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Abstract

Machine learning (ML) models are trained on data which can be sensitive. Membership
inference attacks (MIAs) infer whether a particular data record was used to train an ML
model. This violates the membership privacy of an individual, specially in applications
where the knowledge of that individual’s data record in training data is sensitive. For
instance, the privacy risk of inferring an individual’s health status from a model trained
on a dataset containing patients with some specific disease. There is a need for a privacy
metric that enables ML model builders to quantify the membership privacy risk of (a)
individual training data records, (b) computed independently of specific MIAs, (c) which
assesses susceptibility to different MIAs, (d) can be used for different applications, (e)
efficiently. None of the prior membership privacy risk metrics simultaneously meet all of
these criteria.

Ideally, a membership privacy risk metric will measure the memorization of individual
training data records by large capacity ML models, which is the cause for membership
privacy risk as suggested by prior work. In practice, this can be achieved by estimating
the influence of individual training data records to a model’s utility. Leave-one-out (LOO)
computation, i.e., the difference in model utility with and without a data record in training
dataset, can be used to measure this memorization but at high computation cost. Shapley
values is an alternative LOO approach with efficient algorithms in the literature. It mea-
sures the influence of a training data record on a model’s utility and thereby the extent of
it being memorized by that model. Hence, we conjecture that Shapley values, can serve
as a good membership privacy risk metric to indicate the susceptibility of training data
records to MIAs. In this work, we explore the following research question: can Shapley
values effectively estimate the susceptibility of individual training data records to MIAs?

We validate the above conjecture by presenting SHAPr, a membership privacy metric
based on Shapely values which satisfies the desiderata (a) - (e) mentioned above. Using ten
benchmark datasets and five MIAs, we show that SHAPr is indeed effective in estimating
susceptibility of a training data records to different MIAs as computed using F1 scores. We
then focus on recall as being more important than precision for evaluating effectiveness of
membership privacy risk metrics. We find that using recall, SHAPr is effective to assess
the susceptibility across different MIAs and datasets. We find that SHAPr is comparable
or better than prior work for effective MIAs (good accuracy on both members and non-
members).

Additionally, other than inheriting applications of Shapley values (e.g., data valuation),
SHAPr is versatile and can be used for estimating the disproportionate vulnerability over
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different subgroups to MIAs. We apply SHAPr to evaluate the efficacy of several de-
fenses against MIAs. First, we show that adding noise to subset of training data records
lowers their privacy risk. But this comes at the cost of increasing the privacy risk for
remaining training data records, making it an ineffective defence. Second, we show that
the membership privacy risk of a dataset is not necessarily improved by removing high
risk training data records, thereby confirming an observation from prior work in a signif-
icantly extended setting (across ten datasets, removing up to 50% of vulnerable training
data records). Third, SHAPr correctly captures the decrease in MIA accuracy on using
regularization based defence.

Finally, SHAPr has acceptable computational cost (compared to naïve LOO), i.e.,
varying from a few minutes for the smallest dataset to ≈92 minutes for the largest dataset.
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Chapter 1

Introduction

The assessment of data privacy risks is necessary as highlighted by several official reports
from government institutions (NIST [65], the White House [26], and the United Kingdom’s
Information Commissioner’s Office [33]). Membership inference attacks (MIAs) is a po-
tential threat to privacy of an individual’s data used for training Machine Learning (ML)
models [59, 54, 61, 71]. These attacks infer whether a given data record was used to
train that model. For datasets containing an individual’s sensitive data, MIAs constitute
a privacy threat. For instance, identifying that a randomly sampled individual’s data was
used to train a health-related ML model can allow an adversary to infer the health status
of that individual. Hence, measuring the membership privacy risk of training data records
is essential for data privacy risk assessment.

Several existing tools, like MLPrivacyMeter [46] and MLDoctor [42], can quantify mem-
bership privacy risk. They are based on measuring the success rate of known MIAs [59,
71, 54, 48]. In addition, these attacks use aggregate metrics such as accuracy, precision
and recall over all training data records, and are not designed for quantifying individ-
ual record-level membership privacy risk. Record-level membership privacy allows model
builder to estimate the relative risk of different training data records for a fine-grained
privacy risk analysis to design privacy-preserving ML models. Additionally, this allows the
user to understand the privacy risk of contributing their data to the specific ML task. Song
and Mittal [61] proposed a record-level probabilistic metric (which they name “privacy risk
metric” hereafter referred as SPRS) defined as the likelihood of a data record being present
in the target model’s training dataset. SPRS is intended to be used by adversaries rather
than model builders.

Ideally, a membership privacy risk metric should capture the root cause of MIAs,
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namely the memorization of training data records as indicated in prior work [59, 48, 17].
Such a metric will be independent of any specific attack and thus be applicable to any
future MIAs as well. Hence, there is a need for a membership privacy risk metric which es-
timates the extent to which the model memorizes an individual training data record. This
memorization can be estimated by measuring the influence of each training data record on
the model’s utility. One potential approach is by using the leave-one-out (LOO) training
approach [19, 43] where the influence of a data record is computed using the difference in
model utility with and without that data record in the training dataset. Long et al. [43]
proposed one such metric based on LOO computation which is independent of any specific
attack. However, directly using the naïve LOO approach for each data record is computa-
tionally expensive [30, 31, 21, 32]. Therefore, we explore the research question: Can LOO
based approaches efficiently and effectively measure the susceptibility of individual training
data records to MIAs?

We conjecture that Shapley values, a well-known notion in game theory used to quantify
the contributions of individuals within groups [56], can serve as a good membership privacy
risk metric by effectively estimating the susceptibility of individual training data records to
successful MIA. The application of Shapley values as membership privacy risk metric is by
the virtue of approximating the LOO computation and measuring influence of individual
training data records on model utility [31, 21], and thereby estimating the extent of their
memorization. Crucially, Shapley values can be efficiently computed in one go for every
training data record without having to train two models for each training data record (with
and without that data record in the training dataset) as typically done in naïve LOO
approach [30, 32]. Furthermore, Shapley values have been recently used in the context
of data valuation in ML (to estimate economic value of a data record) [30, 31, 21, 20]
and estimating attribute influence for explainability [44]. This makes a metric based on
Shapley values more versatile by inheriting non-privacy applications (e.g., data valuation)
where other metrics cannot work. In this work, we explore using Shapley values as the
basis to quantify the membership privacy risks of individual training data records.

We make the following contributions.

1. We validate our conjecture of Shapley values being effective membership privacy risk
metric by presenting SHAPr, an LOO membership privacy risk metric using Shapley
values, with an attack-agnostic approach for estimating membership privacy risk for
individual training data records. (Chapter 4)

2. We show that SHAPr is effective in assessing the susceptibility of training data records
to state-of-the-art MIAs across ten benchmark datasets. We find that SHAPr is ei-
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ther comparable or better than SPRS (adapted to the model builder’s setting) against
effective MIAs; (Chapter 6)

3. We demonstrate the applicability of SHAPr in Chapter 7 by showing that

• SHAPr is versatile (Section 7.1):
(a) it can be used to estimate the disparity of membership privacy risk across dif-

ferent sensitive subgroups (Section 7.1.1).
(b) inherits other applications such as data valuation, by virtue of using Shapley

Values (Section 7.1.2).
• SHAPr is effective to evaluate defences (Section 7.2):

(a) it can correctly estimate how adding noise to a subset of the training dataset
impacts membership privacy risk (Section 7.2.1);

(b) removing data records with high membership privacy risk as a defence does not
necessarily reduce risk for the remaining data records, confirming the observa-
tion by Long et al. [43], but on a broader scale, using ten large datasets (vs.
one), and exploring the effect of removing up to ∼50% of training data records
(vs. <1%) (Section 7.2.2);

(c) effective in capturing the decrease in MIA accuracy on using defences like reg-
ularization (Section 7.2.3)

4. We show that SHAPr scores can be computed more efficiently than the direct appli-
cation of the LOO approach. (Chapter 8)
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Chapter 2

Background

Consider a training dataset 𝐷𝑡𝑟 = {𝑥𝑖, 𝑦𝑖}𝑛
𝑖=1 containing input features 𝑥𝑖 ∈ 𝑋 and corre-

sponding classification labels 𝑦𝑖 ∈ 𝑌 where 𝑋 and 𝑌 are the space of all possible inputs
and corresponding labels. A Machine Learning (ML) classifier is a model 𝑓𝜃 which maps
the inputs to the corresponding classification labels 𝑓𝜃 ∶ 𝑋 → 𝑌 . The function parameters
𝜃 are updated by minimizing the loss between the model’s prediction 𝑓𝜃(𝑥) on input 𝑥 and
the true labels 𝑦. The loss is minimized using gradient based training algorithms such as
Stochastic Gradient Descent (SGD) or Adam.

An ML algorithm constitutes a space of all such ML models obtained by training
them on datasets randomly sampled from the same underlying data distribution (𝐷𝑡𝑟 ∼
𝑃(𝑋 × 𝑌 )) with randomly sampled training algorithm from a set of possible training
algorithms (e.g., SGD, Adam). Hence, an ML model is a specific sample of an ML algorithm
trained after fixing the training dataset and training algorithm. We use this distinction
between ML algorithm and ML model to quantify the privacy risk in Section 2.3 and
Chapter 9: Section 9.3.

We first give a background of prior membership inference attacks (MIAs) proposed
in literature (Section 2.1) followed by a description of a prior membership privacy risk
metric closest to our work (Section 2.2). We then discuss the cause of such membership
privacy risk (Section 2.3) followed by a discussion of Shapley values and its state-of-the-art
algorithm proposed in prior work [30, 32] which we use (Section 2.4).
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2.1 Membership Inference Attacks

MIAs exploit the difference in model behaviour on seen training data records and unseen
test data records. MIAs differentiate between members and non-members of the training
dataset of an ML model using the output predictions of that model, or some function of
them. We identify four main types of MIAs proposed in the literature:
Shadow Models [59]. Shokri et al. proposed the first MIA that uses a ML attack
model to distinguish between a member and non-member based on the predictions of the
target model. This MIA assumes that an Adversary (𝒜𝑑𝑣) has auxiliary data (𝐷𝑎𝑢𝑥)
including some training data records used by the target model. 𝐷𝑎𝑢𝑥 is used to train
multiple shadow models to mimic the utility of the target model. An attack ML model
is then trained to distinguish between members and non-members using the predictions
of the shadow models. Given a prediction from the target model for an arbitrary input,
the attack model can classify it as a member or a non-member. This MIA has two main
drawbacks: first, it assumes a strong 𝒜𝑑𝑣 who has partial knowledge about the target
model’s training data, and second it incurs a high computational overhead due to the need
to train multiple (shadow) models. We refer to this MIA as 𝐼𝑠ℎ𝑎𝑑𝑜𝑤.
Prediction Correctness [71]. An alternative approach, that makes weaker assumptions
regarding 𝒜𝑑𝑣’s capabilities, relies on the fact that models which do not generalize well
make correct predictions on training data records but not on testing data records. 𝒜𝑑𝑣
decides that a data record is a member if it is correctly predicted by the target model and
non-member otherwise. This MIA is particularly applicable in settings where the target
model outputs only a label. However, the MIA works for poorly generalizing models and
assumes 𝒜𝑑𝑣 knows the ground truth labels for the data records used to probe the target
model. We refer to this MIA as 𝐼𝑐𝑜𝑟𝑟.
Prediction Confidence [71, 54]. A third approach uses prediction confidence reported by
the target model across all classes. Given an input data record, the target model outputs
a vector describing the confidence that the record belongs to each class. The maximum
confidence value is likely to be higher for an input data record that was also part of the
training set, than for one that was not [59, 60]. The prediction confidence attack relies on
this observation: it declares an input data record as a member if the associated highest
confidence is higher than an adversary-chosen threshold, and as a non-member otherwise.
Unlike Prediction Correctness attacks, Prediction Confidence attacks do not require 𝒜𝑑𝑣
to have any knowledge of the target model’s training data or the ground truth for the input
data record. However it assumes that the target model outputs confidence values for all
classes. We refer to this MIA as 𝐼𝑐𝑜𝑛𝑓 .
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Prediction Entropy [61, 59, 54]. Rather than relying on the maximum confidence value
in the output prediction, 𝒜𝑑𝑣 may resort to a more sophisticated function defined over
the set of confidence values in the prediction. The entropy in a model’s prediction (i.e.,
information gain for 𝒜𝑑𝑣) is the uncertainty in predictions [59, 54]. The entropy differs
for training and testing data records which 𝒜𝑑𝑣 can use as the basis for deciding whether
an input data record was in the training set. For instance, the output for a training data
record is likely to be close to a one-hot encoding, resulting in a prediction entropy close to
zero. Testing data records are likely to have higher prediction entropy values. As with the
previous method, 𝒜𝑑𝑣 can choose a threshold for the prediction entropy to decide whether
an input data record is a member or not.

A modification of prediction entropy attack was proposed by Song and Mittal [61]. The
prediction entropy is low for data records with both correct or incorrect classification pre-
dicted with high confidence by the model. For a given data record (𝑥, 𝑦), the modified en-
tropy function: 𝑀𝑒𝑛𝑡𝑟(𝑓𝜃(𝑥), 𝑦) = −(1−𝑓𝜃(𝑥)𝑦)𝑙𝑜𝑔(𝑓𝜃(𝑥)𝑦)−∑𝑖≠𝑦(𝑓𝜃(𝑥)𝑖𝑙𝑜𝑔(1−𝑓𝜃(𝑥)𝑖)),
accounts for this problem. Here, 𝑓𝜃(𝑥)𝑦 indicates the prediction on record 𝑥 with correct
label 𝑦. 𝒜𝑑𝑣 thresholds the modified prediction entropy to determine the membership
status: 𝐼𝑚𝑒𝑛𝑡(𝑓𝜃(𝑥), 𝑦) = 1{𝑀𝑒𝑛𝑡𝑟(𝑓𝜃(𝑥), 𝑦) ≤ 𝜏𝑦}. We refer to this MIA as 𝐼𝑚𝑒𝑛𝑡.

For 𝐼𝑚𝑒𝑛𝑡 and 𝐼𝑐𝑜𝑛𝑓 MIAs, instead of using a fixed threshold of 0.5 over the prediction
confidence as seen in original prediction entropy attack, the thresholds 𝜏𝑦 are adapted for
each class using the shadow models trained on 𝐷𝑎𝑢𝑥 to improve the MIA accuracy. This
adaptive threshold gives the best MIA accuracy [61].
Label-Only [15, 38]. The above MIAs (except for 𝐼𝑐𝑜𝑟𝑟) assume 𝒜𝑑𝑣 has access to output
prediction probabilities across all classes. However, in settings where the model outputs
only the most likely class label, the above MIAs are not effective. Due to better performance
than Li et al [38], we use Choo et al.’s [15] label only inference MIA, which observes that the
training data records have a higher distance from the decision boundary than the testing
data records. 𝒜𝑑𝑣 uses this difference to infer the membership status of any arbitrary data
record. We refer to this MIA as 𝐼𝑙𝑎𝑏𝑒𝑙.

2.2 Song and Mittal’s Privacy Risk Scores

Song and Mittal [61] describe a membership privacy risk metric1 (which we refer to as
SPRS) that defines the membership privacy risk score of 𝑧𝑖= (𝑥𝑖, 𝑦𝑖) as the posterior

1Source Code: https://github.com/inspire-group/membership-inference-evaluation/blob/
master/privacy_risk_score_utils.py
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probability that 𝑧𝑖 ∈ 𝐷𝑡𝑟 given the output predictions from the model 𝑓𝜃(𝑥𝑖). They
compute the score as 𝑟(𝑧𝑖) = 𝑃(𝑧𝑖∈ 𝐷𝑡𝑟|𝑓𝜃(𝑥𝑖)). This probability is computed using
Bayes’ theorem as

𝑃(𝑧𝑖 ∈ 𝐷𝑡𝑟)𝑃 (𝑓𝜃(𝑥𝑖)|𝑧𝑖 ∈ 𝐷𝑡𝑟)
𝑃 (𝑧𝑖 ∈ 𝐷𝑡𝑟)𝑃 (𝑓𝜃(𝑥𝑖)|𝑧𝑖 ∈ 𝐷𝑡𝑟) + 𝑃(𝑧𝑖 ∈ 𝐷𝑡𝑒)𝑃 (𝑓𝜃(𝑥𝑖)|𝑧𝑖 ∈ 𝐷𝑡𝑒) (2.1)

They assume that the probability of the data record belonging to the training/testing
dataset is equally likely, 𝑃(𝑧𝑖∈ 𝐷𝑡𝑟) = 𝑃(𝑧𝑖 ∈ 𝐷𝑡𝑒) = 0.5. The membership privacy
risk scores rely on training shadow models on 𝐷𝑎𝑢𝑥 to mimic the functionality of the
target model. The conditional probabilities 𝑃(𝑓𝜃(𝑥𝑖)|𝑧𝑖 ∈ 𝐷𝑡𝑟) and 𝑃(𝑓𝜃(𝑥𝑖)|𝑧𝑖 ∈ 𝐷𝑡𝑒)
are then computed using the shadow model’s output predictions on 𝐷𝑎𝑢𝑥’s training and
testing dataset. Further, instead of using fixed threshold based prediction entropy MIA,
each class has a threshold for deciding the data record’s membership which are computed
using 𝐷𝑎𝑢𝑥. The conditional probabilities are estimated per class 𝑃(𝑓𝜃(𝑥𝑖)|𝑧𝑖 ∈ 𝐷𝑡𝑟) =
{𝑃(𝑓𝜃(𝑥𝑖)|𝑧𝑖 ∈ 𝐷𝑡𝑟, 𝑦 = 𝑦𝑖)} across all class labels 𝑦 = 𝑦𝑖.

Traditional MIAs require 𝒜𝑑𝑣 to sample arbitrary data records to infer their member-
ship status. SPRS is designed as a tool for 𝒜𝑑𝑣 to identify data samples which are more
likely to be members instead of sampling a large number of data records.

2.3 Memorization of Training Data in ML

Membership privacy risk (susceptibility to MIAs) occurs due the fact that ML models,
with their inherent large capacity, tend to “memorize” training data records [48, 17]. This
results in distinguishable output predictions from the ML model on seen training data
records and unseen testing data records [59, 54].

To better understand “memorization” in practice, we can think of membership privacy
risk as follows: consider an ML model is trained on 𝐷𝑡𝑟. 𝒜𝑑𝑣 samples 𝑧𝑖 from 𝐷𝑡𝑟’s
underlying data distribution where 𝑧𝑖= (𝑥𝑖, 𝑦𝑖) is the 𝑖𝑡ℎ data record with input features
𝑥𝑖 and label 𝑦𝑖. 𝒜𝑑𝑣 can query the model and observe the model’s predictions (blackbox
API access) [59, 61, 54] and parameters to compute intermediate layer output (whitebox
access) [48, 36]. 𝒜𝑑𝑣’s goal is to infer whether 𝑧𝑖 ∈ 𝐷𝑡𝑟 or 𝑧𝑖 ∉ 𝐷𝑡𝑟. In practice, 𝒜𝑑𝑣 can do
this by estimating the influence of 𝑧𝑖 on model’s observables (predictions or intermediate
layer output) after interacting with the ML model. Hence, measuring this influence on
the model observables acts as a signal for membership privacy risk for an individual data
record 𝑧𝑖 [70].
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One approach to estimate this influence was proposed by Feldman [19] which was
referred to as “memorization” of a data record by an ML model. Memorization of 𝑧𝑖 can
be estimated as the difference in the prediction of a model on input features 𝑥𝑖 when
the model was trained with and without 𝑧𝑖 in its training set [19]. Formally, for a specific
model 𝑓𝜃 drawn from the set of models for a training algorithm 𝒜, Feldman [19] formulates
memorization as follows:

𝑚𝑒𝑚(𝑧𝑖, 𝐷𝑡𝑟, 𝒜) = |𝑃𝑟𝑓𝜃∼𝒜(𝐷𝑡𝑟∪𝑧𝑖)[𝑓𝜃(𝑥𝑖) = 𝑦𝑖] − 𝑃𝑟𝑓𝜃∼𝒜(𝐷𝑡𝑟\𝑧𝑖)[𝑓𝜃(𝑥𝑖) = 𝑦𝑖]| (2.2)

If 𝑚𝑒𝑚(𝑧𝑖, 𝐷𝑡𝑟, 𝒜) is high, the model is likely to have memorized 𝑧𝑖. The above
formulation of memorization is an leave-one-out (LOO) based approach which captures
the extent to which the presence of a record in the training dataset influences the model’s
output predictions [19].

2.4 Shapley Values

An alternative approach to capture the influence of a training data record is by estimating
Shapley values [21, 31, 30, 32]. Shapley values (𝜙𝑖) are of the form,

𝜙𝑖 = 1
|𝐷𝑡𝑟| ∑

𝑆⊆𝐷𝑡𝑟\{𝑧𝑖}

1
(|𝐷𝑡𝑟−1|

|𝑆| )
[𝑈(𝑆 ∪ {𝑧𝑖}) − 𝑈(𝑆)] (2.3)

where 𝑆 is a randomly chosen subset of 𝐷𝑡𝑟\{𝑧𝑖} and 𝑈(𝑆) (accuracy of 𝑓𝜃 on a testing
dataset 𝐷𝑡𝑒 when trained on 𝑆) is a utility metric. (|𝐷𝑡𝑟−1|

|𝑆| ) denotes the binomial coefficient
for choosing |𝐷𝑡𝑟 − 1| elements from a set of |𝑆| elements. Here, the Shapley value of 𝑧𝑖 is
defined as the average marginal contribution of 𝑧𝑖 to 𝑈(𝑆) over all training data subsets
𝑆 ⊆ 𝐷𝑡𝑟\{𝑧𝑖}. Evaluating the Shapley function naïvely for all possible subsets with and
without 𝑧𝑖 is computationally expensive (complexity of 𝑂(2|𝐷𝑡𝑟| for |𝐷𝑡𝑟| data records [32])
and not scalable (leading to the same problem as with naïve LOO) [19, 43]. Note that for
computing Shapley values cannot be done by training |𝐷𝑡𝑟| + 1 models - one model with
all |𝐷𝑡𝑟| samples (baseline), and then one model for each of the removed samples. Shapley
value, by definition, require sampling a subset 𝑆 for which we train two models: one with
and without 𝑧𝑖. The scores will then be computed by averaging by across multiple 𝑆 but
for 𝑧𝑖 which adds to the computationally complexity making naïve functions expensive.

However, several prior work have proposed efficient algorithms which approximate the
computation of Shapley values [31, 21, 30, 32]. We consider the most efficient algorithm in
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literature where Shapley values can be efficiently computed using a 𝐾-Nearest Neighbours
(𝐾-NN) classifier as a surrogate model [32]. Unlike the naïve approach to computing
Shapley values which requires training two models for each training data record, the 𝐾-
NN model, once trained, can be used to compute the Shapley values for all training data
records. This improves the computational complexity to O(|𝐷𝑡𝑟|𝑙𝑜𝑔(|𝐷𝑡𝑟|.|𝐷𝑡𝑒|)) compared
to exponential complexity of the formulation in Equation 2.3. We now outline this approach
[32]2.

For a given 𝑧𝑖, we can first compute the partial contribution 𝜙𝑡𝑒𝑠𝑡
𝑖 of a single test data

record 𝑧𝑡𝑒𝑠𝑡 to the Shapley value 𝜙𝑖 of 𝑧𝑖, and then add up these partial contributions
across the entire 𝐷𝑡𝑒.
Step 1: “Sorting Phase”. This phase of 𝐾-NN classifier consists of passing 𝐷𝑡𝑟 and a
single testing data record 𝑧𝑡𝑒𝑠𝑡 = (𝑥𝑡𝑒𝑠𝑡, 𝑦𝑡𝑒𝑠𝑡) ∈ 𝐷𝑡𝑒, as an input to the target classifier 𝑓 𝑙

𝜃
which is the output of the 𝑙𝑡ℎ layer in the network. 𝑓𝜃 denotes final layer probability scores
across all classes. Following prior work on Shapley values [30, 32], the outputs 𝑓1

𝜃 (𝐷𝑡𝑟)
and 𝑓1

𝜃 (𝑥𝑡𝑒𝑠𝑡) and their corresponding true labels are used for further computation.
Step 2: “Score Assignment”. For 𝑧𝑡𝑒𝑠𝑡, the 𝐾-NN classifier identifies the top 𝐾 closest
training data records (𝑥𝛼1

, ⋯ , 𝑥𝛼𝐾
) with labels (𝑦𝛼1

, ⋯ , 𝑦𝛼𝐾
) using the distance between

the predictions (𝑓1
𝜃 (𝑥𝛼1

), ⋯ , 𝑓1
𝜃 (𝑥𝛼𝐾

)) and 𝑓1
𝜃 (𝑥𝑡𝑒𝑠𝑡). We use 𝛼𝑗(𝑆) to indicate the index

of the training data record, among all data records in 𝑆, whose output prediction is the
𝑗𝑡ℎ closest to 𝑓1

𝜃 (𝑥test). For brevity, 𝛼𝑗(𝐷𝑡𝑟) is written simply as 𝛼𝑗. Following prior work
on data valuation [30, 32], we use 𝐾 = 5.
Step 3. The 𝐾-NN classifier assigns majority label corresponding to the top 𝐾 training
data records as the label to 𝑥test. The probability of the classifier assigning the correct
label is given as: 𝑃 [𝑓1

𝜃 (𝑥test) = 𝑦test] = 1
𝐾 ∑𝐾

𝑖=1 1[𝑦𝛼𝑖
= 𝑦test]. Hence, the utility of the

classifier with respect to the subset 𝑆, and the single test data record 𝑧𝑡𝑒𝑠𝑡, is computed
as 𝑈 𝑡𝑒𝑠𝑡(𝑆) = 1

𝐾 ∑min{𝐾,|𝑆|}
𝑘=1 1[𝑦𝛼𝑘(𝑆) = 𝑦test].

Step 4. Consider all data records in 𝐷𝑡𝑟 sorted as above {⋯ , 𝑧𝛼𝑖−1
, 𝑧𝛼𝑖

, 𝑧𝛼𝑖+1
, ⋯}. From

Equation 2.3, the difference between the partial contributions for two adjacent data records
𝑧𝛼𝑖

, 𝑧𝛼𝑖+1
∈ 𝐷𝑡𝑟 is given by 𝜙𝑡𝑒𝑠𝑡

𝛼𝑖
− 𝜙𝑡𝑒𝑠𝑡

𝛼𝑖+1
=

1
|𝐷𝑡𝑟| − 1 ∑

𝑆⊆𝐷𝑡𝑟\{𝑧𝛼𝑖 ,𝑧𝛼𝑖+1}

[𝑈 𝑡𝑒𝑠𝑡(𝑆 ∪ {𝑧𝛼𝑖
}) − 𝑈 𝑡𝑒𝑠𝑡(𝑆 ∪ 𝑧𝛼𝑖+1

)]
(|𝐷𝑡𝑟−2|

|𝑆| )
(2.4)

Using the 𝐾-NN utility function: 𝑈 𝑡𝑒𝑠𝑡(𝑆∪{𝑧𝛼𝑖
})−𝑈 𝑡𝑒𝑠𝑡(𝑆∪𝑧𝛼𝑖+1

) = 1[𝑦𝛼𝑖=𝑦test]−1[𝑦𝛼𝑖+1=𝑦test]
𝐾 .

2Source code: https://github.com/AI-secure/Shapley-Study
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Once the label for 𝑥𝑡𝑒𝑠𝑡 is assigned, the partial contribution can be computed recursively
starting from the farthest data record:

𝜙𝑡𝑒𝑠𝑡
𝛼|𝐷𝑡𝑟|

=
1[𝑦𝛼|𝐷𝑡𝑟|

= 𝑦test]
|𝐷𝑡𝑟| (2.5)

𝜙𝑡𝑒𝑠𝑡
𝛼𝑖

= 𝜙𝑡𝑒𝑠𝑡
𝛼𝑖+1

+
1[𝑦𝛼𝑖

= 𝑦test] − 1[𝑦𝛼𝑖+1
= 𝑦test]

𝐾
min{𝐾, 𝑖}

𝑖 (2.6)

The fraction min{𝐾,𝑖}
𝑖 is obtained by simplifying the binomial coefficient (the full deriva-

tion can be found in Theorem 1 of Jia et al. [30]). The intuition behind Equation 2.6 is
that the contribution of 𝑧𝛼𝑖

is 0 if the nearest neighbor of 𝑧𝛼𝑖
in 𝑆 is closer to 𝑧𝑡𝑒𝑠𝑡 than

𝑧𝛼𝑖
, and 1 otherwise. Using the above steps, we get 𝜙𝑡𝑒𝑠𝑡 for each 𝑧𝑡𝑒𝑠𝑡 of size 𝐷𝑡𝑟 ×1. This

recursive formulation in Equation 2.6 can be extended across all 𝐷𝑡𝑒 to obtain a matrix
[𝜙𝑡𝑒𝑠𝑡

𝑖 ] of size 𝐷𝑡𝑟 × 𝐷𝑡𝑒. The final Shapley values can be obtained by aggregating the
partial contributions 𝜙𝑡𝑒𝑠𝑡

𝑖 across 𝐷𝑡𝑒.
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Chapter 3

Problem Statement

We conjecture that Shapley values, by virtue of measuring influence on model utility, and
hence the extent of memorization, can serve a good membership privacy risk metric by indi-
cating the susceptibility of training data records to membership inference attacks (MIAs).
Our goal is to verify this conjecture. To this end, we lay out the system and adversary
models (Section 3.1), describe the desiderata for designing such a metric (Section 3.2), and
outline the limitations of prior work (Section 3.3).

3.1 System and Adversary Model

System Model. We consider the perspective of a Model Builder (ℳ) who trains a
model using a dataset contributed to by multiple participants. ℳ wants to estimate the
susceptibility of individual data records to MIAs. ℳ has full access to the training (𝐷𝑡𝑟)
and testing (𝐷𝑡𝑒) datasets and can use them to compute membership privacy risk scores
for each training data record.
Adversary Model. We describe the adversary model for the MIAs. The ground truth for
the membership privacy risk metric for a given training data record is the degree to which
an actual state-of-the-art MIA [59, 54, 61, 71] succeeds against that record. We adapt the
standard adversary model for MIAs [61, 59] to ℳ’s perspective.

The standard adversary model from prior work [59, 54, 61] considers adversary Ad-
versary (𝒜𝑑𝑣) has access to the prediction interface of a model 𝑓𝜃 built using a training
dataset 𝐷𝑡𝑟. 𝒜𝑑𝑣 submits data records via the prediction interface and receives model
outputs (this is a widely adapted setting for cloud-based Machine Learning (ML) models
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in the industry). Given an input data record 𝑥, 𝒜𝑑𝑣 can only observe the final output
prediction 𝑓𝜃(𝑥). The MIAs considered use the full prediction vector [61, 59] instead of the
prediction labels [15, 38]. 𝒜𝑑𝑣 does not know the underlying target model architecture and
additionally has access to an auxiliary dataset 𝐷𝑎𝑢𝑥 sampled from the same distribution as
𝐷𝑡𝑟. Prior MIAs assume partial overlap between 𝐷𝑡𝑟 and 𝒜𝑑𝑣’s 𝐷𝑎𝑢𝑥 [59, 54, 61, 47, 29].

However, we adapt the above adversary model to ℳ’s perspective. We assume that
𝒜𝑑𝑣’s 𝐷𝑎𝑢𝑥 completely overlaps with 𝐷𝑡𝑟 which gives an upper bound on the membership
privacy risk. This is reasonable from ℳ’s perspective who has complete access to 𝐷𝑡𝑟
which is used to train the ML model. This implies that MIAs which rely on shadow
models (to learn the characteristics to differentiate between members/non-members) are
directly using the target model for as the shadow models. In other words, the underlying
target model architecture is known and used as shadow models. This setting corresponds
to ℳ simulating the strongest possible adversary with complete knowledge of 𝐷𝑡𝑟 who
evaluates how accurate are MIAs by matching the MIA predictions with the ground truth
membership status which is already known to 𝒜𝑑𝑣.

3.2 Requirements for Membership Privacy Metric

We identify the following requirements which should be satisfied while designing a mem-
bership privacy risk metric:

R1 Fine-grained. The metric generates scores for measuring the membership privacy
risk of individual training data records. This allows for a fine-grained membership
privacy risk analysis of the training data records of an ML model (Chapter 4).

R2 Attack-Agnostic. Ideally, the metric should capture the root cause of all MIAs, i.e.,
memorization of training data records by ML models [59, 48, 19]. Hence, membership
privacy risk scores resulting from the ideal metric must be computed independently
of specific MIAs. This allows the scores to assess the membership privacy risks with
respect to different MIAs (Chapter 4).

R3 Effectiveness. The membership privacy risk scores of training data records must
correlate with the likelihood of success of MIA prediction against those records. This
is computed using metrics such as F1 score, precision and recall computed between
the scores after applying a threshold and MIA prediction (Chapter 6). Evaluation of
effectiveness presumes the availability of a reliable ground truth for computing MIA
predictions. We return to this consideration in Section 3.4.
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R4 Applicability. The membership privacy risk scores, once computed, should be useful
to estimate other characteristics of the dataset (Chapter 7). For instance, the ver-
satility1 of the metric to evaluate the susceptibility of sensitive subgroups to MIAs,
estimating economic value (as defined in prior work on Shapley scores; Chapter 7:
Section 7.1 or evaluating defences Chapter 7: Section 7.2).

R5 Efficiency. Membership privacy risk scores resulting from the metric must be com-
puted within a reasonable time and low computation overhead. (Chapter 8)

3.3 Limitations of Existing Metrics

Privacy assessment libraries such as MLPrivacyMeter [46] and MLDoctor [42] quantify the
membership privacy risk using existing MIAs. They use aggregate metrics such as accuracy,
precision and recall for MIAs across all training data records, and are not optimized for
estimating the privacy risks of individual data records [61]. Hence, such metrics do not
satisfy the fine-grained requirement R1.

Song and Mittal propose SPRS which is a probabilistic membership privacy risk metric
for individual data records [61]. The more effective an MIA is against a particular data
record, the higher the score. SPRS computes membership privacy risk scores for different
training data records using MIA features for a specific MIA. For instance, SPRS, as
indicated in the original paper, uses modified entropy over the output predictions from
training and testing data records to compute the scores. This does not satisfy the attack-
agnostic requirement R2. We later show that SPRS does not satisfy the applicability
requirement R4 and is not effective for some of the applications (c.f. Chapter 7).

Long et al. [43] propose Differential Training Privacy as a membership privacy metric
based on the naïve leave-one-out (LOO) approach: computing the difference between model
predictions with and without a given training record in the 𝐷𝑡𝑟 and hence, the influence
of that record on the model utility. However, as we saw in Chapter 2.4, direct application
of the LOO approach cannot scale to large datasets and models since it requires retraining
the model to estimate the score for each data record. Hence, such a naïve LOO approach
does not satisfy the efficiency requirement R5 (c.f. Chapter 8).

Table 3.1 summarizes the prior work with respect to the different requirements that they
satisfy. None of the prior work satisfy all the requirements for an ideal membership privacy

1Versatility is an important design choice instead of a property of the privacy metric. This is because
the deployment success of a tool depends on its costs and benefits. Given two otherwise comparable
techniques, the one having additional benefits is more likely to be deployed.
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Table 3.1: Summary of prior membership privacy metrics and requirements satisfied. None
of the metrics satisfy all the requirements.

Requirements MLPrivacyMeter [46] SPRS [61] Long et al. [43]
MLDoctor [42]
(Attack Based) (Probabilistic Metric) (LOO Metric)

R1 Fine-Grained #   
R2 Attack-Agnostic # #  
R3 Effectiveness    
R4 Applicability # #  
R5 Efficiency   #

risk metric. This begs the question of whether LOO metric can be improved to be an efficient
and effective metric for estimating susceptibility of individual training data records to MIAs.
We specifically consider Shapley values given that it has efficient algorithms proposed in
prior literature and is a good approximation of naïve LOO computation [31, 30, 21, 20].

3.4 Challenges in Evaluating Effectiveness of Mem-
bership Privacy Risk Metric

The effectiveness of a membership privacy risk metric is evaluated with respect to an MIA’s
predictions (labels a data record as a member or a non-member) as a ground truth. To
claim that a metric is effective, we should consider a reliable ground truth.

One possibility of such a ground truth is an Ideal MIA (𝐼𝑖𝑑𝑒𝑎𝑙). 𝐼𝑖𝑑𝑒𝑎𝑙 predicts all train-
ing data records as members and non-training data records as non-members, i.e., it acts as
a perfect distinguisher between training and non-training data records. However, we argue
that 𝐼𝑖𝑑𝑒𝑎𝑙 a poor ground truth: Generally, 𝐷𝑡𝑟’s distribution is long-tailed [19]. An ML
model generalizes well for records that appear frequently (or are similar to learn a pattern
over them). To generalize well on training data records which do not occur frequently (con-
stitute the long tail of the 𝐷𝑡𝑟’s distribution [19]) the model ends up memorizing those data
records [49]. It is easier to predict the membership status of such memorized training data
records due their higher influence on model predictions/parameters as it results in higher
distinguishability between members and non-members. This distinguishability is then ex-
ploited by MIAs to identify their membership status more easily. On the other hand, it is
difficult to correctly predict the membership status of generalized training data records due
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to low memorization (subsequently low influence on model predictions/parameters) [11].
This was shown previously, when all the prior MIAs are evaluated using 𝐼𝑖𝑑𝑒𝑎𝑙 as the
ground truth, it results in high false positive rates [55, 11, 52, 67]. Hence, using 𝐼𝑖𝑑𝑒𝑎𝑙 as
ground truth for evaluating the effectiveness of a membership privacy risk metric is not
useful as it does not reflect what 𝒜𝑑𝑣 can infer in real-world.

An alternate ground truth for evaluating membership privacy risk metric is an Optimal
MIA (𝐼𝑜𝑝𝑡𝑖𝑚𝑎𝑙). Such an MIA predicts only the highly memorized training data records
(i.e., higher influence in model predictions or parameters) as members and all remaining
data records as non-members. In practice, this is best that an MIA can do, as they do
not exploit model’s memorization of training data records directly but rather indirectly
through difference in model’s behaviour on seen training data records and unseen testing
data records from the prediction interface of the model. While there is a known ground
truth for 𝐼𝑖𝑑𝑒𝑎𝑙 , we do not have a ground truth for 𝐼𝑜𝑝𝑡𝑖𝑚𝑎𝑙 . This makes it challenging to
identify whether current MIAs proposed in literature are close to 𝐼𝑜𝑝𝑡𝑖𝑚𝑎𝑙 .
How does this impact the effectiveness evaluation of membership privacy risk
metric? Since, membership privacy risk metric capture the root cause of MIAs, i.e., mem-
orization of training data records by ML models, their effectiveness should be computed
with respect to 𝐼𝑜𝑝𝑡𝑖𝑚𝑎𝑙 as ground truth. Due to the lack of 𝐼𝑜𝑝𝑡𝑖𝑚𝑎𝑙 as ground truth for
evaluating membership privacy risk metric, the effectiveness of such metrics is evaluated
with respect to existing state-of-the-art MIAs proposed in the literature. Hence, for any
membership privacy risk metric, we cannot generally claim their effectiveness against all
MIAs but only discuss their effectiveness with respect to specific MIAs. In this work, we
evaluate the effectiveness of membership privacy risk metrics with respect to specific MIAs
proposed in literature.
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Chapter 4

SHAPr: An LOO-based membership
privacy risk metric

Shapley values (Chapter 2: Section 2.4) was originally designed as a game-theoretic notion
to quantify the contributions of individuals within groups to the utility of a given task [56].
Recently, this was adopted in the context of machine learning for data valuation [21, 20, 31,
30] and explainability [44]. Recall that our conjecture is that leave-one-out (LOO) metric
(specifically Shapley values) can be effective in estimating the membership privacy risk of
individual training data records efficiently (Chapter 3). In order to validate our conjecture
and evaluate the effectiveness of an LOO metric to measure membership privacy risk of
individual training data records, we present SHAPr, a membership privacy risk metric
that uses Shapley values. SHAPr is based on the algorithm described in Chapter 2:
Section 2.4.

SHAPr scores inherit certain properties from Shapley values which allow SHAPr to
satisfy the requirements introduced in Chapter 3. In the context of membership privacy
risk scores, these properties can be formulated as follows:

P1 Interpretable. SHAPr score 𝜙𝑖 (Equation 2.3) of a data record 𝑧𝑖 = (𝑥𝑖, 𝑦𝑖) is
measured by how 𝑧𝑖’s addition to a training dataset 𝑆 influences utility 𝑈() of the
resulting model (Equation 2.3). Consequently, no influence (i.e., 𝑈(𝑆) = 𝑈(𝑆 ∪ 𝑧𝑖))
leads to a zero score for 𝑧𝑖. Similarly if two data records 𝑧𝑖 and 𝑧𝑗 have the same
influence (i.e., 𝑈(𝑆 ∪ 𝑧𝑖) = 𝑈(𝑆 ∪ 𝑧𝑗), then they are assigned the same score. We can
identify three ranges of SHAPr scores that have associated semantics:

(a) Case 1: 𝑈(𝑆 ∪{𝑧𝑖}) = 𝑈(𝑆)→ 𝜙 = 0: There is no difference in the model’s out-
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put regardless of the presence of 𝑧𝑖 in the training dataset: 𝑧𝑖 has no membership
privacy risk.

(b) Case 2: 𝑈(𝑆 ∪ {𝑧𝑖}) > 𝑈(𝑆)→ 𝜙 > 0: 𝑧𝑖 contributed to increasing the model
utility. Higher scores indicate higher likelihood of memorization which increases
the susceptibility to Membership Inference Attacks (MIAs).

(c) Case 3: 𝑈(𝑆 ∪ {𝑧𝑖}) < 𝑈(𝑆)→ 𝜙 < 0: 𝑧𝑖 was harmful to the model’s utility
(not learnt well by the model or is an outlier). It has a higher loss and is indis-
tinguishable from testing data records which makes it less susceptible to MIAs.

This clear semantic association allows us to set meaningful thresholds for SHAPr
scores that can be used to decide whether a data record is susceptible to MIAs. The
natural choice for a threshold is zero, i.e., records with higher score are indicated as
members due to higher model’s memorization of those records.

P2 Additive. 𝜙𝑖 is computed using 𝐷𝑡𝑒 (Equation 2.3). Specifically, 𝜙𝑖(𝑈𝑘) represents
the influence of 𝑧𝑖 on utility 𝑈() w.r.t to 𝑘𝑡ℎ testing data record. For two testing data
records 𝑘 and 𝑙, 𝑈𝑖({𝑘, 𝑙}) = 𝑈𝑖(𝑘) + 𝑈𝑖(𝑙). Hence, 𝜙𝑖 is the sum of the membership
privacy risk scores of 𝑧𝑖 with respect to each testing data record. This property fur-
ther implies group rationality [21, 30] where 𝑈() is fairly and completely distributed
amongst all the training data records.

P3 Heterogeneous. Different training data records influence the model’s utility differ-
ently and hence, have varying susceptibility to MIAs (referred to as “heterogeneity”).
SHAPr assigns scores to training data records based on their individual influence on
the model’s utility. This is referred to as equitable distribution of utility among the
training data records in prior work [31].

We will refer back to these properties while interpreting the results of our experiments
(Chapters 6 and 7).

By definition, SHAPr, by virtue of using Shapley values, is fine-grained as it assigns
scores for individual training data records based on their influence to model utility sat-
isfying requirement R1. Furthermore, the generation of SHAPr scores do not use any
MIA features required for performing MIAs. Hence, this makes SHAPr an attack-agnostic
metric, satisfying requirement R2.
SHAPr reflects Optimal MIAs (𝐼𝑜𝑝𝑡𝑖𝑚𝑎𝑙). Recall from Chapter 3: Section 3.4 that
we indicate that an 𝐼𝑜𝑝𝑡𝑖𝑚𝑎𝑙 predicts memorized training data records as members and
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remaining data records as non-members [19]. Hence, SHAPr generating positive, nega-
tive and zero scores is expected as it assigns score based on the influence of each training
data record to the model utility. This by extension estimates the extent of memoriza-
tion of these training data records. Having a high positive SHAPr score is indicative of
high memorization being atypical samples making them vulnerable to MIAs while a model
generalizes well over typical samples making them a lower privacy risk due to lower mem-
orization. This membership privacy risk metric matches with the definition of 𝐼𝑜𝑝𝑡𝑖𝑚𝑎𝑙.
Hence, we conjecture that SHAPr will reflect the susceptibility to 𝐼𝑜𝑝𝑡𝑖𝑚𝑎𝑙. The caveat is
that we cannot verify this conjecture because we do not have the ground truth for 𝐼𝑜𝑝𝑡𝑖𝑚𝑎𝑙.
However, the conjecture motivates our evaluation of effectiveness of SHAPr with respect
to different MIAs.
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Chapter 5

Experimental Setup

We systematically evaluate the effectiveness of SHAPr using several datasets which are
described in Section 5.1. We then describe the model architecture details for training on
the datasets (Section 5.2), state-of-art Membership Inference Attacks (MIAs) used for com-
puting Adversary (𝒜𝑑𝑣)’s MIA prediction for different training data records (Section 5.3)
and the metrics to evaluate the effectiveness of SHAPr with respect to these MIA pre-
dictions used as a ground truth (Section 5.4). We finally describe the model utility on 𝐷𝑡𝑒
and performance of different MIAs (Section 5.5).

5.1 Datasets

We used ten datasets for our experiments. Following prior work [59, 61], we used the same
number of training and testing data records from all the datasets for computing balanced
accuracy for MIAs. An exception to this is MNIST and FMNIST where we used the
entire training dataset (60,000 data records) and testing dataset (10,000 data records) of
different sizes to ensure the utility of the resulting model is sufficiently high. Three datasets,
TEXAS, LOCATION and PURCHASE, were also used to evaluate Song’s Privacy Risk
Scores (SPRS) [61] – we refer to them as SPRS datasets. To facilitate comparison with
SPRS, we used the same dataset partitions for the three SPRS datasets as described in
[61]. We summarize the dataset partitions in Table 5.1.
SPRS Datasets. We briefly describe each of the ten datasets, starting with the SPRS
datasets:
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Table 5.1: Summary of dataset partitions for our experiments.

Dataset Training Set Size Testing Set Size
SPRS Datasets

LOCATION 1000 1000
PURCHASE 19732 19732

TEXAS 10000 10000
Additional Datasets

MNIST 60000 10000
FMNIST 60000 10000

USPS 3000 3000
FLOWER 1500 1500

MEPS 7500 7500
CREDIT 15000 15000
CENSUS 24000 24000

LOCATION contains the location check-in records of individuals [4]. We used the pre-
processed dataset from [59] which contains 5003 data samples with 446 binary features
corresponding to whether an individual has visited a particular location. The data is
divided into 30 classes representing different location types. The classification task is to
predict the location type given the location check-in attributes of individuals. As in prior
work [61, 29], we used 1000 training data records and 1000 testing data records.
PURCHASE consists of shopping records of different users [5]. We used a pre-processed
dataset from [59] containing 197,324 data records with 600 binary features corresponding to
a specific product. Each record represents whether an individual has purchased the product
or not. The data has 100 classes each representing the purchase style for the individual
record. The classification task is to predict the purchase style given the purchase history.
We used 19,732 train and test records as in prior work [61].
TEXAS consists of Texas Department of State Health Services’ information about patients
discharged from public hospitals [6]. Each data record contains information about the
injury, diagnosis, the procedures the patient underwent and some demographic details.
We used the pre-processed version of the dataset from [59] which contains 100 classes
of patient’s procedures consisting 67,330 data samples with 6,170 binary features. The
classification task is to predict the procedure given patient’s attributes. We used 10,000
train and test records as in prior work [29, 61].
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Additional Datasets. We used seven other datasets described below. We rounded down
the number of training data records in dataset to the nearest 1000 and split it in half
between training and testing datasets.
MNIST consists of a training dataset of 60,000 images and a test dataset of 10,000 images
that represent handwritten digits (0-9). Each data record is a 28x28 grayscale image with
a corresponding class label identifying the digit. The classification task is to identify the
handwritten digits. We used the entire training and testing set.
FMNIST consists of a training dataset of 60,000 data records and a test dataset of 10,000
data records that represent pieces of clothing. Each data record is a 28x28 grayscale image
with a corresponding class from one of ten labels. The classification task is to identify the
piece of clothing.
USPS consists of 7291 16x16 grayscale images of handwritten digits [7]. There area total
of 10 classes. The classification task is to identify the handwritten digits. We used 3000
training data records and 3000 testing data records.
FLOWER consists of 3670 images of flowers categorized into five classes—chamomile,
tulip, rose, sunflower, and dandelion—with each class having about 800 320x240 images.
The dataset was collected from Flickr, Google Images and Yandex Images [3]. The clas-
sification task is to predict the flower category given an image. We used 1500 train and
1500 testing data records.
CREDIT is an anonymized dataset from the UCI Machine Learning dataset repository
which contains 30000 records with 24 attributes for each record [2]. It contains information
about different credit card applicants, including a sensitive attribute: the gender of the
applicant. There are two classes indicating whether the application was approved or not.
The classification task is to predict whether the applicant will default. We used 15000
training data records and 15000 testing data records.
MEPS contains 15830 records of different patients that used medical services, and captures
the frequency of their visits. Each data record includes the gender of the patient, which
is considered a sensitive attribute. The classification task is to predict the utilization of
medical resources as “High” or “Low” based on whether the total number of patient visits
is greater than 10. We use 7500 training data records and 7500 testing data records.
CENSUS consists of 48842 data records with 103 attributes about individuals from the
1994 US Census data obtained from UCI Machine Learning dataset repository [1]. It
includes sensitive attributes such as gender and race of the participant. Other attributes
include marital status, education, occupation, job hours per week among others. The
classification task is to estimate whether the individual’s annual income is at least 50,000
USD. We used 24000 training data records and 24000 testing data records.
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5.2 Model Architecture

While the proposed SHAPr scores are compatible with all types of machine learning
models, we focus on deep neural networks in our evaluation. We used a fully connected
model with the following architecture: [1024, 512, 256, 128, 𝑛] with tanh() activation
functions where 𝑛 is the number of classes. This model architecture has been used in prior
work on MIAs [54, 47, 48, 29, 59, 61]. SHAPr is scalable to larger models such as ResNet
(previously shown for data valuation for Shapley values [32, 30]) but we focus on model
architectures used previously in privacy literature.

5.3 Membership Inference Attacks

As discussed in Chapter 3: Section 3.4, due to the lack of an Optimal MIA (𝐼𝑜𝑝𝑡𝑖𝑚𝑎𝑙) to be
used as a ground truth, the effectiveness of SHAPr is specifically evaluated with respect
to existing state-of-the-art MIAs proposed in the literature. As described in Chapter 2:
Section 2.1, we consider multiple state-of-the-art MIAs: 𝐼𝑚𝑒𝑛𝑡, 𝐼𝑐𝑜𝑟𝑟, 𝐼𝑐𝑜𝑛𝑓 , 𝐼𝑙𝑎𝑏𝑒𝑙 and
𝐼𝑠ℎ𝑎𝑑𝑜𝑤.

𝐼𝑚𝑒𝑛𝑡 was originally used by SPRS to generate scores by using the modified entropy
function over the output predictions. SPRS additionally used 𝐼𝑚𝑒𝑛𝑡 as ground truth MIA
predictions for individual training data records by 𝒜𝑑𝑣. While this acts as a good ground
truth baseline for comparison with SPRS, we extend our evaluation to remaining four
MIAs as well: 𝐼𝑐𝑜𝑟𝑟, 𝐼𝑐𝑜𝑛𝑓 , 𝐼𝑙𝑎𝑏𝑒𝑙 and 𝐼𝑠ℎ𝑎𝑑𝑜𝑤, and compare with SPRS.

5.4 Evaluation Metrics

For all the experiments, we used accuracy of MIAs as the primary metric along with the
average membership privacy risk score.
Balanced Attack Accuracy is the number of training and testing data records, of equal
dataset sizes, which are correctly distinguished as members and non-members (reported in
Table 5.2). We also refer to this as simply “attack accuracy”.
Average membership privacy risk score is the average over the membership privacy
risk scores assigned to training data records by a metric to evaluate the membership privacy
risk across a group of data records.
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As in prior work [61], we used three additional metrics to measure the success of the
SHAPr scores with respect to 𝐼𝑚𝑒𝑛𝑡, 𝐼𝑐𝑜𝑟𝑟, 𝐼𝑐𝑜𝑛𝑓 , 𝐼𝑙𝑎𝑏𝑒𝑙 and 𝐼𝑠ℎ𝑎𝑑𝑜𝑤 MIAs: precision,
recall and F1 score.
Precision is the ratio of true positives to the sum of true positive and false positives.
This indicates the fraction of data records inferred as members by 𝒜𝑑𝑣 which are indeed
members of training dataset.
Recall is the ratio of true positives to the sum of true positives and false negatives. This
indicates the fraction of the training dataset’s members which are correctly inferred as
members by 𝒜𝑑𝑣.
F1 score is the harmonic mean of precision and recall computed as 2 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙 .
The highest values is one indicates perfect precision and recall while the minimum value
of zero is when either precision or recall are zero.

In all the cases, prediction as a “member” is considered as a positive class. For evalu-
ating the effectiveness of both the membership privacy risk metrics, SPRS and SHAPr,
F1 score is used in our evaluation to account for both precision and recall. However, it
is worth noting that for a metric used to assess membership privacy risk, recall is more
important than precision because minimizing false negatives (i.e., failing to correctly iden-
tify a training data record at risk) is undesirable from a privacy perspective, whereas false
positives (i.e., incorrectly flagging a record as risky) constitutes erring on the safe side.
Hence, we focus on recall for evaluating the effectiveness of membership privacy metric
and comparison.

5.5 Summary of Model and MIA Utility

Here, we summarize the performance of the target model utility on 𝐷𝑡𝑒 followed by the
balanced attack accuracy of the five different MIAs.
Target Model Utility. We report the results obtained on training the target model
Table 5.2 presents the baseline test accuracy of target models trained with each dataset.
For SPRS datasets, the performance obtained are similar to the results reported in Song
and Mittal [61]. While for “Additional Datasets”, we the performance on these datasets is
close to the best reported performance in literature.
MIAs’ Accuracy. Table 5.3 indicates the different balanced MIA accuracy for the five
different MIAs considered in this work. For the SPRS datasets, the results for 𝐼𝑚𝑒𝑛𝑡, 𝐼𝑐𝑜𝑟𝑟
and 𝐼𝑐𝑜𝑛𝑓 are similar to the results indicated in Song and Mittal [61].
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Table 5.2: Test accuracy of target models for each dataset, averaged over 10 runs.
Dataset Test Accuracy

SPRS Datasets
LOCATION 69.00
PURCHASE 84.65

TEXAS 49.92
Additional Datasets

MNIST 98.10
FMNIST 89.30

USPS 95.50
FLOWER 89.60

MEPS 84.00
CREDIT 79.90
CENSUS 82.20

Table 5.3: Balanced MIAs accuracy for each dataset across different MIAs.
Dataset 𝐼𝑚𝑒𝑛𝑡 𝐼𝑐𝑜𝑟𝑟 𝐼𝑐𝑜𝑛𝑓 𝐼𝑙𝑎𝑏𝑒𝑙 𝐼𝑠ℎ𝑎𝑑𝑜𝑤

SPRS Datasets
LOCATION 87.70 71.00 86.50 85.30 94.95
PURCHASE 64.08 57.67 64.10 65.92 83.13

TEXAS 79.43 75.04 80.36 79.68 87.29
Additional Datasets

MNIST 54.30 53.60 54.30 51.66 79.37
FMNIST 57.90 55.50 58.00 53.32 72.73

USPS 54.13 52.25 54.65 52.43 67.56
FLOWER 68.81 69.41 61.06 59.00 78.63

MEPS 61.73 57.74 61.75 55.92 79.78
CREDIT 57.18 56.39 57.18 52.67 78.04
CENSUS 55.95 56.14 55.90 52.91 77.38

Remark. Prior work on MIAs measure success by reporting balanced accuracy [59, 61, 54]
as in Table 5.3. While the balanced MIA accuracy appears to be high for several datasets,
not all the above MIAs are necessarily effective in terms of precision (which measure the
extent of false positive) and recall (which measure the extent of false negatives) [55]. Hence,
a better understanding of the effectiveness of MIAs should consider precision and recall (c.f.
Chapter 6: Section 6.3).
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Chapter 6

Assessing Effectiveness of SHAPr to
Measure MIAs

Our goal is to evaluate how well SHAPr correlates with the success rate of Membership
Inference Attacks (MIAs) (effectiveness requirement R3) while comparing with Song’s
Privacy Risk Scores (SPRS). We evaluate the effectiveness of both the membership privacy
risk metrics using the MIA predictions from 𝐼𝑚𝑒𝑛𝑡, 𝐼𝑐𝑜𝑟𝑟, 𝐼𝑐𝑜𝑛𝑓 , 𝐼𝑙𝑎𝑏𝑒𝑙 and 𝐼𝑠ℎ𝑎𝑑𝑜𝑤 as the
ground truth for computing F1 score, precision and recall.

To compute the F1 score, precision and recall, we threshold SHAPr at zero (Section 4).
For SPRS, we use 0.5 as the threshold from their paper [61]. Song and Mittal [61] consider
different threshold values: [0.5, 0.6, 0.7, 0.8, 0.9, 1.0] where we note that F1 score is the
best for 0.5. Furthermore, SPRS scores indicate the membership likelihood for a training
data record, hence, 0.5 is a meaningful threshold for such probability scores.

For evaluating and comparing the effectiveness of SHAPr and SPRS, we first evaluate
with respect to F1 score (Section 6.1) which accounts for both precision and recall (hence
measures both false positive and false negatives). We then argue that recall is more impor-
tant for evaluating privacy risk metrics that precision and compare SHAPr and SPRS
using recall (Section 6.2). Based on the results in Section 6.1 and Section 6.2, we discuss
some common observations (Section 6.3).
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6.1 Evaluation using F1-Score

We report the mean F1 score and corresponding standard deviations across ten runs for
each MIA: 𝐼𝑚𝑒𝑛𝑡, 𝐼𝑐𝑜𝑟𝑟, 𝐼𝑐𝑜𝑛𝑓 , 𝐼𝑙𝑎𝑏𝑒𝑙 and 𝐼𝑠ℎ𝑎𝑑𝑜𝑤 in Table 6.1.

The results are color-coded: 1) orange indicates that SPRS and SHAPr are com-
parable (similar mean and small standard deviation); 2) red indicates that SPRS out-
performed SHAPr 3); and green indicates that SHAPr outperformed SPRS. For each
dataset, we repeated the experiment ten times. We report the statistical significance of this
difference (corresponding p-value of a student t-test). Our null hypothesis was that both
sets of results came from the distribution with the same mean. For p-value < 0.05 there is
enough evidence to say that one metric outperforms the other. For p-value < 0.01, the con-
fidence with which we can reject the null hypothesis is even stronger. Otherwise (p-value
> 0.05) we do not have enough evidence to say that one metric consistently outperformed
the other.

We note that SPRS outperforms SHAPr on majority of the datasets for three of the
MIAs: 𝐼𝑚𝑒𝑛𝑡, 𝐼𝑐𝑜𝑟𝑟 and 𝐼𝑐𝑜𝑛𝑓 . However, the performance of SHAPr is either comparable
or better than SPRS for two of the attacks 𝐼𝑙𝑎𝑏𝑒𝑙 and 𝐼𝑠ℎ𝑎𝑑𝑜𝑤. We discuss this difference
in performance between SHAPr and SPRS across the five attacks in Section 6.3.

6.2 Evaluation using Recall

Having shown that SHAPr’s F1 score is better for majority of the MIAs on majority of the
datasets compared to SPRS, we want to focus on our evaluation with recall. As indicated
in Section 5.4, recall is more important than precision for evaluating membership privacy
risk metrics as it constitutes erring on the safe side.

We report the mean precision, recall and their corresponding standard deviations com-
puted over ten runs for each MIA: 𝐼𝑚𝑒𝑛𝑡 in Table 6.2, 𝐼𝑐𝑜𝑟𝑟 in Table 6.3, 𝐼𝑐𝑜𝑛𝑓 in Table 6.4,
𝐼𝑙𝑎𝑏𝑒𝑙 in Table 6.5 and 𝐼𝑠ℎ𝑎𝑑𝑜𝑤 in Table 6.6. The color coding for all the tables follow the
same pattern as Table 6.1 which is described above in Section 6.1.

Similar to results obtained for F1 scores (Table 6.1), we note that SPRS outperforms
SHAPr on majority of the datasets for three of the MIAs: 𝐼𝑚𝑒𝑛𝑡, 𝐼𝑐𝑜𝑟𝑟 and 𝐼𝑐𝑜𝑛𝑓 . This
indicates that the precision in most cases is comparable and the recall varies for the two
metrics across different MIAs and different datasets. Hence, evaluating the effectiveness of
the two metrics using recall is indeed helpful. Additionally, similar to results for F1 scores,
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Table 6.2: Comparing effectiveness of SHAPr and SPRS with respect to 𝐼𝑚𝑒𝑛𝑡. orange
indicates comparable results, red indicates SPRS outperforms SHAPr and green indicates
SHAPr outperforms SPRS.

Dataset Precision Recall
SPRS SHAPr SPRS SHAPr

SPRS Datasets
LOCATION 0.94 ± 0.06 0.95 ± 0.06 0.95 ± 0.02 0.87 ± 0.01
PURCHASE 0.98 ± 0.02 0.98 ± 0.03 0.82 ± 0.02 0.81 ± 0.01

TEXAS 0.93 ± 0.05 0.97 ± 0.02 0.96 ± 0.01 0.73 ± 0.03
Additional Datasets

MNIST 0.99 ± 0.00 0.99 ± 0.00 0.57 ± 0.01 0.94 ± 0.00
FMNIST 0.99 ± 0.01 0.99 ± 0.01 0.98 ± 0.03 0.89 ± 0.03

USPS 0.79 ± 0.20 0.77± 0.23 0.76 ± 0.07 0.98 ± 0.01
FLOWER 0.98 ± 0.01 0.98 ± 0.01 0.81 ± 0.04 0.94 ± 0.01

MEPS 0.96 ± 0.02 0.91 ± 0.07 0.96 ± 0.01 0.91 ± 0.01
CREDIT 0.88 ± 0.05 0.87 ± 0.04 0.98± 0.05 0.92 ± 0.02
CENSUS 0.94 ± 0.03 0.93 ± 0.02 0.99 ± 0.00 0.87 ± 0.02

Table 6.3: Comparing effectiveness of SHAPr and SPRS with respect to 𝐼𝑐𝑜𝑟𝑟. orange
indicates comparable results, red indicates SPRS outperforms SHAPr and green indicates
SHAPr outperforms SPRS.

Dataset Precision Recall
SPRS SHAPr SPRS SHAPr

SPRS Datasets
LOCATION 1.00 ± 0.00 1.00 ± 0.00 0.94 ± 0.02 0.86 ± 0.01
PURCHASE 1.00 ± 0.00 1.00 ± 0.00 0.81 ± 0.01 0.80 ± 0.00

TEXAS 1.00 ± 0.00 1.00 ± 0.00 0.95 ± 0.01 0.70 ± 0.00
Additional Datasets

MNIST 1.00 ± 0.00 1.00 ± 0.00 0.58 ± 0.02 0.94 ± 0.00
FMNIST 1.00 ± 0.00 1.00 ± 0.00 0.98 ± 0.00 0.89 ± 0.00

USPS 1.00 ± 0.00 1.00 ± 0.00 0.69 ± 0.02 0.97 ± 0.00
FLOWER 1.00 ± 0.00 1.00 ± 0.00 0.77 ± 0.11 0.95 ± 0.02

MEPS 1.00 ± 0.00 0.99 ± 0.01 0.89 ± 0.05 0.88 ± 0.00
CREDIT 0.99 ± 0.00 0.98 ± 0.01 0.95 ± 0.07 0.88 ± 0.01
CENSUS 1.00 ± 0.00 0.98 ± 0.01 0.98 ± 0.01 0.84 ± 0.01

for two of the MIAs: 𝐼𝑙𝑎𝑏𝑒𝑙 and 𝐼𝑠ℎ𝑎𝑑𝑜𝑤, the performance of SHAPr is either comparable
or better than SPRS across different datasets. We discuss this difference in performance
of SHAPr and SPRS across different MIAs, later in Section 6.3.
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Table 6.4: Comparing effectiveness of SHAPr and SPRS with respect to 𝐼𝑐𝑜𝑛𝑓 . orange
indicates comparable results, red indicates SPRS outperforms SHAPr and green indicates
SHAPr outperforms SPRS.

Dataset Precision Recall
SPRS SHAPr SPRS SHAPr

SPRS Datasets
LOCATION 0.94 ± 0.07 0.94 ± 0.07 0.95 ± 0.02 0.87 ± 0.02
PURCHASE 0.98 ± 0.02 0.98 ± 0.03 0.82 ± 0.02 0.81 ± 0.01

TEXAS 0.94 ± 0.05 0.98 ± 0.02 0.96± 0.01 0.73 ± 0.03
Additional Datasets

MNIST 0.99 ± 0.01 1.00 ± 0.00 0.58 ± 0.02 0.95 ± 0.00
FMNIST 1.00 ± 0.00 0.99 ± 0.01 0.99 ± 0.01 0.89 ± 0.00

USPS 0.93 ± 0.12 0.93 ± 0.14 0.71 ± 0.05 0.98 ± 0.01
FLOWER 0.96 ± 0.06 0.97 ± 0.05 0.78 ± 0.11 0.96 ± 0.01

MEPS 0.96 ± 0.02 0.91 ± 0.07 0.96 ± 0.01 0.91 ± 0.01
CREDIT 0.87 ± 0.05 0.87 ± 0.04 0.98 ± 0.05 0.92 ± 0.02
CENSUS 0.94 ± 0.03 0.93 ± 0.02 0.99 ± 0.00 0.87 ± 0.02

Table 6.5: Comparing effectiveness of SHAPr and SPRS with respect to 𝐼𝑙𝑎𝑏𝑒𝑙. orange
indicates comparable results, red indicates SPRS outperforms SHAPr and green indicates
SHAPr outperforms SPRS.

Dataset Precision Recall
SPRS SHAPr SPRS SHAPr

SPRS Datasets
LOCATION 0.98 ± 0.01 0.98 ± 0.01 0.89 ± 0.01 0.96 ± 0.01
PURCHASE 0.93 ± 0.01 0.94 ± 0.01 0.81 ± 0.01 0.87 ± 0.00

TEXAS 0.98 ± 0.01 0.99 ± 0.01 0.84 ± 0.02 0.84 ± 0.01
Additional Datasets

MNIST 0.99 ± 0.01 0.99 ± 0.01 0.56 ± 0.02 0.96 ± 0.01
FMNIST 0.84 ± 0.07 0.83 ± 0.10 0.99 ± 0.00 0.94 ± 0.04

USPS 0.94 ± 0.04 0.93 ± 0.04 0.85 ± 0.07 0.99 ± 0.01
FLOWER 0.97 ± 0.03 0.97 ± 0.03 1.00 ± 0.00 1.00 ± 0.00

MEPS 0.96 ± 0.03 0.97 ± 0.03 0.90 ± 0.08 0.91 ± 0.02
CREDIT 0.95 ± 0.02 0.95 ± 0.03 0.88 ± 0.06 0.90 ± 0.01
CENSUS 0.86 ± 0.09 0.87 ± 0.09 0.93 ± 0.03 0.93 ± 0.05

While we focus on recall, we additionally check for datasets where there is degenerate
precision. We note that precision is high across all the datasets and MIAs. For 𝐼𝑙𝑎𝑏𝑒𝑙, we
note that precision is lower (around 0.77) compared to other MIAs but the numbers are
still comparable to SPRS.
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Table 6.6: Comparing effectiveness of SHAPr and SPRS with respect to 𝐼𝑠ℎ𝑎𝑑𝑜𝑤. orange
indicates comparable results, red indicates SPRS outperforms SHAPr and green indicates
SHAPr outperforms SPRS.

Dataset Precision Recall
SPRS SHAPr SPRS SHAPr

SPRS Datasets
LOCATION 0.98 ± 0.01 0.98 ± 0.01 0.89 ± 0.01 0.96 ± 0.00
PURCHASE 0.86 ± 0.00 0.85 ± 0.00 0.81 ± 0.01 0.86 ± 0.00

TEXAS 0.89 ± 0.01 0.89 ± 0.01 0.85 ± 0.01 0.84 ± 0.00
Additional Datasets

MNIST 1.00 ± 0.00 1.00 ± 0.00 0.55 ± 0.05 0.95 ± 0.02
FMNIST 1.00 ± 0.00 1.00 ± 0.00 0.74 ± 0.09 0.89 ± 0.01

USPS 0.78 ± 0.01 0.78 ± 0.01 0.80 ± 0.09 0.99 ± 0.00
FLOWER 0.79 ± 0.01 0.79 ± 0.01 1.00 ± 0.00 1.00 ± 0.00

MEPS 0.82 ± 0.01 0.79 ± 0.01 0.90 ± 0.07 0.87 ± 0.00
CREDIT 0.80 ± 0.01 0.78 ± 0.00 0.86 ± 0.05 0.84 ± 0.01
CENSUS 0.78 ± 0.02 0.77 ± 0.01 0.88 ± 0.03 0.86 ± 0.05

6.3 Observations and Discussions

Having indicated the overall results on comparing the effectiveness of SHAPr with SPRS
in Section 6.1 and 6.2, we now discuss some specific observations made from both evalua-
tions.
Why is the performance of SPRS better than SHAPr on 𝐼𝑚𝑒𝑛𝑡, 𝐼𝑐𝑜𝑟𝑟 and 𝐼𝑐𝑜𝑛𝑓?
SPRS’s better effectiveness over SHAPr with respect to 𝐼𝑚𝑒𝑛𝑡 is possibly because SPRS
uses modified entropy over the model predictions to generate their membership privacy risk
scores. This potentially gives them an advantage over SHAPr to correctly identify MIA
predictions on 𝐼𝑚𝑒𝑛𝑡. Furthermore, on using other MIAs as ground truth, we observe that
SHAPr outperforms SPRS further confirming that SPRS “overfits” to 𝐼𝑚𝑒𝑛𝑡 resulting
in its better performance. We note that the performance of 𝐼𝑚𝑒𝑛𝑡 is similar to 𝐼𝑐𝑜𝑟𝑟 and
𝐼𝑐𝑜𝑛𝑓 which we identify as the reason for SPRS to perform better on those MIAs as well.
SPRS outperforms SHAPr on some datasets on 𝐼𝑚𝑒𝑛𝑡, 𝐼𝑐𝑜𝑟𝑟 and 𝐼𝑐𝑜𝑛𝑓 . For eval-
uation with F1 score (Table 6.1) and recall (Tables 6.2, 6.3, 6.4, 6.5 and 6.6), we observe
that on three datasets: LOCATION, TEXAS, FMNIST and CENSUS; SPRS outperforms
SHAPr on 𝐼𝑚𝑒𝑛𝑡, 𝐼𝑐𝑜𝑟𝑟 and 𝐼𝑐𝑜𝑛𝑓 . Additionally, SPRS outperforms on CENSUS com-
pared to SHAPr on all MIAs other than 𝐼𝑙𝑎𝑏𝑒𝑙. We believe that there are dataset specific
properties which result in one metric outperforming the other over these datasets. We
investigated different hypotheses to find patterns across these datasets from distributions
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(Appendix A), how dataset size influences the scores, type of dataset (tabular vs. image);
but we could not confirm these hypotheses. Generally, identifying which of the many
dataset specific properties influence the final result, in the context of Machine Learning
(ML), is time consuming and non-trivial. Addressing the issue can help identify which
metric would be more appropriate on a specific dataset. We currently do not have any
valid conjecture for better performance of SPRS over some of the datasets on 𝐼𝑚𝑒𝑛𝑡, 𝐼𝑐𝑜𝑟𝑟
and 𝐼𝑐𝑜𝑛𝑓 . Hence, we leave this for future work.

Remark. Despite SPRS outperforming SHAPr on majority of the datasets 𝐼𝑚𝑒𝑛𝑡, 𝐼𝑐𝑜𝑟𝑟
and 𝐼𝑐𝑜𝑛𝑓 , we note that the recall of SHAPr on those datasets is still high for it to be
used effectively as a membership privacy risk metric.

MIAs are poor compared to Optimal MIA (𝐼𝑖𝑑𝑒𝑎𝑙) Recall from Chapter 3: Section 3.4
that an 𝐼𝑖𝑑𝑒𝑎𝑙 perfectly distinguishes training data records as members and non-training
data records as non-members. We briefly described how current MIAs proposed in lit-
erature are ineffective in matching 𝐼𝑖𝑑𝑒𝑎𝑙 . We now show this empirically in Table 6.7
by computing the proportion of training data records predicted as members (indicated as
“Mem”) and proportion of non-training data records which are predicted as non-members
(indicated as “NMem”). We report the results for all the five MIAs.

Table 6.7: “Mem” indicates the % of training data records correctly predicted as members.
“NMem” indicates the % of testing data records correctly predicted as non-members. Based
on extent correctly predict non-training as non-members, we classify MIAs’ effectiveness
into three classes: red indicates “Ineffective” with <25% as “NMem”, orange indicates
“Moderately Effective” with 25-50% “NMem”, and green indicates >50% as “NMem”.

Dataset 𝐼𝑚𝑒𝑛𝑡 𝐼𝑐𝑜𝑟𝑟 𝐼𝑐𝑜𝑛𝑓 𝐼𝑙𝑎𝑏𝑒𝑙 𝐼𝑠ℎ𝑎𝑑𝑜𝑤
Mem NMem Mem NMem Mem NMem Mem NMem Mem NMem

SPRS Datasets
LOCATION 96.03 81.13 100.00 42.63 96.00 79.80 96.45 76.34 97.36 91.70
PURCHASE 95.11 27.58 100.00 13.21 97.45 27.45 93.84 44.37 82.36 84.27

TEXAS 94.26 66.33 100.00 46.98 94.38 66.19 94.24 66.43 85.36 82.58
Additional Datasets

MNIST 98.85 3.75 99.99 1.99 98.93 4.27 92.56 5.92 99.45 51.33
FMNIST 99.08 16.48 100.00 10.55 99.01 16.55 93.45 12.48 97.79 47.67

USPS 69.16 37.83 99.96 4.54 67.60 38.45 63.19 54.48 77.68 77.37
FLOWER 96.88 24.21 100.00 11.33 97.06 23.66 93.41 26.56 78.44 77.35

MEPS 91.63 25.79 99.44 16.64 91.63 26.34 84.34 27.93 80.58 78.10
CREDIT 88.29 32.75 94.55 19.72 88.29 31.36 82.54 29.34 78.62 76.48
CENSUS 90.20 24.32 94.56 17.78 90.20 21.48 73.46 27.29 77.82 76.94
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For 𝐼𝑖𝑑𝑒𝑎𝑙 we expect 100% “Mem” and 100% “NMem”. However, we observe in Table 6.7
that none of the attacks depict the behaviour of 𝐼𝑖𝑑𝑒𝑎𝑙 : majority of the MIAs across
different datasets have a high “Mem” values (except an outlier for USPS on ), the values
for “NMem” are not close to 100%. Hence, we group the MIAs into three categories based
on how accurately they predict non-training data records as non-members (i.e., “NMem”
values):

• “Ineffective” predict almost all records as members and very few (<25%) non-training
data records,

• “Moderately Effective” correctly predicts only some (25-50%) of the non-training data
records as non-members,

• “Effective” correctly predicts majority (>50%) of the non-training data records as non-
members, compared to other MIAs

Based on extent correctly predict non-training as non-members, we color-coded the MIAs
based on their effectiveness compared to 𝐼𝑖𝑑𝑒𝑎𝑙 in Table 6.7: red indicates “Ineffective”,
orange indicates “Moderately Effective”, and green indicates “Effective”.

Based on the color-coding, we classify 𝐼𝑚𝑒𝑛𝑡, 𝐼𝑐𝑜𝑟𝑟 and 𝐼𝑐𝑜𝑛𝑓 as “Ineffective”, 𝐼𝑙𝑎𝑏𝑒𝑙 as
“Moderately Effective” and 𝐼𝑠ℎ𝑎𝑑𝑜𝑤 as “Effective”. Across all datasets other than LOCA-
TION and TEXAS, we observe that majority of non-training data records are incorrectly
predicted as members. For LOCATION and TEXAS, majority of training data records
are correctly predicted as members and testing data records correctly predicted as non-
members. ML models do not generalize well to these datasets due to the difficulty of the
classification tasks due to which the performance of MIAs is better due to higher overfitting
as noted in [52].
Relation between the effectiveness of SHAPr with MIA effectiveness. Ideally,
membership privacy risk metrics cannot be equally effective against all MIAs and should
perform better on using effective MIAs as ground truth and worse on ineffective MIAs.
On comparing the performance of SHAPr across each of the three classes of MIAs with
SPRS, SHAPr shows poor performance on “Ineffective” MIAs (see Table 6.1, 6.2, 6.3,
6.4), moderate performance on “Moderately Effective” MIAs (see Table 6.1 and 6.5) and
good performance on “Effective” MIAs (see Table 6.1 and 6.6). Hence, we note that there is
a general relationship between the MIA effectiveness and the effectiveness of either metric
in predicting susceptibility to that MIA.
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Summary

SHAPr has high F1 scores and recall values across all datasets and MIAs indicating that
SHAPr is indeed an effective membership privacy risk metric (sasatisfies our require-
ment R3). Furthermore, we find that the performance of SHAPr improves with the
effectiveness of the MIAs on comparing with SPRS.
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Chapter 7

Applicability of SHAPr

Having established that SHAPr is an effective membership privacy metric which satisfies
requirements R1-R3, we evaluate SHAPr to see whether it satisfies the applicability
requirement R4. First, we evaluate the versatility of SHAPr (Section 7.1) followed by
showing how SHAPr can be used to evaluate defences (Section 7.2).

For all the evaluations from this chapter onward, we use 𝐼𝑚𝑒𝑛𝑡 as SHAPr does worst
on 𝐼𝑚𝑒𝑛𝑡 compared to Song’s Privacy Risk Scores (SPRS). Hence, choosing 𝐼𝑚𝑒𝑛𝑡 gives
the least advantage for SHAPr.

7.1 Versatility of SHAPr

For showing versatility of SHAPr, we describe two applications of SHAPr, by the virtue
of properties of using Shapley values. We specifically explore the applicability in whether
SHAPr can estimate the disparity of membership privacy risk across sensitive subgroups
(Section 7.1.1) and using SHAPr for data valuation (Section 7.1.2).

7.1.1 Privacy Risk of Sensitive Subgroups

Prior work has shown that different subgroups with sensitive attribute (e.g., race or gender)
have disparate vulnerability to membership inference attacks (MIAs) [68]. We evaluated
whether Song’s Privacy Risk Scores (SPRS) and SHAPr can correctly identify this dis-
parity.
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Figure 7.1: Different subgroups are vulnerable to MIAs to a different extent. blue bars
indicate SHAPr scores for different groups (read values from left axis). red bars indicate
𝐼𝑚𝑒𝑛𝑡 accuracy for different groups (read values from right axis). Random attack accuracy
is indicated by “Black dotted line”.

From the ten datasets, we used only three datasets as they have sensitive attributes:
CENSUS, CREDIT, and MEPS. CENSUS has two sensitive attributes, gender and race,
while CREDIT and MEPS have gender. For gender, the majority class is “Male” and
the minority class is “Female”. For race, “White” is the majority class and “Black” the
minority class. We computed the ground truth 𝐼𝑚𝑒𝑛𝑡 accuracy, separately for each class,
using 𝐼𝑚𝑒𝑛𝑡.

Figure 7.1 show that difference in SHAPr scores between different subgroups corre-
sponds to the difference in the ground truth 𝐼𝑚𝑒𝑛𝑡 accuracy. The values for SHAPr and
𝐼𝑚𝑒𝑛𝑡 accuracy are indicated in Table 7.1. In Table 7.1, green is to indicate scores move
in the same direction as the ground truth 𝐼𝑚𝑒𝑛𝑡. red is to indicate scores either remain
the same or move in opposite direction as the ground truth 𝐼𝑚𝑒𝑛𝑡. We find that different
subgroups are disparately vulnerable to MIA (indicated under 𝐼𝑚𝑒𝑛𝑡 column). SHAPr
can capture this difference (all the cells are green ) – the scores are higher for subgroups
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with higher 𝐼𝑚𝑒𝑛𝑡 accuracy. SHAPr scores are additive (Property P2) – we can compute
the membership privacy risk over subgroups by averaging the scores within each subgroup.

Table 7.1: 𝐼𝑚𝑒𝑛𝑡 accuracy and SHAPr scores corresponding to Figure 7.1. green is to
indicate scores move in the same direction as the ground truth 𝐼𝑚𝑒𝑛𝑡. red is to indicate
scores either remain the same or move in opposite direction as the ground truth 𝐼𝑚𝑒𝑛𝑡.

Dataset SHAPr 𝐼𝑚𝑒𝑛𝑡

CENSUS

Male Female Male Female
2.58e-5 4.69e-5 56.00 62.50
White Others White Others
3.16e-5 3.97e-5 56.60 60.50

CREDIT Male Female Male Female
4.78e-5 5.70e-5 56.10 67.00

MEPS Male Female Male Female
9.39e-5 1.22e-4 56.90 62.60

Remark. We additionally evaluated whether SPRS scores follow the trend of 𝐼𝑚𝑒𝑛𝑡 over
different subgroups (see Appendix B). We found that SPRS does not follow the trend as
SHAPr.

7.1.2 Data Valuation

We briefly discuss the application of SHAPr for data valuation. We did not carry out
separate experiments but refer to the extensive prior literature on the use of Shapley values
for data valuation [30, 31, 21, 32].

Two relevant properties of Shapley values are additivity (Property P2) which includes
group rationality, where the complete utility is distributed among all training data records,
and heterogenity (Property P3), which indicates equitable assignment of model utility to
training data records based on their influence. These make Shapley values useful for data
valuation [31, 21]. Since SHAPr uses Shapley values, once computed, SHAPr scores can
be used directly for data valuation of both individual data records as well as groups of
data records.

Remark. We additionally discuss why SPRS cannot be used for data valuation in Ap-
pendix B.
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Summary

SHAPr is versatile as it can effectively estimate the disparity in the membership privacy
risk across different subgroups identified by a sensitive attribute. Furthermore, it inherits
the applications of Shapley values such as data valuation from prior work. This satisfies
the versatility requirement R5.

7.2 Effectiveness of SHAPr to Evaluate Defences

We present the application of SHAPr to evaluate different defences against member-
ship inference attacks (MIAs) that Model Builder (ℳ) can deploy: 1) adding noise to
training data records to lower their membership privacy risk to MIAs (Section 7.2.1), 2)
retraining Machine Learning (ML) model after removal of vulnerable training data records
(Section 7.2.2), and 3) evaluation of regularization based MIA defence (Section 7.2.3).

7.2.1 Effectiveness of Adding Noise

We now focus on evaluating a seemingly plausible way to thwart MIAs is to add noise
to (“perturb”) data records before training the model. The rationale is that Adversary
(𝒜𝑑𝑣), who wants to check the presence of a data record in the training data, is likely to
be thwarted because 𝒜𝑑𝑣 cannot know what perturbation was added to that record.

We divided the original training set (“No Noise”) into two subsets of equal size: 1) a
clean subset without any noise and 2) a noisy subset with perturbed samples. We crafted
the noise using FGSM [22], and tested over different values of adversarial noise perturbation
budget 𝜖 ranging from 1/255 to 352/255 by a factor of two (under ℓ∞).1

In the experiment, 𝒜𝑑𝑣 used an auxiliary dataset 𝒟𝑎𝑢𝑥 that was identical to the original
“No Noise” dataset used to mount 𝐼𝑚𝑒𝑛𝑡. We assumed this complete overlap between ℳ’s
and 𝒜𝑑𝑣’s data as it corresponds to the scenario in which ℳ is trying to estimate the
privacy risk of their own model.

Our hypothesis is that adding noise to training data records lowers the 𝐼𝑚𝑒𝑛𝑡 accuracy.
Further, their corresponding SHAPr score is lower as the noisy samples are more difficult
to learn and contribute negatively to the model utility. The more noise we add, the lower
the SHAPr score, and the lower the 𝐼𝑚𝑒𝑛𝑡 accuracy.

1Adding Gaussian noise led to similar behavior as with FGSM.
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Figure 7.2: Adding noise to training data records can lower their susceptibility to MIAs:
Visual trend on the noisy dataset shows SHAPr scores (black dotted line) has a strong
correlation with a drop in 𝐼𝑚𝑒𝑛𝑡 accuracy (blue dotted line).

We first use visualization (Figure 7.2) to obtain an indication as to whether the hy-
pothesis is true. We find that in all datasets the ground truth 𝐼𝑚𝑒𝑛𝑡 accuracy decreases
(dotted blue line). The corresponding SHAPr scores indeed follow this decreasing trend
as well (indicated by dotted black line). Hence, adding noise indeed lowers the risk of the
noisy training data records against MIAs (here evaluated specifically for 𝐼𝑚𝑒𝑛𝑡 but can be
extended to other MIAs as well).

Having obtained a visual indication that the hypothesis is correct, we use quantitative
metrics such as correlation coefficient to measure the similarity of SHAPr scores and
ground truth 𝐼𝑚𝑒𝑛𝑡 accuracy. We compute Pearson’s correlation coefficient (ranges between
-1 for high negative correlation and +1 for high positive correlation). As the average privacy
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risk scores should match the ground truth MIA predictions, we expect a positive correlation
for the noisy data subset.

The results, as seen in Table 7.2, are color-coded: 1) orange indicates that the corre-
lation is not statistically significant; 2) red indicates that the correlation is statistically
significant and negative 3); and green indicates that correlation is positive and statistically
significant as expected.

Table 7.2: SHAPr correlates with accuracy on noisy subset as seen by the positive Pear-
son’s Correlation Coefficient (referred as “PCC”), i.e., SHAPr scores follows the decrease
in accuracy. orange indicates that correlation is not significant; red indicates that the
correlation is significant and negative 3); and green indicates that correlation is positive
and significant.

Dataset PCC
SPRS Datasets

LOCATION 0.89
PURCHASE 0.07

TEXAS 0.84
Additional Datasets
MNIST 0.60

FMNIST 0.97
USPS 0.43

FLOWER 0.94
MEPS 0.86

CREDIT 0.93
CENSUS 0.97

We indeed observe that average SHAPr scores match the ground truth MIA prediction
indicated by a statistically significant positive correlation across most of the datasets for
the noisy subset. SHAPr is successful in evaluating the effectiveness of adding noise to
training data records as SHAPr scores are fine-grained and heterogeneous (Property P3)
which make them sensitive to noise added to training data records.

Remark. We additionally evaluate the effectiveness of SPRS to estimate the impact on
membership privacy risk on adding noise to training data records (see Appendix C). We
find that their performance is worse than SHAPr wherein the SPRS scores do not match
with the ground truth MIA predictions for the noisy data subset.

Is adding noise to training data records an effective defence against MIAs?
In some of the smaller datasets (number of training data records <10000): LOCATION,
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USPS, FLOWER and MEPS, we note that the clean data points in 𝒟𝑎𝑢𝑥 become more
vulnerable to MIAs as they become more influential to the utility of the model (Figure 7.3).
We quantitatively measure the correlation with 𝐼𝑚𝑒𝑛𝑡 accuracy using Pearson’s correlation
coefficient indicated in the parentheses of the caption in Figure 7.3.
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(a) LOCATION (0.98)
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(c) USPS (0.99)
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Figure 7.3: For four datasets, adding noise to some training data records can make them
more vulnerable to 𝐼𝑚𝑒𝑛𝑡 accuracy increases for clean dataset and their corresponding
SHAPr scores increases: Visual trend shows SHAPr scores (black solid line) has a strong
correlation with a drop in 𝐼𝑚𝑒𝑛𝑡 accuracy (blue solid line). The values in the parentheses
indicate the Pearson’s correlation coefficient between SHAPr scores and 𝐼𝑚𝑒𝑛𝑡 accuracy.

This suggests that the use of adding noise to training data is not a robust defence as it is
specific to a dataset and might not work across all the datasets. We conjecture that since
these datasets are small (<10000 data records), the impact on the influence of training
data records in the clean subset is significant resulting in a consistent increase of SHAPr
scores. However, for larger datasets (≥10000 data records) neither the the SHAPr scores
nor the 𝐼𝑚𝑒𝑛𝑡 accuracy have a consistent trend (Appendix C Figure C.1).

We recommend that ℳ should compute average SHAPr scores for both clean and
noisy datasets separately and decide if the increase in membership privacy risk for clean
dataset is acceptable for the application.

Summary

Adding noise to some of the training data records to lower their membership privacy risk is
indeed effective but could potentially result in high risk for remaining training data records
depending on the dataset specific properties. This makes it challenging for addition of noise
to training data records to be deployed as practical defence.
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7.2.2 Impact of Data Removal

In data valuation research, it is well-known that removing records with high Shapley values
will harm the utility of the model, and removing records with low values will improve
it [31, 32]. Hence, it begs the question whether removal of records with high SHAPr scores
improves the membership privacy risk of a dataset, by reducing its overall susceptibility
to MIAs. To explore this question, we removed a fraction (up to 50%) of records with the
highest SHAPr scores. Also, we randomly removed testing data records so as to keep the
same number of member and non-member records as in previous experiments.
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Figure 7.4: Removing a fraction of training data records with high SHAPr scores does
not reduce the risk for the remaining records.

Figure 7.4 summarizes the results. Removing an increasing number of records with high
SHAPr scores does not necessarily reduce the membership privacy risk for the remaining
records. No consistent upward (or downward) trend was visible for the scores of the
remaining records. Interestingly, depending on the number of removed samples, the scores
fluctuate. A possible explanation is that once risky data records are removed, and a new
model is trained using the remaining records, their contribution to the utility of the revised
model changes, thereby changing their SHAPr scores.

Long et al. [43] observed a similar result. However, their experiment was limited to a
single small dataset (≈ 1000 training data records), and minimal removal (only 20 records
from 1.6 million records which is << 1%). Note that 1.6 million training data records was
on Naive Bayes classifier and not a deep NN for which Long et al. intractable. Thanks
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to the superior efficiency of SHAPr, we are able to confirm that this observation holds
broadly across larger datasets (10 vs. 1) and for more extensive data removal (up to 50%
vs. << 1%).

Summary

Simply removing highly vulnerable training data records to retrain the model is not an
effective defence as the scores will be re-assigned for different training data records based
on their influence to the new retrained model. We reiterate the results obtained by Long
et al. [43] but on a broader evaluation over ten datasets with higher extent of removal.

7.2.3 Evaluation of L2 Regularization

We evaluate whether SHAPr can be used to verify the effectiveness of L2 regularization
as a defence against MIAs. Specifically, the average SHAPr scores across all training data
records should decrease on applying a defence to indicate the decrease in the empirical
𝐼𝑚𝑒𝑛𝑡 accuracy.

Prior defences such as adversarial regularization [47] and MemGuard [29] have been
shown to be ineffective against MIAs [61]. Hence, we focus on L2 regularization previously
shown as a valid defence against MIAs [72]. Following Song and Mittal [61], we consider
the three datasets vulnerable to MIAs to evaluate SHAPr: LOCATION, PURCHASE and
TEXAS. We choose these three SPRS datasets as they are typically used as benchmark
in MIAs and defences.

We expect the balanced MIA accuracy for 𝐼𝑚𝑒𝑛𝑡 (across both train and test datasets)
decreases on increasing regularization. The corresponding average SHAPr scores should
decrease to indicate a decrease in the privacy risk corresponding to training data records.

We find from our empirical evaluation that average SHAPr scores indeed decrease
along with 𝐼𝑚𝑒𝑛𝑡 accuracy. In Figure 7.5, we visually inspect to find that indeed there is a
correlation between SHAPr scores and 𝐼𝑚𝑒𝑛𝑡 accuracy. We find that SHAPr scores (black
solid line) follows the trend with drop in 𝐼𝑚𝑒𝑛𝑡 accuracy (blue solid line). In addition to the
visual evidence, we quantitatively compute the Pearson’s Correlation coefficient between
the SHAPr scores and 𝐼𝑚𝑒𝑛𝑡 accuracy. We note that there is strong positive correlation
is for all the three datasets: LOCATION (0.98), PURCHASE (0.94) and TEXAS (0.99).
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(a) LOCATION
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(b) PURCHASE
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Figure 7.5: Visual trend shows SHAPr scores (black solid line) has a strong correlation
with a drop in 𝐼𝑚𝑒𝑛𝑡 accuracy (blue solid line).

Summary

SHAPr can measure the effectiveness of L2 regularization as a defence against MIAs.
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Chapter 8

Performance Evaluation of SHAPr

Having shown that SHAPr is effective in estimating the susceptibility of training data
records to membership inference attacks while outperforming Song’s Privacy Risk Scores
(SPRS), we evaluate the efficiency of SHAPr (requirement R5). We evaluate whether
SHAPr scores can be computed in reasonable time. We ran the evaluation on Intel Core
i9-9900K CPU @ 3.60GHz with 65.78GB memory. We use the python metric time() in
time library which returns the time in seconds (UTC) since epoch start.

Table 8.1: Performance of SHAPr across different datasets averaged over ten runs.
Dataset # Records # Features Execution Time (s)

SPRS Datasets
LOCATION 1000 446 130.77 ± 3.90
PURCHASE 19732 600 3065.58 ± 19.24

TEXAS 10000 6170 5506.79 ± 17.47
Additional Datasets

MNIST 60000 784 2747.41 ± 22.65
FMNIST 60000 784 3425.90 ± 34.03

USPS 3000 256 238.67 ± 1.74
FLOWER 1500 2048 174.27 ± 11.74

MEPS 7500 42 732.43 ± 4.95
CREDIT 15000 24 1852.66 ± 30.92
CENSUS 24000 103 3718.26 ± 18.25

Table 8.1 shows the average execution time for computing SHAPr scores across datasets
of different sizes over ten runs. Computation time for SHAPr scores ranges from ≈ 2 mins
for LOCATION dataset to ≈ 91 mins for TEXAS. Since the scores are computed once and
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designed for Model Builder (ℳ) with substantial computational resources (e.g., GPUs),
these execution times are reasonable.

We first compare SHAPr’s efficiency with the closely related leave-one-out (LOO)
based metric proposed by Long et al. [43]. Long et al.’s naïve LOO scores require training
|𝐷𝑡𝑟| additional models (compared to training a single model for SHAPr) [43]. To bench-
mark, we used a subset of the LOCATION dataset with 100 training data records and
found that SHAPr is 100x faster than a naïve LOO based approach: 3640.21 ± 244.08s
(LOO) vs. 34.65 ± 1.74s (SHAPr) took only, across only five runs as the execution time
for naïve LOO was high. For larger datasets LOO will take unreasonably long time to
finish.

On comparing with SPRS, we acknowledge that the computation overhead of SPRS
is about ∼2x better than SHAPr. We report the results for a few datasets: LOCATION
(59.78 ± 0.28), FLOWER (77.56 ± 10.01) and USPS (104.59 ± 6.39). Despite SPRS
being faster, we note that SHAPr is more effective on majority of datasets and attacks
as evaluated in Chapter 6. Next, we have shown that SHAPr is versatile and can be
used to evaluate membership privacy risk with respect to sensitive subgroups (Chapter 7:
Section 7.1) where SPRS does not perform well (Appendix B). We later show that for
some of the defence evaluations (Chapter 7: Section 7.2.1), SPRS does not perform well
(Appendix C). Finally, since both SPRS and SHAPr can be used as tools by ℳ, as long
as both their computationally overhead are reasonable, the training time overhead will not
be the main bottleneck for their deployability. The metric with more benefits will be more
practical for deployment. Hence, SHAPr as membership privacy risk metric has several
benefits over SPRS warranting its use for practical applications despite not being faster.

Summary

SHAPr has reasonable execution times given the hardware resources available to ℳ mak-
ing it an efficient metric satisfying requirement R5.
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Chapter 9

Discussions

We discuss alternatives to SHAPr, specifically Influence Functions, and their limitations to
be used as a privacy risk metrics (Section 9.1). We then discuss the impact of Backdoors on
SHAPr scores and use of Shapley values to detect backdoors by prior work (Section 9.2).
We then discuss the connections between differential privacy and membership privacy risk
and how SHAPr cannot be used for comparing privacy risk across different models or
datasets (Section 9.3). We then discuss the impact of our assumption of complete overlap
between training data of target model and adversary’s auxiliary data (Section 9.4).

9.1 Comparison with Influence Functions

Influence functions [34, 51] were proposed for explaining model predictions. Since these
are independent of specific MIAs (satisfying attack-agnostic requirement R2 similar to
SHAPr), they could potentially be used to design an alternative, interpretable (satisfy
Property P1 similar to SHAPr) metric for measuring membership privacy risk. We now
explore the viability of such designs.

We implemented Koh et al.’s influence function [34] which assigns an influence score
to each individual training data record with respect to each prediction class. We adapt it
to estimate membership privacy risk by averaging the scores for each training data record
across all classes. This results in computing the overall influence of that test data record
as suggested by the authors in their paper [34].

We additionally implemented TracIN [51] which estimates the influence of a training
data record by computing the dot product of the loss gradient for training and testing data
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records which in turn is computed from intermediate models saved during training. Given
|𝐷𝑡𝑟| training data records and |𝐷𝑡𝑒| testing data records, TracIN computes a score for each
training data record corresponding to each testing data record resulting in a |𝐷𝑡𝑟| × |𝐷𝑡𝑒|
matrix. To estimate the scores of training data records across the entire test dataset, we
averaged the values across all the testing data records for each training data record. This
was suggested by the authors in their paper’s supplementary material [51].

Remark. Following the suggestion in TracIN [51] and Koh et al. [34], we average Koh’s
Influence Scores (KIFS) and TracIN scores to obtain individual scores for training data
records similar to what we have for SHAPr for a fair comparison. However, it is not
clear whether the averaging is the best method to obtain the final influence of individual
training data records. It is possible to improve both these influence functions by considering
functions other than averaging such that the mapping to membership status of training data
records from influence scores is more meaningful. We leave this for future work.

Table 9.1: Effectiveness of blackbox influence functions (KIFS [34]) and TracIN [51] as a
metric for membership privacy risk scores with respect to 𝐼𝑚𝑒𝑛𝑡. Comparing to SHAPr
at zero threshold in Table 6.2, orange indicates comparable results, red indicates poor
results and green indicates better results. Computations which took unreasonably long
time were omitted indicated by “-”.

Dataset KIFS [34] TracIN [51]
Precision Recall Precision Recall

SPRS Datasets
LOCATION 0.92 ± 0.01 0.48 ± 0.01 0.96 ± 0.00 0.20 ± 0.00
PURCHASE 0.94 ± 0.00 0.51 ± 0.01 - -

TEXAS 0.91 ± 0.01 0.51 ± 0.03 - -
Additional Datasets

MNIST 0.98 ± 0.02 0.30 ± 0.18 - -
FMNIST 0.81 ± 0.08 0.49 ± 0.10 - -

USPS 0.82 ± 0.26 0.33 ± 0.10 0.75 ± 0.23 0.42 ± 0.03
FLOWER 0.97 ± 0.02 0.51 ± 0.07 0.95 ± 0.03 0.46 ± 0.10

MEPS 0.95 ± 0.00 0.62 ± 0.05 0.96 ± 0.00 0.85 ± 0.00
CREDIT 0.85 ± 0.04 0.79 ± 0.03 - -
CENSUS 0.94 ± 0.01 0.72 ± 0.12 - -

For evaluation, we compute precision and recall by thresholding Koh et al.’s influence
function scores (referred to as KIFS) and TracIN scores. We threshold both the scores at
zero as Property P1 for SHAPr is still applicable where different scores have different
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semantic meaning (i.e., positive values indicate high susceptibility to MIAs while zero and
negative values indicate low susceptibility to MIAs). We then compare with MIA success
of modified prediction entropy attack (𝐼𝑚𝑒𝑛𝑡) as the ground truth. Following Section 7,
we use 𝐼𝑚𝑒𝑛𝑡 as SHAPr does worst on 𝐼𝑚𝑒𝑛𝑡 compared to Song’s Privacy Risk Scores
(SPRS).

We compare these results in Table 9.1 with the results of SHAPr in Table 6.2. We use
orange to indicate comparable results, red to indicate poor results and green to indicate
better results compared to SHAPr. Overall, both TracIN and KIFS have poor recall
across all the datasets compared to SHAPr scores. Both KIFS and TracIN approximate
the influence of training data records [34, 51]. KIFS is well defined for convex functions but
not for large neural networks with non-convex optimization [10]. Hence, the approximation
of influence scores are often erroneous. We conjecture this as a potential reason for the
lower recall for KIFS compared to SHAPr.

For TracIn, the overhead of computing per-sample influence was high for large datasets
(>7500 training data records) and all the datasets which took more than a day of com-
putation were omitted indicated by “-” in Table 9.1. TracIN stores the model at different
epochs during training. For each of the 𝑁𝑚𝑜𝑑𝑒𝑙𝑠 models saved during training, the dot
product of the gradient loss over each training and testing data record is computed result-
ing in a complexity of O(𝑁𝑚𝑜𝑑𝑒𝑙𝑠.|𝐷𝑡𝑟|.|𝐷𝑡𝑒|). The computational overhead for KIFS is
also high and in the order of O(|𝐷𝑡𝑟|.|𝐷𝑡𝑒|).

We observe that by the KIFS and TracIN have low recall values on comparing with
𝐼𝑚𝑒𝑛𝑡 predictions. Furthermore, their recall is significantly worse compared to SHAPr as
well and hence does not satisfy the effectiveness requirement R3. Additionally, the high
computationally cost of KIFS and TracIN (compared to SHAPr) does not satisfy efficiency
requirement R5. Hence, our evaluation indicates that both the state-of-the-art influence
functions (KIFS and TracIN) are not good candidates to base membership privacy risk
metrics on.

9.2 Backdoors and Shapley Values

A backdoor to a machine learning model is a set of inputs chosen to manipulate decision
boundaries of the model. Backdoors can be used for malicious purposes such as poisoning
(e.g. [14]), or to embed watermarks that allow model owners to claim ownership of their
model in case it gets stolen [64, 9]. A backdoor is created by changing the label of several
training data records [64], by adding artifacts to the training data records themselves (e.g.
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overlay text or texture to images [74]), or by introducing out-of-distribution data [9] to the
training data. A successfully embedded backdoor is memorised during training, along the
primary task of the model. During the verification, a verifier (can either be Model Builder
(ℳ) or a third-party judge where ℳ provides the watermark set to the judge) queries the
model and expects matching backdoor predictions.

Backdoors have negative influence on model utility as they introduce noise, and make
training more difficult [32]. Hence, their SHAPr scores are low. This has been used as a
way for identifying and removing images with watermarks [32].

However, memorization of backdoors is required for successful verification. In other
words, backdoors behave differently from other data records in the context of SHAPr:
they are, by definition, memorized but unlike other memorized data records, they are likely
to have low SHAPr scores. This is not a concern in our setting because ℳ is the entity
that computes SHAPr scores. If a backdoor is inserted intentionally by ℳ (e.g., for
watermarking), then ℳ will know what they are. If a backdoor was inserted maliciously
(e.g., by a training data provider), there is no need to provide any guarantees regarding
the SHAPr scores for those records.

9.3 SHAPr, Differential Privacy and Membership Pri-
vacy Risk

In order to establish the connection between membership privacy risk and differential
privacy, we describe the difference between estimating the privacy loss of a specific Machine
Learning (ML) model and that of an ML algorithm. Recall from Chapter 2 that an ML
model is a sample of an ML algorithm obtained from fixing the training data and training
algorithm. Hence, there is a difference in privacy risk of specific ML model and ML
algorithm [70]. Privacy risk of an ML model is with respect to the individual training data
records in its specific training data. On the other hand, privacy risk of an ML algorithm
depends on the randomness of sampling the training data and the training algorithm.

SHAPr is designed to estimate the membership privacy risk for an ML model trained
on a specific training dataset obtained using a specific training algorithm. Hence, SHAPr
cannot compare membership privacy risk across different ML models trained on different
datasets with different training algorithms. SHAPr scores can only compare relative
membership privacy risk of different training data records within a dataset for a specific
model and training algorithm (recall property P1 where different values SHAPr scores
indicate varying susceptibility to MIAs). Furthermore, none of the other privacy metrics
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(like SPRS [61] or Long et al. [43]) designed for individual membership privacy risk scores
can be used to compare the membership privacy risk of two different datasets either.

On the other hand, differential privacy can compute the privacy risk of an ML algorithm
by estimating its worst case privacy loss. Differentially private algorithms enforce an upper
bound on the privacy risk of an algorithm over all ML models with respect to all possible
training datasets. This is different from the membership privacy risk of an ML model
trained with specific training dataset for which SHAPr was designed.

Furthermore, Humphries et al. [27] show that differential privacy makes an assumption
that the training data distribution is IID which is not true for real-world datasets which
are non-IID. Hence, for such datasets, using differential privacy does not necessarily act
as a defence against MIAs. Despite this, differential privacy can potentially be effective
as a regularization technique to lower membership privacy risk. However, several prior
work indicate that simple ML regularization techniques such as early stopping can achieve
a better privacy-utility trade-off than using differential privacy [39]. Hence, we omit the
evaluation of differential privacy as an effective defence against MIAs. For evaluation of
SHAPr with respect to differential privacy, prior work has indicated theoretically that the
distinguishability of Shapley values [32]. We keep the empirical evaluation as future work.

9.4 Assumptions of overlap between 𝐷𝑎𝑢𝑥 and 𝐷𝑡𝑟

In all our experiments in Chapter 6, we consider a complete overlap between 𝐷𝑎𝑢𝑥 and 𝐷𝑡𝑟
since we consider a ℳ’s perspective. We revisit this assumption, and evaluate effectiveness
of SHAPr and SPRS with respect to 𝐼𝑚𝑒𝑛𝑡 when there is no overlap between 𝐷𝑎𝑢𝑥 and
𝐷𝑡𝑟. This is a practical setting from 𝒜𝑑𝑣’s perspective for which SPRS was specifically
designed.

The results are shown in Table 9.2 where orange indicates comparable results, red
indicates that SPRS significantly performs better and green indicates that SHAPr is
significantly better. We use the p-value student t-test over ten runs to indicate statistical
significance of the results.

We note that unlike in Table 9.2, SHAPr is comparable to SPRS. Specifically, SHAPr
outperforms SPRS on four datasets while SPRS outperforms on four datasets. For two
of the datasets, the performance is comparable between both metrics. Overall, we do not
find a significant difference between the overlapping dataset assumption considered in this
work and the practical non-overlapping dataset setting for 𝐼𝑚𝑒𝑛𝑡 other than difference for
a few datasets (FMNIST, TEXAS and CREDIT).
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Table 9.2: SHAPr is comparable to SPRS (evaluated in the 𝒜𝑑𝑣’s threat model of [61],
representing 𝒜𝑑𝑣’s perspective with no overlap between 𝒟𝑎𝑢𝑥 and target model’s train
data). Orange indicates comparable results, red indicates SPRS outperforms SHAPr
and green SHAPr outperforms SPRS.

Dataset Precision Recall
SPRS SHAPr SPRS SHAPr

SPRS Datasets
LOCATION 0.90 ± 0.01 0.89 ± 0.01 0.94 ± 0.00 0.88 ± 0.01
PURCHASE 0.98 ± 0.02 0.98 ± 0.01 0.83 ± 0.02 0.81 ± 0.02

TEXAS 0.96 ± 0.05 0.97 ± 0.05 0.78 ± 0.11 0.96 ± 0.01
Additional Datasets

MNIST 1.00 ± 0.00 0.99 ± 0.01 0.94 ± 0.02 0.95 ± 0.00
FMNIST 1.00 ± 0.00 0.99 ± 0.01 0.91 ± 0.04 0.89 ± 0.01

USPS 0.98 ± 0.02 0.99 ± 0.01 0.60 ± 0.01 0.98 ± 0.00
FLOWER 0.97 ± 0.02 0.96 ± 0.04 0.82 ± 0.09 0.96 ± 0.01

MEPS 0.95 ± 0.02 0.91 ± 0.04 0.97 ± 0.02 0.92 ± 0.01
CREDIT 0.92 ± 0.02 0.85 ± 0.04 0.86 ± 0.07 0.94 ± 0.01
CENSUS 0.96 ± 0.02 0.93 ± 0.02 1.00 ± 0.00 0.86 ± 0.01

51



Chapter 10

Related Work

We now cover the prior work on computing the influence of training data records in Machine
Learning (ML) models (Section 10.1), membership inference attacks (Section 10.2), other
metrics on measuring membership privacy risk in ML (Section 10.3) and finally defences
to mitigate membership inference attacks (Section 10.4).

10.1 Estimating influence of training data record

Data marketplaces trade training data for ML models. They assign monetary value to
data by estimating the influence of each training data record to model utility. A sim-
ple approach is inspired from model explanabiility by using Influence functions [34] and
TracIN [51] estimate the influence of training data records. However, these approaches are
computationally expansive and do not precisely estimate memorization for membership
privacy risk (Section 9.1).

Influence functions can be computed as the difference in model prediction with and
without each data record in the training dataset [19]. This is computationally expensive.
Alternatively, Shapley values extend the above definition by computing the difference in
model utility on a test dataset [21]. This was previously explored in the context of data
valuation in ML as well [30, 31, 21, 20]. Naïve approaches for computing Shapley val-
ues are computationally expensive because their require retraining for each training data
record. There are two proposed variants for approximate computation of Shapley val-
ues [21]: Monte Carlo (drawing a random permutation of the training data and averaging
the marginal contribution of training data records over multiple permutations) and using
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gradients (computing marginal contribution using gradients for each data record during
training). However, these metrics are still computationally expensive and require training
multiple models. 𝐾-NN based Shapley value computation is currently the most efficient
approach proposed in literature which is used in this work [30].

10.2 Membership Inference Attacks

Several prior works have proposed a range of novel membership inference attacks (MIAs)
with the goal of improving attack success over prior work [59, 54, 61, 11, 70]. In addition to
image classification and tabular datasets, membership privacy risk has also been explored
in graph models [16], text models [45] and generative models [13, 24, 41].

While we consider a practical blackbox threat model, MIAs are also proposed in white-
box threat model where Adversary (𝒜𝑑𝑣) has access to model parameters to compute
intermediate outputs (e.g., federated learning) [48, 36]. SHAPr can still be applied to
estimate the membership privacy risk to these MIAs as it is attack-agnostic.

Furthermore, membership privacy risk has been evaluated with respect to different as-
pects of trust in ML. For instance, fairness comes at the cost of membership privacy in ML
where the unprivileged subgroups are at higher risk to MIAs [12]. Additionally, training
ML models to resist adversarial examples using both empirical approaches (e.g., adver-
sarial training) or certification techniques, make training data records more vulnerable to
MIAs [62]. Finally, releasing model explanations can be used by 𝒜𝑑𝑣 to perform successful
MIAs [58].

10.3 Measuring Membership Privacy Risk

Other than Song’s Privacy Risk Scores (SPRS) [61] and Long et al. [43] used in this work,
Adversary’s membership privacy advantage [71, 28] is another metric for evaluating differ-
ential privacy mechanisms. However, this is an aggregate metric and estimates membership
privacy risk across all data records.

Fisher Information, originally proposed to compute the influence of attributes towards
the model utility (for attribute inference attacks), was suggested as a metric to estimate
membership privacy risk [23]. However, this is limited to linear models with convex loss
which does not apply to the neural networks we consider. Furthermore, computing Fisher
information is computationally expensive for large models as it requires inverting a Hessian.
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Finally, maximal information leakage [53] was proposed as a membership privacy risk
metric which is an upper bound on the privacy risks for the PATE differential privacy
framework [50]. However, this information leakage metric is not designed for individual
training data records.

10.4 Mitigating Membership Privacy Risk

Several defences have been proposed in prior work. Simple regularization for ML models
(e.g., L2 regularization [72] and early stopping [40, 61]) have been shown to be effective
in lowering membership privacy risk. Specific defences to thwart MIAs include adversar-
ial regularization [47, 69] and MemGuard [29] which are ineffective [61] against stronger
MIAs. Currently, knowledge distillation [57] has been shown to be effective against all
MIAs that use output prediction confidence. Additionally, combining ensemble of ML
models with careful knowledge-distillation resists label only MIAs in addition to confi-
dence based MIAs [66]. In addition to these empirical defences, differential privacy is
often used as a defence against MIAs to provide theoretical guarantee on the worst case
privacy loss [8]. However, the current differential privacy training face privacy-accuracy
trade-offs and simple techniques to improve generalization have shown to provide better
trade-offs [40].
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Chapter 11

Conclusions

We summarize our conjecture and results from our study followed by some discussion of
future research directions.

11.1 Summary

Membership privacy risk metrics quantify the susceptibility of training data records to
membership inference attacks (MIAs). We present desiderata for designing membership
privacy risk metrics: R1 fine-grained to assign scores to individual training data records,
R2 attack-agnostic where the scores are independently generated from any specific MIAs,
R3 effective where the record-level scores correlate to the susceptibility of specific MIAs,
R4 applicability of SHAPr for different tasks and evaluate defences; and R5 efficient to
compute scores with reasonable overhead for ℳ.

Our conjecture was that Shapley values computed for individual training data records,
by virtue of measuring influence on model utility, and hence the extent of memorization,
can serve a good membership privacy risk metric while satisfying all the requirements
R1-R5.

We successfully validated our conjecture by presenting SHAPr, based on Shapley val-
ues as a membership privacy risk metric. By definition of Shapley values, SHAPr is
fine-grained and assigns scores for individual training data records (R1) without using any
specific MIA (R2). We confirm that SHAPr (and by extension Shapley values) indeed
serve as an effective membership privacy risk metric to assess susceptibility of different
training data records to MIAs as evaluated on ten benchmark datasets across five different
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state-of-the-art MIAs (R3). We find that SHAPr’s performance is either comparable or
better than Song’s Privacy Risk Scores (SPRS) on effective MIAs. Moreover, SHAPr can
be used for different applications, e.g., assess the membership privacy risk of different sub-
groups, estimate the value of data records and evaluate defences against MIAs (satisfying
the requirement of applicability of membership privacy risk metric R4). Finally, SHAPr
can be computed more efficiently compared to naïive leave-one-out (LOO) approach (R5).

11.2 Future Work

Based on evaluation and analysis of our work, we include some research directions for
future work:

• We observed that majority of the MIAs evaluated are imperfect. The design of a practi-
cal Optimal Membership Inference Attack (𝐼𝑜𝑝𝑡𝑖𝑚𝑎𝑙) is an open question. This warrants
further study of how SHAPr fits in the context of such an MIA. Furthermore, while
𝐼𝑠ℎ𝑎𝑑𝑜𝑤 is indeed an effective MIA, whether it is an 𝐼𝑜𝑝𝑡𝑖𝑚𝑎𝑙 is yet to be investigated.

• We used 𝐼𝑚𝑒𝑛𝑡 as a baseline for Chapter 7 which puts SHAPr at a disadvantage.
However, we can explore the use of more effective MIA, for instance 𝐼𝑠ℎ𝑎𝑑𝑜𝑤 to re-
evaluate the experiments. We expect that most of the observations will be confirmed
due to higher effectiveness of SHAPr on 𝐼𝑠ℎ𝑎𝑑𝑜𝑤.

• We evaluated defences using SHAPr where there is a decrease in model utility on
applying a defence. There are additional defences such as knowledge distillation [57]
and SELENA [66] with a better privacy-utility trade-off where the direct application of
SHAPr is not straightforward. This is due to the use of multiple models trained on
disjoint public-private datasets. Using SHAPr for such defences is left for future work.

• While we focus on using peer-reviewed MIAs, there are recent MIAs which focus on
better attack utility (not yet peer-reviewed at the time of writing this thesis) [11, 70].
As part of future work, we plan on using these as ground truth for evaluating the
effectiveness of SHAPr with the assumption that they are closer to the 𝐼𝑜𝑝𝑡𝑖𝑚𝑎𝑙.
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Appendix A

Distribution of SHAPr and SPRS
Scores

We visually compare SHAPr with Song’s Privacy Risk Scores (SPRS) by plotting the
distribution of SHAPr (in green) and for SPRS (in red) shown in Figure A.3.

For several datasets, we observe that SPRS is centered at 0.5 indicating that the
membership likelihood for a large number of training data records is inconclusive. Further,
we note that the distribution of SPRS scores is not evenly distributed, with some values
correspond to several records while neighboring values correspond to none. We conjecture
that this is due to the fixed prior probabilities and estimating the conditional probabilities
using shadow models optimized to give the same output for multiple similar data records.
Compared to SPRS, SHAPr follows a more even distribution (due to the heterogeneity
property P3).
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Figure A.1: Distributions of SHAPr scores colored based on the 𝐼𝑚𝑒𝑛𝑡 attack prediction.
We plot the semantic threshold at 0 (solid line).
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Figure A.2: Distributions of SHAPr scores colored based on the 𝐼𝑚𝑒𝑛𝑡 attack prediction.
We plot the semantic threshold at 0 (solid line).
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Figure A.3: Distributions of SHAPr scores colored based on the 𝐼𝑚𝑒𝑛𝑡 attack prediction.
We plot the semantic threshold at 0 (solid line).
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Appendix B

Evaluating SPRS’s Versatility

Our goal is to evaluate whether SPRS is versatile. We first evaluate whether SPRS scores
corresponds to change accuracy across different sensitive subgroups. We then discuss
whether SPRS can be used for data valuation.
Privacy Risks over Subgroups. We compute attack over different sensitive subgroups
ad average Song’s Privacy Risk Scores (SPRS) scores for each of the subgroups. We report
the results in Table B.1 which is color-coded: green indicates SPRS scores move in the
same direction as the ground truth 𝐼𝑚𝑒𝑛𝑡; and red indicates SPRS scores either remain
the same or move in opposite direction as the ground truth 𝐼𝑚𝑒𝑛𝑡.

Table B.1: Different subgroups are vulnerable to membership inference attacks (MIAs) to
a different extent. green indicates SPRS scores move in the same direction as the ground
truth 𝐼𝑚𝑒𝑛𝑡. red indicates SPRS scores either remain the same or move in opposite
direction as the ground truth 𝐼𝑚𝑒𝑛𝑡.

Dataset SPRS 𝐼𝑚𝑒𝑛𝑡

CENSUS

Male Female Male Female
0.52 0.52 56.00 62.50

White Others White Others
0.52 0.52 56.60 60.50

CREDIT Male Female Male Female
0.52 0.53 56.10 67.00

MEPS Male Female Male Female
0.57 0.54 56.90 62.60
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We observe that Song’s Privacy Risk Scores (SPRS) scores stay the same for both
subgroups across all the datasets, regardless of the accuracy (indicated in red ). This
shows that SPRS is ineffective to estimate disparity of membership privacy risk across
different sensitive subgroups.

We note that the average scores are close to 0.5 because majority of the data records
have SPRS score of 0.5 (due to a lack of heterogeneity property P3 as seen in Figure A.3).
Additionally, SPRS scores do not satisfy additivity property (property P2) as there is no
semantically meaningful notion of adding or averaging probability scores. We conjecture
that the lack of both heterogeneity and additivity properties make SPRS makes ineffective
at this task.
Data Valuation. SPRS was not designed to be additive property P2 and hence cannot
guarantee group rationality of scores among training data records. SPRS scores are not
heterogeneous (property P3) either which does guarantee equitable assignment of privacy
risk scores (as shown in Appendix A, Figure A.3). We show the lack of heterogeneity in
the Appendix A, visualizing the distribution of SPRS scores (Figure A.3). Given the lack
of these properties (heterogeneity, additivity, group rationality, and equitable assignment),
we argue that SPRS is unlikely to be applicable for data valuation.
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Appendix C

Evaluating Effectiveness for Adding
Noise

We first show the impact on the SHAPr scores for clean subset on adding noise of some
of the training data records. We then discuss how SPRS scores did not follow the trend
corresponding to .
No consistent trend of SHAPr scores for clean subset for larger datasets. For
datasets with training data records ≥10000, we do not find a consistent increasing trend
between both the 𝐼𝑚𝑒𝑛𝑡 and method scores (Figure C.1). We conjecture that due to the
large size of these datasets, the SHAPr scores do not show a significant difference to effect
the average scores.
Impact of Adding Noise to SPRS. On adding noise to training data records, we expect
the SPRS scores to decrease to match with the decrease in . Hence, on computing the
Pearson’s correlation coefficient, we expect the correlation to be positive.

The results, as seen in Table 7.2, are color-coded: 1) orange indicates that the corre-
lation is not statistically significant; 2) red indicates that the correlation is statistically
significant and negative 3); and green indicates that correlation is positive and statistically
significant as expected.

In Table C.1, we observe that the average score is not impacted by the added noise
indicated by several negative correlations ( red ) compared to SHAPr (Table 7.2). We
observe that there is no consistent correlation between the score and the accuracy. The
lack of sensitivity of SPRS to training data noise can be attributed to clustering of SPRS
scores around 0.5 indicating indecisive membership resulting in lack of heterogeneity (prop-
erty P3) as seen Figure A.3 for SPRS’s distribution.
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(c) CREDIT
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(d) CENSUS
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(e) MNIST (0.13)
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(f) FMNIST (0.02)

Figure C.1: For larger datasets, visual trend shows SHAPr scores (black solid line) has
a strong correlation with a drop in 𝐼𝑚𝑒𝑛𝑡 accuracy (blue solid line). Pearson correlation
coefficient was low or negative for these datasets as indicated in the parentheses.

Table C.1: Pearson’s correlation coefficient (referred to as “PCC”) between average SPRS
scores and MIA accuracy on noisy subsets. orange indicates that correlation is not signifi-
cant; red indicates that the correlation is significant and negative 3); and green indicates
that correlation is positive and significant.

Dataset PCC
LOCATION -0.98
PURCHASE -0.58

TEXAS 0.68
MNIST 0.02

FMNIST -0.65
USPS -0.90

FLOWER -0.90
MEPS -0.88

CREDIT -0.85
CENSUS -0.80
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