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Abstract

This thesis studies problems at the intersection of monotone and convex optimization,
auction theory, and electronic commerce. Convex optimization and the theory of stochastic
approximation serve as the basic practical and theoretical tools we have drawn upon.
We solve important problems facing Demand Side Platforms (DSPs) and other demand
aggregators (to be defined in the main body) in the e-commerce space, particularly in
the field of real-time bidding (RTB). RTB is a real-time auction market, the primary
application of which is the selling advertising space. Our main contribution to this field, at
its most basic, is to recognize that certain optimal bidding problems can be re-cast as convex
optimization problems. Particular focus will be placed upon the second price auction
mechanism due to the strikingly simple structural results that hold in this case; but many
results generalize to the first price auction mechanism under additional assumptions. We
will also touch upon formal connections between these auction problems and two important
problems in finance, namely the dark pool problem, and optimal portfolio construction.
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Some Humour and Other Things

“The other, was a scheme for entirely abolishing all words whatsoever: and this was urged
as a great advantage in point of health as well as brevity [...] An expedient was therefore
offered, that since words are only names for things, it would be more convenient for all
men to carry about them, such things as were necessary to express the particular business
they are to discourse on [...] Many of the most learned and wise adhere to the new scheme
of expressing themselves by things; which hath only this inconvenience attending it; that
if a man’s business be very great, and of various kinds, he must be obliged in proportion
to carry a greater bundle of things upon his back, unless he can afford one or two strong
servants to attend him. I have often beheld two of those sages almost sinking under the
weight of their packs, like pedlars among us; who, when they met in the streets, would lay
down their loads, open their sacks, and hold conversation for an hour together; then put
up their implements, help each other to resume their burdens, and take their leave.”
Jonathan Swift, Gulliver’s Travels, 1726

“No man is an island, entire of itself; every man is a piece of the continent, a part of the
main. If a clod be washed away by the sea, Europe is the less, as well as if a promontory
were, as well as if a manor of thy friend’s or of thine own were: any man’s death diminishes
me, because I am involved in mankind, and therefore never send to know for whom the
bells tolls; it tolls for thee.”
John Donne, Devotions Upon Emergent Occasions, 1624

“This is the task of a liberal education: to give a sense of the value of things other
than domination, to help to create wise citizens of a free community, and through the
combination of citizenship with liberty in individual creativeness to enable men to give to
human life that splendour which some few have shown that it can achieve.”
Bertrand Russell, Power: A New Social Analysis, 1938
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Chapter 1

Introduction

1.1 Auctions

In 2020, Paul Milgrom and Robert Wilson won the Sveriges Riksbank Prize in Economic
Sciences in Memory of Alfred Nobel “for improvements to auction theory and inventions of
new auction formats.” [199, 123] (for a substantive review of the contributions of these re-
searchers see [169]). According to Milgrom [122], one of the earliest examples of an auction
is a bridal auction described by Herodotus (and formally analyzed by [16]) around 500 B.C.
Since this time, various auction formats have been applied to allocate an array of different
types of scarce resources: mining rights, wireless spectrum, art, electricity, etc. and these
auctions are often carefully designed to elicit certain behaviour from participants. Indeed,
Wilson emphasized in his lecture the importance of what he referred to as economic engi-
neering, i.e., the design of auctions, markets, and trading rules that lead to the outcomes
the economic engineer intends.

One of the most famous examples of successful auction market design is in spectrum
auctions [120] where governments need to decide how to allocate scarce wireless spectrum
licenses to firms for, e.g., TV, cell phones, radio, etc. This allocation problem is challenging
both economically and computationally [111]. From an economic point of view, the govern-
ment needs to design an auction mechanism which seeks to maximize revenue while still
respecting established property rights law, promoting competition, preventing collusion,
etc. Computationally, determining if a collection of licenses satisfies interference rules is
a large and complicated combinatorial problem and optimization over the set of feasible
licensing arrangements is computationally infeasible. These challenges necessitated the
invention of efficient algorithms and the design of completely new auction mechanisms.
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Another area where auctions have played an important role is in electricity markets [198,
190]. In the primary market for electricity (there is also a derivatives market for futures)
governments solicit bids from energy suppliers to commit to supplying a certain amount
of power at a certain time in the future (e.g., day ahead, month ahead, year ahead, etc.).
Ontario, for example, has recently updated their demand response auction into what they
claim is a broader and more competitive capacity auction soliciting commitments for one
year in advance from a variety of power producers and consumers [1]. The moment-to-
moment spot market for electricity operates as a double auction (at least in Ontario), where
producers and consumers of electricity place a bid to buy or sell electricity and a centralized
operator (in Ontario, the Independent Electricity System Operator or IESO) calculates a
price that clears the market [1].

Similarly to the spot market for electricity, securities markets (include electricity futures
markets) operate in real time as continuous double auctions [163, 27] where bids (firm
commitments to buy a certain quantity at a certain price) and offers (commitments to sell
a quantity at a price) are continually updated by competing participants with exchange
occurring only when two orders cross, i.e., a bid to buy comes in higher than an offer to
sell.

One key aspect illustrated by these examples is that what constitutes an appropriate
market or auction mechanism is dependent upon the characteristics of the resources being
sold or traded. A continuous double auction is not appropriate for the provisioning of
electricity since the stability of the grid depends on the exact balance between supply and
demand, necessitating a central operator for fast time scale production decisions. Likewise,
an auction for stocks or electricity futures taking place once every year is unacceptable as
it would undermine the risk management and price discovery purposes of the market, not
to mention that there is not just a single seller of such items, as in the case of spectrum
auctions.

1.1.1 Auction Formats

The most famous auction format, and historically most popular, is the English auc-
tion [119]. In an English auction, there is a single item up for sale and the auction
proceeds continuously through open-outcry and ascending bidding. The seller of the item
sets some initial price, called the reserve price, at which the bidding process starts, and
then the participants continually state their willingness to pay a greater and greater price
for the item, until finally no one is willing to go any higher and the item is awarded to
the bidder who placed the last (and necessarily highest) bid. The winning bidder pays the
winning bid to the seller and is awarded the item.

2



A much simpler auction format is the Vickrey auction [184], which is a sealed-bid
(as opposed to open-outcry) auction that occurs in just one shot, i.e., the bidders don’t
get the opportunity to place a higher bid if they find out someone outbid them. The
defining characteristic of the Vickrey auction is that, while the item is still awarded to
the participant that submit the highest bid, the winner pays the second highest bid to the
seller of the item. For this reason, the auction is also referred to as a sealed-bid second-price
auction.

In a Vickrey auction, it is a (weakly) dominant strategy1 to bid your valuation. That is,
if the item up for sale is worth v to you, then it is, regardless of the actions taken by any
competitors, an optimal course of action to place the bid v. To see why, we can recognize
that the optimal bid b? necessarily satisfies b? ≤ v, since if you bid b > v there would be
a chance of paying more for the item than it is worth to you (this occurs if a competing
bidder placed a bid c such that v < c < b); as well, the optimal bid necessarily satisfies
b? ≥ v since you would rather pay v − ε (for any ε > 0) than not win the item (i.e., if
you bid v − ε and a competitor placed a bid c satisfying v − ε < c < v, then you would
regret not placing a bid c < b ≤ v). Thus, (v ≤ b? ≤ v =⇒ b? = v) it is optimal to bid
your valuation. This means that the second price auction is a truth revealing mechanism,
i.e., agents have the incentive to reveal their true private value to the auctioneer.

Remarkably, if bidders all have private and independent valuations for the item being
sold (e.g., if the item is a work of art and each bidder has independent tastes) this auction
format is theoretically equivalent to the English auction [184]. The reason for this equiv-
alence is that in the English auction, if again your valuation of the item is v, you will be
willing to bid c+ε, for some ε > 0 against any competing bid c < v. Thus, if your valuation
is the highest amongst all competitors, and p is the highest any competitor is willing to bid
(which will be called the price), then the auction will stop when this competitor announces
the bid p and you announce some bid p+ ε.

Another, natural pair of auction mechanisms is the open-outcry descending Dutch auc-
tion and the sealed-bid first-price auction. In the former, the auctioneer begins with some
initial very high price for the item, and descends downwards offering lower and lower prices
until a participant finally speaks up and claims the item at the last stated price. In the
latter, agents simply submit a secret bid, and the highest bidder wins and pays the seller
whatever it is that they bid. Again, these two auctions are strategically similar [103].

Some work has also been done to understand how these auction mechanisms can be
blended together as a “soft floor” [209]. In such an auction if the highest bid b is greater

1In Game Theory, a dominant strategy (which need not exist) is a course of action which is always
optimal, regardless of the actions or behaviours of any other participant [66].
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than the soft floor threshold s the winning bidder pays the maximum between s and the
second highest bid (as in the second price auction); if the highest bid lies below s but above
a hard floor threshold h < s the winner pays b itself (as in the first price auction), and if
b < h, the seller simply keeps the item (i.e., h is the reserve price). There are of course
a wide variety of alternative auction mechanisms arising in various contexts or simply as
theoretical curiosities, for example, third price auctions where the winner pays the third
highest bid; all-pay auctions where every participant has to pay their bid, whether or
not they win; the Vickrey-Clarke-Groves auction, which is a generalization of the Vickrey
auction [182]; and French auctions used for pricing initial public offerings where some of
the highest bids are actually excluded from the auction [53, 117].

Remark 1.1.1 (Optimal Auction Design). It is a natural question to ask: “what is the
optimal auction format?” [129]. The notion of optimal of course depends upon who is asking
the question, but the seller of the item, for example, may take optimal to mean revenue
maximizing. It was shown by [122] that, of the four auction mechanisms discussed here
(English, Dutch, Vickrey, and sealed-bid first-price) it is the ascending English auction that,
under realistic assumptions, generates the greatest revenue for the seller. The innovation
of this result is in how the prevailing assumptions in auction theory were challenged;
indeed, under some rather strong assumptions (primarily: private and independent values),
all of these auctions result in the same revenue: the revenue equivalence principle [103,
Ch. 3]. When these assumptions are relaxed, revenue equivalence no longer holds. For
general markets, determining what the revenue maximizing auction actually is can be very
difficult [57]. Moreover, the Wilson doctrine [197] [160, Ch. 11] argues that mechanisms
should make minimal assumptions about the common knowledge of participants (in terms
of functional forms, probability distributions, etc.) which revenue optimality may hinge
upon. Thus, optimal auctions rarely appear in practice, and the four above described
auction formats cover a very wide range of applications.

Auctions for Multiple Items When there are multiple items that need to be allocated
it is natural to either allocate them all at once as in a combinatorial auction [150, 48] or
simultaneous auction [121, 47] or to allocate them in a sequence of individual auctions.
The original application of the combinatorial auction was for allocating airport takeoff
and landing slots [150] where bidders can place bids on combinations of items where they
are only interested in winning if they can obtain the entire package, since a time slot for
take off has limited value without a corresponding time slot to land. For an example of
a sequential mechanism, a simultaneous ascending auction where bidders can submit bids
on any number of items in a series of bidding rounds was the method famously applied to
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spectrum auctions [121]. Additionally, the idea of allocating items in a sequence of single-
item auctions is natural in markets where items are produced sequentially and perish
rapidly (e.g., electricity or advertising markets) and therefore where the items need to be
allocated immediately. This is the primary setting of this thesis and constitutes real-time
bidding (RTB).

This thesis, focusing on RTB, exclusively studies auctions wherein multiple items (in
fact, a continuous and un-ending stream of items) are sold sequentially in sealed-bid auc-
tions using either the first or second price mechanism.

1.1.2 Real-time Bidding Markets

Online advertising is another enormous industry that now leverages auctions in a fun-
damental way, and is the main motivating example behind the work carried out in this
thesis. Online advertising constitutes a significant part of today’s advertising landscape:
the total amount of money spent directly on internet advertising (the largest advertising
segment, far surpassing competitors like TV and print) in 2020 in the US, according to the
Interactive Advertising Bureau [2] exceeded $130b. Moreover, year on year growth rates
remain high: revenue in 2020 grew by 12.2% over 2019, despite the Coronavirus disease
(COVID-19) pandemic. As well, the proportion of programmatic placements (involving
advertising agreements reached by algorithms) is the vast majority of this total, over 90%,
much of which is allocated by auction mechanisms including sponsored search and real-time
bidding.

In computational advertising [205] real-time bidding (RTB) refers to a specific type of
advertising auction where advertisers (or their representatives) bid for the right to display
their content in some available ad slot to a particular user [189, 207, 44]. In more detail, a
sale in RTB consists of a group of advertisers (advertisers, bidders, agents and participants
will all be synonyms) who are looking to purchase ad space, and at least three additional
parties: the publisher, who is the party that owns the advertising slot, e.g., the operator
of a website, mobile app, etc.; the user, who is the person visiting the publisher’s website
(say) and will view the ad placed into the slot; and the auctioneer, who coordinates the
bidding process and selects the winning bidder. When an ad is served to a user this is
referred to as an ad impression and therefore we may also say that advertisers purchase
impressions, or that RTB is a market for impressions. More generically, we will also use
the term item, for whatever is being sold in RTB.

Of course, the RTB ecosystem can be quite a bit more complicated than this simple
description suggests. A slightly more detailed depiction of RTB is provided in Figure 1.1.
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Figure 1.1: Real-time Bidding Process
The basic aspects of the RTB process. Numbering indicates an ordering of events. Advertisers

contract with DSPs and provide to them the ads they want served as part of a contractual deal.

As users visit publisher pages, being compensated for their attention with the content provided

gratis by the publisher, publishers (if choosing to send the request to RTB, as opposed to an

alternative advertising channel, which we do not discuss in detail) generate ad requests which

are sent (generally through a network of SSPs) to ad auctions. The request, along with

accompanying data, is forwarded to DSPs. These DSPs analyze the bid request and then send a

bid to the ad auction. The winning DSP chooses an ad (from among their contracts) to forward

back to the publisher to be displayed to the user.

Indeed, there can be a multitude of ad-exchanges, as well as various intermediaries sitting
between the user and the advertiser including supply side platforms (SSPs) responsible
for aggregating available publisher inventories, demand side platforms (DSPs) responsible
for aggregating the demand of advertisers, agencies that coordinate advertising efforts on
behalf of brands and businesses, as well as various servers, IT, and data infrastructure
providers that facilitate the process.

Remark 1.1.2 (Terminology). The terminology “real-time bidding” may be confusing
since there are numerous markets where bidding occurs in real time. However, RTB refers
to the specific form of online advertising described in this section. If we have need to refer
to the more generic notion of “bidding in real time”, we will write that.

Remark 1.1.3 (Sponsored Search). Sponsored search [59] is another type of online ad-
vertising auction. In some ways it was a precursor to RTB. In sponsored search, originally
employed at least by Yahoo! and Google, advertisers pay to have links to their content
displayed to users searching for relevant terms. For example, a user searching for the very
obvious key words “used car” is likely to attract the interest of used car dealerships, who
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may be willing to pay to have a link to their website displayed to the user. The auction
format employed in sponsored search, a generalized second price (GSP) auction, was itself
innovative and addressed the unique needs of the market. In a GSP auction, there are mul-
tiple winners: the agent with the highest bid is allocated the most prominent advertising
slot (usually the first search result) with a few runner-up bidders allocated to progressively
less valuable slots [180, 181, 145].

Similarly to the examples given earlier, there are important structural aspects that
lead to the RTB market being structured as an auction in real time. Firstly, the items
being sold (ad impressions) are perishable and cannot be re-sold. This feature is shared
with electricity for immediate delivery, but is in contrast to electricity derivatives markets
where the re-sale of futures is a key part of the market’s purpose. Secondly, the items up
for sale in RTB may often be close substitutes of one and other (although this depends
on the targeting granularity, see Remark 1.1.4). This is in contrast to spectrum auctions
(or, e.g., auctions for mineral rights) but is a feature shared with securities markets where
a share of a given company’s stock is the same as any other share. A third key point is
that the auctions are, naturally, taking place in real time, and in fact very rapidly (the
round trip time from a user visiting a publisher page, the impression auction being carried
out, and the winner’s ad being shown to the user, is generally no more than 100ms). This,
along with the very large number of participants, precludes the possibility of auctioning
large lots of items simultaneously (but see Remark 1.3.1)

Remark 1.1.4 (Privacy). Real-time bidding, by its nature, raises serious privacy con-
cerns [137] [195]. Indeed, much of what makes the RTB technology valuable to advertisers
results from what may be considered intrusive monitoring of user behaviour. A great deal
user data, including browser histories, also easily leaks throughout the system to unin-
tended parties [15]. Europe’s General Data Protection Regulation (GDPR) [77, 186] is
designed to help protect user privacy and give users more control over their data and how
it is used. This regulation presents significant problems for publisher’s current models
and for RTB [183, 93]. The problems formulated in this thesis (see Chapter 2 for formal
descriptions) do not rely on invasive tracking technology and are formulated entirely in
terms of generic user types. It is technically possible for these types to encode arbitrarily
detailed user information; however, they can of course also represent much coarser informa-
tion. Indeed, the abstract formulation in types provides a plausible mechanism for privacy
protection wherein only a certain agreed upon collection of types is even allowed to be
reported to advertisers.
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1.2 Aims, Scope, and Perspective: Contract Manage-

ment Problems

In the real-time bidding literature (see Section 1.3) we can recognize a categorization based
on two broad perspectives that approach the field in different (though often complemen-
tary) ways: descriptive and normative. The descriptive approach seeks to understand how
the various participants (publishers, users, advertisers, auction platforms etc.) behave and
why, while the normative approach analyzes how these participants should behave. The
descriptive approach includes empirical analysis of actual market data, as well as the game
theoretic analysis of different market rules under various stylized assumptions. This game
theoretic line of inquiry may also often be meta-analytic and include a normative compo-
nent that seeks to design the rules of the market themselves (i.e., to perform economic
engineering), based on how the various agents are expected to behave given a specified
set of rules. On the other hand, the purely normative approach takes the rules of the
market for granted and attempts to determine the optimal behaviour of a particular agent
whose perspective they take. This approach typically makes fewer stylized assumptions
and attempts to leverage insights from normative analysis to design practical algorithms,
either as a proof-of-concept, or which have been tested in live markets.

The approach taken in this thesis is primarily normative. Specifically, we will take
the perspective of an intermediating firm that aggregates the demand of a multitude of
marketing agencies and participates in the RTB markets on their behalf. Intermediaries of
this type are referred to as Demand Side Platforms (DSPs), though this term can also be
used quite broadly to refer to any intermediating firm that works with marketing agencies to
facilitate their acquisition of ad space, which may be through RTB or alternative channels.
We treat this normative demand aggregation problem as a contract management problem
where the intermediary has entered into a set of contracts which obligate them to acquire
some volume of items, via the RTB market, on behalf of the contract counter party. The
DSP will seek to obtain these items at minimum cost, and are not budget constrained
(since the contract is an obligation). The most elementary formulation of this problem can
be written as
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minimize
x,γ

M∑

j=1

fj(xj)

subject to
M∑

j=1

γijWj(xj) ≥ Ci

N∑

i=1

γij ≤ 1, γij ≥ 0,

(Pm)

where Wj(x) is a function determining the rate at which items of “type” j are obtained
by placing the bid x, fj(x) is a function determining the expected cost of placing this bid
(which depends upon the rules of the auction), γij is an “allocation array” indicating the
rate at which items of type j should be allocated towards the fulfillment of contract i, and
Ci > 0 are the target requirements of that contract. A much more detailed explanation,
and more general problem formulation, will appear in Chapter 2.

There is a natural economic niche occupied by these DSPs, analyzed formally by [11],
see also the discussion of [213]. First of all, individual advertisers range all the way from
small firms and individuals to the world’s largest multinational institutions. DSPs offer,
first of all, the technical infrastructure and talent necessary to effectively participate in the
online advertising space; small firms are simply unable afford this expense, and most large
businesses can be expected to benefit from outsourcing this capacity due to comparative
advantages. Secondly, the intermediary may serve a risk hedging function. Indeed, the
contract, once accepted, must be fulfilled, even if it is no longer profitable for the DSP to
do so, i.e., the DSP bears the risk of adverse changes in the market. Finally, as is explained
by [11], since the intermediary is not budget constrained, they have at their disposal a wider
array of bidding strategies than does a budget-constrained individual advertiser. This leads
to cost reductions and profitability even if DSPs are not technologically more sophisticated.

The study of Problem (Pm) in the context of RTB arose with [170] and was formulated
based on a problem faced by a Canadian DSP. Thus, our problem is of practical industrial
importance. However, our approach is not purely practical; indeed, the empirical analysis
of algorithm performance, either with real data or in live markets, does not feature promi-
nently in this work (though it is not absent either, see Chapter 5). Ultimately, we seek to
develop a thorough understanding of the elegant structure arising in Problem (Pm) and to
show how this structure can be leveraged to develop practical bidding algorithms.

In addition, we recognize that the insight into Problem (Pm), both in terms of analytic
techniques, and through an understanding of the functions W, f arising therein, can be
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further leveraged to tackle seemingly disparate problems in other fields (see Section 2.5
and 3.4). Finally, while the description of Problem (Pm) is given through the language of
RTB, similar problem formulations may be applicable to alternative auction based markets,
e.g., electricity markets, or processor and cloud scheduling [196, 151, 211, 217, 208]; the key
aspect is that the nature of the “items” be such that they are generated (and necessarily
sold) rapidly in sequence, and that the items be rapidly perishable (thus precluding storage
or secondary markets; but not necessarily derivatives markets).

1.2.1 Computational Methods

The main focus of this this thesis is not intended to be upon numerical computations,
but throughout the thesis we will touch upon some of the practical computational meth-
ods drawn upon for calculations and simulations. All of our code is implemented in
Python [179], primarily using numpy and scipy [185] for numerically calculations, and
matplotlib for our figures [89]. Optimization problems are solved through some combina-
tion of custom algorithms, the convex modelling software cvxpy [54], and the interior point
solver CVXOPT [178]. Some important and illustrative code listings are given in Appendix C.
We remark further upon computation and algorithms in Sections 2.4 and 3.2.1.

1.3 Literature Review

The literature associated with auction theory, which we have already touched upon, and
with computational advertising, broadly speaking, is vast [88]. We cannot provide a com-
prehensive review of this broad field, but instead primarily focus here upon the specific sub
field of real-time bidding. The closely related, yet distinct, field of sponsored search (see
Remark 1.1.3) will also receive little attention in this review, but see, e.g., [60], for early
work along similar lines as the bid optimization literature in RTB.

We categorize our overview roughly into three categories: game theoretic analysis, esti-
mation and machine learning problems, and optimal bidding. Papers which focus on game
theoretic analysis provide insightful and foundational theoretical understanding for how
the market operates (or how it should be structured). Practical problems in estimation
are important for applications since algorithms designed for practical problems generally
assume some knowledge about prevailing market statistics (e.g., prices, volume, item char-
acteristics, etc.) which must be estimated. Finally, problems of optimal bidding answer
normative questions about how agents in RTB should bid in order to, e.g., maximize the
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value of items obtained, respect budget constraints, etc. This thesis is primarily concerned
with problems of optimal bidding.

Game Theoretic and Mean Field Analysis There is a rich literature focusing on
the application of game theoretic tools to analyze certain types of equilibria arising in
RTB and sponsored search auctions. The papers of [157] and [35] apply a “classical”
game theoretic analysis to the problem. However, since RTB auctions consist of a large
number of players (say N), an exact game theoretic analysis of N player RTB games
is generally both intractable and implausible as a model of reality since the information
processing required for a player to best respond to their N − 1 competitors is immense.
Therefore, fluid limits [51, 156] (where the “importance” of each auction is scaled towards
zero simultaneously as the number of auctions occurring goes to infinity), mean field limits
(where N → ∞) [107, 71, 34], or some combination thereof, are used to approximate the
behaviour of agents in large repeated auctions.

In particular, [84] analyzes budget-constrained sequential Vickrey auctions as a Markov
Decision Process (MDP) with known market statistics, using a fluid limit to obtain an
approximately optimum bid-your-shaded -value policy. This policy is structurally similar
to many results in optimum bidding for second price auctions where if the agent’s (random)
budget is B and (random) item valuation is v, the optimum bid is given by v

1+s(B)
for some

shading factor s(B). Often, this shading factor is derived directly from Lagrange multiplier
associated to the budget constraint. Since it is optimal to bid your valuation in a one-shot
second price auction, one may interpret the bid shading that occurs in budget constrained
auctions as encoding the value of saving some budget in the hope of coming across a great
opportunity in the future.

A mean-field equilibrium can be obtained from the optimum strategy of [84] by con-
sidering a mapping Γ : P(U)→ P(U), where U is the action space (a finite set of possible
bids) and P(U) is the space of probability measures on this set, such that Γ maps from some
supposed distribution of the maximum competing bid, call it µ, into the distribution over
the maximum bid induced by the optimum bidding strategy, namely Γ(µ). An equilibrium
in this case, as described by [84], is a fixed point of this mapping, i.e., a price distribution
µ such that Γ(µ) = µ. This constitutes a simplified equilibrium concept since agents are
best responding only to the distribution of the maximum bid, and not to the entire history
of the game and every action taken by every opposing player as in, e.g., perfect Bayesian
equilibrium [67].

Along similar lines, [91] develops a mean-field model that includes agent learning. That
is, in the case of [84], agents are assumed to know their valuation (but not that of other
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agents). This is not always realistic since the valuation in the case of RTB may represent,
e.g., the probability of a purchasing decision, and the agent needs to estimate this proba-
bility by participating in the market. The result of [91] is structurally similar to that of [84]
where the agents bid their valuation (there is no shading as [91] does not model budgets),
but in this case the valuation of an item includes an additional factor that accounts for
the information value of winning an item (and hence learning more about the agent’s true
value). This situation again leads, under appropriate assumptions, to a mean field equilib-
rium where agents best responding to the stationary distribution of prices reproduce that
same stationary distribution.

The work of [10] combines the concepts of mean field limit (large number of agents)
and the fluid limit (large number of auctions) into a fluid mean-field equilibrium solution
concept for repeated auctions. As well, in contrast to [91], [10] includes a budget constraint,
but does not model the effects of learning. An optimal bidding problem that conditions
on prevailing market statistics, closely related to [84], is solved to again obtain a bid-your-
shaded-value policy, and the loop is closed into a strategic equilibrium by showing the
existence of a fixed point of the mapping from market statistics, through optimal bids,
and back to induced market statistics. These ideas are further developed by [13] through
the application of stochastic approximation in a setting that includes both learning and
budgets.

The existence of stationary mean field equilibria motivate and justify many assumptions
relating to stationarity and independence of competing bids in RTB. Indeed, the market
model outlined in Definition 2.2.1 is essentially an interpretation of the equilibrium state of
an auction market. However, real market data is known to not be entirely stationary [206,
215, 113], a point we address in Chapter 4 and 5

Estimation and Machine Learning Problems This thesis works primarily with very
simple estimation methods (see Section 2.4.2), or algorithms which combine optimization
and estimation simultaneously (see Chapter 4). However, estimation problems are still of
interest and we occasionally point out places where superior estimation algorithms may
be combined with our developments in practice; the astute reader is likely to recognize
numerous others.

One of the earliest papers (published in 1956) applying statistical learning methods to
problems of optimal bidding is [65] where they suggest using historical data to estimate
the bids that will be placed by competitors, and then to optimize one’s bid based both on
this data as well as upon one’s estimate of the value of the item. This is an elementary
application of statistical learning to the problem of optimum bidding, and since this time,
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learning algorithms have benefited from enormous research efforts and enjoyed profound
success on many important problems; we draw in part from [128, 80] for general reference,
and hold up AlphaGo [161] as one of the field’s most remarkable successes.

Of course, these advancements have been applied to RTB. Of particular interest, and
similarly to [65], is the problem of estimating the “bid landscape” [49], i.e., the prevailing
statistics of competing bids. This is in many cases successfully carried out by fairly standard
generalized linear models [219] or mixtures thereof [74]. Deep learning algorithms have also
been applied to this problem [204].

An important aspect of RTB auction data is that you are often only informed of the
price at which an item sold for if you yourself are the winner. That is, RTB data is often
censored. This issue is often tackled by some modification of the Kaplan-Meier estima-
tor [94], e.g., [192, 216], but this may not be ideal for RTB data since the distribution of
prices may be statistically dependent upon whether or not you are the winner of the auc-
tion (similarly to the idea of the winner’s curse [122]) and some papers apply alternatives
to the Kaplan-Meier estimate [203, 204].

Aside from estimating the statistics of competing prices, learning models are also ap-
plied to the problem of estimating the value of items. It is sometimes taken for granted
that agents in auction markets know the value of the object they are bidding for, but this
is not always the case. In RTB, the value of an impression (i.e., “item”) is often synony-
mous with the user’s click through or conversion rate, i.e., the probability that the user
will actually click the ad, or make a purchase. This estimation is an important part of
item valuation in RTB [110, 5, 36, 36], and has also been combined with simultaneous bid
optimization [152].

Optimal Bidding The learn-then-bid approach advocated by [65] is criticized by [119]
for assuming that valuations are private and independent, which is a dubious assumption
in many auction markets. Nevertheless, this is also the approach taken by many optimum
bidding papers in RTB markets, early examples being given by [76, 106]. This approach is
often justified by appealing to the aforementioned equilibrium analysis and the mean-field
nature of the market. Indeed, in the finance literature, purely i.i.d. statistical “zero-
intelligence” models [68] and modest “ε-intelligence” [172, 171, 79] modifications, often
via Markov models or differential equations, (c.f., “population games” [156]), are able
to capture salient aspects of market data. Optimal trading and portfolio construction
algorithms based on these models are successfully employed in practice [70, 3], despite the
fact that they treat what is ultimately a strategic game as a statistical entity.
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For model-free approaches to optimal bidding, recent papers [32, 202] apply the rein-
forcement learning framework where optimal bids are learned directly as a result of partic-
ipating in the market (or simulating participation on historical data); a related model-free
approach is that of [55] which develops a budget constrained multi-armed bandit algorithm,
though not specifically for application in RTB.

A number of papers which apply classical feedback control tools have also arisen. The
first paper that we are familiar with2 applying this technique for online advertising is [42].
The work of [109] applies similar ideas to try to maintain a consistent budget depletion
rate. Further papers directly applying feedback control are given by [212, 96, 97]. We view
these methods as being complementary to the analysis we carry out in Chapter 5 where we
calculate a forward looking plan for item win rates designed to account for the forecastable
periodic fluctuations in market statistics; feedback control algorithms may apply to adapt
to higher frequency changes (c.f., Chapter 4). Stochastic optimal control algorithms have
also been developed [62, 83] for similar problems (see Section 5.2 for further discussion of
these papers).

Further papers along these lines are [214] which calculates optimal budget constrained
bidding functions (mapping from estimates of value into a bid) based upon estimates of
the competing bid landscape (this paper is discussed further in Example 2.1.6). Random-
ized bidding is advocated by [95], which was also employed in our earlier work [101] to
provide a smoothness guarantees for a win probability function. As well, [213] studies an
interesting arbitrage problem and shares some features with Problem (Pm). Another paper
sharing some features with the Problems studied in this thesis is [40] since it involves a
transportation network (c.f., Section 3.2.3).

Remark 1.3.1 (Publisher Decisions). There is yet another angle from which RTB can be
studied: the decisions made by publishers, i.e., the sell-side. In particular, publishers have
some control over the reserve prices set for advertising space (see Section 6.1.3 for a dis-
cussion of accounting for this competitive effect), and these decisions can have a significant
impact on revenue [10, 126]. As well, publishers face a decision between whether they want
to sell their ad inventory openly through RTB, or instead allocate it towards traditional
guaranteed contracts (where advertisers buy a guaranteed number of impressions from the
publisher) [148, 112, 39, 12]; they also face the problem of how to price those contracts [75,
24]. These problems are important in the broader context of RTB, but are not treated in
this thesis.

2There may be much earlier papers applying control theory in this domain, but our literature review
has focused on real-time bidding, which did not arise until around c. 2009
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Remark 1.3.2 (Derivatives Markets). As discussed in Section 1.1, many electricity mar-
kets employ auction mechanisms to organize the purchasing and provisioning of electricity.
In addition to this primary market, there is a derivatives market dealing in futures con-
tracts. This market provides a mechanism for participants in the primary market to hedge
risk, and speculators are compensated for bearing this risk. While there is not, to our
knowledge, a developed derivatives market associated with RTB, a number of papers have
studied advertising options contracts [127, 38, 37]. The intermediary contract problem we
study provides, in part, a similar risk bearing purpose.

1.4 Outline and Contributions

The remainder of this thesis proceeds as follows. In Chapter 2 we lay the formal foundations
for the remainder of the thesis beginning with the definition of a supply curve (essentially
nothing but a cumulative distribution function modelling the probability of winning an
item given some bid) and an analysis of the expected costs of placing that bid in both first-
price and second-price (sealed-bid) auctions. Following this basic introduction, we define
the acquisition cost function, which encodes a one-to-one transformation of variables from
the bid x ∈ R to the probability of winning q ∈ [0, 1]. We will show that this function is
convex for second-price auctions, and convex under weak assumptions (a generalized type
of concavity of the supply curve) for first-price auctions. The remainder of the thesis is, at
the most abstract level, about exploiting the properties of this transformation of variables
for the solution of practical optimal contract management problems.

The contract management problem is introduced in Section 2.3 (in particular, Sec-
tion 2.3.3) where we begin with a number of simplified examples that illustrate key struc-
tural themes seen throughout the thesis. The most important result of this section is
Proposition 2.3.1, which establishes that the contract management problem we consider is
in fact a convex optimization problem. This transformation into a convex program results
from straightforward application of the properties of the acquisition cost function, but we
believe that the utility of this technique is not fully appreciated in the literature, see Ex-
ample 2.1.6. To further illustrate this method, we cover some additional example problems
from the field of finance in Section 2.5. These problems are tangential, but serve to further
illustrate some of the key features encountered in our main application. We review some
well known practical computational methods that we have used in our experimentation in
Section 2.4.

There are a couple of salient features in our model which contrast with problems con-
sidered elsewhere in the literature. Firstly, the agent we study is not budget constrained.
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While many papers study the problem of determining how to acquire items of maximum
value subject to a budget constraint, our problem is in some sense dual to this: we at-
tempt to acquire a specified quantity of items at a minimum cost. Secondly, the problem
we formulate does not explicitly model the value of an item, at least not in the same way
as does the existing literature. Indeed, our model will place a value vij ∈ R+ on items, but
this is not used in the same way as is the typical value to acquiring an item (i.e., it does
not appear in the objective function). Instead, actual item valuations can only be derived
as a result of the interaction between available supply in the market and the quantity
demanded by the contractual obligations. This is discussed further in Chapter 3.

Since the main problem studied in this thesis is equivalent to a convex problem, it
admits a rich duality theory. Chapter 3 is dedicated to an analysis of the implications
of this duality. We analyze the theoretical structural implications as well as intuitive
interpretations (and formal regularity results) in Section 3.1.2. As well, these results are
seen (Section 3.2) to have important computational implications, and enable the derivation
of efficient algorithms. These results are of particular practical importance since, except
for special cases, the problem formulated in Chapter 2, while convex, does not fall into
any “famous” class of convex programs. That is, it is not a linear program (unless we
consider polyhedral approximations: Section 2.4.3), it is not a quadratic program (unless
optimum bids are known: Section 3.2.3), it is not a semidefinite program, etc. Indeed, the
cost functions we face are more or less arbitrary monotone convex functions. Section 3.3
illustrates the structural facts uncovered through duality with computational examples and
also demonstrates the scalability of algorithms to large problem instances. In this chapter
we also return to the additional problems from the end of Chapter 2 in order to, again,
further illustrate the common threads of our analysis.

Chapter 4 deals with stochastic approximation algorithms. Here, we make only the
weakest possible assumptions about the knowledge the bidding agent has at their disposal
and show how the agent can simultaneously calculate an optimum bidding policy and
learn everything needed about the prevailing market statistics. These algorithms can be
adaptive in the sense that the market need not be completely stationary. As a result of
the duality analysis of Chapter 3 we also uncover further duality relationships between
stochastic approximation algorithms operating over different sets of variables. Algorithms
are illustrated on simulated market data.

The final main chapter, Chapter 5, expands the definition of the main contract man-
agement problem to incorporate time dynamics and deadlines for contract fulfillment. In
terms of the history of the development of this thesis, our final chapter was in fact the first
formulation of the problem we began to study (see [99]). Much of the structure in the case
with time deadlines follows similarly as do the duality results of Chapter 3. However, there
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is an additional consequence in this case: a duality analysis enables the reduction of the
infinite dimensional primal optimization problem into a finite dimensional dual problem.
In section 5.2 we consider two further approaches to adaptive bidding (complementary to
Chapter 4), and study the practical performance of these methods using real market data
in Section 5.4.

Chapter 6 includes our final remarks, as well as extended discussions of further research
directions.

The Appendices contain some additional materials, as well as brief statements or re-
views of known facts (Appendix A). Some proofs have been deferred to Appendix B, which
also contains (organized by chapter) some additional discussion and results that may have
been only briefly touched on in the main body. Finally, since we have often emphasized
the importance of practical computational methods and representations, some actual pro-
gram code listings are given in Appendix C, along with brief commentary on optimization
technology.

The thesis is based primarily upon the papers [101, 102]. Another paper presenting
nascent ideas developed further by the aforementioned will remain available only as a pre-
print [99], as the results therein have been essentially superseded. The germ of the ideas
developed in this thesis began with the work of [170]. Additional publications based on the
work presented here are under development. A further publication in a distinct field [100]
has also arisen from work carried out during the author’s PhD, but will not be touched
upon in this thesis.
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Chapter 2

Supply Curves, Real-time Bidding,
and Contract Management Problems

The purpose of this chapter is to provide a technical introduction to the problems studied
in this thesis. We begin in Section 2.1 with the basic building blocks for a single auction,
supply curves and cost functions, which model, respectively, the probability of winning
an item in an auction, and the expected cost of doing so. Additionally, we introduce the
acquisition cost function, which models the expected cost of winning an item with some
specified probability. This function will be the key ingredient for the entire thesis: every
subsequent chapter can, at the highest level, be seen as understanding and exploiting the
properties of this function for the solution of practical problems. Elementary examples are
used to illustrate the properties of these functions.

In Section 2.3 we introduce a basic market model, which will play an important role in
Chapter 4. There is a rich literature focusing on the application of game theoretic tools to
analyze certain types of strategic equilibria arising in RTB auctions, see e.g., [84, 91, 10,
13]. For the market to be in equilibrium means that no agent has the incentive to modify
their bidding strategy, given the current strategies of their competitors. The existence
of such equilibria motivate and justify many assumptions relating to the stationarity and
independence of competing bids in RTB. The statistics of prices are stationary since agents
do not have the incentive to modify their bidding strategy, and prices are statistically
independent as a result of mean-field interactions: agents best respond to the distribution
of competing bids. Indeed, the market model we outline is essentially an interpretation of
the equilibrium state of an auction market. While our market model does not employ any
game theoretic concepts directly, we point out that the finance literature is replete with
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purely stochastic or so called ε-intelligence models [163, 172, 171, 79] which successfully
model real world market data.

The main problem considered in this thesis is introduced in Section 2.3 where we
combine the previously discussed concepts into a concrete contract management problem.
The problem can be formally modelled in two ways: the most natural is as a monotone
optimization problem [177], which is an optimization problem wherein the objective and
the constraints have certain monotonicity properties, to be specified more clearly in the
sequel. The second formulation, which can be obtained under certain restrictions, is as a
convex optimization problem [29, 21, 19, 86, 30]. The study of this convex program and its
various extensions will constitute the majority of the thesis, and we again illustrate basic
issues with elementary examples.

In Section 2.4 we review some well known computational methods, namely the method
of bisection and kernel density estimation, which are of fundamental importance for prac-
tical implementations.

We conclude this chapter in Section 2.5 with some additional examples from the field of
finance to illustrate the ubiquity of some of the functions encountered in this thesis. These
problems will appear again in Chapter 3, but these sections are not essential to the thesis
as they primarily serve as additional examples and to hopefully inspire further research
directions. Concluding remarks are given in Section 2.6.

2.1 Supply Curves and Cost Functions

In Section 2.1.1 and Definition 2.1.1 we introduce the fundamental notion of a Supply curve.
Section 2.1.2 and Equations (2.1), (2.2) introduces two pertinent cost functions which are
associated to supply curves under different auction rules (first and second price auctions)
and Equation 2.5 defines the acquisition cost curve, which is a particular composition of
these functions.

2.1.1 Supply Curves

Consider an auction market with indistinguishable items. Throughout, the discussion will
generally be from the perspective of a particular DSP who places a bid (or bids) x for an
item that becomes available in the auction. The supply curve, which is ultimately nothing
but a cumulative distribution function (c.d.f.), characterizes the DSP’s competition by
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quantifying the probability of winning an item given that the DSP places the bid x [65].
This function will be denoted by W : R→ [0, 1] and is such that the probability of winning
an item with the bid x ∈ R is W (x). We formally allow for the possibility that x < 0, but
such a bid will always have zero probability of winning the item, and in practice, such a
bid would either be rejected, or treated as being equal to zero by the rules of the market.

The bidder may or may not have quantitative knowledge about W . In Chapter 3 and 5
we will assume the function is either fully known, or at least estimated. On the other hand,
in Chapter 4, the agent will have no quantitative knowledge of W and must learn to bid
simultaneously while estimating W .

We assume that the price pn, of the nth item arriving at the auction is distributed
according to a c.d.f. W , and that prices are always non-negative: pn ≥ 0 almost surely.
The DSP wins the item if the bid, x, that they place satisfies x ≥ p as in W (x) = P{pn ≤ x}
(further discussion will appear in Section 2.2). Additionally, we will assume that prices are
sequentially independent so that if items arrive at a rate λ > 0, the average rate that items
will be won is λW (x). If the inter-arrival times are exponential, then both the arrival times
and the win rate (for a constant bid placed on each arriving item) are Poisson processes
by the Poisson thinning property.

Remark 2.1.1 (Supply Curves from Market Models). The assumption of i.i.d. prices may
appear strong, but can in fact arise as a consequence of competitive equilibrium among
agents. This setting is typically analyzed through the methods of mean field games [34] or
population games [156, 141], which use certain limiting arguments for large populations of
agents. An analysis of this form is carried out by [91, 10, 13] where, in stylized bidding
markets, there exist competitive equilibria where prices become i.i.d.. Indeed, taking the
i.i.d. prices assumption as a starting point is typical in many previous papers [42, 84, 214],
and can serve as adequate models for deriving bidding algorithms.

Remark 2.1.2 (Comparisons in Finance). By way of comparison, in financial markets, it
has been observed that simple zero-intelligence (i.e., purely statistical) models [163] are
capable of explaining some important aspects of price dynamics, and only marginally more
complicated ε-intelligence models [172, 79] (which are statistical and dynamic, but still not
strategic) are capable of capturing many of the most salient aspects of market dynamics.
These models are used to derive, among other things, transaction cost models (i.e., models
of the excess expense, over and above the current market price, of trading a large batch of
securities) that form key components in modern portfolio management [8, 70]. We view the
statistical modelling approach adopted in this thesis as being analogous to this approach
to finance.
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Formally, a supply curve, i.e., the function W : R→ [0, 1], will be a cumulative distri-
bution function, but the amount of smoothness that is to be assumed of the supply curve is
a delicate consideration. It is absolutely essential for our results that supply curves be con-
tinuous (though see [170], which studied a similar problem without assuming continuity).
However, Example 2.1.1 and Section 2.4 shows that even the assumption of completely
smooth supply curves would not be unreasonable. Ultimately, the reader may think of W
as being as differentiable as necessary (usually only at most a single derivative is used) but
generally, no differentiability is required when dealing with second price auctions.

Definition 2.1.1 (Supply Curve and Differentiable Supply Curve). A supply curve W (x)

is a continuous cumulative distribution function on R∞
∆
= R ∪ {∞} such that ∀x ≤ 0 :

W (x) = 0, that W is strictly monotone up to some maximum bid x̄ ≤ ∞, and the first

two moments p̄
∆
=
∫∞

0
udW (u) < ∞ and

∫∞
0
u2dW (u) < ∞ are finite. In the context of

first price auctions, the additional assumption of differentiability will be added, wherein W
will be differentiable on the interval (0, x̄) and will be referred to as a differentiable supply
curve. The prices (i.e., the highest competing bids) p1, p2, . . . of items (of the same type)
are distributed i.i.d. according to W such that P{pn ≤ x} = W (x) models the probability
of winning an item given a bid of x. The inverse of W is denoted W−1(q) and is extended
such that W−1(q) = 0 if q ≤ 0 and W−1(q) =∞ if q > 1.

The integrals in Definition 2.1.1 are Lebesgue-Stieltjes integrals (see, e.g., [164]), satis-
fying, e.g.,

∫∞
0
udW (u) =

∫∞
0
uW ′(u)du if W is differentiable.

Examples of supply curves estimated (by the methods of Section 2.4) from market data
are given in Figure 2.1. These curves allow a maximum bid of x̄ = 300, and are valid for
different times of day. We deal with time constraints and time varying supply curves in
Chapter 5.

Example 2.1.1 (Randomized Bidding). Let p ∼ W̃ be a price distributed according to

an arbitrary cumulative distribution function W̃ , let Z ∼ N (0, 1) be a Gaussian random
variable independent of p, and let σ > 0 be a parameter. Then, the function Wσ(x) =

EW̃ (x + σZ) can be shown to be a smooth cumulative distribution function on R and
models the probability of winning the item when the nominal bid is x, but the actual bid
is randomized N (x, σ2). That is, by injecting an arbitrarily small amount of noise into the
bidding process, the effective supply curve becomes a smooth supply curve. See [95, 96]
for further discussion of randomized bidding.

Example 2.1.2 (Analytic Example). One of the simplest reasonable analytic examples
of a supply curve is furnished by the exponential distribution. That is, by assuming that
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Figure 2.1: Win Probability Estimates
Price distribution estimate based on Gaussian KDE of a particular item type at two different

times of day.

pn ∼ exp(γ) and W (x) = (1− e−γx)1R+(x), which has x̄ =∞. The utility of this example
is that the inverse function W−1(q) = 1

γ
ln(1 − q) is easily available for q ∈ [0, 1). This

function models the bid x that must be placed in order to win the item with probability
q, and has an unbounded maximum bid x̄ = ∞. Another simple example, with x̄ < ∞ is
given by W (x) = x21[0,1](x). Finally, we mention the Gamma distribution (see also [219])
as being convenient for simulation when more control over the variance of prices is desired.

Example 2.1.3 (Extreme Value Distributions). The price of an item arises as the max-
imum bid amongst competitors, e.g., p = max

k∈[K]
bk. This suggest that the supply curve

W may be sensibly modelled by an extreme value distribution according to the Fisher-
Tippet-Gnedenko Theorem [52, Thm 1.1.3], i.e., that W (x) = exp

(
−(1 + γx)−1/γ) for

some parameter γ > 0.

Remark 2.1.3 (Extensions). There are two extensions to this model that will be encoun-
tered in the thesis. The first is supply curves that depend on types j ∈ [M ] = {1, 2, . . . ,M}
(for a finite number of types) or φ ∈ Φ (when the type is random or if the type space is
uncountable) as in Wj(x) or Wφ(x) (see Section 2.3). The second is when supply curves
are time dependent as in W (x, t) (see Chapter 5).
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2.1.2 Cost Functions

There are two types of cost functions that will be encountered in this thesis — the first is
the expected cost of bidding x on an item, which will be denoted by f(x), and the second
is the acquisition cost, denoted by Λ(q), that models the expected cost of bidding such that
you win an item with probability q. We consider these in turn.

Bidding Costs The bidding cost f is the expected cost of bidding x on an item. This
function depends upon the particular auction mechanism that is employed by the platform.
The most common mechanisms are first price and second price auctions [184, 103, 118].
In the former case, the winner of the auction pays their bid, and in the latter, the winner
pays the price, i.e., the highest competing bid (which is necessarily less than or equal to
the winning bid). Additionally, the seller of the item may incorporate a reserve price for
the auction which is such that any bid below the reserve price is immediately rejected.
Reserve prices can arise if the seller has a personal valuation for the item (e.g., a website
may associate some value with advertising their own premium service to their own users) or
the seller may have alternative platforms where they are guaranteed to be able to sell their
items above some specified price. Since there are a large number of sellers, and the sellers
may have additional private information about the items that affects their personal value
of the items, we simply treat the reserve price as though it arises from another competing
bidder.

Due to these auction rules, the cost functions associated to the first and second price
auctions are given by

f 1st(x)
∆
= E[x1(p ≤ x)] = xW (x), (2.1)

f 2nd(x)
∆
= E[p1(p ≤ x)] =

∫ x

0

udW (u), (2.2)

respectively.

The interpretation of the function f 1st(x) = xW (x) is quite simple: when you bid x you
win the item with probability W (x), and the amount that you pay if you win is exactly your
bid x. The function f 2nd(x) =

∫ x
0
udW (u)du is less intuitive, but the integrand udW (u)

can be interpreted as the marginal cost of convincing all the competing bidders with a
valuation of u to part with the item.

By default, we focus upon the second price auction, and f (without a subscript or
superscript specifying the auction type) should be understood to be referring to f 2nd. This
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case is in many ways simpler, and a critical property of second price auctions, not available
in the first price case, enables the application of stochastic approximation to certain optimal
bidding problems (see Chapter 4).

Both of the above functions are strictly monotone increasing. As well, via integration
by parts, it can be recognized that f 2nd(x) = xW (x)−

∫ x
0
W (u)du = f 1st(x)−

∫ x
0
W (u)du

and therefore f 1st ≥ f 2nd, as well

f 1st − f 2nd =

∫ x

0

W (u)du. (2.3)

The Equation (2.3) represents the additional costs paid in a first price auction, over and
above what would be paid in a second price auction all else being equal. Moreover, we can
also write

f 1st(x)− f 2nd(x) = xW (x)−
∫ x

0

udW (u)

=

∫ x

0

(x− u)dW (u)

= E(x− p)+,

(2.4)

where p ∼ W . This again represents the amount by which the bidder overpays for the item
in a first price auction. This function also arises in a problem in finance called the dark
pool problem [69], and is briefly touched on in Section 2.5.2.

Acquisition Costs Given some q = W (x), which models the probability of winning the
item given the bid x, we also have the expected cost f(x) of bidding x. We can also, since
W is strictly monotone over an interval [0, x̄] ⊆ [0,∞], calculate what bid is needed to

acquire the item with probability q ∈ [0, 1], that is, x = W−1(q). Formally, W−1(q)
∆
= ∞

if x̄ = ∞ and q = 1. It is then natural to ask a related question: “what is the expected
cost to win the item with probability q?” The answer to this question is the acquisition
cost function

Λ(q) = f ◦W−1(q). (2.5)

This function naturally depends upon the type of auction, but by direct substitution of
W−1(q) into f1st or f2nd we can see that:
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Λ1st(q) = qW−1(q)

Λ2nd(q) =

∫ W−1(q)

0

udW (u).
(2.6)

In order to extend the definition of Λ to all of R, we let Λ(q) =∞ on q > 1 and Λ(q) = 0
for q < 0.

We turn now to an analysis of these acquisition cost functions. The remarkable of
Λ(q) is that it tends to be convex. Indeed, for second price auctions it is always convex
(under Definition 2.1.1), and remains convex for the first price auction under some addi-
tional (fairly weak) assumptions on W . A sufficient condition in the latter case is that
W be log-concave, i.e., x 7→ ln ◦W (x) is a concave function. However, we will see that a
slightly weaker condition of 2-concavity is sufficient. We first state the second price case
in Proposition 2.1.1 and then the first price case in Proposition 2.1.2.

Proposition 2.1.1 (Convex Acquisition Costs — Second Price Case [101]). Let W (x) be
a supply curve. Then, in a second price auction, the acquisition cost function Λ2nd(q) =
f 2nd ◦W−1(q) is given by

∫ q
0
W−1(u)du on q ∈ [0, 1]. If this is extended to:

Λ2nd(q)
∆
=




∞; q > 1
0; q ≤ 0∫ q

0
W−1(u)du; otherwise

, (2.7)

then Λ2nd is a proper1, lower semi-continuous, non-decreasing, and convex function on R.
Moreover, Λ2nd is strictly convex over [0, 1], differentiable on (0, 1), and the derivative can
be extended continuously to [0, 1] if x̄ <∞.

Proof. We first calculate Λ = f 2nd ◦W−1 for q ∈ [0, 1] by

Λ(q)
(a)
=

∫ W−1(q)

0

xdW (x)

(b)
=

∫ q

0

W−1(u)du,

where (a) follows by definition of f 2nd (Equation (2.2)) and (b) is by the substitution of
variables v = W (x) which results in x = W−1(v), dW (x) = dv and transforms the bounds

1Recall that a function f : R→ (−∞,∞] is proper if it is not everywhere equal to +∞.
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of integration from [0,W−1(q)] into [0, q] since W (0) = 0 and W ◦W−1(q) = q. We see
from this latter formula that Λ2nd is differentiable on (0, 1) with derivative W−1(q), which
is continuous over [0, 1] when x̄ <∞. Since W is strictly monotone increasing, W−1 is also
strictly monotone increasing, and functions with strictly monotone increasing derivatives
are strictly convex, it follows that Λ2nd is strictly convex over (0, 1). The extension as
given maintains convexity, and ensures that Λ2nd is lower semicontinuous. It is proper
since, e.g., Λ(1) =

∫∞
0
udW (u) <∞.

Some additional assumptions are needed to establish convexity in the first price case.

Definition 2.1.2 (α-concave). Define, for α ≥ 0, x > 0 the function

`α(x)
∆
=

∫ x

1

1

tα
dt =

{
lnx α = 1
x1−α−1

1−α otherwise
,

where in particular `2(x) = 1− 1/x. We will say that a positive function W : R→ (0,∞)
is (strictly) α-concave if `α ◦W is (strictly) concave. In particular, W is log-concave if
α = 1 and concave if α = 0.

It is shown in Proposition B.2.1 that 2-concavity is a weaker condition than is log-
concavity. It is the former notion that is needed to establish convexity of Λ1st.

Proposition 2.1.2 (Convex Acquisition Costs — First Price Case [101]). Suppose that
the supply curve W (x) is strictly 2-concave ( c.f., Definition 2.1.2), i.e., `2 ◦W is strictly
concave on (0,∞) where `2(x) = 1 − 1/x. Then in a first price auction, the extended
acquisition cost function

Λ1st(q)
∆
=




∞; q > 1
0; q ≤ 0
qW−1(q); otherwise

, (2.8)

is a proper, lower semi-continuous, non-decreasing, and convex function on R. Moreover,
Λ1st is strictly convex over [0, 1].

Proof. Since f(x) = xW (x) we have, for q ∈ (0, 1), Λ(q) = qW−1(q). On q ≤ 0 we define
Λ(q) = 0, on q > 1 we define Λ(q) =∞, and finally Λ(1) = x̄ ≤ ∞.

Convexity will therefore follow if Λ is convex on (0, 1). To this end, we use the 2-
concavity of W to see that 1 − 1/W (x) is concave on its domain and therefore that the
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inverse, W−1
(
1/(1 − x)

)
is convex on 0 < 1

1−x < 1. It is well known that for a convex
function g, the function

(cx+ d)g
(ax+ b

cx+ d

)

is convex on cx + d > 0 (see e.g. [29, Ex. 3.20]). Therefore, by setting a = c = 1, b = −1
and d = 0 we obtain convexity of

(cq + d)W−1
( 1

1− aq+b
cq+d

)
= qW−1

( 1

1− q−1
q

)

= qW−1
(
q
)

which is the function Λ(s). Since qW−1(q) is strictly monotone increasing on (0, 1), Λ1st is
strictly convex on this interval, and evidently non-decreasing on all of R.

Some examples of acquisition costs, and methods to guarantee (for computational pur-
poses) the convexity of Λ1st when using estimated curves from real data, are provided in
Section 2.4.

For any function, there is associated a dual function: the Fenchel conjugate [45, Sec
4.2]. When the original function is convex, this is derived from the hyperplanes supporting
that function’s epigraph. There is an appealing duality relationship between Λ2nd and the
conjugate function

Λ?
2nd(µ)

∆
= supq [µq − Λ2nd(q)],

namely that Λ2nd is the integral of W−1 and that Λ?
2nd is the integral of W , see [85] for

further analysis of integrated quantile functions. This relationship is used for the derivation
of dual stochastic approximations in Chapter 4, and appears in the duality analysis of
Chapter 3.

Proposition 2.1.3 (Fenchel Conjugate — Second Price Case[102, 85]). The Fenchel dual-
ity relationship between Λ2nd and Λ?

2nd is between the integrated c.d.f. W and the integrated
quantile function W−1:

Λ2nd(q)
∆
=




∞; q > 1
0; q ≤ 0∫ q

0
W−1(u)du; otherwise

, (2.9)
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Λ?
2nd(µ) =





∞, if µ < 0∫ µ
0
W (u)du, if µ ∈ [0, x̄]

µ− x̄, if µ > x̄.

(2.10)

The function Λ?
2nd is a proper, convex, and lower-semicontinuous function, which is strictly

convex and strictly monotone increasing R+.

Proof. By definition,
Λ?(µ) = sup

q∈(−∞,1]

[
µq − Λ(q)

]
,

where the domain is restricted to (−∞, 1] since Λ(q) = ∞ for q > 1. If µ < 0 then
Λ?(µ) =∞ since Λ(q) = 0 for q ≤ 0. If2 µ > x̄ then Λ?(µ) = µ− x̄ since µ is greater than
the maximal slope of Λ. Finally, if µ ∈ [0, x̄] we can differentiate q 7→ µq − Λ(q) to find
that, at optimality, q = W (µ) and hence

Λ?(µ) = µW (µ)− Λ ◦W (µ)

= f 1st(µ)− f 2nd(µ)

=

∫ µ

0

W (u)du,

where the final equality was pointed out in Equation (2.3) and follows through integration
by parts. It is proper, convex, and lower-semicontinuous since it is a conjugate function,
and strictly convex on R+ since W is strictly monotone on [0, x̄] and the function is linear
thereafter. It remains strictly convex on the rest of R since it is affine for µ > x̄. It is
strictly monotone on R+ by inspection.

We postpone the derivation of the Fenchel conjugate in the first price case until Sec-
tion 2.1.3. For later use, we explicitly point out the form of the derivatives of Λ.

Lemma 2.1.1 (Derivatives). In a second price auction Λ′2nd(q) = W−1(q) for q ∈ (0, 1)
and in a first price auction, Λ′1st(q) = W−1(q) + q

W ′◦W−1(q)
.

2This case is excluded if x̄ =∞ since then µ > x̄ is impossible.
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2.1.3 Bid Mapping Function

The last important function that arises in this work is what we refer to as the bid-mapping
function. This is a function g, which depends on the auction type, and is defined such that
Λ′(q) = g ◦W−1(q). That is, g is such that the inverse of the derivative of the acquisition
cost curve is given through the composition of the supply curve with the function g−1. In
a second price auction, since Λ′(q) = W−1(q) (c.f., Equation2.7), and therefore Λ′−1(x) =
W (x), the function g2nd(x) = x. Since in the second price case g is the identity, it will only
be relevant when discussing first price auctions and we will write g without specifying g1st

or g2nd.

Proposition 2.1.4 (Bid Mapping Function (1st Price Case)). Let W be a differentiable
supply curve. The bid mapping function

g(x) =





x+ W (x)
W ′(x)

, if x ∈ (0, x̄)

x̄+
(
lim
x→x̄

W ′(x)
)−1

, if x = x̄

0, if x ≤ 0

∞, if x > x̄.

is a continuous function defined such that Λ′1st(q) = g ◦W−1(q) whenever the derivative
exists, and takes the value of ∞ otherwise. Moreover, if W is strictly 2-concave (See
Proposition 2.1.2) then g is a strictly monotone increasing function on [0, x̄] with range

[0, g(x̄)], where g(x̄)
∆
=∞ if x̄ =∞. In second price auctions, g(x) = x.

Proof. For q ∈ (0, 1) we have the calculations (c.f., Equation 2.8)

d

dq
Λ(q) =

d

dq
qW−1(q)

= W−1(q) +
q

W ′ ◦W−1(q)
.

Therefore, when x ∈ (0, x̄) we have Λ′1st(q) = g1st ◦ W−1(q) where g1st(x) = x + W (x)
W ′(x)

.

On q ≤ 0 the derivative Λ′1st is zero (by definition of Λ1st, we extend the value of g(x) on
x > x̄ to take the value∞, and fill in the value of g at x̄ by continuity. Since d

dx
lnW (x) =

W ′(x)/W (x) and lnW (x) → −∞ as x → 0, it must be that the derivative of lnW (x)
is converging to ∞ and therefore W (x)/W ′(x) → 0 as x → 0, so g is continuous at 0.
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Moreover, when Λ1st(q) is convex (see Proposition 2.1.2) the derivative Λ1st(q) is monotone
increasing and therefore, since g1st = Λ′1st ◦W , it is also monotone increasing, since the
composition of monotone increasing functions is monotone increasing.

The statement for second price auctions was pointed out in the paragraph prior to the
statement of the proposition.

Part of the purpose of defining g is to facilitate a more aesthetic expression for Λ?
1st, as

follows.

Proposition 2.1.5 (Fenchel Conjugate — First Price Case[102, 85]). Let Λ(q) = f1st ◦
W−1(q) where W is a strictly 2-concave differentiable supply curve. The Fenchel conjugate
Λ?(µ) is given by

Λ?(µ) =





∞, if µ < 0(
µ− g−1(µ)

)
W ◦ g−1(µ), if µ ∈ [0, g(x̄)]

µ− x̄, if µ > g(x̄).

(2.11)

The function Λ? is a proper, convex, and lower-semicontinuous function, which is strictly
convex and strictly monotone increasing on R+.

Proof. By definition, we need to calculate

Λ?(µ) = sup
q∈(−∞,1]

[µq − Λ(q)].

For µ ∈ [0, g(x̄)] we apply Fermat’s rule (that maximizers of concave functions occur at
points where the derivative is zero) to see that we need to solve µ = Λ′(q) for q and
whence we obtain q = W ◦ g−1(µ) since Λ′(q) = g ◦W−1(q) and the inverse g−1 exists by
Proposition 2.1.4. Substituting this into the definition we have

µq − Λ(q) = µW ◦ g−1(µ)− f1st ◦W−1 ◦W ◦ g−1(µ)

= µW ◦ g−1(µ)− g−1(µ)W ◦ g−1(µ)

=
(
µ− g−1(µ)

)
W ◦ g−1(µ).

Finally, if µ > g(x̄) there is no solution to this system and we have q = 1 by monotonicity.

That Λ? is strictly convex on R+ follows since Λ1st is differentiable on (0, 1) and Theo-
rem [154, p. 11.13] establishing a relationship between differentiability and strict convexity
of convex functions and their conjugates.
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The strict monotonicity of Λ? on µ ≥ x̄ is clear, so it remains to show that it is strictly
monotone on [0, x̄). To this end, recognize that Λ? ◦ g(x) =

(
g(x) − x

)
W (x) and this is

equal to W (x)2/W ′(x) on the interval [0, x̄) by the definition of g(x). Then, since W is
strictly 2 − concave it must be that the derivative of 1 − 1/W (x) is strictly decreasing,
and thus W ′(x)/W (x)2 is a decreasing function. Therefore, Λ? ◦ g(x) is strictly increasing
[0, x̄). Since g is strictly increasing, and the composition Λ? ◦ g is strictly increasing, it
follows that Λ? is as well.

2.1.4 Analytic Examples

Here we briefly provide some examples of supply functions which are analytically tractable,
which were first mentioned in Example 2.1.2.

Example 2.1.4 (Exponential). Consider the c.d.f. of the exponential distribution W (x) =
1 − e−γx, plots of the relevant functions are provided in Figure 2.2. In this case, we find
that the bid required to win with probability q is the function W−1(q) = − 1

γ
ln(1 − q),

with domain [0, 1) and the second price acquisition cost is Λ2nd(q) = 1
γ
[q+ (1−1) ln(1− q)]

with conjugate Λ?
2nd(µ) = µ + 1

γ
[e−γµ − 1]. The quantities relating to the first price case

are also tractable. Indeed, we have g(x) = x + W (x)/W ′(x) for W ′(x) = γe−γx so that
g(x) = x + 1

γ
[eγx − 1] and then Λ1st(q) = − q

γ
ln(1 − q). We can also calculate Λ?

1st(µ) as

follows. In order to maximize µq − Λ1st(q) we have to solve the equation:

Λ′1st(q) = µ

⇐⇒ g ◦W−1(q) = µ

⇐⇒ 1

γ

[
ln

1

1− q +
1

1− q−
]

= µ

⇐⇒ 1

1− q exp
( 1

1− q
)

= e1+γµ

⇐⇒ q = 1− 1/W0

(
e1+γµ

)
,

where W0 is the principal branch of the Lambert-W function [46]. If we call this function
qγ(µ) then we have Λ?

1st(µ) = qγ(µ)
(
µ−W−1 ◦ qγ(µ)

)
.

Subfigure 2.2a plots functions of the bid x. In this subfigure it should be recognized
that the second price cost f2nd is bounded, but the first price cost is not.
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Figure 2.2: Illustrative Example Functions
Important example functions for the simple case that W (x) = 1− e−x, i.e., where the price is

exp(1) distributed.

Subfigure (b) plots functions of the win probability q. The function W−1(q) converges to
∞ as q → 1 since exp(1) random variables have unbounded support. Yet, Λ2nd(q) remains
bounded, since the maximum expected cost is the expected value of the price. However,
Λ1st(q) does converge to ∞ since you need to place very high bids in order to win with a
high probability, and in a first price auction, you pay your bid.

Example 2.1.5 (Quadratic). Consider now W (x) = x21[0,1](x). The calculations involved
are elementary, and we are loose in precisely specifying the domain. We have f 2nd(x) =
2
3
x31[0,1](x) and Λ2nd(q) = 2

3
q3/2, then by integrating W (c.f., Proposition 2.1.3) we obtain

Λ?
2nd(µ) = 1

3
µ3.

In the first price case, we have f 1st(x) = x31[0,1](x) and Λ1st(q) = q3/2. As well, the bid
mapping function is g(x) = x + 1

2
x2 and then Λ?

1st(µ) = 1
9
µ3. In contrast to the case with

x̄ = ∞ where some functions converge to ∞ (particularly W−1), each of these functions
are quite well behaved.

Example 2.1.6 (Budget Constrained Optimum Bidding). The work [214] is an important
paper in RTB. The authors of this work formulated a budget constrained optimal bidding
problem where the agent has a goal of finding an optimal bidding function b : Φ → R
to maximize the total expected value of items won E[v(φ)W (b(φ))] (where v(φ) is the
value of an item of type φ ∈ Φ) subject to an expected budget constraint in a first price
auction E[b(φ)W (b(φ))] ≤ B (the expectation is taken over a distribution on Φ). In [214],
the convexifying transformation q = W−1(b) is not used, and the general solution for
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b is described implicitly through µW (b) = (v(φ) − µb)W ′(b), where µ is the optimum
Lagrange multiplier. However, applying the convex transformation here results in the
problem to optimize E[v(φ)q(φ)] over the win probability function q : Φ → [0, 1] subject
to the constraint E[Λ1st(q(φ))] ≤ B. Using the results of this chapter, we can specify the
optimal bidding function as b(φ) = g−1(v(φ)/µ), and reproduce the results of [214] given
particular examples of the W function. The optimum multiplier µ is obtained, as usual,
through the monotone root-finding problem for the function µ 7→ E[Λ1st◦qµ(φ)]−B. In the
second price case, we have b(φ) = v(φ)/µ. This is exactly an instance of a bid-your-shaded -
valuation policy, a common structural result in the case of budget constrained optimum
bidding [92, 84, 10]. Finally, a similar problem arises as Problem (1a), (1b) in [10]; the
convex transformation discussed here seems to explain why [10] is able to show strong
duality for their seemingly non-convex problem.

2.2 The Market Model

2.2.1 Heterogeneous Item Types

The supply curves specified in Section 2.1 were developed entirely for a single heterogeneous
collection of items. However, in actuality, items in RTB can be highly distinguished,
and indeed, no two people are the same. Yet, items may still exhibit some substantial
similarities, particularly with respect to the characteristics that bidders are interested in.
As well, publishers may simply not be able to keep track of everything that makes one user
distinct from another; indeed, there are relevant legal restrictions (e.g., GDPR3 [186]) and
privacy concerns [137, 15, 90, 176, 175].

To model differing item types, we start by considering some type space Φ, where Φ is
generic notation for a space of possible item types. This set may be finite (the typical

case considered in this thesis) in which case we have Φ = [M ]
∆
= {1, 2, . . . ,M}, a subset

of euclidean space Φ ⊆ Rd (which may be a space into which item characteristics are
embedded by machine learning models [128]), or just an arbitrary set. Then, each φ ∈ Φ
(or j ∈ [M ], for the finite case) has it’s own associated supply curve, W (x;φ), or Wj(x).

We focus almost exclusively on the case of a finite type space Φ = [M ], and provide
rigorous definitions for this case only. The only other places where a continuum of item

3GDPR is the European Union’s General Data Protection Regulation and relates to privacy law and
data protection.
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types is encountered is in Section 2.3.5, where we provide some justification for the as-
sumption that Φ is finite, and in Section 6.1 where we discuss extensions and future work.
The calculation of appropriate segments of Φ into a finite type space is studied by [147],
see also [207] for a discussion on the effects of segmentation granularity.

The following market model should be thought of roughly as an interpretation of a
market in equilibrium, in the sense of the mean field models of [84, 91, 10, 13].

Definition 2.2.1 (Market Model). There is an auction market with item types [M ] =
{1, . . . ,M}, where items arrive according to a marked Poisson processes with rate λ > 0
and (exponential) inter-arrival times τ1, τ2, . . . Each arrival process j ∈ [M ] is associated
with a supply curve Wj (c.f., Definition 2.1.1). The mark of arrival number n ∈ N is given
by a (type, price) pair, (φn, pn), where φn ∼ Cat(η) describes the probability distribution
of types and pn|(φn = j) ∼ Wj describes the probability distribution of prices. The vector

η = (η1, η2, . . . , ηM) ∈ (0, 1)M are probabilities of the categorical distribution such that

P{φn = j} = ηj. The arrival rates of each item type are therefore given by λj
∆
= ληj, and

are also Poisson processes by the thinning property. The inter-arrival times of these types
will sometimes also be written τj(n), and a counter νj(n) =

∑n
u=1 1j(φn) will sometimes

be used to count the number of arrivals of a particular type.

Remark 2.2.1. Most of the details of Definition 2.2.1 are only used explicitly in Chapter 4
where the distributional assumptions on item arrival rates are used to facilitate the proof
of convergence results for stochastic approximations. For most of the problems considered
in the thesis, all that is needed is a supply curve Wj(x) and an arrival rate λj > 0 which
characterize, as λjWj(x), the average number of items of type j won by an exogenous
bidder bidding x on each arrival of type j. This is essentially a fluid model for a stochastic
optimization problem [51, 71], a topic upon which we will remark further in Section 6.1.

2.3 Contract Management

The main problem studied in this thesis is one of contract management, and variations
thereon. This is a problem faced by intermediaries in RTB markets who form agreements
to participate in RTB on behalf of some counter parties; in our context, these counter
parties are advertisers.

The contracts we will consider come in some slightly different formulations, but es-
sentially stipulate that the intermediary acquire either a certain fixed number of items
(possibly with a time deadline, see Chapter 5), or acquire items at some average rate, and
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that these items either simply belong to a particular subset of available types of items,
or more generally, that the value to the counter party of items acquired adds up to some
desired amount.

There are a myriad economic reasons for such intermediaries to exist, and a formal
analysis of some of the economic benefits of such intermediation is given by [11]. Essentially,
the profit of the intermediary can be expected to arise from aggregating the risk of adverse
price movements from the multitude of counter parties, as well as from maintaining the
technical infrastructure needed for bidding efficiently in RTB.

We introduce these problems through a series of examples. We begin with a problem
involving only a single item type in Section 2.3.1, and extend this to multiple item types in
Section 2.3.2. We then state the general formulation with multiple contracts and multiple
item types, and demonstrate the reformulation of these problems into convex programs in
Section 2.3.3. We comment on the case of continuum item types in Section 2.3.5. For most
of this thesis we focus on problems without time deadlines or time dynamics – our analysis
is adapted to this case in Chapter 5.

Remark 2.3.1 (Notation). Throughout the thesis we will encounter numerous optimiza-
tion problems. The decision variables of these problems will be indicated underneath the
word minimize, and the space in which these variables live should be clear from the con-
text. The following will be encountered frequently: x ∈ RM , s ∈ RM , µ ∈ RM , ρ ∈ RN

as well as matrices R ∈ RN×M and γ ∈ RN×M . Alternatively, R, γ may be ragged arrays
where Rij ∈ R for i ∈ [N ], j ∈ Ai for some Ai ⊆ [M ]. Any unqualified indices in the
constraints of these optimization problems are to be understood as ranging over all their
possible values, i.e., rather than writing Rij ≥ 0 ∀i ∈ [N ], j ∈ [M ] we will simply write
Rij ≥ 0.

2.3.1 Example: Single Item Type

Suppose that it is required to win items of a single type (with supply curve W ) at the
average rate C > 0. We are faced with the following optimization problem in x ∈ R:

minimize
x∈R

λf(x)

subject to λW (x) ≥ C.
(2.12)

Since the cost function f is monotone increasing, the solution to this problem is given sim-
ply by the minimum bid that attains items at the required rate C. That is, x = W−1(C/λ).
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Recall from Definition 2.1.1 that W−1(q) is defined to take the value x̄ whenever q > 1,
which may be x̄ =∞ if the support of W is all of [0,∞). Placing the bid x̄ may be inter-
preted as a best effort attempt to to solve Problem (2.12) when C > λ. If C < λ (i.e., there
is enough supply available to satisfy the constraint) then the optimum bid x is guaranteed to
be finite (an important generalization of this requirement will appear as Assumption 3.0.1).
The acquisition cost function arises as the total average cost λf ◦W−1(C/λ) = λΛ(C/λ)
of fulfilling these rate requirements.

2.3.2 Example: Multiple Item Types

Suppose now that there is a finite number M of types j ∈ [M ] = {1, 2, . . . ,M} with
supply curves Wj and arrival rates λj > 0. As well, suppose that the contract has differing
valuations vj ≥ 0 for each of these items, and some target conversion rate C > 0 (see
Remark 2.3.2 for the notion of conversion rate). We then formulate the problem over the
M variables x1, . . . , xM indicating the bids to be placed on items of the various different
types:

minimize
x∈RM

M∑

j=1

λjfj(xj)

subject to
M∑

j=1

λjvjWj(xj) ≥ C.

For the sake of this example, let us further suppose that each Wj and fj are continuously

differentiable on all of R and that there exists some bid x̃ < x̄ such that
∑M

j=1 λjvjW (x̃) >
C (c.f., Assumption 3.0.1). Then, since the objective function is monotone increasing in
each xj, any solution must lie within the set

X̃ =
{
x ∈ RM |

M∑

j=1

λjvjWj(xj) ≥ C
}
∩ [0, x̃]M ,

which is compact by the continuity of each Wj, and non-empty by the assumption. Thus,
a solution exists by Weirstrass’ theorem. As well, since C > 0 and Wj(x) = 0 for x ≤ 0,
there must be at least one xj > 0, which is enough to establish the existence of a Lagrange
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multiplier associated to any solution4 (see [45, Thm. 9.1] or [18], which relies on our present
additional assumption that W is differentiable on all of R), that is, any optimal solution
must satisfy

∂

∂xj

[ M∑

k=1

(
λkfk(xk)− ρλkvkWk(xk)

)
− ρC

]
= 0,

for each j and for some multiplier ρ.

In the second price case fj(x) =
∫ x

0
uW ′

j(u)du and, the above derivative is given by
λj(xj − ρvj)W

′
j(xj). Hence, we must have an optimal bid of either xj = vjρ, or some

xj ≤ 0 which is such that W ′
j(xj) = 0. If xj = vjρ, then the jth component of the

summation takes the value propotionate to f 2nd
j (ρvj) − ρvjWj(ρvj) = −E(ρvj − p)+ ≤ 0

(see Equation 2.4), which can be no worse than the value of 0 obtained by xj ≤ 0. Hence,
xj = ρvj ≥ 0.

In the first price case, differentiation results in the requirement

Wj(xj) + (xj − vjρ)W ′
j(xj) = 0

and therefore, we can either select some xj < 0 or, after rearranging, solve xj+
Wj(xj)

W ′j(xj)
= vjρ.

This latter expression is the bid mapping function (Section 2.1.3) gj, i.e., gj(xj) = vjρ.
Under the assumptions of Proposition 2.1.2, this function is strictly monotone and therefore
we obtain the candidate solution xj = g−1

j (vjρ). Similarly as before, it cannot be that
xj < 0 is optimum since the value of the Lagrangian corresponding to such a bid is −ρC
and it can be shown, since g−1(x) ≤ x, that the value obtained by g−1

j (vjρ) can only be
less than that.

Thus, in both the first and second price auction, the optimal bid xj can be written
in terms of the single scalar variable ρ as in xj(ρ), where xj(ρ) is a monotone increasing
function of ρ. This results in the univariate optimization problem

4Theorem [45, Thm. 9.1] states the Fritz-John optimality conditions and establishes the existience of

(η, ρ) 6= 0 such that η ∈ {0, 1} and ∂
∂xj

[∑M
j=1

(
ηλjfj(xj) − ρλjvjWj(xj)

)
− ρC

]
= 0 for each j. If η = 0

then necessarily ρ = 0 since there must be some xj > 0, a contradiction, and thus η = 1.
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minimize
ρ∈R

M∑

j=1

λjfj(xj(ρ))

subject to
M∑

j=1

λjvjWj(xj(ρ)) ≥ C.

Following similar reasoning as in the previous section, the optimal ρ is the smallest such
that the constraints are attained. That is,

ρ? = W−1(C),

where W (ρ) =
∑M

j=1 λjvjWj ◦ g−1
j (vjρ). The optimal bids are then given by xj(ρ

?), and
thus the problem is completely reduced simply to the the task of computing a root of a
monotone function. Roots of monotone functions are a common theme throughout and we
discuss this computationally in Section 2.4.

Remark 2.3.2 (Conversions). The valuations vj, if they satisfy vj ∈ [0, 1], may be inter-
preted as conversion probabilities [110, 5], that is, the probability that a user of type j will
go on to make a purchase (or take an action desirable to the advertiser). In this case, the
contract stipulates that the DSP must acquire conversions at the rate Ci > 0 at minimum
cost.

2.3.3 The Main Problem: Multiple Item Types and Multiple
Contracts

Suppose now that there is both a collection j ∈ [M ] as well as a collection of contracts
i ∈ [N ]. As in Section 2.3.2, these item types have arrival rates λj and supply curves Wj.
As well, each contract may have a different valuation of different item types, i.e., vij ≥ 0
is the valuation of type j by contract i.

As opposed to the problems of Section 2.3.1 and Section 2.3.2, we now need to do
more than calculate bids which will win a specified number of items. Indeed, we must also
determine towards which contract items which are won should be allocated. In order to
tackle this problem, we introduce an additional set of variables γij ∈ [0, 1], which are to be
interpreted as the proportion of items of type j that, when won, will be allocated towards
contract i. In practice, this can be implemented by allocating an item of type j, if won,
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towards contract i with probability γij. The following optimization problem models this
situation.

minimize
x,γ

M∑

j=1

N∑

i=1

γijfj(xij)

subject to
M∑

j=1

γijλjvijWj(xij) ≥ Ci

N∑

i=1

γij ≤ 1, γij ≥ 0,

(Pm)

where xij is the bid to be placed on items of type j when they will be allocated towards
contract i. A version of this problem was first studied, without the assumption of continuity
of supply curves or differing valuations vij, by [170].

As in Sections 2.3.1 and 2.3.2, Problem (Pm) has a monotone objective function
and constraints which involve monotone functions (hence the superscript m), where in
this case they are monotone in the sense that a function h : Rd → R is monotone if
x ≤ y =⇒ h(x) ≤ h(y), and where x ≤ y means that ∀i ∈ [d] : xi ≤ yi. There-
fore, Problem (Pm) is an instance of a monotonic optimization problem [177], and there
are convergent algorithms (particularly the Polyblock algorithm) which can find solutions.
However, these algorithms do not have convergence rate guarantees (indeed, general mono-
tone optimization is computationally hard). Fortunately, the cost f is not just an arbitrary
monotone function as there is a close relationship between f and W , which provides useful
structure.

The Convex Transformation

We will see that Problem (Pm) can actually be reformulated as a convex optimization
problem. The key to this transformation is a change of variables qj = Wj(xj), which is
the probability of winning an item of type j. A key lemma for establishing this result
is that for any solution xij of Problem (Pm), there exists (if each Λj is convex) another
solution (abusing notation) xj such that xij = xj for each i, i.e., the value of xij does
not depend upon i. This was first recognized by [170] and in Lemma B.2.1 we derive this
fact as a consequence of the convexity of Λ. Moreover, we show in Lemma B.2.2 that any
solution to Problem (Pm) is equivalent to a solution wherein xij ≥ 0 and that for any

solution the conversion constraints will be binding:
∑M

j=1 γijλjvijWj(xij) = Ci. This is a
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consequence of the monotonicity of the objective and constraint functions, as well as that
Wj(x) = fj(x) = 0 for any x ≤ 0.

In the following, Problem (P ) has a similar interpretation as does Problem (Pm), except
now the decision variables sj, Rij indicate rates (rather than bids or probabilities). That
is, Rij takes the place of γij and is such that, while γij is the proportion of items of type
j allocated towards contract i, Rij is now the unnormalized rate at which items of type j
are allocated towards contract i. Similarly, sj is the absolute rate at which items of type
j are to be acquired, and qj = sj/λj is the target probability of winning items of type j.
The optimal bid is thus easily obtained as xj = W−1

j (qj).

First, some notation is in order.

Definition 2.3.1 (Notation). Given valuations vij of contract i ∈ [N ] for items of type
j ∈ [M ], we denote Ai = {j ∈ [M ] | vij > 0} the set of useful types for contract i. Dually,
we denote Bj = {i ∈ [N ] | vij > 0} the set of fulfillable contracts for item type j. These sets
have the property that j ∈ Ai ⇐⇒ i ∈ Bj. The cardinality of the sets Ai are relevant for

the number of variables we need to optimize over and we denote di = |Ai| and d =
∑N

i=1 di.
We assume throughout that di ≥ 1.

Theorem 2.3.1 ([101]). In a first or second price auction, suppose that for each j ∈ [M ]
the acquisition cost curve Λj(q) is convex. Then, Problem (Pm) can be reformulated as

minimize
s,R

M∑

j=1

λjΛj(sj/λj)

subject to
∑

j∈Ai

vijRij = Ci

∑

i∈Bj

Rij = sj, Rij ≥ 0.

(P )

If a solution exists, then a solution to the original problem (Pm) is obtained via xij =

W−1
j (sj/λj) < ∞ for each i ∈ [N ] and γij = Rij/sj (with 0/0

∆
= 0). As well, given a

solution (x, γ) to Problem (Pm), a solution (s, R) to Problem (P ) is obtained by sj =
λjWj(xj) and Rij = γijsj. Moreover, Problem (P ) is a convex optimization problem (in
the sense of [29]).

Proof. We apply Lemma B.2.1 to first eliminate the dependence of the bid on i, since if
a solution exists it can be assumed to have the property xij = xj. As well, Lemma B.2.2
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tells us that the conversion constraint inequality will always be binding and that we can
choose x ≥ 0. We therefore have the equivalent problem:

minimize
x≥0,γ

N∑

i=1

M∑

j=1

γijλjfj(xj)

subject to
M∑

j=1

γijλjvijWj(xj) = Ci

N∑

i=1

γij ≤ 1, γij ≥ 0,

Due to the bids’ independence of i, we can rearrange the objective by swapping the order
of summation:

N∑

i=1

M∑

j=1

γijλjfj(xj) =
M∑

j=1

λjfj(xj)
N∑

i=1

γij
(a)
=

M∑

j=1

λjfj(xj), (2.13)

where (a) follows since
∑N

i=1 γij ∈ {0, 1} (see Lemma B.2.1), and if
∑N

i=1 γij = 0 we can
take xj = 0 since fj(0) = 0. This results in the equivalent problem

minimize
x≥0,γ

M∑

j=1

λjfj(xj)

subject to
M∑

j=1

γijλjvijWj(xj) = Ci

N∑

i=1

γij = 1, γij ≥ 0,

We consider the change of variables sj = λjWj(xj) and Rij = γijsj, each of which is in-
vertible by the relation xj = W−1

j (sj/λj) (the inverse exists since Wj is strictly monotone),
and it is shown that xj obtained from this inverse satisfies xj <∞ (i.e., sj < λj if x̄j =∞)
in Proposition 3.1.2. This results in the problem
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minimize
s,γ,R

M∑

j=1

λjΛj(sj/λj)

subject to
M∑

j=1

Rijvij = Ci

N∑

i=1

Rij = sj

Rij ≥ 0

Rij = γijsj.

(2.14)

Since the objective function is independent of γ, for any value of s, R, a feasible γ can be
constructed which satisfies the constraints and Rij = γijsj without affecting the objective
function value. Therefore, we can drop γ from this problem without affecting the solutions
in s, R to obtain Problem (P ). Since this transformation of variables is invertible, the
optimal objective values of Problem (Pm) and Problem (P ) are equal, and a solution to
one can be converted into a solution to the other as described.

That Problem (P ) is a convex optimization problem is because the objective function
is convex, the inequality constraints are specified by a finite number of convex (in fact,
linear) functions, and the equality constraints are linear.

Problem (P ) is the basic version of the problem studied in the remainder of this the-
sis. The key to the reformulation of the intractable Problem (Pm) into the convex Prob-
lem (Pm) is the simple substitution of variables sj = λjWj(xj), optimizing the probability
of winning items of type j rather than optimizing the bid directly. While a similar trans-
formation appears in a proof of [62], and the perspective of working with (win probability,
expected payment) pairs is well known in auction theory [122], the convexity properties of
this transformation may not be widely understood. Indeed, the problems studied by [214,
213], for example, are convex under this same transformation (see Example 2.1.6). As
well, this important property does not appear to be explicitly mentioned by textbooks on
auction theory [118, 103], or by [122].

A detailed analysis of this basic problem is carried out in Chapter 3, and extensions to
cases with certain types of dynamics are given in Chapter 4 and Chapter 5.

Remark 2.3.3 (Transportation Production Problems). Formally, Problem (P ) is an in-
stance of a transportation-production problem [108, 159]. These problems are analogous
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to transportation problems [187, 63] (through the calculation of allocation rates R) except
that, in addition, one needs to choose the production levels at each of the production nodes
(in our case, these are j ∈ [M ] and sj). Indeed, there can be seen similarities between the
decomposition method of [170], for the monotone programming formulation, and the work
of [159] on the production-transportation problem.

Remark 2.3.4 (Blended Auction Types and Alternative Channels). Throughout the the-
sis, we generally think of problems as being situated in either a first price auction, or a
second price auction. However, it is possible in practice to formulate contract management
problems where some item types are associated with second price cost functions and some
item types are associated with first price cost functions. Such problems may arise if items
are acquired across multiple auction exchanges. Indeed, additional advertising channels
can be included through separate item types and further cost function specifications, even
if they are not based on auction mechanisms.

2.3.4 Regularization and Constraint Elimination

Another form of Problem (P ) will be useful in later developments, particularly in Chap-
ter 4. This modified problem is obtained simply by eliminating the equality constraint∑

i∈Bj Rij = sj to obtain the problem

minimize
R

M∑

j=1

λjΛj

( 1

λj

∑

i∈Bj

Rij

)

subject to
∑

j∈Ai

vijRij = Ci

Rij ≥ 0.

(PR)

which involves only the variables R. The Problem (PR) can be further modified by elimi-
nating the remaining equality constraint

∑
j∈Ai vijRij = Ci. This equality constraint forces

R to be confined to a subspace of d − N dimensions and therefore we should be able to
search for the solution directly over some vector u ∈ Rd−N rather than over Rd.

This reduction step will find use in Chapter 4 where it plays a role in constructing
stochastic approximation algorithms. Essentially, the methods of that chapter are most
natural when the only constraints are linear inequality constraints, without any implied
equalities.
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Proposition 2.3.1 (Reduced Problem). Let R̄ be a particular solution to the linear system∑
j∈Ai vijRij = Ci, e.g.,

R̄ij =
Ci∑
`∈Ai vi`

.

Additionally, let s̄ ∈ RM be given by s̄j =
∑

i∈Bj R̄ij. Then, there exists a full-rank

matrix P ∈ Rd×(d−N), a permutation matrix T ∈ Rd×d, and a matrix H ∈ RM×d with rows
Hj =

(
0, 0, . . . , eT|Bj |, 0, . . . , 0

)
such that Problem (PR) can be equivalently written as

minimize
u∈Rd−N

Λ
(
s̄+HTPu

)

subject to Pu ≥ −r̄
HTPu ≤ λ− s̄,

(2.15)

where Λ(s) =
∑M

j=1 λjΛj(sj/λj), r̄ ∈ Rd contains the entries of R̄ arranged in appropriate

order, and λ = (λ1, . . . , λM). As well, there exists a full rank matrix G ∈ R(d−N+M)×(d−N),
a matrix B ∈ RM×(d−N), and a vector h ∈ Rd+M such that this problem is equivalent to the
reduced problem

minimize
u∈Rd−N

Λ(s̄+Bu)

subject to Gu ≤ h.
(P u)

The polytope PG,h = {u ∈ Rd−N | Gu ≤ h} is compact. Solutions to Problem (PR) are
reconstructed from u by calculating r = r̄ + Pu and then rearranging the entries of the
vector r ∈ Rd into a the sparse matrix R ∈ RN×M . Finally, neither Problem (P u) or (2.15)
have any implicit constraints in relative interior of PG,h i.e., for any u such that Gu < h
we have Λ(s̄+Bu) <∞.

Proof. Consider the particular solution R̄ to the system
∑

j∈Ai vijRij = Ci, i ∈ [N ]. The

subspace of solutions to this system can be parameterized in terms of R̄ and an additional
vector u ∈ Rd−N . To do so, consider a particular equation for some fixed i and let u ∈ Rdi−1.
Pick some arbitrary j? ∈ Ai and let Rij = R̄ij + uij for each j ∈ Ai except

Rij? = R̄ij? −
1

vij?

∑

j∈Ai\{j?}

vijuij,

so that
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∑

j∈Ai

vijRij =
∑

j∈Ai

vijR̄ij +
∑

j∈Ai\{j?}

vijuij −
vij?

vij?

∑

j∈Ai\{j?}

vijuij

= Ci.

Therefore, the array Rij, constructed in terms of uij ∈ R, is guaranteed to exactly satisfy
the contract equality constraint. Notice that if Ai = {j} then Ci/vij is the only viable
solution. These linear operations can be described by a matrix P ∈ Rd×(d−N) as in r =
r̄+Pu where r ∈ Rd contains the entries of Rij and r̄ contains the entries of the particular
solution R̄. The entries of matrix P are either 1, 0, or − vij

vij?
< 0, and since vij > 0 for

j ∈ Ai, the sparsity pattern of P is such that, by inspection, P has full rank.

The inequality constraint Rij ≥ 0, which is equivalent to r ≥ 0, can be written Pu ≥
−r̄.

Then, since Λj(s) = ∞ for any s > 1, there is an implicit constraint
∑

i∈Bj Rij ≤ λj.

By appropriately permuting the entries of r with a matrix T ∈ Rd×d and then multiplying
by a “summation matrix” H having rows (0, . . . , e|Bj |, . . . , 0) etc.this constraint can be

written HTPu ≤ e− s̄ where s̄j =
∑

i∈Bj R̄ij. We then let B = HTP ∈ RM×(d−N) and the

objective can be written Λ(s̄+Bu). This establishes the equivalence between Problem (PR)
and Problem (2.15).

Define G ∈ R(d+M)×(d−N) and h ∈ Rd+M by

G =

[
−P
B

]
, h =

[
r̄

λ− s̄

]
.

This then gives us the equivalence with Problem (P u).

The matrix G has full rank since P has full rank (i.e., N (G) = {0}), and the polytope
PG,h is compact since it encodes the constraints Rij ≥ 0 and

∑
i∈Bj Rij ≤ λj <∞.

Regularization

In the general case, it can be expected that M < d−N and hence the matrix B has a non-
trivial nullspace. This implies that solutions to Problem (P u) need not be unique (even if Λ
is strictly or strongly convex). The interpretation of this fact is that there may be multiple
allocation matrices R which satisfy the contracts and which also need to acquire items at
the exact same rate. In order to select a particular solution, it is reasonable to choose the
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least norm allocation matrix, but unfortunately, because of the constraint R ≥ 0, there is
no analytic formula for this matrix. Instead, it can be estimated by solving problems of
the form

minimize
u∈Rd

Λ(s̄+Bu) +
1

2β
||u||22

subject to Gu ≤ h,

(P u
β )

where β > 0 serves as a regularization parameter. The term 1
2β
||u||22 encourages u to have

a small norm (and ensures that (P u
β ) has a unique solution).

There are conditions [64] under which Problem (P u
β ) is exact in the sense that there

exists some finite β̄ such that for any β > β̄, the unique minimizer of (P u
β ) is the the least

norm solution of (P u). Further discussion of this point is delegated to Section 3.2.3.

2.3.5 A Continuum of Types

Finally, we consider the case where there is a continuum of item types available. We
generically denote these types by φ ∈ Φ, where Φ is some abstract space of possible
item types. These types may be derived, for example, through an embedding of detailed
item characteristics into euclidean space by a machine learning algorithm. Throughout
the thesis, we do not place a significant emphasis on this case, but provide additional
discussion in Section 6.1.

One of the reasons that we restrict our attention to finite type spaces [M ] is that, in
second price auctions, a target supply rate cannot be obtained at lower cost by placing a
type-dependent bid.

Proposition 2.3.2 (Sufficiency of Finite Type Spaces in Second Price Auctions). Consider
an arbitrary distribution P over item characteristics Φ. Suppose that supply curves depend
on φ as in W (x;φ) being the probability of winning an item with characteristics φ given a
bid of x. Similarly, let Λ(q;φ) be the acquisition cost function Λ(q;φ) = f 2nd ◦W−1(q;φ)
associated to φ, where the arrival rate of items is λ = 1 (without loss) and function inverse
is to be understood as applying to the first argument. Then, the optimal bid function
x : Φ→ R for the problem

minimize
x:Φ→R

Ef(x(φ);φ)

subject to EW (x(φ);φ) = s̄,
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is a constant x(φ) = x̄ ∈ R. The expectation is taken over the distribution of φ as in
Ez(φ) =

∫
Φ
z(φ)dP (φ). Moreover, the cost is given by Λ(s̄) = EΛ(s̄;φ).

Proof. First, apply the transformation of variables s(φ) = W (x(φ);φ) to reduce the prob-
lem into the convex problem

minimize
s:Φ→R

EΛ(s(φ);φ)

subject to Es(φ) = s̄.

This problem can be solved by optimizing s(φ) pointwise. To this end, consider the La-
grangian:

L(s(φ), µ) = EΛ(s(φ);φ) + (Es(φ)− s̄)µ.
Recalling that Λ′2nd(·;φ) = W−1(·;φ) (see Lemma 2.1.1) the Lagrangian is minimized (since
it is convex) pointwise over φ by the choice s?(φ) = W (µ;φ), which is the optimal rate of
obtaining items with characteristic φ. Therefore, inverting the transformation of variables
we determine the optimal bid is x?(φ) = W−1(W (µ;φ);φ) = µ, a constant.

To calculate the optimal cost, we recognize that meeting the constraint requires that

Es(φ) = s̄, which therefore requires EW (µ;φ) = s̄ or µ = W
−1

(s̄), where W (·) = EW (·;φ).
Substituting this into the objective function we obtain

EΛ(s(φ);φ) = EΛ(W (µ;φ);φ)

= Ef(µ;φ)

= Ef(W
−1

(s̄), φ)

= Λ(s̄).

Another way in which a finite collection of item types may arise is if contracts are
specified more coarsely by simply stipulating that any items of types Si ⊆ Φ can be used
towards fulfilling the contract, and that there are no distinguishing values5(this is the case

5some distinction in valuations can still be modelled by formulating multiple contracts
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studied in [170, 101, 102]). Or, these sets may be optimized while estimating a piecewise
model of the form W (x;φ) =

∑M
j=1Wj(x)1Sj(φ). We denote the collection of all targeting

sets by S = {S1, S2, . . . , SN}. Since the targeting specifications Si for each contract may be
overlapping, it is necessary to find the coarsest partitionR of the set

⋃S. This partitioning
step is illustrated in Figure 2.3

S1

S2S3

R1

R2 R3

R4

R5

R6

Figure 2.3: Set Partitioning Example
An example of set partitioning, best viewed in colour. In this case, S = {S1, S2, S3}, M = 6 and

R = {Rm}Mm=1 contains subsets such that R is a partition of
⋃S. Moreover, for any Si ∈ S we

have some Ai ⊆ [M ] such that
⋃
j∈Ai Rj = Si. For example, S2 = R3 ∪R5 ∪R6. That is,

A2 = {3, 5, 6}. Likewise, we have sets Bj such that j ∈ Ai ⇐⇒ i ∈ Bj . For example, B1 = {1}
and B6 = {1, 2, 3}.

2.4 Computational Methods

In this section, we review a basic yet fundamental algorithm for monotone functions in
Section 2.4.1, discuss the practical methods we have used to work with and represent
supply curves in Section 2.4.2, and describe a primal algorithms for solving Problem (P )
in Section 2.4.3. A primal algorithm will be further discussed in Chapter 3 and Chapter 5.

2.4.1 The Method of Bisection

The method of bisection is a simple algorithm for finding zeros of continuous monotone
functions. That is, if h : R → R is strictly monotone and continuous, the method of
bisection will find the point x ∈ R such that h(x) = 0, if it exists. This algorithm plays

48



a central role in many of the examples and applications in this thesis, as many problems
are either completely reduced to finding a zero of a monotone function, or require this
as a subroutine. We describe the algorithm in Algorithm 1, and provide a concrete code
example in Appendix C.1.

Algorithm 1: Bisection

input : A strictly monotone increasing function h : R→ R, bounds xl < xr
such that h−1(0) ∈ [xl, xr], and a stopping criteria ε > 0.

output : Bisection(h, ε) returns a point x ∈ [xl, xr] such that |x− h−1(0)| < ε.
1 Function bisection(h, ε)
2 repeat
3 x← xl + (xr − xl)/2
4 if h(x) ≥ 0 then
5 xl ← x

6 else
7 xr ← x

8 until |xr − xl| < ε
9 return x

Given bounds xl < xr such that the solution is known to lie in [xl, xr], Algorithm (1)
returns a point x such that h(x) ≈ 0 in the sense that |x− h−1(0)| < ε. The bounds xl, xr
can be found, for example, by searching for n such that h(2n) ≥ 0 and h(−2n) ≤ 0.

Since each iteration of the algorithm divides the interval in half, the length of the
interval [xl, xr] after n iterations, call it `n, will be given by `n = 2−n`0. Since the algorithm
terminates when `n < ε, it will terminate after O(log2 `0/ε) iterations. The number of
iterations needed if the stopping criteria is instead based on |h(x)| < ε depends on the
smoothness h. Indeed, if h is L-Lipschitz, then the bound for this alternative stopping
criteria is O(log2 L`0/ε).

2.4.2 Working with Supply Curves

All of the mathematical functions relevant to the contract management problem (e.g., f,Λ,Λ?

etc.) are ultimately derived from the supply curve W . This curve may be available in closed
form (e.g., see Example 2.1.2) if it is estimated, for example, by maximum likelihood of
some known parameterized distribution. However, the natural simple distributions for this
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Figure 2.4: Representative Functions from Market Data
Relevant functions constructed from real market data. Values are normalized for scale and to

facilitate comparison to Figure 2.2.

type of pricing data (e.g., Exponential, Gaussian, Gamma) do not fit well to market data,
and we typically use these distributions only for illustration, or in some simulations.

Instead of fitting a named distribution, kernel density estimation (KDE) [162] [194, Sec
21.3] can be used to generically fit cumulative distribution functions by smoothing the data
histogram. That is, if we have a dataset of L prices p1, p2, . . . , pL of a single item type, we
can estimate the supply curve via

Ŵ (x) =
1

L

L∑

`=1

K
(x− p`

σ

)
,

where σ > 0 is some bandwidth parameter (chosen e.g., by cross-validation or Silverman’s
criteria [162]), and K : R → R is the kernel function. Usually, K is either a Gaussian
or a Gamma c.d.f. [41]. This estimation method ensures the strict monotonicity and

smoothness of Ŵ , and hence the assumptions made of W in Definition 2.1.1 could easily
be strengthened substantially if the need were to arise.

The downside of using kernel density estimates is that simple evaluation of W takes
time proportional to the number L of price samples. For performance reasons, we have
often started with a KDE step, and followed this by another step where the function Ŵ is
given a coarser representation as a piecewise linear function. This step poses no problems
for algorithms that do not require evaluation of W ′. If evaluation of W ′ is necessary, the
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KDE estimate of Ŵ can be differentiated analytically, and the resulting derivative function
in turn represented with a piecewise linear approximation.

Using the KDE method, we plot the same functions as in the analytic case of Figure 2.2
in Figure 2.4, except that in the latter case everything has been computed for the orange
supply curve of Figure 2.1, which was obtained by KDE estimation with real data. These
curves are obtained from real data, yet, they are qualitatively similar to those derived for
the simple example W (x) = 1− e−x.

Close inspection of Figure 2.4 shows that Λ1st is not convex. This poses an issue in
practice, and the caveat on the convexity condition (Proposition 2.1.2) for the first price
case is part of what makes the first price auction considerably more difficult than the
second price case. This convexity issue is addressed further in Appendix B.2.1.

Remark 2.4.1 (Censored Data). In real-time bidding, price data tends to be censored [216,
9, 203], that is, you only observe the price when you are in fact the winner of the item. The
dataset we are working with was constructed so as to avoid the problem of censoring, and
this is not an issue we focus upon in this thesis. However, the stochastic approximation
algorithms of Chapter 4 naturally operate only on censored data.

2.4.3 Polyhedral Approximation Methods

Problem (P ) is also an instance of a monotropic program [20, 158] and hence polyhedral
approximation algorithms are natural methods [21, Ch. 4] [22]. A straightforward approx-
imation method is simply to break the compact interval [0, 1] into K segments with points
q1, . . . , qK and approximate Λ as a max-affine function, i.e.,

Λ̃(q) = max
k

[Λ(qk) + Λ′(qk)(q − qk)], (2.16)

which is well known to approximate Λ(q) since the epigraph of Λ(q) can be written as the
intersection of half spaces defined through supporting hyperplanes. The derivative Λ′ is
available through Lemma 2.1.1. Supposing that a max-affine approximation of each acqui-
sition cost function is in hand, Problem (P ) can be approximated by a linear program [29,
Sec. 4.3.1] by converting the approximations into their epigraph forms:

51



minimize
t,s,R

M∑

j=1

λjtj

subject to Λj(qk) + Λ′j(qk)(sj/λj − qk) ≤ tj∑

j∈Ai

vijRij = Ci, Rij ≥ 0

∑

i∈Bj

Rij = sj, sj ≤ λj.

(2.17)

We have often made use of this approximation method (see also Chapter 5) due to its
simplicity: it requires no substantial numerical or implementation expertise as it can be
encoded directly into cvxpy.

Remark 2.4.2 (Simplicial Decomposition). An alternative computational method to em-
ploy for this problem is a simplicial decomposition where we approximate solutions with
convex combinations of extreme points of the constraint region. Since we have not ex-
perimented with this algorithm, we do not report the details. We mention simply that it
involves two sub-problems: firstly, the minimization of

∑M
j=1 λjΛj

(
1
λj

∑K
k=1 αks̃j(k)

)
over

α constrained to a K-simplex and where s̃j(k) are fixed constants (this can be carried out,
e.g., by exponentiated gradient descent); and secondly, a linear program over the constraint
region of Problem (P ) with an objective derived again from Λ′j similarly to Problem (2.17).
This algorithm has stronger convergence guarantees for our problem, namely, that it con-
verges in a finite number of iterations [21, Prop 4.2.1].

2.5 Additional Examples

This section gives a brief overview of some applications outside of real-time bidding where
the functions in this chapter make natural appearances, and where the methods studied in
this thesis may also be useful. The purpose of the additional examples is simply to illustrate
the ubiquity of the important functions studied in this thesis, to establish some formal
connections with different problems and thus provide further intuitive understanding, and
to potentially inspire future applications. These examples will be briefly touched on in
later chapters, but such sections are not essential to the thesis and can be skipped without
serious loss.
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2.5.1 Volume Costs in Limit Order Books

Modern financial markets are organized around a limit order book (LOB) that keeps track
of the willingness of market participants to buy or sell securities at a certain price, and
up to a certain volume [27]. Because there is no single seller, the “price” of a security is
ambiguous, but generally the quoted price is given by the mid price, call it m. That is,
the average between the seller with the lowest willingness to sell (called the best ask), and
the buyer with the greatest willingness to buy (called the best bid). However, it is not
in general possible to actually transact at this quoted mid price, since there is no willing
counter-party (if there were, then it wouldn’t be the midprice) and the amount actually
paid to acquire (or the amount obtained by selling) v shares must be greater than the
nominal value vm. This difference is the transaction cost, and for concreteness, we will
focus on the case of buying — the case of selling being exactly symmetric.

There are numerous sources of transaction costs — the first is the spread (simply the
difference between the midprice and the best bid), but there is also a “volume cost” that
arises when there are fewer than v shares available in the LOB at the best bid. To establish
an analogy with the functions introduced in Section 2.1.1, suppose that we approximate
the availability of shares at specified prices in the LOB by a density function w(p) such
that there is dv = w(p)dp volume available at the price m + p, i.e., p ≥ 0 is an offset
from the midprice. Then, the total volume available at or below price p is given by
W (p) =

∫ p
0
w(x)dx. This is an unnormalized supply curve. If we decide to buy all the

available shares up to and including price m + p, then we will need to pay a total of
f(p) =

∫ p
0
xw(x)dx, which is exactly the expected cost incurred by bidding p in a second

price auction. As well, the transaction costs associated with purchasing a volume v of
shares is given by Λ(v) = f ◦W−1(v), which is exactly the second price acquisition cost
function. As a corollary to Proposition 2.1.1, these transaction costs are convex functions
of volume and hence can be incorporated into tractable portfolio construction problems
(see Section 3.4).

2.5.2 The Dark Pool Problem

As a second example in finance, the dark pool problem [69], is the problem of how to allocate
shares across multiple “dark pool” (DP) exchanges in order to maximize the number of
shares that are sold. A DP is a type of financial exchange providing an alternative to the
limit order book. In a DP, prices and volumes are not quoted, rather, one simply announces
their willingness to transact a certain volume of securities and agree to a transaction, if
there is an available counter party, at the mid price quoted on some exogenous LOB
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exchange. The purpose of these markets is to enable institutions to liquidate large blocks
of shares without revealing this large order to the rest of the market, and hence adversely
impacting the price.

The dark pool problem is, formally, a stochastic optimization problem

minimize
a1,a2,...,aK

s−
K∑

k=1

[
ak − E(ak − ξk)+

]

subject to
K∑

k=1

ak ≤ s

ak ≥ 0,

where ξk ∼ Vk is the (unknown) volume available to transact at DP k ∈ [K] and s > 0 is
the quantity of shares that the agent is seeking to sell. The cost incurred by the agent is
the total number of shares left unsold, which would be s if no action were taken. Then,
because the agent sends ak shares to DP k, they hope to be left over with only s−∑K

k=1 ak
shares. However, since there is only ξk volume available at this DP, E(ak − ξk)+ shares will

be left un-traded and sent back to the agent, leaving them with
∑K

k=1 E(ak − ξk)+ extra
shares than they had hoped.

Since the objective function is monotone in a, it is optimal for the constraint
∑K

k=1 ak ≤
s to be binding, and it is clearly never optimal to have any ak < 0. Hence, the DP problem
is equivalent to

minimize
a1,a2,...,aK

K∑

k=1

E(ak − ξk)+

subject to
K∑

k=1

ak = s,

where the objective function E(ak − ξk)+ has been seen in Equation (2.4) to be exactly
equal to the difference in costs f1st(x)− f2nd(x) between a first and a second price auction.
That is, the number of shares left un-executed is formally comparable to the amount by
which one overpays in a first price auction.

Further connections between this problem and the auction problems studied in this
chapter will be elucidated in Section 3.4.
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2.6 Conclusion

This chapter has introduced the main building blocks, namely the functions W, f,Λ,Λ?,
which play prominent roles throughout the thesis. The function Wj, called the supply
curve for items of type j models the probability of a bidder winning an item of that type
with some fixed bid. In the market model, Definition 2.2.1, these functions serve simply
as cumulative distribution functions from which prices pn are drawn i.i.d. and where these
prices model the aggregate behaviour of competing bidders in equilibrium and the reserve
prices set by sellers.

The strong assumptions in this model are not essential to the formulation of the main
contract management problem, Problem (Pm). Rather, this problem can be viewed as a
fluid approximation of a stochastic optimization problem where the bidding agent seeks
to acquire items with adequate total valuations

∑
i∈Bj vijRij = Ci in order to fulfill the

requirements, Ci > 0, of contract i. This is the basic problem studied in the remainder of
this work.

The key insight of this Chapter is that the acquisition cost function Λ = f ◦ W−1

is always a convex function for second price auctions (Proposition 2.1.1) and is convex
under weak assumptions in the first price case as well (Proposition 2.1.2, where W must
satisfy a requirement slightly weaker than log-concavity). The interpretation is that, rather
than optimizing bids, one should optimize their expected probability of winning an item
(and then later transform that probability back into a bid). This recognition enables
the transformation of Problem (Pm) (which is nominally merely a monotone optimization
problem) into a convex program, Problem (P ), which opens up a wide range of possibilities
that we explore in the sequel. As well, while this transformation is elementary, its use may
not be widely appreciated: we have pointed to examples in the literature which are convex
under the same transformation, but which were not analyzed as such.

In section 2.4 we have discussed practical computational methods, namely, the method
of bisection, estimation and interpolation methods for supply curves, and polyhedral ap-
proximation algorithms for Problem (P ). These methods have been used extensively in
our own computational experiments. Since the functions W are arbitrary continuous dis-
tribution functions, the question of how to practically compute with and represent them
(as well as derivative functions f,Λ etc.) can have subtle difficulties. Thus, care has been
taken to discuss computational algorithms which take these difficulties into account.

Finally, two additional problems in finance, the calculation of volume costs in limit
order books, and the dark pool problem, are discussed in Section 2.5. These problems
are touched upon since they are similarly formulated using some of the basic functions in

55



auction theory, and we thus recognize that some of the insights of this thesis can also be
applied to these problems and more broadly.
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Chapter 3

Duality and Its Consequences

The consequences of duality for the contract management problem are deep and have far
reaching computational implications.

Recall from Proposition 2.3.1 that the optimal contract management problem can (as-
suming the supply curve is 2-concave and differentiable in the first price case) be cast as a
convex program:

minimize
s,R

M∑

j=1

λjΛj(sj/λj)

subject to
∑

j∈Ai

vijRij = Ci

∑

i∈Bj

Rij = sj, Rij ≥ 0.

(P )

Recall that Ai = {j ∈ [M ] | vij > 0} is the set of items that are useful for contract

i, and that the cardinality of this set is di
∆
= |Ai|. The total number of variables in

Problem (P ) is exactly d
∆
=
∑N

i=1 di, along with N + M equality constraints and d non-
negativity constraints. In general, we have di ≤M and hence d ≤MN , so that the worst
case number of variables scales quadratically. However, in practice, it can be expected that
the number of items M is large, and that most contracts can only be usefully fulfilled by
a small subset of all available items. That is, the valuation matrix v ∈ RN×M should be
sparse and we can expect di �M and d�MN .
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Before proceeding, we need to make a basic assumption that will guarantee existence
of solutions to Problem (P ):

Assumption 3.0.1 (Adequate Supply). There exists an array Rij of allocations such that

∀i ∈ [N ], j ∈ Ai : Rij ≥ 0,

∀j ∈ [M ] :
∑

i∈Bj

Rij < λj,

and
∀i ∈ [N ] :

∑

j∈Ai

vijRij = Ci.

This assumption is natural in the sense that if it were not satisfied, the contracts would
not be fulfillable, and they should not have been accepted in the first place. Essentially,
if Assumption 3.0.1 holds, then Problem (P ) admits a Slater Point (see e.g., [29, Sec.
5.2.3] [19, Prop 5.3.1]). It should be noted that this R can also be chosen to satisfy Rij > 0
since Ci > 0. An assumption similar in spirit, but much stronger, appeared in [108]:

Assumption 3.0.2 (Abundant Supply [108]). For each item type j ∈ [M ] we have

λjmini∈Bjvij >
∑

i∈Bj

Ci.

Assumption 3.0.2 clearly implies Assumption 3.0.1 but may be much easier to verify.
As well, in some applications (e.g., in advertising where a single intermediary may account
for only a small proportion of all purchases) Assumption 3.0.1 may not be unreasonable.
We also remark that existence and duality theorems can be obtained in some cases where
the strict inequality in Assumption (3.0.1) is actually binding (i.e., the strict inequality can
be replaced by ≤). However, the assumption is used for purposes beyond strong duality in
Chapter 4, and keeping precise account of when this inequality can or cannot be binding
is of only marginal interest.

Chapter Outline The purpose of this chapter is firstly to derive a convex dual (D)
program to Problem (P ). This is carried out in Section 3.1. In Section 3.1.1 we show
that Assumption 3.0.1 implies the existence of both primal and dual solutions, as well as
some regularity conditions (i.e., to eliminate the possibility that sj = λj when x̄j = ∞,
which would necessitate an unbounded bid). In Sections 3.1.2 and 3.1.3 we derive some
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important consequences of duality (which hearkens back to [170]) and then derive and
explain important interpretations of these consequences. Section 3.2 focuses on computa-
tional methods and examples. We derive an Alternating Direction Method of Multipliers
(ADMM) algorithm with an elegant parallelizable structure that computes a primal-dual
optimal pair for Problem (PR) in both the first and second price case.

3.1 Duality Analysis

In this section, we carry out the exercise of deriving a dual of Problem (P ) and then
proceed to an analysis and interpretation of the dual.

We begin with the Lagrangian function associated to Problem (P )

L(s, R, µ, ρ, θ) =
M∑

j=1

λjΛj

(
sj/λj

)
+

N∑

i=1

ρi
(
Ci −

∑

j∈Ai

Rijvij
)

+
M∑

j=1

µj
(∑

i∈Bj

Rij − sj
)
−

M∑

j=1

∑

i∈Bj

θijRij

=
N∑

i=1

ρiCi +
M∑

j=1

[
λjΛj

(
sj/λj

)
− µjsj +

∑

i∈Bj

Rij

(
µj − θij − vijρi

)]
,

where µ ∈ RM is associated with the equality constraints
∑

i∈Bj Rij = sj, ρ ∈ RN is
associated with the contract fulfillment constraints, and θ to the non-negativity constraints.
The dual constraints are θ ≥ 0 and the dual problem is derived through determining the
form of

maximize
ρ,µ,θ≥0

inf
s,R
L(s, R, µ, ρ, θ).

To this end, we minimize L pointwise over s, which results in the appearance of the Fenchel
conjugate (see Proposition 2.1.1):

L(s?, R, µ, ρ, θ) =
N∑

i=1

ρiCi −
M∑

j=1

λjΛ
?
j(µj) +

M∑

j=1

∑

i∈Bj

Rij

(
µj − θij − vijρi

)
. (3.1)

Then, minimizing over R induces the dual equality constraint µj = θij + vijρi (since other-
wise the infimum would be −∞), which must hold over all (i, j) such that i ∈ [N ], j ∈ Ai,
or equivalently, j ∈ [M ], i ∈ Bj. Moreover, since we must have the dual cone con-
straint θij ≥ 0 (i.e., θij is simply a slack variable) this is equivalent to the constraint
∀i ∈ [N ], j ∈ Ai : µj ≥ ρivij. Thus, we have obtained:
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Proposition 3.1.1 (Duality). A dual of Problem (P ) can be formulated as

maximize
ρ,µ

N∑

i=1

ρiCi −
M∑

j=1

λjΛ
?
j(µj)

subject to vijρi ≤ µj.

(D)

Problem (D) is dual to Problem (P ) in the sense that if D? and P ? are their respective
values (possibly ∞ or −∞), then D? ≤ P ?.

Problem (D) has N+M variables, and d =
∑N

i=1 |Aj| linear inequality constraints. This
is in contrast to the primal (P ) which has d variables, N + M linear equality constraints
and d non-negativity constraints. Two further forms of this dual involving only ρ or only µ
(but not both), will be seen in Chapter 4, where we will analyze the relevance to stochastic
approximation.

Remark 3.1.1 (Implicit Constraints and Non-negativity). In the primal, Problem (P ),
there is an implicit constraint sj ≤ λj due to the domain of Λj. Similarly, in the dual (D)
there is an implicit constraint that µj ≥ 0 due to the domain of Λ?

j . Additionally, as a
consequence of the monotonicity of the objective (i.e., ρiCi is strictly monotone increasing
since Ci > 0), it is easy to observe that at the optimal solution the dual variables ρi will
also be non-negative: ρ ≥ 0. It is not formally necessary to include these as constraints
in (D), but we have observed improved numerical optimization performance (with cvxpy)
when they are made explicit, particularly for large problem instances (1000s of contracts
and/or item types).

3.1.1 Existence and Regularity

In this section we rigorously establish the existence of primal and dual optimal solutions.
The main technical concern is that, since we allow for the distribution of prices to have
a non-compact support, it could be the case that, at optimality sj = λj, and then the
bid required to win items of type j with probability 1 would formally be xj = ∞. Under
Assumption 3.0.1, this cannot happen, as the following proposition shows. It is in the
sense that the corresponding optimum bids are finite that the solution is regular.

Proposition 3.1.2 (Existence and Regularity). Suppose Assumption 3.0.1 holds. Then,
there exists an optimal allocation array R? for Problem (P ), the win rates s?j =

∑
i∈Bj R

?
ij

are unique and there exist unique finite bids xj = W−1
j (sj/λj) which win items at the
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optimal rate. Moreover, there exists a unique solution ρ?, µ? to the dual, Problem (D), and
there is zero duality gap.

Proof. By Assumption 3.0.1, the value of Problem (P ) is finite since there exists a feasible
s, R. First, Λj is lower semicontinuous (see Proposition 2.1.1 and 2.1.2). As well, the
feasible region, namely Rij ≥ 0 and

∑
i∈Bj Rij = sj, and 0 ≤ sj ≤ λj (which is implicit

in the domain of Λj), is compact (it is a closed and bounded polytope). Therefore, there
exists a solution s?, R? to Problem (P ) by Weierstrass’ theorem. The acquisition rates
s?j =

∑
i∈Bj R

?
ij are unique since Λj is strictly convex.

Now, by the strong duality theorem (e.g., [19, Prop 5.3.1]) and the Slater point of
Assumption 3.0.1, there exists a solution µ?, ρ? (along with the slack variables θ?ij = µ?j −
vijρ

?
i ) to the dual, Problem (D), and the value of the dual, which is finite, is equal to the

value of the primal (i.e., there is zero duality gap).

Finally, by strong duality and the existence of solutions, the Lagrangian optimality
conditions (e.g., [19, Prop 5.3.2]) establish that s? ∈ argmin

s∈RM
L(s, R?, µ?, ρ?, θ?) and

L(s, R?, µ?, ρ?, θ?) =
N∑

i=1

ρ?iCi +
M∑

j=1

[λjΛj(sj/λj)− µ?jsj],

where we have used complementary slackness [19, prop 5.3.2] to eliminate terms involving
θ?, R?. Then, by the subgradient optimality conditions [19, Prop. 5.4.3, Prop 5.4.4], it
must be that ∀j ∈ [M ] : 0 ∈ ∂sjL(s?, R?, µ?, ρ?, θ?) = λj∂Λj(s

?
j/λj) − µ?j . We treat

two cases. First, if the support of the distribution of the prices of type j is compact
(i.e., x̄j < ∞), then since sj ≤ λj we have a finite optimal bid xj = W−1

j (sj/λj). If
x̄j = ∞ then ∂Λj(q) is non-empty for q ∈ [0, 1) and thus, since we know this subgradient
is indeed non-empty (solutions exist), we must have sj < λj and there is a unique optimal
bid xj = W−1

j (sj/λ) <∞.

3.1.2 Consequences of Duality

There are two main consequences of duality. Firstly, the dual variables induce subsets
A?i ⊆ Ai and B?j ⊆ Bj which have the effect of further reducing the set of useful and usable
items, in the sense that for an optimal allocation arrayR, it holds that j 6∈ A?i =⇒ Rij = 0.
These sets can again considerably reduce the dimensionality of the allocation array R
that needs to be calculated, if dual solutions are known (see Section 3.2.3). Secondly,
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the optimal bids to be placed (but not the optimal allocation array R) are obtained by
mapping the dual solution through the known bid-mapping function gj (Proposition 2.1.4)
as in xj = g−1

j (µj). These optimum bids can be characterized either directly by variables
µj associated to each item type, or indirectly through the vector of N pseudo-bids [101]
ρ ∈ RN , with each ρi being associated with a contract, rather than an item type. Moreover,
the optimal bid to be placed across all items belonging to the set A?i are equal, and can
be obtained through the relation j ∈ A?i =⇒ µj = vijρi. We will shortly summarize
these facts in Proposition 3.1.3. Similar results are reported by [170], where they are
derived directly, rather than as consequences of duality. We summarize these results in the
following proposition.

Proposition 3.1.3 (Consequences of Duality). Suppose Assumption 3.0.1 holds and let
each Wj be a supply curve or a differentiable 2-concave supply curve in the first price
case. Let R ∈ RN×M and s ∈ RM be optimal primal solutions of Problem (P ) such that∑

i∈Bj Rij = sj and
∑M

j∈Ai Rijvij = Ci. As well, Let ρ ∈ RN and µ ∈ RM constitute optimal

dual solutions to Problem (D) and let θij = µj − vijρi be the slack for i ∈ [N ], j ∈ Ai.
Finally, let xj = W−1

j (sj/λj) be the optimal bids for acquiring items of type j. Then,

1. (Optimal Bids for j ∈ [M ]): The dual variables µj are exactly equal to the optimal
bids xj = µj for second price auctions, and are obtained through inverting the bid
mapping function xj = g−1

j (µj) in first price auctions.

2. (Pseudo Bids for i ∈ [N ]): The dual variables ρi, µj satisfy the equalities µj =
max
i∈Bj

vijρi, and ρi = min
j∈Ai

( µj
vij

)
.

3. (Useful Items): The dual slack variables induce a collection A?i = {j ∈ Ai | θij = 0}
which is such that j /∈ A?i =⇒ Rij = 0. As well, the contrapositive: Rij > 0 =⇒
j ∈ A?i

4. (Fulfilled Contracts): The dual slack variables induce a collection B?j = {i ∈ Bj | θij =
0} which is such that i 6∈ B?j =⇒ Rij = 0. As well, the contrapositive: Rij > 0 =⇒
i ∈ B?j .

Proof. Item 1 follows by inspecting the derivation of Ls in Equation (3.1), the Lagrangian
after minimizing over s. The optimum value of sj is obtained by minimizing s 7→ λjΛj(s/λj)−
µjs, which occurs at Λ′j(s/λj) = µj (see Lemma 2.1.1 for differentiability). Making the
substitution s = λjWj(x) for the bid required to obtain supply s, we obtain the optimum
bid through Λ′j ◦Wj(x) = µj which results in xj = g−1

j (µj) (see Lemma 2.1.4), and this is
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nothing but xj = µj in the second price case. If µj = 0 these calculations remain consistent
as s 7→ λjΛj(s/λj) is minimized at s = 0 (by monotonicity, see Chapter 2). Similarly if
x̄ <∞ and s = x̄.

Item 2 follows by the monotonicity in the objective of Problem (D). Indeed, since
−Λ?

j(µj) is monotone decreasing in µj, and the goal of the program is to maximize the
objective, is is optimal that µj be as small as possible while still satisfying the constraints
∀j ∈ [M ], i ∈ Bj : vijρi ≤ µj, which is exactly µj = max

i∈Bj
vijρi. Similar reasoning applies

for ρi since Ci > 0, resulting in the requirement that ρi be as large as possible while still
satisfying the constraints ∀i ∈ [N ], j ∈ Ai : ρi ≤ µj

vij
which is exactly ρi = min

j∈Ai

µj
vij

.

The conclusions of Items 3 and 4 follow from complementary slackness. Recall the dual
variable θij = µj − vijρi from Equation 3.1, which was eliminated before the statement
of Problem (D). We have θij > 0 ⇐⇒ µj > vijρi ⇐⇒ ρi <

µj
vij

(i.e., if i or j do

not attain the respective maxima or minima from Item 2). The variable θij is associated
with the constraint Rij ≥ 0 and hence by complementary slackness θijRij = 0 so that
θij > 0 =⇒ Rij = 0.

Let us consider a number of corollaries to this result. We will focus upon the second price
auction where statements are slightly simpler; the case of first price auctions are similar
but require mapping µj through g−1

j to obtain optimal bids. We will discuss interpretations
of these corollaries of Proposition 3.1.3 further in Section 3.1.3.

Corollary 3.1.1 (Induced Valuations). For each fixed i ∈ [N ], for any item type j ∈ A?i
the optimal bid is a positive multiple of the pseudo-bid ρi: µj = vijρi.

If item valuations are simpler, then there is just a single optimum bid across each of
the sets A?i .

Corollary 3.1.2 (Uniform Bids). Suppose that vij ∈ {0, 1}. Then, the optimal bids placed
in a second price auction across all items of types j ∈ A?i are equal and given by xj = ρi.

Proof. The dual variables µj are equal to the optimal bids for items of type j: xj = µj.
Then, by the definition of A?i we must have θij = µj − ρi = 0.

In the particularly simple case where items do not have differing valuations, and any
item can be used to fulfill any contract, then we can recognize that there is just a single
optimal pseudo bid characterizing all of the bids, as well as that, for second price auctions,
there is just one single optimal bid.
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Corollary 3.1.3 (Uniform Bid). If vij = 1 for each i, j, then there exists a single pseudo
bid ρ? such that the optimal bids satisfy xj = g−1

j (ρ?) across all j ∈ [M ].

Proof. We must have ρi = minj∈[M ]µj, and since the r.h.s. does not depend on i, there
must be some ρ? such that ρi = ρ? for each i.

Remark 3.1.2. In the special case where Corollary (3.1.3) holds, the problem again re-
duces into a monotone function root-finding problem for ρ 7→∑M

j=1 λjWj◦g−1
j (ρ)−∑N

i=1Ci.
This is analogous to the example problem with a single contract in Section 2.3.2.

3.1.3 Interpretations

Induced Valuations and Supply and Demand In many game theoretic analyses of
auction markets, a valuation over items is assumed to exist for market participants, and
this valuation is essential to the analysis. While our problem formulation contains item
valuations vij, these are not valuations in the same game theoretic sense. Indeed, the
intermediary does not care at all about the items themselves, only about fulfilling their
contractual obligations. However, in second price auctions with independent valuations
(i.e., each agent has their own valuation which is independent of all other agents’ valua-
tions) it is a dominant strategy simply to bid your valuation [103]. Thus, Corollary 3.1.1
can be understood as a way in which item valuations are induced by the contractual require-
ments. For example, if we have vij ∈ [0, 1] and we interpret these quantities as conversion
probabilities (e.g., sales etc.) then the equation µj = vijρi, with µj being the optimal bid
for items of type j, indicates that ρi is the value of a single conversion of type j for contract
i.

Moreover, if we recall from the Lagrangian that the dual variables ρi are associated to
the constraint

∑M
j=1 λjRijvij = Ci, the shadow price interpretation tells us that ρi is equal

to the marginal cost to obtaining additional item values for contract i.

Similarly, the conclusion 1 drawn from Proposition 3.1.3, that the dual multiplier µj
associated with the constraint

∑N
i=1Rij = sj is exactly the optimal bid µj = xj can be

understood, as in the proof, by examining the analysis of the Lagrangian function. In
particular, there arises the minimization over sj of the function sj 7→ λjΛj(sj/λj) − µjsj,
the solution of which occurs when Λ′j(sj/λj) = µj and since Λ′j = W−1

j we must have
sj = λjWj(µj). Indeed, these relations indicate that µj is exactly equal to the marginal
cost of obtaining items of type j at the acquisition rate sj. And, in the case of a second
price auction, this is what one must bid in order to win the item against the marginal
competing bidder.
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To summarize some of this discussion, one may keep in mind that, for second price
auctions and with vij ∈ [0, 1] being conversion probabilities, we can interpret µj as being
the value to the intermediary of obtaining an item of type j, and ρi as the value to contract
i of obtaining a conversion. These valuations are induced through an optimal balance
between the supply available (as characterized by λj,Wj) and the supply demanded (as
characterized through vij, Ci).

Graph Partitioning Continuing the discussion to look at conclusion 3 and 4, these
establish existence of subsets A?i ⊆ Ai and B?j ⊆ Bj constituting, respectively, the items
which are actually used for the fulfillment of contract i, and the contracts towards which
items of type j are actually sent. These sets are a result of complementary slackness applied
to the quantity θij = µj − vijρi. If θij > 0 it indicates that the cost for contract i to bid
on items of type j is greater (by the amount θij) than the minimum cost at which value
can be acquired for that contract, and hence type j should not be used to fulfill contract
i: Rij = 0.

These sets A?i ,B?j (more directly, the slack variables θij) induce partitions of the graph

G = {(i, j) | i ∈ [N ], j ∈ Aj} as in G?i
∆
= {(i, j) | j ∈ A?i } being the subgraph of G to which

contract i belongs. Within this subgraph, bids are determined entirely by the scalar ρi and
the values

(
vij
)
j∈A?i

. In fact, due to Corollary 3.1.2 if vij ∈ {0, 1} the bids placed on items

in this subgraph are all equal to ρi. This graph partitioning was also recognized by [170],
but not as a consequence of convex duality.

Finally, in Corollary 3.1.3, we recognize that if there is no differentiation between item
valuations, and any item can be used to fulfill any contract, i.e., vij = 1, then there is no
reason to place different bids for different items. The existence of such a ρ? holds in general
only in this very special case. Indeed, if vij ∈ {0, 1}, the availability to contract i of item
types with lower costs can induce differing pseudo bids across contracts. However, we have
observed in some computational examples that, particularly when there is little margin in
Assumption 3.0.1 (i.e., there is just barely enough supply available to fulfill the contracts),
the optimal solution may still collapse to the case ∀i ∈ [N ] ρi = ρ? (see Section 3.3.1).

Remark 3.1.3 (Sets A?i ,B?j in Practice). When obtaining solutions to Problem (D) nu-
merically, it may be the case only that θij ≈ 0, up to the tolerance parameters set for
the algorithm. In this case, and considering the interpretation provided in the previous
paragraph, it may be reasonable to fix some parameter ε > 0 and treat the slack variables
θij as if they are equal to zero whenever they satisfy θij ≤ ε. Then, the intermediary would
be overpaying by at most ε.
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The Objective Function Considering the objective function
∑N

i=1 ρiCi−
∑M

j=1 λjΛ
?
j(µj)

and suppose we are bidding in a second price auction. With the interpretations of ρi, µj in
mind, we may think of the terms ρiCi as measuring what we would need to pay to fulfill the
contracts had the auction actually been a first price auction (all else being equal). As well, it
was observed in Chapter 2 (through integration by parts) that λjΛ

?
j(µj) = λj

∫ µj
0
Wj(x)dx

is exactly equal to

M∑

j=1

λj
(
µjWj(µj)−

∫ µj

0

xdWj(x)
)

=
M∑

j=1

λj
(
f 1st
j (µj)− f 2nd

j (µj)
)
,

where f 1st
j (x) = xWj(x) is the cost function associated with a first price auction and

f 2nd
j (x) =

∫ x
0
udW (u) is the cost function associated to the second price auction. Thus,

given the interpretation of ρiCi (and this can be shown through elementary calculation),
the cost is equal to

∑M
j=1 λj

∫ µj
0
xdWj(x)x, which is exactly the cost of bidding µj on items

of type j in a second price auction. Given that strong duality holds, this is the result we
should expect. Similarly, we see that Λ?

j(x) = xWj(x)−
∫ µ

0
udW (u) measures the expected

margin by which one wins items of type j, indeed, Λ?
j(x) =

∫ x
0

(x−u)W ′(u)du = E(x−p)+

where p ∼ Wj. So the objective function in the dual (D) consists of the contract fulfillment
costs in a first price auction less the savings obtained in the second price auction.

Remark 3.1.4 (Revenue Equivalence). One of the cornerstones of auction theory is rev-
enue equivalence (e.g., [103, Ch. 3]). Roughly, the revenue of a seller is equal regardless
of whether the auction mechanism is first price or second price, and this is a result of how
agents are expected to modify their behaviour based on the auction mechanism. Hence,
the comparisons made in this section cannot be interpreted to actually quantify the differ-
ences in payments that would be made were the auction mechanism to change, but rather
are intended only to provide a more thorough intuitive understanding of the quantities
involved.

3.2 Computational Methods

In this section we derive algorithms applicable to the solution of the main problem, Prob-
lem (P ), through the solution of the dual, Problem (D). We begin with the dual problem
itself in Section 3.2.2, and then methods by which we can calculate an allocation array Rij

from specified acquisition rates s ∈ RM in Section 3.2.3. However, we begin this section
with some historical remarks, and remarks upon our motivation and the value of these
contributions.

66



3.2.1 Some Remarks on History and Algorithms

Algorithms for convex optimization have revolutionized engineering applications. A rea-
sonable starting point in a brief account of the history would be the discovery of the
simplex method for linear programming by George Dantzig in 1947 [50]. These methods
can take one quite far, since many general convex programs can be approximated by linear
programming through polyhedral approximation (c.f., Section 2.4.3). Surprisingly, it was
not until the interior point revolution of the 1980s [201] that linear and (convex) nonlin-
ear programming came to be seen as part of the same subject: convex optimization. In
the decades since this time, enormous advances have been made to the point that solving
convex optimization problems in practice is often thought of as being “easy”.

Indeed, convex modelling software like cvxpy [54] commodifies many aspects of solving
convex optimization problems. We have used this tool to solve various example problems
when supply curves are known in closed form (this is one reason we are so fond of the
example Wj(x) = 1 − e−γjx), and for solving the linear programming approximation of
Section 2.4.3. However, these tools are not silver bullets. cvxpy for instance, is, in its
current form, largely limited to solving problems which fall into some predefined classes
(i.e., certain types of cone programs [135], and various subclasses including semidefinite
programs, quadratic programs, linear programs, etc. [4]).

An alternative tool, cvxopt [178], allows for the specification of problems simply in
terms of first and second order derivative information. We have also used this tool for the
practical solution of Problem (P ) with infinitely differentiable curves estimated from kernel
smoothing (Section 2.4.2). But, cvxopt is thus limited by the need for differentiability,
which, since it is not necessary for the theoretical analysis of Problem (P ) (except for first
derivatives in the case of first price auctions), is preferable to avoid, even if for nothing
more than aesthetics.

Moreover, we have come to discover that there is often a remarkable amount of struc-
ture inherent to particular optimization problems which is brought to light through the
application of various different generic algorithms to optimization problems, as well as to
different faces of the same problems (e.g., the primal and the dual, whether certain equal-
ities are eliminated, representation of constraints explicitly or through the domain of the
objective, etc.).

Particularly for the problem studied in this thesis, where the functions Wj are allowed
to be almost arbitrary continuous distribution functions (c.f., Definition 2.1.1) we have
come to recognize that the derivation of specialized algorithms is essential and forms an
important part of this work’s contributions. We turn towards the derivation of such an
algorithm in Section 3.2.2.
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3.2.2 Primal Dual Solutions

There are many possible algorithms that can be applied to the solution of Problem (D). In
this section, we apply the Alternating Direction Method of Multipliers (ADMM) [21, Sec.
5.4] [28] which will be seen to lead to elegant subproblems which make essential use of the
structure of the problem (see also Appendix B.3 for an overview of ADMM). In particular,
it will be seen that we can split the problem into a sequences of simple and trivially parallel
iterations. Moreover, the algorithm will only require access to the supply curve W , (and
the bid mapping function g in the first price case), without any of its derivatives, and
without the need to evaluate the cost functions f,Λ,Λ? etc.This is a great advantage when
W does not have an analytic representation, and hence the calculation of these functions
in and of themselves may be non-trivial.

In order to derive an ADMM algorithm for this problem, we reintroduce the additional
slack variables θij for i ∈ [N ], j ∈ Ai:

minimize
ρ,µ,θ

M∑

j=1

λjΛ
?
j(µj)−

N∑

i=1

ρiCi

subject to µj − vijρi = θij ∀i ∈ [N ] j ∈ Ai
θij ≥ 0,

which implements the inequality constraint vijρi ≤ µj as an equality. Then, application
of ADMM to this problem proceeds through the following iterations (these iterations are
trivial to derive from standard statements of the algorithm, see Appendix B.3), for some
parameter ν > 0:

ρ(t+ 1) = argminρ

N∑

i=1

[
−Ciρi +

1

2ν

∑

j∈Ai

(
µj(t)− vijρi − θij(t) + Γij(t)

)2
]

µ(t+ 1) = argminµ

M∑

j=1

[
λjΛ

?
j(µj) +

1

2ν

∑

i∈Bj

(
µj − vijρi(t+ 1)− θij(t) + Γij(t)

)2
]

θ(t+ 1) = argminθ

N∑

i=1

∑

j∈Ai

[
1R+(θij) +

1

2ν

(
µj(t+ 1)− vijρi(t+ 1)− θij + Γij(t)

)2
]

Γ(t+ 1) = Γ(t) + µj(t+ 1)− vijρi(t+ 1)− θij(t+ 1),
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where the quadratic terms serve as penalties on the linear equality constraint µj − vijρi =
θij. We have written the summations in such a way as to make clear that each of these sub-
problems are separable – i.e., the problems can be split into parallel optimization problems
involving only a single variable at a time. We solve these in turn.

The ρ Update

Consider the quadratic form −Ciρi + 1
2ν

∑
j∈Ai

(
µj − vijρi − θij + Γij

)2
. As long as vij > 0

for at least one j (which is the case but for pathological problems, excluded by Assump-
tion 3.0.1, where contract i cannot be satisfied by any item j) then this function has a
unique minimizer in ρi. It can be found by simple differentiation:

∂

∂ρi

[
−Ciρi +

1

2ν

∑

j∈Ai

(
µj − vijρi − wij

)2]
= −Ci −

1

ν

∑

j∈Ai

vij(µj − wij) +
1

ν
ρi
∑

j∈Ai

v2
ij,

where wij = θij − Γij. The zero of this derivative is obtained as

ρi =
νCi +

∑
j∈Ai vij(µj − θij + Γij)∑

j∈Ai v
2
ij

,

which is a closed form expression for the minimizer.

The µ Update

Similarly, we can characterize the unique minimizer of the function

µj 7→ λjΛ
?
j(µj) +

1

2ν

∑

i∈Bj

(
µj − vijρi − θij + Γij

)2

by the roots of the derivative. Using gj to denote the bid mapping function (Section 2.1.3)
which is simply gj(x) = x in the second price case, we can write this root finding problem
as (see Lemma 2.1.1)

λjWj ◦ g−1
j (µj) +

1

ν

∑

i∈Bj

(
µj − vijρi − θij + Γij

)
= 0

⇐⇒ λjWj ◦ g−1
j (µj) +

1

ν
|Bj|µj =

1

ν

∑

i∈Bj

(vijρi + θij − Γij).
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In the second price case, we simply have the function µ 7→ λjWj(µ) + 1
ν
|Bj|µ on the left

hand side, which is monotone increasing and only requires the evaluation of the supply
curve Wj (rather than, e.g., Λj,Λ

?
j , etc.), so this root finding problem can be solved via

the method of bisection, see Section 2.4.1.

In the first price case, where gj is not simply the identity function, this equation is
monotone under the 2-concavity of W (Proposition 2.1.4). However, it’s solution now
requires nested bisection, since g−1

j is itself be merely evaluated via bisection (unless some

pre-processing step is taken to exactly represent g−1
j itself). This makes the computational

complexity of obtaining an ε accurate solution for µj O
(
(ln 1/ε)2

)
in the first price case,

but only O
(
ln 1/ε

)
in the second price case.

The θ Update

The update to θ is again completely separable – we need to solve

minθij

[
1R+(θij) +

1

2ν

(
µj − vijρi − θij + Γij

)2
]
,

but this is nothing but a projection onto R+. That is, the solution to this problem is given
simply by the positive part:

θij =
(
µj − vijρi + Γij

)
+
.

The Final Algorithm

Putting these steps together into the ADMM iterations, we have the result in Algorithm 2:

Given arbitrary initialization, and under the adequate supply assumption 3.0.1, these
iterations converge to an optimal dual solution [21, Prop 5.4.1] [28, Sec 3.2.1]. Implemen-
tation details and convergence criteria are also obtained in these references. See also [133].

Proposition 3.2.1 (Convergence). Let W be a supply curve (or a differentiable, strictly
2-concave supply curve in the first price case) and suppose that Assumption 3.0.1 holds.
Then, the iterates µj(t), ρi(t) of Algorithm 2 converge to an optimal solution of Problem (D)
as t → ∞. Moreover, the scaled iterates νΓij(t) converge to an optimal solution Rij of
Problem (PR) as t→∞, i.e., an optimal allocation array.
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Algorithm 2: ADMM Dual Algorithm

input : Sets Ai,Bj, supply curves Wj, targets Ci, rates λj, values v, and
parameter ν.

output : A solution µ, ρ of Problem (D).
1 repeat
2 for i ∈ [N ] do

3 ρi(t+ 1) =
νCi+

∑
j∈Ai

vij(µj(t)−θij(t)+Γij(t))∑
j∈Ai

v2ij

4 for j ∈ [M ] do

5 µj(t+1) = bisection
µ

{
Wj ◦g−1

j (µ)+ 1
νλj
|Bj|µ = 1

νλj

∑
i∈Bj(vijρi+θij−Γij)

}

6 for (i, j) : i ∈ [N ], j ∈ Ai do
7 θij(t+ 1) =

(
µj(t+ 1)− vijρi(t+ 1) + Γij(t)

)
+

8 for (i, j) : i ∈ [N ], j ∈ Ai do
9 Γij(t+ 1) = Γij(t) + µj(t+ 1)− vijρi(t+ 1)− θij(t+ 1)

10 until convergence
11 return (µ, ρ)

Proof. First, we show that Problem (PR) is a dual of Problem (D) and relate the dual vari-
ables of Problem (D) back to optimal allocation arrays (i.e., simply check that the double
dual recovers the primal). We treat the problem as a minimization problem by negating
the objective and we have the Lagrangian with dual variables Γ and dual constraint Γ ≥ 0:

L(ρ, µ,Γ) = −
N∑

i=1

ρiCi +
M∑

j=1

λjΛ
?
j(µj) +

M∑

j=1

∑

i∈Bj

Γij(ρivij − µj)

=
M∑

j=1

λj
[
Λ?
j(µj)−

µj
λj

∑

i∈Bj

Γij
]

+
N∑

i=1

ρi
(∑

j∈Ai

Γijvij − Ci
)
.

Minimizing this over µj results in the function

L(ρ, µ?, R) = −
M∑

j=1

λjΛj

( 1

λj

∑

i∈Bj

Γij
)

+
N∑

i=1

ρi
(∑

j∈Ai

Γijvij − Ci
)
,
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since
(
Λ?
j

)?
= Λj (Fenchel-Moreau Theorem). Minimizing this function over ρ induces the

constraint
∑

j∈Ai Γijvij = Ci and thus we have recovered Problem (PR) with the variables
Γ = R.

We apply the convergence theorem of [28, Sec. 3], which tells us that, under strong
duality and the existence of primal and dual solutions: (1) the iterates are asymptotically
feasible, (2) that the objective function value converges to the optimal value and (3) that
νΓ(t) converges to an optimal dual solution.

The objective functions ρ 7→ CTρ and µ 7→∑M
j=1 λjΛ

?
j(µj) are both proper, convex, and

lower-semicontinuous, and by Assumption 3.0.1 combined with Proposition 3.1.2 there exist
primal and dual optimal solutions. Therefore, the iterates µj(t), ρi(t), θij(t) are asymptot-
ically feasible (i.e., satisfy µj(t)− vijρi(t) = θij(t)) and thus, asymptotically, vijρi ≤ µj(t).

As well, the objective value
∑M

j=1 λjΛ
?
j(µj(t)) − CTρ(t) converges to the optimal value of

the problem, and, since this function is strictly convex, (Proposition 2.1.5) the iterates
themselves converge to optimal solutions. Finally, the scaled iterates νΓij(t) converge to
an optimal dual solution of (D), which we have established is exactly Problem (P ).

Remark 3.2.1 (Non-Convex Problems). The ADMM algorithm has convergence guaran-
tees for convex programs, and since conjugate functions are always convex, the ADMM
algorithm is generally convergent for Problem (D), regardless of the convexity of Λ. How-
ever, in the first price case, the functions gj may not be strictly monotone, unless W is
strictly 2-concave (which is the convexity condition for Λ1st, Proposition 2.1.4), and hence
the calculation of the inverse g−1

j in the µ step would not be well defined. As a heuristic,
one could run this same algorithm and simply pick some arbitrary element in the set of in-
verses (See [28, Sec. 9] and [125] for examples of ADMM applied to non-convex problems).
However, the optimal inverse of g to pick is through the values which attain the maximizer
in the definition of Λ?. Since our functions are only in R, it may be possible in practice
to find these minimizers, e.g., by discretizing an interval and applying a golden-section
search within each sub-interval, particularly if some smoothness (i.e., Lipschitz continuity)
assumptions can be made about W−1. Hence, even non-convex versions of Problem (P )
may be tractable through a modification of Algorithm (2).

Remark 3.2.2 (Primal Algorithms). Since the µ iterations of ADMM involve root finding
problems involving W , one may suspect that some primal algorithm, e.g., applying the
Augmented Lagrangian algorithm (ALM) directly to the primal (P ), would result in root-
finding problems involving W−1. This intuition is correct. As well, it is suggestive of
the possibility of skipping the bisection iterations to find roots of functions like µ 7→
W (µ) + aµ − b, since the inverse of W−1 is simply W , which can easily be evaluated.
Unfortunately, the iterations of the ALM requires finding roots of q 7→ W−1(q) + aq − b,
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rather than of W−1− b. Thus, while a nested bisection step can be avoided by recognizing
that W−1(q) + aq − b ≤ 0 ⇐⇒ x ≤ W (ax − b), bisection iterations are not avoided all
together.

3.2.3 Calculating Optimal Allocations

Sometimes (see Chapter 4) we may have access to an optimal dual solution ρ, µ of Prob-
lem (D), without also having been able to calculate an allocation matrix R. The optimal
bids xj derived from this dual solution are enough to calculate sj = λjWj(xj), the rate at
which items of type j need to be obtained, but not to directly calculate Rij, the rate at
which they are to be allocated from type j towards contract i. That is, we still need to find
an adequate allocation from items to contracts. This essentially requires finding an array R
satisfying the summation constraints

∑
i∈Bj Rij = sj,

∑
j∈Ai Rijvij = Ci, as well as the spar-

sity constraints induced by the sets A?i ,B?j . That is, (j 6∈ A?i ⇐⇒ i 6∈ B?j ) =⇒ Rij = 0.

Remark 3.2.3 (Sparsity from s). Suppose that a purported optimal allocation vector
s ∈ RM is given. We can calculate the sparse sets A?i ,B?j as follows. First, calculate the

bids µj = W−1
j (sj) (Item 1 of Proposition 3.1.3) and then pseudo-bids ρi = min

j∈Ai

( µj
vij

)
(by

Item 2). Then, the slack variables θij = µj − vijρi are available and induce the sparse sets
according to Item’s 3 and 4. These sets should be calculated up to some tolerance ε > 0
c.f., Remark 3.1.3.

These summations are closely analogous to the column and row sums of a matrix
R ∈ RN×M . We first consider a simple example where vij = 1 for every i, j, so that the
uniform bid principle Corollary 3.1.3 holds. In this case, we need to simply find a fully
dense and non-negative R matrix1.

Example 3.2.1. Suppose that vij = 1 for each i, j. Then, by Corollary 3.1.3, there is a
single optimal bid x? applied to each contract. Hence, the optimal acquisition rates are
given by sj = λjWj(x

?) and it is necessary to find a non-negative matrix R ∈ RN×M
+ such

that the column sums satisfy
∑N

i=1Rij = sj and the row sums satisfy
∑M

j=1Rij = Ci. This
is a very simple transportation problem, and a natural solution (although there are many
others) is simply given by

Rij =
Cisj
T

,

1It is also possible to solve the integer-constrained version of this problem: https://leetcode.com/

problems/find-valid-matrix-given-row-and-column-sums/
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where T =
∑N

i=1Ci =
∑M

j=1 sj is the total number of items needed. This matrix satisfies
Rij ≥ 0 and has the needed row and column sums. It is therefore an appropriate allocation
rate for Problem (P ).

In the case of general valuations vij ≥ 0, the sparsity constraints induced by the dual
solution must be respected, and there is no longer a closed form solution to the problem.
Moreover, solutions may not be unique; or, if acquisition rates s are not properly specified,
there may not exist a solution at all. In order to deal with these possibilities, we consider
the regularized problem

minimize
R

N∑

i=1

(
Ci −

∑

j∈A?i

Rijvij
)

+
+

1

2
t||R||2F

subject to
∑

i∈B?j

Rij = sj

Rij ≥ 0,

(Tt)

where ||R||2F =
∑N

i=1

∑
j∈Ai R

2
ij is the Frobenius norm of the matrix.

We require that constraint
∑

i∈B?j
Rij = sj be satisfied exactly since sj is the rate of type

j supply that is acquired, and exactly that much should be allocated. The objective term∑N
i=1

(
Ci −

∑
j∈A?i

Rijvij
)

+
penalizes allocations which fail to satisfy contracts. Penalizing

the
∑

j∈A?i
Rijvij ≥ Ci in the objective, rather than as a linear constraint, reflects the

fact that if sj is not properly or accurately specified then there need not exist a matrix
satisfying this constraint.

When solutions do exist (e.g., if sj = λj, c.f. Assumption 3.0.1), there may be
many solutions. To this end, we will seek the least norm solution (again, having a di-
rect analogy with least norm solutions of under-determined linear systems). Intuitively,
this will tend to produce solutions which are uniform, i.e., (1/2, 1/2) has a lower eu-
clidean norm than does (1, 0), despite having the same sum. Precisely, we want to pick
Rln ∈ ROT = {R | R solves (T0)} such that ∀R ∈ ROT ||Rln||F ≤ ||R||F . In fact, under
certain regularity conditions (See [64]) there exists some t > 0 such that the solution of
Problem (Tt) is the least-norm solution of the same problem with t = 0, i.e., the regu-
larization is exact. Indeed, since all of the constraints of Problem (Tt) are linear and the
objective can be re-written with linear constraints in epigraph form, the constraint regular-
ity conditions of [64] are immediately satisfied. As a remark, it should be noted that this
will not work if the objective penalizes the squared terms (Ci −

∑
j vijRij)

2
+ etc.instead.

In fact, we can determine a sufficient condition on t, establishing that contracts will never
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be over-provisioned if it is possible to increase the fulfillment of another contract, and this
value of t ensures the regularization is exact.

Proposition 3.2.2 (Exact Least Norm Regularization). Let λmax = max
j∈[M ]

λj. If the value

of t ≥ 0 is such that

t <
1

λmax

min
i∈[N ]

min
j∈Ai

vij,

then regularization of Problem (Tt) is exact and the solution R? of this problem is the least
norm solution of Problem (T0).

Proof. Let t > 0 and let R be the unique solution to Problem (Tt). We consider two cases.
First, suppose that there does not exist a pair of contracts i, u such that

∑
j∈A?i

vijRij > Ci
and

∑
w∈A?u

vuwRuw < Cu and Rik > 0 for k ∈ A?i ∩ A?u. Then, R must also be a solution

to (T0) since
∑N

i=1

(
Ci −

∑
j∈A?i

vijRij

)
+

cannot be reduced. Denote the value of this sum
by p?. Then, R is also feasible for

minimize
R

1

2
t||R||2F

subject to
∑

i∈B?j

Rij = sj, Rij ≥ 0

N∑

i=1

(
Ci −

∑

j∈A?i

Rijvij
)

+
≤ p?,

(3.2)

and, in fact, it must necessarily be the solution to this program as well. If this were not
the case, the cost for Problem (Tt) could have been reduced, hence R is the least norm
solution of (T0).

Now, suppose that there does exist a pair of contracts i, u such that
∑

j∈A?i
vijRij > Ci

and
∑

w∈A?u
vuwRuw < Cu and Rik > 0 for k ∈ A?i ∩ A?u. Then, consider some parameter

ζ, and let R̃(ζ) be a new array equal to R except that R̃(ζ)ik = Rik − ζ and R̃(ζ)uk =
Ruk + ζ. Since Rik > 0 and

∑
j∈A?i

vijRij > Ci there exists some ζ small enough, and

an open neighbourhood Nζ thereof such that R̃(φ)ik ≥ 0,
∑

j∈A?i
vijR̃ij(φ) > Ci, and (by

construction)
∑

i∈B?j
R̃ij(φ) = sj, for any φ ∈ Nζ . Thus, R̃(φ) is feasible for Problem (Tt)

over the neighbourhood Nζ . Finally, consider the derivative of the objective function at ζ:
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d

dζ

[ N∑

i=1

(
Ci −

∑

j∈A?i

vijR̃ij(ζ)
)

+
+

1

2
t||R̃(ζ)||2F

]
= −vuk − t(Rik − ζ) + t(Ruk + ζ)

= −vuk + t[Ruk −Rik] + 2tζ

≤ −min
i∈[N ]

min
j∈Ai

vij + tλmax + 2tζ,

where the last inequality follows since Ruk −Rik ≤ sk and sk ≤ λk ≤ λmax.

This derivative is therefore negative for small ζ if t < 1
λmax

min
i∈[N ]

min
j∈Ai

vij. Therefore, there

exists a feasible descent direction for Problem (Tt) and the supposed R was not optimal.
Therefore, such a pair of contracts i, u does not exist.

An exact regularization parameter which applies uniformly over any s can be easily
computed according to Proposition 3.2.2 (as well as updated in practice if λj or vij change)
since the parameter there specified does not depend on s.

3.3 Examples

In this section we examine some computational simulation examples. The primary pur-
pose of this section is to further develop an intuitive and qualitative understand of the
contract management problem. Secondarily, the example of Section 3.3.2 demonstrates
the scalability of algorithms for the dual problem2, as well as how solutions of the dual in-
duces sparsity in the transportation problem for the calculation of R, which further enables
computational scalability.

3.3.1 Bidding Bifurcations

Even though Corollary 3.1.3 holds only in very special circumstances, it turns out that there
is still just a single optimal bid applying across all item types in some practical scenarios as
well. Typically this arises when the available rate of items is only just adequate the fulfill
contracts (i.e., there is little margin available in Assumption 3.0.1), but we also observe
that it can occur when contracts have shared access to a cheap source of items. These
cases are exemplified in Figure 3.1.

2An example with over 1000 item types is comfortably solved in under a minute on a personal laptop.
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Figure 3.1: Bifurcation Examples of Pseudo Bids
Examples of how optimal bids can naturally differ between contracts and items, as well as

examples of the cases where the Uniform Bid Principle (Corollary 3.1.3) tends to hold.

To construct Figure 3.1 we have considered a simple case when M = 3 item types
and N = 2 contracts. In both subfigures we have vij ∈ {0, 1} with A1 = {1, 2}, and
A2 = {2, 3} and λ1 = λ2 = λ3 = 1. As well, the supply curves are given by simple
exponentials Wj(x) = 1 − e−γjx (see Example 2.1.2 and Figure 2.2). The average cost of
these items is given by 1/γj, and hence become cheaper as γ becomes larger.

In Figure 3.1a we have γ1 = 1/2, γ3 = 2 but γ2 = γ is a parameter. We see that,
since the average price of an item is 1/γ, as item type 2 gets cheaper, it is eventually the
case that both contracts draw the majority of their items from type 2. Prior to this, the
majority of items are drawn from the cheaper types 1 for contract 1 or 3 for contract 2. It
should be pointed out that if γ1 = γ3, the contracts would still draw the majority of their
items from types 1 and 3, respectively, for small values of γ2, but their bids would still
be identical as a coincidence of having access to different items that happen to have the
same costs. i.e., the reason that bids coincide in that case would be a simple pathology of
particular numerical values, not a consistent structural feature.

In Figure 3.1b we have γ1 = 1/10 (expensive), γ2 = 1, and γ3 = 10 (cheap). As
well, we modify the contract item requirements C1 = C and C2 = 2C. We see that, as
C approaches 1, and the available supply is stressed, the bids are eventually equal (and
large), even though there are large differences between the costs of items available to the
contracts.

For an example on a larger scale, consider a case where M = 30, N = 20 and we
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Figure 3.2: Randomized Medium Scale Bid Bifurcation Example
A larger scale example of bid bifurcations where contracts become more distinct as t→∞ but

are all identical when t = 0. All item types are identical and variability in values vij ∼ Ber(1/4)

is depicted through differing colours. Each ρi(t) is given the same colour across randomized

simulation runs.

have γj = λj = 1 for every j (i.e., each of the item types are identical), and the values are
random vij ∼ Ber(1/4). We again sweep through a parameter t which is such that contracts
Ci will have differing requirements. Precisely, Ci(t) = (1 + e−`it)−1 where `i ∈ [−1, 1] takes
values in a uniform grid. In this case, Ci(t) → {0, 1} as t → ∞ depending on whether
`i > 0 or `i < 0 and Ci(0) = 1/2. Hence, for t = 0 the contracts are all identical, but
distinguished into two distinct groups for large t, with some relatively smooth distinction
when t is “modest”. Figure 3.2 provides 5 separate examples of this scenario (in order to
show the variability with respect to the randomized v). We can observe that the UBP holds
when contracts are all similar (i.e., t ≈ 0), and bids become highly distinct as t→∞. The
particular values of v have a significant quantitative impact on the results (determining
when and where bifurcations occur)), but behaviour is qualitatively similar across v.

3.3.2 Large Scale Example and Dual Induced Sparsity

In this section we provide a large scale randomized example for the purposes of qualitatively
comparing item valuations vij and the slack variable θij, as well as comparing sets Ai and
A?i .
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Figure 3.3: Scatterplot of (vij, θij) for vij 6= 0
When vij is small, it is expected that there should be a wider margin between the value of items

of type j, namely µj , and vijρi. This difference is θij = µj − vijρi. Hence, v and θ should be

negatively correlated.

Due to the definition θij = µj−vijρi, we should expect that when vij is small, θij should
be large. This effect is depicted in Figure 3.3

Moreover, when θij > 0, the item j is not used for contract i, which induces the subsets
A?i ⊆ Ai. To get a sense of this effect, consider Figure 3.4 where we display the sparsity
pattern of vij as well as vij × 1{0}(θij). Additionally, the figure points out the difference

between d =
∑N

i=1 |Ai| and d? =
∑N

i=1 |A?i |. The former is the basic sparsity of the problem
(which is already d�MN , in this case MN = 240, 000) and d? is the induced sparsity of
the problem, and is the dimensionality of the quadratic program that would need to solve
to calculate the allocation matrix R (see Section 3.2.3). While it naturally depends on the
particulars of v, λ,W etc., it can be reasonably expected again that d? � d, and hence the
dual program can induce substantial additional sparsity into the matrix R.
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Figure 3.4: Dual Induced Sparsification
A large scale example with M = 1200, N = 200. The parameters λj , γj (for Wj(x) = 1− e−γjx)

and Ci are all exp(1) distributed. As well, we construct valuations via vij ∼ N (0, 1)− 1 and

then clipping values between [0,∞).
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0 10 20 30 40 50
Set Size

0

200

400

600

800

1000

C
ou

nt

Allocatable Contracts (Bj) vs. Allocated at Optimality (B?j)
Sizes of Bj
Sizes of B?j (Sparsified)

(b) Sparsification of Bj

Figure 3.5: Sparsification of sets Ai and Bj
Under the same simulation settings as Figure 3.4 we plot the sizes of the sets Ai,A?i ,Bj ,B?j .
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Similarly, Figure 3.5 displays the sizes of the sets Ai,A?i (Figure 3.5a) and Bj,B?j
(Figure 3.5b). We observe that every contract i is supplied by at least one item (i.e., |A?i | ≥
1, necessary for the contract to be fulfilled). On the other hand, there are some sets B?j
which are empty, i.e., it is inefficient to use item type j at all. Of course, these specific
results are highly dependent upon the particulars of the simulation setup, but the examples
serve to illustrate the predictions made by Proposition 3.1.3.

3.4 Additional Examples

We return here to the two additional examples from Section 2.5 and examine how the same
techniques applied for the optimal contract management problem can also be applied there.
As with Section 2.5, this section is not essential to understanding the overall contributions
of the thesis.

3.4.1 Volume Costs in Limit Order Book: Dual Algorithms and
Portfolio Construction

Recall the model of volume costs in a limit order book from Section 2.5.1. An important
problem in finance is to construct, based on an estimate of risk and future returns, a port-
folio that optimally trades off between these two aspects. One of the first formulations
of this problem was famously carried out via mean-variance optimization (quadratic pro-
gramming) by Markowitz [116]. The book [82] is a textbook introduction, but this remains
an active area of research, e.g., [174, 115, 3], and many others.

We can formulate a simple instance of this problem that takes into account order book
volume costs as

minimize
x∈RN

1

2
λxTΣx+

N∑

i=1

[
Λi(xi)− αixi

]
, (3.3)

where x ∈ RN is the portfolio allocation across N risky assets3, αi is the forecasted future
(proportionate) returns of asset i, and Σ � 0 is the covariance matrix of returns. This
covariance matrix arises from the calculation VarαTx, which is often used as a measurement
of the “risk” of portfolio x, and is scaled by the risk-aversion parameter λ > 0. In order
to analyze this problem, we introduce a new variable and a trivial constraint

3In this simple example, there is no costs associated with leverage or with borrowing shares to short.
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minimize
x∈RN ,u∈RN

1

2
λuTΣu+

N∑

i=1

[
Λi(xi)− αixi

]

subject to x = u,

solely for the purpose of deriving a particular dual. Carrying out the usual calculations for
the Lagrangian function, we obtain

L(x, u, φ) =
1

2
λuTΣu+

N∑

i=1

[
Λi(xi)− (αi − φi)xi

]
−

N∑

i=1

φiui,

and minimizing with respect to x, we obtain L(x?, u, φ) = 1
2
λuTΣu−∑N

i=1 φiui−
∑N

i=1 Λ?
i (αi−

φi), which, when minimizing again over u results in u? = − 1
λ
Σ−1φ, and the dual function

g(φ) = − 1
2λ
φTΣ−1φ−∑N

i=1 Λ?
i (αi − φi). Incidentally, the quantity x = − 1

λ
Σ−1α is exactly

the optimal portfolio when Λi ≡ 0 (c.f., u?), so that the dual vector φ can be understood
as a sort of cost-adjusted returns vector.

Thus, through solving the dual, the optimal portfolio can be obtained by solving

minimize
φ

1

2λ
φTΣ−1φ+

N∑

i=1

Λ?
i (αi − φi).

This can be further simplified by using the Cholesky decomposition Σ = LLT (and hence
Σ−1 = L−TL−1) and the change of variables ζ = L−1φ to obtain

minimize
ζ

Λ?(α− Lζ) +
1

2λ
||ζ||22,

where Λ?(z) =
∑M

j=1 Λ?
j(zj). This is now nothing but a regularized minimization problem

of the Fenchel conjugate. The advantage of this formulation is that derivatives of Λ? (see
Section 2.1.2) are in terms of the volume available in the order book (i.e., W and w –
c.f., Section 2.5.1) without involving the inverse of W , which occurs in derivatives of the
primal objective.

82



3.4.2 Dark Pool Liquidation Problem: Dual Algorithms and In-
terpretation

Recall the dark pool liquidation problem from Section 2.5. We will again analyze this
problem by means of Lagrangian duality. We have:

L(u, λ, µ) =
K∑

k=1

E(uk − ξk)+ + λ(
K∑

k=1

uk − s)−
K∑

k=1

µkuk

=
K∑

k=1

[
ukFk(uk)−

∫ uk

0

xfk(x)dx+ (λ− µk)uk
]
− λs,

where λ is the multiplier associated with the send all shares constraint
∑K

k=1 uk = s and
µk are associated with the non-negativity constraints uk ≥ 0.

Since this function is convex, minimizers of L with respect to u can be characterized
by Fermat’s rule:

∂

∂uk
L(u, λ, µ) = Fk(uk) + ukfk(uk)− ukfk(uk) + (λ− µk)

= Fk(uk) + (λ− µk).

So that DuL(u, λ, µ) = 0 ⇐⇒ ∀k ∈ [K] : uk = F−1
k (λ−µk) and where µk ≥ 0 is the dual

constraint. Substituting this optimal allocation back into L we find the dual function

g(λ, µ) = −
K∑

k=1

∫ λ−µk

0

F−1
k (x)dx− λs

= −
K∑

k=1

Λk(λ− µk)− λs,

which involves a function of exactly the same form as the acquisition cost function for
second price auctions (c.f., Section 2.1.1). Since we know that Λk is a monotone increasing
function, it must be that µk = 0, and the problem can be solved by minimizing the
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monotone function λ 7→ ∑K
k=1 Λk(λ) − λs, or, after differentiating (due to the convexity

of Λk), by solving the equation
∑K

k=1 F
−1
k (λ) = s for λ. After solving this equation (by

monotonicity, this can be carried out via bisection), we obtain the optimal allocation by
uk = F−1

k (λ). This simple solution is comparable to the contract management problem
with multiple item types and a single contract, c.f., Section 2.3.2.

Interpretation The dual variable λ, using the shadow price interpretation, measures
the marginal of the number of shares that we will fail to liquidate, when we increase s and
attempt to liquidate more shares. As well, it allows us to calculate the probability that we
successfully liquidate all s shares. Indeed:

P
{ K⋂

k=1

(ξk > F−1
k (λ))

}
=

K∏

k=1

(1− Fk(F−1
k (λ)))

= (1− λ)K .

Thus, if λ ≈ 0 we are highly likely to liquidate all of the shares (the marginal cost of having
to liquidate more shares is low), and if λ ≈ 1 we are highly unlikely to do so (and the
marginal cost of having to liquidate more shares is high). This provides a measure of how
difficult the problem instance is, since we need λ to satisfy

∑K
k=1 F

−1
k (λ) = s it means that

if λ needs to be large for this to occur, then uk must be so large that P(ξk ≤ uk) = λ ≈ 1.
i.e., it is highly unlikely for there to be enough supply available.

As well, even if λ ≈ 0, (1−λ)K → 0 as K →∞. Thus, even if there is a large amount of
aggregate supply available, if it is dispersed across a large number of DPs, then, since it is
not easily accessible, we are still unlikely to liquidate all s shares. This can be interpreted
as an effect of opportunity costs: when sending shares to DP 1, we lose the opportunity to
have sent those shares to DP 2, even if the latter happened to have more supply available.

3.5 Conclusion

This chapter has carried out a duality analysis of the contract management problem, Prob-
lem (P ). We find that strong duality holds under the natural condition, Assumption 3.0.1,
which simply asks that there be enough supply available in the market to fulfill the con-
straints. This assumptions is weaker than the coarse sufficient condition Assumption 3.0.2
appearing earlier in [108].
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The consequences of duality, summarized in Proposition 3.1.3, are far reaching and
enable the characterization of optimal bids in terms of dual variables µj associated to each
item type j ∈ [M ], but as well as through the additional set of variables ρi associated to
each contract i ∈ [N ]. These dual variables induce, as a consequence of the slack in the
dual inequality vijρi ≤ µj, additional subsets A?i ⊆ Ai and B?j ⊆ Bj that further restrict the
items that are to be allocated towards contracts, i.e., j 6∈ A?i =⇒ Rij = 0. In addition,
Corollaries 3.1.2 and 3.1.3 establish the further implication that, in second price auctions
with vij ∈ {0, 1} (a common special case), the bid placed for any item which can be usefully
allocated towards contract i must be equal. When vij is general, it is still the case that
the bid placed for an item j which can be usefully allocated towards contract i is nothing
but a constant multiple vij of a common pseudo-bid ρi. Some of these consequences were
established in [170] by alternative methods, but are here recognized as being naturally
derived from duality.

In Section 3.2 we have derived a specialized ADMM algorithm for the solution of Prob-
lem (P ) through the dual (D). This algorithm separates into elegant univariate and trivially
parallel subproblems that rely only upon array arithmetic and the bisection algorithm (1).
This algorithm is likely more efficient than a comparable augmented Lagrangian algo-
rithm applied directly to the primal problem, as it avoids a nested bisection step (see
Remark 3.2.2). In addition, Section 3.2.3 constructs a quadratic program appropriate for
calculating the allocation matrix R, if dual variables µ, ρ or optimal acquisition rates s
are known. This program always admits a solution, even if the allocation rates s are mis-
specified. Moreover, this formulation can benefit from the additional sparsity associated
with the sets A?i ,B?j derived from solving the dual.

Section 3.3 discusses a number of computational examples, and empirically explores
some of the properties of optimal solutions with small and carefully crafted examples, as
well as large scale randomized problems.

Finally, Section 3.4 revisits the additional examples encountered first in Chapter 2 and
further explores how the special properties of the function Λ, and its dual Λ?, play a role
in other important application areas.
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Chapter 4

Adaptive Bidding and Stochastic
Approximation

An important aspect of real-time bidding markets (and markets in general) is that relevant
statistics (i.e., the supply curves and arrival rates) change over time. Thus, the static
problem formulations developed in previous chapters are not yet completely adequate for
applications as it is important for the DSP to be able to adapt their bids to these changing
statistics.

Part of the time-varying nature of market prices are a result of natural and predictable
daily and weekly fluctuations in human activity. These fluctuations can be accounted for
by forecasting, which we consider in Chapter 5. However, some fluctuations are completely
unpredictable, and we need algorithms that can adapt to change.

Throughout this chapter, we focus exclusively on second price auctions, and any ap-
pearance of the function Λ is to be understood as referring to Λ2nd. The reason for this
is that the simple relationship between Λ2nd and W−1, and between Λ?

2nd and W seen in
Proposition 2.1.3 does not hold in the first price case, and it is this duality that makes
the simple stochastic approximation methods developed in this chapter possible. It is a
topic for future consideration whether and to what extent these methods can be naturally
generalized.

Outline We begin this chapter in Section 4.1 with a brief overview of stochastic approxi-
mation theory in order to establish the basic ideas behind the tools we will use to adapt to
changing market statistics. In this section we also introduce elementary convergence theo-
rems and definitions. In section 4.2 we will study a more abstract convex program, and the
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results for this case will be specialized to our application. We study stochastic approxima-
tion algorithms for finding solutions of this abstract problem when parts of the objective
function are not known, and we will state convergence theorems general enough to apply
to the primal and dual contract management problems: Problem (P ) and Problem (D).
The reader who is only interested in the results pertaining to the RTB application can
skip to Section 4.3. In Section 4.4 we apply stochastic approximation directly to the pri-
mal problem (P ), and, dually, Section 4.5 deals with stochastic approximation algorithms
applied to the dual problem (D).

What makes these algorithms interesting is the peculiar way in which derivatives of the
objective functions arise for second price auctions, as well as a further duality appearing
in the solution of Problem (D) by stochastic approximation. Precisely, since the derivative
of Λ is, roughly speaking, W−1, and that of Λ? is W , the derivatives of the objective
functions are obtained by solving the equation s = λW (x) either for x, in the primal case,
or for s, in the dual case. Therefore, the derivative of λΛ(s/λ) (the term arising in the
primal objective) is exactly equal to the bid which is required to obtain items at the rate s.
Dually, the derivative of λΛ?(µ) is exactly equal to the amount of supply that is obtained
through the bid µ. For this reason, Section 4.3 is dedicated to the solution of the equation
s = λW (x) by the methods of stochastic approximation.

4.1 Introduction

Stochastic approximation (SA) began with the work of [153] which derived an algorithm
designed to find a zero of a monotone function, when only noisy evaluations of the function
are available. Since this groundbreaking work, stochastic approximation has developed into
a profoundly influential field which ultimately forms the theoretical basis for innumerable
practical algorithms including stochastic gradient descent [155] (the workhorse method for
deep learning [80] and scalable machine learning) and Q-learning [173, 166], an important
algorithm in the theory of Markov decision processes.

Abstractly, stochastic approximation studies algorithms of the form

xn+1 = xn + an
[
h(xn) +Mn+1

]
, (SA)

where xn ∈ Rd is a sequence of iterates (with x0 ∈ Rd some fixed initial point), an > 0 are
step-sizes, h : Rd → Rd is a Lipschitz mapping, and Mn+1 ∈ Rd is a noise sequence. The
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noise Mn is generally assumed to be a Martingale difference sequence1 with respect to it’s
own filtration (possibly enlarged with the σ-algebra generated by x0, an if any of these are
random)2.

Equation (SA) is analogous to a noisy discretization of the ordinary differential equation
(ODE) ẋ = h(x) [43, 98]. Indeed, the approach of [25] is to analyze the properties of the
iteration (SA) in terms of the asymptotic properties of this ODE. Thus, the approach
taken in the present chapter is to construct SAs where the associated ODE has a unique
and globally asymptotically stable (GAS) equilibrium3 that has desirable properties. The
iterations of (SA), as long as they are stable, will converge towards these equilibria.

While more general step-size sequences are possible, we will assume that an satisfies
the Robbins-Monro conditions

∞∑

n=1

an =∞,
∞∑

n=1

a2
n <∞. (4.1)

Remark 4.1.1 (Robbins-Monro Step-size Sequence). The intuition behind Equation (4.1)
is that τa(n) =

∑n−1
k=0 ak is the simulation time of the ODE ẋ(t) = h(x(t)) and τn → ∞

is necessary to ensure that the iterates of Equation (SA) converge to the same point as
the ODE solution converges to as t → ∞. The condition

∑∞
n=1 a

2
n < ∞ is used to ensure

that the noise Mn is adequately averaged away, in the sense that random variables of
the form ζm =

∑m
n=0 anMn+1 must converge. The square summability of an is combined

with a square-integrability assumption on Mn in order to apply a Martingale convergence
theorem. Weaker summability assumptions on an can be traded for stronger integrability
assumptions on Mn, but this is of only tangential interest for our purposes.

Our primary reference for basic results in SA is [25], see also [104, 17]. The results
in these references are enough to construct proofs of a primal stochastic approximation
algorithm (Section 4.4). For the dual algorithms studied in Section 4.5 we refer to [144] for
results on asynchronous4 stochastic recursive inclusions on multiple timescales, the general

1A Martingale difference sequence is a stochastic process Mn such that E[Mn+1 | Fn] = 0 where Fn is
the filtration of Mn, and serves as a general noise model. For example, an i.i.d.sequence is a Martingale
difference sequence.

2The iteration index n in Equation (SA) is such that variables with index n are “known” at step n,
and variables with index n+ 1 are “unknown”.

3Recall that a GAS equilibrium is a point xe ∈ Rd such that from any initial point x0 solutions x(t) of
the ODE converge to xe as in x(t)→ xe as t→∞.

4An asynchronous stochastic approximation is one wherein only a random subset of the components of
the vector xn are updated on each iteration. In our application, this will correspond to the arriving item
types.
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results of which require only minor modification.

The main convergence theorem is the following:

Theorem 4.1.1 ([25]). Consider the stochastic approximation (SA) beginning with an
arbitrary x0 ∈ RN . Let Fn = σ(M1,M2, . . . ,Mn) be the σ-algebra generated by the noise
sequence Mn. Assume the following conditions

1. (ODE Solutions) h : RN → RN is Lipschitz continuous.

2. (Robbins-Monro5)
∑∞

n=0 an = ∞,∑∞n=0 a
2
n < ∞ and ∃N ∈ N such that ∀n ≥ N :

an+1 ≤ an.

3. (Variance Bounds) Mn is a square integrable martingale difference sequence, i.e.,

E[Mn+1 | Fn] = 0, and E[||Mn+1||2 | Fn] ≤ K(1 + ||xn||2) a.s. for some K ≥ 0

4. (ODE Convergence) The ODE ẋ = h(x) has a unique globally asymptotically stable
equilibrium x?.

5. (Stability) supn ||xn|| <∞ a.s.

Then, xn
a.s.→ x? as n→∞.

An important generalization of the stochastic approximation (SA) is the following
stochastic recursive inclusion ([25, Ch.5]):

xn+1 ∈ xn + an
[
H(xn) +Mn+1

]
, (SRI)

where H : Rd ⇒ Rd is a set valued mapping with non-empty values. Notationally, what
Equation SRI means is that

xn+1 = xn + an
[
H̃n +Mn+1

]

for some random sequence H̃n satisfying H̃n ∈ H(xn) for every n. In this case, it is
important that the σ-algebra to which Mn is adapted now includes the σ-algebra generated
by H̃n, which measures the choice of element in H(xn) used in the iterations.

Similarly to how (SA) asymptotically approximates the differential equation ẋ = H(x),
Equation (SRI) can be expected to asymptotically approximate the differential inclusion
ẋ ∈ h(x). Indeed, this will be established after the following definitions.

5The monotonicity condition is not part of the usual Robbins-Monro conditions, and is not necessary
for most proofs. However, subtle use of this monotonicity is used by [25, Ch. 6] and [144] in establishing
a weak convergence theorem and which we rely upon for asynchronous updates.
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Definition 4.1.1 (Marchaud Map). A set valued mapping H : Rd ⇒ Rd is a Marchaud
map if (1) for each x ∈ Rd, H(x) ⊂ Rd is convex and compact, (2) there exists some
K ≥ 0 such that for each x ∈ Rd we have supz∈H(x)||z||2 ≤ K(1 + ||z||) and (3) the graph

GH ∆
= {(x, y) | y ∈ H(x)} is closed.

The structure of the application problems we study motivates the following restriction.

Definition 4.1.2 (Bounded Marchaud Map). A Marchaud map H : Rd ⇒ Rd will be
called a bounded Marchaud Map if there exists a bounded set B ⊂ Rd such that ∀x ∈ Rd :
H(x) ⊆ B.

A basic convergence theorem for stochastic recursive inclusions, which generalizes The-
orem 4.1.1 is the following:

Theorem 4.1.2 (Cor 6.4 [25]). Let H : Rd ⇒ Rd be a Marchaud map. Suppose that the
DI ẋ ∈ H(x) has a unique GAS equilibrium x?, and Items 2, 3 and 5 from Theorem 4.1.1
hold. Then, if xn is a sequence satisfying (SRI) we have xn → x? a.s.

Remark 4.1.2 (Constant Step Size Algorithms). The Robbins-Monro step-size rule is
designed so as to result in stochastic approximations which converge almost surely to some
fixed value. However, we are often interested in algorithms which attempt to approximately
track a time varying solution. In such cases, it is common in practice to instead apply a
small constant step size a ∈ (0, 1), rather than a decreasing step size an → 0 (see [25,
Ch. 9]). However, formally developing models for time varying environments becomes
extremely cumbersome (but see [101]) and distracts from our primary purpose.

4.2 Stochastic Approximation for Linearly Constrained

Convex Programs

We review some important stability theorems in Section 4.2.1 and then establish general
results for stochastic approximation algorithm applied to a linearly constrained convex
program in Section 4.2.2.

4.2.1 Stability Theorems

The primary difficulty in applying the general convergence results of [25] is that of stability

(i.e., Item 5 of Theorem 4.1.1). That is, one must verify a-priori that supn ||xn||
a.s.
< ∞.
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The most easily applicable general theorem for establishing this stability criterion is the
Borkar-Meyn theorem [25, Theorem 3.7]:

Theorem 4.2.1 (Borkar-Meyn [26]). Consider a stochastic approximation (Equation (SA))
with limiting ODE ẋ = h(x) that satisfies all the assumptions of Theorem 4.1.1, except for

stability. Let hc(x)
∆
= 1

c
h(cx). If there exists a Lipschitz continuous function h∞ : Rd → Rd

such that hc → h∞ as c → ∞, uniformly on compacts, and the ODE ẋ = h∞(x) has the

origin as its unique globally asymptotically stable equilibrium, then supn ||xn||
a.s.
< ∞.

The work of [149] generalizes Theorem 4.2.1 to the case of stochastic recursive inclusions.
In the following, we combine a special case of [149] with a simple limiting argument.

Proposition 4.2.1. Consider a stochastic recursive inclusion (Equation (SRI))

xn+1 ∈ xn + an
[
H(xn) + h(xn) + εn +Mn+1

]
, (4.2)

where H : Rd ⇒ Rd is a bounded Marchaud map, h satisfies the conditions of Theo-
rem 4.2.1, and εn ∈ Rd is a stable random sequence, i.e., supn ||ε||2 < ∞ a.s. and
where Mn is a Martingale difference sequence with respect to the σ-algebra enlarged with
the filtration of εn. Then, almost any sequence of iterates satisfying (4.2) are stable,
i.e., supn ||xn|| <∞ a.s.

Proof. We work on the probability space (Ω,F ,P). Define the random variable Z =
supn ||εn||. First, suppose there is some B ∈ R+ such that Z ≤ B almost surely. We apply
the main theorem of [149], which is analogous to the Borkar-Meyn stability theorem 4.2.1.
The recursive inclusion (4.2) asymptotically approximates (in the sense of Theorem 4.1.2)
the differential inclusion (DI) ẋ ∈ H(x) + h + BB where BB = {x ∈ Rd | ||x|| ≤ B}.
This set-valued mapping is still a Marchaud map. Under our assumptions, the conditions
required by [149] are immediate and apply to the limiting differential inclusion (which is
in fact a bona-fide differential equation)

ẋ ∈ lim
c→∞

1

c

[
H(cx) + h(cx) + BB

]

= lim
c→∞

1

c
h(cx)

∆
= h∞(x),

since H + B are bounded. This establishes the stability of xn.
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Now, if Z is not uniformly bounded, let BN be a sequence such that BN →∞ and let
SN = {ω ∈ Ω | Z(ω) ≤ BN}. Then, as above, P{supn ‖xn‖ < ∞} ≥ P{SN}, since the
even that xn is stable is a subset of SN , by the earlier part of this proof. Moreover, since
supn ||εn|| <∞ a.s. we have

1 = P{Z <∞}

= P
{ ∞⋃

N=1

SN
}

= lim
N→∞

P{SN},

since SN ⊆ SN+1. Therefore, taking a limit over N of P{supn ‖xn‖ < ∞} ≥ P{SN} we
obtain P{supn ‖xn‖ <∞} = 1.

Theorem 4.2.1 can often fail. In particular, we will encounter a problem wherein
1
c
h(cx)→ 0 as c→∞, so that h∞ ≡ 0 certainly does not have 0 as a GAS equilibrium. Ex-

amples of this behaviour come from functions which are not coercive, e.g., h(x) = −tanh(x),
or indeed, functions involving supply curves W (x). In these cases, we will supply ad-hoc
stability theorems.

4.2.2 Linearly Constrained Convex Program

Before moving on to our application, we study a more general stochastic approximation
algorithm that solves the following linearly constrained convex optimization problem

minimize
x∈Rd

f(x) + θ(x)

subject to Gx ≤ h.
(4.3)

Recall that for a convex function θ : Rn → R (say), the subdifferential ∂θ(x) generalizes
the notion of a derivative to a set-valued mapping for points which are not classically
differentiable:

∂θ(x) = {φ ∈ Rn | ∀y ∈ Rn : θ(y) ≥ θ(x) + 〈φ, y − x〉}.

We adopt the following assumptions throughout this section.
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Assumption 4.2.1. In Problem (4.3), the function f : Rd → R is a proper, strictly con-
vex function, bounded below by −Bf , and is continuously differentiable with a uniformly
bounded derivative, i.e., there is some B ∈ R such that ∀x ∈ Rd : f ′(x) ≤ B < ∞. The
function θ ≥ 0 is real-valued, convex, and ∂θ(x) is uniformly bounded over x, i.e., there is
some bounded set B ⊂ Rd such that ∀x ∈ Rd : ∂θ(x) ⊆ B. The matrix G ∈ Rm×d, where

m ≤ d, is full-rank (i.e., N (G) = {0}) and the polytope PG,h
∆
= {x ∈ Rd | Gx ≤ h} is

nonempty and compact.

Lemma 4.2.1. Let θ satisfy the assumptions of 4.2.1. Then, ∂θ(x) is a bounded Marchaud
map.

Proof. Since θ is convex and everywhere real-valued, the subdifferential ∂θ(x) is a convex
and compact set ([19, Prop. 5.4.1.]). Since ∂θ(x) is uniformly bounded, it satisfies the
growth condition, i.e., for some K ≥ 0 we have, for any x ∈ Rd, that ||z||2 ≤ K(1 + ||x||2).
Finally, let (zn, φn) ∈ Gθ be a convergent sequence. Using the definition of the subgradient,
we must have, for any n, ∀y ∈ Rd : θ(y) ≥ θ(zn)+〈φn, y−zn〉, which, after taking the limit
on the right (using joint continuity of the inner product and the fact that convex functions
are continuous, in fact, locally Lipschitz [45, Thm. 2.34]) results in ∀y ∈ Rd : θ(y) ≥
θ(z)+ 〈φ, y−z〉 and hence (z, φ) ∈ G. That ∂θ is bounded is part of Assumption 4.2.1.

Equality constraints, i.e., Ax = b, are not explicitly included in Problem (4.3). While
the inequalities Gx ≤ h are technically general enough to handle such constraints, it is
preferable to treat them separately. Since Proposition 2.3.1 provides a means of eliminating
equality constraints from our main application, we defer an abstract discussion of equality
constraints, along with a connection between projected gradient descent and the method
used in Proposition 2.3.1, to Appendix B.4.1.

To deal with the inequality constraints, we apply a quadratic penalty function and
derive an algorithm along similar lines as [167, 188]. Consider the function

Lµ(x) = f(x) + θ(x) +
1

2
µ||(Gx− h)+||22, (4.4)

where (x)+ = max(0, x) is the non-negative part of x. This penalty function is similar to
the standard augmented Lagrangian method [21, Ch. 5], but does not include any dual
variables. We exclude the use of dual multiplier updates since, in the context of our appli-
cation, this would lead to a stochastic approximation on three time-scales; this will become
clear throughout this chapter. Even though the extension of the results here to a bona-
fide augmented Lagrangian algorithm is straightforward, [188] reports similar performance
between stochastic augmented Lagrangian methods and simple quadratic penalties.
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Since the function f is strictly convex, Lµ admits a unique minimizer over Rd which we

will denote xµ
∆
= argmin

x∈Rd
Lµ(x). We proceed to an analysis of the approximation properties

of xµ to the Problem (4.3).

Proposition 4.2.2 (Asymptotic Feasibility). Let µ̄ > 0 and µ ≥ µ̄. Under Assump-
tion 4.2.1, minimizers xµ of Lµ are asymptotically feasible as µ→∞. Precisely, ∃Mµ̄ <∞
such that

||(Gxµ − h)+||2 ≤
√

2LMµ̄

µ
, (4.5)

where L is the Lipschitz constant of f + θ.

Proof. From the definitions, we have for any x ∈ PG,h that Lµ(xµ) ≤ Lµ(x) and hence

f(xµ)− f(x) +
1

2
µ
[
||(Gxµ − h)+||22 − ||(Gx− h)+||22

]
≤ 0

(a)
=⇒ −L||xµ − x||+

1

2
µ||(Gxµ − h)+||22 ≤ 0

(b)
=⇒ ||(Gxµ − h)+||2 ≤

√
2LMµ̄

µ
,

where in (a) we use the Lipschitz constant of f + θ and the fact that x is feasible, in (b)
the constant Mµ̄ <∞ is a bound on ||xµ−x|| which exists by the compactness of PG,h and
the boundedness of ||xµ|| by Lemma B.4.1.

Proposition 4.2.3 (Asymptotic Optimality). The sequence xµ of minimizers of Lµ con-
verges to the minimizer x? of Problem (4.3) as µ→∞.

Proof. We follow the method of [18] and begin with the inequality Lµ(xµ) ≤ Lµ(x?). Then,
calculate

Lµ(xµ) ≤ Lµ(x?)

=⇒ f(xµ) + θ(xµ) +
1

2
µ||(Gxµ − h)+||22 ≤ f(x?) + θ(x?) +

1

2
µ||(Gx? − h)+||22

(a)
=⇒ f(x̄) + θ(x̄) +

1

2
limsup
µ→∞

µ||(Gxµ − h)+||22 ≤ f(x?) + θ(x?),
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where in (a) x̄ is a cluster point of xµ (using the continuity of f + θ and boundedness of
xµ) and ||(Gx? − h)+||2 = 0 since x? ∈ PG,h. Since PG,h is closed and xµ is asymptotically
feasible, we know that x̄ ∈ PG,h and hence f(x̄) + θ(x̄) ≤ f(x?) + θ(x?). Therefore,

limsup
µ→∞

µ||(Gxµ − h)+||22 = 0,

and x̄ must be a minimizer for f + θ over PG,h. Since x? is a unique minimizer, it must be
that x̄ = x?. We conclude that xµ → x?.

4.2.3 Two Timescale Stochastic Approximation

The subgradient of the function Lµ(x) is given by

∂Lµ(x) = ∇f(x) + ∂θ(x) + µGT(Gx− h)+. (4.6)

Therefore, if∇f(x)+∂θ(x) is available to us, the function Lµ(x) is easy to minimize through
the method of subgradient descent: xn+1 ∈ xn − an∂Lµ(xn). However, in the applications
of interest in this Chapter, ∇f(x) is not available (as we do not assume knowledge of f). A
common scenario when f is unknown is when instead it is available through i.i.d. samples,
i.e., a sequence gn such that Egn = ∇f(xn). Plugging this in as an approximation leads,
if θ ≡ 0, to stochastic gradient descent: xn+1 = xn − angn [155].

However, in our application, even assuming the availability of an unbiased gradient
estimate is too strong. Instead, we suppose only that, given some fixed x ∈ Rd, we have
in hand a standard stochastic approximation with function ψ and noise Mn

gn+1 = gn + an[ψ(gn, x) +Mn+1]; g0 ∈ Rd,

such that gn asymptotically approximates the gradient: gn
a.s.→ ∇f(x). It will be seen in the

sequel how this stochastic approximation is constructed, we merely assume for now that it
is available. We consider the stochastic recursive inclusion on two timescales:

gn+1 = gn + an[ψ(gn, xn) +Mn+1]; g0 ∈ Rd

xn+1 ∈ xn − bn[∂θ(xn) + gn + µGT(Gxn − h)+]; x0 ∈ Rd.
(4.7)

The idea that these iterations are on two timescales is that the step-size sequences an, bn
are designed so as to ensure faster convergence of gn than of xn. Specifically, we require
that bn/an → 0 as n → ∞. The reason that this is to be understood as operating on
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two timescales follows from Remark 4.1.1: the simulation time of the ODE ġ = ψ(g)

approximated by gn is given by τa(n)
∆
=
∑n−1

k=0 an and the simulation time of xn is given

by τb(n)
∆
=
∑n−1

k=0 bn. If bn/an → 0, then τa(n)/τb(n) → ∞ so that the recursion in xn
effectively sees only the equilibrium values of gn. That is, larger step-sizes (in this case,
an) simulate the corresponding ODE faster than do the small step-sizes bn.

We will also assume a somewhat stronger stability condition on gn, namely, that it
is almost surely bounded for any possible xn sequence. This assumption may appear
extremely strong, but it will turn out to be satisfied by the algorithm used in our application
(see Section 4.3) We establish the stability of Algorithm (4.7) as follows.

Proposition 4.2.4 (Stability). For the stochastic recursive inclusion (4.7), suppose that
supn ‖gn‖ < ∞ a.s. uniformly over any sequence xn and that an, bn satisfy the Robbins-
Monro conditions (Item 2 of Theorem 4.1.1). Then, under Assumption 4.2.1 supn ||xn|| <
∞ a.s..

Proof. We will first verify the conditions of Theorem 4.2.1 for the differential equation
h(x) = −µGT(Gxn − h)+. We have

hc(x)
∆
=

1

c
h(cx)

= −µ
c
GT(cGx− h)+

= −µGT(Gx− h/c)+

c→∞−→ −µGT(Gx)+
∆
= h∞(x),

where the convergence is uniform.

Consider the Lyapunov function candidate V (x) = ||(Gx)+||22, which naturally satisfies
V ≥ 0. Since PG,h is compact and G is full-rank (by Assumption 4.2.1), the cone CG =
{x ∈ Rd | Gx ≤ 0} is necessarily the origin alone CG = {0}. Therefore, V (x) is coercive,
i.e., V (x)→∞ as ||x|| → ∞. Now, if x(t) is a solution path for ẋ = h∞(x) (such paths are
well defined since h∞ is Lipschitz and grows linearly) then the time derivative of V (x(t))
satisfies

V̇ (x)
∆
= 〈∇V (x), h∞(x)〉
= 〈GT(Gx)+,−GT(Gx)+〉
= −||(Gx)+||22,
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that is, V̇ ≤ 0. Since G is full rank it follows that V̇ (x) < 0 and V (x) > 0 except at x = 0.
Thus, by Lyapunov’s stability theorem (Theorem A.0.1 x = 0 is a globally asymptotically
stable equilibrium for ẋ = h∞(x).

Now, we can apply Theorem 4.2.1. Precisely, we us the uniform stability of gn and
uniform boundedness of ∂θ (which is included in Assumption 4.2.1) so that

lim
c→∞

1

c

[
∂θ(x) + gn + µGT(Gx− h)

]
= h∞(x)

which we have shown has 0 as its unique GAS equilibrium. Therefore, xn is stable,
i.e., supn ||xn|| <∞ a.s..

Remark 4.2.1 (Regularization). The use of a regularization term 1
2µ
||x||22 in the objective

function Lµ would be enough on its own to prove the stability of the stochastic approxi-
mation, and does not require compactness etc. of PG,h. We prove Proposition 4.2.4 using
only this compactness firstly to emphasize that stability does not depend upon the use of
regularization, and secondly because the stability proposition is insightful on it’s own.

This will be enough to establish the convergence to the minimizer of Lµ over Rd of a
stochastic recursive inclusion on two time scales. We start with the case of an ordinary
stochastic approximation, i.e., where θ ≡ 0.

Proposition 4.2.5 (Convergence I). Consider the stochastic approximation (4.7) where
θ ≡ 0 and with an, bn satisfying the Robbins-Monro conditions and are such that bn/an → 0
as n→∞. Suppose that all of the conditions of Proposition 4.2.4 are satisfied, as well as all
of those of Theorem 4.1.1 for the recursion in gn. Finally, suppose that for every x ∈ Rd,
∇f(x) is the GAS equilibrium for the ordinary differential equation ġ(t) = ψ(g(t), x).

Then, for xµ
∆
= argmin

x∈Rd
Lµ(x), we have gn, xn → (∇f(xµ), xµ) almost surely

Proof. The iterates of xn approximate the ODE ẋ = −∇Lµ(x). Using the Lyapunov
function V (x) = Lµ(x) we have V̇ (x) = −||∇Lµ(x)||22 which satisfies V ≥ 0 and V̇ ≤ 0 with
strict equality at every point other than xµ, by the strict convexity of Lµ. By reasoning
similarly as in Proposition 4.2.4, using the compactness of PG,h we find that V is also
coercive. By the Lyapunov stability theorem A.0.1 it follows that xµ is a GAS equilibrium.

To show that xn converges to this equilibrium, use Proposition 4.2.4 to obtain the
stability of the iterates supn ||xn|| < ∞ almost surely. Then, following [25], we can write
the SA (4.7) as
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gn+1 = gn + an[ψ(gn, xn) +Mn+1]; g0 ∈ Rd

xn+1 ∈ xn − an
bn
an

[gn + µGT(Gxn − h)+]; x0 ∈ Rd,

which is an ordinary SA which approximates, by Theorem 4.1.1 and that bn/an → 0,
the pair of ODEs ẋ = 0 and ġ = ψ(g, x). Since ∇f(x) is a GAS of the latter, we must
have gn → {∇f(x) | x ∈ Rd} (this follows by a slightly more general theorem than
Theorem 4.1.1, that xn, gn will converge to invariant sets of the associated ODE, see [25,
Theorem 2.2]). This is the conclusion of Lemma 6.1 of [25]. This is the key lemma for
Theorem [25, Theorem 6.2], which concludes that that xn → xµ and gn → ∇f(xµ) almost
surely as n→∞.

Asynchronous Updates

For the application described in the remainder of this chapter, the gradient estimates gn
will be updated asynchronously. Precisely, the j component of the gradient will be updated
upon the arrival of an item of type j, see Definition 2.2.1. This stochastic approximation
will be separable across item types, and a generalization of Proposition 4.2.5 will continue
to hold in this case, including with a non-zero θ function. In order to formally model this
situation, we follow [25, Ch. 7].

Let φn ∈ [M ] be distributed i.i.d. across the set [M ] according to a categorical distri-

bution, i.e., P{φn = j} ∆
= ηj for some η ∈ int PM , where PM is the probability simplex.

Let νj(n)
∆
=
∑n

k=1 1j(φn) count the number of occurrences of j up to occurrence n. We
henceforth suppose that the function ψ(g, x) is separable across components of g, that is,
the approximation of Equation (4.7) takes the form:

gjn+1 = gjn + aνj(n)1j(φn)[ψj(g
j
n, xn) +Mn+1] ∀ j ∈ [M ],

xn+1 ∈ xn − bn[∂θ(xn) + gn + µGT(Gxn − h)+].
(4.8)

We have
∑∞

n=1 aνj(n)1j(φn)
a.s.
=
∑∞

n=1 an = ∞ since P{φn = j i.o.} = 1 (since φn is an

i.i.d. sequence with P{φn = j} ∆
= ηj > 0). Likewise,

∞∑

n=1

a2
νj(n)1j(θn) <∞ a.s.
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so the modified step-size sequences aνj(n)1j(θn) etc. satisfy the Robbins-Monro conditions
almost surely. Moreover, 1j(φn)Mn+1 remains a Martingale difference sequence (w.r.t. the
enlarged σ-algebra measuring φn), since φn is independent of Mn+1.

In order to establish the convergence of (4.8) we begin by applying the general results
of [144] to establish the convergence of gn.

Proposition 4.2.6 (Convergence II). Consider the stochastic recursive inclusion (4.8).
Suppose that all of the conditions of Proposition 4.2.4 are satisfied (other than θ ≡ 0), as
well as all of those of Theorem 4.1.1 for each j ∈ [M ] of the recursion gjn. That is, that
ψj(g

j, x) has ∂f(x)/∂xj as the unique GAS equilibrium of ġ = ψj(g, x). Finally, suppose
that for every x ∈ Rd, ∇f(x) is the GAS equilibrium for the ordinary differential equation
ġ(t) = ψ(g(t), x). Then, (gn, xn)→ {(∇f(x), x) | x ∈ Rd} almost surely.

Proof. Firstly, the results of [144] allow for the asynchronous update schedule to be driven
by a Markov chain, i.e., at each iteration there is some random set of coefficients Jn ⊆ [M ]
which are updated in Equation (4.7) and Jn is a Markov Chain over the power set 2[M ],
and the transition kernel additionally depends on the iterates xn. In both [144] and [25,

Ch. 6] it is necessary that there is some ν0 > 0 such that lim inf
n→∞

νj(n)

n
≥ ν0 almost surely6.

In this context, an assumption stronger than boundedness is used by [144], namely that
there is some compact set C ⊂ Rd such that ∀n : xn ∈ C almost surely. This assumption
is used in [144, Lemma A.1] to select some ν0 > 0 through an application of Weierstrass’
theorem over the compact C to ensure that there is some uniform lower bound on the
stationary probabilities of the Markov Chain Jn. In Equation (4.7) the update index does
not depend upon x and by the law of large numbers we have νj(n)/n→ ηj ≥ minv ηv > 0.
Thus, we can replace Assumption (B1a) of [144] (that xn ∈ C for compact C) with the
weaker assumption that the iterates are merely stable, Proposition 4.2.4. Moreover, the
same reasoning allows us to drop the assumption made by [144] that supn

abvnc
an

< ∞ for
v ∈ (0, 1). The remaining assumptions (B1), (B2), (B3), (B4), (B5) of [144] are then
immediate from the assumptions we have made, with q = 2 in (B5) corresponding to the
usual Robbin’s Monro conditions.

Now, since each component j of the iterates (4.7) are updated separately and have the
assumed GAS equilibria, the convergence towards the set {(∇f(x), x) | x ∈ Rd} follows
through [144, Corollary 4.4].

6This uniform bound guarantees that each component is updated “comparably often”.
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Proposition 4.2.7 (Convergence III). Consider the stochastic recursive inclusion (4.7).
Suppose that all of the conditions of Proposition 4.2.4 are satisfied (other than θ ≡ 0), as

well as all of those of Proposition 4.2.6. Then, where xµ
∆
= argmin

x∈Rd
Lµ(x), we have xn → xµ

almost surely.

Proof. We follow the methods of [25, Ch. 5]. Since we have xn+1 ∈ xn − bn[∂θ(xn) + gn +
µGT(Gxn−h)+] we can instead write this as xn+1 = xn + bn[zn + εn] where zn ∈ −∂Lµ(xn)
and εn = gn −∇f(xn). From Proposition 4.2.6 we have εn → 0 almost surely.

Now, following [25], let τn =
∑n−1

k=0 bk and z̄(t) = zn for t ∈ [τn, τn+1) be a piecewise
constant interpolation of the sequence zn. As well, let x̄(t) be a linear interpolation of the
xn sequence, i.e.,

x̄(t) = xn + (t− τn)[zn + εn], t ∈ [τn, τn+1),

and xs be defined through integration of z̄(t) as in xs(t) = x̄(s) +
∫ t
s
z̄(u)du. Then,

xτn(τn+m + t) = x̄(τn) +
∑m−1

k=0 bn+kzn+k + (t − τn+m)zn+m for t ∈ [τn+m, τn+m+1) and
similarly x̄(τn+m + t) = x̄(τn) +

∑m−1
k=0 bn+kzn+k + (t− τn+m)zn+m +

∑m−1
k=0 bn+kεn+k. Since

bn → 0 and εn → 0 we have
∑m−1

k=0 bn+kεn+k → 0 as n→∞ for any finite m. Thus, for any
finite T , since τn →∞ as n→∞ we have

lim
t→∞

sup
s∈[0,T ]

||x̄(t+ s)− xt(t+ s)|| → 0.

This is the appropriate analogy to [25, Lemma 5.1]. It then follows from [25, Theorem
5.2] and [25, Corollary 5.4] that if the DI ẋ ∈ −∂Lµ(x) has a GAS equilibrium, then xn
converges to it almost surely.

We turn now to analyze the attractors of this DI. To do so, consider the coercive
Lyapunov function V (x) = 1

2
||x − xµ||22. The time derivatives satisfy the DI V̇ (x) ∈

−(x − xµ)T∂Lµ(x). Then, since for any φ ∈ ∂Lµ(x) we have ∀x ∈ Rd : Lµ(xµ) ≥
Lµ(x) + 〈φ, xµ − x〉 and thus for any x 6= xµ we have 〈φ, xµ − x〉 ≤ Lµ(xµ) − Lµ(x) < 0.
Therefore, since V̇ (x) = (xµ − x)Tφ for some φ ∈ ∂Lµ(x), we have V̇ (x) < 0 for every
x 6= xµ. It follows by Theorem A.0.2 that xµ is a GAS equilibrium.

4.3 Stochastic Approximation of Supply Curves

This Section reviews stochastic approximation methods for the equations s = λW (x) and
W−1(s/λ) = x, given observations of the indicator functions 1(pn ≤ x) for prices pn. Since
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W are monotone functions, this situation is closely related to the classical problem of
Robbins and Monro [153]. The results of this section will correspond a fast timescale in a
combined SA which solves Problem (P ).

We first focus on a single item type, and therefore we specialize Definition 2.2.1 for this
section to treat just a single stream of items arriving according to a Poisson process of rate
λ > 0, having inter-arrival times τn ∼ exp(λ) and with prices drawn from a single supply
curve pn ∼ W .

Additionally, this chapter makes use of some additional regularity assumptions for
W (x).

Assumption 4.3.1 (Additional Regularity). The supply curvesWj(x) (c.f., Definition 2.1.1)
are Lipschitz and continuously differentiable.

4.3.1 Estimating λW (x)

Let us suppose that we have some fixed bid x. If W is unknown, how do we estimate
s = λW (x), the rate at which items are obtained? This is naturally an important quantity,
and will turn out to be equal to an important derivative used in Section 4.5. Consider the
stochastic approximation with x ∈ R held fixed

sn+1 = sn + an[1(pn+1 ≤ x)− τn+1sn], (4.9)

We can rewrite this equation as

sn+1 = sn + an
[
W (x)− τ̄ sn +

(
τ̄ sn − τn+1sn + 1(pn+1 ≤ x)−W (x)

)
], (4.10)

and, recognizing that the term in parentheses is constructed to have mean 0, we recognize
the ODE

ṡ = W (x)− τ̄ s.
The analysis of this ODE and algorithm (4.9) is fairly straightforward: we verify the
assumptions of Theorem 4.1.1 using the Borkar-Meyn theorem 4.2.1 to establish stability.
This is the simplest analysis we can hope for.

Remark 4.3.1 (Censored Data). Note that the price of an item does not need to be
known, only whether or not the bidder won the auction, i.e., 1(pn+1 ≤ xn). This an even
weaker requirement than the situation faced in reality wherein only the winning bidder
learns the price of the item, c.f., Remark 2.4.1.
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Remark 4.3.2 (Averaging). The rate s = λW (x) at which items are obtained can be
calculated through simple averaging. That is, calculate the empirical probability of winning
W (x) ≈ 1

N

∑N−1
n=0 1(pn+1 ≤ x) and the average inter-arrival time 1/λ ≈ 1

N

∑N−1
n=0 τn+1.

These empirical averages converge by the law of large numbers. However, we make use of
the formalism of stochastic approximation in order to later combine the results, using the
analysis of Section 4.2, with gradient-based optimization algorithms on slower time scales.

We now establish the almost sure convergence of this algorithm.

Proposition 4.3.1 (Convergence). Let x ∈ R be some fixed bid. Suppose prices pn
i.i.d.∼ W ,

inter-arrivals τn, and the supply curve W are generated according to the market model of
Definition 2.2.1. Then, if an satisfies the Robbins-Monro conditions, the iterates sn of
Equation (4.9) converge almost surely sn

a.s.→ λW (x).

Proof. The convergence will follow by Theorem 4.1.1. Clearly, Item 2 is satisfied by as-
sumption.

Consider now Item 3. Denote by Fn the σ-algebra generated by 1(pn+1 ≤ x) and τn
then E[τ̄ sn − τn+1sn | Fn] = 0 and E[1(pn+1 ≤ x)−W (x) | Fn] = 0 so that the noise term
of Equation (4.10) is a Martingale difference sequence. Additionally, we have

E
[(
τ̄ sn − τn+1sn + 1(pn+1 ≤ x)−W (x)

)2 | Fn
]

= s2
n Var τn+1 + Var 1(pn+1 ≤ x)

≤ K(1 + s2
n),

where there exists some appropriate constant K since τn has finite variance.

The remainder of the proof is concerned with the ODE ṡ = W (x)− τ̄ s. This function is
Lipschitz continuous by Assumption 4.3.1 (establishing item 1). To recognize that λW (x)
is a globally asymptotically stable equilibrium, consider the Lyapunov function V (s) =
1
2

(
W (x)− τ̄ s

)2
which is coercive, satisfies V ≥ 0, and V̇ (s) = −

(
W (x)− τ̄ s

)2
< 0 except

at s = λW (x) where V̇ (s) = 0. Thus, Lyapunov’s stability theorem (Theorem A.0.1)
establishes that λW (x) is a GAS equilibrium for the ODE, and we have established item 4.

Finally, let hc(s) = 1
c
W (x)− 1

c
τ̄(cs) so that h∞

∆
= lim

c→∞
hc(s) = −τ̄ s, where the conver-

gence is uniform. The function h∞(s) evidently has 0 as its unique GAS equilibrium, so
the algorithm is stable (Item 5) by Theorem 4.2.1.

It will also be important for later that the algorithm is stable over any sequence of
inputs.
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Lemma 4.3.1 (Uniform Stability). Let an be a step-size sequence satisfying the Robbins-
Monro conditions and suppose that µ(n) ∈ R is an arbitrary sequence and p(n), τ(n) are
i.i.d. random variables in R+ with finite variance and mean Eτ(n) = τ̄ . Then, the iterates
w(n + 1) = w(n) + an[1(p(n + 1) ≤ µ(n)) − τ(n + 1)w(n)], for arbitrary w(0) ∈ R are
stable, i.e., supn|wj(n)| <∞ a.s.

Proof. Consider the stochastic inclusion w(n + 1) ∈ w(n) + an[Z − τ(n + 1)w(n)] where
Z = [0, 1] is the unit interval. These iterations approximate the differential inclusion
ẇ ∈ h(w) where h(w) = Z − τ̄w since we can equivalently write w(n+ 1) ∈ w(n) + an[Z −
τ̄w(n) + (τ̄ − τ(n+ 1))] with noise term τ̄ − τ(n+ 1). The set-valued map h has compact
and convex values, a closed graph, and satisfies |z| ≤ 1 + τ̄ |w| for any z ∈ h(w). It is thus
a Marchaud map.

Let hc(w) = 1
c
h(cw), which, since h is bounded, converges uniformly hc → h∞ for

h∞(w) = −τ̄w. This latter function has 0 as its unique globally asymptotically stable
equilibria. Therefore, the stochastic iterates w(n) are bounded almost surely by Proposi-
tion 4.2.1.

4.3.2 Estimating W−1(s/λ)

The dual problem to the stochastic approximation of λW (x) is that of W−1(s/λ), i.e., solv-
ing s = λW (x) for s or for x, respectively. The former is a question of simply estimating
the rate at which items are acquired given a bid of x (carried out in Section 4.3.1), and
the latter is a question of finding the bid needed to obtain items at the rate s.

We here suppose that there is some fixed target rate s > 0 (not to be confused with
the rates Rij with which we allocate items) at which we want to obtain items. That is, we
want to find an appropriate x such that λW (x) = s; equivalently x = W−1(s/λ). This is a
problem of learning to bid and falls into a similar problem domain as that studied by [212,
96].

To this end, and similarly to Section 4.3.1, we may consider the stochastic approxima-
tion

xn+1 = xn + an[sτn+1 − 1(pn+1 ≤ xn)], (4.11)

starting at some arbitrary initial point x0 ∈ R, and with step sizes an, as usual, satisfying
the Robbins-Monro conditions. By re-writing this recursion as
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xn+1 = xn + an
[
sτ̄ −W (xn) +

(
sτn+1 − sτ̄ +W (xn)− 1(pn+1 ≤ xn)

)]
, (4.12)

it can be recognized that this approximates the ordinary differential equation

ẋ = sτ̄ −W (x).

This algorithm is a natural dual to that of Equation (4.9) and again, convergence towards
W−1(s/λ) can be established. In fact, the convergence of a slightly more sophisticated
algorithm will be established, namely:

τ̄n+1 = τ̄n + an
[
τn+1 − τ̄n

]
,

xn+1 = xn + an
[
sτ̄n − 1(pn+1 ≤ xn)

]
,

Ln+1 = Ln + an
[
pn+11(pn+1 ≤ xn)− τ̄nLn

]
,

(BA)

where we simultaneously estimate the inter-arrival time τ̄n and the average cost of biding
Ln as well. The label (BA) stands for bid adaptation. In our simulations, we have observed
that this approximation converges faster than the univariate algorithm in xn alone (likely
as a result of maintaining an estimate of τ̄ , as in Polyak averaging [146]), and the bid cost
estimate is an important practical statistic. Thus, while the simpler iterations of (4.12) are
theoretically adequate, the iterations of (BA) are more practically relevant and our proofs
of this section will cover this case.

The convergence of this algorithm depends upon an analysis of the system

τ̇(t) = 1/λ− τ(t)

ẋ(t) = sτ(t)−W
(
x(t)

)

L̇(t) = τ̄ f
(
x(t)

)
− τ(t)L(t),

which, by inspection, can be seen to have equilibria τ(∞) = 1/λ, x(∞) = W−1(s/λ)
and L(∞) = λΛ(s/λ). The formal arguments used to establish that this equilibrium is
globally asymptotically stable are relegated to the appendix. As well, the stability of the
iterations (BA) cannot be established through simple application of Theorem 4.2.1, and
instead relies upon an ad-hoc argument that, as xn → ∞, it eventually behaves as a
random walk with negative drift, and must therefore be bounded.

Proposition 4.3.2 (Bid Adaptation). Suppose that τn, pn are drawn according to the mar-
ket model Definition (2.2.1) and for a fixed type j ∈ [M ] (omitted from the notation) with
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supply curve W that also satisfies Assumption 4.3.1. Let f(x) =
∫ x

0
uW ′(u)du be the cor-

responding cost curve, and Λ(q) = f ◦ W−1(q) the acquisition cost. If an satisfies the
Robbins-Monro conditions and s ∈ (0, λ) then the stochastic approximation described in
Equation (BA), converges almost surely:

(τ̄n, xn, Ln)
a.s.→ (τ̄ ,W−1(s/λ), λΛ(s/λ)) as n→∞, (4.13)

where τ̄ = 1/λ.

Proof. Consider the stochastic approximation (BA). If we again denote τ̄ = 1/λ, it can be
rewritten in the canonical form

τ̄n+1 = τ̄n + an
[
τ̄ − τ̄n +

(
τn+1 − τ̄

)]
,

xn+1 = xn + an
[
sτ̄n −W

(
xn
)

+
(
W
(
xn
)
− 1(pn+1 ≤ xn)

)]
,

Ln+1 = Ln + an
[
f
(
xn
)
− τ̄nLn +

(
pn+11(pn+1 ≤ xn)− f

(
xn
))]

.

In more abstract terms, the recursions can be written simply as

zn+1 = zn + an[h(zn) +Mn+1],

where zn = (τn, xn, Ln), h is the function

h(τ, x, L) = (τ̄ − τ, sτ −W
(
x
)
, f
(
x
)
− τL),

which summarizes the dynamics, and

Mn+1 =
(
τn+1 − τ̄ ,W

(
xn
)
− 1(pn+1 ≤ xn), pn+11(pn+1 ≤ xn)− f

(
xn
))

is the remainder term. In order to establish convergence, we need only verify the as-
sumptions required by Theorem 4.1.1. In particular, we must show that h is Lipschitz,
that Mn is a uniformly square integrable Martingale difference sequence, and stability :
supn||zn||2 < ∞ a.s. The stability condition is established in Corollary B.4.1. We verify
the remaining conditions in turn. The function h is Lipschitz by Assumption 4.3.1.

It is also clear that supnE||Mn||22 is bounded by the assumption that pn has finite
variance. To see that Mn+1 is a Martingale difference sequence we must show that
E[Mn+1 |Fn] = 0 where Fn is the σ−algebra generated by Mn. Now, it in fact be-
comes clear that E[Mn+1 | Fn] = 0 by construction since xn is Fn−measurable and thus
E[1(pn+1 ≤ xn) | Fn] = W

(
xn
)

and E[pn+11(pn+1 ≤ xn) | Fn] = f
(
xn
)
.

Finally, since the ODE ż = h(z) has a unique globally asymptotically stable equilibrium
(Lemma B.4.5) consisting of τ̄(t) → τ̄ , x(t) → W−1(s/λ), L(t) → Λ(r) as t → ∞, the
convergence announced in Equation (4.13) follows by Theorem 4.1.1.
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Figure 4.1: Bid Adaptation
Numerical simulation of the process of finding the bid x corresponding to a target supply s such

that λW (x) = s (middle subfigure). A total of 50 simulations are layered in the figure to show

the variation.

Computational Example We have carried out an illustrative Monte Carlo simulation
of the bid adaptation algorithm (BA) for a single supply curve and fixed supply target
s = λ/2. Prices are drawn i.i.d. from a Gamma distribution with mean 10 and variance
10. The results of this simulation are depicted in Figure 4.1, where separate colours
indicate separate simulation runs. In each case, the simulation is initialized at τ̄0, x0, L0 =
1, 1, 1. We can observe that the estimation of τ̄ = 1/λ converges extremely rapidly, as this
estimator is essentially nothing more than a type of running average. The bid xn, which
approximates the inverse xn ≈ W−1(s/λ), and the cost Ln ≈ λf ◦ W−1(s/λ), converge
to within a modest factor of the asymptotic values within a few hundred to a thousand
iterations.
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4.4 Primal Algorithms

Section 4.3.2 describes a method which, given a desired target supply rate sj for items
of type j, estimates the cost λjΛj(sj/λj) of obtaining this rate, as well as the bid xj
which attains it, i.e., a bid such that λjWj(xj) = sj. Using this information, and a key
fact about derivatives of Λ in second price auctions (Lemma 4.4.1), we will estimate the
solution R ∈ RN×M of the main Problem (P ), and hence derive the supply rate requirement
sj =

∑
i∈Bj λjRij which feeds into the stochastic approximation of Section 4.3.2. This

primal stochastic approximation is analyzed in Section 4.4.1.

4.4.1 Primal Stochastic Approximation

The key Lemma that enables the solution of the primal problem by stochastic approxima-
tion is the key fact that derivatives of Λ are obtained automatically from the process of
calculating bids.

Lemma 4.4.1 (Cost Derivative). Given a target supply rate s ∈ (0, λj), the bid x having the
property that λjWj(x) = s additionally satisfies the derivative property d

ds
λΛj(s/λ) = xj.

Proof. We know from Proposition 2.1.1 that λΛ′(s/λ) = λW−1(s/λ) on s ∈ (0, 1). Thus,
we see that since λW (x) = s we have in fact x = W−1(s/λ) = λΛ′(s/λ).

Remark 4.4.1 (Alternative Auction Mechanisms). Lemma 4.4.1 is particular to the second
price auction mechanism. While most of the methods of the previous Sections can easily
be adapted to a first price auction, this does not appear to be the case for the methods of
the present section, since the derivative of Λ, in general, depends on the derivative W ′ of
the supply curve itself.

Since this derivative becomes available to us automatically through the bidding process,
we are motivated to study a first order (i.e., using only first derivatives) method for the
solution of Problem (PR) which can be applied via a second stochastic approximation on
a slower time scale.

For the purposes of applying stochastic approximation for the calculation of R, it is
desirable to allow iterations of Rij to take values in all of R, rather than just inside the
interior of the constraints of Problem (PR). However, it is also important, for the stability of
the iterations of Equation (BA) (c.f., Proposition 4.3.2) and the existence of the derivative
Λ′ (c.f., Lemma 4.4.1) that sj be contained within the open interval (0, λj); indeed, if the
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support of a supply curve W is all of R+ then it requires a bid x→∞ to obtain all of the
available supply. With this in mind, we fix some small boundary approximation parameter
ε ∈ (0, 1) and consider the function Zε : RM → RM which truncates components of s:

Zε(s)j = max
(

min
(
sj, λj − ε

)
, ε
)
. (4.14)

In general, ε could be chosen to depend upon j, but this distinction is merely a change in
notation. As well, it is to be understood that the function Zε need not use the exact arrival
rate λj, but needs to only have access to a lower bound. This is not a strong assumption
as the average arrival rate λj is the easiest parameter to estimate, c.f., Figure 4.1, and is
essentially independently estimated from all other parameters.

We then specify a function Lεβ by writing down the gradient we want it to have, namely:

∇Lεβ(u) = BT∇Λ(Zε(s̄+Bu)) +
1

β
u+ βGT

(
Gu− h− ε

)
+
, (4.15)

where Λ, B,G, h were defined in Chapter 2 Problem (2.15) and essentially serve to write
Problem (PR) in more compact notation and without equality constraints. This gradient
corresponds to that of the function

Lεβ(u) = Λ̃ε(Zε(s̄+Bu)) +
1

2β
||u||22 +

1

2
β||
(
Gu− h− ε

)
+
||22, (4.16)

where Λ̃ε is equal to Λ within the ε-tightened bounds of s, and is linearly extended (i.e., by
matching derivatives) beyond that point. This ensures that the derivative

Λ̃′j(
1

λj
Zε(s)j) = W−1

j (
λj − ε
λj

)

at s > λj − ε corresponds to the asymptotic value of xn in the stochastic approxima-
tion (4.13) with target supply s = λj−ε and similarly for s < ε. Aside from the ε-tightening
and the linear extension of Λ, the function Lεβ corresponds exactly to the objective of the
regularized and penalized Problem

minimize
u

Λ(s̄+Bu) +
1

2β
||u||22 +

1

2
β||
(
Gu− h− ε

)
+
||22. (4.17)

The minimizers of (4.17) approximate the least norm solution of Problem (P u), c.f., Prob-
lem (P u

β ) in Chapter 2.
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4.4.2 Primal Convergence

The parameter ε has a desirable regularizing effect on solutions: each contract must use at
least some items of every type available to it; and it will never seek to obtain all the supply
available for any particular item – thus ensuring stability of the bidding stochastic approx-
imation c.f., Proposition 4.3.2. Moreover, contracts must be slightly over-provisioned (by
the amount ε), which can be tuned to reduce the probability of failing to meet contracts
in the short run (this is explored further in Chapter 5). Moreover, the ε parameter can
be used to ensure that minimizers of Lεβ are strictly feasible for the original problem, as is
seen in the following proposition.

Proposition 4.4.1 (Feasibility). Suppose that there is adequate supply (c.f. Assump-
tion 3.0.1) for Problem (P ). Denote by uεβ the minimizer of Lεβ. Then, there exists ε > 0

and a corresponding β̄ε > 0 such that ∀β ≥ β̄ε the minimizers uεβ exist and are strictly
feasible for Problem (2.15).

Proof. Since the constraints have non-empty interior (by the adequate supply assumption),
there exists an ε such that the tightened constraints still admit at least one feasible point.
Now, we know from Proposition 4.2.2 that uεβ is asymptotically feasible for the ε-tightened

problem and hence there must be a point β̄ε such that uεβ is strictly feasible for the original

un-tightened constraints for every β ≥ β̄ε.

Finally, we combine these results with those of Section 4.3.2 to derive a stochastic
approximation on two time scales which is capable of dynamically managing a collection
of impression contracts without requiring accurate knowledge of the supply curves Wj.

Recall from Definition 2.2.1 that we have an i.i.d. sequence (φn, pn) of (type, price)

pairs modelling the items arriving at auction. Specifically, we have φn
i.i.d.∼ Cat(η) and

pn | φn ∼ Wφn , for η ∈ RM
++. The stochastic approximation estimating the bid xjn for items

of type j will be updated upon each arrival of an item of type j. This is modelled as in
Section 4.2.3: let νj(n) =

∑n
k=1 1j(φn) count the number of arrivals of type j up to (and

including) time n.

Then, to keep notation compact, we let ψ(τ̄ , x, s) be the mapping from RM ×RM ×RM

into RM × RM which implements the bid-adaptation stochastic approximation of Equa-
tion (BA). That is, such that, using M j

n to denote the jth component of the corresponding
noise, we have

(τ̄ jn+1, x
j
n+1) = (τ̄ jn, x

j
n) + aνj(n)1j(φn)[ψj(τ̄

j
n, x

j
n, sj) +M j

n+1],
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where we are careful to note that each component of this algorithm operates independently
of the others. Thus, for any s having 0 < sj < λj, the convergence τ̄ jn → 1/λj and
xjn → W−1(sj/λj) almost surely by Proposition 4.3.2.

We then combine this recursion with stochastic gradient descent applied to Lεβ and
consider the algorithm

(τ̄ jn+1, x
j
n+1) = (τ̄ jn, x

j
n) + aνj(n)1j(φn)[ψj(τ̄

j
n, x

j
n, Zε(s̄+Bun)) +M j

n+1], j ∈ [M ]

un+1 = un − bn
(
BTxn +

1

β
u+ βGT(Gun − b− ε)+

)
,

(P-SA)

where bn is another Robbins-Monro step size sequence which additionally satisfies bn/an →
0, c.f., Section 4.2.3. The first recursion is used to provide adaptive estimates of the gradient
of Λ (via Lemma 4.4.1 and Equation (4.15)).

As well, recall from Proposition 2.3.1 that the sequence of iterates un are confined
to the (d − N)-dimensional subspace induced by the

∑
j∈Ai vijRij = Ci constraint. The

iterates un asymptotically minimize Lεβ. Approximate solutions, Rn, of the ε-tightened
version of the original problem (P ) are reconstructed from un according to the description
of Proposition 2.3.1. The minimizers of Lεβ converge to the least-norm ε-tightened solution
as β →∞.

Theorem 4.4.1. Suppose there is adequate supply (Assumption 3.0.1) for Problem (P )
and that ε > 0 is such that the ε-tightened constraints remain non-empty. As well, suppose
that both an, bn satisfy the Robbins-Monro conditions and bn/an → 0 as n→∞. Then, the
iterates un

a.s.→ uεβ = argmin Lεβ converge almost surely as n→∞.

Proof. The projection Zε ensures that Zε(sn) is always strictly feasible for Problem (P )
and therefore satisfies the convergence requirements of Proposition 4.3.2. Moreover, this
projection, combined with the linear extension Λ̃, c.f., Equation (4.15), and Lemma 4.4.1
ensures that BTxn + 1

β
u + βGT(Gu − h − ε)+ is an appropriate (for Proposition 4.2.6)

approximation of ∇Lεβ – see Equation (4.16).

We proceed to verify the requirements of Proposition 4.2.6. Firstly, the iterates xn are
bounded by Lemma B.4.1. Lemma B.4.5 established the global asymptotic equilibria of the
first approximation. As well, the matrix G is full rank and the polytope PG,h is compact by
Proposition 2.3.1. This establishes the announced convergence by Proposition 4.2.6.
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4.4.3 Primal Computational Examples

In order to illustrate the performance of our methods, we have carried out numerical
simulations for an example contract management problem with M = 5 distinct item types,
N = 6 contracts, and vij ∈ {0, 1}. The prices (denominated in arbitrary monetary units)
pn for each type are drawn i.i.d. from Gamma distributions and arrive according to Poisson
processes of rates (having units of Hz) λ =

(
λj, j ∈ [M ]

)
. The specific parameters are

given by, where p(n) =
(
pn | φn = 1, . . . , pn | φn = M

)

λ = (3.0, 16.0, 18.0, 20.0, 22.0),

E[p(n)] = (20.0, 23.0, 26.0, 29.0, 32.0),

Var[p(n)] = (20.0, 18.0, 16.0, 14.0, 12.0),

(4.18)

which is enough to fully specify the market model (see Definition 2.2.1). The item type
j = 1 is the cheapest, yet has by far the lowest supply and has a high variance, these
parameters stress the stochastic approximation since the optimal solution is likely to require
nearly all of the supply of type j = 1 that is available. As well, the parameters are chosen
such that there is not a single optimal bid ρ? as in Corollary 3.1.3, as can often happen
when vij ∈ {0, 1}. The N = 6 contracts are specified through the sets A =

(
Ai, i ∈ [N ]

)

and C =
(
Ci, i ∈ [N ]

)
with vij ∈ {0, 1} as

A =
(
{1, 5}, {2, 4}, {3}, {1, 2, 3}, {3, 4, 5}, {2, 3, 4}

)
,

C =
(
4.0, 3.4, 1.8, 6.6, 4.4, 5.2

)
.

(4.19)

This indicates, for example, that contract 1 can be fulfilled by obtaining, on average, 4
items per second of types 1 or 5 (which arrive at rates λ1 = 3.0 and λ5 = 22.0, respectively).
These items have an average price of 20.0 and 32.0, as well as a variance in prices of 20.0
and 12.0, respectively. As well, the dimensionality of R is d = 14 and u ∈ R9.

Initialization, Parameter Selection, and Other Considerations

In order to initialize Algorithm (P-SA), a vector u0 needs to be specified. In principle,
since the Algorithm is convergent for any starting point, the algorithm can be initialized
at random or arbitrarily (e.g., at u0 = 0). However, superior initialization methods are
available.

Firstly, if prior information is available, then an ε-tightened formulation of Problem (P )
can be solved, using an appropriate model of Λ which captures this prior knowledge, and
then the solution of this program can be used as the initialization u0.
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Absent any prior knowledge, we propose to use the Chebyshev center of the constraint
polytope, defined as a center of a ball having maximum radius that is contained in the
constraint polytope PG,h (see [29, Sec. 8.5]). Since PG,h is a polytope, the Chebyshev
center can be obtained via the solution of a linear program. Moreover, the value of this
program, called the depth δ of the polytope, can be used to choose the constraint tightening
parameter, e.g., via ε = δ/100 (the choice made in our simulations). It is therefore guar-
anteed that this ε will still result in a feasible optimization problem after the constraints
are tightened.

In the absence of prior information, there is no means for initializing the bid estimate x0.
For this reason, we do not perform any updates of the matrix Rn until 250 iterations of the
bid adaptation procedure have occurred. This reduces any large initial fluctuations in the
algorithm caused by extremely inaccurate estimates of the gradient of Λ. A great deal of
extreme fluctuations are also avoided by eliminating the equality constraints

∑
j∈Ai Rij =

Ci (see Proposition 2.3.1); if these constraints are instead implemented with a penalty, the
algorithm will tend to hug this face of the polytope and make slow progress – constantly
oscillating between feasible and infeasible points with corresponding large fluctuations in
the gradient estimates (see Appendix B.4.1 for further discussion).

The step size schedule an, bn can have a significant impact on the convergence rate of
the algorithm, but tuning these sequences is largely a matter of empirical experimentation
(though see [78] and the commentary of [25, Ch. 2]). The only strict requirement placed on
these sequences is that bn/an → 0, in order to ensure adequate separation of the two time
scales. For the purposes of our simulation we have used an = 2n−0.55 and bn = n−0.95. In
practice, these are often parameterized by an = a0n

−φa , and time-scale separation simply
requires that φa < φb.

Finally, the parameter µ needs to be large (c.f., Proposition 4.4.1), but using too large
of a value of µ can easily cause numerical overflow in early iterations. One method to deal
with this is to project iterates of the approximation back onto either the feasible region, or
a ball of arbitrarily chosen (but relatively small) radius whenever they drift too far from
any reasonable values. This procedure allows for the step sizes an, bn to decay sufficiently
to prevent unreasonable excursions. As long as these projections are only carried out a
finite number of times, the convergence analysis is not impacted. Alternatively, µ can be
increased (e.g., via µ ← (1 + κ)µ, κ > 0) throughout the simulation (perhaps up to some
large maximum value) whenever the iterates are detected to be infeasible. This latter
method has been used in our simulations in order to avoid any unusual discontinuous
jumps in the algorithm, with the value κ = 0.01, up to a maximum of µ ≤ 104. This
maximum value seems to be reasonable based on simulation evidence of [64].

112



0

200

400

600

C
os

ts
[¤

/s
]

Average Acquisition Costs pn1[pn ≤ xn]

EWM (hl = 10s) EWM (hl = 200s) Optimal Value (ε = 0)

0 200 400 600 800 1000
Time t [s]

−4

−2

0

E
rr

or

Allocation Rate Tracking Error for Each Contract ċi − Ci

i = 1

i = 2

i = 3

i = 4

i = 5

i = 6

EWM (hl = 200s)

EWM (hl = 10s)

Figure 4.2: Costs and Contract Fulfillment
Convergence of the empirical (i.e., external to the algorithm) costs and item acquisition rates.

The iterates are extremely noisy, but convergence is clear when averaged over a long enough

time period.

Results Numerical results of the stochastic approximation (P-SA) are given in Figure 4.2
and 4.3. With reference to Figure 4.2, we have calculated exponential moving averages
(with half lives of both 10s and 200s of simulation time) of the sequence pn1[pn ≤ xn]
which provides an approximation to the long-term average cost, as well as averages of the
number of items assigned to each contract, providing an empirical estimate of ċi ≈ Ci. The
results indicate that there is, in the short run, a substantial degree of variation in these
empirical averages, but which is averaged out over longer time horizons. This variation is
a result of the high degree of price variation we have included in our simulation. But, this
accords accurately with realistic data, where price variation can be quite substantial [215,
113]. Some of this variation can be damped by methods of feedback control [212, 96], at
the expense of higher long term average costs.

Inspecting the bottom subfigure of Figure 4.3, it should be clear that the wide variations
in acquisition rates are not an inherent aspect of the stochastic approximation algorithm,
since the target acquisition rates sj remain stable after a brief initial learning period.
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Figure 4.3: Supply Rates and Bids
Convergence of sj =

∑
i∈Bj Rij and of the bid xj = W−1

j (sj), these quantities are internal to the

algorithm. The optimal bid and item acquisition rates are calculated by solving Problem (P )

with exactly known supply curves. The poor behaviour of the bid estimate associated to type

j = 1 is explained further in the main text.
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However, the actual bid xjn ≈ W−1
j (sjn) can exhibit greater instability in regions where

Wj has flat curvature, since large differences in bids can result only in small differences in
empirical supply rates. The item type j = 1 in our simulation is deliberately constructed
to illustrate this challenge: early in the simulation x1

n exhibits wild oscillations since the
constraint s1 ≤ λ1 is nearly binding and is hence subject to the quadratic penalty as well
as being in a region of low curvature. As well, the arrival rate λ1 is slow, hence impeding
rapid convergence.

We finally see from both of these figures that the algorithms have converged after about
300 seconds of simulation time, which corresponds to approximately 24, 000 item arrivals.
According to statistics reported by [215], these arrival rates should be accurate within
reasonable orders of magnitude (particularly considering the growth of the industry since
the appearance of this paper). Still, the actual arrival rates will be highly dependent upon
what how the type of an item is characterized.

4.5 Dual Algorithms

Dually to Section 4.3.2, Section 4.3.1 describes how to estimate the rate at which items
are obtained sj = λjWj(x) given some fixed bid x ∈ R. This will be similarly combined
with properties of the derivative of Λ? to derive dual stochastic approximations for the
solution of (D). In fact, it will be seen that there is a further duality induced by the
properties that these dual variables must necessarily satisfy, and induces two equivalent
unconstrained problems (Dµ), whose sole variables are µ, and (Dρ), whose sole variables
are ρ. We derive similar stochastic approximation algorithms for both of these problems,
confining our theoretical analysis to Problem (Dµ).

4.5.1 Dual Stochastic Approximations

In this section, we will consider stochastic approximation algorithms for the solution of the
dual problem (D). We will see that this approach is, naturally, dual to that of Section 4.4,
but in addition that there is a further symmetry between the dual variables µ and ρ. Indeed,
by Proposition 3.1.3 it is possible to write one set of variables in terms of the other, and
this will result in two unconstrained optimization problems (Dµ) and (Dρ). Stochastic
approximation algorithms can be derived for either of these unconstrained problems and
thus there is a choice between approximating µ, the bids associated to item types, or ρ,
the pseudo-bids associated to contracts.
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Remark 4.5.1 (Stochastic Subgradient Ascent). In an abstract setting where we seek
to solve the unconstrained convex maximization problem maxx J(x), if the function J is
differentiable then an appropriate method is to iterate xn+1 = xn + an∇J(xn). That is,
gradient ascent. If J is not differentiable, since it is convex it still has a subdifferential
∂J(x) = {φ ∈ Rd | J(z) ≥ J(z) + 〈φ, z − x〉}, which can be used in a subgradient ascent
algorithm (see, e.g., [30, Ch. 3]). This algorithm is described by a recursive inclusion
xn+1 ∈ xn + an∂J(xn). What this notation means is that xn+1 = xn + angn for some
gn ∈ ∂J(xn). This is the algorithm that is implemented as a stochastic approximation in
this chapter.

Combining the result of item 2 from Proposition 3.1.3 to write µ in terms of ρ and
vice-versa, we can obtain two further unconstrained forms of the dual (D). Specifically, we
have µj = max

i∈Bj
vijρi and ρi = min

j∈Ai

( µj
vij

)
, which results in:

maximize
µ

N∑

i=1

Ci min
j∈Ai

(µj/vij)−
M∑

j=1

λjΛ
?
j(µj), (Dµ)

and

maximize
ρ

N∑

i=1

ρiCi −
M∑

j=1

λjΛ
?
j(max

i∈Bj
ρivij). (Dρ)

Although it should already be clear from the fact that these are convex duals, we can
separately recognize that these are convex programs as follows: Problem (Dµ) is convex
since the pointwise minimum over affine functions is concave, and Problem (Dρ) is convex
since the pointwise maximum of convex functions is convex and thus, since Λ?

j is convex
and monotone increasing, the composition of these functions is convex in ρ.

In terms of the generic convex program studied in Section 4.2, and for the Prob-
lem (Dµ) the function “f” is given by −∑M

j=1 λjΛ
?
j(µj) and the function “θ” is given

by
∑N

i=1 Ci min
j∈Ai

(µj/vij). A stochastic subgradient ascent algorithm will be applied to

this unconstrained problem, similarly as the stochastic gradient descent method applied in
Section 4.4.

The most important observation here is that the dual program can be solved by opti-
mizing the bids µ ∈ RM or the pseudo-bids ρ ∈ RN , they are mathematically equivalent.
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Let us consider the subdifferentials of the objectives in Problem (Dµ) and (Dρ) separately.
We have (see, e.g., [19, Ex. 5.4.5] for the subdifferential of the maximum7):

∂µ`
[ N∑

i=1

Cimin
j∈Ai

(µj/vij)−
M∑

j=1

λjΛ
?
j(µj)

]
=
∑

i∈B?` (µ)

Ci conv
⋃

j∈A?i (µ)

{ 1

vij
} − λ`W`(µ`), (4.20)

and

∂ρ`
[ N∑

i=1

Ciρi−
M∑

j=1

λjΛ
?
j(max

i∈Bj
ρivij)

]
= C`−

∑

j∈A?` (ρ)

λjWj(max
i∈Bj

ρivij) conv
⋃

i∈B?j (ρ)

{vij}, (4.21)

where convS indicates the convex hull of the set S. Abusing notation, we use A?`(ρ) and
A?`(µ) (similarly for B) to denote the same set, namely {j ∈ Ai | θij = 0}, where we
must recall from Proposition 3.1.3 that the slack variables θij = µj − vijρi can be derived
from either ρ or µ alone; these sets are simply the sets of indices where the corresponding
maxima or minima is attained. We use this notation to emphasize that Equation (4.20)
depends only upon µ and (4.21) depends only upon ρ.

Both of these differentials require accurate estimates of the functions Wj, which may not
realistically be available. In the case of the primal approximation, the function needed for
the derivative estimate is W−1

j (q), which is exactly the bid needed to win with probability
q. Dually, the derivatives in the present case require the function λWj(µ), which is simply
the rate at which items of type j are obtained with the bid µ. A stochastic approximation
algorithm for this quantity was analyzed in Section 4.3.1 and is displayed formally as
Algorithm 3.

This derivative estimator can be combined with subderivatives in order to construct two
time scale stochastic subgradient ascent algorithms for the solution of the dual Problem (D).
To this end, consider Algorithm 4, which is used for the solution of (Dµ) and Algorithm 5,
which is constructed to solve (Dρ). We use the notation gµi (n) ∈ conv

⋃
j∈A?i (n){ 1

vij
} and

gρj (n) ∈ conv
⋃
i∈B?j (n){vij} for subgradients that are maintained throughout execution,

and A?i (n),B?j (n) as the sets of extremizing indices which are also maintained throughout
execution. Algorithms 4 and 5, respectively, are carrying out stochastic approximations of
the following subgradient ascent algorithms

7Recall that for f(x) = max
(
f1(x), . . . , fM (x)

)
we have ∂f(x) = conv∪j∈B(x)∂fj(x) where B(x) =

{j ∈ [M ] | f(x) = fj(x)} are the set of binding indices.

117



Algorithm 3: Derivative Estimate

input : A bidding opportunity of type j, with inter-arrival time τ jn+1, gradient
estimates wjn, and arrival count νj(n).

output : Updated derivative estimates
1 Function Derivative-Update(x,τ):
2 νj(n+ 1) = νj(n) + 1 # Update arrival count

3 Place bid x and observe 1
(
pjn+1 ≤ µj

)

4 wjn+1 = wjn + aνj(n)

[
1
(
pjn+1 ≤ µjn

)
− τ jn+1w

j
n

]

5 return wjn+1

µ`n+1 ∈ µjn + bn∂µ`
[ N∑

i=1

Cimin
j∈Ai

(µj/vij)−
M∑

j=1

λjΛ
?
j(µj)

]

ρ`n+1 ∈ ρ`n + bn∂ρ`
[ N∑

i=1

Ciρi −
M∑

j=1

λjΛ
?
j(max

i∈Bj
ρivij)

]
,

but with derivatives of each Λj replaced by estimtes from Algorithm 3, and an additional
loop to maintain gµi , g

ρ
j for computational efficiency.

The subgradients gµi and gρj need only be arbitrary elements of the subgradients given in
Equations (4.20) and (4.21), respectively. Since these subderivative sets depend upon the
extremizing index sets B?` (µ) and A?i (µ) (similarly for ρ) we maintain these sets throughout
the execution of the algorithm (this corresponds to the inner loops of each algorithm). The

reason for this is computational efficiency: constructing the set B?j (µ)
∆
= {i ∈ Bj |µj/vij =

min
`∈Ai

µ`/vi`} takes time
∑

i∈Bj |Ai| which is O(MN). Instead, the set can be updated in

time O(N) when one of the entries of µ is updated. This is done by scanning through each
i ∈ Bj and checking to see if it still obtains the minimum, where the minimum is similarly
stored and maintained between iterations.

The additional term arising in the Algorithm 4 and Algorithm 5

µ 7→ t
(
(µ− µ̄)+ − (−µ)+

)
, (4.22)

corresponds to the derivative of a quadratic penalty term Pt(µ) = 1
2
t

∥∥∥∥
[
µ− µ̄
−µ

]∥∥∥∥
2

2

. This

term is used to ensure the stability of the algorithm by penalizing iterates outside of the
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interval [0, µ̄]. As long as the true solution lies in this interval, this penalty term does
not impact the point to which the algorithm converges. This is introduced ad-hoc to take
advantage of the stability theorem, Proposition 4.2.1.

Algorithm 4 has M variables and a per-iteration complexity of O
(
maxj |Bj|

)
. In

general, we have the simple bound |Bj| ≤ N . However, in typical cases, it should be
expected that |Bj| � N .

Algorithm 4: Stochastic Gradient Ascent Step for µ

input : A bidding opportunity of type j, with inter-arrival time τ jn+1, the dual
variables ρn, µn, gradient estimates wj(n), arrival count νj(n),
allocation Rij.

output : An updated set of dual variables ρn+1, µn+1

1 wjn+1 = Derivative-Update(µjn, τ
j
n+1) # Update wj

2 Allocate item, if won, towards contract sampled from Cat(q1, . . . , qN) for qi ∝ Rij

3 µn+1 ← µn # Update counters

4 ρn+1 ← ρn
5 gµ(n+ 1)← gµ(n)
6 # gradient step:

7 µjn+1 = µjn + bνj(n)

[∑
i∈B?j (n)Cig

µ
i (n)− wj(n+ 1)− t

(
(µj(n)− µ̄)+ − (−µj(n))+

)]

8 B?j (n+ 1) = ∅ # Initialize new set

9 for i ∈ Bj do
10 # Maintain data structures

11 if µjn+1/vij ≤ ρin then

12 ρin+1 = µjn+1/vij
13 B?j (n+ 1)← {i} ∪ B?j (n+ 1)

14 gµi (n+ 1) = 1/vij

Algorithm 5 is comparable to Algorithm 4, except that it takes gradient steps along the
pseudo-bids ρi rather than the bids µj. Therefore, it has N variables, and the per-iteration
complexity is given by O

(
maxi |Ai|

)
. This is bounded by the number M of item types,

but again, in practice, it is expected that |Ai| � M . While this algorithm keeps track of
both sets of dual variables µ, ρ, it only applies a gradient update to µ, the corresponding
ρ is derived from µ.

In Algorithm 5, we sample i uniformly from Bj and update ρi. An alternative update
rule may be to update the ρi corresponding to the contract that the item was allocated
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Algorithm 5: Stochastic Gradient Step for ρ

input : A bidding opportunity of type j, with inter-arrival time τj(n+ 1), the
dual variables ρn, µn, gradient estimates wj(n), arrival count νj(n),
allocation Rij.

output : An updated set of dual variables ρn+1, µn+1

1 wj(n+ 1) = Derivative-Update(µjn, τ
j
n+1) # Update wj

2 Allocate item, if won, towards contract sampled from Cat(q1, . . . , qN) for qi ∝ Rij

3 Sample i ∼ U
(
Bj
)

# Randomly choose which ρi to update

4 µn+1 = µn # Update counters

5 ρn+1 = ρn
6 gρ(n+ 1) = gρ(n+ 1)
7 # Gradient Step

8 ρin+1 = ρin + bνj(n)

[
Ci −

∑
`∈A?i (n) w`(n+ 1)gρ` (n)− t

(
(ρin − ρ̄)+ − (−ρin)+

)]

9 A?i (n+ 1) = ∅ # Initialize new set

10 for ` ∈ Ai do
11 if vi`ρ

i
n+1 ≥ µ`(n) then

12 µ`n+1 = vi`ρ
i
n+1

13 A?i (n+ 1) = {`} ∪ A?i (n+ 1)
14 gρ` (n+ 1) = vi`
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to. However, this would introduce a dependence between the current allocation array Rij,
and the ascent rule, which we wish to avoid.

In contrast to the primal stochastic approximation algorithms (Section 4.4), the algo-
rithms in the present section result only in the optimal dual variables ρi or µj. These dual
variables can be converted into optimum bids according to Proposition 3.1.3, and the rate
sj at which supply is attained by these bids is estimated according to Algorithm 3. These
supply rate estimates then need to be fed into Problem (Tt) (Chapter 3) to calculate an
appropriate allocation matrix R. Since sj is calculated through a stochastic algorithm, it
has absolutely no guarantee of being feasible for Problem (P ). This makes it clear why it
is so important that Problem (Tt) implements the contract fulfillment via a penalty, rather
than a strict constraint. A new R matrix can be calculated periodically and independently
from the stochastic approximations.

4.5.2 Dual Algorithm Convergence

We will analyze the convergence of Algorithm (4), the algorithm that purports to solve (Dµ),
as Algorithm (5) for Problem (Dρ) is analogous.

The key to establishing the convergence of these algorithms to optimal dual multipliers
is the a-priori stability of the iterates. That is, it should be shown that supn ||µj(n)|| <
∞ a.s. and supn ||ρi(n)|| < ∞ a.s.. The way we establish this is through the penalty
term Pt(µ) (see Equation 4.22) which penalizes iterates outside of the interval [0, µ̄]. Since
these constraints encode a compact polytope, the result [102, Prop C.3] can be applied to
obtain stability. The intuition is essentially to add a term to the stochastic iterates which
facilitates the application of the Borkar-Meyn stability theorem [26] [25, Thm 3.7], i.e., the
iterates are attracted back to some compact set when they drift too far away. Indeed, the
following is a corollary of Proposition 4.2.4.

Proposition 4.5.1 (Stability). Let t > 0, µ̄ > 0 and an, bn satisfy the Robbins-Monro
conditions. The iterates µn of Algorithm (4) are stable, i.e., supn ||µ(n)||2 <∞ a.s.

It is also important to verify that Algorithm 4 correctly calculates subgradients in
Equation (4.20).

Lemma 4.5.1 (Correctness). With reference to Algorithm 4, if ρn, µn satisfies ρin =
min
j∈Ai

(µjn/vij) then the same relationship holds for ρn+1 and µn+1. Moreover,

B?j (n+ 1) = {i ∈ Bj | ρin+1 = µjn+1/vij}
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and
∑

i∈B?j (n+1)Cig
µ
i (n + 1) is a subgradient for the function µ 7→ ∑N

i=1 Cimin
`∈Ai

(µ`/vi`) at

µjn+1.

Proof. Suppose that ∀i ∈ [N ] : ρin = min
j∈Ai

(µjn/vij) and pick some arbitrary j ∈ [M ], i ∈ Bj
and consider the updated µn+1. We have µ`n+1 = µ`n for each ` 6= j. If µjn+1/vij ≤ ρin then

ρin+1 = min
`∈Ai

(µ`(n + 1)/vi`) = µjn+1/vij and hence ρn+1 satisfies the stated loop invariant,

since j, i were arbitrary.

By definition, the set B?j (µ) is exactly

B?j (µ) = {i ∈ Bj | ρi(µ) = µj/vij},

where ρi(µ) = min
`∈Ai

(µ`/vi`), which is the set of contracts where the minimization in the

definition of ρi is attained by type j. Since the algorithm checks each possible i ∈ Bj for
whether or not it is included in this set, we have B?j (n+ 1) = B?j (µn+1).

That
∑

i∈B?j (n+1) Cig
µ
i (n + 1) is a subgradient now follows from Equation (4.20) since

we have correctly constructed the set B?j (µn+1) and j ∈ A?i (µn+1) since

A?i (µ) = {` ∈ Ai | ρi(µ) = µ`/vi`},

and by the above described loop invariant.

Thus, we have the convergence theorem, a corollary of Proposition 4.2.7.

Theorem 4.5.1 (Convergence). Let t > 0, µ̄ > 0 and an, bn satisfy the Robbins-Monro
conditions with bn/an → 0, and let pn, τn, φn be generated according to the market model
Definition 2.2.1. Let µn be a sequence generated by iteration of Algorithm 4 where µjn is
updated whenever φn = j. Suppose that µ? is optimal for Problem (Dµ) and µ̄ is chosen
such that 0 < µ? < µ̄. Then, the iterations converge almost surely µn → µ? a.s. as n→∞.

4.6 Conclusion

In this chapter we have seen how the particular properties of second price auctions lead
naturally to the construction of stochastic approximation algorithms for learning solutions
to Problem (P ) and (D). The key enabling properties are the integral representations of
Λ2nd and Λ?

2nd (Proposition 2.1.1, and 2.1.3). These properties imply that the derivatives
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of the cost functions are obtained by Λ′j(q) = W−1
j (q), which is nothing but the bid needed

to win items of type j with probability q, and Λ?′
j (µ) = Wj(µ), which is the rate at which

items are won with a bid of µ. In addition to the convex duality discussed in Chapter 3,
there is evidently a further duality between W (q) and its inverse W−1(µ). Moreover, these
quantities would need to be calculated whether or not this derivative relationship were
satisfied, and thus the derivatives come for free. This key property holds only for the
second price auction.

While the primal algorithm (Section 4.4) calculates the full solution (s, R) (i.e., both
the rates of supply s and the allocation array R) the dual approach (Section 4.5) obtains
only the bids µj or pseudo bids ρi. However, given these quantities, it is possible to
calculate an appropriate array R according to the methods of Section 3.2.3.

As a consequence of the relationship between µ, ρ (Proposition 3.1.3) there is a further
duality between forms of the dual, given precisely by Problems (Dµ) and (Dρ). This
results in two separate forms of a dual stochastic approximation algorithm (Algorithms 4
and 5). Algorithm (4) has M variables and a per-iteration time complexity of O(N)
whereas Algorithm (5) has N variables and a per-iteration time complexity of O(M).

Since the primal algorithm has a large number, d−N ≤ (M−1)N variables, it is likely
to be the slowest to converge in practice and has a high per-iteration complexity; its only
advantage being that it provides a completely solution to the problem simultaneously. Since
in practice it is expected that N � M , Algorithm (5) which applies gradient steps to ρ
has the fewest variables and is likely to converge the most rapidly. However, Algorithm (4)
for solving Problem (Dµ), should have the lowest per-iteration complexity and may be
applicable for situations with a very fast arrival rate.

Future Work and Convergence Rates Following the discussion of the previous para-
graph, there remains a need to study the convergence rate of the three algorithms devel-
oped in this chapter. Based on general stochastic approximation theory (e.g., [25, Ch. 8]),
we conjecture that the algorithms in this chapter can be expected to converge, roughly
speaking, at the rate O(

√
an). Gradient based convex optimization algorithms can ob-

tain linear convergence rates (i.e., O(e−n)) with adequate regularity assumptions [30], and
these results can be carried over to stochastic gradient descent with unbiased gradients as
well [131]. However, it does not seem likely that the two time-scale algorithms studied here
(or any other method) can attain rates faster than O(1/

√
n) as the gradient estimates are

biased and cannot themselves be expected to converge faster than O(1/
√
n). Still, a more

thorough analytic and computational comparison between the three algorithms studied in
this chapter is a topic of future and present ongoing work.
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Chapter 5

Time Constraints and Bidding with
Forecasted Supply Curves

In this chapter, we extend the problems previously considered throughout the thesis to a
more general case where contracts have time deadlines, and supply curves include time-
dependent forecasts. This work is based primarily upon [101] as well as in part upon the
early unpublished work [99].

Overall, the problem formulations found in this chapter are the most practically realis-
tic. However, a great deal of the analysis for static problems (Chapters 2 and 3) generalizes
in natural ways to the time-dependent case. Moreover, stochastic approximation (Chap-
ter 4) methods can potentially be applied to adapt to specific market conditions while still
staying close to a planned bidding path.

The outline is as follows. First, in Section 5.1.1 we modify the definitions of supply
curves (and the associated cost functions) to account for time-dependency, as in W (x, t).
Using this time-dependent function, we define an infinite dimensional optimization prob-
lem (Section 5.1.3) which extends the contract management problem to account for time
deadlines (Section 5.1.2). In Section 5.2 we discuss two modifications to the basic problem
(namely, receding horizon control and over-provisioning) which are constructed to adapt
to stochastic changes in the environment and to increase the probability of completely
fulfilling contracts. A number of computational examples are given in this same section.
Finally, we discuss computational methods for working with time-dependent forecasts and
carry out simulations with real market data in Section 5.3. We conclude the chapter in
Section 5.4.
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Market Data The IPinYou dataset [113, 215] is a publicly available RTB dataset con-
sisting of price and bidding information from a single DSP. The dataset consists of times-
tamped bidding logs consisting of the bid that was placed, the price that was paid (if the
item was won), and a set of tags indicating part of the DSP’s segmentation of user types,
among other data. We have made some use of this data throughout the thesis, and it plays
a more significant role in the simulations of this chapter. We have used the tag as the item
type j, and the timestamps of bidding opportunities to measure arrival rates of items. We
make use of data available for a 168 hour period (i.e., one week). Some additional details
of how we have used this data is available in the appendix.

5.1 Continuous Time Contract Management

In the following subsections, we extend the notion of a supply curve to include time t ∈ R+

(Section 5.1.1) and then adapt the definition of the contract management problem to
include a time deadline Ti ∈ R+ (Section 5.1.2) and then analyze this problem in Sec-
tion 5.1.3. Much of the analysis mirrors the work of Chapter 3, however, as an addi-
tional consequence of duality in this section, we are able to reduce the infinite dimensional
planning problem into a simple finite dimensional optimization problem (albeit involving
integration): Propositions 5.1.3 and 5.1.4.

5.1.1 Time Varying Supply Curves

Recall from Section 2.1 that a supply curve simply models the probability of winning an
item of a specified type with a specified and fixed bid. However, this definition is not
completely adequate since the statistics of market prices are not stationary. Firstly, they
exhibit predictable daily and weekly seasonality (as well as predictable holiday effects,
etc.) and unpredictable stochastic variations. This is illustrated clearly in Figure 5.1a and
Figure 5.1b (the latter of which is reproduced from Chapter 2).

In Figure 5.1a we have, for three separate tags in the IPinYou dataset, calculated hourly
average item arrival rates (measured in Hertz) by taking simple windowed averages and
then interpolating the results into smooth curves. The curves are constructed to be 24-hour
periodic functions λj(t) using averages calculated for only the first 72 hours of available
data (the in-sample period). The results of this procedure are depicted qualitatively in
the figure, and are able, broadly speaking, to capture the daily seasonality of item arrival
rates. These simple forecasts are adequate for our purposes, but it is to be understood that,
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Figure 5.1: Illustration of Wj(x, t) Estimation Methods

given larger datasets or additional factors (e.g., weather, holiday schedules, measurements
of media “hype”, etc.) superior predictive forecasts can be constructed. As long as these
forecasts result in a function λj(t), providing an expectation of the item arrival rates at
time t, the methods of this section are applicable.

Similarly, Figure 5.1a demonstrates the variability in the prices of items in the bidding
market. These estimates are obtained by KDE smoothing (see Section 2.4) data contained
within a small window surrounding the specified time. Motivated by these figures, we
will now consider item arrival rates λj(t) > 0 which is a positive and continuous function
indicating the rate, instantaneously at time t, that items of type j arrive to auction.
Similarly, Wj(x, t) is a function such that x 7→ Wj(x, t) satisfies Definition 2.1.1 for every
t, and such that t 7→ Wj(x, t) is measurable for every x.

Every other function (c.f., Section 2.1) has similar t-pointwise analogs, i.e., fj(x, t),
Λj(x, t), Λ?

j(x, t), W
′
j(x, t) (if the derivative exists) etc. where the modifiers ? and ′ (indi-

cating convex conjugation and differentiation, respectively) are to be understood to apply
to x, pointwise for each t.

5.1.2 Contracts with Deadlines

In Chapter 2, we defined a contract to be a tuple consisting of a target item valuation

Ci > 0 as well as a collection of non-negative item valuations
(
vij
)M
j=1

. We now introduce

a time deadline Ti > 0 into the contract, indicating that items summing to Ci value need
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to be obtained by the deadline. This is a clearly distinct, but closely related goal as has
been considered thus far. The technical problem formulation, analogous to Problem (Pm),
is given in the next section.

As a potential extension, we may also specify a start time of the contract Si (say).
This extension can be modelled within our framework since for each item type j ∈ Ai
we can introduce another pseudo-type j′ with the same supply curve for t ≥ Si but with
Wj′(x, t) = 0 for t < Si and then replace each j ∈ Ai with j′ instead. We then treat the
contract as if Si = 0. Even though the contract is technically part of the problem at time
0, there are no types which can fulfill it until time Si. Still, even tackling this extension
directly is itself trivial, and would essentially come down to replacing integrals over [0, Ti]
with integrals over [Si, Ti].

5.1.3 Analysis of the Continuous Time Problem

The basic set up of our problem in this chapter is exactly analogous to Problem (Pm),
except that now we are seeking to calculate a bid path xij(t) and an allocation path γij(t).
These quantities have similar interpretations as do xij, γij in Section 2.3, except that the
particular time instant of the arriving item must be taken into account. To be specific,
suppose an item of type j arrives at time t: a contract i ∈ [N ] such that t < Ti would be
chosen according to the probability γij(t), and then the bid xij(t) should be placed for the
item; if it is won, it should be allocated towards contract i.

The following problem provides the basic formulation for the time constrained instance:

minimize
x,γ

N∑

i=1

∫ Ti

0

[∑

j∈Ai

γij(t)λj(t)fj(xij(t), t)
]
dt

subject to
∑

j∈Ai

∫ Ti

0

γij(t)vijλj(t)Wj(xij(t), t)dt ≥ Ci

∑

i∈Bj

γij(t) ≤ 1, γij(t) ≥ 0.

(Pm
T )

As opposed to Problem (Pm), Problem (Pm
T ) is an infinite dimensional optimization prob-

lem. However, we are careful to note that it is not an optimal control problem (and thus
does not warrant the use of either dynamic programming or the maximum principle [99])
since the dynamics do not need to be described by a differential equation, and it is also not
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a problem in the calculus of variations, since the objective does not depend on derivatives
of x or γ (and thus does not warrant the application of the Euler-Lagrange equations).

Definition 5.1.1 (Additional Notation and Conventions). To avoid any notational confu-
sion, we will assume, without loss of generality, that contracts are sorted in order of their

time deadlines as in 0 = T0 ≤ T1 ≤ · · · ≤ TN
∆
= T and where we have introduced the extra

notation T0, T for convenience in some expressions. The time interval [0, T ) will sometimes

need to be broken into K segments denoted [0, T̃1), [T̃1, T̃2), . . . , [T̃K−1, T̃K), and indexed
by k. The time Ti can be viewed as the time that contract i “exits the problem”. Similarly,

we denote T j
∆
= maxi∈Bj Ti to be the time that item type j exits (i.e., is no longer useful).

And Tt ∆
= {i ∈ [N ] | t < Ti} to be the set of contracts that remain active at time t.

Remark 5.1.1 (Speed Scaling and Processor Scheduling). It has been pointed out by
anonymous reviewers that Problem (Pm

T ) has a tenuous connection with speed scaling [73,
14]. This is a problem of dynamically tuning the clock speed of a processor in order
to minimize power consumption and respect temperature bounds, while still trying to
complete incoming jobs by their specified deadlines. Problem (Pm

T ) is clearly much more
general than vanilla speed scaling problems since there are multiple objectives and a sum of
multiple terms in the cost functions. However, there may be reasonable analogies between
Problem (Pm

T ) and multiprocessor speed scaling, or distributed scheduling [6, 7].

Similarly to Problem (Pm), it is possible to reformulate Problem (Pm
T ) as an infi-

nite dimensional convex optimization problem, by following essentially the same steps as
were carried out in Chapter 2. Indeed, all of the results with respect to the convexity

of Λj(q, t)
∆
= f ◦ W−1

j (x, t) continue to hold t-pointwise, where function compositions,
inversion, differentiation, etc. are understood to be with respect to the first argument.

Proposition 5.1.1 (Convex Reformulation [101]). In a first or second price auction, sup-
pose that for each j ∈ [M ], the acquisition cost curve Λj(q, t) is convex. Then, Prob-
lem (Pm

T ) can be reformulated as

minimize
s,R

M∑

j=1

∫ T j

0

λj(t)Λj(sj(t)/λj(t), t)dt

subject to
∑

j∈Ai

vij

∫ Ti

0

Rij(t)dt ≥ Ci

∑

i∈Bj∩Tt

Rij(t) = sj(t), Rij(t) ≥ 0.

(PT )
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If a solution exists, then a solution to the original problem (Pm
T ) is obtained via xij(t) =

W−1
j (sj(t)/λj(t), t) for each i ∈ [N ] and γij(t) = Rij(t)/sj(t) (with 0/0

∆
= 0). Moreover,

Problem (PT ) is a convex optimization problem.

Proof. The proof is mutatis-mutandis of the proof of Proposition 2.3.1.

Similarly to Assumption 3.0.1, we need to assume that there exists enough supply in
the market to fulfill all of the contracts, this enables a duality analysis.

Assumption 5.1.1 (Adequate Supply). There exists an array γijk ≥ 0 of allocation prob-
abilities such that ∀j ∈ [M ], k ∈ [K] :

∑
i∈Bj γijk < 1 and

∑

k:Tk≤Ti

∑

j∈Ai

vijγijk

∫ Tk

Tk−1

λj(t)dt ≥ Ci,

for each contract i ∈ [N ].

The most important conclusion to be drawn for Problem (PT ) is that, even though it
is an infinite dimensional problem, exact solutions can be represented with only a finite
number of parameters, which can be calculated through the dual, which is also a finite
convex optimization problem.

Proposition 5.1.2 (Duality). A dual of Problem of (PT ) can be formulated as

maximize
ρ,µ

N∑

i=1

ρiCi −
M∑

j=1

∑

k:Tk≤T j

∫ Tk

Tk−1

λj(t)Λ
?
j(µjk, t)dt

subject to vijρi ≤ µjk ∀i ∈ Bj ∩ TTk

(DT )

which is a finite convex program. Problem (DT ) is dual to Problem (PT ) in the sense that
if D?

T and P ?
T are their respective values (possibly ∞ or −∞), then D?

T ≤ P ?
T . Moreover,

under Assumption 5.1.1 there exists a solution (s, R) ∈ L2([0, T ])M × L2([0, T ])d to Prob-
lem (PT ) and a solution (ρ, µ) ∈ RN × RM to Problem (DT ) and −∞ < D?

T = P ?
T <∞.

See proof on page 195.

Similarly to the results of Chapter 3 (Proposition 3.1.3), optimal bids are obtained as
xj(t) = g−1

j (µjk, t) for t ∈ [Tk−1, Tk). That is, optimal bid paths, which are in general
infinite dimensional objects, can be fully specified by the finite collection of dual variables
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µjk in the second price case, and by these variables along with the function g−1
j in the first

price case.

Now, let us define λjkW jk(x)
∆
=
∫ Tk
Tk−1

λj(t)Wj(x, t)dt where λjk is selected so as to

normalize W jk into a cumulative distribution function. We have

∫ Tk

Tk−1

λj(t)f
2nd
j (x, t)dt =

∫ Tk

Tk−1

λj(t)

∫ x

0

udWj(u, t)

= λjk

∫ x

0

udW jk(u)

∆
= λjkf

2nd

jk (x).

That is, the time integral of the second price cost function is equal to the function obtained
by combining the formula for expected cost in second price auctions (Equation 2.2) with

the averaged supply curve. A similar property is obtained for Λ
2nd

jk (q) =
∫ Tk
Tk−1

Λ2nd
j (q, t)dt

by swapping the order of integration in Equation 2.6

Moreover, since valuations vij are time independent, this implies that we can further
restrict the search for an optimal allocation path γij(t) to another finite set of variables
γijk. Thus, we have established the following propositions.

Proposition 5.1.3 (Finite Reduction – Second Price Case). In the second price case, the
infinite dimensional convex optimization problem (PT ) can be reduced into an instance of
the finite dimensional convex optimization problem (P ) with the averaged supply curves
W jk and rates λjk, along with the expanded valuations

vijk
∆
=

{
vij if Tk ≤ Ti

0 otherwise.
(5.1)

The convex acquisition cost functions are obtained, as usual, by Λjk
∆
= f 2nd

jk ◦W jk.

A finite dimensional problem can be constructed for the first price case as well, how-
ever, it does not appear to be possible to obtain a convex program in the same way.
Precisely, we may define new supply curves λjkW̃jk(x) =

∫ Tk
Tk−1

λj(t)Wj(g
−1
j (x, t), t)dt,

but the cost function can not simply be constructed as f̃jk(x)
?
= xW̃jk(x), since the

bid is g−1
j (x, t), rather than simply x. Indeed, we need to consider the cost function
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f̃jk(x)
∆
= λjk

∫ Tk
Tk−1

g−1
j (x, t)Wj(g

−1
j (x, t), t)dt. This results in the following reduction, stated

formally.

Proposition 5.1.4 (Finite Reduction – First Price Case). In the first price case, the
infinite dimensional optimization problem (Pm

T ) can be reduced into an instance of the

finite dimensional optimization problem (Pm) with the supply curves W̃jk(x) and rates λjk,
along with the expanded valuations

vijk
∆
=

{
vij if Tk ≤ Ti

0 otherwise,
(5.2)

and the cost functions f̃jk(x)
∆
= λjk

∫ Tk
Tk−1

g−1
j (x, t)Wj(g

−1
j (x, t), t)dt.

Remark 5.1.2 (Convexity – First Price Case). The difficulty in obtaining a finite primal
convex program in the first price, in the same simple way as in the second price case, is
with establishing and verifying conditions under which the function Λ̃jk = f̃jk ◦ W̃−1

jk is

convex. To see the difficulty, it must be recognized that the definition of W̃−1
jk involves

an integral over time, and so too does f̃jk; these functions simply do not combine in the
same simple way as in the second price case. Still, convexity conditions for this function
can be obtained by analyzing functions of the form Λ̃ = f̃ ◦ f ◦ Λ ◦ W ◦ W̃−1. This is
a perturbation of a convex function by functions which “should” be “approximately the
identity”. Unfortunately, the conditions resulting from this analysis are quite complicated
and unlikely to be of practical utility. An alternative approach is to recover the primal
problem through the dual of the dual, however, this requires the calculation of the convex
conjugate of functions of the form µ 7→

∫ T
0
λ(t)Λ?

j(µ, t)dt.

Despite the difficulty raised in Remark 5.1.2, the first price case can still be fully solved
through the application of finite convex optimization. Given a solution µ, ρ to the dual

problem, we can calculate the total supply acquired s?jk
∆
=
∫ Tk
Tk−1

Wj(g
−1
j (µjk, t), t)dt by an

optimal bid path. With this optimal supply in hand, an exactly analogous instance of
Problem (Tt) (Section 3.2.3) can be used to calculate the rates Rijk at which to allocate
supply towards contracts.

Thus, we have formally reduced the solution of the infinite dimensional monotone opti-
mization problem (Pm

T ) into a form that can be fully solved by the methods of Chapter 3.
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5.2 Dynamic Algorithms

The bid paths xj(t) and allocations γij(t) computed according to the methods of Sec-
tion 5.1.3 (see also 5.3 for more on computational methods) result in completely open loop
bidding algorithms. That is, at time t, the bid xj(t) is optimal only so long as the total allo-

cation towards contract i is actually equal to ci(t) =
∑

j∈Ai vij
∫ t

0
γij(u)λj(u)Wj(xj(u), u)du,

and that this model of acquired items remains accurate until the time deadline T .

Of course, since the environment is stochastic, the calculated bids and allocations can-
not be fully optimal going forward. Indeed, xj(t), γij(t) constitutes an open loop control
for the problem. Put another way, xj(t), γij(t) is an optimal solution to a fluid limit of
some appropriate Markov Decision Process [51, 71, 166, 23]. We discuss this further in
Section 6.1. In the following sections, we consider two heuristic methods for adapting
to stochastic changes to the environment: Section 5.2.1 on receding horizon control (also
referred to as model predictive control or the re-solving heuristic [191]) [105, 33], and Sec-
tion 5.2.2 on probabilistic constraints. We illustrate these methods with simple examples.

The methods considered in this section are distinct from, but complementary to, those
of Chapter 4. As well, the discussion of this section is relatively informal, as a complete,
detailed, and rigorous discussion of this content would bring us far from the main point of
this thesis.

5.2.1 Model Predictive Control

Recall the simple single item type Example (2.3.1) from Chapter 2 where we need to
minimize the cost λf(x) of bidding subject to the constraint that λW (x) ≥ C. Let us
augment this slightly with a time deadline T and consider the problem of minimizing
Tλf(x) subject to the constraint that TλW (x) ≥ C. This problem has two parameters,
namely, C > 0 and T > 0. Since the objective is monotone, the solution mapping for
this problem is x?(C, T ) = W−1

(
1
λ
C
T

)
where, for notational simplicity, define W−1(q) = x̄

(the maximum bid) if q ≥ 1 (that is, we bid based on our best effort if the problem is not
feasible).

If over the time period [0, T ] there are stochastic fluctuations in the actual number of
item arrivals, or in the prices of those items, or if the supply curve is not perfectly known,
then it is not certain that the constant bid x?(C, T ) will actually fulfill the contract by
time T , and if it does, it may not have done so at the lowest possible cost.

Therefore, it is natural to convert our solution into a receding horizon (RH) [33] algo-
rithm in order to adapt the bid as time progresses. To do so, suppose that after t time has

132



elapsed, we have accumulated c(t) supply. In this situation, we are faced with a problem
identical to the original one at time t = 0 except that we now have a T − t time available
to acquire C − c(t) items. The mapping x? for these parameters is defined as the receding
horizon control for this problem:

x?(C − c(t), T − t) = W−1
(1

λ

C − c(t)
T − t

)
. (5.3)

The RH framework accounts for unexpected supply shortages or surpluses and also enables
us to naturally incorporate a case wherein new contracts arrive before the set of current
contracts have been fulfilled.

Example 5.2.1. We consider an illustrative example where the DSP forecasts supply with
W (x) = 1 − e−γx (c.f., Example 2.1.2), and the constant supply rate λ0. We know that
W−1(q) = − 1

γ
ln(1− q) for q ∈ [0, 1), and thus, the RH bidding function is easily available

in closed form as

xrh(c(t), t) =

{
− 1
γ

ln
[
1− 1

λ0

C−c(t)
T−t

]
1
λ0

C−c(t)
T−t < 1

∞ otherwise
. (5.4)

Suppose now that the realized supply over the period [0, T ] obeyed the law λ(t)W (x), i.e.,
the DSP’s estimate of the arrival rate is in error by λ(t) − λ0. For the receding horizon
case, the supply actually attained can be described by the differential equation

ċrh(t) = λ(t)W (x?(C − crh(t), T − t)); crh(0) = 0, (5.5)

and the analogous equations for the static case c(t).

Since the optimal bid x? involves the inverse of the win probability W−1, substituting
it into Equation (5.5) results in a separable ordinary differential equation

ċrh(t) =
λ(t)

λ0

C − crh(t)

T − t ; crh(0) = 0

=⇒ crh(t) = C
[
1− exp

(
− 1

λ0

∫ t

0

λ(s)ds

T − s
)]
,

which reduces to the straight line crh(t) = Ct
T

if the estimate is accurate, i.e., λ(t) = λ0.
An illustrative simulation example is seen in Figure 5.2.
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5.2.2 Probabilistic Constraints and Overprovisioning

The receding horizon method described in Section 5.2.1 is only one of many possible meth-
ods for adapting to a stochastic environment. Another method is over provisioning, where
we aim to obtain more than C supply, in order to avoid the risk of available supply being
lower than was expected.

To understand over provisioning, suppose that we want to calculate a bid that will
allow us to fulfill a contract with high probability. Probabilistic constraints (also referred
to as chance constrained programming) is often intractable (but see [124, 139, 132, 143]).
However, in the present simple single-item single-contract case we are able to leverage
the monotonicity of f,W to obtain a solution. This method of risk management differs
significantly from, e.g., [83], where the authors consider a stochastic control problem.
However, the end result is qualitatively similar: the bid is inflated, “front-loading” the
acquisition of items.

For the time being, suppose that supply curves are time-independent and consider the
following problem with constant bid x ∈ R+

minimize
x

λTf(x)

subject to P
{∫ T

0

1[p(s) ≤ x]dA(s) < C
}
≤ δ,

(5.6)

and where A(t) is a point process describing the arrivals of items, and p(s) are their prices.
Ultimately, the quantity

c(T ) =

∫ T

0

1[p(s) ≤ x]dA(s), (5.7)

is nothing but a random variable parameterized by the bid x. The expectation of this
quantity is the supply curve Ec(T ) = TλW (x).

Assuming that the DSP has some model1, Fc(T )(·;x) for the number of items that
will be won given a bid of x, in the form of a cumulative distribution function for the
distribution of this random variable. Then, the constraint above is equivalent to (assuming
F is continuous) the inequality Fc(T )(C;x) ≤ δ. It is clear from inspection that x 7→

1This model is distinct from the supply curve as ordinarily discussed in this work as the distribution
function F is now used to model the distribution of items actually won given a bid of x. On the other
hand, the supply curve W measures the expected number of items won with that bid, it just so happens
to also be a distribution function since W (x) = E1[x ≤ p] for a price p.
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Fc(T )(C;x) is monotone decreasing in x, and therefore we conclude that the optimal bid is
obtained by finding the smallest bid x which verifies the inequality 1−Fc(T )(C;x) ≥ 1− δ,
which can be obtained (if 1 − δ is in the range) by finding an inverse the function x 7→
1− Fc(T )(C;x).

An alternative perspective can be obtained by instead parameterizing Fc(T ) through
Equation (5.3), the solution x?(C, T ) to the mean constrained problem. Since this map
is itself monotone in C, finding a minimal x to verify Fc(T )(C;x) ≤ δ is equivalent to
finding a minimal supply inflation Cinfl ≥ C which verifies Fc(T )(C;x?(Cinfl, T )) ≤ δ. We
emphasize that, owing to the monotonicity of the functions involved, this procedure is a
simple computation and the supply inflation is unique (if the problem is feasible), regardless
of the complexity of the model Fc(T ). The model F , for some fixed “risk level” δ therefore
serves a purpose equivalent to that of a supply curve W (x).

It follows that the DSP is free to construct a highly sophisticated model for c(T ) and
then substitute the supply inflation Cinfl implied by this model and their risk constraint δ
into the simple form of Problem 2.12 involving only the average supply curve W . Similarly
to [83], this algorithm will front-load the purchase of items earlier in the period, and is
therefore more robust to supply shocks. We have informally established the following:

Proposition 5.2.1 (Risk Management). Given a model Fc(T ) in the form of a continuous
cumulative distribution function for the supply c(T ) (Equation 5.7), the risk constrained
problem 5.6 is equivalent to the average-case problem with the inflated supply

Cinfl = min{z | Fc(T )(C;x?(z, T )) ≤ δ, C ≤ z}.

Example 5.2.2. Let us take the simple Poisson model c(T ) ∼ Po(λTW (x)) for the supply
attained over the period [0, T ]. Though the previous discussion makes clear that it is not
necessary, we will approximate the Poisson c.d.f. via a Chernoff bound 2:

FPo(λTW (x))(C) ≤
(eλTW (x)

C

)C
e−λTW (x) if C < λTW (x),

which will allow us to obtain an illustrative closed form expression that can be used as
Cinfl. Using the Chernoff bound, solutions of the problem

2Taking the Chernoff bound P{X ≤ x} ≤ etxE[e−tX ] for any t > 0, and using the Poisson moment
generating function P{X ≤ x} ≤ exp(tx + `(e−t − 1)) and taking t = − ln(x/`) > 0 for x < `, we obtain
the bound.
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minimize
x

λTf(x)

subject to
(eλTW (x)

C

)C
exp(−λTW (x)) ≤ δ

λTW (x) ≥ C,

(5.8)

are feasible for Problem (5.6) under the model c(T ) ∼ Po(λTW (x)).

Making the temporary substitutions w
∆
= λTW (x) and u

∆
= −w/C we solve the in-

equality

(
e

C
w)Ce−w ≤ δ

⇐⇒ ueu ≥ −1

e
δ1/C

(a)⇐⇒ u ≤ W0

(
− 1

e
δ1/C

)

⇐⇒ λTW (x) ≥ −CW0

(
− 1

e
δ1/C

)

where in implication (a) W0 is the lower branch of the Lambert-W function, which is
monotone decreasing3 [46], and therefore the mean constraint (necessary for the Chernoff
bound to apply) λTW (x) ≥ C must still be satisfied.

It is the case that −W0(−x/e) ≥ 0 for x ∈ [0, 1] (with −W0(0)
∆
= ∞) and therefore

−W0

(
− 1

e
δ1/C

)
serves as a “risk-inflation factor” from which we obtain an inflated supply

target Cinfl which when substituted into the constraints of Problem 2.12 will result in a
feasible approximate solution of Problem 5.6

Cinfl = −CW0

(
− 1

e
δ1/C

)
. (5.9)

Example 5.2.3. This example combines both the receding horizon example 5.2.1 and
the Poisson distribution-based risk-adjustment procedure of Example 5.2.2. The DSP has
the supply curve estimate W (x) = 1 − e−γx and rate estimate λ0. Combining the risk
adjustment of Equation 5.9 with the receding horizon policy (5.4) we obtain

3The Lambert-W function is the inverse of x 7→ xex. W0(ueu) = u if u ≤ −1, i.e., if λTW (x) ≥ C
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Figure 5.2: Receding Horizon Acquisition Paths
Simulated acquisition paths c(t) for the case M = N = 1 comparing the behaviour of different algorithms
in the presence of supply shortages or surpluses in comparison to expectation λ0. Best viewed in colour.

Qualitatively, when there is oversupply, the receding horizon smooths the acquisition rate to reduce
costs, and when there is undersupply, it increases the bid in reaction to the shortage. The risk parameter

δ is given by 1/2 and serves to front-load the item acquisition rate.

x
(δ)
rh (c(t), t) = −1

γ
ln
[
1− 1

λ0

C − c(t)
T − t W0

(
−1

e
exp(

ln δ

C − c(t))
)]
. (5.10)

A simple computational illustration is provided in Section 5.2.3.

5.2.3 Contract Fulfillment Example

Combining the results of the examples given in Section 5.2.1 and Section 5.2.2 results in
Figure 5.2. To generate these figures, we bid according to the supply curve W (x) = 1−e−x
(which is known precisely) but encounter the actual supply λ(t), which we treat as a
stochastic process.

We consider two scenarios: a supply shortage (Figure 5.2a) and a supply surplus (Fig-
ure 5.2b). The expectation of λ(t) in the shortage case is λ(t) = λ0 − 3t/4 and the
expectation in the surplus case is given by λ(t) = λ0 + 3t/4. In addition to these drifts,
we add some stochastic fluctuations (by simulating a random walk). The upper subfigures
depict the supply that was actually available to the DSP over the period [0, 1], over which
the agent seeks to obtain 3/2 items. The bottom set of subfigures displays the number
of items that have actually been obtained by time t by various different algorithms. The
costs are all relative to the cost of the basic constant bid c(t).
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We illustrate four different algorithms. First, c(t) is obtained through a constant bid
c.f., Section 2.3.1. When there is a supply shortage, c(t) has the lowest cost, however, it
fails to meet the supply targets. When there is a supply surplus c(t) comfortably fulfills the
contract (reaching fulfillment well before the time deadline), but has a higher cost than did
crh(t), the basic receding horizon bid policy (Equation 5.3), which also fulfills the contract.
However, under supply shortages, the receding horizon bid policy still fails to fulfill the
contract – indeed, regardless of how high the receding horizon policy bids near the end of the
period, there may simply not be enough supply available. In contrast to crh(t), the bidding

policies of c(δ)(t) and c
(δ)
rh (t) are the risk-adjusted constant bids (a constant bid targeting

the inflated supply of Equation 5.9) and the receding horizon bids with risk adjustment
(Equation (5.10)), respectively. The bids resulting in acquisitions c(δ)(t) successfully fulfill
the contracts in both the surplus and shortage cases, since the over-provisioning target is
large enough. Indeed, similarly to [83], the risk-adjusted acquisition paths front load the
acquisition of items. The downside of the risk-adjustment is that costs are much higher,
even in the case of supply surpluses, when the simple receding horizon method fulfilled
the contracts at a low cost. The combined method c

(δ)
rh blends the best aspects of both:

when supply is short, it front loads the acquisition of items and ensures that the contract
is fulfilled; when there is a surplus of supply, c

(δ)
rh smooths the item acquisition rate near

the end of the period and fulfills the contract at lower cost than does c(δ)(t).

These basic observations manifest again in the real-data simulations carried out in
Section 5.3.

5.3 Computational Methods and Examples

In this section we further describe some computational methods for the solution of the
continuous contract management problem, Problem (PT ). We then apply this algorithm
to real bidding data and compare the results with the basic simulations of Section 5.2.3.

5.3.1 Computation

The results of Section 5.1.3 establish that the continuous contract management problem
can ultimately be solved by the same methods as were developed in Chapter 3: by the use
of Proposition 5.1.3 to completely reduce the problem into the finite case (for second price
auctions), or by first solving the dual, Problem (DT ), and then computing an appropriate
allocation array via Problem (3.2.3).
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However, both of these approaches require computing and representing averaged func-
tions of the form, e.g., Λ(x) =

∫ T
0

Λ(x, t)dt. In practice, we achieve this by discretizing

[0, 1] into finite intervals [0, q1), [q1, q2), . . ., calculating each wk
∆
= Λ(qk), and then recon-

structing an estimate of the function Λ(x) by interpolation. This process is extremely time
consuming, and does not apply easily to the first price auction. Instead, we develop here
an alternative method based on a trapezoidal approximation of the integral. This method
is applicable to both the first and second price auctions, and is essentially a polyhedral
approximation algorithm (see [21, Ch. 4] and Section 2.4).

Additionally, we will see that the linearity of the constraints allows us to construct
feasible approximate solutions for (PT ), and that we can also estimate the sub-optimality
of the approximation.

To this end, choose a sequence of K ≥ N + 1 points 0
∆
= T̃0 < T̃1 < · · · < T̃K

∆
= T

such that {Ti}Ni=1 ⊂ {T̃k}Kk=1. We use the notation ∆k
∆
= T̃k− T̃k−1 and λ̄jk =

∫ T̃k
T̃k−1

λj(t)dt.

Then, define

Λjk(q)
∆
=

1

2
∆k

[
λj(T̃k)Λj(q, T̃k) + λj(T̃k−1)Λj(q, T̃k−1)

]
, (5.11)

i.e., a trapezoidal approximation4 of the integral
∫ T̃k
T̃k−1

λj(t)Λj(q, t)dt. The following finite

approximation of Problem PT is natural:

Proposition 5.3.1 (Finite Primal Problem). The finite optimization problem over the
variables sij[k], Rij[k] defined by

minimize
s,R

M∑

j=1

∑

k:T̃k≤T j

Λjk(sj[k]/λjk)

subject to
∑

j∈Ai

∑

k:T̃k≤Ti

∆kvijRij[k] = Ci

∑

i∈Bj∩TTk

Rij[k] = sj[k]

Rij[k] ≥ 0,

(PK)

4The midpoint rule provides a constant factor improvement in the error bound over the trapezoidal
rule. However, since using linear interpolation to approximate Λ(x, t) along t is a natural method, we
specify the trapezoidal rule, since it is exact for such a function.
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is a finite approximation of (PT ) in the following sense.

For any solution (sj[k], Rij[k]) of (PK), the functions Rij(t) = qjkγijkλj(t), where qjk =
sj[k]/λ̄jk and γijk = Rij[k]/sj[k], and sj(t) =

∑
i∈Bj Rij(t) are feasible for Problem (PT ).

If, in addition, ∆k is O(1/K) and each cost function Λj(x, t) is Lipschitz in x (uniformly
in t a.e.) and twice continuously differentiable almost everywhere in t (uniformly in x a.e.);
each Wj(x, t) and g−1

j (x, t) are Lipschitz in t (uniformly in x a.e.); then the cost difference
between the optimal solution to (PT ) and the feasible piecewise constant approximation
obtained from Problem (PK) is O(1/K). A more precise bound is provided in the proof.

See proof on page 197.

The conclusion of our developments is provided in Algorithm 6. The error condition
in Algorithm 6 encountered when supply is inadequate can be handled, for example, by
modifying the objective of Problem (PK) to instead penalize supply shortfalls, rather than
attempting to enforce them as constraints, resulting in a “best effort” solution, which is
the approach taken in our simulations. A summary of our proposed bidding methods are
provided in Algorithm 6. The cost functions must correspond to either a second or a first
price auction, and the supply curves must be strictly 2−concave in the latter case, see
Proposition 2.1.2.

Algorithm 6: Computing Optimal Bids

input : Contracts {({vij}Mj=1, Ci, Ti)}Ni=1, supply curves {Wj(x, t)}Mj=1, cost
functions fj(x, t), parameter K ≥ N + 1

output : Bid path x(t) and allocation path γ(t)

1 (T̃k)
K−N
k=0 ← segment([0, T ], K −N) # cut [0, T ] into K −N equal segments

2 (T̃k)
K
k=0 ← sort({T̃k}K−Nk=0 ∪ {Ti}Ni=1) # incorporate contract deadlines

3 Let Λj(s, t) = fj ◦W−1
j (s, t) # acquisition function

4 if Assumption 5.1.1 holds (adequate supply is available) then
5 sj[k], Rij[k]← solve(PK) # solve discretized problem

6 else
7 return error

8 xj(t)← W−1
j (sj[k], t) ∀t ∈ [T̃k−1, T̃k), k : T̃k ≤ T j, j ∈ [M ] # construct bid path

9 γij(t)← Rij[k]/sj[k] ∀t ∈ [T̃k−1, T̃k), k : T̃k ≤ T j, i ∈ Bj, j ∈ [M ]
10 return (x(t), γ(t))
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5.3.2 Monte Carlo Simulations

We have run experiments to empirically evaluate the performance of our methods on
real data from the IPinYou dataset [113, 215]. Further details on the specific simulation
methodology are provided in Appendix Section B.5.

All our computations have been carried out with Python’s scientific computing stack [185]
and cvxpy [54] [4]. To summarize our setup (see also Section 2.4), we have estimated supply
rate curves Wj(x, t) via Gaussian kernel density estimation using the one week of available
data stratified into twenty-four one hour intervals. The bandwidth is chosen via Silver-
man’s rule (see e.g., [193, ch. 6]), which results in smooth estimates, and is not likely to
be overfit. The hourly stratification results in a supply rate curve estimate which accounts
for daily periodic trends, but not weekly ones.

The problems we simulate in this section are small: containing N = 3 contracts and
M = 3 item types. Each contract deadline Ti in the collection is randomly sampled
uniformly at random within prescribed bounds. In particular, the starting “real” time
point (i.e., time T0 = 0) is sampled from anywhere between the bounds of available data,
the length of contracts is uniformly random between 0 and 70 hours, and the number of
required items are sampled uniformly between a small (easily fulfilled) lower bound, and
a large (near the maximum available supply) upper bound – random contracts which are
not feasible are re-sampled. A total of 500 Monte Carlo iterations are carried out. We
use the same estimated supply rate curves in each simulation5, but the auction prices and
item arrival times are sampled directly from real data. We constraint the valuations as
vij ∈ {0, 1}.

Whenever an adequate number of items to fulfill a contract are acquired, that contract
is removed from simulation and a completely new set of bids are calculated given the new
(reduced) set of contracts. Not doing so would result in overfilling some contracts, which
would never be done in practice. Thus, since there are a total of 6 contracts, we solve at
least 6 instances of Problem (PK) over the course of each simulation run, as well as many
more when applying a receding horizon.

The main results of our simulations are provided in Figure 5.3 (which quantifies the lev-
els of fulfillment) and Figure 5.4 (which quantifies the costs). The adjustment parameter
δ ≥ 0 (constituting the abscissa for the figures) is used for over-provisioning (c.f., Sec-
tion 5.2.2) where if the contract requires Ci supply to be fulfilled, we supply a target of

5This allows some data leakage. However, the estimation methods are crude, not likely to overfit, and
an abundance of data would ordinarily be available in practice, so we do not consider this to be a relevant
concern.
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Figure 5.3: Risk Adjustment Simulations (Fulfillment)
As the over-provisioning parameter δ increases, the probability of completely fulfilling a

contract naturally increases concomitantly. Hourly (in simulation time) receding horizon

re-calculations also serve to dramatically increase fulfillment.
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Figure 5.4: Risk Adjustment Simulations (Costs)
Increases in the adjustment parameter δ result in higher costs since we necessarily place larger

bids. Receding horizon re-calculations serve to keep these costs under-control for large values of

δ. The cost increase is not monotone in the presence of a receding horizon since the front-loading

of supply acquisition eliminates the need to place very large bids near the contract deadlines.
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(1 + δ)Ci supply. This results in front-loading the acquisition of supply and increases the
probability that a contract will be fulfilled completely.

Figure 5.3 quantifies the average contract fulfillment of simulation ` by the quantity

C(`)
avg

∆
=

1

N

N∑

i=1

c
(k)
i (Ti)

Ci
, (5.12)

and Figure 5.3 plots each of these quantities over ` ∈ [L], for L = 500 simulations. As is
expected, the proportion of contracts which are completely fulfilled increases with δ. In
addition, the plot provides pairs of boxes comparing the results when the bids are updated
only after a contract is fulfilled (this is the minimal update schedule that doesn’t overfill
contracts), and when the bids are also updated every hour of simulation time (typically,
about 20 updates are calculated over the simulation). An hourly receding horizon has a
dramatic affect on the fulfillment – even without a δ adjustment, more than half of the
contracts are fulfilled to at least 98%, and with a risk adjustment, almost all contracts are
completely fulfilled. The occasional over-fulfilled contract arises as a result of some loose
numerical tolerance parameters in the simulation, so set to reduce the run time.

Figure 5.4 provides a line plot similar to Figure 5.3 except the ordinate now quantifies
the cost paid for items. Points are mean values across the L = 500 simulations, and error
bars are 98% confidence intervals. In order to create a reasonable cost metric which is
comparable across different contracts, we have normalized the total cost of attempting
to fulfill a contract by that contract’s “mean velocity” requirement. To understand what
we refer to as the velocity requirement, suppose that we are obligated to obtain C items
in T time. Then, we define the velocity of this requirement by v = C/T . We take the
mean velocity of the whole contract to be the average of the velocities of each individual
requirement in the contract (in this case, over the N = 3 requirements). To merely
normalize by, e.g., the total number of items, would not result in a fair comparison since
one contract may require obtaining the same number of items in less time (since they are
generated randomly), which necessitates paying higher prices.

The main conclusions to be drawn from 5.4 are as follows. Firstly, without a receding
horizon, there is naturally a tendency for costs to increase, since the supply acquisition is
front-loaded. Secondly, as δ increases, the same upward pressure on costs is applicable as
in the case without any receding horizon, but at the same time, for contracts which are
difficult to fulfill, the receding horizon will drastically increase bids, which also increases the
cost. However, for contracts which are easy to fulfill, or which get close to fulfillment early
in the bidding period, the receding horizon smooths out the acquisition rate by reducing
the bid, and therefore reducing costs (c.f., Section 5.2.1). These are competing effects, but
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the use of the receding horizon is still able to reduce costs when δ is large; an ultimately
small cost for achieving near complete fulfillment.

To summarize this discussion, the receding horizon is able to achieve a much higher
fulfillment proportion by increasing the bids (and incurring higher costs) for contracts
which are difficult to fulfill (e.g., when supply rates are overestimated), while at the same
time reducing the costs of fulfilling the remaining contracts by smoothing out bids that are
too large.

5.4 Conclusion

This chapter has extended the basic contract management problem introduced in Chapter 2
to a continuous time (but still deterministic) optimization problem involving supply rate
forecasts and contract time deadlines. Elementary observations from real market data
indicate that this formulation is more realistic, and enables bidding algorithms to take
advantage of the approximate cyclo-stationarity of arrival rates and supply curves.

We have shown that even though the main problem, Problem (PT ) is infinite dimen-
sional, it is solvable through the finite dual (Problem (DT )) and a finite transportation
problem (Section (3.2.3)), as long as time integrals can be calculated. Moreover, in the sec-
ond price case, the problem can be completely reduced to an instance of the static optimal
contract management problem studied in the rest of this thesis. However, while the former
finite solution method still applies to first price auctions, this latter result does not. Still,
a discretization of the time-integrals can be applied to construct finite approximations of
Problem (PT ) for both auction mechanisms, see Section 5.3.1.

The consideration of time deadlines also necessitates the consideration of more stochas-
tic effects. That is, while the optimal bids computed through the solution of Problem (PT )
are optimal in an average sense, they still represent simplistic open loop control policies.
Practical methods for dealing with stochastic fluctuations (distinct from those considered in
Chapter 4), namely over-provisioning and receding horizon control, are developed through
stylized examples in Section 5.2.

A Monte Carlo simulation, using realistic market data from the IPinYou dataset, is
carried out in Section 5.3. The results of this simulation demonstrate the effectiveness of
the aforementioned adaptive methods for increasing the probability of contract fulfillment,
and for controlling costs. Further commentary on stochastic effects is given in Section 6.1.
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Chapter 6

Conclusion

In this concluding chapter we touch upon extensions to the models considered in this
thesis in Section 6.1 and provide a summary with concluding remarks and summary of our
contributions in Section 6.2.

6.1 Extensions and Future Work

6.1.1 Continuum of Item Types

The possibility of modelling a continuum of item types φ ∈ Φ was briefly discussed in
Section 2.2.1, where we immediately argued, in Proposition 2.3.2, that it is not essential
to do so. However, this proposition may not give a completely satisfying conclusion since
it does not apply to first price auctions, and only tells us that we cannot obtain a specified
average supply rate at a lower cost by considering more detailed item types, which does
not fully address the real contract management problem with type dependent valuations.
The appropriate optimization problem in this case is

minimize
R

Eλ(φ)Λφ

( 1

λ(φ)

N∑

i=1

Ri(φ)
)

subject to ERi(φ)vi(φ) = Ci

Ri ≥ 0
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where the expectation is taken over a distribution on item types Φ. A duality analysis
(c.f., Chatper 3) produces another finite problem for the pseudo-bids ρi, similarly to the
problem (Dρ):

maximize
ρ

N∑

i=1

ρiCi − Eλ(φ)Λ?
φ

(
maxi ρivi(φ)

)
. (6.1)

If this problem can be solved, the optimal bid for an item of type φ is given by, in a second
price auction, x(φ) = maxi ρivi(φ). Thus, many of the key structural results derived in
Chapter 3 continue to hold in this case, and, similarly to the continuous time problem in
Chapter 5, we can fully represent the optimal bids with a finite vector ρ ∈ RN .

The main challenges beyond the finite case are computational. In particular, how
should vi(φ) be represented? How should one calculate Λ?

φ (and can a version of ADMM,
as in Algorithm 2, be applied to circumvent this calculation)? Can the associated infinite
dimensional transportation problem (c.f., Section 3.2.3) be solved? Many of the algorithms
for estimating bid landscapes [49, 74, 192] and click through rates [218, 81, 140] are generic
machine learning algorithms where a parameterized function is estimated from data. In
our context therefore, it may be a reasonable model to treat Wφ as arising from some
parameterized function (e.g., a neural network) Wφ(q) = F (q, φ; θ) with parameter vector
θ, to be estimated from data. Studying computational methods for Problem (6.1) under
this model is therefore of practical interest. This approach would be comparable to [61,
57, 130].

6.1.2 Stochastic Optimal Control

The contract management problems studied in this thesis are, from one perspective, natural
optimal bidding problems that make minimal assumptions about market dynamics (i.e., we
work almost exclusively with first order statistics). Alternatively, our models may be
viewed as fluid approximations to stochastic optimal control problems, which may also
be worth studying directly (c.f., [84, 62]). A stochastic optimal control problem would
necessitate the calculation of an optimum bidding policy x(c, t) (mapping from the current
number of items obtained and the current time), similarly to the receding horizon policies
of Section 5.2.1, but applied directly to the discrete market model Definition 2.2.1 (see also
Chapter 4).

A simple example with a single contract and single item type N = 1,M = 1 can be
formulated, see also [84, 62] for similar budget constrained problems. Drawing experience
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from the convexity of Λ (c.f., Chapter 2), we formulate the problem in terms of calculating
an optimal probability of winning q ∈ [0, 1] (i.e., a policy q(c, t)). As has been argued
throughout, we believe this formulation to be much more insightful than a formulation
directly in terms of the bids. The dynamics for the the number of items obtained can then
be modelled through the recursion c(t + τn) = c(t) + 1R+(q − Uk) where Uk ∼ U [0, 1] are
i.i.d. uniform and τn are the inter-arrival times. If the cost-to-go function for having c items
in inventory at time t is denoted by J(c, t), then we can inuit the appropriate Dynamic
Programming recursions

J(c, t) = min
q∈[0,1]

[
Λ(q) + EJ(c+ 1R+(q − U), t+ τ)

]
, (DP )

with terminal conditions J(c, T ) = L(C − c) for some loss function L associated with
attaining fewer than C items. This recursive equation can be analytically simplified into a
problem involving the expectation J (c, t) = EJ(c, t+ τk) and the conjugate Λ?. Precisely,

J(c, t) = J (c, t)− Λ?
(
J (c, t)− J (c− 1, t)

)
.

A further analysis reveals that, in a second price auction, it is optimal to bid J (c, t) −
J (c− 1, t), which, unsurprisingly, is the value to obtaining one additional item. We have
observed in computational examples1 that J(c, t) is a convex function of c, but a proof is
not obvious since −Λ? is a concave function.

The model can be extended to a multitude of item types by including a type indicator
j in the cost function J(c, t, j) indicating what item type is under consideration, and
extended to multiple contracts by treating c as a vector in RN . A similar set of dynamic
programming recursions, which now also include optimizing over i ∈ [N ], are given by

J(c, t, j) = min
s∈[0,1]

[
Λj(s) + EJ+

(
c, t+ τ, j1R+(s− U)

)]
,

J+(c, t, j) =

{
EJ(c, t, φ); j = 0
min
i∈Aj

EJ(c+ ei, t, φ); j ∈ [M ] ,

where ei is a canonical basis vector and φ is a random variable distributed over [M ].

1Computationally, if τk are exponentially distributed, Equation (DP ) can be discretized by approxi-
mating these interarrival times with scaled geometric random variables: τ ≈ Xη/η for Xη ∼ Ge(λ/η), and
an efficient dynamic programming algorithm can be derived for this discretized problem.
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This problem does not appear to be analytically tractable, but it is clear that it still
admits some interesting structure. In particular, we conjecture that the function J is again
convex in c, as a result of the convexity of Λ.

6.1.3 Price Impact

Throughout this thesis, we have treated the competitive auction market simply as a statis-
tical, rather than strategic, entity. The optimization problems studied here do not directly
take account of how competing bidders (or platforms, or sellers) may respond to our own
actions (by placing higher bids themselves, or raising the reserve price), an assumption
motivated by the mean-field nature of the markets. However, there is a wealth of research
in finance which studies market impact [56, 72], i.e., how one’s own activity affects prices,
and how to account for this impact [70, 3]. Even simple linear models of price impact
have been effective for this purpose [168]. Since RTB is a competitive market, a similar
approach may be worthwhile in this case as well (see, e.g., [130]).

Given the benefits that convexity of the optimization problem confers, it is desirable
that modifications to Problem (P ) designed to account for market impact preserve this
convexity, even if approximations need to be made. For instance, we would conjecture that
augmenting the objective of Problem (P ) with a simple L2 regularization term proportional
to ||s||22 would confer a benefit to the DSP (as long as the constant of proportionality were
tuned appropriately). The reason is that this would, all else being equal, tend to diversify
the acquisition of items across types and spread any impact out further across the market.
Unless price impact is completely linear, which is implausible, this may serve to reduce
total costs. Moreover, it can serve to relax the assumptions on W in the first price case,
since, roughly speaking, Λ1st(q) is expected to be “almost convex” (see Proposition 2.1.2),
the sum λΛ1st(s/λ) + 1

2
s2 can be expected to be “more convex”.

As in the finance literature, the appropriate form of any regularization functions or price
impact models need to be derived through a blend of theoretical motivation and empirical
analysis. As was emphasized in Chapter 1, the structure of RTB markets is much different
than that of ordinary financial markets, and therefore this may yet be a worthwhile avenue
for further study.

149



6.2 Conclusion and Final Remarks

In this thesis, we have focused on problems facing intermediaries in real-time bidding
markets. Specifically, Problem (Pm), reproduced here:

minimize
x,γ

M∑

j=1

N∑

i=1

γijfj(xij)

subject to
M∑

j=1

γijλjvijWj(xij) = Ci

N∑

i=1

γij ≤ 1, γij ≥ 0.

(Pm)

This is a computationally intractable monotone programming problem encoding the goals

of a DSP to fulfill N contracts
(
(vij)

M
j=1, Ci

)N
i=1

, given access to M distinct item types.
These contracts specify a value target Ci > 0 and the values vij of items of type j to
contract i. The goal of the DSP is to calculate a bid vector x ∈ RM and an allocation
vector γ ∈ RN×M such that bidding xj on all items of type j, and allocating γij proportion
of such items towards contract i results in the acquisition of items having total value Ci.
The characteristics of item type j, say, is described by the supply curve Wj(x), indicating
the probability of winning the item with a bid of x, the rate λj > 0 at which these items
become available, and finally the cost function fj which is derived from the type of auction
(either first or second price).

Broadly speaking, a variety of related problems have received substantial academic
and industrial attention over the past decade. The specific Problem (Pm) (with vij ∈
{0, 1}) first arose as a novel formulation in [170] and was deeply motivated by a real
industrial problem. We have broadened the applicability of this formulation through the
well-motivated introduction of type and contract dependent valuations vij, as well as in the
discussion of an infinite number of item types (c.f., Section 6.1.1), the consideration of both
second price and first price auctions, and the analysis of a continuous time formulation of
the problem.

Aside from this additional modelling, the principal contribution we have made towards
the solution of Problem (Pm) is the recognition of its equivalence to a convex optimization
problem: Problem (P ) (see Chapter 2). This convexity is obtained through the transfor-
mation of variables

sj = λjWj(xj)
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and leads unconditionally to convexity in the second price auction (Proposition 2.1.1) and
under mild additional assumptions for first price auctions (Proposition 2.1.2).

This convex transformation is a powerful tool. Using this technique, we have recognized
formal connections to important problems in finance and have provided brief analysis of
these additional example problems. Precisely, the Dark Pool Problem, and a transaction
cost aware portfolio construction problem (see Section 2.5 and Section 3.4) are both recog-
nized as being convex programs involving many of the same functions as in Problem (P ).
Moreover, some existing problems in the literature on real-time bidding can be transformed
into convex programs using this method (see Example 2.1.6). These examples suggest that
this transformation may be applicable to a variety of important problems in diverse fields.

Chapter 3 was dedicated to a duality analysis of the convex program (P ). This analysis
provides deep insights into the structure of the problem’s solutions (see Proposition 3.1.3).
In particular, in both first and second price auctions, the optimal bids x ∈ RM

+ can be
recovered directly from the dual solution µ ∈ RM

+ , ρ ∈ RN
+ , and furthermore, can be

represented solely in terms of µ ∈ RM
+ (the dual variables associated with the M item

types) or ρ ∈ RN
+ (the dual variables associated with the N contracts). These consequences

recover many of the results of [170] (originally derived ad-hoc from first principles), in
particular, Corollary 3.1.1, which shows that, for the vij ∈ {0, 1} case, all the bids placed
across items used to fulfill a given contract must be equal at an optimal solution. These
consequences are illustrated in Section 3.3 by numerical examples.

In Section 3.2 (as well as Section 2.4) we examine practical computational algorithms
for the solution of Problem (P ) and its dual, Problem (D). One of the main computational
difficulties in solving Problem (2.4) is that the supply curves W do not necessarily belong
to any simple class of parameterized distributions, and are often to be represented by,
e.g., piecewise affine functions or as weighted sums of kernel functions. As well, the acqui-
sition cost function Λ(q) =

∫ q
0
W−1(u)du is itself a complicated and expensive to evaluate

function of W . Thus, Problem (P ) is not an instance of any particular class of convex
program (linear, quadratic, semidefinite etc.), and the specialized algorithm we provide
are essential for realistic applications.

The derivations of Section 3.2 shows that an application of ADMM to Problem (D)
results in profound simplifications. Firstly, it is necessary, due to the relationship between
Λ and its conjugate Λ? c.f., Proposition 2.1.3, only to evaluate W itself, and not the more
complicated functions Λ or Λ?. And secondly, each of the steps in the ADMM algorithm are
completely separable, i.e., can be trivially parallelized across multiple processors. These
properties are not, to our knowledge, enjoyed by any other algorithm applicable to Prob-
lem (P ). These results have important consequences for practical problems, particularly
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when there is need to scale to large problem instances.

In Chapter 4 we have applied the method of stochastic approximation to learn optimal
solutions to Problem (P ) without any prior knowledge about the supply curves W . While
stochastic approximation is a well known methodology, and the theoretical results of this
chapter are largely derived from more general existing results, the application of these
methods to Problem (P ) is non-trivial, and the feasibility of doing so relies on a very
special property of the second price auction: that the derivative of Λ2nd is W−1 (and
dually, that the derivative of Λ?

2nd is W ). This implies that, given an acquisition rate
matrix R (the primal variables for Problem (P )), the bids x needed to acquire items at
the specified rates are exactly the derivatives of the objective function. Thus, given an
approximately optimal R matrix, the DSP can refine this matrix towards a better solution
naturally through the process of bidding. This is an important result as the supply curves
are not completely stationary over time, and due to the censored nature of prices in RTB,
high quality and recent data may not be easily available.

Chapter 5 expands the definition of the DSP’s contract management problem to include
time deadlines and time-dependent supply curves. This turns the contract management
problem into an optimal control problem (even simpler, an infinite dimensional optimiza-
tion problem with trivial dynamics). Most results from Chapter 2 and Chapter 3 continue
to hold with appropriate modification in this case. Additionally, further structure results
from the dual problem in this case: the dual, Problem (DT ), is finite. Indeed, in both
the first and second price cases, the optimal bids xj(t) to be placed at time t on items
of type j can be parameterized via the vector ρ ∈ RN

+ of dual variables, and for second
price auctions xj(t) is piecewise constant. In this chapter we have also discussed practical
methods, separate from those of Chapter 4, for adapting the solution xj(t) to changes
in market statistics. This analysis is tied together with a simulation example using real
market data.
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Appendix A

Useful Results

We here provide statements of a select few important theorems used in our analysis and
not given in the main text.

A.0.1 Lyapunov Stability

The following stability theorems are used frequently in the convergence analysis of stochas-
tic approximation algorithms in Chapter 4.

Theorem A.0.1 (Lyapunov Stability [98, 43]). Let ẋ = h(x) be an ODE where h : D → Rd

is locally Lipschitz on an open domain D ⊆ Rd. Let xe be an equilibrium point: h(xe) = 0.
If V : Rd → R is a continuously differentiable function satisfying

V (xe) = 0,∀x 6= xe : V (x) > 0

V (x)→∞ as ||x|| → ∞
∀x 6= xe : V̇ (x)

∆
= 〈DV (x), h(x)〉 < 0,

then xe is globally asymptotically stable for the ODE. That is, if xx0(t) is the solution of
ẋ = h(x) for some initial condition x(0) = x0 ∈ Rd then xx0(t)→ xe as t→∞.

Theorem A.0.2 (Lyapunov Stability for DIs). Let ẋ ∈ h(x) be a DI where h is a Marchaud
map (Definition 4.1.1) on Rd. Let xe be an equilibrium point: 0 ∈ h(xe). If V : Rd → R is
a continuously differentiable mapping which satisfies
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V (xe) = 0,∀x 6= xe : V (x) > 0

V (x)→∞ as ||x|| → ∞
∀x 6= xe : V̇ (x)

∆
= max

φ∈h(x)
〈DV (x), φ〉 < 0,

then xe is globally asymptotically stable for the DI. That is, if xx0(t) is a solution of ẋ ∈ h(x)
for some initial condition x(0) = x0 ∈ Rd then xx0(t)→ xe as t→∞.

Proof. We follow a similar method as [98, Theorem 4.1]. Let xx0(t) be a solution of the
DI with initial condition x(0) = x0. For any r > 0, since V is continuous and coercive,
Ur = {x ∈ Rd | V (x) ≤ r} is a compact set and {Ur}r>0 constitutes a decreasing family
of sets such that

⋂
r>0 Ur = {xe}. Moreover, since V̇ (x) < 0 for x 6= xe each set Ur is

an invariant set for the DI. Let t1, t2, . . . be a sequence of times such that tn → ∞ and
consider the sequence x1 = xx0(t1), x2 = xx0(t2), . . .. By compactness, this sequence admits
a convergent subsequence x̃k → x̃∞ and V (x∞) ≥ 0. If V (x∞) = 0 then necessarily x∞ = xe
and by invariance x(t)→ xe. Suppose by way of contradiction that V (x∞) = α > 0. Then,
let

sup
x∈bd Uα

max
φ∈h(x)

〈DV (x), φ〉 = −β ≤ 0.

Since V̇ (x) < 0 for every x 6= xe it must be that −β < 0 since Uα is compact, the graph of
h is closed, and xe 6=∈ Uα. But then x(t) must escape bd Uα and V (x∞) < α.

A.0.2 A Brief Introduction to ADMM

It is seen through the derivations in Section 3.2.2 that ADMM serves as a natural algorithm
to apply to the dual problem (D), as it leads to a complete separation of the variables in
the problem into a collection of trivial univariate problems.

The Alternating Direction Method of Multipliers (ADMM) [21, Sec. 5.4] [28] is an
algorithm for separable, linearly constrained convex optimization. It’s applicability is in-
credibly general as it serves essentially as the default algorithm for the convex modelling
software cvxpy [135, 54]. ADMM is generally described as an algorithm for the following
convex program with separable objective1 [28]:

1The functions f, g can be very general, and the problem formulation easily encodes general convex
programs infC f(x) via indicator functions g(z) = χC(z) and the equality constraint x = z (corresponding
to c = 0, A = I, B = −I).
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minimize
x,z

f(x) + g(z)

subject to Ax+Bz = c,

for A ∈ Rp×n, B ∈ Rp×m. The algorithm proceeds by solving two separated minimization
problems and then accumulating the error in the equality constraints:

xt+1 ← argmin
x

(
f(x) +

1

2ν
‖Ax+Bzt − c+ ut‖2

2

)

zt+1 ← argmin
z

(
g(z) +

1

2ν
‖Axt+1 +Bz − c+ ut‖2

2

)

ut+1 ← ut + Axt+1 +Bzt+1 − c.

Convergence If the functions f, g are proper, convex, lower semicontinuous, and strong
duality holds, then the objective value converges to the optimal value f(xt) + g(zt)→ p?,
the iterates are asymptotically feasible Axt + Bzt → c, and νut converges to an optimal
dual solution. Naturally, if f, g are strictly convex, then the primal iterates xt, zt must also
converge to primal solutions. These results can be found in [28, 21, 58].

175



Appendix B

Proofs and Auxiliary Material

B.1 Chapter 1

This section intentionally left blank.

B.2 Chapter 2

B.2.1 Convex Envelopes

In practice, the functions W (x) will be estimated from available historical data. Therefore,
depending on the method used to carry out this estimation, the resulting Λ(x) may not
necessarily be guaranteed to be convex in the first price case (recall Proposition 2.1.2
requires 2-concavity of W ). If the estimate of W (x) is simply carried out by fitting a
particular parameterized distribution (e.g., a normal approximation) to a dataset, then
there is unlikely to be any issue since most distributions commonly employed for this
purpose do in fact have log-concave cumulative distribution functions.

However, our empirical data (see also [113, 215]) suggests that such simple models are
not necessarily good estimates for supply rate curves, and that the curves have a tendency
towards some multi-modality. For this reason, as described in Section 2.4.2, we generally
use KDE estimation for W .

Unfortunately, KDE estimates of W (x) from data need not be (and often aren’t) log-
concave or α-concave. In order to deal with this problem, we consider calculating a convex
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and piecewise affine majorant of the function Λ1st(s). A similar minorizing envelope can
also be calculated through the methods of [136], and a piecewise minorant thereof computed
by outer linear approximations. There is no obvious reason to prefer one approximation
over the other and our experience has not demonstrated a clear benefit either way.

Alternatively, taking the log-concave envelope of W (x) through similar methods is
guaranteed to result in convex acquisition functions. The considerations of the previous
paragraph suggest that we should at least expect the KDE estimates of W to be “almost”
log-concave, and indeed, this is what we have observed in our own experiments; the convex
envelopes are only slight perturbations of the original supply rate curve estimate.

Piecewise Affine Approximation

Let us denote by Λ̃(x) the acquisition cost function attained from an estimated supply rate

curve and by ΛU(x) the minimal convex majorant Λ̃(x), i.e.,

ΛU(x) = inf{λ(x) | λ(x) ≥ Λ̃(x), λ is convex and monotone increasing}. (B.1)

We emphasize that λ must be monotone increasing, but this would also follow as a conse-
quence of the monotonicity of Λ̃. The maximal minorant can be defined similarly. More-
over, α-concave envelopes can be calculated by requiring that `α ◦ λ is convex.

A piecewise affine approximation of ΛU can be found by discretizing a compact interval
[a, b] ⊂ R into n+1 points x0, x1, . . . , xn and solving the following convex quadratic program
where convexity and monotonicity are enforced via finite differences

minimize
λ

1

n+ 1

n∑

i=0

(
λi − Λ̃(xi))

)2

subject to λi ≥ Λ̃(xi)

λi − λi−1 ≥ 0 ∀i ∈ [n]

λi+1 − 2λi + λi−1 ≥ 0 ∀i ∈ [n− 1].

(EU)

An accurate approximation of the convex majorant is recovered via linearly interpolating
λi. In fact, λi will result in a strictly monotone function (and therefore a continuous

inverse) whenever Λ̃ is strictly monotone.
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Remark B.2.1 (Sparse Approximations). It is desirable to use a fine discretization in

Problem (EU), otherwise the resulting function may fail to majorize Λ̃ in regions of high
curvature. However, each piecewise adds complexity to the representation of ΛU. Therefore,
it may be desirable to use a coarser approximation obtained by linearly interpolating
samples of ΛU(s). Since ΛU(s) is convex, this process is guaranteed to produce another
piecewise affine convex function which further majorizes ΛU(s).

B.2.2 An Example

We consider an illustrative example of calculating log-concave envelopes of the supply rate
curve in a simple market model. We suppose that each participant is characterized by a bid
and rate pair (bi, ri) indicating that they will bid bi with probability ri on any arriving item.
We sample {(bi, ri)}30

i=1 randomly as b ∼ exp(0.5) and ri ∼ β(11.1, 10) which represents a
market with 30 participants whose average bid is 0.5 and have an average probability of
(11.1− 10)/11.1 ≈ 0.1 of bidding. The bid landscape in this situation is given by

W (x) =
∏

i:bi>x

(1− ri),

indicating the probability of winning an item if the bid x is placed.

We let W̃ (x) be a KDE smoothed (with σ2 = 1/4) version of W which corresponds
either to the true supply rate curve under randomized bidding, or a reasonable estimate
(from historical data) thereof. We denote supply rate curve estimates W̃ L(x) and W̃N which
are derived from W (x) by solving Problem (B.1) for the function −log ◦W and moment
matching a Gaussian c.d.f., respectively. Note that this procedure produces minorants of
the supply rate curve (and therefore majorants of the acquisition cost curve), since using
a convex majorant procedure results in minorants of concave functions. Figure B.1 plots
examples of these functions and their associated cost and acquisition counterparts.

The examples of Figure B.1 are chosen to deliberately exaggerate the differences be-
tween the supply curve estimates and the envelopes. For the simulation examples of Section
5.3.2 the two curves are often indistinguishable.

B.2.3 Proofs

Definition B.2.1 (α-concavity). Define, for α ≥ 0, x > 0 the function
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Figure B.1: Example Supply Rate Functions
Comparison of different methods of estimating supply rate curves. Lower left: Comparison of

KDE smoothing, the maximal log-concave minorant thereof, and a Gaussian c.d.f.(fit by

moment matching) overlaid upon a true market state. Lower right: The three corresponding

supply rate curves. Upper right: Corresponding cost curves. Upper left: Corresponding

acquisition cost functions where we see that KDE smoothing does not lead to convexity, and

that a Gaussian estimate is not a consistent minorant or majorant.
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`α(x)
∆
=

∫ x

1

1

tα
dt =

{
lnx α = 1
x1−α−1

1−α otherwise
,

where in particular `2(x) = 1− 1/x. We will say that a positive function W : R→ (0,∞)
is (strictly) α-concave if `α ◦W is (strictly) concave. In particular, W is log-concave if
α = 1 and concave if α = 0.

Proposition B.2.1 (Hierarchy of α-concavity). For 0 ≤ α < β, if W is α-concave, then
it is also β-concave.

Proof of Proposition B.2.1. First we check that `β ◦ `−1
α (x) is both monotone increasing

and concave. This follows if the first derivative

d

dx
`β ◦ `−1

α (x) =
`′β ◦ `−1

α (x)

`′β ◦ `−1
α (x)

,

is positive and monotone non-increasing; which, since `−1
α is itself monotone non-decreasing,

follows if

`′β(x)

`′α(x)

is both positive and monotone decreasing. Since `′α(x) = x−α this function is xα−β, which
is positive on the domain x > 0 and decreasing if α < β.

Now, we check concavity of `β ◦W directly from the definition, for t ∈ (0, 1):

`β ◦W (tx+ (1− t)y) = `β ◦ `−1
α ◦ `α ◦W (tx+ (1− t)y)

(a)

≥ `β ◦ `−1
α

(
t`α ◦W (x) + (1− t)`α ◦W (y)

)

(b)

≥ t`β ◦ `α ◦ `−1
α ◦W (x) + (1− t)`β ◦ `−1

α ◦ `α ◦W (y)

= t`β ◦W (x) + (1− t)`β ◦W (y),

where (a) follows by the assumed concavity of `α ◦W and the monotonicity of `β ◦ `−1
α

while (b) from the concavity of `β ◦ `−1
α .
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Lemma B.2.1 ([101]). In a first or second price auction, suppose that for each j ∈ [M ],
the acquisition cost curve Λj(q) is convex. Then, if a solution xij, γij to Problem (Pm)
exists, there is also a solution with the property that ∀i ∈ [N ] : xij = xj and such that∑

i∈Bj γij(t) ∈ {0, 1}.

Proof of Lemma B.2.1. Suppose (x, γ) is a solution of Problem (Pm), and with total cost
J . Let (x̃, γ̃) be another candidate solution with total cost J̃ defined by

x̃j
∆
= W−1

j

( N∑

i=1

γijWj(xij)
)
,

γ̃ij
∆
=

γijWj(xij)∑N
u=1 γujWj(xuj)

,

where 0/0
∆
= 0 in the definition of γ̃. We proceed to show that (x̃, γ̃) is also a solution and

we note that the definition of γ̃ satisfies
∑N

i=1 γ̃ij ∈ {0, 1}.
The pair x̃, γ̃ is feasible by construction. Indeed, γ̃ij ≥ 0 and

∑N
i=1 γ̃ij ≤ 1 by definition.

Moreover, we have

M∑

j=1

γ̃ijλjvijWj(x̃j) =
M∑

j=1

[γijλjvijWj(xij)
∑N

v=1 γvjWj(xvj)∑N
u=1 γujWj(xuj)

]

=
M∑

j=1

γijλjvijWj(xij)

= Ci,

where the last equality follows since x, γ is assumed to be a solution.
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Now, we see that the cost of (x̃, γ̃) satisfies J̃ = J since J is the minimal cost and

J̃
∆
=

N∑

i=1

M∑

j=1

γ̃ijfj(x̃j)

(a)
=

N∑

i=1

M∑

j=1

γ̃ijΛj

(∑

u∈Bj

γujWj(xuj), t
)

(b)

≤
N∑

i=1

M∑

j=1

γ̃ij

N∑

u=1

γujΛj(Wj(xuj))

(c)
=

M∑

j=1

N∑

u=1

γujfj(xuj)
N∑

i=1

γ̃ij = J

where (a) is just the definition of Λj = fj ◦ W−1
j (see Section 2.1.2), (b) follows by the

convexity of Λj and that Λj(0) = 0 (since γij need not necessarily sum to 1), and (c)
follows again by Λj = fj ◦W−1

j and then by swapping the order of summation.

Since x̃, γ̃ is feasible and has optimal cost, it is a solution.

Lemma B.2.2. In a first or second price auction, suppose that (x, γ) is a solution for
Problem (Pm). If for any i, j we have that xij < 0 then (x̃, γ) is also a solution where
x̃ij = 0 if xij < 0 and x̃ij = xij otherwise. Moreover, the constraint inequalities are binding:∑M

j=1 γijλjvijWj(xij) = Ci.

Proof of Lemma B.2.2. Let (x, γ) be a solution to Problem (Pm). If xij < 0 then wj(xij) =
fj(xij) = 0 and since Wj(0) = fj(0) = 0, the point (x̃, γ) is also a solution as it remains
feasible and has the same objective value.

Let us now suppose, by way of contradiction, that for some i? ∈ [N ] the constraint is
not binding:

∑M
j=1 γi?jλjvi?jWj(xi?j) > Ci? . Since the supply curves Wj are continuous

and strictly monotone increasing with W (0) = 0, there exists (by the intermediate value
theorem) some bid array x̃ such that x̃ ≤ x and with x̃i?j < xi?j and x̃ij = xij otherwise,

such that
∑M

j=1 γi?jλjvi?jWj(x̃i?j) = Ci? . Since the cost functions fj are monotone increas-
ing as well, x̃ must attain lower cost while still satisfying the constraints. Thus, (x, γ) was
not a solution and the constraint so the constraint must have been binding.
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B.3 Chapter 3

This section intentionally left blank.

B.4 Chapter 4

B.4.1 Eliminating Equality Constraints

We describe here in an abstract setting the idea used in Proposition 2.3.1 to eliminate
equality constraints of the form Ax = b (where A ∈ Rk×d with k ≤ d, and A being
full rank, i.e.,, rkA = k) from an optimization problem. Consider the abstract linearly
constrained convex program (c.f.,(4.3) (where we maintain Assumption 4.2.1)

minimize
x∈Rd

f(x)

subject to Ax = b

Gx ≤ h.

(B.2)

The constraints Gx ≤ h are general enough that they can technically absorb the equality
constraints Ax = b by including both inequalities Ax ≤ b and Ax ≥ b. However, encoding
equality constraints in this way is problematic for our stochastic approximation scheme
since the random iterates will never exactly fulfill the equalities. This results in ungraceful
performance of the stochastic approximation as the iterates oscillate around the subspace
to which they should be confined. An example of this behaviour is provided in Figure B.2,
and is carried out for a problem similar to that of Section 4.4.3.

The most straightforward alternative means of dealing with equality constraints is by
simply eliminating them: let Q ∈ RN×(N−k) be an orthogonal basis for N (A). This basis
can be constructed by, e.g., a full QR decomposition. As well, let x̄ = A†h be the least-
norm solution to the equality system, with A† denoting the Moore-Penrose pseudo-inverse
of A.

Using the particular solution x̄ and the basis Q we can parameterize the subspace of
solutions as V = {x̄+Qu | u ∈ RN−k}. Hence, Problem (B.2) can be equivalently written
as the reduced problem

minimize
u

f(x̄+Qu)

subject to GQu ≤ h−Gx̄,
(P ′r)
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which an instance of Problem (B.2), involving only inequality constraints. As well, assum-
ing that a Slater point for Problem (B.2) exists, and since the polytope PG,h is compact,
then necessarily the intersection of this polytope with the subspace V must also be compact
and non-empty and Problem (P ′r) still admits a Slater point.

Connections to Projected Gradient Descent Let Lµ(x) = f(x) + 1
2
µ||(Gx− h)+||22

and consider gradient descent applied to Lµ(x̄ + Qz) as in zn+1 = zn − αQT∇Lµ(x̄ +
Qzn). Consider as well xn = x̄ + Qzn and substitute this into the iterations to obtain
xn+1 = xn − αQQT∇Lµ(xn). Since Q is orthogonal, the matrix QQT is a projection
onto R(Q) = N (G), where this equality follows since Q is a basis for N (G). Hence,
we can write xn+1 = xn − αΠN (G)

(
∇Lµ(xn)

)
. This can be further re-written as xn+1 =

x̄+ ΠN (G)

(
xn−α∇Lµ(xn)

)
since xn = x̄+ z for some z ∈ N (G) and x̄ ∈ N (G)⊥. Finally,

this is exactly xn+1 = ΠV

(
xn− α∇Lµ(xn)

)
, i.e., gradient descent with projection onto the

subspace V .

Remark B.4.1 (Accumulation of Numerical Errors). While indeed, the algorithms xn+1 =
ΠV

(
xn − α∇Lµ(xn)

)
and x̃n+1 = x̃n − αΠN (A)

(
∇Lµ(x̃n)

)
are mathematically equivalent,

the former is preferable for numerical reasons. Suppose that the projections are only
carried out up to some numerical tolerance ε. In this case, the iterates xn are guaranteed
to be within that tolerance for each step. That is, |xn − ΠV (xn)| ≤ ε, where ΠV (xn) here
represents an exact projection. However, these errors will accumulate for x̃n such that we
can only guarantee |x̃n − ΠV (x̃n)| ≤ nε.

B.4.2 Proofs

Lemma B.4.1 (boundedness). Fix some µ̄ > 0 and let xµ
∆
= argmin

x∈Rd
Lµ(x) for µ ≥ µ̄.

Then, the set {xµ | µ ≥ µ̄} is bounded, that is, ∃Bµ̄ ∀µ ≥ µ̄ : ||xµ|| < Bµ̄ <∞.

Proof of Lemma B.4.1. Let x ∈ Rd and consider the inequality

Lµ(x) ≥ −Bf + µ||(Gx− h)+||22,
which uses the lower bound on f and that θ ≥ 0. Then, since PG,h is compact, we must
have Lµ(x) → ∞ as ||x|| → ∞. But, there exists a feasible point, for instance, the Slater
point xs, such that Lµ(xs) < ∞ for any µ ≥ µ̄. Hence, xµ must remain bounded, for
otherwise it would not minimize Lµ.
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Lemma B.4.2 (Existence and Equilibria). Consider the system of ordinary differential
equations

τ̇(t) = τ̄ − τ(t)

ẋ(t) = sτ(t)−W
(
x(t)

)

L̇(t) = f
(
x(t)

)
− τ(t)L(t),

(B.3)

where τ̄
∆
= 1/λ, and s ∈ (0, λ) is fixed.

Suppose that W is a supply curve (Definition 2.1.1) which also satisfies the regularity
assumption 4.3.1. Then, this system admits a unique solution for any given set of initial
conditions, as well as a unique asymptotically stable equilibrium (τ̄ ,W−1(s/λ), λΛ(s/λ)).

Proof of Lemma B.4.2. We can summarize the ODE (B.3) with the function

h(τ, x, L)
∆
= (τ̄ − τ, sτ −W (x), f(x)− τL)

as in
(τ̇ , ẋ, L̇) = h(τ, x, L).

The function h (and hence the right hand side of the ODE) by our assumptions on W ,
which in turn imply the same for f . It follows by the Picard-Lindelöf Theorem that the
ODE (B.3) admits a unique solution, and moreover, since W and f are bounded (W is a
c.d.f., and f(x) ≤ E[pn] < ∞) h grows at most linearly, so the solution is uniquely well
defined over all of R3.

We now proceed to establish that the equilibrium (τ̄ ,W−1(s/λ),Λ(s)) is unique. This
follows since τ̄ is the only solution of τ − τ̄ = 0, W−1(s/λ) is the unique solution of
τ̄ s−W (x) = 0 since W is strictly monotone (and τ̄ = 1/λ), and that λΛ(s/λ) is the only
zero of Λ(s) − τ̄L = f ◦ W−1(r/λ) − τ̄L = 0, again since f is strictly monotone. The
assumption s ∈ (0, λ) ensures that s/λ is in the domain of W−1.

Then, asymptotic stability follows since the Jacobian J of the system (for x > 0) is
given by

J =



−1 0 0
s −W ′(x) 0
−L f ′(x) −τ


 , (B.4)
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and therefore has eigenvalues (−1,−W ′(W−1(r/λ)),−τ̄) at the equilibrium, where W is
differentiable at W−1(r/λ) since r ∈ (0, λ). Then, since W ′ > 0 (strict monotonicity),
and τ̄ > 0, this is a Hyperbolic equilibrium and its asymptotic stability follows by the
Hartman-Grobman theorem.

Lemma B.4.3 (Lyapunov Functions). Recall the ODE system (B.3) from Lemma B.4.2,
and that s ∈ (0, λ). Then, fix any x0 > 0 and x∞ < x̄ such that W−1(s/λ) ∈ (x0, x∞)
and let U = (−∞,∞) × (x0, x∞) × (−∞,∞). There exists a strict Lyapunov function
V : U → R for the system (B.3). That is, there exists a C1(U) function such that V ≥ 0
and V̇ ≤ 0 on all of U and where strict inequality holds everywhere on U except at the
equilibrium point.

Proof of Lemma B.4.3. Consider the family of Lyapunov function candidates parameter-
ized by α, γ:

Vα,γ(τ, x, L) =
1

2
α(τ − τ̄)2 +

1

2
(sτ −W (x))2 +

1

2
γ(f(x)− τL)2.

We will calculate V̇α,γ
∆
= 〈∇Vα,γ, h〉, which is differentiable on U by the differentiability

assumptions on W

∇Vα,γ(τ, x, L) =



α(τ − τ̄) + s(sτ −W (x))− γL(f(x)− τL)
−W ′(x)(sτ −W (x)) + γf ′(x)(f(x)− τL)

−γτ(f(x)− τL),




so that the inner product V̇α,γ

〈∇Vα,γ, h〉 = ∇V T
α,γ




τ̄ − τ
sτ −W (x)
f(x)− τL




can be written as a quadratic form

V̇α,γ = −
[
τ − τ̄ sτ −W (x) f(x)− τL

]T
Pα,γ




τ − τ̄
sτ −W (x)
f(x)− τL


 , (B.5)

where
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Pα,γ =




α −s/2 1
2
γL

−s/2 W ′(x) −1
2
γf ′(x)

1
2
γL −1

2
γf ′(x) γτ


 . (B.6)

Applying the Schur complement condition, we have that Pα,γ � 0 (and hence V̇α,γ < 0) if
and only if Aα � 0 and

γτ − 1

4

[
γL −γf ′(x)

]T
A−1
α

[
γL

−γf ′(x)

]
> 0, (B.7)

where

Aα =

[
α −s/2
−s/2 W ′(x)

]
.

Considering first Aα � 0, we apply the Schur complement condition again, to conclude
that Aα � 0 if and only if α > 0 and α − 1

4α
s2W ′(x) > 0. Since W ′(x) < ∞ uniformly,

there exists an α > 0 such that this inequality holds over U and therefore that Aα � 0
eventually as α→∞.

To verify Inequality (B.7), we directly calculate

A−1
α =

1

αW ′(x)− s2/4

[
W ′(x) s/2
s/2 α

]
,

and hence we need to verify

γτ − γ2

4αW ′(x)− s2

(
L2W ′(x) + αf ′(x)2 − sLf ′(x)

)
> 0.

Taking the limit α→∞ (which incidentally guarantees Aα � 0 by our earlier calculations)
we find that this inequality reduces to

τ − γ

4

f ′(x)2

W ′(x)
> 0,

which holds eventually as γ → 0, whenever τ > 0, uniformly over U since W ′(x) > 0.

Therefore, Vα,γ is eventually a strict Lyapunov function over U as α → ∞ and γ →
0.
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Lemma B.4.4 (Invariant Sets). Recall the setting of Lemma B.4.2. Fix some ε > 0 small
enough such that s ∈ [ε, λ− ε] and ε < 2s. Then, the closed set Sε = Sτε × Sxε × SLε where

Sτε =
[
τ̄(1− ε/(2s)), τ̄(1 + ε/(2s))

]
,

Sxε =
[
W−1

(s− ε
λ

)
,W−1

(s+ ε

λ

)]
,

and

SLε =
[λΛ( s−ε

λ
)− λ

1 + ε/(2s)
,
λΛ( s+ε

λ
) + λ

1− ε/(2s)
]
,

is invariant for the ODE (B.3), and contains the equilibrium (τ̄ ,W−1(s/λ), λΛ(s/λ)).

Moreover, if τ ∈ Sτε then Sxε is attractive for x and |ẋ| ≥ min
(
ε/(2λ), s−ε/2

λ

)
. As well,

if τ ∈ Sτε and x ∈ Sxε , then SLε is attractive for L and |L̇| ≥ 1.

Proof of Lemma B.4.4. That Sε contains the equilibrium is evident by its construction. As
well, that Sτε is invariant for τ is also clear since τ̇ = τ̄ − τ , any interval containing τ̄ is
invariant for τ .

Suppose now that τ ∈ Sτε . Then, if 0 ≤ x ≤ W−1
(
s−ε
λ

)
we have

ẋ = rτ −W (x)

(a)

≥ sτ − s− ε
λ

(b)

≥ s
(1− ε/(2s))

λ
− s− ε

λ

=
ε

2λ
,

where in (a) we apply the monotonicity of W and that x ≤ W−1
(
s−ε
λ

)
, and in (b) we use

the fact that τ ∈ Sτε . If x < 0 then ẋ = sτ ≥ sτ̄(1− ε/(2s)) = (s− ε/2)/λ. The inequality
corresponding to x ≥ W−1

(
s+ε
λ

)
is exactly analogous.

Suppose now that τ ∈ Sτε and x ∈ Sxε , but that L ≤ SLε . Then,
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L̇ = f(x)− τL
(a)

≥ f ◦W−1
(s− ε

λ

)
− τL

(b)

≥ Λ(
s− ε
λ

)− τ̄(1 + ε/(2s))L

(c)

≥ Λ(
s− ε
λ

)−
(
Λ(
s− ε
λ

)− 1
)

= 1,

where in (a) we use the monotonicity of f and W and the fact that x ∈ Sxε , in (b) we use
the fact that τ ∈ Sτε as well as the definition of Λ(q) = f ◦W−1(q), and in (c) we use the
fact that L ≤ SLε . The direction L ≥ SLε is exactly analogous.

Lemma B.4.5 (Global Asymptotic Stability). Recall the setup of Lemma B.4.2, and that
the target rate r satisfies r ∈ (0, λ). Then, the equilibrium (τ̄ ,W−1(r/λ),Λ(r)) announced
in Lemma B.4.2 is globally asymptotically stable.

Proof of Lemma B.4.5. Fix some ε > 0 such that r ∈ [ε, λ − ε] and ε < 2r. Then, the
equilibrium is contained in the invariant set Sε announced in Lemma B.4.4. Now, using
Lemma B.4.3, we can select an open set U such that Sε ⊆ U and V̇ is non-negative over all
of Sε, and strictly so except at the equilibrium point. It follows from the LaSalle invariance
principle (see, e.g., [98, Thm. 4.4]) that from any initial point (τ0, x0, L0) ∈ Sε, the ODE
converges to the equilibrium (τ̄ ,W−1(r/λ),Λ(r)).

Then, by Lemma B.4.4, we know that if τ ∈ Sτε then Sxε is attractive for x and |ẋ| > 0
uniformly over x /∈ Sxε , so x → Sxε in finite time. Finally, if (τ, x) ∈ Sτε × Sxε then |L̇| ≥ 1
for L /∈ SLε so L → SLε in finite time. The Equilibrium announced in Lemma (B.4.2) is
therefore globally asymptotically stable.

Lemma B.4.6 (Uniform Stability). Generalize the iterations of Equation (BA) to allow
for r to depend arbitrarily upon the iteration number, as in rn and fix some ε > 0. Then,
the iterates zn = (τ̄n, xn) of the stochastic approximation

τ̄n+1 = τ̄n + an
[
τn+1 − τ̄n

]

xn+1 = xn + an
[
rnτ̄n − 1

(
pn+1 ≤ xn

)]
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are uniformly stable over all sequences rn such that rn ∈ [0, λ− ε]. That is,

sup
r:rn∈[0,λ−ε]

supn||zn|| <∞ a.s.

Proof of Lemma B.4.6. Since the sequence τ̄n does not depend upon xn or Ln it can be
analyzed separately. To this end, recall that the limiting ODE for the iterates τ̄n is simply
given by τ̇(t) = τ̄−τ(t). In order to apply Theorem 4.2.1 we consider hc(τ) = 1

c
(τ̄−cτ) and

observe that hc → h∞ where h∞(τ) = −τ . Clearly, the system τ̇ = h∞(τ) has the origin as
a globally asymptotically stable equilibrium, and hence τ̄n is stable, and by Theorem 4.1.1
τ̄n → τ̄ a.s.

We proceed to establish the boundedness of xn. Since pn ≥ 0, it is evident that
infnxn = −∞ is impossible, so we focus only on the possibility supnxn = ∞. We will
show that if xn were to diverge, it must eventually behave as a random walk with negative
drift, contradicting its divergence. To this end, using the convergence of τ̄n → τ̄ and the
fact that rn ≤ λ − ε, there exists some n0 ∈ N such that for all n ≥ n0 rnτ̄n < 1 a.s., so
(except possibly on sets of measure 0) there exists δ > 0 (depending upon ε) and another
n0 (possibly depending on δ) such that for any n > n0 we have rnτ̄n < 1− δ and hence

an[rnτ̄ − 1(pn+1≤xn)] ≤ an[(1− δ)− 1(pn+1≤xn)].

Moreover, ∃xδ large enough such that P{pn+1 ≤ xδ} ≥ 1− δ/2. We then let

Xn = an[(1− δ)− 1(pn+1≤xδ)],

which is a sequence of independent random variables with E[Xn] = −δan/2 and Xn ∈
[−anδ, an(1 − δ)]. If n1 > n0 and n > n1 then xn < xn1 +

∑n
k=n1

Xk, so it is sufficient

to show that SN =
∑N

n=1Xn is bounded above. The sequence SN is a random walk
with negative drift, and hence cannot diverge to ∞. Precisely, we can apply Hoeffding’s
inequality to establish

P
{
SN +

N∑

n=1

δan
2

> t+
δ

2

N∑

n=1

an
}
≤ exp

(
− 2

a2
(t+

δ

2

N∑

n=1

an)
)
, (B.8)

where a2 =
∑∞

n=1 a
2
n <∞. The infinite sum of terms

∞∑

N=1

exp
(
− 2

a2
(t+

δ

2

N∑

n=1

an)
)
<∞ (B.9)
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converges by the ratio test and hence by the Borel-Cantelli lemma the probability of an
infinite number of the events EN = {ω | SN > 0} is 0. We conclude that supNSN <∞ a.s.
and hence supnxn <∞ a.s. The result now follows since sn ∈ [0, λ− ε] was arbitrary.

Corollary B.4.1 (Stability). Suppose that the target supply r is fixed and that r ∈ [0, λ),
then the iterates zn = (τn, xn, Ln) of Equation (BA) are stable. Conversely, if r > λ then
xn →∞ a.s.

Proof of Corollary B.4.1. From Lemma B.4.6 we know that (τn, xn) are stable. Since τ̄n
and xn do not depend upon Ln, Proposition 4.3.2 applies to the stochastic approximation
involving only (τ̄n, xn) and hence xn → W−1(r/λ) a.s. Therefore, ∃ε ∈ (0, 1) and n0 ∈ N
such that xn ≤ (1 + ε)W−1(r/λ) and τ̄n ≥ (1− ε)τ̄ for all n > n0. Thus, for any such n we
have

pn+11(pn+1 ≤ xn)− τ̄nLn ≤ pn+11(pn+1 ≤ (1 + ε)W−1(r/λ))− (1− ε)τ̄Ln
≤ (1 + ε)W−1(r/λ)− (1− ε)τ̄Ln,

and hence for Ln ≥ 1+ε
1−ε

W−1(r/λ)
τ̄

the drift in Ln is negative almost surely, thus by similar
reasoning as for xn we have supnLn < ∞. Similarly, if Ln < 0 and n > n0 the drift in Ln
is necessarily positive and hence infnLn > −∞.

In the case that r > λ, for n large enough, the iterates satisfy xn+1 = xn + an[rτ̄n −
1(pn+1 ≤ xn)] ≥ xn + an[(1 + ε)− 1] and hence xn →∞.

B.5 Chapter 5

B.5.1 Linear Approximations of Primal Problem

From Section 5.3.1 we have the time discretized primal problem:
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minimize
s,r

M∑

j=1

∑

k:T̃k<T j

Λjk(sj[k])

subject to
∑

j∈Ai

∑

k:T̃k<T j

∆krij[k] ≥ Ci

∑

i∈Bj∩TTk

rij[k] = sj[k]

rij[k] ≥ 0.

(PK)

Suppose that the functions Λj(s, T̃k) have piecewise affine approximations Λ̂k(s) = max
h∈Hjk

(
mhj[k]s+

bhj[k]
)
. Then, by introducing additional variables αjk we can reformulate PK in epigraph

form as a linear program

minimize
s,r

1

2

M∑

j=1

∑

k:T̃k≤T j

∆k(αjk + αj,k−1)

subject to
∑

j∈Ai

∑

k:T̃k≤T j

∆krij[k] ≥ Ci

mhj[k]sj[k] + bhj[k] ≤ αjk∑

i∈Bj∩TTk

rij[k] = sj[k]

rij[k] ≥ 0,

(B.10)

which is the formulation we have employed for our simulations in Section 5.3.2.

B.5.2 Simulating the Bidding Process

The simulations of Section 5.3.2 are obtained by storing the hour-by-hour inter-arrival and
price data for each item type j ∈ [M ] and sampling uniformly from these datasets. At
simulation time t ∈ R+ we sample an inter-arrival time ∆t and price P from the data for
hour btc + 1 with probability t − btc and otherwise from the data for hour btc. A bid is
solicited from a bidder (an implementation of (PK)) and if the bid exceeds P the bidder
allocates that item to the fulfillment of a contract. The simulation time is them updated
to t+ ∆t and the process continues.
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Algorithm 7: Bidding Simulation

input : A Bidder derived from Section 5.3.1.
output : Recording of Bidder’s item allocations to process into normalized

acquisition curves.
1 // Initialize:

2 Q← Priority-Queue([ ]) // Sort by time

3 t← 0 // The ‘‘current’’ time

4 for j ∈ [M ] do
5 // Sample an inter-arrival time and a price

6 (∆t, P )← Sample-Dataset(t,j)
7 Q.push((t+ ∆t, P, j))

8 // Simulate bidding process:

9 while t < Tend do
10 t, P, j ← Q.pop()
11 b← Bidder.solicit bid(t,j) // Ask for a bid on type j at time t
12 if b ≥ P then
13 Bidder.award item(t,j) // Allocate items for winning bids

14 (∆t, P )← Sample-Dataset(t,j) // Append next (t, P ) pair for j to Q
15 Q.push((t+ ∆t, P, j))

16 Function Sample-Dataset(t,j):
17 p← t− btc
18 U ∼ U(0, 1) // Interpolate between hours

19 if p ≤ U then
20 h← btc
21 else
22 h← btc+ 1

23 ∆t← Sample-Inter-arrivals(hour=h,type=j)
24 P ← Sample-Prices(hour=h,type=j)
25 return (∆t, P )
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B.5.3 Proofs

Proposition 5.1.2 (Duality). A dual of Problem of (PT ) can be formulated as

maximize
ρ,µ

N∑

i=1

ρiCi −
M∑

j=1

∑

k:Tk≤T j

∫ Tk

Tk−1

λj(t)Λ
?
j(µjk, t)dt

subject to vijρi ≤ µjk ∀i ∈ Bj ∩ TTk

(DT )

which is a finite convex program. Problem (DT ) is dual to Problem (PT ) in the sense that
if D?

T and P ?
T are their respective values (possibly ∞ or −∞), then D?

T ≤ P ?
T . Moreover,

under Assumption 5.1.1 there exists a solution (s, R) ∈ L2([0, T ])M × L2([0, T ])d to Prob-
lem (PT ) and a solution (ρ, µ) ∈ RN × RM to Problem (DT ) and −∞ < D?

T = P ?
T <∞.

Proof of Proposition 5.1.2. The proof is similar to the analysis of Section 3.1.2, but requires
additional care due to the infinite dimensional nature of the problem. We begin with the
Lagrangian, whose domain we will restrict to Rij(t) ≥ 0 (rather than introducing slack
variables θij(t)):

L(s, R, µ, ρ) =
M∑

j=1

∫ T j

0

λj(t)Λj(sj(t)/λj(t), t)dt+
N∑

i=1

ρi
(
Ci −

∑

j∈Ai

vij

∫ Ti

0

Rij(t)dt
)

+
M∑

j=1

∫ T j

0

µj(t)
( ∑

i∈Bj∩Tt

Rij(t)− sj(t)
)
dt

(a)
=

N∑

i=1

ρiCi +
M∑

j=1

∫ T j

0

[
λj(t)Λj(sj(t)/λj(t), t)− µj(t)sj(t)

]
dt

+
M∑

j=1

∫ T j

0

∑

i∈Bj∩Tt

Rij(t)
(
µj(t)− vijρi

)
dt,

where in (a) we have combined the restriction that i ∈ Tt ∆
= {i ∈ [N ] | t < Ti} in the

summation to expand the bounds of integration from [0, Ti] to [0, T j].

To obtain the dual, we take the pointwise infimum of this function. This infimum over
Rij(t) ≥ 0 induces the pointwise inequality µj(t) ≥ vijρi since otherwise the value would
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be −∞, and taking a similar infimum over sj(t) results in the convex conjugate Λ?
j(µj(t), t)

(by definition) and hence maximizeρ,µ infs,R L(s, R, µ, ρ) can be written

maximize
ρ,µ

N∑

i=1

ρiCi −
M∑

j=1

∫ T j

0

λj(t)Λ
?
j(µj(t), t)dt

subject to vijρi ≤ µj(t) ∀i ∈ Bj ∩ Tt.

Since Λ?
j is monotone increasing in its first argument, we obtain that µj(t) = max

i∈Bj∩Tt
vijρi.

Since the right hand side of this equation is piecewise constant (changing only at contract
deadlines Ti) it must be that there exists a finite collection µjk such that µj(t) = µjk for
t ∈ [Tk−1, Tk) and therefore we can equivalently formulate the dual as

maximize
ρ,µ

N∑

i=1

ρiCi −
M∑

j=1

∑

k:Tk≤T j

∫ Tk

Tk−1

λj(t)Λ
?
j(µjk, t)dt

subject to vijρi ≤ µjk ∀i ∈ Bj ∩ TTk .

The weak duality statement D?
T ≤ P ?

T is well known and follows from an elementary
analysis of L.

We must establish the existence of solutions to these problems. Firstly, since Λj(q, t) =
∞ for q > 1, Problem (PT ) includes the implicit constraint sj(t) ≤ λj(t) ≤ B where
B = maxj sup

t∈[0,T ]

λj(t) <∞ which is bounded since λj(t) is assumed continuous and [0, T ] is

compact. It follows that over L2([0, T ]) the feasible region of the primal problem is a convex
and norm closed and bounded set. Hence, since closed convex sets are also weakly closed
([45, Thm. 3.6]) the constraints of Problem (PT ) describes a weakly closed and bounded
set. Since the objective is convex (as a functional of sj(t), Rij(t)) and lower semicontinuous
(hence weakly lower semicontinuous), these properties combine with the direct method1 [45,
Thm. 5.51] to establish the existence of a solution to (PT ).

1The direct method is a well known program for establishing existence of solutions. We construct a
minimizing sequence and use weak compactness (weak closedness combined with weak boundedness) to
obtain a weakly convergent subsequence. The point of convergence belongs to the constraint set of the
problem since it is weakly closed. The lower semicontinuity of the objective is then used to show that this
point is in fact a minimizer. Weak closedness and weak lower semicontinuity is obtained by combining
convexity with norm closedness and norm lower semicontinuity. That is, the convexity of the problem now
plays a key role even just in the existence of solutions.
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Now, combining Assumption 5.1.1 (a Slater point) with [45, Thm. 9.8] (existence of a
normal dual multiplier) and [45, Thm. 9.13] (strong duality) we conclude that there must
also exist a dual solution and D?

T = P ?
T .

Proposition 5.3.1 (Finite Primal Problem). The finite optimization problem over the
variables sij[k], Rij[k] defined by

minimize
s,R

M∑

j=1

∑

k:T̃k≤T j

Λjk(sj[k]/λjk)

subject to
∑

j∈Ai

∑

k:T̃k≤Ti

∆kvijRij[k] = Ci

∑

i∈Bj∩TTk

Rij[k] = sj[k]

Rij[k] ≥ 0,

(PK)

is a finite approximation of (PT ) in the following sense.

For any solution (sj[k], Rij[k]) of (PK), the functions Rij(t) = qjkγijkλj(t), where qjk =
sj[k]/λ̄jk and γijk = Rij[k]/sj[k], and sj(t) =

∑
i∈Bj Rij(t) are feasible for Problem (PT ).

If, in addition, ∆k is O(1/K) and each cost function Λj(x, t) is Lipschitz in x (uniformly
in t a.e.) and twice continuously differentiable almost everywhere in t (uniformly in x a.e.);
each Wj(x, t) and g−1

j (x, t) are Lipschitz in t (uniformly in x a.e.); then the cost difference
between the optimal solution to (PT ) and the feasible piecewise constant approximation
obtained from Problem (PK) is O(1/K). A more precise bound is provided in the proof.

Proof of Proposition 5.3.1. Let (s?[k], R?[k]) be an optimal solution to Problem (PK) and
(s?(t), R?(t)) an optimal solution to (PT ) with corresponding (piecewise constant) dual
multipliers µ?j(t). To see that Rij(t) = qjkγijkλj(t) is feasible for Problem (PT ) we first
recognize that Rij(t) ≥ 0 and

∑
i∈Bj∩TTk

Rij(t) = qjkλj(t) ≤ λj(t). Then, we have
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∑

j∈Ai

vij

∫ Ti

0

Rij(t)dt =
∑

j∈Ai

vij
∑

k:T̃k≤Ti

∫ T̃k

T̃k−1

qjkγijkλj(t)dt

=
∑

j∈Ai

vij
∑

k:T̃k≤Ti

sj[k]

λ̄jk

Rij[k]

sj[k]
∆kλ̄jk

=
∑

j∈Ai

∑

k:T̃k≤Ti

∆kvijRij[k]

= Ci.

Bounding the integral approximation error is a simple application of the well known error
bound for the trapezoidal rule

We now place a bound on the integral approximation error. This follows from applica-
tion of the well known error bound for the trapezoidal rule (see e.g. [138, ch. 7]), i.e., for

any k, q there exists some t̂ ∈ [T̃k−1, T̃k] such that

∣∣∣∣∣Λjk(q)−
∫ T̃k

T̃k−1

λj(t)Λj(q, t)dt

∣∣∣∣∣ ≤
∆3
k

12

∣∣∣∣
∂2Λj(q, t̂)

∂t2

∣∣∣∣ .

Thus, since ∆k is O(1/K) we have the bounds

∣∣∣∣∣∣

M∑

j=1

∑

k:T̃k≤T j

∫ T̃k

T̃k−1

Λj(qk, t)dt−
M∑

j=1

∑

k:T̃k≤T j

Λjk(qk)

∣∣∣∣∣∣
≤ B

K∑

k=1

∆3
k

= O(1/K2).

Using this bound, and the notation q?j (t) = s?j(t)/λj(t), qjk(t) =
sj [k]

λ̄jk
λj(t) for t ∈ [T̃k−1, T̃k)

we have the bounds
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∑

j∈Ai

∫ T j

0

λj(t)Λj(q
?
j (t), t)dt

(a)

≤
∑

j∈Ai

∑

k:T̃k≤T j

∫ T̃k

T̃k−1

λj(t)Λj(qjk, t)dt

(b)
=
∑

j∈Ai

∑

k:T̃k≤T j

Λj(qjk) +O(1/K2)

(c)

≤
∑

j∈Ai

∑

k:T̃k≤T j

Λj(q
?
j (τk)) +O(1/K2)

(d)
=
∑

j∈Ai

∑

k:T̃k≤T j

∫ T̃k

T̃k−1

λj(t)Λj(q
?
j (τk), t) +O(1/K2),

where (a) follows since sjk (hence qjk) is feasible for (PT ) and q?j (t) is optimal, (b) follows
by applying the bound for trapezoid integration error, in (c) we choose a sequence of points

τk ∈ [T̃k−1, T̃k) such that q?j (τk) is feasible for Problem (PK) (such a sequence exists, e.g., by
maximizing q?j (t) in each interval), and (d) again applies the integral approximation bound,
absorbing a factor of 2 into O.

We will now bound the distance between the above two integrals, using LΛ as the
Lipschitz constant of Λj in its first argument, and ΓW ,Γg are those of W, g in t:

∣∣∣∣∣

∫ T̃k

T̃k−1

λj(t)Λj(q
?
j (t), t)dt−

∫ T̃k

T̃k−1

λj(t)Λj(q
?
j (τk), t)dt

∣∣∣∣∣
(a)

≤ λ̂k

∫ T̃k

T̃k−1

∣∣Λj(q
?
j (t), t)− Λj(q

?
j (τk), t)

∣∣ dt

(b)
= λ̂kLΛ

∫ T̃k

T̃k−1

∣∣Wj ◦ g−1
j (µ?j(t), t)−Wj ◦ g−1

j (µ?j(τk), τk)
∣∣ dt

(c)
= λ̂kLΛ

∫ T̃k

T̃k−1

∣∣Wj ◦ g−1
j (µ?j(t), t)−Wj ◦ g−1

j (µ?j(t), τk)
∣∣ dt

(d)
= λ̂kLΛΓWΓg

∫ T̃k

T̃k−1

|t− τk|dt

(d)
=

1

4
λ̂kLΛΓWΓg∆

2
k
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where in (a) λ̂k = max
t∈[T̃k−1,T̃k]

λj(t), in (b) we use the Lipschitz constant of Λj in its first

argument, in (c) we have µ?j(t) = µ?j(τk) since this quantity is piecewise constant on each

[Ti−1, Ti] (which are contained in {T̃k}Kk=1) and in (d) we apply the Lipschitz constants
(w.r.t. t) of W, g−1.

If we now sum this bound across k and j, using ∆k = O(1/K) we obtain the stated
bound. If this error is εK , a more precise bound is given by

εK ≤
M

4
LΛΓWΓg

K∑

k=1

λ̂k∆
2
k +O(1/K2).
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Appendix C

Code Listings

This section provides concise listings of select Python programs used in core parts of the
thesis. Various non-essential pieces have been omitted for brevity.

C.1 The Method of Bisection

First, we have a simple implementation of the fundamental bisection algorithm, see Section
2.4.1. This serves as a key subroutine for nearly any specialized algorithm for solving RTB
contract management problems.

def binary_search_f(f, y, xl, xr, max_iter=100, eps=1e-6):

"""

Given a function f which is monotone /increasing/, find an x

in the interval [xl, xr] such that f(x) = y.

"""

for _ in range(max_iter):

x = xl + (xr - xl) / 2.0

if f(x) >= y:

xr = x

else:

xl = x

err = xr - xl
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if err < eps:

break

return xl + (xr - xl) / 2.0

And a convenient method for constructing inverses

def make_inverse(f, xl, xr, eps=1e-6, max_iter=100):

def inverse_f(y):

return binary_search_f(f, y, xl, xr, max_iter=max_iter, eps=eps)

return inverse_f

C.2 Primal Solver in cvxpy

Recall that the sets Ai,Bj are derived simply from the sparsity pattern of the valuations
vij.

def AB_from_v(v):

N, M = v.shape

A = {i: {j for j in range(M) if v[i, j] > 0} for i in range(N)}

B = {j: {i for i in range(N) if v[i, j] > 0} for j in range(M)}

return A, B

The simple example problem with Wj(x) = 1 − e−γjx serves as the canonical example
throughout the thesis. Although much of the interesting computational results arise as part
of a duality analysis, the following listing provides a cvxpy program to solve the convex
primal Problem (PR) given these supply curves.

"""Solves the particular primal problem where W(x) = 1 - exp(-gamma * x)"""

import numpy as np

import cvxpy as cvx

def acq(q, gamma):

return (1.0 / gamma) * (q - cvx.entr(1 - q))
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def primal_objective(R, B, lmbda, gamma):

ret = 0.0

for j in B:

s_j = cvx.sum([R[i][j] for i in B[j]])

ret += lmbda[j] * acq(s_j / lmbda[j], gamma[j])

return ret

def primal_constraints(R, A, v, C):

N, M = v.shape

constraints = []

for i in A:

constraints.append(sum([R[i][j] for j in A[i]]) == C[i])

for i, A_j in A.items():

for j in A[i]:

constraints.append(R[i][j] >= 0)

return constraints

def construct_primal_program(v, C, lmbda, gamma):

A, B = AB_from_v(v)

N, M = v.shape

R = {i: {j: cvx.Variable(name=f"R[{i}][{j}]")

for j in A[i]} for i in range(N)}

obj = cvx.Minimize(primal_objective(R, B, lmbda, gamma))

constraints = primal_constraints(R, A, v, C)

problem = cvx.Problem(objective=obj, constraints=constraints)

return problem, R

def solve_primal(v, C, lmbda, gamma, eps=1e-3, verbose=True):

problem, R = construct_primal_program(v, C, lmbda, gamma)

problem.solve(solver="SCS", verbose=verbose, eps=eps)

R = {i: {j: float(R[i][j].value) for j in R[i]} for i in R}

return (problem.value, R)

The ADMM based Splitting Conic Solver SCS [134, 135] performs well on this problem.
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C.3 Dual Solver in cvxpy

The simple example problem for Wj(x) = 1−e−γjx is also one of the few cases where closed
form for the conjugate acquisition cost function Λ?

j can be derived in terms of elementary
functions. We are thus able to use cvxpy as a solver for the dual problem (D).

"""Solve the particular dual problem for W(x) = 1 - exp(-gamma * x)."""

import numpy as np

import cvxpy as cvx

def conjugate_acq(mu, gamma):

return mu + (1 / gamma) * (cvx.exp(-gamma * mu) - 1)

def mu_to_s(mu, gamma):

return 1 - np.exp(-gamma * mu)

def dual_objective(mu, rho, C, lmbda, gamma):

M, N = len(gamma), len(C)

return cvx.sum(cvx.multiply(C, rho)) - cvx.sum(

[lmbda[j] * conjugate_acq(mu[j], gamma[j]) for j in range(M)]

)

def dual_constraints(mu, rho, v):

N, M = v.shape

constraints = []

for i in range(N):

for j in (j for j in range(M) if v[i, j] > 0):

constr = v[i, j] * rho[i] <= mu[j]

constraints.append(constr)

return constraints

def construct_dual_program(M, N, v, C, lmbda, gamma):

rho = cvx.Variable(shape=(N,), name="rho")

mu = cvx.Variable(shape=(M,), name="mu")

obj = cvx.Maximize(dual_objective(mu, rho, C, lmbda, gamma))

204



constraints = dual_constraints(mu, rho, v)

constraints = constraints + [mu >= 0, rho >= 0]

problem = cvx.Problem(objective=obj, constraints=constraints)

return problem, rho, mu

def solve_dual(M, N, v, C, lmbda, gamma, eps=1e-3, verbose=True):

problem, rho, mu = construct_dual_program(M, N, v, C, lmbda, gamma)

problem.solve(solver="SCS", verbose=verbose, eps=eps)

return rho.value, mu.value

Again, the SCS solver performs well on this problem. As we have remarked in Chapter
3, the constraints µj ≥ 0, ρi ≥ 0 are not formally necessary due to the monotonicity
properties of Λ?

j . However, explicitly including them in the optimization model drastically
improves numerical performance on large problem instances. In some cases, the solver fails
completely if these constraints are not included.

C.4 Transportation Solver in cvxpy

The following program will solve Problem (Tt) from Section 3.2.3 for obtaining an optimal
Rij array when an optimal acquisition rate sj is known. This is in general a simple convex
quadratic program (as it does not involve supply curves) and can leverage existing high
quality solvers. In particular, we have found the ADMM based Operator Splitting QP
Solver OSQP [165] to perform well, and is generally more reliable than SCS for this problem.

"""Find an allocation array R given fixed supply rates s."""

import numpy as np

import cvxpy as cvx

class RaggedArray:

def __init__(self, R_dict, M, N):

"""Make a nested dictionary behave like an array."""

self.R = R_dict

self.M = M

self.N = N
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return

def __getitem__(self, ix):

return self.R[ix[0]][ix[1]]

@property

def value(self):

R = np.zeros((self.N, self.M))

for i in range(self.N):

for j in self.R[i]:

R[i, j] = self[i, j].value

return R

def construct_objective(R, C, v, lmbda, s, A, t=1e-6):

N = len(C)

obj = 0.0

for i in range(N):

sval = sum(lmbda[j] * v[i, j] * R[i, j] for j in A[i])

obj += cvx.pos(C[i] - sval)

obj += t * sum(sum(R[i, j] ** 2 for j in A[i]) for i in range(N))

return obj

def construct_constraints(R, B, s):

constraints = []

M = len(B)

for j in range(M):

for i in B[j]:

constraints.append(R[i, j] >= 0)

constraints.append(sum(R[i, j] for i in B[j]) == s[j])

return constraints

def construct_transportation_program(M, N, A, B, v, C, s, lmbda):

R = RaggedArray(

{i: {j: cvx.Variable(name=f"R[{i}, {j}]")

for j in A[i]} for i in range(N)},

M, N)

s = cvx.Parameter(shape=M, name="s")
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t = t_exact(lmbda, v, A)

obj = construct_objective(R, C, v, lmbda, s, A, t=t)

constraints = construct_constraints(R, B, s)

problem = cvx.Problem(objective=cvx.Minimize(obj), constraints=constraints)

return problem, R, s

def t_exact(lmbda, v, A):

N = v.shape[0]

lmbda_max = max(lmbda)

return 0.99 * min((max(lmbda[j] * v[i, j] for j in A[i]) for i in range(N)))

def solve_transportation_problem(M, N, A, B, v, C, s, lmbda, eps=1e-4):

problem, R, s_param = construct_transportation_program(

M, N, A, B, v, C, s, lmbda)

s_param.value = s

problem.solve(solver="OSQP", eps=eps)

return R.value
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Generic Mathematical Notation

R The set of real numbers.

R∞ = R ∪ {∞} The extended real numbers.

∆
= Equal by definition.

R+ = [0,∞) The set of non-negative real numbers.

N = {1, 2, . . .} The Natural numbers.

[N ] = {1, 2, . . . , N} Set of N objects.

f ≡ a The function f always evaluates to the constant value a.

intS Interior of the set S.

clS Closure of the set S.

convS Convex hull of the set S.

f ◦ g(x) = f(g(x)) Function composition. For functions of two variables, we occasionally
write f ◦ g(x, y) = f(g(x, y), y), i.e., composition with respect to the first argument.

∇f The gradient (column) vector of the function f .

∂f The subgradient set valued map for the convex function f .

Df The derivative (row) vector of the function f .

f ′ Derivative of a scalar function f : R→ R.

dg(A) The vector formed from the diagonal of the square matrix A.
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Dg(a) A square diagonal matrix consisting of the entries of the vector a along the main
diagonal and 0 elsewhere.

e A vector containing all 1.

vecA Stacks the columns of A into a vector.

aT Transpose of the vector a.

N (A) Nullspace of the matrix A.

〈x, y〉 = xTy Inner product between vectors x, y.

||x|| A norm of x. ||x||2 is the Euclidean norm.
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List of Symbols

A?i ⊆ Ai Item types actually allocated towards contract i at an optimal solution.

B?j ⊆ Bj Contracts towards which items of type j are actually allocated at an optimal
solution.

N Number of contracts to be fulfilled.

i ∈ [N ] Denotes the ith contract.

M Number of available discrete item types.

j ∈ [M ] Used to denote the jth item type.

ηj > 0 Probability that an arriving item is of type j.

λ > 0 Arrival rate of items. As well, λj = ηjλ.

Φ Occasionally used when referring to a continuum of item types.

φ ∈ Φ Generic notation for item type. Occasionally used for elements in a dual vector
space V ?, such as in the subgradient φ ∈ ∂f(x).

x Usually used to denote a bid. xj is the bid placed on items of type j.

s ≥ 0 The rate s of acquiring items. sj is the acquisition rate for items of type j.

q Used to denote a probability of winning an item. qj is the probability to win an item of
type j.

µj ≥ 0 Dual variable associated to the constraint sj ≤ λj. May appear in similar places
as x, due to the relationship between this dual variable and a bid.
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ρi ≥ 0 Dual variable associated to contract fulfillment constraints, the “pseudo-bids”. May
appear in similar places as x or µ, due to the relationship between this dual variable
and a bid.

θij ≥ 0 Dual variables associated to the constraint Rij ≥ 0, θij = µj − vijρi. Also used
generically to denote a convex (but not differentiable) function in Section 4.2.2.

W (x) A supply curve c.f.,Definition 2.1.1.

f(x) A cost function derived from a supply curve. f2nd specifies the second price auction
(the default) and f1st specifies the first price auction. See Section 2.1.2.

Λ(q) Acquisition cost function – see Section 2.1.2.

Λ?(µ) Conjugate acquisition cost function – see Section 2.1.2.

Ci > 0 Amount of supply that needs to be allocated towards contract i ∈ [N ].

vij ≥ 0 The value of items of type j towards the fulfillment of contract i.

Ai ⊆ [M ] Item types that can fulfill contract i: j ∈ Ai ⇐⇒ vij > 0.

Bj ⊆ [N ] Contracts towards which items of type j can be usefully allocated: i ∈ Bj ⇐⇒
vij > 0.

Ti Time deadline for contract i ∈ [N ].

T Final time deadline T = TN = max
i∈[N ]

Ti.

Tt Set of contracts active at time t: Tt ∆
= {i ∈ [N ] | t < Ti}.

T̃k Times used to segment the interval [0, T ).
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List of Optimization Problems

(Pm) The main problem in the original monotone programming formulation involving
W, f .

(P ) The main problem reformulated as a convex optimization problem.

(PR) The main problem in convex form with the variable s eliminated.

(P u) The main problem in compact form with u ∈ Rd−M and constraints Gu ≤ h.

(P u
β ) Problem (P u) with Tikhonov regularization 1

2β
||u||22.

(D) The dual of Problem (P ).

(Tt) The pure transportation problem with s fixed and penalty 1
2
t||R||22.

(SA) The generic stochastic approximation algorithm.

(SRI) The generic stochastic recursive inclusion algorithm.

(Dµ) Dual problem with variables ρ eliminated.

(Dρ) Dual problem with variables µ eliminated.

(Pm
T ) The main problem for contracts with time deadlines in monotone programming form.

(PT ) The main problem for contracts with time deadlines in convex form.

(DT ) The dual problem for contracts with time deadlines.
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Definitions of Select Terms

Auction A mechanism for selling items. The item is awarded to the agent offering to pay
the most, but their payment depends on the type of the auction.

Bidder Agent bidding for (i.e., attempting to buy) items in RT.

Censored An observation is censored if values outside of a certain raange cannot be
distinguished. For example, Z = min(X, 10) is a censored observation of the value
X.

Contract An agreement to acquire a certain total value of items in the RTB market.
Formally, the ith contract is the triple

(
(vij)j∈[M ], Ci

)
.

First Price Auction An auction where the winner pays what they bid.

Impression When an ad is served to a user, it is considered an “impression”.

Intermediary An agent that aggregates the demand of multiple bidders and participates
in RTB on their behalf.

Item A generic term for whatever is being sold in RTB. Usually, an impression.

Item type The type of an item specifies certain identifiable properties. Generically, items
belong either to a finite collection of M types, or more generally belong to an abstract
(possibly uncountable) space Φ. All items of the same type are completely fungible.

Publisher Operator of a website or app, usually themselves a seller.

Real-time Bidding An auction mechanism for sequentially selling multiple items. Items
arrive and are immediately sold through a sealed bid auction using either a second
price or first price auction..
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Reserve (price) In an auction, the reserve price is the minimum allowed bid.

Sealed Bid An auction is sealed bid if agents do not observe the bids placed by other
bidders. All auction mechanisms employed in RTB are sealed bid.

Second Price Auction An auction where the winner pays the second highest bid.

Seller Agent selling items in RTB.

User A visitor to a webpage, app, etc.

Vickrey Auction A sealed bid second price auction.
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