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Abstract

Digital pathology has recently expanded the field of medical image processing for di-
agnostic reasons. Whole slide images (WSIs) of histopathology are often accompanied by
information on the location and type of diseases and cancers displayed. Digital scanning
has made it possible to create high-quality WSIs from tissue slides quickly. As a result,
hospitals and clinics now have more WSI archives. As a result, rapid WSI analysis is nec-
essary to meet the demands of modern pathology workflow. The advantages of pathology
have increased the popularity of computerized image analysis and diagnosis.

The recent development of artificial neural networks in AI has changed the field of
digital pathology. Deep learning can help pathologists segment and categorize regions and
nuclei and search among WSIs for comparable morphology. However, because of the large
data size of WSIs, representing digitized pathology slides has proven difficult. Furthermore,
the morphological differences between diagnoses may be slim, making WSI representation
problematic. Convolutional neural networks are currently being used to generate a single
vector representation from a WSI (CNN). Multiple instance learning is a solution to tackle
the problem of giga-pixel image representation. In multiple instance learning, all patches
in a slide are combined to create a single vector representation.

Self-supervised learning has also shown impressive generalization outcomes in recent
years. In self-supervised learning, a model is trained using pseudo-labels on a pretext task
to improve accuracy on the main goal task. Contrastive learning is also a new scheme for
self-supervision that aids the model produce more robust presentations. In this thesis, we
describe a self-supervised approach that utilizes the anatomic site information provided
by each WSI during tissue preparation and digitization. We exploit an Attention-based
Multiple instance learning setup along with supervised contrastive learning. Furthermore,
we show that using supervised contrastive learning approaches in the pretext stage improves
model embedding quality in both classification and search tasks. We test our model on
an image search on the TCGA depository dataset, a Lung cancer classification task and a
Lung-Kidney-Stomach immunofluorescence WSI dataset.
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Chapter 1

Introduction

1.1 Introduction

In recent years, the development of digital pathology has opened up new possibilities in
the field of medical image analysis for diagnostic purposes. Images of histopathology, also
known as whole slide images (WSIs), are typically accompanied by information on the
location and type of illnesses and malignancies being depicted. Recent advancements in
digital technology have made it possible to make high-quality WSIs from tissue slides in a
short period of time using digital scanning. A direct outcome of this has been a significant
increase in the number of WSI archives in hospitals and clinics. It has therefore become
evident that quick analysis of WSIs is required in order to fulfil pressing requirements in the
everyday workflow of modern pathology. As a result, computerised techniques for image
analysis and diagnosis have become increasingly popular as a result of the digital scanning
of slides, in addition to the other advantages of pathology.

The field of digital pathology has been drastically changing due to the recent success
of artificial neural networks in AI domain. Various pathological tasks, including segmen-
tation and categorization of areas and nuclei, as well as searching among WSIs to locate
similar morphology, can be made easier with deep learning. However, because of the huge
data size of WSIs (which is typically greater than 50,000×50,000 pixels), the depiction of
digitized pathology slides has proven to be a difficult task. Furthermore, the morphological
traits that distinguish between different diagnoses may be microscopically small, posing
a significant difficulty for WSI representation. The process of directly generating a single
vector representation from a WSI is currently being investigated using convolutional neural
networks (CNN).
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Additionally, in recent years, self-supervised learning has demonstrated remarkable
results in terms of generalization. A model is trained using pseudo-labels on a pretext
task in self-supervised learning, which allows the model to produce more accurate results
on the main target task. In this thesis, we present a self-supervised technique that takes
advantage of the primary site information provided by each WSI, which is always available
during the tissue preparation and subsequent digitization process of the tissue. We also
demonstrate that including supervised contrastive learning techniques into the pretext
stage can increase the quality of model embeddings in both the WSI classification and
search tasks.

1.2 Motivation

Digital pathology slides are acquired and scanned from various anatomic sites. Each
anatomic site has different cancer types. For example, two of the major cancers in the
Lung are Lung Adenocarcinoma and Lung Squamous Cell Carcinoma. Also, two signifi-
cant categories of primary brain neoplasms with different malignant potential and behavior
are low grade gliomas and high grade gliomas, including glioblastoma multiforme. Each
cancer type and malignancy in general is unique in each anatomic site and has different
characteristics based on what anatomical site the tissue is extracted from. Therefore, iden-
tifying the primary site of the tissue can help the model identify the characteristics of
cancer in each slide in a more efficient way. Since the site of each tissue is always avail-
able with the tissue, we can use it as prior information to help our deep learning model
understand cancers better.

Considering state-of-the-art self-supervision approaches, contrastive learning is a prac-
tical approach to train models for a pretext task. Contrastive learning helps the model
learn rich representation from the provided information. In this thesis, we will use the
anatomical site as a pseudo-label for training, and we will use Supervised Contrastive Loss
for training the model with the pseudo-label.

Another aspect of the pathology slides is their enormous size. The classification of
slides needs to be broken down into smaller images (patches). To consider the patches as
representatives of a slide, Multiple instance learning (MIL) approaches are exploited. In
the MIL setup, all patches from each slide are considered instances of a bigger bag. The
extracted features of each patch are aggregated to represent a whole slide to classify each
slide. Therefore, we conduct our experiments in a MIL setup. Different approaches to MIL
exist, such as Deep sets, Graph representations and attention blocks. In this paper, we use
an attention-based MIL setup for aggregation.
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These have motivated us to develop a pathology-related self-supervised learning ap-
proach and a model to train and classify digital pathology slides.

3



Chapter 2

Digital Pathology, Deep Learning
and Image Search

With the rise in importance and exploitation of digitized histopathology slides, computer-
aided diagnosis (CAD) has become a popular approach and area of research. In recent
years, learning-based approaches have proven to be dominant among CAD systems. Arti-
ficial neural networks are being exploited in various tasks, such as instance classification,
image segmentation, and information retrieval. Digital Pathology has also been widely
explored as an application field of artificial intelligence.

2.1 Digital Pathology

Pathology is an area of medicine that entails the investigation and diagnosis of disease using
surgically removed organs, tissues (biopsy samples), physiological fluids, and, in certain
situations, the entire body (autopsy) [48]. Pathology examines the causes, mechanisms
of disease formation, structural changes in cells, and the effects of these changes [48].
Pathologists are specialists in various diseases, including cancer, and are responsible for
the great majority of cancer diagnosis [48]. A light microscope is used to examine the
cellular pattern of tissue samples to identify whether they are malignant or not (benign)
[48]. Pathologists also use genetic research and gene markers to diagnose and classify
various diseases [65].

Digital pathology is concerned with the acquisition and analysis of scanned and digi-
tized pathology glass slides [2]. In digitizing, the slides are scanned with specific micro-
scopic scanners, (pictured in Figure 2.1) and through this digitization, whole slide images
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(WSIs) can be viewed and analyzed via computer-assisted programs and software. Digital
pathology has become significant in recent years due to the better accessibility to slides
for pathologists and accurate diagnosis and prediction with the help of current artificial
intelligence advances [83].

Figure 2.1: A digital pathology scanner. WSI scanners are capable of producing high
quality images of multiple slides at the same time. Image taken from Leica Biosystems
official website

Digital pathology slides are categorized as gigapixel images. They can naturally be
larger than 100,000 × 100,000 pixels in size. Due to their massive size, they are represented
in a pyramid structure [6]. Each slide is represented in different magnification levels based
on the desired zoom level. The lowest zoom level is typically called the thumbnail of
a slide, and the highest level is the highest resolution of the slide image with the most
resolved details. Figure 2.2 shows the pyramid representation of a WSI. Each magnification
level contains specific information. In the highest magnification, the detail of orientation,
placement, mitosis and containment of each nucleus can be seen. In contrast, in lower
magnification, the gland information and the growth of cancerous clusters is observed [68].

Due to their large size, WSIs are often broken into smaller images (patches) for computer-
assisted analysis and diagnosis tasks. The process of selecting the area and the magnifi-
cation of each patch are mainly divided into two main categories of “supervised” and
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Figure 2.2: Multi-magnification representation of a WSI. Image taken from [6]

“unsupervised”. In the supervised setup, firstly, one or more pathology experts specify the
locations associated with the cancerous regions in a WSI. Then, patches are selected from
these regions specifically [73]. On the other hand, unsupervised patch selection is done
without the collaboration of a pathologist. This patch selection method is mainly based
on low-level features like colour and location[45].

2.2 Deep Learning

Deep learning (DL) is an area of artificial intelligence concerned with the design and
training of artificial neural networks with many layers, inspired by the construction and
process of the human brain [53]. Deep learning models are constructed by multiple neural
layers. Each layer consists of different parameters called “weights”, which are tuned to
predict specific pieces of information from various inputs [41]. Deep learning models, which
are generally artificial neural networks (ANNs), are predictive models employed in different
tasks, such as classification, object detection, segmentation and sequence prediction [53].

Deep Learning can be divided into three major subsections: Supervised, Unsupervised
and reinforcement learning [53]. In supervised learning, the model learns its parameters
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based on labels assigned to each input. After the input has been fed to an ANN, the
output is compared to the given label, and with the help of various objective functions,
the difference of the output and the desired label is computed, and the parameters are
then “trained” with different optimization algorithms to decrease the distance between the
label and the prediction [52].

In an unsupervised setup, the labels are absent, perhaps because it is too expensive
to label the data, and the parameters are tuned with the help of objective functions that
do not require any guidance from labels. Also, in reinforcement learning problems, an
agent interacts with an environment and tries to solve specific problems based on rewards
and punishment that it receives from interacting with an environment [79]. ANNs can be
applied to various data types, including but not limited to images , text, time series and
digital signals [86] [15] [40] [67]. With the help of DL, the field of artificial intelligence
is growing rapidly and is currently one of the most active fields in the field of computer
science and engineering.

2.2.1 Basic Artificial Neural Networks

Figure 2.3 shows a simple ANN. As it can be seen, an ANN consists of two or more
layers. Each layer also consists of multiple neurons. The input features are multiplied by
particular values, which is called weights, and then summed to create a new value. The
weights of the next layer also apply the new value to produce new values. In the final
layer, the aggregation of all the final summations creates the model’s output. The weights
of each layer are then subject to gradient-based adjustments to predict the output more
efficiently. Figure 2.4 shows the working process of each ANN layer. If the inputs to a layer
are denoted with xi and the corresponding weights with wi, the corresponding neuron in
the next layer will be computed as

yj = f(Σwixi + b), (2.1)

where b is the bias term of the neuron and f(·) is called an “activation function”.

Activation functions are non-linear functions that mimic the spike characteristics of the
brain neurons and control the neuron’s output value. Activation functions limit the value
of the neuron’s output to a specific range. They also add non-linearity to the model, which
helps the model predict inputs with non-linear decision boundaries [28].

If the output of the ANN is denoted as as y and the corresponding label with ŷ, the
distance between the prediction and the label (the loss value) can be computed with the
help of an objective function given as
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Figure 2.3: A basic artificial neural network. First, inputs (blue block) are fed to a number
of hidden layers (red blocks). The output (yellow block) of these hidden layers are then
used as ground-truth for comparison to learn predictions.

loss = L(y, ŷ), (2.2)

where L is the objective (loss) function. Based on the task and the desired output of the
ANN, different loss functions can be used, such as mean squared loss, cross-entropy loss
and contrastive loss [63] [43] [46] [10].

The process mentioned above is also described as a “forward pass”. After an iteration of
the forward pass, The back-propagation (BP) process is initiated to optimize the model’s
parameters [54]. In BP, an optimization method is used to find the optimal value of
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Figure 2.4: Detail of a ANN layer. The input (blue block) are multiplied by the correspond-
ing weights and then aggregated. A bias term (orange block) is added to the summation
and the final result is then passed to an activation function (green block), which is a recti-
fied linear unit (ReLU) in this case. The output (yellow block) is then utilized for further
computations during the forward path.

weights. A standard optimization algorithm used in the literature is called stochastic
gradient descent (SGD) [52]. In SGD, the gradient of the loss function is computed with
respect to each weight value. The new weight value is then computed as

w′ = w − α
∂L

∂w
, (2.3)

where α is called the learning rate[63]. The intuition behind the SGD is that if parameters
move against the gradient of the optimization function, they will eventually reach the
optimal point [52]. Learning rate is also a very important hyperparameter in a learning
setup, and it indicates the size of the steps with which the model moves toward the optimal
points [63]. Large learning rates will help the model reach its optimal value faster, but it
may be too large to find the actual optimal point. Smaller step sizes have better accuracy
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but tend to be stuck in the local minima if not used carefully [22].

As can be seen in Figure 2.5, small learning rates slow the training setup and can
sometimes mislead the model into getting stuck at a local minimum [22]. Large learning
rates can also miss the global optimum if the steps are larger than the global optimums
domain [22]. The loss surface of a VGG model (a very deep convolutional neural network
that is utilized widely in the literature) can be observed in Figure 2.6, which is a classifi-
cation model [77]. It can be observed how challenging it could be to converge to a solution
through a non-convex, non-smooth loss function [42].

Figure 2.5: Comparison of different values of learning rate. Taken from this website

It is common in the literature to reduce the learning rate gradually to improve conver-
gence [23]. Figure 2.7 shows three different learning rate schedulers, namely exponential
decay , cosine decay and step decay [59] [23].

The above process is then repeated for different inputs. To help the model learn more
from the inputs, the passing of the entire training data is repeated in multiple epochs. The
input is also commonly fed to large batches to help the optimization algorithm produce
better gradients and efficiently utilize the computational power [29].

Before initiating the training process, the dataset is divided into three sections: train,
validation, and test set [27]. The train set is the portion of the data used to train the

10
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Figure 2.6: Loss surface of VGG [77]. Taken from original repository of [57]

model parameters. After each training epoch, the model predicts the data available in the
validation set to check whether the training hyperparameters, such as learning rate and
batch size, are appropriate for the training phase [29]. Since the model has not observed the
validation set data in the training phase, it should verify whether the model being trained
can generalize to unseen data instances. It can reveal whether a model is overfitting the
training data. “Overfitting” occurs when the model has excellent performance on the
training set but performs poorly on the validation and test dataset [7]. After the training
process is completed, the model is evaluated on the test dataset to measure how the model
performs on an unseen dataset.

Previously described ANN learning uses basic one-dimensional layers. However, the
recent deep learning models use more complex learning layer architecture called convolu-
tional neural networks (CNN) [58]. CNNs are widely used deep learning modules to learn
image data and, as the name suggests, perform 2D convolution operation on the input.
Figure 2.8 shows a basic convolution layer. As it can be observed, the convolution of the

11
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Figure 2.7: Exponential decay, Cosine decay and Step decay schedulers [23] [59].

input image and the convolutional filter are computed with a moving window technique.
Here, the convolutional operation is identical to a matrix dot product. Commonly, each
convolutional layer consists of multiple convolutional filters [3]. Like basic ANN layers,
the trainable parameters in a convolutional layer are the filter coefficients. CNNs, like any
other ANN, are trained with the help of an objective function and an optimization method.

The main advantage of choosing CNN models over conventional ANNs is that they
consider neighbourhood information of input and learn spatial features of images, texts
and speech data [3]. Due to the spatial overlap of convolutional outputs, a CNN conserves
this information and carries it through the training session. Another main advantage
of CNNs is the exploitation of fewer parameters than a fully connected layer since the
convolutional layer outputs multiple inputs to a fewer output [21]. Furthermore, The total
size of a convolutional layer output is usually smaller than the input. CNNs have become
a favourite choice of model blocks in the literature for as state-of-the-art classification,
segmentation, recognition and detection models.

Figure 2.9 shows an overall topology of a CNN. As can be seen, the general architecture
of a CNN model is similar to a feedforward ANN. Instead of regular layers, CNNs exploit
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Figure 2.8: An illustration of convolutional block computations. The computational block
(marked green) is multiplied elementwise with each same size sub-squares of the input
(marked blue), and the pooled summations of this multiplications make the output (red)
of the convolutional operation.

consecutive convolutional layers. Also, like ANNs, the output of each convolutional block
is passed to an activation function. Typically in the case of classification, after the final
convolutional block, the output is flattened and passed to a few fully connected layers to
compare the final output to the labels [38] [77] [30]. The section of a classification CNN
before the fully connected layer is commonly called “feature extractor”, and the remaining
fully connected layers are named classification block.

2.3 Related topics in Deep Learning

In the previous section, the basics of ANNs and CNNs were discussed. In this section,
deep learning applications related to the thesis will be discussed. First, the definition of
content-based image retrieval and its application in digital pathology will be elaborated.
Then multiple-instance Learning (MIL), self-supervised learning and contrastive learning
will be explained.
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Figure 2.9: an Overall illustration of a CNN model. This shape shows the convolutional
computation and the forward path. The final layer of the CNN is then pooled and fed to
a number of fully connected layers for prediction and error measurement.

2.3.1 Content-Based Image Retrieval

Content-Based Image Retrieval (CBIR) is the process of searching through databases con-
taining various images that have been indexed before [25] [25]. CBIR systems perform
image retrieval depending on the image’s content. Extracting semantic information is re-
quired for image identification through meaningful indexing. In the context of text-retrieval
systems, documents can be broken down into words and compared using word-based char-
acteristics [72]. Digital images are composed of pixels; decomposing them and comparing
them on the basis of the pixel-based features may not possible, as two similar images cap-
tured from the same scene or object would have different pixel distributions due to natural
image modifications. As a result, developing a suitable representation for a digital image is
a significant challenge in CBIR. Numerous classical and modern learning algorithms have
been developed for this purpose [25].

There are various processes involved in implementing an accurate and efficient CBIR
system. To begin, distinct representations of an image should be derived from pixel infor-
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mation. These representations are mainly extracted from deep feature extractors [94]. For
a retrieval request, the query or queries must first be transformed in some way before they
can be compared to images stored in indexed archives. Additionally, relevant similarity
metrics should be employed to rank the results before they are displayed to the CBIR user.
Additionally, these models must be assessed for improvement. All of these points have
been discussed in detail in the following paper. The configuration of a CBIR system is
depicted in Figure 2.10.

Figure 2.10: A complete workflow of a CBIR system. The image (marked in grey) is passed
to some computational blocks for feature extraction (marked in blue). The features are
then indexed for archiving (green block). A query image (marked in cyan) goes through
the same feature extraction modules as the indexed images in archive. Then similarity of
the query and the indexed images are computed (orange block). Subsequently, the results
are ranked based on the similarity score from highest to lowest (marked in dark grey).
Based on the user (expert) feedback, the feature extractor, similarity measurements and
the indexing can be optimized (red block).

To extract reliable features from images, it is common to use previously trained CNNs,
and use these features as data points to compare the images. This is one aspect of what
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is called “transfer learning” [95]. Zeiler et al. have shown that the features produced
from the final convolutional layers (high-level features) contain more semantic information
than the features from the starting CNN blocks (low-level features) [92]. As a result,
during CBIR feature extraction, high-level image features are extracted to represent the
image. To extract more salient features, CNNs should be trained on large image datasets
to ensure that the model has had the chance to see many samples containing semantic
structures relevant for the application at hand. Then, the classification module of the
model is discarded, and the CNN blocks are used as feature extractors [87].

CBIR can become a critical tool in medical imaging, especially in the field of digital
pathology [82] [31] [45]. To increase the pathologist’s confidence in identifying the tissue
characteristics and in cancer diagnosis, it is helpful to compare images of the new patients
with the images of previously diagnosed cased in the archive [82].

2.3.2 WSI Representation Learning

As mentioned in the previous passage, for a CBIR model to perform reliable search tasks,
it needs to be trained on a set of representative cases. Whole slide images (WSIs) are
gigapixel images, meaning they generally have been made of very large dimensions with
billions of pixels [66] [49]. It is practically impossible to input gigapixel images directly to
CNNs due to their computational cost and hardware bottlenecks. It is quite common to
divide a WSI into smaller patches and select a subset of patches to perform classification
[37] [45] [12].

Early WSI representation approaches primarily investigated patch-level classification.
Hou et al. reported an early classification of WSI slides in 2016 [37]. In this paper, the
authors extracted and classified patch-level features with a CNN iterative fashion. The
authors first train a CNN with WSI patches. Then they compare the patch prediction
with the WSI label and create an intensity map of correct predictions to aid their patch
extraction algorithm. They create a histogram of predicted patches in their second stage
and compare it with the actual WSI label. Coudray et al. extracted multi-magnification
features from 20x and 5x magnifications and aggregated the features with an average of
the probabilities of the corresponding patches [13]. Their work mainly focuses on Lung
Adenocarcinoma (LUAD) and Lung Squamous Cell Carcinoma (LUSC) slides. Kalra et al.
first cluster the entire tissue with colour clustering, then select a small number of patches
based from each cluster [45]. They employed patch-level embeddings for WSI search.
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2.3.3 Multiple Instance Learning

Multiple instance learning (MIL) is a specific learning scheme where a label is assigned
to a bag of instances [16] [91] [39]. In many applications, like digital pathology, there
may only be a few available labels for all instances. Hence, it may be more convenient to
label multiple objects with a single label. A most common example is an image consisting
of multiple objects and task includes detecting and classifying a single object inside the
image.However, it is expensive to annotate the whole image and classify it based on those
annotations. Therefore, algorithms need to be defined to detect the object among multiple
other instances in an image.

MIL is a common approach for the classification and retrieval of WSI images [32]
[39] [55]. As mentioned in previous sections, for the classification of WSI images, each
slide is first broken down into multiple patches due to computational complexities. This
training setup is often translated into a MIL setup, where each patch is considered an
instance and the WSI is therefore denoted as a “bag of instances” [16]. In most cases, the
features extracted from patches are aggregated into a single representation, and exploited
for different representation learning tasks. Figure 2.11 illustrates an example of a multiple
instance learning scheme.

Figure 2.11: The overall illustration of a multiple instance learning setup in the case of
digital pathology. The cancerous region is shown with a yellow contour. The WSI is broken
down into multiple smaller patches. In the case of MIL, the patches do not have individual
labels but all have a single label, namely the WSI label. After CNN feature extraction
(blue blocks), the features (marked in red) are aggregated via a MIL technique (yellow
block) to make a single representation for all instances. This representation is then used
for comparison with the label in a classification setup (green block).

17



Recently, Zaheer et al. proposed MIL with deep-sets, where they demonstrated that
different pooling layers could obtain permutation invariant representations [91]. Permuta-
tion invariance is a crucial characteristic in a MIL setup [39]. It suggests that the ordering
of the instances should not affect the resulting representation vector. This attribute guar-
antees that the resulting vector is entirely dependent on the semantics of the instances and
not the ordering and positions of instances with relation to each other. In the mentioned
paper, the authors use the sum of each instance to produce the final representation and
compare the results of the max-pooling of instances, which selects the maximum value of
each feature among all the instances [91] .

Following the above paper, many MIL-based WSI representation schemes have been
proposed. Ilse et al. proposed attention-based multiple instances learning to perform
weighted pooling over each instance feature [39]. Attention models are recently proposed
algorithms in deep learning [5]. Purpose of “attention” is to put emphasis on the feature
vectors that the model thinks are more critical for the task at hand. In other words, the
attention block highlights patches that can contribute more to the task at hand. Compared
with a conventional deep-set with average pooling, attention block acts as a weighted
average pooling.

Another example of attention-based pooling in MIL is proposed by Kalra et al. where
the authors introduced memory networks (MEM) for learning permutation-invariant repre-
sentations [44]. In another paper, Adnan et al. used graph CNNs to consider each instance
as a node in a graph and then learned an adjacency matrix to build a graph representa-
tion of WSIs [1]. Just recently, Hemati et al. have exploited deep sets for MIL training in
histopathology. They employed a conditional prediction layer where predictions of primary
site labels guide the primary diagnosis predictions [32] [91].

2.3.4 Self-Supervised Learning

Self-supervised learning (SSL) refers to deep learning consisting of two stages: Pretext
training and downstream (target) training [33]. In the pretext stage, a model is trained on
available information that can be extracted from the data itself without any costly human
supervision. The trained weights from the pretext training are then utilized for the target
task. The intuition behind this approach is to teach the model basic understanding of the
input that the model may not achieve in a conventional training stage. For examples, the
pretext task propesed by Gidaris et al. is to train a model on different rotations (0, 90,
180 and 270 degrees) of the same image [20]. Each input instance is rotated, therefore the
corresponding label is the degree of rotation. The authors then show that various computer
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vision tasks such as classification, detection, or segmentation generalize better with self-
supervision. Another example of early self-supervision is reported by Doersch et al. [17].
The pretext task in the paper is, given a sample image, to find relative positions between
two random patches in the image. It helps the model understand the spatial connection
between different image parts and objects, and therefore model will better understand the
semantic information of the image.

There have also been some approaches to self-supervision in histopathology literature.
In a recent publication, Koohbanani et al. propose two sets of pretext tasks: domain-
agnostic and domain-specific tasks [51]. Domain-agnostic pretext tasks refer to a set of
general pretext tasks such as rotation, flipping, real/fake prediction and domain predic-
tion. These tasks are not focused on pathology-related characteristics of patches. On the
other hand, domain-specific pretext tasks focus on pathology features of images and con-
sist of magnification prediction, JigMag prediction (predicting the correct magnification
order of randomly shuffled patches, like a jigsaw puzzle), and hematoxylin channel predic-
tion. Hematoxylin and eosin are two popular colour channels for histopathology images
whereas the Hematoxylin channel has a strong correlation with nuclei location and cancer
characteristics [51].

To further introduce self-supervised algorithms, first contrastive learning and related
optimization methods should be introduced.

2.3.5 Contrastive learning

Contrastive learning (CL) is another active field of research in deep learning where the
goal is to pull similar instances together and push the non-related samples away [11] [46].
Training a model with a contrastive loss can help produce a more distinct feature vec-
tor for an input. Figure 2.12 illustrates the difference between contrastive learning and
conventional supervised learning.

The first usage of a contrastive loss appeared in 2005 [11]. The authors proposed a
similarity loss function that maps training data into a target space such that the L1 norm
of the target space imitates the semantic distance of the input space. They considered
pairwise input and chose to either push away or pull the samples based on similarity. Thus,
the embedding distance between two inputs is minimized when they belong to the same
class, but it is increased when they do not. The mathematical formulation of contrastive
loss is written as

L(xi, xj) = I[yi = yj] ||f(xi)− f(xj)||22 + I[yi ̸= yj]max(0, ϵ− ||f(xi)− f(xj)||2)2, (2.4)
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Figure 2.12: A comparison of basic supervised learning and contrastive learning. In con-
trastive learning, instead of comparing the instances only with their own labels, the dis-
tances of different instances with similar labels are minimized, and the negative samples
are pushed away in the feature space.

where ϵ is a hyperparameter that controls the distance between negative samples.

In a paper proposed by Hoffer et al., instead of two samples for comparison, authors
used one instance as an anchor, one negative and one positive sample for metric learning,
simultaneously [36]. In this regard, the loss is written as

L(x, x+, x−) =
∑
x

max(0, ||f(x)− f(x+)||22 − ||f(x)− f(x−)||22 + ϵ). (2.5)

For the sake of comparing with multiple negative samples, N-pair loss generalizes the
triplet loss hypothesis [78]. They write the contrastive loss function with an anchor, a
positive sample, and N-1 negative samples as

L(x, x+, {x−}N−1
1 ) = log(1 +

N∑
i=1

exp f⊤(x)f(x−
i )− f⊤(x)f(x+)). (2.6)
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Soft-nearest neighbors loss considers multiple positive samples [71] [19]. For a batch of
N samples, the loss function is written as

L = − 1

N

N∑
i

log

∑
j ̸=i,yi=yj

exp(−f(xi, xj)/τ)∑
j ̸=i exp(−f(xi, xj)/τ)

, (2.7)

where f is a function that measures similarity, and τ is a hyperparameter called tem-
perature that defines the amount of concentration of positive samples in the latent space
(feature space).

Finally, a loss function that utilizes multiple positive and negative samples in a batch
used in this thesis is supervised contrastive learning [46]. The authors suggested a fully
supervised contrastive loss that draws all clusters of points belonging to the same class
together while pushing clusters of samples from other classes apart. Given I as a set of
indices of a batch, supervised contrastive loss is written as

L =
∑
i∈I

− 1

|P (i)|
∑

p∈P (i)

log
exp(zi · zp/τ)∑

a∈A(i) exp(zi · za/τ)
, (2.8)

where zi ≡ Proj(E(i)), E(i) is the output of a encoder block, Proj(·) is a projection
function (a fully connected layer in implementation), A(i) ≡ I \ i and P (i) ≡ {p ∈
A(i)|yp = yi}. As t can be seen, supervised contrastive loss is a generalization of soft-
nearest neighbors loss.

In most recent papers, CL is implemented in a self-supervised fashion. Chen et al.
propose SimCLR (a simple framework for contrastive learning of visual representations)
that uses different augmentations as positive samples and any other samples in the batch
as a negative [10].

Another approach close to SimCLR is BYOL (bootstrap your own latent) [24]. In
BYOL, two different images that can be different augmentations are fed to two models to
maximize the agreement between the two outputs. The exciting fact about BYOL is that
it only considers positive samples.

As a pathology example, Ciga et al. employed SimCLR and achieved promising results,
compared to baseline training methods, for multiple histopathology downstream tasks, in-
cluding classification, regression, and segmentation [12]. Another recent pathology example
is introduced in [55]. The authors perform contrastive learning on different magnification
levels separately. Then they create hierarchical representation based on combined magni-
fications in the downstream tasks.
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Chapter 3

Methodology

This thesis proposes a novel end-to-end WSI level self-supervised approach that exploits
anatomic site (organ) classification as the pretext task.

The anatomic site (primary site) information corresponds to the organ type of each
tissue sample and its corresponding digital slide which is always available for each WSI,
i.e., it is always known if a digital slide is extracted from sites such as the brain, lung or
breast. Therefore, the model is first trained on an anatomic site classification task. One
can show that using the primary site information for the pretext task helps the model
generalize better on the primary diagnosis classification.

Another contribution of this thesis is the exploitation of supervised contrastive learning
in a MIL setup to generate more robust and distinguishable representations for classification
and, specifically, for image search.

The following section provides a step-by-step explanation of the proposed method. The
model architecture is broken down to illustrate the function of each module. Then, the
experimental results will be reported and discussed. The complete methodology is depicted
in Figure 3.1.

3.1 Proposed Methodology and Architecture

This section goes through a step-by-step explanation of the methodology and the model
architecture. Figure 3.2 shows the overall architecture of the deep learning model trained
and used for image search.The proposed concept is named “SS-CAMIL” which stands for
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Figure 3.1: The proposed SS-CAMIL concept. The blocks that the transferred knowledge of
pretext task (e.g., for label “kidney” as the primary site) are used for the downstream task
(e.g., for label “KIRP”, kidney renal papillary cell carcinoma, as the primary diagnosis),
outlined with a grey line. For the LUAD/LUSC classification task, only the blocks on the
right side of the dashed red line are used when only pre-trained features will be used.

self-supervised contrastive learning with attention-based multiple instance learning. Fur-
thermore, “CAMIL” is an abbreviation for contrastive learning with attention-based mul-
tiple instance learning.

Figure 3.2: The complete model architecture
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3.2 Patch Selection

As mentioned in the related work section, in order to process a histopathology WSI for a
deep learning task, it is conventional to break it down into smaller patches [37] [45] [12]
[55]. There exist different methodologies for extracting valuable patches from a WSI. The
common exhaustive method is to select all the patches from a WSI, i.e., include all patches
for processing [31].

In this thesis, for extraction of the histopathology patches, the patch selection method
in Yottixel was selected [45]. The patch extraction approach is depicted in Figure 3.3.
Yottixel utilized a two-step k-mean clustering. The tissue is grouped in the first step based
on its colour histogram. The patch groups extracted from the first step are then subjected
to a second k-means clustering based on patch location to select spatially varied patches
from each colour segment. After that, random patches are selected from each cluster.
Therefore, each patch represents a different WSI location and colour. As a result, more
regions of a WSI are likely to be considered during training. It should be mentioned that
the patches used in this paper are x40 level patches in the size of 3× 224× 224.

Figure 3.3: The pipeline for Yottixel patch extraction. Taken from [44].

3.3 Feature Extraction

After the patches are extracted, they must pass through a Convolutional Neural Network
to extract distinctive feature vectors. If the batch size is denoted as b, the number of
patches as n, and the width and height of input with w and h, respectively, the input
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Table 3.1: EfficientNet Comparison.

Model Top-1 Accuracy Top-5 Accuracy #Params Ratio to EffNet

EfficientNet B0 [80] 76.3% 93.2% 5.3M 1×
ResNet-50 [30] 76.0% 93.0% 26M 4.9×
DenseNet-169 [38] 76.2 % 93.2 % 14M 2.6×

batch dimensionality to the model would be b × n × 3 × w × h. The number 3 indicates
that coloured images have been used with three colour channels (Red, Green and Blue).
All common CNNs get inputs with a dimension of 4, i.e., b× number of channels ×w × h.
Hence, one first needs to modify the patch order in this phase to feed the input image into
the feature extractor block. The reshape layer indicated in Figure 3.2 is implemented in
this regard. It changes each input from the shape (b, n, 3, w, h) to (b× n, 3, w, h).

The patches are now inputted into a model for feature extraction. The model selected
in this thesis is EfficientNet B0 [80]. The reason for this particular feature extractor is
that it uses fewer model parameters compared to other state-of-the-art feature extractors
like ResNet and DenseNet [30] [38]. Table 3.1 illustrates the number of parameters in
EfficientNet B0 compared to a ResNet-50 and DenseNet-169, and their performance based
on results reported by Tan et al. [80]. It can be seen that with almost one-tenth of the
baseline parameters, EfficientNet-B0 shows better or on par performance on ImageNet
dataset [14]. The complete comparison of different EfficientNet variations are reported in
EfficientNet paper [80].

The features from the final convolutional block have the size of b × n × 1280 × 8 × 8,
if inputs are of size 3× 256× 256. So each feature tensor has the size of 1280× 8× 8. To
change the features to a single 1-D feature vector, the basic features are fed to a global
max-pooling layer and a fully connected layer to extract vectors of size 1,024 for each patch.
The reason to do so is that 1, 280×8×8 = 81, 920 is still too long to be practical and would
drastically increase the time and computational resource requirements. Another reshape
layer is then utilized to convert the output shape to (b, n, 1024) to be able to be fed to a
MIL aggregation module.

3.4 Attention-Based Pooling

As displayed in Figure 3.2, the feature vectors serve as the input to an attention block.
There exist various ways for MIL aggregation, and as mentioned in the related works, two
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of such aggregation methods are deep sets and attention-based pooling [91] [39]. Figure 3.4
illustrates the comparison between the deep sets’ average pooling and attention pooling.
As it can be observed, the main difference between the two is that the instances are first
multiplied by a trained attention mask before averaging in attention pooling. In other
words, attention pooling is a form of weighted averaging with trained weights. Therefore,
the model can decide what instances have more important values to emphasize the value
in the average.

Two fully connected layers plus an extension layer make up the attention block. The
two dense layers produce a mask of size (b, n), which is then duplicated to get a size of
(b, n, 1024). Duplication is done, so the mask is in the size of the input instances. This mask
is then element-wise multiplied with the attention block input and averaged to generate a
1,024-length vector representation of each WSI.

Instead of a basic average pooling layer, the mask learns the weight of each patch
(importance factor) and lets the model pick which patch is more representative of the
WSI. Ilse et al. showed that the representation of attention-based pooling is permutation-
invariant, meaning that the output does not change when the input patches are reordered,
hence establishing a significant degree of freedom for patch selection [39].

Figure 3.4: Comparison of average pooling and attention-based pooling. In average pooling,
each input index (blue blocks) are averaged among different instances. In attention-based
pooling, each feature is multiplied by trainable weights first (yellow block).
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3.5 Self-Supervision and Contrastive Learning-Based

on Primary Site Information

The main contribution of this thesis is to introduce the exploitation of primary site in-
formation as pseudo-labels in a self-supervised learning setup (the first training stage).
Previous SSL methods in pathology used data augmentation-based self-supervision as pre-
text tasks. Primary site information of a WSI is a piece of information that is always
available and can be used as a pseudo-label. This information basically indicates the orig-
inal anatomical organ that the tissue had been extracted from. Since it is always apparent
where the tissue has come from, it is considered it a readily available piece of information
in this thesis.

Table 3.2 shows the tumor subtypes considered in this thesis. As it can be observed,
6,746 WSIs used in the study are from 30 types and 22 anatomic sites. There has been
reported usage of the primary site as a known label in previous publications. Hemati et
al. utilized the primary site directly in the training setup and only classifies the cancer
subtypes for similar anatomic sites [32]. However, to the best of the author’s knowledge,
using this available information for self-supervision has not been explored in the literature.
The second contribution is the utilization of supervised contrastive learning for both pretext
and downstream tasks [46].

After extracting WSI feature vectors, the features are passed to a projection head and
a contrastive loss based on the primary site labels.

The experiments will show that transferring the primary site information as a self-
supervised task improves the performance of the proposed model. To evaluate the impact
of self-supervision, experiments were conducted in two phases. First, the results of basic
attention-based MIL without self-supervision are reported. This model is called CAMIL,
which stands for contrastive learning with attention-based multiple instance structure.
Then, the results of primary site self-supervision on CAMIL are reported. The second
experiment uses SS-CAMIL, which stands for self-supervised contrastive learning with
attention-based multiple instance structure.

It should also be mentioned that compared to all previous patch-based SSL methods, the
proposed self-supervision approach is performed on WSI-level, which means that instead
of using the contrastive loss for every single patch, the loss function for the aggregated
slide representation has been used. This way of implementation helps reduce the training
and prediction computational cost. It also helps the model to understand that all patches
are part of a larger instance, namely the WSI, and these instances represent a semantic
whole when put together.
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Table 3.2: Tumor types, subtypes and primary sites.

Tumor Type Subtype primary site

Gastrointestinal tract Colon Adenocarcinoma Colon
Stomach Adenocarcinoma Stomach
Esophageal Carcinoma Esophagus
Rectum Adenocarcinoma Rectum

Pulmonary Lung Adenocarcinoma Bronchus and lung
Lung Squamous Cell Carcinoma Bronchus and lung
Mesothelioma Heart, mediastinum, and pleura

Liver, pancreaticobiliary Liver Hepatocellular Carcinoma Liver and intrahepatic bile ducts
Cholangiocarcinoma Liver and intrahepatic bile ducts
Pancreatic Adenocarcinoma Pancreas

Endocrine Thyroid Carcinoma Thyroid gland
Pheochromocytoma and Paraganglioma Adrenal gland
Adrenocortical Carcinoma Adrenal gland

Urinary tract Kidney Renal Papillary Cell Carcinoma Kidney
Kidney Renal Papillary Cell Carcinoma Kidney
Bladder Urothelial Carcinoma Bladder
Kidney Chromophobe Kidney

Brain Brain Lower Grade Glioma Brain
Glioblastoma Multiforme Brain

Prostate/testis Prostate Adenocarcinoma Prostate gland
Testicular Germ Cell Tumors Testis

Gynaecological Ovarian Serous Cystadenocarcinoma Ovary
Cervical Squamous Cell Carcinoma Cervix uteri
Uterine Carcinosarcoma Uterus

Breast Breast Invasive Carcinoma Breast
Haematopoietic Thymoma Thymus
Laryngeal Head and Neck Squamous Cell Carcinoma Larynx
Mesenchymal Sarcoma Retroperitoneum and peritoneum
Melanocytic malignancies Skin Cutaneous Melanoma Skin

Uveal Melanoma Eye and adnexa

In practice, one finds out that using CL for a MIL setup has a bottleneck. As mentioned
before, contrastive loss tries to increase the similarity of presentation of the same instances
and decrease the similarity for negative pairs. One of the necessities of CL is large batch
sizes [62]. The reason is that contrastive learning requires multiple positive samples to
derive an acceptable representation for the sample. Since smaller batch sizes have lower
chances of having multiple positive samples, contrastive learning tends to have a poor
performance on small batch sizes. On the other hand, each bag representation in a batch
in MIL has multiple instances involved. Suppose the batch size of b and a fixed bag size of
n. Therefore, the number of patches that needs to be processed before the MIL aggregator
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is b× n. This issue led to the bad performance of contrastive learning in this study. With
four NVIDIA Tesla V100 PCle GPUs with 32 gigabytes of memory and a bag size of 40, the
batch size could not be enlarged over 24. However, in the literature [26], batch sizes of more
than 256 are recommended for contrastive learning. To overcome this challenge, a cross-
entropy term was added to the contrastive loss function. The intuition behind this idea
was that since cross-entropy tries to learn a single presentation for each instance, adding
a cross-entropy helps the positive instances be close to a specific point in the embedding
space. On the other hand, contrastive terms help move the instances close or far from each
other. The loss function has the form

L =
∑
i∈I

− 1

|P (i)|

( ∑
p∈P (i)

log
exp(zi · zp/τ)∑

a∈A(i) exp(zi · za/τ)

)
− yi log ŷi (3.1)

where zi ≡ Proj(E(i)), E(i) is the output of a encoder block, Proj(·) is a projection
function (a fully connected layer in implementation), yi ≡ FC(E(i)), FC(·) is the output
of fully connected layers after the attention block, ŷi is the instance ground-truth label,
A(i) ≡ I \ i and P (i) ≡ {p ∈ A(i)|yp = yi}. The experimental results have shown that this
loss functions generates robust representations in the latent space.

After the training with the above setting, the model is trained on the downstream task
with diagnostic labels (i.e., primary diagnosis). After the training session, the features
extracted from the last fully connected layer before the projection head are utilized for
WSI search and classification.
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Chapter 4

Experiments and Results

This section will discuss the details of the thesis experimentation. Three sets of deep
learning experiments have been conducted. The first experiment set focuses on the perfor-
mance of the model on WSI search. The extracted features will be used as representations
to define two sets of image search experiments. This experimental setup will show how
self-supervision will improve the latent WSI representation. The Cancer Genome Atlas
(TCGA) Program dataset has been utilized as the source of data. TCGA is the largest
open-source histopathology dataset [84]. The second experiment set will be conducted on
a Lung cancer classification task. In the thesis, the pre-trained weights of the previous step
is utilized to leverage the self-supervision information for this classification task. Finally,
the impact of attention-based MIL on experimental results will be reported.

In the first three sets, first, the training setup is explained. Then the datasets and
numeric details of hyperparameters used in the training setup is discussed. Finally, with
the help of tables and figures, the performance of the proposed model compared to baseline
methods .

4.1 WSI Search Results

WSIs from The Cancer Genome Atlas Program (TCGA) were used. TCGA is a joint
project between NCI and the National Human Genome Research Institute. In this project,
TCGA generated over 2.5 petabytes of genomic, epigenomic, transcriptomic, and proteomic
data [84]. Over 20,000 original cancer and matched normal samples from 33 different
cancer types have been molecularly characterized by TCGA. TCGA repository now holds
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70 Projects, 67 Primary sites and 85,415 different cases, as reported in TCGA official
repository. Since the experimental setup for image search is close to CNN-DS paper, the
same subset of TCGA as in the mentioned paper was used [32]. Here, 6,746 WSIs from
TCGA is utilized an 85, 5, and 10 percent of the dataset is used for training, validation, and
testing, respectively. The dataset consisted of WSIs of 24 primary sites with 30 distinct
primary diagnoses. In the training stage, the batch size is set to 16, and the WSI set size
to 40. Patches of sizes 1000× 1000 are extracted using the patching algorithm proposed in
Yottixel paper and resized them to 224 × 224 [45]. The reason for resizing the patches is
mainly due to memory limits (downsampling patches is quite common in literature [83, 61]).

It is common to use data augmentation to help the deep learning models generalize
better on the test dataset (i.e., have better understanding and accuracy on the dataset).
Data augmentation is the practice of changing and extending the data in each epoch
iteration [76]. Hence, the model grasps the valuable information from each instance instead
of shortcuts and unrelated info in the image. For data augmentation, horizontal and vertical
flip, 90-degree rotation, shifting, and scaling is applied to the data from the Albumentations
library [8]. Multiple positional augmentations is used for the dataset. All this augmentation
is random and has a 50 % chance of occurring. These positional augmentations help the
model not get distracted by positional information such as rotations and flips and focus
more on the semantic image information.

We have also used a learning rate scheduler for the training setup. As mentioned in
the related work section, learning rate is a hyperparameter that modifies the learning step
sizes. Adjusting the learning rate correctly can help the model converge better to its
global optimum. In this thesis, an exponential decay learning rate scheduler is utilized.
The exponential learning rate is computed as

ilr × be, (4.1)

where ilr is the initial learning rate, b is the exponential base, and e is the epoch number.
The illustration of a learning rate scheduler with exponential decay can be seen in the
Figure 4.1. As the exponential base is increased, it can be observed that learning rate
drops faster. After trying multiple bases for this experience, the exponential decay with a
base of 0.96 and a coefficient of 0.0001 is used.

Each of the presented results is trained with 150 epochs utilizing three Tesla V 100
GPUs in parallel mode. In the related works section, it is alos explained that temperature
in contrastive learning defines the punishment of negative samples being near the positive
anchor. Based on experiments by Wang et al., the temperature is set to 0.1 for contrastive
learning in both pretext and downstream tasks [88].
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Figure 4.1: Exponential learning rate decay with different exponential bases.

For testing, horizontal (site identification) and vertical (subtype identification) WSI
search tasks are established. The precision with which a tumour type can be located
across the entire test archive is referred to as “horizontal search”. The tumour type labels
are not available through the training process, so it measures the model’s ability to search
and find unknown tumours. On the other hand, “vertical search” measures how well the
model can identify the proper cancer subtype of a tumour type from a set of slides from
a single primary site, which may have a variety of initial diagnoses. The subtypes that is
used in the vertical search for evaluation are the labels that are fed to the model in the
downstream task. Also, in vertical search, the subtypes are compared and evaluated in
their tumour type group. Hence the tumour types with only one subtype are omitted in
the vertical search task. For both search tasks, k-NN algorithm with k = 3 is employed
to find the three instances closest to each test sample. For the results, the leave-one-out
technique is employed, (leave-one-WSI-out, and compared it with the other slides and
provide the average scores across the slides).

Tables 4.1 and 4.2 show the horizontal and vertical search results, respectively. The
performance of the model is compared with Yottixel and CNN-DS [45] [32]. In both tables,
CAMIL is the baseline attention-based MIL with CL and without self-supervision, and SS-
CAMIL is the same as CAMIL setup but uses the weights of self-supervision of primary
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sites.

Table 4.1: Horizontal Search Results. F1-scores of Majority-3 (in %) are reported.

Tumor type nslides Yottixel CNN-DS CAMIL SS-CAMIL

Brain 46 73 91 100 100
Breast 77 45 77 91 91
Endocrine 71 61 66 86 89
Gastro. 69 50 75 84 86
Gynaec. 18 16 33 56 62
Head/neck 23 17 69 74 92
Liver 44 43 56 77 84
Melanocytic 18 16 50 61 78
Mesenchymal 12 8 100 92 92
Prostate/testis 44 47 81 91 89
Pulmonary 68 58 91 81 87
Urinary tract 112 67 76 92 95
Haematopoietic 42 0 24 50 50

We can observe that the SS-CAMIL model has the best results among the four setups
in 10 out of 13 cases for horizontal search. CAMIL is the dominant model in one of the
remaining three cases (Prostate/Testis). In the rest of the tumour types, SS-CAMIL has
shown competitive results. One of the interesting observations is that although CNN-
DS utilizes primary site information as prior information for the classification of tumour
subtypes, the results of CAMIL are better in most cases. This observation demonstrates the
effect of attention-based pooling compared to simple average pooling. Another observation
is the improvement in performance with self-supervision on the primary sites.

It can be observed that in most tumour types, SS-CAMIL has performed better than
CAMIL. This observation indicates that the primary site can help the model generalize
better when deciding on the subtypes within the self-supervision framework. Having better
performance on horizontal search means how well the model can identify the unknown
parent tumour type better. It justifies that the features extracted with the SS-CAMIL
method have an overall better representation of the slides than other methods.

For the case of vertical search, in 14 subtypes of a total of 24 distinct subtypes, SS-
CAMIL achieved the best F1-score. As mentioned before, some of the subtypes such as
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Table 4.2: Vertical Search Results. F1-scores of Majority-3 (in %) are reported.

Tumor Type Subtype nslides Yottixel CNN-DS CAMIL SS-CAMIL

Gastrointestinal tract COAD 22 62 69 72 73
STAD 27 61 64 79 92
ESCA 10 12 44 55 89
READ 10 30 55 26 0

Pulmonary LUAD 30 62 61 71 76
LUSC 35 69 60 76 75
MESO 3 0 50 50 33

Liver, pancreaticobiliary LIHC 32 82 95 95 95
PAAD 8 94 94 94 94
CHOL 4 26 0 0 0

Endocrine THCA 50 92 98 99 100
PCPG 15 61 81 86 90
ACC 6 25 28 50 77

Urinary tract KIRP 25 75 84 84 88
KIRC 47 91 87 92 92
BLCA 31 89 95 94 98
KICH 9 70 53 88 80

Brain LGG 23 78 89 91 89
GBM 23 82 89 91 90

Prostate/testis PRAD 31 98 97 94 100
TGCT 13 96 93 96 100

Gynaecological OV 9 80 82 76 80
CESC 6 92 66 44 44
UCS 3 75 80 100 50
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Breast Invasive Carcinoma, Thymoma, Head and Neck Squamous Cell Carcinoma, Sarcoma
and Skin are the only subtypes in their tumour types. Therefore, these subtypes are not
included in the vertical search task.

For five subtypes, CAMIL has performed better. In the cases when both CAMIL
and SS-CAMIL have poorer performance than CNN-DS and Yottixel, small sample sizes
seem to be a recurrent pattern, meaning that the model did not have the chance to learn
distinct features from these subtypes. It demonstrates that the size of the train data has a
significant effect on the training setup and that when more data is available, the proposed
feature extractor model in the thesis performs better. Again, here it can seen that in 11
subtypes, self-supervision has helped the model perform better than CAMIL. This result
suggests that teaching the model the primary site information before a downstream task
can significantly help the model generalize better.

The Effect of Contrastive Learning on representation To show the effect of con-
trastive learning, the 2-dimensional t-SNE plot of CNN-DS, CAMIL and SS-CAMIL is
shown in 4.2 [34] [32]. The word t-SNE stands for t-distributed stochastic neighbour em-
bedding, and is a method that maps high dimensional data points to a 2-dimensional or
3-dimensional space. This method was introduced in 2002 by Hinton et al. and is cur-
rently a popular approach for visualizing high dimensional spaces such as convolutional
feature spaces [35]. It can be observed that CAMIL and SS-CAMIL clusters are tighter
and more separable than CNN-DS. This improvement is one of the main reasons CAMIL
and SS-CAMIL act better in the image search tasks.

4.2 Lung Cancer: LUAD/LUSC Classification

In another experiment, the prospoed model is employed on Lung Adenocarcinoma (LUAD)
and Lung Squamous Cell Carcinoma (LUSC) classification task [85]. Lung carcinomas
are among the most aggressive cancers, with the most significant fatality rate worldwide.
Among non-small cell carcinomas, lung squamous cell carcinoma (LUSC) and adenocar-
cinoma (LUAD) account for most lung cancers. Non-small cell lung cancers (NSCLCs)
are often treated with surgery initially, and chemotherapy and radiation stay the alterna-
tive choice for these cancer types. Patients diagnosed with NSCLCs frequently experience
relapse, metastasis, and death [4].

LUAD and LUSC appear to be quite diverse in terms of prognosis [81]. Notably, they
are regarded as different clinical cancer subtypes. LUAD is more dominant in non-smokers
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Figure 4.2: t-SNE of CNN-DS [32] (Taken from the paper) (top left) and CAMIL (top
right) and SS-CAMIL (bottom).
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Table 4.3: LUAD/LUSC classification.

Method Accuracy

Yu et al. [90] 75%
Khosravi et al. [47] 83%
MEM [44] 84%
Coudray et al. [13] 85%
CNN-DS [32] 86%
CAMIL 88%
SS-CAMIL 89%

than smokers. However, it is also reported in smokers. Typically, the tumour is more
peripherally placed and grows more slowly than the other forms, albeit it is more prone
to metastasis in the early stages of the disease. LUSC is the second most frequent type
of lung cancer in cigarette smokers. It is highly related to smoking-induced airway lesions
[9]. Therefore, LUAD and LUSC must be investigated to develop effective diagnosis and
therapeutic intervention.

The dataset had 2,574 lung tissues taken from the TCGA repository. LUAD/LUSC
classification is a challenging classification task that requires visual inspection of the tissue
by expert pathologist [13]. In this setup 1,800 slides is used for training, and 774 slides is
utilized for test [44]. For training, the convolutional feature extraction block is frozen (i.e.
is not trained) to demonstrate the learned features from the previous setup. The batch
size and the set size are the same as in the above setup.

The results of LUAD/LUSC classification are shown in 4.3. The suggested strategy out-
performed earlier LUAD/LUSC classification approaches by 2% (delivering 88 %), which
underlines the performance of attention-pooling and contrastive learning. The SS-CAMIL
blocks are also employed in this task, improving the performance to 89%. This also suggests
that knowing the primary site information before classifying can help the model identify
distinguishing cancer type features.

4.3 Attention Pooling Effectiveness

In the final set of experiments, The effectiveness of the attention-pooling layer is investi-
gated. Results are compared with the conventional average pooling, and to do so, nine
random WSIs from Lung, Kidney, and Brain organs from the TCGA repository are chosen.
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Table 4.4: Attention pooling scores of 9 different WSIs.

Weighting Lung Kidney Brain Avg
1 2 3 1 2 3 1 2 3

Uniform 0.97 0.89 0.80 0.89 0.70 0.89 0.94 0.87 0.88 0.87
SS-CAMIL 0.98 0.90 0.83 0.91 0.79 0.91 0.96 0.86 0.90 0.89

A pathology expert scored the effectiveness of all 40 patches from each WSI with labels 1,2,
and 3, meaning “not useful”, “somewhat useful”, and “very useful”, respectively. The nor-
malized scores and the output of the attention block are multiplied for each WSI and the
results are compared with uniform importance (with all patches having the same weight).
The scores are then divided by the optimal importance (weights of patches are proportional
to effectiveness label) scores to get normalized numbers. The final formulation of the score
for slide j can be given as

scorej =

∑40
i=1 pi × ei∑40
i=1 êi × ei

, (4.2)

where pi is the pooling layer output, ei is the evaluation number that has a value of 1, 2 and
3, and and êi is the normalized value of evaluations with respect to the whole evaluation
vector for slide j. In writing the described vector, it is considered that the inner product
of two vectors have a direct correlation to the similarity of two vectors, ans this theorem
is the basis for a similarity measure called ”Cosine Similarity” measure.

The results are shown in 4.4. This indicates that the proposed model has better over-
all scores, suggesting that CAMIL has learned the relative importance of patches in the
attention block and emphasizes the patches that are more related to the cancerous region.
A generalization of this attention block can be utilized in future works to extract patches
that correspond more to cancerous spots.
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Chapter 5

Summary and Conclusions

5.1 Summary

In this thesis, the effectiveness of a self-supervised learning method in digital pathology
based on anatomic site (organ) labels of WSIs was investigated. Anatomic site labels are
readily available for each glass slide, and hence for each WSI, since the originating organ
of a pathology slide is always known in laboratory settings. The primary site labels were
used as pretext pseudo-labels for training to exploit the learned weights as a starting point
for classifying various cancer subtypes.

Because pathology slides are considered big image data and pixel-level or regional an-
notations are costly to generate, a multiple instance learning framework for training was
selected as a better choice to avoid these challenges. Comparing the most successful mul-
tiple instance learning models in the literature, this thesis put forward an attention-based
pooling block for feature aggregation. Considering the most common self-supervised learn-
ing schemes in deep learning literature, a fully supervised contrastive learning loss func-
tion was employed as well. Since multiple instance learning methods consume considerable
memory, and contrastive learning is batch-size dependent, this thesis introduced a loss
function combining cross-entropy and supervised contrastive loss.

Four sets of the experiments were conducted in this thesis. A model was trained on
6000+ WSIs from the TCGA public repository in the first set of experiments. Using
the trained model, two retrieval tasks, namely horizontal and vertical search, showed the
performance of learned features as image representation. When enough image data is
available, using the proposed CAMIL and SS-CAMIL has a superior performance for image
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search tasks. Also, with the help of t-SNE plots, it was illustrated how contrastive learning
contributes to WSI representations.

In the second set of experiments, the trained weights were transferred from the previ-
ous self-supervision tasks to aid in lung cancer LUSC/LUAD classification tasks. It was
demonstrated that using the pretext weights can elevate the performance of a single site
(organ) classification task such as lung cancer.

In the final set of experiments, the effectiveness of the attention-based aggregation block
was verified and showed to be contributing to the image understanding in terms of relative
patch importance.

5.2 Conclusions

Computational pathology is a fast-growing subfield of medical imaging that is currently
attracting scientists from computer and medical sciences. Many areas related to this topic
have the potential for exploration. The exploitation of primary pathology information
and structure for auxiliary training has been seldom considered. Only a few papers have
exploited pathology-specific information for deep learning tasks.

Self-supervised learning has proven to be an effective way to transfer histopathology
information to deep learning models. Self-supervision can also be adequate for tasks other
than classification, such as segmentation, object detection and text understanding. There
is more information such as different magnifications of a WSI and various staining methods
that can be formulated for pathology self-supervised learning tasks.

5.3 Potential Directions

There are other ways to share different training stages and information of multiple distinct
tasks. Recently, a method has been introduced called Deep Mutual Learning that shares
the trained information of multiple training stages in a single training setup [93]. Therefore,
another possible approach would be testing the performance of deep mutual learning on
the training of primary site information and a target task.

Multi-task learning is the practice of training a single network with two or more deep
learning tasks, such as segmentation, depth detection, classification and detection, simulta-
neously [70]. Multi-task learning is another option for transferring pathological information
in a training setup.
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Contrastive learning is becoming a popular field in computational pathology. Although
contrastive learning helps the convolutional networks produce excellent results, it tends
to harm the semantic structure of the model’s latent space if not used properly [88]. In
other words, in a sample classification datasets, LUSC and LUAD should be split, but the
distance of LUAD and LUSC samples should be less than their distance from a cancer
subtype outside of the Bronchus and Lung region.

Exploiting the hierarchical information of slides (anatomic site, tumour types, sub-
types, etc.) can help contrastive learning simultaneously create more useful structural
features. An alternative would be rewriting contrastive learning formulation to consider
these hierarchical pieces of information from a WSI.

Although multiple instance learning has been introduced and utilized very early since
the introduction of deep learning, new modifications can be done on the aggregation scheme
of the MIL models. Feature aggregation modules can be modelled such that the spatial
correlation and magnification information of patches are preserved. Also, different methods
than averaging can be explored for aggregation.
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APPENDIX

TCGA Cancer Subtype Acronyms

Table 1 explains the cancer subtype abbreviations exploited in the paper.

Table 1: Cancer subtype abbreviations.

Abbreviation Primary Diagnosis
ACC Adrenocortical Carcinoma
BLCA Bladder Urothelial Carcinoma
BRCA Breast Invasive Carcinoma
CESC Cervical Squamous Cell Carcinoma and Endocervical Adenoc.
CHOL Cholangiocarcinoma
COAD Colon Adenocarcinoma
ESCA Esophageal Carcinoma
GBM Glioblastoma Multiforme
HNSC Head and Neck Squamous Cell Carcinoma
KICH Kidney Chromophobe
KIRC Kidney Renal Clear Cell Carcinoma
KIRP Kidney Renal Papillary Cell Carcinoma
LGG Brain Lower Grade Glioma
LIHC Liver Hepatocellular Carcinoma
LUAD Lung Adenocarcinoma
LUSC Lung Squamous Cell Carcinoma
MESO Mesothelioma
OV Ovarian Serous Cystadenocarcinoma
PAAD Pancreatic Adenocarcinoma
PCPG Pheochromocytoma and Paraganglioma
PRAD Prostate Adenocarcinoma
READ Rectum Adenocarcinoma
SARC Sarcoma
SKCM Skin Cutaneous Melanoma
STAD Stomach Adenocarcinoma
TGCT Testicular Germ Cell Tumors
THCA Thyroid Carcinoma
THYM Thymoma
UCS Uterine Carcinosarcoma
UVM Uveal Melanoma
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