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Abstract

Many industrial problems require the solution of the incompressible Navier—Stokes
equations on moving and deforming domains. Notable examples include the simulation
of rotating wind turbines in strong air flow, wave impact on offshore structures, and ar-
terial blood flow in the human body. A viable candidate for the numerical solution of
the Navier-Stokes equations on time-dependent domains is the space-time discontinuous
Galerkin (DG) method, which makes no distinction between spatial and temporal variables.
Space-time DG is well suited to handle moving and deforming domains but at a significant
increase in computational cost in comparison to traditional time-stepping methods.

Attempts to rectify this situation have led to the pairing of space-time DG with the
hybridized discontinuous Galerkin (HDG) method, which was developed to reduce the
computational expense of DG. The combination of the two methods results in a scheme
that retains the high-order spatial and temporal accuracy and geometric flexibility of space-
time DG at a reduced cost. Moreover, the use of hybridization allows for the design
of pressure-robust space-time methods on time-dependent domains, which is a class of
mimetic methods that inherit at the discrete level a fundamental invariance property of
the incompressible Navier—Stokes equations.

The space-time HDG method has been successfully applied to incompressible flow prob-
lems on time-dependent domains; however, at present, no supporting theoretical analysis
can be found in the literature. This thesis is a first step toward such an analysis. In partic-
ular, we perform a thorough theoretical convergence analysis of a space-time HDG method
for the incompressible Navier—Stokes equations on fized domains, and of a space-time HDG
method for the linear advection-diffusion equation on time-dependent domains. The for-
mer contribution elucidates the difficulties involved in the theoretical analysis of space-time
HDG methods for the Navier—Stokes equations, while the latter contribution introduces
a framework for the convergence analysis of space-time HDG methods on time-dependent
domains.

We begin with an a priori error analysis of a pressure-robust HDG method for the sta-
tionary Navier—Stokes equations. Then, we provide an a priori error analysis of a pressure-
robust space-time HDG method from which we conclude that the space-time HDG method
converges to strong solutions of the Navier—Stokes equations. This leaves open the question
of convergence to weak solutions, which we answer in the affirmative using compactness
techniques. Finally, we provide an a priori error analysis of a space-time HDG method for
the linear advection-diffusion equation on time-dependent domains.
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Chapter 1

Introduction

1.1 Aims and motivation

The incompressible Navier—Stokes equations are a set of nonlinear partial differential equa-
tions (PDEs) that govern the dynamics of viscous incompressible Newtonian fluids. They
are central to the mathematical study of fluids, and as such see wide application across
a broad spectrum of scientific fields. The solution of the Navier-Stokes equations, or any
nonlinear PDE for that matter, is an extremely difficult task in general. In fact, exact
solutions can only be found in very idealized scenarios. When faced with modeling com-
plex fluid flows in physically realistic scenarios, we must turn to numerical methods to
approximate the solution of the Navier—Stokes equations.

Historically, the mixed finite element method has been a popular candidate for the
numerical solution of the incompressible Navier-Stokes equations. Many classic finite ele-
ments, such as the Crouzeix—Raviart [25] and Taylor-Hood [12] methods, are still widely
used nearly five decades after their inception. However, a notable deficiency of many finite
element methods for the incompressible Navier—Stokes equations is that the incompress-
ibility constraint is not satisfied exactly at the discrete level. Instead, the approximate
velocity field is only discretely divergence free (i.e. in an integral sense when tested against
functions from the approximate pressure space). As we shall soon see, the violation of the
incompressibility constraint at the discrete level leads to “pollution” in the error in the
velocity field by the error in the pressure. This phenomenon has been the topic of intensive
research over the past decade, and has given birth to the study of so-called pressure-robust
finite element methods whose velocity errors are decoupled from the pressure error [17, (2].



To complicate matters further, many important industrial applications of the Navier—
Stokes equations require the consideration of moving or deforming domains. Some exam-
ples include the modeling of arterial blood flow, free surface waves, and multiphase flows
in which the interface between fluids evolves over time. When confronted with such a
situation, care must be taken to ensure that the evolution of the domain is captured by
the numerical method. A class of methods especially suited for this task is the space-time
finite element method which captures the motion of the domain by recasting it as a station-
ary domain in space-time. While conforming (i.e., continuous) space-time finite element
methods have been successfully applied to incompressible flow problems on time-dependent
domains [18, 66, 68, 97], they are not locally conservative which can prove problematic for
convection dominated flows. From this point of view, space-time discontinuous Galerkin
methods are more fitting for the solution of the Navier—Stokes equations on time-dependent
domains [74, 76, 99].

Naturally, one may wonder about pressure-robustness in the context of incompressible
flows on time-dependent domains. Surprisingly, very few results can be found in this di-
rection. Recently, a class of pressure-robust space-time hybridized discontinuous Galerkin
methods for the Navier—Stokes equations on time-dependent domains has been introduced
in [13, 44]. While the method performs well in numerical experiments, a theoretical conver-
gence analysis has proven to be highly nontrivial. The purpose of this thesis is to provide
a first step toward such an analysis.

In the remainder of this chapter, we introduce the core concepts behind the space-time
hybridized discontinuous Galerkin method, discuss the objectives and contributions of this
thesis, and provide an overview of the coming chapters.

Discontinuous Galerkin methods. The discontinuous Galerkin (DG) method has seen
a substantial increase in popularity amongst computational fluid dynamicists over the
course of the past two decades. As the name would seem to suggest, the DG method
differs from classical (continuous) finite element methods (henceforth referred to as CG
methods) in that it allows for the use of discontinuous basis functions for the trial and test
spaces. As outlined below, the increased flexibility afforded by allowing for discontinuities
in the finite element spaces is substantial, but this flexibility comes at a significant increase
in computational expense.

The fundamental difference between the DG method and the CG method is that basis
functions can be localized to single mesh elements. As a result, the discrete equations
resulting from the DG method can be posed locally on each mesh element. Of course, there
must be some communication between local solutions on adjacent elements so that they
may be patched together to recover a meaningful global solution. Given the local problem



on a single mesh element, we achieve this communication by treating the local solutions on
neighbouring elements as boundary data through the use of so-called “numerical fluxes”.
This yields a more compact “stencil” in comparison to the CG method since the solution
on a single mesh element is coupled only to the solutions on neighbouring elements with a
shared interface.

By defining basis functions locally on each mesh element, the DG method can easily
handle irregular and non-matching meshes which makes it an advantageous method to
pair with h-adaptivity. Moreover, p-adaptivity can be achieved naturally by varying the
polynomial degree of the local basis functions in each mesh element. However, the trade
off for these advantages is increased computational cost in comparison to the CG method.
As illustrated in Figure 1.1, the continuity constraint imposed on the basis functions in
the CG method permits shared degrees of freedom (DOFs) between adjacent elements.
DG methods, by contrast, share no DOFs between elements and this duplication of DOFs
ultimately leads to an increase in the size of the global linear system.

Figure 1.1: The coupling of DOF's on neighbouring elements for the CG method (left) and
the DG method (right).

As previously mentioned, the DG method introduces numerical fluxes through which
the solution on neighbouring elements is coupled. Given that there is some flexibility in the
choice of numerical flux, it seems appropriate to design it to mimic the underlying dynamics
of the PDE. This is particularly advantageous when dealing with transport phenomena and
conservation laws, as the numerical flux provides a mechanism to introduce upwinding as
well as local conservation of appropriate physical quantities into the DG method. Thus, the
DG method can be viewed as a synthesis of the CG method and the finite volume method
(FVM); it inherits the local conservation properties and other attractive features of the
FVM while retaining the potential for higher-order accuracy enjoyed by the CG method.
For this reason, the DG method has seen much success when applied to incompressible
flow problems; see e.g. the articles [21, 22, 39, 41,49, 65, 72, 86, 103] and the monographs



28, 81].

Hybridized discontinuous Galerkin methods. To reduce the size of the global linear
system while retaining the advantages of the DG method, one can instead consider the hy-
bridized discontinuous Galerkin (HDG) method [19]. In the HDG method, an additional
finite element space is introduced on the interfaces between mesh elements. An approxi-
mation of the solution’s trace on mesh interfaces is sought in this new finite element space.
Rather than coupling the local solutions on neighbouring mesh elements directly, the nu-
merical flux couples them indirectly through their communication with the approximate
trace on the shared interface (see Figure 1.2).

Figure 1.2: Sketch of the HDG solution (left) and the coupling of DOFs on neighbouring
elements for the HDG method (right).

At first, the introduction of another unknown into the problem may seem counter
intuitive: how can the size of the global system be reduced by introducing even more un-
knowns? The key is in the additional constraint required to close the system. In particular,
the weak continuity (in an integral sense) of the normal component of the numerical flux is
enforced across the interfaces of mesh elements. This is called the transmission condition,
and it allows for the elimination of the DOFs on the interior of each element using static
condensation resulting in a global system of equations for only the approximate trace of
the solution. Once the approximate trace has been found, an inexpensive post-processing
yields the solution on element interiors.

As the HDG method inherits the favourable properties of the DG method but with
a reduction in the total number of globally coupled degrees of freedom, it is an excellent
choice for the solution of incompressible flow problems. Some examples of HDG methods

g

for incompressible flows can be found in, e.g., [14, 36, 55, 58, 59, 56, 69, 73, 78].

Space-time finite element methods. Typically, the numerical solution of an evolution
equation employs the method of lines wherein the problem is first discretized in space using

4



a finite element method to obtain a system of ordinary differential equations (ODEs) in
time. The resulting system of ODEs can then be discretized using an appropriately chosen
time integration scheme often based on the finite difference method. This approach works
well when the domain €2 is fized in time. However, if the domain evolves over time, there
is an immediate problem. Consider, for the sake of argument, the backward difference
operator: for fixed x € Q(t),

Ju () —u(w, ty)
e R~ A7 (1.1)

t=tn+t1

Since the domain evolves with time, a spatial point z € Q(¢,) at a given time ¢, may
not remain in the domain at time ¢, (see Figure 1.3). In such a scenario, the difference
quotient in eq. (1.1) may fail to be defined.

> T

Figure 1.3: The method of lines on a time dependent domain (¢).

A possible way to overcome this problem is by taking a Lagrangian or Arbitrary
Lagrangian-Eulerian (ALE) approach, in which a change of coordinates is performed to
map the problem onto a fixed reference domain more amenable to the method of lines (see
Figure 1.4). This allows the use of relatively inexpensive time integration schemes to solve
moving boundary problems. However, a careful choice of time integrator is required to
ensure satisfaction of the geometric conservation law (GCL), which can be characterized
as a numerical method’s ability to preserve uniform (constant) flow solutions under mesh
movement. While the exact role that the GCL plays in the stability and convergence of
numerical methods for moving boundary problems is controversial [7], it has been observed
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Figure 1.4: Combining a Lagrangian/ALE approach with the method of lines.

that failure to satisfy the GCL can result in a loss of accuracy in numerical solutions on
moving meshes [71].

A second approach, at the heart of this thesis, is to employ a space-time finite element
method. In space-time methods, a time-dependent problem on a moving d-dimensional
domain is recast as a stationary problem on a fixed (d + 1)-dimensional space-time domain
by formally removing the distinction between spatial and temporal variables. This space-
time domain is partitioned into space-time elements (see Figure 1.5), and the finite element
method is used in both space and time. As a result, the movement of the domain is
naturally captured by the numerical discretization. Moreover, space—time methods are
known to automatically satisfy the GCL [60].

Of course, a subclass of the space-time finite element method is the space-time DG
method. As the name suggests, the space-time DG method employs DG in both space and
time. Thus, the attractive properties of the DG method (local conservation, hp-adaptivity,
etc.) hold both in space and time. Furthermore, by using a discontinuous-in-time trial
space, the problem can be localized to a single time interval or space-time slab as illustrated
in red in Figure 1.5. This allows for a sequential approach where the solution is computed
in a single space-time slab and then used as an initial condition for the next space-time slab.
This significantly reduces the amount of memory required as only a single space-time slab
is ever stored at once. Alternative to the slab-by-slab approach is the all-at-once approach
where the entire space-time mesh is stored at once. While the all-at-once approach is
much more memory intensive, it is more amenable to parallelization than the slab-by-slab
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Figure 1.5: A tessellation of the space-time domain with space-time elements.

approach [92]. Examples of space-time finite element methods for the incompressible flows
on time-dependent domains can be found in e.g. [18, 66, 68, 76, 97, 99].

Though our primary motivation for the use of space-time finite element methods is the
ease in which they handle time-dependent domains, much of the analysis in this thesis
considers fized domains. As such, it is only appropriate to point out some of the benefits
that the space-time DG method has even on fixed domains. The most obvious is that
higher-order accuracy in time can be achieved simply by increasing the degree of the
polynomial solution in time. Other benefits include local temporal refinement, p-adaptivity
in time, and the possibility of using differing meshes at each time level. The catch, of course,
is a significant increase in the computational cost over more traditional time integration
methods. Examples of space-time finite element methods for incompressible flows on fixed
domains can be found in, e.g., [1, 17].

Space-time hybridized discontinuous Galerkin methods. As we have seen, the
use of the DG method comes at a significant computational expense, especially so when
DG is used in both space and time! To offset the computational cost of solving a (d +
1)-dimensional problem with DG, the space-time HDG method was introduced in the
articles [71, 75]. The combination of space-time DG and HDG allows for the use of static
condensation to reduce the problem to one of merely finding the approximate traces on
the facets of space-time elements. Roughly speaking, this reduces the size of the global
system to one of a d-dimensional problem since the approximate trace is defined on a d-
dimensional surface in R4, More recent examples of space-time HDG methods for the
incompressible Navier—Stokes equations can be found in [13, 44].



Pressure-robust finite element methods. For simplicity, we shall restrict our discus-
sion of pressure-robustness to the steady incompressible Navier—Stokes system on an open
bounded domain 2 C R%: given an external body force f and kinematic viscosity v, find
a velocity field v and pressure p satisfying

—vAu+ V- (u®u)+Vp=f, inQ, (1.2a)
V-u=0, in§, (1.2b)
u=0 on oS (1.2¢)

One peculiarity with many finite element methods for eq. (1.2) is that the error in the
velocity field is polluted by the error in the pressure. More precisely, given finite element
spaces V}, for the velocity and @)}, for the pressure,

1
— < inf — — inf — . 1.
= unlhy, <€ (nf Ju—vally, + 2 nf o= g, ) (13)

Classic examples of finite element methods satisfying eq. (1.3) include the Taylor-Hood
element [12], the Crouzeix—Raviart element [25], the MINI element [3], and discontinuous
Galerkin methods [20, 23, 28]. At first glance, the additional dependence on the pressure in
the error bound eq. (1.3) may not appear significant; however, the appearance of the inverse
of the kinematic viscosity is problematic if one wishes to consider convection dominated
flows (v < 1).

From the physical point of view, the problem stems from the following observation
[17, 62]: if the external force is perturbed by an irrotational field, i.e. f — f + Vo, for
some scalar potential ¢, the solution becomes

(u,p) = (u,p+ ).

In other words, the additional irrotational force field Vi is balanced by the pressure
gradient, leaving the velocity field unchanged. Viewed from this lens, eq. (1.3) would
seem to indicate that this fundamental invariance property of incompressible flows is not
inherited at the discrete level.

From the mathematical point of view, the source of this peculiarity is related to the
divergence constraint eq. (1.2b). Many finite element methods for incompressible flow
problems satisfy this constraint only approximately. This constitutes a variational crime
in the sense that if K denotes the kernel of the distributional divergence operator and
K, denotes the kernel of the discrete divergence operator arising from the finite element
discretization, then K, ¢ K. However, if indeed K}, C K, it holds that [0, Theorem 5.25]

— < inf — . 1.4
Ju—unlly, <C inf flu—will, (1.4
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We call finite element methods that satisfy eq. (1.4) pressure-robust. As simple a task as
it may seem, it is not immediately obvious how one can design a finite element method
to ensure that K; C K. Fortunately, it has been recognized that pressure-robust finite
element methods can be equivalently characterized as H (div; 2)-conforming methods that
produce pointwise solenoidal velocity approximations [47]. Examples of pressure-robust
finite element methods can be found in, e.g., [36, 17, 56, 57, 59, 62, 89]. Note that it is not
our purpose to investigate the advantages of pressure-robust discretizations. We instead
refer the reader to the thesis [3%], which gives an excellent overview of the advantages of
pressure-robust discretizations for both stationary and transient incompressible flows.

Objectives and contributions. The present thesis is concerned with the numerical anal-
ysis of a class of pressure-robust space-time hybridized discontinuous Galerkin methods for
the incompressible Navier—Stokes equations. While our main motivation for the use of
space-time methods is the ease in which they handle time-dependent domains, no theoreti-
cal analysis of a space-time HDG method for the Navier—Stokes equations has appeared in
the literature, even on fixed domains. Our purpose is to fill this gap as a first step toward
a theoretical analysis valid on time-dependent domains. The main contributions of this
thesis are fourfold:

1. We provide an a priori error analysis of the pressure-robust HDG method of Rheber-
gen and Wells [78] in the case of the stationary Navier—Stokes equations, which was
previously missing from the literature.

2. We provide the first a priori error analysis of a space-time HDG method for the
transient Navier—Stokes equations on fized domains. Our analysis requires the spatial
domain 2 C R? to be a convex polygon (d = 2) or polyhedron (d = 3) as well as a
restriction on the size of the problem data to ensure the existence of a strong solution
to the Navier-Stokes equations (see Theorem 2.3.2 below).

3. We further show, using a compactness argument, that this space-time HDG method
converges to a weak solution to the Navier—Stokes equations (in the sense of Leray—
Hopf) even in the absence of additional regularity. This fills the gap left by our a priori
analysis, as we no longer require convexity of the spatial domain nor a restriction
on the size of the problem data. However, this approach does not yield rates of
convergence.

4. Finally, we provide an a priori error analysis of a space-time HDG method for the
advection-diffusion equation on time-dependent domains. To the author’s knowl-
edge, this constitutes the first error analysis of a space-time HDG method on time-
dependent domains in general.



1.2 Thesis outline

The remaining chapters of this thesis are structured as follows:

Chapter 2. First, we rapidly recall many of the tools from functional analysis that we
will require in subsequent chapters. Then, we introduce the basic mathematical theory of
the incompressible Navier—Stokes equations.

Chapter 3. We study the pointwise solenoidal HDG method proposed by Rhebergen and
Wells in [78] in the case of the stationary Navier—Stokes equations. We show that under
mild assumptions on the size of the problem data, the resulting nonlinear algebraic system
arising from the HDG discretization is uniquely solvable using a fixed-point argument a la
Brouwer. Then, we perform an a priori error analysis of the method and prove that the
velocity and pressure approximations converge at the optimal rate in suitable norms. Most
importantly, we show that the error in the velocity approximation is independent of the
pressure, and thus the method is pressure-robust. The contents of this chapter have been
taken, with slight modification, from the article:

K. L. A. KIRK AND S. RHEBERGEN, Analysis of a pressure-robust hybridized
discontinuous Galerkin method for the stationary Navier—Stokes equations, Jour-
nal of Scientific Computing, 81 (2019), pp. 881-897. https://doi.org/10.1007/
510915-019-01040-y

Chapter 4. We study a space-time HDG method for the incompressible Navier—Stokes
equations on fixed domains based on the HDG method analyzed in Chapter 3. Using a
topological degree argument, we show that there exists a solution to the nonlinear alge-
braic system arising from the space-time HDG discretization in both two and three spatial
dimensions. Then, using a novel discrete Ladyzhenskaya inequality and fine properties of
polynomials, we obtain a uniform-in-time bound on the discrete velocity in two spatial
dimensions. This uniform bound allows us to show that the discrete velocity solution is
unique in two dimensions under a restriction on the size of the problem data. Next, we
prove a space-time inf-sup condition and conclude from the Ladyzhenskaya-Babuska-Brezzi
theorem that to each discrete velocity solution there exists a corresponding unique discrete
pressure solution.

Further, we derive optimal a priori error bounds for the velocity under the assumption
that the Navier-Stokes system admits a strong solution (see Theorem 2.3.2). This places
a restriction on the size of the problem data as well as the shape of the spatial domain
Q) ¢ R?. Notably, the error bounds that we obtain for the velocity are independent of the
pressure, thus proving that the method is pressure-robust. Finally, we obtain sub-optimal
a priori error bounds for the pressure. The contents of this chapter have been taken, with
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slight modification, from the article:

K. L. A Kirk, T. L. HORVATH, AND S. RHEBERGEN, Analysis of an exactly
mass conserving space-time hybridized discontinuous Galerkin method for the time-
dependent Navier—Stokes equations, (To appear in Mathematics of Computation)
https://arxiv.org/abs/2103.13492

Chapter 5. Since our a priori analysis in Chapter 4 requires additional regularity of the
exact solution, we cannot use it to conclude that the space-time HDG method converges
to a weak solution of the Navier—Stokes equations as the time step and mesh size tend to
zero. In this chapter, we prove that this is indeed the case, and moreover the weak solution
is one in the sense of Leray—Hopf (i.e. it satisfies an appropriate energy inequality), filling
the gap left by the previous chapter. Our analysis hinges on the introduction of discrete
differential operators as well as a discrete version of the Aubin—Lions—Simon compactness
theorem. The contents of this chapter have been taken, with slight modification, from the
article:
K. L. A Kirx, A. CESMELIOGLU, AND S. RHEBERGEN, Convergence to weak
solutions of a space-time hybridized discontinuous Galerkin method for the incom-
pressible Navier—Stokes equations, Mathematics of Computation. https://doi.
org/10.1090/mcom/3780

Chapter 6. In this penultimate chapter, we analyze a space-time HDG method for a
linear advection-diffusion equation on time-dependent domains. Following [38, 95, 99], we
make use of anisotropic Sobolev spaces which provide a suitable alternative to Bochner
spaces when the underlying spatial domain is evolving in time. Using novel anisotropic (in
space and time) inverse and trace inequalities, we prove that the discrete bilinear form is
coercive and satisfies an inf-sup condition with respect to a “streamline diffusion”-like norm
that controls the time derivative of the discrete solution. Finally, we derive anisotropic (in
space and time) a priori error estimates. The contents of this chapter have been taken,
with slight modification, from the article:

K. L. A Kirg, T. L. HORVATH, A. CESMELIOGLU, AND S. RHEBERGEN, Anal-
ysis of a space-time hybridizable discontinuous Galerkin method for the advection-
diffusion problem on time-dependent domains, STAM Journal on Numerical Analy-
sis, 57 (2019), pp. 1677-1696. https://doi.org/10.1137/18M1202049

Chapter 7. Finally, we conclude the thesis by discussing possible future avenues of re-
search based on the work of Chapters 3 through 6. In particular, we discuss the extension
of our analysis to space-time HDG methods for the Navier—Stokes equations on time-
dependent domains.

11


https://arxiv.org/abs/2103.13492
https://doi.org/10.1090/mcom/3780
https://doi.org/10.1090/mcom/3780
https://doi.org/10.1137/18M1202049

Chapter 2

Preliminaries

The finite element method can be seen as a way to approximate the underlying function
spaces (typically, Banach or Hilbert spaces) associated with the solution of a PDE rather
than the differential operators involved. It should come at no surprise then that the
framework for the theoretical analysis of the finite element method is that of functional
analysis. In this chapter, we rapidly recall some of the concepts and tools from the theory
of functional analysis and function spaces that we will require throughout the remainder
of the thesis.

2.1 Functional analytic tools

In this section, we introduce some of the tools from functional analysis that we require in
the sequel. Note that throughout this thesis, all vector spaces are assumed real. It will be
assumed throughout that the reader is familiar with the basics of Hilbert space and Banach
space theory. For more information, the interested reader may consult any standard text
on functional analysis, e.g., [10, 18, 81, .

2.1.1 Topological preliminaries

We begin by introducing two lemmas that provide us with powerful tools for the study of
nonlinear systems in finite-dimensional vector spaces:
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Lemma 2.1.1 (Corollary to Brouwer’s fixed point theorem [18, Theorem 9.9-3]). Let
(X, (+,-)x) be a finite-dimensional Hilbert space and let f : X — X be a continuous mapping
with the following property: there exists M > 0 such that

(f(v),v)x >0  forallv e X such that ||v|y = M.
Then, there exists a vg € X such that||vg||y < M and f(vy) = 0.

Lemma 2.1.2 (Topological degree argument [28, Lemma 6.42]). Let (X, ||-|| ) be a finite-
dimensional Banach space. Let M >0 and let U : X x [0,1] — X satisfy

1. U s continuous.

2. U(-,0) is an affine function and the equation V(v,0) = 0 has a solution v € X such
that||v||y < M.

3. For any (v,p) € X x [0,1], ¥(v, p) = 0 implies ||v||, < M.

Then, there exists v € X such that U(v,1) =0 and||v|y < M.

2.1.2 Elementary results

Next, we recall a number of elementary results from linear functional analysis. To set
notation, let X be a Banach space with topological dual X’. Throughout this thesis, we
will denote the value of a continuous linear functional f € X’ at v € X by the duality
pairing

f) = {f,v)xxx. (2.1)

Example 2.1.1. To get a feel for what we mean by the duality pairing eq. (2.1), consider
the Sobolev space X = H'(—1,1) (see Definition 2.2./ below) and let f be the Dirac delta
“function” 8y : H'(=1,1) — R defined by

v = do(v) =v(0), Vve H'(-1,1).

Observe that 6 € X' = (Hl(—l,l))l, since by the Sobolev embedding theorem (Theo-
rem 2.2.6 below),

Bo(0)] = (O] < Cllollnryys Vo€ HY(=1,1).
Following the convention eq. (2.1), we write

<(50, v)X’XX = ’U(O)
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Theorem 2.1.1 (Riesz Representation Theorem [18, Theorem 4.6-1]). Let (V,(-,-)v) be a
Hilbert space. Given any continuous linear functional f € V', there exists a unique element
zr € V such that

(frv)vixy = (zp,0)v.
This defines a linear isomorphism R:V — V', R:z;— f by
(fiv)vixy = (Rzp,v)vixy = (zp,0)n, Yo eV.

Theorem 2.1.2 (Lax—Milgram [18, Theorem 6.2-1]). Let V' be a Hilbert space, let a(-,-) :
V xV — R be a bounded and coercive bilinear form, and let f : V — R be a continuous
linear functional. In other words, there exist constants Cy,Co,C3 > 0 such that for all
u,v eV,

2
la(u, v)] < Cullully [olly »  alu,u) = Collully s [(f, v)vv| < Cllolly -
Then, there exists a unique solution to the variational problem: find uw € V' such that
CL(U,U) = <fav>V’><V; YveV.

Theorem 2.1.3 (Banach—Necas—Babuska [28, Theorem 1.1]). Let X be a Banach space
and let Y be a reflexive Banach space. Suppose that a(-,-) : X XY — R is a continuous
bilinear form: there exists C; > 0 such that

a(v,w)] < Cillollgllwlly, Yoe X, weY,
Let f € Y' and consider the problem: find uw € X such that for all w € Y, it holds that
a(u, w) = (f,w)yrxy. (2.2)

Then, problem eq. (2.2) has a unique solution if and only if the following two conditions

hold:

(i) There is a Cy > 0 such that for all v € X,

a(v,w)

Collvllx < sup (2.3)

ozwey |[wlly

(ii) For allw €Y,
(Vv e X, a(v,w) =0) = (w=0).
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Note that condition eq. (2.3) is equivalent to the following inf-sup condition:

Co< inf sy 20
0£vEX ozwey |[0]] W]y

Remark 2.1.1. If in Theorem 2.1.3 the Banach spaces X and Y are finite-dimensional,
condition (ii) is superfluous.

Theorem 2.1.4 (Hahn—Banach [18, Theorem 5.9-1]). Let X be a normed vector space,
let Y be a subset of X, and let [ :Y — R be a continuous linear functional. Then, there
exists a continuous linear functional f : X — R satisfying

(JE, y>X/><X = <f, y)Y’XYa forally €Y, and ”fHX' :HfHY’ .

Corollary 2.1.1 ([I8, Theorem 5.9-7]). Let Y be a subspace of a normed vector space X.
Then, Y 1s dense in X if and only if

(fL)xixx =0 forally €Y

implies that f is the zero functional.

2.1.3 Modes of convergence in Banach spaces

To prove convergence of the space-time HDG scheme to weak solutions of the Navier—
Stokes equations in Chapter 5, we require various types of convergence in Banach spaces,
which we summarize below.

Definition 2.1.1 (Strong convergence). Let X be a Banach space. A sequence of elements
(Tn)nen n X is said to converge strongly to a function x € X if

Tim |12, — [ = 0.

We denote strong convergence by an arrow: x, — x as n — 0o.

Definition 2.1.2 (Weak convergence). Let X be a Banach space and let X' denote its
topological dual space. A sequence of elements (x,)nen in X is said to converge weakly to
a function x € X if for each f € X', it holds that

lim f(z,) = f(a).

n—oo

We denote weak convergence by a half-arrow: x, — x as n — oo.
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Definition 2.1.3 (Weak-x convergence). Let X be a Banach space and let X' denote its
topological dual space. A sequence of elements (fn)nen in X' is said to converge weakly-x
to an element f € X' if for each x € X, it holds that

lim f,(z) = f(x).

n—oo

We denote weak-+ convergence by a half-arrow with a star on top: f, = f asn — oo.

2.1.4 Gelfand triples V. Cc H Cc V'

We end off this section by discussing Gelfand triples (also known as evolution triples
due to their importance to the study of abstract evolution equations), which will arise in
Chapter 5. Our discussion will follow [10, Section 5.2]. Let V' be a separable and reflexive
Banach space, and let H be a separable Hilbert space. Assume that V' is dense in H, and
that the embedding V' C H is continuous: there exists a C' > 0 such that

lolly < Cllolly, . VoeV.
Then, we can identify H with a dense subspace of V'’ and we write
VcHCcCV, (2.4)

where both embeddings are continuous and dense. We call the triplet (V, H, V") a Gelfand
triple, and we call H a pivot space. The importance of the Gelfand triple lies in the fact
that the duality pairing on V', when restricted to H, coincides with the inner-product on
H:

(u, V)vixy = (u,0)g, Yu€ H, YveV. (2.5)
Below, we justify that such an identification can be made. The following discussion is
technical, and can be skipped by the reader willing to take eq. (2.4) and eq. (2.5) at face
value.

Justification of the identification H C V'’
Define a mapping 7' : H' — V' by
(Tf,v)vixv = {f,0) e, (2.6)

that is, T'f is the restriction of f € H' to V. Note that the linearity of T" follows from the
linearity of the duality product on H. By Theorem 2.1.1, we can identify H = H' using
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the Riesz isomorphism R : H — H'. This, combined with the definition of the operator T
shows that if u € H and v € V| we can identify the duality product on V' with the inner
product on H as follows:

(T o R)u,v)yrxy = (Ru, V) gy = (u,v)g.

To justify the identification of H with a subspace of V', we need to show that to each
element u € H there corresponds a unique element (7o R)u € V’. We first show that the
linear operator T is injective. To this end, note that if T'f = 0, then (f, v) /g = 0 for all
v € V. Since V is dense in H, this is equivalent to f = 0 by Corollary 2.1.1. Thus, both
R:H — H' and T : H — V' are injective, and so is their composition (T'o R) : H — V.
Therefore, to each u € H, we can associate a unique element (7" o R)u of V.

It remains to show that the embedding TH' C V' is continuous and dense. We begin

by showing the former. The fact that V' C H with continuous embedding ensures that T’
is continuous. Indeed, for all v € V', we have

Loy Al
lolly = lvlly
and thus, by the definition of T, for any f € H’,

Tf,l) VIxV f7U H' xH
0#£veV ”UHV 0AveV HUHV

Iz < cyp1,e

< Ol g -

Therefore, TH' embeds continuously into V.

Finally, we show the image of T"is dense in V’. By Corollary 2.1.1, it suffices to show
for p € V"
(0, Tf)vuxyr =0, Vf e H, = ¢=0.

Let f € H' be arbitrary. Recall [10, Section 3.5] that since V' is reflexive, we can identify
V = JV = V" via the canonical injection J : V' — V" satisfying for all v € V and ¢ € V’,

<JU7 w>V“><V’ = W, U>V’><V'

Suppose now that (o, T f)ynyy = 0 for all f € H'. By the reflexity of V', we can find a
v € V such that ¢ = Jov, and

0= (o, Tfvrev: = (Ju,Tf)yvucy = (Tf,v)viev, VfeH.
By the definition of the linear operator 7', this is equivalent to

0= <f, U)H’,Ha Vf € Hl,
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but then v must be the zero element of H (thus also V') (again, thanks to Corollary 2.1.1).
By the linearity of J, we have ¢ = Jv = 0, and thus TH' is dense in V’. Consequently,
we can identify H’ with a dense subspace of V' via the mapping T': H' > f— Tf € V'
H' = TH' C V', and the embedding is continuous and dense. Moreover, by Theorem 2.1.1,
we can identify H = H’ using the Riesz isomorphism R : H — H'.

Remark 2.1.2. By the triplet eq. (2.4), we really mean
VCHRH=H =TH cV'.

2.2 Function spaces

The purpose of this subsection is to introduce various function spaces that will be used
extensively in the sequel. We have made no attempt to be exhaustive in our treatment.
For more information, we refer the interested reader to e.g., [, 18].

2.2.1 The Lebesgue spaces LF({2)

In what follows, it will be assumed that the reader is familiar with the Lebesgue theory of
integration, but we will briefly review some of the basics. In particular, we will be concerned
with measure spaces (2, M, 1), where Q C R? is an open, bounded, and connected subset
of R% M is the o-algebra of Lebesgue measurable subsets of Q, and p: M — [0, o0] is the
Lebesgue measure on R, For a construction of the Lebesgue measure on RY, we refer to,
e.g., [35, 83]. Given a measurable set £ C Q with u(E) = 0, we will say that a property
holds almost everywhere (a.e.) provided it holds on Q\ E.

We define the vector space of summable functions on §2:
LHQ) = {f :Q — R : f is measurable and / |fldz < oo}.
Q

As it stands, the mapping f + [, |f|dz defines a semi-norm on the space £'(Q), since
Jo |fldz = 0 need not imply that f = 0 (consider a measurable function taking nonzero
values only on a set of measure zero). However, we wish to leverage the tools from Banach
space theory introduced in Section 2.1. To this end, we define an equivalence relation
on LY(Q): f ~gif f=gae. in(, and consider the quotient space L'(Q) = L£1(Q)/~.
We will abuse notation by identifying functions in £!(€) with their equivalence classes in
L'(Q). The mapping f — [, |f|dz then defines a norm on L'(9).

Next, we recall a number of basic results concerning Lebesgue integration.
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Theorem 2.2.1 (Fatou’s Lemma [18, Theorem 1.15-2]). Let {f,}, oy € L'(Q) be a se-
quence of non-negative functions. Then,

/(lim inf f,(z))de <liminf [ f,(z)dx
Q Q

n—o0 n—o0

Theorem 2.2.2 (Dominated Convergence Theorem [18, Theorem 1.15-3]). Let { f,},,cn C
LY(Q) be a sequence converging pointwise a.e. to f, and suppose |f(x)| < g(x) for some

g € LY(Q). Then, f € LY(Q) and it holds that

lim fndx—/fd:v.
Q

n—o0

Theorem 2.2.3 (Fubini’s Theorem [18, Theorem 1.15-5]). Given two Lebesgue measurable
sets Q1 C R, Qy CR™, and a function f € L*(Qy x Qy), it holds that

/ f(xl,xg) d[El dIQ = / < f((l,’l,l‘g) d(lfg) d[L’l = / < f(.Tl,ZL'Q) d[El) dCL’Q.
Q1 xQ9 0 Qo Qo 951

For more information on the Lebesgue theory of integration, or abstract measure theory
in general, the interested reader may consult [35, 83].

Definition 2.2.1 (Lebesgue spaces). Let p € R be such that 1 < p < oco. If 1 < p < 0,
we define

LP(Q) = {f Q=R 2 fis measurable and || f| 1) < oo},

1/p
T ( / If!pdw)

In the case p = oo, we define

L>(Q) = {f Q=R : fis measurable and || f[| (g < oo}

where

where
HfHLOO(Q) = inf{M | f(x)] < M a.e. on Q}

As before, we abuse notation by identifying functions with their equivalence classes.
The space LP(f2), equipped with the norm H'Hm(ﬂ)a is a Banach space for 1 < p < oo; if
1 < p < oo, it is reflexive, and if 1 < p < oo it is separable. For p = 2, the space L?(f2)
becomes a Hilbert space when equipped with the inner product

(f. 9o /fgdx

Often, we will write (-,)p for the L?-inner product over a measurable set D for brevity.
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2.2.2 Test functions and distributions

We now give a brief overview of the theory of distributions. For more information, the

interested reader may consult, e.g., [13, 35, 84]. Let 2 C R? be a domain and consider the
corresponding vector space of compactly supported smooth functions C°(€2). We equip
this space with the topology described in, e.g., [81, Chapter 6.3] and denote the resulting

topological vector space by D(£2). We call D(Q2) the space of test functions.

Definition 2.2.2 (Sequential convergence in D(Q2)). A sequence of test functions {¢n}, oy C
D(RQ2) is said to converge towards a test function ¢ € D(Q) if {¢n},en C CF(K) for some
compact set K C Q and 0%¢,, — 0%¢ as n — oo uniformly for any multi-index oo € N?,

We now seek to characterize the topological dual space of D(£2). We say a linear map
T :D(2) — R is continuous if, given any sequence of test functions (¢n)neN converging to
¢ in D(2), it holds that
T(¢,) = T(¢) as n — 0.

We call such a map a distribution, and we denote the space of distributions by D'(€2). We
equip this space with the weak-x topology: a sequence of distributions {7}, .y C D'(2)
is said to converge towards a distribution 7" € D'(2) if, for all ¢ € D(2),

T.(¢) — T(¢) as n — oo.

We refer to T' as the distributional limit of {T,,} and it is unique.

neN?

Next, we define the notion of a distributional derivative, motivated by the following
integration by parts formula: given a multi-index o € N?, a function v € Cl*/(Q), and a
test function ¢ € D(€2), it holds that:

/Q (0°u)pda = (—1) / w(0°0) da. (2.7)

Q

Definition 2.2.3 (Distributional derivatives). Let T € D'(Q) be a distribution and o € N?
be a multi-index. The derwative of T in the sense of distributions is the unique distribution
0°T € D'(Q) defined by the formula

0°T(¢) = (~1)*IT(2°¢), Vo € D(Q). (2.8)

In general, an object of the space D’(£2) need not be a function (see, e.g., Example 2.1.1).
Conversely, any locally integrable function f can be associated with a distribution 77 €
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D'(2). By locally integrable, we mean f is measurable and defined a.e. on Q and f € L'(K)
for every compact set K C 2. We denote the space of locally integrable functions on €2 by
Li.(Q). Given f € LL (), we define the distribution Ty € D'(Q) by

Ty(6) = /Q fode, ¢ eDQ).

We will abuse notation by identifying f with Ty and thus L _(Q2) with a subspace of

D'(Q). Similarly, if a distribution 7' € D’'(Q) is such that T' = T} for f € LL.(Q), we write
T e LL.(Q).

Proposition 2.2.1 ([8, Proposition 11.2.43]). Let 1 < p < oo and let (fn)nen be a sequence
in LP(Q) which converges weakly towards f € LP(Q2). Then it holds that

fo—f, inD'(Q) as n — .

Moreover, if p = 0o and (fy)nen is a sequence in L*°(Q) which converges weakly-x to
f € L>(Q), then we have

fo—f, inD(Q) asn — co.

2.2.3 Sobolev spaces

If the distributional derivative 0%u of a locally integrable function u € L. (Q) can itself be

loc
identified with a locally integrable function g, € L (€2), then we say that g, is the weak

derivative of u. More precisely, 0“u = g, in the weak sense if
/ ud®¢dr = (—1) / gaddz, Yo € D(R).
Q Q

If u is sufficiently smooth (e.g., u € Cl°/(Q)), the weak and classical derivatives of u
coincide. Among the set of all weakly differentiable functions, we will give special attention
to those whose weak derivatives are elements of the Lebesgue spaces LP(€2). These functions
furnish the Sobolev spaces.

Definition 2.2.4 (Sobolev spaces). Let Q C R? be an open set, k > 1 be an integer, and
1 <p<oo. We define the Sobolev space

WhP(Q) = {v e LP(Q) : 0%v € LP(Q),1 < |a| < k}.
If p =2, we write W*2(Q) = H*(Q).
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The space W*P(Q) is a Banach space when equipped with the norms

1/p
oo :—( 3 ||8%H’£p(m)  fl<p<oo
0<|al <k
HU”W’WX’(Q) = Ogl(grék\lé’ UHLoo(Q)> if p=o0.

We define also the semi-norms

1/p
[vlwkp) = ( Z HaavH’L’p(Q)) , if 1 <p< oo,
laf=k
V] prco () = max 10%V]| ooy, i p= o0

la

The space WkP(Q) is reflexive if 1 < p < oo, and separable if 1 < p < oo. The space
H*(Q) is a Hilbert space. Alternatively, one may view W*P(Q) as the closure of C*(Q)
with respect to the topology induced by the W#?(2) norm.

For many of the results we list below, additional geometrical assumptions on the open,
bounded, and connected set 2 C R? are required. Our presentation will closely follow [15,
Section 1.18]. For simplicity, we shall view the boundary 952 of Q2 as being locally the graph
of a Lipschitz continuous function ¢. More precisely, we assume there exists constants
a > 0and L > 0, a finite number of local orthogonal coordinate systems (v, ...,y5_1,y5) =
(Y., y5) € R¥™! x R, and corresponding functions ¢, : w, == {y, € R¥" : |y,| <a} = R,
1 <r < R such that

Q) 0=J{w.v) v =) ly,| <o},

(11) |¢T(yr> - QOT(Z”‘)| S L|yr - z’r‘|7 vym'z’r‘ € w’!‘) 1 S r S R

Moreover, we assume that €2 is locally on the same side of its boundary; that is, there exists
a constant # > 0 such that

(i) {(Ypy) : Y, Ewr and ¢, (y,) <yl <or(y,) + B} CQ,1<r <R,
(iv) {(Ypyr) Yy, €w and o.(y,) — B <yl <o (y,)} CRI\Q, 1 <r <R

In the sequel, we refer to an open, connected set satisfying conditions (i)—(iv) as a Lipschitz
domain (see Figure 2.1 for the case d = 2).
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Figure 2.1: A Lipschitz domain in R2.

Since elements of LP(Q2) are equivalence classes of functions agreeing up to a set of (d-
dimensional) Lebesgue measure zero, the question arises whether we can assign boundary
values to elements of W*?(Q). The problem lies in the fact that the boundary 99 is a
(d — 1)-dimensional surface and thus |0Q]; = 0, with | - |; denoting the d-dimensional
Lebesgue measure. Generally, we cannot assign boundary values in a pointwise sense.
However, using the Hahn-Banach theorem (Theorem 2.1.4), we can define an operator
v e LWIP(Q): LP" (Q)) (with p# defined in Theorem 2.2.4 below) such that v : u — u|yq
for all u € C'(Q2). More precisely, we have the following result that allows us to consider
traces of functions in W1P(Q) as elements of LF(99):

Theorem 2.2.4 (Trace theorem [13, Section 6.6]). Let Q@ C R? be a bounded Lipschitz
domain and let 1 < p < co. There ezists a trace operator v € LIW2(Q), LP" (0)), where
1<p* <o0ifp=d, and

1 1 p-1
=L f1<p<d.
p?* p  pld—1)

Moreover, there exists a constant C' > 0 such that for all v € WhP(Q),

1—1 1
V)| o oy < CllRl 01 o (2.9)

Where no confusion may arise, we will abuse notation by writing v(u) = u|gq. Note
that the operator v is not surjective onto the space Lp#(Q) and thus a general element of
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LP"(Q) need not have a lifting in W'*(Q). For this reason, we define the following trace
spaces which are simply the image of W'*(Q) under ~:

WP (9 Q) i= {y(v) € LF(8Q) : v e W(Q)}, for 1 <p<d,
H'Y2(00) == {~y(v) € L*(0Q) : ve HY(Q)}, ifp=2.
We will also need to consider functions with vanishing trace. In this case, we define
WyP(Q) := {'UEWLP( y(v) =0}, forl<p<d,
Hy(Q) :={ve H Q) : vf()} if p=2.

Theorem 2.2.5 (Poincaré-Friedrichs [13, Section 6.6]). Let Q C R be a bounded Lipschitz
domain and let 1 < p < co. There exists a constant C7; > 0 such that

/|U|de<01 (|v Wis@Q /vdx
Q

Moreover, if v € W'P(Q) satisfies v(v) = 0 on 99, then there exists a constant Cy > 0
such that

p) . YoveWh(Q). (2.10)

[0l 2oy < Calvlwinig)- (2.11)

Theorem 2.2.6 (Sobolev—Rellich-Kondrachov [3, Theorem 111.2.34]). Let Q C R? be a
bounded Lipschitz domain. Define the critical Sobolev exponent p* associated with p by:

For1 <p<ooandl <q<p* we have the continuous embedding
WhP(Q) c LY(Q), (2.12)

and the embedding is compact for 1 < q < p*. Furthermore, ford < p < oo and 0 < a <
1 —d/p, we have the continuous embedding

WhP(Q) C C%*(Q), (2.13)
and the embedding is compact for 0 < a <1 —d/p.

By eq. (2.13), we mean that given u € W'P(Q), there exists a Holder continuous
representative belonging to the same equivalence class as .
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Theorem 2.2.7 (Gagliardo-Nirenberg [3, Proposition I111.2.35]). Let 2 C R be a bounded
Lipschitz domain. Let 1 < p < oo and p < g < p*. There is a constant C > 0 such that

1+d/q—d d/p—d
ollz0e < Cllolaia) ™ Ilates Yo € WH7(Q). (2.14)
Furthermore, if v(v) = 0, we have
1+d d d d
10]] oy < Cllvll it IVl fkey, Yo € WyP(Q). (2.15)

Choosing d € {2,3}, ¢ =4, and p = 2 in eq. (2.15), we recover the classic Ladyzhenskaya
inequality [37, pp. 55]: for all v € H}(Q),

0|| ||”2 ||v ||”2 , ifd=2,

v 2.16

2.2.4 The Sobolev space H(div;2)

We begin by defining the weak divergence operator of a function u € LL ()% If there
exists a function g € L () such that

/g¢dx:—/u~v¢dx, Vo € D(Q),
Q Q

then we say that g is the weak divergence of u and we write V - u = g.

Definition 2.2.5 (The space H(div;Q)). Let Q C R be an open, bounded Lipschitz
domain. We define

H(div; Q) := {u e LX) V-ue L2(Q)} . (2.17)

H(div; Q) is a Hilbert space when equipped with the inner product:
(U, V) 7 (divi) :/u-vdx—l—/v-uv-vdx. (2.18)
Q Q

A normal trace operator for fields in H(div;€2) can be defined using duality:

Lemma 2.2.1. Let u € H(div;2). There exists a surjective normal trace operator 7y, €
L(H(div; Q); H=Y2(00)) satisfying the Green’s formula

/ oV - ude + / w- Vo de = (3 (), 1(0)) g vzomemiaony, o€ HYQ).  (2.19)
Q Q

Where no confusion may arise, we will abuse notation by writing v,(u) = u - n|aq.
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2.2.5 Bochner—Sobolev spaces

Next, we consider vector-valued functions defined on an interval I C R taking values in a
Banach space X. We say a function s : I — X is a simple function if its range is a finite
set of values {vy, ..., v,} where v; € X and the sets A; = s7(v;) are Lebesgue measurable.
We then say that a function v : I — X is Bochner measurable if there exists a sequence
{ur} ey of simple functions such that

lim wu(t) = u(t) for a.e. t € I.

k—o00

Definition 2.2.6 (The Bochner space LP(I; X)). Let X be a Banach space and let I C R.
If1 < p < oo, we define

LP(I; X) = {f : I — X : [ is Bochner measurable and ||f||L,,(I;X) < oo},

1/p
el oz = ( JIKE dt) |

In the case p = 0o, we define

where

L>®(; X) = {f I — X : fis Bochner measurable and || f|| o ;.x) < oo},
where
1l oo rix) = inf {M : [[f(t)||lx <M ae onl}.

Theorem 2.2.8 (Dual space of LP(I; X) [82, Proposition 1.38]). Let X be a Banach space,
let 1 < p < oo and let q be the Hélder conjugate of p. Then, Li(I; X") C (LP(I,X)),.
Furthermore, if X' is separable, then

(L(1,X)) = L(1:X),

with duality pairing

<f, ’U>Lq([7xl)><Lp(],X) = /;<f(t),’l)(t)>;«><X dt, f € Lp([,X),U < Lq([,X/). (2.20)

Next, we introduce Bochner—Sobolev spaces. Given an interval I C R, Banach spaces
X and Y with X C Y, and 1 < p,q < oo, we say that a function u € LP(I; X) has a
distributional (time) derivative in L4(7;Y") if there exists a function g € L(1;Y") such that

Juwo®a=- [gwomar voe )

1 1
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If such a function g exists, it is unique and we write i—? = ¢g. Higher order derivatives are
defined analogously.

Definition 2.2.7 (Bochner—Sobolev spaces). Let X and Y be Banach spaces with X C Y.
We define the Bochner—Sobolev space

WPa([; X,Y) = {u eIMX): S e Lq([;Y)},
which is a Banach space when equipped with the norm

HUHWLWJ(I;X,Y) ::HUHLP(I;X) +| %Hm(z;yy
In the Hilbertian case when p=q =2 and X =Y, we will simply write
W21, X, X) :== H'(I; X).

Analogously, for higher order derivatives, we define

H*(I; X) = {u LA X) : 2 e IX([;X),1<a< k;}
which we equip with the norm

dt>
k ) 1/2
s = (|50 )

Lemma 2.2.2 ([8, Proposition I1.5.11]). Let 1 < p,q < oo, and suppose X and Y
are two Banach spaces such that X C Y with continuous and dense embedding. Then,
Whpa(; X Y) C C(I;Y) with continuous embedding.

d¥uy
dt

Theorem 2.2.9 (Lions—Magenes [8, Theorem 11.5.12]). Let V' and H be separable Hilbert
spaces, and suppose the triplet (V, H, V') is a Gelfand triple (Section 2.1.4). Let 1 < p,q <
oo with Hélder conjugates p' and ¢ and let uw € W (I, V, V') and v € Whe¥' (I; V, V).
Then, the function t — (u(t),v(t))y has a continuous representative on I and for all
ti1,to € I, the following integration by parts formula holds:

to to
(u(tg),v(tg))H—(u(tl),v(tl))H:/tl <%,U>V,det+/tl (u) .
Theorem 2.2.10 (Arzela-Ascoli [91, Lemma 1]). Let B be Banach space. A set F of
C(0,T; B) is relatively compact if and only if:

27



(i) The set F(t) = {f(t)| f € F} is relatively compact in B for all0 <t <T, and

(i) F is uniformly equicontinuous: Ve > 0, there exists a 6 > 0 such that

Hf(t2) - f(tl)”B <e€
for all f € F and all ty,t5 € (0,T) such that |ta — t1| < 6.

Theorem 2.2.11 (Simon [91]). Let 1 < p < oo, let B be a Banach space, and let F C
LP(0,T; B). The set F is relatively compact in LP(0,T; B) if and only if:

(i) The set {fttf f)dt | f e F} is relatively compact in B for all 0 < t; <ty < T, and

(i) [Taf = fllzoo.r—n.py — O as h — 0 uniformly for all f € F, where 7,f = f(t +h) for
h > 0. Equwalently, Ve > 0 there exists a 6 > 0 such that for all f € F and for all
h <, we have

T—h
/O | £t +h)— F)|[}dt <e

Theorem 2.2.12 (Aubin-Lions-Simon [8, Theorem I1.5.16]). Let By C By C By be three
Banach spaces such that By C By with continuous embedding and By C By with compact
embedding. Let p,r be such that 1 < p,r < oo. Then, the embedding of WP (0,T; By, Bs)
into LP(0,T; By) is compact.

2.3 The incompressible Navier—Stokes equations

As this thesis is concerned with the numerical analysis of the incompressible Navier—Stokes
equations, we briefly review some aspects of the basic theory of weak and strong solutions
that will be used extensively throughout Chapter 4 and Chapter 5. Consider the transient
Navier—Stokes system posed on a bounded Lipschitz domain Q C R¢, d € {2,3}: given a
suitably chosen body force f, kinematic viscosity 0 < v < 1, and initial data wug, find (u, p)
such that

Oou—vAu+V - (u®u)+ Vp = f, in © x (0,77, (2.21a)
Vou=0, in Q x (0,7, (2.21b)

w=0, on 90 x (0,7, (2.21c)

u(z,0) = up(x), in Q. (2.21d)
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We will begin our discussion of the Navier—-Stokes system with the theory of weak
solutions of Leray—Hopf type [96]. The starting point is the following space of solenoidal
smooth vector fields:

”//:{UEC(‘)’O(Q)d|V-u:O}.

We define two function spaces, H and V, as the closures of ¥ in the norm topologies
of L*(Q2) and HJ (), respectively. For an open, bounded Lipschitz set €, we have the
following characterizations of H and V' [96, Theorems 1.1.4 and 1.1.6]:

H={ueLl*(Q)"|V-u=0andu-n=0}, (2.22)
V={ueH)(Q)" V- -u=0}. (2.23)

We note that V' C H with dense and continuous embedding and thus the triplet (V, H, V") is
a Gelfand triple (Section 2.1.4). The natural setting for weak velocity solutions of eq. (2.21)
is the class L?(0,T;V) N L>*(0,T; H). By testing eq. (2.21a) with test functions from V'
and integrating by parts in space, we have the following abstract ODE for the velocity field
u: for a.e. t € (0,7,

(G Vv +v(Vu, Vo) + ((u- Vu,v) = (fo)vxr, YWweV, (2.24a)
u(0) = uo, (2.24D)

in the sense of distributions. We recall the following classical result concerning solutions
to eq. (2.24):

Theorem 2.3.1. [06, Theorems II1.3.1 and II1.3.2] Given f € L*(0,T;V’') and uy €
H, there exists at least one function v € L*(0,T;V) N L*>(0,T; H) satisfying the weak
formulation eq. (2.24). Moreover, u is weakly continuous from [0,T] in the sense that
for allv € H, t — (u(t),v) is a continuous function. If d = 2, it is well known that
this solution is unique and furthermore uw € C(0,T; H). Uniqueness in three dimensions
remains an open problem.

Remark 2.3.1 (The energy inequality). In two dimensions, the weak solution to the
Navier—Stokes equations satisfies the following energy equality: for all s € (0,7,

S S
2 2
)y + 20 [ Tl e = ol +2 [ it (229

In three dimensions, we say that a weak solution is of Leray-Hopf type if it satisfies the
energy inequality: for a.e. s € (0,T),

9 S 9 9 S
o) ey + 20 [ Il < ey +2 [ (Fdnsm e (220
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Remark 2.3.2 (On an equivalent formulation). It is possible to define an equivalent for-
mulation to eq. (2.24) using time-dependent test functions ¢ € C.(0,T;V) (see e.g. [5,
Section V.1.2.2]): find u € L*(0,T;V) such that & € LY(0,T;V’) satisfying for all
p € C(0,T5V),

T /du g ’ !
/0 <E,<p>wvdt+/0 ((u-V)u,gp)dt—Fu/ﬂ (vu,w)dt:/o (f; @hvixy dt. (2.27)

Remark 2.3.3 (On recovering the pressure solution). In general, a pressure field cannot be
associated to the weak velocity solution of the Navier—Stokes equations if f € L*(0,T;V");
see [90]. However, if instead f € L*(0,T; H-1(Q)?), there is an associated pressure field
p € W12(0,T; L3(2)) satisfying the Navier-Stokes equations in the distributional sense
(see e.g. [90, Proposition 5] or [8, Theorem V.1.4]).

Remark 2.3.4 (On the regularity of weak solutions and consistency). For the space-
time HDG scheme studied in this thesis, we will require a stronger notion of a solu-
tion to the Navier—Stokes problem. Indeed, the discrete space we will define for the ap-
prozimate velocity field is non-conforming in V. Consequently, we cannot consider at
the discrete level the duality pairing (f,vn)v:«v without modifying the test function vy
with an appropriate smoothing operator, which would introduce a consistency error; see
e.g. [/]. Moreover, it will become evident in Chapter 4 we require at least (u,p) €
HY0,T; LA(Q)%) N L2(0, T; Hat(Q)4) x L(0,T; HY(Q)) N L2(0, T; L2()), € > 0, for the
consistency of our numerical scheme. The question of whether the proposed numerical
scheme converges under the minimal reqularity assumptions given in Theorem 2.3.1 is the
subject of Chapter 5.

We next seek conditions on the existence of a stronger solution to the Navier—Stokes
system. We now assume that (at least) f € L*(0,7; H) and ug € V. In two dimensions,
if 2 is C? (or convex), this is enough to ensure the existence of a unique solution (u,p) €
L>(0,T; V)N L2(0,T; HX(Q)4N V) x L*0,T; HY(2)) N L*(0,T; L3(Q)), and furthermore,
Oy € L*(0,T; H) [96, Theorem I11.3.10].

However, in three dimensions the situation is more complicated. It is possible to prove
the existence of a unique strong solution to the Navier—Stokes system with an important
caveat: loss of globality of time. In other words, the solution can be shown to exist on

some time interval (0, 7*] with T* depending on the problem data. There are two possible
cases:

1. Short lifetime and large data.
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2. Long lifetime and small data.

In Chapter 4, we will focus on the latter case which we summarize in the following theorem:

Theorem 2.3.2 ([21, Theorem 9.3], [17, Theorem 5.4]). Let Q C R? be a convex polyhedral
domain. There exists a C > 0, dependent on the final time T, such that if ugp € V and
f e L*0,T; H) satisfy

2 1 2
HUOHV + ;Hf”p(og’;]ﬁ(g)) < CV2, (2.28)

then there exists a unique strong solution with (u,p) € L>(0,T;V) N L*(0,T; H*(Q)> N
V) x L*(0,T; H'(Q)) N L*(0,T; L4(Q)) and dyu € L*(0,T; H) such that

2 2 2
HUHLoo(o,T;V) + VHUHL2(0,T;H2(Q)) <OV, HatUHp(o,T;m(Q)) <Cv. (2.29)

We note that u € L*(0,T; H*(Q)?NV) C L*(0,T; H) and d,u € L?(0,T; H) ensures
that w € H'(0,T; H). The assumption on the problem data eq. (2.28) can be interpreted
as small initial data and body force, or large viscosity and arbitrary data.

Remark 2.3.5. Recall that the Stokes operator A : H*(Q)*NV — H is defined as the
Helmholtz projection of the vector Laplace operator; see e.q. [2/, Chapter 4]. Inspecting
the proof of [2/, Theorem 9.3/, the assumption on the smoothness of the domain in The-
orem 2.5.2 is required to ensure that [|Au|| 2q) is a norm on H2(Q) NV equivalent to
the H*(Q)® norm, which is in turn a consequence of the reqularity theory of the linear,
stationary Stokes problem. Therefore, the conclusion of Theorem 2.3.2 remains valid if
Q C R? is a convex polyhedron [20].
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Chapter 3

Pressure-robust HDG for the steady
problem

In [78], a simple class of HDG methods that produce a pointwise solenoidal discrete velocity
field belonging to H(div; ) is introduced. It was shown therein that the method is exactly
mass conserving, locally momentum conserving, and energy stable. Moreover, through a
series of numerical experiments, it was observed that the velocity error is independent of the
pressure (hence, pressure-robust). However, no accompanying error analysis was provided
to theoretically confirm that the method is pressure-robust. As the HDG method in [75]
forms the basis of the space-time HDG method considered in Chapter 4 and Chapter 5,
the purpose of this chapter is to fill this gap.

We begin by showing that the nonlinear algebraic system of equations arising from the
HDG discretization is well-posed under a restriction on the size of the problem data using
a fixed point argument. Then, we derive optimal error estimates in the velocity which are
independent of the pressure in a discrete analogue of the H'-norm typical in the analysis
of HDG methods, followed by optimal error estimates in the pressure in the L?-norm. This
confirms that the method is pressure-robust. Lastly, under the assumption that the domain
Q) is convex, we derive optimal error estimates for the velocity in the L?(€)-norm.

This chapter is organized as follows: we present the steady Navier—Stokes problem
in Section 3.1 and the HDG method is introduced in Section 3.2. Notation and properties
of the multilinear forms involved are discussed in Section 3.3. Existence and uniqueness
of the discrete solution are shown in Section 3.4. We derive optimal pressure-robust error
estimates for the velocity in a mesh dependent energy norm, the pressure in the L?-norm
and optimal L2-error estimates for the velocity in Section 3.5. Finally, numerical examples
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are presented in Section 3.6 to confirm the theory.

This chapter is reprinted, with slight modification, from the following article:

K. L. A. KIRK AND S. RHEBERGEN, Analysis of a pressure-robust hybridized
discontinuous Galerkin method for the stationary Navier—Stokes equations, Jour-
nal of Scientific Computing, 81 (2019), pp. 881-897. https://doi.org/10.1007/
510915-019-01040-y,

with permission from Springer Nature.

3.1 The steady Navier—Stokes equations

Let ©Q C R? be a polygonal (d = 2) or polyhedral (d = 3) domain with boundary T.
We consider the Navier-Stokes equations: given a body force f : Q — R and kinematic
viscosity v € R*, find the velocity u : Q@ — R? and pressure p : Q@ — R such that

VU4V -(u®@u)+Vp=f in Q, (3.1a)

V-u=0 in €, (3.1b)

u=0 on I (3.1c)

It is well known, e.g., [96], that given a body force f € [LQ(Q)]d, the variational

formulation of the Navier-Stokes problem eq. (3.1): find (u,p) € [H&(Q)}d x L2(€2) such
that

d

/QI/VU:Vvdac—l—/g(u~Vu)-vda:—/QpV~vdx:/Qf~vdx Yo € [Hy()]" (3.2a)
/qu cudr =0 Vg € L(Q), (3.2b)

admits a unique solution provided
11l 2y < VP(CoCy) ™, (3-3)

where C,, is the Poincaré constant (Theorem 2.2.5) and C, is a constant depending only
on 2 and d. In addition, the velocity satisfies the stability estimate

lull iy < Cov ™ I ll2gey (3-4)
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3.2 The HDG method

Let 7 = {K} denote the triangulation of the domain 2 into simplices K. Furthermore,
let F and I'Y denote, respectively, the set and union of all edges of 7. We denote the
characteristic length of a cell K by hx and we denote the outward unit normal vector on
the boundary of a cell, 0K, by n. We introduce discontinuous finite element approximation
spaces for the velocity and pressure:

Vi = {vh e [L2)]*, v € [P(K)]* VK € T}, (3.5a)

O = {qh e L2(Q), qn € Por(K) VK € T} . (3.5b)

In addition, we introduce also discontinuous finite element approximation spaces for the
approximate traces of the velocity and pressure:

Vii={on € [LAF)]", o € [P VF € F, 5, =0onT}, (3.6a)

Qui={an € IX(F), G € Pu(F) ¥F € F}, (3.6b)

For notational convenience, we denote function pairs in V;, and @, by boldface, e.g.,
vy = (vp, Un) € Vi and g, = (qn, Gn) € Q-

The HDG formulation for the Navier—Stokes problem eq. (3.1) is given by [78]: given
fe [LQ(Q)]d, find (un,p,) € X}, such that

ap(up, vp) + op(up; wp, vy) + bp(py, vp) = Z f o, dx Yo, € Vi, (3.7a)
KeT K

bh(qh,Uh) - O th c Qh' (37b)

The discrete forms ap(-,:) : Vi x Vi, = R, bp(+,1) © Q X Vi, — R, and op(+;-,-) :
Vi, x Vi, x V), — R appearing in eq. (3.7) serve as approximations to the viscous, pressure-

34



velocity coupling, and convection terms, respectively. We define them as in [78]:

ap(u,v) ::Z/KVu:Vvdx—l— Z/aK%(u—ﬁ)~(v—z7)ds (3.8a)

KeTy KeTh
—Z/ [(w— @) - v + Opu - (v — )] ds,
Keﬂl oK
op(w; w,v) = — Z/u@w:Vde+ Z/ tw-n(u+a)- (v—0v)ds  (3.8b)
KeT, 7 K KeT, K
+Z/ Yw-n|(u—a)-(v—1)ds,
K€7~h 0K
br(p,v) == — Z/pV-vder Z/ v-npds. (3.8¢)
KeT, VK KeT, /K

The parameter « > 0 appearing in the bilinear form ay(+,-) is a penalty parameter typical
of interior penalty type discretizations, which must be chosen sufficiently large to ensure
stability [77]. It was shown in [77] for the Stokes problem and [78] for the Navier—Stokes
problem that the approximate velocity u;, € V}, obtained from the hybridized discontinuous
Galerkin discretization eq. (3.7) possesses two appealing properties, namely, V - u, = 0
pointwise and u;, € H(div;2). These properties are key to proving a pressure-robust error
estimate for the velocity field in Section 3.5.

3.3 Preliminaries

In this section we present some stability and boundedness results of the hybridized dis-
continuous Galerkin method eq. (3.7) and some other preliminaries. To set notation, let

V(h) = Vi + [HY Q)] [H2 ()], Q(h) == Qn + L2(Q) N HY(), (3.9a)
V(h) = Vi + [HZ2@T0)]", Q(h) = Qp + HY/*(TY), (3.9b)

and V' (h) := V(h) x V(h), Q(h) := Q(h) x Q(h) and X (h) := V' (h) x Q(h). Frequent use

will also be made of functions in the following space:

Vhdiv = {Uh € Vh : bh(qh7vh) = O \V/qh € Qh} . (310)
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We denote the trace operator by 7y : H¥(Q) — H*~1/2(T°) to restrict functions in H*(Q)
to I'Y. The trace operator is applied component-wise for functions in [H S(Q)]d. Given D
an open subset of R? we denote for scalar-valued functions p, ¢ € L*(D) the standard inner-
product by (p, ¢)p := [}, pqdx and its corresponding norm ||p|| , := 1/(p,p) p. Furthermore,

we define (p, ¢)7 := >~ g7 (P, )k and denote the usual L?-norm on Q by ||p|| := v/(p,p)7-
For scalar-valued functions p,q € L*(F), where F' C R4 we define the inner-product

(p,q)r = [npqds with norm ||p|| » = \/(p,p)r. Similar definitions hold for vector-valued

functions.

We introduce the following mesh-dependent inner-product and norms:

(u,v), == (Vu, Vo) + > ahg (i —u, 0 — v)ox u,v e V(h), (3.11a)
KeT
loll2 = S2IVel + 3 ahgdllo - vl veV(n, (311
KeT KeT
2 2 h[{ 8'0 2
ol = llwlls+ > — o v e V(h), (3-11c)
KeT oK
llally =llal* + > hxcldllox q € Q(h), (3.11d)
KeT
where we note that ||-[|, and ||-||,, are equivalent on V', see [77]. We define also
2 _
lwon anll?, = vllonl? + v~ lau (ona)€Xn (3120
.l = ol + 3 2] 2 (5.190)
7 T ker @ Onlox
= vl + v llall; (v,q) € X(h).

The standard discrete H'-norm for v € V(h) is defined as [|v]|, , := | (vr, on}))|
{v} = i(v" +v7) is the average operator and v* denote the trace of v from the interior
of K*. Furthermore, use will be made of the following discrete Poincaré inequality:

,» Where

lonll < collonlly, < cpllvall,  Von € Vi, (3.13)
where ¢, is a constant independent of hy [28, Theorem 5.3].
Previously it was shown [77, Lemmas 4.2 and 4.3] that for sufficiently large «, the

bilinear form ay (-, ) is coercive and bounded, i.e., there exist constants ¢; > 0 and ¢ > 0,
independent of h, such that for all v, € V, and u,v € V(h)

an(on, vn) > veylluall; and  an(u,v)| < veglull, ], (3.14)
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The boundedness of by(-,-) was shown in the proof of [77, Lemma 4.8], i.e., there exists a
constant ¢ > 0, independent of h, such that for all v € V/(h) and q € Q(h),

[on(a,v)| < allvll,llall,, (3.15)

while the stability of by(+,-) was proven in [79, Lemma 1]: there exists a constant £, > 0,
independent of h, such that for all g, € Q,,

b (qy; vn)
Bollanll, < sup W (3.16)

vREVY

Discrete inf-sup stability follows from coercivity of ay(-,-) eq. (3.14) and the stability of
b(-,-) eq. (3.16), e.g. [28, Lemma 6.13]: there exists a constant o > 0, independent of h
and v, such that for all (v, q,) € X,

ap(vp, wp) + by (g, wp) — bp(rs, vp)

oll(vn an)l,, < sup (3.17)
’ (wp,rp)€X ‘H(wha 'rh)mv’p
For the form o,(+;,-) it was shown [14, Proposition 3.6] that for w;, € V4V
1
oh(wh;vh,vh) = = Z |wh . n||vh — T)h|2d8 Z 0 V’Uh c Vh. (318)
2 KeT /K

It was also shown [14, Proposition 3.4] that for wy,ws € V(h), w € V(h) and v € V (h)
that
|on (w13 w,v) — op(wa; u, v)| < collwy —wally, Jlull,lv]],- (3.19)

Finally, we note that if (u, ) € ([Hy(Q )]d N [H2(Q)}d) x (L3(Q) N HY(Q)), letting u =
(u,7(u)) and p = (p,7(p)), then

ap(w, vy) + op(u; w, vp,) + b (p, vi) + br(gy, u) = / fronde V(vn,q,) € X (3.20)
0

This consistency result follows immediately from [77, Lemma 4.1] and noting that, after
integration by parts, using that v and v, are single-valued on cell boundaries, and that
v = OonT s

(u;w,vy) Z/ (u®u) - v de. (3.21)

KeT
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3.4 Existence and uniqueness

The hybridized discontinuous Galerkin method for the Navier—Stokes problem eq. (3.7)
results in a system of nonlinear algebraic equations. To show existence and uniqueness of
this nonlinear system, we use the classic Brouwer’s fixed point theorem Lemma 2.1.1.

Lemma 3.4.1 (Existence and uniqueness). Assuming

(v3)?
200y < . 3.22
Iy < ot (322)

where ¢, is the constant from eq. (3.13), ¢ is the constant from eq. (3.14), and ¢, is the

constant from eq. (3.19), there exists a unique solution (un,p;,) € X, to the hybridizable
discontinuous Galerkin method for the Navier—Stokes problem eq. (3.7). Furthermore,

2
CoCp

(civ)

s \N— 2
H|Uh”|v < Cp(CaV) l“f”Lz(Q) and UH‘(umph)H‘ < Cp”f”L?(Q) + 2 Hf”L?(Q) , (3.23)

v,p —
where o is the discrete inf-sup constant eq. (3.17).

Proof. We prove first existence of a solution w;, € V& x Vj, to eq. (3.7). We start by
defining a mapping ¥ : V&V x Vj, — V4V x V}, by

th, vy, € Vhdiv X Vh, (\I/(wh), 'Uh)v = ah('wh, ’Uh) + oh(wh; Wy, 'Uh) - (f, Uh)T. (324)

Taking v, = wy, in eq. (3.24) we find by coercivity of a(-,-) eq. (3.14), positivity of
on(+;+,-) eq. (3.18), Cauchy—Schwarz and eq. (3.13),

(W(wn), wn), = (veslwill, = el fll 2 ) lwnl,. (3.25)

For all wy, € Vi x Vj, that satisfy [|w], = cp(civ) (| fll 20y We therefore find that
(V(wp), wy), > 0. A corollary to Brouwer’s fixed point theorem (Lemma 2.1.1) implies
the existence of u, € B, = {v, € VIV x V, : v, < cp(CZV)_1||fHL2(Q)} such
that W(u,) = 0. Equivalently, there exists w;, € V3V x Vj, satisfying the first estimate
in eq. (3.23) and

an(Un, vn) + o (up; up, vi) = (fon)7r Yo, € VI x 1, (3.26)

proving the existence of a solution wy, to eq. (3.7) restricted to VAV x Vj,.
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Next we prove uniqueness of u;, € V4V x V}, to eq. (3.7). For this, assume two solutions
upy € VA x Vj, and up, € VA x V, that both solve eq. (3.7). We will show that
up1 = up under the smallness assumption eq. (3.22). We first note that coercivity of
ap(+,-) eq. (3.14) implies

VCZ’H'U,M - uhng < ap(up1 — Up2, Up1 — Up2). (3.27)
Furthermore, note that for any v, € V;&" x V,
ap(Wp1 — Wp 2, Vp) + op(Un1; Un1, V) — Op(Un2; Un 2, v,) = 0. (3.28)
Combining eq. (3.27) and eq. (3.28),

2
chmuh,l - uh,2wv SOh(Uh,z; Uhp,1; Up1 — Uh,z) - Oh(uh,l; Uhp,1, Up1 — uh,2)
- Oh(uh,z; Up1 — Up2, Up1 — Uh,Q) (3-29)

<op(Un2 — Un1; Un1, Up1 — Up2),

since op(Up2; Up1 — Wp2, Up1 — Up2) > 0 by eq. (3.18). Next, by eq. (3.19) and eq. (3.23)

2
veglluns = wnell, < colluns = unallyp [lunal, [lens = wnell,

< colwna ], luwn = wnsf; (3.30)
2

< Cocp(CZV)AHfHB(Q) H!uh,l - 'U/h,z‘

implying
((ve2)? = copll Pl ) llaan =zl < 0. (3.31)
By eq. (3.22) it follows that wy; = w2, proving uniqueness of u, € VAV x V.
We next prove the existence and uniqueness of p,. Given the solution u;, € V&V x V},,

the pressure p;, € @), is the solution to

bh(ph, ?Jh> = (f, Uh)T — ah(uh, ’Uh) — oh(uh; Uy, ’Uh) V’Uh c Vh. (332)

Since apn(up,-) and op(up;uy, ) are bounded linear functionals on V', by, respectively
eq. (3.14) and eq. (3.19), the right-hand side itself is a bounded linear functional on V7.
Existence of a unique solution p, € Q) to eq. (3.32) is now guaranteed by the inf-sup
condition eq. (3.16) thanks to Theorem 2.1.3.
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Lastly, we prove the second estimate of eq. (3.23). By eq. (3.7) ap(un, wp)+by(py,, wp) —
bn(rh, un) = (f,wn)r — on(un; up, wy). Discrete inf-sup stability eq. (3.17), and bounded-
ness of op(+;+,+) eq. (3.19) therefore result in

UH’ (uh7 ph) H’v,p < sup (f’ wh)T — Oh(uh; Up, wh)

< ol fll ey + collwnl%. (333
wornex, [l ol Ly + collunll? (3.38)

The result follows from the first estimate in eq. (3.23). O

3.5 Error analysis

In this section we prove that the HDG method eq. (3.7) for the Navier-Stokes problem is

pressure-robust, i.e., the velocity error is pressure-independent. Let Ilgpy : [H 1(9)] ‘¢ Vi
be the usual Brezzi-Douglas—Marini (BDM) interpolation operator as given in the following
lemma [10, Lemma 7).

Lemma 3.5.1. If the mesh consists of triangles in two dimensions or tetrahedra in three
dimensions there is an interpolation operator Ugpy = [HY(Q)]? — Vj, with the following
properties for all u € [H*1(K)]|4:

(i) [n - Oppmu] = 0, where [a] = a™ + a~ and [a] = a on, respectively, interior and
boundary faces is the usual jump operator.

(it) [|w — Mppmul| g gy < chl[;m||u||Hl(K) with m = 0,1,2 and min(1,m) <1 <k + 1.
(i) [ q(V-u—V -Tlgpyu)dz =0 for all g € Pp_1(K).
(w) [nd(n-u—n-Igpyu)ds =0 for all § € Py(F), where F is a face on OK.

Furthermore, let Iy, Il and Iy be the standard L%-projection operators onto Vi, Qp
and @y, respectively. We then introduce the approximation and interpolation errors

§u = u — llppmu, Gu = up, — ppmu, gu = V(U) - ﬁVU7 Eu = Up — ﬁVU,

& =p —Top, Gp = prn — g, & =7(p) —lgp, G = pn— Tgp,

and, for notational convenience, &, = (&4, &u)s Cu = (Gus Gu)s &, = (6, &) and ¢, = (G, Gy)-
Subtracting now the HDG method eq. (3.7) from the consistency result eq. (3.20) and
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splitting the errors, we obtain the following error equation:

an(Cys V1) + 0n(Cys vn) + On(@ps Cu) =an (&, vn) + 0n(&,, vn) + br(qps Su)
— op(u; €y 1) — 0 (Cus U, vR) (3.34)
+ on(u; &, vn) + 0 (&us Un, VR).

In the following lemma we will find an energy estimate for the velocity error.

Theorem 3.5.1 (Pressure robust velocity error estimate). Let C,, and C, be the constants
in eq. (3.3). Furthermore let ¢, be the discrete Poincaré constant of eq. (3.13), ¢, the

constant in eq. (3.19) and & the constant in eq. (3.14). Let u € [HkH(Q)]d be the velocity
solution to the Navier—Stokes problem eq. (3.1), u = (u,y(u)), and u, € V', the velocity
solution of the HDG discretization eq. (3.7). Then assuming the smallness condition

ol fllpa) < 3v°(ca)”, (3.35)

where ¢, = max {Cy, ¢, }, ¢, = max{C,, ¢o} and ¢, = min{1, ¢} we obtain the pressure-
robust velocity error estimate

llw = wnll, < ch* flull o g (3.36)

where ¢ > 0 a constant independent of h and v.

Proof. In the error equation eq. (3.34) take (v, q;) = (¢,, —¢,). Then, by coercivity of
an(-,-) eq. (3.14)

ved 1€ 12 < an(Co, o) =an(€s C) + bu(€y, C) — br(C, &)
- Oh(u; Cw Cu) - Oh(gu; Up, Cu) (337)
+ Oh(u; €u7 Cu) + Oh(gu; Uh, Cu)

By properties of the BDM interpolation operator and using that wy, is pointwise divergence-
free and divergence-conforming, we note that b,(&,, ¢.) = 0 and b,(C,,&u) = 0. Further-
more, oy (u; ¢, ¢,) > 0 so that

VCZH|CU|H12; < ah(€u7 Cu) - Oh(cu; Up, Cu) + Oh(u; €u7 Cu) + Oh(gu; Up, Cu) (338)

We next bound each term on the right-hand side separately.
By boundedness of ap(-,-) eq. (3.14),

ah(£u> Cu) S VCZH’éumu"HCumv’ S VCCZH|€1L|HU"HCUH‘U7 (339)
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where the second inequality is by equivalence of ||-||,, and |||, on V.

From eq. (3.4) and eq. (3.35) it follows that [|ul| ;) < ic cotv. Furthermore, from

2~a“o

eq. (3.23) and eq. (3.35) it follows that ||u||, < 5¢,c,'v. Then, by eq. (3.19),

on(: €4, €.) < collull ey NENLIC, < 2wl LG, (3.40m)
on (i wn: §u) < Coll€ully p lluenll, ISl < scarll€ullLIIC. I, (3.40b)
0n(Gus ns €u) < CollGully s Iunll, JICull, < SebrIICul3- (3.40c)

Combining eq. (3.38)-eq. (3.40) and dividing by ||¢, ||,
seavllCull, < (vei = scam)lICull, < vc + cc) €l - (3.41)

The result follows by a triangle inequality and the interpolation estimates of the BDM
interpolation operator defined in Lemma 3.5.1 and the L2-projection operator. O

Given the velocity error estimate of the previous theorem we can now state an error
estimate for the pressure in the L?-norm.

Lemma 3.5.2 (Pressure error estimate in the L?>-norm). Let (u,p) € [H’““(Q)}d x H*(Q)
be the solution to the Navier—Stokes problem eq. (3.1) and u = (u,y(u)) and p = (p,v(p)).
Let (up, py) € X, solve eq. (3.7), then

Ip = Pl sy < € (B Dplliney + Bl osgey ) (3.42)
with ¢ > 0 a constant independent of h and v.
Proof. By the triangle inequality and the inf-sup condition eq. (3.16),

12 = prll 2 < llp = aull, + Py — aulll,

_ bu(pP — Pp, Vn _ bn(p — qp,, vn (3.43)
<|lp—aull, + 8," sup bu(P — Pu 1) + 4, sup M
vevy,  lonll, vevy,  lloall,

Bounding the third term on the right-hand side using the boundedness of by (-, -) eq. (3.15),

_ _ bh P — Dy, Un
0= il < (14 5,7) llp = apll, + 35" sup 2EPt) g

vevi, ol
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Proceeding as in the velocity error estimate,
bn(P — Pps vn) = an(w — wp, vp) + op(w — up; w, vy) — op(wn; w — wp, V)
b / (345)
< (e + <) wllu = wnll, Jonll,

Combining eq. (3.44) and eq. (3.45), and since g, € Q,, is arbitrary,
Iy = pulliaey < (140,"c) ind o= aull, +6," (o) vllw—wall,. (3.46)
Standard interpolation estimates for the L?-projection can be used to show that
it lp = aull, < B lplnge (3.47)

where ¢ is a constant independent of h. To bound the second term on the right-hand side
of eq. (3.46), note that

I =l < N&ullly +Cull < 1€l + cllCull, < cll&ull (3.48)

where the last inequality is by eq. (3.41). The result follows from eq. (3.46), eq. (3.47),
eq. (3.48) and the interpolation estimates of the BDM interpolation operator defined
in lemma 3.5.1 and the L2-projection operator. O

We end this section by showing the velocity error estimate in the L?>-norm. For this we
require the solution (¢, ) to the following dual problem [16, Chapter 6]:

V-V - (u®¢) -V — (Vo) u=yg in Q, (3.49a)
V-$p=0 in Q, (3.49b)
»p=0 on I'. (3.49¢)

We assume the following regularity estimate:

”¢||H2(Q) +||77Z)||H1(Q) < CT||g||L2(Q) ’ (3.50)

with ¢, > 0 a constant independent of h. This regularity estimate holds for a convex poly-

hedron © assuming u € [L>(Q)] I [14]. It will be convenient to introduce the interpolation
erTors

s = ¢ — lppm9, §¢> =(¢) — v g,

§y = — gy, §p =(¥) — Lgy.

and £¢ = (£¢,5¢), €¢ = (Ew,étw)-
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Lemma 3.5.3 (Velocity error estimate in the L?norm). Let u € [H’““(Q)}d N [LOO(Q)}d
be the velocity solution to the Navier—Stokes problem eq. (3.1), u = (u,vy(u)), and w, €
V', the wvelocity solution of the HDG discretization eq. (3.7). Subject to the regularity
condition eq. (3.50), there exists a constant C' > 0, independent of h, such that

lu — UhHLZ(Q) < CthHUHHkH(Q) : (3.51)

Proof. By definition of ay(-,-) eq. (3.8a), integration by parts, using the single-valuedness
of u, 0,¢ and uy, across cell boundaries, and that © = @, = 0 on I', we note that

an(u —up, (6,7(¢) = = > /K v(u —uy) - V2o d. (3.52)

KeTh

Furthermore, by definition of eq. (3.8b), using that ¢ = v(¢) on cell boundaries and the
identity (a ® b) : C =b- CTa for vectors a,b € R™ and tensor C' € R™*"

onta =i (01(0), (6.1 == Y [ (0-w)- (VofTude. (359

KeT, K

Similarly, using again the identity (a ® b) : C =b- C7a,
onlusu—un, (01(0) == Y [ (w=w) V-@oe)de, @50

KeTy

where we used also that (Vo)u = (u- V)¢ and, for divergence-free u, V- (u® ¢) = (u-V)o.

Next, by definition of b, eq. (3.8¢), integration by parts, using that wu, uy, - n and ¢ are
single-valued across cell boundaries, and that © = u, = 0 on T,

(@) u—w) ==Y [ Vo @-u)d. (3.55)

KeT

Once again from the definition of b, eq. (3.8¢),

bn(p — P, @) = — /Q(p — )V - pdz = 0. (3.56)

since V- ¢ = 0.
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Adding eq. (3.52)-eq. (3.56),
an(w — un, (9,7(9))) + on(u — un; (u,y(w)), (¢, 7(¢)))
+on(u;w — un, (¢,7(0))) + bn(p = Py, @) — ba((¥, (1)), 1 — un)
= Z / u— up) VV2¢ -V (u®ep)— Vi — (ngﬁ)Tu) dz. (3.57)

KeT

Taking g = u — uy, in eq. (3.49) we therefore find that
lu = unl[720) = an(w = wn, (6,7(9))) + ba(P — Pys @) + on(u — up; (u, v(w)), (6,7(9)))
+on(u; w = un, (,7(0))) = bn((¢, 7)), u — un). (3.58)

Next, from the consistency of the scheme eq. (3.20),
ah('u, — WUp, ’Uh) + bh(p — DPp Uh) — oh(uh; Up, ’Uh) + oh(u; u, ’Uh) — bh(qh, u— Uh) =0. (359)
Subtract now eq. (3.59) from eq. (3.58) and choose v;, = (Igpm¢, Iy ¢) and
q, = (Igy,l1gey). Algebraic manipulation then results in
|u — Uh“i'zm) =an(w — un, &y) + 0u(P — Py, §s) + onu — up; (u,7(u)), &)
—op(u —up;u —up, &) + on(u;u — up, &)

+ Oh(u — Up; U — UWUp, (Qb, ’)/(QZS))) - bh(&p; u— Uh)
=+ T+ T3+ Ty+15+ 1+ 17.

(3.60)

Note first that

Ty = bu(p — Pp, o) = Z/p )V - (¢ — llppme) dx

KeTy,

+ Z/ (¢ — Uppm¢) - nprds =0, (3.61)

KeTy

by properties of the BDM interpolation operator and the L?-projection operator IIy. We
next bound the remaining terms in eq. (3.60). By boundedness of a(,-) eq. (3.14),

Ty < covflu — uall,

M (3.62)
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Next, the interpolation property (ii) of the BDM projection in lemma 3.5.1 and the inter-
polation properties of the L?-projection Iy followed by assumption eq. (3.50), yield

l€o]]., < @l < Allw = wnll oy (3.63)
so that
Ty < cvhllu = upllyllu = w20 (3.64)

From boundedness of the trilinear form op(-;-,-) eq. (3.19), the smallness assumption
eq. (3.35), and eq. (3.63)

Ty < Seavllu —will, & | < evhllu = unll, u = unll 20 (3.65)

and, similarly,
Ty +T5 < cvhf|u — wpl, lu — wnll 2 () - (3.66)

For Ty, using the boundedness of the trilinear form o,(+;-,-) eq. (3.19), the fact that
||¢||H1(Q) < H¢||H2(Q)a and eq. (3.36),

T < Collu —will ll#ll,
< chllu — |, [[ullyloll, (3.67)
< chfjlw —wnll,[Jullyllv = unll 2 q) -

To bound 77, we use the boundedness of by (-, -) eq. (3.15), standard interpolation estimates
for the L%-projections Iy and Ilg, and the regularity assumption eq. (3.50) to find

T < €] e —wnlly < chllolm oy I —wnlly < chlles = wnll = wnll 20

(3.68)
The result follows after collecting eq. (3.64)—eq. (3.68), dividing both sides by [|u — up|| ;2(q
and applying the interpolation estimates of the BDM interpolant defined in Lemma 3.5.1
and the L2-projection operator. O

3.6 Numerical examples

In this section we present numerical examples that demonstrate optimality and pressure-
robustness of the scheme. All numerical examples have been implemented with the penalty
parameter o = 10k? using the high order finite element library NGSolve [35]. In all test
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cases below, we compare the HDG method analyzed in this paper to the HDG method
proposed in [55]. The method proposed in [55] considers a smaller pressure trace function
space in that @), eq. (3.6b) is replaced by

Qn = {Gn € L*(F), @ € Po1(F) VF € F}.

The velocity and pressure estimates of this scheme are optimal, see [77] for the analysis of
the Stokes problem. Despite the velocity field obtained by the discretization in [55] being
pointwise divergence free, the method is not pressure robust. This can be attributed to
the fact that the approximate velocity field is not divergence-conforming.

3.6.1 No flow problem

In this first example we consider the no flow problem from [17, Example 1.1] adapted
to the stationary Navier-Stokes problem. For this we take = (0,1)?, set v = 1, and
apply homogeneous Dirichlet boundary conditions. The source term is taken to be f =
(0,7(1 —y+3y?)), where r > 0 is a parameter. The exact solution to this problem is u = 0
and p = r(y® — %yQ +y— 1—72) Changing the parameter r should affect only the pressure
solution. This example tests whether the numerical scheme mimics this property.

In Figure 3.1 we plot the velocity and pressure errors using a polynomial approximation
with k = 2 for r = 1 and r = 10°. We observe in Figure 3.1a that the velocity error using
the HDG method that is not divergence-conforming is, as expected, not pressure-robust.
Although the velocity converges optimally, increasing the parameter r increases the error
in the velocity. Conversely, the error in the velocity of the divergence-conforming method is
of machine-precision, no matter the grid size. Although the error in the velocity increases
as r increases, this can be attributed to an increase in the condition number of the matrix
that needs to be inverted at each Picard iteration. The pressure-errors are identical for
both HDG methods, see Figure 3.1b. The errors in the pressure converge optimally and
increase as r increases.

3.6.2 Potential flow problem

We next consider the potential flow problem from [63, Example 4]. Setting f = 0, this test

case was constructed such that pressure is balanced by the nonlinear convection terms,

and serves to show that nonlinear convection terms can also induce a lack of pressure-
11

robustness [17]. On the domain Q@ = (—3,3)? we consider the steady Navier-Stokes
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(a) Velocity error. (b) Pressure error.

Figure 3.1: Results for the no flow problem in Section 3.6.1 using polynomial degree k = 2.
Observe that the pressure errors are identical for both HDG methods.

equations

—vAu+ V- (u®u)+ Vp =0,
V-u=0,

and the boundary conditions are chosen such that the exact solution is given by u = V¢
and p = —1|u|?, with the harmonic function ¢ = y® 4+ 52y — 102%y®. In Figure 3.2 we plot
the velocity and pressure errors using a polynomial approximation with k = 2 for v = 10°
and v = 1075, We observe optimal rates of convergence for both methods for velocity and
pressure.

For the HDG method that is not divergence-conforming, however, the errors in the
velocity and pressure increase significantly as the viscosity is decreased. Furthermore, there
is no convergence of the non-linear solvers for large h for the case that v = 1075. This
was observed also in [17, (3] for schemes that are not pressure-robust. For the divergence-
conforming method, the errors in velocity and pressure are unaffected by the decrease
in viscosity and there are no problems associated with the convergence of the non-linear
solver.
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(a) Example 2, Velocity error. (b) Example 2, Pressure error.

Figure 3.2: Results for the potential flow problem in Section 3.6.2 using polynomial degree
k = 2. The pressure errors and velocity errors are identical for both HDG methods in the
case v = 10°, while the HDG method that is not divergence-conforming fails to converge

for large h in the case v = 107°.
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Chapter 4

Pressure-robust space-time HDG for
the time-dependent problem on fixed
domains: Convergence to strong
solutions

In this chapter, we present the first analysis of a space-time HDG method for the incom-
pressible Navier—Stokes equations. The main result is an optimal error estimate for the
velocity which is independent of the pressure, thus proving that the method is pressure-
robust. The key to our error analysis is a “parabolic Stokes projection” introduced by
Chrysafinos and Walkington [17] suitably modified to accomodate the space-time HDG
setting. The projection is defined as the space-time HDG solution of a linear Stokes prob-
lem, and thus the projection is pointwise divergence free and belongs to H (div;(2).

Along the way, we investigate the well-posedness of the nonlinear algebraic system
arising from the space-time HDG discretization. To our knowledge, this is the first work to
consider the well-posedness of a space-time finite element method for the incompressible
Navier—Stokes equations. This is made complicated by the fully discrete nature of the
scheme, as we cannot leverage tools from ODE theory (e.g., Carathéodory’s theorem) as
is done in the semidiscrete case. Instead, we will use a topological degree argument based
on Lemma 2.1.2 to prove that there exists a discrete solution in both two and three spatial
dimensions, and that this discrete solution satisfies a suitable energy inequality.

The uniqueness of the discrete velocity solution is subtle. As the discrete problem
eq. (4.4) must be considered in an integral sense over each space-time slab (and not
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pointwise in time), we will require sharper bounds on the nonlinear convection term than
eq. (4.10). This is made possible by a novel discrete version of the Ladyzhenskaya inequal-
ity eq. (2.16) valid for broken polynomial spaces. Much like the continuous problem, we
can only prove that the solution to the nonlinear algebraic system is unique in two spatial
dimensions due to the difference in the scaling of the exponents in this Ladyzhenskaya
inequality with respect to the spatial dimension.

Additionally, our proof of uniqueness in two dimensions requires a bound on the discrete
velocity solution uy in L*(0,T; L*(Q)9) that is uniform with respect to the time step At
and mesh size h. We remark that for the low order scheme in time (k = 1), this uniform
bound is furnished by the energy estimate Lemma 4.1.1. However, for higher order schemes
in time (k > 2), this energy bound is insufficient. The point of failure is that, in general,
ess sUpg«<7 Un(t) is not attained at the partition points of the time-interval for higher
order schemes in time. Consequently, the energy bound in Lemma 4.1.1 does not bound
the discrete velocity solution uy, in L°°(0, T'; L*(Q)%).

Let us briefly recall how one obtains such a bound for the continuous problem. In
two dimensions, bounds on the continuous solution u in L*°(0,T; L*(Q)?) are obtained by
testing eq. (2.24) with w and integrating to an arbitrary time s € (0,7]. In the equiva-
lent space-time variational formulation of the Navier—Stokes equations given in eq. (2.27),
this amounts to choosing xpsu as a test function. In three dimensions, weak solu-
tions satisfying eq. (2.24) are no longer regular enough to be used as test functions since
O € L*3(0,T; V"), and energy bounds must be obtained through other means; see e.g.
[16, Lemma 7.21]. However, in principle, the strong solutions in Theorem 2.3.2 satisfying
Oy € L*(0,T; H) possess enough regularity to proceed as in the case of two dimensions.
The difficulty at the discrete level is that, in constrast to the continuous problem, x o ¢un
is not, in general, an element of the velocity finite element space and hence cannot be used
as a test function. To circumvent this problem, we will make use of tools introduced by
Chrysafinos and Walkington [15, 16, 17] which exploit fine properties of polynomials to
provide discrete approximations to the characteristic function.

The final piece of the puzzle for our analysis is a uniform-in-time bound on the parabolic
Stokes projection. Our plan is to follow the proof of [17, Theorem 4.10]. Therein, an
essential ingredient is a discrete (spatial) Stokes operator. Unfortunately, as the usual
L?-inner product offers no control over the discrete facet solution, it is not an inner-
product on the HDG space. Therefore, we cannot rely on the Riesz representation theorem
(Theorem 2.1.1) in the HDG setting as is usually done to infer the existence of a discrete
Stokes operator. Instead, we introduce a novel discrete Stokes operator by mimicking the
static condensation that occurs for the HDG method at the algebraic level following ideas
from [12]. Lastly, we derive an error estimate for the pressure which is unfortunately sub-
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optimal due to the use of an inverse inequality to control the time derivative of the velocity
error.

This chapter is organized as follows: in Section 4.1, we introduce the numerical method
and present the main results of this chapter. In Section 4.2, we study the conservation
properties of the numerical scheme and introduce analysis tools that required for our anal-
ysis. We consider the well-posedness of the nonlinear algebraic system arising from the
numerical scheme in Section 4.3. Section 4.4 and Section 4.5 are dedicated to the error
analysis for the velocity and pressure, respectively. Finally, we present a numerical test case
with a manufactured solution in Section 4.6 to verify the convergence rates predicted by
the theory both when the spatial error dominates and when the temporal error dominates.

The contents of this chapter have been taken, with modification, from the article:

K. L. A Kirk, T. L. HORVATH, AND S. RHEBERGEN, Analysis of an exactly
mass conserving space-time hybridized discontinuous Galerkin method for the time-
dependent Navier—Stokes equations, (To appear in Mathematics of Computation)
https://arxiv.org/abs/2103.13492,

with permission from the American Mathematical Society (AMS).

4.1 The space-time HDG method and main results

4.1.1 Notation

We use standard notation for Lebesgue and Sobolev spaces: given a bounded measurable
set D, we denote by LP(D) the space of p-integrable functions. When p = 2, we denote the
L%(D) inner product by (-, -)p. We denote by W*?(D) the Sobolev space of functions whose
k™ distributional derivative is p-integrable. When p = 2, we write W*?(D) = H*(D).
Provided the boundary of D is smooth enough to admit a continuous trace operator,
we define HY(D) to be the subspace of H*(D) of functions with vanishing trace on the
boundary of D. We denote the space of polynomials of degree kK > 0 on D by Py(D).

Next, for any Banach space U and for 1 < p < oo, we let LP(0,T; U) denote the space of
p-integrable functions defined on [0, T'] taking values in U. This is a Banach space equipped

with the norm
T 1/p
lwll oo 0y = (/0 Jull?; dt) :
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When p = oo, we denote by L>(0,T’; U) the Banach space of essentially bounded functions
L*>(0,T;U) := {u 1[0, 7] = U | ess SUPOStSTHu(t)HU < oo} :

where ess sup denotes the essential supremum. By H*(0,T;U) we denote the Bochner-
Sobolev space for k > 1:

HE(0,T;U) = {u € L(0,T;U) | 2% € [2(0,T; V), j k}

endowed with the norm

ol (Z\

Let C(0,T;U) denote the Banach space of (time) continuous functions equipped with the
norm

1/2

diu
de

L2(OTL2(Q)))

llloo.zan = sup [lu(®)], -

By C.(0,T;U) we denote the space of (time) continuous functions with compact support
in the interval (0,7"). Lastly, given a Banach space U, we let P(0,7;U) denote the space
of polynomials of degree k > 0 in time taking values in U.

4.1.2 The continuous problem

In this chapter, we are concerned with the numerical solution of the transient Navier—
Stokes system posed on a bounded Lipschitz domain Q C RY, d € {2,3}: given a suitably
chosen body force f, kinematic viscosity 0 < v < 1, and initial data wug, find (u,p) such
that

Ou—vAu+V - (u®u)+ Vp=f, in  x (0,77, (4.1a)
V-u=0, in Q x (0,77, (4.1b)

u =0, on 092 x (0,77, (4.1c)

u(zx,0) = ug(x), in Q. (4.1d)

Recall from Section 2.3 that the natural setting for weak velocity solutions of eq. (4.1) is
the class L2(0,T;V) N L>(0,T; H), with H and V defined in eq. (2.22) and eq. (2.23),
respectively. However, as a discontinuous method, the HDG method introduces additional
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stabilization which is a potential source of consistency error if the exact solution is not
sufficiently regular. For this reason, we make the following assumption to ensure the
existence of a strong solution in the sense of Theorem 2.3.2:

Assumption 1. Let C' > 0 be the constant from Theorem 2.3.2. We assume that eq. (2.28)
holds. Note that, since ug € V C H}(2)4, eq. (2.28) and the Poincaré inequality (Theo-
rem 2.2.5) imply the existence of another constant C, > 0 such that

1
2 2
||u0||L2(Q) + ;”f“L?(o,T;L?(Q)) < G, (4.2)

Remark 4.1.1. If Q C R? is a convex polygon, the ezistence of a global unique strong
solution (u,p) can be shown without any restriction on the problem data (see e.g. [00]).
However, we will later require a similar restriction on the data to prove the uniqueness of
the discrete solution in two dimensions. We therefore assume eq. (2.28) even in the two
dimensional case.

Therefore, given f € L?(0,T; H) and uy € V satisfying the small data assumption
eq. (4.2), we consider the following space-time formulation for the strong solution to the
Navier-Stokes system: for all (v, q) € L*(0,T; HY(Q)Y)NH(0,T; L*(2)%) x L2(0,T; L3(2)N
HY(Q)), find (u,p) € L=(0,T; V)N L2(0,T; H*(Q)NV)NHY0,T; H) x L*(0,T; L3(2) N
H'()) satisfying

— /OT(u,Gtv) dt + /OT((u - V)u,v)dt + V/OT(VU,VT;) dt + /OT(VP7 v)dt (4.3)

T (w(T), o(T)) - / 0.V - u)dt = (g, v(0)) + / (f,v)dt.

4.1.3 The numerical method

To obtain a triangulation of the space-time domain €2 x (0,7"), we first tessellate the spatial
domain 2 C RY, d = {2, 3} with simplicial elements (if d = 2), or tetrahedral elements (if
d = 3). We denote the resulting tessellation by 7, = { K}. Furthermore, we let Fj, and 07,
denote, respectively, the set and union of all edges of 7. By hg, we denote the diameter
of the element K € T, and we let h = maxger, hx. We make the following assumptions
on the spatial mesh:

(i) For each h € H, Tj, is conforming in the sense that given two elements K, Ky € Ty,

either K1 N Ky = () or K3 N K, is a common vertex (d = 2) or edge (d = 3), or a
common face of K7 and K.
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(ii) For each h € H, T, is quasi-uniform; i.e., there exists a Cyy > 0 such that h < Cyhg
for all K € Tj,.

(iii) For each h € H, each face F' € Fy, satisfies an equivalence condition: that is, given
hrp = diam(F'), there exist constants C,, C¢ > 0 such that C.hx < hp < C¢hg for all
K €T, and for all F € F,, where F' C 0K.

Next, we partition the time interval [0, 7] into a series of N 4 1 time-levels 0 = ¢, <
t1 <--- <ty =T of length At,, =t,.1 —t,. For simplicity of presentation, we assume a
uniform time step size At,, = At for 0 < n < N. We remark, however, that a variable time
step size poses no additional difficulty in the application nor the analysis of the method.
A space-time slab is then defined as E" = Q x [,,, with I,, = (t,,t,11). We then tessellate
the space-time slab £" with space-time prisms K x [,,, i.e. £" = UKeTh K x I,,. We denote
this tessellation by .7,". Combining each space-time slab n = 0,...,N — 1, we obtain a
tessellation of the space-time domain .7}, = Ug_ol T

4.1.3.1 The space-time hybridized DG method

We discretize the Navier-Stokes problem eq. (4.1) using the exactly mass conserving hy-
bridized discontinuous Galerkin method developed in [78] combined with a high-order dis-
continuous Galerkin time stepping scheme. We first introduce the following discontinuous
finite element spaces on Ty:

Vi = {vn € L*(Q)? | vnl € P (K)'VK € Ty},
Qn = {an € Li(Q) | anlx € Poo—1(K) VK € Tp} .

On 07y, we introduce the following facet finite element spaces:

Vi o= {0 € L*(0T5) | n|r € Pr,(F)*VF € Fi, tnloo =01,
Qn = {Gn € L*(3Th) | Gnlr € Pi,(F) VF € Fn} .

From these spaces, we construct the following space-time finite element spaces in which we
will seek our approximation on each space-time slab £™:

Wy = {v, € L*(0,T; L*

( DY | Valmstnsa] € Pro(tnstusi; Vi), Yn=10,...,N — 1},
Q= {gn € L*(0,T; L

(

(

)
Q)) | qh|(tn,tn+1] € Pkt(tnatn-i-l;Qh)v Vn = 07 . 'aN - 1} )
8771)61) | @h|(tn,tn+1} € Pkt<tnatn+1§‘_/h)> Yn = 0, .. .,N — 1},

]_}h = {@h € L? 0,7, L?
9 OTi)) | @nl(tnstnsn) € Pro(tns tug1;Qn), Y =10,...,N —1}.

Q= {an € L*(0,T; L?
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We note that, in general, the polynomial degree in time k; can be chosen independently of
the polynomial degree in space kg, but for ease of presentation we choose k; = ks = k. This
choice forces us to consider k; > 1, but the analysis herein is valid also for the case k; = 0
(corresponding to a modified backward Euler scheme). We adopt the following notation
for various product spaces of interest in this work:

Vi=VixVi, Q,=QnXQn Vr=V,xV, ©Qn=Q9,x Q.

Pairs in these product spaces will be denoted using boldface; for example, vy, 1= (vp, 0p) €
V.. On each space-time slab £", the space-time HDG method for the Navier—Stokes
problem reads: find (up,p;,) € Vi x Q) satisfying for all (vy, q;,) € Vi X Qp,

—/ (U,h,aﬂjh dt—i—/ (I/ah Up, Uy, —i—oh(uh,uh,vh)) dt (44&)
In
+( n+17 n+1 Th / bh ph>vh dt ( Uy, n) h+/ (f?vh)f/ﬁdt
I, In

/ b (@, un) dt = 0, (4.4b)

In

where (u,v)7, = Y ger [;ewvdr. We initialize the numerical scheme by choosing u, =
Pyug on the first space-time slab €Y, where P, : L*(Q) — V4V is the L2-projection onto
Vv = {uh eV @ bu(gy,un) =0, Vq, € Qh}, the discretely divergence free subspace
of Vj,. Here, we denote by ul the traces at time level ¢, from above and below, i.e.

utf = lir% up(t™ £ €). We define the time jump operator at time t,, by [us], = u} — u,,.
e—

The discrete forms ap(-,-) : Vi, x Vi, = R, bp(-,) : Vi x Q,, — R, and op(+;+, ) :
Vi x Vi, x V;, — R appearing in eq. (4.4) serve as approximations to the viscous, pressure-
velocity coupling, and convection terms, respectively. We define them as in Chapter 3:
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w(w,v) Z/Vu Vvdx+2/ (u—1)- (v—70)ds, (4.5a)

KeTy KeTh

—Z/ (u— @) (9nvh+(9nu-(v—17)}ds,
KeT,

op(w; uw,v) : Z/u@w Vvda:+2/ n(u+u)-(v—2o)ds  (4.5b)

KeT, KeT,

+Z/ tlw-n|(u—1a)- (v-1)ds,
KeTy
Z/pv vdz + Z/ v-npds. (4.5¢)
KeT, KEeT;

Here, we slightly abuse notation by using n to denote the outward unit normal ny to the
element K for brevity. To ensure stability of the numerical scheme, o > 0 must be chosen
sufficiently large [77].

4.1.3.2 Preliminaries

In this subsection, we present some preliminaries and rapidly recall the main properties of
the forms eq. (4.5) discussed in the previous chapter. Throughout this section and the rest
of the chapter, we denote by C' > 0 a generic constant independent of the mesh parameters
h and At and the viscosity v, but possibly dependent on the domain €2, the polynomial
degree k, and the spatial dimension d. At times we also use the notation a < b to denote
a < Cb. To set notation, let

V(h) =V, + VN H*(Q)® V(h):=V,+ H?0T;)*
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and define the product space V' (h) := V(h) x V(h). We introduce the following mesh-
dependent inner-products and norms:

(w,v)op = (u,v)7, + Z hig(u—a,v—17)sk, Vu,v € V(h),
KEeT;,
1
lolf = D IVl + D o Mo Vo € V(h),
KeTy, Fer, F
2 2 —15 2
ol = Z va||L2(K) + Z hi 1o — UHL?({?K)’ Vv € V(h),
KeTh KeTy
2 2 2
ol = vl + >~ Axll(T0)nl o Vv € V(h),
KEeT,
llally =llgnlza@ + D hxcll@ulzeon) Va, € Qy,
KeTy

where we note that the equivalence constants of ||-||, and [[-][,, on the finite-dimensional
space V', are independent of the mesh size; see [77]. The bilinear form ay(+,-) is continuous
and for sufficiently large o enjoys discrete coercivity [77, Lemmas 4.2 and 4.3], i.e. for all
v, € Vyand u,v € V(h)

an(vn, vn) 2 Clloall; and |ay(u,v)| < Cllull,[lv]],- (4.8)
The trilinear form op(+; -, -) satisfies [1, Proposition 3.6]
1 .
on(wp;vn, o) =5 Y [ |wp-nllon —wPds > 0w, € Y, Vo, €V (49)
2 KeT /K

Further, the trilinear form op(+; -, -) is Lipschitz continuous in its first argument |1, Propo-
sition 3.4]: for all wy,wy € V(h), uw € V(h) and v € V' (h) it holds that

|on (w3, v) — op(way w, v)| < Cllwr —wally, Jlull, [l (4.10)

4.1.4 Well-posedness and stability

To the best of the authors’ knowledge, a rigourous study of well-posedness for higher-order
space-time Galerkin schemes applied to the Navier—Stokes equations has yet to appear
in the literature. We remark that for the low order scheme (k = 1), uniqueness of the
discrete solution is a consequence of the following energy estimate which we will derive in
Section 4.3:
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Lemma 4.1.1. Let d = 2 or 3, k > 1, and suppose that w, € V} 1S an approximate ve-
locity solution of the Navier—Stokes equations computed using the space-time HDG scheme
eq. (4.4) forn =0,...,N — 1. There exists a constant C > 0, independent of the mesh
parameters At and h and the viscosity v but dependent on the domain Q) and polynomial
degree k, such that

N-1 T T
1
I+ Sl 4 oz < (3 [ 1t + ol )
n=0
where we define the time jump operator at time t, as [ug], = u} —u,, .

However, for higher order schemes in time (k > 2), this energy bound is insufficient
to prove the uniqueness of the discrete solution since ess supg.,<p us(t) need not be not
attained at the partition points of the time-interval for higher order schemes in time.
Consequently, the energy bound in Lemma 4.1.1 does not bound the discrete velocity
solution uy, in L*°(0,T; L?(2)?). To overcome this challenge, we will make use of tools
introduced by Chrysafinos and Walkington [15, 16, 17]. We begin by introducing the
exponential interpolant from [17]:

Definition 4.1.1 (Exponential interpolant [17]). Let V' be a linear space and A\ > 0 be
given. If v = Zf:o ¢i(t)v; € Py(Ln; V) where ¢;(t) € Py(l,), vi € V, the exponential
interpolant of v is defined by

where 7(t) € Pu(1,) is an approzimation of r;(t)e ") satisfying 7(t}) = ri(t}) and

/ﬁ(t)q(t)dt:/ ri(t)g(t)e 2 At Vg € Py (1,,). (4.11)

In In

Next, we summarize the important properties of the exponential interpolant from [17,
Lemma 3.4 and Lemma 3.6]:

Lemma 4.1.2. Let V and Q) be linear spaces and v — v the exponential interpolant
constructed in Definition 4.1.1. If L(-,-) : V x Q@ — R is a bilinear mapping and v €
Py(1,,V), then

/ L(5(t), g(t)) dt = / L(t), () dt, Vg € Por(L, Q). (4.12)

In In
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If (-, -)v is a semi-inner product on V', then there exists a constant C' > 0, dependent only
on the polynomial degree k, such that for all v € Py(I,; V) and 1 < p < oo,

||17|‘Lp(1n;V) < C||U||LP(In;V) : (4.13)

We now discuss the concept of a discrete characteristic function, introduced by Chrysafi-

nos and Walkington [15, 16, 17] for discontinuous Galerkin time stepping schemes com-
bined with conforming spatial discretizations, and extended to full space-time discontinuous
Galerkin discretizations in e.g. [29, 100]. As we have previously noted, given a polynomial

p € Py(1,) and a fixed time s € (¢, ty41), the function x(, sp no longer lies in Py (I,) in
general and hence is not an admissable test function in our discrete scheme. In essence,
the discrete characteristic function provides us with a discrete approximation of x(¢, «p-

The discrete characteristic function is constructed in two steps. First, given a fixed time
s € (tn,tnt1), we define p, € Py(I,) as the unique polynomial satisfying p,(t}) = p(t}),
and

tni1 s
/ pyqdt = / pqdt, Vq € P,_1(1,). (4.14)
tn tn

This induces a continuous mapping p — p. Next, given a semi-inner product space V', this
construction is extended to approximate functions of the form x, gv where v € Py(I,; V):

Definition 4.1.2 (Discrete characteristic function [17]). Let V' be a semi-inner product
space and fix s € (tn,tny1). The discrete characteristic function of v € Py(1,; V) is defined
as the function vy, € Py(1,; V) satisfying vy () = v(t)}) and

tn+1 S
/ (vy, w)y dt = / (v,w)ydt, Ywe Py_1(L,;V).
tn tn

In the following lemma, we summarize the important properties of the discrete charac-
teristic function from [17, Lemma 3.1 and Lemma 3.2]:

Lemma 4.1.3. Let V be a semi-inner product space. The mapping

k k

v="> i) = vy =Y (di)y (s

=0 =0

on Py(I,; V) is continuous in the sense that there exists a constant C' > 0, depending only
upon the polynomial degree k, such that

H’UXHLQ(IR,V) <C HUHLQ(IH,V) . (4.15)
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Moreover, in the case where v(t) = z is constant in time, we can characterize its discrete
characteristic function as v, = p(t)z for p € Py(1,) satisfying p(t}) =1 and

tnt1 s
/ pgdt = / qdt, Vqé€ P,_1(1,). (4.16)
tn tn

Further, we have the following bound in L>°(I,) on p:
1Pl 11,y < € (4.17)

where the constant C depends only on the polynomial degree k.

With the help of these tools, it is possible to bound the discrete solution u in
L>=(0,T; L*(2)?) in two spatial dimensions:

Lemma 4.1.4. Letd = 2, k > 1, and suppose u;, € V}, is an approrimate velocity solution
of the Navier—Stokes equations computed using the space-time HDG scheme eq. (4.4) for
n=20,...,N —1. There exists a constant C' > 0, independent of the mesh parameters At
and h and the viscosity v but dependent on the domain 2 and polynomial degree k, such
that

2
[[un HLOO(O,T;L?(Q))

T 2 C (1 [T .2 >
<C <;/0 Hf”L2(Q) dt + ||u0||L2(Q)) +§ (;/0 HfHLQ(Q) dt + HuoHLQm)) '

With this bound in hand, we can prove the following uniqueness result in two dimensions
for the solution of the nonlinear system of algebraic equations arising from the discrete
scheme eq. (4.4):

Theorem 4.1.1 (Uniqueness in two dimensions). Let u, € V;, be an approzimate veloc-
ity solution of the Navier—Stokes equations computed using the space-time HDG scheme
eq. (4.4) form =0,...,N — 1. If d = 2, there exists a constant C > 0, independent of
the mesh parameters At and h and the viscosity v but dependent on the domain 2 and
polynomial degree k, such that if the problem data satisfies eq. (4.2) then wy, is the unique
velocity solution to eq. (4.4).

We defer the proofs of Lemma 4.1.4 and Theorem 4.1.1 to Section 4.3. In addition to
the bound on uy, in L*°(0, T; L?(2)?), the other key ingredient for proving Theorem 4.1.1 is
a novel discrete version of the classic Ladyzhenskaya inequality eq. (2.16) valid for broken
polynomial spaces. We will discuss this further in Section 4.2. Note that, similar to the
continuous theory, the scaling of the exponents in the discrete Ladyzhenskaya inequality
in three spatial dimensions prevents us from extending the proof of uniqueness to d = 3.
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4.1.5 FError analysis

Our main result is a pressure-robust error estimate for the approximate velocity arising
from the numerical scheme eq. (4.4) under the assumption that the problem data satisfies
eq. (4.2):

Theorem 4.1.2 (Velocity error). Let u be the strong velocity solution to the Navier—Stokes
system eq. (4.1) guaranteed by Theorem 2.3.2 and assume it further satisfies

we H0,T;Vn H* Q)Y N HY0,T; H(Q)%),

with initial data ug € H*1(Q)%. Let (up,us) € Vi, be an approzimate velocity solution to
the Navier—Stokes system computed using the space-time HDG scheme eq. (4.4) for n =

0,...,N—1, Then, there exists a constant C' > 0 such that the error e, = (u—up, y(u)—uy)
satisfies
N—-1 T
lex ey + D_llentull ey + ¥ / llexll? dt < exp (CT) (h* + A2+2) C(u),
n=0

provided the time step satisfies At < v. Here, C(u) depends on Sobolev—Bochner norms of
the velocity u, but is independent of the pressure p.

The proof of Theorem 4.1.2 is deferred to Section 4.4. We remark that the time step
restriction At < v in Theorem 4.1.2 is necessary in the proof of this theorem to use a
discrete Gronwall inequality; it is not necessary for the stability of the space-time HDG
method eq. (4.4), but rather to quantify the asymptotic rates of convergence.

Theorem 4.1.3 (Pressure error). Let (up, Up, pp, brn) € Vi X Qp be the approximate solu-
tion to the Navier—Stokes system computed using the space-time HDG scheme eq. (4.4) for
n=20,...N —1 and let the solution (u,p) to the Navier-Stokes system satisfy

we HH0, T,V n HA Q) N HY(0, T; HY(Q)),  p e H'Y(0,T; H*(Q) N L§(92)),
with initial data satisfying ug € H*T1(Q)4.

There exists a constant C' > 0, independent of the mesh parameters At and h and the
wiscosity v but dependent on the domain €2 and polynomial degree k, such that the error

T h2k
2 -1 2k
| 1=l at < expicT) (At s ) Clu),

provided the time step satisfies At < v, where the hidden constant is independent of the
mesh parameters At and h and the viscosity v. Here, C(u,p) is a constant dependent on
Sobolev-Bochner norms of the continuous velocity and pressure (u,p).
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The proofs of these main results are deferred to Sections 4.4 and 4.5 after we introduce
some of the essential tools for our analysis in the next section.

4.2 Preliminary results

4.2.1 Properties of the numerical scheme

Let VAV denote the subspace of V}, of discrete divergence free velocity fields:

lev:{uhEVh i/bh(qh7uh)dt:07 Vg, € Qn, Vn:O,...,N—l}-
I

n

The following result motivates the use of equal order polynomial degrees in time for both
the velocity and pressure approximation spaces:

Lemma 4.2.1. Vi = {vh € Vi | vplen € Po(L,; V), ¥n=0,...,N — 1}.

Proof. The proof is very similar to that of [I7, Lemma 2.3] with minor modifications and
is therefore omitted. ]

An immediate consequence of Lemma 4.2.1 is that u(t) € H a.e. t € (0,7) where H
is deﬁned in eq. (2.22). To see this we first expand wj, in terms of an orthonormal basis
{¢:}r, of Py(I,) with respect to the L*(I,) inner-product:

k
up =Y ¢i(t)ui(x), u; € V. (4.18)
i=0
By Lemma 4.2.1, uj, € Py(I,; VAY), so u; € VAV for each i = 0,..., k. Thus,

0=bn(gy, u;) = Z/qhv uzdm+2/ u; -ngpds, Vg, € Q.

KeTy KeTy,

Following the same arguments as [78, Proposition 1] it follows that V-u; = 0 for all x € K,
[u;-n] =0onall F e FM and u;-n =0 on 9 for i =0,..., k. By eq. (4.18) and since
H is a linear space the result follows.
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Lemma 4.2.2 (Consistency). Let (u,p) be the strong solution to the Navier—Stokes system
eq. (4.1) guaranteed by Theorem 2.3.2. Define u = (u,y(u)) and p = (p,v(p)). Then, it
holds that

- / (u, Opon) 7, At + (w(tps1), vyir) 75, +/ (vap(w,vp) + op(u; w, vy) + by(p,vp)) dt
I, In

—/ bn(qy,, ) dt = (u(ty),v))7, +/ (fyon), dt,  V(vn,q,) € Vi x Qp,

In In

where ap(-,-), on(+;+,-) and by(-,-) are defined in eq. (3.8a), eq. (3.8b), and eq. (3.8¢c),
respectively.

4.2.2 Scalings and embeddings

We begin by recalling a number of results for piece-wise polynomials. First, for polynomials
in time, let (V, (-,-)y) be an inner product space. Then, there exists C' > 0 such that for
all v € Py(I,,V) (see e.g. [I7, Lemma 3.5]):

HUHLp(Jn,V) < CAtl/H”HvHLz(IH,V) ) 1 <p< o0, (4.19a)
”atv||L2(In,V) < CAt_1||U||L2(In,V) : (4.19b)

Next, we recall the following discrete version of the Sobolev embedding theorem valid for
broken polynomial spaces P.(T,) = {f € L*(Q) | flx € P.(K), VK € T} where r > 0.
Let 1 < p < o0, then for all ¢ satisfying 1 < ¢ < pd/(d—p)ifl <p<d,orl <gqg<
oo if d < p < oo, there exists a constant C' > 0 such that [28, Theorem 5.3]:

vnllpaq) < Cllvallipns  Yon € Be(Ta)- (4.20)

In the case p = 2, we write ||-[|; 5, = |||, ,- Note that choosing p = ¢ = 2 in eq. (4.20)
yields the discrete Poincaré inequality: [lvpl|2q) < Cpllonllyy, for all v, € V,. By the
triangle inequality, [[vp]; , < [|va]l,, so that

[onll 20y < Cpllvnll,,  Von € Vi (4.21)

We now prove a discrete version of the Ladyzhenskaya inequalities valid for broken
polynomial spaces. While the analogue of these inequalities are well known in the context of
H'-conforming finite element methods [32], to our knowledge they have yet to be extended
to non-conforming finite element spaces.
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Lemma 4.2.3 (Ladyzhenskaya inequality for broken polynomial spaces). There exists a
constant C > 0 such that for d € {2,3}:

1/2(d—1 3/2(5—d
[onll sy < Cllonll oty lonllR™, Vou € Vi, (4.22)

Proof. Tt suffices to consider the scalar case. We focus first on the case d = 2. Inserting
v? into eq. (4.20) with r = 2k, p = 1, and ¢ = 2 yields |\vhl|i4(m < C||v}||,,,- The result
follows after noting that the right-hand side can be bounded by applyin;g’the Cauchy—
Schwarz inequality and a local discrete trace inequality [|vp|| 2(p) < C W o L2y 125,
Lemma 1.46]:

1
Sl = > |[(Von)vn| dz + ) |[vn] - {on}| ds < Clloall 2oy lvnllyp -
2 ’ K F

KeT, FeF,

For the case d = 3, the result follows from the Cauchy—Schwarz inequality and eq. (4.20)
with ¢ = 6 and p = 2. O]

For d = 3, interpolating between L?(Q)¢ and L*(2)¢ and using eq. (4.22) yields:

1/2 1/2
lonll oy < Cllonll iy llonllys , on € Vi (4.23)

4.3 Well-posedness of the discrete problem

4.3.1 Existence of a discrete solution

We will begin by showing the existence of a solution to the nonlinear system of algebraic
equations arising from eq. (4.4) using a topological degree argument (Lemma 2.1.2). We
first require the proof of Lemma 4.1.1 and well-posedness of the space-time HDG discretiza-
tion of a linear time-dependent Stokes problem as discussed next.

4.3.1.1 Proof of Lemma 4.1.1.

Proof. Testing eq. (4.4) with (vp, On, qn, Gn) = (up, U, Pr, Pr), using the coercivity of ap(+, )
and the fact that op(-;up, uwy) > 0, and integrating by parts in time, we find that there
exists a constant C; > 0 such that

1

Ty, = 2 2 Ly 2
§H“n+1HL2(Q) - §|H“h]nHL2(Q) - §H“n HL?(Q) + Cl’//ln a3 dt < /In(ﬁ up )7, di.
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To bound the right-hand side, we apply the Cauchy—Schwarz inequality, the discrete
Poincaré inequality eq. (4.21), and Young’s inequality with ¢ = C;/(Cpr) > 0. Rear-
ranging, we see there is a constant Cy > 0 such that

_ _ C
Hun-‘rlHiQ(Q) +H[uh]nHiQ(Q) _Hun Hi2(ﬂ) + VCl[ |HuhH|12; dt S 72/1 HinQ(Q) dt.

The result follows after summing over all space-time slabs. O

4.3.1.2 A linearized problem

Before we can apply the topological degree argument, we will need to study the space-time
HDG solution of the linear time-dependent Stokes problem:

ou —vAu+ Vp = f, in Q x (0,77, (4.24a)
Vou=0, in Q x (0,7, (4.24D)

u =0, on 082 x (0,77, (4.24¢)

u(z,0) = up(x), in Q. (4.24d)

Lemma 4.3.1. There exists a unique pair u, € V% x V), such that for all vy, € V¥ x Vy:

— [ un By e+ (s v+ [ v on) dt = Gy + [ (o de
I"l

I, In
(4.25)
Note that this is simply the space-time HDG scheme applied to the time-dependent Stokes
problem eq. (4.24).

Proof. The result follows from the Lax—Milgram theorem (Theorem 2.1.2) O

4.3.1.3 The topological degree argument

Theorem 4.3.1. Let d € {2,3} and k > 1. There exists at least one discrete velocity
solution u, € Vi x V), to eq. (4.4) forn = 0,...,N — 1 satisfying the energy estimate
Lemma 4.1.1.

Proof. We set X = VIV x V), and equip it with the norm

N—-1 T
el = [l oy + D lmdal 2o + ¥ / a2 .
n=0
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Define the continuous mapping ¥ : X x [0,1] — X forn=0,..., N — 1, by

; = J h nt15 Un. )
/(\I/(uh,p),'vh)ohdt /(uh Oyop) 7, dt + (U4, v +1)7-h+/ vay(wp,vy) dt

I, I, I,
+ / pOh(Uh; up, ’Uh) dt — (u;, U;f)'y’h — / (f, Uh)Th dt.
I, I,

VU is well-defined by the Riesz representation theorem (Theorem 2.1.1), verifying item (1)
in Lemma 2.1.2. Next, we choose u;, € X such that U(uy, p) = 0 for some p € [0, 1]. Since
on(up; wp, uwy) > 0, we can repeat the proof of Lemma 4.1.1 to bound wu;, uniformly with
respect to p:

N-1 T 1 T
Hwﬂ&m+§JWMm;@+vA\mumﬂsc(;énﬂmmﬂt+wm@m>=
n=0

which verifies item (3) in Lemma 2.1.2 with

1 T
Aﬁ:C(;AHN%mﬁ+”WmmJ+@

for any € > 0. Finally, note that ¥(-,0) : X — X is an affine function since the nonlinear
convection term disappears for p = 0. By Lemma 4.3.1, there exists a solution to ¥ (u,0) =
0, verifying item (2) in Lemma 2.1.2. Therefore, there exists a solution uy, to ¥(up, 1) =0
satisfying ||up ||y < M. Equivalently, u; € ViV x V), solves eq. (4.4) for all v, € VIV x V),
and satisfies the energy bound in Lemma 4.1.1. O

4.3.2 Uniqueness of the discrete velocity in two dimensions
4.3.2.1 Bounds on the convection term

In the analysis that follows, we will require tighter bounds on the trilinear convection
form than is provided by eq. (4.10). For this, we will make extensive use of the results of
Section 4.2.2. We remark that, although we focus on d = 2 for the proof of uniqueness,
the bound eq. (4.27) will be essential for the error analysis in both two and three spatial
dimensions in Section 4.4.

Lemma 4.3.2. If d = 2, there exists a C' > 0 such that for all wy,, wy, v, € Vi,

|0h(wh; Up, ’Uh)|

1/2 1/2 1/2 1/2 1/2

12 (4.26)
< Cllwall 20y llwnll, " [lonll, (||whHLz(Q) el +llunll 2y llwall, )
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Moreover, if d € {2,3}, there exists a C' > 0 such that for all wp, up, v, € Vi,

1/2 1/2
Jon(wni ans v)] < Cllwn ¥, lewnll2lanll, ol (4.27)

Proof. This proof relies on the following scaling identity for
1€ Ry(OK) :={p € L*(0K) | plr € Pu(F), YF C 0K}

between LP and L? norms on element boundaries which can be obtained using standard
arguments:

lill oorey < CRUUTDOP YD ]l ey, 2 < p < o0 (4.28)
Now, split oy, (wp,, wp, vy) into three terms and bound each separately. Using that wy, +u, =

2up, + (ap, — uy), we find:

’Oh(wha Up, 'Uh)|

<Z/|uh®wh Vvh|dx+2/ lwp, - n(up) - (v, — vp)| ds

KeT, KeT, (4.29)

+ Z/ |wh n|| h—ﬂh)'(Uh—l_)h)|dS:T1+T2+T3.
KeTy

To show eq. (4.26), we first apply the generalized Hélder inequality to T} with p = ¢ = 4
and r = 2, the Cauchy—Schwarz inequality, and eq. (4.22) to find:

1/2 1/2 1 2 1/2
T3] < Clunll gy lwnlly*lewnll oy llwally o]l

To bound 75, we apply the generalized Holder 1nequahty with p = ¢ =4 and r = 2 and
use the local discrete trace inequality ||vp| 1o (o) < C'h_l "ol oy (see e.g. [28, Lemma
1.52]) for p = 4, we have

—1/2 _
ITo) < € wnll syl s iy e 1on = Tl 2 e -
KeT,

Applying the Cauchy—Schwarz inequality and eq. (4.22) we find

1 2 1/2 1 2 1/2
ITol < Clunll gy lunlly* lwnll 2o, llwally o]l

To bound T3, we again apply the generalized Holder inequality with p = ¢ =4 and r = 2,
the local discrete trace inequality [[vy - 0l 25y < C’h;/szhHB(K), eq. (4.28) with d = 2
and p = 4, and the Cauchy—Schwarz inequality to find

5] < Cllwnll 20 [l vl
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Summing the bounds on T}, T, and T3 yields the result.

The proof of eq. (4.27) differs in the cases of d = 2 and d = 3. We begin with d = 3.
To bound T7, we first apply the generalized Holder inequality with p =3, ¢ =6 and r = 2
followed by the Cauchy-Schwarz inequality to find:

0] <lJwll gy l[unll Loy llonll-

Now applying eq. (4.23) and eq. (4.20) with ¢ = 6, we have

1/2

1/2
T3] < Clluonl| Y2, llwn]|Y/

o Ml llosll,-
To bound 75, we apply the generalized Holder inequality with p =3, ¢ =6 and r = 2 to
find

To| < Z [wn - 1| oy lunll Lo orey 1o = Onll p2or) -
KeT,

Next, using the local discrete trace inequality [|vs | o5 < Ch;(l/pHUhHLP(K) (see e.g. [28,
Lemma 1.52]) for p = 3 and p = 6, the Cauchy—Schwarz inequality, eq. (4.23), and eq. (4.20)
with ¢ = 6, we have

1/2

1/2
| T| < Cllwnll5tgy llwally?|

||, vl
To bound 73, we again apply the generalized Holder inequality with p = 3, ¢ = 6 and
r =2

T3] < Z lwn - 0l 3oy lun — nll ooyl lon — Onll p2(or) -
KeTh

Now, applying the local discrete trace inequality |lv = 1l 1pgx) < Chl_(l/pthHLp(K) with
p = 3, eq. (4.28) with d = 3 and p = 6, the discrete Cauchy-Schwarz inequality, and
eq. (4.23), we have

1/2

1/2
T3] < Clluonl| Y2, llwn]|/

o el ol

Summing the bounds on T, T,, and 73 yields the result. The case for d = 2 follows
similarly, instead using p = ¢ = 4 and r = 2 in the generalized Hélder inequality, eq. (4.20)
with ¢ = 4, and eq. (4.28) with d = 2 and p = 4. O
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4.3.2.2 Proof of Lemma 4.1.4

Proof. Let @, be the exponential interpolant of uy, as defined in eq. (4.11). Testing eq. (4.4)
with @y, integrating by parts in time, and using the defining properties of the exponential
interpolant, we have

1

5/[ %H“h(tw;(g) o~ Mt—tn) ¢ —i—Hu:HiQ(Q) +/ (vap(up, @) + op(up; wp, y)) dt

:w;@m+/wﬁmwt
In

Integrating by parts again in time and applying the Cauchy—Schwarz inequality and Young’s
inequality to the first term on the right hand side, we have

A S 1, _ _
o ] A TR o e

Ly, 2 N - -
= §H“nHLz(Q)+/I (f, un), dt—/} (van(wn, @) + on(un; wp, wp)) di.

We now focus on bounding the right-hand side. By the boundedness of ay(-,-) eq. (4.8)
and eq. (4.13), there exists a constant C; > 0 such that

/ (an ()| It < C / a2 .
I In

In two spatial dimensions, we can use Lemma 4.3.2; eq. (4.13), and hence Young’s inequality
with some €; > 0 to find there exists a constant Cy > 0 such that

2
. ~ €1 2 Cy 2
/ Oh(uhauhvuh) dt < EHuhHLOO(In;LQ(Q)) + 2_61 (/In H|Uhmvdt> .

I,
Next by the Cauchy—Schwarz inequality, Young’s inequality, the discrete Poincaré inequal-
ity, and eq. (4.13), there exists a constant C3 > 0 such that for some €, > 0,

~ 1 9 Csey 2
l/@wmws—i/wm@w+ s 12 dt.
In 2e 2J1, 2 I,

Thus,
A

A Iy =
5 In||uh|’iz(9)e Mi=tn) dt+§”“n+1HL2(Q)e

_)\A €1 2
- EHUhHLOO(In;L?(Q))

|- 1 2 Csey 2
< sl + 5, [ Wl dt+ 52 [ it

C 2
[ Junlar+ 32 ([ Jular)
In 26 1 I,
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Choosing A = 1/At and applying the scaling identity in eq. (4.19a) with p = oo, we find
there exists a constant Cy > 0 such that

Cy leml ¢ 2
5 Y ||uh||L°°(In;L2(Q))

1 112 1 2 0362 2
<l + 5 /| ||fum) a4 52 [

wCw [ o £ ([ funizar)

Choosing €; = C4 e 1/2, €5 = 2v, using the a priori estimates on wu;, in Lemma 4.1.1, and
rearranging, we see there exists a C5 > 0 such that

2
HuhHLOO(In;LQ(Q))

1 T 9 2 05 1 T 2 2
< (s ;/0 ||f||L2(Q) dt + HUOHL2(Q) +ﬁ (;/0 ||f||L2(Q) dt + HUOHLQ(Q)>

This bound holds uniformly for every space-time slab, so the result follows.

2

4.3.2.3 Proof of Theorem 4.1.1.

Proof. Consider an arbitrary space-time slab ™. Suppose (u1,@) € Vv x V, and
(ug,U2) € Vi x V are two solutions to eq. (4.4) corresponding to the same problem
data f and ug, and set wj, = u; — us. Then, for all v;, € Vd” X Vp,, it holds that

_ / (wh, atvh)'rh dt + (wﬂ_@H, U;@—&-I)Th + / l/ah(wh, ’Uh) dt
Im I (4.30)
+/ (Oh(ulaulavh) — Oh(u2:u27Uh)) dt = (w,,,v,") 7.
Im

Step one: Testing eq. (4.30) with v, = wy, integrating by parts in time, using the
coercivity of ap(+,-), and noting that o, (us, ws, wy,) — op(ur, wy, wy) < —op(wp, wse, wy) by
eq. (4.9), we find

1, _ 2 1 Ty 2
§me+lHL2(Q) + §H[wh]m”L2(Q) - §me||L2(Q)

+ Cw / a2t < | Jon(wn, s, 0)] dt.
Im Im
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Summing over all space-time slabs n = 0,..., N — 1, rearranging, and noting that w, = 0,
we see that there exists a C; > 0 such that

N-1 T T
||w;7”iz(g) + ZH[wh]nHiz(Q) + V/o |Hwh|Hidt < Cl/o |on(wp, w2, wp)|dt. (4.31)
n=0

Step two: Fix an integer m such that 0 < m < N —1. Testing eq. (4.30) with the discrete
characteristic function v, = w, where s = argsup,c;,, [[un(?)[|2(q), integrating by parts in
time, using Young’s inequality, we have after rearranging

1 1
3 0l = 5 200 IO

< —/ (Vah(wha wy ) + op (U1, wy, wy) — op(uz, us, wx)) dt,
I’m

where we have used that sup,cr,_, [[w(s)||2(q) = lwpllp2q)- Setting Iy = {to} = {0}, we

can sum over the space-time slabs n = 0,...,m and use the boundedness of a(-,-) and

the bound eq. (4.15) to find there exists a constant Cy > 0 such that

T T
2
Z SUP”wh(t)HLz(Q) < 021//0 H|wh|\|idt +/0 ‘oh(uQ,ug,wX) — oh(ul,ul,wx)| dt, (4.32)

where we have used that sup,e; | [[wn(t)|12(q) = l[wo |[12(q) = 0. This bound holds uni-
formly for all space-time slabs, and thus we can replace the supremum over I, in eq. (4.32)
with the supremum over [0, 7]. Doing so, and adding 2v fOT [, ||? dt to both sides we see
there exists a constant C'3 > 0 such that

Lo ST
ol omasony + 2 [ lonllar

T
S 03/ ‘0h<wh7u2)wh)‘ dt+/
0 0

T T
|oh(wh,u2,wx)}dt+/ |oh(u1,wh,wx)‘dt.
0

Here, we have used the bound eq. (4.31) from step one, that oy, (ug, w2, wy)—op (w1, w1, wy) =
—op(wp, Ug, W) — op (U, Wy, wy ), and the triangle inequality. From Lemma 4.3.2 and two
applications of Young’s inequality, first with p = ¢ = 2 and second with p = 4,q = 4/3, we
find

1 2 2 1 2 2 9, O€ 2
Jon(wn, wz, wy)| < Cy (%Hwhnm lusall + o5 en o e el gy llualls + = el )
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Similarly, from Lemma 4.3.2 and eq. (4.15), we have

1

1 5e
2 2 2 2 2 2
on(an )] < Ca (- lunl lall + g ol g sl + 5 onl?)

and finally,

1 3€
2 2 2 2 2
\Oh(ul»’wmwx)\ < Cs (||U1||L2(Q) llwnll, + 4_63||u1||L2(Q)||wh||L2(Q) el + ZH’whb) ’

where ¢ > 0. Collecting the above bounds, choosing ¢ = O(v) sufficiently small and
rearranging, we can find a C'; > 0 such that

T
2 2
I F— / llwnI? dt

Cr 2 g 2
< A (V3||U1||Loo(o,T;L2(Q)) + V||U1||Loo(o,T;L2(Q)) /0 [l dt

T T
2 2 2 2
+ (v + vl e ooy ) / |u2||vdt) x <||wh||Loo<o,T;m» +v / Hwhhdt) -
0 0
(4.33)

Step three: For notational convenience, let = = ! fOTHinQ(Q) dt + HuOHiQ(Q). Applying
the bounds in Lemma 4.1.1 and Lemma 4.1.4 to eq. (4.33), we find there exists a Cg > 0
such that

T
2 2
N ——— / s dt

G

T
< i <V351/2 +VE+E + V_253> (”whHiOO(O,T;L?(Q)) + V/ |wh|12;dt) :
0

The result follows if v < 1 and Z < Lmin {C5 /%, C5 /*, O3, C %} V2. O

1
4

4.3.3 Recovering the pressure

Existence of the pressure pair (py,pn) € Qp satisfying eq. (4.4) will require the following
inf-sup condition:
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Theorem 4.3.2 (Inf-sup condition). Suppose that the spatial mesh Ty is conforming and
quasi-uniform. There exists a constant 3 > 0, independent of h and At, such that for all

q; S Qh7 12
f bh(qh7 Uh) de
sup w20 [ ) (4.34)
0 \% 2 /
#VpEV), <fln ‘thmv dt) I

The proof, which exploits the tensor-product structure of the finite element spaces in
an essential way, is an extension of the proof of [79, Lemma 1] to the space-time setting.

4.3.3.1 Proof of Theorem 4.3.2.

By [15, Theorem 3.1], the inf-sup condition eq. (4.34) is satisfied if we can decompose
bp(-,-) into by (-, ) : Vi x Qp — R and by(-, ) : Vi, X @ — R such that, for some constants
aq, g > 0, it holds that

f bl(th,Uh /2
swp > o ([ Il a) (4.35a)
SB[ o2 at)

and
f b2(q_h7vh 2
sup (3 [ illar) (4.35b)

vREV), (f,- \thm dt) KeT,

where

Zn={mev: [ bona)d=0. vaed}.
In

We thus define

b1(qn,vp) Z/ qnV - vpdz  and  by(Gp, vp) Z/ vp, - ngp ds.

KeTy, KeTy,

We begin by proving eq. (4.35a). The tensor-product structure of the space Qj, ensures
that we can expand any ¢, € Qj, in terms of an orthonormal basis of Py (I,) with respect
to the L*([,,) inner product:

k
an = Z@(t)%‘(x), ¢i € Pu(In), ¢ € Q. (4.36)
=0
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Since each ¢; € L2(€), there exist z; € H} ()%, 0 < i < k and constants 3;, 0 < i < k such
that V- 2; = —¢; and Bil|zil| g ) < [l@illf2(q) (see e.g. [23, Theorem 6.5]). We construct

the desired v, = (¢n, Y1) € 2, X Vy by choosing
k k
Yy = Z ¢i(t)Ippyzi, and 1y, = Z ¢i(t)ILy 2,
i=0 i=0

where Igpy : [Hl(Q)}d — Vj, is the BDM projection (see Lemma 3.5.1) and IIy is the L?

projection onto the space Vj,. By the orthonormality of the basis {¢i}f:0, property (v) of
Lemma 3.5.1, the single-valuedness of z; - n and ¢; across element faces, and the fact that

z; € H}(Q), we have
bl n) = > Z/ % ngids =0,

KeTy, i=0
and thus ¢y, € Z;,. We now show that 1, satisfies the inequality in eq. (4.35a) with some
a1 > 0 independent of the mesh parameters h and At. Given ¢, € Qj, we can use the
expansion eq. (4.36), the definition of z;, 0 < i < k, and the commuting diagram property
of the BDM projection (property (iv) of Lemma 3.5.1) to find

i [ dt—/f b1 (qn, ¥n) dt. (4.37)

Next, we need to show existence of a constant «; > 0, independent of the mesh parameters

h and At, such that
/ a2 dt < / a2, (4.38)

But, this can easily be reduced to the proof of [77, Lemma 4.5] by expanding 1y, in terms
of an orthonormal basis of Py([,) with respect to the L?(I,) inner-product. Combining
eq. (4.37) and eq. (4.38), we have

b dt /2
ol @)

/
(o lwzar) ™ (1, g2 at)’

where a; > 0 depends on the constants 3;, 0 S 1 < k.

What we have left to show is eq. (4.35b). It suffices to construct an w;, € V), such that
for some as > 0 it holds that
1/2

bQ(q}Lawh dt _
b Z / hKHCIhHaKdt . Van € Q. (4.39)
(f, Nl dt) =
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The tensor-product structure of Q) ensures that we can expand any g, € Qj, in terms of
an orthonormal basis of P, (I,,) with respect to the L*(1,,) inner-product:

k

G =Y o(D)a(x), ¢ € Pi(ln), @ € Qn. (4.40)

=0

Given g, € Qp, we construct the required wy, by choosing @, = 0, and defining w;, € V,
element-wise by:

k
WhlKkx1, = Z@(t)LBDM (@ilox) ,
=0

with ¢; € Qy, defined as in eq. (4.40). Here, LBPM : P (0K) — (Pk(K))d is the local BDM
lifting satisfying for all g, € P(0K) (see e.g. [31, Proposition 2.10]):

(LBDM HLBDM

Gn)-n=qn and Qh”L?(K = Ch%2||q||L2(6K) . Van € P(0K), (4.41)

where n is the unit outward normal to K. Using the first property in eq. (4.41), it can

be shown that
[ b= Y- / 1o, & (1.42)
In

KeTy,
The remainder of the proof of eq. (4.35b) can easily be reduced to the proof of [79, Lemma
3] by expanding wy, in terms of an orthonormal basis of Py(I,) with respect to the L*(1},)
inner-product. In particular, it can be shown that ay = Chpin/hmax, Wwhich remains uni-
formly bounded below provided we assume quasi-uniformity of 7.

Theorem 2.1.3 yields the following corollary:

Corollary 4.3.1. To each discrete velocity solution pair (up,up) € Vj guaranteed by
Theorem 4.3.1, there exists a unique discrete pressure pair (pp, pn) € Qp satisfying eq. (4.4).

4.4 FError analysis for the velocity

4.4.1 Space-time projection operators

Let P, : L*(Q)* — V& and P, : L*(T')* — V}, denote the orthogonal L?-projections onto,
respectively, the spaces V3" and V. The approximation properties of P, are well-known
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while the approximation properties of P, rely critically on the fact that V4V C H. In
particular, we can exploit the best approximation property of the orthogonal projection
along with the approximation properties of the BDM projection to prove:

Lemma 4.4.1. Let k > 1, 0 < m < 2, and u € H*Y(Q). If the spatial mesh Ty, is
quasi-uniform and consists triangles in two dimensions or tetrahedras in three dimensions,
then the following estimates hold:

Y lu= Pl ey S B ulfrin ), (4.43)
KEeT,
_ 2
Z higllu — Phu||L2(aK) N h2k‘u|12qk+l(ﬂ)- (4.44)
KeT,

Proof. We begin by proving eq. (4.43). For m = 0, we have by the best approximation
property of the orthogonal L*-projection onto V4"

[l = Prull p20) = vhfgigw”“ = nllpao)-

Since Ilgpyu € V&Y, eq. (4.43) follows from standard approximation properties of the
BDM projection (Lemma 3.5.1). The proof for m = 1 follows by noting that, by triangle
inequality,

[ = Prall o ey < [ = Tyl o ey +Thvee = Pral| o iy 5

where IIy is the orthogonal L2-projection onto Vj,. Using the local inverse inequality
lunll gy < C’hI}lHuhHLQ(K), the quasi-uniformity of the spatial mesh Ty, eq. (4.43), and
the approximation properties of Il (see e.g. [28, Lemma 1.58]), the result follows. The
bound for m = 2 follows similarly. To prove eq. (4.44), we note that by the local trace
inequality for functions in H'(K), we have

~1/2 1/2 1/2
lu — Ph““L?(aK) <C (h’K/ lu — Ph““L?(K) +lu— PhuHLé(K) u— Phuul(;()) :
The result now follows from the quasi-uniformity of the mesh, the Cauchy—Schwarz in-
equality, and eq. (4.43). ]

Following [17, Definition 4.2], we introduce a space-time projection operator much in
the same spirit as the temporal “DG-projection” defined in [958, Eq. (12.9)] or [29, Section
6.1.4], but appropriately modified for divergence free fields. Additionally, we will need an
analogue of this temporal DG-projection onto the facet space Vy:
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Definition 4.4.1. 1. Py, : C(I,; L*(Q)) — VW satisfying (Ppu)(t, 1) = (Pou)(ty ),
with (Pru)(ty) = Puu(to), and

/ (1 — Pty o) dt = 0 Yo, € Py (L, V). (4.45)

In

2. Py : C(I,; LA(T)) — Piu(1,; Vi) satisfying (ﬁhu)(t;“) = (Phu)(t,;rl)

/ (u — Ppu, Op)or, dt =0, Vo, € Py_1(1y; V). (4.46)
In
We summarize the approximation properties of P, and P}, in Appendix A.

4.4.2 Parabolic Stokes projection

Motivated by [17, Definition 4.2], we introduce a parabolic Stokes projection which will be
crucial to our error analysis in Section 4.4:

Definition 4.4.2 (Parabolic Stokes projection). Let u be the strong velocity solution to
the Navier—Stokes system eq. (4.1) guaranteed by Theorem 2.3.2. We define the parabolic
Stokes projection (ILyu, Hyu, I,p, ILp) € VA x V), x Q) to be the solution to the following
space-time HDG scheme:

—/ (I, Opon )7, At + (L)1, vna) 75 +/ (van(Ilyu, vy) + by (Iyp, vy)) dt

In In

= ((Myu),,, v 7 —|—/ (Opu, vp) 7, dt +/ vap(u,vy)dt Yoy € Vy, (4.47)
In

In

/ bh(qh,Hhu) dt =0 th S Qh,

In

where (ITyu); = Pyu(te) and (ITyu)y may be arbitrarily chosen. Here, we have denoted
Iyu = (Hpu, M) and Iyp = (yp, Upp).

Remark 4.4.1. We remark that eq. (4.47) is simply a space-time HDG scheme for the
evolutionary Stokes problem eq. (4.24) with f = u; — vAu and uy = u(0). Consequently,
,u € VI and thus Iu € H.
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4.4.3 Uniform bounds on the parabolic Stokes projection

To perform our error analysis in Section 4.4, we will require a uniform bound on the Stokes
projection:
ess supg<yep [ Tlpull, < C(u, uo, v).

Our plan is to follow the proof of [17, Theorem 4.10]. Therein, an essential ingredient is
a discrete Stokes operator. Unfortunately, as (-,-)7, is not an inner-product on V7, we
cannot leverage the Riesz representation theorem (Theorem 2.1.1) to infer the existence
of a discrete Stokes operator in the HDG setting. Instead, we introduce a novel discrete
Stokes operator by mimicking the static condensation that occurs for the HDG method at
the algebraic level following ideas from [12].

4.4.3.1 Discrete Stokes operator

Consider the variational problem: find ¢, € V& x V}, such that
ah(d)hawh) = (Umwh)n, Vwy, € Vhdiv X Vh.

This problem is well-posed by the Lax—Milgram theorem (Theorem 2.1.2), implying the

existence of a well-defined solution operator Sy : Vj, — V4V x V}, such that ¢, = Sy (up).
Note that Sy, need not be surjective onto the product space V3V x V. However, as in [12],

we can split the solution operator Sy, into “element” and “facet” solution operators Si and
S7. We will show that Sk is invertible.

Define the facet solution operator Sz : Vi — V}, as the unique solution of
ah((vh, S]:(Uh)), (O,Zﬁh)) =0, VYw,é€e Vh. (448)

Since ap(-,-) is symmetric, Sz is self-adjoint. Next, we introduce a new bilinear form on
Vhdiv % Vhdiv:
a,(vn, wn) = an((vn, SF(vn)), (wa, SF(wn))), (4.49)

for which we introduce the element solution operator Sk : V3V — VAV satisfying

ay (Skc(un), wn) = (up, wy)T,-

It can be shown that Sy (up) = (Skc(un), (SFo Sk)(up)) (see [12, Lemma 3.1]). We observe
that Sk : V;& — V4V is injective. By the Rank-Nullity theorem, Sk is bijective. Therefore,
we can define an inverse operator A, = S¢' satisfying

a}*l(uh,wh) = (Ahuh, ’LUh)f/;L, th € Vhdiv.
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By eq. (4.49), we have equivalently that

ah((uh, S]:(uh)), (wh, S]:(U)h))) = (Ahuh, wh)Th, Ywy, € lev. (450)

Lemma 4.4.2. Fiz a space-time slab £". Let (Il,u, I,u) be the velocity components of the
parabolic Stokes projection solving eq. (4.47), and let Sz : V,¥%" — Vj, be the facet solution
operator introduced in eq. (4.48). Then, it holds that

Myu = Sr(Ilu). (4.51)

Proof. Set (va, Un, qn, @n) = (0,01, 0,0) in eq. (4.47) and expand IT,u, II,u, and o, in terms
of an orthonormal basis {qb,-(t)}fzo of Py(I,) with respect to the L?(I,,) inner-product to
find

ZZ/ X (M), - v,ds_ZZ/ ( _a(g:;“)i).wds.

=0 KeTy, =0 KeTy,
By the definition of the operator S, we have for each i =0, ..., k,

Z/ (hK(Hh) 8(ghu ) 5 ds = Z/ —Sf (Iyw),) - ; ds,

KeTy KeTy,

and moreover, each Sz((IT,u);) is unique. Choosing ©; = (Ilyu); — Sx((I,u);) € Vi and

rearranging allows us to conclude (ITu); = S#((I,u);) for each i = 0,...,k. The result
follows by uniqueness of the expansions of u; and @, with respect to the chosen basis of
Py(I,,) and the linearity of Sx. O

Lemma 4.4.3. Fiz a space-time slab €. Let (Iyu, yu) € VI x Vy, be the velocity
components of the parabolic Stokes projection solving eq. (4.47) and let Ay, : V,# — V4

be the discrete Stokes operator satisfying eq. (4.50). For notational convenience, we denote
ApIlpu = (Aplyu, Apllyu). Then, for all t € 1, it holds that:

(Zh(Hh’U,, AhHhu) = ||AhHhuHiz(Q) y (452)

1
(@Hhu, Ahﬂhu)Th = §%ah(ﬂhu, Hhu) (453)

Proof. By Lemma 4.4.2 and the linearity of A, and Sz, we find
S]: (AhHhu) == Ah (S]:Hhu) = Ahl:[hu, S]: (@Hhu) = 8t (S;Hhu) == 8tflhu.

The conclusion follows from eq. (4.50) after some basic calculations. O
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4.4.3.2 Bounding the Stokes projection

Lemma 4.4.4 (Uniform bound on the Stokes projection). Let u be the strong veloc-
ity solution to the Navier—Stokes system eq. (4.1) guaranteed by Theorem 2.3.2 and let
(M, pu, Wyp, Tp) € VXV, x Qy, be the solution to eq. (4.47), where we set tiy = Pug.
Then, it holds that

1 T
2 2 2
”HhuHLOO(O,T;vh) <C (;/0 [0pu — VAU”L?(Q) dt +||U0HH1(Q)> :

Here, we define [[ITyul| o o 7yp,) = €55 supp<i<r [ null],

Proof. The proof will proceed in two steps. In the first step, we bound the Stokes projec-
tion at the partition points of the time-intervals. In the second step, we use the exponential
interpolant, combined with the results of the first step, to obtain a uniform bound on the
Stokes projection over (0,7).

Step one: Integrating by parts in time in the term containing the temporal derivative in
eq. (4.47), testing with v, = A,II,u and using eq. (4.52) and eq. (4.53) in Lemma 4.4.3,
we have

1

5 ] o T M) a4 (T () + v [ ATl
I, In

= / (O — v A, Allpu) 7, dt + ap((TTu),, (TLu))).

In

Using the coercivity of ay(-,-), the Cauchy—Schwarz inequality, Young’s inequality, and
summing over all space-time slabs, we find

N-1

T
a0 + X it v [ ATl
n=0

1 T
e (5/0 186 — v A2 0 d + H(Hw)am :

As (TTyug)~ = Pyug and (Iyu)y = Pyug, we have from Lemma 4.4.1 and the approximation
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properties of P, (see e.g. [30]) that

N-1 T
)i+ S N+ [ AT g
n=0 (4.54)

1 [T 2 2
<C (Z/o l|Oyu — VAu||L2(Q) dt +||U0||H1(Q)> :

Note that for the lowest order scheme (k = 1), we can already infer the result.

Step two: It remains to obtain a bound for higher order polynomials in time. For
this, we use the exponential interpolant of the pair A,IT,u = (ALIl,u, ApIlLu), which we
denote by fthhu = (flhﬂhu, flhﬁhu). Integrating the first term on the left hand side of
eq. (4.47) by parts in time, choosing v, = A, IT,u, and using eq. (4.11), eq. (4.53), and
that A, Il u € V,‘fi", we have

1 ~
5 /I e—)\(t—tn)%ah(nhu’nhu) dt —+ ((Hhu)j{? (AhHhU)j{)"ﬁL —+ I//I a/h(HhU, AhHhU) dt

= / (atu — VAU, fthhu)Th dt =+ ((Hhu);, (AhHhu)f{)Th

In

Proceeding in an identical fashion as in the proof of Lemma 4.1.4, and using eq. (4.13), we
obtain

_1C _1C
c 5 HHhuHiw(In;Vh) + QT‘H(HW);HHE

1
<cC (;/j [0t — VAUHi2(Q) dt + V/] |’AHh“Hi2(Q) dt + H(Hh“)nmi> :

(4.55)

Bounding the last two terms on the right-hand side of eq. (4.55) using eq. (4.54) and
omitting the second (positive) term on the left hand side, we see that there exists a constant
C > 0 such that

2 1 T 2 2
HHhuHLOO(In;Vh) <C (; ; [Opu — VAUHLz(Q) dt +HUOHH1(Q) :

This bound holds uniformly for every space-time slab, so the result follows. m
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4.4.3.3 Approximation properties of the parabolic Stokes projection

Lemma 4.4.5. Let u be the strong velocity solution to the Navier—Stokes system eq. (4.1)
guaranteed by Theorem 2.5.2, let (Iyu, [yu) € VI x Vy, be the velocity pair of the Stokes
projection eq. (4.47) forn = 0,...,N — 1, and let P, and P, denote the projections
introduced in Definition 4.4.1. Let ¢ = Pru — Hpu, & = u — Pru, = Pru — Iu and
¢, = u — Pyu. There is a constant C > 0 such that

N-—1 T T
G0tz a0y + S NG ey + v [ Gl < v [ el a.
n=0

Proof. Our starting point will be the definition of the parabolic Stokes projection eq. (4.47).
We will introduce the splitting uw — IT,u = &, + ¢,,, where &, = (£,,&,) and ¢, = (¢, ().
Testing eq. (4.47) with v, = ¢, € V¥ x V,, integrating by parts in time, using the defining
properties of the projection P, Definition 4.4.1, the coercivity and boundedness of ay(-, -)
eq. (4.8), the Cauchy—Schwarz inequality and Young’s inequality with some sufficiently
small € > 0, we have

166ty NG Wy =118 iy +C [ a2t < Co [ gl

We conclude by summing over all space-time slabs and noting that (,(t;) = 0. O

4.4.4 Error analysis for the velocity
4.4.4.1 The error equation

We introduce the notation ey, = (ep, €,) = (v —up,y(u) —up). From Lemma 4.2.2, we have
the following Galerkin orthogonality result:

- / (eh, aﬂ]h)']‘h dt + (€;+1, U;Jrl)Th + V/ ah(eh, ’Uh) dt + / bh(p — Py Uh) dt
In fn fn (4.56)

+ / (oh(u; u, vh) — oh(uh; Uh,’l)h)) dt — (6;,2};)7;1 =0, Ywv, eV,
I,

Introducing the splitting e, = (u — Iyu) + (Iu — uy) = 1y, + 0, integrating by parts
in the first term on the left hand side, using the definition of the parabolic Stokes projec-

83



tion eq. (4.47), and choosing v), = 0, € VIV x V), eq. (4.56) reduces to

[ @oomat v [ a0 @ o0,
v " (4.57)
- _/ (on(u; w, On) — op(up; un, 63)) dt,
In,

where we have used that uy, u € Py(I,, H).

Lemma 4.4.6. Let (I,u, Iju) € V& x Vy, be the velocity pair of the Stokes projection
eq. (4.47) and let (up,up) € V5, be an approximate velocity solution to the Navier—Stokes
system computed using the space-time HDG scheme eq. (4.42 form=20,....N —1. Let

O, = Mpu — up, np = v — pu, 0, = Myu — uy, and 9, = w — u. There exists a constant
C > 0 such that

—112
/Iuehllim) dt§0<yl/2At1/2/I |0h||12)dt—|—1/At/I |\|nh||\§dt) + A6, [ 20 -

n

Proof. We will proceed as in the proof of [I7, Theorem 5.2]. Choose z, € V3V x 1},
independent of time. We test eq. (4.56) with the discrete characteristic function z, €
VAV % 1, of z5. Recall from Equation (4.15) that we can write 2, = ¢(t)zy, with ¢(t)
satisfying p(t7) = 1 as well as eq. (4.16) and eq. (4.17). Then, we have

(On(s), zn)7, = _/1 (on(us w, 2y) — on(uns wn, 2y) + van(On, 2,)) dt + (65, 21) . - (4.58)

By the boundedness of a;(+, -) eq. (4.8), the bound on ¢ eq. (4.17), and the Cauchy—Schwarz
inequality,

1/2

(O 2| de < CAL 2z, ([ I8al12e) (459)
In In

After a few algebraic manipulations, we apply eq. (4.10), followed by eq. (4.17), the energy
estimate Lemma 4.1.1, the assumption eq. (4.2) on the problem data, and the Cauchy—
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Schwarz inequality, to find

lon(uw; w, 2,) — o (un; wn, 2,)| dt
I,

= [ lon(u;my, 2x) + on(nn; au, 2y) + on(un; O, 2y) — on(On; yu, 2, )| dt
In

< Clzh|v/l (HuHHl(Q) ol = o I TER el 4 [l (1611, + |HHhU\HvH|9h\Hv> dt

1/2 1/2
<ozl (veae ([ miza) "+ oaek ey ([ edza) ).
In In
(4.60)

Combining eq. (4.58), eq. (4.59), and eq. (4.60),

1/2

u(5), 2007, < Cllzall, (w2072 +072) ([ 6u)2 )
]7L

1/2
2 _
Ozl st ([ llmlidr) -+ (0 2)

(4.61)

This holds for any z;, € V" x V;,, so fix s € I,, and select z;, = (01,(s),0,(s)) € V', to find

2

1/
[6(6) o, < € (vt 50) figutoll, ([ NenZa) o+
n (4.62)

1/2
ovar 0,9, ( /I Imal2de) " + (B 60(5)) 5,

This holds for all s € I,, so the result follows after integrating both sides over I, and
applying the Cauchy—Schwarz inequality and Young’s inequality. m
Lemma 4.4.7. Let u € L>(0,T;V) N L*(0,T;V N H*(Q)?) N HY(0,T; H) be the strong
solution to the continuous Navier-Stokes problem, let (I1,u, [I,u) € Vi« Yy, be the velocity
pair of the Stokes projection eq. (4.47), and let (up,up) € V) be an approximate velocity
solution to the Navier—Stokes system computed using the space-time HDG scheme eq. (4.4)
form=0,...,N—1. Let 0, = llyu—up, n = u—1u, 0, = yu — uy, and 7, = u — yu.
There exists a constant C > 0 such that

N-1 T T
2 2 2 2
HHNHL‘Z(Q) T Zl|[0h]nHL2(Q) + V/ 16n, dt < C'exp <0T> VAt/ 7l dz,
n=0 0 0
provided the time step satisfies At < Cv.
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Proof. Our starting point for deriving an error estimate for the velocity will be the error
equation eq. (4.57). We begin by bounding the nonlinear convection terms. A few algebraic
manipulations yield

_/ (on(w; w, O) — o (un; up, 01)) dt

In

< [ lon(u;ny, 0x)|dt + / lon (s Ty, O) | dt + [ on(0n; ITyu, ,)| dt = Ty + T3 + T3,
I I I

where we have used that op,(uy; 0y, 65) > 0. We now bound 77 and Ts. By eq. (4.10), the

assumption eq. (4.2) on the problem data, and Young’s inequality with some ¢; > 0, we
find

Cv Ve
|on (u; my,, 0n)| dt < —/ Hm\lidﬂr—l/ 11617 dt, (4.63)
In 261 In 2 [n
and similarly,
Cv Ve
lon (nn; Iy, 6),)] dt < —/ lImy |2 dt + —1/ 1164 ]2 dt. (4.64)

The bound on T3 is more complicated. To begin, we use Lemma 4.3.2 and Holder’s in-
equality with p =4 and ¢ = 4/3 to find

1/4 3/4
[ Jon(0 o)1t < € ([ 10 ITlia) ([ W0a2r)

Recall Young’s inequality in the form ab < eg/qap/p + b?/(qez) where 1/p + 1/q = 1,
1 <q,p<oo,a,b>0,and e > 0 (see e.g. [16, Appendix A]). Choosing p = 4 and ¢ = 4/3
we find

€ 3
|0 (On; Tpu, 0;,)| dt < C (ZQV4/ 104172 dt + 4—/ ||9h|3dt) : (4.65)
In €2 J,

Here, we have used the uniform bound on the Stokes projection in Lemma 4.4.4 and
the assumption eq. (2.28) on the problem data. Next, we consider the error equation
eq. (4.57). Integrating by parts in time on the left hand side of eq. (4.57), combining the
result with eq. (4.63), eq. (4.64), eq. (4.65), and using the coercivity of ap(+,) eq. (4.8), we
have for some constants C,Cy > 0:

Hev;HH;(m +H[9h]n”i2(9) _HG;Hf:?(Q) + OlV/I H|9h|”12z dt

g@(wf[|mﬁw+a¢[Hmmw+£#[nw@mﬂwf?[|mmw)

In
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Choosing €; = C1/(2C) and e, = Csv~! where C3 > 2C,/C) in eq. (4.66), letting Cy =
C1/2 — Cy/C3 > 0, and using Lemma 4.4.6, we have upon rearranging that

165410220+l + (Cov = Cov2a22) / 161 at
< (14 Cat) 6 gy + Cart [ ml2

Summing over all space-time slabs and noting that 6, = 0, we have

N—-1 T
1030y + Doy + (Covr = Gt 27) / 18417 at
n=0

N-—1 ) T
< AL [ )0 gy + 7 / I dt
n=0

The result follows by a discrete Gronwall inequality [29, Lemma 1.11] for At < Cyv/(2C5)
and using that Hé\[:_ol (14 CAt) <exp(C Zj.vz_ol At) < exp (CT). O

4.4.5 Proof of Theorem 4.1.2

Proof. Let e, = u—uy,. We introduce the splitting e, = &, +¢,,+0,, where 8, = I1,u—uy,
¢;, = Pru— Iju, and &, = u — Pru. Using the triangle inequality, Lemma 4.4.7,
Lemma 4.4.5, and noting that [¢,], = 0 for n = 0,..., N — 1, we find there exists a
constant C' > 0 such that

o N-1 , N-1 T ,
lewlaey + S llleadal oy + 32 v / llexll?, dt
n=0 n=0

T
<exp (CT) (||£NHZ(Q) +v /O €Iz dt) . (4.67)

To bound the last term on the right-hand side of eq. (4.67), we employ Theorem A.1.2 to
find

T
2 2 2
/ €Al dt < h2k||u||L2(0,T,Hk+1(Q)) + At2k+2||u||Hk+1(O,T,H2(Q)) : (4.68)
0
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The result will follow after bounding [[{y|| 2. By Lemma 4.4.1, there exists a constant
C > 0 such that

[]

4.5 FError analysis for the pressure

4.5.1 Bounds on temporal derivative of the error

The error analysis for the pressure will require a bound on the temporal derivative of u—uy:

/InH@t(u [

Lemma 4.5.1. Let (I,u, Ilu) € Vi x V), denote the element and facet velocity compo-
nents of the Stokes projection eq. (4.47) forn =0,...,N — 1, and let Py, denote the pro-
jection introduced in Definition 4.4.1. Let (, = Pru—Ipu, & = u— Pru, §, = Pyu— I,u
and &, = u — Ppu. There exists a constant C > 0, independent of the mesh parameters At
and h and the viscosity v but dependent on the domain €2 and polynomial degree k, such

that
N—1

T
> [ 10GIEe < 08w [ g2 a

n=0 v In

Proof. Our starting point will be the definition of the parabolic Stokes projection eq. (4.47).
Introducing the splitting w — Ilu = §, + ¢}, and testing with v, = (t —1,)0:Cn €
Py (1,; ViAY) x Py(1,,; Vi,) we find

[ =t dt v [ (= ta)an(GaGi) de

In In

:/ (&n, 0:Ch) 7, dt +/ (t = tn)(En, 07 ), dt

In In

—m@ﬁwm@@mﬁ—g/@—m%@mmum

In
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Now, since 0y, (t — t,)02C, € Py_1 (I, V;AY),

/ (&n, OiC) 7, dt = 0 = / (t — tn)(&n, 07 Ch) T, dL.

In In
Therefore,
[ =0y dt 4 [ (¢ t)an(CaGi)dt
I’VL I7L
= =AU &n(tni1), OCrin) T — V/ (t = tn)an(&n, 9:Cp) dt.
In
Now,
1 d
/ (t —tn)an(Cpy 0iCp,) At = 3 / (t— tn)Eah(Cha ¢p) dt,
I, In
and integration by parts yields
1 d 1 _ _ 1
3 ] (= 050G G = S8t Galty).Cultn)) — 5 [ (G e

By the coercivity of an(-,-), an(Cy(trs), Cu(frr)) = 0, 50

/@—mm&ﬁmﬂt

In

C
< G [ UGt - A7), )~ v [ (2= €, 0G0

ITL

Since 9,¢(, ., € VAV, it holds that (&,(t,.1),0Cri1)7, = 0. Now, by the boundedness of
an(+,-), the inverse inequality Equation (4.19b), and Young’s inequality, we have

C C
[ = tlangnacalar< S [ ledia+S [ icar
I, I, In

t/@—mﬂ&@ﬁmmﬂ§0<vl|€ﬂi&+vlKuﬁ&>-

In

Applying a finite-dimensional scaling argument as in [98, Eq. (12.18)],
cat [ 106lxe dt < [ (= )10
I, I
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SO

[ 1060y e < e ( [ ey [ r<h||3dt>-
In In In

Summing over all space-time slabs and applying Lemma 4.4.5 yields the result. [

Lemma 4.5.2. Let (up,up) € V), be the approzimate velocity solution to the Navier—
Stokes system computed using the space-time HDG scheme eq. (4.4) forn =0,...N — 1
and let u be the velocity solution to the Navier—Stokes system eq. (2.24). Let 0, = u, —Iu,
h=u—"Puu, 0, = u,—Iu and éh = u—"Ppu. There exists a constant C > 0, independent
of the mesh parameters At and h and the viscosity v but dependent on the domain €0 and
polynomial degree k, such that

N—-1 T T
> [ 1000yt < car2exp (1) (v [ Ui at + v [ uwiar)
n=0 v In 0 0

Proof. Our starting point is the error equation eq. (4.56). This time, we test with v, =
(t — t)0:0y € P y(L;;VIV) x B_(1,,V}F). Since u;, € Py(I,, H(div)), V - u; = 0,
Myu € Py(1,, H(div)), and V - II,u = 0, we have that dyuy, € Py_1(I,, H(div)), 0,(V -uy) =
V- Oy =0, OIlu € Pp_1(I,, H(div)), and 0,(V - TTyup) = V - Oyll,uy = 0. Therefore, we
have

/ (t - tn>‘|at9h||ig(9) dt + V/ (t - tn)ah(Oh, 8t0h) dt
" m (4.70)
_ / (= t2) (on (1t 20, 0,60) — on(un: un, 348,)) dt.

I,
Now,

1
I// (t — tn)ah(eh, 8t0h) dt = 51// (t — tn)él—tah(eh, Oh) dt
I, In
1 1
= éuAtah(OgH, 0,..)— §V/ an (0, 0y) dt (4.71)
I,

1
> ——V/ an(0y,05) dt,
2 I’"/

so by the boundedness of ay(-,-),

[ =0t

In

S Cv |H0hm12)dt + At/ | (oh(u; u, 8t0h) — oh(uh; Up, 8t0h)> |dt

In In
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Now,
op(u;u, 0,0y) — o (un; up, 0,0y) = op(u — up; w, 0,0y) + o (up; u — up, 0,04),

so by eq. (4.10) we have
At/ | (oh(u;u,aﬁh) - Oh(uh;uh,ateh)) | dt
In
<€t [ (s + el ) e =l o641,

< CAt <||U||L<><>(0,T;H1(Q)) +||uh||L°°(O,T;Vh)> /I e — wall, [|0:6x ][, dt.

By Equation (4.19a), the energy estimate Lemma 4.1.1, and the assumption eq. (4.2) on
the problem data,
HuhHLOO(QT;vh) < CAt 212, (4.72)

Thus, by the assumption eq. (4.2) on the problem data, Theorem 2.3.2, eq. (2.29), and
Equation (4.19b),

At/ | (on(u; w, 8,04) — on(un; un, 0:65)) | dt
In

Ce v 1
< —(r+= — |2 dt —Atg/ 0 dt
<G (i) [re-wiiasgae [ jae:

Ce v C
<2y — || dt _/ 6,||2 dt.
<G (7 5) [ re-witae 3 [ e

Choosing € = O(At'/2), we have
At/I | (oh(u; u,0,0)) — oh(uh;uh,ﬁteh)) | dt
<C (VZM/Z + yAfl/Z) /l I — wp|? dt + C A2 /] 11612 dt
< CyAt2 /1 = || dt + CAFY2 /I 16,12 dt.

A finite-dimensional scaling argument [98, Eq. (12.18)] yields

CAt [ 1004720 dts/<t—tn>||8t9hl|iz<m dz.
In

In
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Therefore, we have

/I 1000422 gy it < Co A2 (V /I 16412 dt + v /I |u—uh|§dt).

Summing over all space-time slabs and applying Lemma 4.4.7, using the splitting n,, =
&, + ¢, and applying Lemma 4.4.5, we have

N-1

D [ 106n]l72 g dt

n=0 In

T T
< Cv At exp (CT) (u/ €112 dt + V/ |u — uhlidt).
0 0
[

Lemma 4.5.3. Let (up, uy) € V), be the approximate velocity solution to the Navier—Stokes
system computed using the space-time HDG scheme eq. (4.4) forn = 0,...N — 1 and let
the velocity solution u to the Navier—Stokes system eq. (2.24) satisfy

= HkJrl(O,T; VN HQ(Q)d) N Hl(O’ T, Hk+1(Q)d),

with initial data satisfying ug € H*T1(Q)Y. There exists a constant C' > 0, independent
of the mesh parameters At and h and the viscosity v but dependent on the domain 2 and
polynomial degree k, such that

N—-1 )
> [ o=l

h2k
- 2 2
< Cvlexp (CT) (At%||U||Hk+1(o,T;H2(Q)) t WH“”L?(O,T;HW(Q)) )

Proof. First, we introduce the splitting e, = &, + ¢}, + Op:

N-1 N-1 N-1 N-1

2
Z/j Hat(u_uh)HLz(Q) < Z/] Hatfhni?(ﬂ) + Z/I ||atCh||iQ(Q) + Z/j ||5t9h||i2(9)-
n=0 n n=0 n n=0 n n=0 n

From Lemma 4.5.1, Lemma 4.5.2, and the assumption that At < 1, we have:

N—1 ,
z% /InHat(u - “h)HL2(Q)

N-1 T T
<Y [ 10l + Cv i ar o exp (C7) ( | ez v [ - uhuidt)-
=0 “In 0 0
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Applying eq. (A.3e), the projection estimates in Theorem A.1.2, and Theorem 4.1.2 (see
in particular eq. (4.68) and eq. (4.69)), we have:

N-—1
2
> [ ot =g
n=0 I
< Cvlexp <CT> (At%HUH?{’CH(O,T;L%Q)) + h2k+2HuHiIl(O,T;H’”l(Q))

2 - 2 :
+ Al i o 2y + AR <h2”““0(07T;H'€+1(9)) +||u||L2(o,T;H’““(Q))> )

The result follows after collecting leading order terms. O

4.5.2 Proof of Theorem 4.1.3.

Proof. Recall that given p, — q, € Qp, we can expand it in terms of an orthonormal basis

of Pk<[n)
k
Prn — 4n = Z¢z’(t)(pi — ),
i=0

where p;,q; € Q. Mimicking the proof of the inf-sup condition Theorem 4.3.2, given
P, — q;, € Qp, we construct ¥, € V), by choosing

k k
Yn =Y &i(Oppyz,  and gy = o)y, (4.73)
i=0 i=0
where IIgpy is the BDM projection, Iy is the L?-projection onto the space Vj,, and z; €
H}(Q)? satisfies

V-2 =pi — ¢, HZz'HHl(Q) < Bllpi — qi||L2(Q) )
for some 3 > 0. Note that it holds that

lpn — qhHiZ(Q) dt = / bn(p — qy,,n) dt — / br(p — Py, ¥n) dt. (4.74)

I In In

Testing eq. (4.4a) with v, = 1, using Lemma 4.2.2, integrating by parts in time and
rearranging, and applying the Cauchy—Schwarz inequality, we have

/Ibh(p_piuwh)dtg/IHat(u—uh)HL?(Q)”whHL%Q)dt"_H[u_uh]nHH(Q)Hlﬁ;”L?(Q)

tv [l =l il + / (on(u; w, ) — on(un; wn, ) dt.

In In
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Note that there exists a constant C' > 0 such that |||, < Cllpi — @ill;2(q) (see [77, eq.
(75)]) and thus

el <€ llen = anllzege (4.75)

Since op(u; w, ¥y,) — o (un; Un, ¥y) = on(u — up; w, Py,) + o (un; w — up, 1y,), we can apply
eq. (4.10) to find

/1 | (oh(u;u,'gbh) — oh(uh;uh,'l,bh) | dt

<C (HuHL‘X’(O,T;Hl(Q)) +HuhHL°°(U,T;vh)) /1 llw —wall, |94, dt.

Now, by Equation (4.19a), Lemma 4.1.1, Theorem 2.3.2 eq. (2.29), assumption eq. (4.2)
on the problem data, and eq. (4.75), there exists a constant C' > 0 such that

/ | (on(us w, 9y,) — on(ups wn, 9py,) | dt
In

1/2
< CAt™Y/? <V/I e — s, dt) </1 P — QhHi?(Q) dt)

Collecting eq. (4.75) and eq. (4.76) and applying the following discrete trace inequality

2 (4.76)

valid for polynomials in time (see e.g. [29, Lemma 6.42])
) 1/2
1]y < CAET2 ( /I ey dt)

we see that there exists a constant C' > 0 such that

1w (P — Py, )| dE

In
D , 1/2 " ) 1/2
<cat </1 lpn = anll72 @) dt) (At / (/1 10 (w = un) || 12 dt) (4.77)

) , 1/2
o=l + (v [ Ju =l ar) )
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Summing over all space-time slabs and using Lemma 4.5.3 and Theorem 4.1.2 (see in
particular eq. (4.68) and eq. (4.69)), we have the following leading order terms

T
/ \br(p — P, ¥n)| dt
0
1/2

<cvtexn (CT) ([ lIn = il ) (4.78)

o (At LA
e oraz@) T agarl il eomme ) -

It remains to bound

/ bu(p — @, ¥n) dt

I
Note that since ¥y, - n|gx € Pi(I,; Pr(0K)), we have

/bh(p q,,Yp) dt = Z/I (/ —qn)V - dedt + 8K1ph-n(HQp—q_h)ds> dt

In KeTs,

where Il is the L?-projection onto Py (I,; Py(9K)). Recalling the definition of ¢, eq. (4.73),
we see that ¢, € Py([,; H(div)), and hence 1, - n is single-valued across cell facets, as is
lgp — qn. Thus,

Z / Uy, - n(Ilgp — @n) dsdt = 0,

KeTy, In JOK

and therefore we are left with
[ o it - Z// )V - ndt.
In KeTy, Ir

Noting that (V - ¢p)|x € Pe(ly; Pe—1(K)), we can write

/ /K(HQP—Qh)V'%dt,

where Il is the L:-projection onto Py (I,; P,_1(K)). Furthermore, it can be shown via an

/bh(p qy,, Vn)dt =

In KeTy,

expansion in terms of the basis {qzﬁi(t)}fzo of Py(I,) and the commuting diagram property
of the BDM projection ((iii) in Lemma 3.5.1) that
/ / (Iop — qn)(pn — gn) dt.
I,

//HQP an)V -y dt =
I,

KeTy, KeTy,
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Lastly, we can again use the definition of Il to conclude

HQP—QhV Ypdt = Z p an)(pr — qn) dt.
I

KeTy,
/bh(p qp, ) dt = // P — qn)(pr — qn) dt. (4.79)
In

With eq. (4.78) and eq. (4.79) in hand, we can return to eq. (4.74), apply the Cauchy—
Schwarz inequality, and sum over all space-time slabs to find

KET

Thus,

1/2
/ ||ph—Qh||L2 dt / llp — qh||L2 Q)dt> + E, (4.80)

where

- h*
E=Cvlexp (CT) (AtkHUHHHI(O,T;HQ(Q)) + WHUHLQ(O,T;HH%Q)) )

From the triangle inequality,

T 1/2 T 1/2
(/0 ||p—ph||i2(g) dt) <2 (/0 ||p—qh||iz(9) dt) + B,

and we can bound the first term on the right-hand side using the approximation properties
of the L2-projection onto Qy (see e.g. [93, Theorem 3]):

T
2 2 2
/0 1P — anllp2(qdt < C (h%HP||L2(o,T;Hk+1(Q)) + At2k+2HpHH’V“(O,T;LQ(Q))) :

The result follows after collecting the leading order terms. O

4.6 Numerical results

In this section, we consider a simple test case with a manufactured solution to verify the
theoretical results of the previous sections. We solve the Navier-Stokes equations on the
space-time domain 2 x [0,7] = [0,1]3. We impose Dirichlet boundary conditions along
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the boundaries x = 0, x = 1, y = 0, and Neumann boundary conditions along y = 1. We
choose the problem data such that the exact solution is given by

| 2+sin(27(x —t)) sin(2n(y — 1)) L
u=ly cos(2m(x — 1)) cos(2r(y — 1)) | p =sin(2r(z —t)) cos(2m(y — t)).
This example was implemented using the Modular Finite Element Methods (MFEM) li-
brary [2, (67] on prismatic space-time meshes.

We present the velocity and pressure errors, measured in the mesh-dependent |||, -
norm and ||-[| ;- (0.7:12(0) 10T, respectively, and rates of convergence for different levels of
space-time refinement with polynomial degrees k = 2 and k£ = 3 in Table 4.1. Due to the
dominance of the spatial error, we observe that ( fOT llen]|?, dt)/2 = O(h*), as expected
from Theorem 4.1.2. We furthermore observe optimal rates of convergence for the pressure
in the L*(0,T; L*(Q2))-norm.

Cells per slab Nr. of slabs (fOT llen]l? dt)/?  Rate | ||p — pull2oxpa Rate
128 20 8.6e-01 - 7.9e-03 -
512 40 2.1e-01 2.0 2.6e-03 1.6
2048 80 5.2e-02 2.0 6.7e-04 1.9
8192 160 1.3e-02 2.0 1.7¢-04 2.0
128 20 2.0e-01 - 6.9e-04 -
512 40 2.7e-02 2.9 0.2e-05 3.7
2048 80 3.5e-03 3.0 4.7e-06 3.5
8192 160 4.3e-04 3.0 5.1e-07 3.2

Table 4.1: Rates of convergence when solving eq. (4.1) with v = 107%. Note that At =
1/(Nr. of slabs). Top: using polynomials of degree k = 2, bottom: using polynomials of
degree k = 3.

To explicitly show k + 1 rates of convergence in time (as also predicted by Theo-
rem 4.1.2), we now consider a fine enough fixed spatial mesh to ensure that the temporal
error dominates over the spatial error. In particular, we choose a mesh consisting of 57800
elements when £ = 2 and 8192 elements when £ = 3. In Table 4.2 we observe that
(Jo llenll? dt)/? = O(AtF*1) as expected.
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Cells per slab Nr. of slabs

(L len])? )/ Rate

2 4.4e+00 -
57800 4 9.9¢-01 2.1
8 1.6e-01 2.6
16 2.3e-02 2.8
32 3.1e-03 2.9
2 1.8e+-00 -
8192 4 2.1e-01 3.1
8 1.4e-02 3.9
16 1.0e-03 3.8

Table 4.2: Time rates of convergence when solving eq. (4.1) with » = 10~*. Note that
At = 1/(Nr. of slabs). Top: using polynomials of degree k& = 2, bottom: using polynomials

of degree k = 3.
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Chapter 5

Pressure-robust space-time HDG for
the time-dependent problem on fixed
domains: Convergence to weak
solutions

In this chapter, we continue our study of the space-time hybridized discontinuous Galerkin
(HDG) method for the evolutionary incompressible Navier-Stokes equations analyzed in
Chapter 4. Therein, we proved that the method is pressure-robust and derived optimal
rates of convergence in space and time for the velocity field assuming that the Navier—
Stokes problem admits a strong solution in the sense of Theorem 2.3.2. However, as
a discontinuous method, the HDG method introduces additional stabilization which is
a potential source of consistency error if the exact solution is not sufficiently regular.
Consequently, the convergence results deduced from the standard a priori analysis of DG
and HDG methods often exclude the case of non-smooth solutions which may be present in
physically realistic scenarios. For this reason, our analysis in Chapter 4 considered strong
solutions of the Navier—Stokes system, and cannot be used to deduce convergence to weak
solutions in the absence of additional regularity.

The purpose of this chapter is to fill this gap by proving that the discrete solution of the
space-time HDG scheme analyzed in Chapter 4 for strong solutions converges to a Leray—
Hoptf weak solution of the evolutionary Navier—Stokes equations. To our knowledge, this
is one of the few minimal regularity convergence results available for HDG discretizations
in general, and it is the first for a space-time HDG discretization. As a byproduct, we
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obtain a new proof of the existence of weak solutions of the Navier—-Stokes equations. To
circumvent the problems posed by the lack of consistency in our numerical scheme, we
instead consider the concept of asymptotic consistency introduced in [28, Section 5.2].
That is, we aim to show the discrete weak formulation resulting from our space-time HDG
discretization converges to the exact weak formulation of the Navier-Stokes equations in
a suitable sense as the time step and mesh size tends to zero. Let us briefly discuss the
challenges involved.

Consider a countable set of mesh sizes H whose unique accumulation point is zero,
and consider a sequence of discrete velocity solutions {up},.,, satisfying eq. (5.8) below
computed on a sequence of space-time meshes such that the time step At vanishes along
with the mesh size h (but no explicit relation between the two is assumed). We aim to pass
to the limit as h — 0 (and thus At — 0) in eq. (5.8), which requires compactness. To this
end, the energy bounds obtained on the discrete solution in Chapter 4 allow us to conclude
that the sequence of discrete velocities is compact in the weak topology of L*(0,T; H) and
the weak-x topology of L>(0,T; H). If the problem were linear, these results would suffice.
However, it is well known that nonlinear functions need not be weakly continuous, and
thus the nonlinear convection term poses a problem.

To overcome this barrier, we will need to additionally show that {u},,, is compact in
the strong topology of L?(0,T; L*(2)?). This is made challenging by the discontinuous na-
ture of our numerical method, as standard compactness results like the Rellich-Kondrachov
theorem (Theorem 2.2.6) and the Aubin-Lions—Simon theorem (Theorem 2.2.12) routinely
employed at the continuous level are lost and appropriate discrete analogues must be de-
rived. Fortunately, discrete compactness for DG schemes is, at this point, well studied.
We mention in particular the works of Buffa and Ortner [I 1], Di Pietro and Ern [72], and
Kikuchi [50], wherein discrete versions of the Rellich-Kondrachov theorem are proven for
broken Sobolev and broken polynomial spaces. A common theme among these works is the
introduction of a discrete analogue of the gradient operator that incorporates information
from the jumps of the discrete solution across its discontinuities.

As for a discrete analogue of the Aubin—Lions—Simon theorem in the time-dependent
setting, we mention the work of Walkington [102] where it is shown that DG time step-
ping methods enjoy similar compactness properties to the evolutionary equations they are
used to approximate. This is made possible by Simon’s characterization of compact sets
in L?(0,T; B) (Theorem 2.2.11) which, unlike Theorem 2.2.12, does not require additional
regularity in time. Unfortunately, the results of [102] are valid only for conforming spa-
tial discretizations. This was remedied in [(1], wherein a generalization of the work of
Walkington valid for broken Sobolev spaces (and thus, for a broad class of non-conforming
discretizations) is obtained.
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In this chapter, we adapt some of the available discrete functional analysis tools [72]
to the HDG setting (see also [50] for similar efforts). We also prove a variation of the
discrete Aubin-Lions—Simon theorem in [102] valid for our non-conforming discretization.
Our result differs slightly from that of [(1] in that we stay entirely within the framework
of broken polynomial spaces. In an effort to unify the available discrete functional analysis
tools for spatial DG discretizations and DG time stepping, we introduce a discrete time
derivative operator in analogy with the aforementioned discrete gradient operator using
the time lifting operator in [(4, 87], and we show that some of the assumptions required
in [01, | for compactness can be interpreted using this discrete time derivative.

The remainder of the chapter is organized as follows: In Section 5.1, we introduce
notation, recall the space-time HDG method under consideration and some of the key
results obtained in Chapter 4. In Section 5.2, we introduce discrete analogues of the
gradient operator and time derivative, and recast the numerical scheme in terms of these
discrete operators. In Section 5.3, we prove that these discrete operators are bounded
uniformly with respect to the mesh size and time step, and as a consequence we obtain
convergence of the sequence of discrete velocity solutions as the mesh size and time step
tend to zero. In Section 5.4, we show that the limit of this sequence of discrete solutions
is a weak solution to the Navier—Stokes equations.

This chapter is reprinted, with slight modification, from the following article:

K. L. A Kirx, A. CESMELIOGLU, AND S. RHEBERGEN, Convergence to weak
solutions of a space-time hybridized discontinuous Galerkin method for the incom-
pressible Navier—Stokes equations, Mathematics of Computation. https://doi.
org/10.1090/mcom/3780,

with permission from the American Mathematical Society (AMS).

5.1 Preliminaries

In this section, we discuss the weak formulation for the continuous Navier—Stokes problem
eq. (5.1), introduce the space-time HDG method that we will use to approximate solutions
of eq. (5.1), and collect a number of useful results for our analysis.

5.1.1 Notation

We use standard notation for Lebesgue and Sobolev spaces: given a bounded measurable
set D, we denote by LP(D) the space of p-integrable functions. When p = 2, we denote the
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L*(D) inner product by (-,-)p. We denote by W*?(D) the Sobolev space of p-integrable
functions whose distributional derivatives up to order k are p-integrable. When p = 2,
we write W*P(D) = H*(D). We define H}(D) to be the subspace of H(D) of functions
with vanishing trace on the boundary of D. We denote the space of polynomials of degree
k> 0on D by Py(D). We use standard notation for spaces of vector valued functions with
d components, e.g. L*(D)?, HF(D) P¥(D)? etc. At times we drop the superscript for
convenience, e.g. we denote by [|-[| 2 the norm on both L*(Q) and L*(Q2).

Next, let U be a Banach space, I = [a, b] an interval in R, and 1 < p < co. We denote
by LP(I;U) the Bochner space of p-integrable functions defined on I taking values in U.
When p = oo, we denote by L>*(I;U) the Bochner space of essentially bounded functions
taking values in U and by C(I;U) the space of (time) continuous functions taking values
in U. Finally, we let Py(I;U) denote the space of polynomials of degree k£ > 0 in time
taking values in U.

5.1.2 The continuous problem

Given a suitably chosen body force f, kinematic viscosity ¥ € R*, and initial data ug, we
consider the transient Navier-Stokes system posed on a bounded Lipschitz domain Q C R?,
d e {2,3}:

Ou—vAu+V - (u®u)+ Vp = f, in Q x (0,77, (5.1a)
V-u=0, in Q x (0,77, (5.1b)

u =0, on 09 x (0,77, (5.1¢)

u(z,0) = ug(x), in Q. (5.1d)

To avoid any complications arising from curved boundaries, we will assume further that in
two spatial dimensions 2 is a polygon and in three spatial dimensions {2 is a polyhedron.
As we are interested in weak solutions, we require no assumption that €2 is convex.

Definition 5.1.1 (Weak solution). Given a body force f € L*(0,T; H=*(2)?) and an initial
condition ug € H, a function u € L>(0,T; H) N L*(0,T;V) with i—? € LY0,T;V") is said
to be a weak solution of the Navier—Stokes equations eq. (5.1) provided it satisfies for all
p € Ce(0,T3V),

T/ du T T T
/ <d—,¢> e+ [ (D) diry [ (VuVe)de= [ o s 62
0 t VixV 0 0 0

and u(0) = wug in V' (see e.qg. [5, Section V.1.2.2]).
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It is well known that weak solutions in the sense of Definition 5.1.1 are weakly con-
tinuous from [0,7] into H, and their distributional time derivative possess the further
regularity ¢ € L*?(0,T; V") (see e.g. [8]). If d = 2, this solution is unique and further-
more u € C(0,T; H). Uniqueness in three dimensions remains an open problem.

Remark 5.1.1 (On the regularity of the body force). Our main result (Theorem 5.4.3)
should remain valid for f € L*(0,T; H-*(Q)?) provided there is an appropriate smoothing
operator Ey, : Vi, — HY(Q)?; see e.g. [/]. In particular, if vy, — v strongly in L*(Q)?, we
require also that Eyvy, — v strongly in L2(2)? as h — 0. For simplicity, we focus on body
forces f € L*(0,T; L*(2)%).

Remark 5.1.2 (The energy inequality). In two dimensions, the weak solution to the
Navier—Stokes equations satisfies the following energy equality: for all s € (0,T),

9 S S
o) ey 2 [ Tl dt = ol +2 [ (2o (5.3)

In three dimensions, we say that a weak solution is of Leray—Hopf type if it satisfies the
energy inequality: for a.e. s € (0,T),

9 S S
o) ey 2 [ Tl e < ol +2 s (5.4)

5.1.3 Space-time setting and finite element spaces

In this subsection, we will introduce the space-time slabs, elements, faces, and finite element
spaces required for the space-time HDG discretization. We follow some of the definitions
introduced in [27]. We define a simplicial mesh of © to be a couple (75, F,) where the set
of mesh elements 7}, is a finite collection of nonempty, disjoint simplices K with boundary
OK and diameter hx such that Q = Uker K. We define the mesh size h of T, to be
h = maxger;, h K-

The set of mesh faces Fj, is a finite collection of nonempty, disjoint subsets of € such
that, for any F' € F,, F is a non-empty, connected subset of a hyperplane in R?. We
assume further that for each F' € Fj,, either there exist distinct mesh elements K1, Ky € Ty,
such that FF = 0K; N 0Ky, in which case we call F' an interior face, or there exists one
mesh element K € 7, such that F = 0K N 0S) and we call F' a boundary face. Moreover,
we assume that the set of mesh faces forms a partition of the mesh skeleton; that is,
ITh = Uker, OK = Uper, F- We collect interior faces in the set F; and boundary faces

in the set F7. Note that F;, = F; U Fr.
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To perform our analysis, we will make the following assumptions on the family of spatial
meshes {(Tn, Fn) }pew:

(i) For each h € H, Tj, is conforming in the sense that given two elements K;, Ky € Ty,
either K1 N Ky = () or K1 N K3 is a common vertex (d = 2) or edge (d = 3), or a
common face of K7 and K.

(ii) For each h € H, Ty, is quasi-uniform; i.e., there exists a Cyy > 0 such that h < Cpyhg
for all K € Tj,.

(iii) For each h € H, each face F' € Fy, satisfies an equivalence condition: that is, given
hp = diam(F'), there exist constants C, C¢ > 0 such that Cohx < hp < C¢hg for all
K € T, and for all F € F;, where F C 0K.

Let ks > 1 be a fixed integer. We introduce a pair of discontinuous finite element spaces

on Ty:

Vi = {vn € L* () | v|x € Pr,(K)' VK € Tp.},
Qn={an € Li(Q) | an|x € Pe-1(K) VK € Ty},

and on 07, we introduce a pair of discontinuous facet finite element spaces:

Vi = {vy, € L*(0Th) | Un|r € Py, (F)*VEF € Fiy, Ohlon =0},
Qn = {Gn € L*(OTh) | Gn|r € P, (F) VF € Fp} .

Next, we partition the time interval (0,7) into a series of N + 1 time-levels 0 = ¢, <
t1 <--- <ty =T of length At,, = t,,11 — t,,, and we define 7 = maxo<,<ny_1 At,,. For the
compactness result in Theorem B.1.1 to hold, we require this time partition to be quasi-
uniform, i.e. there exists a Cy > 0 such that 7 < CyrAt, for alln = 0,..., N — 1 (see
[102] for details). A space-time slab is then defined as £" = Q x I,,, with I, = (t,,t,41).
Let k; > 0 be a fixed integer (not necessarily chosen to be equal to k). We consider
the following tensor-product space-time finite element spaces in which we will seek our
approximation on each space-time slab £":

Vi i= {op, € L*(0,T; L*(0)%) | vplen € Py (In; Vi), Yn=0,...,N — 1},
)

(
Qi 1= {an € L*(0,T; L§() | anlen € P, (L Qn), ¥n=0,...,N — 1},
]_}h = {ﬁh € LQ(O,T; L2(87ﬁ)d) | T)h‘gn € Pkt([n;vh)a Vn=0,...,N — 1} ,
Qh = {Qh € L2(07Ta Lz(aﬁl)) | (jh|5" € Pkt([n;Qh)a Vn = 0,... 7N - 1} .
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As the spaces V), and Q) are non-conforming, we make use of broken differential
operators. For v, € V,, we introduce the broken gradient operator Vpv, by the re-
striction (Vyop)|lxk = V(vn|k) and the broken time derivative O.v, by the restriction
(Orvn)|1, = Ou(vn|1,). Moreover, the trace of a function v, € V), may be double-valued
on interior faces F' € F} as well as across two space-time slabs £” and £". For fixed n,
on an interior face F' € F; shared by two elements K and K%, we denote the traces of
vp € Vi, on F by vk = trace of vy|gr on F and vff = trace of v,|gr on F. We denote by
uE the traces at time level ¢,, from above and below, i.e. ut = li{]% up(t, £€).

€

We introduce the jump [-] and average {-} of v, € V}, across an interior face F € F}
component-wise: let [v;] = vy; — vl and {on:} = (vf, + vff;) /2 with vy,; denoting the
ith Cartesian component of v,. The quantities [v,] and {v,}} are then the vectors with
ith Cartesian component [uvy,;] and {vy;}, respectively. On boundary faces F' € F}, we
set [un] = {vn} = trace of vy|x on F, where K is the element such that F' C 9K N oS.
Lastly, we define the time jump of v, € V), across the space-time slab £" by [v],, = v} —v,, .

We adopt the following notation for various product spaces of interest in this work:
Vh = Vh X Vh, Qh = Qh X Qh, Vh = Vh X Vh, and Qh = Qh X Qh. Pairs in these
product spaces will be denoted using boldface; for example, v, 1= (vy,9,) € V5. Lastly,
we introduce two mesh-dependent norms on the spaces Vj, and V,, both of which are
standard in the study of interior penalty methods:

2 2 1 2
lonlls == D IVonlli + > 7 Nlonllz2ey Yoy, € Vi,
KeT, rer, ' F
2 2 1 —_ 2
‘HUH‘U = Z HVUhHK + Z h—th - UhHaK, Yo, € V.
KeTs Ker, K

Throughout we use the notation a < b to denote a < Cb where C'is a constant independent
of the mesh parameters h and 7, the viscosity v, but possibly dependent on the polynomial
degrees k; and k,, the spatial dimension d, and the domain 2.

Thanks to the equivalence condition on faces, we have

[onllyp S llonlly,  Yon € Vi, (5.6)
and hence we can conclude the following discrete Poincaré inequality holds [28, Corollary
5.4]: for all v, € V7,

[onl 2 () S lonll,- (5.7)
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5.1.4 The space-time HDG method

We discretize the Navier—Stokes problem eq. (5.1) using the exactly mass conserving space-
time HDG method studied in Chapter 4. This method combines the point-wise divergence
free and H (div; Q)-conforming HDG method studied in Chapter 3 with a discontinuous
Galerkin time stepping scheme; see also [13, 11] for related discretizations on space-time
tetrahedral meshes on time-dependent domains.

Due to the use of discontinuous-in-time finite element spaces, the discrete space-time
HDG formulation can be localized to a single space-time slab; see e.g. [98, Chapter 12]. We
first consider the discrete formulation on a single space-time slab, and in Section 5.2.3 we
will introduce the equivalent discrete formulation obtained by summing over all space-time
slabs to aid us in our analysis. For n =0,..., N — 1, the space-time HDG method for the
Navier—Stokes problem in each space-time slab " reads: find (un,p;,) € V5 x Q) such
that for all test functions (v, q,) € Vi X Qp:

- / (un, Opon) 7, At + (U1, Uyt T3 +/ (van(wn, vp) + op(un; wp,vy)) dt
In In

n / b (P, vn) f — / b (@, ) At = (w7, v )5 + / (f. o) dt, (5.8)
In In

In

where (u,v)7;, = > gy (u,v)r. Once we have solved eq. (5.8) for uy in the space-time
slab €7, the trace u,_, serves as an initial condition when solving eq. (5.8) on the next
space-time slab £"1. The process is initiated by choosing uy = II#Vuq in the first space-
time slab £°, where uy € H is the prescribed initial condition to the continuous problem
eq. (5.1), and TI¢Y : L2(Q2) — VAV is the L?-projection onto the discretely divergence free
subspace V,3Y C V,; see eq. (5.13) below and the discussion following.

The discrete forms ap(-,-) : Vi x Vi, = R, by(e,) © Vi, x Q) — R, and op(+;-,-) =
Vi, x Vi, x V), — R appearing in eq. (5.8) serve as approximations to the viscous, pressure-
velocity coupling, and convection terms, respectively. We define them as in Chapter 3:
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ap(u,v) ::Z/KVu:Vvdx+ Z/BK%(U—U)-(U—U)dS (5.9a)

KeTy KeTh
—Z/ [(u— @) - v + B - (0 — )] ds,
K€7—h OK
op(w; w,v) = — Z/u@w:Vvdx+ Z/ swen(u+a)- (v—0v)ds  (5.9b)
KeT, VK KeT, Y OK
+Z/ Lw-n|(u—a)-(v—1)ds,
KeT, VK
bp(p,v) == — Z/pv-vdx—l— Z/ v-npds. (5.9¢)
KeT, VK KeT, Y OK

The parameter a > 0 appearing in the bilinear form ay(+,-) is a penalty parameter typical
of interior penalty type discretizations. The bilinear form ay(-,-) is continuous and for
sufficiently large « enjoys discrete coercivity [77, Lemmas 4.2 and 4.3], i.e. for all uy, v, €
Vi,

lonll? < an(vp, o) and  |an(wn, va)| < lwnll,llvnll,- (5.10)

The form oy (+; -, -) satisfies |11, Proposition 3.6]
1 ,
on(Wh; Vn, Vi) = 5 Z / lwp, - n|[v, — Tp|* ds > 0, wy, € VY, Yo, € V. (5.11)
2 KeT V9K

The form o(+; -, ) also satisfies for all up, v, € Vj, and d € {2,3} (Lemma 4.3.2),

1/(d—1 d/2
lon (uns wn, vn)| S lunl 2oy llnlls o]l (5.12)

Frequent use will also be made of functions in the subspace of discretely divergence free
velocity fields:

; T (5.13)
Vhlv = {Uh eV, : / bh(vh,qh) dtzO, th S Qh, Vnzo,...,N— 1}
0

We note that V3" C H(div;Q), and further V - v, = 0 and vy, - njsg = 0 for all v, € VAV
(see e.g. [78, Proposition 1]). As Q is assumed to have a Lipschitz boundary, we therefore
have V;&" C H. In fact, it can be shown that V3V =V}, N H.
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5.1.5 Properties of the space-time HDG scheme

Here, we collect a number of useful results concerning the solution of the space-time HDG
scheme eq. (5.8). The existence of solutions to the nonlinear algebraic system arising from
eq. (5.8) was shown in Theorem 4.3.1. It was also shown in Chapter 4 that the discrete
velocity wu;, computed using the space-time HDG scheme is conforming in L*(0,T; H),
ie., if u, € V), is the element velocity solution of eq. (5.8), then V - u;, = 0, uplen €
Pi(1,; H(div; €2)), and the normal trace of u; vanishes on the spatial boundary 0fQ.

Next, we recall an energy estimate that will allow us to conclude that the discrete
velocity pair u;, € V), computed using eq. (5.8) is bounded uniformly with respect to the
mesh parameters h and 7:

Lemma 5.1.1. Let d € {2,3}, ks > 1 and k;, > 0, and suppose that u, € V), is solution
of space-time HDG scheme eq. (5.8) form=0,...,N —1. For all0 <m < N —1,

t
0

m m+1
HU;—HHZ(Q) +2H[uh]n||i2(g) +V/ H|uhH|12;dt S C(f’ uU?”)' (5'14)
n=0

Furthermore, if k, > 0 when d =2 and k; € {0,1} when d = 3, it holds that

HuhHLoo(o,T;m(Q)d) < C(f,uo,v). (5.15)
Here, C(f,ug,v) denotes a constant that depends on the data f, ug, and v.

The bounds in Lemma 5.1.1 were proven in Chapter 4 under the assumption that
k; = ks > 1 for simplicity of presentation; we remark that the proofs are equally valid for
the general case ks > 1 and k;, > 0. Note that for the lower order schemes k;, € {0, 1},
eq. (5.15) follows directly from eq. (5.14). This can be seen immediately when considering
constant polynomials in time (k; = 0). For linear polynomials in time (k; = 1), this follows
from the bound (see [101, Section 3|): [[unll oo rr2()e) S MaXo<man—1 Hu;z+1||L2(Q) +

maxXo<m<N-—1 H [Uh]an?(Q)'

5.2 Lifting operators and discrete differential opera-
tors

In this section, we introduce two discrete differential operators that serve as natural approx-

imations to the distributional gradient and distributional time derivative in the space-time

HDG setting. These discrete operators enjoy convergence to their continuous counterparts
in the weak topologies of appropriate Bochner spaces.
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5.2.1 Discrete gradient

First, we introduce a discrete gradient operator that will serve as an approximation of the
distributional gradient operator following ideas in [11, 72, 50]. The basic building block
of the discrete gradient operator is the following observation [I1]: as functions v, € V}
are discontinuous, their distributional gradient has a contribution from the jumps of uy
across element interfaces. Therefore, an appropriate approximation of the distributional
gradient in the HDG setting must incorporate the contribution from the jumps between
the element solution and the facet solution across element boundaries. We do so by con-
structing an HDG lifting operator following ideas in [50, 70]. For this, we need to in-
troduce the scalar broken polynomial spaces W), := {wy, € L*(Q) | wp|x € Py, (K)} and
Wy, := {wy € L*(0Ty) | whlox € Rk, (0K)}, with Ry (OK) defined in Section 4.3.2.1. We
first define a local lifting RI% : L?(0K) — Py, (K)? satisfying

/ R () - wy, dx = / pwy, - nds,  Ywy, € Py, (K)% (5.16)
K oK

We then define the global lifting Ry : L?(9T,) — Vi by the restriction R} (u)|x =
R (1o ) for all K € Ty,. Note that RZS satisfies for all wy, € V,

Z/[(Rﬁs(u)-whdxz >

KeTy, KeTy,

/ pwy, - nds, (5.17)
oK

and it can be shown using the Cauchy—Schwarz inequality and a standard local discrete
trace inequality that
2 1 B _
RS (wn — @) 2y S D —llwn — @alltoor) . Ywn € Wy x Wi (5.18)
() hy (OK)
KeTs,

~ Using the global HDG lifting, we introduce the discrete gradient operator ij s Wi %
Wi, — Vi, in the same spirit as in [72, 50]: given (v, v) € W}, x W, we set

G¥ (v,0) = Vv — R (v — ), (5.19)

where V, is the broken gradient operator. Crucially, this operator satisfies for all v, € V',
and wy, € V}, the identity

/ Gy (vp,) - wp do = / Vivn, - wp do — Z
Q 0

/ (Uns — Upg)wy, - nds,

where vy, ; and 95,; denote the ith Cartesian components of vy, and vy, respectively.
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5.2.2 Discrete time derivative

To define a discrete time derivative operator that serves as an appropriate approximation
of the distributional time derivative, we proceed by analogy with the discrete gradient
constructed in the previous section. We follow [0/, 87] by introducing a local time lifting

operator Rfotc,n : Vi — Py, (1,; V) satistying
/ (le;c,n(uh)a Uh)'Th dt = ([Uh]n, U:)’ﬁlv Yoy, € Pkt<]n; Vh)7 (520)
In
k¢ (ujl_ — u;) a m n
i) = 5 e e DD, 62
where the latter representation formula follows from [37, Lemma 6]. Here L (t) are mapped

Legendre polynomials; see [37, Section 3]. We then define a global time lifting R* : V}, — Vy
by the restriction R*|;, = RF _ This lifting satisfies:

loc,n®

N-1

/0 (Rkt(uh), Uh)’Th dt = Z([uh]n,’vih’h, V?Jh I~ Vh. (522)

n=0

With the global time lifting in hand, we define the discrete time derivative Df* : V), — V,
of vy, € V,, by setting
DFt (vy) = 0,05 + R (vy,). (5.23)

Lemma 5.2.1. Suppose that u, € V. Then, it holds that DF (up,)|en € Py, (Iy; H) for all
0<n<N-—-1.

Proof. That Df*(uy,) is divergence free and H (div; Q)-conforming follows from the fact that
the broken time derivative commutes with the divergence operator and the representation
formula eq. (5.21). It remains to show that DJ*(uy) - n|aq = 0. Note that uy - nlogg = 0
implies (0,up,) - n|ag = 0. This can be seen by considering a single space-time slab £ and
expanding uj, in terms of a basis {1}/, of Py, (I,) to find (3rup)|s, = SO, dtbsus, where
u; € Vj, is such that u; - nlsg = 0. Lastly, since u, - nlsq = u;, -n|aq = 0, the representation
formula eq. (5.21) shows that indeed ngcﬁn(uh) nloq = 0. O

5.2.3 Rewriting the HDG scheme

We now recast the space-time HDG scheme into a form more amenable to the convergence
analysis in Section 5.4 using the discrete differential operators introduced above. In what
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follows, (un,i)1<i<d, (Uni)1<i<ds (Vni)i1<i<a and (Up;)1<i<a Will denote the Cartesian compo-
nents of uy, uy, vy, and vy, respectively. We will adopt the convention of summation over
repeated indices. Restricting our attention to test functions v, € VIV x V, in eq. (5.8)
to remove the contribution from the pressure-velocity coupling term, integrating by parts
in time, summing over all space-time slabs £", and using the definitions of the lifting

operators, we arrive at the problem: find u;, € ViV x V), satisfying for all v, € ViV x V),

T

T T
/ (th (Uh)7 ’Uh)Th dt + / (yah(uh, ’Uh) + oh(uh; Uy, ’Uh)) dt = / (f, Uh)Th d?f7 (524)
0 0 0

where
ah(uh, 'Uh) _/ Gﬁs (uh,i) . Gis (’U}m) dx — / Ris (uh,i — ah,i) : RZS (vh,i — @h,i) dx
Q Q
(5.25)
(6%
+ Z / h_(uhz — Upi) (Vi — Uni) ds,
oh(uh; Uy, ’Uh) dt :/ Up, Giks ('u,hﬂ-)vh’i dx (526)
Q
+ Z / %(uhn+\uhn\) (uh—ﬂh)-(vh—ﬁh)ds.

5.3 Uniform bounds on the discrete differential oper-
ators

In this section, we derive uniform bounds on the discrete differential operators of the
discrete velocity solution introduced in the previous section. In what follows, we suppose
that u;, € VIV x V), is a discrete velocity pair solving the space-time HDG formulation
eq. (5.8) forn =0,..., N —1. We then show that subsequences of the discrete derivatives
converge weakly to their continuous counterparts.

5.3.1 Bounding the discrete gradient

Before bounding the discrete gradient of uy,, we pause to mention an immediate consequence
of the energy bound Lemma 5.1.1. From the discrete Sobolev embeddings for broken
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polynomial spaces [72, Theorem 6.1], we can infer using eq. (5.6) that

T
[ ey e < O, .27
0
where 1 < ¢ < o0 ifd = 2and 1 < ¢ < 6if d = 3. Thus, (up),ee is bounded in
L*(0,T; L1(Q)%) for 1 < ¢ < 6 and in particular in L*(0,T; H).

Theorem 5.3.1. Let d € {2,3} and suppose ky > 0 if d = 2 and k, € {0,1} if d = 3.
Let wy, be the solution of the space-time HDG scheme eq. (5.8). Then, provided the penalty
parameter o > 0 is chosen sufficiently large, it holds that

T
| 1Gk ) eyt < €. (5.28)
0

Proof. The result follows from eq. (5.25) and the energy bound in Lemma 5.1.1, provided
a > 0 is chosen sufficiently large, since for all w, € V', we have by eq. (5.18) fori =1,...,d
that

_ 2 « _
— || Ry (uns — uhvi)HLQ(Q) + Z ﬁ”u’” N u’”Hi?(@K)

KeTy,
1 2
2 (a - O) Z EHuh,i - uh,iHLz(aK) )
KeTy,

and therefore,

a 2

an(wn, wn) > |Gr () |0 - (5.29)

i=1

Consequently, the sequence G¥(uy, ;) is bounded in L2(0,T; L2(9)%). O

5.3.2 Bounding the discrete time derivative

We now turn our focus to bounding the discrete time derivative of u; € ViV uniformly,
first in the dual space of V&V x V), and second in L¥4(0,T;V’). The former is required
to obtain a strong compactness result needed for passage to the limit as h — 0 in the
nonlinear convection term, and the second is essential to ensure the distributional time
derivatives of accumulation points of the sequence {uy,},,, are sufficiently regular to satisfy
Definition 5.1.1. That Df*(u;) can be identified with an element of L*4(0,T; V") follows

from Lemma 5.2.1 since (V, H, V') form a Gelfand triple (Section 2.1.4).
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5.3.2.1 Uniform bound in the dual space of ViV x V),

To apply the compactness theorem Theorem B.1.1 later on to prove Theorem 5.3.3, we will
require Fj, : vy, — (D (uy),vp)7, to be uniformly bounded L¥4(0,T; (V& x V3,)'), with
(VAV x V) the dual space of V3 x V},. We shall see that it suffices to bound Fj,(vy) in

the dual space of the fully discrete space V& x V,, which we equip with the norm

T
| [ Fi(vs) dt|
HFh” PAiv e P,y = sup 0 _ .
T s, ([ a0 )

This motivates the following result (where we choose Fj, : vj, — (DF* (us), vn)7,):

Lemma 5.3.1. Let d € {2,3} and suppose ky > 0 if d =2 and k; € {0,1} if d = 3. Let
uy, be the discrete velocity pair arising from the solution of the space-time HDG scheme
eq. (5.8). It holds for all v, € VI x V), that

T T (4—-d)/4
[ @t at] < G sy ([l 0ar)
0 0

Proof. Let vy, € VIV x V,, and use eq. (5.24) to write

T T
/ (thuh, 'Uh)Th dt = / ((f, Uh)Th — Vah(uh, ’Uh) — oh(uh; Up, 'vh)) dt. (530)
0 0

We now bound each of the three terms on the right-hand side of eq. (5.30), beginning with
the first term on the right-hand side. The Cauchy-Schwarz inequality, Holder’s inequality,
and the discrete Poincaré inequality eq. (5.7) yield

(4-d)/4

T T
[ omlae<cwn ([ gy ena) 531)
0 0

To bound the linear viscous term on the right-hand side of eq. (5.30), we begin by using the
boundedness of ay(-,-) eq. (5.10) and Holder’s inequality with p = 4/d and ¢ = 4/(4 — d)
to find

(4—d)/4

T T . d/4 T .,
/ \ah<uh,vh>rdtsc( [ dt) (/ thui/“‘)dt) o (632)
0 0 0
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If d = 2, directly using the uniform bound in Lemma 5.1.1, and if d = 3, applying Holder’s
inequality to the first integral on the right-hand side of eq. (5.32) with p = 3 and ¢ = 3/2,
followed by the uniform bound in Lemma 5.1.1, we find

(4—d)/4

T T
[ o)l < €070 ( [ i |4/“>dt) S (63)
0 0

Lastly, we must bound the nonlinear convection term on the right-hand side of eq. (5.30).
For this, we use the bound eq. (5.12), apply the generalized Holder’s inequality with p = oo,
qg=4/d, and r =4/(4 — d), and use Lemma 5.1.1, to find

(4—d)/4

T T
/ lon (un; wn, vp)| dt < C(f, ug, v) ( / ||vh|j/<4—d>dt> . (5.34)
0 0

Collecting eq. (5.31), eq. (5.33), and eq. (5.34) yields the result. O

5.3.2.2 Construction of suitable test functions

To prove a uniform bound on the discrete time derivative in L*?(0,T;V’) (see Theo-
rem 5.3.2), we will need to construct a suitable set of test functions in the discrete space
VIV 5 V. This will require two preparatory results. The first is a density result for
functions of tensor-product type in C.(0,7;V') taken from [8, Lemma V.1.2] with minor
modification:

Lemma 5.3.2. The set # of functions ¢ of the form

= > ()i (a), (5.35)

where M > 1 is an integer, n, € C(0,T), and vy € ¥, is dense in C.(0,T;V).

Denote by I : L2(1,) — Py, (I,), THY : L2(Q) — VAV and 10, : HY(Q)? — V, the
orthogonal L?-projections onto the discrete spaces Py, (1), V;3", and Vj,, respectively. We
define the global L*-projection II* in time by the restriction IT*|;, = II!. Given a function
w € M, consider for alln =0,..., N — 1,

M
Ilp|en = Zﬂnnk (O p(z)  and  Thglen = Y T me(t) (). (5.36)

k=1

114



By construction, (ITv, [Tv) € V¥ x V). We remark that the approximation properties of
1Y obtained in Lemma 4.4.1 and listed in Lemma B.2.1 require quasi-uniformity of the
underlying spatial mesh 7p,.

Proposition 5.3.1. Suppose d € {2,3}. Let p € A and let (Ip,Tlp) € VI x V), be
the discrete test functions constructed in eq. (5.36). Then, the following stability property
holds:

T T
| lmema | ars [l voe .. (5.37)
0 0

Proof. See Appendix B.2.2. O

5.3.2.3 Uniform bound in L¥4(0,7T;V")

With Lemmas 5.3.1 and 5.3.2, and Proposition 5.3.1 in hand, we can now prove the
main result of this subsection. Since V' is separable, we can identify LY4(0,T;V’) =
LY@=D(0,T; V) (see e.g. [32, Proposition 1.38]), and since (V, H, V') form a Gelfand

triple, we have

T 1k
Jo (Df* (un), v), dt
prt(uh)nﬂ/d(o,T;vl) = sup { 0 . |
0£veLA/ (A=) (0,T;V) ||U||L4/(4*d>(0,T;V)

(5.38)

Theorem 5.3.2 (Uniform bound on the discrete time derivative). Let d € {2,3} and
suppose ky > 0 if d =2 and ky € {0,1} if d = 3. Let wy, be the discrete velocity pair arising
from the solution of the space-time HDG scheme eq. (5.8). Then ||th (up,

C(f,uo, v, T).

)||L4/d(0,T;V’) <

Proof. We follow the strategy used in the proof of [61, Theorem 3.2]. The density of
C.(0,T;V)in LP(0,T; V) for 1 < p < oo gives us also the density of .# in LY~ (0; T, V).
We therefore replace the supremum over v € L¥*=9(0: T, V) in eq. (5.38) with the supre-
mum over ¢ € .#. Now let ¢ € .# be arbitrary. Using the expansion of ¢ eq. (5.35), the
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definitions of the L2-projections II* and IIj, Proposition 5.3.1, and Lemma 5.3.1, we have

IDF ()| osago vy
T t
| [T(DF (un), )7, dt]

Ojgep%/ ||90 | ’ LA/(4=d) (0,T;V)
~ B 4-d)/4
_ LI () M) ] T T ]
N 0;;161)/// 4/(4—d) —d)/4 fT|| ||4/(4—d) dt
(I e, gy ar) HEE

| fo (DF (up,), Tp) 7, dt|
e 1) N\D/
= HW 14 ar)

‘f() uh ’Uh T dt|
(4-d)/4

A

< sup
e ([ = at)

S C(fau07V7T)'

5.3.3 Compactness

We end this section by summarizing the significance of the uniform bounds on the discrete
velocity collected in Lemma 5.1.1, Theorem 5.3.1, and Theorem 5.3.2. In particular, we
conclude that subsequences of the discrete velocity solution computed by the space-time
HDG scheme eq. (5.8) converge to a limit function u in suitable topologies. The goal of
Section 5.4 will be to show that u is in fact a weak solution to the Navier—Stokes problem
in the sense of Definition 5.1.1.

Theorem 5.3.3. Let H be a countable set of mesh sizes whose unique accumulation point
is 0. Let ks > 1 and ky > 0 if d = 2 and k, € {0,1} if d = 3 and suppose that {up}, ., is a
sequence of solutions of eq. (5.24) such that T — 0 as h — 0. Then, there exists a function
u € L>(0,T;H) N L*(0,T; V) with & € LY4(0,T; V") such that, up to a (not relabeled)
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subsequence:

(1) up = in L>(0,T;H),

(ii) > in L*(0, T; L*(Q0)%),
(iii) G7* (up;) — Vu; in L*(0,T; L*(Q)%),
(iv) DF (up) — du in LY(0,T; V).

Proof. (1) Weak—* convergence. The existence of a u satisfying (i) is a direct consequence
of the uniform L>(0,T; L*(€)?) bound in Lemma 5.1.1 and the Banach—Alaoglu theorem
[10, Corollary 3.30].

(ii) Strong convergence. This follows from Theorem B.1.1 due to the uniform en-
ergy bound in Lemma 5.1.1, the uniform bound on D*(uy) in Lemma 5.3.1 (see also
Remark B.1.1 and [61, Theorem 3.2]), and the uniqueness of distributional limits.

(iii) Weak convergence of the discrete gradient. By Theorem 5.3.1 there exists w €
L*(0,T; L*(©2)?) such that, upon passage to a subsequence, G¥(uy, ;) — win L*(0,T; L*(2)%)
as h — 0. Let ¢ € C®(R%)? and n € C>°(0,T) be arbitrary and let II;, be the orthogonal
L*-projection onto V;,. Extending uy, ;, Gf; (wn), Ris(uh,i — Up,;), u, and w by zero outside
of Q, and integrating by parts element-wise in space, we have for all n € C2°(0,7T) and
¢ € C(R?)? that

/OT (/}RdG’,js(uh,i)-gbdx)ndt
:/OT(_/ iV - ¢dx+2/ uni = tpi) (6 — 1p) - nds)ndta

KeTy,

(5.39)

where we have used eqgs. (5.17) and (5.19), that ¢ and u; are single-valued on element
boundaries, and that @, ;9o = 0. Moreover,

T T
2
/0 ”77(925 —1In9) '”HL?(@K) dt 5 h%H/O 772||¢||iﬂ+1(9) de. (5.40)

As a consequence of egs. (5.39) and (5.40) and the strong convergence in L?(0,T; L?(2)%)
of uy, to u, it holds for all n € C2°(0,T") that

/OT </Rdw.¢dx>ndt:}g%/; (AdGis(uh,i)-¢dx>ndt:AT (—Ad“iv'¢dx>”dt‘

(5.41)
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Hence w = Vu; as elements of L2(0,T; L?(R%)4), so u; € L*(0,T; H*(RY)). As u; vanishes
outside of Q, the H'(R%)-regularity ensures that u; vanishes on the boundary. As u € H,
its distributional divergence vanishes, and thus v € L*(0,T;V).

(iv) Weak convergence of the discrete time derivative. By Theorem 5.3.2, there exists a
z € L*%0,T; V") such that, upon passage to a subsequence , D (uj,) — z in LY4(0,T; V).
For arbitrary v € V and n € C>®(0,T), we use the definition of D (uy) eq. (5.23) and
integrate by parts in time to find

/ (D (un), vi)vrcy dt
’ T N—1 (5.42)
= _/0 (un, v)7;,0m dt + Z ((ug-',-lv V)7 (tns1) — (), U)Thn(tn)) :

n=0

The telescoping sum on the right-hand side of eq. (5.42) vanishes since 7(0) = n(T") = 0.
Thus, we can take the limit as h — 0 to find that for all n € C2°(0,7),

T T T

/ n(z, V) ey dt = lim [ (DF(up), o0y dt = —/ om(u,v)y, dt,
0 h—=0 /o 0

since D (up,) — z in L¥4(0,T; V') and up, — u in L*(0,T; L*(Q)%) as h — 0. Therefore,

_ du
z = O

5.4 Convergence to weak solutions

The remainder of this chapter is dedicated to showing that the limiting function u €
L>=(0; T, H) N L*(0,T; V) guaranteed by Theorem 5.3.3 is actually a weak solution of the
Navier—Stokes problem in the sense of Definition 5.1.1. The plan is as follows: we first
construct a set of test functions in the discrete space that will allow us to conclude upon
passage to the limit that u solves eq. (5.2). We will then show that the viscous term ay(-, -)
and the nonlinear convection term oy (+; -, -) enjoy asymptotic consistency in the sense of [28,
Definition 5.9], and use this to pass to the limit in eq. (5.24). Finally, we discuss the energy
(in)equality and conclude that the constructed weak solution v € L>(0,T; H)NL*(0,T;V)
is a solution in the sense of Leray—Hopf.
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5.4.1 Strong convergence of test functions

Passing to the limit in eq. (5.24) will require a suitable set of discrete test functions. We
will again use the set .# of functions defined in Lemma 5.3.2 as our basic building block,
as it is sufficiently rich to ensure density in C.(0,7; V') while its tensor-product structure
allows us to easily combine spatial and temporal projections onto the discrete spaces. In
particular, given ¢ € ., we will work with the discrete functions Iy and Iy, constructed
in eq. (5.36). To set notation, we denote by Ilp; and Ilp; the ith Cartesian component of
the vector functions Ily and Iy, respectively. We first show a strong convergence result
for the sequence of discrete test functions {(Ilp, )}, 4

Proposition 5.4.1. Let ks > 1, ky > 0 4if d = 2, and ky € {0,1} if d = 3 and sup-
pose that 7 — 0 as h — 0. Let ¢ € # and consider the sequence of discrete test
functions {(Ilp, 1)}, _,, defined in eq. (5.36). Then, it holds that Ilp — ¢ strongly in
L=(0,T; L=(2)%) and G5 ((Tg;, ;) — Ve, strongly in L*(0,T; L*(Q)%) as h — 0.

Proof. We first record the following consequences of Lemma B.2.1:

2 2
T = el oo 0.0y S T2 e 0.7 (5.43a)
iv 2
IV Y = ¥)l20) S Pkl (5.43b)
KeTy
[thr — H(szivwkHLOO(Q) S h1/2|¢k|H2(Q)- (5.43¢)

That Ilp — ¢ strongly in L>(0,T; L>(Q)9) follows from eq. (5.43), since
o = T[] oo (0.1, 1.00 (02))

S ||77k||Loo 0,T [¥n H%iV@DkHLm Q 7k — Ht77k||L°o 0,T ||¢k||H2 Q)
(0,1) (©) (0,1) (@)
k=1

(5.44)

We now prove the strong convergence of G5*((Ilg;, [g;)) to Vip; in L2(0, T; L2(2)?). Using
the definition of the discrete gradient eq. (5.19), the triangle inequality, and eq. (5.18), we
find

T
= 2
| 168 (@ o) = Vol at

T T
< Z/ ||VHh@_v¢H§,2(K)dt+ Z/ h;(lHHSO_mO“iE(aK)dt'
0

KeT, V0 KeTh

(5.45)
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We start with the first term on the right-hand side of eq. (5.45). By the definition of I,
the triangle inequality, and eq. (5.43), we can write

3 / VTl — Vgl 2a e,

KeTh
M

T T
<% ( / ()2 [V (I = ) 2yt + / (T — ) [V 22 dt)

k=1 KT,

< S B, (h? / 464 2 4 77 / A dt)

k=1

2

g

which can be seen to vanish as h — 0. Turning now to the second term on the right-hand
side of eq. (5.45), we find

Z / 1HH90 H90||L2 oK)

KeTh
S / R I — T o

M
S ZHthklew 0.7)
=1 KeT,

Using a discrete local trace inequality, the assumed quasi-uniformity of the spatial mesh,
and the approximation properties of IV and ITj,, we find

_ iv = 2
R I 0 — Tkl 2 omy S P21k N2 » (5.47)
and thus the right-hand side of eq. (5.46) vanishes as h — 0. The result follows. ]

(5.46)

5.4.2 Asymptotic consistency of the linear viscous term

We are now in a position to show that the linear viscous term is asymptotically consistent
in the sense of [28, Definition 5.9]:

Theorem 5.4.1. Let ks > 1 and ky > 0 if d = 2 and k, € {0,1} and suppose that
{un}cqy is a sequence of solutions of eq. (5.24) such that 7 — 0 as h — 0. Let ¢ €
A, denote by (Ilp,Ily) the discrete test functions constructed as in eq. (5.36), and let
w e L>(0,T;H) N L*(0,T;V) be the limit (up to a subsequence) of {unp},cqs guaranteed
by Theorem 5.3.3. Then, the following asymptotic consistency result holds for the linear

mscous term: .

T
lim an(up, (I, p)) dt = / / Vu : Vedxdt.
0o Ja

h—0 0
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Proof. Since G ((Tlpy, Tlp;)) — Vip; strongly in L2(0, T'; L*(2)%) by Proposition 5.4.1 and
by Theorem 5.3.3 (iii), G}* (up;) — Vu; weakly in L2(0,T; L*(Q)?) as (7, h) — 0, we can
pass to the limit in the first term of eq. (5.25) to find that

T T
lim / / Gy (un,) - GYe (Tpy, ;) dw dt = / / Vu; - Vi, da dt.
0 Q 0 Q

h—0

Turning to the second term of eq. (5.25), we have by the Cauchy-Schwarz inequality, the
bound on the global spatial lifting operator eq. (5.18), the definition of IIp and Ilgp, and
uniform bound Lemma 5.1.1,

T
/ / st (u;m — ﬂ]m‘) . RI;LS (H(p, — Hg&l) dl’ dt
0 Q

M T
<o) (XX [ etnn o, - o

1/2
2 )
J
2
k=1 KeT,, LA(oK)

which can be seen to vanish as h — 0 by eq. (5.43a) and eq. (5.47). In an identical fashion,

we find -
a _
i 3 [ o =) (1 M ds =0
h

The result follows. O

5.4.3 Asymptotic consistency of the nonlinear convection term

The goal of this subsection is to prove that the nonlinear convection term is asymptotically
consistent in the sense of [28, Definition 5.9].

Theorem 5.4.2. Let ks > 1 and ky > 0 if d = 2 and k, € {0,1} and suppose that {up}, 4,
is a sequence of solutions of eq. (5.24) such that 7 — 0 as h — 0. Let ¢ € .4, denote by
(T, Ty) the discrete test functions constructed as in eq. (5.36), and let u € L=(0,T; H)N
L*(0,T; V) be an accumulation point of {un}, e, guaranteed by Theorem 5.3.3. Then, the
following asymptotic consistency result holds for the nonlinear convection term:

T

T
lim [ op(up;un, (T, ) dt = / /(u -Vu) - pdzdt.
o Jo

h—0 0
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Proof. We start with the first term on the right-hand side of eq. (5.26). By Holder’s
inequality, we have

T
| s = g g at
0

T T
2 2 2 2
Sle— H@HLoo(QT;LOO(Q d ||U||L2(Q) dt + ||H<P||Lo<>(o,T;Loc(Q d Ju — w7 Q) dt,
)% o )% 0 (

which can be seen to vanish as h — 0 by Proposition 5.4.1 and Theorem 5.3.3. Therefore,
upllp; — ug; strongly in L2(0,T; L?(2)4) as h — 0, and this combined with the fact that
G (upi) = Vu yields

lim/ /uh k (wp )y dedt = / /u Vu) - pdxdt.
h—0

It remains to show that the facet term appearing in eq. (5.26) converges to 0 as h — 0.
By the definitions of IIp and Iy, proceeding as in the proof of [11, Proposition 3.4], and
using the fact that fOT [ an|? dt is uniformly bounded by Lemma 5.1.1,

Z/ /M(% up, - n+|up, - "|) (up, — 1p,) - (Tl — Tlp) ds dt

KeTy, ‘

1/2
C(f,uo, v Z I | oo 0,17 (Z hit I — Tl aK)) )

KeTh

which can be seen to vanish as h — 0 by using the second bound in eq. (5.43a) and
eq. (5.47). O

5.4.4 Passing to the limit

With the asymptotic consistency of the linear viscous term (Theorem 5.4.1) and the non-
linear convection term (Theorem 5.4.2), we are ready to pass to the limit in eq. (5.24).
Suppose that 7 — 0 as h — 0. Extract from {u},,, the subsequence satisfying the con-
vergence results listed in Theorem 5.3.3. Let ¢ € . and choose v, = (Ilp, [Ip) € VI x V),
as a test function in eq. (5.24):

/ (DF (up,), T) 7, dt+/ (l/ah(uh,(ng,ﬁgp))—l—oh(uh;uh,(ng,f[go)) dt
0 0 (5.48)

T
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By the definition of Ilp, we have

/0 (D (). 1), it = / (D (un), )t = / (D (), Sy b, (5.49)

Thus, the weak convergence of D;*(up,) to 4% in L¥/4(0,T; V") yields

T T du

lim [ (D (up), )7, dt = / <E’ @)y At (5.50)

h—0 0 0

This, in combination with Theorem 5.4.1 and Theorem 5.4.2, shows that upon passage
to the limit as h — 0 in eq. (5.48) that the limit w € L>(0,T; H) N L*(0,T;V) of the
subsequence {uy},4, given by Theorem 5.3.3 satisfies for all ¢ € A,

/OT<i—?790>wvdt+/OT((U-V)U,@)dt—l—y/OT(Vu,Vgp)dt:/OT(f,go)Thdt. (5.51)

By the density of the set .# in C.(0,7;V), eq. (5.51) holds also for all ¢ € C.(0,T;V).

We now show that u € L>(0,T; H) N L*(0,T;V) satisfies the initial condition in the
sense that u(0) = wy in V’. Our starting point is the definition of the discrete time
derivative eq. (5.23) in a single space-time slab £™:

/ (Opup, vp)7, At + (w)f —u, v} )7 = / (DF (up,), vp) 7, dt,  Vup, € V. (5.52)
I, I,

Let ¢» € V and n € C*(0,T) such that n(T) = 0. Define a function w, € V& by setting
wp|en = MEnI¢vey) with Ik : HY(I,) — B, (I,) the DG time projection defined as in [34,
Section 69.3.2]. Define also the global projection IT*|; = IT¥. We note that by definition,
(V,vp) 7, = (UVeh, vy) 7 for all v, € VAV and by the defining properties of the projection
1% (see [34, Eq. (69.26)]),

/ (Qpun, T, 0) 73 I dt = / (Qun, I ) pmdt and  (ILrn)(EF) = n(tn),
I, In

since Oyuy, € Py,—1(I,) (with the convention that P_;(I,) = {0}). Choosing v, = wy, in
eq. (5.52), we find

/(3tuh,¢)nndt+(ui—Uialb)nﬁ(tn)=/(th(uh)ﬂ/))nﬂk’/ndt (5.53)

In In
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Integrating by parts in time on the left hand side of eq. (5.53), summing over all space-time
slabs, and using that n(7") = 0, we have

T T
—/0 (un, )7, 0m dt — (ug', 1) 7,1(0) :/0 (Df" (un), ¢)7; I dt. (5.54)

From Theorem 5.3.3 (i) and (iii), and since u, = I{Vuy — ugy strongly in H, and
1%y — n strongly in LY“=9(0,T) by eq. (5.43a), we can pass to the limit as A — 0 in
eq. (5.54) to find

T T d
- [ wimomat = )0 = [ <d—jjw> ndt. (5.55)
0 0 V<V

Comparing eq. (5.55) with Theorem 2.2.9, we find that
0 = (u(0) — ug, ¥) 7, = (u(0) — ug,V)yrxv, VU €V = u(0) =uyin V.

Therefore, we have proven:

Theorem 5.4.3. Let ug € H and f € L?(0,T; L*(2)%) be given and let H be a countable
set of mesh sizes whose unique accumulation point is 0. Let kg > 1 and ky > 0 if d = 2
and k; € {0,1} if d = 3 and suppose that {up}, 4, is a sequence of solutions of eq. (5.24)
such that 7 — 0 as h — 0. Then, upon passage to a subsequence, {up},.,, converges
(in the sense of Theorem 5.3.3) to a weak solution of the Navier—Stokes problem eq. (5.2)
u € L>(0,T; H) N L*0,T; V) with % € LY4(0,T;V").

5.4.5 The energy inequality

In three dimensions, we are not guaranteed uniqueness of weak solutions and cannot con-
clude a priori that the weak solution obtained from Theorem 5.4.3 satisfies the energy
inequality eq. (5.4). We show below that the weak solution in fact does satisfy eq. (5.4).

Lemma 5.4.1. Letd =3, ks > 1, and k; € {0,1} and suppose that 7 — 0 as h — 0. The
weak solution v € L*°(0,T; H) N L*(0,T;V) given by Theorem 5.4.3 satisfies the energy
inequality for a.e. s € (0,T):

9 S S
||u(s)HL2(Q)+2V/O lull?. de < ||uoy|§2(m+2/0 (f ) gy . (5.56)
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Proof. Let s € (0,T) be fixed and choose n, € {0,1,..., N — 1} such that t,,, < s <+, 1.
Testing eq. (5.8) with v, = uj, € VIV x V), using eq. (5.29) and the stabillity of I}V in
L*(Q)¢, and summing from n = 0 to n = n,, we have

3 S lng+1
_ 2 o 2 2
Huns-‘rlHL2(Q) + 2’/2/0 ||G’:L (uh,i)”m(g) dt < ||u0||L2(Q) + 2/0 (f, up) 7, dt. (5.57)
i=1

Let us first suppose that k; = 0. Since u;, = up(s) for s € (t,,,tn.+1) in this case,
eq. (5.57) yields

3 S lng+1
2 2
oy + 2D [ 16 ()t < ol +2 [ (Frwrat. (559
=1

Our goal is to justify passage to the limit in eq. (5.58).

To this end, we multiply both sides of eq. (5.58) by an arbitrary ¢ € C2°(R) satisfying
¢ > 0 and integrate from s =0to s =T

T 3 s
/0 (”uh(‘sw;(m +2’/2/0 ||Gis<uh,z‘)||;(m dt)¢(5) ds
T tng+1
5/0 (|\uoyy§2(m+2/0 (Frun) 7 dt>¢(s) ds.

We first consider the integral involving the body force f. By the triangle inequality, the
Cauchy-Schwarz inequality, discrete Poincaré inequality eq. (5.7), and the uniform energy
bound in Lemma 5.1.1, we obtain

tng+1 K] s+T 1/2 S
[ oy - (f,U)Thdt',S(/s ||f||iz(mdt) + [ 100w (50

Since f € L*(0,T; L*(Q)%), the primitive F(7) = fSS+T||inQ(Q) dt is absolutely continuous.

This, combined with the fact u, — u strongly in L2(0,T; L*(Q)9), shows that the right-
hand side of eq. (5.60) vanishes as h — 0, and so

(5.59)

tns+1 S
im [ (f,un)y d = / (F,u)7 dt.
0

h—0 0

Thus, we can apply Lebesgue’s dominated convergence theorem (Theorem 2.2.2) to find

lim OT (/Otw(f, )7 dt) B(s) ds — /OT (/Os(f, W) dt> &(s) ds. (5.61)
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With eq. (5.61) in hand, we pass to the lower limit as h — 0 in eq. (5.59) and use Fatou’s
lemma (Theorem 2.2.1), the weak lower semicontinuity of norms, and Theorem 5.3.3:

[ (W +20 [t at)otsras < [ (ol +2 [ 007 at ) ots) s

As this holds for all ¢ € C°(R) satisfying ¢ > 0, we have for a.e. s € [0,7T] [96, pp. 291],
9 S S
o6y + 20 [Nl e < ol ey +2 [ (0 .
0 0
Next, suppose that k; = 1. In this case, eq. (5.57) does not offer direct control over
[un($)l 120 for s € (tn,.tn,+1). Instead, we define @y, to be piecewise constant (in time)

function satisfying tp|em = u,,,; = un(t,,,,), so that eq. (5.57) yields

3 s tng+1

- 2 s 2 12

[ (s)[| 720 +2VZ/O IGh (wn )l 20y At < Nlug [l72(0 +2/0 (f, un)T, dt.
i=1

Note that if up — u in L2(0,T; L?(2)%) as h — 0, then also @, — u in L*(0,T; L*(Q)?) as
h — 0 [101, Corollary 3.2]. The weak lower semi-continuity of the norm in L2(0,T; L?(2)%)

yields
T

T
2 . - 2
| I 06s) s < timint [ i (6) o ) s

The remainder of the proof is identical to the case k; = 0. O]
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Chapter 6

Space-time HDG for the
advection-diffusion problem on
moving domains

Many important physical processes are governed by the solution of time-dependent par-
tial differential equations on moving and deforming domains. Of particular importance
are advection dominated transport problems, with applications ranging from multi-phase
flows separated by evolving interfaces to incompressible flow problems arising from fluid-
structure interaction. Since our motivation to study space-time HDG methods is the
numerical solution of the incompressible Navier—Stokes equations on time-dependent do-
mains, an appropriate first step is to analyze a space-time HDG scheme for a simpler linear
advection—diffusion model.

In this chapter, we present (to our knowledge) the first analysis of a space-time HDG
method on time-dependent domains. The first error analysis of a space-time DG method
on moving and deforming domains for the linear advection—diffusion equation, however,
was performed in [94, 95], and for the Oseen equations in [99], laying the groundwork
for the error estimates in Section 6.4. The consideration of moving domains significantly
alters the analysis of the method compared to analysis on fixed domains considered in
the previous chapters. In particular, moving meshes lack the tensor product structure
necessary to use the space-time projections or the temporal inverse and trace inequalities
used in Chapter 4, without modification. Moreover, the Bochner—Sobolev spaces used in
the previous chapters are no longer the appropriate functional setting as the function spaces
defined over a time-dependent domain are themselves time-dependent. Instead, we follow
[95, 99] by introducing anisotropic Sobolev spaces (first considered in the thesis [35]).
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This chapter is organized as follows: In Section 6.1 we discuss the scalar advection—
diffusion problem in a space-time setting. Next, in Section 6.2, we discuss the finite element
spaces necessary to obtain the weak formulation of the advection—diffusion problem, which
we subsequently introduce. Section 6.3 deals with the consistency and stability of the space-
time HDG method. Theoretical rates of convergence of the space-time HDG formulation
in a mesh-dependent norm on moving grids are derived in Section 6.4. Finally, Section 6.5
presents the results of a numerical example to support the theoretical analysis.

This chapter is reprinted, with slight modification, from the following article:

K. L. A Kirg, T. L. HORVATH, A. CESMELIOGLU, AND S. RHEBERGEN, Anal-
ysis of a space-time hybridizable discontinuous Galerkin method for the advection-
diffusion prboelm on time-dependent domains, STAM Journal on Numerical Analy-
sis, 57 (2019), pp. 1677-1696. https://doi.org/10.1137/18M1202049,

with permission from Society of Industrial and Applied Mathematics (STAM).

6.1 The advection—diffusion problem

Let Q(t) C R? be a time-dependent polygonal (d = 2) or polyhedral (d = 3) domain whose
evolution depends continuously on time ¢t € [ty,ty]. Let x = (x1,--- ,24) be the spatial
variables and denote the spatial gradient operator by V = (8901, coe O d). We consider the
time-dependent advection—diffusion problem

Ou+V-(Bu) —vNVou=f  inQ), to<t<ty, (6.1)

with given advective velocity 3, forcing term f and constant and positive diffusion coeffi-
cient v.

Before introducing the space-time HDG method in Section 6.2, we first present the
space-time formulation of the advection—diffusion problem eq. (6.1). Let & := {(¢,z) :
r € Qt), to <t <ty} C R be a (d+ 1)-dimensional polyhedral space-time domain.
We denote the boundary of £ by &, and note that it is comprised of the hyper-surfaces
Qto) :=={(t,z) € 0 : t =to}, Utn) = {(t,x) € € : t =tn}, and Q¢ 1= {(t,z) € IE :
to < t < ty}. The outward space-time normal vector to O is denoted by n := (n;, i), where
n; and n are the temporal and spatial parts of the space-time normal vector, respectively.

To recast the advection—diffusion problem in the space-time setting we introduce the

space-time velocity field 5 := (1, 5) and the operator V := (0;, V). The space-time formu-
lation of eq. (6.1) is then given by

V- (Bu) — IV ou = f iné&, (6.2)
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where f € L*(€) and where 3,V - 3 € L>(£).

We partition the boundary of €(¢) such that 0Q(t) = I'p(t) U 'n(t) and I'p(t) N
I n(t) = 0 and we partition the space-time boundary into 0 = 9Ep U 0EN, where OEp =
{(t,z) sz €Tp(t),to <t <tn} and OEy := {(t,x) : x € Tn(t) UQ(tg), to <t < tn}.
Given a suitably smooth function g : 0y — R, we prescribe the initial and boundary
conditions

—C(uB-n+vVu-n=g on 0y, (6.3a)
u=0 on 9&p, (6.3b)

where ( is an indicator function for the inflow boundary of &, i.e., the portions of the
boundary where 5-n < 0. Note that eq. (6.3a) imposes the initial condition u(z,ty) = g(x)
on Q(to)

6.2 The space-time hybridizable discontinuous
Galerkin method

In this section we introduce the space-time mesh, the space-time approximation spaces and
the space-time HDG formulation for the advection—diffusion problem eq. (6.2)-eq. (6.3).

6.2.1 Description of space-time slabs, faces and elements

We begin this section with a description of the discretization of the space-time domain.

First, the time interval [to,fx] is partitioned into the time levels tp < t; < --- < ty,
where the n-th time interval is defined as I,, = (t,, t,+1) with length At,, = t,,1 —t,. For
simplicity we will assume a fixed time interval length, i.e., At,, = At forn =0,1,--- | N—1.

For ease of notation, we will denote Q(¢,,) = 2, in the sequel. The space-time domain is
then divided into space-time slabs £" = £N (In X Rd). Each space-time slab £" is bounded
by Q,, Qpi1, and Q% = 9E™ \ (2, U Qyiq).

We further divide each space-time slab into space-time elements, £" = [J ; K%, To
construct the space-time element K7, we divide the domain €2,, into non-overlapping spatial
elements K7, so that (2, = Uj K7. Then, at t,1 the spatial elements K;LH are obtained
by mapping the nodes of the elements K7 into their new position via the transformation
describing the deformation of the domain. Each space-time element K7 is obtained by

connecting the elements K7 and KJ’T‘“ via linear interpolation in time.
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Figure 6.1: An example of a space-time slab in a polyhedral (1+ 1)-dimensional space-time
domain.

The boundary of the space-time element K7 consists of K7, KJ’»‘“, and QF = OK7 \
(K} U KJ’?H). On OK7, the outward unit space-time normal vector is denoted by ki =
(nf? kT ), where nf? and 7" are, respectively, the temporal and spatial parts of the
space-time normal vector. On K7, n* = (~1,0), while on K n* = (1,0). In the
remainder of the article, we will drop the subscripts and superscripts when referring to
space-time elements, their boundaries and outward normal vectors wherever no confusion

will occur.

We complete the description of the space-time domain with the tessellation 7," consist-
ing of all space-time elements in £", and 7, = |J,, 7, consisting of all space-time elements
in £. An illustration of a space-time domain is shown in the case of one spatial dimension
in Section 6.2.1.

Finally, an interior space-time facet S is shared by two adjacent elements K* and KF,
S = OK* N OK%, while a boundary facet is a face of 9K that lies on €. The set of all
facets will be denoted by F, and the union of all facets by I.

6.2.2 Approximation spaces

We define the Sobolev space H*(Q) = {v € L*(Q) : D*v € L*(Q) for |a| < s}, where D*v

denotes the weak derivative of v, « is the multi-index symbol, s a non-negative integer, and
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2 C R™ is an open domain (see e.g. [9]). The space H*(Q2) is equipped with the following
norm and semi-norm:

2 «@ 2 @ 2
HUHHs(Q) = ZHD ’UHLz(Q) and  [v qus(m = ZHD UHLZ(Q)’ (6.4)

lor|<s lo|=s

where [|-[| 12 () 18 the standard L%norm on Q. In the sequel, we will simply write |v]|, =

v |L2(Q)-
Next, we introduce anisotropic Sobolev spaces on an open domain  C R+ [35]. For
simplicity, we follow [95, 99] by restricting the anisotropy to the case where the Sobolev

index can differ only between spatial and temporal variables. All spatial variables will have
the same index. Let (s, ss) be a pair of non-negative integers, with s;, s; corresponding
to the spatial and temporal Sobolev indices. For a;,a, > 0,7 = 1,...,d, we define the
anisotropic Sobolev space of order (s;,s,) on  C R4*! by

HE)(Q) = {v € L*(Q) : DDy € L*(Q) for a; < sy, |as| < s,}, (6.5)
where ay = (0451, cee O d). The anisotropic Sobolev norm and semi-norm are given by,
respectively,

2 ar Pyas (12 _ at yas |2

HU”H(StaSS)(Q) = Z [ D*D%v|lg  and ’U‘?{(st,sw(g) = Z DD v .
at<st Ar=5t
los|<ss |ovs|=ss

_ We assume that each space-time element K is the image of a fixed master element
K= (-1, l)dJrl under two mappings. First, we construct an intermediate tensor-product
element K from an affine mapping Fx : K — K of the form Fi(Z) = AxZ + b, where

Ay = diag (%, %, e %) Here h; is the edge length in the i-th coordinate direction, At

the time-step, and b € R%*! is a constant vector.

Next, the space-time element K is obtained from K via the suitably regular diffeomor-
phism ¢x : K — K. The mapping ¢x determines the shape of the space-time element after
the size of the element has been specified by Fi. Following [35], we will assume that the
Jacobian of the diffeomorphism ¢y satisfies:

Crt < |det Jy | < Cy, | det JW\MHM@ <Cy mmn=0,...,d VKET,
where C; and Cy are constants independent of the edge lengths h; and the time-step At,
and where det Jy, \m» denotes the (m,n) minor of Jy,.
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Figure 6.2: Construction of the space-time element K through an affine mapping F : K—
K and a diffeomorphism ¢x : K — K [95].

Following [05], we define the Sobolev space H =) (K) as
HC5)(K) = {v e L*(K) : D*D%v € L*(K) for oy < sy, || < 54} (6.6)
Furthermore, the Sobolev space H (%) (K) is defined as
Hews) () = {v € LK) 1 v o ¢ € Ho*)(K)}, (6.7)

see [38, Definition 2.9].

For the analysis in Section 6.3 we require the concept of a broken anisotropic Sobolev
space. We assign to T, the broken Sobolev space

H(St,ss)(']_};) — {U c Lz(f/’) : U|IC c H(857St)(IC),VIC S E}, (6'8)

which we equip with the broken anisotropic Sobolev norm and semi-norm, respectively,

2 2
||U||H(St,55)(7'h) = Z HUHH(sz,sS>(/C) and |/U|§-](St755)(7-h) = Z |/U|§-](5t758>(lc)' (6.9)
KeTn KeTn

For v € HWYD(T,), we define the broken (space-time) gradient Vv by (Vyv)lx = V(v|x),
VIC € T

Additionally, we will make use of the following (spatial) shape regularity assumption.
Suppose K € 7T, is constructed from the fixed reference element K via the mappings
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Fy : K — K and o K — K. Let hx and pr denote the radii of the d-dimensional
circumsphere and inscribed sphere of the brick h; X - -+ X hy, respectively. We assume the

existence of a constant ¢, > 0 such that

h
K<, VKeT.
PK

For the HDG method, we require the finite element spaces
Vh(pi’ps) = {Uh eL? (5) : Uh|IC o ¢x o Fc € Q(pt,ps (E) VIC € 7;1} ,

M}(Lptyps):{MhGLQ(F) Mh|SO¢KOFK€thpS( )\V/SGJ:
,u,h:OOIl 85[)},

(6.10)

(6.11)
(6.12)

where Qp, p,)(D) denotes the set of all tensor-product polynomials of degree p, in the
temporal direction and p, in each spatial direction on a domain D. Furthermore, we define

VvV, = Vh(pt,ps) . M}Epz,ps).

6.2.3 Weak formulation

It will be convenient to introduce the bilinear forms

aj, ((u, A), Z/fm thdx+/

KETh 9

. 2(5 n+|6-n|) Auds

+Z/ nlu+ A) + 15l (= ) (0= o) ds,

KeThn
a ((u, N, ( Z/uvhu thdx—i—Z/ A) (v —p)ds
KeTy, KeTh
_Z/ v(u— ANV -a+vViu-n(v— )]ds
KeTy,

where a > 0 is a penalty parameter. The space-time HDG method for eq. (6.2)—eq

is then given by: find (us, A\p) € V7, such that

an ((un, An), (On, i) = / Junpdx +/ gunds  Y(vp, pn) € Vg,
KeTy 9N

where aj, ((u,A), (v, 1)) = af ((u, X), (v, 1)) + aif ((u, A), (v, w)).
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6.3 Stability and boundedness

In this section we prove stability and boundedness of the space-time HDG method eq. (6.14).
Our analysis will make repeated use of local trace and inverse inequalities valid on the finite
element space Vh(p tPa) Using ideas from [38], the dependence on the spatial mesh size hg
and time-step At is made explicit in these inequalities. Motivated by the fact that these
two parameters differ in general, this will allow us to derive error bounds in section 6.4
that are anisotropic in hx and At as in [95, 99]. The local trace and inverse inequalities
are summarized in the following lemma.

Lemma 6.3.1. Assume that K is a_space-time element in R constructed via the map-
pings ¢ K — K and F : K — K as defined in section 6.2.2. Assume further that the
spatial shape regularity condition eq. (6.10) holds. Then, for all vy, € Vh(pt’ps), the following
local inverse and trace inequalities hold:

Brenllc < era (A + B enllc (6.150)
thvhH’C < CI,sh;(lHUhH,C, (6.15Db)
lvnllg < erohg®[lvall (6.15¢)
ol < crax (8674 + i Yol (6.154)

where crs, Crt, cro, and crgc are constants depending on the polynomial degrees py
and ps, the spatial shape-regularity constant c,., and the Jacobian of the mapping ¢, but
independent of the spatial mesh size hx and the time step At.

Proof. Inequalities eq. (6.15a)—eq. (6.15d) are space-time variants of those found in [38,
Corollary 3.54, Corollary 3.59]. O

Additionally, we will require the following discrete Poincaré inequality valid for (vy, pp,) €
Vi 1991,

— 2 1
lonll < 2 { D2 |[Fuen|[+ D2 —lon = pualld | (6.16)
KET; ket K

where ¢, > 0 is a constant independent of the spatial mesh size hx and time-step At.

Consider the following extended function spaces on £ and I':

V(R) = VPP L HAE),  M(h) = M+ HY(D), (6.17)
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where H*?(T) is the trace space of H?(£). For notational purposes we also introduce
V*(h) = V(h) x M(h). We define three norms on V*(h). First, the “stability” norm is
defined as

B B2 (v

e 2

KeTh

o, I =0l +

14

+3 Hw” + > Mo —ply, (6.18)
K

KeTh KeTh,

where for ease of notation we have defined 3, = |5-n|. Additionally, we introduce a stronger
norm obtained by endowing the “stability” norm with an additional term controlling the
L?-norm of time derivatives:
2 2 Ath?
sl = e+ Y ot
KeTh K

1]l (6.19)

To prove boundedness of the bilinear form in section 6.3.1 we introduce the following norm:

2
e wlls, =lemll:+ 3 [a=|),,., + |
KeT, KeTy

— 2 At +hg o
+ Z hrv th'ﬁH + Z 7 vl
KeT,, ° Ken Athic

By (6.20)

’é)IC—

where OK* denotes the outflow part of the boundary (where 8 -n > 0) and where 0K~

denotes the inflow part of the boundary (where 5 -n < 0). The additional terms are

required since the inequalities in Lemma 6.3.1 are valid only on the discrete space Vh(p 6Ps),

Let u € H?(E) solve the advection—diffusion problem eq. (6.2). Defining the trace
operator v : H?(E) — H??(T), restricting functions in H?(£) to I', and letting u =
(u,y(u)), we have

ap(w, (vg, 1)) Z / fuop dx +/ gy, ds Y(vp, pn) € Vip. (6.21)
8

KeTh 2

This consistency result follows by noting that « = (u) on element boundaries, integration
by parts in space-time, single-valuedness of 3 - n, Vyu - 7, u and u, on element bound-
aries, the fact that u, = 0 on 0€p, and that u solves eq. (6.2)—eq. (6.3). An immediate
consequence of consistency is Galerkin orthogonality: Let (upn, Ap) € V7, solve eq. (6.14),
then

an ((u,y(w)) = (wp, An), (0n, pn)) =0, V(on, i) € V. (6.22)
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6.3.1 Boundedness

We now turn to the boundedness of the bilinear form.

Lemma 6.3.2 (Boundedness). There exists a cg > 0, independent of hyx and At, such
that for all u = (u,y(u)) € V*(h) and all (vy, up) € Vp,

|an(w, (vn, 1n))| < enllull, | (vns ) - (6.23)

Proof. We will begin by bounding each term of the advective part of the bilinear form,
af(u,vp). We note that

|ag, (w, (Vn, pun))| < /ﬁu Vyvp dz| + ’/ % n+]5n|) v (u)py ds
KeTh 0N
K;/%é s +2(0) +18 nl(u = () (0 — ) ds

(6.24)

To obtain a bound for the first term on the right-hand side of eq. (6.24), we first recall
B - Vo = 0w, + B - Vo, so that

/Bu Vi, dz| < Z/\uatvh\dx+ Z / ‘Bu thh (6.25)

KeTh KeTh KeTh

Both terms on the right-hand side may be bounded using the Cauchy—Schwarz inequality:

At + hg \* Ath% \?
> / [udyon| dar <) <Th§(> [ul (m [0nl|,c (6.26)

KeTh, KeTh
< Jlully [l on, )

dr < ”5HL°@ ©) Z v | v thvh (6.27)

Z/‘Bu Vavn

KeTn
<118l e ey ¥ ‘”zmums*w (v, )
The integral over the mixed boundary O€y in eq. (6.24) may also be bounded via the
Cauchy—Schwarz inequality:

L2

< |82

,UhH

881\7‘ 0N

/%N L(B-n+ |8 n|) y(u)un ds

< Meall ol Cons )
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For the final term appearing on the right-hand side of eq. (6.24), we have the bound

IC€77L/8’C
< B-n(vp — pp)u|ds + B-n(vn — pn)y(u)| ds
%/@ﬁl )l Z/@U ) ()]

SZ(‘

KeTn
< V2|ull,, || (vn, im)]

(8- n(u+~(w) + 8- nl(u—~y(u))) (vn — pn)ds (6.28)

N[ =

B/ B2 (0 — )|

e, )

*|

‘8/C+ oK

s’

where we used the triangle inequality for the first inequality, the Cauchy—Schwarz inequality
for the second inequality, and finally combined the discrete Cauchy—Schwarz inequality with
the fact that (a+b)% < 2(a®+b%). Collecting the above bounds we obtain, for all u € V*(h)
and (Uh7ﬂh> c Vh,

(6.29)

|agi(w, (vn, )| < cpallull,, || (vn, )|

where cp, =2+ \/§+HBHL°°(€) 12,

s?

We now shift our focus to the diffusive part of the bilinear form, af(u, (vp, up)). We

note that

|af (w, (v, )] < +

Z/Vﬁhu-vhvhdx
K

KeTn

S [ = ) o ) s

KeTn

Z / [I/(u — () Vo -+ vVpu - (v, — ,uh)} ds|. (6.30)

By the Cauchy—Schwarz inequality, the first two terms on the right hand side of eq. (6.30)
can be bounded by (1 + oz)H\uHLHH (vp, uh)]“s. To bound the remaining term of

al (u, (vp, 1)), we note that

Z /Q [V(u — 3 (u))Vyvp - 0+ vVhu - it (v, — uh)] ds
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Application of the Cauchy—Schwarz inequality to the first term on the right-hand side
of eq. (6.31), followed by the trace inequality eq. (6.15¢), yields

Z / v(u—v(u)) Vo - n’ds (6.32)

KeTh

VY]
=

_ 2
<cro Kz: %Hu — 7(u)||29 Z VHVhUhHIC
€Th KeTh

< crollull,. || (on, )] .-

Finally, to bound the second term on the right-hand side of eq. (6.31), we apply the
Cauchy—Schwarz inequality:

>,

KeTh,

vV - (v, — ,uh)‘ ds < \Hu\”s*w Uh,y [, ‘H (6.33)

Therefore, for all w € V*(h) and (v, pp) € Vi,

Jaiaw, (on, n)| < epallll,Jlon, )], (6.34)

where ¢ g = 2+ a + ¢7,o. Combining eq. (6.29) with eq. (6.34) yields the assertion with
CB = CBa 1+ CBd- O

In the sequel, we will also make use of the following bound valid for all (us, Ap), (vn, 1) €
Vhi

lat ((un, An), (On, )| < call| (uny An) || (ons )], (6.35)

which follows immediately from eq. (6.34) using the equivalence of norms on
finite-dimensional spaces. However, to quantify the constant ¢4 to ensure its independence
of hxg and At, we proceed as follows: note that

Z/Vvhuh thhdx

a ((wn, An), (Vn, in))| <

Z/ uh—)\h (vh—,uh)ds

KeTn KeTh
Z / v(up — M)V, -+ vV -0 (v, — ,uh)} ds|. (6.36)
KETh
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By the Cauchy—-Schwarz inequality, the first two terms on the right-hand side of eq. (6.36)
can be bounded by (1 + a)||(us, )\h)wvm(vh,uh)mv. To bound the remaining term on the
right-hand side of eq. (6.36), we note that

(6.37)

Z / [V(uh — M)V -1+ vV g - a (v, — Mh)] ds
Q

KeTy,
S Z/‘I/(uh—)\h)vhvh-n’d:s%—Z/‘Vvhuh-n(vh—,uh) ds.
Q Q

KeT KeTh

Application of the Cauchy—Schwarz inequality to the first term on the right-hand side
of eq. (6.37), followed by the trace inequality eq. (6.15¢), yields

Z /Q ‘l/(uh — M)V, - ﬁ’ ds (6.38)

KeTh

|
[N

y 2
< cro Z h_“Uh - )\hH2Q Z VHVhUh .

ke, K KeTs,

< erof| (uns A, | Cons pn) |-

Finally, to bound the second term on the right-hand side of eq. (6.37), we apply the
Cauchy—-Schwarz inequality followed by the trace inequality eq. (6.15¢) to find

> / ’Vvhuh 71 (vp — Mh)) ds < erol|(un, M) ||| (on, ) |- (6.39)
KeT, ¥

The result follows with ¢q = 1 + o + 2¢7 0.

6.3.2 Stability

Next we demonstrate that the method is stable in the norm eq. (6.18) over the space V;*:

Lemma 6.3.3 (Stability). Let a be the penalty parameter appearing in eq. (6.13b) which
is such that o > c%’g where cr,g 1s the constant from the local trace inequality eq. (6.15¢).
Further, let co = (a — ¢%,0)/(1 4+ a) and suppose there exists a constant [y > 0 such that

CalV
2
Cp

- in(fjh -B> By >0, (6.40)
S
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where ¢, is the constant from the discrete Poincaré inequality eq. (6.16). Then there exists
a constant c., independent of hx and At, such that

an((On, 1), (0ns 1)) > cell )|l Vo ) € Vi, (6.41)

Proof. By definition of the bilinear form af(-,-) in eq. (6.13a),

ap((vn, pon)s (Vn, pin)) Z/vhvh Bdx — Z ,8 nvj ds

2 ¢, KeTn
1
+/ 5 (Bont18-n]) pids+ ) cn(vn + pn) (v — pin) ds
OEN KeTh o 2
+ Z/ —|5 n|(vy — pp)*ds, (6.42)
KeTh

where we used that —2v;,3 - Vv, = =V, - (Bv3) + v2V,, - § and applied Gauss’ Theorem.
Expanding the fourth integral on the right-hand side and using the fact that 5 -n and uy
are single-valued on element boundaries, and that p, = 0 on 9€p, eq. (6.42) reduces to

1
ch(onp)oonn)) = 5 30 [ - pdot [ Gi-nlias

ICeT 9N

+ Z/ 518 nl(on — ) ds. (6.43)

KeTh
Next, by definition of the bilinear form al(-,-) in eq. (6.13b),

af,((vn, ), (U i) Z/ ‘thh‘ dz + Z/ (on — pn)* ds

KeTn KeTh

- Z / 20V vy - 1 (v, — pp) ds. (6.44)

KeTh

Applying the Cauchy—Schwarz inequality and the trace inequality eq. (6.15¢) to the third
term on the right-hand side of eq. (6.44),

QZ/I/thh vy — pp) ds| < 20Y CTQHthhH /2 h_l/ lvn — pnllg - (6.45)
KeTy
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Combining eq. (6.44) and eq. (6.45), and choosing o > ¢7, o,

d((vmﬂh) (Vn, pn))

> Z ( thvh
- 522 (o« i)
- 1+Oé K hK Q

KeTh

— ro
 2enr[Tun | i len = sl + o = il )
K K (6.46)

The second inequality follows from noting that for o > 12, with 1) a positive real number,
it holds that x? — 2¢zy +ay? > (a—¥?)(2* +4?)/(1+«), for z,y € R [25], and taking z =

/2 thhH ,y=vY2h, 12 |[vn — pinllg and ¢ = e,o. Combining eq. (6.43) and eq. (6.46),
and using that V- 8 =V, - 3,

1 = = 1 2
an((vn, fin), (on, i) = Y —/ UiV - Bdz + —‘ 55/2%”
2 2 OEN
KETn
1 1/2(
+5 || - m +an

KeTh
Using the discrete Poincaré inequality eq. (6.16) and eq. (6.40), we obtain from eq. (6.47):

‘thhH Z ca—th - Mh“g- (6.47)

B2y, H

2 1 2 1 v

B (vn — Hh)H + 5Ca VHVhUhH + =Cq E — v, — uh||2g. (6.48)
oKk 2 Ko 2 hi

KeTy KeTh KeTh

1
an((vn, i), (On, pn)) > §ﬁ0||vh‘|z +35 ‘
9EN

The result follows with ¢, = min(Sy, ¢4)/2. O

6.3.3 The inf-sup condition

Stability was proven in Section 6.3.2 with respect to the norm H!(, )‘Hv To obtain the
error estimates in Section 6.4, we instead consider a norm with additional control over the
time derivatives of the solution. For this we prove an inf-sup condition with respect to the
stronger norm Equation (6.19) following ideas in [13, 28, 104]. We first state the inf-sup
condition.
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Theorem 6.3.1 (The inf-sup condition). There exists ¢; > 0, independent of hx and At,
such that for all (wp, A\p) € Vi,

Ciw(whv)‘h)w < sup an((wn; An), (Un, 1n))
T o)V H‘(Uhu “h)ms

(6.49)

The proof of the inf-sup condition follows after the following two intermediate results.

Ath3

Lemma 6.3.4. Let (wp, A\n) € Vi and let z, = Ff

independent of hx and At, such that

Oywy,. There exists a ¢ > 0,

[l Gzas 0, < e Cwns A, -

Proof. We bound each component of H’ (z1,0) !HS term-by-term. Using the inverse inequality
eq. (6.15a) and that hx < 1, we have

2
Ath? 9 9
lznllz = <—K > [Bswnllc < 7 llwnll -
ot At + hg

Similarly, the inverse inequality eq. (6.15a) and hx < 1 yields

2
il - 2 ()

_ 2 9 . 2
aiTun[, <t 3 o] o
KeTn KeTh

SYFS

Next, the facet term arising from the advective portion of the norm may be bounded using
the trace inequality eq. (6.15d):

2
2
ﬁrll/zzhHaK <118l ey Z 2l 5k

KeTh KeTh

5 Ath3, 2
< G ol Bll i) D ALt he [0yl -

KeTh

The facet term diffusive portion of the norm may be bounded with an application of
eq. (6.15¢) and eq. (6.15a):

2
Ath?
Y gllo= 2 7 ( A ) 9wl < ¢t - vllunl

KeTh KeTn
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For the remaining term, eq. (6.15a) yields

CAthy Ath3.
o=l < ¢ ) < ||atwh||/c> :
ot At + hg o At + hg
Collecting the above bounds, we obtain lemma 6.3.4, with ¢; = 3¢7, + c%“,alCHBHLOO(é') +

2 2
Cr oCr ¢t O

Lemma 6.3.5. Let (wp, \p) € V3, and let z, = AAT(‘?twh There exists a co > 0,
independent of hy and At, such that if (v, up) = co(wp, /\h) (21,0) € V', then

S M < om0 2). (o). (6.50)

Proof. Note that ay((wn, M), (21,0)) = al((wn, M), (21, 0)) + af((wn, An), (21,0)). Inte-
grating by parts the volume integral of af(-,-) we have the following decomposition:

Ath?
Ao h I9aonlle = an((wn, An), (20, 0)) = a5 ((wn, An), (21, 0))
KeTh K
Athi / s 7 N7
N A S By de — S S / 5.0y de
/CezThAt—i_hK K ,C;-At‘f‘hf( .
Ath?
9 Z Ai—i—ZK/ (5 n— |ﬂ ) n’) (wh - Ah) Oywy, ds. (6.51)

ICeT

From the boundedness of the diffusive part of the bilinear form eq. (6.35), and application
of Young’s inequality, with ¢; > 0, we obtain the following bound for the second term on
the right-hand side of eq. (6.51):

[t ((wny An), (20, 0))] < imm,mmi =5 o M),

| /\

Cdcl el w2+ =57

Cdcl Ath%( 2 % Cdj 9
égqmmAng@wm+(%,%2)wmAmm

[Cwn M)l

where we have used the fact that [|-||, < [|-]|, and applied Lemma 6.3.4 in the second
inequality, and the definition of ||-||, in the third inequality. Next, to bound the third term
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on the right-hand side of eq. (6.51) we apply the Cauchy—Schwarz inequality and eq. (6.15a)
to obtain

<C[t

Ath}
> K / wy V), - BOwy, da
K

Vi - 5H Z el fwn .

/CTh

As for the fourth term on the right-hand side of eq. (6.51), we first apply the Cauchy—
Schwarz inequality, Young’s inequality with some €5 > 0 and eq. (6.15b),

Ath2.

Ath3,
Z —/6 Vhwhatwhdx ~ m
677L

(A

_ 7 € Ath?
<[l | 2 5 2+zg(ﬁf,§[{)u@whuz

KeTh KeTh
For the remaining term on the right-hand side of eq. (6.51), we use the Cauchy—Schwarz

inequality, Young’s inequality with some e3 > 0, and apply the trace inequality eq. (6.15d)
to find:

A 2
Z A/@ﬁ%(ﬁ'”_W'M)@wh(wh—/\h)ds

2
CTa/c Ath? €3
g K#H@:whlln ||5||Loo
KeTy, KeTn

B2 (1, — /\h)H - (652)

Combining all of the above estimates,

Ath?.

At + h Hatwh”?c < an((wn, An), (21, 0))

2 2 2
+ 2 +§H6HL°°(€)+ %€ [[Ovwallx
1 3 KeT; K

KeTh

CqC Cq€
+<ﬂ+ﬂ+cn

T, .3 cis _
e+ Vi B e, + 52Nl e

+ 28llmie I MW (659)
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Choosing €; = 2¢4c3, €3 = 1/(4HBHLOO(5)), and €3 = 4c7 5, adding %‘H(wh’)‘h)mi to both
sides, and rearranging yields

Bln M < o, M), G 0)

Vi B+ 2Bl ey + 2608l ) e M- (654

+ (% + 3t +ery
From the stability of ay(-,-), Lemma 6.3.3, we have the bound

) o A2 < an((wn, M), (20, 0)) + caan((wn, An), (wn, An)) (6.55)

s 3 112
where ¢ = ¢;1(3 4+ A + c14|| V), - BHLOO(S) + QCisHﬂHLm(& + 20%,%“5“@0(5))- The result

follows. O

Combining Lemma 6.3.4 and Lemma 6.3.5 now yields the proof for the inf-sup condition
stated in Theorem 6.3.1.

Proof of Theorem 6.3.1. Given any (wp, A\p,) € V,, consider the linear combination

(Un, ) = c2(wp, A\p) + (21, 0), with z, = %@wh and ¢y the constant from Lemma 6.3.5.

An application of the triangle inequality and the combination of Lemma 6.3.4
and Lemma 6.3.5 yields
Il Coms per) M Ceoms Au g < 1l Gons O Ceoms An) + 2 Ceoms An)|
< (e + ) (o, W)
< 2(e1 + ea)an((wn, An), (vh, pn)),

2

S

which implies the inf-sup condition with ¢; = 1(¢; + ¢2) 7. O

6.4 Error analysis

We now turn to the error analysis of the space-time HDG method. The following Céa-like
lemma will prove useful in obtaining the global error estimate in Theorem 6.4.1.

Lemma 6.4.1 (Convergence). Ifu = (u,y(u)) € H?(E)x H¥?(T"), where u solves eq. (6.1),
and (up, Ap) € V'y, is the solution to the discrete problem eq. (6.14), then

e = (s M), < (1 i C_B) it . (6.56)

C; BR)EV
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Proof. From inf-sup stability (Theorem 6.3.1), Galerkin orthogonality eq. (6.22), and
boundedness (Lemma 6.3.2), we have for any (wp,wy) € Vi,

ah((uha )‘h) - (wh7 wh)> (Uh7 ,uh))

cilluny An) = (wnwn)], < sup

(Vntn)EV ‘H(Uh’ /“Lh)ms
—  sup ah(u - (wh,wh), (Uhnuh))
(V) EV H‘(Uh’ Mh)ms
llw = Gn,wn)l, M on, )]
<cgB ’
(Vhstin)EV h, H (vn, 'uh)ms

= eyl — ).

The result follows after application of the triangle inequality to H‘u — (un, A\n) H‘S n

We next define the projections P : L2(€) — V,"*?) and P? : L*(T') — M™"*) which
satisfy

Z /’C (w —Pw)v,dx =0, Yoy, € VPP, (6.57)
KeTy,
Z/S <)\ - 73‘9)\> pnds =0, ¥y € MPPD, (6.58)
SeF

These projections will be used to obtain interpolation estimates.

Lemma 6.4.2 (Interpolation estimates). Assume that K is a space-time element in R

constructed via two mappings ¢ and Fic, with Fi : K — K and o K — K. Assume
that the spatial shape-reqularity condition eq. (6.10) holds. Suppose u|x € HPFLPsTD(K)
solves eq. (6.2)—eq. (6.3). Then, the error w — Pu, its trace at the boundary 0K, and the
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error u — P2u on OK satisfy the following error bounds:

lu=Pullf < ¢ (B2H + A2 [l o010 ) (6.59)
Vi~ Pu) HQK < o (W3 AP e (6.60)
|0 = Pu)[y. < e (B2 + A ull o1 (6.61)
T(u - Pu) - nH; < o (BB Bt AP 10y (6.62)
lu=Pullfe < e (B2 + Al i o (6.63)
u— Py (u) HM < (B A [l (6.64)

where ¢ depends only on the spatial dimension d, the polynomial degrees p; and ps, the
spatial shape-regularity constant c,, and the Jacobian of the mapping ¢x.

Proof. The bounds eq. (6.59), eq. (6.60) and eq. (6.63) have been obtained previously
in [95, Lemma 6.1 and Remark 6.2] by generalizing [33, Lemmas 3.13 and 3.17] to higher
dimensions. We relax the assumption in [95, Remark 6.2] that all spatial edge lengths are
equal through the spatial shape-regularity assumption eq. (6.10). In doing so, the bound
eq. (6.61) may be obtained in an identical fashion to eq. (6.60). The bound eq. (6.62)
is obtained as follows: we derive a bound for the spatial derivative of the interpolation
error over each face OK;, where i = 1,...,d, generalizing [38, Lemma 3.20] to the space-
time setting. Then, summing over the faces ¢ = 1,...,d we obtain a bound of the spatial
derivatives of the interpolation error over Q = 9K\ (K™ U K™*1), and sum over all of the
spatial derivatives to obtain the result. Lastly, the bound eq. (6.64) may be inferred from
the bound eq. (6.63) by the optimality of the L%-projection P? on facets. O

With the interpolation estimates in place, we can now derive an error bound in the
Il norm:

Theorem 6.4.1 (Global error estimate). Suppose that K is a space-time element in R+
constructed via two mappings ¢ and Fic, with Fy : K — K and ox - K — K, and that
the spatial shape-reqularity condition eq. (6.10) holds. Let uw = (u,vy(u)), where ulx €
HPHLestD(KC) solves the advection—diffusion problem eq. (6.2), and where v(u) denotes
the trace of uw on OK. Furthermore, let (up,Ap,) € V5, be the solution to the discrete
problem eq. (6.14). Then, the following error bound holds:

llw = (un, )\h)mi < C <h2ps + AP Ly (B2 4 h—lAtQPt-f—l)) ||u||il(pt+1,ps+1)(5) , (6.65)
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where h = mazker, hi is the spatial mesh size At is the time-step and C > 0 a constant.

Proof. By Lemma 6.4.1, we may bound the discretization error w — (up, Ay) in the |||,
norm by the interpolation error w — (Pu, P?y(u)) in the ||-]|, , norm:

e = Cuns M), < (1+ ) | = Pu, PPy () (6.66)

5,%
Thus, it suffices to bound each term of ||u — (Pu,Pav(u))‘Hs* using the interpolation
estimates in Lemma 6.4.2. 7

First, combining the terms involving |[ju — Pu||, applying eq. (6.59), and collecting the
leading order terms,

At +h B
(1 + = K) Ju — Pull} < ¢ (h%’s T At2pt+2hK2> ||u||§,<,,t+1,ps+1)(,c) . (6.67)
K
Using the fact that AAtT}f‘ < Athy and applying the estimate eq. (6.61), we have
Ath 2ps+1 2p+1
o P} < o (WA A i (669

Next, an application of eq. (6.60) yields

_ 2
o[ Vatw = Pu)|| < ev (mEe+ Al s - (6.69)

Using the triangle inequality, eq. (6.63), and eq. (6.64), all of the advective facet terms
may be bounded as follows:

>

KeTh

o+

2
gl - P ) <
oK
Bl ey D (B + A uloresmnrn - (6:70)
KeTh

For the diffusive facet term, we again apply the triangle inequality, eq. (6.63), and eq. (6.64)
to obtain

v 9 v a lI?
—||lu — Pu —|——Hu—73u
hKH Ha/c hK oK

<cv (h?s + hf}lAt%Hrl) Hqu(thrl,psH)(K) . (6.71)
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Lastly, applying eq. (6.62),

2

hKVth(U — Pu) . ﬁ” <cv (h??g + At2pt+2> ||u||§{(pt+1,ps+1)(lc) . (672)

Q

Summing over all KL € Ty, collecting all of the above estimates, and returning to eq. (6.66)
yields the assertion. O]

6.5 Numerical example

In this section we validate the results of the previous sections. For this we consider the
rotating Gaussian pulse test case on a time-dependent domain as introduced in [75, Section
4.3]. We solve eq. (6.2)-eq. (6.3) with 3 = (—4xs,42,)T and f = 0. The boundary and
initial conditions are set such that the exact solution is given by

u(t, o, 29) = 0—2 - (_ (Z1 — 210)* + (T2 — .’13'20)2) 7 (6.73)

o2 4+ 2ut ¢ 202 + 4ut

where &y = x; cos(4t) + xosin(4t), To = —xy sin(4t) + xo cos(4t), (z1e, x2.) = (—0.2,0.1).
Furthermore, we set ¢ = 0.1. The advection—diffusion problem is solved on a time-
dependent domain. The deformation is based on a transformation of a uniform space-time
mesh (¢, 29, 29) € [0,ty5] x [-0.5,0.5]> given by

ri=al+ AL —al)sin(2n (S-ai+8))  i=12 (6.74)

where and (27, x3) = (z2,71) and A = 0.1. We take ty = 1.

This example was implemented using the Modular Finite Element Methods (MFEM)
library [2, 67] on unstructured hexahedral space-time meshes. The solution on the time-
dependent domain is shown at different points in time in Figure 6.3. In Table 6.1 we
compute the rates of convergence in the }H(, )‘Hs norm using polynomial degree p = p; =
ps = 1,2,3. We consider both v = 1072 and v = 107%. Mesh refinement is done simulta-
neously in space and time. For the case that v = 1072 we obtain rates of convergence of
approximately p, as expected from Theorem 6.4.1, while for v = 107% we obtain slightly
better rates of convergence, namely p + 1/2.
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Figure 6.3: The mesh and solution for v = 1072 at time levels ¢t = 0,0.4, 0.8 (left to right).

Cells per slab Nr. of slabs | p=1 rates| p=2 rates| p=3 rates
64 8 8.00e-2 - 1.52e-2 - 2.87e-3 -
256 16 3.15e-2 1.3 | 3.24e-3 2.2 | 2.92¢e-4 3.3
1024 32 1.30e-2 1.3 | 7.03e-4 22 |32le-5 3.2
4096 64 5.95e-3 1.1 | 1.64e-4 2.1 | 3.80e-6 3.1
64 8 1.75e-1 - 3.7le-2 - 6.67e-3 -
256 16 7.78¢-2 1.2 [6.23e-3 2.6 | 5.60e-4 3.6
1024 32 2.51e-2 1.6 | 1.03e-3 2.6 | 4.64e-5 3.6
4096 64 7.60e-3 1.7 | 1.76e-4 2.5 | 3.88e-6 3.6

Table 6.1: Rates of convergence when solving the advection—diffusion problem eq. (6.2)—
eq. (6.3) on a time-dependent domain with mesh deformation satisfying eq. (6.74) with
v =10"2 (top) and v = 107 (bottom).
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Chapter 7

Conclusions

In this thesis, we presented our work on the theoretical analysis of space-time HDG schemes
for incompressible flow problems. Throughout, we have extended many of the technical
tools used in the analysis of finite element methods to the HDG setting in a novel way.
In this final chapter, we briefly summarize what we have achieved and discuss possible
avenues of future research based on this work.

7.1 Summary

In Chapter 3, we presented a theoretical analysis of the HDG method of Rhebergen and
Wells [78] for the steady Navier-Stokes equations. We showed that there exists a unique
solution to the nonlinear algebraic system that arises from the HDG discretization under a
small data condition. Furthermore, we proved optimal a priori error estimates for both the
velocity and pressure. In particular, the error in the velocity is shown to be independent
of the error in the pressure, confirming theoretically what was observed in the numerical
experiments in [78].

In Chapter 4, we analyzed an exactly mass conserving space-time HDG method for the
time-dependent incompressible Navier-Stokes equations on fixed domains. We proved that
the method is energy stable, that there exists a solution to the nonlinear algebraic system
arising from the discretization in both two and three spatial dimensions, and that this
solution is unique in two spatial dimensions under a small data condition. We then derived
optimal a priori error estimates for the velocity which are independent of the pressure,
proving that the method is indeed pressure-robust. This required us to consider strong
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solutions of the Navier—Stokes equations, which placed a restriction on the shape of the
spatial domain and the size of the problem data. Finally, we derived (sub-optimal) error
estimates for the pressure, and presented a numerical experiment to verify the theoretically
predicted rates of convergence.

In Chapter 5, we filled the gap left by the analysis of the previous chapter by proving
that the space-time HDG method converges to a weak solution of the Navier—Stokes equa-
tions in the absence of additional regularity as the mesh size and time step tend to zero.
This removes the restrictions placed on the shape of the spatial domain and problem data in
Chapter 4. Our analysis required the introduction of discrete differential operators, which
we extended to the HDG setting. Moreover, a discrete compactness result reminiscent of
the Aubin—Lions—Simon theorem is proven in order to pass to the limit in the nonlinear
convection term. Finally, we showed that this weak solution satisfies a suitable energy
inequality in three spatial dimensions, and thus is a solution in the sense of Leray—Hopf.

Finally, in Chapter 6, we provide a first step toward the analysis of space-time HDG
schemes for the incompressible Navier—Stokes equations on time-dependent domains by
considering the simpler linear advection-diffusion equation. Our analysis made extensive
use of anisotropic interpolant estimates and novel anisotropic inverse and trace inequalities.
We proved that the resulting algebraic system from the space-time HDG discretization is
well-posed, and we derived error estimates that are anisotropic in the time step and spatial
mesh size which were then verified with a numerical experiment.

7.2 Future directions

The first and most immediate recommendation for future work is to remedy the sub-optimal
error estimates for the pressure obtained in Chapter 4. The source of the problem seems to
be that the time derivative of the error in the velocity is estimated in the L?-norm, which
introduces a negative power of the time-step through the use of an inverse inequality. A
more appropriate approach would be to estimate the time derivative of the error in a
discrete analogue of a negative Sobolev norm. This would be done using techniques similar
to those in Chapter 5 when bounding the discrete time derivative in the dual space V.
Continuing on this point, it would also be interesting to see if optimal rates of convergence
for the velocity can be obtained in the L(0,7’; L*(€2)%)-norm. A possible approach would
involve the consideration of a backward-in-time linearized dual problem satisfying suitable
parabolic regularity properties, analogous to the technique used to prove the L2-estimates
for the velocity in Chapter 3 in the elliptic setting.
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Next, as mentioned in the thesis introduction, our primary motivation for the use of
the space-time HDG method is for the numerical solution of the Navier-Stokes equations
on time dependent domains. Since the space-time HDG method introduced in [13, 44]
uses space-time tetrahedral elements, the techniques that we have presented in this thesis
are not applicable. Instead, we propose the use of mapped space-time prismatic elements,
so that the tensor-product structure can be exploited to combine the techniques used in
Chapter 4 with the analysis framework used in Chapter 6 for time-dependent domains.
This would require the use of the piola transformation to ensure that the discrete velocity
solution remains pointwise divergence free and divergence conforming on moving meshes.

However, if one insists on analyzing the space-time HDG method in [43, 44] on space-
time tetrahedral elements, a possible approach would be to consider the following elliptic
reqularization of the momentum equation:

€Opu+ Ou —vAu+V - (u®u)+Vp=f, onQt),

complemented with suitable initial and boundary conditions. Here € > 0 is a small param-
eter. This regularized problem is now an elliptic problem in R%*!, and thus the techniques
used for the steady elliptic problem in Chapter 4 are applicable. The difficulty in this
approach is justifying that the exact solution to the regularized system converges as € — 0
to a solution of the Navier-Stokes equations on time-dependent domains, which is made
especially challenging by the fact that the error analysis requires €2(t) to be polygonal or
polyhedral (and thus, not smooth).
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Appendix A

Appendix to Chapter 4

A.1 Approximation properties of P;, and P,

Here, we briefly outline the approximation properties of the projections P, and P} in-
troduced in Definition 4.4.1. We require some results from [29] adapted to the present
setting:

Theorem A.1.1 ([29, Theorem 6.9]). The projections defined in Definition 4.4.1 exist and
are unique. Furthermore, for alln =0,...,N —1,

(Pro)l1, = Pu(Puv)ls, = Pu(Prvlr,),  (Puv)|r, = Pr(Prv)ls, = Pa(Prolr,).

We first introduce a temporal “DG-projection” P! : C(I,) — Py(I,) satisfying

(/(Pw@—mﬁ»v&—o,

I’IL

for all v € Py_i(1,,) and Plw(t,, ;) = w(t,,,) (see, e.g., [98, Chapter 12] or [29, Lemma
6.11]). For u € H**1(I,,) this projection satisfies

|lu — PtuHHs(In) S AT P lulgr,y, 0<s<1<r<k. (A.1)
Lemma A.1.1. Let ¢ € C(IL,; V,®) and o € C(I,,;V},). Then

Pro(z,t) = Plo(x,t) Vee {K,F}, VY{K €T, F € F.}, (A.2a)
Prtb(z,t) = Plp(z, t) Vo e F, VF € F, (A.2b)
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Proof. The proofs of eq. (A.2a) and eq. (A.2b) follow the proof of [29, Lemma 6.11] with
minor modifications. []

With Lemma A.1.1 in hand, we can prove the following results:
Theorem A.1.2. Let k> 1, m € {0,1}, and
w € H YL Hy ()40 H* ()Y N O(L,; H Q).

Let Py, and Py, be the projections defined in Definition 4.4.1. Letl =0 ifm <1 andl =m
if m = 2. Then, the following estimates hold:

S /I = Pt 2y (A.3)

KeTy
“m 2 - 2
S 2 +1)||u||L2(In;H’“+1(Q)) +h ZAt2k+2||u||Hk+1(In;Hm(Q)) )
_ = 2 2
Z hKl/ | Pru — PhuHLz(aK) dt S h%HUHm(zn;HHI(Q)) ; (A.3Db)
KeTy In
2
> hi / 1V (= Pru)n | 2o At (A.3c)
KeT, In
2 2
S B ull e,y + Al 1, 20 -
/1 104 (u—Pot) 2y (A.3d)
2 2
5 (At2k||U||Hk+1(1n;L2(Q)) "‘ h2k+2HU’HHl(In;Hk+1(Q))> . (ASe)
Proof. First, eq. (A.3a) can be shown in a similar fashion to [29, Lemmas 6.17 and 6.18]

using the approximation properties of the spatial projection P, given in Lemma 4.4.1
and the approximation properties of P given in eq. (A.1). For eq. (A.3b) we recall that
(Puv)lr, = Pu(Pyv)|r, and (Pyo)|r, = Pu(Pyv)lr, by Theorem A.1.1, so by Lemma A.1.1,
Fubini’s theorem, and the stability of P! in the L?(I,,) norm, we have

1 — 2 1 — 2
> E/] 1Phte = Prl 2 opey dt < C Y E/[ [ Pru — Prullp2 g -

KeTy, KeTy

We conclude using the triangle inequality and the approximation properties of the spatial
projections P, and P,. Finally, eq. (A.3c) follows from eq. (A.3a) after noting that a local
trace inequality yields

2
hKHV(u - Phu)nHLz,(aK) < |u - 'Phuﬁ-p([{) + h%(]u - ,Phuﬁ{z(K).
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Finally, eq. (A.3e) follows from Theorem A.1.1, Lemma A.1.1, Lemma 4.4.1, and eq. (A.1)
since

[0 (u — Phu)HLQ(In;LZ(Q)) = [|0¢(u — Phphu)HLQ(ln;L2(Q))
= [10:(u — P Pyu)ll p21,..12(00)
< [|Opu — Phatu||L2(1n;L2(Q)) + |0y (Pru — PtPhu)HLQ(In;L2(Q)) )

where we have used the fact that the spatial projection P, commutes with differentiation
in time. [
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Appendix B

Appendix to Chapter 5

B.1 Discrete compactness of the velocity

We recall the discrete compactness theory for DG time stepping developed by Walkington
in [102] with a minor modification to fit the current non-conforming spatial discretization.

Remark B.1.1. To our knowledge, the compactness theorem in [102, Theorem 3.1] for
DG-in-time discretizations was first extended to non-conforming spatial approximations in
[01]. Note that we can apply [01, Theorem 3.2] in our setting to conclude that the sequence
{un}y,eq is relatively compact in L*(0,T; L*()?) by selecting (using the notation of [61]
with Y and X replacing V' and H therein to avoid confusion):

W =Hy(Q)* W(T) =H"(T)" Y =[BV(Q)*'NLQ)% LYQ)Y s,
X =L, W' =H'Q)Y W=V,

where H'(T,)* is the broken H' space equipped with the||-||, ,-norm [11, 28, 29], BV ()?
is the space of functions of bounded variation [11], and [Yy, Y1]s denotes the complex inter-
polation between Banach spaces Yy, Y, with exponent 6 € (0,1) [5].

We present below a simple proof of a special case of [61, Theorem 3.2] that stays directly
within the framework of broken polynomial spaces and their discrete functional analysis
tools. This avoids the need to construct a non-conforming space that embeds compactly
into L?(©2)? and is made possible by the following discrete Rellich-Kondrachov theorem
valid for broken polynomial spaces [28, Theorem 5.6]:
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Lemma B.1.1 (Discrete Rellich-Kondrachov). Let H be a countable set of mesh sizes
whose unique accumulation point is 0. Assume {(Tp, Fn)},eqy 15 @ Sequence of conforming
and shape-reqular simplicial meshes. Let {vp},cq, be a sequence in {V4}, 5, bounded in the
||-||17h—n07‘m. Then, for all1 < g < o0 ifd =2 and 1 < q < 6 if d = 3, the sequence
{on}eqy is relatively compact in L(Q)%.

Theorem B.1.1 (Compactness). Let ¢ = 4/d. Let the sequence {up}; e, be such that for
each h € 1, wy, € VI x V. Then, {up}, ey, is relatively compact in L*(0,T; L*(Q)%) if:

(i) {un}),eq is uniformly bounded in the sense that fOT llanllZdt < M for some M > 0
independent of the mesh parameters h and 7.

(ii) For each h € H, the following bound on the discrete time derivative of uy, holds
uniformly for ¢ =4/(4 —d):

T T ) 1/q . -
[ @t < ([ ol ) L v e v o,
0 0

Proof. The proof, which proceeds in three steps, follows closely the proof of [102, Theorem
3.1] with minor modifications.

Step one (equicontinuity): Step one follows exactly the proof of [102, Lemma 3.3];
here we show that the assumptions therein can be interpreted as a uniform bound on the
discrete time derivative eq. (5.23). By definition, it holds that

/1 (Opun, vn) 7, + (Junl, s o) = /1 (DF (up), vp) 7, dt, Yoy, € V). (B.1)
Comparing with [102, Lemma 3.3], we require F}, : v, +— (Di*(up), vn)7, to be uniformly
bounded L4(0,T; (V;& x V,)"), where (V;& x V},) is the dual space of VA" x V},. We show
that assumption (ii) suffices. As the space V" x V}, and its dual are finite-dimensional
(hence separable), we make the identification L(0, T; (VA x V3,)) = L7 (0, T; VA™ x V),
and we have

. (B.2)

T
IFillponagongy = st Ly Fifo)
Rl La(0,T;(VEY <V, )) , b , 1/q
ovet 0 x0h) ([ o ar

Choose Fj, in eq. (B.2) to be the functional that maps for each t € [0, T,
LY(0,T;Vi™ x Vi) 3 (0,0) =t v = (Dy*(up), v)7;, € R.
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Since v € LY (0, T; VAV x V), we have [T'v € ViV x V), and the stability of the L?-projection
I in L9 (I,) [30] yields

T i~k t

f (Dt (up), M), dt

VEllporamiyy S swp o | qu,l
verorait) ([T ||| at)

| (D (un), vn) 7 ]

/ )

’S Sg&) V T ! 1/a
vp EVIV XD, <f0 llvsl|¢ dt)

which is uniformly bounded by assumption (ii) of the theorem. Proceeding in an identical
fashion to [102, Lemma 3.3], we find that

T
/6 |wn(t) = un(t — 5)“;(9) dt < C'max(t, )7 51/2. (B.3)

Step two (relative compactness in L?(0, T — 0; L?(2)?)): We aim to show that for
all 0 < 0 < T/2, the set {uylor_g | h € H} is relatively compact in L*(6,T — 6; L*(2)9).
The proof is a minor modification of [102, Theorem 3.2]. To this end, we construct a
sequence of regularized functions so that we may leverage the classical Arzela—Ascoli the-
orem (Theorem 2.2.10). Let ¢ € C2°(—1,1) be nonnegative with unit integral. For § > 0,
set ¢5(s) = (1/6)o(s/d). Extend uy, by zero outside of [0, 7] and consider the sequence of

mollified functions {ui}heﬂ, where ul (t) = ¢5 * up(t).

Since fOTHuhHih dt is uniformly bounded by assumption, we have

o401 < 8 509 05t = ) /||uh |2, ds < A,

with M™* a constant independent of h and 7. Thus, by Lemma B.1.1, the sequence
{uf ()}, is relatively compact in L2(Q)? for each ¢ € [0,T]. Furthermore, the uniform

Lipschitz continuity of the mollifiers ¢;(s) ensures the sequence {u(t)}, <, 18 equicontin-
uous on [0, T]. By the Arzela—Ascoli theorem, the sequence {ui}he% is relatively compact

in C(0,T; L*(Q)4) and thus also L?(0,T; L*(Q)%) as the former embeds continuously into
the latter. As relatively compact sets are totally bounded,

M
Ve >0, 3hy,... har CH st {uh}yeq € | Belun,),

=1

179



where B, is an e-ball in the metric induced by the L2(0,T; L*(2)4)-norm. The remainder
of the proof that the set {uy|jgr—g | h € H} is relatively compact in L*(6,T — 6; L*(Q)?)
for all 0 < # < T'/2 is identical to that of [102, Theorem 3.2].

Step three (finishing up): The equicontinuity eq. (B.3) and [102, Lemma 3.4] en-
sure that the sequence {us}, 4, is bounded uniformly in L"(0,T; L*()%) for 1 < r < 4.
Consequently, for all ¢ > 0 we can find # > 0 such that

0 T
J @ e+ [ Jlun@lfaq e < e
0 T—6

It follows that {uh | h e 7—[} is the uniform limit of relatively compact sets in
L2(0,T; L*(2)4) [91, Section 2]. Thus, {u, | h € H} is relatively compact in
L0, T; LA(Q)%).

B.2 Properties of the projections II and II

B.2.1 Approximation properties of II' and II{"

Lemma B.2.1 (Approximation properties of II#V and TI*). Let £ > 0 and suppose that
n € WHL2(0,T) and o € H*(Q)?. Then, for alln=0,...,N —1,

HU - thHLOO(In) S 7'£+1|77|W£+17<>°(1n)a (B-4)

and if Ty, is conforming and quasi-uniform, we have for 0 <m < 2 and K € Ty,

iv 2 —m
> Y = I iy S P2V ). (B.5)
KeT,

[ = T oy S P20 200, (B.6)

the latter requiring £ > 1.

Proof. Estimate eq. (B.4) is standard, see e.g. [33, Lemma 11.18]. The proof of eq. (B.5)
is given in Lemma 4.4.1; we note that therein it is assumed that £ > 1 but the proof easily
extends to the case £ = 0. We now show eq. (B.6). Let K be the reference simplex in R?
and suppose that Fi : K — K is an affine mapping; denote its Jacobian matrix by Jk.
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~ ~

As H?*(K) C L*™(K) with continuous embedding for d < 3, we have by repeated use of
[33, Lemma 11.7]:

iv 2 — iv
19 = T oo ey S el | det Tie| ™2 ([0 =TIV | e -

. ) . . 2
Since 7T, is assumed quasi-uniform and hence shape-regular, we have || Jx||. < h% and

~Y

| det Jx|~1/% < h[_(d/2 (see e.g. [33, Lemma 11.1], [31, Chapter 1.2]). Thus, for d < 3,

19 = T e iy S B2 19 112y

The result follows by noting that this bound holds uniformly for all K € 7Tj,. O

B.2.2 Proof of Proposition 5.3.1

It suffices to show the inequality in eq. (5.37) on a single space-time slab £"; the result
then follows by summing over all space-time slabs. Let ¢ € .. By the definitions of the
norm ||-||, and the projections Ily and Iy given in eq. (5.36), we have

| (g, 1) /47

o o 2/(4—d)
(3 [t S X[ S )
KeT, VK k=1 KETy oK k=1

Available approximation results for the projection IIj, and eq. (B.5) yield for ¥ € H(Q)¢,

iv 2 — iv T 2 2
> (VI W) + I = T) @) ) STV
KeTy,

Therefore, we have

M 2/(4=d)
et 5 ([ wnra) L veew @
k=1

If d = 2, we can integrate eq. (B.7) over I,, and use Fubini’s theorem and the stability of
the projection IT* in L*(1,,) to find

[ e tplaes [ el d vee .
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as required. On the other hand, if d = 3, we integrate eq. (B.7) over I,,, and apply a finite-
dimensional scaling argument between norms in L?(I,,) and L'(I,,) (see e.g. [28, Lemma
1.50]) to find:

M 2
/[ H‘(ng, ﬁgp)mj dt <cort (/I /Q 1T anv¢k|2 dx dt) . (B.8)
n n k=1

Using Fubini’s theorem to interchange the temporal and spatial integrals in eq. (B.8) as
necessary, we can apply the stability of the projection IT! in the L?(I,,) norm followed by
the Cauchy—Schwarz inequality applied to the temporal integral to find

2
/1 (11, i) |t < = ( / ||so||2vdt) < / loll dt, Vo €.
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