
Towards Explainable Generative
Adversarial Networks

by

Xiaozhuo Yu

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2022

© Xiaozhuo Yu 2022

Author’s Declaration

This thesis consists of material all of which I authored or co-authored: see Statement
of Contributions included in the thesis. This is a true copy of the thesis, including any
required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Statement of Contributions

Following publications have resulted from the work presented in the thesis:

1. Ambareesh Ravi, Xiaozhuo Yu, Iara Santelices, Fakhri Karray, Baris Fidan, ”Gen-
eral Frameworks for Anomaly Detection Explainability: A comparative study”. (Ac-
cepted in) IEEE International Conference on Autonomous Systems, August 2021.

2. Xiaozhuo Yu, Fakhri Karray, ”Understanding the GAN Mode Collapse Through The
Discriminator Perspective.” (Submitted to IEEE International Joint Conference on
Neural Networks 2022)

3. Xiaozhuo Yu, Fakhri karray, ”Improving Time Series Generation of GANs through
Soft Dynamic Time Warping Loss.” (Submitted to IEEE International Joint Confer-
ence on Neural Networks 2022)

For Paper 1 Co-authors Ambareesh Ravi was responsible for data processing, model
architecture, and model training. Iara Santelices was partly responsible for literature review
and experiments. I was responsible for parts of the experiment, algorithm implementation
and paper writing. Dr. Baris Fidan was partly responsible for reviewing and guidance.

In all the above papers, Dr. Fakhri Karray was responsible for coordination, guidance,
suggestions and review.

iii

Abstract

As Generative Adversarial Networks become more and more popular for sample generation,
the demand for human interpretable explanations have also skyrocketed. With the rising
popularity of Generative Adversarial Networks (GANs) in generating synthetic data, time
series are no exception to this trend. In this work, not only we tackle these two open
challenges, we also provide a comparison of GAN usages for data augmentation. In the first
challenge, our work demonstrates that while explainable frameworks can be used to provide
insights into the Discriminator module, the explanations provided are not enough. To
provide deeper insights and analysis we visualize and analyze the Discriminator to explain
why object classes can be omitted resulting in mode-dropping or mode collapse. We also
create a new ”Discriminative Score” for each object, and we show that their distribution
is correlated with this score. Finally, we performed an experiment to determine whether
missing details are a result of the architecture or the dataset. In the case of conditional
GAN, we discovered that the embedding space can reveal human interpretable semantics
that can be manipulated through Principal Component Analysis directions to fine control
the generated sample.

In tackling time series generation, we proposed two novel loss functions sDTW-p and
sDTW-m based on Soft-Dynamic Time Warping that can be used to improve the generated
time series without modifications to the existing architecture. We also present the first
evaluation of the generated samples across different sequence length. We show empirically
that the result of leveraging our loss functions can lead to a 9% improvement according to
our metric.

Lastly, our findings in data augmentations revealed that traditional methods for Convo-
lutional classifiers can be used to improve the training and usage of GANs. Normalization
using custom mean and std was found to improve the Fréchet inception distance of the gen-
erated sample while having GAN generate data augmented version of the samples can help
improve the base classifier when compared to using data augmentation on the generated
images directly.

iv

Acknowledgements

I would like to thank all the little people who made this thesis possible.

v

Dedication

This is dedicated to the one I love.

vi

Table of Contents

List of Figures xi

List of Tables xiii

List of Abbreviations xiv

1 Introduction 1

1.1 Problem Definition . 1

1.2 Motivation . 2

1.3 Scope . 2

1.4 Objective . 3

1.5 Thesis Organization . 3

2 Background and Literature Review 4

2.1 Generative Adversarial Networks . 4

2.1.1 GANs . 4

2.1.2 Conditional GAN . 5

2.1.3 Deep Convolutional GAN . 5

2.1.4 PPGAN . 7

2.2 Evaluating GAN . 8

2.2.1 Inception Score . 8

vii

2.2.2 Fréchet Inception Distance . 8

2.3 GAN Explainability . 8

2.3.1 Explaining deep networks . 9

2.3.2 Visualizing GANs . 9

2.3.3 Discriminator Analysis . 10

2.4 Data Augmentation . 10

2.4.1 Image Data Augmentation . 10

2.4.2 Image Augmentation using GAN 10

2.4.3 Image Augmentations for GAN Training 11

2.5 Time Series . 12

2.5.1 Dynamic Time Warping . 12

2.5.2 Soft Dynamic Time Warping . 12

2.5.3 Time Series Generation . 13

3 Proposed Solution 15

3.1 Introduction . 15

3.2 Explainable Frameworks . 15

3.2.1 Local Interpretable Model-agnostic Explanation (LIME) 15

3.2.2 Integrated Gradient . 16

3.2.3 DeepLIFT . 17

3.2.4 SHapley Additive exPlanations (SHAP) 17

3.2.5 Models . 18

3.3 Discriminator Dissection . 18

3.3.1 Network Dissection . 18

3.3.2 Object Realness . 19

3.3.3 Forced Details Generation . 20

3.4 Conditional GAN . 22

3.5 Data Augmentation with GAN . 23

viii

3.5.1 Normalization . 23

3.5.2 Image Augmentations . 24

3.6 Soft Dynamic Time Loss . 25

3.6.1 sDTW-p . 26

3.6.2 sDTW-m . 26

4 Experiments and Analysis 27

4.1 Datasets . 27

4.1.1 MNIST . 27

4.1.2 FashionMNIST . 27

4.1.3 CIFAR-10 . 27

4.1.4 SVHN . 28

4.1.5 LSUN . 28

4.1.6 CelebA . 28

4.1.7 Google Stock . 28

4.1.8 Energy . 29

4.2 Explainable Framework Comparison . 29

4.2.1 Model Architectures . 29

4.2.2 Results . 30

4.3 Conditional GAN . 43

4.3.1 Model . 43

4.3.2 Ablation . 43

4.3.3 Vector Arithmetic . 44

4.3.4 Interpolation . 45

4.3.5 PCA . 45

4.4 Discriminator Dissection . 47

4.4.1 Network Dissection . 47

4.4.2 Object Realness . 48

ix

4.4.3 Custom Dataset . 49

4.4.4 Discussion . 50

4.5 Data Augmentation . 52

4.5.1 Normalization . 52

4.5.2 Augmentation Comparison . 52

4.5.3 Results . 53

4.6 Time Series Generation . 56

4.6.1 Model . 56

4.6.2 Generator . 56

4.6.3 Discriminator . 57

4.6.4 Training . 57

4.6.5 Evaluation . 58

4.6.6 Results . 59

4.6.7 Discussion . 61

5 Conclusion 63

References 65

x

List of Figures

2.1 Example of GAN training architecture. 5

2.2 Conditional label integration [35]. 6

2.3 DCGAN Generator Architecture [39]. 6

2.4 PGGAN Architecture [24] . 7

2.5 Network dissection technique [3] . 9

2.6 Hierarchy of image data augmentations [47] 11

3.1 Activation regions for a layer of the PGGAN discriminator. 19

3.2 LSUN church object segmentation differences [5] 21

3.3 Web interface given to annotators. Annotators are asked if an image contains
human figure(s). 22

3.4 Custom Accuracy of Fashion MNIST . 24

4.1 Comparison of the XAI frameworks on MNIST classes 0 to 4 for base model. 31

4.2 Comparison of the XAI frameworks on MNIST classes 5 to 9 for base model. 32

4.3 Comparison of the XAI frameworks on MNIST classes 0 to 4 for model
trained with noise. 33

4.4 Comparison of the XAI frameworks on MNIST classes 5 to 9 for model
trained with noise. 34

4.5 Comparison of the XAI frameworks on MNIST classes 0 to 4 for conditional
model. 35

4.6 Comparison of the XAI frameworks on MNIST classes 5 to 9 for conditional
model. 36

xi

4.7 Comparison of the XAI frameworks on FashionMNIST classes 0 to 4 for
base model. 37

4.8 Comparison of the XAI frameworks on FashionMNIST classes 5 to 9 for
base model. 38

4.9 Comparison of the XAI frameworks on FashionMNIST classes 0 to 4 for
model trained with noise. 39

4.10 Comparison of the XAI frameworks on FashionMNIST classes 5 to 9 for
model trained with noise. 40

4.11 Comparison of the XAI frameworks on FashionMNIST classes 0 to 4 for
conditional model. 41

4.12 Comparison of the XAI frameworks on FashionMNIST classes 5 to 9 for
conditional model. 42

4.13 Generated Images with embedding weights set to 0. 44

4.14 Resulting images from vector arithmetic. 44

4.15 Interpolation results for both MNIST and CelebA dataset. 45

4.16 Wep Application for exploring the conditional GAN embedding space. . . . 46

4.17 Before and after generated images from the web application by changing
PCA 2. 47

4.18 Corresponding object semantics of each scale layer. 48

4.19 Identified images from MTurks. 50

4.20 Images generated by DCGAN trained on normal church dataset. 50

4.21 Images generated by DCGAN trained on custom dataset. Yellow circles
indicate the presence of a human figure(s). 51

4.22 Generator architecture. 57

4.23 Discriminator architecture. 58

4.24 PCA and t-SNE plots of both the generated and real samples. The shown
figures are taken from models trained using a sequence length of 4. Starting
from right to left are the base model, sDTW-p and sDTW-m. 60

xii

List of Tables

3.1 Chosen Objects . 20

3.2 Object distribution of the LSUN church dataset. 22

3.3 Photometric vs. geometric transformation [52]. 25

4.1 CelebA Classes . 43

4.2 Object realness output using the LSUN church dataset. 49

4.3 Mean and Standard Deviation of the different datasets. 52

4.4 Augmentation parameters. Translation uses a range to indicate the amount
of shift with respect to the size of the image. Horizontal flip indicates the
chance of flipping an image. 53

4.5 Resulting FID score of the different datasets. 54

4.6 Data Augmentation result MNIST. 54

4.7 Data augmentation result SVHN. 55

4.8 Discriminative Score (lower the better) tested on the stock dataset. 61

4.9 Discriminative Score (lower the better) tested on the energy dataset. . . . 61

xiii

List of Abbreviations

cGAN Conditional Adversarial Network 5

CNN Convolutional Neural Networks 5

DCGAN Deep Convolution Generative Adversarial Network 5

DeepLIFT Deep Learning Important FeaTures 17

DTW Dynamic Time Warping 12

FID Fréchet Inception Distance 8

GAN Generative Adversarial Network 1, 4

IG Integrated Gradient 16

IS Inception Score 8

LIME Local Interpretable Model-agnostic Explanation 15

LSTM Long short-term memory 13

PCA Principal Component Analysis 23

PGGAN Progressive Growing of GAN 7

sDTW Soft Dynamic Time Warping 12

SHAP SHapley Additive exPlanations (SHAP) 17

XAI Explainable Artificial Intelligence 15

xiv

Chapter 1

Introduction

1.1 Problem Definition

Generative Adversarial Networks (GAN) [16] are one of the most popular generative model
in use today. The most popular usage of GANs is for image generation where synthetic
images that are very close to the original samples are generated. For instance, GANs have
been leveraged in biomedical informatics to generate medical images [28] with great success.
Despite their popularity very little studies have been done to explain this black box model.
For systems that cannot be well-interpreted their decisions become hard to trust, especially
in sectors, such as healthcare or self-driving cars, where moral and fairness issues have
naturally arisen. This need for trustworthy, fair, robust, high performing models for real-
world applications have led to the revival of the field of eXplainable Artificial Intelligence
(XAI) [18]. As GANs become more involved in critical areas the need for explainability
substantially increases. However, as previously mentioned XAI for GANs are rare for
visualizing and interpreting the outcome of GANs, researchers have mostly focused on
the Generator module. Little research has been focused on interpreting GANs using the
Discriminator module. Since GANs are composed of two interacting modules (Generator
and Discriminator), it is only fair to analyze both modules for explainability purposes.
Furthermore, conditional variants of GANs have not been studied and no explainability
has been provided on the differences between conditional and unconditional variant.

1

1.2 Motivation

This research is meant to be complementary to the work done in [3] and [4] where only
the Generator was used for explainability purposes. Additionally, the explanation only
focused on the unconditional version of GANs while neglecting the conditional variant
which are often more useful since they allow for image generation of specific classes. Since
GANs are composed of both the Generator and the Discriminator, the sub networks will
affect each other. Therefore, to explain the full network behaviour we should take both sub
networks into consideration. One strong motivation for studying the Discriminator module
is the possibility of improving the generated samples. In [5] visualization of mode collapse
where image details are lacking is shown but the question remains on why specific details
were missing. Identifying the mistakes of the Generator using the explanations from the
Discriminator can help us understand why certain details are omitted and we can work
towards generating more diverse and realistic samples. Lastly, this research is very much
aligned with sub-theme 8 where the major focus lies in generative models and being able
to explain their decisions. GANs are one of the most popular generative models and if we
can provide additional insights it will contribute greatly towards sub-theme 8.

The popularity of machine learning has skyrocketed in the last few decades. Deep
Learning models in particular are pushing the boundaries of what is possible [41], [9]. As the
model parameters become increasingly complex and the number of layers become deeper,
the availability of data can become a bottleneck for machine learning solutions in domain
specific problems. In the field of medicine, data accessibility can hinder comparisons,
reproducibility, and scientific progress [14]. Data accessibility are not the only issue, low
amount of data can result in possible identification of individuals through linkage of data
from other sources or residual information [13] resulting in violation of privacy.

The issues mentioned above can be resolved through synthetic data. With synthetic
data, it could be shared and published without privacy concerns, or even used to augment or
enrich similar datasets [14]. Amongst the methods for synthetic data generation Generative
Adversarial Networks (GANs) [46] stood out. GANs have been leveraged for the creation
of photorealistic images but their uses for time series data have been limited. Despite their
rare usages for time series, GANs have demonstrated remarkable results.

1.3 Scope

This research is focused on bridging the gap between existing literature on GAN explain-
ability by including needed examination into the Discriminator module as well as the con-

2

ditional GAN variant. Additionally this research also provide a comprehensive comparison
of data augmentation with GANs. Lastly, the research provides new novel loss functions
that can be used to improve the performance of time series generation with GANs.

1.4 Objective

The main objective of this work is to increase the explainability of GANs. The secondary
focus is to provide comparisons as well as potential methods for GAN improvements.
To achieve the aforementioned objectives, the following contributions are made in this
research:

1. Comparison of different popular explainability frameworks with different GAN mod-
els.

2. Exploring the embedding space of conditional GANs to understand the impact of
class labels.

3. Dissecting the Discriminator module to gain insights into missed objects during gen-
eration.

4. Comparing different data augmentation with GAN.

5. Improve time series generation with GAN through new loss function.

1.5 Thesis Organization

This thesis constitutes five chapters. The first chapter introduces and describes the current
problem and challenges faced with GAN explainability. This chapter also introduces the
main objects and scope for the proposed solutions. Chapter 2 covers a detailed review of
existing literature and works that relates to GANs. Chapter 3 deals with the proposed
solutions in great details. Chapter 4 discusses the various datasets used as well as the
experiments and analysis of the proposed approaches. The final chapter summarizes and
concludes the findings of this work.

3

Chapter 2

Background and Literature Review

2.1 Generative Adversarial Networks

This chapter discusses the progression of explainable research in the field of Generative
Adversarial Networks in detail along with popular works that had breakthroughs in the
field. This chapter also focuses on the necessary background for both data augmentation
and time series generation along with their respective open challenges.

2.1.1 GANs

Generative Adversarial Networks (GAN)s are a new type of deep generative models that
have been used to generate realistic samples. The ability of a GAN to generate realistic
samples stem from its two modules: Generator and Discriminator. The Generator module
takes in noise/latent Z and outputs a synthesized sample. The Discriminator takes in
either fake or real samples and discern whether the input was generated or real. The two
modules are trained in a zero-sum game according to the equation defined in equation 2.1
where G is the Generator, D is the Discriminator. An architecture of GAN is depicted in
Figure 2.1.

Min
G

Max
D

V (G,D) = Ex∼Preal(x)[log(D(x)]

+ Ez∼PZ(Z)[log(1−D(G(Z))]
(2.1)

4

Figure 2.1: Example of GAN training architecture.

2.1.2 Conditional GAN

Although GAN models are capable of generating new random plausible examples for a
given dataset, there is no way to control the types of images that are generated other
than trying to figure out the complex relationship between the latent space input to the
generator and the generated images.

The conditional generative adversarial network, or cGAN for short, is a type of GAN
that involves the conditional generation of images by a generator model. Image generation
can be conditional on a class label, if available, allowing the targeted generated of images
of a given type. To create the conditional version, we add the class label information to the
latent z. The Discriminator will also be given the class label information, in doing so, the
network can then be trained to generate specific images of a specified class. An example
of how conditional label y is integrated into the GAN is given in Figure 2.2.

2.1.3 Deep Convolutional GAN

The Deep Convolutional GAN (DCGAN) architecture was proposed to expand on the
internal complexity of the Generator and Discriminator modules. The architecture uses
Convolutional Neural Networks (CNN) for the Generator and Discriminator modules rather
than multilayer perceptrons. The idea behind DCGAN is to increase the complexity of
the Generator network to project the input into a high dimensional tensor and then add
deconvolutional layers to go from the projected tensor to an output image. The deconvo-
lutional layers will expand on the spatial dimensions, for example, going from 4 × 4 x 6 to
8 x 8 × 1, whereas the convolutional layers in the Discriminator will decrease the spatial
dimensions such as going from 64 x 4 x 3 to 32 x 32 x 6. The architecture of DCGAN

5

Figure 2.2: Conditional label integration [35].

Generator is depicted in Figure 2.3. The Discriminator architecture is the inverse of the
Generator architecture as it performs convolution instead to down sample the image [39].

Figure 2.3: DCGAN Generator Architecture [39].

6

2.1.4 PPGAN

A problem prior to Progressive Growing of GAN (PGGAN) [24] is that GANs have a
hard time producing high-resolution images since the Generator must learn to output both
large structure and fine details at the same time. The high resolution also makes it easy
for the Discriminator to spot missing details and as a result failing the training process.
To stabilize the GAN training, the GAN model is progressively grown. Progressively
growing the GAN involves using a Generator and Discriminator model with the same
general structure and starting with very small images, such as 4×4 pixels. Once training
starts, new blocks of convolutional layers are systematically added to both the Generator
model and the Discriminator models. The incremental addition of layers allows the sub
modules to learn coarse-level details and fine details in the later stages. An example of
progressively growing GAN is shown in Figure 2.4.

Figure 2.4: PGGAN Architecture [24]

7

2.2 Evaluating GAN

2.2.1 Inception Score

Inception Score (IS) [45] is one the original methods for measuring the quality of generated
samples. In [45], they proposed applying an Inception-v3 [51] network pre-trained on
ImageNet [11] to generated samples and then comparing the conditional label distribution
with the marginal label distribution. The calculation of IS is depicted in Equation 2.2.

IS = exp(Ex∼psDKL(p(y|x)||p(y)))) (2.2)

Generator that has high IS will be:

1. Capable of generating images with meaningful object which means the condiitonal
label distribution p(y|x) has low entropy.

2. Capable of generating diverse images, so that the marginal label distribution p(y) =∫
x
p(y|x)pg(x) has high entropy.

2.2.2 Fréchet Inception Distance

The Fréchet Inception Distance (FID) [20] is an improvement over IS by comparing the
statistics of the generated samples to real samples instead evaluating the generated samples
in a vacuum. The calculation of FID is shown in Equation 2.3 where Tr represents the
trace and Xr ∼ N (µr,

∑
r) and Xg ∼ N (µg,

∑
g) are the 2048 dimensional activations of

the Inception v3 pool3 layer for the real and generated samples. A lower FID is correlated
with more similar real and generated samples.

FID = ||µr − µg||2 + Tr(
∑

r +
∑

g − 2

√
(
∑

r

∑
g)) (2.3)

2.3 GAN Explainability

Despite their successes, explainability works for GANs are rare and are often focused on
manipulation of the latent vectors. The latent vectors were found to be manipulable; vector
arithmetic could be used to generate images that are combinations of two different classes.

8

2.3.1 Explaining deep networks

One of the first work in explaining Convolutional neural networks (CNN) comes from [49]
where salient features are visualized. Another step in improving explainability for CNNs
is when techniques such as SHapley Additive exPlanations (SHAP) [31] and Local Inter-
pretable Model-Agnostic Explanations (LIME) [42] came into existence. These techniques
focused on scoring saliency to explain the decisions of the networks. Other techniques have
also evolved to explain the decisions of networks through the ablation of network units [37].

2.3.2 Visualizing GANs

Figure 2.5: Network dissection technique [3]

The most well-known work on visualizing and explaining GANs are from [3] and [4]. In
[4] and [3], a technique called network dissection is used to identify any units within the
network and match those with the same semantic classes. An example of the technique
is shown in Figure 2.5. By identifying the units responsible they can then be turned on
or off and the effect on image generation can be seen. Another work done by the same
authors as [4] is on the visualization of mode collapse. In [5], a semantic segmentation
network is used to compare the distribution of segmented objects in the generated images
with the target distribution in the training set. Differences in segmentation statistics can
then reveal object classes that are omitted by the Generator.

9

2.3.3 Discriminator Analysis

Literature on studying the Discriminator module is rare and only one relevant paper [29]
exists to the author’s knowledge. In [29] an enhanced Layer-wise Relevance Propagation
(LRP) algorithm called Polarized-LRP is used. The algorithm generates a heatmap-based
visualization highlighting the area in the input image that contributes to the network
decision. It consists of two parts i.e., a positive contribution heatmap for the images
classified as ground truth and a negative contribution heatmap for the ones classified as
generated.

2.4 Data Augmentation

2.4.1 Image Data Augmentation

One of the earliest documented case of image augmentation came from AlexNet [27] where
data augmentations such as horizontal flip and changing of RGB channels were applied
to reduce the error rate of the model. The augmentations employed increased the overall
dataset size by a magnitude of 2048 which helped tremendously to reduce overfitting.
Since then, a multitude of techniques have been used such as GANs in 2014, Neural Style
Transfer [15] and Neural Architecture Search (NAS) [63] in 2017.

A breakdown of different image data augmentations can be found in Figure 2.6.

2.4.2 Image Augmentation using GAN

One of the most popular usages of GAN for image augmentation lies in the medical domain.
Within the medical domain, GANs are widely used for medical image synthesis. The
reason being that generated images can help to overcome the privacy issues related to
diagnostic medical image data and as well as tackle the insufficient number of positive
cases of different pathologies [59]. For instance, GANs have been leveraged successfully to
generate computed tomography (CT) images of liver lesions. Using a limited dataset of
182 liver lesions GANs were leveraged to synthesize high quality liver lesion ROIs. The
classification performance using only classic data augmentation yielded 78.6% sensitivity
and 88.4% specificity. By adding the synthetic data augmentation, the results increased
to 85.7% sensitivity and 92.4% specificity. Another instance of using GANs for image
augmentation is in [55] where it improved the classification of chest X-ray (CXR) from
85% to 95%.

10

Figure 2.6: Hierarchy of image data augmentations [47]

2.4.3 Image Augmentations for GAN Training

While data augmentations have been widely studied to improve the accuracy and robust-
ness of classifiers, the potential of image augmentation in improving GANs has not been
thoroughly investigated [62]. In [62] a systematic study on the effectiveness of various
existing augmentation techniques for GAN training was done. From the study, a vanilla
GAN can attain generation quality that is on par with recent state-of-the-art results if
augmentations are applied on both real and generated images. The result of the genera-
tion is measured using FID [21]. It is important to note that the generated images are not
augmented in anyway, augmentations are applied to both the real and fake images.

11

Algorithm 1 Dynamic Time Warping pseudocode.

Input: s : array[1..n], t : array[1..m]
Initialize DTW = array[0..n, 0..m]
for i = 0 to n do
for j = 0 to m do
DTW [i, j] = ∞

end for
DTW [0, 0] = 0
for i = 1 to n do
for j = 1 to m do
cost = d(s[i], t[j])
minimum = min(DTW [i− 1, j],

DTW [i, j − 1],
DTW [i− 1, j − 1])

DTW [i, j] = cost+minimum
end for

end for
end for
return DTW[n, m]

2.5 Time Series

2.5.1 Dynamic Time Warping

Dynamic Time Warping (DTW) is a dynamic programming algorithm that was first intro-
duced for speech recognition [44]. However, it can also be used to calculate the dissimilarity
of two time-series. DTW has been leveraged for different time series related tasks such
as finding optimal alignments [40] and clustering [23]. The pseudocode for DTW can be
found in algorithm 1.

2.5.2 Soft Dynamic Time Warping

Soft Dynamic Time Warping (sDTW) [10] is a reformulation of DTW based on soft-
minimum that allows it to be a differentiable loss function. The value and gradient of
sDTW can be computed with quadratic time and space complexity. Given two time-series

12

X = {x1, x2, ..., xn} and Y = {y1, y2, ..., yn}, and their cost matrix C of size n ×m. The
cost C[i, j] is the cost of xi to yi and following 1 is computed as:

Ci,j = f(xi, yi) + min{Ci−1,j, Ci,j−1, Ci−1,j−1} (2.4)

where f(xi, yi) is the chosen distance function which in our case is the Euclidean distance
(ED). To convert from 2.4 to sDTW, the min operator is replaced a differentiable soft
minimum that is defined as:

minγ>0{C1, .., Cn} := −γ log
n∑

i=1

e−Ci/γ (2.5)

where γ is the controlled smoothness factor. If γ is set to 0 then it would yield the
original DTW score. For more details regarding the derivation of sDTW see [10].

2.5.3 Time Series Generation

A variety of methods have been used to generate synthetic time data. Starting from
autoregressive recurrent networks trained via the maximum likelihood principle [56] to
WaveNet, an autoregressive neural network [53] for speech and audio generation. The
true breakthrough for synthetic data generation came with the introduction of Generative
Adversarial Networks (GANs). When GANs were first introduced they focused mostly on
the generation of synthetic images but gradually there has been a shift towards time series
generation. The first GAN adapted for time series was C-RNN-GAN [36] that leveraged
long short-term memory (LSTM) networks for the Generator and Discriminator to gen-
erate data from the previous time step. Following C-RNN-GAN, Recurrent Conditional
GAN improved its predecessor by removing the dependence on previous outputs while
conditioning on additional inputs [14]. TimeGAN is a new model that combines the unsu-
pervised approach of GANs with the ability to control conditional temporal dynamics from
supervised autoregressive models to generate synthetic samples. The model is trained via
the supervised loss and trained embedding networks.

Leveraging Soft Dynamic Time Warping (s-DTW) with GANs have been before in
[33] for gesture synthesis. In [33], the new loss function based on s-DTW replaced the
Discriminator. The result of the new model trained with s-DTW ended up generating
more realistic samples.

13

For time series generation leveraging GANs with different loss function only one paper
was found where a multivariate dynamic time warping term was added as a penalty term
[6]. The authors in [6] used a penalisation coefficient (Dynamic Time Warping) with the
standard GAN loss function to improve the generated samples of electrocardiogram (ECG).
While this work looks similar there are a few key differences. Since Dynamic Time Warping
is not differentiable no gradients will be generated and thus no directions are provided
for the networks during training. By leveraging soft-DTW which is a differentiable loss
function, gradients can be generated. The datasets used in [6] are all ECG data which
are periodic and have a very low feature dimensions. The authors do not explore datasets
with higher dimensions and no variation of the sequence lengths were tested. These are all
covered in our paper making it more comprehensive. We also leveraged different evaluation
metrics to cover more important aspects of generated samples such as fidelity and diversity.

14

Chapter 3

Proposed Solution

3.1 Introduction

The existing works on GAN explainability lack insights into the Discriminator and are
mostly focused on the Generator. To bridge the gap, several experiments such as apply-
ing XAI frameworks to visualize the Discriminator, Discriminator dissection and Object
Realness are applied in this chapter. Along with the base GAN, the conditional variant is
also explored through the embedding space. Finally, the chapter also examines in details
different comparisons of data augmentation leveraging GANs as well as new loss functions
to improve time series generation.

3.2 Explainable Frameworks

Most Explainable Artificial Intelligence (XAI) frameworks operate on class predictions
and since the GAN Discriminator module can be considered as a binary classifier, these
methods can be applied without modifications. Four major XAI methods are explored in
this section as well as any modifications that are required.

3.2.1 Local Interpretable Model-agnostic Explanation (LIME)

Local Interpretable Model-agnostic Explanation (LIME) [42] is a generalized explainability
framework that utilizes local surrogate models to explain the individual classification or

15

regression decisions of a black box model. The surrogate model is a simplification of
the original complex model and only approximates well for a subset of the data. LIME
essentially analyses the change in probability scores on multiple instances of a reference
input with added noise or change in the value to provide suitable explanations. A set
of data samples containing perturbed versions Xp of the reference image x is generated
by switching off or replacing the pixels of the interpretable components and the score for
each of the samples in the set is calculated. The surrogate model fsϵFs is then trained on
Xp learning to weight the patches of pixels based on proximity π(x) as in equation (3.1)
where fo is the Discriminator module, Fs is the family of surrogate models, Ω(fs) is the
complexity of fs, and L is the Loss function. Finally, the pixels with the largest weights
denote the explanation for the reference image which indicates the essential attribute that
makes the model decide on that particular class as follows:

explanation(x) = argmin
fsϵFs

L(fo, fs, πx) + Ω(fs) (3.1)

3.2.2 Integrated Gradient

Integrated Gradient (IG) [50] computes the gradient of the model’s prediction with respect
to its input features. IG is built on top of two axioms that were not satisfied by any other
attribution methods at the time of its creation. The two axioms are:

1. Sensitivity

2. Implementation Invariance

Sensitivity. An attribution method satisfies sensitivity if for every input and baseline
that differ in one feature but have different output then the differing feature should be
given a non-zero attribution [50].

Implementation Invariance. Two networks are functionally equivalent if their out-
puts are equal for all inputs, despite having different implementations. An attribution
method satisfies implementation invariance if the attributions are always identical for two
functionally equivalent networks.

IG can be calculated in five different steps

1. Create baseline which is neutral for the output prediction

16

2. Create a linear interpolation between the baseline and the input image

3. Calculate gradients to measure the relationship between features changes the changes
in the model’s prediction

4. Compute the numerical approximation through averaging gradients

5. Ensure attribution vales are accumulated across multiple interpolated images are all
in the same units

3.2.3 DeepLIFT

Deep Learning Important FeaTures (DeepLIFT) [48] is a method for decomposing the out-
put prediction of a neural network on a specific input by backpropagating the contributions
of all neurons to every feature. DeepLIFT compares the activation of each neuron to its
‘reference activation’ and assigns contribution scores according to the difference.

DeepLIFT explains the difference in the output from some reference output in terms
of their different. Suppose the output of a given input has a difference of δt with the
reference output. The contribution scores to the differences of the activations of neurons
in any intermediate layer with their reference state can be calculated as:

n∑
i=1

C∆xi∆t = ∆t (3.2)

The contribution scores are computed via different rules such as Linear rule, Rescale
rule or RevealCancelRule. For more detailed explanation regarding the individual rules
please see [48]. In our case the contributions are calculated using the Rescale rule.

3.2.4 SHapley Additive exPlanations (SHAP)

SHapley Additive exPlanations (SHAP) [31] is a feature attribution based explainability
method that measures the importance of an input feature concerning the output prediction.
SHAP is an additive feature attribution method that uses Shapely values, a concept from
coalitional game theory that describes how fairly the prediction is distributed among the
input features which in our case signifies the quantification of the contribution of each
input feature towards the final prediction. Due to this property of shapely values, SHAP
provides consistent global interpretation for each data sample. SHAP replaces features with

17

random variables to determine its contribution towards the final output prediction through
the relative difference from the original prediction. The weights for DeepLIFTSHAP πz()
can be determined by the equation (3.3) where |z′| is the number of features considered
for the coalition and M is the maximum coalition among features.

πz(z
′) = (M − 1)/((M/|z′|)× |z′| × (M − |z′|)) (3.3)

3.2.5 Models

The different XAI frameworks are also applied to different models to examine whether the
frameworks themselves can reveal the differences in architecture. We use three different
models, a base model, a model trained with Gaussian Noise and the conditional version.
The model trained with Gaussian Noise is meant to act as a weight penalty which has
been shown to prevent the Discriminator from overfitting thus improving the quality of
the Generated sample [17].

3.3 Discriminator Dissection

3.3.1 Network Dissection

In [2] a general framework called Network Dissection is proposed to quantify the inter-
pretability of Convolution Neural Networks through the evaluation of alignment between
individual units and a set of human interpretable semantics. In Network Dissection, each
unit u of a CNN layer computes an activation function au(x, p) that outputs a signal at
every image position p given a test image x. The probability of an event is true for all
position p and images x is given by Px,p[·]. Given the probability a threshold tu can be
defined as tu ≡ maxt Px,p[au(x, p) > t] ≥ 0.01. Visualization can be viewed by highlighting
the activation region p|au(x, p) > tu that is above the threshold. An example of activation
highlight for the Discriminator is shown in Figure 3.1.

To correlate the activation region with semantic concepts, a measure of agreement
between each filter and a visual concept c is done using a segmentation model [58] as
Sc : (x, p)− > 0, 1. The agreement between concept c and unit u is calculated using the
intersection over union (IoU) ratio:

IoUu,c =
Px,p[Sc(x, p) ∧ (au(x, p) > tu]

Px,p[Sc(x, p) ∨ (au(x, p) > tu]
(3.4)

18

Figure 3.1: Activation regions for a layer of the PGGAN discriminator.

3.3.2 Object Realness

An initial hypothesis regarding object realness is that the degree of realness of the different
object classes should be correlated to their presence in the generated samples. To be
specific, if we apply image segmentation on the generated images and obtain a distribution
of the segmented object classes, they should be correlated with the degree of realness

19

obtained from the Discriminator. An example of object class distribution of the LSUN
church dataset can be seen in Figure 3.2 where the object distribution from the generated
sample has very large delta against the training distribution which indicates an omission
of details. The object distribution that we see in Figure 3.2 should be correlated with
the individual object class’s degree of realness. The correlations make sense intuitively
since GANs are trained in a zero-sum game and the Generator attempts to trick the
Discriminator by focusing on generating samples that are more ”real” to the Discriminator
to prevent loss.

The individual object segments can be obtained using the Unified Perceptual Parsing
network [58] which is trained to detect over 300 different object classes. Once the segments
are obtained we apply Algorithm 2 for a specific image to obtain the realness of segmented
objects. Rather than calculating the realness of all possible classes we focused on a subset
of them. The chosen subsets of classes are shown in 3.1 and is the same chosen objects
used in 2. The degree of realness for a chosen object is then averaged across the entire
dataset.

Table 3.1: Chosen Objects

LSUN Church
Building
Tree
Road
Grass
Person
Earth

Sidewalk
Mountain

3.3.3 Forced Details Generation

In Table 3.2 we can see that there are discrepancies with the distribution of objects gen-
erated and the real dataset. To determine whether object details are missing because of
model architecture or the dataset we decided to create a new dataset that is composed of
more details, specifically we created a new dataset from LSUN church where each image
contained one or more person. To do so we leveraged Amazon’s Mechanical Turk (MTurk).

20

Figure 3.2: LSUN church object segmentation differences [5]

Algorithm 2 Object Realness Calculation
Input: image xi

Initialize desiredObjects = {...}, outputs = {}
objects = getObjectsFromImage(xi)
for object in objects do
if objectindesiredObjects then
blank = createBlankImage()
before = discriminator(blank)
merged = mergeImage(blank, object)
after = discriminator(merged)
outputs[object] = before/after

end if
end for

Using MTurk, we asked each user whether an image contained a person. An example of
the web app on MTurk is shown in Figure 3.3.

21

Figure 3.3: Web interface given to annotators. Annotators are asked if an image contains
human figure(s).

Table 3.2: Object distribution of the LSUN church dataset.

Object % in real % in generated
Building 98.9 90
Tree 70.5 80
Road 41 20
Grass 37 40
Person 12.7 0
Earth 29.7 30

Sidewalk 24 20
Mountain 12.6 20

3.4 Conditional GAN

In this section, we provide insights into the embedding space of conditional GANs via
vector arithmetic and interpolation. These qualities are also present in the latent vector
of unconditional GANs. Our aim here is to understand whether the same qualities can be
extended to the conditional embedding space. To determine the effect of the conditional
labels we set the embedding weight of the Generator to be zeroes and examine the resulting
generated images. In doing so it gives us insights into the embedding space as well as how

22

the Generator leverages the class information for image generation. In [34] for evaluating
learned representation of words, the work showed arithmetic operations could reveal lin-
ear structure in the representation space. The most famous example demonstrated that
vector(”King”) - vector(”Man”) + vector(”Woman”) resulted in a vector whose nearest
neighbor was the vector for Queen. A similar finding for the unconditional GAN exists
where similar arithmetic on the Z vectors was performed. Experiments working on only
single samples per concept were unstable but averaging the latent Z vector for three dif-
ferent examples showed consistent and stable generations that semantically obeyed the
arithmetic. They also have shown that face pose is also modeled linearly in Z space [39].
We perform a similar experiment as above but instead of working with the latent vector
we work directly with the embedding weights. Specifically, we perform vector arithmetic
by adding the embedding weights of different classes and observing the output. In [39]
the latent vector Z show cased interpolation capabilities, to extend it to the conditional
variant we perform a similar a technique but for the embedding space. To replicate the
interpolation in [39] we create a linear interpolation of the different embedding weights
and observe the generated outputs. As the different embedding weights revealed linear
interpolation, we apply Principal component analysis (PCA) [7] to the embedding weights
to see if the PCA direction can reveal any semantics that are easily understandable.

3.5 Data Augmentation with GAN

The goal of this section is to firstly examine whether a custom standarization of image pixel
values can lead to better performance in the generated images i.e. lower or higher FID
score. The second part of the section is focused on providing comprehensive comparisons of
different image augmentations involving GAN to see whether generated augmented images
can improve the base classifier accuracy when compared to traditional image augmentation
and augmentation involving non-augmented synthetic images.

3.5.1 Normalization

General normalization for GANs is 0.5 for the mean and the standard deviation to change
the input range of images to [-1, 1]. The reason behind this range is that the Generator
module contains a hyperbolic tanh activation at the end which works in the [-1, 1] range.
However, normalization of the dataset according to the mean and standard deviation of the
dataset can improve the classification performance. For instance, we trained a ResNet50
[19] on the Fashion-MNIST [57] and the resulting accuracy on the test set is captured in

23

Figure 3.4. While the difference was slight, the test accuracy of the model that was trained
with a custom normalization performed better.

Figure 3.4: Custom Accuracy of Fashion MNIST

3.5.2 Image Augmentations

For data augmentation, instead of focusing on all possible image augmentation techniques
we focused on geometric transformations only. From Table 3.3 we can see that the most
improvement came from geometric transformations, other augmentations such as PCA
and color space transformations were worse hence why we chose to focus on geometric
transformations. While random erasing performed the best, we avoided random erasing as
it is a non-label preserving transformation.

Within the geometric transformations, we focus on the following: rotation, translation,
flipping and scaling.

24

Table 3.3: Photometric vs. geometric transformation [52].

Augmentation Top-1 Accuracy Top-5 Accuracy
Baseline 48.13± 0.42% 64.50± 0.65%
Flipping 49.73± 1.13% 67.36± 1.38%
Rotating 50.80± 0.63% 69.41± 0.48%
Cropping 61.95± 1.01% 79.10± 0.80%

Color Jittering 49.57± 0.52% 67.18± 0.42%
Edge Enhancement 49.29± 1.16% 66.49± 0.84%

Fancy PCA 49.41± 0.84% 67.54± 1.01%

Rotation. Rotation augmentations are done by rotating the image left or right based
on the desired degree. The degree can range between 1 and 359. Slight rotations can be
beneficial but on datasets such as MNIST when the rotation increases the label of the data
is no longer preserved.

Translation. In translation, images are shifted left, right, up, or down which can be
useful to avoid positional bias. Translation depending on shift can be non-label preserving
when features are shifted out of the image.

Scale. Scale involves randomly scaling the image within the specified interval. De-
pending on the scale used it can be a non-label preserving technique.

Flipping. Flipping is separated into horizontal or vertical flip. Horizontal axis flipping
however, is much more common and depending on the dataset flipping can be non-label
preserving. For instance, flipping data from MNIST can be non-label preserving as a 6 or
could become a 9.

3.6 Soft Dynamic Time Loss

In this section we explore the novel loss functions used in our experiment. By leveraging
sDTW we create two new loss functions sDTW-m and sDTW-p for the Generator module
that are used to improve the baseline performance.

25

3.6.1 sDTW-p

For a batch training data Xb and the corresponding generated data Gb we compute the
sDTW loss (sLoss for short) of the generated data and the real batch as sLoss =
sDTW (Xb, Gb). The loss of the Generator for a given batch is shown in equation 3.5
where Zb is a batch of latent input. The intuition behind sDTW-p is that by minimizing
the differences between the generated sample and the real sample, it should allow for more
realistic samples to be generated.

min
G

log(1−D(G(Zb))) (3.5)

To create sDTW − p we add the sLoss for the batch to the existing generator loss in
equation 3.5, the resulting loss for a batch of training data is then shown in equation 3.6.

min
G

log(1−D(G(Zb))) + sDTW (Xb, Gb) (3.6)

3.6.2 sDTW-m

The sDTW − M loss works in the opposite direction of sDTW − p, rather than adding
the sLoss we subtract it, this results in equation 3.7. While we wish to minimize the
differences between generated and real samples, diversity is still important. By subtracting
the resulting sLoss we are forcing the optimizer to optimize by generating more realistic
samples as well as increasing the distance between generated samples and real samples. In
situations where the data is simple and non-complex it can be easy for the Generator to
memorize data. By forcing it to increase the data it makes it harder for the Generator to
memorize the data and thus higher quality is generated.

min
G

log(1−D(G(Zb)))− sDTW (Xb, Gb) (3.7)

26

Chapter 4

Experiments and Analysis

In our experiments, since GANs tend to be difficult to train and different datasets have
different image sizes each experiment will have its own set of models.

4.1 Datasets

4.1.1 MNIST

The MNIST [12] database of handwritten digits is composed of a training set of 60,000
examples, and a test set of 10,000 examples. Each image is 28 x 28 and each of the written
digits are centered by computing the center of mass of the pixels and translated.

4.1.2 FashionMNIST

Fashion-MNIST [57] is a dataset of article images—consisting of a training set of 60,000
examples and a test set of 10,000 examples. Each example is a 28x28 grayscale image,
associated with a label from ten classes. It is meant to be a drop-in replacement for
MNIST, but it is much more difficult to achieve the same level of accuracy.

4.1.3 CIFAR-10

The CIFAR-10 [26] dataset consists of 60000 32x32 colour images in ten classes, with 6000
images per class. There are 50000 training images and 10000 test images. The ten classes

27

in the dataset are: airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and truck.

4.1.4 SVHN

SVHN [38] is a real-world image dataset that is created from house numbers in Google
Street View images. The dataset contains 10 classes, 1 for each digit and there are 73257
digits for training and 26032 digits for testing. Each image is 32 x 32 and centered around
a single character.

4.1.5 LSUN

LSUN: Construction of a Large-scale Image Dataset using Deep Learning with Humans in
the Loop [61] dataset contains millions of color images for scenes and objects. The labels for
this dataset are available based on human’s effort for labeling in conjunction with several
different image classification models. The images are from parent databases Pascal Voc
2012 and 10 million Images for 10 Scene Categories. The total number of images in the
dataset is over 59 million and is split into 10 scene categories and 20 object categories.
Scene categories include bedroom, bridge, church outdoor, classroom, conference room,
dining room, kitchen, living room, restaurant, tower. The 20 object categories include:
airplane, bicycle, bird, boat, bottle, bus, car, cat, chair, cow, dining table, dog, horse,
motorbike, person, potted plant, sheep, sofa, train, tv-monitor. For our purpose we used
the church outdoor scene category which is composed of 126,227 images.

4.1.6 CelebA

CelebFaces Attributes Dataset (CelebA) [30] is a large-scale face attributes dataset with
more than 200K celebrity images, each with 40 attribute annotations. The images in this
dataset cover large pose variations and background clutter. CelebA has large diversities,
large quantities, and rich annotations, including 10,177 number of identities, 202,599 num-
ber of face images, and 5 landmark locations, 40 binary attributes annotations per image.

4.1.7 Google Stock

The stock dataset [60] is composed of daily historical Google stocks data from 2004 to
2019. For each day the volume, high, low, opening, closing and adjusted closing prices

28

are included forming 6 features. The dataset is continuous, aperiodic and the features are
correlated with each other. The dataset has a total of 3686 entries.

4.1.8 Energy

The energy dataset [8] contains information regarding house temperature, humidity con-
ditions as well as the appliance energy data. The dataset is consisted of 19735 samples
with each sample containing 28 features. For more details regarding the individual features
please refer to [8].

4.2 Explainable Framework Comparison

4.2.1 Model Architectures

Base Model

The base Generator module takes in latent size of 100 uses the latent information to gener-
ate 28 x 28 images. Each layer of the Generator block is composed of one ConvTranspose2d,
one Batch Norm (BN) [22] and a ReLU [1] activation. A hyperbolic tan activation is used
in the last layer to normalize the output into the -1 to 1 range. The BN layer is used as
it is known to improve the performance, speed of learning and to alleviate vanishing and
exploding gradients ensuring smooth propagation of the gradients to the early layers in
CNNs. The ReLU activation layer introduces non-linearity by retaining the positive values
while clipping the negative values to zero. The base Discriminator module is a mirror of the
Generator module but instead of using the latent as the input it receives a 28 x 28 image.
The ConvTranspose2d is replaced by normal convolutional layers and ReLU is replaced
by leaky ReLU [32]. The last layer of the Discriminator is the sigmoid layer which give
us whether the image is real or fake. Leaky ReLU layer is used with 0.2 leakiness which
alleviate the dying ReLU problem by returning low-weighted, negative values instead of
clipping negative values to zero. In [39] ReLU for the generator creates a bounded acti-
vation which allows the model to learn more quickly and saturate the color space of the
training distribution. The leaky ReLU worked well for Discriminator especially for higher
resolution modeling. These are the reasoning behind why the Discriminator and Generator
activations differ. The models were all trained using the Adam optimizer [25] with 0.2 for
the alpha value.

29

Noise Model

The noise model has the same architecture as the base model the only difference is that each
Discriminator block has a GaussianNoise layer added. Each GaussianNoise layer perturbs
the input to prevent the Discriminator from overfitting.

Conditional Model

The conditional model shares a similar architecture with the base model, but both the
Generator and the Discriminator takes in the conditional label.

4.2.2 Results

The four different frameworks: SHAP, LIME, IG, DeepLIFT and their ability to provide
insights are shown in Figure 4.1 to 4.12. The aim of each framework is to capture the
positive and negative contribution of the image features to the Discriminator’s output.
From the figures we can see that DeepLIFT SHAP gave the best result regarding how the
Discriminator decides an image is real or fake. Regardless of the input image the SHAP
output is clear and precise regarding the contribution of each pixel which is due to its
ability to provide global interpretation. The worst of the XAI framework was LIME which
produced non-sensical outputs. The inability of LIME to give sensible pixel contributions
can be attributed to the fact that the LIME surrogate model is meant to be an approxima-
tion of the original model and the performance depends on the degree of approximation.
Additionally, all other frameworks allow a baseline to be passed in while LIME does not.
The baseline helps to identify remove noise and fine tune the attributions. This meant that
LIME tend to be faster when it comes to producing results. Out of the remaining three
frameworks, DeepLIFT was able to produce the best results. While IG’s results look good
for the Fashion MNIST dataset the output for the MNIST dataset was not as good. The
reason behind IG’s results is that similar to LIME IG uses linear interpolation between
the baseline provided and the input image and since the Discriminator is nonlinear IG is
unable to provide good approximations.

Comparing the different models, we can see that the conditional model has the most
defined output. For instance, for class 9 the conditional model showed that the most
important attributes are in oval circle and the tail. These details were not as visible in the
other classes. For the base model and the noise model the outputs were very similar, and
it is hard to decipher if one model is better than the other.

30

Figure 4.1: Comparison of the XAI frameworks on MNIST classes 0 to 4 for base model.

31

Figure 4.2: Comparison of the XAI frameworks on MNIST classes 5 to 9 for base model.

32

Figure 4.3: Comparison of the XAI frameworks on MNIST classes 0 to 4 for model trained
with noise.

33

Figure 4.4: Comparison of the XAI frameworks on MNIST classes 5 to 9 for model trained
with noise.

34

Figure 4.5: Comparison of the XAI frameworks on MNIST classes 0 to 4 for conditional
model.

35

Figure 4.6: Comparison of the XAI frameworks on MNIST classes 5 to 9 for conditional
model.

36

Figure 4.7: Comparison of the XAI frameworks on FashionMNIST classes 0 to 4 for base
model.

37

Figure 4.8: Comparison of the XAI frameworks on FashionMNIST classes 5 to 9 for base
model.

38

Figure 4.9: Comparison of the XAI frameworks on FashionMNIST classes 0 to 4 for model
trained with noise.

39

Figure 4.10: Comparison of the XAI frameworks on FashionMNIST classes 5 to 9 for model
trained with noise.

40

Figure 4.11: Comparison of the XAI frameworks on FashionMNIST classes 0 to 4 for
conditional model.

41

Figure 4.12: Comparison of the XAI frameworks on FashionMNIST classes 5 to 9 for
conditional model.

42

4.3 Conditional GAN

For the conditional GAN exploration, we used the MNIST and CelebA dataset. The
CelebA dataset is further processed into 8 different classes which is shown in Table 4.1.

Table 4.1: CelebA Classes

Attributes Mapping
Old Female with glasses 0

Young Female with glasses 1
Old Male with glasses 2

Young Male with glasses 3
Old Female 4

Young Female 5
Old Male 6

Young Male 7

4.3.1 Model

In this experiment we used two different models one for each of the dataset. The MNIST
model is designed to generate 28 x 28 images while the CelebA model will generate 64 x
64 images. The MNIST model does not use any convolutional layers and instead rely on
Dense layers. The CelebA model is similar to the conditional model in Section 4.2.1 but
it has additional layers to generate images at the 64 x 64 scale.

4.3.2 Ablation

From Figure 4.13 we can see that without the embedding weights the Generator is still
capable of generating images that resembles human faces but facial features such as eyes,
mouths are missing. For the MNIST model we can see something resembling 8 being
generated. The result of the figure suggests that the latent vector provides the base of the
generated images. The conditional information of labels will add the information needed
to fine tune the base image into the desired class.

43

Figure 4.13: Generated Images with embedding weights set to 0.

4.3.3 Vector Arithmetic

Figure 4.14: Resulting images from vector arithmetic.

In Figure 4.14 we can see that given the same latent information, if we add the em-
bedding weights of different classes together the resulting images is a mixture of the two.
For instance, if we add 1 and 7 together, we might expect something that resembles 9 to

44

be generated. With the CelebA dataset, we can see that by adding young male and young
female we get a more feminine face with long hair.

4.3.4 Interpolation

We provide the corresponding linear interpolation in Figure 4.15. As the interpolation
points are generated linearly, we can see a linear transformation of the images as they go
from 3 to 8. Similarly, we see how the hair become longer and the face is more feminine
as we move towards the young female class.

Figure 4.15: Interpolation results for both MNIST and CelebA dataset.

4.3.5 PCA

From the ablation study we can see that the conditional information fine tunes the results
from the base latent vector. Additionally, we understand that there potentially exists
linear relationship between the different embedding weights. Using PCA we broke down

45

the embedding weights of the conditional GAN and we discovered that there exists easy
human interpretable transformations for each PCA direction. Taking the top 6 PCA
revealed the following:

1. PCA 1 is responsible for generating feminine features

2. PCA 2 is responsible for generating glasses

3. PCA 3 is responsible for aging

4. PCA 4 is responsible for masculine features

5. PCA 5 is also responsible for feminine features

6. PCA 6 is also responsible for glasses

Figure 4.16: Wep Application for exploring the conditional GAN embedding space.

Using the information we learned from the PCA direction we created a web application
to be able to manipulate the PCA directions. An image of the web application is shown
in Figure 4.16. The web application provides the following controls:

46

• Slider control of PCA directions.

• Multiplying existing weights.

• Multiple of the PCA weights.

An example of increasing PCA direction 2 which is responsible for generating glasses
can be found in Figure 4.17. The web application is hosted on AWS and can be publicly
accessed at http://15.222.241.154:5000/.

Figure 4.17: Before and after generated images from the web application by changing PCA
2.

4.4 Discriminator Dissection

4.4.1 Network Dissection

Using the NetworkDissection technique, we dissect each layer of a PGGAN that has been
trained on the LSUN church dataset. The images are generated at 256 x 256 pixels which
gives us six different scale layers that is composed of two CNN layers. A breakdown of
the different scale layers and their IoU is shown in Figure 4.18. From the breakdown, we
can see that the earlier scale layers are focused object outlines while the later scale layers
are corresponded with finer details such as grass and colours. The breakdown also makes
sense since the way PGGAN is trained is through progressive growing where finer details
are added in later layers.

47

http://15.222.241.154:5000/

Figure 4.18: Corresponding object semantics of each scale layer.

4.4.2 Object Realness

The object realness of the chosen objects for the LSUN church dataset is shown in Table 3.2.
The object realness is calculated using the entire LSUN church dataset which is composed
of 126,227 training examples and the same corresponding number of generated images. A
high realness indicates a higher increase in the Discriminative score output.

48

Table 4.2: Object realness output using the LSUN church dataset.

Object Realness - (r) Realness - (g)
Building 0.24 0.22
Tree 0.076 0.19
Road 0.021 0.033
Grass 0.029 0.087
Person 0.025 0
Earth 0.026 0.0088

Sidewalk 0.016 0
Mountain 0.0462 0.045

4.4.3 Custom Dataset

From MTurks a total of 8475 images was found to contain human figure(s). Using the
custom dataset we trained both a DCGAN and PGGAN. The DCGAN is set to generate
images at 64 x 64 while PGGAN is set to generate at 256 x 256 resolutions. The DCGAN
is trained with added Gaussian Noise which has a similar effect as R1 regularization [45].
Examples of identified images are shown in Figure 4.19. The identified images are a
mixture where human figures that are the dominate objects or cases where they are more
of a background object. During the MTurks experiment, we did not force the workers
to be Masters. Masters of MTurks are workers who have demonstrated high excellence
across a multitude of tasks. Furthermore, we did not specify any additional qualifications
of workers such as age, demographics. As we elected for a no barrier entry of the workers
the generated samples should be relatively unbiased. Additionally, since we elected for
a unrestricted approach for workers, we only have the label information. From examples
of the selected images, we can see from Figure 4.19 selected images contain varying scale
of human scales. Future research could be done to force users to select images with more
prominent human figures. The result of the DCGAN generation with normal LSUN church
is shown in Figure 4.20. The images generated using the custom dataset is shown in Figure
4.21. While we did train a PGGAN on the custom dataset, the training was unstable, and
the Generator was unable to generate finer details at higher resolution resulting in training
failure.

49

Figure 4.19: Identified images from MTurks.

Figure 4.20: Images generated by DCGAN trained on normal church dataset.

4.4.4 Discussion

From the breakdown of the individual scale layers of the Discriminator there were no
activations that correspond with a person. The objects that the Discriminator are focusing
are buildings, window, earth, grass. Since the role of the Generator is to create images that

50

Figure 4.21: Images generated by DCGAN trained on custom dataset. Yellow circles
indicate the presence of a human figure(s).

fools the Discriminator, if the presence of a person makes no difference to the Discriminator,
then there is no incentive for the Generator to create human figures. This is also confirmed
via the object realness results. From Table 4.2 we can see that if a person is included in
an image the realness does not change.

The object distribution of the generated samples should mimic the object distribution
in the real samples. In Table 3.2 we can see that the object distributions is similar but the
Generator tend to focus on easier to generate objects. For instance, trees and mountains
have a higher presence in the generated sample while roads and person are lower. The
experiment with the custom dataset in which every image contains a figure of a person
should force the Generator to generate noticeable human figures. The 100% presence of a
human figure in the images forced the Generator to try and generate people. However, the
training was unstable, and the resulting generated images are of low quality. While the
generated images are unstable we can see the emergence of human figures in the images
as shown in Figure 4.21. The resulting images might suggest that the reason why objects
are amissed is due to the GAN architecture. Both the DCGAN and PGGAN suffered in
quality when trained and were unable to converge.

51

4.5 Data Augmentation

In this section we used the following four datasets: MNIST, Fashion MNIST, Street View
House Numbers (SVHN) and CIFAR-10. All four were used in the normalization exper-
iment but for the data augmentation we used FashionMNIST and SVHN as MNIST was
too simple and CIFAR-10 is a complicated dataset for GANs.

4.5.1 Normalization

For the test of normalization we used all four datasets. We used two different conditional
DCGAN architectures as MNIST and Fashion-MNIST are grayscale images, and the image
size is different from SVHN and CIFAR-10. When testing the effect of custom normaliza-
tion both the generated and real image must be unnormalized first and then normalized
according to the custom mean. The mean and standard deviation of the different datasets
are captured in Table 4.3.

Table 4.3: Mean and Standard Deviation of the different datasets.

Dataset Mean Standard Deviation
MNIST 0.1307 0.3081

Fashion-MNIST 0.286 0.353
CIFAR-10 (0.4914, 0.4822,0.4465) (0.247, 0.2435, 0.2616)
SVHN (0.4377, 0.4438, 0.4728) (0.198, 0.201, 0.197)

4.5.2 Augmentation Comparison

For image augmentations we train a GAN model for each combination of the four augmen-
tations: rotate, translation, scale, and horizontal flip. We also trained a GAN model with-
out any image augmentations for comparisons later. Since GANs are notoriously difficult
and we are applying image augmentations during the process we elected to add Gaussian
noise into the Discriminator module. By adding Gaussian noise, we get a similar effect
as R1 regularization which has been proven to stabilize training and improve the result
[45]. Instead of using all four datasets, we used Fashion-MNIST and SVHN. MNIST was
not considered as our chosen classifier (ResNet50) can easily achieve high accuracy and

52

CIFAR-10 is a difficult dataset to generate realistic images for without leveraging more
complex GAN architectures. For the parameters used for the augmentations refer to Table
4.4. The parameters are chosen to prevent violation of the label due to transformation.

In our experiment we focus on breaking down the comparison of augmentation as
baseline vs. (real + generated) + image augmentation vs. real + generated augmented
images where Generated images are 50% of the real training set. The baseline is established
using a ResNet50 that is trained on the real dataset. The difference between the second
and third method is that in the second method we apply image augmentation on real and
generated dataset while the third is real with images that are already augmented.

Table 4.4: Augmentation parameters. Translation uses a range to indicate the amount of
shift with respect to the size of the image. Horizontal flip indicates the chance of flipping
an image.

Augmentation Parameter
rotate 10 degrees

translation (0.1, 0.1)
scale (0.9, 1.1)

Horizontal Flip 0.5

4.5.3 Results

Normalization

The result of the normalization comparison is captured in Table 4.5.

Augmentation Comparison

The results of the data augmentation comparison is captured in Table 4.6 and 4.7 where
R is for rotation, T is for translation, S for scale and H for horizontal flip. From the
two tables we can see that for FashionMNIST the resulting accuracy of the classifier was
higher for the ”Normal + GAN transformatio” scenario. It was able to beat out both
”Normal” and ”(Normal + GAN) + transformation” on a consistent bases. However, for
the SVHN dataset the same transformation ended up performing worse. This is a result

53

Table 4.5: Resulting FID score of the different datasets.

Dataset FID
MNIST 12.58971

MNIST with custom 11.83819
Fashion-MNIST 40.8258

Fashion-MNIST with custom 40.0888
CIFAR-10 60.06015

CIFAR-10 with custom 61.6957
SVHN 163.6257

SVHN with custom 191.90438

Table 4.6: Data Augmentation result MNIST.

Transformation Normal (+ GAN) + transformation + GAN transformation
Baseline 90.32 90 90.36

R 90.32 89.35 90.4
T 88.77 89.35 90.49
S 90.1 89.74 90.49
H 90.38 90.25 90.38

R + T 87.88 87.95 90.47
R + S 88.77 89.09 90.64
R + H 89.57 89.58 90.12
T + S 88.14 88.23 90.33
T + H 89.24 89.07 90.34
S + H 89.95 89.69 90.58

R + T + S 87.31 86.85 90.55
R + T + H 87.7 88.04 90.35
R + S + H 88.85 88.86 90.6
T + S + H 87.52 87.84 90.42

R + T + S + H 86.95 87.09 90.72

54

Table 4.7: Data augmentation result SVHN.

Transformation Normal (+ GAN) + transformation + GAN transformation
Baseline 91.2646 90.7114 90.3427

R 91.134 91.2262 91.1186
T 93.4696 93.362 91.0149
S 91.3722 90.9919 91.2339
H 89.8663 89.5129 90.4425

R + T 92.7704 92.3479 90.7883
R + S 91.1494 91.0418 91.0034
R + H 90.1429 90.2044 90.7575
T + S 93.0317 93.0278 90.7691
T + H 91.8946 91.7409 91.2262
S + H 90.2581 90.0277 90.8305

R + T + S 91.9829 91.8523 90.6615
R + T + H 90.4656 90.6653 90.723
R + S + H 89.9892 89.9623 91.1378
T + S + H 91.5373 91.94 91.1993

R + T + S + H 90.3081 90.1967 90.8574

55

of the Generator not being good enough to generate images that are comparable to the
real images. Since the generated images are not good enough, we can see that by training
with them it can result in degradation of the classification accuracy. We can can confirm
this by looking at Table 4.5, the SVHN dataset had a FID score of 191 as compared to the
FashionMNIST’s 40.82.

4.6 Time Series Generation

4.6.1 Model

Since GANs can be difficult to train we leveraged the architecture from RGAN [14] as the
base model. The RGAN uses long short-term memory (LSTM) [43] in both the Discrimi-
nator and Generator module to capture time dependent information. A given LSTM layer
will compute the following for each element in the input sequence:

it = σ(Wiixt + bii+Whiht−1 + bhi)

ft = σ(Wifxt + bif +Whfht−1 + bhf

gt = tanh(WigXt + big +Whght−1 + bhg)

ot = σ(Wioxt + bio +Whoht−1 + bho)

ct = ft ⊙ ct−1 + it ⊙ gt

ht = ot ⊙ tanh(ct)

(4.1)

where ht is the hidden state at time t, ct is the cell state at time t, xt is the input at
time t, ht−1 is the hidden state of the layer at time t − 1 and it, ft, gt, ot are the input,
forget, cell, and output gates. σ is the sigmoid function and ⊙ is the Hadamard product.
For more details regarding LSTM, please refer to [43].

4.6.2 Generator

The architecture of the Generator is shown in Figure 4.22. The latent dimension chosen is
100, the number of features in the hidden state ht is 32. A fully connected layer is used to
convert the latent input at each time step into the desired data feature dimension.

56

Figure 4.22: Generator architecture.

4.6.3 Discriminator

The architecture of the Discriminator is shown in Figure 4.23. The parameters of the
Discriminator are designed as a reflection of the Generator and thus have the same number
of features (32) at each hidden state ht. A fully connected layer is also used to determine
if the data at each time step is generated or fake.

4.6.4 Training

The datasets are standardized using a min-max scaler prior to splitting. The datasets were
then split into training and testing sets using 80% training and 20% testing. The testing
set is used for evaluation purposes that we will cover in the next section. The different
GAN models were then trained for 1000 epochs and a standard Adam optimizer [25] with
the default configuration of 0.0002 for the learning rate and 0.5, 0.999 for beta1 and beta2
was used. With respect to the number of LSTM layers we varied the number of layers from
1 to 3 and captured the best model according to our evaluation metrics.

An experiment that was not carried out in related works is the evaluation of performance
with respect to the sequence length. As the sequence length increases, it becomes more
difficult for GANs to generate more realistic samples. This could be akin to generating

57

Figure 4.23: Discriminator architecture.

higher resolution images. To verify the performance of our proposed approaches, for each of
the dataset we tested the performance starting from a sequence length of 4 and increasing
the length by 4 each time until we reached 24. Alternatively, we could have chosen a
starting length of 2 and incremented by 2 each time but we felt that sequence length of 2
to contain less information than a sequence length of 4.

To ensure that the Discriminative Score was not coincidental we trained the same
models from scratch 5 times and calculated its score for each iteration. We then averaged
the averages across the multiple iterations to obtain the final Discriminative Score.

4.6.5 Evaluation

For GANs that are trained for image generation, standard evaluation methods such as
Inception Score (IS) and Frechet Inception Distance score (FID) exit but no standard
evaluation metrics are available for time series. To evaluate the performance of time series
generated by GANs we need to consider the fidelity and diversity of the generated sample.

Fidelity. Fidelity measures how distinguishable the generated samples are from the
real.

Diversity. The samples should be diverse and ’cover’ the original sample.

58

To evaluate fidelity and diversity we apply the evaluation metric of PCA, t-SNE [54]
and Discriminative score introduced in [60].

PCA - t-SNE. PCA and t-SNE can be applied on both the original and generated
samples by flattening the temporal dimension. The result of applying the two techniques
can be visualized in a 2-dimensional space allowing us to visually evaluate the diversity
of the generated samples. To create the PCA and t-SNE visualization 1000 samples are
generated, and 1000 real samples are used.

Discriminative Score. To determine the fidelity of the generated samples we use
a time series classification network composed of 2 LSTM layers trained to distinguishing
between real and generated samples. The classification network is trained on the same
training set that was used to train the GAN models and a training set of equal size of
generated data. This is a difference between the Discriminative Score used in our study
and [60]. In [60] GANs are trained using all the data with no testing set but a testing set
was created for the post-hoc classifier. Rather than training the GANs with all the data
we chose to use the training set only and reserving the testing for more accurate scoring
since the testing data should not be leaked to the GANs. We also withheld a separate
generated testing set that is used in conjunction with the real testing set to evaluate the
performance of the classification. The lower the scoring of the classification model on the
validation set, the higher the fidelity of the generated samples since the network was not
able to easily discern between generated and real samples.

4.6.6 Results

In this section, we present the results of the Discriminative score of the tested models and
visualization of their generated samples.

Visualization

The result of PCA and t-SNE on the generated and real samples are shown in Figure 4.24.
Figure 4.24 captures the result of applying a 2-dimensional reduction on sequence length
of 4 data from both the energy and stock data.

Discriminative Score

The Discriminative score of the three different models: base model, sDTW-p, sDTW-m
across all sequence length from 4 to 24 are shown in Table 4.8 and Table 4.9.

59

Figure 4.24: PCA and t-SNE plots of both the generated and real samples. The shown
figures are taken from models trained using a sequence length of 4. Starting from right to
left are the base model, sDTW-p and sDTW-m.

60

Table 4.8: Discriminative Score (lower the better) tested on the stock dataset.

Model Dataset 4S 8S 12S 16S 20S 24S
Base Stock 0.877 0.852 0.94 0.962 0.945 0.909

Base + sDTW-p Stock 0.852 0.852 0.862 0.924 0.863 0.875
Base + sDTW-m Stock 0.819 0.812 0.868 0.969 0.885 0.862

Table 4.9: Discriminative Score (lower the better) tested on the energy dataset.

Model Dataset 4S 8S 12S 16S 20S 24S
Base Energy 0.959 0.986 0.995 0.998 0.998 0.999

Base + sDTW-p Energy 0.960 0.985 0.996 0.997 0.996 0.997
Base + sDTW-m Energy 0.949 0.991 0.996 0.998 0.999 0.998

4.6.7 Discussion

Discriminative Score

From Table 4.8 and 4.9 we can see that the two models sDTW-p and sDTW-m consistently
outperformed the base model with the exception of the energy data with a sequence length
of 12. However, the difference was very negligible as it was 0.9952 vs. 0.9957 from sDTW-p.
The biggest difference in Discriminative score was the stock data with a sequence length of
12. The base model had a score of 0.9404 and while sDTW-p was 0.8627, this is equivalent
to a 9% improvement. While the stock data saw major improvements across different
sequence lengths the energy dataset had less improvements. The biggest difference was
0.9992 vs. 0.99753 which is a 0.245% improvement. The lower improvement for energy
data could be due to the difference in data features. Stock had a feature dimension of 6
while energy had a feature dimension of 28. The larger feature dimension makes it difficult
for the Generator module to generate realistic samples.

Visualization Result

Intuitively, a lower Discriminative score should be correlated with samples that are close
to each other in the 2-dimensional space after PCA or t-SNE is performed. We can see

61

from Figure 4.18 that in the PCA plot of sDTW-m (last column from the left) for the
stock dataset the synthetic sample and the real sample are much closer. Similarly, in the
t-SNE plot, the samples generated by sDTW-m hugged the real samples much closer. For
the energy data since the difference in Discriminative score was minimum this meant the
PCA and t-SNE plot of the three models would be extremely similar. Additionally, the
visualization via PCA/t-SNE confirms our discriminative score. A lower discriminative
score would mean the synthetic samples should be closer and harder to distinguish from
the real samples as it is shown in our visualization.

sDTW-p vs. sDTW-m

In the previous sections, we showed that the introduction of sDTW into the loss function
led to a consistent improvement across different time sequences, but the two loss functions
are better at different sequence lengths. However, the performance of the two different
loss functions is quite even with each performing better for different sequences lengths.
However, as the sequence length increases the performance of sDTW-m tend to be worst.
This is especially true for more complicated dataset, in Table 4.9 beside sequence length of
4 the performance of sDTW-p was better for the remaining sequence lengths. This suggests
that for lower sequence length sDTW-m can potentially help to increase the diversity of the
generated sample while still following the original sample distribution but as the sequence
length increases this might cause the Generator to generate samples that are too far from
the real sample and thus the Discriminative score suffers.

62

Chapter 5

Conclusion

The primary objective of this research was to increase understandability and interpretabil-
ity of the GAN black box model through various methods such as popular off the shelf
explainability frameworks and more powerful but custom methods such as network dissec-
tion and our own novel methods such as Object Realness, Discriminator Dissection, Forced
Object Generation and conditional embedding space exploration. The secondary objective
was to provide a comprehensive comparison of GANs with data augmentation. The last
objective was to improve GAN generation for time series.

In the first objective, through a comparison of various off the shelf explainability frame-
works we found that SHAP was able to consistently provide comprehensive insights into
the decisions of the Discriminator module. While the frameworks provided an excellent
starting point for understanding the Discriminator. Our own methods of Object Realness
and forced data generation provided more details into the existence of mode collapse. Our
exploration of the embedding space of the conditional variant revealed human interpretable
semantics that can be manipulated through the PCA direction. To leverage this finding
we created a web application that allow users to freely manipulate the generated image
through the PCA direction.

Our second objective revealed interesting aspects of techniques in traditional CNN that
could be applied to GAN. For grayscale images we found that normalizing according to
custom mean and STD can lead to better FID score while grayscale images that were gen-
erated through data augmentation can consistently lead to better classification accuracy.
However, the coloured images did not experience the same finding.

In our last objective, we introduced two new loss functions sDTW-p and sDTW-m
based on sDTW that can be used to improve the performance of time series generation.

63

We thoroughly tested the performance of the loss function across different time sequence
lengths and evaluated the results based on fidelity and diversity to prove that the new loss
functions consistently outperform against the baseline. We also showed that the two loss
functions can have different use-cases based on the length of the sequences.

The potential of the research finding as well as work that can be done in the future can
be summarized as follows:

• Examining the effect of inverse latent for conditional GANs.

• Expand the object realness and force generation to GANs that generate videos.

• Apply XAI frameworks to video generation GANs.

• Examine whether other existing time series GANs can benefit from the introduction
of our novel loss functions.

• Compare the differences between leveraging LSTM vs. transformers for time series
generation as transformers can potentially lower the computational time.

• A shaped-based DTW approach can be examined to compare the effect with the
sDTW loss function.

All the code used in this experiment as well procedure for reproducing the results can
be found in https://github.com/NullCodex/thesis.

64

https://github.com/NullCodex/thesis

References

[1] Abien Fred Agarap. Deep learning using rectified linear units (relu). arXiv preprint
arXiv:1803.08375, 2018.

[2] David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva, and Antonio Torralba. Network
dissection: Quantifying interpretability of deep visual representations. 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages 3319–3327,
2017.

[3] David Bau, Jun-Yan Zhu, Hendrik Strobelt, Agata Lapedriza, Bolei Zhou, and An-
tonio Torralba. Understanding the role of individual units in a deep neural network.
Proceedings of the National Academy of Sciences, 2020.

[4] David Bau, Jun-Yan Zhu, Hendrik Strobelt, Bolei Zhou, Joshua B. Tenenbaum,
William T. Freeman, and Antonio Torralba. Gan dissection: Visualizing and un-
derstanding generative adversarial networks. In Proceedings of the International Con-
ference on Learning Representations (ICLR), 2019.

[5] David Bau, Jun-Yan Zhu, Jonas Wulff, William Peebles, Bolei Zhou, Hendrik Stro-
belt, and Antonio Torralba. Seeing what a gan cannot generate. 2019 IEEE/CVF
International Conference on Computer Vision (ICCV), Oct 2019.

[6] Eoin Brophy, Maarten De Vos, Geraldine Boylan, and Tomás Ward. Multivariate
generative adversarial networks and their loss functions for synthesis of multichannel
ecgs. IEEE Access, 9:158936–158945, 2021.

[7] Fred B. Bryant and Paul R. Yarnold. Principal-components analysis and exploratory
and confirmatory factor analysis. 1995.

[8] Luis M. Candanedo, Véronique Feldheim, and Dominique Deramaix. Data driven
prediction models of energy use of appliances in a low-energy house. Energy and
Buildings, 140:81–97, 2017.

65

[9] Raghavendra Chalapathy and Sanjay Chawla. Deep learning for Anomaly Detection:
A survey. arXiv preprint arXiv:1901.03407, 2019.

[10] Marco Cuturi and Mathieu Blondel. Soft-dtw: A differentiable loss function for time-
series. In Proceedings of the 34th International Conference on Machine Learning -
Volume 70, ICML’17, page 894–903. JMLR.org, 2017.

[11] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet:
A large-scale hierarchical image database. In 2009 IEEE Conference on Computer
Vision and Pattern Recognition, pages 248–255, 2009.

[12] Li Deng. The mnist database of handwritten digit images for machine learning re-
search. IEEE Signal Processing Magazine, 29(6):141–142, 2012.

[13] Khaled El Emam, Elizabeth Jonker, Luk Arbuckle, and Bradley Malin. A systematic
review of re-identification attacks on health data. PLOS ONE, 6(12):1–12, 12 2011.

[14] Cristóbal Esteban, Stephanie L. Hyland, and Gunnar Rätsch. Real-valued (medical)
time series generation with recurrent conditional gans. ArXiv, abs/1706.02633, 2017.

[15] Leon Gatys, Alexander Ecker, and Matthias Bethge. A neural algorithm of artistic
style. Journal of Vision, 16(12):326–326, Sep 2016.

[16] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In
Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K. Q. Weinberger, editors,
Advances in Neural Information Processing Systems, volume 27. Curran Associates,
Inc., 2014.

[17] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron
Courville. Improved training of wasserstein gans. In Proceedings of the 31st In-
ternational Conference on Neural Information Processing Systems, NIPS’17, page
5769–5779, Red Hook, NY, USA, 2017. Curran Associates Inc.

[18] David Gunning and David Aha. Darpa’s explainable artificial intelligence (xai) pro-
gram. AI Magazine, 40(2):44–58, Jun. 2019.

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 770–778, 2016.

66

[20] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp
Hochreiter. Gans trained by a two time-scale update rule converge to a local nash equi-
librium. In Proceedings of the 31st International Conference on Neural Information
Processing Systems, NIPS’17, page 6629–6640, Red Hook, NY, USA, 2017. Curran
Associates Inc.

[21] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp
Hochreiter. Gans trained by a two time-scale update rule converge to a local nash equi-
librium. In Proceedings of the 31st International Conference on Neural Information
Processing Systems, NIPS’17, page 6629–6640, Red Hook, NY, USA, 2017. Curran
Associates Inc.

[22] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network
training by reducing internal covariate shift. In Proceedings of the 32nd International
Conference on International Conference on Machine Learning - Volume 37, ICML’15,
page 448–456. JMLR.org, 2015.

[23] Young-Seon Jeong, Myong K. Jeong, and Olufemi A. Omitaomu. Weighted dynamic
time warping for time series classification. Pattern Recognition, 44(9):2231–2240, 2011.
Computer Analysis of Images and Patterns.

[24] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of
GANs for improved quality, stability, and variation. In International Conference on
Learning Representations, 2018.

[25] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In
Yoshua Bengio and Yann LeCun, editors, 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings, 2015.

[26] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Learning multiple layers of features
from tiny images. Master’s thesis, Department of Computer Science, University of
Toronto, 2009.

[27] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with
deep convolutional neural networks. Commun. ACM, 60(6):84–90, may 2017.

[28] Lan Lan, Lei You, Zeyang Zhang, Zhiwei Fan, Weiling Zhao, Nianyin Zeng, Yidong
Chen, and Xiaobo Zhou. Generative adversarial networks and its applications in
biomedical informatics. Frontiers in Public Health, 8:164, 2020.

67

[29] Heyi Li, Yuewei Lin, Klaus Mueller, and Wei Xu. Interpreting galaxy deblender gan
from the discriminator’s perspective. In George Bebis, Zhaozheng Yin, Edward Kim,
Jan Bender, Kartic Subr, Bum Chul Kwon, Jian Zhao, Denis Kalkofen, and George
Baciu, editors, Advances in Visual Computing, pages 239–250, Cham, 2020. Springer
International Publishing.

[30] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes
in the wild. In Proceedings of International Conference on Computer Vision (ICCV),
December 2015.

[31] Scott M Lundberg and Su-In Lee. A Unified Approach to Interpreting Model Pre-
dictions. In Advances in Neural Information Processing Systems, volume 30. Curran
Associates, Inc., 2017.

[32] Andrew L. Maas, Awni Y. Hannun, and Andrew Y. Ng. Rectifier nonlinearities im-
prove neural network acoustic models. In in ICML Workshop on Deep Learning for
Audio, Speech and Language Processing, 2013.

[33] Mehran Maghoumi, Eugene Matthew Taranta, and Joseph LaViola. DeepNAG: Deep
Non-Adversarial Gesture Generation, page 213–223. Association for Computing Ma-
chinery, New York, NY, USA, 2021.

[34] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed
representations of words and phrases and their compositionality. In C. J. C. Burges,
L. Bottou, M. Welling, Z. Ghahramani, and K. Q. Weinberger, editors, Advances in
Neural Information Processing Systems, volume 26. Curran Associates, Inc., 2013.

[35] Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets. 2014.

[36] Olof Mogren. C-rnn-gan: Continuous recurrent neural networks with adversarial train-
ing, 2016.

[37] Ari S. Morcos, David G.T. Barrett, Neil C. Rabinowitz, and Matthew Botvinick. On
the importance of single directions for generalization. In International Conference on
Learning Representations, 2018.

[38] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y.
Ng. Reading digits in natural images with unsupervised feature learning. In NIPS
Workshop on Deep Learning and Unsupervised Feature Learning 2011, 2011.

68

[39] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learn-
ing with deep convolutional generative adversarial networks. In Yoshua Bengio and
Yann LeCun, editors, 4th International Conference on Learning Representations,
ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings,
2016.

[40] T. Rakthanmanon, B. Campana, A. Mueen, G. Batista, B. Westover, Q. Zhu, J. Za-
karia, and E. Keogh. Searching and Mining Trillions of Time Series Subsequences
under Dynamic Time Warping. KDD, 2012:262–270, Aug 2012.

[41] Manassés Ribeiro, André Eugênio Lazzaretti, and Heitor Silvério Lopes. A study of
deep convolutional auto-encoders for Anomaly Detection in videos. Pattern Recogni-
tion Letters, 105:13–22, 2018.

[42] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. ”why should i trust you?”:
Explaining the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD ’16, page
1135–1144, New York, NY, USA, 2016. Association for Computing Machinery.

[43] Haşim Sak, Andrew Senior, and Françoise Beaufays. Long short-term memory based
recurrent neural network architectures for large vocabulary speech recognition, 2014.

[44] H. Sakoe and S. Chiba. Dynamic programming algorithm optimization for spoken
word recognition. IEEE Transactions on Acoustics, Speech, and Signal Processing,
26(1):43–49, 1978.

[45] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and
Xi Chen. Improved techniques for training gans. In Proceedings of the 30th In-
ternational Conference on Neural Information Processing Systems, NIPS’16, page
2234–2242, Red Hook, NY, USA, 2016. Curran Associates Inc.

[46] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford,
Xi Chen, and Xi Chen. Improved techniques for training gans. In D. Lee, M. Sugiyama,
U. Luxburg, I. Guyon, and R. Garnett, editors, Advances in Neural Information Pro-
cessing Systems, volume 29. Curran Associates, Inc., 2016.

[47] Connor Shorten and Taghi M. Khoshgoftaar. A survey on image data augmentation
for deep learning. Journal of Big Data, 6(1):60, Jul 2019.

69

[48] Avanti Shrikumar, Peyton Greenside, and Anshul Kundaje. Learning important fea-
tures through propagating activation differences. In Proceedings of the 34th Inter-
national Conference on Machine Learning - Volume 70, ICML’17, page 3145–3153.
JMLR.org, 2017.

[49] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolutional
networks: Visualising image classification models and saliency maps. In Workshop at
International Conference on Learning Representations, 2014.

[50] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep
networks. In Proceedings of the 34th International Conference on Machine Learning
- Volume 70, ICML’17, page 3319–3328. JMLR.org, 2017.

[51] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna.
Rethinking the inception architecture for computer vision. In 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages 2818–2826, 2016.

[52] Luke Taylor and Geoff S. Nitschke. Improving deep learning with generic data augmen-
tation. 2018 IEEE Symposium Series on Computational Intelligence (SSCI), pages
1542–1547, 2018.

[53] Aäron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals,
Alexander Graves, Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu.
Wavenet: A generative model for raw audio. In Arxiv, 2016.

[54] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal
of Machine Learning Research, 9(86):2579–2605, 2008.

[55] Abdul Waheed, Muskan Goyal, Deepak Gupta, Ashish Khanna, Fadi Al-Turjman, and
Placido Rogerio Pinheiro. Covidgan: Data augmentation using auxiliary classifier gan
for improved covid-19 detection. IEEE access : practical innovations, open solutions,
8:91916–91923, May 2020.

[56] Ronald J. Williams and David Zipser. A learning algorithm for continually running
fully recurrent neural networks. Neural Computation, 1(2):270–280, 1989.

[57] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset
for benchmarking machine learning algorithms. CoRR, abs/1708.07747, 2017.

[58] Tete Xiao, Yingcheng Liu, Bolei Zhou, Yuning Jiang, and Jian Sun. Unified perceptual
parsing for scene understanding. In The European Conference on Computer Vision
(ECCV), September 2018.

70

[59] Xin Yi, Ekta Walia, and Paul Babyn. Generative adversarial network in medical
imaging: A review. Medical Image Analysis, 58:101552, Dec 2019.

[60] Jinsung Yoon, Daniel Jarrett, and Mihaela van der Schaar. Time-series generative
adversarial networks. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems,
volume 32. Curran Associates, Inc., 2019.

[61] Fisher Yu, Yinda Zhang, Shuran Song, Ari Seff, and Jianxiong Xiao. LSUN: con-
struction of a large-scale image dataset using deep learning with humans in the loop.
CoRR, abs/1506.03365, 2015.

[62] Zhengli Zhao, Zizhao Zhang, Ting Chen, Sameer Singh, and Han Zhang. Image
augmentations for GAN training. arXiv preprint arXiv:2006.02595, 2020.

[63] Barret Zoph and Quoc V. Le. Neural architecture search with reinforcement learning.
In 5th International Conference on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017.

71

	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Problem Definition
	Motivation
	Scope
	Objective
	Thesis Organization

	Background and Literature Review
	Generative Adversarial Networks
	GANs
	Conditional GAN
	Deep Convolutional GAN
	PPGAN

	Evaluating GAN
	Inception Score
	Fréchet Inception Distance

	GAN Explainability
	Explaining deep networks
	Visualizing GANs
	Discriminator Analysis

	Data Augmentation
	Image Data Augmentation
	Image Augmentation using GAN
	Image Augmentations for GAN Training

	Time Series
	Dynamic Time Warping
	Soft Dynamic Time Warping
	Time Series Generation

	Proposed Solution
	Introduction
	Explainable Frameworks
	Local Interpretable Model-agnostic Explanation (LIME)
	Integrated Gradient
	DeepLIFT
	SHapley Additive exPlanations (SHAP)
	Models

	Discriminator Dissection
	Network Dissection
	Object Realness
	Forced Details Generation

	Conditional GAN
	Data Augmentation with GAN
	Normalization
	Image Augmentations

	Soft Dynamic Time Loss
	sDTW-p
	sDTW-m

	Experiments and Analysis
	Datasets
	MNIST
	FashionMNIST
	CIFAR-10
	SVHN
	LSUN
	CelebA
	Google Stock
	Energy

	Explainable Framework Comparison
	Model Architectures
	Results

	Conditional GAN
	Model
	Ablation
	Vector Arithmetic
	Interpolation
	PCA

	Discriminator Dissection
	Network Dissection
	Object Realness
	Custom Dataset
	Discussion

	Data Augmentation
	Normalization
	Augmentation Comparison
	Results

	Time Series Generation
	Model
	Generator
	Discriminator
	Training
	Evaluation
	Results
	Discussion

	Conclusion
	References

