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© Ömer Burak Kınay 2022



Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the
Examining Committee is by majority vote.

External Examiner: Stefan Bock
Professor, Schumpeter School of Business and Economics
University of Wuppertal

Supervisors: Sibel Alumur Alev
Associate Professor, Department of Management Sciences
University of Waterloo

Fatma Gzara
Professor, Department of Management Sciences
University of Waterloo

Internal Members: Fatih Safa Erenay
Associate Professor, Department of Management Sciences
University of Waterloo

Hossein Abouee Mehrizi
Associate Professor, Department of Management Sciences
University of Waterloo

Internal-External Member: Nasser Lashgarian Azad
Associate Professor, Department of Systems Design Engineering
University of Waterloo

ii



Author’s Declaration

This thesis consists of material all of which I authored or co-authored: see Statement
of Contributions included in the thesis. This is a true copy of the thesis, including any
required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii



Statement of Contributions

Chapter 2 of this thesis is based on the publication Kınay et al. (2021). Chapter 3 is a
submitted paper under review in Kınay et al. (2022). Both of these chapters have been
co-authored by myself and my supervisors, Dr. Fatma Gzara and Dr. Sibel Alumur Alev.

I am the sole author of the rest of this thesis.

iv



Abstract

This thesis focuses on infrastructure design for the disruptive transportation technolo-
gies of electric vehicles (EVs) and autonomous vehicles (AVs) to enable their adoption
at large scale. Particularly, two EV-related problem frameworks concerning the spatial
distribution of charging stations and their respective capacity levels are studied, and a
new problem is introduced to determine the optimal deployment of AV lanes and staging
facilities to enable shared autonomous transportation in urban areas.

The first problem is centered around determining optimal locations of fast-charging
stations to enable long-distance transportation with EVs. A new mathematical model is
developed to address this problem. This model not only determines optimal facility loca-
tions but also finds optimal routes for every origin-destination (OD) trip which follows the
path that leads to the minimum total en route recharging. Through computational experi-
ments, this model is shown to outperform the widely used maximum and set cover problem
settings in the literature in terms of several routing-related performance measures. A Ben-
ders decomposition algorithm is developed to solve large-scale instances of the problem.
Within this algorithm, a novel subproblem solution methodology is developed to accelerate
the performance of the classical Benders implementation. Computational experiments on
real-world transportation networks demonstrate the value of this methodology as it turns
out to speed the classical Benders up to 900 times and allows solving instances with up to
1397 nodes.

The second problem extends the previous one by seeking to determine EV charging
station locations and capacities under stochastic vehicle flows and charging times. It also
considers the route choice behavior of EV users by means of a bilevel optimization model.
This model incorporates a probabilistic service requirement on the waiting time to charge,
and it is studied under a framework where charging stations operate as M/M/c queuing
systems. A decomposition-based solution methodology, that uses a logic-based Benders
algorithm for the location-only problem, is developed to solve the proposed bilevel model.
This methodology is designed to be versatile enough to be tailored for the cooperative or
uncooperative EV user behavior. Computational experiments are conducted on real-life
highway networks to evaluate how service level requirements, deviation tolerance levels,
and route choice behavior affect the location and sizing decisions of charging stations.

The third problem entails the staging facility location and AV lane deployment problem
for shared autonomous transportation. The proposed problem aims to find the optimal
locations of staging facilities utilizing a bi-objective model that minimizes total travel dis-
tance and the total AV travel not occurring on AV lanes with respect to a given AV lane
deployment budget and a number of staging facilities to locate. A Benders decomposition
algorithm with Pareto-optimal cuts is developed and the trade-offs with optimal solutions
on benchmark instances are evaluated. Computational experiments are performed to ana-
lyze the effects of AV lane budget, staging facility count, and the objective preferences of
decision makers on optimal solutions.
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Chapter 1

Introduction

Increased awareness of extensive use of nonrenewable energy resources as well as the glob-

ally recognized impacts of climate change provoked worldwide interest in environmental

sustainability in the 21st century. In order to achieve a cleaner and more sustainable future,

development of zero-emission vehicles (ZEVs) became vital since passenger and freight road

vehicles account for over 17% of global direct CO2 emissions (IEA, 2021).

The Electric Vehicles Initiative, which is established by fifteen countries including

Canada, China, Germany, and the United Kingdom, has set an aspirational goal of reach-

ing 30% sales share of electric vehicles (EVs) by 2030. The United States declared their

goal of achieving 50% of all new passenger cars and light trucks sold in 2030 to be ZEVs

(The White House, 2021). The majority of the EU countries and the United Kingdom aim

2025-2035, and Canada aims 2040 to reach 100% ZEV sales (IEA, 2021). As for the pri-

vate sector commitments towards electric mobility, the Climate Group’s EV100 Initiative

brings together over 100 companies dedicated to making electric transport the new normal

by 2030 (The Climate Group, 2021a). Many corporations are aiming to speed up the tran-

sition to electric mobility by converting their fleets to EVs and designing private networks

by locating charging stations. Despite these global targets, initiatives and endeavors, sig-

nificant adoption barriers for EVs proliferation remain. In particular, the EV100 members
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reported the lack of charging infrastructure as their top concern (The Climate Group,

2021b). Many developing countries are yet to build a network of fast-charging stations

to enable long-distance transportation with EVs. Recent technological advancements also

put heavy duty EVs under the spotlight for long-haul deliveries and the success of such

a shift in freight transportation is particularly dependent on the availability of effective

charging infrastructure.

In addition to the pursuit of promoting electric mobility, the development of enabler

technologies such as the internet of things (IoT), big data, and artificial intelligence have

been paving the way towards another disruptive technology in transportation: autonomous

travel. Autonomous vehicles (AVs) are contended to revolutionize how we think of mobility

by mitigating the urbanization-related trends that exacerbate congestion in cities. They

also have the potential to drastically reduce fatalities by improving traffic safety, promote

environmental sustainability by decreasing emissions via reducing private vehicle owner-

ship and vehicle-miles-traveled, and offer convenience by reducing the drivers’ value of

time (Alcorn and Kockelman, 2021; Jones and Leibowicz, 2019; Brownell and Kornhauser,

2014). Besides these aspects, this synergy may reshape the need for parking spaces, which

could transform the land use in cities (Fagnant and Kockelman, 2015; Bagloee et al.,

2016). Experts hypothesize that AVs are more likely to be initially introduced to the ur-

ban transportation market by providing shared mobility services since they are expected

to be significantly costlier than human-driven vehicles (HV) in the early adoption phases

(Bansal and Kockelman, 2017; Shaheen and Cohen, 2019). Widespread shared mobility

services utilizing AVs could help use transportation resources more effectively and provide

a dramatic reduction in the number of privately owned passenger vehicles (Golbabaei et al.,

2021). Successful and cost-effective integration of shared AV fleets in urban transportation

depends on strategic infrastructure deployment decisions. Particularly, the deployment of

AV lanes to exploit the benefits of infrastructure-supported autonomy and locating staging
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facilities that would help reduce cruising congestion are two key infrastructural decisions

to be addressed.

In this thesis, motivated by these aspects, infrastructure design for electric and au-

tonomous vehicles is studied. The aim is to develop analytical models and methods that

would determine optimal infrastructure decisions to promote the appeal of these vehicles

by improving the convenience of their users.

Chapter 2 presents a new full cover modeling framework to design charging station

infrastructure, where the focus is on locating fast-charging stations for battery EVs to

enable long-distance transportation. A mathematical model is introduced to determine

the optimal locations of these charging stations so that every origin-destination trip on

a given transportation network is covered with respect to vehicle range. This full cover

model allows deviations from the shortest paths and also determines an optimal route for

each trip that requires the minimum total en route recharging. Two variants of this model

are proposed: one that minimizes the total cost of locating charging stations and total en

route recharging, and another that determines the locations of a predetermined number of

stations to minimize the total en route recharging. Computational experiments performed

on benchmark data sets validate that the proposed full cover models perform better than

the maximum or set cover problem settings in the literature in terms of routing-related

measures, such as total trip distance and maximum deviation from the shortest paths. A

Benders decomposition algorithm is developed to optimally solve real-life instances of the

problem. The Benders subproblem is identified as a many-to-many shortest path problem

with an additional constraint that restricts the nodes that can be used to open facilities that

are determined by the master problem. A new algorithmic methodology is developed to

construct the dual solution for this subproblem and to generate non-dominated optimality

cuts and strong valid inequalities for feasibility cuts. This novel algorithm is shown to

accelerate the performance of the Benders algorithm up to 900 times over the tested large-
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size instances. The main contributions of this work are (i) a new objective function that

has not been considered by similar studies in the field, (ii) a new modeling approach to find

optimal routes of OD trips which does not require an exogenous shortest path deviation

tolerance, (iii) an efficient Benders decomposition algorithm to solve large-scale instances,

and (iv) a novel methodology to solve the Benders subproblem.

Chapter 3 addresses the problem of determining the strategic locations of charging

stations and their capacity levels under stochastic EV flows and charging times while

taking the route choice behavior of users into account. The problem is modeled using bilevel

optimization where the network planner or leader minimizes the total infrastructure cost of

locating and sizing charging stations while ensuring a probabilistic service requirement on

the waiting time to charge. EV users or followers, on the other hand, minimize route length

and may be cooperative or non-cooperative. Their choice of route in turn determines the

charging demand and waiting times at the charging stations and hence the need to account

for their decisions by the leader. The bilevel problem reduces to a single-level mixed-

integer model using the optimality conditions of the follower’s problem when charging

stations operate as M/M/c queues and followers are cooperative. To solve the bilevel

model, a decomposition-based solution methodology is developed which uses a new logic-

based Benders algorithm for the location-only problem. Computational experiments are

performed on benchmark and real-life highway networks, including a new Eastern U.S.

network, and the impact of route choice behavior, service requirements, and the deviation

tolerance on the location and sizing decisions are analyzed. The analysis demonstrates

that more stringent service requirements increase the capacity levels at open charging

stations rather than their number and that higher deviation tolerance solutions are less

costly. Moreover, the difference between solutions under cooperative and uncooperative

route choice is more significant when the deviation tolerance is lower. Core contributions of

this work are (i) merging the bilevel nature of the problem with realistic queuing models to
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incorporate stochastic travel demand, (ii) an exact solution algorithm for the uncapacitated

version of the problem, (iii) and a novel decomposition based algorithm that is capable of

rapidly finding high-quality solutions and also able to handle both cooperative (optimistic)

and uncooperative (pessimistic) responses of EV users.

Chapter 4 investigates determining optimal deployment of AV lanes and AV staging

facilities in urban transportation networks to enable shared autonomous mobility. Simul-

taneously considering these strategic infrastructure deployment decisions is ideal. This is

because staging facility locations, which are smart mobility hubs required by shared AV

operators to idle, will have a significant impact on roadways that AVs will utilise. Conse-

quently, this will have a direct influence on AV lane deployment decisions. Defining this

problem using a demand framework that originates from OD trip requests of service seekers,

we propose a bi-objective optimization model that minimizes total travel distance and the

total AV travel not occurring on AV lanes while a given AV lane deployment budget is met

and a given number of staging facilities are located. A Benders decomposition algorithm

coupled with a non-dominated cut generation scheme is proposed to solve this problem.

Through computational experiments on a benchmark network, effects of AV lane budget,

staging facility count, and objective preferences of decision maker(s) on optimal solutions

are evaluated. The main contributions of this study are (i) a novel problem definition

for infrastructure design of shared autonomous vehicles, (ii) a bi-objective mathematical

formulation for this problem, (iii) a decomposition algorithm to solve large-scale instances,

and (iv) extensive managerial insights analyzing trade-offs between AV lane deployment

and staging facility location decisions as well as optimal designs.

The motivations and detailed definitions for each problem studied in this thesis are pro-

vided within their corresponding chapters along with the related literature reviews. Finally,

Chapter 5 summarizes the key points of each chapter in this thesis, includes concluding

remarks, and provides a brief discussion on directions of future research.
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Chapter 2

Full Cover Charging Station Location

Problem with Routing

Even though EVs seem to be a remedy for energy inefficiencies, sustainability and resiliency

in road transportation, certain adoption barriers have been preventing their proliferation.

The most prominent adoption barriers include their relatively high upfront ownership cost,

shorter range, longer recharging time, and limited availability of charging infrastructure.

Despite the recent technological developments and governmental incentives to increase

their appeal, market penetration is still lower than the desired levels. A recent automo-

tive consumer survey revealed that 83% of respondents from United States expressed the

availability of fast-charging options on EV journeys as a major concern (Capgemini Invent

Global, 2018). Many developing countries are yet to build a network of fast-charging sta-

tions to enable long-distance transportation with EVs. Recent technological advancements

also put heavy duty EVs under the spotlight for long-haul deliveries and the success of

such a shift in freight transportation is particularly dependent on the availability of an

effective charging infrastructure.
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In summary, the count and spatial distribution of refueling/recharging facilities still

pose a major challenge for a widespread adoption of ZEVs, specifically when the focus is

on long-distance travel or long-haul transportation with EVs. The EV trips of commuters

or shorter distance travelers can readily rely only on the existing slow-charging options

(home charging, work charging, shopping mall charging etc.). However, the success and

convenience of long-distance trips will substantially depend on the en route fast-charging

station availability and their spatial distribution. Therefore, strategically positioning these

stations is one of the key aspects to enable convenient long-distance travel and to reach

the next level in market penetration of these vehicles for a cleaner and greener future.

In this work, we address the charging station location problem with a new full cover ap-

proach. Particularly, we propose a mathematical formulation that determines the locations

of charging stations so that it is possible to complete every trip on a given transportation

network without running out of energy. Simultaneously, the proposed model determines

the optimal routes that require the least amount of en route recharging energy for each

origin-destination (OD) trip. Two variants of this model are proposed: one that mini-

mizes the total cost of locating charging stations and total en route recharging energy, and

another that determines the locations of a predetermined number of stations to minimize

the total en route recharging energy. We filter out shorter OD trips to fully focus on a

long-distance problem setting, which is known to generate more challenging instances to

solve.

The main contributions of the work presented in this chapter are (i) a new objective

function that minimizes the total en route recharging, which has not been considered by

similar studies in the field, (ii) a new modeling approach to find optimal routes of OD trips

that eliminates the need to introduce an exogenous shortest path deviation tolerance, (iii)

development of an efficient Benders decomposition algorithm to solve large-scale instances,

and (iv) a novel methodology to solve the Benders subproblem. This novel methodology
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constructs the dual solution for a feasible subproblem and generates the corresponding non-

dominated optimality cuts. It also introduces a feasibility cut generation scheme, where

strong inequalities are derived when the subproblem is infeasible.

Computational experimentation shows that the novel subproblem solution algorithm

accelerates the performance of Benders decomposition up to 900 times compared with the

case when subproblems are solved by CPLEX optimizer. In particular, this methodology

solves all instances from the California road network with 339 nodes and 1275 OD pairs

to optimality with an average computation time that is less than 20s. We also stress-test

the solution algorithm and evaluate the limits of its computational performance on larger

instances using two variants of the Germany road network with 818 and 1397 nodes.

In the next section of this chapter, we provide a review of the related literature and

highlight the significant contributions to this research field. In Section 2.2, we discuss the

modeling aspects of the full cover approach and provide two new mathematical formula-

tions. In Section 2.3, we present the Benders reformulation and introduce the subproblem

solution methodology that is developed to improve the computational performance of the

Benders algorithm. In Section 2.4, we report the results of extensive computational experi-

ments to evaluate the effectiveness of the full cover approach against the existing maximum

or set cover approaches. In addition, we evaluate the computational performance of the

proposed solution methodology. Finally, Section 2.5 provides some concluding remarks.

2.1 Literature Review

Earlier works on locating refueling service stations for gasoline retailing date back to late

1980s and use location-allocation models (Goodchild and Noronha, 1987). Research on

locating these stations for alternative fuel vehicles started to receive attention after early
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2000s (Ko et al., 2017; Alumur and Bektaş, 2019). There are two main streams of research

that are characterized by the way the demand is modeled. The location-routing problem

with intra-route facilities studies the case where node-based customers are the source of

demand, and the need for refueling results from the vehicle tours. It is notably suitable for

applications that consider short-haul distribution logistics (see e.g., Schiffer and Walther

(2017); Schiffer et al. (2019)). The other stream, which focuses solely on OD refueling

demand, is geared towards longer range of travel or mid to long-haul transportation. A

recent review paper by Shen et al. (2019) provides a synthesis of the research perspectives

in this field.

The focus of this literature review will be on the latter stream that models demand be-

tween pairs of OD nodes. The flow refueling location model (FRLM) proposed by Kuby and

Lim (2005) is the pioneering work in the field, where flow demand is assigned to use a short-

est path for each OD pair. For such given paths, the objective is to maximize the number

of feasible round-trips, or covered demand, by selecting a set of nodes to locate the refuel-

ing stations. Using this maximum covering location approach (max cover), they develop a

mixed integer programming formulation that locates p facilities. The main assumptions of

the generic FRLM are: uncapacitated stations, deterministic demand, identical vehicles,

a priori known locations by drivers, and no deviation from the shortest path. An OD

pair is covered if the trip can be completed in both directions. Kuby and Lim (2005) also

introduce an assumption in order to ensure round trip feasibility based on the presence

of a facility on the OD nodes: vehicles leave the origin with 50% fuel level if there is no

facility located there and with 100% otherwise. Similarly, vehicles arrive at the destination

with at least 50% fuel level in the absence of a facility located at this node.

The extensions to the FRLM include locating facilities on arcs (Kuby and Lim, 2007),

maximizing total distance traveled by covered demand (Kuby et al., 2009), maximizing

a threshold coverage where a node is covered if it exceeds a threshold percentage of its
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overall outbound trips (Hong and Kuby, 2016), and a capacitated framework that limits

the number of trips that can be refueled at an open facility (Upchurch et al., 2009).

The FRLM takes all feasible facility location combinations with respect to vehicle range

for every shortest OD path as an input. Such a preprocessing task is computationally ex-

pensive and is even impractical for large-size problems. Therefore, heuristic algorithms

are developed in the literature (Lim and Kuby, 2010; Tran et al., 2018). Capar and Kuby

(2012), Capar et al. (2013), MirHassani and Ebrazi (2013) propose new reformulations to

eliminate the pregeneration step and increase computational efficiency. MirHassani and

Ebrazi (2013) point out that a vehicle will always use the shortest path segment between

two consecutive stops for refueling. Based on this key observation, they propose a network

transformation and a new formulation to the FRLM referred to as the refueling station

location problem (RSLP). Additional improvements on the size of the solvable instances

and solution times are obtained by Arslan and Karaşan (2016) by applying Benders de-

composition on the formulation by Capar et al. (2013). The former work is under the

context of plug-in hybrid vehicles and their objective is to maximize the distance traveled

using electricity.

Kim and Kuby (2012) introduce the deviation flow refueling location model (DFRLM),

that allows OD demand to deviate from its shortest path to be able to complete the trip.

Like the generic FRLM, this study computes all feasible facility location combinations for

every OD pair as input to the model. In a subsequent work, Kim and Kuby (2013) propose

a network transformation heuristic in order to solve large-size instances of the DFRLM.

The former study defines deviation paths of OD pairs exogenously whereas the latter uses a

greedy substitution algorithm to generate deviation paths on the fly. Since deviation from

the shortest path implies routing choices in the model, the same problem is also referred

to as the RSLP with routing (RSLP-R) by Yıldız et al. (2016) and Arslan et al. (2019).
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Yıldız et al. (2016) is the first study that allows deviation from the shortest path with-

out pregenerating the routes. Instead, they use deviation tolerance to sustain a tractable

problem size. They develop a path-segment formulation and solve it using a branch-and-

price algorithm, which improves the solution times reported by Kim and Kuby (2012)

considerably. Arslan et al. (2019) propose a tight formulation to the RSLP-R based on a

notion called q-node cuts and solve it using a branch-and-cut algorithm. This methodol-

ogy is shown to improve the computational performance as well as the size of the solvable

instances compared to Yıldız et al. (2016). Göpfert and Bock (2019) propose a similar

branch-and-cut algorithm to solve large scale instances. They evaluate the effects of filter-

ing out shorter distance OD trips and show that this substantially raises the complexity

of the instances to be solved.

There is an alternative research direction for the FRLM where a location set covering

(set cover) approach is adopted to ensure that all OD pairs complete their trips while

minimizing the number of located facilities. Wang and Lin (2009) satisfy the feasibility of

an OD trip by tracking fuel level at every node of the route. This approach helps eliminate

the path pregeneration process at the expense of defining excessively many decision vari-

ables. Wang and Wang (2010) propose a bi-objective extension to Wang and Lin (2009)

by considering the minimization of total facility location costs simultaneously with the

maximization of coverage of nodal demands. Li and Huang (2014) and Huang et al. (2015)

extend the set cover model by allowing shortest path deviations, where the deviation paths

are exogenously determined and fuel level is still tracked on every node. Another study

with the set cover perspective is by Lin and Lin (2018), which defines the p-center RSLP

with the objective to minimize the maximum deviation percentage of OD pairs.

There are several studies that incorporate demand or range uncertainty within the

FRLM framework (e.g., Hosseini and MirHassani (2015) de Vries and Duijzer (2017), Lee

and Han (2017), Boujelben and Gicquel (2019)). None of these studies, however, consider
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the shortest path deviations. On the other hand, Yıldız et al. (2019) take stochastic demand

and capacitated facilities into account besides allowing deviations via pregeneration of the

set of all possible stops for an OD pair considering an exogenous deviation tolerance.

Leitner et al. (2019) point out the relevance of the network design problem with relays

in the context of refueling station applications. On a transportation network, relays cor-

respond to the refueling stations extending the reach of the ZEVs; on telecommunication

networks, relays are regenerators extending the reach of the signals. On both types of

networks, an aim is to find the spatial distribution and the count of the facility locations.

Leitner et al. (2019) also discuss that some solution methodologies can be used interchange-

ably. As a matter of fact, the formulations by Yıldız and Karaşan (2017) and Yıldız et al.

(2018) for relay network design that consider regenerator location, routing, and bandwidth

allocation have similarities with the RSLP-R formulations. Arslan et al. (2019) highlight

that the drivers in the RSLP-R applications will not be willing to deviate more than a cer-

tain distance from their shortest path unlike the regenerator location applications, where

there is no bound on the length that a signal deviates from its shortest path.

The widely used max cover approach in the literature may lead to building ineffective

networks that leave many OD pairs uncovered (Arslan et al., 2019). However, the complete

coverage of every possible OD trip on a given transportation network is crucial to ensure

that the availability of charging station infrastructure is no longer a barrier against pro-

liferation of EVs. In addition, a framework that allows deviation from the shortest paths

implies the importance of routing decisions. Yet, none of the existing studies take the

optimal routes into account while determining the facility locations. Incorporating routing

based performance measures into the problem setting will yield better solutions. Besides,

when shortest path deviations are allowed, both the max cover and set cover approaches

proposed in the literature are ineffective beyond 100% coverage. However, it is important

to determine the best possible routes even when the number of located facilities is suffi-
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cient to ensure 100% coverage. These issues are elaborated while describing the modeling

approach in the upcoming section.

2.2 Problem Definition and Mathematical Formula-

tion

In this section, we first discuss the drawbacks of using the existing max cover approach in

the RSLP-R models and present the basics of the full cover approach. The formulations for

the full cover RSLP-R, which use an expanded network as a basis, are presented afterwards.

2.2.1 Full Cover Approach

In contrast with no shortest path deviation assumption of Kuby and Lim (2005), scarcity

of refueling facilities on a transportation network may force drivers to deviate from their

shortest paths to be able to complete a trip. Therefore, taking shortest path deviations

into account in this problem setting is vital as is the case in the DFRLM/RSLP-R. The

RSLP-R (Yıldız et al., 2016) finds the locations of p facilities to maximize the total flow of

covered OD pairs. It enforces hard constraints on the allowable deviation tolerance from

the shortest path lengths. This problem is referred to as the max cover problem (MCP)

hereafter.

Among the uncovered OD pairs of a MCP solution, there are those that would have

been covered if the deviation tolerance is relaxed. However, there may be others that would

remain uncovered due to vehicle range. The results of Arslan et al. (2019) reveal that an

OD demand is more likely to be uncovered due to vehicle range than due to the deviation

tolerance when using the RSLP-R. It is important to ensure that there are no uncovered
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OD pairs due to range limitations as full connectivity is essential for the proliferation of

EVs. Consumer confidence in these vehicles is bound to increase if they know that the

spatial distribution of charging stations allows them to complete every possible trip on a

given transportation network.

Although the MCP allows for deviations, it ignores the cost of flows, i.e., the significance

of routing decisions. To highlight this issue, consider alternative optimal solutions with the

same number of open facilities. One solution may dominate others with respect to routing

based performance measures such as total trip distance, and the maximum deviation length.

This is particularly important when p is sufficiently high to provide 100% coverage. In this

case, both the MCP and the set cover approach fail to differentiate between alternative

optimal solutions with respect to such routing based performance measures.

The full cover approach that we introduce ensures that every OD pair on a given

transportation network is able to complete its trip, while simultaneously minimizing the

total cost of locating charging stations and the total en route recharging energy. This

problem is referred to as the full cover problem (FCP) hereafter. This setting may easily be

modified to include the minimization of only the total recharging amount while p facilities

are located (to be referred to as the p-FCP).

Unlike other studies addressing the DFRLM/RSLP-R, we do not pregenerate the de-

viation paths or include any constraints to restrict the deviation tolerance, but rather

minimize the total en route recharging required to complete each trip. Not having a pre-

determined deviation tolerance makes it more challenging to solve large-scale instances in

reasonable computational time. If one considers the deviation tolerance as an important

aspect of the problem, proposed formulations can easily be modified to incorporate this.

Considering that the recharging times required for EVs as well as the associated cost

of en route recharging can be significant, we believe that always forcing fully recharging at
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each station visit may not be desirable since a driver’s urge to reach their destination as

fast as possible would encourage them to charge only up to an amount that is sufficient to

reach the subsequent stop. This partial recharging policy, to be referred hereafter as the

charge-just-enough policy, not only minimizes the total energy required to complete an OD

trip, but it may also find a better solution in terms of the total trip time. Figures 2.1 and

2.2 demonstrate why total recharging required to complete a trip should be considered in

addition to trip distance. Figure 2.1 shows an OD path from node A to node D. The arc

labels represent the percentage of vehicle range (R) required to traverse each arc. Given

the assumption on charge level at origin and destination nodes, at least two facilities should

be established in order to make both directions of this trip possible. Figure 2.2 illustrates

two feasible solutions on the path shown in Figure 2.1. Circle-shaped nodes represent

the nodes visited along the path and square-shaped nodes represent the locations of the

stations. Percentage values above each node show the battery level of the vehicle. In

case of recharging, entering and leaving battery levels are shown above the node and are

separated by a right arrow (→). The recharged amount is indicated under the node. For

Figure 2.2(a), the trip from A to D includes two en route recharging stops at nodes B and

C with a total of 140% of R. For the same trip, this value is only 90% for the solution

presented on Figure 2.2(b), which locates recharging facilities at nodes B and D. Although

the trip length in distance is the same for both, the one on Figure 2.2(b) will possibly be

faster as it needs less recharge to complete the trip. Therefore, it outperforms the solution

on Figure 2.2(a) with respect to these measures. Hence, it is important to come up with

a framework that distinguishes such solutions.

A B C D
40% 70% 30%

Figure 2.1: An example path with four nodes.
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A

50%

B

10%→ 70%

recharge = 60%

C

0%→ 80%

recharge = 80%

D

50%

(a) Feasible Solution 1 (stations at B and C)

A

50%

B

10%→ 100%

recharge = 90%

C

30%

D

0%

(b) Feasible Solution 2 (stations at B and D)

Figure 2.2: Analysis of feasible solutions with two charging stations.

As a result of the charge-just-enough policy, the total recharging required to complete

a trip may be calculated as a function of the trip distance and battery level at the origin

and destination nodes. It is not necessary to keep track of the battery level at intermediary

nodes of an OD route. The total en route recharging may be calculated by summing up

the total distance and battery level at the destination and subtracting the battery level at

the origin. The distance and battery level are defined as a percentage of R. For the path

on the left in Figure 2.2, total recharging required during the trip is 140+50−50 = 140%,

and for the path on the right, it is 140 + 0− 50 = 90%. In this work, we treat the forward

and backward directions of a round trip independently, i.e., they do not happen in tandem.

Long-distance trips tend to include overnight stays at destination where recharging will not

have an impact on the actual travel duration. In that case, total en route recharging is the

same in both directions of a round trip. Next, we present the mathematical formulation

of the FCP.

2.2.2 Mathematical Model of the Full Cover Problem

Consider Go = (N o, Ao), a transportation network defined by the set of nodes N o and

set of directed arcs Ao. These represent road/highway intersections and segments on this

network, respectively. K is the set of OD pairs, where Ok and Dk denote the origin and

destination nodes for k ∈ K.

We use an expanded network where an arc represents a feasible shortest path in terms
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of R between any two nodes on the original network (MirHassani and Ebrazi, 2013). This

network transformation is originally proposed for the fixed path setting in the RSLP to

eliminate the need to pregenerate all feasible facility combinations and to ensure round

trip feasibility. Nevertheless, it can also be used when shortest path deviations are allowed

and this is described next.

Let G = (N,A) be the expanded network constructed from the original network Go,

where N denotes the set of its nodes and A denotes the set of its arcs. The length of an

arc (i, j) is denoted by ℓij. The steps of this transformation is detailed below.

• For each OD pair k ∈ K, two artificial OD nodes Oa
k and Da

k are added so that

– N = N o ∪
(⋃

k∈K {Oa
k, D

a
k}
)
,

– A1 =
⋃

k∈K(O
a
k, Ok), ℓOa

kOk
= 0, and

– A2 =
⋃

k∈K(Dk, D
a
k), ℓDkD

a
k
= 0.

• Let π∗
ij denote the shortest path length between two node pairs i, j ∈ N . The

additional set of arcs of the expanded network are defined as:

– A3 =
⋃

i,j∈No, i ̸=j

{
(i, j) | π∗

ij ≤ R
}
, ℓij = π∗

ij,

– A4 =
⋃

j∈No

{
(Oa

k, j) | π∗
Oa

kj
≤ R/2,

}
, ℓOa

kj
= π∗

Oa
kj
,

– A5 =
⋃

i∈No

{
(i,Da

k) | π∗
iDa

k
≤ R/2

}
, ℓiDa

k
= π∗

iDa
k
, and

– A = Ao
⋃5

i=1Ai.

If the shortest path between any two nodes may be completed without recharging, a

stop for a recharge is not needed at an intermediary node on that shortest path. Hence,

a path from a source node to a sink node in G only requires locating a charging station

at the head of each used arc, except Da
k, to be feasible. Artificial nodes Oa

k and Da
k are

included to ensure round trip feasibility as they represent leaving the origin and entering
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the destination nodes with 50% battery level. Figure 2.3 demonstrates the construction of

the expanded network using an example graph with 4 nodes.

1

2

3

4

50%

33%

66%

50%

(a) Sample network with 4 nodes

1

2

3

4Oa
1→4 Da

1→4

50%

33%

66%

50%

50%

0%

83%

50%

0%

(b) Expanded network for OD pair 1→4

Figure 2.3: An illustration of expanded network generation.

This graph transformation is generic enough to be implemented for a heterogeneous

vehicle setting by incorporating Rmk instead of R for each vehicle type m on OD pair

k. We define the length of arcs in the transportation network in terms of their energy

consumption as a percentage of R. We believe this is a generic way to represent energy

consumption of a trip as factors other than the total trip distance, such as average speed

or weight of a vehicle and road gradients, may be incorporated into calculations. Before

presenting the mathematical model, we introduce the notation to be used hereafter.

Parameters:

R: range of an EV.
p: number of facilities to be located.
ℓij: total energy required to traverse arc (i, j) ∈ A, as % of R.
dk: demand of OD pair k ∈ K.
fi: fixed cost of locating a charging station at i ∈ N o.

Decision variables:

yi =

{
1 if a charging station is located at node i,

0 otherwise.
i ∈ N o
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xijk =

{
1 if arc (i, j) is traversed by OD pair k,

0 otherwise.
(i, j) ∈ A, k ∈ K

tk : charging energy required for OD pair k ∈ K to complete its trip as % of R.

ri : battery level at origin/destination node i ∈
⋃

k∈K {Ok, Dk} .

(P0) minimize
∑
k∈K

dktk +
∑
i∈No

fiyi (2.1)

s.t.
∑

j:(i,j)∈A

xijk −
∑

j:(j,i)∈A

xjik =


1, if i = Oa

k,

−1, if i = Da
k,

0, otherwise.

i ∈ N, k ∈ K (2.2)

∑
i:(i,j)∈A

xijk ≤ yj j ∈ N o, k ∈ K (2.3)

tk =
∑

(i,j)∈A

ℓijxijk + rDk
− rOk

k ∈ K (2.4)

ri =
1

2
(1 + yi) i=Ok, k ∈ K (2.5)

ri ≥
1

2
(1− yi) i=Dk, k ∈ K (2.6)

tk ≥ 0 k ∈ K (2.7)

ri ≥ 0 i ∈ {Ok,Dk} , k ∈ K (2.8)

xijk ∈ {0, 1} (i, j) ∈ A, k ∈ K (2.9)

yi ∈ {0, 1} i ∈ N o (2.10)

The objective function (2.1) has two terms, the first term minimizes the total en route

recharging to complete all OD trips, implicitly minimizing the deviation from the shortest

paths, and the second term minimizes the total fixed cost of locating charging facilities.

Constraints (2.2) are flow balance constraints and ensure that there is a feasible path for

every OD pair. Constraint (2.3) ensures that a charging station is located at the head

of each used arc except for the artificial destination nodes. Constraint (2.4) defines the
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decision variable tk and computes the total recharging needed on a trip. Depending on the

availability of a charging facility, constraints (2.5) and (2.6) make sure that the battery

level assumption on the origin and destination nodes of a trip holds. Constraint (2.5)

ensures that the battery level at the origin is 100% if there is a facility located there and

equals to 50% otherwise. Constraint (2.6) defines the lower bound on the battery level at a

destination: if there is a facility at the destination node, there is no requirement to satisfy;

otherwise, it should at least be 50%. Constraints (2.7)-(2.10) determine the domains of

the decision variables.

We model a similar setting of the well-known location set covering problem (Toregas

et al., 1971); however, we additionally minimize the total recharging energy of all trips.

Hence, we refer to this model as the Full Cover Problem (FCP).

The objective function (2.1) comprises of terms that are different in units, i.e., the first

term is the total en route recharging amount (as a function of R) and the latter is total

cost. The scale of the parameters dk and fi would play a critical role in creating a trade-off

between these objective function components. This trade-off can be avoided by multiplying

one of the terms, typically the total cost term, with an adjustment factor, similar to an

objective weight for linear weighted scalarization of a multi-objective optimization problem.

This way the decision maker ensures that the secondary objective (total en route recharging

energy) is minimized among the solutions which have the best value of the main objective

(total cost), i.e., (2.1) is interpreted as a hierarchical objective function.

Another way to handle this nature of the problem is treating one of the objectives as a

constraint. As a result, the FCP may easily be modified to locate p facilities rather than

minimizing total location cost. In order to make such a change, the objective function

term
∑

i∈No fiyi is dropped and the constraint
∑

i∈No yi ≤ p is added. This modification

has an underlying assumption that fi values are the same for all i ∈ N o. If this is not
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the case, then the right-hand side should include the total budget and the left-hand side

should have the total cost term. We refer to this variant as the p-FCP formulation and

introduce its mathematical model below:

(p−P0) minimize
∑
k∈K

dktk (2.11)

s.t.
∑
j∈No

yj ≤ p (2.12)

(2.2) − (2.10)

The p-FCP may be infeasible since, unlike the MCP, it requires finding a feasible path

for every OD pair. However, the MCP does not guarantee to find a better solution in terms

of routing decisions when p is increased. On the other hand, increasing the number of open

facilities is expected to improve the routing-related performance measures when the p-FCP

formulation is used. The value of using the p-FCP would be significant especially when the

FCP finds solutions with relatively higher deviations since it does not enforce a deviation

tolerance. By increasing p gradually, a decision maker would be able to evaluate the

trade-off between the number of located facilities and routing-related performance metrics.

In the context of the FCP or p-FCP, we focus on a long-distance transportation setting

that only includes OD pairs whose shortest path length exceeds R since only these will

have to use the charging stations on every trip. This long-distance problem setting is

particularly suitable for locating fast charging stations for EVs as the trips shorter than

R can readily be supported by home recharging. On another note, as pointed out by

Göpfert and Bock (2019), filtering out shorter trips substantially increases the complexity

of the instances to be solved since many of the remaining trips are required to be recharged

multiple times along the way.

By taking only the long distance travel demand into account, we can simplify the
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formulation. The right-hand side of constraint (2.5) is readily substitutable in (2.4). Then,

we change the sign of constraint (2.6) to an equality due to the charge-just-enough policy

and substitute rDk
variables in constraint (2.4). As all OD pairs would always satisfy (2.7),

we can substitute the right hand side of (2.4) directly in the objective function. With these

changes, we drop constraints (2.4)-(2.8) and present P1 as the reformulation of the FCP

by relaxing the domain of the flow variables.

(P1) minimize
∑
k∈K

∑
(i,j)∈A

dk

(
ℓijxijk −

yOk
+ yDk

2

)
+

∑
i∈No

fiyi (2.13)

s.t. (2.2), (2.3)

xijk ≥ 0 (i, j) ∈ A, k ∈ K (2.9’)

yi ∈ {0, 1} i ∈ N o (2.10)

The p-FCP formulation p−P0 can also be simplified in the same way. To achieve that,

constraint (2.12) will be added to the constraints of P1 and the term
∑

i∈No fiyi will be

dropped from (2.13).

Next, we prove that there always exists an optimal integral solution to P1.

Proposition 2.1. P1 always has an optimal solution with integral xijk values for given

binary yi values.

Proof: We show that, for given yi values, the constraint matrix of P1, denoted by A,

is totally unimodular (TU). We use the theorem by Ghouila-Houri (1962) which asserts

that a matrix is TU if and only if any subset of its rows can be partitioned into two disjoint

sets R1 and R2 such that the vector obtained by
∑

i∈R1
aij −

∑
i∈R2

aij consists only of

0,±1. We now provide such a partitioning for A given binary values for yi.

The structure of A for each k ∈ K is shown in Figure 2.4. A decomposes by k ∈ K,

let Ak denote the constraint matrix for OD pair k ∈ K. Each such submatrix Ak has
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

 A1

  A2


. . .


Figure 2.4: The structure of the constraint matrix A.

|N | + |N o| rows and |A| columns. The column corresponding to arc (i, j) has +1 in row

i and −1 in row j, corresponding to flow balance constraints (2.2). This column also has

+1 in row |N |+ j corresponding to constraint (2.3). The rest of its entries are zero.

Given a subset of rows R of Ak,
∑

i∈R ai(i,j)k may not be equal to 0 or ±1 only if row

j + |N | is in R and row j is not in R. In that case, it is sufficient to remove row j + |N |

from this subset of rows. We construct a partitioning R1 and R2 of R such that the vector

obtained by
∑

i∈R1
ai(i,j)k −

∑
i∈R2

ai(i,j)k = {0,±1} as follows:

• For i ≤ |N |, place row i in R1.

• For |N |+ 1 ≤ i ≤ |N |+ |N o|,

– if, row i− |N | ∈ R, place row i in R1.

– Otherwise, place row i in R2.

Hence, we can claim that each Ak, k ∈ K, and consequently A, is TU and P1 always

has an optimal solution with integral xijk values for given binary yi values. We note here

that this proof can be extended for the p-FCP. □

The preliminary computational analysis with P1 shows that off-the-shelf solvers are

not able to handle the size of the problem for large networks and go out of memory. In

order to solve P1 for real-life instances, we develop a Benders decomposition algorithm as

discussed in the next section.
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2.3 Solution Methodology

In this section, first the Benders reformulation of P1 is presented. Then a novel subprob-

lem solution algorithm is introduced, which is developed to improve the computational

performance of the solution methodology.

2.3.1 The Benders Reformulation

Given the structure of P1, there are two types of decisions to make; namely, location and

flow, where flow decisions are based on the selection of charging station locations. This

structure may be exploited so that the location decisions are determined through the master

problem and optimal paths between OD pairs are constructed within the subproblem.

Let yi denote the given values for the location variables. The subproblem (SP) is

defined as:

(SP) q(Y ) = minimize
∑

(i,j)∈A

∑
k∈K

dkℓijxijk (2.14)

s.t. (2.2),∑
i:(i,j)∈A

xijk ≤ yj j ∈ N o, k ∈ K (2.3)

xijk ≥ 0 (i, j) ∈ A, k ∈ K (2.9’)

SP is a many-to-many shortest path problem with an additional constraint that re-

stricts the nodes that can be used to the set of open facilities. Let λjk and µjk be the dual

variables associated with constraints (2.2) and (2.3), respectively. The dual of SP is:

(DSP) maximize
∑
k∈K

λOa
kk
−

∑
k∈K

λDa
kk

+
∑
j∈No

∑
k∈K

yjµjk (2.15)
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s.t. λik − λjk ≤ dkℓij j = Da
k, (i, j) ∈ A, k ∈ K (2.16)

λik − λjk + µjk ≤ dkℓij j ∈ N o, (i, j) ∈ A, k ∈ K (2.17)

µjk ≤ 0 j ∈ N o, k ∈ K (2.18)

Let q(Y ) denote the objective value of SP given Y = [yi] , i ∈ N o. P1 is reformulated

as follows:

(P1) minimize
∑
k∈K

−dk
(
yOk

+ yDk

2

)
+

∑
i∈No

fiyi + q(Y ) (2.19)

s.t. yi ∈ {0, 1} i ∈ N o (2.10)

It is trivial to show that SP is bounded for dk ≥ 0, k ∈ K and ℓij ≥ 0, (i, j) ∈ A.

Hence, when feasible, P1 has a finite optimal solution for fi ≥ 0, i ∈ N o. It follows that,

either DSP and SP are both feasible, or DSP is unbounded and SP is infeasible. Let R

be a set of extreme rays and H be a set of extreme points of the polyhedron defined by

(2.16)-(2.18). The Benders master problem BMP is:

(BMP) minimize
∑
k∈K

−dk
(
yOk

+ yDk

2

)
+

∑
i∈No

fiyi + z (2.20)

s.t.
∑
k∈K

λrOa
kk
−

∑
k∈K

λrDa
kk

+
∑
j∈No

∑
k∈K

yjµ
r
jk ≤ 0 r ∈ R (2.21)

z ≥
∑
k∈K

λhOa
kk
−

∑
k∈K

λhDa
kk

+
∑
j∈No

∑
k∈K

yjµ
h
jk h ∈ H (2.22)

yi ∈ {0, 1} i ∈ N o (2.10)

When defined on complete sets of extreme rays R and extreme points H, BMP is a
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complete reformulation of P1. However, it is not practical to generate all r ∈ R and h ∈ H

beforehand. A Benders algorithm is used instead to generate feasibility and optimality

cuts as needed. BMP can be tailored for the p-FCP by adding constraint (2.12) to it and

dropping the term
∑

i∈No fiyi from (2.20). Since the subproblem SP decomposes by k ∈ K,

the Benders algorithm has aggregated and disaggregated implementations depending on

whether a single aggregated cut is generated for all k ∈ K or disaggregated |K| cuts are

generated, one for each k ∈ K. We use the former approach in implementations.

Benders algorithm can be implemented to work on a single branch-and-bound search

tree for the master problem rather than solving it from scratch each time a new cut is

added. We adopt this methodology which is referred to as the branch-and-Benders-cut

(Rahmaniani et al., 2017) where branching is performed by the commercial solvers. Based

on computational experience with P1 using CPLEX optimizer, we observed that over 95%

of the computational time is spent on solving the subproblems. Therefore, we develop a

solution algorithm to solve the subproblem and generate Benders cuts in significantly less

time.

2.3.2 Solution of the Subproblem

In this section, we first discuss how to construct an optimal solution of DSP given an

optimal solution to SP in order to generate optimality cuts. Then, we introduce valid

inequalities to be substituted for feasibility cuts when SP is infeasible. Ultimately, we

present the algorithm itself. For ease of exposition and without loss of generality, we work

with a unit demand for each OD pair, i.e., dk = 1, k ∈ K.

Both SP and DSP are decomposable by k ∈ K. Let SPk and DSPk denote these

decomposed problems for OD pair k. SPk and consequently SP , may be solved as a

shortest path problem using a labeling algorithm by embedding constraint (2.3) a priori
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on the network. In order to embed constraint (2.3) on a reduced network Gk = (Nk, Ak),

we set Nk = Ok ∪Dk ∪ {i ∈ N o | yi = 1} and Ak = {(i, j) ∈ A | i, j ∈ Nk}, i.e., eliminating

redundant nodes and arcs of G.

The shortest path problem on Gk is equivalent to SPk and a solution for SPk may be

obtained by a labeling algorithm assuming that it is feasible. However, in order to derive

Benders cuts, one needs to construct the complete dual solution. Besides, when there

are multiple optimal solutions to DSPk, we would like to find one that leads to a non-

dominated Benders cut. In the next section, we introduce a novel approach to construct

such dual solutions and present an efficient algorithm to calculate them.

Dual Subproblem Solution and Optimality Cuts:

Assume that SP and DSP are both feasible and let xk be an optimal solution to SPk with

corresponding dual optimal solution λk when solved on Gk. While determining an optimal

solution to SP from xk as well as the values of the dual variables for i ∈ Nk is trivial,

constructing a complete optimal solution to DSP is a challenging task. The values of the

dual variables for the remaining nodes cannot be calculated in the same trivial manner.

Given an optimal solution xk to SPk, k ∈ K, let Ik1 denote the set of nodes on the

shortest path for SPk; i.e., I
k
1 = {i ∈ Nk | xijk = 1, j ∈ Nk}. Let the objective value of

SPk be denoted as zk. A primal-dual optimal solution pair
(
x∗ijk, (λ

∗
ik, µ

∗
ik)

)
to SP can be

partially determined as follows:

x∗ijk = xijk (i, j) ∈ Ak, k ∈ K (i)

x∗ijk = 0 (i, j) /∈ Ak, k ∈ K (ii)

λ∗ik = λik i ∈ Ik1 , k ∈ K (iii)

µ∗
ik = 0 i ∈ Ik1 , k ∈ K (iv)
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Conditions (i) and (ii) are trivial since SPk is solved on Gk. The dual λik values

determined by a labeling algorithm would satisfy constraint (2.16) as an equality for the

arcs that are on the shortest path and entering Da
k. Similarly, for the rest of the shortest

path arcs, the corresponding λik values would also satisfy (2.17) as an equality by the

shortest path property and complementary slackness. Thus, setting µik values of the

shortest path nodes as zero satisfies constraint (2.17).

Determining the rest of the optimal dual variables µ∗
ik, i /∈ Ik1 corresponding to con-

straint (2.3) is non-trivial since that constraint is embedded in Gk and not explicitly con-

sidered when solving SPk. Based on constraints (2.16) and (2.17) of SPk, we derive the

following inequality for an arbitrary OD path p on G:

∑
j∈Ip

µjk ≤ zpk − zk

where zpk is the length of this arbitrary path p and Ip denotes its nodes. Since path p is

an arbitrary path on G, it may not necessarily use only the open facilities but any node

i ∈ N o. Recall that zk is the current shortest path length with respect to yj. If zk ≤ zpk,

a redundant case is observed as the right hand side of this inequality is nonnegative and

µjk ≤ 0 due to (2.18). On the other hand, if zk > zpk,
∑

j∈Ip µjk may be interpreted as the

improvement achieved over the current shortest path length by locating additional facilities

at nodes j ∈ Ip. Every such path p would yield some information based on the µik values

and one can determine the tightest µik values by considering all possible OD paths on G.

However, this is computationally inefficient. At this point, we propose an algorithm that

determines optimal µ∗
ik values to generate a non-dominated optimality cut.

We define two subgraphs of G to be used hereafter. Let G∗
k = (N,A∗

k) where A∗
k =

A \ {(i, Ok), (Dk, i)|i ∈ N o}, i.e., arcs entering the original origin and leaving the original

destination nodes are eliminated from the expanded network arc set A. Let Gf
k = (N,Af

k)
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where Af
k = {(i, j) ∈ A | i ∈ Nk, j ∈ N o ∪Dk}, i.e., only the arcs leaving the nodes in Nk

are considered. Let wik be the shortest path length from Ok to i ∈ N o ∪Da
k on G∗

k; uik be

the shortest path length from Oa
k to node i ∈ N o ∪Da

k on Gf
k , and vik be the shortest path

length from Da
k to node i ∈ N o ∪Oa

k on the reverse graph of Gf
k . While uik and vik depend

on the set of open facilities in Nk, wik does not. Based on these definitions we rewrite (iii)

as:

λ∗ik = −uik i ∈ Ik1 , k ∈ K (iii)

The remaining nodes are partitioned as Ik2 and Ik3 such that Ik2 =
{
i ∈ N o\Ik1 | wik + vik ≥ zk

}
and Ik3 =

{
i ∈ N o\Ik1 | wik + vik < zk

}
for k ∈ K, where the condition differentiates the

nodes based on their potential to improve the current shortest path length. Consider the

following for Ik2 and Ik3 :

λ∗ik = −wik i ∈ Ik2 , k ∈ K (v)

µ∗
ik = 0 i ∈ Ik2 , k ∈ K (vi)

λ∗ik = −zk + vik i ∈ Ik3 , k ∈ K (vii)

µ∗
ik = 0, i ∈ Ik3 yi = 1, k ∈ K (viii)

At this point, all remaining µ∗
jk can be calculated based on λ∗ik determined by (iii),(v)

and (vii):

µ∗
jk = min

{
0, min

(i,j)∈A

{
ℓij − λ∗ik + λ∗jk

}}
j ∈ Ik3 , yj = 0, k ∈ K (ix)

Proposition 2.2. The primal-dual solution
(
x∗ijk, (λ

∗
ik, µ

∗
ik)

)
defined by (i)− (ix) is optimal

to SP and DSP, respectively.

Proof: It is trivial to show that x∗ determined by (i) and (ii) is feasible to SP . We
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now show that (λ∗ik, µ
∗
ik) is dual feasible and strong duality holds.

Recall the dual feasibility conditions (2.16)-(2.18). For nodes i ∈ Ik2 , constraint (2.16)

reduces to wik + vik ≥ zk, since ℓiDa
k
= vik under this case, and this is already satis-

fied by the very definition of Ik2 . For j ∈ Ik2 , constraints (2.17) and (2.18) imply µjk ≤

min
{(

0,min(i,j)∈A {ℓij − λikλjk}
)}

. Due to (vi), it is sufficient to show that ℓij−λik+λjk ≥

0, (i, j) ∈ A and j ∈ Ik2 for dual feasibility to hold. Note that wik + ℓij ≥ wjk holds for

(i, j) ∈ A by the shortest path property. Let us evaluate ℓij − λik + λjk ≥ 0 under 3 cases:

• For i ∈ Ik1 , by (iii) ℓij + uik − wjk ≥ ℓij + wik − wjk ≥ 0 as uik ≥ wik by definition.

• For i ∈ Ik2 , by (v) ℓij + wik − wjk ≥ 0.

• For i ∈ Ik3 , wik + vik < zk; by (vii), ℓij + zk − vik − wjk > ℓij + wik − wjk ≥ 0.

All three cases hold by the shortest path property; thus, dual feasibility is satisfied for

j ∈ Ik2 .

For i ∈ Ik3 and yi = 1, constraint (2.16) reduces to −zk + vik + zk ≤ vik which

trivially holds. For j ∈ Ik3 in constraints (2.17) and (2.18), it is sufficient to show that

ℓij − λik + λjk ≥ 0, (i, j) ∈ A. This expression is also evaluated under 3 cases:

• For i ∈ Ik1 , by (iii), ℓij + uik ≥ zk − vjk =⇒ ℓij + uik + vjk ≥ zk. This is always

true since i ∈ Ik1 and yj = 1. Otherwise, j would have been in Ik1 , i.e., a node on the

shortest path.

• For i ∈ Ik2 , due to its set definition and (v), we obtain ℓij + wik − zk + vjk ≥

ℓij + zk − vik − zk + vjk ≥ 0. This reduces to ℓij + vjk ≥ vik which holds by the

shortest path property on the reverse graph of Gf
k .

• For i ∈ Ik3 , by (vii), ℓij + zk − vik − zk + vjk ≥ 0. This also reduces to ℓij + vjk ≥ vik

which holds by the shortest path property on the reverse graph of Gf
k .
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Thus, dual feasibility is satisfied for j ∈ Ik3 , yj = 1.

For j ∈ Ik3 and yj = 0, constraint (2.16) reduces to wik+vik ≥ zk and the arguments fol-

low as before. Constraints (2.17) and (2.18) reduce to µjk ≤ min
{(

0,min(i,j)∈A {ℓij − λik + λjk}
)}

.

Due to (ix), letting µjk equal to the RHS of this inequality will always satisfy the dual

feasibility conditions in the tightest way. Therefore, (λ∗ik, µ
∗
ik) is dual feasible.

Recall that zk is the primal optimal solution to SPk and by (iii) λ∗Oa
kk

= 0, λ∗Da
kk

= −zk.

As µ∗
jk = 0 for {j ∈ N o | yj = 1} by (iv), (vi) and (viii), the optimal objective value ofDSPk

is zk. This holds for all feasible k ∈ K; hence, by strong duality,
(
x∗ijk, (λ

∗
ik, µ

∗
ik)

)
defined

by (i)− (ix) is optimal to SP and DSP , respectively.□

The optimal dual solution constructed by (i) − (ix) is proven to generate a non-

dominated optimality cut for BMP next.

Proposition 2.3. A DSP solution (λ∗jk, µ
∗
jk) constructed by (i) − (ix) generates a non-

dominated optimality cut.

Proof: For solution (λ∗jk, µ
∗
jk), λ

∗
Oa

kk
= −uOa

k
= 0 and λ∗Da

kk
= −uDa

k
= −zk by (iii).

Hence, λ∗Oa
kk
− λ∗Da

kk
= zk and optimality cut (2.22) may be written as:

z ≥
∑
k∈K

zk +
∑
j∈No

∑
k∈K

yjµ
∗
jk

Moreover for any alternative optimal solution (λjk, µjk), λOa
kk
− λDa

kk
= zk by strong

duality. Solution (λ∗jk, µ
∗
jk) defines a non-dominated cut if there does not exists an alter-

native optimal solution (λjk, µjk) such that µjk ≥ µ∗
jk, for which a strict inequality holds

for at least one j ∈ N o, k ∈ K (Magnanti and Wong, 1981). Recall that DSP constraints

(2.17) and (2.18) reduce to µjk ≤ min
{
0,min(i,j)∈A {ℓij − λik + λjk}

}
. For OD pair k ∈ K:

• When µ∗
jk = 0 (i.e., by (iv), (vi) or (viii)), µjk ≤ µ∗

jk by constraint (2.18).
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• When µ∗
jk < 0, j ∈ Ik3 by (ix) and vjk ̸= ∞. Moreover, (ix) ensures that constraint

(2.17) is satisfied at equality for at least one i ∈ N o such that (i, j) ∈ A. This also

holds for any (i, ȷ̂) ∈ A such that ȷ̂ ∈ Ik1 ∪ Ik2 by the shortest path property since

µ∗
ȷ̂k = 0 by (iv) and (vi).

Assume for some j ∈ Ik3 , µjk > µ∗
jk. It follows that −λik + λjk > −λ∗ik + λ∗jk for

some arc (i, j) ∈ A for which constraint (2.17) is binding. Assuming without loss of

generality λOa
kk

= 0, which also implies λik = λ∗ik for i ∈ Ik1 . This follows that:

– λjk ≤ λ∗jk by (2.16) and (2.17) since vjk ̸= ∞ implies that there exists an

arc (j,m) ∈ A such that either ym = 1 or m = Da
k; and λOa

kk
− λDa

kk
= zk and

µmk = 0 (if m ̸= Da
k) due to complementary slackness in any alternative optimal

DSP solution.

– If λik < λ∗ik and constraint (2.17) is binding for (i, j), µjk > µ∗
jk. To maintain

feasibility of constraint (2.17) for some arc (m, i) ∈ A for which this constraint is

also binding, a) either µik < µ∗
ik (when yi = 0) and (λ∗jk, µ

∗
jk) is non-dominated,

b) or λmk < λ∗mk. If m ∈ Ik1 , this contradicts with λmk = λ∗mk, and (λ∗jk, µ
∗
jk) is

non-dominated. Else, identify an arc for which (2.17) is binding and either con-

clude that (λ∗jk, µ
∗
jk) is non-dominated or continue until arc (Oa

k, Ok) is reached.

In that case λOa
kk
< λ∗Oa

kk
contradicts with λOa

kk
= λ∗Oa

kk
= 0 and (λ∗jk, µ

∗
jk) is

non-dominated.

Hence, DSP solution (λ∗jk, µ
∗
jk) generates a non-dominated optimality cut. □

Feasibility Cuts:

Infeasibility of SP means that there exists at least one OD pair k ∈ K whose origin and

destination nodes are disconnected given the set of open facilities N o
y =

{
j ∈ N o | yj = 1

}
,
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i.e., active nodes.In this case, the corresponding DSPk is unbounded and a Benders feasi-

bility cut (2.21) is generated. Alternatively, a trivial way to cut out this infeasible solution

is to add a constraint to BMP that ensures locating at least one additional facility:

∑
j∈No\No

y

yj ≥ 1 (2.23)

Cut (2.23) may be strengthened as follows. Let k̂ denote an infeasible OD pair. Given

the set of open facilities N o
y , we determine the set of non-facility nodes that are reachable

from Oa
k̂
on Gf

k̂
. These are the nodes that have a potential to connect Oa

k̂
to the rest of the

graph. This is repeated from the other end of the network starting from Da
k̂
to determine

the set of reachable inactive nodes from Da
k̂
on the reverse graph of Gf

k̂
. Using these sets

of nodes, we derive two feasibility cuts for OD pair k̂:

∑
i:{i∈No\No

y | uik̂ ̸=∞}
yi ≥ 1 (2.24)

∑
i:{i∈No\No

y | vik̂ ̸=∞}
yi ≥ 1 (2.25)

The cardinality of
{
i ∈ N o\N o

y | uik̂ ̸=∞
}

and
{
i ∈ N o\N o

y | vik̂ ̸=∞
}

is always less

than or equal to the cardinality of N o\N o
y . In addition, a solution that satisfies (2.24) and

(2.25) also satisfies (2.23) but the opposite is not always true.

Cut (2.23) may also be strengthened as

∑
j∈No\No

y

yj ≥ Γk̂, (2.26)

where Γk̂ denotes the minimum number of additional facilities required to connect Oa
k̂
to

Da
k̂
on G. We determine Γk̂ using breadth-first-search starting from the active nodes that
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are reachable from Oa
k̂
on Gf

k . Γk̂ is equal to the number of layers of G searched until

the first active node that is reachable from Da
k̂
on the reverse graph of Gf

k is encountered.

Preliminary numerical analysis revealed this to be computationally more expensive than

generating (2.24) and (2.25). Besides, Γk̂ typically took values that are less than or equal

to two which undermines the significance of (2.26). Therefore, we do not include (2.26) in

the implementation.

We now summarize the subproblem solution algorithm. After solving BMP to obtain

yj, j ∈ N o, SP is decomposed into SPk, k ∈ K, and Algorithm 2.1 is used to solve SP .

It processes each SPk independently and eventually adds the non-dominated optimality

cut (2.22) to BMP using the dual solutions constructed for each DSPk by (i) − (ix) if

SP is feasible. If it identifies an infeasible SPk, it concludes that SP is infeasible. At this

point, we have two options before adding a feasibility cut. Either we process the remaining

OD pairs, identify the infeasible ones, and generate additional feasibility cuts for each of

them. Alternatively, one can stop solving SP as soon as an infeasible OD pair for SPk is

identified and add a single set of feasibility cuts to BMP . The former multi-cut approach

throughout the numerical experiments.
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Algorithm 2.1 Subproblem solution and Benders cut generation algorithm

1: Ik1 , I
k
2 , I

k
3 := ∅

2: Generate Gf
k

3: Solve a shortest path problem on Gf
k and the reverse graph of it

4: if uDkk ==∞ then
5: SPk and SP are infeasible
6: Generate feasibility cuts (2.24) and (2.25)
7: else if uDkk ̸=∞ then
8: SPk is feasible
9: λOa

k
= −uOa

kk = 0 and λDa
k
= −uDa

kk = zk
10: Ik1 := {i ∈ N | uik = vik ̸=∞}
11: Ik2 :=

{
i ∈ No\Ik1 | wik + vik ≥ zk

}
12: Ik3 :=

{
i ∈ No\Ik1 | wik + vik < zk

}
13: for i = 1 : No do
14: if i ∈ Ik1 then
15: λik = −uik, µik = 0
16: else if i ∈ Ik2 then
17: λik = −wik, µik = 0
18: else if i ∈ Ik3 then
19: λik = −zk + vik
20: if yi == 1 then
21: µik = 0
22: else

23: µik = min

{(
0, min

(j,i)∈A

{
ℓ(j,i) − λjk + λik

})}
24: end if
25: end if
26: end for
27: end if

2.4 Computational Experiments

In this section, we present a comprehensive computational study to evaluate the effec-

tiveness of using the FCP is presented. Besides the computational performance of the

novel solution algorithm is evaluated on two real world road networks. The experiments

are executed using CPLEX Optimizer v12.9.0 in the Java API with Concert Technology

on a computer with Intel i7-9700K 3.60GHz processor and 16GB of RAM. The Benders

algorithm framework is implemented using lazy constraint callback feature of CPLEX and

a predetermined time limit of one hour is set for all implementations.
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2.4.1 Data Sets

We use three benchmark transportation networks from the literature. The first one with

25 nodes is introduced by Simchi-Levi and Berman (1988), and it is one of the most

widely used benchmark networks for the FRLM. This network will be referred to as N25

henceforth. The second one, with 339 nodes, is introduced more recently by Arslan et al.

(2014) and will be referred to as CA339. It is a representation of the state of California

highway network and was used previously by Arslan et al. (2019) and Yıldız et al. (2016)

for the RSLP-R. The potential OD nodes are selected from the population centers that

have more than 50,000 inhabitants. The third network, introduced by Göpfert and Bock

(2019), involves 5642 nodes and 16,034 arcs that constitute the road network of Germany

and will be referred to as GER. The detailed specifications of these transportation networks

are summarized in Table 2.1.

Table 2.1: Specifications of data sets used for numerical experiments.

N25 CA339 GER

Number of nodes 25 339 5,642
Number of potential OD nodes 25 51 430

Number of arcs 84 1234 16,034
Mean arc length (km) 4.60 18.96 11.07

Standard deviation of arc lengths 1.81 12.96 12.65

For N25 and CA339, we work with 3 different values of R as commonly done in the

literature (10, 12 and 15 for N25 ; 100, 150 and 200 for CA339 ). Each R leads to a different

problem setting since the set of arcs of the expanded network depends on this value. For

each setting, we identify the long-distance OD pairs by filtering out the trips with shortest

path distances that are less than R. These OD pairs represent all possible trips on the

network, where the vehicles have to recharge en route at least once in order to complete

the trip. The details of these settings in terms of the number of OD pairs, expanded
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network arcs and distance related measures are depicted in Table 2.2. Throughout the

computational experiments with these networks, fi, i ∈ N o is set to 106, and a unit

demand between OD pairs is considered. In this setting, the magnitude of fi is high

enough to ensure that total recharging is minimized among the solutions which have the

minimum total cost of opening facilities. In these computational studies, we assume that

the energy consumption of an arc is directly proportional to its distance.

Table 2.2: Specifications of N25 and CA339 problem settings.

R # OD
# Expanded

arcs
Mean OD
distance

Max OD
distance

N25
10 211 373 17.68 38

12 181 466 18.87 38

15 133 585 20.97 38

CA339
100 806 24,358 193.64 463.5

150 542 44,524 227.43 463.5

200 335 63,325 258.91 463.5

GER network has two variants with 818 and 1397 nodes introduced by (Göpfert and

Bock, 2019), which include different subsets of its 5642 nodes. We test both of these variants

and label them as GER818 and GER1397. It is known that the majority of the EVs have

already started to offer driving ranges greater than 300km. The number of the expanded

network arcs increases substantially for higher R values so we believe that investigating

how the proposed solution algorithm would behave for higher R values is important. For

these reasons, we set R to 300, 350 and 400 km for both GER818 and GER1397. For

each R, we test different cardinalities of OD pair sets (|K| = 50, 100, 200, 500) to evaluate

its effect on the computational performance. The OD demands are based on the traffic

data from the year 2010 (Göpfert and Bock, 2019) and these sets are created by selecting

the most popular |K| long-distance OD pairs of the networks. The details of the problem

settings, representatively for |K| = 500, in terms of expanded network size, number of OD
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nodes, distance related measures (mean and maximum OD distances) and the percentage

of flow volume included with respect to the total long-distance flow in each problem setting

are shown in Table 2.3.

Table 2.3: Specifications of the GER818 and GER1397 problem settings for |K| = 500.

R
# Expanded

arcs
Mean OD
distance

Max OD
distance

# OD
nodes

Total flow volume
included (%)

GER818
300 122,450 448.1 747.2 132 86.9

350 160,155 518.2 873.3 129 92.6

400 202,012 586.8 994.8 135 98.6

GER1397
300 348,010 432.9 747.2 170 64.3

350 456,312 500.7 874.8 174 71.6

400 573,252 574.4 997.9 167 79.1

2.4.2 Effectiveness of the FCP and p-FCP Solutions

We first solve all three N25 problem settings using the FCP formulation and record the

number of used facilities, referred to as p. Then, for comparison, we solve the MCP for

the same setting using the number of facilities set to p at four deviation tolerance values

(0%, 20%, 50% and 100%). Note that these tolerances represent the maximum allowed

deviation distance as a percentage of the corresponding shortest path length. For each

instance, we repeat solving the MCP at these deviation tolerances by increasing p one at

a time until all OD pairs are covered to identify the minimum p value that ensures 100%

coverage. Such solutions are equivalent to the set cover solutions, i.e., the solutions provide

100% coverage with the minimum number of located facilities under the MCP setting. We

also report the p-FCP solutions that uses the minimum p values for the set cover solutions.

The first set of MCP solutions enables comparing the output of both models for the same

number of open facilities. The second set of solutions (set cover), on the other hand, allows

comparing both models for the case of 100% coverage.
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Table 2.4 summarizes the results with N25. The solutions are compared on three main

groups of performance measures: number of stations located, coverage based attributes,

and distance based attributes. For each R, the first set of rows present the solutions of

the FCP and p-FCP and the four subsequent rows show the MCP solutions corresponding

to different deviation tolerances. Similarly, the last four rows correspond to the solutions

of the set cover problem for various deviation tolerances and corresponding minimum p

values.

When R = 10 and p = 8, neither of the four MCP solutions can provide full coverage;

in fact, to cover 100%, 13 charging stations are required when a maximum of 50% deviation

from the shortest path is allowed, whereas this number increases to 17 when the deviation

tolerance is set to 0% or 20%. The FCP solution dominates both of the MCP solutions with

100% deviation tolerance over all performance measures. Even though the lower deviation

tolerance settings for p = 8 might seem to provide better metrics for the last three columns,

this is evidently biased since this solution leaves significantly many OD pairs uncovered.

When R = 12, the FCP solution look more effective. It dominates the MCP solutions

at both 50% and 100% deviation tolerance levels when p is set to be the same as in the

FCP solution. Unlike for R = 10, the MCP with 100% deviation tolerance at the same p

can provide full coverage. In order to ensure complete coverage considering the deviation

tolerance (set cover setting), the MCP needs to locate one, six and eight additional facilities

for 50%, 20% and 0% deviation tolerance settings, respectively, which is still not enough

to make 50% setting solution better than the FCP solution on any other measure.

When R = 15, the FCP solution looks worse on distance based attributes listed on

the last three columns simply because the coverage of the MCP decreases substantially.

Despite this, the FCP always provides a better coverage than the MCP when p = 5 as

none of the deviation tolerance settings is sufficient to have 100% coverage for the FCP.
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Table 2.4: Optimal FCP and p-FCP solutions versus optimal MCP and set cover solutions
for N25.

Deviation
Tolerance

# Located
Facilities (p)

Coverage
# Uncovered

OD pairs
Avg

Distance
Avg

Deviation
Max

Deviation

R = 10

FCP N/A 8 100% 0 22.51 4.83 22

p-FCP N/A 10 100% 0 19.25 1.56 12
N/A 13 100% 0 18.10 0.42 4
N/A 17 100% 0 18.04 0.36 4

MCP 0% 8 52.6% 100 17.06 0 0
20% 8 63.98% 76 18.30 0.71 5
50% 8 82.46% 37 19.89 2.99 11
100% 8 96.6% 7 24.09 6.21 38

Set Cover 0% 17 100% 0 17.68 0 0
20% 17 100% 0 18.06 0.38 6
50% 13 100% 0 21.82 4.14 16
100% 10 100% 0 24.44 6.75 26

R = 12

FCP N/A 7 100% 0 21.99 3.12 17

p-FCP N/A 8 100% 0 20.20 1.32 7
N/A 13 100% 0 19.46 0.59 6
N/A 15 100% 0 19.24 0.37 6

MCP 0% 7 55.8% 79 17.21 0 0
20% 7 77.9% 40 19.22 1.32 4
50% 7 94.47% 10 22.67 3.71 15
100% 7 100% 0 25.02 6.14 29

Set Cover 0% 15 100% 0 18.87 0 0
20% 13 100% 0 19.35 0.47 5
50% 8 100% 0 25.07 6.20 17
100% 7 100% 0 25.02 6.14 29

R = 15

FCP N/A 5 100% 0 30.85 9.88 26

p-FCP N/A 6 100% 0 23.58 2.60 15
N/A 7 100% 0 22.05 1.08 8
N/A 9 100% 0 21.32 0.35 6
N/A 12 100% 0 21.13 0.16 4

MCP 0% 5 48.12% 69 19.76 0 0
20% 5 65.41% 46 20.55 0.78 3
50% 5 79.69% 27 24.41 4.68 15
100% 5 90.97% 12 28.91 7.71 31

Set Cover 0% 12 100% 0 20.97 0 0
20% 9 100% 0 21.71 0.75 5
50% 7 100% 0 29.15 8.18 17
100% 6 100% 0 30.68 9.71 32
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The p-FCP solutions show the strength of the proposed formulation as p increases,

since the distance based attributes get significantly better at each increment. Specifically

for R = 15, the improvement compared to the FCP solution by locating a single additional

facility is substantial. Hence, such p-FCP solutions can easily dominate the corresponding

set cover solutions. However, when p is high enough to provide a feasible set cover solution

for 0% deviation tolerance, we observe that the distance based attributes of set cover

solutions might be slightly better than the p-FCP solutions. This is due to the fact that

the distance based attributes are not directly considered in the p-FCP objective function.

Figure 2.5 illustrates three histograms of the shortest path deviation distributions.

These figures compare the FCP solutions of each setting with the corresponding MCP

solution for the same p value and 50% deviation tolerance. The horizontal axis represents

deviation intervals and the vertical axis shows the number of OD pairs belonging to each

interval. The MCP solution for R = 10 leaves 37 OD pairs uncovered with p = 8 and 50%

deviation tolerance, and it renders a maximum deviation of 11. As shown in Figure 4(a),

the FCP solution has only 25 OD pairs that are over the deviation tolerance of 11 units,

which is less than those 37 not covered by the MCP solution. These histograms illustrate

that the distribution of deviations for both approaches are similar for the first three bins.

The number of OD pairs covered in the first two bins is 11 higher for the FCP on R = 10.

So, these results reveal that the FCP solution dominates the MCP solution in terms of

deviation distributions. Figure 4(b) supports these findings for R = 12 since the number

of OD pairs in the first bin is much higher for the FCP solution. On the other hand,

Figure 4(c) shows that deviation distances of the FCP solution are longer compared to

79% coverage solution of the MCP, which leaves 27 OD pairs uncovered. This is expected

since leaving that many OD pairs allows the MCP to cover only the nodes in concentrated

zones.

An additional set of experiments with the p-FCP are performed. Using p-FCP helps find
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Figure 2.5: Deviation histograms for the FCP and MCP, deviation tolerance = 50%.

better solutions in terms of routing measures when p is sufficient to ensure 100% coverage.

Table 2.5 shows the results of the p-FCP and MCP at varying levels of p. The lowest p

value selected for each setting is the lowest possible value to ensure complete coverage with

the FCP formulation, i.e., any lower p will result in infeasibility of this model. The MCP

solutions are obtained at 50% deviation tolerance as we observed that any lower value

results in significantly lower coverage rates, which leads to solutions that are not insightful

to compare.

For R = 10, each additional facility improves the FCP solutions in terms of routing-

related metrics. However, the MCP does not guarantee to find a better solution in terms

of these metrics when p is increased. Thus, it may yield fluctuating values of them that are

always worse than the FCP solution, except for p = 8. Nevertheless, increasing p values

allows the MCP to improve coverage. Similarly, all R = 12 solutions of the FCP dominate

the MCP solutions by a large margin except for p = 7. Solutions for R = 15 demonstrate

the strength of using the FCP as its maximum deviation metric is even comparable to

the average deviation of the MCP solutions when p ≥ 7. Opening one more facility

than the lowest p for the FCP provides much better solutions in terms of routing-related

performance measures as depicted in Figure 2.6. These results highlight the dominance

of the FCP formulation over the max cover/set cover on routing-related metrics especially
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when the p-FCP is used and the number of open facilities is the same. Figure 5 illustrates

that these metrics of the FCP solutions are superior than those of the MCP solutions in

addition to ensuring complete coverage of all the OD pairs. It also shows the fluctuation

in the MCP solutions more clearly.

Table 2.5: The p-FCP and MCP solutions for N25.

R = 10 p = 8 p = 9 p = 10 p = 11 p = 12 p = 13

p-FCP Avg Recharge(R) 1.61 1.42 1.24 1.18 1.12 1.06
Avg Dev 4.83 3.12 1.56 0.99 0.50 0.42
Max Dev 22 17 12 8 6 4

MCP Coverage (%) 82.46 90.04 95.26 98.57 99.53 100
Avg Dev 2.99 6.35 7.31 7.39 4.88 4.14
Max Dev 11 16 19 19 16 16

R = 12 p = 7 p = 8 p = 9 p = 10 p = 11 p = 12

p-FCP Avg Recharge(R) 1.22 1.04 0.96 0.91 0.86 0.81
Avg Dev 3.12 1.32 0.81 0.64 0.59 0.72
Max Dev 17 7 6 6 6 6

MCP Coverage (%) 94.47 100 100 100 100 100
Avg Dev 3.71 6.20 3.97 4.73 5.44 5.70
Max Dev 15 17 15 19 18 19

R = 15 p = 5 p = 6 p = 7 p = 8 p = 9 p = 10

p-FCP Avg Recharge(R) 1.48 0.98 0.87 0.79 0.72 0.66
Avg Dev 9.88 2.60 1.08 0.51 0.35 0.35
Max Dev 26 15 8 6 6 6

MCP Coverage (%) 79.69 95.49 100 100 100 100
Avg Dev 4.68 4.93 8.18 6.21 4.09 6.06
Max Dev 15 15 17 19 15 13
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Figure 2.6: Comparison of routing metrics on N25.
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The optimal solutions of the FCP and p-FCP for CA339 instances are presented next.

The results are depicted in Table 2.6. The number of open facilities in each instance are

listed in the second column and the routing-related performance measures are presented on

the subsequent columns. Total en route recharging is presented as a factor of the vehicle

range R, therefore, the unit of measurement of average recharge metric shown on the third

column of this table is R. In other words, since R is an indicator of the total battery

capacity, if a vehicle with the range of R completes 1.50R of total en route recharging,

the vehicle needs to have at least 150% of its battery to be filled up along the trip before

reaching its destination.

Table 2.6: The FCP and p-FCP solutions for CA339.

p
Avg

Recharge
(R)

Avg Trip
Distance
(km)

Avg
Deviation

(km)

Max
Deviation

(km)

R = 100 8 (FCP) 2.52 262.27 68.63 232.53
9 1.99 212.47 18.83 123.24
10 1.89 206.95 13.31 123.24
11 1.83 201.75 8.11 84.01
12 1.78 200.04 6.40 84.01
13 1.75 198.63 4.99 84.01

R = 150 5 (FCP) 1.92 295.23 67.80 192.90
6 1.52 240.75 13.32 81.78
7 1.42 235.18 7.03 74.34
8 1.38 235.18 7.75 74.34
9 1.34 233.21 5.78 74.89
10 1.31 233.81 6.38 68.03

R = 200 4 (FCP) 1.36 289.84 30.93 192.90
5 1.21 267.54 8.62 113.64
6 1.15 260.91 2.00 37.68
7 1.12 263.87 4.95 55.74
8 1.08 263.42 4.50 55.74
9 1.04 263.42 4.50 55.74

The first row of each R setting depicts the FCP solution and the subsequent ones with

incremented p values are the p-FCP solutions. The improvement on routing measures is

substantial for the p-FCP even after opening one additional facility. These results validate

the effectiveness of using the p-FCP. Each additional p improves the coverage of the MCP
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Figure 2.7: Comparison of routing metrics for CA339.

but is not always helpful to determine a solution with better routing metrics. However,

these metrics improve as p increases in the FCP solutions. While p increases, the maximum

deviation metric of the p-FCP solutions gets nearly as good as average deviation of the

MCP solutions. In addition to superior coverage, this is the other main benefit of using the

FCP rather than the MCP to obtain higher quality solutions for the RSLP-R applications.

Figure 2.7 presents a visual representation of the distance based attributes. Even

though some FCP solutions might result in high deviations for certain OD trips, by solving

the p-FCP iteratively, the trade-off between p and the maximum deviation can be evaluated

by the decision makers. The significant improvements in distance based attributes in the

first few increments in p can be seen in Figure 2.7. Such managerial results are insightful

for the decision makers to elucidate the marginal benefits of locating additional facilities.

2.4.3 Performance of Benders Decomposition and Algorithm 2.1

In this section, we first evaluate the computational perfomance of the proposed solution

methodology on the CA339 dataset. The size of the expanded network grows significantly

with the size of the original graph, for example, the California highway network results in
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more than 20 million decision variables for each problem setting (R = 100, 150 and 200).

State of the art solvers or computers cannot handle a problem of this size; yet using the

proposed Benders decomposition framework coupled with the new subproblem solution

algorithm, we can solve all instances to optimality in less than a minute for CA339.

Table 2.7: Performance comparison of the Benders algorithm for CA339.

CPLEX Subproblems

p
# Feas
Cuts

# Opt
Cuts

Sub-p
Time (%)

Solution
Time (s)

R = 100 8 54 15 88.9 819
9 109 180 95.0 4,607
10 94 220 96.1 5,426
11 73 224 95.8 4,615
12 65 218 94.2 3,486
13 87 252 95.7 5,922

R = 150 5 26 31 94.9 816
6 43 73 97.6 2,674
7 29 127 96.5 3,517
8 35 181 97.6 5,159
9 22 198 96.9 4,413
10 26 198 97.5 6,756

R = 200 4 27 57 95.5 772
5 23 122 97.5 2,712
6 19 122 96.9 2,583
7 17 114 96.1 1,969
8 20 86 97.4 2,485
9 12 83 97.1 2,511

Average: 43.3 138.9 95.9 3,402

Algorithm 2.1

# Feas
Cuts†

# Opt
Cuts

Solution
Time (s)

264 (157) 55 27.4
175 (77) 141 31.7
170 (88) 134 35.8
107 (65) 163 37.2
35 (86) 234 51.3
96 (57) 213 50.9

44 (38) 49 9.3
57 (9) 45 7.1
58 (17) 61 11.0
53 (29) 79 16.3
55 (26) 67 15.1
55 (31) 96 20.1

42 (4) 22 2.9
28 (12) 52 6.8
36 (11) 17 2.8
41 (15) 44 6.7
31 (17) 57 8.3
28 (19) 52 8.7

76.4 (42.1) 86.7 19.4
† For a fair comparison, the number of iterations when SP is infeasible is presented in parenthesis next to the number of
added feasibility cuts as Algorithm 2.1 adds multiple cuts each time SP is infeasible.

We present the computational performance comparison of the subproblem solution

algorithm against CPLEX in Table 2.7 for each instance on CA339. On the left hand side

of this table, we list the number of feasibility and optimality cuts added along with the

total percentage of solution time spent on solving the subproblems by CPLEX and the total

solution time in seconds. All problem settings are solved to optimality within reasonable

computational times. The shortest solution time is 772s (R = 200, p = 4), whereas the

longest and the mean time to reach optimal solutions are 6756s (1.88hr) and 3402s (0.95hr),

respectively. Over 95% of the solution time is spent on solving the subproblems.
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On the right hand side of Table 2.7, we list the number of added feasibility and optimal-

ity cuts, and the total solution time for each CA339 instance when the subproblem solution

methodology is employed within the Benders algorithm. For R = 100, 150 and 200, the

algorithm is 106, 288 and 411 times faster than CPLEX, respectively. Average solution

time decreases to 19.4s from 3402s. The shortest and longest solution times turn out to

be 2.8s (R = 200, p = 6) and 51.3s (R = 100, p = 12), respectively, where for the instance

with R = 200 and p = 6, the algorithm is 922 times faster than CPLEX. The comparison

also reveals that the number of optimality cuts that are added by the solution algorithm

is less than that of CPLEX, except for three instances: R = 100, p = 8, 12, and R = 150,

p = 5. The number of added feasibility cuts tend to be higher since the algorithm adds

multiple cuts everytime an infeasible solution is encountered. On the other hand, the num-

ber of iterations where an infeasible SP is encountered is comparable with the number of

feasibility cuts added by CPLEX.

Next, we explore the limits of the developed solution methodology and evaluate its

computational performance with respect to varying number of nodes and expanded network

arcs using larger-sized instances on GER818 and GER1397 networks. We test instances

with three different range values (R = 300, 350, 400), four different sets of OD pairs (|K| =

50, 100, 200, 500), and varying number of facilities to open (p). These combinations yield

to over 110 instances using GER818 and GER1397. The computational performance of

the algorithm on these instances are depicted in Table 2.8.

We observe that the computational effort to solve these instances are more than those

of the CA339 since the computation times are significantly higher and their variance is also

larger. The solution algorithm is still able to find the optimal solutions for the majority of

instances within the predetermined time limit. The average computation time of optimally

solved instances is 556.8s, whereas the maximum is 2615.2s. For GER818, 20 out of 57

instances remain unsolved within the time limit. The average optimality gap is 1.68% for
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Table 2.8: Performance of the Benders algorithm for GER818 and GER1397.

GER818

|K| p
Solution
Time (s)

Gap (%)

R = 300 50 11 (FCP) 22.3 0
15 3,600 9.67
20 20.8 0
25 69 0
30 64.6 0

100 15 (FCP) 168.1 0
20 2,050 0
25 3,600 1.45
30 3,600 0.98

200 16 (FCP) 98.3 0
20 1,177.7 0
25 3,600 0.52
30 3,600 2.37
35 3,600 1.24

500 18 (FCP) 239.9 0
20 905 0
25 3,600 6.02
30 3,600 5.85
35 3,600 3.82

Average: 1.68

R = 350 50 9 (FCP) 135.3 0
10 288.0 0
15 46.6 0
20 38.3 0
25 23.6 0

100 11 (FCP) 108.9 0
15 334.1 0
20 51.2 0
25 80.5 0
30 74.4 0

200 14 (FCP) 814.9 0
15 2615.2 0
20 224.3 0
25 3,600 0.17
30 3,600 0.22

500 15 (FCP) 1,361.9 0
20 3,600 1.41
25 3,600 3.72
30 3,600 2.87

Average: 0.44

R = 400 50 8 (FCP) 34.4 0
10 124.1 0
15 41.7 0
20 26.2 0
25 20.5 0

100 9 (FCP) 90.1 0
10 104.3 0
15 2,087.2 0
20 310.0 0
25 3,600 0.32

200 10 (FCP) 29.5 0
15 255.8 0
20 3,600 0.50
25 3,600 0.58

500 13 (FCP) 1,810.1 0
15 1,586.6 0
20 3,600 1.38
25 3,600 2.07
30 3,600 2.72

Average: 0.40

GER1397

p
Solution
Time (s)

Gap (%)

14 (FCP) 3,600 15.36
15 3,600 14.03
20 247.6 0
25 1,344.4 0
30 3,600 0.62

15 (FCP) 3,600 19.89
20 3,600 8.81
25 3,600 3.09
30 3,600 1.72

19 (FCP) 3,600 14.07
20 3,600 5.33
25 3,600 8.08
30 3,600 3.41
35 3,600 2.18

- - -
20 (FCP) 722.5 0

25 3,600 9.42
30 3,600 7.89
35 3,600 4.97

Average: 6.60

- - -
10 (FCP) 162.3 0

15 851.1 0
20 3,600 1.18
25 645.7 0

12 (FCP) 3,600 1.15
15 778.4 0
20 1,965.6 0
25 1,399.0 0
30 383.7 0

14 (FCP) 245.9 0
15 1,078.1 0
20 3,600 1.48
25 3,600 0.31
30 1,281.4 0

15 (FCP) 637.7 0
20 3,600 5.39
25 3,600 3.20
30 3,600 1.60

Average: 0.81

8 (FCP) 604.5 0
10 149.1 0
15 60.4 0
20 43.6 0
25 47.1 0

- - -
10 (FCP) 410.1 0

15 552.5 0
20 3,600 0.37
25 385.2 0

10 (FCP) 642.1 0
15 1,805.4 0
20 3,600 1.95
25 3,600 1.35

13 (FCP) 3,600 5.43
15 3,600 2.19
20 3,600 2.21
25 3,600 2.74
30 3,600 2.53

Average: 1.04
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R = 300 instances whereas it decreases to 0.44% for R = 350, and to 0.40% for R = 400.

On the other hand, the majority of the instances (30 out of 54) of GER1397 remain with

an optimality gap after an hour. The average percentages of gaps are more than doubled

compared to GER818 : 6.60%, 0.81% and 1.04% for R = 300, 350 and 400, respectively.

Interestingly, considering fewer OD pairs does not always require less computational effort,

particularly for R = 300 and lower p values, where the recorded optimality gaps are the

largest on both networks. On the other hand, the instances of R = 350 and R = 400 with

higher number of OD pairs typically require higher computational effort to solve than the

lower |K| ones.

2.5 Conclusions

This chapter introduces the first study in the EV charging station location problem lit-

erature that allows shortest path deviations without pregenerating the routes or using a

deviation tolerance. Since the widely used max cover approach and deviation tolerance

may lead to building ineffective networks that leave many OD pairs uncovered, we pro-

pose a new full cover modeling approach to design a charging station infrastructure that

enables long-distance EV travel on a transportation network. Not having a predetermined

deviation tolerance is observed to significantly increase the computational effort to solve

the problem. Hence, in order to solve large-size instances, we developed a Benders decom-

position algorithm. Computational experiments revealed that almost 95% of the overall

computational effort is spent on solving the Benders subproblems. Thus, we introduced a

novel method to solve these subproblems. To this end, as a major methodological contri-

bution, we construct the optimal dual solution to generate non-dominated optimality cuts

when the subproblem is feasible; else, we derive valid inequalities based on the infeasible

subgraph structures and add these to the master problem as feasibility cuts.
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Numerical results support the effectiveness of the new modeling approach over the exist-

ing models in the literature and demonstrate its strengths. FCP models can find solutions

that dominate the MCP solutions in terms of routing-related performance metrics, when

the same number of stations are open and the coverage of the MCP is closer to 100%. While

testing the p-FCP formulation on highway network of California, we observe that opening

additional stations offer substantial improvements over the routing measures compared

with the FCP solution which minimizes the number of stations as a priority. Even though

these measures are not explicitly considered while minimizing total en route recharging,

computational results reveal that they are still captured by this objective function.

When the performance of the subproblem solution algorithm is compared with CPLEX,

the results reveal that the proposed algorithm can speed-up the solution up to 900 times

on the tested large-size instances. We explore the computational limits of the solution

algorithm using over 100 instances of the Germany road network and determine that the

computational performance is proportional to the graph size and the number of nodes and

inversely proportional to the vehicle range.

We believe that the core problem of charging infrastructure design for EVs shows much

potential in terms of variety of directions that the researchers can look into. In this work, we

assume that the charging stations are uncapacitated. Since the adoption rate of EVs is still

considerably low, it is reasonable to assume that these stations will not be fully utilized in

the near future. However, once EVs become the popular choice of transportation, it will be

crucial to take the station capacities, waiting times in the queue, and vehicle heterogeneity

into account. In connection with these aspects, it would also be important to consider

nonlinearity in charging times for EVs alongside the effects of traffic congestion to conduct

a comprehensive research that focuses on trip time rather than distance based measures.
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Chapter 3

Charging Station Location and Sizing

for Electric Vehicles Considering

User Behavior and Congestion

The majority of shorter distance trips using EVs typically rely on the private slow-chargers

readily available at homes and workplaces. However, private slow-charging has to be com-

plemented by publicly accessible en route fast-charging stations to support EV charging on

the go for long-distance trips. Furthermore, recent advancements in battery and charging

technologies for passenger EVs are paving the way towards long-haul freight distribution

with heavy-duty EVs, i.e., electric trucks (ETs). Lately, manufacturers such as Tesla,

Daimler AG, and Volvo, have unveiled their plans for mass production of ETs within this

decade. International Energy Agency states that planning needs to start now for mega

chargers to enable long-distance electric trucking as there is currently no infrastructure to

support it (IEA, 2021). Therefore, the feasibility and convenience of long-distance trips

with electric vehicles depend on the spatial distribution of adequately capacitated DC

fast-charging stations.
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The capacity of a DC fast-charging station is defined as the number of charging stalls,

also known as outlets, chargers, or EVSE. Considering the relatively long recharging times

for EVs even using fast-chargers, waiting times may become a major inconvenience. More-

over, the demand for charging at a charging station is hardly known in advance. Hence,

the stochasticity of demand and service times should not be neglected when determining

the locations and capacities of the charging stations.

In this chapter, we seek to develop mathematical models to find the optimal locations

of DC fast-charging stations and their respective number of chargers to serve a given

set of origin-destination (OD) EV trips on a transportation network. To ensure quality

of service considering stochasticity in charging demand and service times, probabilistic

service level requirements are defined that make sure that the expected waiting times at

a charging station do not exceed inconvenience limits. To provide cost-effective solutions,

the framework of this problem allows the possibility of detours from shortest paths within

a threshold, referred to as the deviation tolerance (Arslan et al., 2019).

Given the possibility of detours, when there exist alternative routing options, the de-

cision makers need to consider the choice of charging stations to be visited by rational

service-seekers who act with self-interest. This necessitates the route choice behavior of

EV users to be taken into account when the location and sizing decisions are made. We

use a bilevel structure where the leader is a regulatory body that seeks to establish the

charging infrastructure by determining the strategic locations and sizes of the charging

stations (e.g. governments or private EV network operators), and the follower is the set

of EV users who seek to complete their long-distance EV trips.

The leader’s problem minimizes the total cost of locating and sizing charging stations

while ensuring a convenient service level taking follower’s response into account. The

follower’s problem, on the other hand, is defined to incorporate the route and charging
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station choice of EV users while minimizing the length of their trips. The choice of facilities

by the EV users, i.e., the allocation of recharging demand to charging stations, is crucial for

the leader since the congestion level at stations will directly impact the required capacity.

To the extent of our knowledge, this study is the first to model a chance-constrained

bilevel optimization framework and that makes charging station sizing decisions based on

stochastic queuing models focusing on long-distance transportation with EVs. The main

contributions of this work are (i) a new bilevel mathematical model that allows short-

est path deviations without path pregeneration or enumeration of alternative routes, (ii)

merging the bilevel nature of the problem with realistic queuing models to incorporate

stochastic travel demand, (iii) an exact solution algorithm for the uncapacitated version

of the problem, (iv) and a novel decomposition based algorithm that is capable of rapidly

finding high-quality solutions and also able to handle both cooperative (optimistic) and

uncooperative (pessimistic) responses of EV users. Through computational experimenta-

tion, we evaluate the performance of the solution algorithm and show how the follower’s

position, deviation tolerance, and service level parameters affect the obtained solutions on

benchmark instances and real life California and Eastern US highway networks.

The next section of the chapter provides the literature review of the capacitated fa-

cility location problems regarding charging stations while emphasizing the contributions.

Section 3.2 gives the problem statement, defines the underlying expanded network and its

reduction procedure, and presents the bilevel modeling framework. Section 3.3 provides

the analysis of the bilevel optimization model under cooperative and uncooperative EV

user response, and M/M/c queuing systems. Section 3.4 presents the logic-based Benders

decomposition algorithm developed for the uncapacitated version of the problem and a

decomposition based algorithm that can account for the cooperative or uncooperative user

behavior for the original problem. Section 3.5 introduces the data sets and test instances

and presents the results of extensive computational experiments performed to derive man-
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agerial insights as well as to assess the performance of the algorithm. Lastly, Section 3.6

includes a summary of the insights, concluding remarks, and key takeaways.

3.1 Literature Review

Many studies in the literature adopt a focus that is solely based on the spatial dimension of

the charging infrastructure problem within an uncapacitated framework. The correspond-

ing literature have already been extensively reviewed in Section 2.1. Here, the scope of the

review is on the studies that use a congestion-aware setting for the EV charging station

problems.

The location-specific studies that ignore capacity decisions at charging stations conse-

quently neglect EV users’ route choice response to facility locations or congestion. On the

other hand, some existing studies which model the capacitated extensions of the charging

station location problem (e.g., Upchurch et al., 2009; Jiang et al., 2012; Hosseini et al.,

2017) adopt a rather simplistic approach that imposes hard limits on the number of vehicles

that can be served by each open station instead of assuming that all flow passing through

a station can be served regardless of their volume. Additionally, there are studies that

consider capacity level expansions under a multi-period framework. Among these, Zhang

et al. (2017) extends the capacitated FRLM considering the demand dynamics (increasing

EV market share) throughout the planning horizon. Anjos et al. (2020) uses a hybrid ap-

proach that takes both node-based (urban) and flow-based (long-distance) travel demands

into account.

There are stochastic modeling approaches that use queuing theory to determine station

capacity levels. Xie et al. (2018) and Xie and Lin (2021) use M/M/c queuing systems to

model facility congestion under the context of multi-period capacity expansion and charg-
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ing station location problem. The former proposes a stochastic optimization model that

minimizes total system cost defined as the sum of the capital cost of locating and expand-

ing charging stations and the penalty cost of not satisfying (covering) an OD trip. The

deviations from the shortest paths are taken into account by means of pregenerating a

number of alternative paths for each OD trip. Even though deviations are considered, all

alternative paths are assumed to be equivalent for the EV users; i.e., EV users’ response to

charging station locations are neglected. The resulting mathematical model is solved by a

genetic algorithm under the assumption of last-minute charging which may cause subopti-

mal demand allocation to charging stations. The computational experiments are based on

a case study in California. Xie and Lin (2021) extends this framework by introducing an

inconvenience cost function of travellers in their system cost definition. This model is also

solved by a genetic algorithm but it no longer allows deviations from the shortest paths.

There are several studies which take the route choice behaviour of EV users into account

using bilevel location models under an uncapacitated framework (e.g., Jing et al., 2017;

Zheng et al., 2017; He et al., 2018; Guo et al., 2018; Tran et al., 2021). These studies

are more suitable for an urban setting as they consider traffic congestion using stochastic

or deterministic user equilibrium. Hence, the case studies and numerical tests featured

in these works cover smaller geographical regions. These mathematical models rely on

path pregeneration or enumeration, except for Zheng et al. (2017) in which the state of

charge is tracked in the model to ensure path feasibility. Bilevel optimization problems

are known to be intrinsically hard to solve. Even the models with both linear leader and

follower’s problems, which are generally the simplest to solve, are shown to be strongly

NP-hard (Labbé and Marcotte, 2021). Typically, solution methods used for these studies

are metaheuristics, such as a genetic algorithm or large-scale neighbourhood search, or a

single-level reformulation of the bilevel problems is proposed to be able to solve the models

using commercial solvers.
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To the best of our knowledge, there are only two studies to date which make charging

station location and sizing decisions while taking EV users’ response into account. Huang

and Kockelman (2020) use a bilevel profit maximization problem for multi-period charging

station location and sizing. Their model allows for incorporating charging price elastic-

ity and station congestion into a discrete set of route choices for EV users under elastic

demand. However, station capacity deployment is still modeled in a deterministic way.

The numerical experiments are performed on an urban network with 74 nodes. A genetic

algorithm is used to find solutions to the proposed model. This algorithm uses a queuing

averse logit choice model that determines users’ allocations to charging stations. Makhlouf

et al. (2019) also propose a bilevel problem where the upper level problem is a max-cover

type station location and sizing problem and the lower level problem represents EV-user

behaviour in terms of making the minimum number of stops to reach their destination.

The solution approach is based on a single-level reduction assuming cooperative response

and they solve the resulting reformulation using commercial solvers on randomly generated

network instances of 100 nodes.

To sum up, none of the above studies consider a bilevel framework that simultane-

ously takes the infrastructure cost of locating and sizing charging stations, route choice

response of EV users, and stochastic waiting times at facilities into account. Moreover,

the existing studies that use a bilevel model assume only a cooperative user behavior,

whereas we develop a solution methodology that can be tailored for both the cooperative

and uncooperative responses of the follower. This algorithm is capable of solving large-

scale transportation networks with up to 420 nodes, which is the largest network size that

has been solved within a bilevel framework in the literature.
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3.2 The Bilevel Charging Station Location and Sizing

Problem

Let the underlying transportation network be defined as Go = (N,Ao), where N denotes

the set of nodes, e.g., highway intersections, population centres, and Ao denotes the set of

directed arcs, e.g., highway segments. Consider K as the set of OD pairs, where Ok and

Dk denote the origin and destination nodes for OD pair k ∈ K. Each OD pair represents a

stochastic stream of EV flow between two population centres for which the travel distance

exceeds the EV battery range R, and thus, recharging en route is necessary.

A charging station may contain up to C charging stalls and each stall offers stochastic

service times. As a result of limited capacity, stochastic arrivals, and stochastic service

times, charging stations may experience congestion. Consequently, EV users may have to

enter a service queue when the system is busy, i.e., when all charging stalls are occupied.

The waiting time at a charging station is a function of its capacity given by the number

of charging stalls and the total allocated EV charging demand. In order to ensure service

convenience, a service level requirement is introduced to guarantee that the probability

of waiting at most α minutes is greater than or equal to β% at each open station. For

example, a service level requirement is for the waiting time to be less than or equal to

α = 10 minutes, β = 90% of the time.

A deviation tolerance is defined to model EV users’ willingness to deviate from their

shortest path to charge. This deviation tolerance τ is expressed in terms of the percentage

difference of the length of the path taken and the length of a shortest path (e.g., Kim and

Kuby, 2012; Yıldız et al., 2016; Arslan et al., 2019; Göpfert and Bock, 2019).

Let f(·) denote the fixed cost function of establishing a charging station and g(·) denote

the variable cost function of capacity installation at the stations. The former is typically a
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function of economic characteristics of the land of each candidate station location, whereas

the latter is a non-decreasing function of the number of charging stalls installed at a station.

The bilevel optimization model minimizes the total infrastructure cost of locating charg-

ing stations and installing charging stalls, while ensuring feasible OD routes and proba-

bilistic service level requirements. Feasible OD routes visit en route charging stations to

satisfy range limitations of EVs and are within the respective deviation tolerance.

In order to model OD trip feasibility without tracking the state of charge of the vehicles

or pregenerating all the feasible stopping combinations, the idea of an expanded network

introduced by MirHassani and Ebrazi (2013), which was previously discussed in Section

2.2.2 of the previous chapter. Recall that the expanded network includes additional arcs

on Go between nodes i, j ∈ N , given that the shortest travel distance between them is

less than or equal to the EV range. This allows embedding the EV range information in

feasible network arcs, since if the shortest path between any two nodes can be completed

without recharging, a stop for a recharge is not required at intermediary nodes.

Let G = (N,A) be the expanded network of Go for a given range R. We now show how

to further reduce the expanded network by defining a permissible arc for OD pair k ∈ K

as follows:

Definition 3.1. An expanded network arc (i, j) ∈ A is called a permissible arc for OD

k ∈ K if it connects Ok to Dk within the allowed deviation tolerance. The set of permissible

arcs Ak, k ∈ K is given by:

Ak = {(i, j) : (i, j) ∈ A and δOki + δij + δjDk
≤ (1 + τ)δOkDk

} , k ∈ K

where δij is the shortest path length from i ∈ N to j ∈ N .

We then construct Gk = (Nk, Ak) as the permissible arc expanded network for k ∈ K,
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where Nk consists of the nodes that are incident to the arcs in the set Ak. This reduced set

Ak allows to define the mathematical model concisely by removing redundant constraints

due to arcs that cannot be in a feasible path within the deviation tolerance. However, mod-

eling the problem on ∪k∈KGk rather than G does not ensure that the deviation tolerance

requirement is met.

To formulate the bilevel charging station location and sizing problem under congestion,

we introduce the following decision variables:

yj =

{
1, if candidate location j ∈ N has a charging station,
0, otherwise.

zj = number of charging stalls installed at charging station j ∈ N .

xijk =

{
1, if expanded arc (i, j) ∈ Ak is traversed by OD pair k ∈ K,
0, otherwise.

Wj = waiting time at charging station j ∈ N .

The bilevel model BLP is then formulated as follows:

[BLP] “minimize”
∑
j∈N

(f(yj) + g(zj)) (3.1)

s.t. zj ≤ Cyj j ∈ N (3.2)

P
(
Wj ≤ α

)
≥ β j ∈ N (3.3)

yj ∈ {0, 1} j ∈ N (3.4)

zj ≥ 0 and integer j ∈ N (3.5)

Wj ≥ 0 j ∈ N (3.6)

xijk ∈ argmin
∑
k∈K

∑
(i,j)∈Ak

δijxijk (3.7)

s.t.
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∑
j:(i,j)∈Ak

xijk −
∑

j:(j,i)∈Ak

xjik =


1, if i = Ok,

−1, if i = Dk,

0, otherwise.

i ∈ Nk, k ∈ K

(3.8)∑
i:(i,j)∈Ak

xijk ≤ yj j ∈ Nk, j ̸= Dk, k ∈ K (3.9)

∑
(i,j)∈Ak

δijxijk ≤ (1 + τ)δOkDk
k ∈ K (3.10)

xijk ∈ {0, 1} (i, j) ∈ Ak, k ∈ K (3.11)

Bilevel optimization problems are often interpreted as Stackelberg games that are struc-

tured to have an upper-level (leader’s) and a lower-level (follower’s) problem. In this con-

text, the leader makes a decision and the follower responds. The framework of such a

problem is based on the fact that the leader anticipates the follower’s optimal reaction to

their decisions.

The objective function of the leader (3.1) minimizes total infrastructure cost comprised

of the cost of locating charging stations and installing charging stalls. Constraint (3.2)

ensures that station capacity may be non-zero only for open charging stations. Chance

constraints associated with service level requirements are defined by (3.3). For each charg-

ing station, this constraint ensures that the probability of waiting less than or equal to α

minutes is greater than or equal to β. Constraints (3.4)-(3.6) define the domains of the

leader’s decisions.

The objective of the follower’s problem is to minimize the total travel distance. Con-

straint (3.7) defines the feasible solution space of the follower’s routing decisions in response

to the leader’s charging station location decisions, which in itself is an optimization prob-

lem. Constraints (3.8) are flow balance constraints for OD k ∈ K. Constraint (3.9) ensures

that there exists a charging station, located by the leader, at the head of each used arc, ex-
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cept the final arc of each OD path. By the definition of the expanded network, this ensures

vehicle range feasibility besides determining which charging stations to use on each OD

path. Constraint (3.10) makes sure that each OD path is within the deviation tolerance τ .

Lastly, constraint (3.11) defines the domain of the flow variables xijk.

The quotation marks are used in the definition of (3.1) as there is a lack of clarity in case

there are alternative optimal solutions for the follower’s problem for a given solution vector

of the leader’s problem. This can be resolved by defining the notions of cooperative and

uncooperative responses of the follower. In a cooperative response, the leader anticipates

the follower to choose from among the optimal solutions of the lower level problem the one

that yields the best objective value for the leader’s problem; i.e., a cooperation between

the leader and follower exists. In the latter, the leader assumes a reaction of the follower

that generates the worst possible outcome for the leader’s objective function.

In the next section, we mathematically define both positions of the follower and then,

in Section 3.3.1, show how BLP may be reformulated as a single level problem under the

cooperative response. In Section 3.3.2, we introduce the characterization of a DC fast-

charging station network as an open multi-server Jackson network, and using the Erlang-C

function and queuing system stability constraints, we present the deterministic equivalents

of the probabilistic service level constraints and modify the single-level reformulation of

BLP under cooperative response as a mixed-integer linear optimization problem (MILP).
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3.3 Analysis of the Bilevel Modeling Framework

Let Ψ(y) define the reaction set of the follower based on the leader’s decisions y =

{yj, j ∈ N} as:

Ψ(y) =

x = {xijk, (i, j) ∈ Ak, k ∈ K} : x ∈ argmin

∑
k∈K

∑
(i,j)∈Ak

δijxijk : (3.8)− (3.11)




The optimal solution of BLP under cooperative (optimistic) response xo is:

xo = argmin

{∑
j∈N

(f(yj) + g(zj)) : x
o ∈ Ψ(y)

}

The uncooperative position reflects the case where the leader protects themselves

against the worst possible outcome of the follower’s response. Based on the definition

of the follower’s alternative reaction set Ψ(y), the optimal uncooperative (pessimistic)

response solutions of BLP are defined as follows:

xp = argmax

{∑
j∈N

(f(yj) + g(zj)) : x
p ∈ Ψ(y)

}

For the case of cooperative response and in the presence of convex follower’s problems,

it is possible to reformulate a bilevel optimization model into a single level one using

optimality conditions of the follower’s problem (Bard, 2013).

Uncooperative response is known to be less tractable compared to the cooperative

response even in the case of a convex follower’s problem. In fact, pessimistic bilevel op-

timization problems, so far, do not have any computational methods that are generally

applicable (Zeng, 2020). Commonly, solving these problems require processing all alterna-

tive optimal solutions of the follower’s problem to determine the solution that is the worst
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for the leader’s objective function, which is deemed not tractable (Sinha et al., 2017).

We study both the cooperative and uncooperative response in this study by developing

the single-level reformulation of BLP under the cooperative response case as well as pro-

viding a solution algorithm to solve BLP for the uncooperative response case and M/M/c

queues.

3.3.1 Single-Level Reduction of BLP under Cooperative Response

In this subsection, we show that the follower’s problem always has an integer optimal

solution when feasible, and then, reformulate BLP into a MILP taking advantage of the

integrality property of the follower’s problem under cooperative response.

Proposition 3.1. Follower’s problem of BLP always has an integer optimal solution when

feasible.

Proof: Assume that there exists an OD pair k ∈ K with fractional xijk in an optimal

solution. Without loss of generality, let p1 and p2 be two, not necessarily disjoint, paths with

distances z1 and z2, respectively. Let χ1 and χ2 denote the fractional flow on these paths,

such that χ1 + χ2 = 1 by constraint (3.8). By the optimality of this solution, z1 = z2.

Otherwise, one may construct a solution that only uses path p∗ = argmin {z1, z2} with

objective function value min {z1, z2} ≤ z1χ1 + z2χ2. Since z1 = z2, an integral solution

may be obtained by selecting one of the equal length paths arbitrarily and setting the

corresponding xijk values to 1 on this path, and to 0 on the rest. □

Proposition 3.1 means that the domain constraint (3.11) of the follower’s problem may

be dropped and its optimal solution is characterized by the optimality conditions. Let θjk,

γjk, and ϕk be the dual variables associated with (3.8), (3.9), and (3.10), respectively. The

single-level reformulation of BLP, denoted by SLP, is:
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[SLP] minimize (3.1)

s.t.(3.2)− (3.6), (3.8)− (3.11)∑
(i,j)∈Ak

δijxijk = (θOkk − θDkk) +
∑
j∈Nk

yjγjk + δOkDk
(1 + τ)ϕk k ∈ K (3.12)

θik − θDkk + δiDk
ϕk ≤ δiDk

k ∈ K, (i,Dk) ∈ Ak (3.13)

θik − θjk + γjk + δijϕk ≤ δij k ∈ K, (i, j) ∈ Ak, j ̸= Dk (3.14)

θjk free j ∈ Nk, k ∈ K (3.15)

γjk ≤ 0 j ∈ Nk, k ∈ K (3.16)

ϕk ≤ 0 k ∈ K (3.17)

In this reformulation, (3.12) is the strong duality condition of the follower’s problem

and its dual feasibility requrirements are defined by constraints (3.13)− (3.17). Note that

(3.12) is written for k ∈ K since the dual problem is decomposable for each OD pair.

This constraint includes a quadratic term that can be linearized by introducing auxiliary

decision variables qjk = yjγjk, j ∈ Nk, k ∈ K. Accordingly, constraint (3.12) is linearized

by replacing it with (3.18)-(3.21):

∑
(i,j)∈Ak

δijxijk = (θOkk − θDkk) +
∑
j∈Nk

qjk + δOkDk
(1 + τ)ϕk k ∈ K (3.18)

qjk ≥ γjkyj j ∈ Nk, k ∈ K (3.19)

qjk ≥ γjk j ∈ Nk, k ∈ K (3.20)

qjk ≤ γjk − (1− yj)γjk j ∈ Nk, k ∈ K (3.21)

qjk ≤ 0 j ∈ Nk, k ∈ K (3.22)

where γjk denotes the lower bound for the non-positive dual variable γjk. Constraint (3.22)

defines the domain of γjk as non-positive and (3.19) ensures that γjk = 0, when yj = 0.

On the other hand, constraints (3.20) and (3.21) ensure that qjk = γjk, when yj = 1.
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Both BLP and SLP include variable Wj, which is a function of xijk and zj as well as

demand and service rates. The characterization of Wj and the associated probabilistic

service level constraints (3.3) depend on the underlying queuing system at the charging

stations. Consequently, the solvability of SLP still depends on the ability to characterize

chance constraints (3.3). Next, we discuss the case of Poisson arrivals and exponential

service times, which allows the reformulation of (3.3) using mixed-integer optimization.

3.3.2 Case with Poisson Arrivals and Exponential Service Times:

M/M/c Queuing System

DC fast charging stations for EVs typically include multiple charging stalls, that can deliver

80-400kW at 50-1000V (IEA, 2021). Each charging station provides simultaneous service

to multiple EVs where each stall acts as a server utilized by service-seekers on a first-

come-first-serve basis. Moreover, common courtesy dictates that there is a single queue for

each charging station in case of concurrent utilization of the servers. This single queue –

multiple parallel server structure constitutes as the main framework of the queuing system

models of DC fast charging stations.

Existing public charging stations are often located near discretionary service facilities

(e.g., restaurants, stores, plazas, or shopping centres) in order to mitigate the relatively

longer recharging times for EVs. As a result, not every customer unplugs their EV right

after getting up to their desired state of charge (SoC). This is one of the main reasons

for existing studies to consider stochastic, and typically exponential, service times (Xie

et al., 2018; Xie and Lin, 2021). The stochastic flow rate of an OD is assumed to have

Poisson distribution. The rate of the Poisson process may be determined as a function

of the population of two cities, their respective EV adoption rates and the travel distance

between them. For long-distance trucking, for example, it may be a function of the number

65



of ETs dispatched per day from an origin to a destination.

Under a single queue, multiple parallel server, Poisson arrivals and exponential service

time system, each charging station may be modeled as an M/M/c queue. However, a long

distance OD route might require multiple charging stops and ODs may have varying flow

rates resulting in a queuing network.

Burke’s theorem states that the departure rate of a stationary M/M/1 queue is identical

to its arrival rate as long as the queuing system is stable (Burke, 1956). This concept of

Poisson flow conservation is also generalizable to M/M/c queues, which allows the char-

acterization of a queuing network that comprises of several interconnected M/M/c queues

(Bose, 2013). Using these results, an arbitrary transportation network with M/M/c charg-

ing stations, is an open multi-server Jackson network for which the routing probabilities

are set by the route choices of EV users.

We define λk to denote the Poisson flow rate of OD pair k ∈ K. Let Λj denote the flow

rate faced by open station j ∈ N , determined as the total Poisson OD demand.

Λj =
∑

i:(i,j)∈A

∑
k∈K

λkxijk j ∈ N (3.23)

Recall that the expanded network ensures that xijk = 1 of OD k ∈ K charges at j ∈ N ,

Moreover, the underlying open multi-server Jackson network ensures that the arrival rate

of an OD to a station is equal to their departure rate as long as all queues on the network

are stable. The queue stability requirement is defined as:

Λj ≤ µzj − ϵ j ∈ N (3.24)

where µ is the exponential service rate of each server of a station and ϵ is an infinitesimal

constant. This constraint ensures that the Poisson flow rate faced by a station is strictly
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less than its processing rate in order to have a finite queue length.

We define the average load of a stall at a charging station by ρj = Λj/µzj, and rewrite

the left-hand-side of constraint (3.3) using a modification of the Erlang-C formula (Chromy

et al., 2012; Xie et al., 2018).

P
(
Wj ≤ α

)
= 1−

(zjρj)
zj

zj !(1−ρj)

(zjρj)
zj

zj !(1−ρj)
+

zj−1∑
t=1

zjρj
t

t!

e−µ(zj−ρjzj)α j ∈ N (3.25)

Although this substitution in (3.3) involves a quadratic function, it may be rewritten using

a step function on integer zj:

zj =



0, Λj = 0

1, ϵ ≤ Λj < b1

2, b1 ≤ Λj < b2

... ...

C, bC−1 ≤ Λj < bC .

if P
(
Wj ≤ α

)
≥ β (3.26)

Service level parameters α and β of constraint (3.3) determine the values of the breakpoints

(b1, b2, . . . , bC) of this step function by a preprocessing procedure based on (3.25). Such a

function can be easily incorporated within any MILP model using special ordered set of

type 1 (SOS1) variables or using the following set of additional constraints to substitute

(3.3).

C∑
m=1

sjm = 1 j ∈ N (3.27)

Λj ≤
C∑

m=1

bmsjm j ∈ N (3.28)

Λj ≥
C∑

m=2

bm−1sjm j ∈ N (3.29)
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zj ≥
C∑

m=1

msjm j ∈ N (3.30)

sjm ∈ {0, 1} j ∈ N, m ∈ {1, 2, ..., C} (3.31)

Constraints (3.28)-(3.29) determine the two consecutive breakpoints of the step function

that Λj value lies between. Constraints (3.30) exploit the fact that both m and zj are

integer and determine the minimum zj value in conjunction with the minimization objective

function (3.1) of BLP. Implementing these constraints rather than using SOS1 variables is

observed to be more computationally effective during preliminary computational analysis.

The number of sjm variables increases with C, so choosing the right value of C is

important. In this study, we determine this value so that it is large enough to keep

constraint (3.2) non-binding for the optimal solution but small enough so that the number

of binary sjm variables is not excessively many.

Substituting a step function instead of the chance constraint (3.3) by pregenerating

its breakpoints based on the Erlang-C formula and linearizing this step function with the

above constraints, the single level reduction of the bilevel model is updated as below:

[DLP] minimize (3.1)

s.t. (3.2), (3.4)− (3.6), (3.8)− (3.11), (3.13)− (3.24), (3.27)− (3.31)

To summarize, when OD flows are Poisson distributed and service rate at a stall is ex-

ponential, SLP is reformulated as a MILP which is denoted as DLP. Even though DLP may

be solved using off-the-shelf solvers, the preliminary computational experiments revealed

that these solvers are not able to handle the problem complexity for large-sized networks.

In order to solve DLP for real-life instances, we develop a decomposition based algorithm

that exploits the problem structure as described in the next section.
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3.4 Solution Methodology

There are three decisions to make in this problem setting: the locations of the charging

stations, the number of stalls at open stations, and the OD routes. We propose a solution

method that decomposes these decisions and iteratively solves two single-level problems:

a location problem and a sizing problem. As the location problem turns out to be compu-

tationally demanding, we develop a tailored logic-based Benders algorithm that solves all

instances within seconds.

The proposed decomposition structure first solves a location problem taking into ac-

count OD flows to obtain the charging station location vector y, and the corresponding

optimal reaction set of the follower defined on y:

Ψ(y) =

x : x ∈ argmin

∑
k∈K

∑
(i,j)∈Ak

δijxijk : (3.8), (3.10), (3.11), (3.32)


 .

where,
∑

i:(i,j)∈Ak

xijk ≤ yj j ∈ Nk, j ̸= Dk, k ∈ K (3.32)

For given y and Ψ(y), the sizing problem reduces to determining the number of stalls at

open stations (z) and allocating charging demand of OD flows to open stations (x). The

sizing problem accounts for route choice behavior by considering all alternative optimal

paths on the network defined by y and by modelling both cooperative and uncooperative

response cases. The sizing problem determine a partial solution (z,x) that is optimal for

given y, and a complete solution (y, z,x) that is bilevel feasible. The flowchart of the

solution methodology is shown in Figure 3.1. At each iteration, an optimality-type cut is

generated after solving the sizing problem and is fed back into the location problem.
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Uncapacitated location
problem
(y,x)

Sizing and allocation
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(z)

z is
optimal
for y

y, Ψ(y)

z

Continue incumbent search

Figure 3.1: The flowchart of the decomposition based solution method for BLP.

The rest of the section is organized as follows. Section 3.4.1 describes the location

problem and the suggested logic-based Benders algorithm. Section 3.4.2 models the siz-

ing problem under M/M/c and provides the complete decomposition based algorithm for

the cooperative response as well as an adaptation of the algorithm for the uncooperative

response case in Section 3.4.2.

3.4.1 Solution of the Location Problem

When the sizing decisions and service level constraint (3.3) are dropped, the follower’s

choice of route will not affect the leader’s objective. Consequently, the remaining problem

reduces to a single level location problem and determines the minimum cost charging

station locations subject to flow balance and deviation tolerance constraints. The location

problem PL is:

[PL] minimize
∑
j∈N

f(yj) (3.33)

s.t. (3.4), (3.8)− (3.11)

PL may be solved directly by a solver or using Benders decomposition, where the master

problem determines charging station locations and the subproblems check path feasibility

for each OD. Recall that the subproblems are linear due to Proposition 3.1.
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Despite being a relaxation of BLP, preliminary testing showed that PL is still challenging

to solve in reasonable times both using the solver and Benders decomposition. Since PL

is solved repeatedly within the solution method of BLP, we develop a logic-based Benders

algorithm that is able to solve PL optimally within a few seconds for the majority of the

large-scale instances. The logic-based Benders master problem is given by:

[MP] minimize
∑
j∈N

f(yj) (3.34)

s.t. yj ∈ {0, 1} j ∈ N (3.4)

+ logic-based Benders cuts

and the subproblem is a path feasibility problem with deviation constraints on the network

defined by y, the solution of MP.

We further modify the subproblems in two ways. First, we drop the deviation tolerance

constraints and deal with them using feasibility cuts. Second, we keep the objective func-

tion of the follower and solve a minimum cost path problem instead of a feasibility problem.

It is redundant to say that this does not impact the correctness of the logic-based Benders

algorithm even though it may lead to an alternative optimal solution for PL. However, the

objective function of the follower becomes critical within the solution methodology of BLP

where it is necessary to account for their minimum length path choice. The subproblem

SPk for OD k ∈ K is given by:

[SPk] minimize
∑

(i,j)∈Ak

δijxijk (3.35)

s.t.
∑

j:(i,j)∈Ak

xijk −
∑

j:(j,i)∈Ak

xjik =


1, if i = Ok,

−1, if i = Dk,

0, otherwise.

i ∈ Nk (3.36)
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∑
i:(i,j)∈Ak

xijk ≤ yj j ∈ Nk, j ̸= Dk (3.37)

xijk ∈ {0, 1} (i, j) ∈ Ak (3.38)

When a solution y of MP is infeasible to SPk, the aim is to derive valid cut(s) that (i)

remove y from the feasible region of MP, and (ii) do not eliminate any feasible solution of

PL. The valid cuts are added to MP and the latter is solved repeatedly to find a new set

of station locations. When the valid cut(s) satisfy the two conditions above, this approach

is guaranteed to converge to an optimal solution (Hooker and Ottosson, 2003). We next

discuss the derivation of the valid cuts and prove the correctness of the algorithm.

Once a solution y is obtained, the node restrictions enforced by constraint (3.37) are

used to form a reduced graph Gr
k = (N r

k , A
r
k) for each OD pair k ∈ K such that N r

k ={
j ∈ Nk | yj = 1

}
∪ {Ok, Dk} and Ar

k = {(i, j) ∈ Ak | i, j ∈ N r
k}. Subproblems SPk are

solved on their respective reduced graphs Gr
k using a labeling algorithm. A subproblem

maybe feasible in which case the optimal length may not satisfy the deviation tolerance

constraints. Alternatively, a subproblem may be infeasible if there is no path that connects

OD in the reduced graph. In both cases, feasibility cuts are generated and added to MP.

We first discuss the case where SPk is infeasible for some OD k̂ ∈ K. In this case, the

corresponding graph Gr
k̂
has at least two connected components that separately include

Ok̂ and Dk̂. Let Go
k̂
be the connected component of Gr

k̂
that includes Ok̂, and G

d
k̂
be the

reverse graph of the component of Gr
k̂
that includes Dk̂. Let Arev

k denote the reverse Ak.

We define Nf as the set of nodes that connect Go
k̂
to Gd

k̂
, and Nb as the set of nodes that

connect Gd
k̂
to Go

k̂
:

Nf =
{
j ∈ Nk̂\N

r
k̂
: (i, j) ∈ Ak̂, i ∈ N

o
k̂

}
(3.39)

Nb =
{
j ∈ Nk̂\N

r
k̂
: (i, j) ∈ Arev

k̂
, i ∈ Nd

k̂

}
(3.40)

72



Using Nf and Nb, we introduce the following feasibility cuts for an infeasible SPk̂:

∑
i∈Nf

yi ≥ 1 (3.41)

∑
i∈Nb

yi ≥ 1 (3.42)

Cuts (3.41) and (3.42) are added to MP to cut the current infeasible solution. Note that

adding either of them is sufficient to cut the current infeasible solution.

For the case when SPk is feasible and deviation tolerance is exceeded for some OD

k̂ ∈ K, i.e.,
∑

(i,j)∈Ak̂
δijxijk̂ > (1 + τ)δOk̂Dk̂

, we introduce the following cut:

∑
i∈Nk̂\N

r
k̂

yi ≥ 1 (3.43)

Cut (3.43) is added to MP to eliminate the current solution that is infeasible with respect

to deviation tolerance. This cut ensures that at least one charging station from Nk̂\N r
k̂
is

open since opening facilities at i ∈ N r
k̂
is infeasible.

The logic-based Benders decomposition algorithm solves the relaxed master problem

MP and subproblem SPk iteratively, and adds feasibility cuts (3.41), (3.42), and (3.43) to

MP as needed. We present the pseudo-code of the logic-based Benders algorithm (LBBA)

in Algorithm 3.1 and prove its correctness in Proposition 2.

Note that PL is feasible as long as there exist y that is feasible for the follower’s problem.

Proposition 3.2. LBBA determines an optimal solution to PL given that it is feasible.

Proof: (i) It is trivial that cuts (3.41), (3.42), and (3.43) remove a solution y infeasible

with respect to (3.8) and (3.43) from the feasible region of the master problem MP.

(ii) To show that cuts (3.41) and (3.42) do not remove any feasible solution to PL,

73



Algorithm 3.1 The exact LBBA for the location problem PL

1: Initialization → SPk is infeasible
2: while SPk is infeasible do
3: SOLVE MP to obtain y
4: for k ∈ K do
5: SOLVE SPk by a labeling algorithm on Gr

k to obtain x
6: if SPk is infeasible due to constraint (3.36) then
7: SET Nf and Nb

8: ADD (3.41) and (3.42) to MP
9: else if SPk is feasible but constraint (3.10) is violated then
10: ADD (3.43) to MP
11: end if
12: end for
13: if all SPk are feasible and (3.10) is satisfied then
14: RETURN optimal solution as (y,x)
15: BREAK while
16: end if
17: end while

assume to the contrary that there exists a feasible solution ŷ that does not satisfy (3.41)

or (3.42) for an OD pair k̂ ∈ K. Since this solution is feasible, there exists at least one

open charging station at node î that is connected to Ok̂. Therefore, î ∈ Nf and ŷ satisfies

(3.41). This is a contradiction since ŷ satisfies cut (3.41) as this specific node is already

in the corresponding Nf . The same argument follows for Dk̂, Nb, and (3.42). Hence, valid

cuts (3.41) and (3.42) do not eliminate any feasible solutions.

To show that cuts (3.43) do not remove any feasible solution to PL, assume to the

contrary, there exists a feasible solution which does not satisfy this cut. This means that

none of the facilities in Nk\N r
k are open. This creates a contradiction, since opening any

subset of facilities in N r
k cannot improve path lengths and the solution remains infeasible.

Hence, cuts (3.43) do not eliminate any feasible solutions. □

The solution of the location problem opens charging stations and determines OD flow

paths within the deviation tolerance. It remains to determine the number of charging stalls

at each open location to satisfy the service requirement, which we refer to as the sizing

problem. These two problems are solved iteratively to generate solutions for DLP. Next,

we present the sizing problem and the complete solution for BLP.
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3.4.2 The Sizing Problem and DLP Solution

When the charging station locations are fixed, one can always equip each station with suf-

ficient number of stalls to satisfy the service level constraints (3.3), provided stall capacity

C is sufficiently large. To determine a solution that minimizes the total cost of capacity

installation, one has to account for the amount of flow through each station, which in turn

depends on the shortest OD paths and the stopping behavior of EV users when there are

alternative stopping options on their shortest path(s). Consider the example in Figure 3.2.

Ok n1 n2 n3 Dk

Figure 3.2: An example OD path with alternative stopping options.

This path has three open charging stations, represented with square nodes. Artificial

expanded network arcs, represented with dashed red lines, indicate that recharging at any

of the three open stations results in a feasible trip. There are seven alternative shortest

paths for this OD, each corresponding to different feasible stopping combinations. Each

shortest path may lead to different total flows through the stations and, consequently,

different requirements in the number of stalls. Hence, to model the sizing problem correctly,

we have to consider all possible stopping combinations on the network defined by y.

The set of alternative solutions for OD pair k ∈ K determine its optimal reaction set

Ψk(y), where Ψk(y) is populated using a shortest path algorithm on Gr
k. We next discuss

how to formulate the sizing problem and present the decomposition based algorithm under

cooperative and uncooperative responses of the follower.
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The Cooperative Response:

Under the cooperative response of the follower, the sizing problem determines the number

of stalls in open charging stations, and allocates charging demand to the stations so that

the service level requirement is satisfied while minimizing total stall installation cost. Let

ajrk be a binary parameter that takes the value of 1 if an open station j ∈ Nk is used in

path r ∈ Ψk(y) of OD pair k ∈ K; and urk be a binary decision variable that takes the

value of 1 if OD pair k ∈ K is assigned to path r ∈ Ψk(y). The sizing problem PS under

the cooperative response and M/M/c case is:

[PS] minimize
∑

j∈Nk | yj=1

g(zj) (3.44)

s.t.
∑

r∈Ψk(y)

urk = 1 k ∈ K (3.45)

Λj =
∑
k∈K

∑
i:(i,j)∈Ak

∑
r∈Ψk(y)

λkajrkurk j ∈ Nk | yj = 1 (3.46)

(3.5), (3.27)− (3.31)

urk ∈ {0, 1} r ∈ Ψk(y), k ∈ K (3.47)

The objective function (3.44) minimizes the total cost of installing charging stalls at

open stations. Constraint (3.45) ensures that each OD pair is assigned to exactly one

of the alternative paths in its optimal reaction set. Constraint (3.46) calculates the total

allocated demand to a charging station. Constraints (3.27) - (3.31) ensure that the required

capacity is calculated based on the linearization of the Erlang-C function as discussed in

Section 3.3.2. Finally, constraints (3.5) and (3.47) define the domains of the capacity

variables zj and the allocation variables urk, respectively. Although not decomposable

by k ∈ K, preliminary computational experiments showed that PS may be solved within

seconds using the commercial solver Gurobi for sufficiently large instances.
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Upon solving PS, we update the solution x to reflect the selected paths determined by

optimal urk. The partial solution (x, z) is optimal for a given y, and solution (y,x, z) is

feasible to DLP. The algorithm to solve DLP proceeds by generating cuts (3.48) to cut the

current solution and generate new ones.

∑
j:{j∈N | yj ̸=1}

yj ≥ 1 (3.48)

When appended to MP, this optimality-type cut ensures that the current set of open facili-

ties is never generated again. The complete algorithm for DLP is depicted in Algorithm 3.2.

Step 3 utilizes LBBA to determine a minimal cost, feasible set of charging station loca-

tions. Steps 4− 6 are the solution procedure for PS and 7− 10 are for incumbent tracking.

Finally, Step 11 adds cuts (3.48) to MP to eliminate the current solution from the feasible

region of PL. In the computational experiments, an iteration of the algorithm refers to

Steps 3− 11 and the algorithm terminates using time or iteration limits. We refer to this

algorithm as decomposition based algorithm (DA).

Algorithm 3.2 Decomposition based algorithm (DA) for DLP

1: Incumbent← +∞
2: while time or iteration limit is not reached do
3: OBTAIN y using LBBA
4: SET Ψk(y) for each k ∈ K by a k-shortest path algorithm on Gr

k
5: SOLVE PS to obtain u and z
6: SET x based on u
7: tempObjective ← (3.1) for y and z
8: if tempObjective < Incumbent then
9: Incumbent← tempObjective, y∗ := y, x∗ := x and z∗ := z
10: end if
11: ADD (3.48) to MP
12: end while
13: RETURN Incumbent and (y∗,x∗, z∗)

The Uncooperative Response.:

The cooperative response assumes that EV drivers will use a shortest path that mini-

mizes the leader’s objective. In practice, however, it is difficult to enforce such a choice.
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Consequently, the leader may be interested in investigating the uncooperative response or

the worst possible outcome of the follower’s choices. To account for the uncooperative re-

sponse, the formulation of the sizing problem PS is modified as follows. First, the objective

function is converted to a maximization to reflect the outcome of the uncooperative EV

user behavior defined by xp in Section 3.3. Next, in order the prevent unboundedness,

the sign of constraint (3.30) is changed to equality. The rest of PS remains the same and

algorithm DA can be implemented accordingly.

Upon preliminary computational experiments, it is observed that this definition of xp

generally leads to solutions where the worst case path is one that uses all charging stations

regardless of their proximity and the need to charge. This is unlikely to happen in reality

since EV users would generally prefer fewer stops. As a result, an uncooperative response

solution should exclude unjustifiable charging stops. This behavior may be reflected in

the BLP formulation under uncooperative response by changing Ψk(y). For each OD pair

k ∈ K, we modify the selection of OD paths in the optimal reaction set Ψk(y) to minimal

paths where such a path is one that becomes infeasible if one charging station is removed.

We use this definition of the uncooperative response in the computational testing.

3.5 Computational Experiments

In this section, we present extensive computational analysis to assess the performance of

the proposed solution algorithm as well as to derive insights from effects of the follower’s

position, deviation tolerance, and service level parameters on optimal solutions. We com-

pare the quality of the solutions obtained by DA with optimal solutions found by solving

DLP using a commercial solver on smaller-size instances. We also derive several managerial

insights from optimal solutions. Additionally, we carry out experiments on two real world

highway networks to assess the proposed solution methodology by evaluating its compu-
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tational performance on larger instances. Experiments are performed using Gurobi v9.1.1

with Python API and NetworkX package v2.5.1 (Hagberg et al., 2008) on a computer with

Intel i7-9700K 3.60GHz processor and 32GB of RAM.

3.5.1 Data Sets and Instance Generation Specifics

We use three test networks of different sizes, one of which is a network that we introduce to

the literature based on the highway network of the United States. The other two are from

the literature; namely the Simchi-Levi and Berman (1988)’s 25-node benchmark network

and the California road network, which are already introduced earlier in Chapter 2. These

networks will be continued to be as N25 and CA339.

The N25 and CA339 networks are depicted in Figure 3.3. The blue nodes on these

networks highlight the potential OD nodes, which correspond to population centers.

(a) N25 Network (b) CA339 Network

Figure 3.3: Small benchmark network N25 and California road network CA339.

We introduce a new transportation network to the literature, referred to as US-E, based

on the highway network of the United States. This new dataset is formed based on the GIS
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shapefiles provided by the US Census Bureau - Department of Commerce, which include

all primary roads that cover the continental United States. US-E contains the Eastern

half of this output and has 2,575 nodes and 6,736 arcs. We simplify the raw GIS data by

removing some node clusters that represent highway intersections, and many of the mid-arc

nodes that are used to represent the geographical direction changes on highway sections.

After these reductions, the resulting network, referred to as US-E420, contains 420 nodes

and 1276 arcs. The visual representations of US-E and US-E420 are shown in Figure 3.4.

The specifications of the three networks are summarized in Table 3.1.

Table 3.1: Specifications of the three networks used in computational experiments.

N25 CA339 US-E420

Number of nodes 25 339 420
Number of potential OD nodes 25 51 39

Number of arcs 86 1234 1276
Mean arc length (km) 4.60 18.96 91.35

Standard deviation of arc lengths 1.81 12.96 67.25

(a) Raw US-E Network (b) US-E420 Network

Figure 3.4: Eastern United States highway networks: raw US-E and simplified US-E420.

For this computational analysis, we assume that every EV user starts their journey with

80% of the available battery range, and they may charge up to 80% SoC level at a charging

station visit. The reason for this assumption is threefold. First, it takes the range anxiety

and energy consumption variability into account by leaving a 20% reserve that concerned
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individuals may utilize. Second, battery charging process at public charging stations gets

exponentially slower after 80% SoC, which may cause additional congestion. In prac-

tice, such a limit is currently enforced at busy Tesla Superchargers in the United States

(Electrek, 2019). Third, this assumption regards EV user battery degradation concerns

by continuously maintaining a SoC above 80%, which is shown to significantly accelerate

degradation (Pelletier et al., 2017).

We test three R values for N25 (15, 20, and 25), two for CA339 (200 and 250 km),

and two for the larger scale US-E420 (400 and 600 km) to represent the state of the art

EV and electric truck ranges. We further filter all possible long-distance trips between any

potential OD nodes for which the EVs need to stop for recharging at least once based on

the selection of R. Each R setting forms a new problem instance as the number of arcs on

the expanded network changes with this parameter. Typically, when R increases, the size

of the expanded network also increases.

For the deviation tolerance τ , we test 0%, 10%, 25%, and 50%. Moreover, we test 1,

5, 10 and 30 minutes for service level waiting threshold α, and 95%, 90%, and 80% for

service level probability β. As we do not have access to a real world OD flow data for

the transportation networks used in this study, we assume that the Poisson OD flow rate

λk is randomly distributed between (0, 2) vehicles per hour for every trip. Considering

that the potential OD nodes are typically higher degree nodes of the underlying graphs

and that we take all possible long-distance OD pairs into account, the aggregate EV flow

rate out of an origin node is observed to be realistic using this scale of individual random

rates. We take the exponential service time µ as 30 minutes (Xie et al., 2018; Xie and Lin,

2021). Moreover, throughout the computational analysis, we set the fixed cost of building

a charging station as $150,000 and the cost of deploying one DC charging stall as $75,000

(Nicholas, 2019).
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3.5.2 Computational Performance of the Decomposition Based

Algorithm

In this section, we first compare the optimal solutions under cooperative response found by

the solver with the solutions of the decomposition based algorithm (DA) on the benchmark

N25 network. Then, we test the computational performance of this algorithm on the large-

scale CA339 and US-E420 networks.

For N25, we generate 48 instances for each R value we test, which adds up to a total of

144 test instances. For each instance, the number of all possible long-distance OD pairs,

i.e., the cardinality of set K, is 167, 108, and 57 for R = 15, 20, and 25, respectively. Each

instance is solved both with the optimization model DLP and DA, and their solutions are

compared to assess the performance of the latter. The stopping condition of the algorithm

is set to 60 iterations. The algorithm is able to find the optimal solutions for all 144

instances. The results of these experiments are detailed in Table B.2 of the Appendix. We

further visualize the average solution time comparisons in Figure 3.5.

τ = 0% τ = 10% τ = 25% τ = 50%

101

102

103

2.3

58.9

349.3

1,046.3

5.8 5.5
4.1 3.8

(a) R = 15

R
u
n
T
im

e
(s
ec
on

d
s)

τ = 0% τ = 10% τ = 25% τ = 50%
0

10

20

30

1.3

22.6

29.1

7.5

4.3 4.3
2.9 2.3

(b) R = 20

τ = 0% τ = 10% τ = 25% τ = 50%
0

20

40

60

0.43 1.23

9.15

54.29

2.38 2.34 1.86 1.68

(c) R = 25

Gurobi Time
Algorithm Time

Figure 3.5: Average solution time comparison for N25 instances.

The solver finds the optimal solutions quicker only when the deviation tolerance is

zero as the size of the expanded network is smaller due to the introduction of the set of

permissable arcs. Instances with higher R values are also relatively quicker to solve by the

solver as they include fewer long-distance OD pairs. On the other hand, time savings by
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the algorithm are drastically higher for R = 15 instances with deviation tolerance greater

than 0%. Particularly, the average solution time obtained with Gurobi for 50% deviation

tolerance instances of R = 15 is over 1,000 seconds, whereas the algorithm is capable of

terminating with an optimal solution in less than 4 seconds.

Now, we focus on the large-sized CA339 and US-420E instances to further evaluate

the computational performance of the algorithm. We generate 32 instances on the CA339

network at two different R values, 200 and 250 km, with a fixed β of 90%. The R = 200

and R = 250 instances include 502 and 335 long-distance OD pairs, respectively. The same

32 configurations as with CA339 are used to create the US-E420 instances, with higher

values of R (400 and 600 km). For these instances, we include a trip distance threshold of

1,600 km as those longer than this threshold would require overnight stays. This results in

a total of 469 and 429 long-distance OD pairs defined on the US-E420 network for R = 400

and R = 600 instances, respectively.

We first attempted to solve each instance using Gurobi and were unable to obtain even

an incumbent solution for deviation tolerance levels greater than 0% within a 2-hour time

limit. When this time limit is increased, Gurobi terminates the solution procedure with an

out of memory error. This indicates that the state-of-the-art solvers are not able to handle

problem instances on real-world networks. Consequently, we utilize DA to solve these

instances with a stopping condition of 1-hour. The results of these extensive experiments

are summarized in Tables B.1 and B.3 and presented in the Appendix.

The performance of DA is evaluated in terms of the number of logic-based Benders cuts

added; i.e., feasibility cuts (3.41) and (3.42) and deviation tolerance cuts (3.43), and the

number of iterations completed within the time limit. The average of these performance

metrics are depicted in Figures 3.6 and 3.7, for CA339 and US-E420, respectively.

It is observed from these results that the number of iterations DA can complete in
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Figure 3.6: Algorithm performance metrics for CA339 instances.

1-hour time limit tend to decrease slightly for CA339 instances as deviation tolerance

increases. This is due to the decreasing number of required feasibility cuts. Figure 3.6

(a) and (b) also show that the deviation tolerance cuts (3.43) are utilized just 16 times

throughout the experiments. This is a clear indication that introducing permissible arcs is

effective for generating solutions that are deviation tolerance feasible.
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Figure 3.7: Algorithm performance metrics for US-E420 instances.

The expanded networks of US-E420 include over 700,000 arcs for R = 400 and 1 million

arcs for R = 600 at high levels of deviation tolerances. This results in tens of millions of

decision variables and constraints for the bilevel optimization model. When R is lower and

the number of OD pairs is higher, the likelihood of obtaining an infeasible set of station

locations in the algorithm increases. Consequently, it is inevitable to add thousands of
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feasibility cuts even with the efficient approach that we are proposing. In particular,

observe from Figure 3.7 (a) that when R = 400 and the deviation tolerance is 50%, the

algorithm adds over 14,000 feasibility cuts, whereas it can only complete one iteration.

Moreover, the number of times deviation tolerance cuts are utilized is significantly higher

for US-E420 compared to CA339 instances.

3.5.3 Insights from Bilevel Solutions

In this section, we derive insights from the solutions by evaluating the effects of deviation

tolerance, vehicle range, and service level parameters under the cooperative response. We

first analyze the N25 solutions and then move on to the large-scale instances.

For allR configurations of the small-sized N25 network, 0% and 10% deviation tolerance

solutions turn out to be identical. Moreover, the number of located stations does not change

with varying α or β values for a fixed deviation tolerance. This indicates that the service

level only affects the capacities of the stations for the tested configurations. In all instances,

stricter α and β result in installing more capacity, and hence, a higher objective function

value. For example, when R = 15 and the deviation tolerance is 25%, α = 1 min and

β = 95% combination opens 31% more charging stalls compared to the case where α = 30

min and β = 80%. Higher deviation tolerance solutions require less stations and/or less

stalls and result in a lower objective function value, e.g., when R = 15, 0% deviation

tolerance solutions utilize eight stations and an average of 136 charging stalls in total,

whereas 25% deviation tolerance solutions require six stations and 132 charging stalls on

average. The value of using a bilevel framework is higher when solving higher deviation

tolerance instances since the solution space of the follower’s route choice response grows

larger. Within the bilevel framework, the follower picks the shortest available route; and,

the average deviation from the shortest paths never exceeds 5.65% among the optimal
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solutions of all the 50% deviation tolerance instances.

Next, we analyze CA339 and US-E420 solutions obtained by DA to derive insights

from sensitivity analysis on the problem parameters. For CA339 solutions, similar to the

N25 results, varying α only changes the capacity levels deployed but not the number of

located stations. As the geographical shape of the CA339 network is narrow and potential

OD nodes are not scattered to the boundaries, between two and seven stations are observed

to be able to sufficiently serve various parameter settings that we tested on this network.

In Figure 3.8, we further analyze the difference in the objective values based on the

waiting time threshold and deviation tolerance of CA339 solutions. These charts demon-

strate how the objective value decreases with higher deviation tolerance (τ) and increases

with stricter waiting time threshold (α). The most significant cost-savings is achieved when

0% deviation tolerance is increased to 10%.
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Figure 3.8: Objective value comparison of CA339 solutions, β = 90%.

Figure 3.9 show the average and maximum deviation metrics at 10%, 25%, and 50%

deviation tolerance levels for α = 10 min instances of CA339. For R = 250, average

deviation does not exceed 0.88% even when the deviation tolerance is set to 50%. However,

this performance metric can be as high as 7.07% at 50% deviation tolerance for R = 200.

Maximum deviation metric follows the deviation tolerance limit closely for this range level,

whereas it has nearly 30% slack for R = 250 instances at 50% deviation tolerance.
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Figure 3.9: Average and maximum deviation comparison of CA339 solutions, α = 10,
β = 90%.

The US-E420 instances require significantly more facilities than the other networks

that we tested. The highest number of stations located is 97 for R = 400, whereas the

lowest is 25 for R = 600 instances. We also observe that R = 400 instances require almost

twice as many stations as their R = 600 counterparts although the number of OD trips is

only 9% more for the latter. As it is the case with the other two networks, lower values of

α might require up to 20% additional capacity at the established stations whereas it does

not change the station count in any of the experiments. The station locations are observed

to be insensitive to the changes in α in the majority of the instances.

Figure 3.10 shows the sensitivity of the objective values based on the tested waiting

time threshold and deviation tolerance values for US-E420 solutions. Similar to the CA339

results, the difference between the objective values of the solutions with 0% and 10% devi-

ation tolerances is the highest. On the other hand, the objective function value differences

between 25% and 50% deviation tolerance instances are relatively smaller particularly for

higher R. For both R = 400 and R = 600 instances, the α = 1 min solutions are approxi-

mately 5.5%, 10.2%, and 20% more costly than α = 5, 10, 30 min solutions, respectively.

The average and maximum deviation comparison of US-E420 solutions for α = 10

instances are illustrated in Figure 3.11. For both R = 400 and R = 600 solutions, the

87



α = 1min α = 5min α = 10min α = 30min
80

90

100

110

waiting time threshold (α)
(a) R = 400 km

α = 1min α = 5min α = 10min α = 30min
40

45

50

55

60

65

waiting time threshold (α)
(b) R = 600 km

ob
je
ct
iv
e
va
lu
e
($
M
il
)

τ = 0%
τ = 10%
τ = 25%
τ = 50%

Figure 3.10: Objective value comparison of US-E420 solutions, β = 90%.

value of maximum deviation closely follows the deviation threshold. On the other hand,

the average deviation is only as high as 13% and as low as 1.42% over all solutions.
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Figure 3.11: Average and maximum deviation comparison of US-E420 solutions, α=10
min, β = 90%.

Figure 3.12 presents the spatial comparison of charging station locations and sizes on

two representative solutions with two different deviation tolerances for R = 600 km, α = 10

min, and β = 90% on US-E420. The sizes of the charging stations are depicted using

different sizes for the green triangles. When the deviation tolerance is 10% (Figure 3.12a),

there are 39 charging stations. The largest stations are located near the center of the

network, whereas numerous smaller stations are scattered throughout the region. On the

other hand, when the deviation tolerance is 50% (Figure 3.12b), there are only 25 charging

stations and the majority are of larger sizes that are located closer to the center; the
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number of smaller charging stations is significantly fewer.

(a) τ = 10% (b) τ = 50%

Figure 3.12: US-E420 α = 10 min, β = 90% solutions for τ = 10% and τ = 50%.

For a more extensive analysis on how the deviation tolerance and vehicle range affect the

size of the facilities, we provide the histograms in Figure 3.13 that compare the solutions

with fixed α and β values at 10 min and 90%, respectively. For both R = 600 and

R = 400, instances with smaller deviation tolerances require significantly more stations of

smaller sizes. Higher deviation tolerances allow to aggregate the charging demand at fewer

stations that are of larger size. This aggregation not only locates fewer facilities, but it also

requires less capacity in total (see Table B.3 in Appendix). This indicates the importance

of determining the right deviation tolerance for the right applications.

3.5.4 Analyzing EV User Response Behavior

In this section, we compare optimal cooperative response solutions with that of the uncoop-

erative response solutions on select N25 instances. Recall that the uncooperative response

solutions are obtained by the adaptation of the algorithm with the modification of PS as

described in Section 3.4.2. The optimality of the uncooperative response solutions can only

be claimed by exhausting all possible alternative solutions of the problem, which is not
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Figure 3.13: Deviation histograms for the number of charging stalls installed, α = 10 min,
β = 90%, (US-E420).

tractable in practice. Hence, we use the same stopping condition for the uncooperative

response version of the algorithm as with the cooperative response.

Since the follower’s problem ensures that each OD pair follows their minimum length

path, the average and maximum deviation metrics stay the same when exactly the same set

of stations are open in the cooperative and uncooperative response solutions. In particular,

for the solutions of R = 20 and R = 15 instances, the set of charging station locations

stays the same, whereas the uncooperative response solutions result in different required

capacity levels. On the other hand, the set of open stations are different for all R = 25

instances when the deviation tolerance is greater than 0%. This indicates that the locations

of the charging stations may change based on the position determined for the follower. The

complete results of this comparison are provided in Table B.4 in the Appendix.

Interestingly, smaller differences in the objective function values are observed when
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the deviation tolerance is higher. For that matter, the cooperative and uncooperative

response solutions turn out to be equivalent when the deviation tolerance is 50% for both

R = 25 and R = 20. This is an insightful result for the decision makers since it shows

that having a higher deviation tolerance mitigates the difference that might result from

an uncooperative response of the EV users. In other words, higher deviation tolerances

for the cooperative response case plays an important role to provide more robust solutions

for the cases in which the follower may not behave as desired. On the other hand, lower

deviation tolerance levels tend to yield higher differences in the objective function values

between the cooperative and uncooperative response solutions. Intuitively, one might think

that the bilevel model does not make a difference when the deviation tolerance is set to

0% as the route choices are no longer relevant. However, the computational results reveal

that the objective function difference between the cooperative and uncooperative response

solutions is usually higher for the 0% deviation tolerance instances. This indicates that

using lower deviation tolerances, especially 0%, might generate solutions that may easily

be overridden by uncooperative responses of the EV users in terms of choosing at which

station(s) to recharge.

3.6 Conclusion

In this chapter, we present a bilevel optimization model to determine the strategic lo-

cations and capacities of DC fast-charging stations under stochastic demand to enable

long-distance travel with EVs. The model allows the possibility of detours from shortest

paths within a deviation tolerance without endogenously determining the deviation paths.

Through the bilevel framework, the model takes into account the route choice behavior of

EV users, as well as their cooperative or uncooperative charging station selection responses,

when alternative solutions exist. Besides providing a general formulation of the problem,
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we model the M/M/c queuing system characterization of the DC fast-charging stations for

the case of Poisson arrivals and exponential service times. We derive the MILP equiva-

lent of the chance-constrained stochastic bilevel optimization formulation by modeling the

underlying charging station network as an open multi-server Jackson network.

We develop a decomposition based algorithm to solve the proposed bilevel optimization

model under both cooperative and uncooperative follower responses. The algorithm utilizes

a new exact logic-based Benders methodology for the uncapacitated version of the problem

as a subroutine. The solution quality and the computational performance of the algorithm

are verified on smaller-sized network instances, where it finds optimal solutions for all of

the 144 test instances. The computational performance comparison with a commercial

solver reveals that the algorithm is much more efficient on instances with higher deviation

tolerances and lower range values. Allowing for higher deviation tolerances (up to 50%)

can especially be relevant for autonomous long-distance travel with EVs.

The results demonstrate that the number of located charging stations is insensitive

to the changes in the service level requirements. Typically, more stringent service level

thresholds require more capacity to be installed at the charging stations. The solutions

with higher deviation tolerance are observed to require less infrastructure cost and are

not prone to generate alternative stopping options for the EV users. This leads to robust

solutions that are equivalent for the cooperative and uncooperative responses of the EV

users and protect the decision-maker against the worst possible outcome. On the other

hand, the solutions allowing for lower deviation tolerance tend to increase the number

of required stops and result in higher differences in the optimal objective function values

obtained under the cooperative and uncooperative responses.

Future work may focus on different types of queuing system characterizations for charg-

ing stations. For example, an extension with M/D/c systems may be a viable option for
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centralized systems with autonomous vehicles or for commercial applications that can

enforce deterministic service times to the users of a charging station. Another research

dimension may consider a multi-period framework to determine infrastructure expansion

plans considering the growth in charging demand due to the increasing adoption rate of

EVs.
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Chapter 4

Infrastructure Design for Shared

Autonomous Transportation

Autonomous vehicles (AVs) have the potential to improve traffic safety, reduce congestion,

private vehicle ownership and vehicle-miles-traveled, promote environmental sustainability

by decreasing emissions, and offer convenience by reducing the drivers’ value of time (Al-

corn and Kockelman, 2021; Jones and Leibowicz, 2019; Brownell and Kornhauser, 2014).

Extensive use of AVs may reshape the need for parking spaces, which could transform the

land use in cities (Fagnant and Kockelman, 2015; Bagloee et al., 2016).

In the early adoption phases, AVs are likely to be introduced to the urban transporta-

tion market by providing shared mobility services since they are expected to be significantly

costlier than human-driven vehicles (Bansal and Kockelman, 2017; Shaheen and Cohen,

2019). Widespread shared mobility services with AVs could help better utilize transporta-

tion resources and provide a dramatic reduction in the number of privately-owned passenger

vehicles (Golbabaei et al., 2021).

To provide enhanced safety and versatility for AVs, autonomous travel may be sup-
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ported by smart infrastructure equipped with auxiliary ambient and obstacle perception

technologies known as the vehicle-to everything technology (V2X). This technology paves

the way towards a single, centralized and globally-optimal control system that would fur-

ther promote mobility-as-a-service systems. The deployment of smart mobility corridors

of AV lanes with infrastructure-supported or infrastructure-enabled autonomous driving

would play an important role for a successful transition into high automation (Level 4)

transportation systems in cities for several reasons: (i) when dedicated, AV lanes limit the

risks associated with human driver-AV interactions in the initial phases of the implementa-

tion (Chen et al., 2017), (ii) they improve navigation and maintain safety during non-ideal

driving/road/infrastructure conditions or on-board sensor failures (Van Brummelen et al.,

2018), (iii) coupled with vehicle-to-vehicle systems, they harness the connectivity benefits

of AV technology capabilities so that AVs can form platoons, hence further improve vehicle

flows and congestion in urban areas (Ghiasi et al., 2017). Given these benefits of employing

AV lanes, it is important to determine optimal deployment strategies of such lanes within

an urban transportation network to maximize infrastructure efficiency.

To avoid congestion and reduce the need for curbside parking in urban areas, shared

autonomous mobility service providers require facilities where AVs can idle before picking

up and after dropping off passengers. These sites are often referred to as staging facilities

(Duvall et al., 2019). These futuristic facilities, which act as smart mobility hubs, would

offer automated centralized parking, auxiliary AV support services that include charging

and contribute to a cleaner and resilient transportation future by utilizing solar or kinetic

energy harvesting. AV technology coupled with centralized parking would allow parking

vehicles very close to each other, saving up to 62% more space compared to conventional

parking lots (Nourinejad et al., 2018). Moreover, the reduced need for curbside parking

in densely populated urban areas not only creates a pleasant and safer environment for

pedestrians but also improves vehicle flows by enabling all parts of streets to be effectively
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used for transportation. An important problem is then to determine the best locations

for these staging facilities that may encourage wider adoption of shared AVs and efficient

vehicle flows in condensed urban areas (Golbabaei et al., 2021).

In this study, we work on determining optimal deployment of AV lanes to exploit the

cost-effectiveness and safety benefits of infrastructure-supported autonomy, while simulta-

neously determining optimal locations of staging facilities that would help reduce cruising

congestion besides providing essential services, such as recharging, to fleets of shared AVs.

Concurrent consideration of these strategic investment decisions is key to achieving better

designs since the selection of staging facility locations will heavily impact the roads that

AVs are going to use, and this will directly impact the AV lane deployment decisions. To

the best of our knowledge, this is the first study to optimize the spatial distribution of AV

lanes and staging facilities at the same time.

We adopt a multi-objective optimization approach that allows decision-makers to eval-

uate the trade-offs. In particular, we seek to find the optimal locations of staging facilities

utilizing a bi-objective model that minimizes total travel distance and the total AV travel

not occurring on AV lanes with respect to a given AV lane deployment budget and a num-

ber of staging facilities to locate. For each origin-destination (OD) trip, an AV leaves from

a staging facility and travels from the origin to the destination node of the trip, which

are the designated pick-up and drop-off locations, and returns to a staging facility while

using the dedicated AV lanes en-route. Each trip’s origin and destination are assigned to

their respective nearest staging facility. We formulate the problem with a mixed-integer

model and also develop a Benders decomposition algorithm with a non-dominated cut gen-

eration scheme to be able to solve large-size instances. Through extensive computational

experiments, we evaluate the optimal solutions, network designs, and the effects of AV lane

budget and staging facility count on the benchmark Sioux Falls transportation network.
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The contributions of this study are (i) a novel problem definition for infrastructure

design of shared autonomous vehicles, (ii) a bi-objective mathematical formulation for this

problem, (iii) a decomposition algorithm to solve large-scale instances, and (iv) exten-

sive managerial insights analyzing the trade-offs between AV lane deployment and staging

facility location decisions.

The remainder of this chapter is organized as follows. Section 4.1 provides the review

of the literature focusing on AV-related infrastructure planning problems and highlights

the research gaps. In Section 4.2, the staging facility location and AV lane deployment

problem is defined and a multi-objective mathematical model is presented. Section 4.3

introduces the Benders reformulation of the model and the developed subproblem solution

methodology that leads to non-dominated Benders optimality cuts. In Section 4.4, we

provide and analyze the results of comprehensive computational experiments conducted

to evaluate the effects of problem parameters on optimal solutions and derive managerial

insights. Finally, Section 4.5 concludes this study with some remarks and reflections as

well as future research opportunities.

4.1 Literature Review

In this section, among the AV-related optimization problems, we will review the literature

related to AV operations and infrastructure planning, in particular, studies on AV traffic

assignment and lane deployment, AV parking policy and management, and shared AV

system design and analysis problems.

Many researchers focus on a problem definition that only includes privately owned AVs.

In this context, there are numerous publications that study traffic assignment problems,

and investigate AVs and HVs route-choice equilibrium conditions. Wang et al. (2021a) and
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Wu et al. (2020) work on the toll-setting problem assuming AV lanes are given. Partic-

ularly, Wang et al. (2021a) develops a multi-class traffic assignment problem with elastic

demand and considers dedicated AV and AV toll (AVT) lanes. AVT lanes are assumed to

grant free access to AVs while allowing HVs to access these lanes by paying a toll. The

proposed formulation determines optimal toll rates to improve network performance and an

exact solution algorithm, that is based on linearizing the variable terms in the toll-setting

upper-level problem by leveraging the sensitivity analysis results of the lower-level equilib-

rium problem, is developed. Wu et al. (2020) considers a mixed network with AV lanes and

non-autonomous local streets, and models AV route choice decisions under both user equi-

librium and system optimum, where cordon-based tolling schemes are used to characterize

system optimum. Liu et al. (2021) stands out in this literature as the authors explore an

infrastructure-enabled autonomous driving system and develop a network user equilibrium

model that considers a mixed-autonomy traffic, i.e., AVs that may or may not use AV

lanes, on a given set of such lanes. Inconvenience costs due to transitions between au-

tonomous and manual driving are explicitly modeled. Combining traditional route-choice

and driving-mode-choice equilibrium conditions, they propose a nonlinear formulation and

solve it using a route-swapping based solution algorithm.

There are other studies that relax the ”given AV lanes assumption”, and decide on AV

lane deployment while still working with traffic equilibrium conditions. Chen et al. (2016)

describes the flow distribution of AVs and HVs on the transportation network via a multi-

class network equilibrium model initially for a given set of AV lanes. Using these results, the

authors use a diffusion model to forecast the market penetration of autonomous vehicles,

and with this new information, they propose a model that optimizes the deployment plan

of AV lanes, particularly determining when, where and how many lanes to be deployed to

minimize total social cost of the system. Chen et al. (2017) focuses on determining certain

areas of road networks that are dedicated to AVs, referred as AV zones. These zones
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consist of set of links that are tailored to AVs and it is assumed that AVs follow given

routes in these zones. The network equilibrium model captures mixed-routing behaviors

where HVs need to avoid AV zones and AVs decide whether to access the zones when

making their routing choices. Given the equilibrium model results, the authors propose

a bilevel optimization model where the lower-level problem is the equilibrium model and

the upper level model determines AV lane deployment. The objective is to minimize total

social cost of the system. This model is solved using heuristic algorithms. Liu and Song

(2019) considers AVTs and toll rate optimization to regulate AV traffic and congestion.

Similar to Chen et al. (2016) and Chen et al. (2017), the authors first propose a multi-class

user equilibrium model to describe the flow distribution. A nonlinear robust optimization

model is then introduced to find the optimal AV and AVT lane deployment strategy and

toll rates that minimize the worst-case total system travel time.

There are also studies that focus on the parking aspect for privately-owned AVs. Levin

et al. (2020) proposes traffic assignment models with destination choice for AV parking

and considers empty repositioning at varying market penetration levels. Additionally, it

introduces a bilevel optimization problem of adjusting zone-specific parking fees to manage

repositioning and cruising congestion. Wang et al. (2021b) proposes a continuous-time

stochastic dynamic model for the parking management of connected AVs, incorporating

interactions among parking garages by regulating parking rates. A solution algorithm based

on Pontryagin’s minimum principle is introduced and the effectiveness of the proposed

approach is shown via Monte Carlo simulations. Bahrami et al. (2021) studies the parking

behavior of privately owned AVs in downtown areas considering cruising and home-routing.

They propose an equilibrium model for AV parking choices and discuss that time-based

congestion toll may be necessary to manage AVs parking in the downtown and discourage

intentional slowing down in cruising. Bahrami and Roorda (2022) uses simulation to study

the impacts different parking policies for privately-owned AVs. The policies tested include
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routing AVs to park at home after downtown drop-offs, dynamic parking rates to mitigate

AV cruising congestion, and assigning the same parking rate across all the parking lots.

Liu et al. (2021); Liu (2018) and Zhang et al. (2019) provide models for an equilibrium

analysis of traffic assignment and commuter parking in the era of AVs. Particularly, Liu

et al. (2021) aims to present findings to provide a better understanding of the interactions

between AV travel and urban characteristics. The results show that adopting frequency-

based AVs, i.e., the AVs that have higher passenger capacity and are dispatched on a

timetable, alleviates traffic congestion and may reduce the cost for suburban residents. All

of these studies assume that existing parking lots and curbside parking zones will be used

for AV parking.

There are several studies that explore the impact of shared AVs on urban parking

demand via simulation (Okeke, 2020; Kumakoshi et al., 2021; Zhang et al., 2015). Results

of Zhang et al. (2015) indicate that it may be possible to eliminate up to 90% of parking

demand for system at a market penetration rate of 2%. Kumakoshi et al. (2021) points out

that cruising shared AVs may increase congestion in the urban zones where the reduction

of parking demand is higher. The only study that considers parking infrastructure while

focusing on a shared AV system design is by Li et al. (2021). They introduce a time-

dependent shared AV system design problem and formulate it as a MILP. They jointly

consider AV fleet size, parking infrastructure deployment, and AV routes while minimizing

total cost of the system. They develop a heuristic algorithm to provide an upper bound for

the proposed model. This study does not incorporate infrastructure-enabled or supported

AV operations, i.e., the deployment of AV lanes are left out of scope.

What emerges clearly from this literature review is that the two infrastructure-related

problems, i.e., parking facility location and AV lane deployment, have never been modeled

simultaneously although these problems are very much intertwined.
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4.2 The Staging Facility Location and AV Lane De-

ployment Problem

In this section, we first define the staging facility location and AV lane deployment problem

and then present a mathematical formulation.

4.2.1 Problem Definition

In this problem setting, the source of demand is defined in terms of OD flows such that

each OD pair represents an AV trip request of a user between two points, i.e., between a

pick-up and a drop-off location. Upon receiving a trip request, an AV is dispatched from

the staging facility that is closest to the pick-up location to pick-up the user from this origin

node. The AV then travels from the origin to the destination of this trip on its shortest

path and drops off the passengers at the destination. Finally, the empty AV returns to

the nearest staging facility after dropping the passengers off at the desired destination.

Accordingly, for each OD pair, the AV trip has three legs: from the nearest staging facility

to the origin, from the origin to the destination, and from the destination to the nearest

staging facility. AVs take the shortest paths along each leg of a trip.

Figure 4.1 depicts the problem setting on an illustrating example. This example in-

cludes two OD trips (O1 → D1 and O2 → D2) on a service region which includes three

staging facilities that are represented with red squares. As a consequence of staging facility

locations and the allocations based on nearest-assignment requirement, the shortest paths

that AVs will follow are shown with black and blue arrows for OD1 and OD2, respectively.

Along these paths, AVs are using the road segments with the deployed AV lanes that are

highlighted with red connections.

As depicted in Figure 4.1, we consider a mixed-autonomy setting where AV travel
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Figure 4.1: An illustrating example.

outside AV lanes is allowed, but it is discouraged to elevate the benefits of infrastructure-

supported autonomy (Liu et al., 2021). Ideally, AVs would only travel along the roads that

have AV lanes but since such a large-scale infrastructural investment may be very costly

to implement in the early adoption phases of shared AV mobility in urban transportation,

we consider the setting where there is a given budget allocated to the deployment of AV

lanes.

Given the frequency of OD flows and a limited AV lane deployment budget, the problem

is to determine the optimal locations of a given number of staging facilities and the optimal

deployment of AV lanes on this network. It is essential to optimize the location and

AV lane deployment decisions simultaneously since both components of the problem are

intertwined. In other words, the locations of the staging facilities determine the paths to be

taken by the AVs and the total travel distance; consequently, this will directly impact the
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AV lane deployment decisions to reduce AV travel outside the AV lanes. This intertwined

structure leads to a bi-objective problem setting by nature where a decision-maker would

like to minimize the total AV travel distance to limit cruising congestion caused by the

AVs, and also minimize the total AV travel occurring outside the AV lanes to exploit

the benefits of utilizing infrastructure-supported autonomy. Accordingly, we model a bi-

objective problem where the first objective is to minimize the total AV travel distance and

the second objective is to minimize the total AV travel occurring outside the AV lanes.

The next section presents the notation and a mathematical formulation of this problem.

4.2.2 Mathematical Formulation

Let the underlying urban transportation network be defined as G = (N,A), where N

denotes the set of nodes, e.g., road intersections, and A denotes the set of directed arcs,

e.g., road segments of the transportation network. Additionally, Aij denotes the set of

shortest path arcs from node i ∈ N to j ∈ N , and ℓ∗ij denotes the shortest path length

between nodes i, j ∈ N . Consider Ok and Dk as the origin and destination nodes of the

trip associated with OD pair k ∈ K, where K denotes the set of all OD pairs. Let Nk

denote {Ok, Dk} for k ∈ K, and the set of all pick-up and drop-off locations is defined as

N =
⋃
k∈K

Nk. The frequency factor of each OD trip is denoted by fk, k ∈ K.

The total budget allocated for the deployment of AV lanes is represented with B. The

cost of AV lane deployment on an arc of the network is denoted by ca, and the length

of each arc is denoted by ℓa for a ∈ A. Let p denote the maximum number of staging

facilities to be located by the decision maker. Furthermore, let α and β denote the weights

(importance factors) of the two objective function components perceived by the decision

maker, namely, minimizing total AV travel between pick-up/drop-off locations and staging

facilities and minimizing total AV travel not occurring on AV lanes, respectively.
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In order to model the nearest-assignment relationship, let the r-th closest candidate

staging facility location to node j ∈ N be denoted by jr where r = 1, . . . , |N |. The

decision variables of the model are defined as follows:

yi =

{
1, if staging facility i ∈ N is open,
0, otherwise.

za =

{
1, if arc a ∈ A has an AV lane,
0, otherwise.

wij =

{
1, if node j ∈ N is assigned to staging facility i ∈ N,
0, otherwise.

Using the aforementioned parameters and decision variables, the staging facility loca-

tion and AV lane deployment problem is formulated as follows:

[P ] min α

(∑
i∈N

∑
k∈K

∑
j∈Nk

fkℓ
∗
ijwij

)
+ β

(∑
k∈K

∑
i∈N

∑
j∈Nk

∑
a∈Aij

fkℓawij(1− za)−
∑
k∈K

∑
a∈AOkDk

fkℓaza

)
(4.1)

s.t.
∑
i∈N

yi = p (4.2)∑
i∈N

wij = 1 j ∈ N (4.3)

wij ≤ yi i ∈ N, j ∈ N (4.4)

|N |∑
s=r+1

wjs,j + yjr ≤ 1 j ∈ N , r = 1, . . . , |N | − 1 (4.5)∑
i∈N

∑
a∈A

caza ≤ B (4.6)

yi, za, wij ∈ {0, 1} i ∈ N, a ∈ A, j ∈ N (4.7)

P is presented as a multi-objective optimization problem that combines two objectives

into one composite term defined by (4.1) using the weighted sum method. The first com-

ponent of (4.1) defines the total AV travel distance to/from OD nodes from/to assigned

staging facilities, whereas the second component defines the total distance of AV travel not
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occurring on AV lanes. Constraint (4.2) states that p staging facilities are to be located.

Constraint (4.3) ensures that every OD node is assigned to exactly one staging facility

and constraint (4.4) ensures that this assignment is only possible to open staging facilities.

The set of closest assignment constraints are defined by (4.5), and these assign each OD

node to its nearest open staging facility. Constraint (4.6) sets a maximum budget of B to

deploy AV lanes on the network. Lastly, constraint (4.7) defines the binary domains of the

decision variables.

Although there are several versions of closest assignment constraints that serve the same

purpose, constraint (4.5), that is first proposed by Wagner and Falkson (1975), is shown

to be computationally superior than the others (Espejo et al., 2012). After preliminary

computational experiments with other types of closest assignment constraints, we also

observed that (4.5) yields faster solution times for P . Thus, we choose to use Wagner and

Falkson (1975)’s version in the formulation.

The second component in the objective function (4.1) is non-linear due to multiplication

of binary variables wij and za. It may be linearized by introducing a new binary variable

uaij, substituting wijza with it in (4.1), and including the following constraints in the

formulation:

uaij ≥ wij + za − 1 i ∈ N, j ∈ N , a ∈ Aij (4.8)

uaij ≤ wij i ∈ N, j ∈ N , a ∈ Aij (4.9)

uaij ≤ za i ∈ N, j ∈ N , a ∈ Aij (4.10)

uaij ∈ {0, 1} i ∈ N, j ∈ N , a ∈ Aij (4.11)

Since the cardinality of set Aij is much smaller than cardinality of A itself, the number

of uaij variables as well as the number of linearization constraints (4.8)-(4.11) can be kept

105



relatively low. After substituting uaij in (4.1), it may be rewritten as:

min α

(∑
i∈N

∑
k∈K

∑
j∈Nk

fkℓ
∗
ijwij

)
+ β

(∑
k∈K

∑
i∈N

∑
j∈Nk

∑
a∈Aij

fkℓa(wij − uaij)−
∑
k∈K

∑
a∈AOkDk

fkℓaza

)
(4.12)

With these changes, we present Pr as a reformulation of the P :

[Pr] min (4.12)

s.t. (4.2)− (4.6), (4.8)− (4.10)

yi, za ∈ {0, 1} i ∈ N, a ∈ A (4.13)

wij, uaij ≥ 0 i ∈ N, j ∈ N , a ∈ Aij

(4.14)

Proposition 4.1. Pr always has an optimal solution with integral wij and uaij values.

Proof: Without loss of generality, assume that there exists some wi1 ȷ̂ and wi2 ȷ̂ that

take fractional values in an optimal solution of Pr such that wi1 ȷ̂ + wi2 ȷ̂ = 1 by constraint

(4.3), and yi1 = yi2 = 1 by constraints (4.4) and (4.13). Without loss of generality, assume

that i1 is closer to ȷ̂ than i2. By the closest assignment constraints (4.5), when ȷ̂r = i1,

then wi2 ȷ̂ = 0, which leads to a contradiction. In addition, wi1 ȷ̂ = 1 by constraint (4.3).

Therefore, every wij takes the value of 0 or 1 in an optimal solution of Pr.

When both za and wij are binary, it is trivial to show that uaij = 1 if both corresponding

za = 1 and wij = 1 by constraint (4.8). If either of them are zero, then uaij ≤ 0 implied

either by (4.9) or (4.10). Hence, uaij = 0 by constraint (4.14). Therefore, every uaij takes

the value of 0 or 1 in an optimal solution of Pr. □

The bi-objective structure of Pr allows the decision maker to analyze the trade-off
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between the objectives of the model by running extensive tests with varying α, β, B, and

p values. Thus, investigating the Pareto-frontier of each setting will provide useful insights

before making significant investments on the infrastructure for shared AVs in urban areas.

In the next section, we develop a Benders decomposition algorithm to solve Pr.

4.3 Solution Methodology: Benders Decomposition

In this section, we first present the Benders reformulation of Pr and then introduce the

Pareto-optimal cut generation scheme using the Magnanti-Wong problem to improve the

computational performance.

4.3.1 The Benders Reformulation

Given the structure of Pr and considering that uaij is an auxiliary variable, there two

types of decisions to make: infrastructure decisions (staging facility locations and AV lane

positions) and assignment decisions. This structure may be used to define a master problem

that determines the infrastructure decisions, and a subproblem that finds the optimal OD

node to staging facility assignments.

Let yi and za denote the given values for the infrastructure variables. The subproblem

(SP) is then defined as:

[SP ] min α

(∑
i∈N

∑
k∈K

∑
j∈Nk

fkℓ
∗
ijwij

)
+ β

(∑
k∈K

∑
i∈N

∑
j∈Nk

∑
a∈Aij

fkℓa(wij − uaij)
)

(4.15)

s.t. (4.3), (4.9)

wij ≤ yi i ∈ N, j ∈ N (4.16)

|N |∑
s=r+1

wjs,j ≤ 1− yjr j ∈ N , r = 1, . . . , |N | − 1 (4.17)
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uaij − wij ≥ za − 1 i ∈ N, j ∈ N , a ∈ Aij (4.18)

uaij ≤ za i ∈ N, j ∈ N , a ∈ Aij (4.19)

wij, uaij ≥ 0 i ∈ N, j ∈ N , a ∈ Aij (4.20)

SP is an easy problem to solve. The optimal values of wij may be obtained by assigning

each OD node j ∈ N to its closest open staging facility. These optimal wij values, and the

given za values may then be used to find the optimal uaij such that uaij = 1 only if both

the corresponding wij and za are 1, and uaij = 0 otherwise.

Let ϕj, γaij, µij, θjr, λaij, and ψaij be the dual variables associated with constraints

(4.3), (4.9), (4.16)-(4.19), respectively. In order to define the dual of SP , we need to define

additional notation. Let sij denote the order of proximity of node i ∈ N to j ∈ N , e.g.

sij = 5 means that staging facility j is fifth closest candidate staging facility to node i.

The dual of SP , denoted as DSP , is then formulated as:

[DSP ] max
∑
j∈N

ϕj +
∑
i∈N

∑
j∈N

yiµij +
∑
j∈N

|N |−1∑
r=1

(1− yjr)θjr +
∑
i∈N

∑
j∈N

∑
a∈Aij

(za − 1)λaij + zaψaij

(4.21)

s.t. ϕj −
∑
a∈Aij

(γaij + λaij) + µij +

sij−1∑
r=1

θjr ≤
∑

k∈K:j∈Nk

(
αfkℓ

∗
ij +

∑
a∈Aij

βfkℓa

)
i ∈ N, j ∈ N , i ̸= j

(4.22)

ϕj −
∑
a∈Aij

(γaij + λaij) + µij ≤
∑

k∈K:j∈Nk

(
αfkℓ

∗
ij +

∑
a∈Aij

βfkℓa

)
i ∈ N, j ∈ N , i = j

(4.23)

γaij + λaij + ψaij ≤ −β
∑

k∈K:j∈Nk

fkℓa i ∈ N, j ∈ N , a ∈ Aij

(4.24)

ϕj free, γaij, µij, θjr, ψaij ≤ 0, λaij ≥ 0 i ∈ N, j ∈ N , a ∈ Aij, r = 1, ..., |N | − 1

(4.25)
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Let q(y, z) denote the objective function function value of SP given that y = [yi], i ∈ N

and z = [za], a ∈ A. Then, Pr can be rewritten as:

[Pr] min β

(
−

∑
k∈K

∑
a∈AOkDk

fkℓaza

)
+ q(y, z) (4.26)

s.t. (4.2), (4.6)

yi, za ∈ {0, 1} i ∈ N, a ∈ A (4.13)

It is trivial to show that SP is always feasible and bounded when α, β ≥ 0, fk ≥ 0 for

k ∈ K, ℓa ≥ 0 for a ∈ A and the solution vector y is not empty. This follows that, DSP

is also always feasible and bounded. Thus, Pr always has a finite optimal solution when

p > 0.

Based on DSP and above deductions, the Benders master problemMP is:

[MP ] minimize β

(
−

∑
k∈K

∑
a∈AOkDk

fkℓaza

)
+ Z (4.27)

s.t.
∑
i∈N

yi = p (4.2)∑
a∈A

caza ≤ B (4.6)

Z ≥
∑
j∈N

ϕh
j +

∑
i∈N

∑
j∈N

yiµ
h
ij +

∑
j∈N

|N |−1∑
r=1

(1− yjr)θ
h
jr +

∑
i∈N

∑
j∈N

∑
a∈Aij

(za − 1)λhaij + zaψ
h
aij h ∈ H

(4.28)

yi, za ∈ {0, 1} i ∈ N, a ∈ A (4.7)

where H denotes the set of extreme points of the polyhedron defined by (4.22)-(4.25).

When defined on the complete set of H,MP is the Benders reformulation of Pr. Since it

is impractical to pregenerate all h ∈ H, a Benders algorithm is used to generate optimality

cuts (4.28) as required. It is shown that such an algorithm either finds an optimal solution

or yields that the problem is infeasible after a finite number of iterations (Benders, 1962).
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This Benders algorithm may be implemented to work on the same branch-and-bound search

tree, instead of solvingMP from scratch and creating a new search tree, each time a new

optimality cut is appended toMP . We adopt this methodology known as the branch-and-

Benders-cut method (Rahmaniani et al., 2017), which have been previously described in

Section 2.3 .

The preliminary computational experience with Pr and the Benders algorithm imple-

mented using the Gurobi solver revealed that the lower-bound convergence, even in smaller

instances, may be slow. In order to accelerate the solution process and enhance the per-

formance of the Benders algorithm, we propose identifying and adding non-dominated

optimality cuts using a technique proposed by Magnanti and Wong (1981).

4.3.2 The Magnanti-Wong Problem and Pareto-Optimal Ben-

ders Cut Generation

When a unique optimal solution to DSP does not exist, there are numerous cuts (4.28)

that may be added toMP . Consider the following term to define the right-hand-side of

cut (4.28) for a given h ∈ H:

D(ϕ, γ, µ, θ, λ, ψ,y, z) =
∑
j∈N

ϕj+
∑
i∈N

∑
j∈N

yiµij+
∑
j∈N

|N |−1∑
r=1

(1−yjr)θjr+
∑
i∈N

∑
j∈N

∑
a∈A∗

ij

(za−1)λaij+zaψaij

A cut (4.28) corresponding to ϕ̂, γ̂, µ̂, θ̂, λ̂, ψ̂ is said to dominate another cut corre-

sponding to ϕ̃, γ̃, µ̃, θ̃, λ̃, ψ̃ if and only if D(ϕ̂, γ̂, µ̂, θ̂, λ̂, ψ̂,y, z) ≥ D(ϕ̃, γ̃, µ̃, θ̃, λ̃, ψ̃,y, z) for

all (y, z) ∈ Y , with a strict inequality for at least one point; where Y denote the feasible

set of values for the master problem variables (Papadakos, 2008). Consequently, a Benders

cut is pareto-optimal if it is not dominated by any other cut.
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Magnanti and Wong (1981) proposes solving a new problem, often referred to as the

Magnanti-Wong problem, to generate pareto-optimal Benders cuts. This problem uses the

notion of core points where (y, z) is a core point of Y if it is in the relative interior of the

convex hull of set Y . Note that a point is said to belong to the relative interior of a set if

there exists a ball centered around that point which is contained entirely within the set.

Given (y0, z0) as a core point of Y , the Magnanti-Wong problem is formulated as follows:

[MWP ] max D(ϕ, γ, µ, θ, λ, ψ,y0, z0) (4.29)

s.t. D(ϕ, γ, µ, θ, λ, ψ,y, z) = q(y, z) (4.30)

(4.22)− (4.25)

Upon solving this problem and obtaining optimal variable values, a pareto-optimal cut

(4.28) may be generated. In order to determine a new core point at each Benders algorithm

iteration, for each i ∈ N , we set y0i = 0.85 when yi = 1, whereas when yi = 0, we determine

an identical-valued y0i so that (4.2) is satisfied. Similarly, we set z0a = 0.85 for za = 1, for

a ∈ A. In order to calculate z0a values for za = 0, we first calculate the excess budget

given z0a values of deployed lanes. We then distribute the excess budget to the remaining

z0a that correspond to the non-AV lane arcs, directly proportional to the respective ℓa, and

subtract ϵ from the resulting value, where ϵ is an infinitesimal constant, so that the z0 does

not make constraint (4.6) binding.

4.4 Computational Experiments

In this section, we present the computational studies we conducted to derive insights from

effects of the decision maker’s objective preferences, number of staging facilities to locate,

and budget on the optimal solutions. We also evaluate the performance of the proposed
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Benders algorithm on benchmark transportation networks.

These computational experiments are executed using Gurobi v9.5.0 in the Python API

on a computer with Intel i7-9700K 3.60GHz processor and 32GB of RAM. The Benders

algorithms are implemented using lazy constraint callbacks of Gurobi and a predetermined

time limit of one hour is set for all tests. The NetworkX package v2.6.2 (Hagberg et al.,

2008) for Python is also utilized in the implementations.

4.4.1 Data Set

We use an urban road network commonly used in transportation research that is obtained

from Bar-Gera et al. (2021). This benchmark network includes 24 nodes and 76 arcs, and it

is introduced by Leblanc (1975). It is an aggregated road network of the city of Sioux Falls,

South Dakota, and it is one of the most widely used test-beds for traffic equilibrium and

network design problems. We will refer to this network as SF24. The visual representation

of SF24 is depicted in Figure 4.2. We use the network parameters (e.g., arc lengths, free

flow travel times) as presented in Bar-Gera et al. (2021).

Figure 4.2: Visual representation of the benchmark Sioux Falls (SF24 ) network.

We assume that the cost of AV lane deployment on an arc of SF24, $ca for a ∈ A, is
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directly proportional to its length ℓa. To create the SF24 problem instances, we work with

randomly selected 50 OD pairs and set a unit popularity factor fk for k ∈ K. Throughout

the computational experiments, the selection of values used for α and β is made within the

interval (0, 1) such that α+ β = 1, and a range of values for p and B are used to perform

an extensive analysis on how these parameters may affect the optimal decisions.

4.4.2 Analysis of Optimal Designs

In this section, we the present the results of the computational experiments aiming to

derive insights about the effects of p, B, α, and β on optimal solutions and designs.

We generate instances where B ranges between 60 − 120 with increments of 10, and

p ranges between 2 − 5. For each B and p setting, we use a total of 19 different α − β

combinations, where α ranges between 0.05 and 0.95 with 0.05 increments and β = 1− α.

This results in a total of 532 test instances for which we use a randomly generated set of

OD pairs K such that the cardinality of set K is 50. The results of these instances are

depicted in Figures 4.3−4.6.
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Figure 4.3: SF24 instances: p = 2 solutions.

Since total AV travel is only impacted by the choice of facility locations, two solutions

that share the same value for this metric will have the same set of facilities open unless

there exists alternative optimal solutions. Hence, the plots on the left of each figure also
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Figure 4.4: SF24 instances: p = 3 solutions.
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Figure 4.5: SF24 instances: p = 4 solutions.
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Figure 4.6: SF24 instances: p = 5 solutions.
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give an idea about the set of open facilities for changing B and α besides presenting the

analysis on how total travel changes with different values of B and α. On the other hand,

the plots on the right of each figure show the relationship of α and total AV lane travel

which is a concurrent consequence of facility location and AV lane deployment decisions.

All these figures demonstrate the trade-off between the two objective components: when

α is lower (β is higher), total AV lane travel increases at the expense of increasing total

travel; and a high α not only decreases the total travel but also the total AV lane travel.

Among all the tested p levels, we observe numerous overlaps of the total travel values

between different B levels. In addition, this metric tends to converge to the same value for

varying B values when α increases. These indicate that different levels of B do not have

a significant effect on the facility location decisions, and especially when α is much higher

than β, they do not have an effect at all. Naturally, total AV lane travel increases with

higher B. However, there are a few solutions, such as B = 70 and B = 80 instances for

p = 2 and α = 0.45, which may yield higher AV lane travel with slightly lower budget as

a result of the trade-off between the objective function components. For p = 4 and p = 5,

the α breakpoints of plateaus regions of the plots are similar. For example, for p = 5, both

objective function components tend to have a sharp decrease when α is between 0.4 and

0.5, particularly for B ranging between 120 and 80. On the other hand, such a pattern

is not observed for lower p solutions, i.e. p = 2 and p = 3. When p = 2, the number of

different solutions obtained for the tested α− β combinations is observed to be lower than

those of higher p values. Total AV lane travel tend to be stay plateaus when α increases,

particularly for B = 120 and 110. Over 19 tested α − β combinations, majority of the

instances yield 3-4 different solutions in terms of total AV lane travel for a fixed B level.

The maximum such value is observed to be 5 for all p = 4 solutions except B = 100 and

B = 110.

Figure 4.7 illustrates three optimal solutions of B = 80, α = 0.3 instances for p = 2, 3,
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and 4. The arcs that have AV lanes deployed are highlighted as green and dark green arcs

imply bidirectional AV lanes between two nodes. The optimal staging facility locations

are depicted with red nodes. When p = 2, staging facilities at nodes 12 and 15 are open,

total AV travel is 1241, and total AV lane travel is 840. When p increases to 3, facilities

at nodes 4, 17 and 23 are open, i.e., the optimal facility locations of the p = 2 solution

are no longer used. Increasing p decreases total AV travel by 14.5%, while AV lane travel

also decreases by approximately 21%. When p = 4, both of the facilities that are open

for p = 2 are also open including two additional facilities located at nodes 2 and 5. At

this level of p, total AV travel is 7.7% less than that of p = 3. Whereas total AV travel

decreases by about 8% compared to p = 3. An important general observation here is that

lower p helps to use the given budget more effectively to utilize AV lanes, i.e., increasing

p decreases the percentage of travel happening on AV lanes. This pattern is noticed in all

SF24 solutions.

Figure 4.8 depicts how the selection of α and β affects the optimal solutions that

correspond to p = 2 and B = 80 instances. Figure 4.8a, that is for α = 0.3 solution,

is equivalent to the one shown in Figure 4.7a. When α = 0.5, facility at node 12 is no

longer open; instead, node 11 has a facility located. Although the positions of AV lanes

are similar, percentage of travel happening on AV lanes decreases from 67.7% to 65.2%

while total AV travel decreases from 1241 to 1213. When α is increased to 0.7, facility at

node 11 is still used alongside with a new facility at node 17. This change coupled with

the differences in the AV lane positions results is offering in a slight decrease in total travel

whereas it also decreases the percentage of travel happening on AV lanes.

It is also important to point out that the AV lane networks of all solutions presented

in Figures 4.7 and 4.8 are connected despite that there is no specific constraint enforcing

connectivity. These optimal solutions with connected AV lane networks may particularly

exploit the potential connectivity benefits of the AV lane infrastructure.
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(a) p = 2

(b) p = 3

(c) p = 4

Figure 4.7: Visual representations of α = 0.3, β = 0.7 solutions given B = 80 for SF24.
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4.4.3 The Performance of the Benders Algorithm

In this section, we evaluate the computational performance of the pareto-cut generation

scheme of the Benders decomposition algorithm. Particularly, we compare the performance

of the classical Benders decomposition (without pareto optimal cuts) with the version that

adds pareto-optimal cuts over select SF24 instances. In order to understand the behavior

better, the instance selection features low-mid-high combinations of α values (0.3, 0.5, 0.7)

and three budget levels B (120, 90, 60). Each combination is tested over p values ranging

between 2−5. The results are depicted in Table 4.1 which provides the information on the

number of cuts added and solution times with both approaches. When an optimal solution

(a) α = 0.3, β = 0.7

(b) α = 0.5, β = 0.5
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(c) α = 0.7, β = 0.3

Figure 4.8: Visual representations of p = 2 solutions given B = 80 for SF24.

is not obtained within the 1-hour time limit, the remaining MIP gap value is also provided.

These results reveal that the pareto-cut generation scheme is not only trivially better

than the classical Benders decomposition in terms of computational time, but also it is

essential to be able to solve the problem. Among 36 test instances, regular Benders failed

to find the optimal solution within the 1-hour time limit in 17 of them, whereas the pareto-

cut Benders algorithm is able to solve all instances to optimality within an average solution

time of 82 seconds. The number of cuts added by the pareto-cut Benders algorithm is

always less than those of the regular Benders.

For the Benders algorithm, it is observed that lower α instances are significantly harder

to solve than high α ones. Similarly, low budget tends to make the instances more chal-

lenging to solve which leads to higher computation times or higher MIP gap percentages.

Increasing p also has a similar effect on computational performance, i.e., higher p instances

tend to require more cuts and higher solution times.

On the other hand, as expected, Gurobi’s built-in branch-and-bound solution methodol-

ogy is able to outperform the Benders algorithm with pareto-cuts for these small instances.

The current testing is preliminary and extensive testing on larger and more realistic in-
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Table 4.1: Computational performance of the Benders algorithm with and without pareto-
optimal cuts for SF24.

p α B

2 0.3 120
90
60

0.5 120
90
60

0.7 120
90
60

3 0.3 120
90
60

0.5 120
90
60

0.7 120
90
60

4 0.3 120
90
60

0.5 120
90
60

0.7 120
90
60

5 0.3 120
90
60

0.5 120
90
60

0.7 120
90
60

Benders w/o
Pareto Cuts

# Cuts Time(s) Gap(%)

2193 422.5 -
4286 3600 2.41
6302 3600 12.26
1115 101.3 -
2708 556.9 -
3020 3600 1.58
354 29.5 -
663 54.8 -
1275 140.5 -

6121 3600 6.85
8424 3600 20.27
8948 3600 36.29
2485 546.2 -
4394 3600 1.17
5444 3600 2.63
550 51.4 -
700 96.1 -
1502 237.1 -

10148 3600 17.67
7950 3600 19.25
7479 3600 33.64
2336 494.6 -
3493 3600 1.00
5113 3600 4.19
601 51.87 -
923 98.95 -
1288 185.85 -

6030 3600 7.90
8971 3600 26.27
7379 3600 31.21
2259 318.1 -
4115 2005.7 -
2783 3600 4.04
145 185 -
177 249 -
274 319 -

Benders with
Pareto-Cuts

# Cuts Time(s)

410 19.9
407 18.9
666 32.2
188 9.7
214 10.8
329 16.6
128 5.6
110 5.3
124 6.3

1096 54.6
1623 86.2
1400 80.1
526 24.2
631 29.8
679 33.9
208 9.9
211 9.7
190 10.1

2616 166.8
2508 153.5
4997 395.4
877 42.4
901 44.6
1225 63.9
228 10.6
250 11.9
309 14.8

2926 195.6
4933 408.3
5901 606.3
527 25.93
941 48.0
1281 69.8
141 6.9
165 8.2
266 13.4

Gurobi

Time(s)

5.0
13.1
8.5
1.6
5.4
9.3
4.0
1.9
3.5

6.6
13.8
7.1
4.4
3.6
3.9
3.3
5.8
2.7

5.1
4.5
5.8
3.5
2.4
2.3
4.8
4.3
3.6

2.0
2.8
5.2
3.0
2.1
1.4
5.0
5.1
4.9
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stances is required to assess the performance of Benders algorithm against commercial

solvers.

4.5 Conclusion

In this chapter, we study optimizing the deployment of AV lanes and locations of staging

facilities and propose the first study in the literature to optimize the spatial distribution

of AV lanes simultaneously with staging facilities. We present a bi-objective optimization

model that minimizes total travel distance and total AV travel not occurring on AV lanes

with respect to a given AV lane deployment budget and a number of staging facilities to

locate. We formulate this problem using a mixed-integer optimization model and prove an

integrality property concerning the allocation decision variables. This property allows us

to use a Benders decomposition solution methodology, which is developed together with a

non-dominated cut generation scheme.

We evaluate the effects of AV lane budget, staging facility count, and objective priori-

tization of decision makers on optimal solutions using the benchmark Sioux Falls network,

and derive managerial insights analyzing the trade-offs between AV lane deployment and

staging facility location decisions. When minimizing total AV travel not occurring on AV

lanes objective is prioritized, travel on AV lanes is observed to increase at the expense of

higher total travel. The numerical analysis reveals that AV lane travel increases with a

higher budget, whereas varying budget levels are not observed to have a significant effect

on the facility location decisions.

By evaluating optimal designs, we analyze how the selection of α and β values, i.e.,

objective prioritization parameters, affect the optimal solutions. It is observed that the

selection of optimal staging facility locations are sensitive to changes in these values whereas
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the AV lane deployment decisions are less sensitive. We analyze how varying p values

change the optimal designs and observe that total AV lane travel tends to be higher when

fewer staging facilities are located while the budget, α, and β are fixed.

Infrastructure design for shared autonomous travel has a lot of research opportunities

and this work opens the door for a variety of future research directions. For example, an

extension that relaxes the shortest path travel assumption may lead to using AV lanes

more effectively at the expense of having detours. Another research direction may consider

capacitated staging facilities, charging times, and congestion, where capacity decisions

under realistic dynamic demand and routing scenarios can be evaluated using simulation.
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Chapter 5

Conclusions and Future Research

Directions

The emerging disruptive technologies in transportation, such as EVs and AVs, have been

aiming to promote environmental sustainability and provide a cost-effective, cleaner and

safer transportation future. In this thesis, analytical models and methods are developed

to support the proliferation of these technologies by strategically making infrastructure

deployment decisions.

Chapter 2 presents a full cover modeling approach to design charging station infrastruc-

ture that enables long-distance EV travel on a transportation network. We incorporated

a novel objective function, which determines the optimal OD routes so that the total en

route recharging is minimal for each OD trip. We introduced an optimal recharging policy

referred to as charge-just-enough which helps compute the total recharging required to com-

plete an OD trip without tracking the battery level on every node of a route. The results of

computational experiments highlight the effectiveness of the new modeling approach and

bring out its strengths over the existing models in the literature. The solutions of this
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new model dominate the max-cover or set-cover solutions in terms of routing related mea-

sures. Since objective of the proposed model can effectively distinguish alternative optimal

solutions with 100% coverage in terms of these routing-related measures, we observe that

opening additional stations offer substantial improvements over these measures. A Benders

decomposition algorithm is developed to solve the problem on large-scale transportation

networks. Within this algorithm, we developed an efficient subroutine to construct the

optimal dual solution to generate non-dominated optimality cuts when the Benders sub-

problem is feasible; and derive two-sided feasibility cuts based on the infeasible subgraph

structures when the Benders subproblem is infeasible. This solution methodology is shown

to promote computational performance significantly. Two main limitations of this work

may be listed as assuming uncapacitated facilities and neglecting congestion. These as-

pects may become particularly important when the adoption of EVs increase at a rate to

saturate existing capacities of charging stations.

Next, an extension of this problem is presented in Chapter 3. A new framework that

additionally considers congestion and sizing decisions at charging stations is proposed.

Particularly, a bilevel optimization model, that allows detours from shortest paths, is

developed to determine the strategic locations and capacities of DC fast-charging stations

under stochastic long-distance EV flows. The modeling approach considers the route choice

behavior and cooperative/uncooperative charging station selection response of EV users.

For the case where DC fast-charging stations are characterized as M/M/c queuing systems,

the MILP equivalent of a chance-constrained stochastic bilevel optimization formulation is

presented. In order to solve this formulation, a decomposition based algorithm is developed

which can address cooperative or uncooperative responses. The solution quality and the

computational performance of the algorithm are validated on smaller-sized benchmark

networks, and it is shown that the algorithm finds optimal solutions over all the test

instances. The results of the computational experiments show that the number of located
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charging stations is not sensitive to the changes in the service level requirements, and the

existing charging stations start to require additional capacity when more stringent service

level thresholds are used. The solutions with higher deviation tolerance are observed to

require a less total cost of infrastructure deployment, and these instances are also observed

to be not prone to generate much difference between cooperative and uncooperative EV user

responses. This leads to robust solutions that can protect the decision-maker against worst-

case scenarios. The main limitation of this work is the underlying assumption regarding

homogeneous vehicles that share a similar range and energy consumption. These aspects of

the problem may become increasingly important if there are significant feature differences

for heterogeneous EVs, e.g., range and charging technology compatibility.

Chapter 4 focuses on the domain of AVs and enabling shared autonomous transporta-

tion in urban areas by strategically deploying infrastructure. Defined in this context, the

novel staging facility location and AV lane deployment problem is introduced. This prob-

lem is modeled mathematically to find the optimal locations of staging facilities utilizing

a bi-objective model that minimizes total travel distance and the total AV travel not oc-

curring on AV lanes with respect to a given AV lane deployment budget and a number of

staging facilities to locate. A Benders decomposition algorithm with Pareto-optimal cuts

is developed and computational analyses are conducted to evaluate the trade-offs with op-

timal solutions on benchmark instances. This analysis demonstrates the trade-off between

the two objective components: when the first objective is prioritized, total travel and total

AV lane travel both decreases. On the other hand, when the latter objective is deemed

more important by the decision maker, total AV lane travel increases at the expense of

increasing total travel. It is further observed that total AV lane travel increases with the

budget; however, different budget levels do not have significant effects on the facility loca-

tion decisions. Finally, there do not exist many Pareto-optimal solutions for a given test

instance, so the problem is observed to be insensitive to the small changes in the weights
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of the two objective function components. The main limitation of this work is regarding

the assumption that does not allow detours from shortest paths and assuming that staging

facilities are uncapacitated.

Although we discussed several potential extensions and future research directions to

these works in their corresponding chapters, there are many other exciting research op-

portunities in the broader area of infrastructure deployment for disruptive technologies in

transportation. For instance, it is known that EVs and autonomous travel create a pow-

erful synergy, and this has a high potential to be the future of freight transportation. In

this context, enabling sustainable and centrally dispatchable long-haul autonomous freight

transportation is dependent on the synergy of different types of infrastructural decisions

such as charging stations, wireless charging lanes, AV lanes, platooning hubs, and cross-

docking facilities. Hence, determining a centralized deployment plan for these components

would be a huge step in supporting the shift towards autonomous and electric mobility.

Extension of the work presented in Chapter 3 may consider heterogeneous EVs, which

would be another promising future research avenue. In reality, many EV models exist

and they may have significantly different ranges and charging technology compatibilities.

Besides vehicle flow, the congestion faced at charging stations would be dependent on these

key features, hence, it could be important to take them into account while making sizing

decisions. However, modeling this complex aspect of the problem mathematically would

be a challenge. Each feature that changes the charging time of an EV necessitates the use

of queuing systems with multiple customer classes. Even in the case that arrival times

are assumed to be Poisson distributed and service times are assumed as exponentially

distributed for each class, the queuing network can no longer be represented as an open

multi-server Jackson network. In order to tackle such a complex problem setting, other

aspects of the problem may need to be simplified, such as not allowing detours from

the shortest paths. As a result, such prospective studies would require completely new
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modeling approaches, and, consequently, novel solution methods.

Another interesting direction is exploiting shared autonomous travel with EVs to pro-

mote the renewable energy resilience of transportation systems. Some micro-grids may

consist of locally generated renewable energy (e.g., hydro, wind, or solar) that could ef-

fectively be repositioned using the battery packs of shared autonomous EVs to promote

renewable energy integration in the energy mix. Under such a problem setting, locating

facilities that support renewable energy sharing as well as managing cost-effective charging

and discharging operations of AV fleets could definitely be an interesting opportunity of

research.
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Yıldız, B., Olcaytu, E., and Şen, A. (2019). The urban recharging infrastructure design

problem with stochastic demands and capacitated charging stations. Transportation

Research Part B: Methodological, 119:22–44.

Zeng, B. (2020). A practical scheme to compute the pessimistic bilevel optimization prob-

lem. INFORMS Journal on Computing, 32(4):1128–1142.

Zhang, A., Kang, J. E., and Kwon, C. (2017). Incorporating demand dynamics in multi-

period capacitated fast-charging location planning for electric vehicles. Transportation

Research Part B: Methodological, 103:5–29.

Zhang, W., Guhathakurta, S., Fang, J., and Zhang, G. (2015). Exploring the impact

of shared autonomous vehicles on urban parking demand: An agent-based simulation

approach. Sustainable Cities and Society, 19:34–45.

Zhang, X., Liu, W., Waller, S. T., and Yin, Y. (2019). Modelling and managing the

integrated morning-evening commuting and parking patterns under the fully autonomous

vehicle environment. Transportation Research Part B: Methodological, 128:380–407.

137



Zheng, H., He, X., Li, Y., and Peeta, S. (2017). Traffic equilibrium and charging facility

locations for electric vehicles. Networks and Spatial Economics, 17(2):435–457.

138



Appendix A

Appendix of Chapter 2

A.1 The Max Cover Problem (MCP) Formulation

Additional Notation:

Λk: maximum deviation path length of OD pair k ∈ K

θk =

1 if OD pair k is covered,

0 otherwise.
k ∈ K

Formulation:

(MCP) maximize
∑
k∈K

dkθk (A.1)

s.t.
∑

j:(i,j)∈A

xijk −
∑

j:(j,i)∈A

xjik =


θk, if i = Oa

k,

−θk, if i = Da
k,

0, otherwise.

i ∈ N, k ∈ K (A.2)

∑
(i,j)∈A

ℓijxijk ≤ Λkθk k ∈ K (A.3)

(2.3), (2.12), (2.9), (2.10)

θk ∈ {0, 1} k ∈ K (A.4)
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A.2 The Set Cover Problem Formulation

(SCP) minimize
∑
j∈N0

yj

(A.5)

s.t. (2.2), (2.3), (A.3), (2.9), (2.10)
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Appendix B

Appendix of Chapter 3

B.1 Detailed Computational Results

Table B.1: Algorithm results on CA339 instances under cooperative EV user response.

Configuration

R
Dev
Tol

α
(min)

250 0% 30
10
5
1

10% 30
10
5
1

25% 30
10
5
1

50% 30
10
5
1

200 0% 30
10
5
1

10% 30
10
5
1

25% 30
10
5
1

50% 30
10
5
1

∑
y

∑
z

Obj
($Mil)

Avg
Dev(%)

Max
Dev(%)

# Cuts
(3.41), (3.42)

# Cuts
(3.43)

Iterations
-# Cuts (3.48)-

4 190 14.85 - - 762 0 2175
4 198 15.45 - - 762 0 2229
4 204 15.90 - - 762 0 2233
4 214 16.65 - - 762 0 2233
3 180 13.95 0.79 5.02 1132 0 2167
3 187 14.475 0.79 5.02 1132 0 2167
3 192 14.85 0.66 9.22 1130 0 2132
3 201 15.525 0.79 5.02 1090 0 2032
2 178 13.65 0.88 20.60 4388 0 1709
2 184 14.10 0.88 20.60 4388 0 1767
2 188 14.40 0.88 20.60 4388 0 1770
2 198 15.15 0.77 23.43 4388 0 1710
2 178 13.65 0.88 20.60 9870 0 1593
2 184 14.10 0.88 20.60 9870 0 1592
2 188 14.40 0.88 20.60 9870 0 1587
2 198 15.15 0.88 20.60 9870 0 1588

7 330 25.80 - - 1030 0 2491
7 345 26.925 - - 1030 0 2490
7 356 27.75 - - 1030 0 2488
7 374 29.10 - - 1030 0 2492
5 319 24.675 1.01 9.54 1470 16 2446
5 328 25.35 0.97 9.54 1470 16 2434
5 336 25.95 1.01 9.54 1470 16 2389
5 351 27.075 1.01 9.54 1470 16 2270
3 319 24.375 2.38 22.68 2510 0 2309
3 327 24.975 2.38 22.68 2510 0 2231
3 334 25.50 1.77 22.29 2510 0 2247
3 348 26.55 1.90 22.29 2510 0 2257
3 310 23.70 3.35 40.94 11,692 0 1309
3 318 24.30 7.07 49.35 11,692 0 1342
3 326 24.90 7.78 49.35 11,692 0 1215
3 339 25.875 7.07 49.35 11,692 0 1380
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Table B.2: N25 results under cooperative EV user response.

Configuration

Dev
Tol

β
α

(min)

0% 95% 30
10
5
1

90% 30
10
5
1

80% 30
10
5
1

10% 95% 30
10
5
1

90% 30
10
5
1

80% 30
10
5
1

25% 95% 30
10
5
1

90% 30
10
5
1

80% 30
10
5
1

50% 95% 30
10
5
1

90% 30
10
5
1

80% 30
10
5
1

R = 15∑
y
∑
z

Obj
($1M)

Avg

Dev(%)

Max

Dev(%)

Gurobi

Time(s)

Algo Sol

Time(s)

8 125 10.575 - - 1.80 6.03
8 141 11.775 - - 4.48 5.48
8 149 12.375 - - 2.09 5.49
8 159 13.125 - - 2.10 5.41
8 122 10.35 - - 2.62 5.86
8 134 11.25 - - 2.91 6.54
8 141 11.775 - - 1.86 5.90
8 150 12.45 - - 1.57 5.78
8 118 10.05 - - 2.62 6.23
8 127 10.725 - - 1.92 5.95
8 132 11.10 - - 1.76 5.37
8 139 11.625 - - 1.90 5.53

8 125 10.575 0 0 37.63 5.73
8 141 11.775 0 0 79.01 5.21
8 149 12.375 0 0 64.78 5.31
8 159 13.125 0 0 57.49 5.17
8 122 10.35 0 0 70.88 5.56
8 134 11.25 0 0 54.89 5.85
8 141 11.775 0 0 53.86 5.60
8 150 12.45 0 0 96.37 5.48
8 118 10.05 0 0 30.36 5.64
8 127 10.725 0 0 54.77 5.42
8 132 11.10 0 0 60.02 5.10
8 139 11.625 0 0 46.81 5.34

6 123 10.125 1.74 21.43 260.32 4.07
6 135 11.025 1.74 21.43 432.03 4.03
6 143 11.625 1.74 21.43 519.97 4.06
6 152 12.30 1.74 21.43 437.18 4.12
6 119 9.825 1.74 21.43 186.63 4.05
6 130 10.65 1.74 21.43 312.39 4.05
6 136 11.10 1.74 21.43 340.21 4.03
6 145 11.775 1.74 21.43 757.12 4.12
6 116 9.60 1.74 21.43 119.71 4.13
6 124 10.20 1.74 21.43 242.59 4.09
6 129 10.575 1.74 21.43 295.89 4.14
6 135 11.025 1.74 21.43 287.59 4.00

5 121 9.825 4.12 38.46 490.50 3.76
5 133 10.725 4.12 38.46 837.50 3.75
5 140 11.25 4.12 38.46 1109.32 3.72
5 149 11.925 4.12 38.46 1346.00 3.79
5 119 9.675 4.12 38.46 1487.53 3.72
5 128 10.35 4.12 38.46 693.80 3.75
5 134 10.80 4.12 38.46 1426.74 3.73
5 142 11.40 4.12 38.46 1275.94 3.77
5 116 9.45 4.12 38.46 519.05 3.72
5 123 9.975 5.58 46.15 1630.67 3.78
5 127 10.275 4.12 38.46 802.30 3.73
5 133 10.725 4.12 38.46 935.82 3.73

R = 20∑
y
∑
z

Obj
($1M)

Avg

Dev(%)

Max

Dev(%)

Gurobi

Time(s)

Algo Sol

Time(s)

5 67 5.775 - - 0.56 4.68
5 76 6.45 - - 1.21 4.08
5 80 6.75 - - 1.47 4.16
5 86 7.20 - - 1.21 4.27
5 65 5.625 - - 1.61 4.66
5 72 6.15 - - 0.90 4.04
5 76 6.45 - - 2.19 4.08
5 80 6.75 - - 1.43 4.24
5 62 5.40 - - 1.09 4.97
5 68 5.85 - - 0.86 4.09
5 71 6.075 - - 1.62 4.12
5 74 6.30 - - 1.66 4.30

5 67 5.775 0 0 3.32 5.08
5 76 6.45 0 0 13.12 4.03
5 80 6.75 0 0 23.86 4.12
5 86 7.20 0 0 50.26 4.20
5 65 5.625 0 0 4.47 4.51
5 72 6.15 0 0 8.46 4.13
5 76 6.45 0 0 39.63 4.01
5 80 6.75 0 0 43.98 4.16
5 62 5.40 0 0 5.92 5.24
5 68 5.85 0 0 31.09 3.96
5 71 6.075 0 0 7.84 4.10
5 74 6.30 0 0 39.12 4.28

3 63 5.175 2.44 22.22 42.43 2.80
3 70 5.70 1.49 16.67 10.94 2.83
3 74 6.00 1.49 16.67 50.22 2.82
3 79 6.375 1.49 16.67 24.17 2.83
3 62 5.10 2.44 22.22 11.05 2.84
3 67 5.475 2.44 22.22 19.67 2.90
3 70 5.70 2.44 22.22 34.66 3.00
3 75 6.075 2.44 22.22 106.45 2.82
3 60 4.95 2.44 22.22 10.91 2.85
3 64 5.25 1.49 16.67 12.98 2.85
3 67 5.475 2.44 22.22 14.63 2.81
3 70 5.70 1.49 22.22 11.18 2.85

2 63 5.025 5.67 44.44 6.66 2.34
2 69 5.475 5.67 44.44 7.58 2.30
2 72 5.70 5.67 44.44 5.66 2.29
2 77 6.075 5.67 44.44 6.59 2.29
2 62 4.95 5.67 44.44 4.59 2.28
2 67 5.325 5.67 44.44 5.35 2.32
2 70 5.55 5.67 44.44 10.20 2.33
2 73 5.775 5.67 44.44 13.89 2.31
2 61 4.875 5.67 44.44 5.23 2.31
2 65 5.175 5.67 44.44 10.22 2.30
2 67 5.325 5.67 44.44 5.99 2.32
2 70 5.55 5.67 44.44 7.53 2.31

R = 25∑
y
∑
z

Obj
($1M)

Avg

Dev(%)

Max

Dev(%)

Gurobi

Time(s)

Algo Sol

Time(s)

3 32 2.85 - - 0.47 2.44
3 36 3.15 - - 0.53 2.44
3 38 3.30 - - 0.29 2.37
3 40 3.45 - - 0.43 2.41
3 31 2.775 - - 0.27 2.36
3 34 3.00 - - 0.55 2.32
3 36 3.15 - - 0.32 2.35
3 38 3.30 - - 0.39 2.36
3 30 2.70 - - 0.55 2.36
3 32 2.85 - - 0.47 2.34
3 34 3.00 - - 0.64 2.48
3 35 3.075 - - 0.29 2.35

3 32 2.85 0 0 1.00 2.35
3 36 3.15 0 0 1.71 2.36
3 38 3.30 0 0 1.02 2.36
3 40 3.45 0 0 0.87 2.35
3 31 2.775 0 0 0.90 2.33
3 34 3.00 0 0 1.34 2.33
3 36 3.15 0 0 1.22 2.35
3 38 3.30 0 0 1.66 2.34
3 30 2.70 0 0 0.79 2.31
3 32 2.85 0 0 1.46 2.30
3 34 3.00 0 0 1.59 2.39
3 35 3.075 0 0 1.18 2.33

2 31 2.625 0.6 13.04 5.21 1.88
2 34 2.85 0.6 13.04 7.55 1.85
2 36 3.00 1.78 22.73 6.31 1.87
2 38 3.15 0.45 13.04 37.06 1.86
2 30 2.55 0.46 13.04 6.99 1.86
2 32 2.70 0.45 13.04 5.60 1.84
2 34 2.85 0.45 13.04 6.12 1.86
2 36 3.00 0.46 13.04 5.22 1.90
2 29 2.475 0.45 13.04 9.76 1.88
2 31 2.625 0.23 13.04 6.00 1.85
2 32 2.70 0.45 13.04 7.34 1.87
2 34 2.85 0.45 13.04 6.67 1.85

2 30 2.55 3.85 39.13 19.49 1.67
2 34 2.85 0.46 13.04 15.01 1.67
2 36 3.00 0.46 13.04 26.24 1.67
2 38 3.15 2.91 30.43 59.52 1.68
2 30 2.55 1.78 22.73 21.67 1.67
2 32 2.70 2.91 30.43 25.28 1.71
2 34 2.85 0.23 13.04 70.60 1.68
2 36 3.00 1.87 26.09 72.84 1.68
2 29 2.475 0.46 13.04 181.38 1.67
2 31 2.625 0.46 13.04 16.77 1.68
2 32 2.70 0.46 13.04 81.06 1.67
2 34 2.85 0.45 13.04 61.61 1.67
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Table B.3: Algorithm results on US-E420 instances under cooperative EV user response.

Configuration

R
Dev
Tol

α
(min)

600 0% 30
10
5
1

10% 30
10
5
1

25% 30
10
5
1

50% 30
10
5
1

400 0% 30
10
5
1

10% 30
10
5
1

25% 30
10
5
1

50% 30
10
5
1

Cooperative∑
y

∑
z

Obj
($Mil)

Avg
Dev(%)

Max
Dev(%)

# Cuts
(3.41), (3.42)

# Cuts
(3.43)

Iterations
-# Cuts (3.48)-

55 586 52.20 - - 1264 0 2126
55 653 57.225 - - 1264 0 2119
55 693 60.225 - - 1264 0 2129
55 734 63.30 - - 1264 0 2120
39 548 46.95 1.41 9.57 1166 0 2710
39 606 51.30 1.42 9.57 1166 0 2705
39 638 53.70 1.42 9.57 1166 0 2712
39 673 56.325 1.41 9.57 1166 0 2705
31 535 44.775 5.89 24.72 2674 585 1117
31 585 48.525 5.92 24.72 2674 585 1116
31 613 50.625 5.80 24.31 2674 585 1117
31 652 53.55 5.80 24.72 2674 585 1043
25 536 43.95 9.08 48.29 8732 315 62
25 583 47.475 9.08 48.29 8720 304 58
25 606 49.20 9.08 48.29 8732 304 60
25 648 52.35 9.08 48.29 8732 304 59

97 1009 90.225 - - 1852 0 1826
97 1130 99.30 - - 1852 0 1760
97 1196 104.25 - - 1852 0 1916
97 1270 109.80 - - 1852 0 1903
79 984 85.65 1.86 9.56 2132 134 1435
79 1089 93.525 1.96 9.60 2132 134 1450
79 1142 97.50 2.07 9.85 2132 134 1458
79 1218 103.20 1.86 9.56 2132 134 1513
65 974 82.80 6.12 24.62 4934 1488 71
65 1068 89.85 6.12 24.62 4930 1444 66
65 1119 93.675 6.12 24.62 4934 1488 71
65 1188 98.85 6.12 24.62 4930 1451 67
51 999 82.575 13.0 49.52 14,072 678 1
51 1085 89.025 13.0 49.52 14,072 678 1
51 1137 92.925 13.0 49.52 14,072 678 1
51 1203 97.875 13.0 49.52 14,072 678 1
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Table B.4: N25 results under cooperative and uncooperative EV user response.

Configuration

R
Dev
Tol

β
α

(min)

15 0% 90% 30
10
1

80% 30
10
1

10% 90% 30
10
1

80% 30
10
1

25% 90% 30
10
1

80% 30
10
1

50% 90% 30
10
1

80% 30
10
1

20 0% 90% 30
10
1

80% 30
10
1

10% 90% 30
10
1

80% 30
10
1

25% 90% 30
10
1

80% 30
10
1

50% 90% 30
10
1

80% 30
10
1

25 0% 90% 30
10
1

80% 30
10
1

10% 90% 30
10
1

80% 30
10
1

25% 90% 30
10
1

80% 30
10
1

50% 90% 30
10
1

80% 30
10
1

Cooperative∑
y
∑
z

Obj
($Mil)

Avg
Dev(%)

8 122 10.35 -
8 134 11.25 -
8 150 12.45 -
8 118 10.05 -
8 127 10.725 -
8 139 11.625 -
8 122 10.35 0.00
8 134 11.25 0.00
8 150 12.45 0.00
8 118 10.05 0.00
8 127 10.725 0.00
8 139 11.325 0.00
6 119 9.825 1.74
6 130 10.65 1.74
6 145 11.775 1.74
6 116 9.60 1.74
6 124 10.20 1.74
6 135 11.025 1.74
5 119 9.675 5.58
5 128 10.35 5.58
5 142 11.40 5.58
5 116 9.45 5.58
5 123 9.975 5.58
5 133 10.725 4.12

5 65 5.625 -
5 72 6.15 -
5 80 6.75 -
5 62 5.40 -
5 68 5.85 -
5 74 6.30 -
5 65 5.625 0.00
5 72 6.15 0.00
5 80 6.75 0.00
5 62 5.40 0.00
5 68 5.85 0.00
5 74 6.30 0.00
3 62 5.10 1.49
3 67 5.475 1.49
3 75 6.075 1.49
3 60 4.95 1.49
3 64 5.25 1.49
3 70 5.70 1.49
2 62 4.95 5.67
2 67 5.325 5.67
2 73 5.775 5.67
2 61 4.875 5.67
2 65 5.175 5.67
2 70 5.55 5.67

3 31 2.775 -
3 34 3.00 -
3 38 3.30 -
3 30 2.70 -
3 32 2.85 -
3 35 3.075 -
3 31 2.775 0.15
3 34 3.00 0.15
3 38 3.30 0.15
3 30 2.70 0.15
3 32 2.85 0.15
3 35 3.075 0.15
2 30 2.55 0.46
2 32 2.70 0.45
2 36 3.00 0.45
2 29 2.475 0.46
2 31 2.625 0.46
2 34 2.85 0.46
2 30 2.55 5.78
2 32 2.70 2.91
2 36 3.00 1.87
2 29 2.475 5.78
2 31 2.625 5.78
2 34 2.85 1.87

Uncooperative∑
y
∑
z

Obj
($Mil)

Avg
Dev(%)

8 128 10.80 -
8 141 11.775 -
8 157 12.975 -
8 124 10.50 -
8 133 11.175 -
8 146 12.15 -
8 128 10.80 0.00
8 141 11.775 0.00
8 157 12.975 0.00
8 124 10.50 0.00
8 133 11.175 0.00
8 146 12.15 0.00
6 123 10.125 1.74
6 134 10.95 1.74
6 150 12.15 1.74
6 120 9.90 1.74
6 128 10.50 1.74
6 140 11.40 1.74
5 121 9.825 4.12
5 131 10.575 4.12
5 145 11.625 4.12
5 119 9.675 3.97
5 125 10.125 4.12
5 137 11.025 4.12

5 69 5.925 -
5 77 6.525 -
5 86 7.20 -
5 67 5.775 -
5 72 6.15 -
5 79 6.675 -
5 69 5.925 0.00
5 77 6.525 0.00
5 85 7.125 0.00
5 67 5.775 0.00
5 72 6.15 0.00
5 79 6.675 0.00
3 64 5.25 1.49
3 69 5.625 1.49
3 77 6.225 1.49
3 62 5.10 1.49
3 66 5.40 1.49
3 72 5.85 1.49
2 62 4.95 5.67
2 67 5.325 5.67
2 73 5.775 5.67
2 61 4.875 5.67
2 65 5.175 5.67
2 70 5.55 5.67

3 32 2.85 -
3 36 3.15 -
3 39 3.375 -
3 31 2.775 -
3 33 2.925 -
3 37 3.225 -
3 32 2.85 0.00
3 36 3.15 0.00
3 39 3.375 0.00
3 31 2.775 0.00
3 33 2.925 0.00
3 37 3.225 0.00
2 30 2.55 1.78
2 32 2.70 1.78
2 36 3.00 1.78
2 29 2.475 0.45
2 31 2.625 1.78
2 34 2.85 1.78
2 30 2.55 1.78
2 32 2.70 1.78
2 36 3.00 1.78
2 29 2.475 0.45
2 31 2.625 1.78
2 34 2.85 1.78

Difference∑
y
∑
z

Obj
($Mil)

Avg
Dev(%)

0 +6 4.35 -
0 +7 4.67 -
0 +7 4.22 -
0 +6 4.48 -
0 +6 4.20 -
0 +7 4.52 -
0 +6 4.35 0.00
0 +7 4.67 0.00
0 +7 4.22 0.00
0 +6 4.48 0.00
0 +6 4.20 0.00
0 +7 4.52 0.00
0 +4 3.05 0.00
0 +4 2.82 0.00
0 +5 3.18 0.00
0 +4 3.13 0.00
0 +4 2.94 0.00
0 +5 3.40 0.00
0 +2 1.55 -1.46
0 +3 2.17 -1.46
0 +3 1.97 -1.46
0 +3 2.38 -1.61
0 +2 1.50 -1.46
0 +4 2.80 0.00

0 +4 5.33 -
0 +5 6.10 -
0 +6 6.67 -
0 +5 6.94 -
0 +4 5.13 -
0 +5 5.95 -
0 +4 5.33 0.00
0 +5 6.10 0.00
0 +5 5.56 +0.30
0 +5 6.94 0.00
0 +4 5.13 0.00
0 +5 5.95 0.00
0 +2 2.94 0.00
0 +2 2.74 0.00
0 +2 2.47 0.00
0 +2 3.03 0.00
0 +2 2.86 0.00
0 +2 2.63 0.00
0 0 0.00 0.00
0 0 0.00 0.00
0 0 0.00 0.00
0 0 0.00 0.00
0 0 0.00 0.00
0 0 0.00 0.00

0 +1 2.70 -
0 +2 5.00 -
0 +1 2.27 -
0 +1 2.78 -
0 +1 2.63 -
0 +2 4.88 -
0 +1 2.70 -0.15
0 +2 5.00 -0.15
0 +1 2.27 -0.15
0 +1 2.78 -0.15
0 +1 2.63 -0.15
0 +2 4.88 -0.15
0 0 0.00 +1.32
0 0 0.00 +1.33
0 0 0.00 +1.33
0 0 0.00 -0.01
0 0 0.00 +1.32
0 0 0.00 +1.32
0 0 0.00 -4.00
0 0 0.00 -1.13
0 0 0.00 -0.09
0 0 0.00 -5.33
0 0 0.00 -4.00
0 0 0.00 -0.09
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