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Abstract

The advances in sensing technologies, artificial intelligence, Internet of vehicles, and edge

computing paradigm pave the way for autonomous driving, which is a key use case that will re-

shape the future transportation systems in the 5G and 6G eras. Environment perception is a key

module in autonomous driving that enables the autonomous vehicles (AVs) to view the surround-

ing environment, facilitating situational-aware decision and planning for autonomous driving. In

this work, we consider a perception task for object detection and classification, and investigate a

raw data level cooperative perception scheme, with cooperative sensing among AVs and cooper-

ative computation among both edge server and AVs, to satisfy the stringent accuracy and delay

requirements for the perception task with communication and computing resource efficiency. To

exploit the differentiated sensing data quality at each AV for different objects, we partition the

perception task into parallel object classification subtasks, and propose a differentiated data se-

lection strategy which selects sensing data from different AVs for each subtask with accuracy

satisfaction and resource efficiency. The computation of different subtasks is distributed in a ve-

hicular edge computing network, in a communication efficient manner. An optimization problem

is formulated for joint data selection, subtask placement and resource allocation, to minimize the

total communication and computing resource consumption cost, while satisfying the delay and

accuracy requirements. To facilitate data selection decision with accuracy satisfaction, a deep

neural network (DNN) model is pre-trained to profile an accuracy estimation function, which

estimates the accuracy for each object classification subtask given the data selection decision

and the sensing data quality characterized by the sensing data volume and spatial diversity. An

iterative solution based on genetic algorithm is proposed for the optimization problem. Simula-

tion results demonstrate the accuracy improvement by the cooperative sensing strategy and the
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resource efficiency of the proposed differentiated data selection and subtask placement scheme.
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Chapter 1

Introduction

1.1 Perception task

Autonomous driving is a key use case that will reshape the future transportation systems in

the 5G and 6G era. The foundation of autonomous driving is the capability for vehicles to

know their surrounding environments and maintain real-time situational awareness under en-

vironmental dynamics, referred to as environment perception, based on which different au-

tonomous driving applications can be supported, such as localization, motion control, and path

planning [4,7,31,53,56]. An autonomous vehicle (AV) is equipped with various onboard sensors

such as cameras, light detection and ranging (LiDAR) sensors, and radio detection and ranging

(radar) sensors, for different perception tasks, e.g., object detection, classification, orientation es-

timation and tracking. Here, we consider a perception task for object detection and classification,

which is to detect and classify objects in the region of interest (RoI) of an AV at a given time

instant, based on which the AV can infer orientations and trajectories of surrounding objects. The
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object orientations and trajectories are continually updated over time, with a time-varying updat-

ing frequency depending on the overall environmental dynamics [19,37]. For each update, a new

perception task for object detection and classification is initiated by the AV. The perception task

is executed in two phases, referred to as object detection phase and object classification phase

respectively [7, 60]. In object detection phase, the existence of unknown objects in a considered

RoI is detected and the bounding boxes for all the detected objects are estimated. In object clas-

sification phase, the class of each detected object is identified, usually based on advanced deep

learning techniques. For real-time situational awareness, the perception task has a stringent delay

requirement in milliseconds (e.g., 10-20 ms), and the accuracy requirement for object detection

and classification should be satisfied.

As the sensors for environment perception typically rely on line-of-sight (LOS) sensing, their

sensing range is fragile and easy to be blocked by surrounding obstacles [53]. For example, when

an inter-vehicle distance becomes too short, the LOS area of an AV shrinks due to the blockage

by a neighbor vehicle, making some nearby objects whose status is critical for autonomous diving

totally invisible [27]. Moreover, it is beneficial to have sensing data from diverse point of views

of an object for accurate classification. For example, a cyclist viewed solely from the front has a

high chance to be falsely classified as a pedestrian due to feature similarity [53]. If sensing data

for more sides of a cyclist is used for classification, the probability of false classification as a

pedestrian becomes much lower. However, the onboard sensors of a single vehicle only provide

limited sensing data diversity for an object even at a time instant without sensor occlusion, as the

vehicle observes the object from a limited viewpoint. Hence, we cannot fully rely on the onboard

sensors for a consistent guarantee of complete and accurate environment perception especially

in a highly obstructed environment.
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1.2 Cooperative perception

With the emerging Internet of vehicles (IoV) technologies, vehicles are connected with each other

and with infrastructures via vehicle-to-everything (V2X) communication, which provides an op-

portunity for augmented perception capability through cooperative sensing [4, 22, 27]. Coopera-

tive sensing exploits V2X communication to enable sharing of the raw or processed sensing data

among vehicles and infrastructure in proximity, by which the perception range can be extended

beyond line of sight and field of view, and the perception accuracy can be enhanced [23, 43].

This augmented perception capability contributes to better decision making and planning for au-

tonomous driving, such as safe lane changing, smooth braking/acceleration, and hidden obstacle

avoidance [23, 27].

Traditional cooperative sensing has been designed to assist human drivers for enhanced safety

by exchanging alarm messages. It allows vehicles to exchange their processed sensing data with

small data size via periodic broadcasting. For example, a vehicle processes its own raw sensing

data, and generates a continually updated track list for every detected objects in its surrounding

environment, which is periodically broadcast to vehicles in its proximity via vehicle-to-vehicle

(V2V) communication [21]. Then, each vehicle can fuse its own object list with all the ob-

jects lists received from nearby vehicles, referred to as decision-level fusion, which may extend

the object list and improve the detection accuracy for some objects. However, the perception

performance enhancement with decision-level cooperative sensing is limited by the per-vehicle

sensing capability. For example, the undetected objects by all vehicles remain undetected after

the decision-level fusion, which cannot satisfy the high reliability requirement of autonomous

driving applications [11, 43].
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Recent studies have demonstrated the perception performance enhancement by cooperative

sensing based on raw sensing data fusion which retains the original environmental information

collected by each vehicle [11,22,27]. The raw sensing data has a much larger data size compared

with decision-level object lists. For example, a typical commercial LiDAR sensor using 64 laser

diodes produces 2.8 million data points per second [2]. Due to the large data size of raw sens-

ing data, the traditional broadcast-based cooperative sensing becomes extremely communication

inefficient [2, 8]. Moreover, as the fused raw sensing data should be processed using advanced

artificial intelligence (AI) models such as VoxelNet [63] and PointNet [38] for accurate object

classification, the local computing capability at a single vehicle cannot always support real-time

AI processing for the classification of multiple objects in the environment, especially when the

number of objects is large.

1.3 Motivation and Objective

With mobile edge computing (MEC), the computation-intensive perception task can be offloaded

to a resource-rich edge server, where the raw sensing data transmitted from multiple AVs via

vehicle-to-infrastructure (V2I) communication is fused and processed by powerful AI models

with improved delay performance [10, 27, 57]. Specifically, object-wise sensing data segments

are first extracted from the fused sensing data based on object detection. Then, for each object,

the corresponding sensing data segment in the fused sensing data are processed by an AI model

for object classification. In this edge-assisted cooperative sensing approach, each participating

AV sends its whole raw sensing data to the edge server, and the sensing data segment for each

object is a fusion of the corresponding data from the same group of AVs, referred to as object-
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level unified cooperation. However, due to different spatial relationships between an AV and

different objects, an AV provides differentiated sensing data quality for different objects. For

example, an AV provides sparse sensing data for an object at a distance, and provides limited

sensing data diversity for an object which is partially obstructed from the view of the AV. Hence,

for each object, there exists a minimal set of cooperating AVs that should provide the sensing

data for accurate classification of the object, which is different among objects. If unified co-

operation is employed for the classification of different objects in a perception task, the unified

cooperating AV set should be the union of the minimal cooperating AV sets of each object for

accuracy satisfaction. For the objects whose minimal cooperating AV set is smaller than the

unified cooperating AV set, the accuracy is over-provisioned due to providing more sensing data

than required at the cost of more communication and computing resource consumption.

Therefore, we should investigate a resource efficient cooperative sensing strategy with dif-

ferentiated cooperation among AVs for different objects, referred to as object-level differentiated

cooperation, by selecting a different group of AVs to provide the minimum amount of sensing

data for each object, which reduces both the communication and computing resource demand

while satisfying the accuracy requirement. Moreover, the communication and computing effi-

ciency for cooperative sensing can be further enhanced by distributing partial computing load

among multiple AVs in proximity through V2V communication, which is enabled by the ve-

hicular edge computing (VEC) paradigm [30, 32, 40]. The VEC integrates MEC into IoV, and

creates a distributed computing hierarchy with computing resources distributed among both edge

servers and vehicles. Specifically, as the AI processing for object classification can be paral-

lelized among multiple objects, we can partition a perception task into object-wise subtasks and

place the subtasks in the distributed VEC platform. Each subtask can be placed at a different
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computing node which is either an edge server or an AV with available computing resources. For

each subtask, all the selected sensing data from a unique group of AVs should be transmitted to

the placed computing node via either V2I or V2V communication for fusion and AI processing.

In this way, an AV which initiates a perception task can be assisted by nearby AVs in terms of

both sensing and computing, as the nearby AVs can participate in not only cooperative sensing by

sharing the sensing data but also cooperative computation by sharing the computing resources.

The benefit of distributed computing for cooperative sensing is three folded. First, by moving

some computation to adjacent vehicles, VEC alleviates computing load at the edge server which

is not as powerful as a cloud server. Second, some sensing data are sent to vehicles in proximity

via V2V communication, which is more communication efficient. Third, if an AV is selected to

provide sensing data for a subtask placed at itself, no communication is required for the sensing

data, thus further reducing the total communication demand.

In this thesis, a cooperative perception problem in autonomous driving is studied, to meet the

real-time processing requirement and achieve perception accuracy satisfaction with enhanced

communication and computing resource efficiency. The contributions are summarized as fol-

lows.

• A communication and computing resource efficient cooperative sensing and computing

strategy is proposed for perception tasks in autonomous driving. Specifically, we consider

a perception task for object detection and classification initiated by an AV. For cooperative

sensing, an object-level differentiated cooperation scheme is proposed, which enables dif-

ferentiated data selection from a different group of AVs for the classification of each object,

and reduces the total communication and computing demand by reducing the sensing data

amount required for accuracy satisfaction. For cooperative computation, the computing for
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the classification of multiple objects is parallelized and distributed in a VEC-enabled hier-

archical computing platform, which further improves the communication and computing

resource efficiency;

• To facilitate the differentiated cooperative sensing strategy with high accuracy require-

ment, an accuracy model which characterizes the relationship between data selection de-

cision and object classification accuracy is required. However, no relevant studies have

been done to establish such an accuracy model. Hence, we propose a deep learning ap-

proach to develop an accuracy model, by which the classification accuracy for an object

can be estimated based on data selection decision and the sensing data quality at each AV.

To characterize the data quality of sensing data, a data quality vector is defined to capture

sensing data amount and diversity, both of which affect the classification accuracy;

• A joint data selection, subtask placement and resource allocation problem is formulated as

an optimization problem, which determines 1) the differentiated data selection among AVs

for each object classification subtask, 2) the subtask placement among the computing nodes

including both edge server and AVs, and 3) the transmission resource allocation among

different V2I/V2V links and the computing resource usage at each computing node, to

minimize the total transmission and computing resource consumption while satisfying the

delay and accuracy requirements. A genetic algorithm based solution is proposed, which

iteratively updates the data selection and subtask placement decision until convergence,

based on the feasibility of an resource allocation subproblem and the minimal resource

consumption cost obtained by solving the resource allocation subproblem.
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1.4 Outline of the Thesis

The rest of this thesis is organized as follows. The literature review is presented in Chapter 2

and the system model is presented in Chapter 3. Chapter 4 presents a proposed DNN accuracy

model, a problem formulation for joint data selection, subtask placement and resource allocation

and the corresponding solution. Simulation results are presented in Chapter 5, and conclusions

are drawn in Chapter 6.
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Chapter 2

Literature Survey

Th chapter reviews existing works in cooperative sensing.

2.1 Decision-level Cooperative Sensing

Traditional cooperative sensing allows participating AVs to share alarm messages via periodic

broadcasting, which is called decision-level cooperative sensing [21]. The alarm messages are

processed by AVs individually based on their own sensing data, mainly describing the state

information (e.g., location, size and direction estimates with corresponding covariances) of all

objects in the AVs’ surrounding environments. Related standardized messages include safety

messages (BSMs) [29,34], cooperative awareness messages (CAMs), and cooperative perception

messages (CPMs) [44, 50]. Then, each AV fuses its own object list with all the objects lists

received from nearby AVs. The strategy may extend the object list and improve the detection

accuracy for some objects. For example, if a front AV fully occludes some objects of interest of
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its behind AV, it can transmit the state information of these objects to the AV behind to extend

the its object list.

Communication efficiency is another issue for decision-level cooperative sensing. Many re-

dundant alarm messages can increase the risk that important messages are delayed or even lost,

potentially leading to serious safety threats. A typical way to adjust the network load is to fil-

ter the number of objects in alarm messages. For instance, each AV can intelligently select an

object sublist to be sent at each transmission opportunity depending on each object’s anticipated

value [18]. The value of an object is defined as the relative information entropy of its posterior

knowledge with respect to its prior knowledge. One object is included in the next alarm mes-

sage only when its value is larger than a pre-defined threshold. Moreover, in order to avoid the

network congestion, the frequency of alarm message transmissions should be regulated based on

the channel load [15] [6]. To guarantee fair channel resource sharing among AV, the work in [55]

further investigates a control agent for each AV that coordinates with its neighboring agents to

determine the transmission rate.

2.2 Raw Data-level Cooperative Sensing

Complete safety is difficult to be achieved by decision-level cooperative sensing, as alarm mes-

sages discard many environmental details due to the restricted message size. For example, if

two AVs both fail to detect one object, the fusion of their perception results still fails to detect

such an object [11, 43]. Therefore, raw data-level cooperative sensing is proposed in which each

participating AV shares raw sensing data [11, 22, 27]. Then, the object lists are generated by

each AV based on the fused sensing data from all vehicles. Different from decision-level coop-
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erative perception, raw data-level cooperative perception can fully exploit sensing data without

information loss.

As the size of raw sensing data is large (e.g., a typical commercial LiDAR sensor produces

2.8 million data points per second [2]), the traditional broadcast-based raw data-level cooper-

ative sensing is extremely communication inefficient [2, 8]. To optimize the tradeoff between

communication resource consumption and perception performance, one approach is to intelli-

gently select parts of sensing data for transmission. For instance, as objects close to AVs are

likely to be detected accurately based on their own sensing data, each AV can share only the

sensing data far from the AVs (i.e., outside a circle of the given radius in the horizontal plane)

to further improve perception accuracy. In addition, AVs should be intelligently selected for raw

sensing data sharing. When the network is congested, only the most beneficial AVs for percep-

tion performance enhancement are selected. A related strategy is designed in [27]. As a front

AV usually decreases the LOS area of its behind AV, it is proposed to activate the raw sensing

data transmission from the front AV to the behind AV when their inter-vehicle distance is smaller

than a threshold.

Futhermore, raw data-level cooperative sensing incurs huge computation overhead as each

AV has to process a large amount of raw sensing data from all AVs using advanced artificial in-

telligence (AI) models such as VoxelNet [63] and PointNet [38]. One typical strategy to alleviate

the computing load on AVs is to deploy a computation-intensive perception task at a resource-

rich edge server and require all participating AVs to transmit their raw sensing data to the edge

server [10, 27, 57]. The processed perception results based on the fused sensing data are then

disseminated to all AVs.

11



2.3 Summary

Th chapter separatively reviews existing works in decision-level and raw data-level cooperative

sensing. In the decision-level cooperative perception, the traditional broadcast-based strategy

is introduced and related strategies to adjust the network load are reviewed. Then in the raw

data-level cooperative perception, we introduce the traditional broadcast-based strategy, related

strategies to optimize the tradeoff between communication and computing resource consumption

and perception performance.

12



Chapter 3

System Model

3.1 Autonomous Driving Scenario

As shown in Fig. 3.1, we consider an edge-assisted autonomous driving scenario over a unidirec-

tional urban road segment under the coverage of one road side unit (RSU). The RSU is co-located

with an edge server. Consider N autonomous vehicles (AVs) traveling along the road segment,

including one target AV which initiates a perception task for situational awareness and N − 1

assisting AVs which can cooperate with the target AV for perception. Let N = {0, · · · , N − 1}

denote the set of AVs, with n ∈ N representing the AV index. Specifically, AV 0 corresponds

to the target AV, which requires the environmental information in a region of interest (RoI). In

general, the region of interest (RoI) of target AV can have a customized shape according to the

application scenario, e.g., a circular or rectangular area around or in the driving direction of the

target vehicle, for modeling purposes [2, 53]. Here, we consider an RoI spreading over the the

front area of the target vehicle as illustrated in Fig. 3.1 [2], as more more focus is placed on the

13
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Figure 3.1: An illustration of edge-assisted autonomous driving scenario.

sensing capability in the driving direction of the target vehicle. The range of RoI depends on the

vehicle speed and time of interest [53]. For example, if the target AV with a speed of 60 km/h is

interested in the environment which is 3 seconds ahead of its driving direction, the length of its

RoI is 50 m. The proposed cooperative sensing and computation mechanism can be applied to

an autonomous driving scenario with an RoI in a general shape.

3.2 Object Model

Let integers M and m denote the total number of unknown objects in the target AV’s RoI and

the object index respectively, with 0 ≤ m ≤ M − 1. Let set M contain all object indexes,

i.e., M = {0, · · · ,M − 1}. Let L denote the number of object classes. In Fig. 3.1, we have

L = 4 classes of objects including car, truck, pedestrian and cyclist. Note that both the car

and truck objects are non-autonomous vehicles with human drivers. The perception task of

the target AV is to 1) detect the existence and spatial location of all the M objects in the RoI,

14
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Figure 3.2: An illustration of cuboid regions for six objects in target AV’s RoI.

and 2) estimate the class for each detected object m. The spatial location of object m can be

represented by a 3D cuboid region containing the object, which is characterized by a 9-tuple,

cm =
(
xm, ym, zm, l

(x)
m , l

(y)
m , l

(z)
m , δ

(x)
m , δ

(y)
m , δ

(z)
m

)
. Here, xm, ym, zm specify the 3D location coor-

dinates of the cuboid center, l(x)m , l
(y)
m , l

(z)
m specify the lengths of the cuboid along the x, y, and z

axes, and δ(x)m , δ
(y)
m , δ

(z)
m specify the rotation angles for the cuboid along the x, y, and z axes. Note

that the coordinate parameters, xm, ym, zm, are all defined in the global coordinate system, which

can be obtained by coordinate transformation between local and global coordinate systems [22].

Without loss of generality, we assume zero rotation angles for all the objects. Then, 3D

cuboid region cm for objectm can be characterized by a 6-tuple, cm =
(
xm, ym, zm, l

(x)
m , l

(y)
m , l

(z)
m

)
,

for simplicity. Fig. 3.2 depicts the 3D cuboid regions with zero rotation angles forM = 6 objects

in the target AV’s RoI. Each 3D cuboid region is indicated by a yellow box.
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3.3 Sensing Data Model

2D monocular images are usually used by AVs for object classification. However, due to inde-

terministic locations of 3D image points projected by 2D pixels, it is difficult to fuse multiple 2D

monocular images shared by spatial diverse AVs. Therefore, we consider 3D point clouds, which

are sets of deterministic 3D point locations, for cooperative perception. The data can be gener-

ated by light detection and ranging (LiDAR) sensors or depth cameras [5]. Especially, 3D point

clouds transformed by depth camera images can provide rich enough details for accurate object

classification. Denote the 3D point cloud produced by AV n by Dn = {(xin, yin, zin)}, which is a

set of 3D location coordinates of different observation points in the environment. Each element

of 3D sensing data Dn, (xin, y
i
n, z

i
n), corresponds to one observation point, e.g., an observation

point on the surface of an object. The total number of observation points in sensing data Dn of

AV n is denoted by |Dn|. Note that the observation point location coordinates for different AVs

are all aligned with the global coordinate system via coordinate transformation, as each AV’s

location can be obtained accurately by the global positioning system (GPS) or the simultaneous

localization and mapping (SLAM) techniques [12].

Once the six parameters characterizing 3D cuboid region cm for object m are known, we can

extract a subset of observation points for objectm from Dn, denoted by D(m)
n , which is the partial

sensing data of AV n for objectm. An observation point with 3D location coordinates (xin, y
i
n, z

i
n)

is included in subset D(m)
n if the point is located inside 3D cuboid region cm, represented as


xm − l

(x)
m

2
≤ xin ≤ xm + l

(x)
m

2

ym − l
(y)
m

2
≤ yin ≤ ym + l

(y)
m

2

zm − l
(z)
m

2
≤ zin ≤ zm + l

(z)
m

2
.

(3.1)
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Figure 3.3: Point clouds of two AVs.
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Figure 3.4: Partial sensing data of two AVs for a truck.

If object m is not in the sensing range of AV n due to distance or occlusion, the corresponding

partial sensing data, D(m)
n , is an empty set. As different AVs provide different views from dif-

ferent distances and angles to an object, the partial sensing data of different AVs for the same

object contains a different number of observation points and shows different spatial distribution.

Fig. 3.3 illustrates the sensing data (i.e., LiDAR point clouds) generated by the target AV and an

assisting AV in the network scenario shown in Fig. 3.1. Specifically, the assisting AV is at the

front left corner of a truck in front of the target AV. A 3D cuboid region containing the truck is

indicated by a red box in Fig. 3.3. With such a 3D cuboid region, the partial sensing data corre-

sponding to the truck is extracted from both point clouds and shown in Fig. 3.4. It is observed

that the observation points of the target AV for the truck are concentrated at the back side of the

truck, while the observation points of the assisting AV for the truck mainly spread over the front

and left sides. Fig. 3.4 (b) also shows that the observation points closer to the back of the truck

are more sparse due to longer distance from the assisting AV.
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Figure 3.5: An illustration of cuboid region partition with cuboid region partition resolution K = 2.

Data Quality Vector

To coarsely characterize the spatial distribution of partial sensing data D(m)
n of AV n for objectm,

we partition 3D cuboid region cm for object m into K3 disjoint 3D cuboid sub-regions, where K

denotes the partition resolution corresponding to the number of partitions along each axis. The

lengths of each 3D cuboid sub-region along the x, y, and z axes for object m are l
(x)
m

K
, l

(y)
m

K
and l

(z)
m

K
,

respectively. Fig. 3.5 illustrates the 3D cuboid region partition for both a truck and a cyclist with

K = 2. There are many factors affecting the object classification performance, e.g., the distance

and angle between the sensor and object, and hardware noises of sensors. For simplicity, we

consider only two main factors to estimate object classification performance, i.e., the distance

and angle between the sensor and object, under the assumption that all the sensors have the same

measurement accuracy. Note that, in practice, the sensing data accuracy can change significantly

with the distance and angle between the sensor and object, which should be taken into account

for maximal performance in object classification. For an object, AVs with different relative

distances and angles generate sensing data with different point numbers and spatial distributions.
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Therefore, we characterize the data quality Z(m)
n ∈ RK3 for partial sensing data D(m)

n in terms

of point number and spatial distribution. The k-th (1 ≤ k ≤ K3) element, Z(m)
n,k , in vector Z(m)

n

denotes the number of observation points located inside the k-th 3D cuboid sub-region among

all the observation points in partial sensing data D(m)
n . If the observation points in partial sensing

data D(m)
n are more spatially distributed inside 3D cuboid region cm, more 3D cuboid sub-regions

corresponding to cm contain observation points by AV n on the surface of object m, and data

quality vector Z(m)
n contains more non-zero elements. Typically, if the sensing data for object m

has a data quality vector with more non-zero elements and with a larger value for each non-zero

element, there are more observation points spreading over the surface of the object, leading to a

higher object classification accuracy.

A data quality vector is also defined for the fused partial sensing data of multiple AVs corre-

sponding to the same object. For example, if the partial sensing data of AV n and AV n′ for object

m are fused, the fused sensing data are D(m)
n ∪D(m)

n′ , with a data quality vector of Z(m)
n +Z

(m)
n′ .

As AV n and AV n′ observe object m from different distance and angle, the fused sensing data,

D(m)
n ∪ D(m)

n′ , potentially contains more observation points which are more spatially distributed

over the surface of object m, leading to an improved object classification accuracy. Correspond-

ingly, vector Z(m)
n + Z

(m)
n′ potentially contains more non-zero elements especially if there are

more non-zero elements in vector Z(m)
n and vector Z(m)

n′ at different positions. If both vectors

have a non-zero element at the same position, the corresponding element in Z(m)
n + Z

(m)
n′ has a

larger value.
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3.4 Task Model

The perception task of the target AV is executed in an object detection phase and an object

classification phase sequentially.

Object Detection Phase

The goal of object detection is to successfully detect the existence of all the M unknown ob-

jects in the RoI and have an accurate cuboid region estimation for each object. The accuracy of

cuboid region estimation is usually evaluated by an intersection over union (IoU) metric, which

is the ratio between area of overlap and area of union for the ground-truth and estimated cuboid

regions. Typically, object detection is not highly resource demanding, as periodical broadcasting

by sharing low-resolution sensing data [5] or efficient quadtree data structures [2] can provide

sufficient accuracy for object detection. CarSpeak is proposed to utilize sensing data quality to

further improve the resource efficiency for object detection [24]. Specifically, it uses quadtree

data structures to represent sensor information, defines the information quality of each region

(corresponding to a sub-tree in quadtree data structures) based on completeness and freshness,

and provides each AV a share of the medium proportional to the quality of information it pos-

sesses.

We adopt existing cooperative perception methods in object detection phase which have been

extensively studied. For simplicity, we obtain the estimated cuboid region parameters with the

following operations among target and assisting AVs, as illustrated in Fig. 3.6, again under the

simplified assumption that all the sensing data have the same measurement accuracy. First, each

AV generates a 3D point cloud as raw sensing data. By down-sampling the raw sensing data
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Figure 3.6: Operations among target and assisting AVs in object detection phase for N = 4.

with a given down-sampling ratio, low-resolution sensing data are obtained with reduced data

resolution. Then, each assisting AV transmits the low-resolution sensing data to the target AV.

After the target AV receives the low-resolution sensing data from all the assisting AVs, it fuses all

the received data with its own low-resolution sensing data, and executes a classic object detection

algorithm such as the Euclidean clustering and L-shape fitting algorithm based on the fused low-

resolution sensing data [58, 64]. The output of the object detection algorithm is a group of

estimated 6-tuple cuboid region parameters. Each 6-tuple corresponds to one object in the RoI.

Finally, the target AV transmits the estimated cuboid region parameters to all the assisting AVs.

Broadcast transmission can be used in the whole object detection phase, as the transmission data

size is small.

Object Classification Phase

Object classification is usually performed by a convolution neural network (CNN), which esti-

mates the probabilities of each class for an object based on the point location coordinates in the

3D point cloud. Consider the estimated probability for the true class of object m as the classi-

fication accuracy for object m, denoted by am. Let A denote the accuracy requirement for the
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classification of each object in the RoI. Typically, object classification requires high-resolution

sensing data with large size for good accuracy, which is computation intensive [62]. Here, we use

raw sensing data for object classification. Let T denote the delay requirement for the perception

task in object classification phase. Then, it is required that the classification for any object m

should be completed with accuracy am ≥ A in a time duration not exceeding T .

Without loss of generality, we assume that all the M objects are successfully detected in

the object detection phase, and the estimated cuboid region for object m is sufficiently accurate

to contain the whole object. Let ĉm =
(
x̂m, ŷm, ẑm, l̂

(x)
m , l̂

(y)
m , l̂

(z)
m

)
denote the estimated cuboid

region parameters for object m, based on which the partial sensing data of AV n for object m,

i.e., D(m)
n , can be extracted from the whole sensing data, Dn, of AV n, according to (3.1). The

data quality vector for partial sensing data D(m)
n , i.e., Z(m)

n ∈ RK3 , can be calculated for a given

cuboid region partition resolution K, based on the definition in Subsection 3.3.

With the object-specific partial sensing data for different objects, we can partition the percep-

tion task in object classification phase into M subtasks, among which subtask m is to classify

object m with accuracy am ≥ A within delay bound T .

For subtask m, there are at most N sets of available partial sensing data provided by N AVs.

If the corresponding partial sensing data of multiple AVs are used for subtaskm, the sensing data

should be fused before being processed by a CNN classification model. Let s = {s(m)
n ,∀n ∈

N ,∀m ∈ M} denote a binary data selection decision matrix in RN×M , with decision variable

s
(m)
n = 1 indicating that the partial sensing data of AV n for object m, i.e., D(m)

n , is used for

subtask m, and s(m)
n = 0 otherwise. Let N (m) =

{
n ∈ N

∣∣s(m)
n = 1

}
denote the set of AVs

whose corresponding partial sensing data are selected for subtask m. Then, the fused sensing

data for subtask m, denoted by D(m), are a union of all the selected partial sensing data from
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Figure 3.7: A workflow of sensing data selection, fusion and CNN classification for subtask m with L = 4.

AVs in N (m), given by

D(m) = ∪n∈N (m)D(m)
n . (3.2)

LetZ(m) be a data quality vector which characterizes the data quality of fused sensing data D(m)

for subtask m, referred to as fused data quality vector for subtask m. As defined in Subsec-

tion 3.3, fused data quality vector Z(m) for subtask m is calculated as

Z(m) =
∑
n∈N

s(m)
n Z(m)

n (3.3)

where Z(m)
n is the data quality vector for partial sensing data D(m)

n .

For subtask m, fused sensing data D(m) is processed by a CNN classification model, which
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generates an L-dimension estimated class probability vector for subtask m, where L is the num-

ber of object classes. Fig. 3.7 shows a workflow of sensing data selection, fusion and CNN

classification for subtask m with L = 4.

3.5 Computing Model

With vehicular edge computing, the perception task of the target AV can be processed locally

at the target AV or remotely at the RSU and assisting AVs in proximity. Note that the RSU is

co-located with an edge server, thus providing computing capability. Let N+ = N ∪{N} denote

the set of computing nodes including all the AVs in set N and the RSU which is referred to as

computing node N . If AV n serves as a computing node for any subtask, we refer to AV n as

computing node n. Let fn denote the amount of available computing resources (in cycle/s) at

computing node n ∈ N+. Here, we focus on the computing model in the object classification

phase, with the consideration of high computing demand for object classification.

As mentioned, the perception task in object classification phase is partitioned into M sub-

tasks, each for an object. Each subtask is placed at a computing node. Let e = {e(m)
n ,∀n ∈

N+, ∀m ∈ M} denote a binary subtask placement decision matrix in R(N+1)×M , with deci-

sion variable e(m)
n = 1 indicating that subtask m is placed at computing node n, and e(m)

n = 0

otherwise. Subtask m must be placed at a single computing node, given by

∑
n∈N+

e(m)
n = 1, ∀m ∈ M. (3.4)

If e(m)
n = 1, all the selected partial sensing data for subtaskm from different AVs should be fused
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and then computed at computing node n.

Let ϵ denote the computation intensity (in cycle/point) which is the average number of CPU

cycles for computing one observation point in sensing data. Then, the computing demand in

CPU cycles for subtask m, denoted by µ(m), depends on the total number of observation points

in all the selected partial sensing data from different AVs, given by

µ(m) = ϵ
∑
n∈N

s(m)
n

∣∣D(m)
n

∣∣, ∀m ∈ M (3.5)

where
∣∣D(m)

n

∣∣ is the number of observation points in partial sensing data D(m)
n .

Each computing node can support multiple subtasks. The computing demand in CPU cycles

for all the subtasks placed at computing node n, denoted by µn, is given by

µn =
∑
m∈M

e(m)
n µ(m), ∀n ∈ N+. (3.6)

Let α = {αn, ∀n ∈ N+} be a continuous decision vector in RN+1, where αn represents the

fraction of computing resource usage at computing node n. Then, the computing time for all the

subtasks placed at computing node n, denoted by tn, is given by

tn =


µn

αnfn
, ∀n ∈ N+ if αn > 0

0, ∀n ∈ N+ if αn = 0.
(3.7)
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3.6 Communication Model

Here, we focus on the communication model in the object classification phase, with the consid-

eration of large raw data size for transmission in object classification.

If AV n provides partial sensing data D(m)
n for subtask m, i.e, s(m)

n = 1, and subtask m

is placed at computing node n′ ∈ N+\{n}, i.e., e(m)
n′ = 1, partial sensing data D(m)

n should

be transmitted from AV n to computing node n′. Let φ denote the data size (in bit) of one

observation point in sensing data. Then, the total size of the sensing data transmitted over the

communication link from AV n to computing node n′, denoted by ρn,n′ , is given by

ρn,n′ = φ
∑
m∈M

s(m)
n e

(m)
n′

∣∣D(m)
n

∣∣, ∀n ∈ N , ∀n′ ∈ N+\{n} (3.8)

which incorporates all the partial sensing data transmitted between AV n and computing node n′

for different subtasks. Note that the wireless communication link between AV n and computing

node n′ corresponds to a V2I link if n′ = N , and corresponds to a V2V link otherwise. Orthogo-

nal frequency division multiplexing (OFDM) based V2X transmissions are employed for AVs to

communicate with each other and with the RSU. Consider that all the V2I and V2V links share

a spectrum with total bandwidth B.

Let β = {βn,n′ ,∀n ∈ N ,∀n′ ∈ N+} denote a continuous bandwidth allocation decision

matrix in RN×(N+1), where βn,n′ represents the fraction of bandwidth allocated to the communi-

cation link from AV n to computing node n′. We have βn,n ≡ 0 for n ∈ N . The total fraction of
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bandwidth allocated to different communication links should not exceed 1, given by

∑
n∈N

∑
n′∈N+

βn,n′ ≤ 1. (3.9)

The average transmission rate over the communication link from AV n to computing node n′,

denoted by Rn,n′ , is given by

Rn,n′ = βn,n′B log2

(
1 +

Pn

∣∣hn,n′
∣∣2d−γ

n,n′

σ2

)
(3.10)

where Pn denotes the uplink transmit power of AV n, hn,n′ is the channel fading coefficient from

AV n to computing node n′, dn,n′ is the distance between AV n and computing node n′, γ is

the path loss exponent, and σ2 represents the noise power. Here, we assume constant distance

dn,n′ during the perception task period, with the consideration of low latency requirement for the

perception task, e.g., T = 20ms. For example, for two vehicles with a relative speed of 30 km/h

driving in the same direction on an urban road, the distance between the two vehicles changes for

only around 17cm over a time duration of 20ms, which is negligible [39]. Then, the transmission

time for all the sensing data transmitted from AV n to computing node n′, denoted by tn,n′ , is

given by

tn,n′ =


ρn,n′

Rn,n′
, ∀n ∈ N ,∀n′ ∈ N+\{n} if βn,n′ > 0

0, ∀n ∈ N ,∀n′ ∈ N+ if βn,n′ = 0.
(3.11)
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3.7 Summary

The chapter describes the system models covering main aspects of an autonoumous driving sce-

nario including object spatial distributions, sensing data of AVs, a perception task of a target AV,

a communoication and computing model.
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Chapter 4

Problem Formulation and Solution

4.1 DNN-Based Classification Accuracy Estimation

For subtask m, the CNN classification accuracy (i.e., the estimated true class probability by the

CNN classification model) fully depends on fused sensing data D(m) and the CNN classification

model. Consider a pre-trained CNN classification model with fixed parameters. Then, the main

factor affecting the classification accuracy for subtask m is the data quality of fused sensing data

D(m), which is characterized by fused data quality vector Z(m). As the fused data quality vector

for each subtask depends on the corresponding data selection decision according to (3.3), the

classification accuracy for each subtask also depends on the data selection decision.

The ground-truth CNN classification accuracy for subtask m, i.e., am, is unknown until fused

sensing data D(m) is processed by the CNN classification model. Hence, for data selection de-

cision with accuracy satisfaction, accuracy estimation is required, to estimate the CNN classifi-

cation accuracy for any candidate data selection decision given the partial sensing data quality
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of each AV for each subtask. We profile an accuracy estimation function by a DNN model, re-

ferred to as DNN accuracy model, with fused data quality vector and cuboid region dimensions

as inputs and classification accuracy as output, which is represented as

âm = fDNN
(
Z(m), l(x)m , l(y)m , l(z)m

)
, ∀m ∈ M (4.1)

where âm denotes the estimated CNN classification accuracy for subtask m, Z(m) is the fused

data quality vector for subtaskm given by (3.3), and {l(x)m , l
(y)
m , l

(z)
m } are cuboid region dimensions

for object m. As an object with smaller size tends to require less observation points for accurate

classification, the relationship between accuracy and the fused data quality vector is different for

different classes of objects with different dimensions, which motivates us to include the cuboid

region dimensions in the accuracy estimation function. The DNN model for accuracy estimation

has an input dimension of (K3 + 3) and an output dimension of one, which can be pre-trained

offline with simulated point cloud data in autonomous driving scenarios and refined online with

real-world point cloud data. More details on DNN model training are given in Section 5.

The CNN classification model and the DNN accuracy model are related to each other. The

CNN classification model takes the fused sensing data for a subtask as input and estimates a

class probability vector as output; while the DNN accuracy model takes the fused data quality

vector and cuboid region dimensions for a subtask as input and estimates a classification accuracy

as output. For subtask m, the DNN accuracy model outputs an estimated CNN classification

accuracy, âm, as an estimation for the ground-truth CNN classification accuracy, am, which can

be obtained by processing fused sensing data D(m) using the CNN classification model.
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4.2 Problem Formulation

We focus on the object classification phase for a perception task initiated by the target AV. The

assisting AVs can cooperate with the target AV for the perception task in terms of both cooper-

ative sensing and cooperative computation. If assisting AV n provides partial sensing data for

at least one subtask, i.e.,
∑

m∈M s
(m)
n ≥ 1, we say that it participates in the cooperative sens-

ing with the target AV. If at least one subtask is placed at computing node n ∈ N\{0}, i.e.,∑
m∈M e

(m)
n ≥ 1, assisting AV n participates in the cooperative computation with the target AV.

The RSU with computing capability provided by a co-located edge server can also participate in

cooperative computation by supporting the computation of at least one subtask.

To satisfy the accuracy and delay requirements of the perception task, we investigate a coop-

erative perception strategy which coordinates the differentiated sensing data selection and place-

ment for multiple subtasks of the perception task, with efficient transmission resource allocation

among multiple AVs and RSU, and with minimum computing resource consumption at all com-

puting nodes. The decision variables for cooperative perception include binary data selection

decision matrix, s ∈ RN×M , binary subtask placement decision matrix, e ∈ R(N+1)×M , continu-

ous computing resource usage decision vector, α ∈ RN+1, and continuous bandwidth allocation

decision matrix, β ∈ RN×(N+1). The goal is to minimize the total transmission and computing

resource consumption, while satisfying the quality-of-service (QoS) requirement of the percep-

tion task in terms of accuracy and delay.

A controller placed at the edge server makes the cooperative perception decision. Fig. 4.1

shows the interactions between the controller and AVs for cooperative perception. The relation-

ship between object detection and classification phases is also illustrated. Specifically, with the
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Figure 4.1: An illustration of interactions between controller and AVs for cooperative perception.

low-resolution sensing data of each AV, an object detection algorithm at the target AV estimates

a set of cuboid region parameters for different objects, i.e., {ĉm,∀m ∈ M}, based on which

each AV can extract the partial sensing data for each object and calculate the corresponding data

quality vectors. The controller takes the data quality vectors of different AVs and the cuboid

region dimensions among the cuboid region parameters as input for cooperative perception de-

cision. The data selection and subtask placement decisions are sent to corresponding AVs and

computing nodes for execution of CNN classification.

According to Section 4.1, the CNN classification accuracy for subtask m, âm, can be esti-

mated by a pre-trained DNN accuracy model, for each candidate data selection decision. For

accuracy satisfaction, the accuracy of each subtask should satisfy the accuracy requirement A,

given by

fDNN

(∑
n∈N

s(m)
n Z(m)

n , l(x)m , l(y)m , l(z)m

)
≥ A, ∀m ∈ M (4.2)
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according to (3.3) and (4.1). In (4.2), Z(m)
n , l(x)m , l(y)m , l(z)m are known parameters for cooperative

perception decision, as indicated in Fig. 4.1.

Assume that all the AVs that are selected to send sensing data to other computing nodes

start the data transmission simultaneously. We also assume that the computation at a comput-

ing node is started once the node receives selected sensing data for all the assigned subtasks.

Then, for any subtask placed at computing node n′, the subtask is completed in at most a time

of (maxn′∈N tn,n′) + tn′ . As the completion time for all the subtasks placed at different comput-

ing nodes should not violate the task delay requirement, T , we have a delay constraint for the

perception task in object classification phase as

max
n′∈N+

((
max
n∈N

tn,n′

)
+ tn′

)
≤ T (4.3)

which is equivalent to

tn,n′ + tn′ ≤ T, ∀n ∈ N , ∀n′ ∈ N+. (4.4)

Let χ = {χn,n′ ,∀n ∈ N ,∀n′ ∈ N+} be an auxiliary binary decision matrix in RN×(N+1),

with χn,n′ = 1 indicating that the wireless communication (either V2I or V2V) link between AV

n and computing node n′ is activated, i.e, AV n sends its partial sensing data for at least one

subtask to computing node n′, and χn,n′ = 0 otherwise. We have χn,n ≡ 0 for n ∈ N . The

relationship among χ, data selection decision s, and subtask placement decision e is given by

∑
m∈M s

(m)
n e

(m)
n′

M
≤ χn,n′ ≤

∑
m∈M

s(m)
n e

(m)
n′ , ∀n ∈ N , ∀n′ ∈ N+. (4.5)
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According to (4.5), we have χn,n′ = 0 for
∑

m∈M s
(m)
n e

(m)
n′ = 0 when no sensing data are sent

from AV n to computing node n′ for any subtask, and χn,n′ = 1 otherwise. Under the assumption

that each AV is equipped with one half-duplex transceiver radio, at most one communication link

starting or ending at AV n can be activated, given by

∑
n′∈N+\{n}

χn,n′ +
∑

n′∈N\{n}

χn′,n ≤ 1, ∀n ∈ N . (4.6)

Specifically, an AV can participate in either V2I or V2V communication during one perception

task period but not in both. For V2I communication, it acts as a transmitter. For V2V communi-

cation, it acts as either a transmitter or a receiver in at most one V2V pair. For example, if AV

n is selected to provide sensing data for multiple subtasks, all the subtasks should be placed at

either itself or another single computing node, as at most one V2I or V2V link from AV n to

another computing node can be activated. If AV n is selected as the computing node for multiple

subtasks, the corresponding partial sensing data for the subtasks can be sent from at most one AV

other than AV n via a V2V link to AV n. Note that (4.6) does not hold for n = N , as multiple V2I

links from different AVs to computing node N (i.e., the RSU) can be activated simultaneously

due to multiple transceiver radios at the RSU.

Let o denote the total resource consumption cost for cooperative perception, which is a

weighted summation of the total transmission and computing resource consumption, given by

o = ωB
∑
n∈N

∑
n′∈N+

βn,n′ + (1− ω)
∑
n∈N+

αnfn (4.7)

with weighting factor ω ∈ (0, 1). To minimize the total resource consumption cost, o, for cooper-
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ative perception in the autonomous driving scenario, we formulate a joint data selection, subtask

placement, and resource allocation problem as optimization problem P1, given by

P1 : min
e,s,β,α,χ

o

s.t. (3.4), (3.9), (4.2), (4.4), (4.5), (4.6)

s(m)
n ∈ {0, 1}, ∀m ∈ M, ∀n ∈ N

e(m)
n ∈ {0, 1}, ∀m ∈ M, ∀n ∈ N+

χn,n′ ∈ {0, 1}, ∀n ∈ N , ∀n′ ∈ N+

χn,n = 0, ∀n ∈ N

0 ≤ βn,n′ ≤ 1, ∀n ∈ N , ∀n′ ∈ N+

βn,n = 0, ∀n ∈ N

0 ≤ αn ≤ 1, ∀n ∈ N+.

Problem P1 has constraints in terms of topology, accuracy, delay, and resource capacity. The

topology constraints include the single computing node placement constraint for each subtask in

(3.4), and the half-duplex communication constraints of each AV in (4.5) and (4.6). The accuracy

and delay constraints are given by (4.2) and (4.4), respectively. Constraint (3.9) corresponds to

the transmission resource capacity constraint, and the remaining constraints are range require-

ments for the decision variables.
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4.3 Problem Solution

Problem P1 is non-convex due to the nonlinear accuracy and delay constraints in (4.2) and (4.4).

Moreover, the accuracy constraint in (4.2) which incorporates DNN-based accuracy estimation

does not have a closed-form expression, making the problem intractable. We notice that the

accuracy and topology constraints depend on only the binary decision variables including data

selection and subtask placement, while the delay and resource capacity constraints depend on

the joint decisions of data selection, subtask placement, and resource allocation. Once the data

selection and subtask placement decisions are given, the delay and resource capacity constraints

and the objective function depend on only the resource allocation decision.

We propose an iterative solution to problem P1. In the solution, an outer module iteratively

optimizes the data selection and subtask placement based on a genetic algorithm, which relies

on an inner module to check the feasibility and cost. In each interaction between the inner and

outer modules, the outer module provides the inner module with a candidate data selection and

subtask placement solution, denoted by (s, e), which is feasible in terms of the accuracy and

topology constraints. Given an (s, e) pair, the inner module optimizes the resource allocation

for a minimal total resource consumption cost with delay constraint satisfaction, by solving a

resource allocation subproblem. If the subproblem is infeasible, the accuracy and topology fea-

sible candidate data selection and subtask placement solution, (s, e), is infeasible in terms of

delay and resource constraints, and the outer module should abort the bad (s, e) pair. Otherwise,

(s, e) is feasible in terms of all constraints in problem P1, and a cost corresponding to (s, e)

provided by the inner module should be evaluated by the outer module.

Fig. 4.2 illustrates the interactions between the outer module based on a genetic algorithm
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Figure 4.2: An illustration of interactions between genetic algorithm and resource allocation subproblem.

and the inner module which solves a resource allocation subproblem, where κ (s, e) denotes the

feasibility of the resource allocation subproblem given (s, e), and o∗ (s, e) denotes the minimal

total resource consumption cost obtained by solving the resource allocation subproblem given

(s, e), as defined in Subsection 4.3.1.

4.3.1 Resource Allocation Subproblem

Given an (s, e) pair, the auxiliary binary link activation decision matrix, χ ∈ RN×(N+1), is

uniquely determined according to (4.5). Based on known link activation status, χ, given (s, e),

we consider a network topology represented as a directed graph G = {N A,LA}, where N A ⊂

N+ is a set of nodes composed of the starting and ending nodes (either AV or RSU) of all the

activated links, and LA is a set of directed links composed of all the activated links. For nodes

n ∈ N and n′ ∈ N+, let (n, n′) denote a directed link from node n to node n′. We have n ∈ N A,

n′ ∈ N A and (n, n′) ∈ LA if link (n, n′) is activated, i.e., χn,n′ = 1.

Let αA = {αn,∀n ∈ N A} denote the fractions of computing resource usage at the nodes

in set N A, and let βA = {βn,n′ ,∀(n, n′) ∈ LA} denote the fractions of bandwidth allocated to

the links in set LA. Given the data selection and subtask placement decisions, i.e., (s, e), the

remaining unknown resource allocation decision variables in problem P1 include αA and βA.
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Other resource allocation decision variables are all equal to 0.

The computing demand in CPU cycles at node n ∈ N A, i.e., µn, and the total size of the sens-

ing data transmitted over link (n, n′) ∈ LA, i.e., ρn,n′ , are constant parameters given an (s, e) pair,

according to (3.6) and (3.8). Let constant Cn = µn

fn
denote the computing time at node n using all

the available computing resources, i.e., αn = 1. Let constant Cn,n′ =
ρn,n′

B log2

(
1+Pn|hn,n′ |2d−γ

n,n′

/
σ2

)
denote the transmission time over link (n, n′) using whole bandwidth B, i.e., βn,n′ = 1.

The resource allocation subproblem for the inner module is to minimize the total resource

consumption cost by determining the resource allocation decision variables, αA and βA, while

satisfying the task delay requirement under resource capacity constraints. The resource allocation

subproblem is formulated as an optimization problem, given by

P2 : min
αA,βA

ωB
∑

(n,n′)∈LA

βn,n′ + (1− ω)
∑
n∈N A

αnfn

s.t.
∑

(n,n′)∈LA

βn,n′ ≤ 1

Cn,n′

βn,n′
+
Cn′

αn′
≤ T, ∀(n, n′) ∈ LA (4.8)

0 < βn,n′ ≤ 1, ∀(n, n′) ∈ LA

0 < αn ≤ 1, ∀n ∈ N A

where the delay constraint in (4.8) is rewritten based on (3.7), (3.11) and (4.4). Let κ (s, e) be a

binary feasibility flag for problem P2 given (s, e), with κ (s, e) = 1 if problem P2 is feasible

given (s, e), and κ (s, e) = 0 otherwise. Let o∗ (s, e) be the optimal objective value of problem

P2 given (s, e), corresponding to the minimal total resource consumption cost with optimal
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resource allocation. Note that o∗ (s, e) is defined only when problem P2 is feasible given (s, e),

i.e., κ (s, e) = 1. When problem P2 is infeasible given (s, e), o∗ (s, e) is undefined.

Due to the nonlinear delay constraint in (4.8), problem P2 is non-convex. We transform

the problem to a second-order cone programming (SOCP) problem with zero optimality gap by

introducing several auxiliary decision variables, with details presented in Appendix.

4.3.2 Genetic Algorithm

The outer module in the solution to problem P1 jointly optimizes the data selection decision, s,

and the subtask placement decision, e, by solving an optimization problem given by

P3 : min
e,s,χ

o∗ (s, e)

s.t. (3.4), (4.2), (4.5), (4.6)

κ (s, e) = 1 (4.9)

s(m)
n ∈ {0, 1}, ∀m ∈ M, ∀n ∈ N

e(m)
n ∈ {0, 1}, ∀m ∈ M, ∀n ∈ N+

χn,n′ ∈ {0, 1}, ∀n ∈ N , ∀n′ ∈ N+

χn,n = 0, ∀n ∈ N

where o∗ (s, e) and κ (s, e) are the minimal total resource consumption cost and the binary fea-

sibility flag of resource allocation subproblem P2 for a given (s, e) pair, respectively, both pro-

vided by the inner module given (s, e). Let ς (s, e) be a binary feasibility flag for problem P3

given a joint data selection and subtask placement solution, (s, e), with ς (s, e) = 1 indicating

40



that all the constraints in problem P3 are satisfied for the given (s, e) pair, and ς (s, e) = 0 other-

wise. Specifically, to check whether the accuracy constraint in (4.2) is satisfied or not for a given

(s, e) pair, the DNN model for accuracy estimation should run M times to estimate the accuracy

for M subtasks, given the data selection decision, s, and other known parameters including data

quality vectors and cuboid region dimensions. To check whether constraint (4.9) is satisfied or

not for a given (s, e) pair, the feasibility of resource allocation subproblem Problem P2 should

be checked given the (s, e) pair.

To solve problem P3 with the intractable DNN based accuracy constraint in (4.2), we pro-

pose a genetic algorithm (GA) which iteratively optimizes the joint data selection and subtask

placement decision by selecting the candidate solutions (referred to as individuals in GA) with

a lower cost (referred to better fitness in GA) in a current generation to reproduce new individu-

als in the next generation [14, 41, 47]. Here, an individual corresponds to a candidate joint data

selection and subtask placement solution, (s, e).

Let integer τ be the generation index. A population of J individuals in generation τ + 1

are reproduced based on the population in generation τ . Let J = {0, · · · , J − 1} denote the

index set for J individuals in each generation. An individual in GA is usually represented by a

sequence of genes. Here, we consider M genes for each individual, each gene corresponding to

the data selection and subtask placement decision for one subtask. Specifically, the m-th gene of

an individual corresponding to a candidate solution (s, e), denoted by vm, is a concatenated data

selection and subtask placement decision vector for subtask m, given by

vm = [sm, em] , ∀m ∈ M (4.10)
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where sm = {s(m)
n ,∀n ∈ N} and em = {e(m)

n ,∀n ∈ N+} represent the data selection and

subtask placement decisions for subtask m, respectively. Let vτ,jm denote the m-th gene of the

j-th individual in generation τ . Then, the j-th individual in generation τ containing a set of M

genes, denoted by Vτ,j , is represented as

Vτ,j =
{
vτ,jm , ∀m ∈ M

}
. (4.11)

Individual Vτ,j corresponds to the j-th candidate joint data selection and subtask placement

solution in generation τ , denoted by (sτ,j, eτ,j). Then, the cost of individual Vτ,j , denoted by

oτ,j , is given by oτ,j = o∗ (sτ,j, eτ,j), which is the minimal total resource consumption cost

obtained by solving problem P2 given (sτ,j, eτ,j). The feasibility of individual Vτ,j , denoted by

ςτ,j , is given by ςτ,j = ς (sτ,j, eτ,j), which represents the feasibility of problem P3 for (sτ,j, eτ,j).

Each individual in generation τ has a different probability to be selected as a parent to re-

produce offspring individuals in generation τ + 1. Let pτ,j denote the selection probability for

individual Vτ,j in generation τ , given by

pτ,j = 1− oτ,j∑J−1
j′=0 o

τ
j′

(4.12)

which indicates that the individuals with a lower cost among a population have a higher proba-

bility to be selected for reproduction.

Let Φτ denote the population in generation τ , which is a set of individuals with size J ,

represented as

Φτ =
{
Vτ,j, ∀j ∈ J

}
. (4.13)
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There are two key operations in GA, i.e., crossover and mutation, to reproduce new candidate

individuals for the next generation based on the population in a current generation, as follows.

• Crossover: For crossover, two individuals in the current population are randomly selected

based on the cost-dependent selection probability in (4.12). Let V1 = {v1m,∀m ∈ M} and

V2 = {v2m,∀m ∈ M} denote the two selected individuals. Then, based on a random gene

position, m̂ ∈ M, a new candidate individual with combined genes from both individuals,

denoted by VC , is generated by inheriting the genes of individual V1 before the random

gene position and the genes of individual V2 after it, given by

VC =
{
v1m, 0 ≤ m ≤ m̂− 1

}
∪
{
v2m, m̂ ≤ m ≤M − 1

}
; (4.14)

• Mutation: For mutation, one individual in the current population is randomly selected.

Then, based on a random gene position, a new candidate individual is generated by re-

placing the gene at the randomly selected position of the original individual by a random

gene.

The GA algorithm for joint data selection and subtask placement operates as follows, with

a pseudo code presented in Algorithm 1. It starts with a population of J randomly generated

feasible individuals in the initial generation, denoted by Φ0, among which the j-th individual,

V0,j ∈ Φ0, has cost o0,j and feasibility ς0,j = 1. Then, the GA algorithm iteratively reproduces

a new population including J individuals with a potentially lower average cost for each new

generation, until a maximum number of iterations, Γ, is reached.

Specifically, in iteration τ , the J new individuals forming population Φτ+1 are reproduced

based on population Φτ . Let Vτ,j∗ denote an elite individual in population Φτ with the minimal
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Algorithm 1: Genetic algorithm for data selection and subtask placement
1 Initialization: Generate an initial population Φ0 = {V0,j,∀j ∈ J } containing J

random feasible individuals for generation τ = 0;
2 for each generation with 0 ≤ τ ≤ Γ− 1 do
3 The elite individual with the minimal cost in population Φτ survives to generation

τ + 1, i.e., Vτ+1,0 = Vτ,j∗ and oτ+1,0 = oτ,j
∗;

4 for 2 ≤ j ≤ J do
5 Selection: Randomly select two individuals V1 and V2 with cost o1 and o2 from

population Φτ based on the cost-dependent selection probability in (4.12);
6 Set Vτ+1,j = V1 and oτ+1,j = o1 by default;
7 Generate candidate individual V̂ by crossover between V1 and V2 with a

probability of pC , and by mutation based on V1 with a probability of pM ;
8 if Candidate individual V̂ is feasible (i.e., ς̂ = 1) then
9 Set Vτ+1,j = V̂ and oτ+1,j = ô.

cost, where j∗ is the index of the elite individual, given by

j∗ = argmin
j∈J

oτ,j. (4.15)

The elite individual, Vτ,j∗ , survives to generation τ + 1, and becomes an individual with index

j = 0 in population Φτ+1, i.e., Vτ+1,0 = Vτ,j∗ . To generate the j-th individual for 1 ≤ j ≤ J−1

in generation τ + 1, i.e., Vτ+1,j , two individuals in population Φτ , denoted as V1 and V2, are

randomly selected based on the cost-dependent selection probability. Let o1 and o2 denote the

cost of V1 and V2, respectively. A candidate individual, V̂, is generated by crossover between

V1 and V2 with a probability of pC , and by mutation based on one of the selected individuals,

e.g., V1, with a probability of pM . Let ς̂ and ô denote the feasibility and cost of candidate

individual V̂. Note that ô is defined only if candidate individual V̂ is feasible. If candidate

individual V̂ is feasible, i.e., ς̂ = 1, Vτ+1,j is set as V̂, with oτ+1,j = ô. Otherwise, Vτ+1,j is set
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as one of the selected individuals, e.g., V1, by default, with oτ+1,j = o1.

4.4 Summary

In the chapter, we first deign a DNN accuracy model to estimate the classification accuracy for

each subtask depending on the corresponding data selection decision. Then, we formulate a

problem for joint data selection, subtask placement and resource allocation. The solution for the

formulated problem is finally given.
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Chapter 5

Performance Evaluation

5.1 Simulation Setup

As the genetic algorithm relies on a DNN accuracy model for accuracy satisfaction according

to (4.2), we should pre-train a DNN model for accuracy estimation, with an input dimension of

(K3+3) and an output dimension of one, where K has four candidate values in {1, 2, 3, 4}. The

default value of K is set to 3. The DNN model has two hidden layers with (32, 16) neurons be-

tween the input and output layers. The activation function for each hidden layer is Relu. Due to

the K-dependent input dimension, the DNN model for accuracy estimation has a K-dependent

model structure. To train the DNN model, we first create a training dataset consisting of 5600

labeled training data. Specifically, we use an automated driving toolbox in Matlab and simulate

multiple random autonomous driving scenarios with a random number of AVs and objects ran-

domly distributed on a road. Each AV is equipped with one sensor or depth camera on top of the

vehicle. For each simulated scenario, a number of simulated point clouds are generated at the
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AVs, which are randomly fused to generate more simulated LiDAR point clouds with different

point number and spatial distribution. Based on the random simulated point clouds, we obtain

multiple random object-level sensing data segments by extracting the partial sensing data for

each object from each point cloud. Each random object-level sensing data segment corresponds

to one K-dependent training data, which is a (K3 + 3)-dimension vector concatenated from a

K3-dimension data quality vector for the sensing data segment and three dimension values (in-

cluding length, width, height) for the cuboid region of the corresponding object. Note that the

cuboid region parameters are known for each class of objects with given size. To obtain the label

associated with one training data, the corresponding sensing data segment is processed using a

CNN classification model, which estimates a class probability vector with a certain accuracy.

The ground-truth CNN classification accuracy, i.e., the estimated probability for the true class,

is set as the label associated with the corresponding training data. Here, we use a well-known

VoxelNet model developed for 3D point cloud inputs as the CNN classification model [63]. With

the training dataset, we can train the DNN model for accuracy estimation by minimizing the

mean squared error (MSE) between the estimated and ground-truth CNN classification accuracy

for each training data in the training dataset.

With the pre-trained DNN model for accuracy estimation, we can evaluate the performance

of the proposed cooperative sensing and computation scheme. We consider a VEC-enabled au-

tonomous driving scenario with one target AV and three assisting AVs, on a unidirectional road

segment with a length of 50 m under the coverage of one RSU, as illustrated in Fig. 3.1. There

are six objects distributed in the target AV’s RoI, including two trucks, two cars, one pedestrian

and one cyclist. The perception task of the target AV is to correctly detect and classify the six

objects in the RoI. We set the perception delay requirement as T = 20 ms, and set the accuracy
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Table 5.1: System parameters in simulation

Parameters Value

Bandwidth (B) 20 MHz
Noise power (σ2) 10−13 W
Transmit power (Pn) 1 W
Path-loss exponent (γ) 3.4
Channel fading coefficient (|hn,n′ |2) 1
Available computing resources at AV n
(fn)

1010 cycle/s

Available computing resources at RSU
(fN )

2× 1011 cycle/s

Data size per observation point (φ) 192 bit

requirement, A, among two candidate values in {0.7, 0.9}. The system parameters are given

in Table 5.1. For simplicity, we assume identical noise power, transmit power, channel fading

coefficient, and computing capability among all the AVs. We use the automated driving toolbox

to simulate the 3D point cloud generation by both the target and assisting AVs in the considered

transportation scenario. To obtain the low-resolution sensing data at each AV for object detec-

tion, the simulated raw sensing data (i.e., point cloud) at each AV is down-sampled by averaging

the observation points in each 0.1× 0.1× 0.1m3 grid to one point in the low-resolution sensing

data. Then, the cuboid region parameters for each object are estimated based an existing object

detection algorithm. Specifically, we use the Euclidean clustering and L-shape fitting algorithm

for object detection [58, 64]. Based on the cuboid region parameters, the partial sensing data for

each object is extracted from the simulated raw sensing data at each AV, and the corresponding

data quality vectors are calculated. Given the cuboid region dimensions and data quality vectors,

the genetic algorithm for joint cooperative sensing and computation is executed, which gives a

joint data selection, subtask placement, and resource allocation solution for the perception task
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Figure 5.1: Relationship between classification accuracy and point number for three groups of sensing data segments
for a truck.

in the considered transportation scenario. For each feasible candidate joint data selection and

subtask placement decision in the iterations of the genetic algorithm, the optimal resource allo-

cation is obtained by solving an SOCP problem P4 in Appendix using the Gurobi optimization

solver [1]. The computation intensity (in cycle/point), ϵ, is selected among four candidate values

from 10000 to 40000. The default computation intensity is set to ϵ = 30000 cycle/point. By

evaluating the total communication resource consumption in the unit of MHz and the total com-

puting resource consumption in the unit of Giga cycles/s, the two terms in (4.7) are comparable.

We set weighting factor ω in (4.7) to 0.33.

5.2 Simulation Results

We first evaluate the impact of point number and spatial distribution of the observation points for

an object on the object classification accuracy. We use the sensing data of the target AV and one

assisting AV for a truck in front of the target AV for the evaluation, as illustrated in Fig. 3.4. The

assisting AV is at the front left corner of the truck. Three raw sensing data segments for the truck

are used, corresponding to the raw partial sensing data of the target AV, the raw partial sensing
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data of the assisting AV, and the fused raw partial sensing data of both AVs, which contain a

total number of 5610, 12594 and 18204 observation points respectively. For each raw sensing

data segment, a group of sensing data segments with different data resolution are generated by

down-sampling the raw sensing data segment using different down-sampling ratios from 0.01

to 1. The sensing data segments within one group contain a different number of observation

points for the truck. The three groups of sensing data segments with different data resolution are

processed using the CNN classification model, and a classification accuracy is obtained for each

sensing data segment. Fig. 5.1 shows the relationship between classification accuracy and point

number for the three groups of sensing data segments. As the observation points of the target

AV for the truck are concentrated at the back side of the truck with a low sensing data diversity,

we see in Fig. 5.1 (a) that the classification accuracy increases slowly to between 70% and 75%

as the point number increases and gradually saturates with further increase of point number,

inferring that adding more observation points without improving the sensing data quality brings

limited accuracy gain, especially when the point number is already large. By contrast, as the

observation points of the assisting AV for the truck mainly spread over the front and left sides,

providing more sensing data diversity, we see in Fig. 5.1 (b) that the classification accuracy

increases more rapidly with the increase of point number and approaches 100% with less than

1500 observation points, inferring that less observation points with better sensing data diversity

are required to achieve the same classification accuracy. However, the accuracy gain brought

by further increasing the sensing data diversity is also limited, as demonstrated in Fig. 5.1 (c).

Although the fused sensing data broadly covers three sides (left, front and back sides) of the

truck, the relationship between classification accuracy and point number is similar to that in

Fig. 5.1 (b). With the same number of observation points covering two or three sides of the
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Figure 5.2: Performance of the K-dependent DNN model for accuracy estimation in terms of MSE.

truck, a similar classification accuracy is achieved, although the fused data covering three sides

has a better sensing data diversity. It infers that the sensing data diversity by covering the left

and front sides of the truck is sufficient for accurate classification.

For each candidate value of cuboid region partition resolution K among {1, 2, 3, 4}, a DNN

model for accuracy estimation with a K-dependent input dimension is trained based on a K-

dependent training dataset. The training error of each DNN model is evaluated by the MSE

between the estimated classification accuracy values and the ground-truth classification accuracy

labels. Fig. 5.2 shows the relationship between K and the MSE of each K-dependent DNN

model. We observe that a DNN model corresponding to a largerK has a smaller MSE, indicating

a better performance in estimating the CNN classification accuracy. The reason is that a data

quality vector (as a part of DNN model input) with a larger cuboid region partition resolution

captures the spatial distribution of observation points in more details. For example, when K is

equal to 1, the data quality vector is reduced to a scalar which represents the total number of

observation points in a sensing data segment, losing the spatial distribution information. As a

result, the MSE at k = 1 is large. When K is increased to 2, the data quality vector has K3 = 8
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Figure 5.3: A 2D illustration of the considered VEC-enabled autonomous driving scenario.

dimensions, which can coarsely capture the spatial distribution of observation points. Hence, a

big drop is observed in the MSE. However, the improvement in MSE becomes less significant by

further increasing K. The potential reason is that there are too many zeros in the K3-dimension

data quality vector when K is large, which does not contribute to significantly more information

gain in charactering the spatial distribution of observation points, especially when the observation

points for an object are concentrated in a small subset of sub-regions inside the 3D cuboid region

for the object.

To evaluate the benefit of cooperative sensing in term of accuracy improvement, we first

evaluate the object classification accuracy without cooperative sensing for each object. In this

case, the sensing data of a single AV is used for the classification of all the objects, without data

fusion with the sensing data from other AVs. Fig. 5.3 shows a 2D version for the considered

VEC-enabled autonomous driving scenario in Fig. 3.1, where the indexes of AVs, RSU, and

objects are indicated. Specifically, AV 0 corresponds to the target AV, and other AVs are all

assisting AVs. AV n (0 ≤ n ≤ 3) is also referred to as node n when it serves as a computing
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Figure 5.4: Object classification performance based on single AV’s sensing data.

node. The RSU is indicated as node 4. Objects 0 and 5 corresponding to two trucks have a

larger size, objects 1 and 4 corresponding to two cars have a medium size, and objects 2 and 3

corresponding to a cyclist and a pedestrian respectively are small. Fig. 5.4 shows the number

of observation points at each AV for each object, and the corresponding object classification

accuracy by processing each single AV’s sensing data for each object. We discuss the results for

object 0 as an example. For object 0, each AV has line-of-sight observations, and the number of

observation points decreases with increasing distance between the AV and object 0. Both AV 1

and AV 3 provide a good view for object 0, with a sufficient number of observation points for

an accuracy of 1. Although AV 2 is farther from object 0 and has much less observation points

covering the front left sides, it still provides a good accuracy at around 0.9. However, due to the

short distance between AV 0 and object 0, AV 0 only sees the back side of object 0 with very

limited sensing data diversity, leading to a low accuracy below 0.7. Due to better sensing data

diversity at AV 2 and AV 3 for object 0, the accuracy provided by both AVs is better than that of

AV 0 while using much less observation points.
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Fig. 5.4 shows that none of the AVs can achieve a classification accuracy beyond 0.7 for all

the objects by purely relying on its own sensing data, demonstrating the necessity for cooperative

sensing under the simulation settings. Let (n,m) denote an AV-object pair with AV n and object

m, whose accuracy is evaluated by processing the partial sensing data of AV n for object m.

The AV-object pairs with a poor accuracy below 0.7 are affected by different factors, such as

blockage, distance and limited sensing diversity. By observing the spatial relationships among

AVs and objects in Fig. 5.3, we find that the AV-object pairs with poor accuracy due to blockage

include (0, 1), (0, 2), (2, 2), (2, 3) and (0, 5), and the AV-object pairs with poor accuracy due to

long distance include (1, 2) and (1, 5). AV-object pair (0, 0) has a poor accuracy due to limited

sensing data diversity, and AV-object pair (2, 4) has a poor accuracy due to both long distance

and partial sensor occlusion. We also observe that less observation points are required to achieve

a similar accuracy for an object with a smaller size, which is demonstrated by the accuracy of

AV-object pairs (1, 1) and (1, 3) as an example.

Impact of Accuracy Requirement

The proposed cooperative sensing and computation strategy allows differentiated data selection

and subtask placement for each subtask, referred to as differentiated cooperation (DC) strategy.

Fig. 5.5 illustrates the data selection and subtask placement solutions by the DC strategy for

two different accuracy requirements at A = 0.7 and A = 0.9 respectively. The default value

for computation intensity is used, i.e., ϵ = 30000 cycle/point. An arrow starting from AV n to

computing node n′, denoted by (n, n′), indicates that the sensing data of AV n is used for at least

one subtask placed at computing node n′. The numbers in circles beside arrow (n, n′) indicate

the indexes of subtasks with sensing data selection from AV n and placement at computing node
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Figure 5.5: Data selection and subtask placement solutions for two different accuracy requirements.

n′. If n = n′, no communication is required for the selected sensing data, as the sensing data are

processed at the AV where it is generated. If n ̸= n′, the arrow indicates V2V communication

for n′ < 4 or V2I communication for n′ = 4.

For a low accuracy requirement at A = 0.7, no cooperative sensing is required, as illustrated

in Fig. 5.5 (a). Each subtask uses the corresponding partial sensing data from a single AV,

without data fusion with other AVs. Most subtasks except subtask 5 consume no communication

resources, by processing the selected sensing data locally. Each of them is placed at an AV

whose local sensing data can satisfy the accuracy requirement, A = 0.7, with the minimum

computing demand. For example, for object 0, AV 2 has the minimum point number among

three AVs whose sensing data can satisfy the accuracy requirement, as shown in Fig. 5.4. Thus,

subtask 0 selects sensing data from AV 2 and processes the data locally at AV 2, which incurs

no communication cost, as shown in Fig. 5.5 (a). For subtasks 1 to 4, we also observe similar
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data selection and subtask placement strategies. Subtask 5 is the only subtask placed at the

RSU and with communication demand. Both AV 2 and AV 3 have sensing data with accuracy

satisfaction for subtask 5. However, neither of them can process the sensing data for subtask

5 locally without violating the delay requirement. Hence, subtask 5 must be offloaded to the

RSU with more computing resources for delay improvement. For example, the local computing

time in processing 7134 observation points for object 5 at AV 3 with all the available computing

resources is 21.4 ms, which violates the delay requirement, T = 20 ms. As the sensing data for

object 5 at AV 3 has a smaller size than that at AV 2, the sensing data of AV 3 is selected for

subtask 5 to reduce the communication and computing demand.

However, for a high accuracy requirement at A = 0.9, cooperative sensing is required for

subtasks 2 and 4, as neither of them can rely on sensing data from a single AV for accuracy

satisfaction, as illustrated in Fig. 5.4 and Fig. 5.5 (b). AV 1 and AV 3 are selected to provide

sensing data for both subtasks 2 and 4 by the proposed DC strategy. Due to the half-duplex

communication constraints, subtasks 2 and 4 must be placed at the same computing node, which

can be AV 1, AV 3, or the RSU. They cannot be placed at an AV other than AV 1 or AV 3, as

another AV cannot receive data from both AV 1 and AV 3 at the same time. As the local sensing

data at AV 1 can satisfy the accuracy requirement with the minimum computing demand for

subtask 1, AV 1 is the preferred computing node for subtask 1. Similarly, AV 3 is the preferred

computing node for subtask 3. Due to the limited local computing resources, subtasks 2 and 4

cannot be co-located with subtask 1 or subtask 3. Hence, subtasks 2 and 4 are placed at the RSU,

and the corresponding selected sensing data are transmitted to the RSU via V2I communication.

The data selection and subtask placement for both subtasks 0 and 5 remain unchanged when

increasing the accuracy requirement from 0.7 to 0.9, as shown in Fig. 5.5.
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Table 5.2: Resource consumption using DC and UC strategies for the different accuracy requirements

Cooperation strategy

Link bandwidth Computing resources

(MHz) (Giga cycles/s)

A = 0.7 A = 0.9 A = 0.7 A = 0.9

Differentiated cooperation (DC) 1.94 2.39 24.56 31.74

Unified cooperation (UC) 9.76 9.76 98.59 98.59

We compare the performance of the proposed DC strategy with a unified cooperation (UC)

benchmark, where the sensing data for any subtask is selected from a same group of AVs. As

each AV in the group should provide its sensing data for different subtasks, all the subtasks

should be placed at the same computing node due to the half-duplex communication constraints.

We evaluate the resource efficiency of both the DC and UC strategies for two different accuracy

requirements, A = 0.7 and A = 0.9, with the default computation intensity, i.e., ϵ = 30000

cycle/point. Table 5.2 shows the total transmission and computing resource consumption for

both strategies. For the DC strategy, we observe an increase in both the total transmission and

computing resource consumption when increasing the accuracy requirement from 0.7 to 0.9.

Generally, more observation points tend to be required for a better accuracy, which transforms

to an increase in both the communication and computing resource consumption. If the accuracy

requirement becomes more stringent, AVs which provide sensing data with more observation

points are selected. Subtask 1 and subtask 3 are such examples in our simulation scenario, when

the accuracy requirement is increased from 0.7 to 0.9, as shown in Fig. 5.5. Moreover, a subtask

which originally has single AV’s sensing data for a lower accuracy may require more sensing

data from different AVs for data fusion, to achieve a higher accuracy. Subtask 2 and subtask 4

57



are such examples in our simulation scenario.

As illustrated in Fig. 5.4, cooperative sensing is necessary to provide an accuracy of 0.7 and

above, as no single AV can provide sensing data with good quality for all subtasks. Hence, at

least two AVs should cooperate to provide sensing data for the subtasks. With the UC strategy,

AV 1 and AV 3 are selected to provide sensing data for all the subtasks, which are placed at the

RSU, for an accuracy requirement of A = 0.7. Specifically, the sensing data of AV 1 is sufficient

for subtasks 0, 1, and 3 to achieve an accuracy beyond 0.7, and the sensing data of AV 3 is

sufficient for subtasks 0, 1, 3, and 5 to achieve an accuracy beyond 0.7. For subtask 4, a fusion

of the sensing data from both AVs can help to meet the accuracy requirement. However, due to

the unified cooperation, the corresponding partial sensing data of both AVs are selected for each

subtask by the UC strategy, which is resource inefficient. Due to the large computing demand

in processing the fused partial sensing data from both AVs for each subtask, the subtasks are

placed at the RSU with more computing resources for delay satisfaction, which also increases

the communication resource consumption via V2I communication. By processing the redundant

sensing data at the RSU, the accuracy for the six subtasks are 1, 0.99, 0.91, 1, 0.96, and 1,

respectively, which are over-provisioned for both accuracy requirements atA = 0.7 andA = 0.9.

Hence, we see a huge gap between the total transmission and computing resource consumption

by the DC and UC strategies in Table 5.2, demonstrating the resource efficiency of the proposed

DC strategy.

Impact of Computation Intensity

The computation intensity, ϵ, which captures the computing resource demand for each point,

depends on the specific object classification model [49]. As the proposed cooperative sensing
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Figure 5.6: Data selection and subtask placement solution for A = 0.9 at ϵ = 10000, 20000.

and computation scheme can be generalized for other object classification models with different

computation intensity, we evaluate the impact of computation intensity, ϵ, on the performance of

the proposed DC strategy, and then compare the performance between the DC and UC strategies,

with the increase of ϵ from 10000 to 40000 cycle/point. Here, we set the accuracy requirement

as A = 0.9.

By varying ϵ from 10000 to 40000, we find two different data selection and subtask placement

solutions by the DC strategy. Specifically, the solutions for a low computing intensity at ϵ =

10000, 20000 are the same, as illustrated in Fig. 5.6, and the solutions for a high computing

intensity at ϵ = 30000, 40000 are also the same, as illustrated in Fig. 5.5 (b). As the accuracy

requirement is fixed at A = 0.9, the data selection solution keeps unchanged with the increase of

ϵ, as the accuracy depends only on data selection decision and some constant parameters such as

data quality vectors. Accordingly, the total point number and sensing data size for each subtask

is unchanged with the increase of ϵ. However, the computation intensity affects the subtask
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placement solution, as the computing resource demand for each subtask increases linearly with

computation intensity. With a low computation intensity at ϵ = 10000, 20000, no subtask is

offloaded to the RSU for delay satisfaction. All the subtasks are placed at AVs for communication

resource efficiency, as illustrated in Fig. 5.6. Specifically, for both subtask 2 and subtask 4, the

corresponding partial sensing data from AV 1 requires no communication, as both subtasks are

placed at AV 1, and the corresponding partial sensing data from AV 3 is transmitted to AV 1 via a

V2V link. In comparison, with a high computation intensity at ϵ = 30000, 40000, three subtasks

including subtasks 2, 4, and 5 are offloaded to the RSU for delay satisfaction, as illustrated in

Fig. 5.5 (b). Accordingly, the corresponding selected sensing data are transmitted to the RSU via

V2I links, requiring more bandwidth resources, as shown in Fig. 5.7 (a). We also observe the

same bandwidth consumption for different values of ϵ corresponding to the same data selection

and subtask placement solution, as the sensing data size is the same for each subtask. Fig. 5.7

(b) shows the computing resource consumption at AVs and RSU by the DC strategy with the

increase of ϵ. With a low computation intensity at ϵ = 10000, 20000, there is no computing

resource consumption at the RSU, and the computing resource consumption at AVs increases

linearly with ϵ. With a high computation intensity at ϵ = 30000, 40000, there is computing

resource consumption at both AVs and RSU, and the computing resource consumption at either

AVs or RSU increases linearly with ϵ.

Fig. 5.8 shows the resource consumption comparison between the DC and UC strategies as

ϵ increases. The unified data selection solution by the UC strategy remains unchanged as ϵ in-

creases from 10000 to 40000, in meeting the accuracy requirement of all subtasks. Specifically,

the sensing data of AV 1 and AV 3 are selected by the UC strategy. Hence, the radio resource

consumption remains unchanged for the UC strategy, as the same selected sensing data are trans-
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Figure 5.7: Communication and computing resource consumption versus computation intensity (ϵ).

mitted over V2I links for the different values of ϵ. The unified placement for all the subtasks

also remains unchanged at the RSU, leading to a linear increase in the total computing resource

consumption by the UC strategy as ϵ increases. Due to the unified data selection and subtask

placement, the total number of observation points in the selected sensing data by the UC strategy

is large, resulting in a large computing demand even at low computation intensity. The perfor-

mance of the DC strategy in Fig. 5.8 is consistent with the results shown in Fig. 5.7. We observe

a significant improvement by the proposed DC strategy in both communication and computing

resource efficiency as compared with the UC benchmark.

Impact of Object Number

Finally, we evaluate the impact of object number on the performance of the proposed DC strat-

egy. The performance between the DC and UC strategies are compared when increasing the

object number N from 1 to 6. Given the object number N , only above N objects from the

considered object list (their spatial distributions are described in Fig. 3.1) are deployed in the
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Figure 5.8: Performance comparison between the DC and UC strategies with the increase of ϵ for A = 0.9.

autonomous driving scenario, and the corresponding subtasks are needed to be executed for ac-

curate object classification. Here, we set the accuracy requirement asA = 0.9 and the computing

intensity as ϵ = 30000 cycle/point. Fig. 5.9 shows the total transmission and computing resource

consumption for both strategies.

For the DC strategy, we observe an increase in both total transmission and computing re-

source consumption when increasing the object number from 1 to 6. Generally, more objects

require more observation points to satisfy the accuracy requirement, which further requires more

communication and computing resource consumption. When the object number is not larger than

2, V2X communication is not required in the DC strategy as Subtask 1 and 2 can be separately

processed by 2 AVs based on their own sensing data. When the object number becomes 3, the

communication resource consumption increases as Subtask 3 requires more sensing data from

different AVs for data fusion. When the object number increases to 4, no additional communi-

cation is required as Subtask 4 can be processed by an AV based on its sensing data. Therefore

the communication resource consumpution remains the same as that of 3 objects. As the object
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number varies from 4 to 5, the communication resource consumption increases. This is because

Subtask 5 relies on the fused sensing data from other AVs. Finally, when the object number

increases to 6, an increase in comunication resource consumption is observed, bur It is not be-

cause Subtask 6 requires more sensing data from other AVs. Actually, the computing resources

of AVs can support the execution of only the above 5 subtasks. Therefore, when Subtask 6 is

required, some subtasks have to be offloaded to the RSU for delay satisfaction. Therefore, the

corresponding selected sensing data have to be transmitted to the RSU via V2I links, requiring

more bandwidth resources.

When comparing the performance between the DC and UC strategies, we first observe the

computing and communication resource consumption of the DC strategy is the same as that

of the UC strategy when the object number is 1. That is, these two strategies give the same

data selection and subtask placement solution, where the task is processed by AV 2 based on

its sensing data. When the object number is larger than 1, the advantage of the DC strategy in

resource comsumption is observed. The reason is the object-level differentiated data selection

scheme of the DC strategy effectively reduces the volume of redundant data. For example, when

the object number is 2, the DC strategy separately selects AV 2 and AV 1 to provide sensing

data for Subtasks 1 and 2 respectively. In constrast, the UC stratgy selects an unified data set

for the task which inevitably increases the input size and computing demand of the perception

task. Therefore, the proposed DC strategy can improve in both communication and computing

resource efficiencies as compared with the UC benchmark.
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Figure 5.9: Performance comparison between the DC and UC strategies for A = 0.9 and ϵ = 30000.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this thesis, a cooperative perception problem on raw data level is studied in a VEC-enabled

autonomous driving scenario, to satisfy the accuracy and delay requirements of a perception

task initiated by a target AV for object detection and classification, with communication and

computing resource efficiency. A cooperative sensing and computation strategy is investigated,

which allows multiple assisting AVs to share their sensing data, and allows both the assisting AVs

and the RSU to share their computing resources, both for the perception task. Specifically, the

perception task is partitioned into multiple parallel subtasks, and a differentiated data selection

and placement scheme among subtasks is proposed for cooperative sensing and computation.

With the differentiated cooperation strategy, both the communication and computing resource

efficiency is improved, by selecting a minimum amount of sensing data from different AVs for

each subtask with accuracy satisfaction, and distributing the computation for different subtasks
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among the RSU and multiple AVs in an efficient communication manner.

An optimization problem is formulated to determine the data selection and placement for dif-

ferent subtasks with optimal resource allocation, to minimize the total communication and com-

puting resource consumption with delay and accuracy satisfaction. For accuracy requirement,

a DNN-based classification accuracy model is proposed, to estimate the classification accuracy

for a subtask based on the data selection decision and sensing data quality. A genetic algorithm

based solution is proposed, which iteratively updates the data selection and subtask placement

decision, based on the feasibility of a resource allocation subproblem and the minimal resource

consumption cost with optimal resource allocation. Simulation results demonstrate the accuracy

improvement with raw data level cooperative sensing, and the resource efficiency of the proposed

differentiated cooperation strategy in comparison with a benchmark unified cooperation strategy.

6.2 Future Work

Although the proposed cooperative sensing and computing strategy meets the real-time process-

ing requirement and achieves perception accuracy satisfaction with enhanced communication

and computing resource efficiency, some research issues require further studies:

• The performance of object detection and classification should be maximized based on the

sensing data quality to increase the resource efficiency of cooperative perception. In ad-

dition to the distance and angle between the sensor and object, we should take account of

how sensing data quality affects the performance. For example, the quality of sensing data

can be represented in terms of co-variances of distance and angle measurement errors from

different AVs, in addition to their sensor hardware noises. Note that the co-variances in
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general depend on the relative positions between the target AV and assistant AVs. Sensing

data with larger measurement error co-variances should be weighted less in their contribu-

tion to the object detection and classification under consideration in this research.

• In this research, we investigate a cooperative sensing and computing strategy only for a

perception task of a target AV. In practical autonomous driving scenarios, multiple AVs

usually simultaneously require perception tasks in their corresponding RoIs. Therefore,

it is necessary to investigate cooperative sensing and computing strategies for multiple

perception tasks. Considering perception tasks from neighboring AVs often have partial

overlapped RoIs, merging these tasks by running only one perception in overlapped regions

and sharing the corresponding results to neighboring AVs allows for significant saving in

communication and computing resources. However, this method constrains these tasks to

the same choice of data selection and placement.

• In the proposed cooperative sensing strategy, each selected AV for an object classifica-

tion subtask needs to provide all of its sensing data in the corresponding cuboid region.

However, although only an AV is selected for a subtask, the subtask’s accuracy can be

over-provisioned due to providing more sensing data than required at the cost of more

communication and computing resource consumption. Therefore, a potential solution to

further improve resource efficiency is not only to select AVs, but also to determine parts of

sensing data from the selected AVs in the corresponding cuboid regions for subtasks.
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Appendix

Appendix A

SOCP Problem Transformation

Introduce two auxiliary continuous decision variable sets, ψA = {ψn,∀n ∈ N A} and θA =

{θn,n′ ,∀(n, n′) ∈ LA}, and one auxiliary continuous decision variable, ξ. Then, the nonlinear

and non-convex resource allocation optimization problem P2 can be transformed to an SOCP

problem with zero optimality gap, given by

P4 : min
αA,βA,ψA,θA

ωB
∑

(n,n′)∈LA

βn,n′ + (1− ω)
∑
n∈N A

αnfn

s.t.
∑

(n,n′)∈LA

βn,n′ ≤ 1

Cn,n′θn,n′ + Cn′ψn′ ≤ T ∀(n, n′) ∈ LA

βn,n′θn,n′ ≥ ξ2 ∀(n, n′) ∈ LA (A1)
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αn′ψn′ ≥ ξ2 ∀n ∈ N A (A2)

ξ = 1

0 < βn,n′ ≤ 1, ∀(n, n′) ∈ LA

0 < αn ≤ 1, ∀n ∈ N A

The fundamental difference between problems P2 and P4 lies in “≥” sign in rotated second

order cone constraints (A1) and (??). If both constraints are active in an SOCP optimum, the

SOCP optimum is also an optimum of problem P2. Assume that there is an inactive constraint

(A1) in an SOCP optimum, i.e., β⋆
n,n′θ⋆n,n′ > 1. If θ⋆n,n′ is replaced by θ◦n,n′ , with θ◦n,n′ < θ⋆n,n′ and

β⋆
n,n′θ◦n,n′ = 1, all constraints are still satisfied, and the objective value is unchanged, inferring

that [β⋆
n,n′ , θ◦n,n′ ] is an optimal pair in another SOCP optimum. Similar conclusions can be made

for constraint (??). Therefore, for a feasible SOCP problem P4, there is always an optimum with

active constraints (A1) and (??), which is also the optimum of problem P2.
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