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Abstract

We present a method for producing unbiased parameter estimates and valid confidence
intervals under the constraints of differential privacy, a formal framework for limiting in-
dividual information leakage from sensitive data. Prior work in this area is limited in that
it is tailored to calculating confidence intervals for specific statistical procedures, such as
mean estimation or simple linear regression. While other recent work can produce confi-
dence intervals for more general sets of procedures, they either yield only approximately
unbiased estimates, are designed for one-dimensional outputs, or assume significant user
knowledge about the data-generating distribution. Our method induces distributions of
mean and covariance estimates via the bag of little bootstraps (BLB) [26] and uses them
to privately estimate the parameters’ sampling distribution via a generalized version of the
CoinPress estimation algorithm [6]. If the user can bound the parameters of the BLB-
induced parameters and provide heavier-tailed families, the algorithm produces unbiased
parameter estimates and valid confidence intervals which hold with arbitrarily high prob-
ability. These results hold in high dimensions and for any estimation procedure which
behaves nicely under the bootstrap.
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Chapter 1

Introduction

1.0.1 Overview

Our society has experienced dramatic growth in large-scale data collection and analysis
in recent history, which has led to a number of concerns around the role of privacy and
security in the modern world. Our particular focus will be on statistical analysis and how
it can leak information about individuals in the data set being analyzed.

Statistical agencies, in particular, have been concerned with what they called statistical
disclosure limitation, using a variety of methods in an attempt to limit disclosure risk.
[16, 17, 27], and [34] work on identifying and quantifying disclosure risk under different
assumptions. There has also been substantial work developing disclosure limitation meth-
ods such as k-anonymity [40], t-closeness [30], l-diversity [31], and swapping [23], among
others.

[12] developed a polynomial data reconstruction algorithm and used it to prove a result
later coined in [20] as the Fundamental Law of Information Recovery. Roughly, this law
states that an attacker can reconstruct a data set by asking a sufficiently large number
of cleverly chosen queries of the data, even if the query answers are noised before being
returned to the attacker. This inspired the invention of differential privacy (DP) [19].
DP is a definition which requires that, for any two data sets differing in one row, the
distribution of answers to any possible query doesn’t change much between the two data
sets.

DP has become a popular tool in many corners of industry but has not been widely ap-
plied to research in many fields that often analyze sensitive data (social sciences, medicine,
etc.). We suggest that this is, in part, because of a lack of DP algorithms that effectively
meet the needs of these fields. First, DP algorithms typically require the user to, without
looking at the data, specify bounds to which the data will be censored/clipped. We claim
that doing this well is a difficult problem in general, and potentially introduces substantial
error into the DP pipeline which is difficult to account for. Second, DP estimators do not
typically admit basic statistical guarantees that many applied researchers desire; namely
unbiasedness and valid confidence intervals. Our goal is to provide a framework for con-
verting non-private estimators to DP estimators in a way that jointly addresses both of
these concerns.
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1.0.2 Problem Demonstration

DP estimators are not, in general, unbiased with respect to the non-private estimator they
are attempting to approximate, nor do they typically admit valid confidence sets. Although
many DP mechanisms take the form “non-private statistic plus zero-mean noise”, this
obscures the fact that these mechanisms typically require that the input data reside in a
bounded data domain. In practice, analysts are required to specify this domain without
looking at the data, which introduce a potential trade-off in the analyst’s decision calculus.
The analyst generally wants to find tight bounds, as tighter bounds typically require less
noise addition to guarantee privacy. However, if the analyst’s bounds are too tight, they
risk censoring the data and biasing statistics they calculate.

Consider the case where X = {X1, . . . , Xn} with Xi ∼ N(0, 1) and y = Xβ + ε for
β = 100, ε ∼ N(0, 102). We estimate β and get associated 95% confidence intervals using
OLS and test the effect of various levels of censoring on the estimates and confidence
intervals. Specifically, we leave X uncensored and censor the top {0, 0.1, 1, 5} percent of y.
Note that we will often use the term “clipping” in place of “censoring”, as it is the more
familiar term within the DP literature.

(a) Bias induced by 0.1% clipping (b) Bias induced by 1% clipping (c) Bias induced by 5% clipping

(d) CI coverage induced by 0.1% clip-
ping

(e) CI coverage induced by 1% clipping (f) CI coverage induced by 5% clipping

Figure 1.1: Distribution of OLS coefficient estimates (a-c) and 95% confidence intervals (d-f) under different
levels of clipping of y. Non-clipped distribution in green, clipped distribution in orange.

Figure 1.1 shows results from 10,000 simulations of this process. The top plots show
coefficient distributions under each level of clipping and compare it to the condition of
no clipping. Note that at even a moderate level of 1% clipping, the distributions of esti-
mates are completely non-overlapping. The bottom plots show the estimates, arranged in
increasing order on the x-axis, with vertical bars representing the 95% confidence interval
for that estimate. Each estimate is centered as if the true coefficient value were 0. The
black dotted vertical lines on the left and right sides of each plot show the 0.025 and 0.975
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quantiles, where we expect perfectly calibrated confidence intervals to cross the x-axis.
At 0.1% clipping, approximately half of our confidence intervals do not contain the true
parameter value; at higher levels of clipping, none of them do.

We ultimately want to construct confidence intervals for our private estimator rather
than the non-private one, which introduces extra complexity not represented in Figure 1.1.
At a high-level, our private estimator has variance from two sources; the inherent variance
of the non-private estimator, which we privately estimate, and the noise we add for privacy,
which we often know analytically for DP mechanisms. We need to take both into account
for valid confidence intervals. Even if we don’t clip any data points, a private estimate
of the variance of the non-private estimator (privatized with symmetric, zero-mean noise)
will be smaller than its non-private counterpart with probability 1

2
. Plugging in a variance

estimated in this way will lead to overly narrow confidence intervals, so we need to ensure
that we can produce a private variance estimate that is at least as large as its non-private
equivalent.

It’s worth pointing out that we chose a very simple regime for the experiments above;
one-dimensional OLS with a Gaussian covariate, Gaussian error, clipping in only the out-
come variable, and no attempt to respect DP. In more complex settings, the effect of
clipping on the coefficients could be worse, and would certainly be harder to predict and
reason about.

1.0.3 Contributions

We introduce a general-purpose meta-algorithm that allows an analyst to take any of
a broad set of estimators that are unbiased in the non-private setting and produce a
differentially private version that, with high probability, is unbiased and produces valid
confidence intervals. In Section 2, we introduce our framework which takes its general
structure from the Sample-Aggregate approach of [32]. We use the Bag of Little Boot-
straps (BLB) algorithm (Algorithm 3 [26]) to approximate the sampling distribution of
the non-private estimator and privately estimate the parameters of said distribution using
a modified version of the CoinPress mean estimation algorithm (Algorithm 2 [6]). Under a
few assumptions on the behavior of the bootstrap and initial user bounds, our use of Coin-
Press produces unbiased parameter estimates (Theorem 3.0.6). The estimated parameters
and knowledge of the privatization process are combined to generate final private mean
and covariance estimates (Theorems 4.0.2, 4.0.3, and 4.0.4), and valid confidence intervals
(Theorem 4.0.5, and Corollary 4.0.6)). We credit [21] for first noting the compatibility of
BLB with Sample-Aggregate.

These guarantees hold under the following assumptions. First, the BLB applied to
the estimator must approximate the sampling distribution of the estimator well (Assump-
tion 2.0.1). Then, for both the mean and covariance distribution induced by the BLB,
the analyst must provide a distribution that is heavier-tailed (Definition 3.0.1 and As-
sumption 3.0.2), as well as give bounds on the mean (Assumption 3.0.3) and covariance
(Assumption 3.0.4) of the induced distribution. We argue that these conditions are rather
natural, and we demonstrate how the properties of the CoinPress algorithm allow the
analyst to get good performance even when they set the aforementioned bounds very con-
servatively.
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We employ a multivariate extension of the precision-weighting technique to improve
CoinPress’ estimates (Theorem 4.0.1). While precision-weighting is a well-known technique
in the meta-analysis literature, we give, to the best of our knowledge, the first proof of
multivariate optimality, which may be of independent interest.

We believe that our framework is a promising step toward making differential privacy
more practical for applied research. First, we believe that the problem of choosing good
data bounds is significant in practice in that it is both generally difficult and that many
DP algorithms are sensitive to poor choices. There is also currently an asymmetry in the
failure modes, in that bounds that are too wide typically yield answers which are unbiased
but very noisy, while bounds that are too narrow risk “silent failure”, where the DP result
looks precise but is not actually representative of the non-private answer. Our framework,
through use of the CoinPress algorithm, gives users more leeway to err on the side of
conservatism, thus mitigating the possibility of getting DP results that appear precise but
are systematically incorrect.

Second, our framework is general enough to be applied to any estimators for which the
BLB does a “good” job estimating its sampling distribution. The bootstrap is broadly
familiar to applied statisticians, and its properties for any particular estimator an analyst
wishes to use can be tested on non-sensitive data. Thus, answering the question of whether
or not our algorithm will be useful for a given problem can be done without much knowledge
about DP.

1.0.4 Related Work

Differential privacy has grown in popularity in recent years, as has the literature exploring
the intersection between statistics and DP. [18] point out how a handful of common robust
statistical estimators could be extended to respect differential privacy. [46] compare DP
mechanisms via convergence rates of distributions and densities from DP releases and frame
DP in statistical language more broadly. [29] explores model selection under DP, while [33]
explores model uncertainty. [42, 45, 24, 9], and [3] propose methods for DP hypothesis
testing in various domains. [37, 43, 4], and [1] all address the problem of differentially
private linear regression.

[25] gives nearly optimal confidence intervals for Gaussian mean estimation with finite
sample guarantees. [15] proposes their own algorithms for the same problem and finds
superior practical performance in some domains, and [6] develop an algorithm that works
well at reasonably small sample sizes and without strong assumptions on user knowledge,
while also scaling well to high dimensions. [14] explores non-parametric confidence intervals
for calculating medians. [13] gives confidence intervals for a difference of means. [2] shows
how to construct DP version of M-estimators, as well as associated confidence regions.

Our work continues in a line of recent work for constructing confidence sets for more
general classes of differentially private estimators. [7] shows how to combine estimates from
additive functions that respect zCDP to get confidence intervals at no additional cost. [44]
provides confidence intervals for models trained with objective or output perturbation
algorithms. These algorithms are quite general, but require solving the non-private ERM
sub-problem optimally. [22] presents a very general approach based on privately estimating
parameters of the data-generating distribution and bootstrapping confidence intervals by
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repeatedly running the model of interest on samples from a distribution parameterized by
the privately estimated parameters. This method is efficient with respect to its use of the
privacy budget, but relies on significant knowledge of the structure of the data-generating
process. With the exception of [25], these works either ignore the issue of bounding X
effectively, or attempt to address it through bias-correction strategies which we believe are
unlikely to work for complex problems. [5] tests a variety of DP algorithms for various tasks
(ranging from tabular statistics to OLS regression) on real data and argue that existing
methods for performing DP regression, “would struggle to produce accurate regression
estimates and confidence intervals” ([5], p. 1).

[21] is the closest existing work to ours. They also start with Sample-Aggregate frame-
work, note the similarity of Sample-Aggregate with the BLB algorithm, and use this to
approximate the sampling distribution of the non-private estimator. The k estimates are
then aggregated via a differentially private mean and confidence intervals are calculated
using a differentially private variance estimate and CLT assumption. Because the esti-
mates are projected into a bounded data domain to control the sensitivity of the mean, the
resulting private mean could potentially be biased. [21] attempts to address this issue by
privately estimating the proportion of the k estimates that are clipped by the projection
and adjusting the private mean by the estimated clipping proportions. This method has
the advantage of allowing users to specify overly tight clipping bounds in order to decrease
the global sensitivity of their estimator, but is sensitive to how well the clipping proportions
are estimated and, to our knowledge, has no multi-dimensional analogue.

1.0.5 Definitions

Differential Privacy

We begin with an introduction to the core definitions of DP.

Definition 1.0.1 (Neighboring data sets). Let X be a data universe and D,D′ ∈ X n. We
say that D,D′ are neighboring if max (|D \D′|, |D′ \D|) = 1. We also define the set of all
neighboring data sets as Dn = {(D,D′) ∈ X n ×X n : max (|D \D′|, |D′ \D|) = 1}.

Definition 1.0.2 (Rényi divergence [35]). Let P,Q be probability measures over a measur-
able space (Ω,Σ). Then we define the α-Rényi divergence between P,Q as

Hα (P‖Q) =
1

α− 1
ln

∫
Ω

P (x)αQ(x)1−αdx.

Definition 1.0.3 (Zero-concentrated differential privacy (zCDP) [8]). Let M : X n → Ω
be a randomized algorithm where (Ω,Σ,P) is a probability space and ρ ≥ 0. We say that
M respects ρ-zCDP if

∀(D,D′) ∈ Dn,∀α ∈ (1,∞) : Hα (M(D)‖M(D′)) ≤ ρα.

The parameter ρ represents an upper bound on the amount of information M leaks
about the underlying data. Larger ρ implies more information leakage, or privacy loss, but
also allows for the statistics returned by M to be more accurate.

Differential privacy has a few properties that will be useful for us later.
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Lemma 1.0.4 (Composition of zCDP [8]). Let M : X n → Y and M′ : X n → Z such that
M satisfies ρ-zCDP and M′ satisfies ρ′-zCDP. Define M′′ : X n → Y × Z by M′′(x) =
(M(x),M′(x)). Then M′′ satisfies (ρ+ ρ′)-zCDP.

Lemma 1.0.5 (Postprocessing of zCDP [8]). Let M : X n → Y and f : Y → Z such
that M satisfies ρ-zCDP. Define M′ : X n → Z such that M′(x) = f (M(x)). Then M′

satisfies ρ-zCDP.

Definition 1.0.6 (Global Function Sensitivity). Let X be a data domain, γ : X n →
Rd, and Dn be the set of all neighboring data sets as in Definition 1.0.1. Then we
write the global sensitivity of γ with respect to a distance metric d as GSd(X n, γ) =
maxD,D′∈Dn d (γ(D), γ(D′)) .

Algorithms can be made to respect DP in a variety of ways, but the most common way
(as well as the approach we use in this work) is via an additive noise mechanism. This
just entails running the algorithm as one would normally, and then adding random noise
scaled relative to the algorithm’s sensitivity.

Throughout this work, we use a popular additive noise mechanism called the Gaussian
mechanism.

Lemma 1.0.7 (Gaussian Mechanism). Let f : X n → Rd have global `2 sensitivity GS`2(X n, f).
Then the Gaussian mechanism

Mf (D) = f(D) +N

(
0,

(
GS`2(X n, f)√

2ρ

)2

Id

)
satisfies ρ-zCDP.

Note that it is often necessary to bound the data domain X to ensure thatGS`2(X n, f) <
∞. For example, let X = R, D = (D1, . . . , Dn) with Di ∈ R, and f : Rn → R be such that
f(D) = 1

n

∑n
i=1Di. If we let D′ = (∞, D2, . . . , Dn), then D,D′ are neighbors (they differ

only in the first element), but ‖f(D)− f(D′)‖2 =∞. If instead X = [0, 1], then the D,D′

that induce the largest difference in f are D = (1, D2, . . . , Dn) and D′ = (0, D2, . . . , Dn).
In this scenario, GS`2(X n, f) = 1

n
. These bounds must be set without looking at the par-

ticular Di, and are generally chosen by a data analyst based on public metadata and/or
their beliefs about the data-generating process.

Statistical Inference

This need to bound X introduces complications for doing statistical inference under DP,
while maintaining the types of guarantees we often want from non-private estimators. We
focus specifically on unbiased estimators and valid confidence sets.

Definition 1.0.8 (Unbiased Estimator). Let θ ∈ Rd be a model parameter we wish to
estimate. We collect data D ∼ D and estimate θ with a random variable θ̂ : D → Rm. We
say that θ̂ is an unbiased estimator of θ if

E
(
θ̂(D)

)
= θ,

with randomness taken over the sampling of D ∼ D, as well as any other randomness in
θ̂.
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Many applied statisticians, particularly those interested in estimating causal effects
using linear models, prize unbiased parameter estimation and are willing to sacrifice on
other fronts to achieve it. For example, the standard OLS estimator (which is the minimum-
variance unbiased estimator under the assumptions of the Gauss-Markov theorem) is used
for estimating parameters of a linear regression model in favor of other biased estimators,
such as the James-Stein estimator [38, 39], which dominate it in terms of `2 error of the
parameter estimates.

Definition 1.0.9 (Confidence Set). Let θ ∈ Rd be a model parameter we wish to estimate
using data D ∼ D. For arbitrary α ∈ [0, 1], a (1−α)-level confidence set for θ is a random
set S ⊆ Rd such that

P (θ ∈ S) = 1− α,

with randomness taken from the sampling of D and any other randomness in the construc-
tion of S.

Ideally, we would be able to find a perfectly-calibrated confidence set, where the cov-
erage probability (i.e. P(θ ∈ S)) is exactly 1 − α. However, this is often impossible to
compute exactly and so practitioners tend to default to being overly conservative instead.
In this setting, we require P (θ ∈ S) ≥ 1−α and call S a valid confidence set. In this work,
we will focus on confidence intervals, which are one-dimensional and contiguous confidence
sets.

We can simplify the general problem of constructing confidence sets by restricting our
attention to estimators for which each marginal belongs to a symmetric location-scale
family.

Definition 1.0.10 (Location-Scale Family). A set of probability distributions F is a
location-scale family if for any distribution function F ∈ F , the distribution function
F ′(x) = F (µ+ σx) ∈ F for any µ ∈ R, σ > 0.

Our restriction to location-scale families ensures that estimating the mean and (co)variance
of the estimator is sufficient for constructing confidence intervals.

7



Chapter 2

Algorithm Overview

We present a high-level overview of our method in Algorithm 1, eliding some parameters
from the subroutines (which we replace with . . .) to make the presentation simpler. Let
ξ (a1, . . . , ak) = 1

k

∑k
i=1 ai and ξ′ (a1, . . . , ak) = Cov

(
{ai}i∈[k]

)
.

Algorithm 1 General Valid DP (GVDP)

Input: data set X ∈ Rn×m, estimator θ̂ : Xn → Rd families of distributions Qθ̃, QΣ̃, privacy budgets

ρθ̃, ρΣ̃ > 0

Output: parameter estimate θ̃ and associated confidence intervals/set which respect
(
ρθ̃ + ρΣ̃

)
-zCDP

1: procedure GVDP(X, θ̂,Qθ̃, QΣ̃, ρ
θ̃, ρΣ̃)

2: {Σ̂BLBi }i∈[k] = BLB
(
X, θ̂, ξ′, . . .

)
. Algorithm 3 – get estimates of parameter covariance

3: {θ̂BLBi }i∈[k] = BLB
(
X, θ̂, ξ, . . .

)
. Algorithm 3 – get estimates of parameter means

4: {Σ̃m}m∈[t] = MVMRec
(
{Σ̂BLBi }i∈[k], . . . , QΣ̃, . . . , ρ

Σ̃, . . .
)

. Algorithm 2 – privately estimate

parameter covariance

5: {θ̃m}m∈[t] = MVMRec
(
{θ̂BLBi }i∈[k], . . . , Qθ̃, . . . , ρ

θ̃, . . .
)

. Algorithm 2 – privately estimate

parameter means
6: Combine {Σ̃m}m∈[t] to get Σ̃ . Theorem 4.0.1

7: Σ̃ = PSDProjection(Σ̃) . Algorithm 5 – ensure Σ̃ is PSD
8: Combine {θ̃m}m∈[t] to get θ̃ . Theorem 4.0.1

9: Use θ̃, Σ̃, and Qθ̃ to get confidence intervals/set S. . E.g. Theorem 4.0.5

10: return {θ̃, S}

Let X be our data universe, D a distribution over the universe, and X = {x1, . . . , xn}
where xi are drawn i.i.d. from D. For shorthand, we say that X ∼ Dn. We say that the
analyst wants to run some model over the data, which has an associated parameter vector
θ ∈ Rd. The analyst specifies the estimator they would have liked to run in the non-private
setting θ̂ : X n → Rd.

As stated earlier, differentially private algorithms typically require specification of the
global sensitivity of the function whose outputs are being privatized (see Definition 1.0.6
and Lemma 1.0.7). This can become arbitrarily complex for complicated models even
assuming a bounded input domain. The Sample-Aggregate paradigm introduced in [32]
suggests that one way to deal with this is to run the algorithm of interest non-privately
over k disjoint subsets of the data, bound the outputs, and then aggregate the results using
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a function with a sensitivity that is easier to reason about (e.g. the mean). Because each
element in the original data contributes to one subset of the partition, its effect on the
aggregation is localized to one of its k inputs and we can treat this just like privatizing the
mean of a data set with k elements.

In that vein, our algorithm begins (lines 2 and 3 of Algorithm 1) by randomly parti-
tioning the data X into k disjoint subsets {X1, . . . , Xk}, with k chosen by the analyst and
applying the BLB algorithm over the partition. On each subset Xi, the BLB algorithm
scales the subset back up to size n and runs θ̂ r times, producing estimates {θ̂i,a}a∈[r]. It
then aggregates these into an arbitrary assessment of estimator quality. For our purposes
we use the mean and covariance, so for each i ∈ [k] we get

θ̂BLBi =
1

r

r∑
a=1

θ̂i,a

Σ̂BLB
i = Cov

(
{θ̂i,a}a∈[r]

)
.

These sets of estimates are now empirical approximations to the parameter distribu-
tions induced by BLB, which we assume are good approximations of the actual sampling
distributions. We make this last assumption explicit as follows.

Assumption 2.0.1. Let the estimator θ̂ ∼ G(θ,Σ) where the marginals of G each belong to
a location-scale family. For θ̂BLBi and Σ̂BLB

i generated by applying BLB to our estimator θ̂,

let θ̂BLB = 1
k

∑k
i=1 θ̂

BLB
i and Σ̂BLB = 1

k

∑k
i=1 Σ̂BLB

i . We assume that E
(
θ̂BLB

)
= E

(
θ̂
)

=

θ and P
(

Σ̂BLB � Σ̂
)

= 1.

For the rest of this work, our goal is going to be to privately estimate θ̂BLB and Σ̂BLB

and argue that these allow us to get unbiased estimates of θ̂ and valid confidence intervals.
Assumption 2.0.1 provides the link that lets us do this. We are going to construct a
private estimator that is unbiased with respect to θ̂BLB, which in turn gives us an unbiased
estimator of θ̂. Likewise, we are going to create a private covariance estimate Σ̃ such that
Σ̃ � Σ̂BLB. By transitivity of the Löwner order, Assumption 2.0.1 also then implies that
Σ̃ � Σ̂.

The Löwner condition on Σ̂BLB is potentially onerous (especially in high dimensions)
and, frankly, unlikely to hold. In practice however, this condition can be dropped at the
cost of a bit of extra fuzziness in the results. As stated above, we later make claims about
our private estimator relative to Σ̃BLB, which under Assumption 2.0.1 also hold relative
to Σ̂. This generalization to Σ̂ is a higher bar than is typically set in applications of
the bootstrap, where the bootstrap approximation is simply treated as a “good-enough”
approximation of the sampling distribution.

At this point we use the CoinPress mean estimation algorithm (lines 4 and 5) to generate
private estimates of the mean of each empirical distribution. CoinPress assumes that the
analyst has given a heavier-tailed distribution than the distribution it is estimating, as well
as bounds on the mean and covariance of the distribution.

CoinPress then procedes by iteratively privately estimating the mean of the BLB dis-
tribution (Algorithm 4 in the appendix) and using the updated estimate to tighten the
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bounds on the mean. At each step, CoinPress has access to bounds that, with high prob-
ability, contain the true mean of the distribution. It takes these bounds and pushes them
out based on the supposed distribution; the idea being that if you have a distribution of
a known family with bounded mean and covariance, you can with high probability upper
bound the `2 norm of an arbitrary number of draws from said distribution. That is, we
set bounds that with high probability do not clip any of the k estimates from the BLB
distribution. The global sensitivity of the estimator is calculated using these new bounds
and we use this to get a private estimate. Because we are not clipping any points with high
probability, we know that the form of our estimator is “empirical mean + noise”, where
the noise comes from a well-specified distribution (line 9). Thus, we can use this to pro-
duce a set which, with high probability, contains the true empirical mean (lines 9 and 10).
This set becomes the bound on the mean at the next step and the process continues. We
perform this process for both distributions induced by the BLB, yielding t mean estimates
{θ̃m}m∈[t] and t covariance estimates {Σ̃m}m∈[t].

We combine the t estimates of each parameter via a precision-weighting argument
(lines 6 and 8) to get final private estimates of the mean and covariance of our distribu-
tion, ensuring in line 7 that the resulting covariance estimate is PSD. We then use these
estimates, along with Assumption 3.0.2, to get valid confidence intervals (line 9).

10



Chapter 3

General Private Mean Estimation

Notice that lines 4 and 5 of Algorithm 1 rely on differentially private mean estimation, so
we first need to build a framework for doing this. We imagine a d-dimensional distribution
of interest with mean µ ∈ Rd, from which we have k realizations {µ̂i}i∈[k]. We call µ̂ =
1
k

∑k
i=1 µ̂i.

For our mean estimation algorithm we need three assumptions, the first of which re-
quires us to define a way of comparing how heavy-tailed two distributions are.

Definition 3.0.1. Let B(µ,Σ) and C(µ,Σ) be families of distributions and B,C be random
variables drawn from each such that E(B) = E(C) = µ and Cov(B) = Cov(C) = Σ. Let
PSDd be the set of all d × d PSD matrices. We say that B is heavier-tailed than C if
∀µ ∈ Rd, ∀Σ ∈ PSDd,∀v ∈ Rd such that ‖v‖ = 1, ∀z > 0 :

P
(
vT (B − µ) ≤ z

)
≤ P

(
vT (C − µ) ≤ z

)
.

Assumption 3.0.2. The user provides a family of distributions Q(µ,Σµ̃) with heavier tails
than the distribution of µ̂ as described in Definition 3.0.1. Additionally, each dimension of
Q is a symmetric location-scale family with finite first and second moments.

This is a generalization of the treatment in [6], which requires Q to be multivariate
Gaussian.

Assumption 3.0.3. The user of the algorithm provides µ̃0 ∈ Rd and r0 ∈ R such that
µ̂ ∈ B2(µ̃0, r0), where B2(µ̃0, r0) ∈ Rd is the `2 ball centered at µ̃0 with radius r0.

Assumption 3.0.4. The user of the algorithm provides ΣU
µ ∈ Rd×d such that Σ̂µ � ΣU

µ .

These three assumptions provide the backbone of the iterative bound improvement
in CoinPress. The algorithm tries to find the tightest possible bounds that, with high
probability, do not clip any points. Assumption 3.0.3 ensures that the algorithm starts
with sufficiently conservative bounds that the algorithm can tighten them and still contain
µ̂. Assumptions 3.0.2 and 3.0.4 allow the algorithm to convert bounds on µ̂ to high-
probability bounds on the µ̂i.

We now present our mean estimation algorithm, which is a generalization of the Coin-
Press mean estimation algorithm [6] to distributions other than sub-Gaussians. For the
remainder of the section, we assume that our three assumptions hold.
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Algorithm 2 Modified CoinPress [6]

Input: M̂ = (µ̂1, . . . , µ̂k) from a distribution with mean µ and covariance Σ, Σ̃ such that Σ̂ � Σ̃,
B2(µ̃0, r0) containing µ̂, family of distributions Qµ̃(·,Σµ̂) with heavier tails than µ̂, t ∈ N+, ρµ̃ > 0, βµ̃ > 0

Output: t estimates of µ that jointly respect ρµ̃-zCDP

1: procedure MVMRec(µ̂1...k, µ̃0, r0, Q, t, ρ
µ̃, βµ̃)

2: S = Σ̃1/2

3: µ̃0 = S−1µ̃0

4: r0 = max
(
diag

(
S−1

))
· r0

5: Define M̄ ∈ Rk×d such that ∀j ∈ [d],∀m ∈ [k] : M̄m,j = 1
k

∑k
m′=1 µ̂m′,j . Note that each row µ̄m,:

is equal to the d-dimensional empirical mean of M̂

6: M̂ =
(
M̂ − M̄

)
S−1

7: for m ∈ [t− 1] do

8: (µ̃m, rm, σm) = MVM(M̂, µ̃m−1, rm−1, Qµ̃(0, Id),
ρµ̃

2(t−1) ,
βµ̃

t ) . Algorithm 4

9: (µ̃t, rt, σt) = MVM(M̂, µ̃t−1, rt−1, Qµ̃(0, Id),
ρµ̃

2 ,
βµ̃

t )
10: ∀m ∈ [t] : µ̃m = (Sµ̃m) + µ̄1,: . convert mean estimates to proper scale

11: ∀m ∈ [t] : ~σ2
m = diag (Sσm)

2
. convert private noise variances to proper scale

12: return {(µ̃m, ~σ2
m)}m∈[t]

This algorithm respects zCDP and comes with a high-probability guarantee of unbi-
asedness. Proofs of Theorems 3.0.5 and 3.0.6 can be found in Appendices .2.2 and .2.3,
respectively.

Theorem 3.0.5. Algorithm 2 respects ρµ̃-zCDP.

Theorem 3.0.6. Algorithm 2 produces t mean estimates {µ̃m}m∈[t] such that

P (∀m ∈ [t] : E (µ̃m) = µ) ≥ 1− βµ̃.

In Section 4, we use this general mean estimation framework to estimate the means of
both the {θ̂BLBi }i∈[k] and {Σ̂BLB

i }i∈[k].
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Chapter 4

Parameter Estimation

Now that we have a way of privately estimating the means of the BLB-induced distribu-
tions, θ̂BLB and Σ̂BLB, we can move to lines 6, 8, and 9 of Algorithm 1, where we use
the private estimates we get from CoinPress to produce our final parameter estimates and
confidence intervals.

We start by noting a theorem that will be used throughout this section, whose proof can
be found in Appendix .3.1. This is the multivariate version of the inverse-variance weighting
argument commonly found in the meta-analysis literature, which gives the optimal (i.e.
minimum (co)variance) way to combine a set of unbiased estimators.

Theorem 4.0.1. For a parameter τ , say we are given a series of independent estimates
{τ̂m}m∈[t] such that E (τ̂m) = τ and Cov (τ̂m) = Sm for some positive definite (PD) Sm.1

Then the minimum variance unbiased linear weighting of the {τ̂m}m∈[t] is given by

τ̂ =
(
Σt
m=1S

−1
m

)−1 (
Σt
m=1S

−1
m τ̂m

)
,

which has E (τ̂) = τ and Cov (τ̂) = (Σt
m=1S

−1
m )
−1

.

Specifically, by “minimum variance” we mean that any other unbiased linear weighting
τ̂ ′ of the τ̂m will have Cov (τ̂) � Cov (τ̂ ′).

4.0.1 Privately estimating Σ̂

We now explore how to aggregate our {Σ̂BLB
i }i∈[k] to get a differentially private estimate

of Σ̂. We consider two separate cases; one where we estimate only the diagonal of Σ̂BLB

and one where we estimate the full matrix.

Estimating diagonal of Σ̂

We first consider the case where we care only about the diagonal of Σ̂BLB; that is, we don’t
care about the covariance structure of our parameters. Thus, without loss of generality,

1Note that this is slightly stronger than the PSD assumption we have been making.
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we write Σ̂BLB
i = V̂iId where v̂i,j is the jth element of V̂i. Though V̂ is a random variable,

we abuse notation in the typical way and also let V̂ = 1
k

∑k
i=1 V̂i. Because we are assuming

the off-diagonal elements of Σ are 0, estimating Σ reduces to estimating V .

We assume the user provides initial conditions such that Assumptions 3.0.2, 3.0.3,
and 3.0.4, hold and appeal to Algorithm 2, substituting V̂i for the general µ̂i from those
statements. This yields the following result, which we prove in Appendix .3.2.

Theorem 4.0.2. Applying Algorithm 2 to M̂ = (V̂1, . . . , V̂k) yields {Ṽm, ~σ2
m}m∈[t].

We combine these into an estimator

Ṽ =

∑t
m=1 Ṽm/~σ

2
m∑t

m=1 1/~σ2
m

. (4.1)

Define Φ−1 as the quantile function of the standard Gaussian and let

~γ =
1√∑t

m=1 1/~σ2
m

Φ−1
(
1− βub/d

)
(4.2)

for arbitrary βub ∈ (0, 1). Then, for Σ̃ = (Ṽ + ~γ)Id we have P
(
∀j ∈ [d] : Σ̂j,j ≤ Σ̃j,j

)
≥

1− βṼ − βub.

For the sake of generality, we will refer to βṼ as βΣ̃ and refer to Σ̂ as if it were diagonal
such that if ∀j ∈ [d] : Σ̂j,j ≤ Σ̃j,j, then Σ̂ � Σ̃.

Estimating full Σ̂

In the case where we care about the covariance structure of our parameters, we instead
estimate the entire Σ̂BLB matrix. We start by creating a flattened upper triangular of

each Σ̂BLB
i , which we call Ŝ[i ∈ R

d(d+1)
2 . Our analysis then proceeds much like it did in

Section 4.0.1. The primary difference is that we no longer treat upper bounding the di-
agonal of Σ̂BLB as sufficient for valid confidence intervals. Instead, we need a full Löwner
upper bound on Σ̂BLB. Again, we assume the user provides initial conditions such that
Assumptions 3.0.2, 3.0.3, and 3.0.4 hold and appeal to Algorithm 2. We also use Algo-
rithm 6 (HPUB) from Appendix .3.2, which produces a high-probability upper bound on
a specified random variable.

Theorem 4.0.3. Applying Algorithm 2 to M̂ = (Ŝ[1, . . . , Ŝ
[
k) yields {S̃[m, ~σ2

m}m∈[t].

We combine these into a single estimate

S̃[ =

∑t
m=1 S̃

[
m/~σ

2
m∑t

m=1 1/~σ2
m

and unflatten it back to a matrix S̃ ∈ Rd×d. Let

γ = HPUB
(
‖σ2

M‖2, β
ub
)

where σ2
M ∈ Rd×d is the unflattened version of 1∑t

m=1 1/~σ2
m

.

Then, for Σ̃ = S̃ + γId we have P
(

Σ̂ � Σ̃
)
≥ 1− βS̃ − βub.

See Appendix .3.2 for a proof. As before, for generality we refer to βS̃ as βΣ̃.
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4.0.2 Privately estimating θ̂

To privately estimate θ̂, we again use Algorithm 2, substituting θ̂i for µ̂i in the general state-
ment. We again assume the user provides initial conditions such that Assumptions 3.0.2
and 3.0.3 hold.

We could assume that the user provides bounds that respect Assumption 3.0.4, but we
have another option available to us which will often give much tighter estimates; relating
the private estimate Σ̃ to the covariance of the {θ̂BLBi }i∈[k].

Although we are scaling up our subsets to the original data size within the BLB to
get correct overall covariance estimates, this does not imply that the covariance of our
{θ̂BLBi }i∈[k] is appropriately scaled. In fact, this covariance will often be roughly the same

as if θ̂ were simply run on subsets of size n
k
. So, the covariance of the {θ̂BLBi }i∈[k] should

be roughly r(n/k)
r(n)

Σ̂, where r is the convergence rate of the estimator in question. For

example, the covariance of OLS coefficients decays with 1
n
, so if θ̂ represents OLS estimation

we would say the covariance is 1/(n/k)
1/n

Σ = kΣ̂. We upper bound this with kΣ̃. Under

Assumption 2.0.1, kΣ̃ will be a Löwner upper bound on kΣ̂ with probability 1−βΣ̃ provided
we privately estimate the entire covariance matrix as in Section 4.0.1. If we estimate only
the diagonal as in Section 4.0.1, we instead have a 1 − βΣ̃ probability guarantee that kΣ̃
will upper bound the empirical variance in each dimension.

Theorem 4.0.4. Applying Algorithm 2 to M̂ = (θ̂1, . . . , θ̂k) yields {H̃m, ~σ
2
m}m∈[t].

We then construct a combined estimator θ̃ where

θ̃ =

∑t
m=1 H̃m/~σ

2
m∑t

m=1 1/~σ2
m

. (4.3)

This new estimator has covariance Σθ̃ = 1∑t
m=1 1/~σ2

m
Id.

In particular, we say that P
(
θ̃ ∼ N (θ,Σθ̃)

)
≥ 1− βΣ̃ − βub − β θ̃.

See Appendix .3.3 for a proof.

4.0.3 Confidence Intervals

We now have estimates of the mean and covariance of θ̂; θ̃ and Σ̃ respectively, such that

θ̃ ∼ N
(
θ̂,Σθ̃

)
and Σ̂ � Σ̃ with probability 1− βΣ̃ − βub − β θ̃, as well as a distribution Qθ̃

we assume to be heavier tailed than that of θ̂. We can represent our approximation of the
sampling distribution as the compound distribution

Qθ̃

(
θ̂ +N (0,Σθ̃) , Σ̃

)
,

where we interpret θ̂ and Σ̃ as realizations of their random variables.
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We appeal to Algorithm 8 in Appendix .6, which in turn uses Algorithm 6 to get an
upper/lower bounds on quantiles of a random variable. This yields two different notions
of confidence intervals; one for which the confidence interval is valid with high probability,
and one which is valid with probability 1. See Appendices .5.1 and .5.2 for proofs.

Theorem 4.0.5 (General confidence intervals (valid with high probability)). We apply
Algorithm 8 to each dimension of Qθ̃ at levels {αj}j∈[d] and get {(cilj, ciuj )}j∈[d]. Then, with

probability 1− βΣ̃ − βub − β θ̃,

∀j ∈ [d] : P
(
θ̂j ∈

(
cilj, ci

u
j

))
≥ 1− αj.

Corollary 4.0.6 (General confidence intervals (valid with probability 1)). For all j ∈ [d],

let α′j = αj − βΣ̃ − βub − β θ̃ for some {αj}j∈[d]. Then, provided that ∀j ∈ [d] : α′j > 0,
we apply Algorithm 8 to each dimension of Qθ̃ at levels {α′j}j∈[d] and get {(cilj, ciuj )}j∈[d].
Then,

∀j ∈ [d] : P
(
θ̂j ∈

(
cilj, ci

u
j

))
≥ 1− αj.

Note that although we give these results based on a general Qθ̃, the compound dis-
tribution behaves much more nicely for many distributions. Most notable is that if Qθ̃

is multivariate Gaussian, the resulting compound distribution is N
(
θ̃, Σ̃ + Σθ̃

)
. In this

case, we note that ∀j ∈ [d] : θ̃j ∼ N
(
θ̂j, Σ̃j,j + Σθ̃j,j

)
, and so we can calculate confidence

intervals directly from the CDF of the univariate Gaussian.
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Chapter 5

Empirical Evaluation

5.0.1 Demonstration of unbiasedness and valid confidence inter-
vals

We start with empirical demonstrations of our core result, showing that we can produce
unbiased parameter estimates and valid confidence intervals when the requisite assumptions
hold. For every evaluation, we aim to get valid dimension-wise confidence intervals rather
than a single valid confidence set. Additionally, inside of the GVDP algorithm, we always
run CoinPress for t = 5 iterations.

Demonstration: OLS regression

We begin by testing on a straightforward task, parameter estimation for an OLS model.
We ran experiments over sample sizes n = {100000, 200000, 500000, 1000000}, numbers of
partition subsets k = {500, 1000, 2500, 5000}, and number of explanatory variables d =
{10, 50}. Each set of experiments was run for 20 iterations. In a single iteration, we
generate data from a linear model y = Xβ + ε with Gaussian covariates, Gaussian error,
and correlation structure such that the effective rank of the resulting data is ≈ d − 1.
Note that because of how we are generating the data, the non-private confidence intervals
are basically constant across values of n. We then privately estimate the values of the d
coefficients and their associated standard errors. We assume the sampling distribution of
the coefficients is multivariate Gaussian and imagine that the user sets all upper bounds
≈ 100 times larger than the tightest possible upper bounds. The width of the confidence
intervals produced by GVDP scale with this bound, so tighter (looser) upper bounds will
lead to tighter (looser) confidence intervals. We present these results in Figure 5.1.

Each plot consists of coefficient estimates centered around their true values and pre-
sented in increasing order, with vertical bars representing the 95% confidence interval for
that estimate. We expect properly calibrated confidence intervals to cross the x-axis at the
vertical dotted black lines, placed at the 2.5th and 97.5th quantiles, which is the behavior we
observe in each plot. Note that the scale of the y-axis changes for each plot, as our primary
goal is to clearly show our algorithm’s performance relative to the theoretical guarantees
and non-private results, rather than how it changes over the different parameters.
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(a) n = 100,000, k = 500, d = 10, ρ = .1 (b) n = 200,000, k = 1,000, d = 10, ρ =
.1

(c) n = 500,000, k = 2,500, d = 10, ρ =
.1

(d) n = 100,000, k = 500, d = 50, ρ = .1 (e) n = 200,000, k = 1,000, d = 50, ρ =
.1

(f) n = 500,000, k = 2,500, d = 50, ρ =
.1

Figure 5.1: OLS: Distribution of coefficient estimates and 95% confidence intervals

(a) n = 100,000, k = 500, d = 10, ρ = .1 (b) n = 1,000,000, k = 500, d = 10, ρ =
.1

(c) n = 1,000,000, k = 5,000, d =
10, ρ = .1

Figure 5.2: OLS: Distribution of coefficient estimates and 95% confidence intervals. Showing the effects of
varying n vs. k

Figure 5.2 demonstrates the principle that the noise due to privacy in our algorithm
scales with k rather than n. Note that plots (a) and (b) are essentially identical; the
non-private confidence intervals are identical (even though n increased) as an artefact of
our data-generating process, and the private confidence intervals are identical because,
additionally, we didn’t increase k. In general, the analyst should choose k to be as large as
possible, subject to the constraint that the BLB approximates the sampling distribution
well. We discuss this further in Section 6.0.1.

Demonstration: Logistic regression with imbalanced class output

In Figure 5.3 we show qualitatively similar results across a smaller set of experiments for
a more challenging setting; logistic regression with imbalanced classes. We generate data
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as before but run the outcome variable y through a scaled logistic function to get a new
outcome variable y′ ∈ {0, 1}n. Specifically, for pi = 1

1+exp(−Xiβ)
and p̄ = 1

n

∑n
i=1 pi, we have

P(yi = 1) = pi
p̄
· 0.05. This induces a minority class that occurs with probability ≈ 0.05.

(a) n = 100,000, k = 500, d = 10, ρ = .1 (b) n = 100,000, k = 1,000, d = 10, ρ =
.1

(c) n = 100,000, k = 2,000, d = 10, ρ =
.1

Figure 5.3: Logistic Regression: Distribution of coefficient estimates and 95% confidence intervals

Demonstration: Logistic regression with fully sparse data

The requisite bootstrap assumptions obviously do not hold for all estimators and data dis-
tributions. We make our setting more difficult again for Figure 5.4, by generating a new set
of covariates X ′ such that ∀j ∈ [d] : X ′i,j = 1(Xi,j ≥ zj) where zj = minr∈R

1
n

∑n
i=1 1(Xi,j >

r) ≤ 0.05. That is, X ′ is itself now a binary matrix with highly imbalanced classes. The
rightmost plot shows distributions of the d coefficient estimates induced by BLB, with a
black dotted line at the value of the non-private coefficient. Note that at n = 100,000,
the BLB distributions are essentially point masses at two extreme points, whereas at
n = 1,000,000, they are much closer to being a symmetric distribution about the true
coefficient value.

Generalizing CoinPress beyond multivariate sub-Gaussians

In Figure 5.5 we provide evidence that our generalization of CoinPress beyond sub-Gaussian
distributions delivers on its promises. We pretend as if the estimator and data were such
that the distributions induced by the BLB were are dominated by the multivariate Laplace
(i.e. they are sub-Exponential), and the analyst overestimated the relevant parameters by
a factor of 100. We show results corresponding to two different methods for calculating the
clipping parameters at each step of CoinPress. The analytic solution calculates the bound
using a theoretical bound given in Theorem .2.4, while the approximate solution calculates
an approximate upper bound using Algorithm 7.

5.0.2 Comparison with AdaSSP [43]

Although our method generalizes to a variety of models, we imagine it will often be used for
OLS regression. So, we compare GVDP’s performance to that of the Adaptive Sufficient
Statistic Perturbation (AdaSSP) algorithm from [43], one of the best-performing algorithms
for DP OLS.
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(a) n = 100,000, k = 500, d = 10, ρ = .1 (b) n = 1,000,000, k = 500, d = 10, ρ = .1

(c) BLB coefficient distributions for n = 100,000, k = 500 (d) BLB coefficient distributions for n = 1,000,000, k = 500

Figure 5.4: Logistic Regression with unbalanced binary fatures: Distribution of coefficient estimates and
95% confidence intervals

The two algorithms differ in a few key ways. First, AdaSSP does not attempt to do
unbiased parameter estimation or give valid confidence intervals; instead, it is trying to
estimate OLS coefficients with minimal `2 error. For purposes of comparison, we will
ignore confidence intervals altogether and focus only on the parameter estimates. Second,
AdaSSP assumes only bounds on the data, assuming that we can specify data domains
X ,Y for our covariates and outcome, respectively, such that ‖X‖ = supx∈X ‖x‖2 where
x ∈ Rm and ‖Y‖ = supy∈Y |y|. Ignoring the assumptions needed for confidence intervals
for now, GVDP requires Assumptions 3.0.3, and 3.0.4 on the distribution of covariances
induced by the bag of little bootstraps, as well as Assumption 3.0.3 on the distribution
of means. It’s worth noting the qualitative difference between these methods; AdaSSP
requires the user to bound the data, GVDP requires the user to bound moments of the
parameter distribution. For most analyses, we expect the AdaSSP bounds to be easier to
specify tightly than those of GVDP. However, GVDP is designed to scale more gracefully
under overly conservative bounds.

We generate data just as we did in Section 5.0.1 and compare AdaSSP and GVDP
across a number of privacy budgets and what we call “overestimation factors”. Say we
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Figure 5.5: Distribution of coefficient estimates and 95% confidence intervals for k = 5,000, d = 10, ρ = 0.1
for multivariate Laplace distribution

OF 1 1.5 2 3 4 5 10 1000 10000

non-private 10.06 10.06 10.06 10.06 10.06 10.06 10.06 10.06 10.06
AdaSSP 10.34 12.96 28.65 139.51 463.21 6223.42 18689.97 20521.21 20064.88
GVDP 14.84 15.18 14.72 14.41 14.97 14.91 15.07 18.08 26.48

Table 5.1: Average absolute estimation error for each algorithm by overestimation factor (OF)

have realized data X ∈ Rn×d, y ∈ Rd. For an overestimation factor of c, we set the
bounds for AdaSSP to c (supx∈X ‖x‖2) and c

(
supy∈Y ‖y‖

)
. For GVDP, we perform the

BLB step to get our {θ̂BLBi }i∈[k], which we’ll say has empirical mean µ̂ ∈ Rd and empirical

covariance Σ̂ ∈ Rd×d. We set our `2 bounding ball for the mean of the distribution as

B2

(
µ̂, c

(
maxj∈[d] µ̂j

))
and our Löwner upper bound on the covariance as c

(
diag(Σ̂)Id

)
.

Runs of non-private OLS are included for comparison, but the overestimation factor does
not affect them.

All experiments were run with n = 500,000, k = 2,500, d = 10, and ρ = 0.1. The
general trends were similar across other parameter combinations. We run each method
over 100 simulations, estimating d coefficients at each iteration, so each method produces
1,000 coefficient estimates overall.

We see that AdaSSP performs well with slightly overestimated bounds but scales poorly
with overly conservative bounds. GVDP performs a bit less well at low overestimation
factors but scales much nicer.

5.0.3 Comparison with UnbiasedPrivacy [21]

In Figure 5.6, we compare our algorithm to the UnbiasedPrivacy (UP) algorithm from [21].
As stated in the intro, our framework (GVDP) and UP are similar in that both use the BLB
to approximate the sampling distribution of the estimator, and then a private aggregation
step to estimate its parameters. UP is designed for estimators with a univariate Gaussian
sampling distribution, so we focus on that setting here.
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Figure 5.6: Comparison of UP [21] and GVDP: distribution of coefficient estimates and 95% confidence
intervals for n = 50,000, k = 500, d = 1, ρ = 0.1

While the goal of GVDP is to let users set very conservative bounds (which the algo-
rithm improves upon) and not clip any points in the aggregation step, UP requires that
users set reasonably good bounds upfront. UP never tightens bounds that are too loose,
but it will attempt to bias-correct the results if you analyst’s bounds clip bounds (which
our algorithm does not).

We test UP across four scenarios using the implementation provided by the authors.1

As suggested in [21], we split the privacy budget evently between the mean estimation task
and the estimation of the proportion of points that are clipped. We consider two cases in
which we expect UP to perform bias correction, clipping the top 40% (yellow) and 10%
(red) of the BLB estimates, and two in which we don’t ,clipping bounds set as tightly
as possible (blue) with no clipping and set three times larger than the true values of the
parameters (purple). As a point of comparison, we show results from GVDP at bounds set
1,000 times larger than the relevant parameters (green).

Note that, in the 10% clipping case, UP essentially delivers as advertised; it gives
(approximately) valid confidence intervals and does so at a lower error than UP does under
no clipping. However, it is unable to achieve this when the top 40% of BLB estimates are
clipped. Under the parameters we tested, GVDP at an overestimation factor of 1,000
performs more-or-less identically to UP at an overestimation factor of 3.

5.0.4 Replication of [10]

Inspired by the tests of [5], we attempt to replicate the core analysis of [10] under the
constraints of DP. We use CPS ASEC data from 1994 to 1996 [36] and run OLS to estimate
the following model:

log(inc wage) = β0 + β1educ + β2PE + β3PE2 + β4PE3 + β5white + ε,

1Implementation can be found at https://github.com/schwenzfeier/udp.
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where inc wage is an individual’s total pre-tax wage and salary income, educ is years of
education, PE is potential years of work experience, and white indicated whether or not the
individual identifies as white. The effect of education on income is our question of interest,
with the other variables serving as controls. This allows us to use the full OLS model
within the bootstrap, but release and privately estimate only the estimated mean/variance
of β1.

[10] runs this model separately for males and females; in Figure 5.7 we report the
female results (n = 95,177) as well as for males and females combined (n = 197,756). To
be consistent with [5], we report results in approximate DP with (ε, δ) = (5, 1/k), which
translates to ρ ≈ {0.879, 1.06, 1.23} for k = {1000, 500, 250}. All results are run with t = 5
CoinPress iterations and an overestimation factor of 100, and we run the GVDP estimation
algorithm 200 times.

(a) female: k = 1,000 (b) female: k = 500 (c) female: k = 250

(d) combined: k = 1,000 (e) combined: k = 500 (f) combined: k = 250

Figure 5.7: Distribution of coefficient estimates and 95% confidence intervals for females only and both
males and females (combined) with ε = 5. The dot with a capped error bar represents the non-private
estimate and confidence interval. The wider bars are the upper/lower bounds on the confidence intervals
for the runs of GVDP. The horizontal line is the empirical mean of the GVDP estimates.

We note that our bootstrapped means do not always equal to the non-private mean
in expectation, so although our algorithm’s guarantees with respect to the bootstrapped
distribution are met, they do not imply guarantees relative to the non-private answer as
we hope they would. We see in these plots a clear trade-off. At k = 1,000, our confidence
intervals are fairly tight, but are essentially centered around the upper end of the non-
private confidence interval rather than the the true coefficient estimate. At k = 250 we
minimize bias by generating more a representative bootstrap distribution, but do so at the
cost of wider confidence intervals.
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Chapter 6

Discussion

6.0.1 Choosing k

Recall from our explanation of Algorithm 1 that k is the number of subsets into which we
partition our original data, which in turn becomes the number of elements fed into our
private mean estimation algorithm, Algorithm 2. This presents a trade-off for the user;
when k is large, the sensitivity of our aggregator decreases (Line 7 of Algorithm 4) and thus
so does the variance of the noise we need to add for privacy. On the other hand, we assume
that the mean and covariance estimates we get from the BLB reasonably approximate the
mean and covariance of the true sampling distribution of the parameters, which is provably
true only as n→∞ and n

k
→∞ (and our estimator is Hadamard differentiable) [26].

Consider that once n
k

is large enough that we are in the asymptotics, there is no use in
further increasing the ratio of n to k; we are better served by increasing k and reducing
the noise needed for privacy. So, the best possible case for an analyst is that they choose
the largest k such that the BLB estimates, operating over subsets of size n

k
, approximates

the true parameters of the sampling distribution. In cases where this is not possible, the
guarantees of unbiasedness estimates and valid confidence intervals hold given that the
expectation of the mean estimates we get from the BLB are equal to the expectation
of the sampling distribution, and the mean of the covariance estimates from BLB is a
Löwner upper bound on the covariance of the sampling distribution. If the analyst wants
dimension-wise confidence intervals rather than a joint confidence set, the requirement of
a Löwner upper bound can be relaxed such that each element of the diagonal of the mean
BLB covariance estimate is larger than the corresponding diagonal element of the sampling
distribution’s covariance.

6.0.2 Future work

We believe our approach can be naturally split into three distinct sections, each of which
could potentially be improved on in some way.

First, the algorithm runs the BLB algorithm over a partition of the data, comprising k
disjoint subsets. As we stated in Section 6.0.1, we have a general description of what we
want from our k; however, more work could be done on how to actually effectively choose
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k for different models. Moreover, other versions of the bootstrap could be implemented
with downstream changes to the aggregation and privacy accounting.

Second, the analyst must set bounds for the induced BLB distributions. Though our
method scales reasonably well with overly conservative bounds, it’s still worth trying to
find tight bounds if possible. Our algorithm would benefit from methods that can privately
find moderately conservative bounds on the empirical mean and covariance of collection of
observations.

Finally, we have the private aggregation step. We use the generalized version of Coin-
Press, which has theoretical bounds for the multivariate sub-Gaussian and sub-Exponential
settings, but currently relies on Monte Carlo sampling for other distributions. Analytical
bounds, or more efficient means of calculating quantiles from known distributions, would
help this become more practical computationally. Additionally, there is nothing in this
work that necessitates the use of CoinPress; the framework requires only some DP ag-
gregator. If other aggregation algorithms were developed that, for example, had fewer
assumptions than CoinPress, they could likely be substituted without necessitating too
many other changes to the framework.

Finally, we hope that this work will spur more interest in the assumptions the commu-
nity makes of analysts and how, when not met, they can affect algorithms’ guarantees. In
this vein, we also hope to see more work developing algorithms that are robust to a lack
of a priori knowledge about the data.
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APPENDICES

.1 Bag of Little Bootstraps

This algorithm statement is adapted and simplified for our purposes; readers interested
in the original version should consult [26]. We say that X is our data universe, D is a
distribution over X , and our realized data X ∈ Rn×m are drawn from Dn. For an arbitrary

estimator θ̂ : X n → Rd, we define θ̂(D) = EX∼Dn

(
θ̂(X)

)
.

Algorithm 3 Bag of little bootstraps (BLB)

Input: data set X ∈ Rn×m, estimator θ̂ : Xn → Rd, estimator quality assessment ξ, k number of
subsets of partition, r number of bootstrap simulations

Output: k estimates of θ̂(D)

1: procedure BLB(X, θ̂, k, r)
2: Randomly partition X into k subsets {Xi}i∈[k]

3: for i ∈ [k] do
4: b = |Xi|
5: {θ̂i,c}c∈[r] = ∅
6: for c ∈ [r] do
7: sample (n1, . . . , nb) ∼ Multinomial(n,1b/b)
8: create XU

i ∈ Rn×m by including the jth element of Xi nj times

9: θ̂i,c = θ̂(XU
i )

10: θ̂i = ξ
(
{θ̂i,c}c∈[r]

)
11: return {θ̂i}i∈[k]

.2 General mean estimation

30



.2.1 Modified CoinPress Algorithm - One Step Improvement

Algorithm 4 One Step Private Improvement of Mean Ball
Input: µ̂ = (µ̂1, . . . , µ̂k) from a distribution with mean 0 and covariance with smaller Löwner order

than Id, B2(µ̃, r) containing µ̂, family of distributions Qµ̃(·, Id), ρm > 0, βm > 0
Output: A ρs-zCDP ball B2(µ̃′, r′) and scale of the privatizing noise σ

1: procedure MVM(M̂, µ̃, r,Q, Σ̃, ρm, βm)
2: βs = βm/2
3: Let R ∼ Qµ̃(0, Id)

4: Set γ1 such that P (‖R‖2 > γ1) ≤ βs
k

5: Set γ2 such that P (‖R‖2 > γ2) ≤ βs
6: Project each µ̂i into B2(µ̃, r + γ1).
7: ∆ = 2(r + γ1)/k.
8: σ = ∆√

2ρs

9: Compute µ̃′ = 1
k

∑
i µ̂i + Y , where Y ∼ N

(
0, σ2Id

)
.

10: r′ = γ2

√
1
k + 2(r+γ1)2

k2ρs

11: return (µ̃′, r′, σ).

.2.2 Proof of Theorem 3.0.5

Proof. Algorithm 2 begins and ends by scaling the data to have empirical mean 0 and
covariance which is Löwner upper bounded by Id. The covariance scaling parameter is
chosen independently of the data and the rest of the steps in the algorithm are invariant
under location shift. So, our privacy analysis rests on the application of Algorithm 4 in
lines 8 and 9 of Algorithm 2.

Algorithm 4 interacts with the raw data only in line 9, so privacy reduces to correct
specification of ∆ (the `2 sensitivity of the mean) and application of the Gaussian mecha-
nism. The data are projected into B2(θ̃, r + γ1), and so the most a single data point can
be changed in `2 norm is 2(r + γ1). Because neighboring data sets X, Y differ in only one
point (call it z), the `2 norm of the k − 1 other points remains the same and so∥∥∥∥∥1

k

∑
x∈X

x− 1

k

∑
y∈Y

y

∥∥∥∥∥
2

=

∥∥∥∥1

k
z

∥∥∥∥
2

=
1

k
‖z‖2 ≤

2(r + γ1)

k

as desired.

.2.3 Proof of Theorem 3.0.6

Proof. We start with Assumption 3.0.3 so we have µ ∈ B2 (µ̃0, r0). Note that the clipping
bounds, parameterized by γ1, in line 4 of Algorithm 4 are set such that, with probability
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1− βs, no points are affected by the bounding. Thus, with probability ≥ 1− βs:

E (µ′) = E

(
1

k

k∑
i=1

µ̂i + Y

)

= E

(
1

k

k∑
i=1

µ̂i

)
+ E(Y )

= E

(
1

k

k∑
i=1

µ̂i

)

=
1

k

k∑
i=1

E (µ̂i)

= µ.

We now consider γ2, which is set as a 1 − βs probability upper bound on the `2 norm of
the privatized mean of k draws from Q(0, Σ̃). Conditional on no points being clipped so
that µ̃′ =

∑k
i=1 µ̂i + Y , we have

1− βs ≤ P

(∥∥∥∥∥1

k

k∑
i=1

µ̂i − µ+ Y

∥∥∥∥∥
2

≤ γ2

)
(1)

= P (‖µ̃′ − µ‖2 ≤ γ2) . (2)

So, having µ ∈ B2(µ̃0, r0) implies that P (µ ∈ B2(µ̃′, r′)) ≥ 1 − 2βs = 1 − βs. Using the
fact that

∑
βs = βµ and a union bound, we proceed by induction over the t steps of the

algorithm and see that with probability 1− βµ we have

∀m ∈ [t] : µ ∈ B2(µ̃m, rm)

and
∀m ∈ [t] : E (µ̃m) = µ.

.2.4 Setting γ1, γ2

This section is concerned with how to set γ1, γ2 in lines 4, 5 of Algorithm 4 for various Qµ̃.
We start with a general statement that works for arbitrary Qµ̃.

Fact .2.1 (Chebyshev’s Inequality). If X is a d-dimensional random vector with expected
value µ = E(X) and covariance Σ = E

(
(X − µ)(X − µ)T

)
, then

P
(√

(X − µ)TΣ−1(X − µ) > t
)
≤ d

t2
,

provided that Σ is positive definite.

Corollary .2.2. For any R in Algorithm 4, P
(
‖R‖2 >

√
d/β

)
≤ β.
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Proof. By construction of R, we know that µ = 0 and Σ = Id. Let Rj be the jth element
of R. Then we can write

√
(R− µ)TΣ−1(R− µ) =

√
RTR =

(
d∑
j=1

R2
j

)1/2

= ‖R‖2

We can set t =
√
d/β and rewrite Chebyshev’s Inequality as

P
(
‖R‖2 >

√
d/β

)
≤ β.

In practice, it is beneficial to set tighter bounds based on the specified Qµ̃. This can
hypothetically be done via Monte Carlo sampling and empirical CDF inequalities (e.g.
with Algorithm 8). However, this can be computationally expensive for γ1 in particular,
as you need at least k/β draws (and often far more) from the random variable to get a
proper upper bound.

Some Qµ̃ also admit analytical bounds, which avoid the need for the costly computation.
If Qµ̃ is multivariate Gaussian, we can use the following:

Fact .2.3 (Lemma 1 of [28]). Let Qµ̃ be multivariate Gaussian such that Qµ̃(µ,Σ) =
N (µ,Σ). Then if R ∼ Qµ̃(0, Id), we know that

∀β ∈ (0, 1] : P
(
‖R‖2 >

√
d+

√
d log(1/β) + 2 log(1/β)

)
≤ β.

We present a similar bound for when Qµ̃ is multivariate Laplace, based heavily on a
result from Corollary 3.1 from [41].

Theorem .2.4. Let Qµ̃ be multivariate Laplace with mean µ = 0 and covariance Σ = Id.
Then if R ∼ Qµ̃(0, Id), we know that

∀β ∈ (0, 1] : P
(
‖R‖2 >

√
e · d log2(β)

)
≤ β,

where e ≈ 2.718 is Euler’s number.

Proof. We start by noting that ‖R‖2 =
(∑d

j=1R
2
j

)1/2

. We know that the Rj are Laplace

with mean 0 and variance 1, and thus ∀j ∈ [d] : R2
j ∼ Weibull(λ = 1/2, k = 1/2). For ease

of notation, we’ll call Xj = R2
j .

We now define sub-Weibull random variables, as is done in [41]. We call a random
variable Xj sub-Weibull with tail parameter θ if there exists θ, a, b > 0 such that

∀x > 0 : P (|Xj| ≥ x) ≤ a exp
(
−bx1/θ

)
.

For context, sub-Gaussian random variables are sub-Weibull with θ = 1/2, sub-Exponentials
are sub-Weibull with θ = 1, and Weibull random variables themselves are sub-Weibull with
θ = 2.
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We can state an alternative condition, also from [41], that Xj is sub-Weibull with tail
parameter θ if

∃c > 0 s.t. ∀t ≥ 1 : ‖Xj‖t ≤ ctθ.

Our goal is to find the smallest c that holds for Weibull random variables in particular.
We recall that Xj ∼ Weibull(λ = 1/2, k = 1/2) and θ = 2. Thus, for all t ≥ 1:

‖Xj‖t ≤ ctθ

⇐⇒
(
E
(
|Xj|t

))1/t ≤ ctθ

⇐⇒ λΓ

(
t

k
+ 1

)1/t

≤ ctθ (3)

⇐⇒ 1

2t2
Γ(2t+ 1)1/t ≤ c. (4)

Line 3 follows by using the MGF of a Weibull random variable, and line 4 follows by
plugging in the parameter values.

Our goal is to find the smallest c such that ‖X‖t ≤ ctθ for all t ≥ 1. The lefthand side
of line 4 is decreasing in t for t ≥ 1, so finding the smallest possible c for t = 1 will be
sufficient for all t ≥ 1. Plugging in t = 1, we get c = 1.

We can finally appeal to Corollary 3.1 from [41], which states that if X1, . . . , Xd are
i.i.d. Weibull random variables with tail parameter θ, then for all x ≥ dKθ we have

P

(∣∣∣∣∣
d∑
j=1

Xj

∣∣∣∣∣ ≥ x

)
≤ exp

(
−
(

x

Kθd

)1/θ
)

for Kθ = ec. Plugging in the c = 1 we found for Weibull random variables yields

P

(∣∣∣∣∣
d∑
j=1

Xj

∣∣∣∣∣ ≥ x

)
≤ exp

(
−
( x

e · d

)1/θ
)
.

We want the probability to be less than β, so we sub this in and get

P

(∣∣∣∣∣
d∑
j=1

Xj

∣∣∣∣∣ ≥ e · d log2(β)

)
≤ β.

We note that ‖X‖2 =

√∣∣∣∑d
j=1 Xj

∣∣∣, so setting the bound at
√
e · d log2(β) gives our desired

result.

.3 Parameter Estimation

.3.1 Proof of Theorem 4.0.1

Proof. Our goal is to find weights {Am}m∈[t] with Am ∈ Rd×d such that the Löwner order

of Cov
(∑t

m=1Amτ̂m
)

is minimized. Because we want our weighted estimator to remain

unbiased, we restrict ourselves to sets of Am such that
∑t

m=1 Am = Id.
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We note that the Am are constants and τ̂m are independent, so

Cov

(
t∑

m=1

Amτ̂m

)
=

t∑
m=1

Cov (Amτ̂m)

=
t∑

m=1

ATmCov (τ̂m)Am.

Assume τ̂m ∈ Rd and let {Bm}m∈[t] with Bm ∈ Rd×d be an arbitrary weighting. Then
we can write

Cov

(
t∑

m=1

Amτ̂m

)
� Cov

(
t∑

m=1

Bmτ̂m

)

⇐⇒ ∀v ∈ Rd \ {0} : vTCov

(
t∑

m=1

Amτ̂m

)
v ≤ vTCov

(
t∑

m=1

Bmτ̂m

)
v.

Note that the quantities on the righthand side of the statement above are scalars, so we
have translated the problem of finding a minimal Löwner bound into minimizing a one-
dimensional quantity.

Let v ∈ Rd\{0} be arbitrary. We now have a one-dimensional constrained optimization
problem; we want to find {Am}m∈[t] which minimizes vTCov

(∑t
m=1Amτ̂m

)
v subject to∑t

m=1Am = Id. We can solve this using a Lagrange multiplier.

We write

L
(
{Am}m∈[t], λ

)
= vTCov

(
t∑

m=1

Amτ̂m

)
v − λvT

(
t∑

m=1

Am − Id

)
v

and differentiate with respect to Am. Recall that Cov (τ̂m) = Sm. Then we have

∂L
(
{Am}m∈[t], λ

)
∂Am

=
∂vTCov

(∑t
m=1Amτ̂m

)
v − λvT

(∑t
m=1 Am − Id

)
v

∂Am

=
∂
(∑t

m=1 v
TATmCov (τ̂m)Amv

)
− λvT

(∑t
m=1 Am − Id

)
v

∂Am
= SmAmvv

T + STmAmvv
T − λvvT (5)

= 2 (SmAm − λId) vvT .

(5) comes from a matrix calculus identity that for vectors a, b and matrix C all independent

of X, ∂(Xa)TC(Xb)
∂X

= CXbaT + CTXabT and noting that the partial with respect to Am
influences the sum only in the mth term.

We set this to 0 to find a stationary point.

0 = 2 (SmAm − λId) vvt

λIdvv
T = SmAmvv

t

Am = λS−1
m Idvv

T (vvT )−1

= λS−1
m .
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We know from our constraint that
∑t

m=1 Am = Id, so

t∑
m=1

λS−1
m = Id

λ =

(
t∑

m=1

S−1
m

)−1

,

and thus our stationary point is achieved at Am =
(∑t

m=1 S
−1
m

)−1
S−1
m .

We have shown that choosing Am in this way achieves a stationary point, but we want to
show that it is a global minimum. For that, we need to check the second partial derivative

test, which states that our stationary point is a global minumum if
∂2L({Am}m∈[t],λ)

∂2Am
is PD.

We first note that

∂2L
(
{Am}m∈[t], λ

)
∂2Am

=
∂

∂Am
2 (SmAm − λId) vvT

= 2(vvT )⊗ Sm,

where ⊗ is the Kronecker product.

We know vvT is PD, because ∀z ∈ Rd\{0} we get zTvvT z = (zTv)(vT z) = (vT z)T (vT z) >
0. The strict inequality comes because we know that both v and z are non-zero. We know
Sm is PD by assumption and that, in general, if a matrix Y is PD then so is 2Y . Finally,
the Kronecker product of PD matrices is also PD, so 2(vvT ) ⊗ Sm is PD and our second
partial derivative condition is met. So L is convex and our local minimum is also a global
minimum. Thus, our choice of Am achieves the Cov

(∑t
m=1 Amτ̂m

)
with minimal Löwner

order.

.3.2 Privately estimating Σ̂

Proof of Theorem 4.0.2

Proof. From the proof in Appendix .2.3, we know that we have a 1 − βṼ probability
guarantee of not clipping any points during the t steps of our estimation algorithm. In
this event, our private mean estimation just involves calculating the non-private mean and
adding Gaussian noise, so for Ym ∼ N (0, ~σ2

mId) we say

P
(
∀m ∈ [t] : Ṽm = V̂ + Ym

)
≥ 1− βṼ .

Now, we can view each Ṽm as a realization of an unbiased estimator of V̂ with multi-
variate Gaussian error and covariance ~σ2

mId. Because we have t unbiased estimators, we
use a standard precision-weighting argument to combine them into a new estimate in
Equation 4.1 which has covariance 1∑t

m=1 1/~σ2
m
Id. This estimator remains unbiased (with

high-probability) by linearity of expectation and remains multivariate Gaussian because
the sum of multivariate Gaussians is multivariate Gaussian. We imagine drawing from
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the noise distribution of this new combined estimator and in Equation 4.2 get 1 − βub/d
probability upper bounds on a draw from each dimension of the distribution. By a union
bound over the d dimensions and adding the failure probability induced by any clipping,
we then have

P
(
∀j ∈ [d] : Ṽj + ~γj ≥ V̂j

)
≥ 1− βṼ − βub. (6)

Finally, recall from Assumption 2.0.1 that P
(

Σ̂BLB � Σ̂
)

= 1. This implies that each

diagonal element of Σ̂BLB is at least as large as the corresponding diagonal element of Σ̂,
and so an upper bound on V̂j is also an upper bound on Σ̂j,j.

Proof of Theorem 4.0.3

Proof. We use the same proof structure as in Appendix .3.2, up until the point of upper
bounding our covariance, as it is no longer sufficient to simply upper bound each element
of the diagonal of Σ̂BLB; instead, we want a Löwner upper bound.

Let Ŝi be the ith empirical covariance estimate and the unflattened version of Ŝ[i . We
know that

P
(
∀m ∈ [t] : S̃[m = Ŝ[ + Y

)
≥ 1− βS̃,

for Ym ∼ N(0, ~σ2
mId). All arguments that follow are conditional on this 1− βS̃ probability

event.

As before, we use our precision-weighting argument to create a combined estimator S̃[

and by composition of Gaussians, we get that

S̃[ ∼ N

(
Ŝ[,

1∑t
m=1 ~σ

2
m

Id

)
.

We unflatten this to create S̃ where

S̃ = Ŝ + σ2
M ,

and σ2
M ∈ Rd×d is the unflattened version of 1∑t

m=1 ~σ
2
m

.

We then find γ such that

P
(
‖σ2

M‖2 ≤ γ
)
≥ 1− βub

using Algorithm 6.

Letting λi(X) ≤ . . . ,≤ λd(X) be the eigenvalues of an arbitrary symmetric matrix X,
we let Y be another symmetric matrix and say

∀j ∈ [d] : λj(X) + λd(Y ) ≤ λj(X + Y ).

This is a corollary of the Courant-Fischer min-max theorem.
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Thus, we have

S̃ = Ŝ + σ2
M

⇐⇒ S̃ − σ2
M = Ŝ

⇐⇒ S̃ + σ2
M = Ŝ (σ2

M is a r.v. symmetric about 0)

=⇒ ∀j ∈ [d] : λj

(
S̃
)

+ λd
(
σ2
M

)
≥ λj

(
Ŝ
)

=⇒ ∀j ∈ [d] : λj

(
S̃
)

+ γ ≥ λj

(
Ŝ
)

=⇒ S̃ + γId � Ŝ.

Reintroducing our two sources of failure and letting Σ̃ = S̃ + γId, we get

P
(

Σ̃ � Σ̂BLB
)
≥ 1− βS̃ − βub.

We appeal to Assumption 2.0.1 and the transitivity of the Löwner order to replace
Σ̂BLB with Σ̂ above and get our result.

.3.3 Proof of Theorem 4.0.4

Proof. We know that we don’t clip any points in Algorithm 2 with probability 1− β θ̃, so
for Y ∼ N (0, ~σ2

mId) we say

P
(
∀m ∈ [t] : H̃m = θ̂BLB + Y

)
≥ 1− β θ̃.

Thus, we have

P
(
∀m ∈ [t] : θ̃m ∼ N

(
θ̂BLB, ~σ2

mId

))
≥ 1− β θ̃.

We combine these t estimators into a single precision-weighted estimator using Fact 4.0.1.
This estimator remains unbiased (with high-probability) by using linearity of expectation

and that E
(
θ̂BLB

)
= E

(
θ̂
)

= θ and remains multivariate Gaussian because the sum of

multivariate Gaussians is multivariate Gaussian.

.4 PSD Projection

It is possible that, after adding privatizing noise to our covariance estimate, it is no longer
positive semidefinite (PSD). We show that, if this happens, we can project the matrix back
to the PSD cone without losing the guarantees we need regarding the Löwner order of the
covariance matrix.

Note that λ′ is the set of eigenvalues of M ′. We then have the following theorem.

Theorem .4.1. Let M ∈ Rm×m. The PSD projection of M described in Algorithm 5
produces a matrix M ′ ∈ Rm×m that is PSD and respects M ′ �M .
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Algorithm 5 PSD Projection of a matrix
Input: Matrix M ∈ Rm×m, minimum eigenvalue ε ≥ 0
Output: PSD matrix M ′ ∈ Rm×m

1: procedure PSDProjection(M, ε)
2: Calculate eigenvectors λ = [λ1, . . . , λm] and matrix of eigenvectors Q ∈ Rm×m such that M =
Qdiag(λ)QT

3: λ′ = [λ′1, . . . , λ
′
m] where λ′i = max(ε, λi)

4: M ′ ← Qdiag(λ′)QT

5: return M ′

Proof. The fact thatM ′ is PSD follows immediately from the fact that we know mini∈[m] λ
′
i ≥

0 by construction. Non-negative eigenvalues are a necessary and sufficient condition for a
matrix to be PSD, so M ′ is PSD.

We say that M ′ �M if and only if M ′−M is a PSD matrix. Recall from Algorithm 5
that we can write M = Q diag(λ)QT and M ′ = Q diag(λ′)QT . Thus,

M ′ −M = Q diag(λ′)QT −Q diag(λ)QT

= Q (diag(λ′)− diag(λ))QT

= Q diag(λ′ − λ)QT .

Because we know that ∀i ∈ [m] : λ′i − λi ≥ 0, we know that M ′ −M has non-negative
eigenvalues and thus M ′ �M .

We note that if ε > 0, then the projection creates a positive definite matrix.

.5 Confidence Intervals

.5.1 Proof of Theorem 4.0.5

Proof. We assume that our estimation of θ̃ and Σ̃ worked as described at the top of
Section 4.0.3, which comes with a 1− βΣ̃ − βub − β θ̃ probability guarantee.

Let j ∈ [d] and α ∈ (0, 1) be arbitrary and let Z be drawn from the jth dimension of Qθ̃.
Then Algorithm 8 returns

(
cilj, ci

u
j

)
such that P

(
Z < cijl

)
≤ α/2 and P (Z > ciju) ≤ α/2.

We know that E(Z) = θ̂j and Algorithm 8 produces an interval around this expectation
with length c on each side. So we have

P
(
Z ∈ θ̂j ± c

)
≥ 1− α ⇐⇒ P

(
θ̂j ∈ Z ± c

)
≥ 1− α,

which gives us our confidence interval.

.5.2 Proof of Corollary 4.0.6

Proof. This follows the same line of reasoning as the proof in Appendix .5.1, except we
fold the failure probability directly into αj.

39



.6 Upper-Bounding Random Variables

.6.1 HPUB Algorithm

Algorithm 6 High-probability upper bound on random variable
Input: random variable X, failure probability α, number of simulations n, precision τ ∈ (0, 1)
Output: u such that P(X ≤ u) ≥ 1− α

1: procedure HPUB(X,α, n, τ)
2: n = max (n, d1/αe))
3: while True do
4: αB1 = 0 . initialize target empirical CDF value
5: m = d 1

τ e − 1
6: for j ∈ [m− 1] do . brute force search
7: α1 = j

mα, α2 = α−α1

2
8: c = n(1− α1)
9: cil = F−1

B(c,n−c+1) (α2) . lower binomial confidence bound

10: if cil ≥ 1− α− α2 then
11: αB1 = max(α1, α

B
1 )

12: if αB1 = 0 then
13: n = n+ 1000
14: else
15: k ← dn(1− α1)e
16: Sample {xi}i∈[n] from X . sample from random variable
17: Sort {xi}i∈[n] such that xi ≤ xj for i < j
18: return xk

Algorithm 7 Approximate upper bound on random variable
Input: random variable X, failure probability α, number of simulations n Output: u such that

P(X ≤ u)
?
≥ 1− α

1: procedure ApproxUB(X,α, n)
2: n = max (n, d1/αe))
3: Sample {xi}i∈[n] from X . sample from random variable
4: k ← dn(1− α1)e
5: Sort {xi}i∈[n] such that xi ≤ xj for i < j
6: return xk

We sometimes refer to this as HPUB(X,α), leaving n, τ implicit. For very small α,
running Algorithm 6 as written is unlikely to be computationally feasible. In this case, it is
possible to use the Algorithm 7, which doesn’t yield the desired high-probability guarantee
but works pretty well in practice.

Lemma .6.1 (Binomial Confidence Interval [11]). Let c be a realization of a random vari-
able C ∼ Binomial(n, p). Let Ba,b ∼ Beta(a, b) be a random variable representing the Beta
distribution with shape parameters a, b and let FB(a,b) be its CDF. Then, for any α ∈ (0, 1),

P
(
F−1
B(c,n−c+1)(α) ≤ p

)
≥ 1− α.

Theorem .6.2. For a random variable X and arbitrary α ∈ (0, 1), Algorithm 6 returns u
such that

P (X ≤ u) ≥ 1− α.
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Proof. Our goal is to find a u such that P (X ≤ u) ≥ 1 − α. Because we cannot sample
infinitely from X, we’ll split our failure probability α into two pieces, α1 and α2 such that
α1 + α2 is strictly less than α.

Say we have {Xi}i∈[n] for Xi ∼ X and associated realizations of those random variables
{xi}i∈[n] such that i ≤ j =⇒ xi ≤ xj. Then if FX(x) = P (X ≤ x), we’ll say that

F̂X(x) =
1

n

n∑
i=1

1(Xi ≤ x).

Say we knew that z = F−1 (1− α1) for some z. Then,

z = F−1 (1− α1)

⇐⇒ F (z) = 1− α1

⇐⇒ F̂X(z) ∼ Binomial(n, 1− α1).

We can now work backwards from this. Let z′ = xn(1−α1) and note that c := F̂X(z′) =
n(1 − α1) is a realization of a C ∼ Binomial(n, FX(z′)). We then appeal to Lemma .6.1
and say that

P
(
F−1
B(c,n−c+1)(α2) ≤ FX(z′)

)
≥ 1− α2.

In the algorithm, we search over combinations of α1, α2 to find the largest α1 such that
F−1
B(c,n−c+1)(α2) that is at least as large as 1−α+α2. If, for a fixed n there is no satisfying

combination of α1, α2 we increase n and look again.

So we end up with α1, α2 such that

P (1− α + α2 ≤ FX(z′)) ≥ 1− α2.

Composing these two failure probabilities by a union bound, our process yields a z′ such
that

1− α ≤ P
X∼X ,z′∼Z′

(X ≤ z′)

as desired.
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Algorithm 8 Confidence Interval Simulation
Input: distribution Q(µ,Σ) from a symmetric location-scale family, desired confidence levels

{αj}j∈[d] ∈ (0, 1)d

Output: Interval that contains 1 − α of the mass in each dimension, with at most α/2 outside on
either end

1: procedure ConfidenceIntervalSimulation(Q, j, α)
2: Z ∼ Q(µ,Σ)
3: Let Zj be the jth element of the random vector Z
4: for j ∈ [d] do
5: ciuj = HPUB (Zj , 1− αj/2)
6: c = ciuj − µ
7: cilj = µ− c
8: return

{
cilj , ci

u
j

}
j∈[d]
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