimensionality while retaining the
potentially very useful information contained within the TD signals.

State-of-the-art methods [179-181] in the broader field of photoacoustic microscopy
seek to extract additional information beyond simply the signal amplitude. Continuing
with the abstractly defined information extraction formulation in Equation (2.23), the
dimensionality of the extracted information can be m > 1. Doing this allows for some
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level of target specificity post-imaging. These methods are mainly based upon frequency
selectivity and principal component analysis (a broadly applicable technique in signal /
feature analysis which will be touched upon later in this section on page 27). Article [179]
demonstrates a frequency-selective method for contact-based photoacoustic microscopy
and tomography. The results show that the spectral power distribution varies with the
size of the absorber. Smaller targets (micro-beads, vessels, etc.) tend to exhibit signals of
higher frequency content, whereas larger targets tend to exhibit signals of lower frequency
content. The method was applied in-vivo on a zebrafish larva to select vessels by diameter.
Articles [180, 181] propose a feature extraction method for PARS whereby a filter-bank
of 20 1-MHz bandwidth band-pass filters are applied to the measured PARS time-domain
signals. The filtered signals are then projected via the Hilbert transform projection, defined
in Equation (2.24). This results in a feature vector, 20 elements long, for each time-domain
signal. Principal component analysis is then applied to the set of feature vectors. The top
two principal components are extracted, and the claim is made that the first component
corresponds to parts of the image that would be stained by eosin (from H&E staining)
in histological tissue samples, and that the second component corresponds to parts of the
image that would be stained by hematoxylin. Through this method, PARS images of tissue
can be false-coloured to resemble the results of H&E staining.

For the remainder of this section, the general subjects of dimensionality reduction and
feature extraction are discussed, providing the reader with a basis of understanding for the
methods applied in Chapter 5.

2.4.1 Dimensionality Reduction

Dimensionality reduction [165, 166] is a useful set of techniques for analysing and interpret-
ing high-dimensional data: tasks which are difficult in the original high-dimensional space.
To better understand what that means, consider the contrived example of a data analy-
sis problem where a measured signal exists approximately on a plane (with added noise),
embedded in 3-dimensional space. Although it may be possible to view and interpret the
measured data through the use of 3D plotting tools, it would be much easier to directly
view it in 2-dimensions, the underlying dimensionality of the information present. Thus,
dimensionality reduction allows relatively complicated data to be reduced to a smaller set
of representative variables.

Using the same notation as in Equation (2.23), for data points, 7; € R", in high-
dimensional space, dimensionality reduction techniques seek to find a low-dimensional
representation, ¢; € R™, such that m < n. One common approach for dimensionality
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reduction is feature learning and subsequent feature extraction. This method encompasses
regression-based analysis techniques [165, 166]. Perhaps the best known and simplest
version of this is linear regression analysis [182, 183] seeking to mathematically relate a de-
pendant variable (often experimentally measured) to several independent variables (often
enforced or set during experimental data collection). In the context of the formulation in
Equation (2.23), the dependent variable would be ¢ whereas the independent variable is 7.
For simplicity in explanation, the dependant variable will be considered to be scalar (i.e.,
the dimensionality of ¢/ is 1, and thus can be denoted y = ¥); however, this is not necessary
for more general cases. The independent variable, ¥, can be thought of as being composed
of many individual independent variables, such that & = [y, ... ,xn]T. Here, a model is
assumed — for the simple case of linear regression, it is of the form y = Gy + Z?:l Bjx;+e,
where 3; are model parameters and ¢ is an error term, which must be included in the
model to account for any error due to noise between the values of the measured data and
the relationship imposed by the model (which is chosen to accurately approximate the
underlying relationship of the two variables). Note, for completeness, if m > 1 were de-
sired, then a matrix implementation of the model would be used and would be of the form
Y= 50 + BZ + £, for offset term, 50, matrix of weights, B, and error, £.

Estimates of the model parameters, Ej, can be learned or statistically inferred using a
variety of approaches — the most common and well-known of which is the least squares
error regression [184, 185] — assuming training data are available in the form of paired
data of the form (y;, Z;). Finally, once estimated values for the model parameters have been
deduced, any data point comprised of the independent variables, & = [z1,... ,a:n]T, can
be concisely represented by a single scalar value y = ¢(¥) = Bo + Z?Zl f)’\]x] This means
that information in the data, previously represented through n variables / dimensions, is
reduced to a representation by a single scalar variable. Thus, the dimensionality of the
data is reduced through this representation.

Tasks of feature learning and feature extraction are often more complex than this
[162-166]; however, the underlying concept is always that for an imposed model, learning
the model parameters, whether they be cluster centroids in the case of an unsupervised
clustering problem or regression coefficients in the case of a supervised learning problem, is
referred to as feature learning. After this step is complete, the act of actually representing
high-dimensionality data in a lower dimensional space, whether that be evaluating cluster
membership or evaluating a linear regression model, is referred to as feature extraction.
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2.4.2 Dimensionality Reduction via Feature Elimination

Another class of dimensionality reduction techniques involves feature elimination. This
type of strategy is often used when relatively few dimensions in the data are significant,
eliminating (i.e., omitting) the other less significant dimensions.

A prime example of this approach is Principal Component Analysis (PCA) [186-191].
PCA effectively works by evaluating the covariance of a set of data points. Due to the
symmetry of the covariance matrix, an alternate rotated basis for the data is implied. This
basis has directions aligned with the directions of maximal covariance in the data. These
are referred to as the principal components of the data. The principal components are then
ranked by covariance, with the underlying assumption that dimensions of greater covariance
contain more valuable information as opposed to directions of lower covariance which are
thought to contain mostly noise. The top few principal components are chosen, and the
data are projected onto those directions, using them as a new basis. Note that the number
of principal components selected to be kept is left to the discretion of the analyst; although
several well-established techniques are available for selecting a suitable number, including
various statistical tests, the Akaike information criterion [192], or simply selection based
on a threshold of total variance [191, 193, 194]. The other principal component directions
are thus eliminated, leaving the data in only the directions of greatest covariance, creating
a lower dimensional representation of the data set.

Note that the principal components are in no way representative of the information
underlying the data. Suppose a forward process, f(), exists whereby underlying informa-
tion, Z, is represented as observed data, ¥ = f(Z). For a set of observations, {Z;}, PCA
can be performed; however, the directions of the principal components (basis vectors onto
which the data, ¥;, is projected to produce the lower-dimensional representation, ¢;) do
not directly relate components of i to components of Z, the underlying information. In-
stead, components of i are simply mixtures of the data, 7;, along the directions associated
with maximal variance. Also note that by reducing the dimensionality of the data, infor-
mation will almost certainly be lost, and there may be no way to recover the underlying
information, Z, from #; even if the forward process, ¥ = f(Z), is invertible.

In more detail, PCA evaluates the covariance of a set of p centered data points, {Z;}}_,,

arranged into an p x n data-matrix, X = [3?1 :Ep]T, for data points, in n-dimensional
space. The covariance can be thought of as being represented by a hyper-ellipsoid [195],
where the size of the hyper-ellipsoid in any given direction represents the covariance in
that direction. The covariance is computed in the form of a matrix, C' = p%lXXT.
By performing an eigen-value decomposition, the covariance matrix can be written as
C = WAWT [189] (orthogonal diagonalization is possible here due to symmetry of C),

27



where the columns of W, the eigen-vectors, describe the direction of the principal axes of
the hyper-ellipsoid, or in other words, the direction of the principal components of the data,
and where the square-roots of the diagonal entries of A = Diag(A,...,\,), correspond to
the lengths of the hyper-ellipsoid along the principal axes.

In practice, to avoid numerical loss-of-precision errors that can arise when multiplying
X X7, a singular value decomposition of X is used': X = UXV7T. Here, the right singular
vectors, columns of V, are the principal directions, and the diagonal entries of X, the
singular values, o;, are related to the lengths of the hyper-ellipsoid by o;/1/p — 1.

After applying either the eigen-value decomposition or the singular value decomposi-
tion, the principal directions are ranked according to their covariance, the length of the
ellipsoid in that direction. Based on the details of the problem, the top few principle di-
rections are chosen, and the data are projected onto those directions, using them as a new
reduced-dimensional basis.

2.4.3 Engineered Features vs. Learned Features

Rather than learning features via statistical methods or other algorithms, another option is
to engineer features. Engineered features are designed / hand-crafted to achieve a specific
task in such a way that their meaning is readily explainable and understood [199, 200], in
contrast to learned features, which arise through training a model. This is one of the main
advantages of engineered features. Compared to learned features, engineered features may
not be as effective as learned features, where sometimes enormous amounts of training data
are used to learn features, making a highly-accurate and comprehensive model. Conversely,
the necessity for training data, especially in exceedingly high quantities, can be seen as a
major shortcoming of learning features, and in fact to much of the field of network-based
machine learning overall.

In this context, one example of an engineered feature is the amplitude of the PARS
time-domain signals, implemented as the maximum minus the minimum value, as shown
in Equation (2.25). This feature is engineered specifically for this application, based on the
theoretical backing that the signal amplitude is proportional to the amount of absorbed
light: the underlying quantity sought-after in PARS microscopy [50].

Briefly, the condition number [97, 196-198] of a matrix, cond(X) > 1, relates to the numerical stability
associated with computations involving the matrix X, where higher condition numbers imply less stability.
cond(XXT) = cond(X)cond(XT) = cond(X)? > cond(X), therefore, it is advantageous to avoid the
multiplication X X7
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2.4.4 Feature Learning via Clustering

Clustering algorithms can be a method of feature learning. Broadly, clustering is a class
of unsupervised learning [201-204], for cases where labelled data are not available. This is
in contrast to the situation in which regression was discussed, on page 25. There, paired
training data of the form (y;,#;) were available; however, here, only ¥; is available, the
variable representing measured data, introduced in the formulation in Equation (2.23).
Clustering provides a means of grouping similar data together, based on a given distance
metric, d(), yielding representative cluster centroids, ¢;, in addition to the cluster labels,
y; (inherently discrete-valued scalar information), associated with the data points, Z;. The
cluster centroids can be thought of as the learned features here. These can later be used
to evaluate the cluster membership of additional, or new / previously unseen, data points.

In more detail, clustering algorithms seek to create clusters where all data points within
any given cluster are as similar as possible. This means the intra-cluster variance should
be low. Additionally, clusters should be as distinct from one another as possible, meaning
their centroids should be relatively distant, or the inter-cluster distance should be high.

K-Means [205-208] is a clustering algorithm that seeks to group the input data into a
pre-specified number (K) of clusters, where the objective is to minimize the intra-cluster
variance. Each cluster has an associated representative centroid, ¢; for j = 1,..., K,
calculated as the mean of the data points within the cluster. The basic algorithm is as
follows:

1. Initialization: Select (randomly, or through other methods) K data points to act as
centroids.

2. Assignment: Assign each data point to the cluster of the nearest centroid.

3. Update: Recalculate cluster centroids by taking the mean of all data points within
each given cluster.

4. Continue repeating the Assignment and Update steps until no further points change
their cluster assignment, or equivalently, when the centroids cease to change.

Other initialization and stopping conditions are possible for variations of this algorithm.
The choice of stopping condition is important given that the algorithm is not guaranteed
to converge [208]. For this reason, it can be important to set a maximum number allowable
of iterations.
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It is important to note that while clustering reduces dimensionality, by virtue of rep-
resenting data simply by its associated cluster label (a one-dimensional representation), it
differs significantly from feature elimination methods, such as PCA, discussed on page 27.
Recall that PCA projects the data onto a reduced-dimensional basis, thus forming a rep-
resentation based on combinations of the data based on directions in which the data set
exhibits maximal variance. These basis directions, maximal principal components, do not
directly relate components of i to components of Z, the information underlying the data.
In contrast, clustering represents the data (through labeling) in a way where the represen-
tation does relate specifically to an estimate of the underlying “type” or classification of
the data, whether this estimate is actually in any way correct or not.

To solidify this concept, consider a contrived example whereby two types of fruit, say
apples and bananas, are characterized through measurements, 7;, of various attributes such
as colour, texture, weight, shape, etc. (such that all characteristics have a real number
representation for the purpose of this example). The underlying information, the type
of fruit, z € {apple, banana}, is observed via a forward measurement process, ¥ = f(z).
Looking only at &; does not directly inform which fruit a given data point is associated with.
PCA is capable of forming a reduced dimensional representation, ¥;; however, there is no
direct relationship between the components of this representation and the underlying type
of fruit, z. Clustering, via K-Means for example, would result in cluster labels associated
with each data point. Assuming it is known ahead of time that only two types of fruit
are represented in the data, K would be set to 2, and two clusters would be formed.
Although the abstract labels would not specify which fruit each cluster is associated with
(by name, perhaps), by virtue of grouping data points of similar characteristics together,
it is likely that data points of each cluster are directly associated with one of the fruits,
the underlying information, z, represented by the data, ;. Again, it is worthwhile noting
that the cluster labels are only an estimate of the underlying information, and there is no
guarantee that the estimate is correct. For example, the wrong number of clusters could
be chosen, resulting in spurious cluster labels associated with the data that do not relate
to the true underlying information.
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Chapter 3

PARS Chromophore Unmixing

Chromophore unmixing is valuable in PARS [3, 50-63] because it allows visually similar
targets of clinical relevance to be discerned. Without unmixing, images are effectively
“gray-scale”, and contain only structural information. There is no way to tell, from the
image, what material / bio-media the various parts of the image are, aside from analysing
their structure. By unmixing, various materials and bio-media can be directly discerned
and isolated in the image — displayed in isolation, or together in the same image via false-
colouring.

In addition, functional information can be extracted through unmixing. This is in-
formation relating to physiological activities currently taking place. The main driving
application of unmixing in PARS is for functional imaging of blood oxygenation (sOs).
The ability to measure sO, at the capillary-level has numerous direct applications in the
fields of ophthalmology [64, 114—117], cancer research [65, 66], and pharmaceutical research
[67], as was discussed in Section 2.2.

3.1 Selection of Excitation Wavelengths

Section 2.2 in the thesis background introduces the subject of inverse problems and unmix-
ing. It was discussed that a weighted sum of contributions from all absorbers, according
to their concentration, ¢, and absorption, j,(A), at the excitation wavelength A = Ao, is
the basis for the PARS signal amplitude s. As a reminder to the reader, Equation (2.12)
is repeated here.

= ji, = EC. (3.1)
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Note that the scalar quantities ¢, u,, and s are shown as vector quantities, representing
PARS measurements of mixed chromophores taken at several excitation wavelengths. This
equation relates the absorption coefficients, p,, to the underlying chromophore concen-
trations, ¢, through their molar extinction coefficients, ¢;, represented in matrix-form as
E. Note that the excitation wavelengths are implicit in this form, with each row of E
associated with one of the excitation wavelengths. PARS measurements, §, are equiva-
lent to the absorption coefficients up to arbitrary proportionality (=) determined by the
characteristics of the specific PARS system.

This section explores the problem of selecting excitation wavelengths to best unmix
a given set of chromophores. In particular, a simplified yet still applicable example of
unmixing the chromophores oxy- and deoxyhemoglobin (HbOs and Hb, respectively) is
explored. Unmixing these chromophores is necessary for subsequent sOs estimation. This
example includes only two chromophores — or rather, two unknown concentrations, cpnbo,
and cyy, respectively — and as such, as in any other system of equations, a minimum of two
measurements are required to solve for these two unknowns (under the usual assumptions
of linear independence). Although more measurements can be used to improve the quality
of the estimated solution, initially only two are considered, and later considerations for
additional measurements will be made.

The mixing matrix, F, from Equation (3.1), becomes the 2 x 2 matrix

EHLO ()\ea: 1) €Hb()\em 1)
FE = 2 ’ ’ . 3.2
Enb0s (Aez2)  €mb(Aes2) (3:2)

What remains to be done is to select the excitation wavelengths, A.;1 and Ac;2. The
formation of matrix £ can be thought of as sampling the absorption / extinction spectra of
oxy- and deoxyhemoglobin. Figure 3.1 shows the spectra, similarly to Figure 2.2; however,
two additional lines at A\ = A.;1, Aez2, Placed arbitrarily, are included to indicate the
sampled wavelengths. The points of intersection between these lines and the spectra make
up the entries of E. One can imagine “sliding” the vertical lines to other positions in the
spectra, by changing A.;1 and A2, and considering the effects this would have on the
values of E. The pairs of intersection points must be sufficiently different to avoid cases of
linear dependence, or near linear dependence in the rows of F.

The problem of selecting A., 1 and A, 2 will be approached by considering the following
three metrics:

1. The condition number of a model of the forward process.
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Figure 3.1: Building upon Figure 2.2, two vertical lines at A = A¢;1, Aeg2, positioned
arbitrarily, are overlaid upon the molar extinction spectra of oxyhemoglobin (red) and
deoxyhemoglobin (blue). The points of intersection (P.O.I., labeled as black dots) between
these vertical lines and the spectra determine the entries of E, seen in Equation (3.2). By
altering M.z 1 and A2, I can be adjusted to best unmix the given chromophores. Data
sourced from [107].

2. The condition number normalized by the measurement magnitude.

3. The estimation error covariance.

These metrics will be developed throughout this section, in somewhat of an iterative and
exploratory manner. In each case, the excitation wavelengths are selected to minimize the
given metric, with the intention of eventually arriving at a potentially optimal, or at least
suitable, set of wavelengths for unmixing.
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3.1.1 Minimal Condition Number

A common method used to evaluate sensitivity to error (noise or perturbations) in a matrix
model or in the measurements is the condition number [196, 197]. For a given matrix-vector
equation (or equivalently a system of equations),

Mz =D, (3.3)

there may be error in one or both of b or M. Assuming one were solving for unknown 7
here, it is desirable to understand how errors in bor M will propagate to create error in
the solution. The impact of error is not necessarily proportional to the magnitude of the
error in the measurement [198]. That is, for a small relative error of roughly 10% in b, for
example, there is not necessarily 10% relative error in #: it may in fact be substantially (up
to infinity, in the case of non-invertible systems) larger. Not only is error in the solution
not necessarily proportional to the error in the measurement, it is also dependent on the
direction of the error (in the sense of vector direction). This clearly warrants investigation
to avoid such pitfalls of selecting excitation wavelengths such that E leads to an especially
sensitive system.

To help give the reader a sense of how this effect takes place, consider the matrix, M,
acting as a linear mapping to transform the unit circle. If M = al, any multiple of the
identity matrix, the unit circle is essentially unchanged in shape; it is only scaled. However,
for M # al, the unit circle is deformed through a combination of rotation, reflection, and
skewing. The degree of this deformation can be quite extreme, as is illustrated in Figure 3.2,
where the transformed unit circle is a highly elongated ellipse.

To understand how error is propagated from measurements, b to the solution, Z, con-
sider a small perturbation in b. Figure 3.3 shows b= 1, 1] with a small circle around it,
representing the set of points with 10% relative error compared to b. The pre-image of the
small circle is a highly elongated ellipse around the point & = [1, —1]T. This demonstrates
how small errors in (;, perhaps as a result of measurement noise, manifest themselves as
enormous directionally-dependent errors in the solution.

The condition number, cond() or (), of a matrix or system of equations is defined [97,
198] based on the matrix-norm, such that

cond(M) = k(M) = ||M]| - ||[M~Y]. (3.4)
Note that here, || - || is the induced matrix norm, i.e.,
M
|| M| := sup{% :fGR",Withf#O}, (3.5)
z
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Figure 3.2: The unit circle (left) is mapped to a highly elongated ellipse (right) through
the linear transformation defined by an ill-conditioned matrix, M. The axes are defined in
terms of the standard basis vectors, €;. Note that if M were singular (zero-determinant), the
unit circle would be mapped to either a line or a point; however, pictured here, det(M) = 1,
exactly the same determinant as that of the identity matrix, and still the unit circle is
nearly mapped to a line (in fact, the ellipse could be made arbitrarily narrow). Thus, it is
prudent to note that the determinant cannot be used to judge the conditioning of a matrix
transformation. Image adapted from [198].

for vector norm || - || defined in vector space R". If the usual 2-norm (or equivalently, the
Frobenius norm [209]) in R™ is used, then () can be specified in terms of the singular
values, o;, of the matrix [97], as

O maz(M)

K(M) = o ()

(3.6)
The maximal and minimal singular values represent the degree of “stretching” along the
major and minor axes of the ellipse, from the analogy shown in Figure 3.2. In the best
case, the unit circle is not unevenly stretched / skewed, and thus 0,4, (M) = 0 (M) and
k(M) = 1. In poor cases, such as what is shown in Figure 3.2, k(M) > 1.
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Figure 3.3: Following from Figure 3.2, a small circle surrounding b= 1, l]T (right), repre-
senting the set of points with 10% relative error compared to 5, has a pre-image (left) that
is a highly elongated ellipse around the point & = [1, —1]T. Again, the axes are defined
in terms of the standard basis vectors, €;. It is observed that small, 10%, errors in b can
result in much larger errors in the solution. Image adapted from [198].

To understand how the selection of excitation wavelength affects the noise-sensitivity
of the system, the condition number is evaluated for all wavelength pairs across the ab-
sorption spectra of oxy- and deoxyhemoglobin. Figure 3.4 shows the log-condition number
associated with each wavelength pair. Note that log() is applied for the purpose of im-
proving visualization, compressing the scale for greater condition numbers (which are of
little interest) and broadening the scale for smaller condition numbers (which are of inter-
est, since small condition numbers are associated with systems that are less sensitive to
measurement error).

Notice, in Figure 3.4, that the wavelength pairs with the lowest log-condition number
are those at roughly 700 nm and 1000 nm. However, these are very low points in the
absorption spectra (Figure 3.1). Although numerically, these wavelengths may yield opti-
mal condition numbers, in practice, they will not work very well at all. This is because
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Figure 3.4: The log-condition number is evaluated for wavelength pairs according to the
absorption spectra of oxy- and deoxyhemoglobin. Notice the diagonal symmetry of the plot.
This arises as a result of the system’s invariance to the ordering of excitation wavelengths,
i.e., permuting the system of equations (rows of E) has no effect on solution nor the system
error-sensitivity. Also note that wavelength pairs along the diagonal constitute linearly
dependent measurements, resulting in a non-invertible system. Low (better) log-condition
numbers tend to occur at wavelengths pairs of high contrast between the absorption of the
two chromophores, with a minimum occurring at roughly 700 nm and 1000 nm.
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sufficient optical energy absorption is required to create an easily measurable PARS re-
sponse above the noise floor, and the low absorption at these wavelengths would make this
incredibly challenging. This prompts reconsideration of the metric used to optimally select
wavelengths for unmixing.

Condition number is used to quantify the estimate / solution sensitivity in proportion
to the measurements themselves. If the target absorption spectrum is low at a particular
wavelength, then measurements at that wavelength will also be low; however, the condition
number does not take the magnitude of the measurement into consideration, merely the
estimate sensitivity in proportion to the measurement is considered. Because condition
number is defined as the ratio of maximum-to-minimum singular values, the overall scaling
of the mixing matrix, or measurements, does not impact the condition number. This
property may be beneficial in some scenarios; however, when additive noise is present in
measurements, the magnitude of the measurement is extremely important and must be
large relative to the noise floor to be easily interpreted.

3.1.2 Minimal Normalized Condition Number

To address the issue with condition number not taking into account the magnitude of the
measurement (recall that large measurements relative to the noise floor are preferred), we
consider a simple modification: the condition number divided by the norm (magnitude) of
the measurement, x(E)/||5]|. This metric will be referred to as the normalized condition
number. Although this approach is a very rough way of penalizing small measurements as
well as high condition numbers, it does give meaningful and insightful results as will be seen
in Figure 3.5. Given that the noise floor is entirely dependant on the specific characteristics
of the given PARS system, the required maximum allowable estimation error is also system-
dependent, and thus it is impossible to draw strict universal quantitative conclusions from
this analysis. However, if these quantities were known, weights or a cost associated with
the magnitude of the measurement and the estimation sensitivity could be assigned to
somewhat reshape these results. None the less, the overall trend would be similar.

The previous analysis was re-run, this time using the normalized condition number as
the metric. In this case, the measurement is

1

s=F 1

, (3.7)
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Figure 3.5: The log of the normalized condition number is evaluated for wavelength pairs
according to the absorption spectra of oxy- and deoxyhemoglobin. This plot bears sim-
ilarity to Figure 3.4, showing the log-condition number; however here, wavelengths from
the weaker parts of the absorption spectra, from roughly 600 nm upwards, have very poor
(large) normalized condition numbers, as expected. The optimal wavelength pairs occur
at 412 nm and 436 nm, near the absorption peaks of the two spectra.

according to Equation (3.1), where the unknown concentrations are in equal proportion (1
and 1) up to arbitrary scaling. Figure 3.5 shows the result of this analysis: the log of the
normalized condition number for excitation wavelength pairs.

Now, the optimal wavelengths are at 412 nm and 436 nm, roughly the absorption peaks
of the two spectra (see Figure 3.1). This seems to be a more practical set of wavelengths,
matching intuitions relating to both the ability to discern the targets based on the relative
strength of the measurements as well as the magnitude of the measurements themselves.
Again, this method is not necessarily the correct one to use; however, it does address
the shortcomings of only using the condition number and thus is a worthwhile iterative
improvement on that approach
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3.1.3 Minimal Estimation Error Covariance

The next incremental step is to look at this as a maximum likelihood problem and select
wavelengths to minimize the estimation error covariance. If we consider measurement error
(i.e., noise) covariance, R, then estimation error covariance, P, is calculated [97] as
-1

P=(E"RE) (3.8)

If we assume R is of the form R = oI, where [ is the identity matrix (i.e., no off-diagonal
1

terms), then P = L(ETE)™.

This assumption implies that measurement error covariance is equal for all excitation
wavelengths; however realistically, this may not be the case and would depend on the
excitation laser characteristics at the specific excitation wavelengths. The most obvious
factor would be the stability (i.e., levels of power fluctuations over time) of the source,
something that cannot be taken for granted, especially when using an SRS-based multi-
wavelength source, where the stochastic nature of initial Stokes wave growth leads to
inherent temporal instability [94]. Other factors might include the polarization state of
the excitation beams, or the beam quality, relating to how close the intensity profile is to
being Gaussian, creating a limitation to the focused beam spot size and shape.

A result of this assumption is that, up to scaling, proportional error covariance, P P,
can simply be calculated as P = (ETE)_I. Although a selection of wavelength pairs to
minimize the estimation error covariance is desired, given that Pisa matrix, what precisely
is desired is not obvious: P has several entries, not all of which will inherently be mini-
mized simultaneously. The diagonal of P contains error variances for each concentration
estimate and the off-diagonal terms have information about the relationship between the
concentration estimates. The variances relate to the expected magnitude of the error.

~

To address this, the metrics of either the average of the diagonal elements, mean(diag(P)),
or the maximum diagonal element, max(diag(ﬁ)), can be used in order to search for wave-
length pairs that yield a system approximating one of minimal estimation error covariance.
Similar to before, wavelength pairs across the absorption spectra of oxy- and deoxyhe-

moglobin were compared under these metrics.

Figure 3.6 shows the evaluation of mean(diag(P)) and max(diag(P)) in its left and
right panels respectively (again, with log applied). Both appear visually similar to each
other, giving confidence that essentially the same objective is achieved by the two metrics.
Like the previous analysis, using normalized condition number, the optimal wavelength
pairs are 412 nm and 436 nm, roughly at the absorption peaks, although variation is seen
throughout the rest of the wavelength range.
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Figure 3.6: The log of the average (left) and maximum (right) of the diagonal entries of
the estimation error covariance matrix are evaluated for wavelength pairs according to the
absorption spectra of oxy- and deoxyhemoglobin. The results here are very similar to those
of Figure 3.5, in that the optimal wavelengths (identical in both cases), at 412 nm and
436 nm, coincide with the absorption peaks; however, there is variation throughout the
rest of the wavelength range. The results of both metrics (mean and max) are extremely
similar, meaning that the same objective may be achieved using either of the two metrics.

The results of this analysis are nice in that they favour wavelengths of strong absorp-
tion without the requirement for any assumption of a “measurement” or predetermined
approximate concentrations, as was the case in the analysis based on the normalized condi-
tion number. Additionally, these metrics more closely align with the true goal of selecting
suitable wavelengths for unmixing with — to have minimal error in the solution.

3.1.4 Discussion of Excitation Wavelength Selection

Several metrics for selecting excitation wavelengths were explored: condition number,
normalized-condition number, and estimation error covariance. Each brought the selection
problem closer to a suitable solution, taking into account sensitivity to perturbation (error)
in either the model or the measurements through the condition number, the “strength”
of the measurements based on the absorption at the selected wavelengths, and finally the
magnitude of expected error in the solution based on estimation error covariance.
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While there remains more to be done to properly adapt any of these solutions to a PARS
microscope, the work presented here provides the groundwork required to optimally se-
lect excitation wavelengths for improved, noise-insensitive, unmixing in PARS microscopy.
Additional steps include broadening the analysis to incorporate additional measurements
(trading-off estimation sensitivity for system complexity), and considering the spectral pro-
file of the excitation, rather than simply the assumed infinitesimal line-widths used here,
which is especially necessary when using an SRS-based multi-wavelength source. Addition-
ally, considerations based on how the SRS-based multi-wavelength source is implemented
in the PARS system (i.e., single vs. multiple fibers, filtered vs. unfiltered SRS spectra used
for excitation) and how this would impact the optimal selection of excitation wavelengths /
SRS spectra are required. These next steps are discussed in Section 6.1.

With the task of excitation wavelength selection addressed, formalizing and adding
constraints to the unmixing solution is undertaken next in Section 3.2, allowing practical
unmixing estimates to be made later in Section 3.3.

3.2 A Formulated Unmixing Solution

Section 2.2 introduced a simplified forward model on page 14, repeated in Equation (3.1),
as well as several simple solutions, yielding the estimates, g, of the chromophore concentra-
tions. For the most straightforward case, where the forward process is accurately modeled
by Equation (3.1), Equations (2.14) and (2.15), the matrix inverse (or pseudo-inverse [109—
111]) can be applied to find the solution. This is applicable in theoretical cases where mea-
surement error / noise is not present and there is no modeling error; i.e., the measurements,
§ are in the span of the columns of the mixing matrix, £. Unfortunately, this is unrealistic
and generally this approach will fail.

In reality, modeling and measurement error / noise will be present, necessitated the
analysis done in Section 3.1 regarding selecting excitation wavelengths. To account for this
when formulating an unmixing solution, the forward model is adjusted to explicitly include
additive Gaussian noise, I/, with covariance, R:

= Fé+ 7,
7~ N(R).

)

(3.9)

In this case, the optimal (in terms of least squared error) estimate can be obtained directly
[97] through
= (E"R'E)ETR'S (3.10)

42



This formulation was the basis for the estimation error covariance of Equation (3.8), used
for optimal wavelength selection. Though there is utility in this solution, additional knowl-
edge of the problem, asserted through constraints, can be used to further improve the
estimation accuracy.

Equation (2.16), slightly modified to incorporate the measurement error covariance,
7= argmin{||§— EE| g —i—Zwi\I/i(é)}, (3.11)

shows the solution formulated as a general minimization problem including additional
arbitrary constraints, W;(), and associated weights, w;. Note that ||§— E¢||g-1 is shorthand
for

|5 — Eé||g-1 = (§— E&) 'R™(5 — F?), (3.12)

where a quadratic penalty is used for error. This formulation is more general than the
above and may require an algorithmic optimizer to solve.

3.2.1 Constraints

Constraints are included in the estimation formulation to improve solution accuracy through
improving the model accuracy. This is because prior information / knowledge about the
problem is asserted through these constraints. This way, both prior information and mea-
surements are taken into account, making for better estimates.

Firstly, there is a desire to constrain the unknown concentrations to be non-negative.
This makes intuitive sense, given that by definition, concentration cannot be negative;
however, for relatively low true concentrations or relatively high noise levels, it is possible
that the least squares solution of Equation (3.10) could yield negative estimates. This
constraint is asserted through

U (6) = Z (lei| = ¢) , for elements ¢; of C. (3.13)
Vi

Note that this is a soft constraint, rather than a hard constraint, meaning that negative
concentrations are technically allowed still in the solution; however, they are penalized
according to the associated weight, w,,, based on how negative they are. Positive con-
centrations are not penalized. What this constraint looks like for single concentration,
¢;, is a downwards ramp for negative values and a constant zero-value for positive values.
Figure 3.7 visualizes this constraint. The effective slope of this function is determined
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Figure 3.7: The non-negativity constraint of Equation (3.13), ¥,,(¢), is plotted in one
dimension for ¢ = [¢]. Only negative values for concentration are penalized, with linearly
increasing penalty the more negative the value is.

by the weighting variable wy,. If a limit is taken where wy,, — 00, then w,,¥,,() tends
towards a function which is infinite for values less than 0, and is 0 otherwise, which is the
ideal penalty as a hard constraint. This definition has the benefit of being continuous for
finite values of wy,, which is simpler for optimization compared to discontinuous objective
functions.

Note that while this formulation does not impose upper limits on concentrations, if
relative concentrations were desired, an additional constraint could be included to enforce
further limitations on concentrations. Firstly, relative concentrations should be within
the interval [0, 1]; however, if multiple chromophores are present, and only the ratio of
their concentrations is desired, the relative concentrations must sum to one. This can be
imposed via

Uyt (6) = ) e — 1] (3.14)

Again, the degree of penalization is controlled by the associated weight, lambday-,—;. This
constraint is visualized in Figure 3.8 for two concentrations. Notice the “trough” along the
line Y ¢; = 1, drawing the solution towards one where relative concentrations sum to 1.
The combination of this and the non-negativity constraint of Equation (3.13), visualized
in Figure 3.9, ensures relative concentrations are within the interval [0, 1].
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Figure 3.8: The sum-to-one constraint of Equation (3.14), Ws~._1(¢), is plotted for
Z=lc1,c9]". A “trough” along the line S\ ¢; = 1 is evident. This constraint is appli-
cable when relative concentrations are desired.

Next, a constraint preferring sparse solutions in introduced. Sparsity, here, relates to
the number of non-zero estimated concentrations. Enforced solution sparsity is desirable
in cases where it is known ahead of time that relatively few chromophores will dominate in
any singular location of the target, corresponding to a single measurement. Incorporating
this constraint allows for the absorption spectra of many chromophores to be included
in the model; however, for any measurement, the estimated concentrations will be non-
zero for relatively few chromophores, matching the expectation. This constraint can be
imposed via the zero-norm, [|-||o, which effectively counts the number of non-zero elements
of a vector. Thus, the imposed constraint is asserted through

\Ijsparsity(8> = Inax (57 ”5”0) s (315)

for parameter 3, set based on the number of anticipated dominant chromophores. Again,
the degree of penalization for insufficiently sparse solutions is controlled by the associated
weight, lambdasparsity- The optimal solution we desire is not inherently as sparse as possible,
rather it is only as sparse as required based on the assumed imaging target. For example,
if it is assumed that there are three most prominent chromophores present, the optimal
sparsity would be three. So, to avoid over-penalizing cases where ¢ is more sparse than
desired, the parameter § is introduced, and the maximum of either ||¢||o or 3 is taken. This
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Figure 3.9: The sum-to-one constraint of Equation (3.14), ¥s~.—1(¢), and the non-
negativity constraint of Equation (3.13), W,,(¢), are summed together and plotted for
¢ = ey, CQ]T. Note, for the purpose of this figure, the associated weights for the two con-
straints are assumed to be equal; however, in practice they would be separately tuned such
that reasonable estimates are produced. Building upon Figure 3.8, which showed only a
simple linear “trough”, here a “basin” is formed, guiding solutions to be confined within
the interval [0, 1], with a preference towards solutions along the line > ¢; = 1.

asserts a constant preference for values less than or equal to 5. For the example where
there are three most prominent chromophores, 5 is set to g = 3.

Rather than the zero-norm, as was used in Equation (3.15), it makes sense to consider
using the 1-norm. It has been found that the 1-norm solution to optimization problems is
often equivalent to the zero-norm solution [210]; however, it is far easier computationally,
due to the continuity and convexity of the objective function [211, 212]. The zero-norm
has zero gradient (i.e., % = 0 everywhere the derivative exists), creating a challenge for
the optimizer since gradient-based methods cannot be applied. If instead, the 1-norm is

used, the sparsity constraint of Equation (3.15) becomes

\Ijsparsity(8> = Inax (5; ||E||1) . (316)

Figure 3.10 illustrates both the zero-norm and 1-norm implementations of the sparsity
constraint for comparison purposes. Notice that the locations of local and global minima
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Figure 3.10: The sparsity constraint of Equation (3.16), Wepamity(€), is plotted for
@=lc1,¢5)", using the zero-norm implementation (left) and the 1-norm implementation
(right). Note that both implementations share the same locations for local and global
minima, a desirable characteristic when interchanging the 1-norm for the zero-norm imple-
mentation. The 1-norm implementation affords a continuous objective function, whereas
the zero-norm is discontinuous and furthermore has zero gradient, creating a challenge for
the optimizer that can be alleviated by using the 1-norm instead.

are shared between the two cases. Intuitively, one can understand that this is an important
characteristic when substituting the 1-norm implementation for the zero-norm implemen-
tation, as this means the 1-norm implementation would “guide” the optimizer towards the
same minima that would be imposed by the zero-norm implementation.

Though not a constraint on the estimates, the penalty associated with error can be
thought of as a constraint related to the measurements. Thus, Equation (3.11) can be
further generalized to

¢ = arg min{Measurement Constraints + Estimate Constraints}. (3.17)

C

Previously, in Equations (3.11) and (3.12), Gaussian measurement noise was assumed,
and a quadratic penalty was applied; however, this assumption isn’t necessarily realistic.
Instead, a likelihood term could be introduced for the noise residual, §— E¢, being observed
based on a prior model of the noise distribution, p,(). The prior model would be defined
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based on an empirical approximation and may be both system and target dependant.
Including this in the formulation results in

7= arg max{p,,(§— Y wi\Ifi(E’)}. (3.18)

Notice the change from the previous formulations: here, mazimization is used because
maximizing the prior likelihood term for the noise residual is desired. By simply inverting
the sign of the constraints, relative to what is shown in Equation (3.11), this formulation
is made consistent with the previous ones. Because no noise model is presented here in
this thesis, this task is left as future work and is further discussed in Section 6.1.1.

3.2.2 Additional Considerations Related to PARS Microscopy

In the previous section, Equation (3.9) served as the simplified forward model for the
PARS microscope. A few small — yet still important — details were omitted there but are
introduced here, prior to Section 3.3, where in vivo sO, estimation is performed. These
two details are

e optical fluence variation by wavelength, and
e the targets’ diffuse reflectance at the detection wavelength.

Both of these effects must be compensated for, or rather included in the forward model,
to achieve accurate unmixing in PARS microscopy.

First, optical fluence variation by wavelength is considered. Optical fluence, ¢, is defined
as the quantity of radiant energy per unit area, often given in units of J/m? or similar.
When imaging there is no rule nor guarantee that all excitation wavelengths must be of the
same pulse energy. Additionally, assuming that the same pulse energy was used across all
excitation wavelengths, the fluence would still vary between wavelengths. The excitation
beam is focused onto / into the target when imaging, concentrating the optical energy of
the beam to a small focal spot. Assuming a diffraction-limited focal spot!, the diameter of
the spot is proportional to the wavelength, A [131]. Thus, the effective area that the light
is focused to is related to A\?, and therefore the fluence, ¢,,, at a given wavelength, \;, is
proportional to that wavelength squared: ¢y, oc A, 2,

deally the excitation beam would have diffraction-limited focus (with the intention of improving
resolution and fluence); however, due to limitations of instrumentation as well as the variable geometry of
imaged targets, the focus may only be close to diffraction limited. Nonetheless, the same principle broadly
applies whereby the wavelength imposes a restriction on the focal spot size, even for only approximately
diffraction-limited focus.
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This effect can nicely be encapsulated by a single diagonal matrix of fluences, ®, for
excitation wavelengths Ay, ..., A\,:

¢ = Diag([¢z\17 s 7¢/\n]) X Dlag([AI27 s 7/\7;2]> (319>
Thus, the forward model of Equation (3.9) can be updated with the inclusion of ® as
§= OEC+ 7. (3.20)

Next, the diffuse reflectance of the target at the detection wavelength is considered.
As a brief rationale, consider the interaction of the detection beam with the target: some
portion of the light will be scattered / reflected while the remainder will be transmitted
(or absorbed). The fraction of reflected light varies from target to target, and thus, for a
non-homogeneous target, variation in back-scattered light is observed. This is the basis for
scattered light microscopy [213].

Suspensions of red blood cells with different concentrations of oxy- and deoxyhemoglobin
exhibit different diffuse reflectances, rgno,(A) and rgp(A), [214]. An empirical model de-
scribing the relationship [214, 215],

fs(A)
Ba X pa(X) + B3

is fundamentally based on two characteristics of reflectance: inverse dependence on the
absorption coefficient, u,, and linear dependence on the reduced scattering coefficient,
., [216]. The additional parameters, (;, are empirical and based on the optical proper-
ties of the system. Due to the strong inverse dependence on the absorption coefficient,
Equation (3.21) can be further approximated (for the purpose of simplicity in creating an
approximate “proof of concept” model) simply as being proportional to the inverse of the
absorption coefficient or more generally, the extinction coefficient:

1 1
r(A) X —— x ——.
ta(A) ()
This approximation allows for a very direct way of incorporating the dominant effects of
diffuse reflectance into the forward model, based simply on the extinction spectra of the
targets at the detection wavelength.

T’()\) - B1 +

(3.21)

(3.22)

The diffuse reflectance for the two absorbers examined here, oxy- and deoxyhemoglobin,
can then be encapsulated into a single matrix, as

1
R— THbO, (Adet) 0 — | emboy (Adet) (1) 7 (3.23)
0 Teb (Adet) 0 erb(Naet)

49



which can be included in the forward model, modifying Equation (3.20), to become
§= ®FERC+ V= He+ 7, (3.24)

for combined mixing matrix H = PER.

While previously, in Section 3.1, low intensity regions of the absorption / extinction
spectra were avoided when selecting excitation wavelengths (where strong absorption is
beneficial), here having low absorption at the detection wavelength is beneficial to have
strongly back-scattered light, through which the PARS response is measured. Thus, the
detection wavelength could also be tuned to increase the amount of back-scattered light,
though other effects, especially in complex targets, must also be considered, such as trans-
missivity in sub-surface imaging applications. However, in this work, the effects on diffuse
reflectance are simply evaluated for the purpose of more accurately modelling the forward
process in an attempt to improve unmixing accuracy.

Finally, a suitable forward model, taking into account the details of PARS microscopy,
is available to be used for unmixing. Next, in Section 3.3, the model developed here is
applied in an in-vivo sO, estimation problem. Note that with these inclusions to the
forward model, the excitation wavelength selection results of Section 3.1 would change to
reflect this. The analysis could be repeated once a detection wavelength is chosen.

3.3 Unmixing Application: sO,; Estimation

This section applies the theory and model developed in the preceding sections to achieve
in-vivo blood oxygen saturation estimation. Multi-wavelength images of retinal vasculature
of rattus (common name: rat) will be processed and unmixed.

Details of the experimental procedures (regarding in-lab imaging) are disclosed in article
[3]. Note that all experimental procedures involving animals were conducted according
to the laboratory animal protocol approved by the Research Ethics Committee at the
University of Waterloo (Animal Utilization Project Protocol number 40149). Albino rats
(Charles River, MA, USA) were imaged to explore the ability to perform in-vivo blood
oxygen saturation estimation in PARS. The animal was anesthetized using ketamine during
the experiment. One drop of 0.5% proparacaine hydrochloride (topical anesthetic; Alcaine,
Alcon, Mississauga, ON, Canada) was applied to the eye to reduce eye movement, followed
by one drop of 0.5% tropicamide (pupillary dilator; Alcon). A custom-made animal holder
was used to restrain the animal. The base of the animal holder was lined with a thermal
pad to maintain the body temperature of the animal between 36 °C and 38 °C. Artificial
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tears were applied frequently (approximately every 2 minutes) to keep the cornea hydrated.
Vital signs of respiration rate, heart rate and body temperature were monitored during
the experiment.

A dominant challenge in performing unmixing with retinal images stems from poor
(shallow) depth of focus and changes in focus as a function of wavelength due to chromatic
aberration. The shallow depth of focus causes unevenness in signal strength and the
formation of localized in-focus regions where the vasculature is resolved. Figure 3.11 shows
an example of this effect, whereby only some of the vasculature within the field of view is
resolved. The left panels of Figure 3.13 show more complete pictures of the vasculature
within the field of view. Focal shift by wavelength causes differences in the in-focus region
between images of different wavelengths; a fundamental issue for unmixing, which requires
observations at the same location. More detail surrounding this issue and possible solutions
is discussed under Future Work (Section 6.1). Additionally, small animal movements can
result in captured images with different fields of view, even with topical anesthetics applied
to the eye to reduce movement. The issue necessitates image co-registration, but may also
result in focal differences, similar to those caused by chromatic aberration.

Fortunately, oxygen saturation is known to be approximately constant within any given
vessel, transitioning predominantly in capillaries, where oxygen is transferred to the tissue.
This fact can be used to enable estimation in spite of the challenges of varying focus.
Vasculature can be segmented into individual vessels based on any contrast available in
the PARS (and scattering) images, allowing for subsequent sO, estimation on the level of
vessels, rather than per pixel. The per-pixel measurements can be averaged within each
segment to create per-segment measurements. This approach also has the benefit of being
far more robust to noise, since many (noisy) pixel measurements are averaged to form a
single combined measurement.

In this experiment, images were captured at 532 nm and 558 nm excitation wavelengths,
produced via an SRS-based multi-wavelength source pumped with a 532 nm laser. While
in Section 3.1, all wavelength pairs were considered when selecting optimal wavelengths for
unmixing; however, here, as a consequence of using SRS to generate additional wavelengths
(Stokes waves; see Section 2.3.2 for background), only specific wavelengths can be made
available. Figure 3.12 shows the available SRS wavelength bands overlaid on the plot of
estimation error covariance from Figure 3.6. Though it is not shown in Figure 3.12, lower-
order (i.e., lower wavelength) Stokes waves are more readily generated and generally have
greater optical power, making them somewhat preferable to higher-order Stokes waves.
With this in mind, 523 nm and 558 nm were selected given their relatively low (better)
associated estimation error covariance and ease of generation. Two images were captured
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Figure 3.11: An in-vivo PARS image of Rattus retina exhibits localized regions of in-
focus vasculature (white / grey structures, where brightness indicates signal strength).
Note that the entire rectangular area shown here was imaged by the PARS microscope.
Although vasculature is present throughout the imaged area, much of it is out of focus
and did not produce a PARS response (and is thus not visible in PARS image). This
effect, whereby only parts of retinal PARS images are in-focus and resolved, presents a
challenge for unmixing and subsequent sO5 estimation. The overall structure of the retinal
vasculature is clarified in the left panels of Figure 3.13, composed of multiple co-registered
and combined images.
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Figure 3.12: Building on Figure 3.6, which shows the log of maximum of the diagonal
entries of the estimation error covariance, evaluated for wavelength pairs according to the
absorption spectra of oxy- and deoxyhemoglobin, SRS wavelength bands available for ex-
citation are overlaid as dashed lines, illustrating the combinations of wavelengths that can
be used. The pair of wavelengths, 532 nm and 558 nm, used for excitation in the in-vivo
imaging experiment, is marked with a star and has relatively low (better) associated esti-
mation error covariance, especially compared to other low-order SRS-generated wavelength
pairs.

at 532 nm, and five at 558 nm. Each image has variation in the resolved regions, and by
combining them, a more full view of the retina is made available for both wavelengths.

Figure 3.13 outlines the process used for sO, estimation here. Firstly, the images
from each excitation wavelength are co-registered and combined by taking the maximum
intensity at each pixel. This way, resolved regions with strong PARS signals are kept,
whereas dark unresolved regions containing only noise are rejected. Note that the combined
532 nm and 558 nm images are also co-registered. Following this, the individual vessels
are segmented, resulting in a segment mask. Based on the background noise level, the
images are thresholded and then averaged within each segmented vessel. Finally, the
unmixing formulation described in the preceding sections is applied to each segmented
vessel, resulting in relative estimates of concentrations of oxy- and deoxyhemoglobin, which
are then used to compute sOy via Equation (2.17), introduced in the background and
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Figure 3.13: Process Diagram for Segment-based sOy Estimation: Images from each exci-
tation wavelength (left) are co-registered and combined by taking the maximum intensity
at each pixel (the combined 532 nm and 558 nm images are also co-registered). Next,
the individual vessels are segmented, resulting in a segment mask (second from left, small
panel). Averages are taken within each segmented vessel, ignoring values lower than the
noise level threshold (center). Finally, on a per-vessel basis, the images are unmixed to
estimate the relative concentrations of oxy- and deoxyhemoglobin and finally to compute
estimates of sOy (right).
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The work presented in this section represents a proof-of-concept for the method more so
than a finalized process, and as such, segmentation and image co-registration was performed
manually; however, in future work these steps may be automated.

Figure 3.14 shows the final sO, estimates overlaid in false colour, for improved visual-
ization, on top of the scattering image. To the best of the author’s knowledge, this is the
first time a non-contact photoacoustic imaging technique has been employed for in-vivo
blood oxygen saturation measurement in the retina [3]. This result represents a significant
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Figure 3.14: Estimated retinal blood oxygen saturation, measured in-vivo in a rat eye,
is shown in false colour overlaid upon a scattering image of the same field of view for
improved visualization. Variation in sOy between vessels is indicative of whether they are
arteries or veins. The optic nerve head is central in this image. This image was created
for this thesis but also submitted as part of article [3].

step towards the clinical use of PARS as a diagnostic tool for many ophthalmic diseases,
through the measurement of sO,.

3.4 Chapter Conclusion

This chapter covered several developments towards chromophore unmixing in PARS via
multi-wavelength imaging.

Firstly, the question of how best to select excitation wavelengths was addressed. Sev-
eral metrics were explored, incrementally improving the suitability of the solution while
considering the sensitivity to perturbation (error) in either the model or measurements, the
relative amplitude of measurements based on absorption, and the magnitude of expected
error in the solution based on estimation error covariance.
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Next, a solution to the unmixing problem was formulated, resulting in a constrained
least-squares optimization problem. Constraints enforcing the non-negativity of chro-
mophore concentrations, requiring concentrations to sum to one (for the case where relative
concentrations are desired), and enforcing a sparse solution were developed and incorpo-
rated into the formulated solution. Additional considerations for optical fluence variation
by ezcitation wavelength and diffuse reflectance at the detection wavelength were made,
making accurate unmixing possible with PARS.

Finally, the theory and inverse model developed in the preceding sections of the chap-
ter were used to estimate blood oxygen saturation, in-vivo, in the retina of a rat. The
limited depth of focus of the PARS microscope imposed a challenge in adequately imaging
the retinal vasculature. In any given image, limited regions are resolved. To address this,
several images were acquired at both excitation wavelengths (532 nm and 558 nm), mak-
ing minor focal adjustments between each. These images were co-registered and combined
to produce composite images, suitably capturing the vasculature throughout the imaged
area. Individual vessels were segmented, allowing per-vessel estimates of oxy- and deoxyhe-
moglobin to be made, and finally estimated sO5 to be calculated. From this, a compelling
false colour image, indicating sOs in the vasculature, was produced. This was the first
non-contact in-vivo photoacoustic measurement of blood oxygen saturation in the retina,
representing a significant step towards the clinical use of PARS as a diagnostic tool for
many ophthalmic diseases, through the measurement of sOs,.

o6



Chapter 4

Stimulated Raman Scattering in
Optical Fiber as a Multi-wavelength
Source

SRS is a non-linear optical effect [93, 94, 147, 148] introduced in Section 2.3.2. The effect
can be very prevalent in optical fibers in the presence of high-intensity light and can be
used for the purpose of generating multi-wavelength light from a single-wavelength light
source simply by coupling the light into a suitable optical fiber and adjusting the input
light intensity to vary the resulting spectrum.

A multi-wavelength light source is necessary for multi-wavelength imaging and unmix-
ing. This is the true purpose in researching SRS in the context of this thesis — to optimize
the SRS process for multi-wavelength imaging and unmixing in PARS microscopy [3, 50—
63], thus improving the chromophore-selectivity of PARS. However, in the field of pho-
toacoustic microscopy, relatively little is known about how best to select optical fiber for
this purpose. To address this, and perhaps even to provide some form of a guide to the
community, a comprehensive characterization experiment is conducted whereby individu-
ally, many fiber types (and over a range of lengths for each fiber type) are coupled into an
optical test apparatus and measurements of the output SRS spectrum are made while also
varying laser parameters.
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Fiber Type Operating Cutoff Mode Field Attenuation Polarization

Wavelength (nm)  Wavelength (nm) Diameter (pm) (dB/km) Maintaining
SM4007 405-532 305—400 2.5-3.4 @ 405 nm <30 @ 532 nm No
S405-XPf 400-680 360400 2.7-3.8@ 405 nm <30 @Q 488 nm No
460HP? 450-600 410-450 3.0-4.0 @ 515 nm <30 @ 515 nm No
PM460-HP? 460-700 390-450 2.7-3.8 @ 515 nm <100 @ 488 nm Yes
630HPT 600-770 540-600 3.5-45@ 630 nm <12 @ 630 nm No
HB450* 488-633 350-470 3.0-4.1 @ 488 nm <100 @ 488 nm Yes
HB600* 633780 500-600 2.8-3.7@ 633 nm <15 @ 633 nm Yes
HB750* 780-830 610-750 3.5-4.6 @ 780 nm <8 @ 780 nm Yes

t= Thorlabs Inc., * = Fibercore Ltd.

Table 4.1: Summary of optical fiber types explored and their key parameters. Notice
that the operating wavelength range varies for each fiber type. Outside of this range, the
attenuation is unspecified and is generally substantially higher than the specified nominal
value. Additionally, not all fibers maintain the polarization of the input light. These prop-
erties will be shown to strongly impact the efficacy in generating additional wavelengths
through SRS.

4.1 Experimental Method

To understand the characteristics of a multitude of optical fibers and the impacts on SRS
generation as a result of pump-laser parameters, a broad characterization experiment is
conducted. A variety of optical fiber types are tried, comprising both polarization main-
taining and non-polarization maintaining fibers, variations in the operating wavelength
range, and variations in the (unfortunately unknown) dopants present in the fibers. The
unique set of characteristics of each fiber essentially combine to determine (in some complex
unknown way) the non-linear behaviour of the fiber and its efficiency in the SRS process
[94]. All of these characteristics affect the propagation of light through the fiber. Table 4.1
outlines the fiber types explored and some key characteristics of each.

In addition to exploring a range of fiber types, parameters of the pump laser were varied
so as to understand the impacts they each have. Table 4.2 concisely summarizes these, as
well as the ranges over which they were varied. To understand the effect of fiber length
(effectively the interaction length over which SRS may occur), each fiber was tested over
a range of lengths from 25 m all the way down to 1 m.

The experimental apparatus for the study is relatively simple. The key components
are a 532 nm pulsed laser, a fiber-launch (device to couple a free-space beam into an
optical fiber), a spectrometer (CCS200, Extended Range: 200-1000 nm, Thorlabs Inc.),
and the optical fiber to be tested. In more detail, Figure 4.1 diagrammatically illustrates
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Parameter Range

Fiber Length (m) 1-25
Input Pulse Energy (nJ) 20-19,000
Pulse Repetition Rate (kHz) 1-300
Pulse Width 2 ps, 1.5-50 ns

Table 4.2: Parameters explored in SRS characterization and their associated ranges. Each
parameter is explored over a range of at least one order of magnitude, allowing the impacts
on the SRS process to adequately be observed and studied.

the apparatus. Three lasers were used to explore the full range of pulse widths. In all cases,
ytterbium-doped fiber lasers were used. For 3 ns to 50 ns pulse widths, VPFL-G-10-HE
(Spectra-Physics, Inc.) was used. For 1.5 ns; GLPM-10 (IPG Photonics, Inc.) was used.
For 2 ps, YLPP-25-3-50-R (IPG Photonics, Inc.) was used. In the 2 ps case, frequency
doubling / second harmonic generation was employed to convert 1030 nm light from the
laser to 515 nm light via a non-linear optical crystal (Lithium triborate / LBO). Following
this, a dichroic filter was used to eliminate any unconverted 1030 nm light. Although the
515 nm light is not the same wavelength as the 532 nm light used throughout the rest of
the characterization experiment, the wavelength difference is not significant relative to the
far more dominant effects with this source which arise as a result of the almost 1000 times
shorter pulse width: 2 ps vs. 1.5+ ns.

The basic method or process used to evaluate the fibers is as follows:

1. For each fiber type, couple 25 m into the system.

2. Calibration step: At low laser intensity, measure the power before and after the
fiber to calculate the coupling efficiency. Note that coupling in the range of ~ 50 %
is considered fairly high / good. Next, using the spectrometer, record the output
spectrum. The area under the curve of the output spectrum is proportional to the
optical power. Thus, an equivalence is made between the spectrometer readings and
the already recorded power after the fiber.

3. Incrementally (and systematically) vary the laser parameters, and record the output
spectrum. This is done for every combination of laser parameters.

4. Once this is done, the fiber is then cut-down in length (generally in increments of
2 m), and the process of calibration and varying the laser parameters is repeated.
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Figure 4.1: The experimental apparatus used to characterize SRS in optical fibers is illus-
trated here. Light from the laser source is coupled into optical fiber, where SRS occurs,
generating additional wavelengths. The spectrum of the light after exiting the fiber is
measured and recorded.

These steps are repeated for all fibers, ultimately yielding thousands of experimentally
measured spectra associated with parameter combinations.

4.2 Experimental Results

The measured spectra comprise a data-set with dimension associated with the parameters
of fiber type, fiber length, input pulse energy, pulse repetition rate, and pulse width.
Rather than attempting to visualize and interpret the entire data-set at once (which would
be cumbersome due to its dimensionality), representative “slices” of the measured data
are shown in the form of graphical plots, examining one specific effect or parameter while
holding all the other parameters constant. For each of the explored parameters, outlined
in Table 4.2 (as well as fiber type), the generalized trend in findings is discussed.

4.2.1 Effect of Fiber Length

The first parameter explored is the fiber length. More specifically, adjusting the fiber length
alters the interaction length over which SRS can occur. As anticipated, with longer fibers
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(all else held constant), higher-order Stokes waves are generated. The cascading effect
(introduced in Chapter 2 on page 21) requires both sufficient length and input intensity to
occur. Thus, for sufficient input intensity, length can be a limiting factor. Repeated from
Chapter 2, Equation (2.21) is shown again here for reference:

dl,

= gRIp[s - as[s
dz (4.1)
d/, Wy '
E = —w—ng]p_ls — Oéplp

In accordance with the governing set of differential equations, both the intensity of the
pump, I,, (and Stokes, I;) and an adequate fiber length is required for the cascading
effect to occur. As length is increased, one can think of the differential equations being
integrated over a longer range (z). This of course means further Stokes wave generation
and subsequently cascaded higher-order Stokes waves as well.

Figure 4.2 shows how the resulting SRS spectra change as fiber length is increased. One
can readily observe that as fiber length is increased, higher-order Stokes waves are gener-
ated, attenuation occurs (decreasing the overall power and gradually preventing additional
Stokes wave generation), and spectral broadening of the SRS peaks occurs.

4.2.2 Effect of Input Intensity

The next parameter to examine is the effect that the input pulse intensity has on SRS
generation. Again, following clearly from the theory of Stokes wave intensity growth from
Equation (4.1), SRS occurs at a faster rate and higher-order Stokes waves are generated
with greater intensity light. Both the rate of spontaneous and stimulated Raman scattering
depend on the intensity of light, or rather, the abundance of photons available to interact
with the medium. Therefore, it is no surprise that in Figure 4.3, one can clearly see that
higher-order Stokes waves are generated as intensity (gain) is increased. Additionally, some
anti-Stokes wave generation occurs for higher intensity. Spectral broadening for higher-
order Stokes waves is seen here due to the cascading / convolution-like nature of SRS [148].
Subsequent peaks are at least as broad as the previous ones, and tend to be even broader
because of the broadness of the Raman gain spectrum of fused silica itself.

4.2.3 Effect of Fiber Type

Here, a comparison between a selection of fiber types (summarized in Table 4.1) is made.
Major differences between examined fiber types include the use of dopants, the fiber core
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Figure 4.2: For a fixed input intensity and fiber type, observe that increasing the fiber
length leads to higher-order Stokes wave generation, greater attenuation, and increased
spectral broadening. Spectra are plotted in order of increasing fiber length, from top to
bottom. Intensity is plotted on a linear scale.

diameter (affecting the wave-guiding ability for certain wavelengths and the intensity of the
light as a result of the effective cross-sectional area), and how well the fiber maintains the
polarization of light (birefringence). In general, the explored fibers had fairly comparable
mode-field diameters (related to the fiber core diameter and the effective cross-sectional
area) and no trend was seen with mode-field diameter. The dominant fiber characteristics
affecting high-order Stokes wave generation were attenuation and how well the fiber main-
tains polarization. Figure 4.4 shows the resulting SRS spectra for a selection of four fibers,
illustrating the effects that attenuation and maintenance of polarization have.

Intuitively, low attenuation is favorable for the SRS process, leaving greater intensity
for Stokes wave generation. Additionally, it has been shown that the use of polarization-
maintaining fiber can decrease the critical power (power at which Stokes wave intensity
equals that of the pump wave, for a given fiber length) by a factor of two [146], meaning
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Figure 4.3: In contrast to the spectra shown in Figure 4.2, where fiber length was varied,
here spectra are shown for variable input intensity. For a fixed fiber length and fiber
type, when increasing the input intensity (gain), higher-order Stokes wave generation,
attenuation at high wavelengths, and spectral broadening occur. Input intensity is lowest
for the spectrum at the top of this figure (gain = 0), and increases moving downwards
(finally to gain = 100). Again, intensity is plotted on a linear scale. Additionally, while not
shown explicitly in this figure, burning the proximal end of the fiber occurs at sufficiently
high input intensity. This imposes a fundamental upper bound on the intensity of light
which may be coupled into the fiber.
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that higher-order Stokes waves can be generated than with a similar non-polarization-
maintaining fiber. This effect is a result of the fact that the Raman gain spectrum is
sensitive to the polarization difference between the pump and Stokes waves [144, 146].
The Raman gain spectrum shown in Figure 2.4 of Section 2.3.2 is only representative for
co-polarized pump and Stokes waves. For the orthogonally polarized case, the gain is sig-
nificantly lower, requiring greater pump wave intensity for similar Stokes wave generation.
Although Stokes photons maintain the polarization state of the pump photon that lead
to their creation, in non-polarization-maintaining fiber, polarization is scrambled over the
length of the fiber, meaning that it is less likely for pump photons to interact with Stokes
waves of the same polarization state, ultimately leading to a reduction in the generation
of higher-order Stokes waves. Highly birefringent fibers maintain polarization especially
well, and thus exhibit excellent high-order Stokes wave generation. For HB600 fiber, shown
in the bottom panel of Figure 4.4, Stokes waves up to approximately the 19*" order are
generated, although other effects are prominent, especially beyond 700 nm.

4.2.4 Effect of Pulse Repetition Rate

The pulse repetition rate has no impact on the SRS process for the range explored here (up
to 300 kHz). This is because the temporal response is on the order of femto-seconds, orders
of magnitude shorter then the time between pulses [149, 150]. Since there is no temporal
overlap between excited locations in the medium (fused silica fiber) and subsequent pulses,
altering the pulse repetition rate has no influence on the resultant SRS spectra. Figure 4.5
shows four resultant spectra at pulse repetition rates ranging from 40 kHz all the way to
300 kHz, with no significant difference. Although minor variations are present, these are a
result of variations in the laser intensity. Precisely maintaining laser intensity over a range
of pulse repetition rates was a challenge in this experiment, and more broadly, because
Q-switched lasers generally operate at constant power settings, meaning that intensity is
inversely proportional to pulse repetition rate.

4.2.5 Effect of Pulse Width

Experimentally, varying the pulse width had negligible impact throughout the nano-second
range and high-order Stokes wave generation was possible. However, with the pico-second
source, pulse walk-off and higher-order effects of self-phase modulation (SPM) [141], cross-
phase modulation (XPM) [142], and four-wave mixing (FWM) [143] dominate and compete
with SRS [94], making spectrally-distinct generation of any Stokes wave impossible. Fig-
ure 4.6 demonstrates the resultant spectra from the 2 ps source. Walk-off lengths of roughly
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Figure 4.4: The choice of fiber influences the SRS generation ability through two main
effects: optical attenuation and the maintenance of polarization. Low attenuation and
high birefringence (yielding a high degree of polarization maintaining ability) are conducive
to SRS generation. Shown here, in order from top to bottom, are spectra from 630HP,
PM460-HP, HB450, and HB600 fiber. Note that while the PM460-HP fiber is considered to
be polarization maintaining, its birefringence is less than that of HB450. Again, intensity
is plotted on a linear scale.
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Figure 4.5: Resultant spectra at four pulse repetition rates are plotted here. The pulse
repetition rate does not affect the SRS generation process. Since the effective relaxation
time for the SRS effect is in the femto-second range in the scattering medium, at pulse
repetition rates within the range explored, there is no spatial overlap between excited
locations in the medium and subsequent pulses. Though small variation is seen between
the four spectra shown, these differences are a result of variations in the laser intensity.
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Figure 4.6: For short pulse widths, for example in the pico-second range (2 ps shown
here), effects of pulse walk-off and higher-order effects of self-phase modulation, cross-
phase modulation, and four-wave mixing dominate and compete with SRS [94]. The result
is that high-order Stokes wave generation is impossible and spectral broadening is extreme.
Plotted here, in order of increasing input intensity, are the resultant SRS spectra generated
from the 2 ps source.

20 cm can be expected for 2 ps pulse widths [94], meaning that the use of fibers longer than
this is futile and only leads to increased spectral broadening as a result of the competing
higher-order effects.

4.3 A Simulation of SRS in Single-mode Fiber

To aid in understanding the theory governing SRS and to create correspondence with
experimentally measured results, a simulation of the SRS process was created. In essence,
the simulation solves the coupled differential equation in Equation (2.21) over a specified
length. The simulation includes a model of the Raman gain spectrum, gg(2), of fused
silica, shown in Figure 2.4, a reasonable estimate for the true Raman gain spectrum of any
given fiber (possibly containing additional unknown dopants). Additionally, parameters
specific to the fiber including the mode-field diameter (incorporated as the effective area,
A.sr, for use in computing optical intensity), and the attenuation spectrum, a(\), where
available, were included.

For improved accuracy, the simulation is implemented in such a way that no assump-
tions on the center wavelengths of the pump or Stokes wave are made. A simpler imple-
mentation might have assumed each Stokes wave was simply shifted by Q = 440 cm™;
however, this neglects spectral broadening as a result of the convolution-like nature of
SRS. Instead, the spectral domain is discretized in steps of 0.25 nm, and the Raman gain
spectrum is interpolated such that Raman gain at each wavelength step is evaluated. This
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Figure 4.7: Discretization to simulate SRS propagation down the length of an optical fiber
was done over wavelength (in steps of 0.25 nm), distance down the fiber (in steps of 5 mm),
and over a sliding time-window following the pulse as it travels down the fiber (in steps
of 20 ps, which correspond to a propagation distance of approximately 0.4 mm). The
coloured pixels represent the optical intensity of an example pump (left) and first Stokes
wave (right).

also allows the spectral profile, I,(\), of the pump wave to be specified. Additionally, the
temporal domain is discretized in 20 ps steps (which corresponds to a propagation distance
of approximately 0.4 mm), allowing for arbitrary input pulse profiles, 1,(t), to be used and
for the pulse profiles of the resulting Stokes waves, I ;(t), to be examined. For a reasonable
representation of the lasers used experimentally, Gaussian profiles were used with their full
width at half maximum (FWHM) [94] defined by the nominal pulse width. Note, for a
Gaussian with standard deviation o, this is given by FWHM = 2,/21n (2)o. The temporal
domain is implemented as a sliding time-window, following the pulse as it travels down
the fiber, such that the center of the pulse remains at the same shifted time throughout
the simulation. Lastly, the differential equation is evaluated in distance steps of 5 mm,
yielding high-resolution simulation results over distance, time, and wavelength. Figure 4.7
offers a visual representation of the discretization scheme used for the simulation.

The simulation generally yields results similar to what was measured experimentally
and gives thought-provoking insights into the fine details of the SRS process. One such
detail, the evolution of the pulse, is explored here.

4.3.1 Comparison between Simulated and Experimentally Mea-

sured SRS Spectra

The SRS spectrum was simulated for HB450 fiber, for which Fibercore Ltd. provided the
attenuation spectrum, a()), (see Figure 4.8), thereby aiding in producing an accurate
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Figure 4.8: The attenuation spectrum, «(A), of HB450 fiber, provided by Fibercore Inc.
The structure and details shown demonstrate the difference between the nominal attenua-
tion constant (<100 dB/km @ 488 nm for HB450) and the true attenuation characteristics.
Fibers designed for NIR and IR generally have much smoother attenuation spectra, with
predominantly Rayleigh scattering causing attenuation. Here, attenuation is relatively low
until approximately 625 nm, and becomes extremely erratic beyond approximately 680 nm,
where the fiber ceases to guide well. This matches the observed SRS spectra, shown in
Figure 4.2, Figure 4.3, the third panel of Figure 4.4, and later, in Figure 4.10, where few
Stokes waves above 680 nm are generated.

result. In principle, other fiber types could also have been simulated; however, HB450
was the only fiber type for which an adequate attenuation spectrum (rather than simple
nominal attenuation) was available'. The resulting SRS spectrum is shown over a length
of 25 m, with a spectral domain ranging from 530 nm to 930 nm, in Figure 4.9. Several
intuition-matching insights can be drawn from this result.

Firstly, higher-order Stokes waves are seen for increasing distance along the fiber; how-
ever, the spacing, in distance (z), between subsequent Stokes waves subtly increases. This

! Attenuation spectra were available for HB450 and HB600 fibers; however, for HB600, attenuation
information was only available for wavelengths greater than 580 nm, making it unsuitable for simulating
SRS with a 532 nm pump wavelength.
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is expected as a result of several related causes. For each additional Stokes wave, the
total power is more spread-out spectrally, meaning there is less available intensity in the
preceding Stokes wave acting as a pump, therefore longer and longer distance is required
before the next Stokes wave emerges. Additionally, as the pulse travels down the fiber it is
attenuated, once again leaving less and less intensity available for subsequent Stokes wave
generation.

Secondly, each Stokes wave is spectrally broader than the one before it. This is a direct
result of the convolution-like nature of SRS, and is entirely expected [148]. Effectively,
the pump-laser spectrum, I,()), is convolved with the Raman gain spectrum, gr(€2), to
yield the spectrum of the first Stokes wave, I;1(A). In the spectral domain, the result of
convolution can be thought of as effectively having bandwidth approximately equal to the
sum of the bandwidths of the two convolved spectra. Thus, for each subsequent Stokes
wave (convolution of preceding Stokes wave spectrum with the Raman gain spectrum), the
bandwidth, or spectral broadness, increases.

For visual comparison, experimentally measured SRS spectra from the HB450 fiber
are displayed in a similar fashion in Figure 4.10. Because measurements were made at
far coarser increments in fiber length, linear interpolation is used to fill in the gaps. A
glaring difference exists between the spectra shown in Figure 4.9 and Figure 4.10, beyond
wavelengths of approximately 680 nm. This is a result of the lack of detailed attenuation
information available in this range (see Figure 4.8). It is known that HB450 does not guide
well beyond 680 nm. Therefore, to observe better correspondence between the simulation
and the experimental measurements, in principle, the simulation should be re-run with a
more realistic attenuation spectrum.

For the preceding wavelength range, there is good correspondence between the simu-
lated and measured spectra, at least at a qualitative level. Stokes waves emerge at roughly
the same positions along the fiber, and at roughly the same central wavelengths (expected
based on the main peak of the Raman gain spectrum). The largest difference is in the spec-
tral broadness of the Stokes waves, I;;(A). The broadening may be a result of higher-order
effects, namely four-wave mixing. Nonetheless, the correspondence is reasonable enough
that the simulation may be useful as a guide when selecting fibers and laser parameters
for use in a multi-wavelength imaging system.

4.3.2 Temporal Pulse Profile Evolution through SRS Process

As alluded to earlier in this section, on page 68, the simulation revealed interesting details
of how the temporal pulse profiles of the pump, I,(t), and Stokes waves, I,;(t), evolve
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Figure 4.9: The SRS spectrum is simulated throughout the length of an optical fiber.
Generation of higher-order Stokes waves are seen for increasing distance down the fiber.
A gamma correction is applied to aid in visualizing the spectrum towards the end of the
fiber where the intensity is quite low relative to at the start of the fiber due to the power
being spread-out spectrally and attenuated by the fiber.

throughout the SRS process. Based on Equation (2.21), it is known that the rate of Stokes
wave intensity growth is proportional to the intensity of the pump wave; however, the
pump pulse does not have a uniform temporal profile. This means that more intense parts
of the temporal pump pulse profile will begin Stokes wave generation at shorter travelled
distances than the less intense parts. For a Gaussian pulse, this corresponds to the intense
central region versus the weaker tails. Figure 4.11 illustrates this effect through simulation,
at 1 m increments along the fiber. Correspondingly, Figure 4.12 shows the evolution of the
first Stokes wave at the same positional increments.

Because it is most intense, power from the central region of the pump profile is converted
first, contributing to the growth of the central region of the first Stokes wave. The result is
a central erosion of the temporal pump pulse profile. The weaker tails of the pump profile

71



550 600 650 700 750 800 850 900
Wavelength (nm)

Figure 4.10: For comparison to Figure 4.9, the SRS spectrum is experimentally measured
at increments in optical fiber length. The resulting experimentally measured spectra are
visually similar to the simulated ones for wavelengths less than 680 nm. Higher-order
Stokes wave generation is seen for increasing fiber length. Linear interpolation is used
to fill in gaps between measured lengths, and a gamma correction is applied to aid in
visualizing the spectrum towards the end of the fiber where intensity is quite low relative
to at the start of the fiber due to the power being spread-out spectrally and attenuated by
the fiber.
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Figure 4.11: The simulated temporal profile of the pump pulse, 1,(¢), evolves due to SRS
as it travels down the fiber. Initially, the profile is Gaussian; however, the highly intense
central region undergoes SRS conversion, generating the next Stokes wave, in a shorter
distance than the less intense outer regions. This causes a central erosion effect.
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Figure 4.12:

central erosion effect as is seen in the original pump pulse.
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Corresponding with Figure 4.11, this figure shows the simulated temporal
profile of the first Stokes pulse, I51(t), as it evolves over the length of the fiber. Initially,
no Stokes photons are present (zero intensity), but through SRS, photons from the highly
intense central temporal region of the pump pulse are converted to Stokes photons. This
process continues through the less intense tails of the pump pulse, temporally broadening
the Stokes pulse; however, simultaneously, the newly formed intense central region of the
first Stokes pulse begins act as a pump for the second Stokes pulse, resulting in the same



require more distance before sufficient spontaneous Raman scattering occurs, such that
rapid conversion of power from the pump to the Stokes wave ensues. The same effect is
at play in the Stokes waves. Initially the central region of a Stokes wave grows; however,
once this becomes intense enough, the process repeats, leading to the central erosion of the
Stokes wave profile and the growth of the central region of the next Stokes wave.

After just 3 m, the pump profile has a central gap of approximately 2 ns, which is very
significant for a pulse characterized nominally by its full width at half maximum duration
of 1.5 ns. The remaining tails are far less intense than the original pulse, but nonetheless,
the pump pulse has effectively become two pulses. The impacts that this may have on
PARS imaging are explored as Future Work in Section 6.1.

In more detail, Figure 4.13 shows the emergence of the central erosion effect taking
place over a length of just 10 cm. This occurs at the point when sufficient Stokes photons
are present for rapid conversion of power from the pump to the Stokes wave.

Note that for a perfectly uniform temporal pump pulse profile, the erosion effect would
also be uniform, resulting in the entire profile being converted to the Stokes wave. That
would mean that rather than obtaining a comb-spectrum, a spectrum of only one peak
would arise — except for brief points where both a pumping wave and the subsequent
Stokes wave are present, before the pump wave is depleted. Although this effect was not
experimentally validated by observing the pulse profiles, the comb-spectra experimentally
measured are evidence of this effect, which has been studied by others [156, 217].

4.4 Chapter Conclusion

In this chapter, the effects associated with parameters of fiber type, fiber length, input
pulse energy, pulse repetition rate, and pulse width, on multi-wavelength light generation
through SRS were comprehensively studied. Additionally, a simulation of the SRS effect
in optical fiber was developed and used to aid in understanding SRS from a theoretical
standpoint and to create correspondence with the experimentally measured results.

Generally, longer fiber lengths and greater input intensities lead to higher-order Stokes
wave generation; however, attenuation over the length of the fiber and challenges with cou-
pling a high-power pump beam into the fiber (burning the fiber tip) are limiting factors.
Additionally, the choice of fiber type can have enormous effects on the ability to generate
high-order Stokes waves. The two most important properties of the fiber are its operat-
ing wavelength range and ability to maintain polarization. Severe attenuation occurs for
wavelengths outside of the operating range, preventing additional Stokes wave generation.
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Figure 4.13: The same physical process is plotted here as in Figure 4.11, but on a much
shorter distance-scale (10 cm) where it is possible to observe the initial onset of the central
erosion effect.
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Highly birefringent fiber, which maintains polarization over greater lengths, was found to
dramatically extend the range of wavelengths that could be generated through SRS.

The pulse repetition rate was found not to affect the SRS process. This is expected,
given that the effective relaxation time for the SRS effect is in the femto-second range,
whereas for the pulse repetition rates explored, the time between consecutive pulses was
orders of magnitude longer than that relaxation time. As such, consecutive pulses do not
interact and thus the pulse repetition rate has no effect. This is beneficial in high-speed
imaging applications, where imaging rates depend on the pulse repetition rate, allowing
the pulse repetition rate to be set arbitrarily without concerns of impacting the SRS multi-
wavelength light generation process.

The pulse width did not affect the SRS process throughout the nano-second range;
however, orders of magnitude lower, at the pico-second range, pulse walk-off and higher-
order optical effects dominated, competing with the SRS process and severely limiting
the generation of Stokes waves. Thus, for applications involving nano-second pulses, SRS
remains an effective means of generating multi-wavelength light.

By simulating the SRS process, several effects corresponding well with experimentally
measured results were observed. These include the appearance of higher-order Stokes waves
for increasing distance along the fiber and spectral broadening of Stokes waves. Simulated
spectra showed excellent correspondence to experimentally measured spectra, with Stokes
waves emerging at approximately the same positions along the fiber. Substantial differences
arose only as a result of missing fiber attenuation information beyond a certain wavelength.

The simulation also revealed the temporal pulse profile evolution though the SRS pro-
cess. Of interest was the central erosion effect, whereby the highly intense central portion
of a pulse is converted to the next Stokes wave, leaving behind the less intense tails of the
pulse, separated temporally by as much as approximately 2 ps over distances of only 3 m.
The effects of using centrally eroded pulses in imaging applications such as PARS remain
unknown.

To conclude, by understanding the effect each parameter has, informed decisions re-
garding parameter selection can made in future work involving SRS as a means of creating
a multi-wavelength light source. Additionally, assuming adequate information on fibers of
interest is available, simulation may prove to be useful as a guide for selecting parameters.
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Chapter 5

PARS Time-Domain Signal
Intelligent Feature Extraction

This chapter focuses on methods to extract information from PARS [3, 50-63] time-domain
(TD) signals. PARS TD signals contain relatively large amounts of data, represented as
arrays of samples, measured and recorded by a data acquisition card. The length of the
signals are set by the PARS microscope operator; however, lengths of 256 up to 1024
samples per pixel are commonplace. During image formation, TD signals conventionally
are projected to scalar-value representations. Section 2.4 introduced conventional methods
for extracting amplitude information from PARS TD signals, two state-of-the-art feature
extraction methods for photoacoustic microscopy more broadly [179, 180], and finally a
primer on feature extraction. Because of the quantity of data that are collected during
PARS imaging, the TD signals are difficult to interpret directly; however, information be-
yond what can be represented by a scalar (as in conventional methods) is desired, thus
necessitating concise information extraction. Key motivating factors for the work presented
in this chapter include the desires to improve imaging contrast and to achieve target speci-
ficity though improved signal processing.

To recap somewhat from Section 2.4, conventionally, PARS TD signals are projected to
scalar values that can directly be used as pixel intensities in reconstructed PARS images.
This is achieved though one of two main methods: one, based on the Hilbert transform,
which extracts the amplitude of the envelope of the signal, defined in Equation (2.24), and
the other, based simply on the Maximum minus Minimum amplitude of the TD signal
itself, defined in Equation (2.25).
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While these methods have been effective in works thus far, it would be beneficial to
extract far more information from the PARS TD signals, beyond single scalar values. Im-
proving imaging contrast through signal processing would be excellent, since it could mean
that less excitation laser fluence may be required during imaging, thus improving safety
for eventual clinical usage of PARS microscopy. Furthermore, tissue-specific / clinically
relevant information may lay hidden within the PARS TD signals. Extracting this would
obviously be beneficial for clinical uses, would provide insights beyond simply quantify-
ing optical absorption, and would advance the technology of PARS microscopy consider-
ably. Additionally, with current methods, obtaining tissue-specific information requires
multi-wavelength imaging (multiple scans over the target) and unmixing; however, if this
information were obtained directly from PARS TD signals produced from a single exci-
tation wavelength (only one scan over the target), imaging times and the PARS system
complexity could both be reduced.

Section 5.1 outlines a preliminary attempt to address this problem, showing success
in improving imaging contrast, then in Section 5.2, a feature learning approach based on
K-means is developed and applied, enabling some level of target specificity in both slides
of human breast tissue and freshly resected murine brain tissue.

5.1 Preliminary Work

By incorporating information from entire PARS TD signals, it is proposed that more infor-
mation may be extracted than what conventional projection methods (such as Maximum
minus Minimum, which only directly uses information from two points) produce, which
may lead to improved image contrast, measurement accuracy, and new visual information
not ever present with current imaging methods. This section primarily explores the use of
matched filtering [218] to improve PARS imaging contrast.

A matched filter is a linear filter capable of optimally extracting a known signal shape
in the presence of additive noise [219]. Essentially, the filter is the correlation of the noisy
measured signal with an “ideal” (noiseless) version of the expected signal shape.

Suppose that there exists an ideal PARS signal, Sigeai(t), such that a measured TD
signal, s(t), is simply a scaled version of this ideal signal with added zero-mean noise, v(t):

s(t) = a- Sieal(t) + v(t), (5.1)
for scalar amplitude a € R. The matched filter then takes the form:
3<t>ﬁltered = 3(t> * Sideal(_t)' (52)
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Notice the time-reversal of sjgea1(—t), necessary to perform correlation via the convolution
operator, *.

The next step is to extract the amplitude information from this. Assuming that PARS
TD signals are time-aligned — a reasonable assumption given that the acquisition system
is triggered using the same trigger signal as is used to trigger the excitation laser pulse —
rather than using correlation, simply multiplying the ideal signal with the measured signal
and integrating extracts the signal amplitude, a:

a = /OT S(t)Sidea1<t) dt. (53)

Note that this relies on the ideal signal being normalized, such that

T
/ Sideal(t) dt = 17 (54)
0

over the domain ¢ € [0, 7], determined by the acquisition length used.

The last remaining step before being able to apply this method to PARS images is
to concretely define the ideal PARS TD signal. Given that relatively little is understood
regarding the exact process signal formation, a simple method to estimate the ideal noise-

free PARS TD is appropriate. The estimated ideal PARS TD, 5igeai(t), is calculated by
simply averaging the TD signals within a given image, I:

St = = 3 s(0). (5.5)

|I| Vs(t)el

Note that normalization, according to Equation (5.4), is still required.

This method is tested on a PARS image of a slide of formalin-fixed paraffin-embedded
(FFPE) human breast tissue, shown in Figure 5.1. This image was captured and provided
by Benjamin R. Ecclestone with gratitude from the author. This image was captured with
266 nm excitation and 1310 nm detection wavelengths. For the purpose of analysis, 500
pm by 500 um regions are examined in closer detail; however, the estimated ideal signal
for use in filtering is calculated by averaging over the entire image.

Figure 5.2 shows the results of matched filtering for the two sub-sections of the image.
Visually it can be seen that contrast is improved in both dark and light regions of the
matched filtered images. More specifically, there is greater clarity in the details, and the
continuity of fine structures is greatly improved.
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Figure 5.1: A standard TD signal projection PARS image of unstained human breast tissue
on a slide, captured at 266 nm excitation and 1310 nm detection wavelengths. 500 ym by
500 pm regions are shown boxed-in and are later examined in Figure 5.2, where matched
filtering is applied. Image captured by Benjamin R. Ecclestone.

Note that this method, matched filtering, uses only one characteristic signal shape
and is thus limited by that. As was explained in the introduction to this chapter, it
would be excellent to extract more information from the TD signals, perhaps information
corresponding to tissue / target information. Having several characteristic signal shapes
could enable this; however, this begs the question of which signal shapes to use and where
to find them.

One solution is to use a lock-in amplifier / filter [220], or equivalently, a digital im-
plementation of it. A lock-in filter enables frequency-based signal mixing, i.e., measured
signals are correlated with sinusoids at specified reference frequencies, f.or. The method
is very similar to matched filtering whereby a sinusoid is used rather than an ideal signal.
Using lock-in filtering in quadrature mode, whereby amplitudes from both sin(¢) and cos()
are combined via the Pythagorean theorem, yields a phase-insensitive amplitude associated
only with the reference frequency. Effectively, a filter bank can be generated by specifying
reference frequencies of interest.

This approach was explored by the author and presented in [221]. It was found that
the filter did yield variations in contrast with reference frequency; however, rather than
highlighting different tissue structures, the filter seemed only to broadly modulate contrast
of the whole image, and furthermore did not exceed the contrast provided by the matched
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Figure 5.2: The standard projection method (left column) is compared to the matched
filtered amplitude (right) for two sub-sections (defined in Figure 5.1) of a PARS image of
unstained human breast tissue on a slide. Contrast is improved in the matched filtered
images and the continuity of fine structures is greatly improved.
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filter. This behaviour is largely explained by the fact that optimal contrast was achieved at
a reference frequency corresponding to a sinusoid very similar in shape to the ideal PARS
signal as was used in matched filtering. Lock-in filtering is conventionally used in situations
where a signal of interested is modulated on top of a carrier waveform of known reference
frequency [220]. Thus, this filtering method was not deemed successful in bringing forth
additional information from the PARS TD signals.

Rather than using externally generated signal shapes, as is done in lock-in filtering,
it would be advantageous to derive characteristic signals shapes directly from measured
PARS TD signals. The next section explores this in detail and uses a modified K-Means
clustering algorithm to extract characteristic signal shapes, representative of the signals
present within the processed PARS image.

5.2 A Modified K-Means Algorithm

The previous section concluded by recognising the need for a method to derive, or learn,
characteristic signal shapes from a given PARS image. Though matched filtering proved
effective in improving image contrast and structural continuity, it was inherently limited
by the fact that only one characteristic signal shape was used. In any given PARS image,
there may be a wide range of prevalent signal shapes present, based on the properties of
the target / bio-media that are imaged.

To address this, a method is proposed in this section to learn characteristic signal
shapes, fi(t), from a given PARS image. This method is chosen based on the desire to
extract signal shapes that are representative of pure or isolated components. Consider
that any TD signal may include the PARS response associated with a variety of absorbers.
What is desired is to learn signal shapes associated with isolated components, or absorbers.
This would serve to enable evaluation of the chromophore composition associated with any
given TD signal.

Section 2.4 introduced both principal component analysis (PCA) and clustering as
methods for dimensionality reduction and feature extraction. On page 30, PCA and clus-
tering (specifically K-Means) are compared and contrasted. While both methods serve to
reduce dimensionality, they work in very different ways and produce very different fea-
tures as a result. Recall that PCA projects the measurement data (in n dimensions),
arranged into an p X n data-matrix, X = [fl e a‘c’p}T, onto a reduced-dimensional basis,
encapsulated as columns of V' (right singular vectors, when SVD is used), thus forming a
representation, Y = X'V, based on combinations of the data based on directions in which
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the measurement data set exhibits maximal variance. These basis directions, maximal
principal components, do not directly relate to the underlying information in the data
(i.e., the local characteristics of the imaged target). In contrast, clustering represents the
data (through labeling) in a way where the representation does relate specifically to an
estimate of the underlying “type” or classification of the data, whether this estimate is
actually in any way correct or not.

Note that measured TD signals are not externally band-pass filtered for use with the
methods of this section, in contrast with the conventional approach described on page 7.
This detail is highly central, and possibly essential, to this analysis. The act of band-pass
filtering PARS TD signals in a conventional acquisition removes important signal content,
substantially altering the shape of the PARS TD signals. The method developed here is
based on the principle that the signal shape is indicative of the underlying characteristics
of the target. Therefore, altering the signal shape or removing signal content by filtering
is counterproductive and is thus not done.

5.2.1 Methods

Here, both feature extraction and feature learning methods are described. In brief, PARS
TD signals, s(t), are thought of as vectors in the space R™, where the dimension, n, of the
space is simply the length of the PARS TD signal in discrete samples over time. Thus,
the equivalence s(f) = 5 is made. If a suitable set of basis vectors F = {f;} is available
(or found through feature learning and selection), then a change of basis, Br, can be
applied to the PARS TD signals, &; = Brs;(t), resulting in a reduced-dimensional, feature-
based representation, as described in Section 2.4. This reduced-dimensional representation
lends itself well to interpretation and to generating colour-mapped images, which visually
illustrate how the TD signals vary throughout imaged tissue.

Feature learning is used to discover characteristic signal shapes that are representative
of pure or isolated target components and can be used to form a reduced-size basis. The
method proposed is based on K-Means clustering and clusters based on the shape of the
PARS TD signals. The motivation for clustering this way is based on the premise that TD
signals from different targets / tissue components have different shapes. This phenomenon
is visualized in Figure 5.3, where PARS signals are shown at three different points, corre-
sponding with various tissue components, within a PARS image of unstained human breast
tissue. The shapes of the three TD signals are distinct, demonstrating that signal shapes
vary across tissue components. This image, again, was captured and provided by Ben-
jamin R. Ecclestone with gratitude from the author. Thus, characteristic signals shapes
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may be discoverable for various bio-media of interest (nuclear regions, cytochromes, etc.).
TD signals from a PARS image are clustered, resulting in a set of K centroids, ¢ = {¢;},
for i = 1,..., K. A subset of these centroids can then be used as basis vectors for feature
extraction.

Feature Extraction

As discussed briefly above, feature extraction is achieved by performing a change of basis
on the PARS TD signals. Given the set of basis feature vectors, F = {f;}, the PARS TD

signals, s;(t), can be expressed as a weighted sum of the feature vectors, ﬁ , plus a residual
term, 7

Sj(t) = Z Oél‘in + 7:; (56)
Vi
Arranging the feature vectors as matrix columns, forming a matrix of features,

|
F=1fi fo .|, (5.7)
.

the preceding expression then becomes
Sj(t) = FO_Z] + 7_’; (58)

Generally, there are far fewer feature vectors than the dimension, n, of the PARS TD
signals, allowing for dimensionality reduction.

To solve for the vector of feature weights, @, the pseudo-inverse [109-111] of F' is used,
such that the residual, ||7|| = ||s;(t) — F'd@,||, is minimized. Thus,

& = F*s;(t). (5.9)

Feature Learning: “K-Means-style” Clustering

Feature learning is achieved by clustering PARS TD signals based on their signal shape,
and using the resulting selected cluster centroids, ¢;, as basis feature vectors. Because TD
signals are treated as Cartesian vectors, the signal shape is then analogous to the vector
angle. Any vector, ¢, can be expressed as the product of a scalar magnitude, m, and a
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Figure 5.3: The left panel shows a standard TD signal projection PARS image of unstained
human breast tissue on a slide, captured with 266 nm excitation and 637 nm detection
wavelengths. Three points are marked in colour (blue, red, yellow), for which the corre-
sponding filtered (for visual clarity) PARS TD signals are shown in the right panels. The
blue point corresponds to a nuclear structure (absorption based on DNA) in a densely-
packed region surrounding a duct, the red point corresponds to a nuclear structure in a
lower-density region of the tissue, and the yellow point corresponds to part of an extra-
cellular region, likely containing cytochromes. The shapes of the three TD signals are
distinct, demonstrating that signal shapes vary across tissue components. Please note that
this figure is purely shown to demonstrate the effect of signal shapes varying across tissue
components and that the signals shown here are not necessarily representative of those
that can be captured on more recent PARS system architectures. PARS image captured
by Benjamin R. Ecclestone. 86



co-linear unit-vector, @ = ¢//||U||. Thus ¥ = mu, and it is clear that the angle is encoded
by the unit-vector, and signals can be clustered based on their angle.

Consider an arbitrary PARS TD signal, § = mu. The negative of this signal, —§ =
(—m)i, shares the same direction, @, however the sign is opposite. These two signals
are described as having opposite polarity (i.e., they are antipodal). Although the angle
between § and —§ is 7 radians, they share the exact same signal shape, u, associated
with the same underlying imaged target, and should be clustered together. Therefore, the
clustering algorithm must be polarity-agnostic.

Distance Metric

Before defining the clustering algorithm, the distance metric to be used must first be
defined. To cluster TD signals based on their shape (or associated vector angle), we
require the distance metric to be

1. angle-based, and
2. polarity-agnostic.

Continuing with the example of antipodal signals s and —35, a distance metric that is
polarity-agnostic would measure § and —3s as having zero distance, and would enable the
two to be clustered together.

Formally, a distance metric [222] on a set M is a function, d : M x M — [0, 00), that
for any x,y, 2 € M satisfies the following three axioms:

L d(z,y) =0 < xz=y (identity of indiscernibles),
2. d(z,y) =d(y, ) (symmetry), and
3. d(z,z) < d(xz,y) + d(y, 2) (triangle inequality).

The distance metric will be based on angle, so the angle between two vectors must be
defined. For simplicity, and based on the symmetry axiom, all angles will be considered to
be positive. The angle, ¥}, between two vectors, v and s, is defined as

[1][[] 2|

V= L (¥, Ts) = arccos <M) : (5.10)

for arccos(-) defined abstractly as x +— arccos(z), [—1,1] — [0, 7].
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The proposed distance metric is
d (Uy, Uy) = sin(v)), (5.11)

for sin(-) defined on the interval [0, 7|, constraining the range of d to [0, 1]. Note that the
function composition

sin (arccos(z)) = V1 — a2, (5.12)

an identity verifiable via the Pythagorean Theorem. Therefore, the distance metric may

be simplified to
d(vh, Ua) = \/1 - <M)2 (5.13)
7] [|22

Although the proposed metric does not satisfy the first axiom (identity of indiscernibles),
since d(v, mv) = 0, thereby making d a pseudo-metric [223], it does satisfy the other two
axioms and is still suitable for this application given that, by design, the clustering algo-
rithm need only discern signals by shape (angle), not amplitude.

Algorithm

With the distance metric defined now, the clustering algorithm, detailed in Algorithm 1,
follows fairly naturally from conventional K-Means.

The key difference from the conventional algorithm is in the Centroid Update step,
shown on line 17 of Algorithm 1. The usual approach, in conventional K-Means, of taking
the mean of all data points within a given cluster, 5;, to update the centroid, ¢, does
not work here due to polarity-agnosticism, whereby antipodal TD signals are clustered
together; antipodal signals will largely cancel (negate each other) when averaged. Instead,
the direction of greatest variance can be used as the cluster centroid. To contend again
with polarity-agnosticism and the possibility that clusters are not balanced in polarity,
when computing the direction of greatest variance, the union of the cluster, S;, with its
negative (i.e., set where all points are flipped across origin, by multiplying by —1) is used:
S# = S;|J (—S;). The direction of greatest variance is in fact the first principal component,
and can be calculated via a singular value decomposition (SVD), ¢ < SVD; (Sii), shown
on line 20. Following this, the centroid must be normalized, ¢; < ¢;/||ci||, such that it falls
on the unit-hypersphere.

The algorithm stops iterating when

1. sufficiently few data points change clusters between iterations, or
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2. the difference in the mean residual is sufficiently small between iterations.

The user must specify criteria, MovesCriterion and DifferenceCriterion, based on perfor-
mance requirements; however generally, setting MovesCriterion = 1% of the total data
points and DifferenceCriterion = 1071° seems to perform adequately.

5.2.2 Results

In this section, the proposed algorithm is first validated using synthetically generated data
in low dimensions for ease of interpretation before its robustness to several key parameters is
evaluated, again on synthetically generated data. Finally, the algorithm is used to perform
feature extraction on experimentally obtained PARS images of human breast tissue slides
and freshly resected tissue murine brain tissue.

Results on Synthetic Data

Synthetic data are generated in both 2D and 3D to validate that the algorithm is performing
as desired. Only two true classes are generated, with a third class comprised solely of
low-intensity zero-mean noise. The low-intensity noise is included because tolerance to
background noise is one of the main goals of this algorithm. All clusters contained variation,
defined by some covariance matrix, to simulate noise that would normally be present in
measured signals. In both the 2D and 3D cases, the first class is mono-polar, meaning
that all data points are of the same polarity, or in other words, are on the same side of
the origin. The second class however, is bi-polar, meaning that there are data points on
both sides of the origin. This was done intentionally to test the polarity-agnosticism of the
algorithm.

Classes are generated such that signals have non-zero amplitude and the classes are
separated angularly. In 2D, the classes are centered (i.e., position of mean value(s)) arbi-
trarily at [4, 4]T and £[5.5, O]T, respectively. Similarly, in 3D, the classes are centered at
4,4, 4]T and +[4, —4, —4]T, respectively. These central locations are indicative of the true
directions of the classes that should be learned by the algorithm. In 2D, the clusters are
separated by an angle of 45°, and in 3D, by 70°.

Figure 5.4 shows the results of this validation study. The results from the 2D analysis
(top row) are more easily visualized than those in 3D (bottom row), which is slightly more
complicated yet still reasonable to visualize. In both cases, the algorithm does an excellent
job of separating the input classes, even in the presence of noise. Additionally, it can be
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Algorithm 1: K-Means-style Clustering Algorithm for PARS

Input : Set of PARS TD signals, S = {s;(¢)}, acting as data points to be
clustered.
Number of desired clusters, K.
Minimum allowable moves criterion, MovesCriterion.
Difference in mean residual criterion, DifferenceCriterion.
Output: Set of cluster labels, £ = {/¢}, associated with each TD signal.
Set of cluster centroids, € = {c;}, for i =1, ..., K.

Initialization:

Randomly select K data points as initial centroids.
1 fori=1,..., K do
— Random
G T+ st)yesS
3 end

Set previous value of mean residual to O.
4 pPre <=0

Main loop:
5 repeat
Set number of changed cluster labels to O.
6 moves < 0

Membership Update: Determine cluster membership by finding nearest centroid

to each point.

foreach s;(t) € S do

8 lj < argmingg i {d (s;(t),3)}
Increment moves if cluster membership changes.
9 if ¢; changed this iteration then
10 ‘ moves <— moves + 1
11 end
12 end

13

14
15

16

Evaluate mean residual (objective).
1 —

Hr < ST Zs]-(t)es d (s;(t),c,)

A,ur < ,ur — M];Tev

ILL,IF)T‘G’U — /,Lr

Continued on next page...
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Algorithm 1: K-Means-style Clustering Algorithm for PARS (Continued)

16 Resumed from previous page...

Centroid Update: Use data points within clusters to update the centroids.

17 for:=1,..., K do

Get set of data points within cluster.
18 Sz% {Sj<t)}£] :Z}

Take union of set with its negative.
19 Sli — SzU (_Sz)

Compute first principal component via SVD. Assign to centroid.
20 ¢; + SVD, (Sf)

Normalize centroid to fall on unit-hypersphere
21 ¢ < a/llal
22 end

23 until Ay, < DifferenceCriterion OR  moves < MovesCriterion

seen that suitable cluster centroids, ¢, are learned (observable plotted in a similar form
as TD signals would be, in the right column). The learned centroids are approximately
identical to the true cluster centers / directions, up to proportionality, given that the
learned centroids are normalized.

Next, the performance of the algorithm is evaluated over a range of key parameter
settings. The goal of this analysis is to observe the capabilities of the algorithm, measured
in terms of clustering accuracy and centroid similarity to ground truth, in both favourable
and adverse conditions. The three parameters tested here are

1. the angular separation of classes,
2. the background noise level, and
3. the fraction of the data set comprised of background noise.

Each parameter is varied independently, while holding the others constant at their default
value for this experiment. The default values used are an angular class separation of 35°,
a background noise level of 2/3 (relative to the nominal mean signal level), and a fraction
of background noise points of 0.5. This experiment is run in 30-dimensional space, more
closely mimicking the high-dimensionality of PARS TD signals, with randomly generated
synthetic data composed of two classes plus background noise, similar to what is shown in
Figure 5.4. Clustering accuracy is defined as the percent of correctly clustered data points
(background noise is ignored). Centroid similarity is measured by cosine similarity to the
ground truth class prototypes.
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Figure 5.5 shows the results of this analysis. For each of the tested parameters (one per
row), the clustering accuracy and centroid similarity are shown side-by-side. The results
match intuition, in that the algorithm performs best at high class separation angles, low
noise levels, and for low fractions of background noise. Performance tapers-off for the
opposite cases. Notice that for small separation angles, the clustering accuracy suffers,
likely as a result of class overlap. In spite of this, the centroid similarity remains high.
Both clustering accuracy and centroid similarity suffer as the background noise exceeds
that of the signals. This corresponds to a situation where signals are completely “buried”
in noise, existing below the noise floor. Lastly, as the fraction of background noise begins to
dominate, both metrics suffer as noise increasingly influences the learned clusters. Notice
that in many cases, even when clustering accuracy (left column) is poor, the centroid
similarity (right column) remains fairly high. Given that this algorithm was designed
for use in feature learning, rather than for producing clustered points, these results are
promising and indicate that the algorithm performs well, achieving its design objective.
Though it is not shown in this analysis, for more favourable parameter default settings,
the algorithm becomes substantially more robust to adverse conditions in any individual
parameter.

With the performance of the algorithm validated on synthetic data, it is now appropriate
to test its performance on real PARS data to perform feature extraction.

Results on Real PARS Data

The use of the clustering algorithm for performing feature extraction is demonstrated here
on both an unstained human breast tissue slide and on freshly resected murine brain tissue.

The standard projection PARS image of the unstained, formalin-fixed paraffin-embedded
(FFPE) human breast tissue slide is shown in Figure 5.6. This image, again, was captured
and provided by Benjamin R. Ecclestone with gratitude from the author. 266 nm excita-
tion and 637 nm detection wavelengths were used to capture this image. A boxed-in region
in Figure 5.6 indicates a selection of TD signals used for feature learning. Note that an
input of K = 6 was used arbitrarily here. The task of selecting the number of clusters, K,
is not addressed here in this thesis, but rather is assumed to be known based on external
information.

The learned features, or centroids, ¢;, are shown in Figure 5.7, sorted by number of
data points within the given cluster. A wide variety of signal shapes are present, each
representing a component of the data. Figure 5.8 shows extracted feature amplitudes,
a;, as images for each of the six learned features. The amplitude and polarity (arbitrary,
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Figure 5.4: The clustering algorithm is validated in both 2D (top row) and 3D (bottom
row). Synthetic data are generated and shown (left column) with true class labels (red and
blue). Additionally, low-intensity zero-mean noise (black) is included to test the clustering
algorithm’s abilities. The synthetic data are clustered (central column) and shown with
cluster labels (red and blue). The unit-circle / -sphere (grey) is shown at the origin. Cluster
centroids, ¢, are shown as large dots on the unit-circle / -sphere, indicating their associated
cluster direction. The cluster centroids are shown as a plot (right column), over their two /
three dimensions (z,y) / (z,y, z). Although the dimensionality of this data, and therefore
the centroids, is very low, one can imagine that for high-dimensional time-domain data,
the centroids plotted in this manner would take the form of representative signal shapes.
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Figure 5.5: The clustering algorithm is evaluated over ranges of class separation, back-
ground noise level, and the fraction of background noise present, creating gradients between
favourable and adverse conditions. The default parameter settings are marked with orange
circles in each plot. Observe that the algorithm performs best at high class separation
angles, low noise levels, and for low fractions of background noise. This matches intuition
in that class overlap at low separation angles, high noise levels, and high quantities of noise
would all negatively influence the algorithm’s ability to cluster.
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Figure 5.6: A standard TD signal projection PARS image of unstained human breast tissue
on a slide, captured with 266 nm excitation and 637 nm detection wavelengths. Signals
from the boxed-in region are used for feature learning. Image captured by Benjamin R.
Ecclestone. This image was created for this thesis but also submitted as part of article [1].

given the polarity agnosticism of the clustering algorithm, based upon the learned feature
polarity) are shown using colour (positive in red vs. negative in green). It is clear that each
feature extracts information associated with specific tissue structures. Feature 1 is clearly
the most striking of the learned features, strongly highlighting nuclear contrast. Features
3 and 4 also seem to extract some nuclear contrast; however, not universally throughout
the image. Instead, the cluster of cell nuclei where the algorithm was trained, shown in
Figure 5.6, are not highlighted, whereas the clusters on the right of the image are. The
other three features, 2, 5, and 6, seem to mainly be sensitive to the extracellular matrix or
cytochromes — largely being insensitive to cell nuclei.

Additionally, the polarity of the feature amplitudes is not at all random, but rather is
“patchy” and likely correlates with additional properties of the tissue, perhaps information
related to the depth of the absorbing chromophore relative to the focal plane of the PARS
microscope. Additional notes regarding signal polarity are provided in the Future Work
section (Section 6.1).

Finally, by combining extracted feature amplitudes (absolute value, thus ignoring the
effects of polarity), aggregate information is made visible. Figure 5.9 shows a combination
of features via assigning each to an RGB colour-channel. Feature 1 maps to red, feature
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Figure 5.7: The cluster centroids learned, for K = 6, from the human breast tissue slide
in Figure 5.6. A wide variety of signal shapes are learned and presented here.

4 maps to green, and feature 5 maps to blue. These features were selected based on the
variation in contrast observed between them in Figure 5.8. Generally, it can be seen that
a combination of features 1 and 4 (red and green combined to form a yellow / orange
colour) yield nuclear contrast. Feature 5 (blue), tends to be most sensitive to extracellular
contrast. Based on comments from clinicians, feature 1 on its own (i.e., in places where
feature 4 (green) is weak), may be indicative of the presence of cytokines. This is seen in
the dark-red region, center-right, just below and surrounding the regions of densely packed
nuclei.

Next, an image of freshly resected murine (mouse) brain tissue is examined. This im-
age, again, was captured and provided by Benjamin R. Ecclestone with gratitude from the
author. 266 nm excitation and 405 nm detection wavelengths were used. No additional
processing was done to this tissue prior to imaging. Figure 5.10 shows the standard pro-
jection of this PARS image for reference. In a similar vein as with the brain tissue, the
clustering algorithm is run on this image to learn centroids, ¢;, before feature extraction is
used to extract associated feature amplitudes, o;. Finally, the extracted feature amplitudes
are combined as an RGB image.
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Figure 5.8: Feature images of the human breast tissue slide of Figure 5.6 for each of the
associated centroids from Figure 5.7 are shown with signal polarity indicated by colour
(positive in red vs. negative in ). It is clear that each feature extracts information
related to specific structures in the tissue.

Feature learning was performed over the entire image, with K = 3 clusters specified.
Figure 5.11 shows the learned centroids, ¢;. The shapes tend to have a sharp initial rise and
then a comparatively longer decay at varying rates. In this sample, the learned feature
shapes are less diverse than was seen in Figure 5.7; however, this may be partially due
to the fact that fewer cluster centroids were learned. Figure 5.12 shows sets of learned
centroids for each of K = 2...5 requested clusters. Indeed, for increasing K, the learned
centroids become more diverse and complex, rather than simply “adding” a new centroid to
the set learned for lower K. To be clear, in this thesis, no assumptions are made regarding
what the correct number of clusters, K, for a given PARS image is. The correct number
of clusters is unknown and therefore selecting K remains a subject of future work. Prior
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Figure 5.9: Three of the human breast tissue slide feature images from Figure 5.8 are com-
bined (via taking the absolute value and assigning each an RGB colour-channel). Feature
1 maps to red, feature 4 maps to green, and feature 5 maps to blue. Interesting structures
are clearly visible in the tissue based on colour. Although feature meanings may be rather
uncertain, this result represents an initial step towards virtual staining through PARS.
This image was created for this thesis but also submitted as part of article [1].

knowledge of the components within imaged tissues may prove to useful in selecting K;
however, detailed studies would be required to test this and remain to be done.

Finally, without first plotting individual extracted feature amplitude images, the ex-
tracted amplitudes, «;, are directly combined in Figure 5.13 by assigning each feature to
one of the RGB colour-channels. Here, feature 1 maps to red, feature 2 maps to green, and
feature 3 maps to blue. A strong correspondence between colour (i.e., extracted feature)
and tissue structure is seen here. Structures visually similar to the soma (cell body struc-
ture of neuron containing the nucleus) and axons (fibrous, myelin covered component of
neuron responsible for transmitting impulses) [224] are present and coloured in this image.

To observe more detail, a sub-section of Figure 5.13 is shown in Figure 5.14. The
structures resembling the soma and axons of neurons are more clearly visible here. The
structures and contrast separation seen here resembles that of labeled multi-fluorescence
microscopy [225]. If similar levels of specificity are available in PARS via the method
presented here, this would represent an incredible advance in the capabilities of label-free
PARS microscopy.
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Figure 5.10: A standard TD signal projection PARS image of freshly resected, unstained,
murine (mouse) brain tissue. Image captured by Benjamin R. Ecclestone. This image was
created for this thesis but also submitted as part of article [2].

5.3 Chapter Conclusion

To conclude this chapter, several methods starting from fairly simple linear filtering via
a matched filter and ending with a novel feature learning / extraction scheme based on a
modified K-means clustering algorithm were developed and explored. PARS imaging con-
trast was improved, allowing finer structures to be discerned and enabling the possibility
of using lower fluences when imaging, making the modality safer for clinical use. The effec-
tiveness of matched filtering was limited because only a single characteristic signal shape
was used to extract amplitude information. This limitation was overcome by developing
a modified K-means algorithm to learn characteristic signal shapes as cluster centroids.
The algorithm was designed such that it was polarity-agnostic and insensitive to low-level
noise. This method was first validated on synthetically generated data in low dimensions
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Figure 5.11: The cluster centroids learned, for K = 3, from the freshly resected murine
brain tissue in Figure 5.10. Three very distinct signal shapes are found. Note that the
colouring scheme (red, green, and blue) is carried over to Figure 5.13, where the three
extracted feature images are combined into a single RGB image.
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Figure 5.12: With increasing numbers of requested clusters, K, it is seen that the learned
centroids become more specific and complex, rather than simply “adding” a new centroid
to the set learned for lower K. Shown here are cluster centroids learned, for K = 2...5,
from the freshly resected murine brain tissue in Figure 5.10.
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Figure 5.13: Three feature images associated with centroids shown in Figure 5.11, learned
from the freshly resected murine brain tissue of Figure 5.10, are combined (via taking the
absolute value and assigning each an RGB colour-channel, consistent with the colouring
scheme used in Figure 5.11). A strong correspondence between colour (i.e., extracted
feature) and tissue structure is seen here. Structures visually similar to the soma (globular
components) and axons (fibrous components) are present and coloured in this image. This
image was created for this thesis but also submitted as part of article [2].
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Figure 5.14: A detailed view of the same combined feature image as in Figure 5.13. The
zoomed-in region is indicated in the lower left. A clearer view of structures resembling the
soma and axons of neurons is presented here.

where its performance was easily understood, before being applied to PARS images of
an unstained human breast tissue slide and freshly resected murine brain tissue. In both
cases, a set of characteristic signal shapes were learned, yielding intriguing extracted fea-
ture amplitudes, visualised as false-coloured images. These images revealed correlations
between the extracted features and clinically relevant tissue structures such as cell nuclei,
the extracellular matrix, and various components of neurons. The contrast derived here,
all without the use of exogenous dyes or labels, and captured with only one excitation
wavelength, represents an important step forward in the field of PARS microscopy.
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Chapter 6

Conclusion

The work presented here represents developments towards achieving chromophore speci-
ficity in Photoacoustic Remote Sensing. The key contributions surrounded formulating
the inverse problem of chromophore unmixing (Chapter 3), studying and characterizing
the non-linear optical phenomenon of Stimulated Raman Scattering in optical fiber for use
in a multi-wavelength light source for PARS microscopy (Chapter 4), and finally devel-
oping a clustering algorithm capable of learning characteristic PARS time-domain signal
shapes for later use in feature extraction enabling the representation of TD signals by the
contribution of individual component shapes / features (Chapter 5).

In Chapter 3, several developments towards chromophore unmixing in PARS via multi-
wavelength imaging were made. The question of how best to select excitation wavelengths
was addressed, a solution to the unmixing problem was formulated with additional con-
straints and considerations for PARS were specifically included, and finally in-vivo blood
oxygen saturation estimation was undertaken in PARS images of a rat retina.

It was concluded that the most suitable method for selecting excitation wavelength for
unmixing specific targets was based on minimizing the magnitude of expected estimation
error. In principle, this would make the estimates as accurate as possible, assuming no
other unknown sources of error are present. The blood oxygen saturation estimates pre-
sented in Figure 3.14 constitute the first ever report of non-contact in-vivo photoacoustic
measurements of oxygen saturation in retina, representing a significant step towards the
clinical use of PARS as a diagnostic tool for many ophthalmic diseases.

In Chapter 4, a comprehensive study was performed to understand the impacts that
several fiber and laser parameters have on multi-wavelength light generation through SRS
in single-mode optical fiber. Additionally, a simulation of the SRS effect in optical fiber
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was developed and used to aid in understanding SRS from a theoretical standpoint and to
create correspondence with the experimentally measured results.

Regarding the effects of the explored parameters, it was found that longer fiber lengths,
greater input intensities, and the use of highly polarization-maintaining fibers enable high-
order Stokes wave generation. The temporal pulse width does not affect the SRS process
throughout the nano-second range; however, in the pico-second range, pulse walk-off and
higher-order optical effects severely limit SRS. Lastly, pulse repetition rate was found not
to affect the SRS process. Simulated spectra showed excellent correspondence to experi-
mentally measured spectra and also showcased the central erosion effect of the temporal
pulse profile, whereby only the tails of pulses remain after SRS conversion and are sepa-
rated temporally. The effects of using centrally eroded pulses in PARS remain unknown.
The study performed here allows better informed decisions to be made regarding param-
eter selection for the creation of multi-wavelength light sources for applications of PARS
unmixing.

Chapter 5 focused on extracting meaningful information from PARS TD signals. Matched
filtering was explored initially, before developing a clustering algorithm to learn multiple
characteristic signal shapes as cluster centroids. The algorithm was designed such that it
was scalable and robust to low-level noise. This method was applied to PARS images of
an unstained human breast tissue slide and freshly resected murine brain tissue.

The matched filter proved effective in improving PARS image contrast, allowing finer
structures to be discerned and enabling the possibility of using lower fluences when imag-
ing, which would make PARS safer for clinical use. The feature learning and extraction
method, when applied to tissue samples, resulted in colourized images revealing correla-
tions between the extracted features and clinically relevant tissue structures such as cell
nuclei, the extracellular matrix, and various cellular components of neurons. The con-
trast in these images was derived without the use of exogenous dyes or labels, and was
captured with only one excitation wavelength. This development represents an important
step forward in label-free PARS microscopy.

In conclusion, the three main contributions surrounding chromophore unmixing, multi-
wavelength light generation, and time-domain feature extraction serve to advance PARS
as a biomedical imaging modality. The research undertaken in this thesis enabled the
first wn-vivo non-contact photoacoustic measurement of blood oxygen saturation in an eye.
Furthermore, the ability to extract additional information from the time-domain content
of PARS signals dramatically changes the way PARS signals can be analysed, giving direct
access to information related to the components of the underlying target, and offering a
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complementary alternative to the more conventional multi-wavelength imaging approaches
for discerning targets.

The contributions of this thesis lead to substantial future developments to PARS mi-
croscopy, as outlined below in the Future Work section.

6.1 Future Work

Although much technical ground is covered in this thesis, there remain many experiments
and research areas that should be delved more deeply into in order to gain a better un-
derstanding and to properly make technical use of the research presented in this thesis. A
brief summary is listed here:

e Section 6.1.1 outlines next steps towards accurate chromophore unmixing in PARS,
e Section 6.1.2 discusses further exploration surrounding the use of SRS, and

e Section 6.1.3 discusses future directions related to PARS TD signal feature extraction.

6.1.1 Accurate Chromophore Unmixing in PARS

Paramount in being able to achieve accuracy in chromophore unmixing in PARS, is hav-
ing consistency in measurements. Although much formulation was done in Section 3.1 of
Chapter 3, regarding analysing which combination of excitation wavelengths would opti-
mally minimize the estimation error covariance and deriving an inverse model, any inverse
problem is impossible to solve (or make any reasonable estimate of a solution) if the for-
ward process is not consistent. Note that the lack of consistency means that the forward
process is in fact not well understood! There are effects at play that the forward model
does not take into account that result in inconsistent measurements. The forward model
(estimating the forward process) does not match the true forward process, causing the
accuracy of the solution to subsequently suffer. Thus, it would be incredibly worthwhile
to pursue improving the consistency of measurements.

The main suspected sources of inconsistency come as a result of instrument focus issues
due to chromatic aberrations at the objective lens, and temporal variations in the excitation
and detection lasers; however, there may be other effects at play that are not yet known.
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Chromatic Aberration

Refractive optics, e.g., lenses, inherently result in chromatic aberration. This is because re-
fractive index is dependant on wavelength, and thus the focus of a lens varies by wavelength
as well. Although achromatic lenses (designed for identical focus at two wavelengths) and
apochromatic lenses (identical focus at three wavelengths) exist!, for applications where
high magnification is desired — which is often the case in PARS microscopy — high nu-
merical aperture lenses are used, which limit the depth of focus, resulting in significant
variation in focus by wavelength. Furthermore, in the application of retinal imaging, where
the lens of the eye is used for focusing, there is no ability to directly control the chromatic
aberration.

Avoiding chromatic aberration, at least in cases where the focusing optic is selected by
the operator / creator of the PARS microscope, can be achieved through the use of reflective
focusing optics, as was done in article [226] in a PAM system. Reflective objective lenses do
not cause chromatic aberration since the path of the light does not depend on wavelength.
A critical downside of the available reflective objective lenses, such as the LMM series,
available from Thorlabs Inc. [227], is a central obstruction inherent to the design, which
negatively affects the focal spot. Two reflecting surfaces are used in these lenses: a primary
annular concave mirror which faces towards the target, and a secondary convex mirror that
is centered and faces the internally towards the microscope. The central secondary mirror
is held in place by three curved spider vanes and causes poor (highly non-Gaussian) beam
quality and negatively affects the focal spot size and shape. Figure 6.1 shows a diagram
of the lens, a view of the secondary mirror and its supporting vanes, and a through-focus
spot diagram which illustrates the effects that the obstruction has on the focal spot for
minor deviations in focus. Thus, one must balance the benefits of being free of chromatic
aberration with the drawbacks of the poor focal spot quality of this type of lens. Single-
element reflective focusing mirrors are also available and may offer improved focus spot
quality compared to the reflective objective lens design discussed here, while suffering less
from undesired diffractive effects.

Temporal Variation

Pulse-to-pulse variation in the excitation laser may take the form of differences in pulse en-
ergy or polarization state, both of which strongly affect multi-wavelength light generation
through SRS. Similarly, the continuous-wave detection laser also exhibits similar temporal

IThere is no consensus on a precise definition of the terms achromatic and apochromatic. The point
made here is that there are lens designs which mitigate chromatic aberration.
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Figure 6.1: A diagram of the reflective objective lens architecture available from Thorlabs
Inc. is shown in panel a). An incoming ideal spherical wave-front (from the left) first reflects
off of the annular primary concave mirror before reflecting off of the central secondary
convex mirror. The central part of the spherical wave-front is obscured by the secondary
mirror and the vanes that hold it. Panel b) shows a view of the secondary mirror and the
three curved spider vanes holding it. Panel c) is a through-focus spot diagram, illustrating
the obscuration effect near the focal plane caused by the secondary mirror and the vanes
holding it. It is clear that for even minor deviations from the focus (just micrometers)
severe diffractive effects occur, leading to a highly non-Gaussian spot. Images copied from
Thorlabs Inc. Reflective Microscope Objectives product web-page [227].
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variations resulting in measurement inconsistency. Beyond impacts on SRS, fluctuations in
the polarization state of both excitation and detection lasers ultimately result in intensity
variations in the light reaching the target. This effect arises as a result of angled reflections
along the beam paths, whereby parallelly polarized (referred to as p state) vs. perpendic-
ularly polarized (referred to as s state) light, with respect to the plane of incidence, has
different reflectivity [228]. Indeed, this effect is a part of everyday life as the underly-
ing premise behind using polarized sunglasses to avoid glare when driving. In the angled
reflection of sunlight off a road, the s (horizontally) polarized light is reflected far more
strongly than the p (vertically) polarized light; so, by blocking the horizontally polarized
light, significant glare (i.e., reflection) is removed. What this means for angled reflections
in the beam paths of a PARS microscope is that changes in the polarization states of the
beams cause corresponding changes in the intensity of reflected light.

The temporal variation in the excitation and detection lasers may be reduced simply
by using more stable lasers. Barring that solution, simply monitoring the outputs of the
two lasers, and correcting for deviations may prove effective. Monitoring can be achieved
by incorporating partially-reflecting “pick-off” mirrors and photo-diodes into the design
of the PARS microscope. This addition to the system would produce accurate readings
of excitation and detection laser beam power, which is always desirable when performing
quantitative imaging. Changes in polarization state can be more problematic. Polarization
affects how light reflects off of angled planar surfaces, with one polarization state reflecting
more strongly than its orthogonal counterpart. This means that polarization affects the
interaction of light with all angled surfaces in the PARS microscope, including the suggested
“pick-off” mirrors to be incorporated. Thus, variation seen by the monitoring photo-
diodes could be a result of changes in polarization in addition to changes in intensity. To
eliminate this effect, polarization filters could be installed directly after the excitation and
detection lasers, causing all light entering the PARS system to be of a fixed pre-determined
polarization state. All variations seen by the proposed monitoring system would then be
representative of the power reaching the target. Note that calibration would be required
to accurately infer power at the target.

Paths Forward when Measurement Consistency is Achieved

Measurement consistency means that repeated PARS measurements, using fixed imaging
parameters, of a static target have limited variability. In mathematical terms, if the PARS
microscope is thought of as an abstract system with forward process, s(t) = PARS(Z), with
inputs (imaging parameters and the target) given by vector, Z, and output measurements,
s(t), then having consistency means that for a set of recorded measurements for a given
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fixed input, {s;(t) = PARS(Z)}, the only variation in {s;(t)} is due to the presence of

time-stationary system noise, v;, on top of some underlying noise-free forward model, ¢(Z)
si(t) = g(Z) + v;. (6.1)

Furthermore, assuming the noise, v;, is zero-mean, then for a set of N repeated measure-

ments,
lim mean{s;(t)}Y, = ¢(Z), (6.2)
N—o00

meaning that averaged measurements become increasingly close to the underlying noise-free
forward model as the number of measurements, /V is increased. If measurement consistency
were achieved, then two possible paths forward exist depending on the situation at hand:

1. The forward process is unknown or not well understood.

Despite not fully understanding the forward process, supervised learning methods
can be applied to estimate the solution to a given unmixing problem. The most
simple of these would be a look-up table. In the context of blood sO, estimation, if
measurements over a range of known sO, values are made, then a look-up table can be
formed, and interpolation can readily be used to construct an approximate solution.
Furthermore, ideally many measurements would be made for each known sO, value,
thus allowing for the construction of prior probability distributions conditioned for
each associated sO, value, and an improved ability to statistically infer true sO5 from
measurements.

2. The physics of the forward process are understood and can be incorporated into a
mathematical forward model.

If the model allows, an “exact” inverse model may be found, thus allowing for direct
estimation of the underlying concentrations, similar to what was pursued in Chap-
ter 3. If an “exact” inverse model does not exist, many techniques exist to address
this, not least known of which is artificial neural-networks [229-231], which are ca-
pable (with an appropriate choice of network architecture and sufficient training) of
approximating any non-linear function.

With these paths forward established, the clear next step in improving unmixing accu-
racy is to work towards increasing measurement consistency.
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Updates to Unmixing Formulation

Updates to the unmixing formulation of Chapter 3 to allow for improved accuracy would
include explicitly allowing for over-constrained estimation problems (i.e., more measure-
ments than unknowns), and following the SRS characterization presented in Chapter 4,
incorporating and accounting for broadband excitation.

With the formulation presented in Equation (3.18), no changes are required to admit
over-constrained estimation. The only difference from the analysis presented in Chapter 3 is
that the mixing matrix would simply be non-square; however, the methods and constraints
developed to solve for unknown chromophore concentrations would still apply.

Updates to the mixing matrix would be necessary to properly incorporate the use
of broadband SRS excitation into the model. Rather than assuming excitation light is
concentrated at a discrete wavelength, the entire spectrum of the light should be considered.
For multi-wavelength light generated through SRS, the resulting intensity spectrum will
be denoted as Isrsi(A), for a given parameter setting, indexed by 4.

In Equation (3.24), a combined mixing matrix, H = ® R was presented, composed of
a diagonal matrix of fluences, ®, the extinction matrix, F, and another diagonal matrix
of diffuse reflectance, R. Recall from the discussion on page 48 preceding Equation (3.24),
that fluence, ¢,,, at wavelength \; is given by ¢,, = I),/A,,, where A, is the focal spot
area. Therefore, the diagonal matrix of fluences, ®, can be decomposed as ® = IA~!, where
I and A are diagonal matrices of intensity and focal spot area, respectively. Therefore,
H =TA'ER. For a diffraction-limited focus, Ay, oc A\?; however, for broad-band light, the
focal spot area varies with wavelength. To address this complication, consider a system of
equations involving only a single excitation spectrum, Isgs (), and a single absorber with
extinction given by £;(\). The term IA~'E can then conveniently be evaluated explicitly
through integration?, as

IA-'E = / Tsnss (M)A (\) dA. (6.3)

Then, accepting arbitrary proportionality rather than strict equality, A, can be replaced
by A%
IA_IE = /ISRS,i()\>/\_25j(>\> dA. (64)

2Tt may seem odd at first to evaluate a matrix product through integration; however, for vector spaces
based on sets of functions, it is commonplace to define inner products through integration. In fact, this
type of approach underpins much of Fourier analysis, where periodic functions are thought of as vectors.
Without further detail, this type of inner product is the premise for matrix multiplication where the entries
are functions.
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In a similar manner, the general multiple-excitation multiple-absorber system can be ex-
pressed as a matrix. For the example of sO, estimation, the absorbers are oxy- and
deoxyhemoglobin, HbO, and Hb, respectively, resulting in

[ Tsrsa (M)A 2em0,(N) AN [ Tsgsa (M)A 2em(\) dA]

IA"'EZ L L
f[SRSQ()\))\ 5Hb02()\) dA IISRS,Q()\))\ 5Hb()\) dA

(6.5)

for two excitation spectra, Isrsi(A) and Isrs2(A). Note that this expression is in fact
consistent with the previous discrete wavelength model via the replacement Ispg;(\) =
d(A — Ax), which reduces the integrals to single-point samples of the extinction spectra
at \,. To practically compute IA~!'E, based on recorded SRS spectra with discrete A,
integrals would be replaced with summations, resulting in

5 Tsnsa (A emo, () Ty ISR&*W%HM;]. (6.6)

IAT'E= i L
Yo Lsrs2 (M)A eupo, (A) D) Lsrs2( M)A " emn (A

This formulation allows IA™'E, and therefore H, to be evaluated for target absorption
spectra as a function of arbitrary SRS spectra, or even more specifically, the key parameters
discussed in Chapter 4 (fiber type, fiber length, and laser input intensity) associated with
the SRS spectra.

For a simple system implementation, a single fiber for multi-wavelength light generation
could be used. This would mean the fiber type and length are fixed. In that case, H is
then a function of the laser input intensities used. Such a system would be operated by
switching the excitation laser intensity to select SRS spectra. If rapid (pulse-to-pulse)
switching is desired, which may allow for single-pass imaging, an electro-optic modulator
could be employed to modulate the intensity of the beam at suitably high rates. More
complicated system architectures could be implemented however, involving multiple fibers
and potentially multiple lasers. The output beams from each fiber would need to be co-
aligned prior to reaching the microscope objective lens. These architectures would allow
for greater flexibility in selecting SRS spectra. Note that a similar analysis as was done in
Section 3.1, where optimal excitation wavelengths were selected, should be done for SRS
spectra, informing which fiber types and laser parameters will yield optimal SRS for a
given unmixing problem.

As was briefly discussed on page 47 at the end of Section 3.2.1, one last additional
step towards improving chromophore unmixing accuracy would be to characterize the sys-
tem noise. By doing so, an empirical prior model of noise, p,(), could be created — and
would likely be more accurate than the results of assumed Gaussianity, made in Equa-
tion (3.9). Repeated from Equation (3.18), the general unmixing solution formulation of
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Equation (3.11) would then be updated to include a likelihood term for the noise residual,
p,(§— E¢), such that

¢=arg max{py(E'— E¢) — Z wZ\I/Z(E’)} (6.7)

This formulation has the advantage that the likelihood term associated with observing a
given noise residual is more accurate. This empirical model would likely vary from system
to system, and even between targets. A few sources of noise to consider would include
temporal variation in the excitation and detection lasers (with specific noise characteris-
tics associated with each wavelength used), measurement noise at the photo-diode, and
electrical noise associated with cabling and the DAQ system. Thus, the model may re-
quire several parameters and be somewhat complex. Alternatively, one could observe the
system abstractly as whole, rather than examining its constituent parts, and carefully
learn noise statistics from observed data. Regardless of the approach taken, having a good
understanding of noise may be critical for accurate unmixing.

6.1.2 Further SRS Study and Exploration

In Chapter 4, many fibers were tested and a simulation of the SRS process in single-
mode fiber was developed; however, still, there remain additional questions that arose in
hindsight, knowing what was only learned through completing the research project. Briefly,
a few of these questions are:

1. What would an optimal temporal pulse width be?

2. Can multiple fibers be cascaded (connected sequentially) to extend the range of
wavelengths that can be generated?

3. What are the impacts on PARS imaging when centrally eroded pulses (see Figure 4.11
in Section 4.3.2) are used?

Answering these questions would serve to maximize the utility of SRS in PARS microscopy
and perhaps beyond.

Optimal Temporal Pulse Width

Regarding question #1, in Section 4.2.5 it was found that 2 ps pulses were too short,
where additional wavelength generation through SRS was severely hampered by higher-
order optical phenomena. Meanwhile, for the same pulse energy, 1.5 ns pulses showed
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improvement over 3 ns pulses, by virtue of having roughly twice the pulse intensity. What
must be found then is the threshold between using longer pulses with sub-optimal intensity
and using more intense pulses at sub-optimal (shorter) widths, for a given pulse energy.
One might assume that for a given pulse width that is known to perform well, such as
1.5 ns, the intensity could be increased arbitrarily to achieve higher-order Stokes wave
generation; however, doing so increases the pulse energy and thus the average power,
which ultimately causes the fiber tip to burn if it is too high. It is desirable to image at
high pulse repetition rates, but simultaneously, the average power must remain low enough
not to cause burning. Thus, it would be meaningful to find the optimal pulse width for
a given pulse energy (as determined by the desired pulse repetition rate for the imaging
application and the maximal average power that can be used).

Cascading Fiber to Extend SRS Spectrum

Next, regarding question #2, one must consider the reason a single fiber is inadequate for
generating light of arbitrarily long wavelength. In general, it was found that the limiting
factor on the extent of the generated SRS spectra was attenuation in the fiber at higher
wavelengths. This attenuation occurs due to the wave-guiding behaviour of optical fiber. A
specific parameter of interest is the normalized frequency [232], V', often used to determine
the cut-off wavelength for single-mode operation of a given fiber. For stepped-index fiber,
with core radius, a, core refractive index, nore, and cladding refractive index, ngadding, the
normalized frequency for wavelength, A, is given [232] by

V= T nzore - ngladding‘ (68)

If V' < 2.4048 (the eigen-value of the fundamental eigen-mode), only the fundamental mode
propagates. This is the condition for single-mode operation. Related to the normalized
frequency is the normalized guide index, b, which is shown in Figure 6.2 as a function of
V' for various modes. A given mode only propagates if b > 0. For decreasing V', b also
decreases until it finally reaches 0. At wavelengths longer than the cut-off wavelength,
guidance becomes progressively weaker until finally the fiber ceases to guide (b = 0). This
is referred to as the fundamental mode cut-off wavelength. Therefore, it is important to
select a fiber with core radius and refractive indices such that V' remains greater than the
fundamental mode cut-off for the longest wavelength desired. Perhaps by transitioning into
another fiber just prior to when the next Stokes wavelength would reach the fundamental
cut-off, a broader range of wavelengths may be generated.

Splicing fibers together is possible; however, care must be taken to mitigate other
unwanted effects. Generally, fibers meant for longer wavelengths have larger cores. This
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Figure 6.2: The normalized guide index, b, is shown as a function of normalized frequency,
V', for several LP modes (labeled on each curve) of step-index fiber. For decreasing V', fewer
and fewer modes are able to propagate. Notice that for V' < 2.4048, only the fundamental
(01) mode remains. Figure copied from textbook “Photonic Devices” by Jia-Ming Liu
[232].

means there will be a transition between fiber of a relatively small core to fiber of a
relatively larger one (as fiber meant for longer wavelengths is appended). The change in
core size means a change in effective refractive index, and thus an impedance mismatch
appears between fibers. Obvious, unwanted reflections occur here due to the mismatch.
Multi-mode operation will likely occur as well, for any of the shorter wavelengths. This
presents additional challenges as modal dispersion will cause the pulse to separate by
mode, with higher-order modes propagating more slowly, lagging behind. In addition,
imperfections in the splice may cause further losses. Care must also be taken to ensure the
axes of polarization are aligned between the fibers; however, there are existing techniques
and technologies available to address this (such as the Fujikura ARCMASTER FSM-100P,
which is used at Photomedicine Labs).
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Impacts of Central Erosion Effect on PARS Imaging

Lastly, to address question #3, one must consider the time-scale on which the photoacoustic

effect takes place. Based on [5], there are two quantities of interest: the thermal relaxation

time, 7, and the stress relaxation time, 7. The thermal relaxation time characterizes ther-

mal diffusion out of the heated region. For a given thermal diffusivity (material-dependent),

oy, and characteristic dimension, d., of the heated region, the thermal relaxation time is
given approximately by: ,
~ dc

Tth ~ Ozth. (69)

The stress relaxation time characterizes pressure propagation from the heated region. For

a given speed of sound (again, material-dependent), v,, and characteristic dimension, the
stress relaxation time is given approximately by

Te & o (6.10)
As a rough approximation, these quantities can be evaluated based on the material prop-
erties of water (as an approximation of animal tissue). For ay, = 1.43 x 1073 cm?/s,
v, = 0.1480 cm/ps [5], and characteristic dimension based on the focal spot diameter of
532 nm light through the 10X objective regularly used at Photomedicine Labs (University
of Waterloo), d, = 1.25782 x 10~* cm,

A2 (1.25782 x 10* cm)?
Teh N —— =
" (143 x 1073 cm?/s)

~ 10 us, (6.11)

and
d. (1.25782 x 10~ cm)

T R — = ~ 1 ns. 6.12

Va (0.1480 cm/ us) (6.12)
Clearly, the thermal relaxation time is greater than the temporal spacing between the tails
of centrally eroded pulses shown in Figure 4.11 (approximately 2 ns); however, the stress
relaxation time is of a similar scale. Therefore, experimental testing is certainly warranted

in order to better understand the impacts on PARS microscopy.

6.1.3 Feature Extraction and Target Labelling

Chapter 5 focused on extracting additional information from PARS TD signals compared
to the conventional methods; however, the specific application of emulating the contrast
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of H&E staining was not addressed. Additionally, during the study, kernel methods [233,
234], in particular Kernel K-Means, were informally explored with little success. Perhaps
a second look at these methods, with the background of an improved understanding of the
problem, would result in more compelling results.

H&E Stain Emulation via Optimal Linear Projection

H&E staining is an example of highly specific tissue labelling, with hematoxylin staining
nuclear structures a blue colour, and eosin staining cytoplasm pink. The specificity of this
staining lends itself well to supervised learning approaches for virtual staining. One could
imagine a projection of the PARS TD signals that specifies the contrast associated with
hematoxylin and eosin stain.

If one-to-one H&E-to-PARS images are collected, perhaps by imaging the tissue with
PARS prior to staining and imaging via bright-field microscopy, then it would be possible
to establish a metric of error between the projected PARS image and the ground truth
H&E. Through discriminant analysis, such as by using Fisher’s Linear Discriminant [235,
236], a discriminant could be learned to optimally distinguish between components that
should be associated with hematoxylin vs. with eosin. Because not all structures would
be stained, a third class may be necessary, requiring slightly more elaborate methods
(multiple discriminants or ensemble methods). Nonetheless, optimization could be used
to find a suitable discriminant, ideally yielding a linear transformation of the PARS TD
signals that can be used to project signals directly to intensities of virtual H&E labels.

Kernel Methods

In the early stages of approaching the problem of how best to extract additional information
from PARS TD signals, kernel methods were explored with little success and thus were
not presented in Chapter 5, nor explained in the background (Section 2.4). Nonetheless,
with the prevalence of kernel methods broadly throughout the field of machine learning,
it perhaps deserves a second look. In this section, the basic theory of kernel methods is
explained before discussing how these methods might be applied.

For the tasks of classification and clustering data, it is advantageous to be able to lin-
early separate inherent / underlying classes of the data. If this is not possible, methods such
as PCA and K-means, using distance or similarity metrics, including Euclidean Distance
and Cosine Similarity, will fail. A canonical example of this is given in Figure 6.3. The
data set is comprised of two classes in two dimensions, where the first class is distributed
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Ground Truth PCA K-Means Kernel K-Means

0
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Figure 6.3: A concentric circle data-set, with ground truth class labels shown through
colour, is presented in the left panel, and processed using PCA, K-Means, and Kernel
K-Means. Using PCA does not yield linearly separable classes, and K-Means is not able
to separate the underlying classes. In contrast to the results of these methods, Kernel K-
Means, with the radial kernel described in Equation (6.13), is able to accurately separate
the classes.

such that all points lie within the unit circle centered at the origin, and the second class is
distributed annularly around the first class, with a radial gap separating the classes. PCA
is unable to produce principal components where the classes are linearly separable. This
is because the principal component space is a continuous, linear transformation (rotation,
stretching, and skewing) of the original space, which cannot move points of the inner class
such that they lie outside of the surrounding annular class, which would be required for lin-
ear separation. K-means also fails to cluster the data according to its underlying structure
despite the fact that visually, the two clusters are clearly distinct. Again, this is because
K-means can only produce linearly separated clusters, given that cluster membership is
assigned based on distance to the mean (for any pair of cluster means, a linear cluster
boundary, exactly halfway between the means, is implied). The same principle applies to
many other data sets, such as “c-shaped” classes, and “spiral-shaped” data, as presented
in Chapter 10 of [237].

To overcome this major issue, the data may be transformed to a domain / space where
the classes are linearly separable. Consider the following transformation on data points
p=(z,y) € R%:

¢: R* - R®
P 6(p) = (2%, V2xy, ). (6.13)

In the transformed space, the data from the canonical example, ¢(p), are linearly sepa-
rable by a plane. Now, performing tasks such as PCA and K-Means requires computing

117



distances in the transformed space. Indeed, in the transformed space, K-Means can suc-
cessfully cluster the data, as shown in the right panel of Figure 6.3. It can be shown
algebraically [233, 234] that the distance calculations amount to computing inner products
(generalized dot-products). For a well-chosen and simple transformation, like the one in
Equation (6.13), computing the transformation, distances between points, and even inner
products / dot-products of the transformed points is simple; however, for more complicated
transformations such as the Gaussian Radial Basis Function, the transformed space may
be of very high or even infinite dimension, making the computation of the transform as
well as working in the transformed space extremely prohibitive. Fortunately, it is possi-
ble to compute inner products in the transformed space without actually performing the
transformation! This is done through a kernel function.

Kernel functions are defined such that for two points, p and ¢, in the input domain
(continuing with the example of Figure 6.3, R?), the kernel yields the inner product of
these points in the transformed domain:

kiR >R
(p,q) = K(p,q) = (¢(p), $(q))- (6.14)

For the transformation from Equation (6.13), the associated kernel function is the following,
which with simple algebraic manipulations, can be simplified:

k(p, q) = (¢(p), 0(q))
= <(3312;v ﬁxpypa 912))7 (563, \/quym y§)>
= apx; + 20pYpTalq + Ypls
= (zpzq + ypyq)2

(@p, Yp)s (24, yq)>2

P, q)°

(6.15)
=
=

Thus, the inner product in the transformed domain (R?) can be computed via x without
ever performing the transformation ¢!

As explained earlier, classification problems are not always linearly separable. To ad-
dress this, complex feature transformations, possibly to infinite-dimensional spaces, may
be employed, making the underlying classes linearly separable in the transformed domain.
Because of the complexity of such transformations, actually computing the transforma-
tions and computing distances in the transformed spaces are prohibitive. This is where
kernel functions are extremely useful, allowing distances in the transformed spaces to be
computed directly.
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While PARS TD signals are already in fairly high-dimensional space, often more than a
thousand dimensions, there may still be advantages to performing a feature transformation,
such that linear separation of classes or types of signals may be possible. Methods such
as Kernel PCA and Kernel K-Means [233, 234] may provide highly effective methods for
analysing and separating TD signals based on the underlying target. Based on the current
understanding of PARS signals, explained in Section 5.2, where signals of a given type can
vary in amplitude and polarity, it may be possible to design either a feature transformation
or a kernel catered specifically towards the problem of separating PARS TD signals. This
remains an area of continued interest and research.
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