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Abstract 

Ultra-high strength steel (UHSS) such as Al-Si coated 22MnB5 are commonly used in the hot 

forming die quenching (HFDQ) process to produce light-weight automotive parts while 

maintaining good crashworthiness. The steel blank is typically austenitized in a roller hearth 

furnace, according to independently set heating zones and other parameters such as roller speed 

and part spacing. Most often these parameters are chosen heuristically based on experience, 

resulting in sub-optimal efficiency and part quality. To improve process efficiency and ensure 

complete austenitization before forming, a complete thermal-metallurgical furnace model that 

predicts the blank heating profile and the austenitization progress inside a roller hearth furnace is 

needed.  

This work introduces a framework for the furnace model, then evaluates three candidate 

austenitization submodels of different levels of complexity, including: a first order (F1) kinetics 

model, an Internal State Variable (ISV) model, and a phenomenological model. To address the 

drawbacks of conventional goodness-of-fit model derivation and evaluation method, the Bayesian 

model selection technique is introduced and used to evaluate the three candidates. This technique 

considers the uncertainties in the data, and the trade-off between model complexity and accuracy. 

Dilatometry data is used to calibrate the models and validate them. The selected austenitization 

submodel, ISV model, is integrated into the overall furnace model and its performance is validated 

using roller hearth furnace trials collected with instrumented blanks. The resultant coupled thermo-

metallurgical furnace model provides a useful tool for researchers and industrial engineers to 

maximize production rate and ensure consistent part quality. 
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Chapter 1 Introduction 

1.1. Research Motivation 

Automotive manufacturer often utilizes roller hearth furnace in hot stamping process for producing 

many structural components, such as the A-/B- pillar of a vehicle. The purpose of furnace heating 

is to fully austenitize the blank before it can be quenched and formed into fully martensitic 

components. A common issue in hot stamping is high scrap rate due to incomplete austenitization 

in the roller hearth furnace, as a result of subpar heating parameters. A complete roller hearth 

furnace model capable of predicting blank heating and austenitization is needed to help diagnose 

the production problem. In addition, the roller hearth furnace has to accommodate a variety of steel 

blanks of different sizes and thickness. This often requires adjustment of the many process 

parameters, such as the set-point temperatures of many independent heating zones, roller speeds, 

and blank spacing, etc., to ensure sufficient austenitization while improving energy efficiency. 

These parameters are often adjusted on a trial-and-error basis, which often lead to suboptimal 

results and is costly in terms of wasted material and production downtime. A roller hearth furnace 

model will provide a useful tool for the industrial engineers to arrive at reasonable theoretical 

process parameters before applying them to the production line. This model based approach can 

obtain a set of satisfactory parameters much more quickly when the need for adjustment rises. The 

objective of this work is to establish a complete thermometallurgical model for a roller hearth 

furnace. In the process, it also pioneers the application of Bayesian model selection as a technique 

to compare austenitization models. 

1.2. Hot Stamping Process 

The hot stamping process, also known as Hot Forming Die Quenching (HFDQ), was pioneered in 

1977 by Plannja, a Swedish company who used hot stamping to manufacture lawn mower blades. 

SAAB first adopted hot forming for automotive manufacturing in 1984, specifically to produce 

components for the Saab 900 [2]. Hot stamped parts are used to decrease vehicle weight without 

sacrificing crush-worthiness [3], since the stronger martensitic components produced using HFDQ 

allows for thinner cross-section to be used for the design of many structural components. With 
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light-weighting, also comes improved fuel efficiency. A 10% weight reduction in the vehicle can 

improve fuel efficiency by 6-8% [4]. Figure 1 shows a diagram of typical automotive components 

produced by the HFDQ process. Since its first application, HFDQ has become increasingly 

popular. In the 2000s, parts made from HFDQ has grown from 107 million parts per year in 2007 

[5] to over 450 million parts per year in 2013 [6]. 

 

Figure 1: Typical vehicle structural components manufactured using HFDQ [2]. 

The HFDQ process may either be direct or indirect, as illustrated in Figure 2. The direct hot 

stamping involves three stages: (1) heating and austenitization of the steel blank in a furnace; (2) 

blank transfer from the furnace to the die; and (3) die forming and quenching into martensitic 

components. Indirect hot stamping involves an additional cold pre-forming step prior to furnace 

heating. The present work focuses on direct hot stamping. The main purpose of furnace heating is 

to fully transform the blank from its as-received ferrite and pearlite mixture to the more ductile 

austenite, allowing the forming of intricate geometries while minimizing the forming force 

required in comparing to cold forming, and reducing the wear on tooling [7, 8]. The most 

commonly used material for HFDQ are manganese boron steels, such as 22MnB5 [2], which is 

often coated with a Al-Si layer that protects the steel from oxidation and decarburization while 

heating [9]. This coating melts at around 575 ℃ [10], and then resolidifies and transforms into Al-

Si-Fe intermetallic layer to provide long term corrosion resistance [11, 12]. The secondary purpose 

of the furnace heating is to facilitate the coating transformation reaction. 
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Figure 2: Schematic of (a) direct hot stamping and (b) indirect hot stamping [2]. 

Traditionally, the furnace used for heating is a roller hearth furnace [13], such as the one shown in 

Figure 3. Other heating methods such as batch furnaces [14], direct contact heating [15, 16, 17], 

and induction heating [18] are being explored but not yet widely adopted for HFDQ process.  

 

Figure 3: Roller hearth furnace at Formet Industries [19]. 

A typical roller hearth furnace can range from 30 to 40 meters long [2], and comprises many 

independently controlled heating zones, each heated with natural gas fired radiant tube burners. 

These burners can be located both above and below the ceramic rollers that convey the blanks 
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through the furnace and are activated via a hysteresis control system. Each heating zone has a 

control thermocouple (TC), if the control TC measures below the set-point of this zone, the burners 

are turned on, if the TC measures above the set-point, the burners are turned off. Figure 4 shows a 

schematic of a roller hearth furnace.  

 

Figure 4: Schematic of a roller hearth furnace cross section [20] 

The furnace parameters, consisting of zone set-point temperatures, roller speed, and other ancillary 

parameters, must be adjusted to ensure full austenite transformation and proper coating 

transformation while minimizing cycle time. These process parameters are different depending on 

the blank shapes and thickness, and they are often chosen through trial-and-error, which rarely 

results in optimal values, cost precious production time and waste in materials. Accordingly, there 

exists a need for an accurate roller hearth furnace model capable of predicting both the heating and 

austenitization process, which is part of the focus of this work. 

1.3. Literature Review on Furnace Models and Austenitization Models 

Since furnace heating tends to be very energy intensive, challenging to control, and has crucial 

impact on mechanical properties of the material, its modelling and optimization has long been a 

popular topic in the industry. The modelling of different industrial furnaces, such as re-heating 

furnaces for steel slabs [21-25], and roller hearth furnace for steel blanks [26-29] has been well 

documented. Some of the studies employ a detailed simulation based approach, such as 

computational fluid dynamics (CFD) [29], or finite volume method (FVM) [24]. Others adopt a 

more simplified mathematical model with varying level of details, such as combustion for the 

heaters [26, 27], the involvement of non-participating gaseous media [25].  
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Most of the modelling work mentioned above focus solely on the temperature prediction, without 

considering the effect of phase transformation of the steel. This omission can affect the prediction 

accuracy, as shown by the work of Ganesh et al. [30], who built upon the work by Heng et al. [26] 

by incorporating the latent heat of austenitization and arrived at different optimal results. For the 

purpose of roller hearth furnaces used for HFDQ, austenitization is critical to ensure component 

quality downstream. Hence, having a furnace model that considers both heating and austenitization 

can be a useful tool for industrial engineers who design the process.  

Taking the approach of [31, 32, 33], Twynstra et al. [34] indirectly incorporated the effect of 

austenitization by augmenting the specific heat of 22MnB5 steel, cp, with the latent heat of 

austenitization, to form the effective specific heat, cp,eff. The latent heat of austenitization (assumed 

to be 85 kJ/kg [35]) was uniformly distributed between TAc1 and TAc3. Jhajj et al. [36] built upon 

this idea, and derived cp,eff from inverse analysis of calorimetric data obtained from 22MnB5 

furnace trials. 

Improving on the model by Jhajj et al. [19, 36], Verma et al. [20, 37] developed a roller hearth 

furnace model framework for 22MnB5 steel, which couples a heat transfer submodel with an 

austenitization submodel. This approach explicitly considers the phase transformation kinetics, 

and not only improves temperature prediction accuracy comparing to the above mentioned models, 

but also provides a better understanding of the phase transformation process within the roller 

hearth furnace. This, in turn, requires an austenitization kinetics model.  

Many candidate models have been proposed to capture the transformation process, each with 

varying degrees of complexity. Di Ciano et al. [38] developed a simple first-order (F1) 

austenitization model, which was used by Verma et al. [20] in his work. The F1 model is 

mathematically equivalent to a Johnson-Mehl-Avrami-Kohnogorov (JMAK) type model with n = 

1. Di Ciano et al. derived two sets of model parameters for 22MnB5 steel, based on low (1-5 ℃/s) 

and high (10-20 ℃/s) heating rate dilatometry data collected in a Gleeble thermo-mechanical 

simulator. Verma et al. [20] also used a more detailed phenomenological model by Li et al. [39] 

applicable to both full and partial austentization (or intercritical annealing). This semi-physical 

model considers the effect of nucleation, growth and impingement and has 10 model parameters. 

Luo et al. [40] introduced the Isoconversional Method (IM) model for predicting austenitization 

of SA508 Gr.3 steel. The IM model is also based on the JMAK equation but it allows model 
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parameters to vary throughout the phase transformation process. Zhao et al. [41] adapted this 

approach to model austenitization of 22MnB5 steel and integrated it into the roller hearth furnace 

model framework. Huang et al. [42] proposed an Internal State Variable (ISV) model for the 

austenitization of 60Si2CrA steel, a semiempirical model that consists of incubation and 

transformation periods accounting for the effects of temperature, heating rate, and volume fraction 

of austenite.  

1.4. Bayesian Model Selection Technique 

With the many available candidate austenitization models, comes the challenge of deriving their 

model parameters and assessing their relative performance. Conventionally, the parameters of 

these austenitization models are often derived from nonlinear regression to dilatometry data, and 

the models themselves are assessed based on their relative goodness-of-fits to this data. 

Unfortunately, this process does not address measurement uncertainty in the dilatometry data, nor 

does it account for model complexity. Increasingly complex models are generally expected to 

provide a superior goodness-of-fit, but this does not necessarily translate into a more accurate or 

“physical” model. As the number of model degrees-of-freedom increases, the model fitting process 

becomes progressively ill-posed and unavoidable measurement errors and artifacts begin to have 

an outsized effect on the inferred quantities. Consequently, over-turned models will accurately 

describe calibration data but may produce erroneous results when the model is applied in a 

different setting, for instance to austenitization within a furnace or during model-based 

optimization. These shortcomings call for a more statically rigorous approach to model evaluation.  

In Bayesian model selection [43], models are quantitatively ranked based on their fit to the data, 

but also on the number of model parameters, the amount of prior knowledge available about these 

parameters, the goodness-of-fit between the inferred quantities-of-interest (QoI) and the prior 

knowledge about the values the QoI are likely to hold. Examples include applications in the social 

sciences [44], fluid mechanics [45], astronomy [46], and laser-based diagnostics [47].  This could 

serve as a better way to derive model parameters and evaluate the trade-off between model 

complexity and accuracies. 
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1.5. Thesis Outline 

This thesis is divided into seven chapters: the background on HFDQ and roller hearth furnace is 

introduced, along with literature review on furnace models and austenitization models; the material 

properties of USIBOR® 1500 is listed; the roller hearth furnace model, including the heat transfer 

submodels and candidate austenitization submodels are discussed; experimental methods used in 

the study are explained; Bayesian model selection is introduced and used to select an optimal 

austentization submodel; validations are done on both austenitization model and the overall 

furnace model; finally, the conclusion of this work and future improvements are laid out. 

Chapter 2 discusses the details of USIBOR® 1500, including its mechanical properties, the 

austenitization mechanism, as well as the Al-Si coating. The coating evolves during the heating 

process and affects the radiative properties of the blank. 

Chapter 3 introduces the roller hearth furnace model, which couples a heat transfer submodel and 

an austenitization submodel. The heat transfer model considers convection and radiation heat 

transfer. Extensive effort is put on the quantification of evolving radiative properties. Three 

candidate austenitization submodels are also introduced. 

Chapter 4 details the experimental methods used. Dilatometry data is used to derive and compare 

austenitization models; quantitative metallography is used to valid the dilatometry data; and roller 

hearth furnace trials are gathered using instrumented blanks. 

Chapter 5 establishes the procedures for applying Bayesian model selection technique on candidate 

austenitization models. The theoretical groundwork is laid down and necessary steps taken to 

mitigate some numerical issues are also discussed. An optimal model is quantitively chosen by 

weighing the relative accuracy and complexity of all candidate models.   

Chapter 6 first visually compares the three austenitization candidate models with the dilatometry 

data used in the derivation process, as well as additional dilatometry data collected on a similar 

set-up. This further illustrates the result of Chapter 5 and shows how the optimal model performs. 

The overall furnace model is then validated by two furnace trials. 

Chapter 7 summarizes the main conclusions and discusses the potential application and 

refinements of the model. 



8 

 

Chapter 2 Material Properties and Heat Treatment 

2.1. Usibor® 1500 

The most commonly used HFDQ material and the focus of this work is Al-Si coated 22MnB5 

steel. This steel is produced by ArcelorMittal under the tradename Usibor® 1500. The Al-Si 

coating melts at around 575 ℃ and transforms into an Al-Si-Fe intermetallic layer to provide long 

term corrosion resistance [10]. The coating transformation has drastic impact on the surface 

roughness, which in turn affects the radiative properties of the material. Since the dominant mode 

of heat transfer inside a roller hearth furnace is radiation heat transfer, the change in radiative 

properties greatly influences the heating process. Sec. 2.3 and 3.2.3 discuss these in greater details. 

The 22MnB5 steel, and many other steel alloys such as 20MnB5, 8MnCrB3, are commonly used 

for HFDQ process because they can be heated and quenched into fully martensitic components 

[48] under more achievable cooling rates. This high formability comes from the addition of 

alloying elements such as B, Mn, and Cr, which shifts the bainite formation nose in the time 

temperature transformation (TTT) curve more to the right, allowing a lower quench rate to achieve 

fully martensitic components. Figure 5 (b) shows a hypothetical TTT curve that illustrates this 

effect. A typical composition of the 22MnB5 steel examined using optical emission spectrometry 

(OES) is listed in Table 1:  

Table 1. Composition of 22MnB5 steel used in dilatometry measurement [49]. 

Elem C Mn P S Si Ni Cr V Ti Al B Ca 

% 0.23 1.14 0.01 0.003 0.23 0.01 0.23 0.005 0.035 0.05 0.002 0.002 

 

To achieve full martensitic transformation, the material needs to be first fully austenitized, usually 

using a roller hearth furnace. Figure 5(a) shows a Fe-C phase diagram of 22MnB5 steel. The as-

received microstructure of Usibor® 1500 is approximately 80% ferrite and 20% pearlite [38]. 

Austenitization starts at the onset critical temperature, TAc1, reported in literature to be 

approximately 730 ℃, and finishes at TAc3 which is approximate 880 ℃ [38, 50, 51].. 



9 

 

 

Figure 5: (a) Fe-C phase diagram, illustrating the austenitization process of 22MnB5 steel; 

(b) hypothetical time temperature transformation (TTT) curve showing the addition of 

boron causes the shift of bainite nose, lowering the quench rate requirement for full 

martensitic transformation [52] (only a schematic for illustration, not to scale). 

Figure 6 illustrates the continuous cooling curve (CCT) diagram of 22MnB5 steel derived by 

Naderi [48]. With the minimum required cooling rate of 25 ℃/s, martensite formation starts at Ms 

= 410 ℃ and finishes at Mf = 280 ℃ [2, 39, 53]. This information along with some other critical 

mechanical properties for 22MnB5 steel is summarized in Table 2. 
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Figure 6: Continuous cooling transformation (CCT) curve for 22MnB5 steel [48], A, F, P, 

and M denotes austenite, ferrite, pearlite, and martensite respectively. 

Table 2: Summary of mechanical properties of 22MnB5 steel [2] 

TAc1 [℃] 730 

TAc3 [℃] 880 

Ms [℃] 410 

Mf  [℃] 280 

Critical cooling rate [℃/s] 25 

Yield Strength [MPa] As-Received 457 

Hot Stamped 1010 

Tensile Strength [MPa] As-Received 608 

Hot Stamped 1478 
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2.2. Austenitization Kinetics in Roller Hearth Furnaces 

Over the past decades, austenitization in ultra-high strength steel (UHSS) has been extensively 

studied due to the increasing popularity of hot stamping. The understanding of austenitization will 

result in better control of the mechanical properties and more efficient process. Asadabad et al. 

[54] studied the effects of temperature and soaking time on austenitization in dual phase steels; 

Oliveira et al. [55] investigated the influence of heating rate on critical austenitization formation 

temperatures (TAc1) in low carbon steel. Cai [56] studied full austenitization process under 

continuous heating, while Li et al. [53] characterized the effects of heating rate and temperature 

on austenitization of boron steels under both isothermal and non-isothermal conditions. 

22MnB5 is an hypoeutectoid steel (carbon content less than 0.77 wt% [57]), with an initial 

microstructure of proeutectoid ferrite and pearlite. Pearlite is a lamella structure of eutectoid ferrite 

(α) and cementite (θ). Sketch No.1 in Figure 7 (a) shows a schematic of the as received 

microstructure. Under equilibrium condition, the eutectoid reaction starts at TAe1, as shown in 

Figure 7(b), and the transformation completes at TAe3. TAe1 is approximately 723 ℃ and TAe3 is 

defined in relation to the transformation completion time of pure iron, at 910 ℃. TAe3 decreases 

with the addition of carbon content since the solubility of carbon in ferrite (α) is low, and ferrite 

to austenite (α → γ) transformation can only happen at higher temperatures. The austenitization 

process is primarily a carbon diffusion-controlled process (with some Fe self-diffusion) under most 

industrial heating rates and temperatures. Since the diffusivity of carbon in steel is 105-106 greater 

than that of substitutional solutes such as Mn [58]. Only at lower temperatures that the process 

switches to manganese diffusion-controlled [59]. 

Austentization is a nucleation and growth process [60, 61] that can be divided into two main stages. 

The process begins with rapid pearlite dissolution, where austenite nucleation mainly happens at 

the ferrite-cementite interface inside the pearlite colonies, or at the interfaces between different 

pearlite colonies [62, 63]. The newly formed austenite grows and replaces the eutectoid ferrite 

while cementite dissolves in the austenite (γ). This process happens quickly due to the short 

diffusion distances between adjacent cementite lamellae [59, 64]. This stage is denoted by “1→2” 

in Figure 7. Once all pearlite colonies have transformed to austenite, the remaining proeutectoid 

ferrites transforms as the carbon diffuses from the carbon-rich austenite grain to the ferrite-
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austenite grain boundaries, expanding the boundaries toward ferrite regions until the 

transformation is complete [59, 63, 65]. During this process, no further nucleation occurs, only the 

growth of existing austenite regions at the expense of remaining ferrite regions [59, 66]. This stage 

is shown in Figure 7 as process 2→3. Note that full austentization is only possible if TAe3 is reached. 

If isothermal soaking occurs between TAe1 and TAe3, only partial austenitization is possible [54, 67], 

and the amount depends on the soaking temperature [53] (hence the region between TAe1 and TAe3 

is called intercritical region). However, under most practical HFDQ industrial application, the 

heating process is continuous. The equilibrium onset (TAe1) and complete (TAe3) temperatures shifts 

to higher values (TAc1 and TAc3 as shown in Figure 7) [68]. The determination of TAc1 and TAc3 

depends on the heating rate [55]. Di Ciano et al. [38] experimentally determined that for 22MnB5 

at lower heating rates (1-5 ℃/s), TAc1 and TAc3 are between 723-740 ℃ and 850-855 ℃ 

respectively. This is generally confirmed by other empirical correlations and experimental work 

available in the literatures [54, 64]. 

 

Figure 7: Austenitization schematics of a hypoeutectoid steel illustrating (a) different 

microstructures; (b) their corresponding places in a Fe-C phase diagram [53].  
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2.3. Al-Si coating 

The steel blank used for HFDQ is often covered with an Al-Si coating that protects the steel from 

oxidation and decarburization while heating [9]. Usibor® 1500 comes with two common coating 

weights AS80 and AS150, having a nominal coating thickness of 15 μm and 25 μm respectively, 

and a nominal coating composition of 90%-Al and 10%-Si in wt% [69] (The only coating weight 

currently used in present study is AS150). This coating melts at around 575 ℃ [10], resolidifies 

and transforms into Al-Si-Fe intermetallic layer to provide long term corrosion resistance [11, 12]. 

Figure 8 shows scanning electron microscope (SEM) images of as-received AS80 and AS150 

coating conditions. Distinct ternary intermetallic compounds such as τ5 (Al7Fe2Si or Al7.4Fe2Si) 

and τ6 (Al4.5FeSi) and some iron oxides (Fe-O) can be identified. 

 

Figure 8: As-Received SEM top view image of (a) AS80 and (b) AS150, and cross-sectional 

view of (c) AS80 and (d) AS150 [70]. 

As the coating melts, iron diffuses from the steel substrate to the surface and reacts with the 

coating, manifesting as intermetallic layers such as τ5 progressing to the top surface [71, 72]. As 

expected for a diffusion process, higher heating temperature allows iron to diffuse faster and 
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facilitates the coating phase transformation [73]. Upon further heating, the coating resolidifies and 

grows thicker, forming a multi-layer microstructure as the coating transformation completes at 

around 930 ℃. Klassen et al. [70] conducted a thorough literature review and found some 

discrepancy in the characterization of the final coating compositions. Researchers reported 

different combinations and distributions of various intermetallic compounds including, Al2Fe2Si3, 

Al5Fe2, AlFe, Al2Fe2Si, Al2Fe [71, 74-76]. This indicates that the coating evolution is sensitive to 

the heating parameters. For the purpose of HFDQ, the coating thickness should be kept under 40 

μm for proper weldability [77] and the diffusion layer should be kept under 20 μm for coating 

durability [78]. The coating evolution also impacts the heating process, as the surface morphology 

changes will result in roughness change, which in turn, affects radiative properties such as 

emissivity and absorptivity. Barreau et al. [79] reviewed and summarized the series of melting 

reaction occurring during the coating evolution, 
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The coating partially melts during the first reaction, while the second and third reaction creates a 

smooth reflective surface. Klassen et al. [10, 70] developed an in-situ method to infer the surface 

roughness change as the blank is being heated in a furnace. Figure 9 shows an inferred surface 

roughness evolution as samples are being heated in a 900 ℃ muffle furnace. It can be observed 

that both AS80 and AS150 coating becomes smoother as the coating melts, and rougher as the 

coating transforms and resolidifies. The impact of this change on the radiative properties are 

discussed in Sec.3.2.3. 
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Figure 9: Inferred surface roughness of AS80 and AS150 coating weight, in a muffle 

furnace set at 900 ℃ [70]. 

The liquid phase of the Al-Si coating also causes some concerns. Firstly, the liquified coating can 

cause the blank to slide on the rollers, which affects the designed blank spacing and complicates 

the automation process of furnace-to-press transfer; Secondly, the liquid coating can penetrate into 

or build up on the ceramic rollers, resulting in costly damage [80]. Figure 10 shows an example of 

a damaged roller. Process designers have most resorted to heuristically adjusting the roller speeds 

and zone set-points to mitigate this issue. 

 

Figure 10: An image showing ceramic rollers heavily damaged by Al-Si coating deposits 
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Chapter 3 Furnace Model 

3.1. Roller Hearth Furnace Model Framework 

Verma et al. [20] proposed a model framework for predicting both the heating of the blank as well 

as the austenite transformation by coupling a heat transfer submodel with an austenitization 

submodel. Figure 11 shows a flowchart illustrating the components of such model framework.  

 

Figure 11: Flowchart illustrating the framework of the roller hearth furnace model 

The model takes key furnace and material parameters as inputs and outputs the temperature profile 

and austenite phase fraction as a function of time. The heat transfer submodel evaluates the change 

in temperature of the blank based on convective and radiative heating, while the austenitization 

submodel predicts the phase transformation once the blank reaches onset austenitization 

temperature, TAc1. The two submodels are coupled together through the latent heat of 

austenitization. The details of each submodel are introduced in Sec. 3.2 and 3.3.   

3.2. Heat Transfer Submodel 

There are several key assumptions made to simplify the heat transfer modelling for a more practical 

industrial deployment of the model. Each heating zone of the furnace is assumed to be relatively 

large and isothermal comparing to the blank. Since the furnace typically operates at high 

temperatures (typically 750 to 950 ℃), the dominant mode of heat transfer is radiation heat 
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transfer, although convection heat transfer by the hot furnace air is also considered. The contact 

areas between the blank and the round rollers are assumed to be infinitesimally small, therefore 

conduction between the blank and the ceramic rollers is neglected. Figure 12 shows the control 

volume of a blank which has uniform temperature, same as its surface temperature, Ts (due to the 

relatively small thickness of a typical blank, the blank is assumed to be uniform in temperature 

throughout its thickness, therefore Tblank = Ts). The ambient temperature, Tamb, for convection and 

surrounding temperature, Tsurr, for radiation are both assumed to be equal to the furnace set-point 

of the current zone. This is the ideal case, where each zone is physically separated by baffles that 

provide a thermal barrier. However, roller hearth furnaces can be configured not to have physical 

baffles for every zone, such as the case for the furnace trials discussed in Sec. 6.2. In that case, 

unbaffled neighboring zones with different set-points can affect each other thermally, and it 

becomes difficult to maintain their own set-points under the influence of other zones.  

 

Figure 12: Diagram illustrating the assumption made for heat transfer model 

The overall governing equation of the heat transfer submodel is described in Eq. (3-1), 

 ,p rad conv

dfdT
c V Q Q V h

dt dt



 = + −   (3-1) 

where ρ and cp denotes the density of the blank and specific heat, respectively [14], ∆hγ is the latent 

heat of austenitization (assumed to be 85 kJ/kg [20, 35]), dfγ/dt is the instantaneous austenitization 

rate, Qconv and Qrad are the energy received from convection and radiation heat transfer. The 

austenitization submodel predicts the austenitization rate which is discussed in detail in Sec. 3.3. 

Equations governing convection and radiation heat transfer are presented in Sec. 3.2.1 and 3.2.2 
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respectively. The temperature dependent properties such as density, specific heat and 

conductivities for Usibor® 1500 are provided by the ArcelorMittal and are attached in Appendix 

A. These properties will be linearly interpolated based on the blank temperature. 

3.2.1. Convection Heat Transfer 

Due to the relatively slow travel speed of the blank (less than 1 m/s [20]), the air within the furnace 

is assumed to be quiescent, therefore the convection mode is natural convection. The rate of heat 

transfer between the blank and ambient air is governed by Newton’s law of cooling, 

 ( ) ( ), , ,conv conv top conv bot top amb s bot amb sQ Q Q A h T T h T T = + = − + −   (3-2) 

where Tamb is the ambient temperature, which is assumed to be the same as the set-point 

temperature of the current zone, Ts is the blank surface temperature (blank temperature is assumed 

to be spatially uniform), A is the single-side area of the blank, h̅top and h̅bot are the average natural 

convection coefficient for the top and bottom surface respectively. These are determined based on 

Nusselt number, 

 ,c

air

hL
Nu

k
=  (3-3) 

where Lc is the characteristic length of the blank, defined as Lc = A/P (A is the surface area of the 

blank and P is the perimeter), kair is the temperature dependent thermal conductivity of air, 

determined at film temperature, Tfilm, 

 ,
2

amb s
film

T T
T

+
=  (3-4) 

 The correlation for the Nusselt numbers can be found from [81] to be, 

 
0.20.52 ,top LNu Ra=  (3-5) 

 
0.250.54 ,bot LNu Ra=  (3-6) 

where Ra is the Rayleigh number defined by, 
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where νair and αair are the thermal diffusivity and kinematic viscosity of air, taken at Tfilm, β is the 

volumetric thermal expansion coefficient for air, β = 1/Tfilm. The properties of air (kair, νair, and αai)  

are available in the heat transfer textbook by Bergman, et al. [81]. 

3.2.2. Radiation Heat Transfer 

The furnace environment is assumed to be isothermal and relatively large comparing to the blank 

dimensions, i.e., the small object in large isothermal enclosure assumption. This assumption has 

two implications: firstly, the irradiation from the furnace environment to the blank can be 

approximated as black body irradiation at the surrounding temperature; Secondly, the blank has 

negligible impact on the furnace environment itself. With this assumption, the radiation heat 

transfer can be greatly simplified. The net rate of radiation heat transfer is then,  

 ( ) ( )4 42 , ,rad s surr surr s surrQ A T T T T T   = −   (3-8) 

where Tsurr is the surrounding temperature, assumed to be the zone set-point, σ = 5.67 × 10-8 

W/(m2∙K4) is the Stefan-Boltzmann constant, A is the single-side surface area of the blank (2A 

since we assume both side of the blank are irradiated equally by the furnace environment) and α 

and ε are the total absorptivity and emissivity. 

3.2.3.Radiative Properties 

Since the dominant form of heat transfer in a roller hearth furnace is radiation, the radiative 

properties, α and ε, in Eq. (3-8) have crucial impact on the accuracy of the model. However, the 

quantification of these properties is further complicated by the evolving nature of the surface 

morphology as discussed in Sec. 2.3. ArcelorMittal [82] provided some spectral emissivity (ελ) 

data at various temperature shown in Figure 13. After the melting of the coating at 575 ℃, the 

spectral emissivity decreases significantly (600 ℃ curve in Figure 13) compared to the as-received 

state. As the coating solidifies and as iron diffuses to the surface to form rougher intermetallic 

layers, the spectral emissivity increases gradually until it is fully transformed. 
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The total emissivity at a given blank temperature, Tblank, can be found using [81], 

 
( ) ( )

( )

( ) ( ), ,
0 0

4
,

blank b blank blank b blank

b blank blank

T E T d T E T d

E T T

      




 

= =
 

 (3-9) 

where Eλb is the spectral blackbody emissive power defined by Planck’s distribution, and Eb is the 

total blackbody emissive power. Based on the spectral emissivity data provided by the 

manufacturer, the total emissivity at different blank temperature is calculated and shown in Figure 

14. The values between data points are linearly interpolated since no sudden change in radiative 

property is expected after the initial melting of the coating.  

The total absorptivity depends on the spectral irradiation from the furnace environment, Gλ, as 

well as the spectral absorptivity of the blank, αλ. It can be calculated using [81], 
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With the assumption that the blank surface is diffuse, the Kirchoff’s law states that spectral 

emissivity equals to spectral absorptivity, i.e., ελ = αλ. Since the furnace environment is assumed 

to be relatively large and isothermal comparing to the blank, its irradiation can be approximated 

as black body irradiation at the surrounding temperature, i.e., Gλ = Eλb. Hence, Eq. (3-10) becomes 
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 (3-11) 

The total absorptivity derived using Eq. (3-11) based on the manufacturer provided data is shown 

in Figure 14. This curve is calculated assuming a furnace environment of 900 ℃, which is 

approximately the case for most roller hearth furnaces 

Although the manufacturer provided data offers a good starting point, it is unclear how exactly 

this data is obtained in terms of experimental set-up and heating schedule. Since the coating 

transformation is affected by not only temperature, but also heating rate [79], there is scepticism 

as to how applicable this data is to a roller hearth furnace heating environment. Jhajj et al. [36] and 

Shi et al. [83] did extensive work to study the coating transformation and its effect on the radiative 
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properties. Through their experiment, they discovered that the radiative properties below the 

melting point of the coating is consistent with the manufacturer provided result, but the result 

differs beyond that point, depending on the heating rate and coating morphology. Jhajj et al. [36] 

carried out in-situ spectral emissivity measurements using an NIR spectrometer fitted to a Gleeble 

3500 thermomechanical simulator. The advantage of using such a set-up is that the Gleeble is 

capable of simulating the heating process based on a typical roller hearth furnace blank heating 

profile. Therefore, the result is more applicable to be used in the roller hearth furnace model. The 

NIR spectrometer has a measurement range of 0.9 - 2.5 μm; therefore, the in-situ NIR spectral 

emissivity is supplemented by ex-situ FTIR reflectance measurements (ρλ) of samples heated and 

quenched at various temperatures (700, 800, 900, and 935 ℃) which has a range of 2.5 - 25 μm. 

The spectral emissivity, ελ, can be obtained from spectral reflectance, ρλ to be, 

 1 .  = −  (3-12) 

Although it is not ideal to use ex-situ measurements, considering that total emissivity and 

absorptivity in Eq. (3-9) and (3-11) are essentially weighted average of the spectral values based 

on the Planck distribution, Eλb, which heavily favors the shorter wavelength at higher temperature, 

it is more important to accurately capture the shorter wavelength. Jhajj [19] also noted that air-

quenching results in distortions of the coating surface between 575-700 ℃ due to airflow over the 

molten coating layer, therefore, the FTIR measurement on quenched samples cannot be used for 

this temperature range. Instead, the in-situ NIR values was extended into the mid-infrared range 

(2.5-25 μm). The total emissivity and absorptivity derived by Jhajj et al. [36] is compared with the 

manufacture provided values in Figure 14. It can be observed that the two sets of results agree in 

general trend, both drop off after coating liquification, and slowly climbs back up. The result by 

Jhajj et al. is generally higher during the coating resolidification process (600 - 800 ℃). 
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Figure 13: Spectral emissivity provided by the manufacturer [82] 

 

Figure 14: Total emissivity and absorptivity based on manufacturer provided spectral 

emissivity and values obtained experimentally by Jhajj et al. [36] 
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Additional ex-situ FTIR measurements are also carried out using samples heated in a 900 ℃ muffle 

furnace. The samples were extracted and quenched at various temperatures. With a combination 

of different types of detectors, the ex-situ FTIR measurements cover from 0.5 to 25 μm. The 

derived total emissivity and absorptivity is also shown in Figure 14 for comparison. Note that the 

ex-situ result confirms the general trend of the radiative properties change but is considerably 

higher during the resolidification phase (600 - 800 ℃). This is to be expected, since the ex-situ 

nature negates the liquid phase of the coating, therefore the ex-situ data cannot capture the drop in 

emissivity due to the highly reflective molten surface. Klassen, et al. [10] also believed that the 

quenching process used to obtain the sample could disrupt the surface, based on comparison of in-

situ and ex-situ laser reflectance measurements. 

3.2.3. FTIR In-situ Heated Stage Apparatus 

Attempts were also made to use FTIR for in-situ emissivity measurements, with the additional 

heated stage module. Figure 15 shows a schematic for this apparatus. The circular sample is 

mounted at the centre of the heater block and instrumented with thermocouple (TC). The sample 

is heated through conduction from the heater block, and the thermal radiation by the sample is 

directed through a series of off axis parabolic mirrors into the detection port of the FTIR (indicated 

by solid arrows in Figure 15(a)). A blackbody cavity is used as the reference sample, which can 

be set at a specific temperature (within the equipment capability) to mimic blackbody emission at 

that temperature. By moving the retractable mirror, it switches an alternative optical path, directing 

the reference sample emission into the detection port (dashed red arrows in Figure 15(a)). At each 

measurement temperature, a sample measurement as well as reference measurement is taken. The 

sample intensity signal, Ssample, is divided by the blackbody reference intensity signal, SBB, to obtain 

the spectral emissivity of the sample at the temperature, 

 ( )
( )

( )

,
.

,

sample

BB

S T
T

S T






=  (3-13) 
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Figure 15: Heated stage module attached to the FTIR: (a) shows the overall apparatus. The 

red arrows illustrate the optical paths of the sample (solid line) or reference (dashed line) 

into the detector. The retractable mirror moves down to allow the proper optical path for 

reference measurements; (b) shows a close-up of the heated stage, the circular sample is 

mounted in the middle of the heater block.  

However, the current experimental apparatus has some key limitations. Firstly, the heating power 

of the heater block is very limited. It can only heat the sample at a maximum rate of 0.5 ℃/s, and 

the heating rate tends to drop off significantly after the sample temperature exceeds 600 ℃. 

Eventually the sample temperature plateaus at around 680 ℃. In addition, the heating control is 

based on the feedback from heater block temperature, not the sample temperature.  (The sample is 

instrumented with a thermocouple, but this thermocouple is not part of the heated cell control 

scheme). This leaves little control over the heating schedule since the heater controller does not 

receive the sample temperature. Even at maximum power, the heating condition is not close to the 

typical roller hearth furnace environment. It has lower heating rate (0.5 ℃/s comparing to the 

typical > 2 ℃/s heating rate for a roller hearth furnace during the transformation of the coating), 

and lower maximum sample temperature (680 ℃ comparing to the > 900 ℃ furnace set-point for 

a blank heated in the furnace). Since heating rate has critical influence on the coating morphology 

and transformation process [79], this brings scepticism to the validity to the measurement. 



25 

 

Secondly, the measurement range of the current set-up is also limited, only from 2 to 25 μm, 

missing the very important shorter wavelength from 0.5 to 2 μm, which is an essential part of the 

weighted integration to find total emissivity and absorptivity using Eqs. (3-9) and (3-11). 

Figure 16 shows several spectral emissivity measurements at different temperatures from a 

continuous heating run in the heated stage. The heater is set to maximum power; a measurement 

is made every 15 seconds, and the sample temperature is recorded. Trends similar to those seen in 

Figure 14 can be observed where the spectral emissivity drops after the coating melt (from pre-

melting at 555 ℃ to partially melted at 575℃, and fully melted at 630℃), and then increases 

gradually as the coating resolidifies and becomes rougher (675 to 681 ℃). When the coating has 

fully transformed, the spectral emissivity also converges for 682, 683, and 684℃  

 

Figure 16: In-situ FTIR heated stage measurements. 

While the heated stage data still provide further insight into the evolution of the coating, the heated 

stage apparatus in its current form has limited applicability to industrial furnaces. Several future 

improvements can be made to achieve the full potential of this apparatus. Firstly, a more powerful 

heating method with control feedback based on sample temperature; Secondly, tuning of the 

detector to cover the shorter wavelength. In its current state, the shorter wavelength (from 0.5 to 2 

μm) data is too noisy to be usable. 
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3.3. Austenitization Submodels 

Three candidate austenitization submodels are introduced in this section: the simplest F1 model 

by Di Ciano et al. [38] which is a two-DOF empirical model; the more detailed four-DOF ISV 

model by Huang et al. [42] which considers the effect of heating rate, temperature and existing 

austenite; and the phenomenological model by Li et al. [39], which considers the nucleation, 

growth and impingement effect of austenite. 

3.3.1. F1 Model (M1) 

First-order kinetics (F1) models are a subtype of the Avrami (or Johnson–Mehl–Avrami–

Kolmogorov, JMAK [84, 85]) model class, in which 

 ( ) ( )1 exp nx t Kt= − − , (3-14) 

where x is the austenite fraction at time t, n is a parameter related to nucleation and growth rate, K 

is a temperature-dependent parameter given by the Arrhenius equation [86] 

 exp ,aE
K A

RT

 
= − 

 
 (3-15) 

A is the pre-exponential factor in 1/s, Ea is the activation energy in J/molK, T is the temperature 

in K, and R = 8.314 J/molK is the universal gas constant. In the first-order model, n = 1. Rewriting 

Eq. (3-14) in differential form gives [87] 

 ( ) ( )
( )1 /

11/ 1 ln 1 .
n n

ndx
nK x x

dt

−
− = − −

 
 (3-16) 

Di Ciano et al. [38] modified the equation and derived the model parameters for 22MnB5 steel. 

With n = 1, the model is defined as  

 ( )exp 1 ,a
df E

A f
dt RT





 
= − − 

 
  (3-17) 

where fγ is the volume fraction of austenite and A and Ea are the two adjustable model parameters. 

This expression only applies when the temperature reaches a prescribed onset austenitization 
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temperature (TAc1), prior to which the rate of transformation is zero. The differential equation can 

then be solved to predict the full transformation process based on the given temperature history 

from the experimental data.  

3.3.2. ISV Model (M2) 

Huang et al. [42] derived an ISV model for 60Si2CrA steel, based on the work by Grong et al. [88] 

and Cai et al. [56]. The ISV model breaks down the austentization process into an incubation 

period, which determines TAc1, followed by a transformation period (fγ) over which austenitization 

takes place [42]. The incubation period is described by Eq. (3-18), 

 ( ) ( )1

1

1 1     ,

EC
B

A

A

ds dT T
A s T T

dt dt T

  
= − −   

   
 (3-18) 

where A is the fitting parameter that governs the overall incubation process; B, C, and E are the 

parameters that regulates the effect of incubation variable, S, heating rate, dT/dt [K/s], and 

temperature, T [K], respectively; TA1 = 1000 [K] is the A1 line of iron carbon phase diagram. The 

incubation process starts when T reaches TA1, with s = 0, and ends when s = 1, at which point the 

current temperature T is the predicted TAc1. After this the austenitization process commences, 

described by Eq. (3-19), 

 ( ) ( )1

1

1 1    ,

F H
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Ac
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df T dT
D f T T

dt T dt





   
= − −    

  
 (3-19) 

where (1 − fγ) represents the amount of material still available for transformation; D represents the 

effect of the temperature on the diffusion rate of carbon in the steel; and F, G, and H are unitless 

rate parameters, regulating the effect of temperature, existing austenite, and heating rate, 

respectively. The quantities D, F, G, and H are fitting parameters. 

For the purpose of this work, only the austenitization period is adopted. There are two main reasons 

for this: firstly, s is not a measurable quantity (unlike the austenitization process, which can be 

inferred from dilatometry from start to finish), which leaves the final TAc1 the only basis for fitting 

the model parameters. Fitting four parameters of a complicated non-linear process with only the 

final TAc1 represents an ill-posed problem, so the outcome result might be unreliable. Secondly, 
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when comparing the different candidate models, it is important to keep the conditions similar. In 

this case that means having all the candidate models start at the same prescribed TAc1. 

3.3.3. Phenomenological Model (M3) 

Li et al. [39] proposed a detailed phenomenological austenitization model, which explicitly 

considers nucleation and growth stages, as well as the impingement effect of existing austenite. Li 

et al. theorized that, under the heating rate of typical hot stamping process, austenite nucleates only 

in pearlite, because typical heating rates in furnaces are insufficient for carbon to diffuse to pro-

eutectoid ferrite and form nucleation sites. Therefore, this model envisions the austenite process 

as consisting of two successive phases: a stage before the pearlite has fully transformed into 

austenite and one for subsequent austenitic grain growth. The model is given by a set of coupled 

equations that model: the nucleation rate,  

 
( ) ( )

( )

1 γ p

γ p

exp        

0                                            

A NQ
A A T f f

RTN

f f

  
+ −  

 = 
 


, (3-20) 

where N is the number density of nuclei; the volume growth rate,  

 ( )1 expB vQ
v B B T

RT

  
= + − 

 
; (3-21) 

the extended austenite growth rate (the theoretical amount of austenite formed when assuming all 

nuclei grow at the same rate under the same thermal conditions without impingement), given by 

the product of the number density of nuclei and their growth rate,  

 γf Nv = ; (3-22) 

and the real austenite growth rate corrected for impingement effect,  
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where 
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
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and fp is the amount of pearlite in the as-received state (fp
 ≈ 0.2 for this particular material [20]).  

Overall, there are 11 model parameters: A1, A, φA, QN, B1, B, φB, Qv, m0, n0, and φn. In practice, as 

A1 and B1 appear as a product, A1B1, they cannot be distinguished during inference and are 

considered a single fitting parameter. This leaves the model with 10 parameters.  

3.4. Numerical Solver 

As illustrated in Figure 11, based on the inputs, the time each blank spends in the furnace is 

calculated and discretized into time steps, such that at each time step, the theoretical location of 

the blank within the furnace is known, hence the heating environment is defined.  

The heat transfer submodels described by the differential equations (Eq. (3-1), (3-2), and (3-8)), 

are coupled with a selected candidate austenitization submodel described in Sec. 3.3. The coupled 

differential equations are solved using the explicit Euler scheme, which predicts the temperature 

and austenite fraction in a stepwise manner. A grid independent solution was achieved at a time 

step of 0.1s. 
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Chapter 4 Experimental Methods and Data 

Three experimental methods were used for derivation and validation of the furnace model: 

dilatometry experiments were conducted to collect austenitization transformations data at various 

heating rate; metallography tests were performed on additional samples heated to certain 

temperature and quenched in the dilatometry set-up as a mean of verification for the dilatometry 

and to provide physical insights to the transformation process; finally, roller hearth furnace trials 

were conducted to validate the accuracy of the overall furnace model.  

4.1.Dilatometry Experiments 

Dilatometry measurements were conducted using a Gleeble-3500 thermal mechanical simulator 

with a C-Gauge attachment. The 2 mm thick Al-Si coated 22MnB5 steel samples were cut into 

150 mm x 8 mm rectangular strips, with control thermocouples (TC) welded at the centre. The C-

Gauge was aligned with the TC to ensure accurate temperature feedback at the location of dilation 

measurement. An illustration of the experimental set-up is shown in Figure 17. 

 

Figure 17: Gleeble dilatometry measurement set-up 

The dilatometry measurements were collected at four different heating rates: 1, 2, 5, and 7 K/s, 

each with 5 repeated trials to quantify the uncertainties in the experimental process and aid the 

Bayesian model selection process. Additional samples were heated in the Gleeble at 2 and 7 K/s, 

to various temperatures (1043 K, 1073 K, and 1113K), then quenched rapidly to preserve the 

microstructure. Some of these quenched samples are used for quantitative metallography to verify 
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the dilatometry results, while others are examined under optical microscope to observe the 

different phases of transformation process. Figure 18 shows a summary of the testing scheme. 

 

Figure 18: Test scheme of the 5 repeats per heating rate, and additional quenched trials at 

7K/s and 2K/s for metallography test 

The dilatometry trials measure the width dilation of the sample as it is being heated; this dilation 

data can be processed using a lever type rule to infer the austenitization fraction. Huang et al. [60] 

and Di Ciano et al. [38] detailed the use of this method, which is a standard practice for inferring 

austentization from in-situ dilatometry measurements. Figure 19 shows a schematic illustrating 

this lever rule.  

 

Figure 19: Schematic of the lever rule used to infer austenitization process [38] 
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Using the lever rule, the dilatometry results are processed and the inferred austenitization process 

for four heating rates as well as the average of five repeats are shown in Figure 20. 

 

Figure 20: Inferred austenitization result at four heating rates (a) 1 K/s; (b) 2 K/s; (c) 5 

K/s; and (d) 7 K/s; The mean of the five trials is also plotted to show the variation. 

In addition to the above-mentioned data, the dilatometry data from the work by Di Ciano et al. 

[38], collected on the same material using a similar set-up, is also utilized as supplementary data. 

The supplementary data is used to generate priors for some candidate models. This will be 

discussed more in Sec. 5.3. 

4.2.Metallography 

As shown in the test scheme in Figure 18, some additional samples heated at 2K/s and 7K/s to 

designated temperatures and quenched rapidly in the Gleeble to preserve the microstructure. A 
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quench rate of greater than 30 K/s is delivered to ensure all present austenite at the time of 

extraction transforms into martensite. As an example,  Figure 21 shows the microstructure 

evolution of as-received sample and quenched samples heated at 7K/s. 

 

Figure 21: Optical micrographs of 22MnB5 microstructures showing: (a) as-received 

pearlite and ferrite mixture; samples heated to (b) 1043K; (c) 1073K; and (d) 1113K; at 

7K/s heating rate and rapidly quenched in the Gleeble. The microstructure in (b) shows a 

small amount of martensite at previous pearlite locations, validating that pearlite 

transforms into austenite first [39, 63, 59], while (c) shows more ferrite transforms into 

martensite as the process continues, and (d) shows an almost fully martensitic 

microstructure. Spatial scale is identical across the panels. 

As Received 1043K

1073K 1113K

Ferrite

Pearlite

(a) (b) Martensite

Ferrite

Martensite

Ferrite

(c) (d)

25 μm
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Assuming volume fraction of martensite equal to the volume fraction of austenite prior to 

quenching, this provides a snapshot of the transformation process. Quantitative metallography 

techniques as per ASTM E562 [89] is used to estimate the austenite fraction at 1043K and 1073K; 

the results are compared in  Figure 22 with the average of the inferred austenitization results shown 

in Figure 20. 

 

Figure 22: Average of austenite transformation at each heating rate, and results of 

quantitative metallography 

4.3.Datapaq and Furnace Trials 

In addition to dilatometry data, furnace trials were conducted in an industrial roller hearth furnace. 

A Datapaq® unit can be attached to the steel blank as it is travelling through the furnace to collect 

real-time temperature data. Figure 23 shows the Datapaq® set-up. Up to three TCs can be attached 

to collect measurements from different locations on the blank, while an additional TC probe 

exposed to the air can used to measure ambient temperature (not visible in the figure). Figure 24 

shows a typical blank heating profile collected with the set-up, plotted against the derived heating 

rate data. From the heating rate curve, two distinct drop-offs can be identified. The first one is due 

to the melting of the coating, which causes the total emissivity and absorptivity to decrease, hence 

the drastic decrease in radiative heating. The second dip is attributed to the austenitization process, 

which is an endothermic process. 
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Figure 23: Schematic of Datapaq® unit attached to a blank.  

 

Figure 24: A typical roller hearth furnace heating profile collected using the Datapaq®. The 

derived heating is shown on the right axis, which shows two distinct drop-offs: one 

associated with the Al-Si coating liquefaction and the other related to the start of 

austenitization. 

 



36 

 

Chapter 5 Bayesian Model Selection Technique 

Sec. 3.3 introduced three candidate austenitization submodels with varying levels of complexities. 

The dilatometry data collected via the procedure described in Sec. 4.1 is used to infer the 

parameters of these candidate models and compare their relative performances in a quantitative 

way. As indicated in Figure 20, certain regions of the dilatometry curves are subject to larger 

variances than other regions and should be viewed as “more trustworthy” when inferring the model 

parameters. Bayesian inference offers a statistically robust way to propagate uncertainty from the 

dilatometry data to uncertainties in the recovered model parameters and, subsequently, into the 

austenite phase fractions predicted with the model.  

In this chapter, the framework of Bayesian model selection technique is introduced, including the 

idea of Bayesian inference, likelihood, prior, evidence, posterior, and the derivation of Baye’s 

factor, relative credence and fit which form the theoretical basis of the model selection process; 

also detailed are analytical techniques used to overcome numerical hurdles (principal component 

analysis, PCA), procedures used to estimate missing prior information, and assumptions made to 

simplify the calculation; Finally, with the derived model parameters, models are compared based 

on their relative accuracy and complexity, and an optimal austenitization submodel is selected for 

the overall furnace model.  

5.1.Bayesian Inference 

From the Bayesian viewpoint, the data and unknown model parameters, vectors b and x, 

respectively, are envisioned not as “fixed” values but random variables described by probability 

density functions (pdfs). Within this framework, the data and quantities-of-interest (QoI) are 

related via  

 ( )
( ) ( )

( )
( ) ( )

pr

po pr

p p
p p p

p
= 

b x x
x b b x x

b
 (5-1) 

where ppo(x|b) is the posterior pdf of x conditional on the observed data b; p(b|x) is the likelihood 

pdf that quantifies the likelihood that of the data given a set of model in the context of measurement 

noise and model error; ppr(x) expresses any information about the model parameters before the 
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experiment (e.g. through previous experiments, physical reasoning, etc.); and p(b) is the evidence, 

used to normalize the posterior pdf. The posterior concisely represents our knowledge and 

confidence of the model parameters given the measurement data b and associated uncertainties, as 

well as any available prior knowledge about x. 

5.2.Likelihood 

The finite width of the likelihood pdf, p(b|x) reflects the fact that the measurements and the model 

are fundamentally incomparable, that is 

 ( )mod meas mod= + +εx εb b  (5-2) 

where εmeas and εmod are the measurement and model errors, respectively. Model error is neglected 

for now, while the measurement error is assumed to be unbiased and normally-distributed with a 

covariance matrix Σb, 

 ( )meas b0, .   Σ  (5-3) 

The likelihood is then given by, 

 ( ) ( )
21/2

b b mod

2

1
2 exp ,

2
p 

−  
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 
b x Σ L b x b  (5-4) 

where |·| denotes the determinant, and L = chol(Σ-1) is the Cholesky factorization of the inverse 

measurement covariance matrix. If we assume independent measurements, Σb
 will be a diagonal 

matrix containing the variance of each observation throughout the transformation process, and Lb 

will be a diagonal matrix with the inverse of the standard deviation of each observation. The 

Cholesky matrix, Lb, serves as a weighting factor based on the confidence we have on each 

individual observation. For example, from Figure 20, it is evident that the start and finish of the 

transformation processes are relatively consistent (relatively small variance at the start and the end 

of Σb), whereas more variations are present from 0.2 to 0.8 range (relatively large variance in the 

middle of Σb). This, in turn, corresponds to larger values in elements at the beginning and end of 

diag(Lb)  and smaller values at the middle.  
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Inspection of  Figure 20 reveals a second critical feature of these measurements: that the errors are 

highly correlated. In other words, any single realization of the data produces a curve that is likely 

to be consistently above or below the mean. One would expect such a feature from a continuous 

transformation process, since each datapoint is built upon previous data points, and therefore error 

will accumulate. This manifests as a highly collinear data covariance matrix, and, as a 

consequence, the inverse data covariance matrix, (Σb)-1, is undefined. However, the highly 

correlated nature of the noise also suggests that the dataset can be condensed into a more compact 

form, for which we use principal component analysis (PCA).  

5.2.Principal Component Analysis (PCA) 

PCA maps the data into a new coordinate space defined by an orthogonal set of principal 

components, between which there is no covariance. This is accomplished by computing the eigen-

decomposition of Σb,  

 b 1 T−= =Σ VDV VDV , (5-5) 

where D is a diagonal matrix containing the eigenvalues and the column vectors of V are the 

corresponding eigenvectors. Note that, since Σb is a symmetric, V is orthonormal (that is, V-1 = 

VT) and 

 ( )
1

b 1 T
−

−= VD VΣ . (5-6) 

The eigenvectors represent the principal components, while the eigenvalues represent their 

significance to the data. For highly correlated data, a reduced number of principal components, k, 

can now be used to represent the data. In this case,  

 ( )
T

b k k k V D VΣ  (5-7) 

where Dk∈ℝk×k only contains the k largest eigenvalues and Vk∈ℝ64×k (64 is the number of data 

points in this case) only contains corresponding eigenvectors. Within this framework, Vk 

represents a transformation of the original data space into one approximated by a limited number 

of principal components, such that 

 k k=b V b , (5-8) 
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which applies equally to the modeled and observed data. The covariance of the transformed data 

is Dk. Substituting into the likelihood, 

 ( ) ( ) ( )
2

T1/2
mod obs

2

1
2 exp

2

k k kp 
−  

 = − −  
 

b x D L V b x b , (5-9) 

where Lk = chol[(Dk)-1], which, given that Dk is diagonal, is easy to compute.  

In this problem, four principal components are used to represent the data. The effectiveness of this 

approach is verified by generating data using Dk and then comparing it to the original data, b. As 

an example, Figure 25(b) shows 100 sets of simulated data and the mean of five repeats at 7K/s 

heating rate. The simulated data follows a similar trend, and represents the uncertainty derived 

from the five repeats shown in Figure 25(a). 

 

 Figure 25: (a) Austenitization process for a 7 K/s (also shown in Figure 20); (b) A set 

of 100 random samples from the condensed covariance matrix from principal component 

analysis (PCA), discussed in Sec. 5.2, convert to sample data suing Vk.  Also shown is the 

mean of the five experimental repeats. The heating rate is 7 K/s. For (b), lines are semi-

transparent, such that darker, red regions correspond to regions containing a higher 

concentration of PCA samples.  
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5.3.Prior 

The prior pdf, ppr(x), contains information about the model parameters, x, available before the 

measurement. This information can often be found from previous experiments in the literature, 

particularly when model parameters are reported with uncertainties. When defining the prior pdf, 

it is important to specify a prior that contributes testable information to the inference process but 

is otherwise as uninformative as possible to avoid unduly biasing the outcome. According to the 

Principle of Maximum Entropy [90], a multivariate normal distribution maximizes the information 

entropy, i.e., minimizes the information content in scenarios where estimates for a mean and 

variance/uncertainty are available. Assume a multivariate normal prior ppr(x) takes the form of 

 ( ) ( )
21/2

pr pr pr

pr
2
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2 exp

2
p 

−  
= − − 
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x Σ L x x  (5-10) 

where Σpr is the covariance matrix of prior model parameters, xpr is the mean of prior model 

parameters, and x is the current model parameter. For example, Di Ciano et al. [38] reported the 

F1 model (M1) parameters to be normally-distributed with  

 apr pr

10

402 24.83
,      diag

log 18.5 1.29

E
=

A

      
= =       

      
x Σ  

where xpr is the mean of model parameter vector, x, Ea is in kJ/mol·K and A is in log10s
-1. These 

model parameters and uncertainties are derived from dilatometry data of a similar 22MnB5 steel, 

and therefore can be used directly as prior information in our analysis.  

For some models, however, prior information of the model parameters is not readily available. In 

most cases, model parameters are reported as a single set of values that provide the best fit to the 

data without any consideration of uncertainty. Moreover, model parameters generally pertain to a 

particular alloy, and cannot readily be adapted to different materials. Neither the ISV model (M2) 

[42] nor the phenomenological model (M3) [39] include model parameter uncertainties, and the 

ISV model parameters reported by Huang et al. [42] are derived for different materials.  

Accordingly, instead of using model parameters for M2 and M3 reported in the literature, priors are 

inferred from the same dilatometry data that Di Ciano et al. [38] used to obtain the M1 model 
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parameters for 22MnB5 steel. The data set contains five repeats for each of the five heating rates 

(1, 2, 5, 10, 20 K/s). Figure 26 shows an illustration of this idea. 

 

Figure 26: Schematic explaining how the prior model parameters were generated using 

previous dilatometry data of 22MnB5. 

These 25 datasets are randomly sorted into five groups, each group containing one set of every 

heating rate, in order to ensure each heating rate is equally represented in every group. Note that 

this is not the same data used in the model selection procedure, which is introduced in Sec. 4.1. 

Therefore, this procedure will not introduce any bias to the analysis. Both M2 and M3 are fit to the 

five groups of data using non-linear least-squares minimization, resulting in five sets of model 

parameters for each model. These five sets of parameters can then be used to find mean and 

standard deviation of each parameter. The model parameters inferred through this process are 

expected to be highly correlated; however, in this work they are modeled as independent, which 

provides a conservative estimate of the prior pdf. With the assumption of independent model 

parameters, the prior pdf is fully specified by the mean, xpr and prior covariance, Σpr, similar to 

that of M1. These parameters are summarized in Table 3 for M2 and Table 4 for M3. 

Table 3: Prior information of M2  

Parameter Prior [μ, σ] 

D (-) [0.28, 0.11] 

F (-) [0.89, 0.10] 

G (-) [0.59, 0.06] 

H (-) [0.96, 0.06] 

 



42 

 

Table 4: Prior information of M3 and comparison to reported values 

Parameter Prior [μ, σ] Reported value 

A1B1(kJ/mol) [2.20×104, 2.22×103] 2.39×103 

A (-) [0.12, 0.001] 0.80 

φA (-) [1.92, 0.17] 1.41 

QN (kJ/mol) [29.02, 9.21] 148.6 

B (-) [9.36, 0.81] 1 

φB (-) [0.32, 0.45] 0.12 

Qv (kJ/mol) [203.08, 10.95] 40.5 

m0 (-) [0.16, 0.01] 1.05 

n0 (-) [8.35, 7.35] 2.1 

φn (-) [1.54, 0.005] 0.155 

 

Also listed in Table 4 are the reported values of model parameters by Li et al. [39], which differ 

significantly from the ones found using Di Ciano et al.’s data [38], even though both experiments 

follow similar procedures and were carried out on similar material. This may be an indication of 

over-tuning, and further highlights the important role of model complexity as a crucial criterion in 

model evaluation and comparison. 

5.4.Evidence and Posterior 

The evidence, p(b), represents the probability density of observing the data vector b, and is found 

from 

 ( ) ( ) ( )prE p p p d= = 
x

b b x x x  (5-11) 

Substituting this result into Eq. (5-1), along with the likelihood and prior pdfs, results in an 

expression for the posterior pdf for the model parameters, ppo(x|b). 

The posterior pdf is a joint probability density with a dimension equal to the number of model 

parameters; for model M1, p(x|b) can be visualized as a contour or surface plot, but this cannot be 
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done for M2 and M3, which have more than two parameters. Instead, the posterior pdf is often 

summarized by the maximum a posteriori (MAP) estimate, xMAP. With the assumption of normal 

likelihood and prior, xMAP can be calculated as 

 ( )  ( ) ( ) ( )
2 2T

MAP mod pr pr

po
22

arg max arg min k kp
 

 = = − + −  
 x x

x x b L V b x b L x x  (5-12) 

Evaluating ppo(x|b) requires calculating the evidence, which is a computationally intensive 

process. Instead, if the posterior is modeled as Gaussian (i.e. bmod(x) is approximately linear close 

to xMAP), Laplace’s approximation may be used [91, 92] 

 ( )
21/2

po po MAP

po
2

1
2 exp

2
p 

−  
 = − −  

 
x b Σ L x x  (5-13) 

The posterior covariance matrix, Σpo, is calculated using 

 ( ) ( ) ( ) ( ) ( ) ( )
1 1 1

T 1 1 1 1
po po po T b pr pr

T
k k k

− − −
− − − −     = = + = +

          
Σ L L J Σ J Σ V J D V J Σ  (5-14) 

and J is the Jacobian matrix, having elements equal to 
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and evaluated at xMAP. The Jacobian can be directly obtained as a by-product of the nonlinear least-

squares minimization algorithm used to find xMAP. In this case, xMAP represents a point estimate of 

the derived model parameters (recall that in Bayesian point of view, model parameters are pdfs 

rather than a definitive set of numbers), and it’s also the mean of the pdf that describes the model 

parameters, i.e., μ. The mean and Σpo together define the distribution of model parameters, in 

which case Σpo represents the uncertainties associated with the mean. For example, for the F1 

Model,  
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One could visualize the pdf function for a particular parameter by marginalizing over all the other 

parameters and constructing the credible intervals (CI). Say, a model has n parameters, i.e., xMAP

∈ℝn×1. p(xj|b) can be found by, 

 ( ) ( )
1 2 1 1

1 2 1 1| .

j j n

j j j n

x x x x x

p x p dx dx dx dx dx

− +

− +=     b x | b  (5-16) 

As and example, for F1 model, p(Ea) can be found through, 

 ( ) ( ) ( )
2

1 2| | .a
x

p E p x b p x b dx= =   

This marginalization process can be mathematically cumbersome, but under the assumption of 

normally distributed measurement error and linear model, the resultant marginalized pdf is also 

Gaussian. Therefore, as an example, p(Ea) and its CI can be visualized in Figure 27. 

 

Figure 27: Marginalized pdf of Ea, demonstrating the 95% credible interval (CI). 

Note that this is only an approximate case, under the assumption of Gaussian measurement error 

and linear model. In reality, the model is only linear near xMAP and not linear near the tail end of 

the distribution. In order to find the true marginalized distribution, one would need to fully carry 

out the integration in Eq. (5-16), which is mathematically challenging but can be done with 

numerical integration schemes such as Markov chain Monte Carlo (MCMC) technique. 
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5.5.Bayes’ Factor, Measurement Credence and Fit 

The posterior probability density derived through Eq. (5-1) accounts for the measurement 

covariance through the conditional probability ppo(x|b), but there is an additional “hidden” 

dependency on the choice of model, i.e. ppo(x|b) = ppo(x|b,Mi) where Mi is the measurement model. 

Eq. (5-1) then transforms into  

 ( )
( ) ( )

( )
( ) ( )pr pr

po

, ,
, ,

i i i i i i i i

i i

ii

p M p M p M p M
p M

Ep M
= =

b x x b x x
x b

b
 (5-17) 

where Ei is the evidence conditional on model Mi, which marginalizes over the model parameters. 

Suppose, as in this case, there exists a manifold of candidate models, {Mi} ∀ i ∈ {1, 2, … m}. 

The model posterior probability, i.e., the probability that Mi is the model that produced the 

observed data, can be stated using another instance of Bayes’ equation  

 ( ) ( ) ( ) ( )po pr pr M ,i i i i ip M p M p M E p =b b  (5-18) 

where p(b|Mi) is the model likelihood, indicating the probability density of observing the data b 

using model Mi, and ppr(Mi) is the model prior, which describes the prior probability of a given 

model based on what is known before the measurement. We note that the model likelihood is the 

same as the evidence from Eq. (5-11) and thus involves a marginalization over the model 

parameters. Note the distinction between model prior, ppr(Mi), and prior pdf on model parameter, 

ppr(x|Mi); the model parameter prior can often be obtained either from the literature or through 

previous experiments as detailed in Sec.5.3, whereas the model prior is often set equal to unity, 

when no model is preferred. With this assumption Eq. (5-18) becomes  

 ( )po i .ip M Eb  (5-19) 
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A major challenge in assessing the model posterior probability concerns calculating the model 

evidence. In order to calculate a “true” evidence, however, the entire set of candidate models would 

need to be marginalized. Instead, it is often sufficient to calculate the relative model posteriors, i.e. 

Ppo(Mi|b)/Ppo(Mj|b). If the model priors are taken to be unity, this becomes the Bayes factor, 
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( )
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po

po

,
i i i

ij

jjj

p M p M E
B

Ep Mp M
= = =

b b

bb
 (5-20) 

which describes the odds that Mi produces the data b over Mj. A positive Bij indicates that model 

Mi is preferred over model Mj. Furthermore, Eq. (5-17) can be rearranged into 
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with the posterior probability density calculated using Laplace’s approximation, Eq. (5-13). Under 

this assumption, the evidence is independent of xi; for simplicity, the terms in Eq. (5-21) evaluated 

at the xMAP.  

For numerical stability, model selection is often done using the logarithm of the evidence, which 

can be further broken down into three major components [47, 93] shown in Eq. (5-22). 

 ( ) b, pr,ln i i i iE C F F= + +  (5-22) 

The measurement credence, Ci, is defined as 

 ( ) ( ) ( )1/2 1/2 1/2
po pr bln 2 ln 2 ln 2 ;i i iC   = − −Σ Σ Σ  (5-23) 

The relative fit of the model to data, Fb,i, evaluated at xMAP, is defined as 

 ( )
2

b mod MAP obs

b,
2

1
;

2
i i iF  = − −

 
L b x b  (5-24) 

and, similarly, the relative fit of xMAP to prior, Fpr,i, is defined as 

 ( )
2

pr MAP pr

pr,
2

1
.

2
i i i iF = − −L x x  (5-25) 
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These three terms provide more insight on how well a particular model performs. The 

measurement credence includes determinants that normalize the posterior, prior, and likelihood 

densities [47]. Large determinants represent “diffuse” distributions that are highly uncertain, 

contain less information, or have a high number of parameters (i.e., complex models with many 

DOFs). A large |Σpo| indicates less confidence in the derived model parameters, which happens 

when the model is too complex with too many DOFs. This is balanced out by the information 

provided by the prior parameters (and the data, though this is identical across the models, and 

cancels out in computing the Bayes factor) and is inversely proportional to |Σpr|, respectively. The 

credence accounts for the model degrees-of-freedom through the size of |Σpo|, though it is an 

oversimplification to assume that models having many DOF will necessarily have a small 

credence. Having many model parameters is permissible, as long as the elements of Σpr are small, 

which is true if the prior information about the parameters is specific and reliable. 

Taking the logarithm of Eq. (5-20) results in 

 ( ) ( ) ( ) ( )b, b, pr, pr,ln ,ij i j i j i j ij ijB C C F F F F C F= − + − + − =  +  (5-26) 

where ΔCij is the relative measurement credence and ΔFij is the relative fit. These two competing 

parameters weigh each model’s complexity against its accuracy in a quantitative way, in the 

context of the prior covariance and the measurement covariance. For example, ΔCij may be 

positive if Mi is simpler than Mj, but ΔFij may be negative if Mj gives a better goodness-of-fit to 

the data, or returns a set of model parameters more in keeping with known physics. We note that 

|Σb| cancels out in this procedure and only enters the calculation via the MAP estimate and in 

computing |Σpo|.  

5.6.Model Selection Results and Discussion 

This procedure is used to identify the most probable austenitization submodel for 22MnB5, based 

on the dilatometry data discussed in Sec. 4.1. Table 5 summarizes xMAP for each model parameters 

obtained through minimizing Eq. (5-12) as well as their associated uncertainties. 
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Table 5: xMAP and uncertainties for candidate austenitization models, [μ, σ] 

M1 – F1 model 

Ea (kJ/mol·K) [444.84, 1.63] 

Log10 A (log10s
-1) [20.84, 0.08] 

M2 – ISV model 

D (-) [0.11, 0.005] 

F (-) [0.63, 0.011] 

G (-) [0.36, 0.012] 

H (-) [0.88, 0.007] 

M3 – Phenomenological model 

A1B1(kJ/mol) [2.39×104, 2.21×103] 

A (-) [0.12, 0.001] 

φA (-) [1.53, 0.049] 

QN (kJ/mol) [22.29, 3.626] 

B (-) [10, 0.808] 

φB (-) [0.86, 0.142] 

Qv (kJ/mol) [209.32, 3.583] 

m0 (-) [0.15, 0.012] 

n0 (-) [0.31, 2.311] 

φn (-) [1.54, 0.005] 

For all three candidate models, the Jacobian matrix, J, is acquired as a by-product of the 

minimization algorithm used to find xMAP, and Σpo
 is found using Eq. (5-14). The measurement 

credence, Ci, is evaluated using Eq. (5-23). Both Fb,i and Fpr,i can be obtained easily using Eqs. 

(5-24) and (5-25), as both (bmod – b) and (xMAP – xpr) have already been calculated. Subsequently, 

ΔCij, ΔFij, and ln(Bij) are evaluated from these results using Eq. (5-26) and is illustrated in Figure 

28. 
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Figure 28: Model selection result visualized, M1 is the F1 model (2 DOFs), M2 is the ISV 

model (4 DOFs), and M3 is the phenomenological model (10 DOFs). M1’s advantage in low 

complexity is offset by its lack in accuracy comparing to both M2 and M3. M2 which best 

balances complexity and accuracy is selected as the optimal model. 

The three models are compared in pairs by evaluating ΔCij, ΔFij, and the resulting Bayes factor, 

ln(Bij) as shown in Figure 28. We start by comparing M2 to M1 (Case 1) and M3 to M1 (Case 2). 

Taking M1 to be the null model, and M2 and M3 are the alternative models in cases 1 and 2 

respectively. Since the null model is the simplest with only two DOF, it is preferred in terms of 

relative measurement credence, as indicated by the positive ΔC12 and ΔC13. However, it provides 

an inferior goodness-of-fit, as indicated by the negative ΔF12 and ΔF13, suggesting that two DOFs 

is inadequate to capture the physical processes that underlie austenitization. This results in overall 

negative Bayes factors, ln(B12) and ln(B13). For Case 3, we suppose that M2 (4 DOFs) is the 

preferred null model and M3 (10 DOFs) is the alternative model. M3 is much more complex than 

M2, but the added complexity does not realize an improved goodness-of-fit. On the contrary, M2 

outperformed M3 in both relative measurement credence and fit, and is therefore the optimal model.  

Overall, this approach exemplifies the fact that Bayesian model selection technique accounts for 

data uncertainty, model complexity, and prior information to derive an unambiguous and 

statistically-rigorous indicator of model performance in the form of the Bayes factor. In 

comparison, the conventional approach of goodness-of-fit misses these nuances and may lead to 

misleading or erroneous conclusions. As an example, Figure 29 compares between three model 

predictions and the data (the mean of five repeats) at 5 K/s heating rate. One could determine that 
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M1 is the worst of all three based solely on goodness-of-fit, but will struggle to compare M2 and 

M3 without a quantitative score (ΔF23) or any insight into the model complexity and uncertainties 

(ΔC23). 

 

Figure 29: Comparison of three model predictions at 5 K/s heating rate. This demonstrates 

the poor fit between the data and M1. It also illustrates the drawback of goodness-of-fit 

evaluation method, as one cannot easily determine the better model between M2 and M3. 

Given the PCA representation of the data, one can also generate a series of artificial data that 

represent the range observed in the experimental data, i.e., the samples shown in Figure 25 (b). 

This feature could be leveraged to study the uncertainties associated with ΔCij, ΔFij, and ln(Bij). 

Supposed that 250 new random sets of data are generated. This data can then be used to repeat the 

model selection procedure 250 times to compute a distribution of Bayes factors, as visualized in 

Figure 30 for 250 samples. 

The result from the experimental data, i.e., the point estimates from Figure 28, are also provided 

in the plots. The sampled data produce a spread of results centered around the point estimates, as 

expected. This exercise reflects the Bayesian viewpoint of not treating parameters as deterministic 

(such as the point estimate results in Figure 28) but rather as random variables that obey 

distributions (such as the ones in Figure 30). If the analysis is repeated with a different set of data, 

one may not end up with the same numbers shown in Figure 28, but it will likely lie within the 

distribution captured in Figure 30. This also illustrates that even with uncertainties considered, the 

decision of choosing M2 as the optimal model still stands. 
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Figure 30: Histograms showing the Bayes factor and its components for 250 samples from 

the PCA representation of the data for (a) Case 1; (b) Case 2; and (c) Case 3. Note that ΔCij 

has much smaller uncertainties than ΔFij, and is plotted on a separate axis for clarity. 
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Chapter 6 Model Validation 

The thermometallurgical model is validated using two types of data. The accuracies of 

austenitization submodels are compared using dilatometry data as a visual illustration, and the 

overall furnace model, combined with the selected austenitization submodel, is validated using 

roller hearth furnace trials.  

6.1.Austenitization Submodels Comparison with Dilatometry Data 

The Bayesian model selection technique detailed in Chapter 5 already provides a quantitative 

method to evaluated candidate model performances and their accuracy, while taking into 

consideration the uncertainties in the dilatometry data. It was concluded in Sec. 5.6 that the F1 

model lacks the necessary complexity to capture the transformation process accurately. The ISV 

and Li’s model are similar in terms of accuracy, but Li’s model is much more complicated with 10 

DOFs comparing to the 4 DOFs of ISV model. Its added complexity is not justified by 

improvements of accuracy. Therefore, ISV model is determined to be the winning candidate model 

that best balances accuracy and complexity. In this section, the three models are compared with 

the dilatometry data detailed in Sec. 4.1, to provide a more visual and qualitative comparison of 

their performances as a supplement to the Bayesian model selection technique. Figure 31 shows 

the five repeats of collected at 1, 2, 5, and 7 K/s alongside the three model predictions. 

It can be observed that F1 clearly does not accurately represent the austentization process at certain 

heating rates. This can be attributed to its simplicity with only two DOFs. It does not explicitly 

consider the physical mechanism of austenitization process like Li’s more physical model does. 

Despite both being empirical models, it also does not consider important factors that affect the 

transformation process, such as the heating rate, as does the ISV model. Therefore, it lacks the fine 

adjustment to model the effect of heating rate, and only appears to perform reasonable well for 2 

K/s shown in Figure 31 (b), over predicting for 1 K/s (Figure 31 (a)), and underpredicting for both 

5 and 7 K/s (Figure 31 (c) and (d)). 
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Figure 31: Qualitative comparison of dilatometry data (detailed in Sec. 4.1) against the 

model prediction at four different heating rates: (a) 1 K/s; (b) 2 K/s; (c) 5 K/s; and (d) 7 K/s 

Simply based on qualitative observation, both the ISV and Li’s model are accurate enough in 

comparison to the relative spread of the five repeats at each of the heating rate shown in Figure 31. 

This further underlines the importance of Bayesian model selection technique as a quantitative 

evaluation, as one would struggle to decide between ISV and Li’s model without considering the 

data uncertainties and weighing model accuracy with complexity.  

As another means for comparison, the dilatometry data collected by Di Ciano et al. [38] is also 

compared against the three candidate model predictions. This data is collected using a similar 

Gleeble 3500 Thermomechanical simulator C-gauge set-up as described in Sec. 4.1, on similar 

22MnB5 steel material. The only difference between Di Ciano et al.’s work and the present work 

is the shape of the sample. Instead of a slim rectangular strip, Di Ciano et al. opted for a dog-boned 
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sample similar to a sample design used in tensile testing.  Figure 32 shows the dimension of the 

sample design. 

 

Figure 32: Drawings showing the sample dimensions used by the Di Ciano et al. [38], all 

units are in mm. 

This design, however, is unnecessarily complex, since the dog-bone shape is not needed for a 

heating test. Another downside of this sample shape is the extra materials on either end will require 

additional power to heat up; this might worsen the already existing thermal gradient issue shown 

in Figure 17, especially at higher heating rates. Di Ciano et el. also discussed the presence of 

thermal gradient away from the centre of the sample [38], and advised in personal communication 

[94] that a slim rectangular design with less material to heat up is more optimal.  

Unlike the dilatometry data shown above and in Sec. 4.1, which is used in the derivation of model 

parameters, the data collected by Di Ciano is not involved in the model derivation (except for the 

purpose of deriving priors as discussed in Sec. 5.3). This could provide a better illustration for the 

quantitative comparison since the models have not yet seen the data. Figure 33 shows a similar 

comparison of five repeats each at 1, 2, 5, and 10 K/s heating rate and the three model predictions. 
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Figure 33: Qualitative comparison of dilatometry data by Di Ciano et al. [38] with the 

model prediction at different heating rates: (a) 1 K/s; (b) 2 K/s; (c) 5 K/s; and (d) 10 K/s 

Similar observations can be made that F1 underperforms compared to the other two candidates, 

while the other two models appear to both perform well only based on qualitative goodness-of-fit. 

For heating rate 1, 2 and 5 K/s, both ISV and Li’s model compares well against the five repeats. 

However, the runs for 10 K/s show higher than usual uncertainties, indicating some repeatability 

issue in the data, possibly due to the suboptimal sample shape discussed above.  
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6.2.Validation Against Datapaq Results 

The selected candidate model, the ISV model, is integrated into the overall furnace model 

framework detailed in Sec. 3.1. The accuracy of the furnace model is validated using furnace trials 

run on the roller hearth furnace at Ford’s facility. The blanks used for all trials are 1.6 mm thick, 

Usibor® 1500 with AS150 coating weight. The furnace parameters are summarized in Table 6.  

Table 6: Furnace trials settings 

Set-point [℃] Trial (a) Trial (b) 

1 720 760 

2 720 760 

3 720 750 

4 720 760 

5 720 760 

6 720 750 

7 745 760 

8 745 770 

9 745 785 

10 800 835 

11 900 920 

12 900 920 

13 900 920 

14 900 920 

15 900 920 

Roller Speed [m/s] 0.135 0.130 

Two furnace trials are shown in Figure 34. The blanks are instrumented with Datapaq® units as 

shown in Figure 23 and sent through the furnace to collect the data. The blank temperature (TC) 

as it travels through the furnace is plotted against the model prediction (Model). The air 

temperature (Tair) collected by a TC probe is also shown. As discussed in Sec. 3.2, the model 

prediction is made based on the assumption that each furnace zone is large and isothermal, namely 
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its ambient temperature for convection, Tamb in Eq. (3-2), as well as surrounding temperature for 

radiation, Tsurr in Eq. (3-8), all equal to the zone set-point. The ambient temperature (Tamb) is also 

plotted in both figures.  

The different furnace heating zones (numbered 1 to 14) are marked at the top edge of the figure. 

Zone 15 is an ejection zone where the roller speed is increased to shoot the blank out of the furnace. 

Therefore, zone 15 does not show up on the plot since blank spends negligible time in this zone. 

The red marker denotes a physical baffle (three in total). Note that, ideally, each zone should be 

separated by baffles and able to maintain its own set-point without influence from other zones. In 

reality, there are only three baffles in this roller hearth furnace set-up, and the nearby zones will 

affect each other. In an attempt to account for this, the ambient temperatures are linearly 

interpolated if the neighboring zones have different set-points but have no baffles between them. 

For example, in Figure 34(a), the set-point for zone 9 and 10 are 1018 K and 1073K respectively. 

Due to the lack of baffle, zone 9 temperature starts at 1018 K and linearly increase to 1073 K. This 

linear profile, although imperfect, is generally validated by the trend shown in Tair. In both trials, 

Tair for the zones in between high and low set-point areas (approximately zone 8-10) show a 

gradual increase in temperature, rather than distinct uniform temperatures. Note that the sudden 

spike in Tair in Figure 34(b) is likely due to the TC probe accidentally hitting a tube burner inside 

the furnace and hence disregarded. 

For both trials, the model prediction based on Tamb generally follows the trend of the TC data but 

consistently overpredicts the temperature. The difference is usually larger in the higher 

temperature zones and the transition between low to high set-point areas. One possible hypothesis 

is the furnace environment is not reaching the set-points, hence using set-points as model input 

(Tamb) would result in overprediction. Both trials show the measured air temperature, Tair, to be 

generally lower than the ambient temperature, Tamb, which is used by the model to make 

predictions and generated based on set-points and linear interpolations. This difference can range 

from 20 to as high as 90 K. Although the blank is irradiated by the furnace wall, and the air 

temperature can be lower than the wall temperature, a 20-90 K difference does provide some 

support for such hypothesis. A simple way to verify this is to use Tair as the model input instead of 

Tamb. The new predictions are shown as dashed curves in Figure 34. In both cases this results in 

much better agreement with the data, further supporting the hypothesis. 
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Figure 34: Two roller hearth furnace trials (a) and (b). The furnace zones are illustrated at 

the top and red markers denote physical baffles. Tair is the furnace air temperature 

measured by a TC probe attached to the blank. Tamb is the ambient temperature based on 

zone set-points, and is used as model input. The model prediction, and model prediction 

when using Tair as input are also shown.
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Chapter 7 Conclusions and Future Work 

7.1.Conclusions 

The heating stage of the HFDQ process, typically done using a roller hearth furnace, is very time 

and energy intensive, and therefore has high potential for optimization. The conventional trial-

and-error approach used to identify the process parameters rarely results in an optimal solution. 

This calls for a furnace model that can predict both the heating and austenitization aspect of the 

process and is also relatively simple to use. This work presents a model framework which 

combines a heat transfer submodel and an austenitization submodel. The heat transfer submodel 

considers natural convection, and radiative heating as the main source of energy input. It is also 

coupled with the austenitization submodel through the latent heat of austenitization. 

When choosing an austenitization submodel, the challenge of how to select one of the many 

candidate models arises. The conventional goodness-of-fit model evaluation method does not 

consider the uncertainties in the data and the trade-off between model complexity and accuracy. 

Therefore, this work also establishes the procedure of applying Bayesian model selection to 

evaluate and select the austenitization submodels. Three candidate austenitization models are used 

to demonstrate this technique: the simple F1 model with two DOFs; a more complex ISV model 

with four DOFs; and a detailed phenomenological model with 10 DOFs that considers nucleation, 

growth, and impingement effect of austenitization. Dilatometry data is collected using a Gleeble 

3500 thermomechanical simulator with a C-Gauge set-up. This data, along with additional 

dilatometry data from previous studies, provides the necessary information needed to quantify 

uncertainties in the experimental process and conduct the analysis. Through Bayesian model 

selection, it was quantitatively determined that the simplest F1 model lacks in accuracy, while the 

detailed 10 DOFs model does not bring enough improvements to justify its additional complexity. 

The ISV model best balances accuracy and complexity, and is therefore selected as the optimal 

option. The three austenitization models are also qualitatively compared against dilatometry data 

sets. This exercise further illustrates the need for Bayesian model selection technique, as the 

conventional goodness-of-fit comparison cannot effectively distinguish between ISV and 

phenomenological model. 
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The overall roller heath furnace model, with the optimal austenitization submodel, is then validated 

against two roller hearth furnace trials. The model shows promising results but consistently 

overpredicts the blank temperature when compared to the furnace trials. This is suspected to be 

caused by the furnace surrounding temperatures being lower than the corresponding zone set-

points due to the lack of physical baffles between high and low temperature zones. This theory is 

tested by using the air temperature collected in the furnace trial as model input instead of furnace 

set-points, and this results in improved agreements between model prediction and TC data.  

7.2.Future Work 

This thermal-metallurgical model provides a useful tool for industrial engineers to study the 

heating process of hot stamping and improve its efficiency. The model can be extended to be 

applied in many applications. In addition, many aspects of the model can still be refined. 

7.2.1.Potential Applications 

The most immediate application for such thermometallurgical model is to be used as a diagnostic 

tool for industrial engineers designing the hot stamping process. In case of problems such as 

incomplete austenitization, this model can be used as a reference to examine the possible root 

cause and what process parameters need to be modified to address the issue. 

This model can also be used to quickly iterate and refine new process parameters. The hot stamping 

production line often needs to accommodate a variety of blank thicknesses associated with 

component design changes. The conventional trial and error approach is inefficient, both in terms 

of the time it takes to obtain a new set of parameters and the suboptimality of the final outcome. 

Furthermore, the conventional approach requires production downtime, and will inevitably result 

in wasted material in the process. With a detailed furnace model, the process designer can quickly 

prototype a set of reasonable process parameters, before validating them on the production line. 

This greatly reduces the turnaround time for any production changes. 

To take this one step further, with a model-based approach, one could also explore different 

numerical simulation techniques to come up with optimal process parameters that best balance the 

need of fully austenitizing the blank and improve energy efficiency. 
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7.2.2.Further Refinements 

7.2.2.1.Quantification of Furnace Environment Uncertainties 

The roller hearth furnace is controlled by a hysteresis scheme i.e., heaters turn on when the 

corresponding control TC input falls below the set-point and turns off when it exceeds the set-

point. This relatively rudimentary control scheme causes fluctuation within the furnace 

environment, which in turn will cause fluctuation in the heating process. Consequently, one would 

expect differences in heating profile between different runs even with the same material and 

process parameters. So far, this study looks at the modelling problem from a deterministic 

approach with simplifying assumptions such as uniform zone temperatures. A more robust 

approach would be to look at the model from a probabilistic point of view and incorporate the 

uncertainties induced by the furnace fluctuation, such as the case in the work by Verma [37]. This 

way the model can not only produce a single prediction, but also an expected range given the 

uncertainties. The industrial engineers can make sure the process parameters are sufficient not only 

under the perfect condition but also the higher or lower end of the possible outcomes. To achieve 

this, one could instrument the key components within the furnace, including the radiant tube 

burners, the furnace walls, as well as measuring the air temperature with exposed TC probes. This 

experiment would likely record a cyclic response as the furnace heaters turn on and off, and the 

furnace environment overshoots and drops below the set-point as a result. This information will 

help quantify the uncertainties within the furnace, which can then be propagated into the model 

prediction to provide an average prediction associated with a possible upper and lower bound. 

7.2.2.2.Examination on The Effect of Baffles 

Further experimentation can also be conducted to better understand the effect of baffles. 

Neighboring zones can be instrumented to record the temperature data with or without baffles 

separating them. The experiment should be conducted with a wide range of temperature 

differences. One would expect that, were the neighboring zones to have similar set-points, the 

effect of physical sectioning is not substantial. On the contrary, if the adjacent zone set-point 

difference is large, the lack of baffle will likely cause larger fluctuation in zone temperatures, or 

in more extreme cases, the zones will not be able to maintain the set-point at all. In other words, 
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without a thermal barrier, the lower temperature zone will be constantly above the set-point under 

the influence of the higher temperature zone, while the higher temperature zone will struggle to 

achieve the set-point since it is effectively also heating up the neighboring zones. Due to cost 

constraints, not every zone in a roller hearth furnace can be baffled, such as the case for the roller 

hearth furnace set-up used in the present study. Therefore, understanding the effect of baffles will 

not only improve the accuracy of the furnace model, but also help determine the optimal baffle 

placements. 

7.2.2.3.Improvements in Radiative Properties and Coating Evolution Modelling 

The evolution of the Al-Si coating significant1 impacts the radiative properties, in ways that are 

not yet fully understood. Attempts have been made to quantify the change in radiative properties 

as detailed in Sec. 3.2.3, however, there is still room for improvements. The FTIR heated stage 

set-up introduced in Sec. 3.2.3 shows great potential but has key limitations. With those limitations 

addressed, one could measure in-situ emissivity as the material is being heated according to a 

furnace heating schedule to get a set of radiative properties that are more relevant to industrial 

applications. More studies could also be done on coating weights other than AS150 as their usage 

becomes more popular. 

To take a more model-based approach, with further development in coating evolution modelling, 

one could also quantitatively connect the coating transformation with changes in radiative 

properties. The modular structure of the furnace model framework facilitates incorporation of new 

coating transformation submodels. This approach produces more accurate radiative properties 

without the need of extrapolations. The temperature prediction can also inform the coating 

transformation submodel, bringing the added benefit of more insights into how the process 

parameters might affect the coating transformation process. Since roller damage due to molten Al-

Si coating is a problem yet to be addressed effectively, this coating submodel can provide a useful 

tool to design processes that not only maximizes efficiency but also mitigates roller pollution. 

7.2.2.4.Additional Austenitization Candidate Submodels 

In terms of austenitization model selection, the primary focus of this work is on the procedural 

derivation of the Bayesian model selection technique. Although a thorough literature review has 
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been conducted on different austenitization models, only three candidate models that best 

demonstrate the advantage of Bayesian model selection were compared. Future work could focus 

on a more thorough model comparison that includes more candidate models. With more 

development in the field, there are potentially newer and superior austenitization models as well. 

In addition to more models, the dilatometry data used for the derivation and selection process could 

also be improved. The Gleeble 3500 thermo-mechanical simulator is a very versatile tool capable 

of running a wide range of metallurgical experiments, and the C-Gauge attachment does allow it 

to measure width dilation of the sample. However, it is not a specialized dilatometer, therefore, it 

lacks in accuracy in some cases. More dilatometry experiments conducted in a specialized 

dilatometry will bring improvements to the model selection process as well. 
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Appendix A 

Thermophysical properties of PHS1500 provided by the manufacturer [82] 

Temperature 

[℃] 

Conductivity 

[W/(m·K)] 

Density 

[kg/m3] 

Specific Heat 

[J/(kg·K)] 

0 38.6 7880.8 433 

50 38.9 7864.5 444 

100 39.5 7848.0 465 

150 39.9 7831.5 485 

200 40.4 7814.8 505 

250 41.0 7797.7 525 

300 40.7 7781.0 547 

350 40.9 7763.9 571 

400 40.6 7746.6 598 

450 40.1 7729.2 628 

500 39.5 7711.7 628 

550 38.5 7694.0 701 

600 37.4 7676.2 748 

650 35.9 7658.3 804 

700 34.4 7640.2 876 

725 37.4 7631.1 924 

750 40.3 7622.0 971 

800 39.7 7603.7 942 

850 25.1 7585.2 825 

880 26.0 7574.0 793 

900 26.6 7566.6 771 

950 27.3 7567.0 741 

1000 27.9 7567.0 723 

1050 28.3 7567.0 711 

1100 28.6 7567.0 706 

1150 29.2 7567.0 706 

1200 29.7 7567.0 706 

 


