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Abstract

Many industrial problems require the solution of the incompressible Navier–Stokes
equations on moving and deforming domains. Notable examples include the simulation
of rotating wind turbines in strong air flow, wave impact on offshore structures, and ar-
terial blood flow in the human body. A viable candidate for the numerical solution of
the Navier–Stokes equations on time-dependent domains is the space-time discontinuous
Galerkin (DG) method, which makes no distinction between spatial and temporal variables.
Space-time DG is well suited to handle moving and deforming domains but at a significant
increase in computational cost in comparison to traditional time-stepping methods.

Attempts to rectify this situation have led to the pairing of space-time DG with the
hybridized discontinuous Galerkin (HDG) method, which was developed to reduce the
computational expense of DG. The combination of the two methods results in a scheme
that retains the high-order spatial and temporal accuracy and geometric flexibility of space-
time DG at a reduced cost. Moreover, the use of hybridization allows for the design
of pressure-robust space-time methods on time-dependent domains, which is a class of
mimetic methods that inherit at the discrete level a fundamental invariance property of
the incompressible Navier–Stokes equations.

The space-time HDG method has been successfully applied to incompressible flow prob-
lems on time-dependent domains; however, at present, no supporting theoretical analysis
can be found in the literature. This thesis is a first step toward such an analysis. In partic-
ular, we perform a thorough theoretical convergence analysis of a space-time HDG method
for the incompressible Navier–Stokes equations on fixed domains, and of a space-time HDG
method for the linear advection-diffusion equation on time-dependent domains. The for-
mer contribution elucidates the difficulties involved in the theoretical analysis of space-time
HDG methods for the Navier–Stokes equations, while the latter contribution introduces
a framework for the convergence analysis of space-time HDG methods on time-dependent
domains.

We begin with an a priori error analysis of a pressure-robust HDG method for the sta-
tionary Navier–Stokes equations. Then, we provide an a priori error analysis of a pressure-
robust space-time HDG method from which we conclude that the space-time HDG method
converges to strong solutions of the Navier–Stokes equations. This leaves open the question
of convergence to weak solutions, which we answer in the affirmative using compactness
techniques. Finally, we provide an a priori error analysis of a space-time HDG method for
the linear advection-diffusion equation on time-dependent domains.
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Chapter 1

Introduction

1.1 Aims and motivation

The incompressible Navier–Stokes equations are a set of nonlinear partial differential equa-
tions (PDEs) that govern the dynamics of viscous incompressible Newtonian fluids. They
are central to the mathematical study of fluids, and as such see wide application across
a broad spectrum of scientific fields. The solution of the Navier–Stokes equations, or any
nonlinear PDE for that matter, is an extremely difficult task in general. In fact, exact
solutions can only be found in very idealized scenarios. When faced with modeling com-
plex fluid flows in physically realistic scenarios, we must turn to numerical methods to
approximate the solution of the Navier–Stokes equations.

Historically, the mixed finite element method has been a popular candidate for the
numerical solution of the incompressible Navier–Stokes equations. Many classic finite ele-
ments, such as the Crouzeix–Raviart [25] and Taylor–Hood [42] methods, are still widely
used nearly five decades after their inception. However, a notable deficiency of many finite
element methods for the incompressible Navier–Stokes equations is that the incompress-
ibility constraint is not satisfied exactly at the discrete level. Instead, the approximate
velocity field is only discretely divergence free (i.e. in an integral sense when tested against
functions from the approximate pressure space). As we shall soon see, the violation of the
incompressibility constraint at the discrete level leads to “pollution” in the error in the
velocity field by the error in the pressure. This phenomenon has been the topic of intensive
research over the past decade, and has given birth to the study of so-called pressure-robust
finite element methods whose velocity errors are decoupled from the pressure error [47, 62].
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To complicate matters further, many important industrial applications of the Navier–
Stokes equations require the consideration of moving or deforming domains. Some exam-
ples include the modeling of arterial blood flow, free surface waves, and multiphase flows
in which the interface between fluids evolves over time. When confronted with such a
situation, care must be taken to ensure that the evolution of the domain is captured by
the numerical method. A class of methods especially suited for this task is the space-time
finite element method which captures the motion of the domain by recasting it as a station-
ary domain in space-time. While conforming (i.e., continuous) space-time finite element
methods have been successfully applied to incompressible flow problems on time-dependent
domains [48, 66, 68, 97], they are not locally conservative which can prove problematic for
convection dominated flows. From this point of view, space-time discontinuous Galerkin
methods are more fitting for the solution of the Navier–Stokes equations on time-dependent
domains [74, 76, 99].

Naturally, one may wonder about pressure-robustness in the context of incompressible
flows on time-dependent domains. Surprisingly, very few results can be found in this di-
rection. Recently, a class of pressure-robust space-time hybridized discontinuous Galerkin
methods for the Navier–Stokes equations on time-dependent domains has been introduced
in [43, 44]. While the method performs well in numerical experiments, a theoretical conver-
gence analysis has proven to be highly nontrivial. The purpose of this thesis is to provide
a first step toward such an analysis.

In the remainder of this chapter, we introduce the core concepts behind the space-time
hybridized discontinuous Galerkin method, discuss the objectives and contributions of this
thesis, and provide an overview of the coming chapters.

Discontinuous Galerkin methods. The discontinuous Galerkin (DG) method has seen
a substantial increase in popularity amongst computational fluid dynamicists over the
course of the past two decades. As the name would seem to suggest, the DG method
differs from classical (continuous) finite element methods (henceforth referred to as CG
methods) in that it allows for the use of discontinuous basis functions for the trial and test
spaces. As outlined below, the increased flexibility afforded by allowing for discontinuities
in the finite element spaces is substantial, but this flexibility comes at a significant increase
in computational expense.

The fundamental difference between the DG method and the CG method is that basis
functions can be localized to single mesh elements. As a result, the discrete equations
resulting from the DG method can be posed locally on each mesh element. Of course, there
must be some communication between local solutions on adjacent elements so that they
may be patched together to recover a meaningful global solution. Given the local problem
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on a single mesh element, we achieve this communication by treating the local solutions on
neighbouring elements as boundary data through the use of so-called “numerical fluxes”.
This yields a more compact “stencil” in comparison to the CG method since the solution
on a single mesh element is coupled only to the solutions on neighbouring elements with a
shared interface.

By defining basis functions locally on each mesh element, the DG method can easily
handle irregular and non-matching meshes which makes it an advantageous method to
pair with h-adaptivity. Moreover, p-adaptivity can be achieved naturally by varying the
polynomial degree of the local basis functions in each mesh element. However, the trade
off for these advantages is increased computational cost in comparison to the CG method.
As illustrated in Figure 1.1, the continuity constraint imposed on the basis functions in
the CG method permits shared degrees of freedom (DOFs) between adjacent elements.
DG methods, by contrast, share no DOFs between elements and this duplication of DOFs
ultimately leads to an increase in the size of the global linear system.

Figure 1.1: The coupling of DOFs on neighbouring elements for the CG method (left) and
the DG method (right).

As previously mentioned, the DG method introduces numerical fluxes through which
the solution on neighbouring elements is coupled. Given that there is some flexibility in the
choice of numerical flux, it seems appropriate to design it to mimic the underlying dynamics
of the PDE. This is particularly advantageous when dealing with transport phenomena and
conservation laws, as the numerical flux provides a mechanism to introduce upwinding as
well as local conservation of appropriate physical quantities into the DG method. Thus, the
DG method can be viewed as a synthesis of the CG method and the finite volume method
(FVM); it inherits the local conservation properties and other attractive features of the
FVM while retaining the potential for higher-order accuracy enjoyed by the CG method.
For this reason, the DG method has seen much success when applied to incompressible
flow problems; see e.g. the articles [21, 22, 39, 41, 49, 65, 72, 86, 103] and the monographs
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[28, 81].

Hybridized discontinuous Galerkin methods. To reduce the size of the global linear
system while retaining the advantages of the DG method, one can instead consider the hy-
bridized discontinuous Galerkin (HDG) method [19]. In the HDG method, an additional
finite element space is introduced on the interfaces between mesh elements. An approxi-
mation of the solution’s trace on mesh interfaces is sought in this new finite element space.
Rather than coupling the local solutions on neighbouring mesh elements directly, the nu-
merical flux couples them indirectly through their communication with the approximate
trace on the shared interface (see Figure 1.2).

Figure 1.2: Sketch of the HDG solution (left) and the coupling of DOFs on neighbouring
elements for the HDG method (right).

At first, the introduction of another unknown into the problem may seem counter
intuitive: how can the size of the global system be reduced by introducing even more un-
knowns? The key is in the additional constraint required to close the system. In particular,
the weak continuity (in an integral sense) of the normal component of the numerical flux is
enforced across the interfaces of mesh elements. This is called the transmission condition,
and it allows for the elimination of the DOFs on the interior of each element using static
condensation resulting in a global system of equations for only the approximate trace of
the solution. Once the approximate trace has been found, an inexpensive post-processing
yields the solution on element interiors.

As the HDG method inherits the favourable properties of the DG method but with
a reduction in the total number of globally coupled degrees of freedom, it is an excellent
choice for the solution of incompressible flow problems. Some examples of HDG methods
for incompressible flows can be found in, e.g., [14, 36, 55, 58, 59, 56, 69, 73, 78].

Space-time finite element methods. Typically, the numerical solution of an evolution
equation employs the method of lines wherein the problem is first discretized in space using
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a finite element method to obtain a system of ordinary differential equations (ODEs) in
time. The resulting system of ODEs can then be discretized using an appropriately chosen
time integration scheme often based on the finite difference method. This approach works
well when the domain Ω is fixed in time. However, if the domain evolves over time, there
is an immediate problem. Consider, for the sake of argument, the backward difference
operator: for fixed x ∈ Ω(t),

∂u

∂t

∣∣∣∣
t=tn+1

≈ u(x, tn+1)− u(x, tn)

∆t
(1.1)

Since the domain evolves with time, a spatial point x ∈ Ω(tn) at a given time tn may
not remain in the domain at time tn+1 (see Figure 1.3). In such a scenario, the difference
quotient in eq. (1.1) may fail to be defined.

t

x

tn

tn+1

(
x(tn), tn

)
(
x(tn+1), tn+1

)(
x(tn), tn+1

)

Figure 1.3: The method of lines on a time dependent domain Ω(t).

A possible way to overcome this problem is by taking a Lagrangian or Arbitrary
Lagrangian-Eulerian (ALE) approach, in which a change of coordinates is performed to
map the problem onto a fixed reference domain more amenable to the method of lines (see
Figure 1.4). This allows the use of relatively inexpensive time integration schemes to solve
moving boundary problems. However, a careful choice of time integrator is required to
ensure satisfaction of the geometric conservation law (GCL), which can be characterized
as a numerical method’s ability to preserve uniform (constant) flow solutions under mesh
movement. While the exact role that the GCL plays in the stability and convergence of
numerical methods for moving boundary problems is controversial [7], it has been observed
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ξ

tn
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(ξ, tn)

(ξ, tn+1)

Φ
∂u

∂t

∣∣∣∣
ξ

≈
u(ξ, tn+1)− u(ξ, tn)

∆t

Figure 1.4: Combining a Lagrangian/ALE approach with the method of lines.

that failure to satisfy the GCL can result in a loss of accuracy in numerical solutions on
moving meshes [71].

A second approach, at the heart of this thesis, is to employ a space-time finite element
method. In space-time methods, a time-dependent problem on a moving d-dimensional
domain is recast as a stationary problem on a fixed (d+ 1)-dimensional space-time domain
by formally removing the distinction between spatial and temporal variables. This space-
time domain is partitioned into space-time elements (see Figure 1.5), and the finite element
method is used in both space and time. As a result, the movement of the domain is
naturally captured by the numerical discretization. Moreover, space–time methods are
known to automatically satisfy the GCL [60].

Of course, a subclass of the space-time finite element method is the space-time DG
method. As the name suggests, the space-time DG method employs DG in both space and
time. Thus, the attractive properties of the DG method (local conservation, hp-adaptivity,
etc.) hold both in space and time. Furthermore, by using a discontinuous-in-time trial
space, the problem can be localized to a single time interval or space-time slab as illustrated
in red in Figure 1.5. This allows for a sequential approach where the solution is computed
in a single space-time slab and then used as an initial condition for the next space-time slab.
This significantly reduces the amount of memory required as only a single space-time slab
is ever stored at once. Alternative to the slab-by-slab approach is the all-at-once approach
where the entire space-time mesh is stored at once. While the all-at-once approach is
much more memory intensive, it is more amenable to parallelization than the slab-by-slab
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Figure 1.5: A tessellation of the space-time domain with space-time elements.

approach [92]. Examples of space-time finite element methods for the incompressible flows
on time-dependent domains can be found in e.g. [48, 66, 68, 76, 97, 99].

Though our primary motivation for the use of space-time finite element methods is the
ease in which they handle time-dependent domains, much of the analysis in this thesis
considers fixed domains. As such, it is only appropriate to point out some of the benefits
that the space-time DG method has even on fixed domains. The most obvious is that
higher-order accuracy in time can be achieved simply by increasing the degree of the
polynomial solution in time. Other benefits include local temporal refinement, p-adaptivity
in time, and the possibility of using differing meshes at each time level. The catch, of course,
is a significant increase in the computational cost over more traditional time integration
methods. Examples of space-time finite element methods for incompressible flows on fixed
domains can be found in, e.g., [1, 17].

Space-time hybridized discontinuous Galerkin methods. As we have seen, the
use of the DG method comes at a significant computational expense, especially so when
DG is used in both space and time! To offset the computational cost of solving a (d +
1)-dimensional problem with DG, the space-time HDG method was introduced in the
articles [74, 75]. The combination of space-time DG and HDG allows for the use of static
condensation to reduce the problem to one of merely finding the approximate traces on
the facets of space-time elements. Roughly speaking, this reduces the size of the global
system to one of a d-dimensional problem since the approximate trace is defined on a d-
dimensional surface in Rd+1. More recent examples of space-time HDG methods for the
incompressible Navier–Stokes equations can be found in [43, 44].
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Pressure-robust finite element methods. For simplicity, we shall restrict our discus-
sion of pressure-robustness to the steady incompressible Navier–Stokes system on an open
bounded domain Ω ⊂ Rd: given an external body force f and kinematic viscosity ν, find
a velocity field u and pressure p satisfying

−ν∆u+∇ · (u⊗ u) +∇p = f, in Ω, (1.2a)

∇ · u = 0, in Ω, (1.2b)

u = 0 on ∂Ω. (1.2c)

One peculiarity with many finite element methods for eq. (1.2) is that the error in the
velocity field is polluted by the error in the pressure. More precisely, given finite element
spaces Vh for the velocity and Qh for the pressure,

‖u− uh‖Vh ≤ C

(
inf
vh∈Vh

‖u− vh‖Vh +
1

ν
inf

qh∈Qh
‖p− qh‖Qh

)
. (1.3)

Classic examples of finite element methods satisfying eq. (1.3) include the Taylor–Hood
element [42], the Crouzeix–Raviart element [25], the MINI element [3], and discontinuous
Galerkin methods [20, 23, 28]. At first glance, the additional dependence on the pressure in
the error bound eq. (1.3) may not appear significant; however, the appearance of the inverse
of the kinematic viscosity is problematic if one wishes to consider convection dominated
flows (ν � 1).

From the physical point of view, the problem stems from the following observation
[47, 62]: if the external force is perturbed by an irrotational field, i.e. f → f + ∇ϕ, for
some scalar potential ϕ, the solution becomes

(u, p)→ (u, p+ ϕ).

In other words, the additional irrotational force field ∇ϕ is balanced by the pressure
gradient, leaving the velocity field unchanged. Viewed from this lens, eq. (1.3) would
seem to indicate that this fundamental invariance property of incompressible flows is not
inherited at the discrete level.

From the mathematical point of view, the source of this peculiarity is related to the
divergence constraint eq. (1.2b). Many finite element methods for incompressible flow
problems satisfy this constraint only approximately. This constitutes a variational crime
in the sense that if K denotes the kernel of the distributional divergence operator and
Kh denotes the kernel of the discrete divergence operator arising from the finite element
discretization, then Kh 6⊂ K. However, if indeed Kh ⊂ K, it holds that [6, Theorem 5.25]

‖u− uh‖Vh ≤ C inf
vh∈Vh

‖u− vh‖Vh . (1.4)
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We call finite element methods that satisfy eq. (1.4) pressure-robust. As simple a task as
it may seem, it is not immediately obvious how one can design a finite element method
to ensure that Kh ⊂ K. Fortunately, it has been recognized that pressure-robust finite
element methods can be equivalently characterized as H(div; Ω)-conforming methods that
produce pointwise solenoidal velocity approximations [47]. Examples of pressure-robust
finite element methods can be found in, e.g., [36, 47, 56, 57, 59, 62, 89]. Note that it is not
our purpose to investigate the advantages of pressure-robust discretizations. We instead
refer the reader to the thesis [88], which gives an excellent overview of the advantages of
pressure-robust discretizations for both stationary and transient incompressible flows.

Objectives and contributions. The present thesis is concerned with the numerical anal-
ysis of a class of pressure-robust space-time hybridized discontinuous Galerkin methods for
the incompressible Navier–Stokes equations. While our main motivation for the use of
space-time methods is the ease in which they handle time-dependent domains, no theoreti-
cal analysis of a space-time HDG method for the Navier–Stokes equations has appeared in
the literature, even on fixed domains. Our purpose is to fill this gap as a first step toward
a theoretical analysis valid on time-dependent domains. The main contributions of this
thesis are fourfold:

1. We provide an a priori error analysis of the pressure-robust HDG method of Rheber-
gen and Wells [78] in the case of the stationary Navier–Stokes equations, which was
previously missing from the literature.

2. We provide the first a priori error analysis of a space-time HDG method for the
transient Navier–Stokes equations on fixed domains. Our analysis requires the spatial
domain Ω ⊂ Rd to be a convex polygon (d = 2) or polyhedron (d = 3) as well as a
restriction on the size of the problem data to ensure the existence of a strong solution
to the Navier–Stokes equations (see Theorem 2.3.2 below).

3. We further show, using a compactness argument, that this space-time HDG method
converges to a weak solution to the Navier–Stokes equations (in the sense of Leray–
Hopf) even in the absence of additional regularity. This fills the gap left by our a priori
analysis, as we no longer require convexity of the spatial domain nor a restriction
on the size of the problem data. However, this approach does not yield rates of
convergence.

4. Finally, we provide an a priori error analysis of a space-time HDG method for the
advection-diffusion equation on time-dependent domains. To the author’s knowl-
edge, this constitutes the first error analysis of a space-time HDG method on time-
dependent domains in general.
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1.2 Thesis outline

The remaining chapters of this thesis are structured as follows:

Chapter 2. First, we rapidly recall many of the tools from functional analysis that we
will require in subsequent chapters. Then, we introduce the basic mathematical theory of
the incompressible Navier–Stokes equations.

Chapter 3. We study the pointwise solenoidal HDG method proposed by Rhebergen and
Wells in [78] in the case of the stationary Navier–Stokes equations. We show that under
mild assumptions on the size of the problem data, the resulting nonlinear algebraic system
arising from the HDG discretization is uniquely solvable using a fixed-point argument à la
Brouwer. Then, we perform an a priori error analysis of the method and prove that the
velocity and pressure approximations converge at the optimal rate in suitable norms. Most
importantly, we show that the error in the velocity approximation is independent of the
pressure, and thus the method is pressure-robust. The contents of this chapter have been
taken, with slight modification, from the article:

K. L. A. Kirk and S. Rhebergen, Analysis of a pressure-robust hybridized
discontinuous Galerkin method for the stationary Navier–Stokes equations, Jour-
nal of Scientific Computing, 81 (2019), pp. 881–897. https://doi.org/10.1007/

s10915-019-01040-y

Chapter 4. We study a space-time HDG method for the incompressible Navier–Stokes
equations on fixed domains based on the HDG method analyzed in Chapter 3. Using a
topological degree argument, we show that there exists a solution to the nonlinear alge-
braic system arising from the space-time HDG discretization in both two and three spatial
dimensions. Then, using a novel discrete Ladyzhenskaya inequality and fine properties of
polynomials, we obtain a uniform-in-time bound on the discrete velocity in two spatial
dimensions. This uniform bound allows us to show that the discrete velocity solution is
unique in two dimensions under a restriction on the size of the problem data. Next, we
prove a space-time inf-sup condition and conclude from the Ladyzhenskaya-Babuška-Brezzi
theorem that to each discrete velocity solution there exists a corresponding unique discrete
pressure solution.

Further, we derive optimal a priori error bounds for the velocity under the assumption
that the Navier–Stokes system admits a strong solution (see Theorem 2.3.2). This places
a restriction on the size of the problem data as well as the shape of the spatial domain
Ω ⊂ Rd. Notably, the error bounds that we obtain for the velocity are independent of the
pressure, thus proving that the method is pressure-robust. Finally, we obtain sub-optimal
a priori error bounds for the pressure. The contents of this chapter have been taken, with
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slight modification, from the article:

K. L. A Kirk, T. L. Horváth, and S. Rhebergen, Analysis of an exactly
mass conserving space-time hybridized discontinuous Galerkin method for the time-
dependent Navier–Stokes equations, (To appear in Mathematics of Computation)
https://arxiv.org/abs/2103.13492

Chapter 5. Since our a priori analysis in Chapter 4 requires additional regularity of the
exact solution, we cannot use it to conclude that the space-time HDG method converges
to a weak solution of the Navier–Stokes equations as the time step and mesh size tend to
zero. In this chapter, we prove that this is indeed the case, and moreover the weak solution
is one in the sense of Leray–Hopf (i.e. it satisfies an appropriate energy inequality), filling
the gap left by the previous chapter. Our analysis hinges on the introduction of discrete
differential operators as well as a discrete version of the Aubin–Lions–Simon compactness
theorem. The contents of this chapter have been taken, with slight modification, from the
article:

K. L. A Kirk, A. Çeşmelioğlu, and S. Rhebergen, Convergence to weak
solutions of a space-time hybridized discontinuous Galerkin method for the incom-
pressible Navier–Stokes equations, Mathematics of Computation. https://doi.

org/10.1090/mcom/3780

Chapter 6. In this penultimate chapter, we analyze a space-time HDG method for a
linear advection-diffusion equation on time-dependent domains. Following [38, 95, 99], we
make use of anisotropic Sobolev spaces which provide a suitable alternative to Bochner
spaces when the underlying spatial domain is evolving in time. Using novel anisotropic (in
space and time) inverse and trace inequalities, we prove that the discrete bilinear form is
coercive and satisfies an inf-sup condition with respect to a “streamline diffusion”-like norm
that controls the time derivative of the discrete solution. Finally, we derive anisotropic (in
space and time) a priori error estimates. The contents of this chapter have been taken,
with slight modification, from the article:

K. L. A Kirk, T. L. Horváth, A. Çeşmelioğlu, and S. Rhebergen, Anal-
ysis of a space-time hybridizable discontinuous Galerkin method for the advection-
diffusion problem on time-dependent domains, SIAM Journal on Numerical Analy-
sis, 57 (2019), pp. 1677–1696. https://doi.org/10.1137/18M1202049

Chapter 7. Finally, we conclude the thesis by discussing possible future avenues of re-
search based on the work of Chapters 3 through 6. In particular, we discuss the extension
of our analysis to space-time HDG methods for the Navier–Stokes equations on time-
dependent domains.
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Chapter 2

Preliminaries

The finite element method can be seen as a way to approximate the underlying function
spaces (typically, Banach or Hilbert spaces) associated with the solution of a PDE rather
than the differential operators involved. It should come at no surprise then that the
framework for the theoretical analysis of the finite element method is that of functional
analysis. In this chapter, we rapidly recall some of the concepts and tools from the theory
of functional analysis and function spaces that we will require throughout the remainder
of the thesis.

2.1 Functional analytic tools

In this section, we introduce some of the tools from functional analysis that we require in
the sequel. Note that throughout this thesis, all vector spaces are assumed real. It will be
assumed throughout that the reader is familiar with the basics of Hilbert space and Banach
space theory. For more information, the interested reader may consult any standard text
on functional analysis, e.g., [10, 18, 84, 105].

2.1.1 Topological preliminaries

We begin by introducing two lemmas that provide us with powerful tools for the study of
nonlinear systems in finite-dimensional vector spaces:
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Lemma 2.1.1 (Corollary to Brouwer’s fixed point theorem [18, Theorem 9.9-3]). Let
(X, (·, ·)X) be a finite-dimensional Hilbert space and let f : X → X be a continuous mapping
with the following property: there exists M > 0 such that

(f(v), v)X ≥ 0 for all v ∈ X such that ‖v‖X = M.

Then, there exists a v0 ∈ X such that ‖v0‖X ≤M and f(v0) = 0.

Lemma 2.1.2 (Topological degree argument [28, Lemma 6.42]). Let (X, ‖·‖X) be a finite-
dimensional Banach space. Let M > 0 and let Ψ : X × [0, 1]→ X satisfy

1. Ψ is continuous.

2. Ψ(·, 0) is an affine function and the equation Ψ(v, 0) = 0 has a solution v ∈ X such
that ‖v‖X < M .

3. For any (v, ρ) ∈ X × [0, 1], Ψ(v, ρ) = 0 implies ‖v‖X < M .

Then, there exists v ∈ X such that Ψ(v, 1) = 0 and ‖v‖X < M .

2.1.2 Elementary results

Next, we recall a number of elementary results from linear functional analysis. To set
notation, let X be a Banach space with topological dual X ′. Throughout this thesis, we
will denote the value of a continuous linear functional f ∈ X ′ at v ∈ X by the duality
pairing

f(v) = 〈f, v〉X′×X . (2.1)

Example 2.1.1. To get a feel for what we mean by the duality pairing eq. (2.1), consider
the Sobolev space X = H1(−1, 1) (see Definition 2.2.4 below) and let f be the Dirac delta
“function” δ0 : H1(−1, 1)→ R defined by

v 7→ δ0(v) = v(0), ∀v ∈ H1(−1, 1).

Observe that δ0 ∈ X ′ =
(
H1(−1, 1)

)′
, since by the Sobolev embedding theorem (Theo-

rem 2.2.6 below),

|δ0(v)| = |v(0)| ≤ C‖v‖H1(−1,1) , ∀v ∈ H1(−1, 1).

Following the convention eq. (2.1), we write

〈δ0, v〉X′×X = v(0).
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Theorem 2.1.1 (Riesz Representation Theorem [18, Theorem 4.6-1]). Let (V, (·, ·)V ) be a
Hilbert space. Given any continuous linear functional f ∈ V ′, there exists a unique element
zf ∈ V such that

〈f, v〉V ′×V = (zf , v)V .

This defines a linear isomorphism R : V → V ′, R : zf 7→ f by

〈f, v〉V ′×V = 〈Rzf , v〉V ′×V = (zf , v)H , ∀v ∈ V.

Theorem 2.1.2 (Lax–Milgram [18, Theorem 6.2-1]). Let V be a Hilbert space, let a(·, ·) :
V × V → R be a bounded and coercive bilinear form, and let f : V → R be a continuous
linear functional. In other words, there exist constants C1, C2, C3 > 0 such that for all
u, v ∈ V ,

|a(u, v)| ≤ C1‖u‖V ‖v‖V , a(u, u) ≥ C2‖u‖2
V , |〈f, v〉V ′×V | ≤ C3‖v‖V .

Then, there exists a unique solution to the variational problem: find u ∈ V such that

a(u, v) = 〈f, v〉V ′×V , ∀v ∈ V.

Theorem 2.1.3 (Banach–Nečas–Babuška [28, Theorem 1.1]). Let X be a Banach space
and let Y be a reflexive Banach space. Suppose that a(·, ·) : X × Y → R is a continuous
bilinear form: there exists C1 > 0 such that

|a(v, w)| ≤ C1‖v‖X‖w‖Y , ∀v ∈ X, w ∈ Y.

Let f ∈ Y ′ and consider the problem: find u ∈ X such that for all w ∈ Y , it holds that

a(u,w) = 〈f, w〉Y ′×Y . (2.2)

Then, problem eq. (2.2) has a unique solution if and only if the following two conditions
hold:

(i) There is a C2 > 0 such that for all v ∈ X,

C2‖v‖X ≤ sup
06=w∈Y

a(v, w)

‖w‖Y
, (2.3)

(ii) For all w ∈ Y ,
(∀v ∈ X, a(v, w) = 0)⇒ (w = 0).
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Note that condition eq. (2.3) is equivalent to the following inf-sup condition:

C2 ≤ inf
0 6=v∈X

sup
06=w∈Y

a(v, w)

‖v‖X‖w‖Y
.

Remark 2.1.1. If in Theorem 2.1.3 the Banach spaces X and Y are finite-dimensional,
condition (ii) is superfluous.

Theorem 2.1.4 (Hahn–Banach [18, Theorem 5.9-1]). Let X be a normed vector space,
let Y be a subset of X, and let f : Y → R be a continuous linear functional. Then, there
exists a continuous linear functional f̃ : X → R satisfying

〈f̃ , y〉X′×X = 〈f, y〉Y ′×Y , for all y ∈ Y, and ‖f̃‖X′ =‖f‖Y ′ .

Corollary 2.1.1 ([18, Theorem 5.9-7]). Let Y be a subspace of a normed vector space X.
Then, Y is dense in X if and only if

〈f, y〉X′×X = 0 for all y ∈ Y

implies that f is the zero functional.

2.1.3 Modes of convergence in Banach spaces

To prove convergence of the space-time HDG scheme to weak solutions of the Navier–
Stokes equations in Chapter 5, we require various types of convergence in Banach spaces,
which we summarize below.

Definition 2.1.1 (Strong convergence). Let X be a Banach space. A sequence of elements
(xn)n∈N in X is said to converge strongly to a function x ∈ X if

lim
n→∞
‖xn − x‖X = 0.

We denote strong convergence by an arrow: xn → x as n→∞.

Definition 2.1.2 (Weak convergence). Let X be a Banach space and let X ′ denote its
topological dual space. A sequence of elements (xn)n∈N in X is said to converge weakly to
a function x ∈ X if for each f ∈ X ′, it holds that

lim
n→∞

f(xn) = f(x).

We denote weak convergence by a half-arrow: xn ⇀ x as n→∞.
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Definition 2.1.3 (Weak-? convergence). Let X be a Banach space and let X ′ denote its
topological dual space. A sequence of elements (fn)n∈N in X ′ is said to converge weakly-?
to an element f ∈ X ′ if for each x ∈ X, it holds that

lim
n→∞

fn(x) = f(x).

We denote weak-? convergence by a half-arrow with a star on top: fn
?
⇀ f as n→∞.

2.1.4 Gelfand triples V ⊂ H ⊂ V ′

We end off this section by discussing Gelfand triples (also known as evolution triples
due to their importance to the study of abstract evolution equations), which will arise in
Chapter 5. Our discussion will follow [10, Section 5.2]. Let V be a separable and reflexive
Banach space, and let H be a separable Hilbert space. Assume that V is dense in H, and
that the embedding V ⊂ H is continuous: there exists a C > 0 such that

‖v‖H ≤ C‖v‖V , ∀v ∈ V.

Then, we can identify H with a dense subspace of V ′ and we write

V ⊂ H ⊂ V ′, (2.4)

where both embeddings are continuous and dense. We call the triplet (V,H, V ′) a Gelfand
triple, and we call H a pivot space. The importance of the Gelfand triple lies in the fact
that the duality pairing on V , when restricted to H, coincides with the inner-product on
H:

〈u, v〉V ′×V = (u, v)H , ∀u ∈ H, ∀v ∈ V. (2.5)

Below, we justify that such an identification can be made. The following discussion is
technical, and can be skipped by the reader willing to take eq. (2.4) and eq. (2.5) at face
value.

Justification of the identification H ⊂ V ′

Define a mapping T : H ′ → V ′ by

〈Tf, v〉V ′×V = 〈f, v〉H′×H , (2.6)

that is, Tf is the restriction of f ∈ H ′ to V . Note that the linearity of T follows from the
linearity of the duality product on H. By Theorem 2.1.1, we can identify H ∼= H ′ using
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the Riesz isomorphism R : H → H ′. This, combined with the definition of the operator T ,
shows that if u ∈ H and v ∈ V , we can identify the duality product on V with the inner
product on H as follows:

〈(T ◦R)u, v〉V ′×V = 〈Ru, v〉H′×H = (u, v)H .

To justify the identification of H with a subspace of V ′, we need to show that to each
element u ∈ H there corresponds a unique element (T ◦R)u ∈ V ′. We first show that the
linear operator T is injective. To this end, note that if Tf = 0, then 〈f, v〉H′×H = 0 for all
v ∈ V . Since V is dense in H, this is equivalent to f = 0 by Corollary 2.1.1. Thus, both
R : H → H ′ and T : H ′ → V ′ are injective, and so is their composition (T ◦R) : H → V ′.
Therefore, to each u ∈ H, we can associate a unique element (T ◦R)u of V ′.

It remains to show that the embedding TH ′ ⊂ V ′ is continuous and dense. We begin
by showing the former. The fact that V ⊂ H with continuous embedding ensures that T
is continuous. Indeed, for all v ∈ V , we have

〈f, v〉H′×H
‖v‖V

≤ ‖f‖H′‖v‖H
‖v‖V

≤ C‖f‖H′ ,

and thus, by the definition of T , for any f ∈ H ′,

‖Tf‖V ′ = sup
06=v∈V

〈Tf, v〉V ′×V
‖v‖V

= sup
06=v∈V

〈f, v〉H′×H
‖v‖V

≤ C‖f‖H′ .

Therefore, TH ′ embeds continuously into V .

Finally, we show the image of T is dense in V ′. By Corollary 2.1.1, it suffices to show
for ϕ ∈ V ′′

〈ϕ, Tf〉V ′′×V ′ = 0, ∀f ∈ H ′, ⇒ ϕ = 0.

Let f ∈ H ′ be arbitrary. Recall [10, Section 3.5] that since V is reflexive, we can identify
V ∼= JV = V ′′ via the canonical injection J : V → V ′′ satisfying for all v ∈ V and ψ ∈ V ′,

〈Jv, ψ〉V ′′×V ′ = 〈ψ, v〉V ′×V .

Suppose now that 〈ϕ, Tf〉V ′′×V ′ = 0 for all f ∈ H ′. By the reflexity of V , we can find a
v ∈ V such that ϕ = Jv, and

0 = 〈ϕ, Tf〉V ′′×V ′ = 〈Jv, Tf〉V ′′×V ′ = 〈Tf, v〉V ′×V , ∀f ∈ H ′.

By the definition of the linear operator T , this is equivalent to

0 = 〈f, v〉H′,H , ∀f ∈ H ′,
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but then v must be the zero element of H (thus also V ) (again, thanks to Corollary 2.1.1).
By the linearity of J , we have ψ = Jv = 0, and thus TH ′ is dense in V ′. Consequently,
we can identify H ′ with a dense subspace of V ′ via the mapping T : H ′ 3 f 7→ Tf ∈ V ′:
H ′ ∼= TH ′ ⊂ V ′, and the embedding is continuous and dense. Moreover, by Theorem 2.1.1,
we can identify H ∼= H ′ using the Riesz isomorphism R : H → H ′.

Remark 2.1.2. By the triplet eq. (2.4), we really mean

V ⊂ H ∼= RH = H ′ ∼= TH ′ ⊂ V ′.

2.2 Function spaces

The purpose of this subsection is to introduce various function spaces that will be used
extensively in the sequel. We have made no attempt to be exhaustive in our treatment.
For more information, we refer the interested reader to e.g., [8, 18].

2.2.1 The Lebesgue spaces Lp(Ω)

In what follows, it will be assumed that the reader is familiar with the Lebesgue theory of
integration, but we will briefly review some of the basics. In particular, we will be concerned
with measure spaces (Ω,M, µ), where Ω ⊂ Rd is an open, bounded, and connected subset
of Rd,M is the σ-algebra of Lebesgue measurable subsets of Ω, and µ :M→ [0,∞] is the
Lebesgue measure on Rd. For a construction of the Lebesgue measure on Rd, we refer to,
e.g., [35, 83]. Given a measurable set E ⊂ Ω with µ(E) = 0, we will say that a property
holds almost everywhere (a.e.) provided it holds on Ω \ E.

We define the vector space of summable functions on Ω:

L1(Ω) =

{
f : Ω→ R : f is measurable and

∫
Ω

|f | dx <∞
}
.

As it stands, the mapping f 7→
∫

Ω
|f | dx defines a semi-norm on the space L1(Ω), since∫

Ω
|f | dx = 0 need not imply that f = 0 (consider a measurable function taking nonzero

values only on a set of measure zero). However, we wish to leverage the tools from Banach
space theory introduced in Section 2.1. To this end, we define an equivalence relation
on L1(Ω): f ∼ g if f = g a.e. in Ω, and consider the quotient space L1(Ω) = L1(Ω)/∼.
We will abuse notation by identifying functions in L1(Ω) with their equivalence classes in
L1(Ω). The mapping f 7→

∫
Ω
|f | dx then defines a norm on L1(Ω).

Next, we recall a number of basic results concerning Lebesgue integration.

18



Theorem 2.2.1 (Fatou’s Lemma [18, Theorem 1.15-2]). Let {fn}n∈N ⊂ L1(Ω) be a se-
quence of non-negative functions. Then,∫

Ω

(lim inf
n→∞

fn(x)) dx ≤ lim inf
n→∞

∫
Ω

fn(x) dx.

Theorem 2.2.2 (Dominated Convergence Theorem [18, Theorem 1.15-3]). Let {fn}n∈N ⊂
L1(Ω) be a sequence converging pointwise a.e. to f , and suppose |fn(x)| ≤ g(x) for some
g ∈ L1(Ω). Then, f ∈ L1(Ω) and it holds that

lim
n→∞

∫
Ω

fn dx =

∫
Ω

f dx.

Theorem 2.2.3 (Fubini’s Theorem [18, Theorem 1.15-5]). Given two Lebesgue measurable
sets Ω1 ⊂ Rn, Ω2 ⊂ Rm, and a function f ∈ L1(Ω1 × Ω2), it holds that∫

Ω1×Ω2

f(x1, x2) dx1 dx2 =

∫
Ω1

(∫
Ω2

f(x1, x2) dx2

)
dx1 =

∫
Ω2

(∫
Ω1

f(x1, x2) dx1

)
dx2.

For more information on the Lebesgue theory of integration, or abstract measure theory
in general, the interested reader may consult [35, 83].

Definition 2.2.1 (Lebesgue spaces). Let p ∈ R be such that 1 ≤ p ≤ ∞. If 1 ≤ p < ∞,
we define

Lp(Ω) =
{
f : Ω→ R : f is measurable and ‖f‖Lp(Ω) <∞

}
,

where

‖f‖Lp(Ω) :=

(∫
Ω

|f |p dx

)1/p

.

In the case p =∞, we define

L∞(Ω) =
{
f : Ω→ R : f is measurable and ‖f‖L∞(Ω) <∞

}
,

where
‖f‖L∞(Ω) := inf

{
M : |f(x)| ≤M a.e. on Ω

}
.

As before, we abuse notation by identifying functions with their equivalence classes.
The space Lp(Ω), equipped with the norm ‖·‖Lp(Ω), is a Banach space for 1 ≤ p ≤ ∞; if

1 < p < ∞, it is reflexive, and if 1 ≤ p < ∞ it is separable. For p = 2, the space L2(Ω)
becomes a Hilbert space when equipped with the inner product

(f, g)L2(Ω) =

∫
Ω

fg dx.

Often, we will write (·, ·)D for the L2-inner product over a measurable set D for brevity.
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2.2.2 Test functions and distributions

We now give a brief overview of the theory of distributions. For more information, the
interested reader may consult, e.g., [18, 35, 84]. Let Ω ⊂ Rd be a domain and consider the
corresponding vector space of compactly supported smooth functions C∞c (Ω). We equip
this space with the topology described in, e.g., [84, Chapter 6.3] and denote the resulting
topological vector space by D(Ω). We call D(Ω) the space of test functions.

Definition 2.2.2 (Sequential convergence inD(Ω)). A sequence of test functions {φn}n∈N ⊂
D(Ω) is said to converge towards a test function φ ∈ D(Ω) if {φn}n∈N ⊂ C∞c (K) for some
compact set K ⊂ Ω and ∂αφn → ∂αφ as n→∞ uniformly for any multi-index α ∈ Nd.

We now seek to characterize the topological dual space of D(Ω). We say a linear map
T : D(Ω)→ R is continuous if, given any sequence of test functions (φn)n∈N converging to
φ in D(Ω), it holds that

T (φn)→ T (φ) as n→∞.

We call such a map a distribution, and we denote the space of distributions by D′(Ω). We
equip this space with the weak-? topology: a sequence of distributions {Tn}n∈N ⊂ D′(Ω)
is said to converge towards a distribution T ∈ D′(Ω) if, for all φ ∈ D(Ω),

Tn(φ)→ T (φ) as n→∞.

We refer to T as the distributional limit of {Tn}n∈N, and it is unique.

Next, we define the notion of a distributional derivative, motivated by the following
integration by parts formula: given a multi-index α ∈ Nd, a function u ∈ C |α|(Ω), and a
test function φ ∈ D(Ω), it holds that:∫

Ω

(∂αu)φ dx = (−1)|α|
∫

Ω

u(∂αφ) dx. (2.7)

Definition 2.2.3 (Distributional derivatives). Let T ∈ D′(Ω) be a distribution and α ∈ Nd

be a multi-index. The derivative of T in the sense of distributions is the unique distribution
∂αT ∈ D′(Ω) defined by the formula

∂αT (φ) = (−1)|α|T (∂αφ), ∀φ ∈ D(Ω). (2.8)

In general, an object of the spaceD′(Ω) need not be a function (see, e.g., Example 2.1.1).
Conversely, any locally integrable function f can be associated with a distribution Tf ∈
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D′(Ω). By locally integrable, we mean f is measurable and defined a.e. on Ω and f ∈ L1(K)
for every compact set K ⊂ Ω. We denote the space of locally integrable functions on Ω by
L1

loc(Ω). Given f ∈ L1
loc(Ω), we define the distribution Tf ∈ D′(Ω) by

Tf (φ) =

∫
Ω

fφ dx, φ ∈ D(Ω).

We will abuse notation by identifying f with Tf and thus L1
loc(Ω) with a subspace of

D′(Ω). Similarly, if a distribution T ∈ D′(Ω) is such that T = Tf for f ∈ L1
loc(Ω), we write

T ∈ L1
loc(Ω).

Proposition 2.2.1 ([8, Proposition II.2.43]). Let 1 ≤ p <∞ and let (fn)n∈N be a sequence
in Lp(Ω) which converges weakly towards f ∈ Lp(Ω). Then it holds that

fn → f, in D′(Ω) as n→∞.

Moreover, if p = ∞ and (fn)n∈N is a sequence in L∞(Ω) which converges weakly-? to
f ∈ L∞(Ω), then we have

fn → f, in D′(Ω) as n→∞.

2.2.3 Sobolev spaces

If the distributional derivative ∂αu of a locally integrable function u ∈ L1
loc(Ω) can itself be

identified with a locally integrable function gα ∈ L1
loc(Ω), then we say that gα is the weak

derivative of u. More precisely, ∂αu = gα in the weak sense if∫
Ω

u∂αφ dx = (−1)|α|
∫

Ω

gαφ dx, ∀φ ∈ D(Ω).

If u is sufficiently smooth (e.g., u ∈ C |α|(Ω)), the weak and classical derivatives of u
coincide. Among the set of all weakly differentiable functions, we will give special attention
to those whose weak derivatives are elements of the Lebesgue spaces Lp(Ω). These functions
furnish the Sobolev spaces.

Definition 2.2.4 (Sobolev spaces). Let Ω ⊂ Rd be an open set, k ≥ 1 be an integer, and
1 ≤ p ≤ ∞. We define the Sobolev space

W k,p(Ω) =
{
v ∈ Lp(Ω) : ∂αv ∈ Lp(Ω), 1 ≤ |α| ≤ k

}
.

If p = 2, we write W k,2(Ω) = Hk(Ω).
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The space W k,p(Ω) is a Banach space when equipped with the norms

‖v‖Wk,p(Ω) :=

( ∑
0≤|α|≤k

‖∂αv‖pLp(Ω)

)1/p

, if 1 ≤ p <∞,

‖v‖Wk,∞(Ω) := max
0≤|α|≤k

‖∂αv‖L∞(Ω) , if p =∞.

We define also the semi-norms

|v|Wk,p(Ω) :=

( ∑
|α|=k

‖∂αv‖pLp(Ω)

)1/p

, if 1 ≤ p <∞,

|v|Wk,∞(Ω) := max
|α|=k
‖∂αv‖L∞(Ω) , if p =∞.

The space W k,p(Ω) is reflexive if 1 < p < ∞, and separable if 1 ≤ p < ∞. The space
Hk(Ω) is a Hilbert space. Alternatively, one may view W k,p(Ω) as the closure of Ck(Ω)
with respect to the topology induced by the W k,p(Ω) norm.

For many of the results we list below, additional geometrical assumptions on the open,
bounded, and connected set Ω ⊂ Rd are required. Our presentation will closely follow [18,
Section 1.18]. For simplicity, we shall view the boundary ∂Ω of Ω as being locally the graph
of a Lipschitz continuous function ϕ. More precisely, we assume there exists constants
α > 0 and L > 0, a finite number of local orthogonal coordinate systems (yr1, . . . , y

r
d−1, y

r
d) =

(yr, y
r
d) ∈ Rd−1 × R, and corresponding functions ϕr : ωr :=

{
yr ∈ Rd−1 : |yr| < α

}
→ R,

1 ≤ r ≤ R such that

(i) ∂Ω =
R⋃
r=1

{
(yr, yr) : yr = ϕr(yr); |yr| < α

}
,

(ii) |ϕr(yr)− ϕr(zr)| ≤ L|yr − zr|, ∀yr, zr ∈ ωr, 1 ≤ r ≤ R.

Moreover, we assume that Ω is locally on the same side of its boundary ; that is, there exists
a constant β > 0 such that

(iii)
{

(yr, yr) : yr ∈ ωr and ϕr(yr) < ydr < ϕr(yr) + β
}
⊂ Ω, 1 ≤ r ≤ R,

(iv)
{

(yr, yr) : yr ∈ ωr and ϕr(yr)− β < ydr < ϕr(yr)
}
⊂ Rd \ Ω, 1 ≤ r ≤ R.

In the sequel, we refer to an open, connected set satisfying conditions (i)–(iv) as a Lipschitz
domain (see Figure 2.1 for the case d = 2).
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Figure 2.1: A Lipschitz domain in R2.

Since elements of Lp(Ω) are equivalence classes of functions agreeing up to a set of (d-
dimensional) Lebesgue measure zero, the question arises whether we can assign boundary
values to elements of W k,p(Ω). The problem lies in the fact that the boundary ∂Ω is a
(d − 1)-dimensional surface and thus |∂Ω|d = 0, with | · |d denoting the d-dimensional
Lebesgue measure. Generally, we cannot assign boundary values in a pointwise sense.
However, using the Hahn–Banach theorem (Theorem 2.1.4), we can define an operator
γ ∈ L(W 1,p(Ω);Lp

#
(Ω)) (with p# defined in Theorem 2.2.4 below) such that γ : u 7→ u|∂Ω

for all u ∈ C1(Ω). More precisely, we have the following result that allows us to consider
traces of functions in W 1,p(Ω) as elements of Lp(∂Ω):

Theorem 2.2.4 (Trace theorem [18, Section 6.6]). Let Ω ⊂ Rd be a bounded Lipschitz
domain and let 1 ≤ p <∞. There exists a trace operator γ ∈ L(W 1,p(Ω), Lp

#
(∂Ω)), where

1 ≤ p# <∞ if p = d, and

1

p#
=

1

p
− p− 1

p(d− 1)
, if 1 ≤ p < d.

Moreover, there exists a constant C > 0 such that for all v ∈ W 1,p(Ω),

‖γ(v)‖Lp#(∂Ω) ≤ C‖v‖1−1/p
Lp(Ω)‖v‖

1/p

W 1,p(Ω) . (2.9)

Where no confusion may arise, we will abuse notation by writing γ(u) = u|∂Ω. Note
that the operator γ is not surjective onto the space Lp

#
(Ω) and thus a general element of
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Lp
#

(Ω) need not have a lifting in W 1,p(Ω). For this reason, we define the following trace
spaces which are simply the image of W 1,p(Ω) under γ:

W 1− 1
p
,p(∂Ω) :=

{
γ(v) ∈ Lp#(∂Ω) : v ∈ W 1,p(Ω)

}
, for 1 ≤ p < d,

H1/2(∂Ω) :=
{
γ(v) ∈ L2(∂Ω) : v ∈ H1(Ω)

}
, if p = 2.

We will also need to consider functions with vanishing trace. In this case, we define

W 1,p
0 (Ω) :=

{
v ∈ W 1,p(Ω) : γ(v) = 0

}
, for 1 ≤ p < d,

H1
0 (Ω) :=

{
v ∈ H1(Ω) : γ(v) = 0

}
, if p = 2.

Theorem 2.2.5 (Poincaré–Friedrichs [18, Section 6.6]). Let Ω ⊂ Rd be a bounded Lipschitz
domain and let 1 ≤ p <∞. There exists a constant C1 > 0 such that∫

Ω

|v|p dx ≤ C1

(
|v|pW 1,p(Ω) +

∣∣∣∣∫
Ω

v dx

∣∣∣∣p) , ∀ v ∈ W 1,p(Ω). (2.10)

Moreover, if v ∈ W 1,p(Ω) satisfies γ(v) = 0 on ∂Ω, then there exists a constant C2 > 0
such that

‖v‖Lp(Ω) ≤ C2|v|W 1,p(Ω). (2.11)

Theorem 2.2.6 (Sobolev–Rellich–Kondrachov [8, Theorem III.2.34]). Let Ω ⊂ Rd be a
bounded Lipschitz domain. Define the critical Sobolev exponent p? associated with p by:{

1
p?

= 1
p
− 1

d
, for p < d,

1 ≤ p? <∞, for p = d.

For 1 ≤ p <∞ and 1 ≤ q ≤ p? we have the continuous embedding

W 1,p(Ω) ⊂ Lq(Ω), (2.12)

and the embedding is compact for 1 ≤ q < p?. Furthermore, for d < p ≤ ∞ and 0 ≤ a ≤
1− d/p, we have the continuous embedding

W 1,p(Ω) ⊂ C0,a(Ω), (2.13)

and the embedding is compact for 0 ≤ a < 1− d/p.

By eq. (2.13), we mean that given u ∈ W 1,p(Ω), there exists a Hölder continuous
representative belonging to the same equivalence class as u.
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Theorem 2.2.7 (Gagliardo–Nirenberg [8, Proposition III.2.35]). Let Ω ⊂ Rd be a bounded
Lipschitz domain. Let 1 ≤ p ≤ ∞ and p ≤ q ≤ p?. There is a constant C > 0 such that

‖v‖Lq(Ω) ≤ C‖v‖1+d/q−d/p
Lp(Ω) ‖v‖d/p−d/qW 1,p(Ω) , ∀ v ∈ W 1,p(Ω). (2.14)

Furthermore, if γ(v) = 0, we have

‖v‖Lq(Ω) ≤ C‖v‖1+d/q−d/p
Lp(Ω) ‖∇v‖d/p−d/qLp(Ω) , ∀ v ∈ W 1,p

0 (Ω). (2.15)

Choosing d ∈ {2, 3}, q = 4, and p = 2 in eq. (2.15), we recover the classic Ladyzhenskaya
inequality [37, pp. 55]: for all v ∈ H1

0 (Ω),

‖v‖L4(Ω) ≤

C‖v‖
1/2

L2(Ω)‖∇v‖
1/2

L2(Ω) , if d = 2,

C‖v‖1/4

L2(Ω)‖∇v‖
3/4

L2(Ω) , if d = 3.
(2.16)

2.2.4 The Sobolev space H(div; Ω)

We begin by defining the weak divergence operator of a function u ∈ L1
loc(Ω)d. If there

exists a function g ∈ L1
loc(Ω) such that∫

Ω

gφ dx = −
∫

Ω

u · ∇φ dx, ∀φ ∈ D(Ω),

then we say that g is the weak divergence of u and we write ∇ · u = g.

Definition 2.2.5 (The space H(div; Ω)). Let Ω ⊂ Rd be an open, bounded Lipschitz
domain. We define

H(div; Ω) :=
{
u ∈ L2(Ω)d : ∇ · u ∈ L2(Ω)

}
. (2.17)

H(div; Ω) is a Hilbert space when equipped with the inner product:

(u, v)H(div;Ω) =

∫
Ω

u · v dx+

∫
Ω

∇ · u∇ · v dx. (2.18)

A normal trace operator for fields in H(div; Ω) can be defined using duality:

Lemma 2.2.1. Let u ∈ H(div; Ω). There exists a surjective normal trace operator γn ∈
L(H(div; Ω);H−1/2(∂Ω)) satisfying the Green’s formula∫

Ω

v∇ · u dx+

∫
Ω

u · ∇v dx = 〈γn(u), γ(v)〉H−1/2(∂Ω)×H1/2(∂Ω), ∀v ∈ H1(Ω). (2.19)

Where no confusion may arise, we will abuse notation by writing γn(u) = u · n|∂Ω.
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2.2.5 Bochner–Sobolev spaces

Next, we consider vector-valued functions defined on an interval I ⊂ R taking values in a
Banach space X. We say a function s : I → X is a simple function if its range is a finite
set of values {v1, . . . , vn} where vi ∈ X and the sets Ai = s−1(vi) are Lebesgue measurable.
We then say that a function u : I → X is Bochner measurable if there exists a sequence
{uk}k∈N of simple functions such that

lim
k→∞

uk(t) = u(t) for a.e. t ∈ I.

Definition 2.2.6 (The Bochner space Lp(I;X)). Let X be a Banach space and let I ⊂ R.
If 1 ≤ p <∞, we define

Lp(I;X) =
{
f : I → X : f is Bochner measurable and ‖f‖Lp(I;X) <∞

}
,

where

‖u‖Lp(I;X) :=

(∫
I

‖u‖pX dt

)1/p

.

In the case p =∞, we define

L∞(I;X) =
{
f : I → X : f is Bochner measurable and ‖f‖L∞(I;X) <∞

}
,

where
‖f‖L∞(I;X) := inf

{
M : ‖f(t)‖X ≤M a.e. on I

}
.

Theorem 2.2.8 (Dual space of Lp(I;X) [82, Proposition 1.38]). Let X be a Banach space,
let 1 ≤ p < ∞ and let q be the Hölder conjugate of p. Then, Lq(I;X ′) ⊂

(
Lp(I,X)

)′
.

Furthermore, if X ′ is separable, then(
Lp(I,X)

)′ ∼= Lq(I;X ′),

with duality pairing

〈f, v〉Lq(I,X′)×Lp(I,X) :=

∫
I

〈f(t), v(t)〉X′×X dt, f ∈ Lp(I,X), v ∈ Lq(I,X ′). (2.20)

Next, we introduce Bochner–Sobolev spaces. Given an interval I ⊂ R, Banach spaces
X and Y with X ⊂ Y , and 1 ≤ p, q ≤ ∞, we say that a function u ∈ Lp(I;X) has a
distributional (time) derivative in Lq(I;Y ) if there exists a function g ∈ Lq(I;Y ) such that∫

I

u(t)φ′(t) dt = −
∫
I

g(t)φ(t) dt, ∀φ ∈ D(I).

26



If such a function g exists, it is unique and we write du
dt

= g. Higher order derivatives are
defined analogously.

Definition 2.2.7 (Bochner–Sobolev spaces). Let X and Y be Banach spaces with X ⊂ Y .
We define the Bochner–Sobolev space

W 1,p,q(I;X, Y ) =
{
u ∈ Lp(I;X) : du

dt
∈ Lq(I;Y )

}
,

which is a Banach space when equipped with the norm

‖u‖W 1,p,q(I;X,Y ) :=‖u‖Lp(I;X) +
∥∥du

dt

∥∥
Lq(I;Y )

.

In the Hilbertian case when p = q = 2 and X = Y , we will simply write

W 1,2,2(I;X,X) := H1(I;X).

Analogously, for higher order derivatives, we define

Hk(I;X) =
{
u ∈ L2(I;X) : dαu

dtα
∈ L2(I;X), 1 ≤ α ≤ k

}
,

which we equip with the norm

‖u‖Hk(I;X) :=

( k∑
α=0

∥∥∥dαu
dtα

∥∥∥2

L2(I;X)

)1/2

.

Lemma 2.2.2 ([8, Proposition II.5.11]). Let 1 ≤ p, q ≤ ∞, and suppose X and Y
are two Banach spaces such that X ⊂ Y with continuous and dense embedding. Then,
W 1,p,q(I;X, Y ) ⊂ C(I;Y ) with continuous embedding.

Theorem 2.2.9 (Lions–Magenes [8, Theorem II.5.12]). Let V and H be separable Hilbert
spaces, and suppose the triplet (V,H, V ′) is a Gelfand triple (Section 2.1.4). Let 1 ≤ p, q ≤
∞ with Hölder conjugates p′ and q′ and let u ∈ W 1,p,q′(I;V, V ′) and v ∈ W 1,q,p′(I;V, V ′).
Then, the function t 7→ (u(t), v(t))H has a continuous representative on I and for all
t1, t2 ∈ I, the following integration by parts formula holds:

(u(t2), v(t2))H − (u(t1), v(t1))H =

∫ t2

t1

〈
du
dt
, v
〉
V ′×V

dt+

∫ t2

t1

〈
dv
dt
, u
〉
V ′×V

dt.

Theorem 2.2.10 (Arzelà–Ascoli [91, Lemma 1]). Let B be Banach space. A set F of
C(0, T ;B) is relatively compact if and only if:
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(i) The set F(t) =
{
f(t) | f ∈ F

}
is relatively compact in B for all 0 < t < T , and

(ii) F is uniformly equicontinuous: ∀ε > 0, there exists a δ > 0 such that∥∥f(t2)− f(t1)
∥∥
B
< ε

for all f ∈ F and all t1, t2 ∈ (0, T ) such that |t2 − t1| < δ.

Theorem 2.2.11 (Simon [91]). Let 1 ≤ p < ∞, let B be a Banach space, and let F ⊂
Lp(0, T ;B). The set F is relatively compact in Lp(0, T ;B) if and only if:

(i) The set
{∫ t2

t1
f(t) dt | f ∈ F

}
is relatively compact in B for all 0 < t1 < t2 < T , and

(ii) ‖τhf − f‖Lp(0,T−h;B) → 0 as h→ 0 uniformly for all f ∈ F , where τhf = f(t+ h) for
h > 0. Equivalently, ∀ε > 0 there exists a δ > 0 such that for all f ∈ F and for all
h < δ, we have ∫ T−h

0

∥∥f(t+ h)− f(t)
∥∥p
B

dt < ε.

Theorem 2.2.12 (Aubin–Lions–Simon [8, Theorem II.5.16]). Let B0 ⊂ B1 ⊂ B2 be three
Banach spaces such that B1 ⊂ B2 with continuous embedding and B0 ⊂ B1 with compact
embedding. Let p, r be such that 1 ≤ p, r <∞. Then, the embedding of W 1,p,r(0, T ;B0, B2)
into Lp(0, T ;B1) is compact.

2.3 The incompressible Navier–Stokes equations

As this thesis is concerned with the numerical analysis of the incompressible Navier–Stokes
equations, we briefly review some aspects of the basic theory of weak and strong solutions
that will be used extensively throughout Chapter 4 and Chapter 5. Consider the transient
Navier–Stokes system posed on a bounded Lipschitz domain Ω ⊂ Rd, d ∈ {2, 3}: given a
suitably chosen body force f , kinematic viscosity 0 < ν ≤ 1, and initial data u0, find (u, p)
such that

∂tu− ν∆u+∇ · (u⊗ u) +∇p = f, in Ω× (0, T ], (2.21a)

∇ · u = 0, in Ω× (0, T ], (2.21b)

u = 0, on ∂Ω× (0, T ], (2.21c)

u(x, 0) = u0(x), in Ω. (2.21d)
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We will begin our discussion of the Navier–Stokes system with the theory of weak
solutions of Leray–Hopf type [96]. The starting point is the following space of solenoidal
smooth vector fields:

V =
{
u ∈ C∞0 (Ω)d | ∇ · u = 0

}
.

We define two function spaces, H and V , as the closures of V in the norm topologies
of L2(Ω) and H1

0 (Ω), respectively. For an open, bounded Lipschitz set Ω, we have the
following characterizations of H and V [96, Theorems I.1.4 and I.1.6]:

H =
{
u ∈ L2(Ω)d | ∇ · u = 0 and u · n = 0

}
, (2.22)

V =
{
u ∈ H1

0 (Ω)d | ∇ · u = 0
}
. (2.23)

We note that V ⊂ H with dense and continuous embedding and thus the triplet (V,H, V ′) is
a Gelfand triple (Section 2.1.4). The natural setting for weak velocity solutions of eq. (2.21)
is the class L2(0, T ;V ) ∩ L∞(0, T ;H). By testing eq. (2.21a) with test functions from V
and integrating by parts in space, we have the following abstract ODE for the velocity field
u: for a.e. t ∈ (0, T ],

〈du
dt
, v〉V ′×V + ν(∇u,∇v) + ((u · ∇)u, v) = 〈f, v〉V ′×V , ∀v ∈ V, (2.24a)

u(0) = u0, (2.24b)

in the sense of distributions. We recall the following classical result concerning solutions
to eq. (2.24):

Theorem 2.3.1. [96, Theorems III.3.1 and III.3.2] Given f ∈ L2(0, T ;V ′) and u0 ∈
H, there exists at least one function u ∈ L2(0, T ;V ) ∩ L∞(0, T ;H) satisfying the weak
formulation eq. (2.24). Moreover, u is weakly continuous from [0, T ] in the sense that
for all v ∈ H, t → (u(t), v) is a continuous function. If d = 2, it is well known that
this solution is unique and furthermore u ∈ C(0, T ;H). Uniqueness in three dimensions
remains an open problem.

Remark 2.3.1 (The energy inequality). In two dimensions, the weak solution to the
Navier–Stokes equations satisfies the following energy equality: for all s ∈ (0, T ),∥∥u(s)

∥∥2

L2(Ω)
+ 2ν

∫ s

0

‖u‖2
V dt = ‖u0‖2

L2(Ω) + 2

∫ s

0

〈f, u〉H−1×H1
0

dt. (2.25)

In three dimensions, we say that a weak solution is of Leray–Hopf type if it satisfies the
energy inequality: for a.e. s ∈ (0, T ),∥∥u(s)

∥∥2

L2(Ω)
+ 2ν

∫ s

0

‖u‖2
V dt ≤ ‖u0‖2

L2(Ω) + 2

∫ s

0

〈f, u〉H−1×H1
0

dt. (2.26)
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Remark 2.3.2 (On an equivalent formulation). It is possible to define an equivalent for-
mulation to eq. (2.24) using time-dependent test functions ϕ ∈ Cc(0, T ;V ) (see e.g. [8,
Section V.1.2.2]): find u ∈ L2(0, T ;V ) such that du

dt
∈ L1(0, T ;V ′) satisfying for all

ϕ ∈ Cc(0, T ;V ),∫ T

0

〈
du

dt
, ϕ

〉
V ′×V

dt+

∫ T

0

((u · ∇)u, ϕ) dt+ ν

∫ T

0

(∇u,∇ϕ) dt =

∫ T

0

〈f, ϕ〉V ′×V dt. (2.27)

Remark 2.3.3 (On recovering the pressure solution). In general, a pressure field cannot be
associated to the weak velocity solution of the Navier–Stokes equations if f ∈ L2(0, T ;V ′);
see [90]. However, if instead f ∈ L2(0, T ;H−1(Ω)d), there is an associated pressure field
p ∈ W−1,∞(0, T ;L2

0(Ω)) satisfying the Navier–Stokes equations in the distributional sense
(see e.g. [90, Proposition 5] or [8, Theorem V.1.4]).

Remark 2.3.4 (On the regularity of weak solutions and consistency). For the space-
time HDG scheme studied in this thesis, we will require a stronger notion of a solu-
tion to the Navier–Stokes problem. Indeed, the discrete space we will define for the ap-
proximate velocity field is non-conforming in V . Consequently, we cannot consider at
the discrete level the duality pairing 〈f, vh〉V ′×V without modifying the test function vh
with an appropriate smoothing operator, which would introduce a consistency error; see
e.g. [4]. Moreover, it will become evident in Chapter 4 we require at least (u, p) ∈
H1(0, T ;L2(Ω)d) ∩ L2(0, T ;H

3
2

+ε(Ω)d) × L2(0, T ;H1(Ω)) ∩ L2(0, T ;L2
0(Ω)), ε > 0, for the

consistency of our numerical scheme. The question of whether the proposed numerical
scheme converges under the minimal regularity assumptions given in Theorem 2.3.1 is the
subject of Chapter 5.

We next seek conditions on the existence of a stronger solution to the Navier–Stokes
system. We now assume that (at least) f ∈ L2(0, T ;H) and u0 ∈ V . In two dimensions,
if Ω is C2 (or convex), this is enough to ensure the existence of a unique solution (u, p) ∈
L∞(0, T ;V ) ∩ L2(0, T ;H2(Ω)d ∩ V )× L2(0, T ;H1(Ω)) ∩ L2(0, T ;L2

0(Ω)), and furthermore,
∂tu ∈ L2(0, T ;H) [96, Theorem III.3.10].

However, in three dimensions the situation is more complicated. It is possible to prove
the existence of a unique strong solution to the Navier–Stokes system with an important
caveat: loss of globality of time. In other words, the solution can be shown to exist on
some time interval (0, T ∗] with T ∗ depending on the problem data. There are two possible
cases:

1. Short lifetime and large data.
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2. Long lifetime and small data.

In Chapter 4, we will focus on the latter case which we summarize in the following theorem:

Theorem 2.3.2 ([24, Theorem 9.3], [17, Theorem 5.4]). Let Ω ⊂ R3 be a convex polyhedral
domain. There exists a C > 0, dependent on the final time T , such that if u0 ∈ V and
f ∈ L2(0, T ;H) satisfy

‖u0‖2
V +

1

ν
‖f‖2

L2(0,T ;L2(Ω)) ≤ Cν2, (2.28)

then there exists a unique strong solution with (u, p) ∈ L∞(0, T ;V ) ∩ L2(0, T ;H2(Ω)3 ∩
V )× L2(0, T ;H1(Ω)) ∩ L2(0, T ;L2

0(Ω)) and ∂tu ∈ L2(0, T ;H) such that

‖u‖2
L∞(0,T ;V ) + ν‖u‖2

L2(0,T ;H2(Ω)) ≤ Cν2, ‖∂tu‖2
L2(0,T ;L2(Ω)) ≤ Cν3. (2.29)

We note that u ∈ L2(0, T ;H2(Ω)d ∩ V ) ⊂ L2(0, T ;H) and ∂tu ∈ L2(0, T ;H) ensures
that u ∈ H1(0, T ;H). The assumption on the problem data eq. (2.28) can be interpreted
as small initial data and body force, or large viscosity and arbitrary data.

Remark 2.3.5. Recall that the Stokes operator A : H2(Ω)d ∩ V → H is defined as the
Helmholtz projection of the vector Laplace operator; see e.g. [24, Chapter 4]. Inspecting
the proof of [24, Theorem 9.3], the assumption on the smoothness of the domain in The-
orem 2.3.2 is required to ensure that ‖Au‖L2(Ω) is a norm on H2(Ω)d ∩ V equivalent to

the H2(Ω)d norm, which is in turn a consequence of the regularity theory of the linear,
stationary Stokes problem. Therefore, the conclusion of Theorem 2.3.2 remains valid if
Ω ⊂ R3 is a convex polyhedron [26].
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Chapter 3

Pressure-robust HDG for the steady
problem

In [78], a simple class of HDG methods that produce a pointwise solenoidal discrete velocity
field belonging to H(div; Ω) is introduced. It was shown therein that the method is exactly
mass conserving, locally momentum conserving, and energy stable. Moreover, through a
series of numerical experiments, it was observed that the velocity error is independent of the
pressure (hence, pressure-robust). However, no accompanying error analysis was provided
to theoretically confirm that the method is pressure-robust. As the HDG method in [78]
forms the basis of the space-time HDG method considered in Chapter 4 and Chapter 5,
the purpose of this chapter is to fill this gap.

We begin by showing that the nonlinear algebraic system of equations arising from the
HDG discretization is well-posed under a restriction on the size of the problem data using
a fixed point argument. Then, we derive optimal error estimates in the velocity which are
independent of the pressure in a discrete analogue of the H1-norm typical in the analysis
of HDG methods, followed by optimal error estimates in the pressure in the L2-norm. This
confirms that the method is pressure-robust. Lastly, under the assumption that the domain
Ω is convex, we derive optimal error estimates for the velocity in the L2(Ω)-norm.

This chapter is organized as follows: we present the steady Navier–Stokes problem
in Section 3.1 and the HDG method is introduced in Section 3.2. Notation and properties
of the multilinear forms involved are discussed in Section 3.3. Existence and uniqueness
of the discrete solution are shown in Section 3.4. We derive optimal pressure-robust error
estimates for the velocity in a mesh dependent energy norm, the pressure in the L2-norm
and optimal L2-error estimates for the velocity in Section 3.5. Finally, numerical examples
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are presented in Section 3.6 to confirm the theory.

This chapter is reprinted, with slight modification, from the following article:

K. L. A. Kirk and S. Rhebergen, Analysis of a pressure-robust hybridized
discontinuous Galerkin method for the stationary Navier–Stokes equations, Jour-
nal of Scientific Computing, 81 (2019), pp. 881–897. https://doi.org/10.1007/

s10915-019-01040-y,

with permission from Springer Nature.

3.1 The steady Navier–Stokes equations

Let Ω ⊂ Rd be a polygonal (d = 2) or polyhedral (d = 3) domain with boundary Γ.
We consider the Navier–Stokes equations: given a body force f : Ω → Rd and kinematic
viscosity ν ∈ R+, find the velocity u : Ω→ Rd and pressure p : Ω→ R such that

−ν∇2u+∇ · (u⊗ u) +∇p = f in Ω, (3.1a)

∇ · u = 0 in Ω, (3.1b)

u = 0 on Γ. (3.1c)

It is well known, e.g., [96], that given a body force f ∈
[
L2(Ω)

]d
, the variational

formulation of the Navier–Stokes problem eq. (3.1): find (u, p) ∈
[
H1

0 (Ω)
]d × L2

0(Ω) such
that∫

Ω

ν∇u : ∇v dx+

∫
Ω

(u · ∇u) · v dx−
∫

Ω

p∇ · v dx =

∫
Ω

f · v dx ∀v ∈
[
H1

0 (Ω)
]d

(3.2a)∫
Ω

q∇ · u dx = 0 ∀q ∈ L2
0(Ω), (3.2b)

admits a unique solution provided

‖f‖L2(Ω) ≤ ν2(CoCp)
−1, (3.3)

where Cp is the Poincaré constant (Theorem 2.2.5) and Co is a constant depending only
on Ω and d. In addition, the velocity satisfies the stability estimate

‖u‖H1(Ω) ≤ Cpν
−1‖f‖L2(Ω) , (3.4)
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3.2 The HDG method

Let T = {K} denote the triangulation of the domain Ω into simplices K. Furthermore,
let F and Γ0 denote, respectively, the set and union of all edges of T . We denote the
characteristic length of a cell K by hK and we denote the outward unit normal vector on
the boundary of a cell, ∂K, by n. We introduce discontinuous finite element approximation
spaces for the velocity and pressure:

Vh :=
{
vh ∈

[
L2(Ω)

]d
, vh ∈

[
Pk(K)

]d ∀K ∈ T } , (3.5a)

Qh :=
{
qh ∈ L2(Ω), qh ∈ Pk−1(K) ∀K ∈ T

}
. (3.5b)

In addition, we introduce also discontinuous finite element approximation spaces for the
approximate traces of the velocity and pressure:

V̄h :=
{
v̄h ∈

[
L2(F)

]d
, v̄h ∈

[
Pk(F )

]d ∀F ∈ F , v̄h = 0 on Γ
}
, (3.6a)

Q̄h :=
{
q̄h ∈ L2(F), q̄h ∈ Pk(F ) ∀F ∈ F

}
, (3.6b)

For notational convenience, we denote function pairs in V h and Qh by boldface, e.g.,
vh = (vh, v̄h) ∈ V h and qh = (qh, q̄h) ∈ Qh.

The HDG formulation for the Navier–Stokes problem eq. (3.1) is given by [78]: given

f ∈
[
L2(Ω)

]d
, find (uh,ph) ∈Xh such that

ah(uh,vh) + oh(uh;uh,vh) + bh(ph, vh) =
∑
K∈T

∫
K

f · vh dx ∀vh ∈ V h, (3.7a)

bh(qh, uh) = 0 ∀qh ∈ Qh. (3.7b)

The discrete forms ah(·, ·) : V h × V h → R, bh(·, ·) : Qh × Vh → R, and oh(·; ·, ·) :
Vh×V h×V h → R appearing in eq. (3.7) serve as approximations to the viscous, pressure-
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velocity coupling, and convection terms, respectively. We define them as in [78]:

ah(u,v) :=
∑
K∈Th

∫
K

∇u : ∇v dx+
∑
K∈Th

∫
∂K

α

hK
(u− ū) · (v − v̄) ds (3.8a)

−
∑
K∈Th

∫
∂K

[
(u− ū) · ∂nv + ∂nu · (v − v̄)

]
ds,

oh(w;u,v) :=−
∑
K∈Th

∫
K

u⊗ w : ∇v dx+
∑
K∈Th

∫
∂K

1
2
w · n (u+ ū) · (v − v̄) ds (3.8b)

+
∑
K∈Th

∫
∂K

1
2
|w · n| (u− ū) · (v − v̄) ds,

bh(p, v) :=−
∑
K∈Th

∫
K

p∇ · v dx+
∑
K∈Th

∫
∂K

v · n p̄ ds. (3.8c)

The parameter α > 0 appearing in the bilinear form ah(·, ·) is a penalty parameter typical
of interior penalty type discretizations, which must be chosen sufficiently large to ensure
stability [77]. It was shown in [77] for the Stokes problem and [78] for the Navier–Stokes
problem that the approximate velocity uh ∈ Vh obtained from the hybridized discontinuous
Galerkin discretization eq. (3.7) possesses two appealing properties, namely, ∇ · uh = 0
pointwise and uh ∈ H(div; Ω). These properties are key to proving a pressure-robust error
estimate for the velocity field in Section 3.5.

3.3 Preliminaries

In this section we present some stability and boundedness results of the hybridized dis-
continuous Galerkin method eq. (3.7) and some other preliminaries. To set notation, let

V (h) := Vh +
[
H1

0 (Ω)
]d ∩ [H2(Ω)

]d
, Q(h) := Qh + L2

0(Ω) ∩H1(Ω), (3.9a)

V̄ (h) := V̄h +
[
H

3/2
0 (Γ0)

]d
, Q̄(h) := Q̄h +H

1/2
0 (Γ0), (3.9b)

and V (h) := V (h)× V̄ (h), Q(h) := Q(h)× Q̄(h) and X(h) := V (h)×Q(h). Frequent use
will also be made of functions in the following space:

V div
h :=

{
vh ∈ Vh : bh(qh, vh) = 0 ∀qh ∈ Qh

}
. (3.10)
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We denote the trace operator by γ : Hk(Ω)→ Hk−1/2(Γ0) to restrict functions in Hs(Ω)

to Γ0. The trace operator is applied component-wise for functions in
[
Hs(Ω)

]d
. Given D

an open subset of Rd we denote for scalar-valued functions p, q ∈ L2(D) the standard inner-
product by (p, q)D :=

∫
D
pq dx and its corresponding norm‖p‖D :=

√
(p, p)D. Furthermore,

we define (p, q)T :=
∑

K∈T (p, q)K and denote the usual L2-norm on Ω by‖p‖ :=
√

(p, p)T .
For scalar-valued functions p, q ∈ L2(F ), where F ⊂ Rd−1, we define the inner-product
〈p, q〉F :=

∫
F
pq ds with norm ‖p‖F =

√
〈p, p〉F . Similar definitions hold for vector-valued

functions.

We introduce the following mesh-dependent inner-product and norms:

(u,v)v := (∇u,∇v)T +
∑
K∈T

αh−1
K 〈ū− u, v̄ − v〉∂K u,v ∈ V (h), (3.11a)

~v~
2
v :=

∑
K∈T

‖∇v‖2
K +

∑
K∈T

αh−1
K ‖v̄ − v‖

2
∂K v ∈ V (h), (3.11b)

~v~
2
v′ := ~v~

2
v +

∑
K∈T

hK
α

∥∥∥∥∂v∂n
∥∥∥∥2

∂K

v ∈ V (h), (3.11c)

~q~
2
p :=‖q‖2 +

∑
K∈T

hK‖q̄‖2
∂K q ∈ Q(h), (3.11d)

where we note that ~·~v and ~·~v′ are equivalent on V h, see [77]. We define also
�

�(vh, qh)
�

�

2

v,p
:= ν~vh~

2
v + ν−1

~qh~
2
p (vh, qh) ∈Xh, (3.12a)

�

�(v, q)
�

�

2

v′,p′
:=

�

�(v, q)
�

�

2

v,p
+
∑
K∈T

νhK
α

∥∥∥∥∂v∂n
∥∥∥∥2

∂K

(3.12b)

= ν~v~
2
v′ + ν−1

~q~
2
p (v, q) ∈X(h).

The standard discrete H1-norm for v ∈ V (h) is defined as ‖v‖1,h :=
�

�(vh, {{vh}})
�

�

v
, where

{{v}} := 1
2
(v+ + v−) is the average operator and v± denote the trace of v from the interior

of K±. Furthermore, use will be made of the following discrete Poincaré inequality:

‖vh‖ ≤ cp‖vh‖1,h ≤ cp~vh~v ∀vh ∈ V h, (3.13)

where cp is a constant independent of hK [28, Theorem 5.3].

Previously it was shown [77, Lemmas 4.2 and 4.3] that for sufficiently large α, the
bilinear form ah(·, ·) is coercive and bounded, i.e., there exist constants csa > 0 and cba > 0,
independent of h, such that for all vh ∈ V h and u,v ∈ V (h)

ah(vh,vh) ≥ νcsa~vh~
2
v and

∣∣ah(u,v)
∣∣ ≤ νcba~u~v′~v~v′ . (3.14)
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The boundedness of bh(·, ·) was shown in the proof of [77, Lemma 4.8], i.e., there exists a
constant cbb > 0, independent of h, such that for all v ∈ V (h) and q ∈ Q(h),∣∣bh(q, v)

∣∣ ≤ cbb~v~v~q~p, (3.15)

while the stability of bh(·, ·) was proven in [79, Lemma 1]: there exists a constant βp > 0,
independent of h, such that for all qh ∈ Qh,

βp~qh~p ≤ sup
vh∈V h

bh(qh, vh)

~vh~v
. (3.16)

Discrete inf-sup stability follows from coercivity of ah(·, ·) eq. (3.14) and the stability of
bh(·, ·) eq. (3.16), e.g. [28, Lemma 6.13]: there exists a constant σ > 0, independent of h
and ν, such that for all (vh, qh) ∈Xh

σ
�

�(vh, qh)
�

�

v,p
≤ sup

(wh,rh)∈Xh

ah(vh,wh) + bh(qh, wh)− bh(rh, vh)
�

�(wh, rh)
�

�

v,p

. (3.17)

For the form oh(·; ·, ·) it was shown [14, Proposition 3.6] that for wh ∈ V div
h

oh(wh;vh,vh) =
1

2

∑
K∈T

∫
∂K

|wh · n||vh − v̄h|2 ds ≥ 0 ∀vh ∈ V h. (3.18)

It was also shown [14, Proposition 3.4] that for w1, w2 ∈ V (h), u ∈ V (h) and v ∈ V (h)
that ∣∣oh(w1;u,v)− oh(w2;u,v)

∣∣ ≤ co‖w1 − w2‖1,h ~u~v~v~v. (3.19)

Finally, we note that if (u, p) ∈
([
H1

0 (Ω)
]d ∩ [H2(Ω)

]d) × (L2
0(Ω) ∩H1(Ω)

)
, letting u =

(u, γ(u)) and p = (p, γ(p)), then

ah(u,vh) + oh(u;u,vh) + bh(p, vh) + bh(qh, u) =

∫
Ω

f · vh dx ∀(vh, qh) ∈Xh. (3.20)

This consistency result follows immediately from [77, Lemma 4.1] and noting that, after
integration by parts, using that u and v̄h are single-valued on cell boundaries, and that
v̄h = 0 on Γ,

oh(u;u,vh) =
∑
K∈T

∫
K

∇ · (u⊗ u) · vh dx. (3.21)
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3.4 Existence and uniqueness

The hybridized discontinuous Galerkin method for the Navier–Stokes problem eq. (3.7)
results in a system of nonlinear algebraic equations. To show existence and uniqueness of
this nonlinear system, we use the classic Brouwer’s fixed point theorem Lemma 2.1.1.

Lemma 3.4.1 (Existence and uniqueness). Assuming

‖f‖L2(Ω) <
(νcsa)

2

cocp
, (3.22)

where cp is the constant from eq. (3.13), csa is the constant from eq. (3.14), and co is the
constant from eq. (3.19), there exists a unique solution (uh,ph) ∈ Xh to the hybridizable
discontinuous Galerkin method for the Navier–Stokes problem eq. (3.7). Furthermore,

~uh~v ≤ cp(c
s
aν)−1‖f‖L2(Ω) and σ

�

�(uh,ph)
�

�

v,p
≤ cp‖f‖L2(Ω) +

coc
2
p

(csaν)2
‖f‖2

L2(Ω) , (3.23)

where σ is the discrete inf-sup constant eq. (3.17).

Proof. We prove first existence of a solution uh ∈ V div
h × V̄h to eq. (3.7). We start by

defining a mapping Ψ : V div
h × V̄h → V div

h × V̄h by

∀wh,vh ∈ V div
h × V̄h,

(
Ψ(wh),vh

)
v

= ah(wh,vh) + oh(wh;wh,vh)− (f, vh)T . (3.24)

Taking vh = wh in eq. (3.24) we find by coercivity of ah(·, ·) eq. (3.14), positivity of
oh(·; ·, ·) eq. (3.18), Cauchy–Schwarz and eq. (3.13),(

Ψ(wh),wh

)
v
≥
(
νcsa~wh~v − cp‖f‖L2(Ω)

)
~wh~v. (3.25)

For all wh ∈ V div
h × V̄h that satisfy ~wh~v = cp(c

s
aν)−1‖f‖L2(Ω) we therefore find that

(Ψ(wh),wh)v ≥ 0. A corollary to Brouwer’s fixed point theorem (Lemma 2.1.1) implies
the existence of uh ∈ Bh := {vh ∈ V div

h × V̄h : ~vh~v ≤ cp(c
s
aν)−1‖f‖L2(Ω)} such

that Ψ(uh) = 0. Equivalently, there exists uh ∈ V div
h × V̄h satisfying the first estimate

in eq. (3.23) and

ah(uh,vh) + oh(uh;uh,vh) = (f, vh)T ∀vh ∈ V div
h × V̄h, (3.26)

proving the existence of a solution uh to eq. (3.7) restricted to V div
h × V̄h.
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Next we prove uniqueness of uh ∈ V div
h × V̄h to eq. (3.7). For this, assume two solutions

uh,1 ∈ V div
h × V̄h and uh,2 ∈ V div

h × V̄h that both solve eq. (3.7). We will show that
uh,1 = uh,2 under the smallness assumption eq. (3.22). We first note that coercivity of
ah(·, ·) eq. (3.14) implies

νcsa
�

�uh,1 − uh,2
�

�

2

v
≤ ah(uh,1 − uh,2,uh,1 − uh,2). (3.27)

Furthermore, note that for any vh ∈ V div
h × V̄h,

ah(uh,1 − uh,2,vh) + oh(uh,1;uh,1,vh)− oh(uh,2;uh,2,vh) = 0. (3.28)

Combining eq. (3.27) and eq. (3.28),

νcsa
�

�uh,1 − uh,2
�

�

2

v
≤oh(uh,2;uh,1,uh,1 − uh,2)− oh(uh,1;uh,1,uh,1 − uh,2)

− oh(uh,2;uh,1 − uh,2,uh,1 − uh,2)

≤oh(uh,2 − uh,1;uh,1,uh,1 − uh,2),

(3.29)

since oh(uh,2;uh,1 − uh,2,uh,1 − uh,2) ≥ 0 by eq. (3.18). Next, by eq. (3.19) and eq. (3.23)

νcsa
�

�uh,1 − uh,2
�

�

2

v
≤ co ‖uh,2 − uh,1‖1,h

�

�uh,1
�

�

v

�

�uh,1 − uh,2
�

�

v

≤ co
�

�uh,1
�

�

v

�

�uh,1 − uh,2
�

�

2

v

≤ cocp(c
s
aν)−1‖f‖L2(Ω)

�

�uh,1 − uh,2
�

�

2

v
,

(3.30)

implying (
(νcsa)

2 − cocp‖f‖L2(Ω)

)
�

�uh,1 − uh,2
�

�

2

v
≤ 0. (3.31)

By eq. (3.22) it follows that uh,1 = uh,2, proving uniqueness of uh ∈ V div
h × V̄h.

We next prove the existence and uniqueness of ph. Given the solution uh ∈ V div
h × V̄h,

the pressure ph ∈ Qh is the solution to

bh(ph, vh) = (f, vh)T − ah(uh,vh)− oh(uh;uh,vh) ∀vh ∈ V h. (3.32)

Since ah(uh, ·) and oh(uh;uh, ·) are bounded linear functionals on V h by, respectively
eq. (3.14) and eq. (3.19), the right-hand side itself is a bounded linear functional on V h.
Existence of a unique solution ph ∈ Qh to eq. (3.32) is now guaranteed by the inf-sup
condition eq. (3.16) thanks to Theorem 2.1.3.
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Lastly, we prove the second estimate of eq. (3.23). By eq. (3.7) ah(uh,wh)+bh(ph, wh)−
bh(rh, uh) = (f, wh)T − oh(uh;uh,wh). Discrete inf-sup stability eq. (3.17), and bounded-
ness of oh(·; ·, ·) eq. (3.19) therefore result in

σ
�

�(uh,ph)
�

�

v,p
≤ sup

(wh,rh)∈Xh

(f, wh)T − oh(uh;uh,wh)
�

�(wh, rh)
�

�

v,p

≤ cp‖f‖L2(Ω) + co~uh~
2
v. (3.33)

The result follows from the first estimate in eq. (3.23).

3.5 Error analysis

In this section we prove that the HDG method eq. (3.7) for the Navier–Stokes problem is

pressure-robust, i.e., the velocity error is pressure-independent. Let ΠBDM :
[
H1(Ω)

]d → Vh
be the usual Brezzi–Douglas–Marini (BDM) interpolation operator as given in the following
lemma [40, Lemma 7].

Lemma 3.5.1. If the mesh consists of triangles in two dimensions or tetrahedra in three
dimensions there is an interpolation operator ΠBDM : [H1(Ω)]d → Vh with the following
properties for all u ∈ [Hk+1(K)]d:

(i) Jn · ΠBDMuK = 0, where JaK = a+ + a− and JaK = a on, respectively, interior and
boundary faces is the usual jump operator.

(ii) ‖u− ΠBDMu‖Hm(K) ≤ chl−mK ‖u‖Hl(K) with m = 0, 1, 2 and min(1,m) ≤ l ≤ k + 1.

(iii)
∫
K
q(∇ · u−∇ · ΠBDMu) dx = 0 for all q ∈ Pk−1(K).

(iv)
∫
F
q̄(n · u− n · ΠBDMu) ds = 0 for all q̄ ∈ Pk(F ), where F is a face on ∂K.

Furthermore, let Π̄V , ΠQ and Π̄Q be the standard L2-projection operators onto V̄h, Qh

and Q̄h, respectively. We then introduce the approximation and interpolation errors

ξu = u− ΠBDMu, ζu = uh − ΠBDMu, ξ̄u = γ(u)− Π̄V u, ζ̄u = ūh − Π̄V u,

ξp = p− ΠQp, ζp = ph − ΠQp, ξ̄p = γ(p)− Π̄Qp, ζ̄p = p̄h − Π̄Qp,

and, for notational convenience, ξu = (ξu, ξ̄u), ζu = (ζu, ζ̄u), ξp = (ξp, ξ̄p) and ζp = (ζp, ζ̄p).
Subtracting now the HDG method eq. (3.7) from the consistency result eq. (3.20) and
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splitting the errors, we obtain the following error equation:

ah(ζu,vh) + bh(ζp, vh) + bh(qh, ζu) =ah(ξu,vh) + bh(ξp, vh) + bh(qh, ξu)

− oh(u; ζu,vh)− oh(ζu;uh,vh)
+ oh(u; ξu,vh) + oh(ξu;uh,vh).

(3.34)

In the following lemma we will find an energy estimate for the velocity error.

Theorem 3.5.1 (Pressure robust velocity error estimate). Let Cp and Co be the constants
in eq. (3.3). Furthermore let cp be the discrete Poincaré constant of eq. (3.13), co the

constant in eq. (3.19) and csa the constant in eq. (3.14). Let u ∈
[
Hk+1(Ω)

]d
be the velocity

solution to the Navier–Stokes problem eq. (3.1), u = (u, γ(u)), and uh ∈ V h the velocity
solution of the HDG discretization eq. (3.7). Then assuming the smallness condition

c′oc
′
p‖f‖L2(Ω) ≤

1
2
ν2(c′a)

2, (3.35)

where c′p = max
{
Cp, cp

}
, c′o = max {Co, co} and c′a = min {1, csa} we obtain the pressure-

robust velocity error estimate

~u− uh~v ≤ chk ‖u‖Hk+1(Ω) , (3.36)

where c > 0 a constant independent of h and ν.

Proof. In the error equation eq. (3.34) take (vh, qh) = (ζu,−ζp). Then, by coercivity of
ah(·, ·) eq. (3.14)

νcsa~ζu~
2
v ≤ ah(ζu, ζu) =ah(ξu, ζu) + bh(ξp, ζu)− bh(ζp, ξu)

− oh(u; ζu, ζu)− oh(ζu;uh, ζu)
+ oh(u; ξu, ζu) + oh(ξu;uh, ζu).

(3.37)

By properties of the BDM interpolation operator and using that uh is pointwise divergence-
free and divergence-conforming, we note that bh(ξp, ζu) = 0 and bh(ζp, ξu) = 0. Further-
more, oh(u; ζu, ζu) ≥ 0 so that

νcsa~ζu~
2
v ≤ ah(ξu, ζu)− oh(ζu;uh, ζu) + oh(u; ξu, ζu) + oh(ξu;uh, ζu). (3.38)

We next bound each term on the right-hand side separately.

By boundedness of ah(·, ·) eq. (3.14),

ah(ξu, ζu) ≤ νcba~ξu~v′~ζu~v′ ≤ νccba~ξu~v′~ζu~v, (3.39)
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where the second inequality is by equivalence of ~·~v′ and ~·~v on V h.

From eq. (3.4) and eq. (3.35) it follows that ‖u‖H1(Ω) ≤
1
2
c′ac
−1
o ν. Furthermore, from

eq. (3.23) and eq. (3.35) it follows that ~uh~v ≤
1
2
c′ac
−1
o ν. Then, by eq. (3.19),

oh(u; ξu, ζu) ≤ co‖u‖H1(Ω) ~ξu~v~ζu~v ≤
1
2
c′aν~ξu~v~ζu~v, (3.40a)

oh(ξu;uh, ζu) ≤ co‖ξu‖1,h ~uh~v~ζu~v ≤
1
2
c′aν~ξu~v~ζu~v, (3.40b)

oh(ζu;uh, ζu) ≤ co‖ζu‖1,h ~uh~v~ζu~v ≤
1
2
c′aν~ζu~

2
v. (3.40c)

Combining eq. (3.38)–eq. (3.40) and dividing by ~ζu~v,

1
2
c′aν~ζu~v ≤ (νcsa − 1

2
c′aν)~ζu~v ≤ ν(c′a + ccba)~ξu~v′ . (3.41)

The result follows by a triangle inequality and the interpolation estimates of the BDM
interpolation operator defined in Lemma 3.5.1 and the L2-projection operator.

Given the velocity error estimate of the previous theorem we can now state an error
estimate for the pressure in the L2-norm.

Lemma 3.5.2 (Pressure error estimate in the L2-norm). Let (u, p) ∈
[
Hk+1(Ω)

]d×Hk(Ω)
be the solution to the Navier–Stokes problem eq. (3.1) and u = (u, γ(u)) and p = (p, γ(p)).
Let (uh,ph) ∈Xh solve eq. (3.7), then

‖p− ph‖L2(Ω) ≤ c
(
hk‖p‖Hk(Ω) + hk‖u‖Hk+1(Ω)

)
, (3.42)

with c > 0 a constant independent of h and ν.

Proof. By the triangle inequality and the inf-sup condition eq. (3.16),

‖p− ph‖L2(Ω) ≤ ~p− qh~p + ~ph − qh~p

≤ ~p− qh~p + β−1
p sup

v∈V h

bh(p− ph, vh)
~vh~v

+ β−1
p sup

v∈V h

bh(p− qh, vh)
~vh~v

.
(3.43)

Bounding the third term on the right-hand side using the boundedness of bh(·, ·) eq. (3.15),

‖p− ph‖L2(Ω) ≤
(

1 + β−1
p cbb

)
~p− qh~p + β−1

p sup
v∈V h

bh(p− ph, vh)
~vh~v

. (3.44)
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Proceeding as in the velocity error estimate,

bh(p− ph, vh) = ah(u− uh,vh) + oh(u− uh;u,vh)− oh(uh;u− uh,vh)

≤
(
cba + c′a

)
ν~u− uh~v′~vh~v.

(3.45)

Combining eq. (3.44) and eq. (3.45), and since qh ∈ Qh is arbitrary,

‖p− ph‖L2(Ω) ≤
(

1 + β−1
p cbb

)
inf

qh∈Qh

~p− qh~p + β−1
p

(
cba + cα

)
ν~u− uh~v′ . (3.46)

Standard interpolation estimates for the L2-projection can be used to show that

inf
qh∈Qh

~p− qh~p ≤ chk‖p‖Hk(Ω) , (3.47)

where c is a constant independent of h. To bound the second term on the right-hand side
of eq. (3.46), note that

~u− uh~v′ ≤ ~ξu~v′ + ~ζu~v′ ≤ ~ξu~v′ + c~ζu~v ≤ c~ξu~v′ , (3.48)

where the last inequality is by eq. (3.41). The result follows from eq. (3.46), eq. (3.47),
eq. (3.48) and the interpolation estimates of the BDM interpolation operator defined
in lemma 3.5.1 and the L2-projection operator.

We end this section by showing the velocity error estimate in the L2-norm. For this we
require the solution (φ, ψ) to the following dual problem [46, Chapter 6]:

−ν∇2φ−∇ · (u⊗ φ)−∇ψ − (∇φ)Tu = g in Ω, (3.49a)

∇ · φ = 0 in Ω, (3.49b)

φ = 0 on Γ. (3.49c)

We assume the following regularity estimate:

‖φ‖H2(Ω) +‖ψ‖H1(Ω) ≤ cr‖g‖L2(Ω) , (3.50)

with cr > 0 a constant independent of h. This regularity estimate holds for a convex poly-

hedron Ω assuming u ∈
[
L∞(Ω)

]d
[14]. It will be convenient to introduce the interpolation

errors

ξφ = φ− ΠBDMφ, ξ̄φ = γ(φ)− Π̄V φ,

ξψ = ψ − ΠQψ, ξ̄ψ = γ(ψ)− Π̄Qψ.

and ξφ = (ξφ, ξ̄φ), ξψ = (ξψ, ξ̄ψ).
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Lemma 3.5.3 (Velocity error estimate in the L2-norm). Let u ∈
[
Hk+1(Ω)

]d ∩ [L∞(Ω)
]d

be the velocity solution to the Navier–Stokes problem eq. (3.1), u = (u, γ(u)), and uh ∈
V h the velocity solution of the HDG discretization eq. (3.7). Subject to the regularity
condition eq. (3.50), there exists a constant C > 0, independent of h, such that

‖u− uh‖L2(Ω) ≤ Chk+1‖u‖Hk+1(Ω) . (3.51)

Proof. By definition of ah(·, ·) eq. (3.8a), integration by parts, using the single-valuedness
of u, ∂nφ and ūh across cell boundaries, and that u = ūh = 0 on Γ, we note that

ah(u− uh, (φ, γ(φ))) = −
∑
K∈Th

∫
K

ν(u− uh) · ∇2φ dx. (3.52)

Furthermore, by definition of eq. (3.8b), using that φ = γ(φ) on cell boundaries and the
identity (a⊗ b) : C = b · CTa for vectors a, b ∈ Rm and tensor C ∈ Rn×n

oh(u− uh; (u, γ(u)), (φ, γ(φ))) = −
∑
K∈Th

∫
K

(u− uh) · (∇φ)Tu dx. (3.53)

Similarly, using again the identity (a⊗ b) : C = b · CTa,

oh(u;u− uh, (φ, γ(φ))) = −
∑
K∈Th

∫
K

(u− uh) · ∇ · (u⊗ φ) dx, (3.54)

where we used also that (∇φ)u = (u ·∇)φ and, for divergence-free u, ∇· (u⊗φ) = (u ·∇)φ.

Next, by definition of bh eq. (3.8c), integration by parts, using that u, uh · n and ψ are
single-valued across cell boundaries, and that u = uh = 0 on Γ,

− bh((ψ, γ(ψ)), u− uh) = −
∑
K∈T

∫
K

∇ψ · (u− uh) dx. (3.55)

Once again from the definition of bh eq. (3.8c),

bh(p− ph, φ) = −
∫

Ω

(p− ph)∇ · φ dx = 0. (3.56)

since ∇ · φ = 0.
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Adding eq. (3.52)–eq. (3.56),

ah(u− uh, (φ, γ(φ))) + oh(u− uh; (u, γ(u)), (φ, γ(φ)))

+ oh(u;u− uh, (φ, γ(φ))) + bh(p− ph, φ)− bh((ψ, γ(ψ)), u− uh)

=
∑
K∈T

∫
K

(u− uh) ·
(
−ν∇2φ−∇ · (u⊗ φ)−∇ψ − (∇φ)Tu

)
dx. (3.57)

Taking g = u− uh in eq. (3.49) we therefore find that

‖u− uh‖2
L2(Ω) = ah(u− uh, (φ, γ(φ))) + bh(p− ph, φ) + oh(u− uh; (u, γ(u)), (φ, γ(φ)))

+ oh(u;u− uh, (φ, γ(φ)))− bh((ψ, γ(ψ)), u− uh). (3.58)

Next, from the consistency of the scheme eq. (3.20),

ah(u−uh,vh) + bh(p−ph, vh)− oh(uh;uh,vh) + oh(u;u,vh)− bh(qh, u− uh) = 0. (3.59)

Subtract now eq. (3.59) from eq. (3.58) and choose vh = (ΠBDMφ, Π̄V φ) and
qh = (ΠQψ, Π̄Qψ). Algebraic manipulation then results in

‖u− uh‖2
L2(Ω) =ah(u− uh, ξφ) + bh(p− ph, ξφ) + oh(u− uh; (u, γ(u)), ξφ)

− oh(u− uh;u− uh, ξφ) + oh(u;u− uh, ξφ)

+ oh(u− uh;u− uh, (φ, γ(φ)))− bh(ξψ, u− uh)
=T1 + T2 + T3 + T4 + T5 + T6 + T7.

(3.60)

Note first that

T2 = bh(p− ph, ξφ) = −
∑
K∈Th

∫
K

(p− ph)∇ · (φ− ΠBDMφ) dx

+
∑
K∈Th

∫
∂K

(φ− ΠBDMφ) · np̄h ds = 0, (3.61)

by properties of the BDM interpolation operator and the L2-projection operator ΠQ. We
next bound the remaining terms in eq. (3.60). By boundedness of ah(·, ·) eq. (3.14),

T1 ≤ cbaν~u− uh~v′

�

�

�
ξφ

�

�

�

v′
. (3.62)
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Next, the interpolation property (ii) of the BDM projection in lemma 3.5.1 and the inter-
polation properties of the L2-projection Π̄V followed by assumption eq. (3.50), yield

�

�

�
ξφ

�

�

�

v′
≤ h‖φ‖H2(Ω) ≤ h‖u− uh‖L2(Ω) , (3.63)

so that
T1 ≤ cνh~u− uh~v′‖u− uh‖L2(Ω) . (3.64)

From boundedness of the trilinear form oh(·; ·, ·) eq. (3.19), the smallness assumption
eq. (3.35), and eq. (3.63)

T3 ≤ 1
2
cαν~u− uh~v′

�

�

�
ξφ

�

�

�

v′
≤ cνh~u− uh~v′‖u− uh‖L2(Ω) , (3.65)

and, similarly,
T4 + T5 ≤ cνh~u− uh~v′‖u− uh‖L2(Ω) . (3.66)

For T6, using the boundedness of the trilinear form oh(·; ·, ·) eq. (3.19), the fact that
‖φ‖H1(Ω) ≤‖φ‖H2(Ω), and eq. (3.36),

T6 ≤ CO~u− uh~
2
v′‖φ‖1

≤ ch~u− uh~v′‖u‖2‖φ‖2

≤ ch~u− uh~v′‖u‖2‖u− uh‖L2(Ω) .

(3.67)

To bound T7, we use the boundedness of bh(·, ·) eq. (3.15), standard interpolation estimates
for the L2-projections ΠQ and Π̄Q, and the regularity assumption eq. (3.50) to find

T7 ≤ cbb

�

�

�
ξψ

�

�

�

p
~u− uh~v′ ≤ ch‖ψ‖H1(Ω) ~u− uh~v′ ≤ ch~u− uh~v′‖u− uh‖L2(Ω) .

(3.68)
The result follows after collecting eq. (3.64)–eq. (3.68), dividing both sides by‖u− uh‖L2(Ω)

and applying the interpolation estimates of the BDM interpolant defined in Lemma 3.5.1
and the L2-projection operator.

3.6 Numerical examples

In this section we present numerical examples that demonstrate optimality and pressure-
robustness of the scheme. All numerical examples have been implemented with the penalty
parameter α = 10k2 using the high order finite element library NGSolve [85]. In all test
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cases below, we compare the HDG method analyzed in this paper to the HDG method
proposed in [55]. The method proposed in [55] considers a smaller pressure trace function
space in that Q̄h eq. (3.6b) is replaced by

Q̃h :=
{
q̄h ∈ L2(F), q̄h ∈ Pk−1(F ) ∀F ∈ F

}
.

The velocity and pressure estimates of this scheme are optimal, see [77] for the analysis of
the Stokes problem. Despite the velocity field obtained by the discretization in [55] being
pointwise divergence free, the method is not pressure robust. This can be attributed to
the fact that the approximate velocity field is not divergence-conforming.

3.6.1 No flow problem

In this first example we consider the no flow problem from [47, Example 1.1] adapted
to the stationary Navier–Stokes problem. For this we take Ω = (0, 1)2, set ν = 1, and
apply homogeneous Dirichlet boundary conditions. The source term is taken to be f =
(0, r(1−y+ 3y2)), where r > 0 is a parameter. The exact solution to this problem is u = 0
and p = r(y3 − 1

2
y2 + y − 7

12
). Changing the parameter r should affect only the pressure

solution. This example tests whether the numerical scheme mimics this property.

In Figure 3.1 we plot the velocity and pressure errors using a polynomial approximation
with k = 2 for r = 1 and r = 106. We observe in Figure 3.1a that the velocity error using
the HDG method that is not divergence-conforming is, as expected, not pressure-robust.
Although the velocity converges optimally, increasing the parameter r increases the error
in the velocity. Conversely, the error in the velocity of the divergence-conforming method is
of machine-precision, no matter the grid size. Although the error in the velocity increases
as r increases, this can be attributed to an increase in the condition number of the matrix
that needs to be inverted at each Picard iteration. The pressure-errors are identical for
both HDG methods, see Figure 3.1b. The errors in the pressure converge optimally and
increase as r increases.

3.6.2 Potential flow problem

We next consider the potential flow problem from [63, Example 4]. Setting f = 0, this test
case was constructed such that pressure is balanced by the nonlinear convection terms,
and serves to show that nonlinear convection terms can also induce a lack of pressure-
robustness [47]. On the domain Ω = (−1

2
, 1

2
)2, we consider the steady Navier–Stokes
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(a) Velocity error. (b) Pressure error.

Figure 3.1: Results for the no flow problem in Section 3.6.1 using polynomial degree k = 2.
Observe that the pressure errors are identical for both HDG methods.

equations

−ν∆u+∇ · (u⊗ u) +∇p = 0,

∇ · u = 0,

and the boundary conditions are chosen such that the exact solution is given by u = ∇φ
and p = −1

2
|u|2, with the harmonic function φ = y5 + 5x4y− 10x2y3. In Figure 3.2 we plot

the velocity and pressure errors using a polynomial approximation with k = 2 for ν = 105

and ν = 10−5. We observe optimal rates of convergence for both methods for velocity and
pressure.

For the HDG method that is not divergence-conforming, however, the errors in the
velocity and pressure increase significantly as the viscosity is decreased. Furthermore, there
is no convergence of the non-linear solvers for large h for the case that ν = 10−5. This
was observed also in [47, 63] for schemes that are not pressure-robust. For the divergence-
conforming method, the errors in velocity and pressure are unaffected by the decrease
in viscosity and there are no problems associated with the convergence of the non-linear
solver.
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(a) Example 2, Velocity error.
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(b) Example 2, Pressure error.

Figure 3.2: Results for the potential flow problem in Section 3.6.2 using polynomial degree
k = 2. The pressure errors and velocity errors are identical for both HDG methods in the
case ν = 105, while the HDG method that is not divergence-conforming fails to converge
for large h in the case ν = 10−5.
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Chapter 4

Pressure-robust space-time HDG for
the time-dependent problem on fixed
domains: Convergence to strong
solutions

In this chapter, we present the first analysis of a space-time HDG method for the incom-
pressible Navier–Stokes equations. The main result is an optimal error estimate for the
velocity which is independent of the pressure, thus proving that the method is pressure-
robust. The key to our error analysis is a “parabolic Stokes projection” introduced by
Chrysafinos and Walkington [17] suitably modified to accomodate the space-time HDG
setting. The projection is defined as the space-time HDG solution of a linear Stokes prob-
lem, and thus the projection is pointwise divergence free and belongs to H(div; Ω).

Along the way, we investigate the well-posedness of the nonlinear algebraic system
arising from the space-time HDG discretization. To our knowledge, this is the first work to
consider the well-posedness of a space-time finite element method for the incompressible
Navier–Stokes equations. This is made complicated by the fully discrete nature of the
scheme, as we cannot leverage tools from ODE theory (e.g., Carathéodory’s theorem) as
is done in the semidiscrete case. Instead, we will use a topological degree argument based
on Lemma 2.1.2 to prove that there exists a discrete solution in both two and three spatial
dimensions, and that this discrete solution satisfies a suitable energy inequality.

The uniqueness of the discrete velocity solution is subtle. As the discrete problem
eq. (4.4) must be considered in an integral sense over each space-time slab (and not
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pointwise in time), we will require sharper bounds on the nonlinear convection term than
eq. (4.10). This is made possible by a novel discrete version of the Ladyzhenskaya inequal-
ity eq. (2.16) valid for broken polynomial spaces. Much like the continuous problem, we
can only prove that the solution to the nonlinear algebraic system is unique in two spatial
dimensions due to the difference in the scaling of the exponents in this Ladyzhenskaya
inequality with respect to the spatial dimension.

Additionally, our proof of uniqueness in two dimensions requires a bound on the discrete
velocity solution uh in L∞(0, T ;L2(Ω)d) that is uniform with respect to the time step ∆t
and mesh size h. We remark that for the low order scheme in time (k = 1), this uniform
bound is furnished by the energy estimate Lemma 4.1.1. However, for higher order schemes
in time (k ≥ 2), this energy bound is insufficient. The point of failure is that, in general,
ess sup0<t≤T uh(t) is not attained at the partition points of the time-interval for higher
order schemes in time. Consequently, the energy bound in Lemma 4.1.1 does not bound
the discrete velocity solution uh in L∞(0, T ;L2(Ω)d).

Let us briefly recall how one obtains such a bound for the continuous problem. In
two dimensions, bounds on the continuous solution u in L∞(0, T ;L2(Ω)d) are obtained by
testing eq. (2.24) with u and integrating to an arbitrary time s ∈ (0, T ]. In the equiva-
lent space-time variational formulation of the Navier–Stokes equations given in eq. (2.27),
this amounts to choosing χ[0,s)u as a test function. In three dimensions, weak solu-
tions satisfying eq. (2.24) are no longer regular enough to be used as test functions since
∂tu ∈ L4/3(0, T ;V ′), and energy bounds must be obtained through other means; see e.g.
[46, Lemma 7.21]. However, in principle, the strong solutions in Theorem 2.3.2 satisfying
∂tu ∈ L2(0, T ;H) possess enough regularity to proceed as in the case of two dimensions.
The difficulty at the discrete level is that, in constrast to the continuous problem, χ(0,s]uh
is not, in general, an element of the velocity finite element space and hence cannot be used
as a test function. To circumvent this problem, we will make use of tools introduced by
Chrysafinos and Walkington [15, 16, 17] which exploit fine properties of polynomials to
provide discrete approximations to the characteristic function.

The final piece of the puzzle for our analysis is a uniform-in-time bound on the parabolic
Stokes projection. Our plan is to follow the proof of [17, Theorem 4.10]. Therein, an
essential ingredient is a discrete (spatial) Stokes operator. Unfortunately, as the usual
L2-inner product offers no control over the discrete facet solution, it is not an inner-
product on the HDG space. Therefore, we cannot rely on the Riesz representation theorem
(Theorem 2.1.1) in the HDG setting as is usually done to infer the existence of a discrete
Stokes operator. Instead, we introduce a novel discrete Stokes operator by mimicking the
static condensation that occurs for the HDG method at the algebraic level following ideas
from [12]. Lastly, we derive an error estimate for the pressure which is unfortunately sub-
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optimal due to the use of an inverse inequality to control the time derivative of the velocity
error.

This chapter is organized as follows: in Section 4.1, we introduce the numerical method
and present the main results of this chapter. In Section 4.2, we study the conservation
properties of the numerical scheme and introduce analysis tools that required for our anal-
ysis. We consider the well-posedness of the nonlinear algebraic system arising from the
numerical scheme in Section 4.3. Section 4.4 and Section 4.5 are dedicated to the error
analysis for the velocity and pressure, respectively. Finally, we present a numerical test case
with a manufactured solution in Section 4.6 to verify the convergence rates predicted by
the theory both when the spatial error dominates and when the temporal error dominates.

The contents of this chapter have been taken, with modification, from the article:

K. L. A Kirk, T. L. Horváth, and S. Rhebergen, Analysis of an exactly
mass conserving space-time hybridized discontinuous Galerkin method for the time-
dependent Navier–Stokes equations, (To appear in Mathematics of Computation)
https://arxiv.org/abs/2103.13492,

with permission from the American Mathematical Society (AMS).

4.1 The space-time HDG method and main results

4.1.1 Notation

We use standard notation for Lebesgue and Sobolev spaces: given a bounded measurable
set D, we denote by Lp(D) the space of p-integrable functions. When p = 2, we denote the
L2(D) inner product by (·, ·)D. We denote by W k,p(D) the Sobolev space of functions whose
kth distributional derivative is p-integrable. When p = 2, we write W k,p(D) = Hk(D).
Provided the boundary of D is smooth enough to admit a continuous trace operator,
we define Hk

0 (D) to be the subspace of Hk(D) of functions with vanishing trace on the
boundary of D. We denote the space of polynomials of degree k ≥ 0 on D by Pk(D).

Next, for any Banach space U and for 1 ≤ p <∞, we let Lp(0, T ;U) denote the space of
p-integrable functions defined on [0, T ] taking values in U . This is a Banach space equipped
with the norm

‖u‖Lp(0,T ;U) =

(∫ T

0

‖u‖pU dt

)1/p

.
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When p =∞, we denote by L∞(0, T ;U) the Banach space of essentially bounded functions

L∞(0, T ;U) :=
{
u : [0, T ]→ U | ess sup0≤t≤T

∥∥u(t)
∥∥
U
<∞

}
,

where ess sup denotes the essential supremum. By Hk(0, T ;U) we denote the Bochner-
Sobolev space for k ≥ 1:

Hk(0, T ;U) :=
{
u ∈ L2(0, T ;U) | dju

dtj
∈ L2(0, T ;U), j = 1, . . . , k

}
,

endowed with the norm

‖u‖Hk(0,T ;U) =

( k∑
j=0

∥∥∥dju
dtj

∥∥∥2

L2(0,T ;L2(Ω))

)1/2

.

Let C(0, T ;U) denote the Banach space of (time) continuous functions equipped with the
norm

‖u‖C(0,T ;U) = sup
0≤t≤T

∥∥u(t)
∥∥
U
.

By Cc(0, T ;U) we denote the space of (time) continuous functions with compact support
in the interval (0, T ). Lastly, given a Banach space U , we let Pk(0, T ;U) denote the space
of polynomials of degree k ≥ 0 in time taking values in U .

4.1.2 The continuous problem

In this chapter, we are concerned with the numerical solution of the transient Navier–
Stokes system posed on a bounded Lipschitz domain Ω ⊂ Rd, d ∈ {2, 3}: given a suitably
chosen body force f , kinematic viscosity 0 < ν ≤ 1, and initial data u0, find (u, p) such
that

∂tu− ν∆u+∇ · (u⊗ u) +∇p = f, in Ω× (0, T ], (4.1a)

∇ · u = 0, in Ω× (0, T ], (4.1b)

u = 0, on ∂Ω× (0, T ], (4.1c)

u(x, 0) = u0(x), in Ω. (4.1d)

Recall from Section 2.3 that the natural setting for weak velocity solutions of eq. (4.1) is
the class L2(0, T ;V ) ∩ L∞(0, T ;H), with H and V defined in eq. (2.22) and eq. (2.23),
respectively. However, as a discontinuous method, the HDG method introduces additional
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stabilization which is a potential source of consistency error if the exact solution is not
sufficiently regular. For this reason, we make the following assumption to ensure the
existence of a strong solution in the sense of Theorem 2.3.2:

Assumption 1. Let C > 0 be the constant from Theorem 2.3.2. We assume that eq. (2.28)
holds. Note that, since u0 ∈ V ⊂ H1

0 (Ω)d, eq. (2.28) and the Poincaré inequality (Theo-
rem 2.2.5) imply the existence of another constant C? > 0 such that

‖u0‖2
L2(Ω) +

1

ν
‖f‖2

L2(0,T ;L2(Ω)) ≤ C?ν
2. (4.2)

Remark 4.1.1. If Ω ⊂ R2 is a convex polygon, the existence of a global unique strong
solution (u, p) can be shown without any restriction on the problem data (see e.g. [96]).
However, we will later require a similar restriction on the data to prove the uniqueness of
the discrete solution in two dimensions. We therefore assume eq. (2.28) even in the two
dimensional case.

Therefore, given f ∈ L2(0, T ;H) and u0 ∈ V satisfying the small data assumption
eq. (4.2), we consider the following space-time formulation for the strong solution to the
Navier–Stokes system: for all (v, q) ∈ L2(0, T ;H1

0 (Ω)d)∩H1(0, T ;L2(Ω)d)×L2(0, T ;L2
0(Ω)∩

H1(Ω)), find (u, p) ∈ L∞(0, T ;V ) ∩ L2(0, T ;H2(Ω)d ∩ V ) ∩H1(0, T ;H)× L2(0, T ;L2
0(Ω) ∩

H1(Ω)) satisfying

−
∫ T

0

(u, ∂tv) dt+

∫ T

0

((u · ∇)u, v) dt+ ν

∫ T

0

(∇u,∇v) dt+

∫ T

0

(∇p, v) dt

+ (u(T ), v(T ))−
∫ T

0

(q,∇ · u) dt = (u0, v(0)) +

∫ T

0

(f, v) dt.

(4.3)

4.1.3 The numerical method

To obtain a triangulation of the space-time domain Ω×(0, T ), we first tessellate the spatial
domain Ω ⊂ Rd, d = {2, 3} with simplicial elements (if d = 2), or tetrahedral elements (if
d = 3). We denote the resulting tessellation by Th = {K}. Furthermore, we let Fh and ∂Th
denote, respectively, the set and union of all edges of Th. By hK , we denote the diameter
of the element K ∈ Th, and we let h = maxK∈Th hK . We make the following assumptions
on the spatial mesh:

(i) For each h ∈ H, Th is conforming in the sense that given two elements K1, K2 ∈ Th,
either K1 ∩ K2 = ∅ or K1 ∩ K2 is a common vertex (d = 2) or edge (d = 3), or a
common face of K1 and K2.
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(ii) For each h ∈ H, Th is quasi-uniform; i.e., there exists a CU > 0 such that h ≤ CUhK
for all K ∈ Th.

(iii) For each h ∈ H, each face F ∈ Fh satisfies an equivalence condition: that is, given
hF = diam(F ), there exist constants Ce, C

e > 0 such that CehK ≤ hF ≤ CehK for all
K ∈ Th and for all F ∈ Fh where F ⊂ ∂K.

Next, we partition the time interval [0, T ] into a series of N + 1 time-levels 0 = t0 <
t1 < · · · < tN = T of length ∆tn = tn+1 − tn. For simplicity of presentation, we assume a
uniform time step size ∆tn = ∆t for 0 ≤ n ≤ N . We remark, however, that a variable time
step size poses no additional difficulty in the application nor the analysis of the method.
A space-time slab is then defined as En = Ω× In, with In = (tn, tn+1). We then tessellate
the space-time slab En with space-time prisms K× In, i.e. En =

⋃
K∈Th K× In. We denote

this tessellation by T n
h . Combining each space-time slab n = 0, . . . , N − 1, we obtain a

tessellation of the space-time domain Th =
⋃N−1
n=0 T n

h .

4.1.3.1 The space-time hybridized DG method

We discretize the Navier–Stokes problem eq. (4.1) using the exactly mass conserving hy-
bridized discontinuous Galerkin method developed in [78] combined with a high-order dis-
continuous Galerkin time stepping scheme. We first introduce the following discontinuous
finite element spaces on Th:

Vh :=
{
vh ∈ L2(Ω)d | vh|K ∈ Pks(K)d ∀K ∈ Th

}
,

Qh :=
{
qh ∈ L2

0(Ω) | qh|K ∈ Pks−1(K) ∀K ∈ Th
}
.

On ∂Th, we introduce the following facet finite element spaces:

V̄h :=
{
v̄h ∈ L2(∂Th) | v̄h|F ∈ Pks(F )d ∀F ∈ Fh, v̄h|∂Ω = 0

}
,

Q̄h :=
{
q̄h ∈ L2(∂Th) | q̄h|F ∈ Pks(F ) ∀F ∈ Fh

}
.

From these spaces, we construct the following space-time finite element spaces in which we
will seek our approximation on each space-time slab En:

Vh :=
{
vh ∈ L2(0, T ;L2(Ω)d) | vh|(tn,tn+1] ∈ Pkt(tn, tn+1;Vh), ∀n = 0, . . . , N − 1

}
,

Qh :=
{
qh ∈ L2(0, T ;L2

0(Ω)) | qh|(tn,tn+1] ∈ Pkt(tn, tn+1;Qh), ∀n = 0, . . . , N − 1
}
,

V̄h :=
{
v̄h ∈ L2(0, T ;L2(∂Th)d) | v̄h|(tn,tn+1] ∈ Pkt(tn, tn+1; V̄h), ∀n = 0, . . . , N − 1

}
,

Q̄h :=
{
q̄h ∈ L2(0, T ;L2(∂Th)) | q̄h|(tn,tn+1] ∈ Pkt(tn, tn+1; Q̄h), ∀n = 0, . . . , N − 1

}
.
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We note that, in general, the polynomial degree in time kt can be chosen independently of
the polynomial degree in space ks, but for ease of presentation we choose kt = ks = k. This
choice forces us to consider kt ≥ 1, but the analysis herein is valid also for the case kt = 0
(corresponding to a modified backward Euler scheme). We adopt the following notation
for various product spaces of interest in this work:

V h = Vh × V̄h, Qh = Qh × Q̄h, Vh = Vh × V̄h, Qh = Qh × Q̄h.

Pairs in these product spaces will be denoted using boldface; for example, vh := (vh, v̄h) ∈
Vh. On each space-time slab En, the space-time HDG method for the Navier–Stokes
problem reads: find (uh,ph) ∈ Vh ×Qh satisfying for all (vh, qh) ∈ Vh ×Qh,

−
∫
In

(uh, ∂tvh)Th dt+

∫
In

(
νah(uh,vh) + oh(uh;uh,vh)

)
dt (4.4a)

+ (u−n+1, v
−
n+1)Th +

∫
In

bh(ph, vh) dt = (u−n , v
+
n )Th +

∫
In

(f, vh)Th dt,∫
In

bh(qh, uh) dt = 0, (4.4b)

where (u, v)Th =
∑

K∈Th

∫
K
uv dx. We initialize the numerical scheme by choosing u−0 =

Phu0 on the first space-time slab E0
h, where Ph : L2(Ω) → V div

h is the L2-projection onto
V div
h :=

{
uh ∈ Vh : bh(qh, uh) = 0, ∀qh ∈ Qh

}
, the discretely divergence free subspace

of Vh. Here, we denote by u±n the traces at time level tn from above and below, i.e.
u±n = lim

ε→0
uh(t

n ± ε). We define the time jump operator at time tn by [uh]n = u+
n − u−n .

The discrete forms ah(·, ·) : V h × V h → R, bh(·, ·) : Vh × Qh → R, and oh(·; ·, ·) :
Vh×V h×V h → R appearing in eq. (4.4) serve as approximations to the viscous, pressure-
velocity coupling, and convection terms, respectively. We define them as in Chapter 3:
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ah(u,v) :=
∑
K∈Th

∫
K

∇u : ∇v dx+
∑
K∈Th

∫
∂K

α

hK
(u− ū) · (v − v̄) ds, (4.5a)

−
∑
K∈Th

∫
∂K

[
(u− ū) · ∂nvh + ∂nu · (v − v̄)

]
ds,

oh(w;u,v) :=−
∑
K∈Th

∫
K

u⊗ w : ∇v dx+
∑
K∈Th

∫
∂K

1
2
w · n(u+ ū) · (v − v̄) ds (4.5b)

+
∑
K∈Th

∫
∂K

1
2
|w · n| (u− ū) · (v − v̄) ds,

bh(p, v) :=−
∑
K∈Th

∫
K

p∇ · v dx+
∑
K∈Th

∫
∂K

v · np̄ ds. (4.5c)

Here, we slightly abuse notation by using n to denote the outward unit normal nK to the
element K for brevity. To ensure stability of the numerical scheme, α > 0 must be chosen
sufficiently large [77].

4.1.3.2 Preliminaries

In this subsection, we present some preliminaries and rapidly recall the main properties of
the forms eq. (4.5) discussed in the previous chapter. Throughout this section and the rest
of the chapter, we denote by C > 0 a generic constant independent of the mesh parameters
h and ∆t and the viscosity ν, but possibly dependent on the domain Ω, the polynomial
degree k, and the spatial dimension d. At times we also use the notation a . b to denote
a ≤ Cb. To set notation, let

V (h) := Vh + V ∩H2(Ω)d, V̄ (h) := V̄h +H3/2(∂Th)d
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and define the product space V (h) := V (h) × V̄ (h). We introduce the following mesh-
dependent inner-products and norms:

(u,v)0,h := (u, v)Th +
∑
K∈Th

hK(u− ū, v − v̄)∂K , ∀u,v ∈ V (h),

‖v‖p1,p,h :=
∑
K∈Th

‖∇v‖pLp(K) +
∑
F∈Fh

1

hp−1
F

∥∥JvK∥∥p
Lp(F )

, ∀v ∈ V (h),

~v~
2
v :=

∑
K∈Th

‖∇v‖2
L2(K) +

∑
K∈Th

h−1
K ‖v̄ − v‖

2
L2(∂K) , ∀v ∈ V (h),

~v~
2
v′ := ~v~

2
v +

∑
K∈Th

hK
∥∥(∇v)n

∥∥2

L2(∂K)
, ∀v ∈ V (h),

~q~
2
p :=‖qh‖2

L2(Ω) +
∑
K∈Th

hK‖q̄h‖2
L2(∂K) , ∀qh ∈ Qh,

where we note that the equivalence constants of ~·~v and ~·~v′ on the finite-dimensional
space V h are independent of the mesh size; see [77]. The bilinear form ah(·, ·) is continuous
and for sufficiently large α enjoys discrete coercivity [77, Lemmas 4.2 and 4.3], i.e. for all
vh ∈ V h and u,v ∈ V (h)

ah(vh,vh) ≥ C~vh~
2
v and

∣∣ah(u,v)
∣∣ ≤ C~u~v′~v~v′ . (4.8)

The trilinear form oh(·; ·, ·) satisfies [14, Proposition 3.6]

oh(wh;vh,vh) =
1

2

∑
K∈T

∫
∂K

|wh · n||vh − v̄h|2 ds ≥ 0 wh ∈ V div
h , ∀vh ∈ V h. (4.9)

Further, the trilinear form oh(·; ·, ·) is Lipschitz continuous in its first argument [14, Propo-
sition 3.4]: for all w1, w2 ∈ V (h), u ∈ V (h) and v ∈ V (h) it holds that∣∣oh(w1;u,v)− oh(w2;u,v)

∣∣ ≤ C‖w1 − w2‖1,h ~u~v~v~v. (4.10)

4.1.4 Well-posedness and stability

To the best of the authors’ knowledge, a rigourous study of well-posedness for higher-order
space-time Galerkin schemes applied to the Navier–Stokes equations has yet to appear
in the literature. We remark that for the low order scheme (k = 1), uniqueness of the
discrete solution is a consequence of the following energy estimate which we will derive in
Section 4.3:
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Lemma 4.1.1. Let d = 2 or 3, k ≥ 1, and suppose that uh ∈ Vh is an approximate ve-
locity solution of the Navier–Stokes equations computed using the space-time HDG scheme
eq. (4.4) for n = 0, . . . , N − 1. There exists a constant C > 0, independent of the mesh
parameters ∆t and h and the viscosity ν but dependent on the domain Ω and polynomial
degree k, such that

∥∥u−N∥∥2

L2(Ω)
+

N−1∑
n=0

∥∥[uh]n
∥∥2

L2(Ω)
+ ν

∫ T

0

~uh~
2
v dt ≤ C

(
1

ν

∫ T

0

‖f‖2
L2(Ω) dt +

∥∥u0

∥∥2

L2(Ω)

)
,

where we define the time jump operator at time tn as [uh]n = u+
n − u−n .

However, for higher order schemes in time (k ≥ 2), this energy bound is insufficient
to prove the uniqueness of the discrete solution since ess sup0<t≤T uh(t) need not be not
attained at the partition points of the time-interval for higher order schemes in time.
Consequently, the energy bound in Lemma 4.1.1 does not bound the discrete velocity
solution uh in L∞(0, T ;L2(Ω)d). To overcome this challenge, we will make use of tools
introduced by Chrysafinos and Walkington [15, 16, 17]. We begin by introducing the
exponential interpolant from [17]:

Definition 4.1.1 (Exponential interpolant [17]). Let V be a linear space and λ > 0 be
given. If v =

∑k
i=0 φi(t)vi ∈ Pk(In;V ) where φi(t) ∈ Pk(In), vi ∈ V , the exponential

interpolant of v is defined by

ṽ =
k∑
i=0

φ̃i(t)vi,

where r̃i(t) ∈ Pk(In) is an approximation of ri(t)e
−λ(t−tn) satisfying r̃i(t

+
n ) = ri(t

+
n ) and∫

In

r̃i(t)q(t) dt =

∫
In

ri(t)q(t)e
−λ(t−tn) dt, ∀q ∈ Pk−1(In). (4.11)

Next, we summarize the important properties of the exponential interpolant from [17,
Lemma 3.4 and Lemma 3.6]:

Lemma 4.1.2. Let V and Q be linear spaces and v 7→ ṽ the exponential interpolant
constructed in Definition 4.1.1. If L(·, ·) : V × Q → R is a bilinear mapping and v ∈
Pk(In, V ), then∫

In

L(ṽ(t), q(t)) dt =

∫
In

L(v(t), q(t))e−λ(t−tn) dt, ∀q ∈ Pk−1(In, Q). (4.12)
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If (·, ·)V is a semi-inner product on V , then there exists a constant C > 0, dependent only
on the polynomial degree k, such that for all v ∈ Pk(In;V ) and 1 ≤ p ≤ ∞,

‖ṽ‖Lp(In;V ) ≤ C‖v‖Lp(In;V ) . (4.13)

We now discuss the concept of a discrete characteristic function, introduced by Chrysafi-
nos and Walkington [15, 16, 17] for discontinuous Galerkin time stepping schemes com-
bined with conforming spatial discretizations, and extended to full space-time discontinuous
Galerkin discretizations in e.g. [29, 100]. As we have previously noted, given a polynomial
p ∈ Pk(In) and a fixed time s ∈ (tn, tn+1), the function χ(tn,s]p no longer lies in Pk(In) in
general and hence is not an admissable test function in our discrete scheme. In essence,
the discrete characteristic function provides us with a discrete approximation of χ(tn,s]p.

The discrete characteristic function is constructed in two steps. First, given a fixed time
s ∈ (tn, tn+1), we define pχ ∈ Pk(In) as the unique polynomial satisfying pχ(t+n ) = p(t+n ),
and ∫ tn+1

tn

pχq dt =

∫ s

tn

pq dt, ∀q ∈ Pk−1(In). (4.14)

This induces a continuous mapping p 7→ p̃. Next, given a semi-inner product space V , this
construction is extended to approximate functions of the form χ(tn,s]v where v ∈ Pk(In;V ):

Definition 4.1.2 (Discrete characteristic function [17]). Let V be a semi-inner product
space and fix s ∈ (tn, tn+1). The discrete characteristic function of v ∈ Pk(In;V ) is defined
as the function vχ ∈ Pk(In;V ) satisfying vχ(t+n ) = v(t+n ) and∫ tn+1

tn

(vχ, w)V dt =

∫ s

tn

(v, w)V dt, ∀w ∈ Pk−1(In;V ).

In the following lemma, we summarize the important properties of the discrete charac-
teristic function from [17, Lemma 3.1 and Lemma 3.2]:

Lemma 4.1.3. Let V be a semi-inner product space. The mapping

v =
k∑
i=0

φi(t)vi 7→ vχ =
k∑
i=0

(φi)χ(t)vi

on Pk(In;V ) is continuous in the sense that there exists a constant C > 0, depending only
upon the polynomial degree k, such that

‖vχ‖L2(In,V ) ≤ C ‖v‖L2(In,V ) . (4.15)
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Moreover, in the case where v(t) = z is constant in time, we can characterize its discrete
characteristic function as vχ = p(t)z for p ∈ Pk(In) satisfying p(t+n ) = 1 and∫ tn+1

tn

pq dt =

∫ s

tn

q dt, ∀q ∈ Pk−1(In). (4.16)

Further, we have the following bound in L∞(In) on p:

‖p‖L∞(In) ≤ C, (4.17)

where the constant C depends only on the polynomial degree k.

With the help of these tools, it is possible to bound the discrete solution uh in
L∞(0, T ;L2(Ω)d) in two spatial dimensions:

Lemma 4.1.4. Let d = 2, k ≥ 1, and suppose uh ∈ Vh is an approximate velocity solution
of the Navier–Stokes equations computed using the space-time HDG scheme eq. (4.4) for
n = 0, . . . , N − 1. There exists a constant C > 0, independent of the mesh parameters ∆t
and h and the viscosity ν but dependent on the domain Ω and polynomial degree k, such
that

‖uh‖2
L∞(0,T ;L2(Ω))

≤ C

(
1

ν

∫ T

0

‖f‖2
L2(Ω) dt +

∥∥u0

∥∥2

L2(Ω)

)
+
C

ν2

(
1

ν

∫ T

0

‖f‖2
L2(Ω) dt +

∥∥u0

∥∥2

L2(Ω)

)2

.

With this bound in hand, we can prove the following uniqueness result in two dimensions
for the solution of the nonlinear system of algebraic equations arising from the discrete
scheme eq. (4.4):

Theorem 4.1.1 (Uniqueness in two dimensions). Let uh ∈ Vh be an approximate veloc-
ity solution of the Navier–Stokes equations computed using the space-time HDG scheme
eq. (4.4) for n = 0, . . . , N − 1. If d = 2, there exists a constant C > 0, independent of
the mesh parameters ∆t and h and the viscosity ν but dependent on the domain Ω and
polynomial degree k, such that if the problem data satisfies eq. (4.2) then uh is the unique
velocity solution to eq. (4.4).

We defer the proofs of Lemma 4.1.4 and Theorem 4.1.1 to Section 4.3. In addition to
the bound on uh in L∞(0, T ;L2(Ω)d), the other key ingredient for proving Theorem 4.1.1 is
a novel discrete version of the classic Ladyzhenskaya inequality eq. (2.16) valid for broken
polynomial spaces. We will discuss this further in Section 4.2. Note that, similar to the
continuous theory, the scaling of the exponents in the discrete Ladyzhenskaya inequality
in three spatial dimensions prevents us from extending the proof of uniqueness to d = 3.
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4.1.5 Error analysis

Our main result is a pressure-robust error estimate for the approximate velocity arising
from the numerical scheme eq. (4.4) under the assumption that the problem data satisfies
eq. (4.2):

Theorem 4.1.2 (Velocity error). Let u be the strong velocity solution to the Navier–Stokes
system eq. (4.1) guaranteed by Theorem 2.3.2 and assume it further satisfies

u ∈ Hk+1(0, T ;V ∩H2(Ω)d) ∩H1(0, T ;Hk+1(Ω)d),

with initial data u0 ∈ Hk+1(Ω)d. Let (uh, ūh) ∈ Vh be an approximate velocity solution to
the Navier–Stokes system computed using the space-time HDG scheme eq. (4.4) for n =
0, . . . , N−1 , Then, there exists a constant C > 0 such that the error eh = (u−uh, γ(u)−ūh)
satisfies∥∥e−N∥∥2

L2(Ω)
+

N−1∑
n=0

∥∥[eh]n
∥∥2

L2(Ω)
+ ν

∫ T

0

~eh~
2
v′ dt ≤ exp

(
CT
)(

h2k + ∆t2k+2
)
C(u),

provided the time step satisfies ∆t . ν. Here, C(u) depends on Sobolev–Bochner norms of
the velocity u, but is independent of the pressure p.

The proof of Theorem 4.1.2 is deferred to Section 4.4. We remark that the time step
restriction ∆t . ν in Theorem 4.1.2 is necessary in the proof of this theorem to use a
discrete Grönwall inequality; it is not necessary for the stability of the space-time HDG
method eq. (4.4), but rather to quantify the asymptotic rates of convergence.

Theorem 4.1.3 (Pressure error). Let (uh, ūh, ph, p̄h) ∈ Vh ×Qh be the approximate solu-
tion to the Navier–Stokes system computed using the space-time HDG scheme eq. (4.4) for
n = 0, . . . N − 1 and let the solution (u, p) to the Navier–Stokes system satisfy

u ∈ Hk+1(0, T ;V ∩H2(Ω)d) ∩H1(0, T ;Hk+1(Ω)d), p ∈ Hk+1(0, T ;Hk+1(Ω) ∩ L2
0(Ω)),

with initial data satisfying u0 ∈ Hk+1(Ω)d.

There exists a constant C > 0, independent of the mesh parameters ∆t and h and the
viscosity ν but dependent on the domain Ω and polynomial degree k, such that the error∫ T

0

‖p− ph‖2
L2(Ω) dt ≤ exp(CT )ν−1

(
∆t2k +

h2k

∆t3/2

)
C(u, p),

provided the time step satisfies ∆t . ν, where the hidden constant is independent of the
mesh parameters ∆t and h and the viscosity ν. Here, C(u, p) is a constant dependent on
Sobolev–Bochner norms of the continuous velocity and pressure (u, p).
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The proofs of these main results are deferred to Sections 4.4 and 4.5 after we introduce
some of the essential tools for our analysis in the next section.

4.2 Preliminary results

4.2.1 Properties of the numerical scheme

Let Vdiv
h denote the subspace of Vh of discrete divergence free velocity fields:

Vdiv
h =

{
uh ∈ Vh :

∫
In

bh(qh, uh) dt = 0, ∀qh ∈Qh, ∀n = 0, . . . , N − 1
}
.

The following result motivates the use of equal order polynomial degrees in time for both
the velocity and pressure approximation spaces:

Lemma 4.2.1. Vdiv
h =

{
vh ∈ Vh | vh|En ∈ Pk(In;V div

h ), ∀n = 0, . . . , N − 1
}

.

Proof. The proof is very similar to that of [17, Lemma 2.3] with minor modifications and
is therefore omitted.

An immediate consequence of Lemma 4.2.1 is that uh(t) ∈ H a.e. t ∈ (0, T ) where H
is defined in eq. (2.22). To see this we first expand uh in terms of an orthonormal basis
{φi}ki=0 of Pk(In) with respect to the L2(In) inner-product:

uh =
k∑
i=0

φi(t)ui(x), ui ∈ Vh. (4.18)

By Lemma 4.2.1, uh ∈ Pk(In;V div
h ), so ui ∈ V div

h for each i = 0, . . . , k. Thus,

0 = bh(qh, ui) = −
∑
K∈Th

∫
K

qh∇ · ui dx+
∑
K∈Th

∫
∂K

ui · nq̄h ds, ∀qh ∈ Qh.

Following the same arguments as [78, Proposition 1] it follows that ∇·ui = 0 for all x ∈ K,
Jui · nK = 0 on all F ∈ F int

h , and ui · n = 0 on ∂Ω for i = 0, . . . , k. By eq. (4.18) and since
H is a linear space the result follows.
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Lemma 4.2.2 (Consistency). Let (u, p) be the strong solution to the Navier–Stokes system
eq. (4.1) guaranteed by Theorem 2.3.2. Define u = (u, γ(u)) and p = (p, γ(p)). Then, it
holds that

−
∫
In

(u, ∂tvh)Th dt+ (u(tn+1), v−n+1)Th +

∫
In

(νah(u,vh) + oh(u;u,vh) + bh(p, vh)) dt

−
∫
In

bh(qh, u) dt = (u(tn), v+
n )Th +

∫
In

(f, vh)Th dt, ∀(vh, qh) ∈ Vh ×Qh,

where ah(·, ·), oh(·; ·, ·) and bh(·, ·) are defined in eq. (3.8a), eq. (3.8b), and eq. (3.8c),
respectively.

4.2.2 Scalings and embeddings

We begin by recalling a number of results for piece-wise polynomials. First, for polynomials
in time, let (V, (·, ·)V ) be an inner product space. Then, there exists C > 0 such that for
all v ∈ Pk(In, V ) (see e.g. [17, Lemma 3.5]):

‖v‖Lp(In,V ) ≤ C∆t1/p−1/2‖v‖L2(In,V ) , 1 ≤ p ≤ ∞, (4.19a)

‖∂tv‖L2(In,V ) ≤ C∆t−1‖v‖L2(In,V ) . (4.19b)

Next, we recall the following discrete version of the Sobolev embedding theorem valid for
broken polynomial spaces Pr(Th) =

{
f ∈ L2(Ω) | f |K ∈ Pr(K), ∀K ∈ Th

}
where r ≥ 0.

Let 1 ≤ p < ∞, then for all q satisfying 1 ≤ q ≤ pd/(d − p) if 1 ≤ p < d, or 1 ≤ q <
∞ if d ≤ p <∞, there exists a constant C > 0 such that [28, Theorem 5.3]:

‖vh‖Lq(Ω) ≤ C‖vh‖1,p,h , ∀vh ∈ Pr(Th). (4.20)

In the case p = 2, we write ‖·‖1,2,h = ‖·‖1,h. Note that choosing p = q = 2 in eq. (4.20)
yields the discrete Poincaré inequality: ‖vh‖L2(Ω) ≤ CP‖vh‖1,h for all vh ∈ Vh. By the
triangle inequality, ‖vh‖1,h ≤ ~vh~v, so that

‖vh‖L2(Ω) ≤ CP~vh~ν , ∀vh ∈ V h. (4.21)

We now prove a discrete version of the Ladyzhenskaya inequalities valid for broken
polynomial spaces. While the analogue of these inequalities are well known in the context of
H1-conforming finite element methods [32], to our knowledge they have yet to be extended
to non-conforming finite element spaces.
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Lemma 4.2.3 (Ladyzhenskaya inequality for broken polynomial spaces). There exists a
constant C > 0 such that for d ∈ {2, 3}:

‖vh‖L4(Ω) ≤ C‖vh‖1/2(d−1)

L2(Ω) ‖vh‖3/2(5−d)
1,h , ∀vh ∈ Vh. (4.22)

Proof. It suffices to consider the scalar case. We focus first on the case d = 2. Inserting
v2
h into eq. (4.20) with r = 2k, p = 1, and q = 2 yields ‖vh‖2

L4(Ω) ≤ C
∥∥v2

h

∥∥
1,1,h

. The result

follows after noting that the right-hand side can be bounded by applying the Cauchy–
Schwarz inequality and a local discrete trace inequality ‖vh‖L2(F ) ≤ Ch

−1/2
K ‖vh‖L2(K) [28,

Lemma 1.46]:

1

2

∥∥v2
h

∥∥
1,1,h

=
∑
K∈Th

∫
K

∣∣(∇vh)vh∣∣ dx+
∑
F∈Fh

∫
F

∣∣JvhK · {{vh}}∣∣ ds ≤ C‖vh‖L2(Ω)‖vh‖1,h .

For the case d = 3, the result follows from the Cauchy–Schwarz inequality and eq. (4.20)
with q = 6 and p = 2.

For d = 3, interpolating between L2(Ω)d and L4(Ω)d and using eq. (4.22) yields:

‖vh‖L3(Ω) ≤ C‖vh‖1/2

L2(Ω)‖vh‖
1/2
1,h , ∀vh ∈ Vh. (4.23)

4.3 Well-posedness of the discrete problem

4.3.1 Existence of a discrete solution

We will begin by showing the existence of a solution to the nonlinear system of algebraic
equations arising from eq. (4.4) using a topological degree argument (Lemma 2.1.2). We
first require the proof of Lemma 4.1.1 and well-posedness of the space-time HDG discretiza-
tion of a linear time-dependent Stokes problem as discussed next.

4.3.1.1 Proof of Lemma 4.1.1.

Proof. Testing eq. (4.4) with (vh, v̄h, qh, q̄h) = (uh, ūh, ph, p̄h), using the coercivity of ah(·, ·)
and the fact that oh(·;uh,uh) ≥ 0, and integrating by parts in time, we find that there
exists a constant C1 > 0 such that

1

2

∥∥u−n+1

∥∥2

L2(Ω)
+

1

2

∥∥[uh]n
∥∥2

L2(Ω)
− 1

2

∥∥u−n∥∥2

L2(Ω)
+ C1ν

∫
In

~uh~
2
v dt ≤

∫
In

(f, uh)Th dt.
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To bound the right-hand side, we apply the Cauchy–Schwarz inequality, the discrete
Poincaré inequality eq. (4.21), and Young’s inequality with ε = C1/(CPν) > 0. Rear-
ranging, we see there is a constant C2 > 0 such that∥∥u−n+1

∥∥2

L2(Ω)
+
∥∥[uh]n

∥∥2

L2(Ω)
−
∥∥u−n∥∥2

L2(Ω)
+ νC1

∫
In

~uh~
2
v dt ≤ C2

ν

∫
In

‖f‖2
L2(Ω) dt.

The result follows after summing over all space-time slabs.

4.3.1.2 A linearized problem

Before we can apply the topological degree argument, we will need to study the space-time
HDG solution of the linear time-dependent Stokes problem:

∂tu− ν∆u+∇p = f, in Ω× (0, T ], (4.24a)

∇ · u = 0, in Ω× (0, T ], (4.24b)

u = 0, on ∂Ω× (0, T ], (4.24c)

u(x, 0) = u0(x), in Ω. (4.24d)

Lemma 4.3.1. There exists a unique pair uh ∈ Vdiv
h × V̄h such that for all vh ∈ Vdiv

h × V̄h:

−
∫
In

(uh, ∂tvh)Th dt+ (u−n+1, v
−
n+1)Th +

∫
In

νah(uh,vh) dt = (u−n , v
+
n )Th +

∫
In

(f, vh)Th dt.

(4.25)
Note that this is simply the space-time HDG scheme applied to the time-dependent Stokes
problem eq. (4.24).

Proof. The result follows from the Lax–Milgram theorem (Theorem 2.1.2)

4.3.1.3 The topological degree argument

Theorem 4.3.1. Let d ∈ {2, 3} and k ≥ 1. There exists at least one discrete velocity
solution uh ∈ Vdiv

h × V̄h to eq. (4.4) for n = 0, . . . , N − 1 satisfying the energy estimate
Lemma 4.1.1.

Proof. We set X = Vdiv
h × V̄h and equip it with the norm

‖uh‖2
X :=

∥∥u−N∥∥2

L2(Ω)
+

N−1∑
n=0

∥∥[uh]n
∥∥2

L2(Ω)
+ ν

∫ T

0

~uh~
2
v dt.
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Define the continuous mapping Ψ : X × [0, 1]→ X for n = 0, . . . , N − 1, by∫
In

(Ψ(uh, ρ),vh)0,h dt =−
∫
In

(uh, ∂tvh)Th dt+ (u−n+1, v
−
n+1)Th +

∫
In

νah(uh,vh) dt

+

∫
In

ρoh(uh;uh,vh) dt− (u−n , v
+
n )Th −

∫
In

(f, vh)Th dt.

Ψ is well-defined by the Riesz representation theorem (Theorem 2.1.1), verifying item (1)
in Lemma 2.1.2. Next, we choose uh ∈ X such that Ψ(uh, ρ) = 0 for some ρ ∈ [0, 1]. Since
oh(uh;uh,uh) ≥ 0, we can repeat the proof of Lemma 4.1.1 to bound uh uniformly with
respect to ρ:∥∥u−N∥∥2

L2(Ω)
+

N−1∑
n=0

∥∥[uh]n
∥∥2

L2(Ω)
+ ν

∫ T

0

~uh~
2
v dt ≤ C

(
1

ν

∫ T

0

‖f‖2
L2(Ω) dt +

∥∥u0

∥∥2

L2(Ω)

)
,

which verifies item (3) in Lemma 2.1.2 with

M2 = C

(
1

ν

∫ T

0

‖f‖2
L2(Ω) dt +

∥∥u0

∥∥2

L2(Ω)

)
+ ε,

for any ε > 0. Finally, note that Ψ(·, 0) : X → X is an affine function since the nonlinear
convection term disappears for ρ = 0. By Lemma 4.3.1, there exists a solution to Ψ(uh, 0) =
0, verifying item (2) in Lemma 2.1.2. Therefore, there exists a solution uh to Ψ(uh, 1) = 0
satisfying ‖uh‖X < M . Equivalently, uh ∈ Vdiv

h × V̄h solves eq. (4.4) for all vh ∈ Vdiv
h × V̄h

and satisfies the energy bound in Lemma 4.1.1.

4.3.2 Uniqueness of the discrete velocity in two dimensions

4.3.2.1 Bounds on the convection term

In the analysis that follows, we will require tighter bounds on the trilinear convection
form than is provided by eq. (4.10). For this, we will make extensive use of the results of
Section 4.2.2. We remark that, although we focus on d = 2 for the proof of uniqueness,
the bound eq. (4.27) will be essential for the error analysis in both two and three spatial
dimensions in Section 4.4.

Lemma 4.3.2. If d = 2, there exists a C > 0 such that for all wh,uh,vh ∈ V h,

|oh(wh;uh,vh)|

≤ C‖wh‖1/2

L2(Ω) ~uh~
1/2
v ~vh~v

(
‖wh‖1/2

L2(Ω) ~uh~
1/2
v +‖uh‖1/2

L2(Ω) ~wh~
1/2
v

)
.

(4.26)
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Moreover, if d ∈ {2, 3}, there exists a C > 0 such that for all wh,uh,vh ∈ V h,

|oh(wh;uh,vh)| ≤ C‖wh‖1/2

L2(Ω) ~wh~
1/2
v ~uh~v~vh~v. (4.27)

Proof. This proof relies on the following scaling identity for

µ ∈ Rk(∂K) :=
{
µ ∈ L2(∂K) | µ|F ∈ Pk(F ), ∀F ⊂ ∂K

}
between Lp and L2 norms on element boundaries which can be obtained using standard
arguments:

‖µ‖Lp(∂K) ≤ Ch(d−1)(1/p−1/2)‖µ‖L2(∂K) , 2 ≤ p <∞. (4.28)

Now, split oh(wh,uh,vh) into three terms and bound each separately. Using that uh+ ūh =
2uh + (ūh − uh), we find:

|oh(wh,uh,vh)|

≤
∑
K∈Th

∫
K

|(uh ⊗ wh) : ∇vh| dx+
∑
K∈Th

∫
∂K

|wh · n (uh) · (vh − v̄h)| ds

+
∑
K∈Th

∫
∂K

|wh · n||(uh − ūh) · (vh − v̄h)| ds = T1 + T2 + T3.

(4.29)

To show eq. (4.26), we first apply the generalized Hölder inequality to T1 with p = q = 4
and r = 2, the Cauchy–Schwarz inequality, and eq. (4.22) to find:

|T1| ≤ C‖uh‖1/2

L2(Ω) ~uh~
1/2
v ‖wh‖

1/2

L2(Ω) ~wh~
1/2
v ~vh~v.

To bound T2, we apply the generalized Hölder inequality with p = q = 4 and r = 2 and
use the local discrete trace inequality ‖vh‖Lp(∂K) ≤ Ch

−1/p
K ‖vh‖Lp(K) (see e.g. [28, Lemma

1.52]) for p = 4, we have

|T2| ≤ C
∑
K∈Th

‖wh‖L4(K)‖uh‖L4(K) h
−1/2
K ‖vh − v̄h‖L2(∂K) .

Applying the Cauchy–Schwarz inequality and eq. (4.22) we find

|T2| ≤ C‖uh‖1/2

L2(Ω) ~uh~
1/2
v ‖wh‖

1/2

L2(Ω) ~wh~
1/2
v ~vh~v.

To bound T3, we again apply the generalized Hölder inequality with p = q = 4 and r = 2,
the local discrete trace inequality ‖vh · n‖L2(∂K) ≤ Ch

−1/2
K ‖vh‖L2(K), eq. (4.28) with d = 2

and p = 4, and the Cauchy–Schwarz inequality to find

|T3| ≤ C‖wh‖L2(Ω) ~uh~v~vh~v.
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Summing the bounds on T1, T2, and T3 yields the result.

The proof of eq. (4.27) differs in the cases of d = 2 and d = 3. We begin with d = 3.
To bound T1, we first apply the generalized Hölder inequality with p = 3, q = 6 and r = 2
followed by the Cauchy–Schwarz inequality to find:

|T1| ≤‖wh‖L3(Ω)‖uh‖L6(Ω) ~vh~v.

Now applying eq. (4.23) and eq. (4.20) with q = 6, we have

|T1| ≤ C‖wh‖1/2

L2(Ω) ~wh~
1/2
v ~uh~v~vh~v.

To bound T2, we apply the generalized Hölder inequality with p = 3, q = 6 and r = 2 to
find

|T2| ≤
∑
K∈Th

‖wh · n‖L3(∂K)‖uh‖L6(∂K)‖vh − v̄h‖L2(∂K) .

Next, using the local discrete trace inequality ‖vh‖Lp(∂K) ≤ Ch
−1/p
K ‖vh‖Lp(K) (see e.g. [28,

Lemma 1.52]) for p = 3 and p = 6, the Cauchy–Schwarz inequality, eq. (4.23), and eq. (4.20)
with q = 6, we have

|T2| ≤ C‖wh‖1/2

L2(Ω) ~wh~
1/2
v ~uh~v~vh~v.

To bound T3, we again apply the generalized Hölder inequality with p = 3, q = 6 and
r = 2:

|T3| ≤
∑
K∈Th

‖wh · n‖L3(∂K)‖uh − ūh‖L6(∂K)‖vh − v̄h‖L2(∂K) .

Now, applying the local discrete trace inequality ‖vh · n‖Lp(∂K) ≤ Ch
−1/p
K ‖vh‖Lp(K) with

p = 3, eq. (4.28) with d = 3 and p = 6, the discrete Cauchy–Schwarz inequality, and
eq. (4.23), we have

|T3| ≤ C‖wh‖1/2

L2(Ω) ~wh~
1/2
v ~uh~v~vh~v.

Summing the bounds on T1, T2, and T3 yields the result. The case for d = 2 follows
similarly, instead using p = q = 4 and r = 2 in the generalized Hölder inequality, eq. (4.20)
with q = 4, and eq. (4.28) with d = 2 and p = 4.
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4.3.2.2 Proof of Lemma 4.1.4

Proof. Let ũh be the exponential interpolant of uh as defined in eq. (4.11). Testing eq. (4.4)
with ũh, integrating by parts in time, and using the defining properties of the exponential
interpolant, we have

1

2

∫
In

d
dt

∥∥uh(t)∥∥2

L2(Ω)
e−λ(t−tn) dt+

∥∥u+
n

∥∥2

L2(Ω)
+

∫
In

(νah(uh, ũh) + oh(uh;uh, ũh)) dt

= (u−n , u
+
n )Th +

∫
In

(f, ũh)Th dt.

Integrating by parts again in time and applying the Cauchy–Schwarz inequality and Young’s
inequality to the first term on the right hand side, we have

λ

2

∫
In

∥∥uh(t)∥∥2

L2(Ω)
e−λ(t−tn) dt+

1

2

∥∥u−n+1

∥∥2

L2(Ω)
e−λ∆t

≤ 1

2

∥∥u−n∥∥2

L2(Ω)
+

∫
In

(f, ũh)Th dt−
∫
In

(νah(uh, ũh) + oh(uh;uh, ũh)) dt.

We now focus on bounding the right-hand side. By the boundedness of ah(·, ·) eq. (4.8)
and eq. (4.13), there exists a constant C1 > 0 such that∫

In

|ah(uh, ũh)| dt ≤ C1

∫
In

~uh~
2
v dt.

In two spatial dimensions, we can use Lemma 4.3.2, eq. (4.13), and hence Young’s inequality
with some ε1 > 0 to find there exists a constant C2 > 0 such that∫

In

oh(uh;uh, ũh) dt ≤ ε1
2
‖uh‖2

L∞(In;L2(Ω)) +
C2

2ε1

(∫
In

~uh~
2
v dt
)2

.

Next by the Cauchy–Schwarz inequality, Young’s inequality, the discrete Poincaré inequal-
ity, and eq. (4.13), there exists a constant C3 > 0 such that for some ε2 > 0,∫

In

(f, ũh)Th dt ≤ 1

2ε2

∫
In

‖f‖2
L2(Ω) dt+

C3ε2
2

∫
In

~uh~
2
v dt.

Thus,

λ

2

∫
In

‖uh‖2
L2(Ω)e

−λ(t−tn) dt+
1

2

∥∥u−n+1

∥∥
L2(Ω)

e−λ∆t − ε1
2
‖uh‖2

L∞(In;L2(Ω))

≤ 1

2

∥∥u−n∥∥2

L2(Ω)
+

1

2ε2

∫
In

‖f‖2
L2(Ω) dt+

C3ε2
2

∫
In

~uh~
2
v dt

+ C1ν

∫
In

~uh~
2
v dt+

C2

2ε1

(∫
In

~uh~
2
v dt
)2

.
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Choosing λ = 1/∆t and applying the scaling identity in eq. (4.19a) with p = ∞, we find
there exists a constant C4 > 0 such that(

C−1
4 e−1

2
− ε1

2

)
‖uh‖2

L∞(In;L2(Ω))

≤ 1

2

∥∥u−n∥∥2

L2(Ω)
+

1

2ε2

∫
In

‖f‖2
L2(Ω) dt+

C3ε2
2

∫
In

~uh~
2
v dt

+ C1ν

∫
In

~uh~
2
v dt+

C2

2ε1

(∫
In

~uh~
2
v dt
)2

.

Choosing ε1 = C−1
4 e−1/2, ε2 = 2ν, using the a priori estimates on uh in Lemma 4.1.1, and

rearranging, we see there exists a C5 > 0 such that

‖uh‖2
L∞(In;L2(Ω))

≤ C5

(
1

ν

∫ T

0

‖f‖2
L2(Ω) dt +

∥∥u0

∥∥2

L2(Ω)

)
+
C5

ν2

(1

ν

∫ T

0

‖f‖2
L2(Ω) dt +

∥∥u0

∥∥2

L2(Ω)

)2

.

This bound holds uniformly for every space-time slab, so the result follows.

4.3.2.3 Proof of Theorem 4.1.1.

Proof. Consider an arbitrary space-time slab Em. Suppose (u1, ū1) ∈ Vdiv
h × V̄h and

(u2, ū2) ∈ Vdiv
h × V̄h are two solutions to eq. (4.4) corresponding to the same problem

data f and u0, and set wh = u1 − u2. Then, for all vh ∈ Vdiv
h × V̄h, it holds that

−
∫
Im

(wh, ∂tvh)Th dt+ (w−m+1, v
−
m+1)Th +

∫
Im

νah(wh,vh) dt

+

∫
Im

(
oh(u1,u1,vh)− oh(u2,u2,vh)

)
dt = (w−m, v

+
m)Th .

(4.30)

Step one: Testing eq. (4.30) with vh = wh, integrating by parts in time, using the
coercivity of ah(·, ·), and noting that oh(u2,u2,wh)− oh(u1,u1,wh) ≤ −oh(wh,u2,wh) by
eq. (4.9), we find

1

2

∥∥w−m+1

∥∥2

L2(Ω)
+

1

2

∥∥[wh]m
∥∥2

L2(Ω)
− 1

2

∥∥w−m∥∥2

L2(Ω)

+ Cν

∫
Im

~wh~
2
v dt ≤

∫
Im

|oh(wh,u2,wh)| dt.
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Summing over all space-time slabs n = 0, . . . , N − 1, rearranging, and noting that w−0 = 0,
we see that there exists a C1 > 0 such that

∥∥w−N∥∥2

L2(Ω)
+

N−1∑
n=0

∥∥[wh]n
∥∥2

L2(Ω)
+ ν

∫ T

0

~wh~
2
v dt ≤ C1

∫ T

0

|oh(wh,u2,wh)| dt. (4.31)

Step two: Fix an integer m such that 0 ≤ m ≤ N−1. Testing eq. (4.30) with the discrete
characteristic function vh = wχ where s = arg supt∈Im ‖uh(t)‖L2(Ω), integrating by parts in
time, using Young’s inequality, we have after rearranging

1

2
sup
t∈Im

∥∥wh(t)∥∥2

L2(Ω)
− 1

2
sup

t∈Im−1

∥∥wh(t)∥∥2

L2(Ω)

≤ −
∫
Im

(
νah(wh,wχ) + oh(u1,u1,wχ)− oh(u2,u2,wχ)

)
dt,

where we have used that supt∈Im−1
‖w(s)‖L2(Ω) ≥ ‖w−m‖L2(Ω). Setting I−1 = {t0} = {0}, we

can sum over the space-time slabs n = 0, . . . ,m and use the boundedness of ah(·, ·) and
the bound eq. (4.15) to find there exists a constant C2 > 0 such that

1

2
sup
t∈Im

∥∥wh(t)∥∥2

L2(Ω)
≤ C2ν

∫ T

0

~wh~
2
v dt+

∫ T

0

∣∣oh(u2,u2,wχ)− oh(u1,u1,wχ)
∣∣ dt, (4.32)

where we have used that supt∈I−1
‖wh(t)‖L2(Ω) = ‖w−0 ‖L2(Ω) = 0. This bound holds uni-

formly for all space-time slabs, and thus we can replace the supremum over In in eq. (4.32)

with the supremum over [0, T ]. Doing so, and adding 2ν
∫ T

0
~wh~

2
v dt to both sides we see

there exists a constant C3 > 0 such that

1

2
‖wh‖2

L∞(0,T ;L2(Ω)) + 2ν

∫ T

0

~wh~
2
v dt

≤ C3

∫ T

0

∣∣oh(wh,u2,wh)
∣∣ dt+

∫ T

0

∣∣oh(wh,u2,wχ)
∣∣ dt+

∫ T

0

∣∣oh(u1,wh,wχ)
∣∣ dt.

Here, we have used the bound eq. (4.31) from step one, that oh(u2,u2,wχ)−oh(u1,u1,wχ) =
−oh(wh,u2,wχ)− oh(u1,wh,wχ), and the triangle inequality. From Lemma 4.3.2 and two
applications of Young’s inequality, first with p = q = 2 and second with p = 4, q = 4/3, we
find

|oh(wh,u2,wh)| ≤ C4

(
1

2ε
‖wh‖2

L2(Ω) ~u2~
2
v +

1

4ε3
‖wh‖2

L2(Ω)‖u2‖2
L2(Ω) ~u2~

2
v +

5ε

4
~wh~

2
v

)
.
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Similarly, from Lemma 4.3.2 and eq. (4.15), we have

|oh(wh,u2,wχ)| ≤ C5

(
1

2ε
‖wh‖2

L2(Ω) ~u2~
2
v +

1

4ε3
‖wh‖2

L2(Ω)‖u2‖2
L2(Ω) ~u2~

2
v +

5ε

4
~wh~

2
v

)
,

and finally,∣∣oh(u1,wh,wχ)
∣∣ ≤ C6

(
‖u1‖L2(Ω) ~wh~

2
v +

1

4ε3
‖u1‖2

L2(Ω)‖wh‖
2
L2(Ω) ~u1~

2
v +

3ε

4
~wh~

2
v

)
,

where ε > 0. Collecting the above bounds, choosing ε = O(ν) sufficiently small and
rearranging, we can find a C7 > 0 such that

‖wh‖2
L∞(0,T ;L2(Ω)) + ν

∫ T

0

~wh~
2
v dt

≤ C7

ν4

(
ν3‖u1‖L∞(0,T ;L2(Ω)) + ν‖u1‖2

L∞(0,T ;L2(Ω))

∫ T

0

~u1~
2
v dt

+
(
ν3 + ν‖u2‖2

L∞(0,T ;L2(Ω))

)∫ T

0

~u2~
2
v dt

)
×

(
‖wh‖2

L∞(0,T ;L2(Ω)) + ν

∫ T

0

~wh~
2
v dt

)
.

(4.33)

Step three: For notational convenience, let Ξ = ν−1
∫ T

0
‖f‖2

L2(Ω) dt+ ‖u0‖2
L2(Ω). Applying

the bounds in Lemma 4.1.1 and Lemma 4.1.4 to eq. (4.33), we find there exists a C8 > 0
such that

‖wh‖2
L∞(0,T ;L2(Ω)) + ν

∫ T

0

~wh~
2
v dt

≤ C8

ν4

(
ν3Ξ1/2 + ν2Ξ + Ξ2 + ν−2Ξ3

)(
‖wh‖2

L∞(0,T ;L2(Ω)) + ν

∫ T

0

~wh~
2
v dt

)
.

The result follows if ν < 1 and Ξ ≤ 1
4

min {C−1/3
8 , C

−1/2
8 , C−1

8 , C−2
8 } ν2.

4.3.3 Recovering the pressure

Existence of the pressure pair (ph, p̄h) ∈ Qh satisfying eq. (4.4) will require the following
inf-sup condition:
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Theorem 4.3.2 (Inf-sup condition). Suppose that the spatial mesh Th is conforming and
quasi-uniform. There exists a constant β > 0, independent of h and ∆t, such that for all
qh ∈Qh,

sup
06=vh∈Vh

∫
In
bh(qh, vh) dt(∫

In
~vh~

2
v dt
)1/2

≥ β

(∫
In

~qh~
2
p dt

)1/2

. (4.34)

The proof, which exploits the tensor-product structure of the finite element spaces in
an essential way, is an extension of the proof of [79, Lemma 1] to the space-time setting.

4.3.3.1 Proof of Theorem 4.3.2.

By [45, Theorem 3.1], the inf-sup condition eq. (4.34) is satisfied if we can decompose
bh(·, ·) into b1(·, ·) : Vh ×Qh → R and b2(·, ·) : Vh × Q̄h → R such that, for some constants
α1, α2 > 0, it holds that

sup
(vh,v̄h)∈Zb2×V̄h

∫
In
b1(qh, vh) dt(∫

In
~vh~

2
v dt
)1/2

≥ α1

(∫
In

‖qh‖2
L2(Ω) dt

)1/2

, (4.35a)

and

sup
vh∈Vh

∫
In
b2(q̄h, vh) dt(∫

In
~vh~

2
v dt
)1/2

≥ α2

(∑
K∈Th

∫
In

hK‖q̄‖2
∂K dt

)1/2

, (4.35b)

where

Zb2 =
{
vh ∈ Vh :

∫
In

b2(vh, q̄h) dt = 0, ∀q̄h ∈ Q̄h
}
.

We thus define

b1(qh, vh) = −
∑
K∈Th

∫
K

qh∇ · vh dx and b2(q̄h, vh) =
∑
K∈Th

∫
∂K

vh · nq̄h ds.

We begin by proving eq. (4.35a). The tensor-product structure of the space Qh ensures
that we can expand any qh ∈ Qh in terms of an orthonormal basis of Pk(In) with respect
to the L2(In) inner product:

qh =
k∑
i=0

φi(t)qi(x), φi ∈ Pk(In), qi ∈ Qh. (4.36)
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Since each qi ∈ L2
0(Ω), there exist zi ∈ H1

0 (Ω)d, 0 ≤ i ≤ k and constants βi, 0 ≤ i ≤ k such
that ∇ · zi = −qi and βi‖zi‖H1(Ω) ≤‖qi‖L2(Ω) (see e.g. [28, Theorem 6.5]). We construct

the desired ψh = (ψh, ψ̄h) ∈ Zb2 × V̄h by choosing

ψh =
k∑
i=0

φi(t)ΠBDMzi, and ψ̄h =
k∑
i=0

φi(t)Π̄V zi,

where ΠBDM :
[
H1(Ω)

]d → Vh is the BDM projection (see Lemma 3.5.1) and Π̄V is the L2

projection onto the space V̄h. By the orthonormality of the basis {φi}ki=0, property (v) of
Lemma 3.5.1, the single-valuedness of zi · n and q̄i across element faces, and the fact that
zi ∈ H1

0 (Ω), we have

b2(q̄h, ψh) =
∑
K∈Th

k∑
i=0

∫
∂K

zi · nq̄i ds = 0,

and thus ψh ∈ Zb2 . We now show that ψh satisfies the inequality in eq. (4.35a) with some
α1 > 0 independent of the mesh parameters h and ∆t. Given qh ∈ Qh, we can use the
expansion eq. (4.36), the definition of zi, 0 ≤ i ≤ k, and the commuting diagram property
of the BDM projection (property (iv) of Lemma 3.5.1) to find∫

In

‖qh‖2
L2(Ω) dt =

∫
In

b1(qh, ψh) dt. (4.37)

Next, we need to show existence of a constant α1 > 0, independent of the mesh parameters
h and ∆t, such that

α2
1

∫
In

~ψh~
2
v dt ≤

∫
In

‖qh‖2
L2(Ω) dt. (4.38)

But, this can easily be reduced to the proof of [77, Lemma 4.5] by expanding ψh in terms
of an orthonormal basis of Pk(In) with respect to the L2(In) inner-product. Combining
eq. (4.37) and eq. (4.38), we have∫

In
b1(qh, ψh) dt(∫

In
~ψh~

2
v dt
)1/2

=

∫
In
‖qh‖2

L2(Ω) dt(∫
In

~ψh~
2
v dt
)1/2

≥ α2
1

(∫
In

‖qh‖2
L2(Ω) dt

)1/2

,

where α1 > 0 depends on the constants βi, 0 ≤ i ≤ k.

What we have left to show is eq. (4.35b). It suffices to construct an ωh ∈ Vh such that
for some α2 > 0 it holds that∫

In
b2(q̄h, ωh) dt(∫

In
~ωh~

2
v dt
)1/2

≥ α2

(∑
K∈Th

∫
In

hK‖q̄h‖2
∂K dt

)1/2

, ∀q̄h ∈ Q̄h. (4.39)
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The tensor-product structure of Q̄h ensures that we can expand any q̄h ∈ Q̄h in terms of
an orthonormal basis of Pk(In) with respect to the L2(In) inner-product:

q̄h =
k∑
i=0

φi(t)q̄i(x), φi ∈ Pk(In), q̄i ∈ Q̄h. (4.40)

Given q̄h ∈ Q̄h, we construct the required ωh by choosing ω̄h = 0, and defining ωh ∈ Vh
element-wise by:

ωh|K×In =
k∑
i=0

φi(t)L
BDM

(
q̄i|∂K

)
,

with q̄i ∈ Q̄h defined as in eq. (4.40). Here, LBDM : Pk(∂K)→
(
Pk(K)

)d
is the local BDM

lifting satisfying for all q̄h ∈ Pk(∂K) (see e.g. [31, Proposition 2.10]):

(LBDMq̄h) · n = q̄h, and
∥∥LBDMq̄h

∥∥
L2(K)

≤ Ch
1/2
K ‖q̄‖L2(∂K) , ∀q̄h ∈ Pk(∂K), (4.41)

where n is the unit outward normal to ∂K. Using the first property in eq. (4.41), it can
be shown that ∫

In

b2(q̄h, ωh) dt =
∑
K∈Th

∫
In

‖q̄h‖2
L2(∂K) dt. (4.42)

The remainder of the proof of eq. (4.35b) can easily be reduced to the proof of [79, Lemma
3] by expanding ωh in terms of an orthonormal basis of Pk(In) with respect to the L2(In)
inner-product. In particular, it can be shown that α2 = Chmin/hmax, which remains uni-
formly bounded below provided we assume quasi-uniformity of Th.

Theorem 2.1.3 yields the following corollary:

Corollary 4.3.1. To each discrete velocity solution pair (uh, ūh) ∈ Vh guaranteed by
Theorem 4.3.1, there exists a unique discrete pressure pair (ph, p̄h) ∈Qh satisfying eq. (4.4).

4.4 Error analysis for the velocity

4.4.1 Space-time projection operators

Let Ph : L2(Ω)d → V div
h and P̄h : L2(Γ)d → V̄h denote the orthogonal L2-projections onto,

respectively, the spaces V div
h and V̄h. The approximation properties of P̄h are well-known
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while the approximation properties of Ph rely critically on the fact that V div
h ⊂ H. In

particular, we can exploit the best approximation property of the orthogonal projection
along with the approximation properties of the BDM projection to prove:

Lemma 4.4.1. Let k ≥ 1, 0 ≤ m ≤ 2, and u ∈ Hk+1(Ω)d. If the spatial mesh Th is
quasi-uniform and consists triangles in two dimensions or tetrahedras in three dimensions,
then the following estimates hold:∑

K∈Th

‖u− Phu‖2
Hm(K) . h2(k−m+1)|u|2Hk+1(Ω), (4.43)∑

K∈Th

h−1
K ‖u− Phu‖

2
L2(∂K) . h2k|u|2Hk+1(Ω). (4.44)

Proof. We begin by proving eq. (4.43). For m = 0, we have by the best approximation
property of the orthogonal L2-projection onto V div

h :

‖u− Phu‖L2(Ω) = min
vh∈V div

h

‖u− vh‖L2(Ω) .

Since ΠBDMu ∈ V div
h , eq. (4.43) follows from standard approximation properties of the

BDM projection (Lemma 3.5.1). The proof for m = 1 follows by noting that, by triangle
inequality,

‖u− Phu‖Hm(K) ≤‖u− ΠV u‖Hm(K) +‖ΠV u− Phu‖Hm(K) ,

where ΠV is the orthogonal L2-projection onto Vh. Using the local inverse inequality
‖uh‖H1(K) ≤ Ch−1

K ‖uh‖L2(K), the quasi-uniformity of the spatial mesh Th, eq. (4.43), and
the approximation properties of ΠV (see e.g. [28, Lemma 1.58]), the result follows. The
bound for m = 2 follows similarly. To prove eq. (4.44), we note that by the local trace
inequality for functions in H1(K), we have

‖u− Phu‖L2(∂K) ≤ C
(
h
−1/2
K ‖u− Phu‖L2(K) +‖u− Phu‖1/2

L2(K) |u− Phu|
1/2

H1(K)

)
.

The result now follows from the quasi-uniformity of the mesh, the Cauchy–Schwarz in-
equality, and eq. (4.43).

Following [17, Definition 4.2], we introduce a space-time projection operator much in
the same spirit as the temporal “DG-projection” defined in [98, Eq. (12.9)] or [29, Section
6.1.4], but appropriately modified for divergence free fields. Additionally, we will need an
analogue of this temporal DG-projection onto the facet space V̄h:
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Definition 4.4.1. 1. Ph : C(In;L2(Ω)) → Vh satisfying (Phu)(t−n+1) = (Phu)(t−n+1),
with (Phu)(t−0 ) = Phu(t0), and∫

In

(u− Phu, vh)Th dt = 0 ∀vh ∈ Pk−1(In, V
div
h ). (4.45)

2. P̄h : C(In;L2(Γ))→ Pk(In; V̄h) satisfying (P̄hu)(t−n+1) = (P̄hu)(t−n+1)∫
In

(u− P̄hu, v̄h)∂Th dt = 0, ∀v̄h ∈ Pk−1(In; V̄h). (4.46)

We summarize the approximation properties of Ph and P̄h in Appendix A.

4.4.2 Parabolic Stokes projection

Motivated by [17, Definition 4.2], we introduce a parabolic Stokes projection which will be
crucial to our error analysis in Section 4.4:

Definition 4.4.2 (Parabolic Stokes projection). Let u be the strong velocity solution to
the Navier–Stokes system eq. (4.1) guaranteed by Theorem 2.3.2. We define the parabolic
Stokes projection (Πhu, Π̄hu,Πhp, Π̄hp) ∈ Vdiv

h ×V̄h×Qh to be the solution to the following
space-time HDG scheme:

−
∫
In

(Πhu, ∂tvh)Th dt+ ((Πhu)−n+1, v
−
n+1)Th +

∫
In

(νah(Πhu,vh) + bh(Πhp, vh)) dt

= ((Πhu)−n , v
+
n )Th +

∫
In

(∂tu, vh)Th dt+

∫
In

νah(u,vh) dt ∀vh ∈ Vh,∫
In

bh(qh,Πhu) dt = 0 ∀qh ∈Qh,

(4.47)

where (Πhu)−0 = Phu(t0) and (Π̄hu)−0 may be arbitrarily chosen. Here, we have denoted
Πhu = (Πhu, Π̄hu) and Πhp = (Πhp, Π̄hp).

Remark 4.4.1. We remark that eq. (4.47) is simply a space-time HDG scheme for the
evolutionary Stokes problem eq. (4.24) with f = ut − ν∆u and u0 = u(0). Consequently,
Πhu ∈ Vdiv

h and thus Πhu ∈ H.
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4.4.3 Uniform bounds on the parabolic Stokes projection

To perform our error analysis in Section 4.4, we will require a uniform bound on the Stokes
projection:

ess sup0≤t≤T~Πhu~ν ≤ C(u, u0, ν).

Our plan is to follow the proof of [17, Theorem 4.10]. Therein, an essential ingredient is
a discrete Stokes operator. Unfortunately, as (·, ·)Th is not an inner-product on V h, we
cannot leverage the Riesz representation theorem (Theorem 2.1.1) to infer the existence
of a discrete Stokes operator in the HDG setting. Instead, we introduce a novel discrete
Stokes operator by mimicking the static condensation that occurs for the HDG method at
the algebraic level following ideas from [12].

4.4.3.1 Discrete Stokes operator

Consider the variational problem: find φh ∈ V div
h × V̄h such that

ah(φh,wh) = (uh, wh)Th , ∀wh ∈ V div
h × V̄h.

This problem is well-posed by the Lax–Milgram theorem (Theorem 2.1.2), implying the
existence of a well-defined solution operator Sh : Vh → V div

h × V̄h such that φh = Sh(uh).
Note that Sh need not be surjective onto the product space V div

h × V̄h. However, as in [12],
we can split the solution operator Sh into “element” and “facet” solution operators SK and
SF . We will show that SK is invertible.

Define the facet solution operator SF : V div
h → V̄h as the unique solution of

ah((vh, SF(vh)), (0, w̄h)) = 0, ∀w̄h ∈ V̄h. (4.48)

Since ah(·, ·) is symmetric, SF is self-adjoint. Next, we introduce a new bilinear form on
V div
h × V div

h :
a?h(vh, wh) = ah((vh, SF(vh)), (wh, SF(wh))), (4.49)

for which we introduce the element solution operator SK : V div
h → V div

h satisfying

a?h(SK(uh), wh) = (uh, wh)Th .

It can be shown that Sh(uh) = (SK(uh), (SF ◦ SK)(uh)) (see [12, Lemma 3.1]). We observe
that SK : V div

h → V div
h is injective. By the Rank-Nullity theorem, SK is bijective. Therefore,

we can define an inverse operator Ah = S−1
K satisfying

a?h(uh, wh) = (Ahuh, wh)Th , ∀wh ∈ V div
h .
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By eq. (4.49), we have equivalently that

ah((uh, SF(uh)), (wh, SF(wh))) = (Ahuh, wh)Th , ∀wh ∈ V div
h . (4.50)

Lemma 4.4.2. Fix a space-time slab En. Let (Πhu, Π̄hu) be the velocity components of the
parabolic Stokes projection solving eq. (4.47), and let SF : V div

h → V̄h be the facet solution
operator introduced in eq. (4.48). Then, it holds that

Π̄hu = SF(Πhu). (4.51)

Proof. Set (vh, v̄h, qh, q̄h) = (0, v̄h, 0, 0) in eq. (4.47) and expand Πhu, Π̄hu, and v̄h in terms
of an orthonormal basis {φi(t)}ki=0 of Pk(In) with respect to the L2(In) inner-product to
find

k∑
i=0

∑
K∈Th

∫
∂K

α

hK
(Π̄hu)i · v̄i ds =

k∑
i=0

∑
K∈Th

∫
∂K

(
α

hK
(Πhu)i −

∂(Πhu)i
∂n

)
· v̄i ds.

By the definition of the operator SF , we have for each i = 0, . . . , k,∑
K∈Th

∫
∂K

(
α

hK
(Πhu)i −

∂(Πhu)i
∂n

)
· v̄i ds =

∑
K∈Th

∫
∂K

α

hK
SF((Πhu)i) · v̄i ds,

and moreover, each SF((Πhu)i) is unique. Choosing v̄i = (Π̄hu)i − SF((Πhu)i) ∈ V̄h and
rearranging allows us to conclude (Π̄hu)i = SF((Πhu)i) for each i = 0, . . . , k. The result
follows by uniqueness of the expansions of uh and ūh with respect to the chosen basis of
Pk(In) and the linearity of SF .

Lemma 4.4.3. Fix a space-time slab En. Let (Πhu, Π̄hu) ∈ Vdiv
h × V̄h be the velocity

components of the parabolic Stokes projection solving eq. (4.47) and let Ah : V div
h → V div

h

be the discrete Stokes operator satisfying eq. (4.50). For notational convenience, we denote
AhΠhu = (AhΠhu,AhΠ̄hu). Then, for all t ∈ In, it holds that:

ah(Πhu,AhΠhu) =‖AhΠhu‖2
L2(Ω) , (4.52)

(∂tΠhu,AhΠhu)Th =
1

2
d
dt
ah(Πhu,Πhu). (4.53)

Proof. By Lemma 4.4.2 and the linearity of Ah and SF , we find

SF (AhΠhu) = Ah (SFΠhu) = AhΠ̄hu, SF (∂tΠhu) = ∂t (SFΠhu) = ∂tΠ̄hu.

The conclusion follows from eq. (4.50) after some basic calculations.
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4.4.3.2 Bounding the Stokes projection

Lemma 4.4.4 (Uniform bound on the Stokes projection). Let u be the strong veloc-
ity solution to the Navier–Stokes system eq. (4.1) guaranteed by Theorem 2.3.2 and let
(Πhu, Π̄hu,Πhp, Π̄hp) ∈ Vdiv

h ×V̄h×Qh be the solution to eq. (4.47), where we set ū−0 = P̄hu0.
Then, it holds that

‖Πhu‖2
L∞(0,T ;Vh) ≤ C

(
1

ν

∫ T

0

‖∂tu− ν∆u‖2
L2(Ω) dt+‖u0‖2

H1(Ω)

)
.

Here, we define ‖Πhu‖L∞(0,T ;Vh) ≡ ess sup0≤t≤T~Πhu~ν.

Proof. The proof will proceed in two steps. In the first step, we bound the Stokes projec-
tion at the partition points of the time-intervals. In the second step, we use the exponential
interpolant, combined with the results of the first step, to obtain a uniform bound on the
Stokes projection over (0, T ).

Step one: Integrating by parts in time in the term containing the temporal derivative in
eq. (4.47), testing with vh = AhΠhu and using eq. (4.52) and eq. (4.53) in Lemma 4.4.3,
we have

1

2

∫
In

d
dt
ah(Πhu,Πhu) dt+ ah((Πhu)+

n , (Πhu)+
n ) + ν

∫
In

‖AhΠhu‖2
L2(Ω)

=

∫
In

(∂tu− ν∆u,AΠhu)Th dt+ ah((Πhu)−n , (Πhu)+
n ).

Using the coercivity of ah(·, ·), the Cauchy–Schwarz inequality, Young’s inequality, and
summing over all space-time slabs, we find

�

�(Πhu)−N
�

�

2

v
+

N−1∑
n=0

�

�[Πhu]n
�

�

2

v
+ ν

∫ T

0

‖AhΠhu‖2
L2(Ω) dt

≤ C

(
1

ν

∫ T

0

‖∂tu− ν∆u‖2
L2(Ω) dt+

�

�(Πhu)−0
�

�

2

v

)
.

As (Πhu0)− = Phu0 and (Π̄hu)−0 = P̄hu0, we have from Lemma 4.4.1 and the approximation
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properties of P̄h (see e.g. [80]) that

�

�(Πhu)−N
�

�

2

v
+

N−1∑
n=0

�

�[Πhu]n
�

�

2

v
+ ν

∫ T

0

‖AΠhu‖2
L2(Ω) dt

≤ C

(
1

ν

∫ T

0

‖∂tu− ν∆u‖2
L2(Ω) dt+‖u0‖2

H1(Ω)

)
.

(4.54)

Note that for the lowest order scheme (k = 1), we can already infer the result.

Step two: It remains to obtain a bound for higher order polynomials in time. For
this, we use the exponential interpolant of the pair AhΠhu = (AhΠhu,AhΠ̄hu), which we
denote by ÃhΠhu = (ÃhΠhu, ÃhΠ̄hu). Integrating the first term on the left hand side of
eq. (4.47) by parts in time, choosing vh = ÃhΠhu, and using eq. (4.11), eq. (4.53), and
that ÃhΠhu ∈ Vdiv

h , we have

1

2

∫
In

e−λ(t−tn) d
dt
ah(Πhu,Πhu) dt+ ((Πhu)+

n , (AhΠhu)+
n )Th + ν

∫
In

ah(Πhu, ÃhΠhu) dt

=

∫
In

(∂tu− ν∆u, ÃhΠhu)Th dt+ ((Πhu)−n , (ÃhΠhu)+
n )Th .

Proceeding in an identical fashion as in the proof of Lemma 4.1.4, and using eq. (4.13), we
obtain

e−1C

2
‖Πhu‖2

L∞(In;Vh) +
e−1C

2

�

�(Πhu)−n+1

�

�

2

v

≤ C

(
1

ν

∫
In

‖∂tu− ν∆u‖2
L2(Ω) dt+ ν

∫
In

‖AΠhu‖2
L2(Ω) dt+

�

�(Πhu)−n
�

�

2

v

)
.

(4.55)

Bounding the last two terms on the right-hand side of eq. (4.55) using eq. (4.54) and
omitting the second (positive) term on the left hand side, we see that there exists a constant
C > 0 such that

‖Πhu‖2
L∞(In;Vh) ≤ C

(
1

ν

∫ T

0

‖∂tu− ν∆u‖2
L2(Ω) dt+‖u0‖2

H1(Ω)

)
.

This bound holds uniformly for every space-time slab, so the result follows.
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4.4.3.3 Approximation properties of the parabolic Stokes projection

Lemma 4.4.5. Let u be the strong velocity solution to the Navier–Stokes system eq. (4.1)
guaranteed by Theorem 2.3.2, let (Πhu, Π̄hu) ∈ Vdiv

h × V̄h be the velocity pair of the Stokes
projection eq. (4.47) for n = 0, . . . , N − 1, and let Ph and P̄h denote the projections
introduced in Definition 4.4.1. Let ζh = Phu − Πhu, ξh = u − Phu, ζ̄h = P̄hu − Π̄hu and
ξ̄h = u− P̄hu. There is a constant C > 0 such that

∥∥ζh(t−n+1)
∥∥2

L2(Ω)
+

N−1∑
n=0

∥∥[ζh]i
∥∥2

L2(Ω)
+ ν

∫ T

0

~ζh~
2
v dt ≤ Cν

∫ T

0

~ξh~
2
v′ dt.

Proof. Our starting point will be the definition of the parabolic Stokes projection eq. (4.47).
We will introduce the splitting u−Πhu = ξh + ζh, where ξh = (ξh, ξ̄h) and ζh = (ζh, ζ̄h).
Testing eq. (4.47) with vh = ζh ∈ Vdiv

h ×V̄h, integrating by parts in time, using the defining
properties of the projection Ph Definition 4.4.1, the coercivity and boundedness of ah(·, ·)
eq. (4.8), the Cauchy–Schwarz inequality and Young’s inequality with some sufficiently
small ε > 0, we have∥∥ζh(t−n+1)

∥∥2

L2(Ω)
+
∥∥[ζh]n

∥∥2

L2(Ω)
−
∥∥ζh(t−n )

∥∥2

L2(Ω)
+ Cν

∫
In

~ζh~
2
v dt ≤ Cν

∫
In

~ξh~
2
v′ dt.

We conclude by summing over all space-time slabs and noting that ζh(t
−
0 ) = 0.

4.4.4 Error analysis for the velocity

4.4.4.1 The error equation

We introduce the notation eh = (eh, ēh) = (u−uh, γ(u)− ūh). From Lemma 4.2.2, we have
the following Galerkin orthogonality result:

−
∫
In

(eh, ∂tvh)Th dt+ (e−n+1, v
−
n+1)Th + ν

∫
In

ah(eh,vh) dt+

∫
In

bh(p− ph, vh) dt

+

∫
In

(
oh(u;u,vh)− oh(uh;uh,vh)

)
dt− (e−n , v

+
n )Th = 0, ∀vh ∈ Vh.

(4.56)

Introducing the splitting eh = (u−Πhu) + (Πhu− uh) = ηh + θh, integrating by parts
in the first term on the left hand side, using the definition of the parabolic Stokes projec-
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tion eq. (4.47), and choosing vh = θh ∈ Vdiv
h × V̄h, eq. (4.56) reduces to∫

In

(∂tθh, θh)Th dt+ ν

∫
In

ah(θh,θh) dt+
(
θ+
n − θ−n , θ+

n

)
Th

= −
∫
In

(
oh(u;u,θh)− oh(uh;uh,θh)

)
dt,

(4.57)

where we have used that uh,Πhu ∈ Pk(In, H).

Lemma 4.4.6. Let (Πhu, Π̄hu) ∈ Vdiv
h × V̄h be the velocity pair of the Stokes projection

eq. (4.47) and let (uh, ūh) ∈ Vh be an approximate velocity solution to the Navier–Stokes
system computed using the space-time HDG scheme eq. (4.4) for n = 0, . . . , N − 1. Let
θh = Πhu− uh, ηh = u− Πhu, θ̄h = Π̄hu− uh and η̄h = u− Π̄hu. There exists a constant
C > 0 such that

∫
In

‖θh‖2
L2(Ω) dt ≤ C

(
ν1/2∆t1/2

∫
In

~θh~
2
v dt+ ν∆t

∫
In

~ηh~
2
v dt
)

+ ∆t
∥∥θ−n ∥∥2

L2(Ω)
.

Proof. We will proceed as in the proof of [17, Theorem 5.2]. Choose zh ∈ V div
h × V̄h

independent of time. We test eq. (4.56) with the discrete characteristic function zχ ∈
V div
h × V̄h of zh. Recall from Equation (4.15) that we can write zχ = ϕ(t)zh, with ϕ(t)

satisfying ϕ(t+n ) = 1 as well as eq. (4.16) and eq. (4.17). Then, we have

(θh(s), zh)Th = −
∫
In

(
oh(u;u, zχ)− oh(uh;uh, zχ) + νah(θh, zχ)

)
dt+

(
θ−n , zh

)
Th
. (4.58)

By the boundedness of ah(·, ·) eq. (4.8), the bound on ϕ eq. (4.17), and the Cauchy–Schwarz
inequality, ∫

In

|ah(θh, zχ)| dt ≤ C∆t1/2~zh~v

(∫
In

~θh~
2
v dt
)1/2

. (4.59)

After a few algebraic manipulations, we apply eq. (4.10), followed by eq. (4.17), the energy
estimate Lemma 4.1.1, the assumption eq. (4.2) on the problem data, and the Cauchy–
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Schwarz inequality, to find∫
In

|oh(u;u, zχ)− oh(uh;uh, zχ)| dt

=

∫
In

|oh(u;ηh, zχ) + oh(ηh; Πhu, zχ) + oh(uh;θh, zχ)− oh(θh; Πhu, zχ)| dt

≤ C~zh~v

∫
In

(
‖u‖H1(Ω) ~ηh~v + ~ηh~v~Πhu~v + ~uh~v~θh~v + ~Πhu~v~θh~v

)
dt

≤ Cν1/2
~zh~v

(
ν1/2∆t1/2

(∫
In

~ηh~
2
v dt
)1/2

+ (ν1/2∆t1/2 + 1)
(∫

In

~θh~
2
v dt
)1/2)

.

(4.60)

Combining eq. (4.58), eq. (4.59), and eq. (4.60),

(θh(s), zh)Th ≤ C~zh~v

(
ν∆t1/2 + ν1/2

)(∫
In

~θh~
2
v dt
)1/2

+ C~zh~vν∆t1/2
(∫

In

~ηh~
2
v dt
)1/2

+
(
θ−n , zh

)
Th
.

(4.61)

This holds for any zh ∈ V div
h × V̄h, so fix s ∈ In and select zh = (θh(s), θ̄h(s)) ∈ V h to find∥∥θh(s)∥∥2

L2(Ω)
≤ C

(
ν∆t1/2 + ν1/2

)
�

�θh(s)
�

�

v

(∫
In

~θh~
2
v dt
)1/2

+

Cν∆t1/2
�

�θh(s)
�

�

v

(∫
In

~ηh~
2
v dt
)1/2

+
(
θ−n , θh(s)

)
Th
.

(4.62)

This holds for all s ∈ In, so the result follows after integrating both sides over In and
applying the Cauchy–Schwarz inequality and Young’s inequality.

Lemma 4.4.7. Let u ∈ L∞(0, T ;V ) ∩ L2(0, T ;V ∩ H2(Ω)d) ∩ H1(0, T ;H) be the strong
solution to the continuous Navier–Stokes problem, let (Πhu, Π̄hu) ∈ Vdiv

h ×V̄h be the velocity
pair of the Stokes projection eq. (4.47), and let (uh, ūh) ∈ Vh be an approximate velocity
solution to the Navier–Stokes system computed using the space-time HDG scheme eq. (4.4)
for n = 0, . . . , N − 1. Let θh = Πhu− uh, ηh = u−Πhu, θ̄h = Π̄hu− ūh and η̄h = u− Π̄hu.
There exists a constant C > 0 such that∥∥θ−N∥∥2

L2(Ω)
+

N−1∑
n=0

∥∥[θh]n
∥∥2

L2(Ω)
+ ν

∫ T

0

~θh~
2
v dt ≤ C exp

(
CT
)
ν∆t

∫ T

0

~ηh~
2
v dt,

provided the time step satisfies ∆t ≤ Cν.
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Proof. Our starting point for deriving an error estimate for the velocity will be the error
equation eq. (4.57). We begin by bounding the nonlinear convection terms. A few algebraic
manipulations yield

−
∫
In

(oh(u;u,θh)− oh(uh;uh,θh)) dt

≤
∫
In

|oh(u;ηh,θh)| dt+

∫
In

|oh(ηh; Πhu,θh)| dt+

∫
In

|oh(θh; Πhu,θh)| dt = T1 + T2 + T3,

where we have used that oh(uh;θh,θh) ≥ 0. We now bound T1 and T2. By eq. (4.10), the
assumption eq. (4.2) on the problem data, and Young’s inequality with some ε1 > 0, we
find ∫

In

|oh(u;ηh,θh)| dt ≤
Cν

2ε1

∫
In

~ηh~
2
v dt+

νε1
2

∫
In

~θh~
2
v dt, (4.63)

and similarly, ∫
In

|oh(ηh; Πhu,θh)| dt ≤
Cν

2ε1

∫
In

~ηh~
2
v dt+

νε1
2

∫
In

~θh~
2
v dt. (4.64)

The bound on T3 is more complicated. To begin, we use Lemma 4.3.2 and Hölder’s in-
equality with p = 4 and q = 4/3 to find∫

In

|oh(θh; Πhu,θh)| dt ≤ C
(∫

In

‖θh‖2
L2(Ω) ~Πhu~

4
v dt
)1/4 (∫

In

~θh~
2
v dt
)3/4

.

Recall Young’s inequality in the form ab ≤ ε
p/q
2 ap/p + bq/(qε2) where 1/p + 1/q = 1,

1 < q, p <∞, a, b > 0, and ε2 > 0 (see e.g. [46, Appendix A]). Choosing p = 4 and q = 4/3
we find∫

In

|oh(θh; Πhu,θh)| dt ≤ C

(
ε32
4
ν4

∫
In

‖θh‖2
L2(Ω) dt+

3

4ε2

∫
In

~θh~
2
v dt

)
. (4.65)

Here, we have used the uniform bound on the Stokes projection in Lemma 4.4.4 and
the assumption eq. (2.28) on the problem data. Next, we consider the error equation
eq. (4.57). Integrating by parts in time on the left hand side of eq. (4.57), combining the
result with eq. (4.63), eq. (4.64), eq. (4.65), and using the coercivity of ah(·, ·) eq. (4.8), we
have for some constants C1, C2 > 0:∥∥θ−n+1

∥∥2

L2(Ω)
+
∥∥[θh]n

∥∥2

L2(Ω)
−
∥∥θ−n ∥∥2

L2(Ω)
+ C1ν

∫
In

~θh~
2
v dt

≤ C2

(
νε−1

1

∫
In

~ηh~
2
v dt+ ε1ν

∫
In

~θh~
2
v dt+ ε32ν

4

∫
In

‖θh‖2
L2(Ω) dt+ ε−1

2

∫
In

~θh~
2
v dt

)
.

(4.66)
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Choosing ε1 = C1/(2C2) and ε2 = C3ν
−1 where C3 > 2C2/C1 in eq. (4.66), letting C4 =

C1/2− C2/C3 > 0, and using Lemma 4.4.6, we have upon rearranging that∥∥θ−n+1

∥∥2

L2(Ω)
+
∥∥[θh]n

∥∥2

L2(Ω)
+
(
C4ν − C5ν

1/2∆t1/2
)∫

In

~θh~
2
v dt

≤ (1 + C5∆t)
∥∥θ−n ∥∥2

L2(Ω)
+ C5ν∆t

∫
In

~ηh~
2
v dt.

Summing over all space-time slabs and noting that θ−0 = 0, we have

∥∥θ−N∥∥2

L2(Ω)
+

N−1∑
n=0

∥∥[θh]n
∥∥2

L2(Ω)
+
(
C4ν − C5ν

1/2∆t1/2
)∫ T

0

~θh~
2
v dt

≤ C5∆t

N−1∑
n=0

∥∥θ−i ∥∥2

L2(Ω)
+ ν

∫ T

0

~ηh~
2
v dt

 .

The result follows by a discrete Grönwall inequality [29, Lemma 1.11] for ∆t < C4ν/(2C5)
and using that

∏N−1
j=0 (1 + C∆t) ≤ exp (C

∑N−1
j=0 ∆t) ≤ exp (CT ).

4.4.5 Proof of Theorem 4.1.2

Proof. Let eh = u−uh. We introduce the splitting eh = ξh+ζh+θh, where θh = Πhu−uh,
ζh = Phu − Πhu, and ξh = u − Phu. Using the triangle inequality, Lemma 4.4.7,
Lemma 4.4.5, and noting that [ξh]n = 0 for n = 0, . . . , N − 1, we find there exists a
constant C > 0 such that

∥∥e−N∥∥2

L2(Ω)
+

N−1∑
n=0

∥∥[eh]n
∥∥2

L2(Ω)
+

N−1∑
n=0

ν

∫ T

0

~eh~
2
v′ dt

≤ exp
(
CT
)(∥∥ξ−N∥∥2

L2(Ω)
+ ν

∫ T

0

~ξh~
2
v′ dt

)
. (4.67)

To bound the last term on the right-hand side of eq. (4.67), we employ Theorem A.1.2 to
find ∫ T

0

~ξh~
2
v′ dt . h2k‖u‖2

L2(0,T,Hk+1(Ω)) + ∆t2k+2‖u‖2
Hk+1(0,T,H2(Ω)) . (4.68)
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The result will follow after bounding ‖ξ−N‖L2(Ω). By Lemma 4.4.1, there exists a constant
C > 0 such that∥∥ξ−N∥∥2

L2(Ω)
=
∥∥u(T )− (Phu)(T )

∥∥2

L2(Ω)
. h2k+2‖u‖2

C(0,T ;Hk+1(Ω)) . (4.69)

4.5 Error analysis for the pressure

4.5.1 Bounds on temporal derivative of the error

The error analysis for the pressure will require a bound on the temporal derivative of u−uh:∫
In

∥∥∂t(u− uh)∥∥2

L2(Ω)
dt.

Lemma 4.5.1. Let (Πhu, Π̄hu) ∈ Vdiv
h × V̄h denote the element and facet velocity compo-

nents of the Stokes projection eq. (4.47) for n = 0, . . . , N − 1, and let Ph denote the pro-
jection introduced in Definition 4.4.1. Let ζh = Phu−Πhu, ξh = u−Phu, ζ̄h = P̄hu− Π̄hu
and ξ̄h = u− P̄hu. There exists a constant C > 0, independent of the mesh parameters ∆t
and h and the viscosity ν but dependent on the domain Ω and polynomial degree k, such
that

N−1∑
n=0

∫
In

‖∂tζh‖2
L2(Ω) dt ≤ C∆t−1ν

∫ T

0

~ξh~
2
v′ dt.

Proof. Our starting point will be the definition of the parabolic Stokes projection eq. (4.47).
Introducing the splitting u − Πhu = ξh + ζh and testing with vh = (t − tn)∂tζh ∈
Pk(In;V div

h )× Pk(In; V̄h) we find∫
In

(t− tn)‖∂tζh‖2
L2(Ω) dt+ ν

∫
In

(t− tn)ah(ζh, ∂tζh) dt

=

∫
In

(ξh, ∂tζh)Th dt+

∫
In

(t− tn)(ξh, ∂
2
t ζh)Th dt

−∆t(ξh(t
−
n+1), ∂tζ

−
n+1)Th − ν

∫
In

(t− tn)ah(ξh, ∂tζh) dt.
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Now, since ∂tζh, (t− tn)∂2
t ζh ∈ Pk−1(In, V

div
h ),∫

In

(ξh, ∂tζh)Th dt = 0 =

∫
In

(t− tn)(ξh, ∂
2
t ζh)Th dt.

Therefore, ∫
In

(t− tn)‖∂tζh‖2
L2(Ω) dt+ ν

∫
In

(t− tn)ah(ζh, ∂tζh) dt

= −∆t(ξh(t
−
n+1), ∂tζ

−
n+1)Th − ν

∫
In

(t− tn)ah(ξh, ∂tζh) dt.

Now, ∫
In

(t− tn)ah(ζh, ∂tζh) dt =
1

2

∫
In

(t− tn)
d

dt
ah(ζh, ζh) dt,

and integration by parts yields

1

2

∫
In

(t− tn)
d

dt
ah(ζh, ζh) dt =

1

2
∆tah(ζh(t

−
n+1), ζh(t

−
n+1))− 1

2

∫
In

ah(ζh, ζh) dt.

By the coercivity of ah(·, ·), ah(ζh(t−n+1), ζh(t
−
n+1)) ≥ 0, so∫

In

(t− tn)‖∂tζh‖2
L2(Ω) dt

≤ Cb
2
ν

∫
In

~ζh~
2
v dt−∆t(ξh(t

−
n+1), ∂tζ

−
n+1)Th − ν

∫
In

(t− tn)ah(ξh, ∂tζh) dt.

Since ∂tζ
−
n+1 ∈ V div

h , it holds that (ξh(t
−
n+1), ∂tζ

−
n+1)Th = 0. Now, by the boundedness of

ah(·, ·), the inverse inequality Equation (4.19b), and Young’s inequality, we have∫
In

(t− tn)|ah(ξh, ∂tζh)| dt ≤
C

2

∫
In

~ξh~
2
v′ dt+

C

2

∫
In

~ζh~
2
v dt.

Thus, ∫
In

(t− tn)‖∂tζh‖2
L2(Ω) dt ≤ C

(
ν

∫
In

~ξh~
2
v′ dt+ ν

∫
In

~ζh~
2
v dt

)
.

Applying a finite-dimensional scaling argument as in [98, Eq. (12.18)],

C∆t

∫
In

‖∂tζh‖2
L2(Ω) dt ≤

∫
In

(t− tn)‖∂tζh‖2
L2(Ω) dt,
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so ∫
In

‖∂tζh‖2
L2(Ω) dt ≤ C∆t−1

(
ν

∫
In

~ξh~
2
v′ dt+ ν

∫
In

~ζh~
2
v dt

)
.

Summing over all space-time slabs and applying Lemma 4.4.5 yields the result.

Lemma 4.5.2. Let (uh, ūh) ∈ Vh be the approximate velocity solution to the Navier–
Stokes system computed using the space-time HDG scheme eq. (4.4) for n = 0, . . . N − 1
and let u be the velocity solution to the Navier–Stokes system eq. (2.24). Let θh = uh−Πhu,
ξh = u−Phu, θ̄h = uh−Π̄hu and ξ̄h = u−P̄hu. There exists a constant C > 0, independent
of the mesh parameters ∆t and h and the viscosity ν but dependent on the domain Ω and
polynomial degree k, such that

N−1∑
n=0

∫
In

‖∂tθh‖2
L2(Ω) dt ≤ C∆t−3/2 exp

(
CT
)(

ν

∫ T

0

~ξh~
2
v′ dt + ν

∫ T

0

~u− uh~
2
v dt

)
.

Proof. Our starting point is the error equation eq. (4.56). This time, we test with vh =
(t − tn)∂tθh ∈ Pk−1(In;V div

h ) × Pk−1(In, V
k
h ). Since uh ∈ Pk(In, H(div)), ∇ · uh = 0,

Πhu ∈ Pk(In, H(div)), and ∇·Πhu = 0, we have that ∂tuh ∈ Pk−1(In, H(div)), ∂t(∇·uh) =
∇ · ∂tuh = 0, ∂tΠhu ∈ Pk−1(In, H(div)), and ∂t(∇ ·Πhuh) = ∇ · ∂tΠhuh = 0. Therefore, we
have∫

In

(t− tn)‖∂tθh‖2
L2(Ω) dt+ ν

∫
In

(t− tn)ah(θh, ∂tθh) dt

= −
∫
In

(t− tn)
(
oh(u;u, ∂tθh)− oh(uh;uh, ∂tθh)

)
dt.

(4.70)

Now,

ν

∫
In

(t− tn)ah(θh, ∂tθh) dt =
1

2
ν

∫
In

(t− tn) d
dt
ah(θh,θh) dt

=
1

2
ν∆tah(θ

−
n+1,θ

−
n+1)− 1

2
ν

∫
In

ah(θh,θh) dt

≥ −1

2
ν

∫
In

ah(θh,θh) dt,

(4.71)

so by the boundedness of ah(·, ·),∫
In

(t− tn)‖∂tθh‖2
L2(Ω) dt

≤ Cν

∫
In

~θh~
2
v dt + ∆t

∫
In

|
(
oh(u;u, ∂tθh)− oh(uh;uh, ∂tθh)

)
| dt.

90



Now,

oh(u;u, ∂tθh)− oh(uh;uh, ∂tθh) = oh(u− uh;u, ∂tθh) + oh(uh;u− uh, ∂tθh),

so by eq. (4.10) we have

∆t

∫
In

|
(
oh(u;u, ∂tθh)− oh(uh;uh, ∂tθh)

)
| dt

≤ C∆t

∫
In

(
‖u‖H1(Ω) + ~uh~v

)
~u− uh~v~∂tθh~v dt

≤ C∆t
(
‖u‖L∞(0,T ;H1(Ω)) +‖uh‖L∞(0,T ;Vh)

)∫
In

~u− uh~v~∂tθh~v dt.

By Equation (4.19a), the energy estimate Lemma 4.1.1, and the assumption eq. (4.2) on
the problem data,

‖uh‖L∞(0,T ;Vh) ≤ C∆t−1/2ν1/2. (4.72)

Thus, by the assumption eq. (4.2) on the problem data, Theorem 2.3.2, eq. (2.29), and
Equation (4.19b),

∆t

∫
In

|
(
oh(u;u, ∂tθh)− oh(uh;uh, ∂tθh)

)
| dt

≤ Cε

2

(
ν2 +

ν

∆t

)∫
In

~u− uh~
2
v dt+

1

2ε
∆t2

∫
In

~∂tθh~
2
v dt

≤ Cε

2

(
ν2 +

ν

∆t

)∫
In

~u− uh~
2
v dt+

C

2ε

∫
In

~θh~
2
v dt.

Choosing ε = O(∆t1/2), we have

∆t

∫
In

|
(
oh(u;u, ∂tθh)− oh(uh;uh, ∂tθh)

)
| dt

≤ C
(
ν2∆t1/2 + ν∆t−1/2

)∫
In

~u− uh~
2
v dt+ C∆t−1/2

∫
In

~θh~
2
v dt

≤ Cν∆t−1/2

∫
In

~u− uh~
2
v dt+ C∆t−1/2

∫
In

~θh~
2
v dt.

A finite-dimensional scaling argument [98, Eq. (12.18)] yields

C∆t

∫
In

‖∂tθh‖2
L2(Ω) dt ≤

∫
In

(t− tn)‖∂tθh‖2
L2(Ω) dt.
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Therefore, we have∫
In

‖∂tθh‖2
L2(Ω) dt ≤ Cν−1∆t−3/2

(
ν

∫
In

~θh~
2
v dt + ν

∫
In

~u− uh~
2
v dt

)
.

Summing over all space-time slabs and applying Lemma 4.4.7, using the splitting ηh =
ξh + ζh, and applying Lemma 4.4.5, we have

N−1∑
n=0

∫
In

‖∂tθh‖2
L2(Ω) dt

≤ Cν−1∆t−3/2 exp
(
CT
)(

ν

∫ T

0

~ξh~
2
v′ dt + ν

∫ T

0

~u− uh~
2
v dt

)
.

Lemma 4.5.3. Let (uh, ūh) ∈ Vh be the approximate velocity solution to the Navier–Stokes
system computed using the space-time HDG scheme eq. (4.4) for n = 0, . . . N − 1 and let
the velocity solution u to the Navier–Stokes system eq. (2.24) satisfy

u ∈ Hk+1(0, T ;V ∩H2(Ω)d) ∩H1(0, T ;Hk+1(Ω)d),

with initial data satisfying u0 ∈ Hk+1(Ω)d. There exists a constant C > 0, independent
of the mesh parameters ∆t and h and the viscosity ν but dependent on the domain Ω and
polynomial degree k, such that

N−1∑
n=0

∫
In

∥∥∂t(u− uh)∥∥2

L2(Ω)

≤ Cν−1 exp
(
CT
)(

∆t2k‖u‖2
Hk+1(0,T ;H2(Ω)) +

h2k

∆t3/2
‖u‖2

L2(0,T ;Hk+1(Ω))

)
.

Proof. First, we introduce the splitting eh = ξh + ζh + θh:

N−1∑
n=0

∫
In

∥∥∂t(u− uh)∥∥2

L2(Ω)
≤

N−1∑
n=0

∫
In

‖∂tξh‖2
L2(Ω) +

N−1∑
n=0

∫
In

‖∂tζh‖2
L2(Ω) +

N−1∑
n=0

∫
In

‖∂tθh‖2
L2(Ω) .

From Lemma 4.5.1, Lemma 4.5.2, and the assumption that ∆t ≤ 1, we have:

N−1∑
n=0

∫
In

∥∥∂t(u− uh)∥∥2

L2(Ω)

≤
N−1∑
n=0

∫
In

‖∂tξh‖2
L2(Ω) + Cν−1∆t−3/2 exp

(
CT
)(

ν

∫ T

0

~ξh~
2
v′ dt + ν

∫ T

0

~u− uh~
2
v dt

)
.
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Applying eq. (A.3e), the projection estimates in Theorem A.1.2, and Theorem 4.1.2 (see
in particular eq. (4.68) and eq. (4.69)), we have:

N−1∑
n=0

∫
In

∥∥∂t(u− uh)∥∥2

L2(Ω)

≤ Cν−1 exp
(
CT
)(

∆t2k‖u‖2
Hk+1(0,T ;L2(Ω)) + h2k+2‖u‖2

H1(0,T ;Hk+1(Ω))

+ ∆t2k+1/2‖u‖2
Hk+1(0,T,H2(Ω)) + ∆t−3/2h2k

(
h2‖u‖2

C(0,T ;Hk+1(Ω)) +‖u‖2
L2(0,T ;Hk+1(Ω))

))
.

The result follows after collecting leading order terms.

4.5.2 Proof of Theorem 4.1.3.

Proof. Recall that given ph − qh ∈ Qh, we can expand it in terms of an orthonormal basis
of Pk(In):

ph − qh =
k∑
i=0

φi(t)(pi − qi),

where pi, qi ∈ Qh. Mimicking the proof of the inf-sup condition Theorem 4.3.2, given
ph − qh ∈Qh, we construct ψh ∈ Vh by choosing

ψh =
k∑
i=0

φi(t)ΠBDMzi, and ψ̄h =
k∑
i=0

φi(t)Π̄V zi, (4.73)

where ΠBDM is the BDM projection, Π̄V is the L2-projection onto the space V̄h, and zi ∈
H1

0 (Ω)d satisfies
∇ · zi = pi − qi, ‖zi‖H1(Ω) ≤ β‖pi − qi‖L2(Ω) ,

for some β > 0. Note that it holds that∫
In

‖ph − qh‖2
L2(Ω) dt =

∫
In

bh(p− qh, ψh) dt−
∫
In

bh(p− ph, ψh) dt. (4.74)

Testing eq. (4.4a) with vh = ψh, using Lemma 4.2.2, integrating by parts in time and
rearranging, and applying the Cauchy–Schwarz inequality, we have∫

In

bh(p− ph, ψh) dt ≤
∫
In

∥∥∂t(u− uh)∥∥L2(Ω)
‖ψh‖L2(Ω) dt+

∥∥[u− uh]n
∥∥
L2(Ω)

∥∥ψ+
n

∥∥
L2(Ω)

+ ν

∫
In

~u− uh~v′~ψh~v +

∫
In

(oh(u;u,ψh)− oh(uh;uh,ψh)) dt.
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Note that there exists a constant C > 0 such that ~ψi~v ≤ C‖pi − qi‖L2(Ω) (see [77, eq.
(75)]) and thus ∫

In

~ψh~
2
v ≤ C

∫
In

‖ph − qh‖2
L2(Ω) dt. (4.75)

Since oh(u;u,ψh)− oh(uh;uh,ψh) = oh(u− uh;u,ψh) + oh(uh;u−uh,ψh), we can apply
eq. (4.10) to find∫

In

|
(
oh(u;u,ψh)− oh(uh;uh,ψh

)
| dt

≤ C
(
‖u‖L∞(0,T ;H1(Ω)) +‖uh‖L∞(0,T ;Vh)

)∫
In

~u− uh~v~ψh~v dt.

Now, by Equation (4.19a), Lemma 4.1.1, Theorem 2.3.2 eq. (2.29), assumption eq. (4.2)
on the problem data, and eq. (4.75), there exists a constant C > 0 such that∫

In

|
(
oh(u;u,ψh)− oh(uh;uh,ψh

)
| dt

≤ C∆t−1/2
(
ν

∫
In

~u− uh~
2
v′ dt

)1/2 (∫
In

‖ph − qh‖2
L2(Ω) dt

)1/2

.

(4.76)

Collecting eq. (4.75) and eq. (4.76) and applying the following discrete trace inequality
valid for polynomials in time (see e.g. [29, Lemma 6.42])

∥∥ψ+
n

∥∥
L2(Ω)

≤ C∆t−1/2
(∫

In

‖ψh‖2
L2(Ω) dt

)1/2

,

we see that there exists a constant C > 0 such that∫
In

|bh(p− ph, ψh)| dt

≤ C∆t−1/2
(∫

In

‖ph − qh‖2
L2(Ω) dt

)1/2(
∆t1/2

(∫
In

∥∥∂t(u− uh)∥∥2

L2(Ω)
dt
)1/2

+
∥∥[u− uh]n

∥∥2

L2(Ω)
+
(
ν

∫
In

~u− uh~
2
v′ dt

)1/2)
.

(4.77)
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Summing over all space-time slabs and using Lemma 4.5.3 and Theorem 4.1.2 (see in
particular eq. (4.68) and eq. (4.69)), we have the following leading order terms∫ T

0

|bh(p− ph, ψh)| dt

≤ Cν−1 exp
(
CT
)(∫

In

‖ph − qh‖2
L2(Ω) dt

)1/2

×
(

∆tk‖u‖Hk+1(0,T ;H2(Ω)) +
hk

∆t3/4
‖u‖L2(0,T ;Hk+1(Ω))

)
.

(4.78)

It remains to bound ∫
In

bh(p− qh, ψh) dt.

Note that since ψh · n|∂K ∈ Pk(In;Pk(∂K)), we have∫
In

bh(p− qh, ψh) dt = −
∑
K∈Th

∫
In

(∫
K

(p− qh)∇ · ψh dx dt+

∫
∂K

ψh · n(ΠQ̄p− q̄h) ds

)
dt,

where ΠQ̄ is the L2-projection onto Pk(In;Pk(∂K)). Recalling the definition of ψh eq. (4.73),
we see that ψh ∈ Pk(In;H(div)), and hence ψh · n is single-valued across cell facets, as is
ΠQ̄p− q̄h. Thus, ∑

K∈Th

∫
In

∫
∂K

ψh · n(ΠQ̄p− q̄h) ds dt = 0,

and therefore we are left with∫
In

bh(p− qh, ψh) dt = −
∑
K∈Th

∫
In

∫
K

(p− qh)∇ · ψh dt.

Noting that (∇ · ψh)|K ∈ Pk(In;Pk−1(K)), we can write∫
In

bh(p− qh, ψh) dt = −
∑
K∈Th

∫
In

∫
K

(ΠQp− qh)∇ · ψh dt,

where ΠQ is the L2-projection onto Pk(In;Pk−1(K)). Furthermore, it can be shown via an

expansion in terms of the basis
{
φi(t)

}k
i=0

of Pk(In) and the commuting diagram property
of the BDM projection ((iii) in Lemma 3.5.1) that

−
∑
K∈Th

∫
In

∫
K

(ΠQp− qh)∇ · ψh dt = −
∑
K∈Th

∫
In

∫
K

(ΠQp− qh)(ph − qh) dt.
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Lastly, we can again use the definition of ΠQ to conclude

−
∑
K∈Th

∫
In

∫
K

(ΠQp− qh)∇ · ψh dt = −
∑
K∈Th

∫
In

∫
K

(p− qh)(ph − qh) dt.

Thus, ∫
In

bh(p− qh, ψh) dt = −
∫
In

∫
Ω

(p− qh)(ph − qh) dt. (4.79)

With eq. (4.78) and eq. (4.79) in hand, we can return to eq. (4.74), apply the Cauchy–
Schwarz inequality, and sum over all space-time slabs to find

(∫ T

0

‖ph − qh‖2
L2(Ω) dt

)1/2

≤
(∫ T

0

‖p− qh‖2
L2(Ω) dt

)1/2

+ E, (4.80)

where

E = Cν−1 exp
(
CT
)(

∆tk‖u‖Hk+1(0,T ;H2(Ω)) +
hk

∆t3/4
‖u‖L2(0,T ;Hk+1(Ω))

)
.

From the triangle inequality,(∫ T

0

‖p− ph‖2
L2(Ω) dt

)1/2

≤ 2

(∫ T

0

‖p− qh‖2
L2(Ω) dt

)1/2

+ E,

and we can bound the first term on the right-hand side using the approximation properties
of the L2-projection onto Qh (see e.g. [93, Theorem 3]):∫ T

0

‖p− qh‖2
L2(Ω) dt ≤ C

(
h2k‖p‖2

L2(0,T ;Hk+1(Ω)) + ∆t2k+2‖p‖2
Hk+1(0,T ;L2(Ω))

)
.

The result follows after collecting the leading order terms.

4.6 Numerical results

In this section, we consider a simple test case with a manufactured solution to verify the
theoretical results of the previous sections. We solve the Navier–Stokes equations on the
space-time domain Ω × [0, T ] = [0, 1]3. We impose Dirichlet boundary conditions along
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the boundaries x = 0, x = 1, y = 0, and Neumann boundary conditions along y = 1. We
choose the problem data such that the exact solution is given by

u =

[
2 + sin(2π(x− t)) sin(2π(y − t))
2 + cos(2π(x− t)) cos(2π(y − t))

]
, p = sin(2π(x− t)) cos(2π(y − t)).

This example was implemented using the Modular Finite Element Methods (MFEM) li-
brary [2, 67] on prismatic space-time meshes.

We present the velocity and pressure errors, measured in the mesh-dependent ~·~v′-
norm and ‖·‖L2(0,T ;L2(Ω))-norm, respectively, and rates of convergence for different levels of
space-time refinement with polynomial degrees k = 2 and k = 3 in Table 4.1. Due to the
dominance of the spatial error, we observe that (

∫ T
0

~eh~
2
v′ dt)

1/2 = O(hk), as expected
from Theorem 4.1.2. We furthermore observe optimal rates of convergence for the pressure
in the L2(0, T ;L2(Ω))-norm.

Cells per slab Nr. of slabs (
∫ T

0
~eh~

2
v′ dt)

1/2 Rate ‖p− ph‖L2(Ω×[0,T ]) Rate
128 20 8.6e-01 - 7.9e-03 -
512 40 2.1e-01 2.0 2.6e-03 1.6
2048 80 5.2e-02 2.0 6.7e-04 1.9
8192 160 1.3e-02 2.0 1.7e-04 2.0
128 20 2.0e-01 - 6.9e-04 -
512 40 2.7e-02 2.9 5.2e-05 3.7
2048 80 3.5e-03 3.0 4.7e-06 3.5
8192 160 4.3e-04 3.0 5.1e-07 3.2

Table 4.1: Rates of convergence when solving eq. (4.1) with ν = 10−4. Note that ∆t =
1/(Nr. of slabs). Top: using polynomials of degree k = 2, bottom: using polynomials of
degree k = 3.

To explicitly show k + 1 rates of convergence in time (as also predicted by Theo-
rem 4.1.2), we now consider a fine enough fixed spatial mesh to ensure that the temporal
error dominates over the spatial error. In particular, we choose a mesh consisting of 57800
elements when k = 2 and 8192 elements when k = 3. In Table 4.2 we observe that
(
∫ T

0
~eh~

2
v dt)1/2 = O(∆tk+1) as expected.
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Cells per slab Nr. of slabs (
∫ T

0
~eh~

2
v dt)1/2 Rate

2 4.4e+00 -
57800 4 9.9e-01 2.1

8 1.6e-01 2.6
16 2.3e-02 2.8
32 3.1e-03 2.9
2 1.8e+00 -

8192 4 2.1e-01 3.1
8 1.4e-02 3.9
16 1.0e-03 3.8

Table 4.2: Time rates of convergence when solving eq. (4.1) with ν = 10−4. Note that
∆t = 1/(Nr. of slabs). Top: using polynomials of degree k = 2, bottom: using polynomials
of degree k = 3.
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Chapter 5

Pressure-robust space-time HDG for
the time-dependent problem on fixed
domains: Convergence to weak
solutions

In this chapter, we continue our study of the space-time hybridized discontinuous Galerkin
(HDG) method for the evolutionary incompressible Navier–Stokes equations analyzed in
Chapter 4. Therein, we proved that the method is pressure-robust and derived optimal
rates of convergence in space and time for the velocity field assuming that the Navier–
Stokes problem admits a strong solution in the sense of Theorem 2.3.2. However, as
a discontinuous method, the HDG method introduces additional stabilization which is
a potential source of consistency error if the exact solution is not sufficiently regular.
Consequently, the convergence results deduced from the standard a priori analysis of DG
and HDG methods often exclude the case of non-smooth solutions which may be present in
physically realistic scenarios. For this reason, our analysis in Chapter 4 considered strong
solutions of the Navier–Stokes system, and cannot be used to deduce convergence to weak
solutions in the absence of additional regularity.

The purpose of this chapter is to fill this gap by proving that the discrete solution of the
space-time HDG scheme analyzed in Chapter 4 for strong solutions converges to a Leray–
Hopf weak solution of the evolutionary Navier–Stokes equations. To our knowledge, this
is one of the few minimal regularity convergence results available for HDG discretizations
in general, and it is the first for a space-time HDG discretization. As a byproduct, we
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obtain a new proof of the existence of weak solutions of the Navier–Stokes equations. To
circumvent the problems posed by the lack of consistency in our numerical scheme, we
instead consider the concept of asymptotic consistency introduced in [28, Section 5.2].
That is, we aim to show the discrete weak formulation resulting from our space-time HDG
discretization converges to the exact weak formulation of the Navier–Stokes equations in
a suitable sense as the time step and mesh size tends to zero. Let us briefly discuss the
challenges involved.

Consider a countable set of mesh sizes H whose unique accumulation point is zero,
and consider a sequence of discrete velocity solutions {uh}h∈H satisfying eq. (5.8) below
computed on a sequence of space-time meshes such that the time step ∆t vanishes along
with the mesh size h (but no explicit relation between the two is assumed). We aim to pass
to the limit as h→ 0 (and thus ∆t→ 0) in eq. (5.8), which requires compactness. To this
end, the energy bounds obtained on the discrete solution in Chapter 4 allow us to conclude
that the sequence of discrete velocities is compact in the weak topology of L2(0, T ;H) and
the weak-? topology of L∞(0, T ;H). If the problem were linear, these results would suffice.
However, it is well known that nonlinear functions need not be weakly continuous, and
thus the nonlinear convection term poses a problem.

To overcome this barrier, we will need to additionally show that {uh}h∈H is compact in
the strong topology of L2(0, T ;L2(Ω)d). This is made challenging by the discontinuous na-
ture of our numerical method, as standard compactness results like the Rellich–Kondrachov
theorem (Theorem 2.2.6) and the Aubin–Lions–Simon theorem (Theorem 2.2.12) routinely
employed at the continuous level are lost and appropriate discrete analogues must be de-
rived. Fortunately, discrete compactness for DG schemes is, at this point, well studied.
We mention in particular the works of Buffa and Ortner [11], Di Pietro and Ern [72], and
Kikuchi [50], wherein discrete versions of the Rellich–Kondrachov theorem are proven for
broken Sobolev and broken polynomial spaces. A common theme among these works is the
introduction of a discrete analogue of the gradient operator that incorporates information
from the jumps of the discrete solution across its discontinuities.

As for a discrete analogue of the Aubin–Lions–Simon theorem in the time-dependent
setting, we mention the work of Walkington [102] where it is shown that DG time step-
ping methods enjoy similar compactness properties to the evolutionary equations they are
used to approximate. This is made possible by Simon’s characterization of compact sets
in Lp(0, T ;B) (Theorem 2.2.11) which, unlike Theorem 2.2.12, does not require additional
regularity in time. Unfortunately, the results of [102] are valid only for conforming spa-
tial discretizations. This was remedied in [61], wherein a generalization of the work of
Walkington valid for broken Sobolev spaces (and thus, for a broad class of non-conforming
discretizations) is obtained.
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In this chapter, we adapt some of the available discrete functional analysis tools [72]
to the HDG setting (see also [50] for similar efforts). We also prove a variation of the
discrete Aubin–Lions–Simon theorem in [102] valid for our non-conforming discretization.
Our result differs slightly from that of [61] in that we stay entirely within the framework
of broken polynomial spaces. In an effort to unify the available discrete functional analysis
tools for spatial DG discretizations and DG time stepping, we introduce a discrete time
derivative operator in analogy with the aforementioned discrete gradient operator using
the time lifting operator in [64, 87], and we show that some of the assumptions required
in [61, 102] for compactness can be interpreted using this discrete time derivative.

The remainder of the chapter is organized as follows: In Section 5.1, we introduce
notation, recall the space-time HDG method under consideration and some of the key
results obtained in Chapter 4. In Section 5.2, we introduce discrete analogues of the
gradient operator and time derivative, and recast the numerical scheme in terms of these
discrete operators. In Section 5.3, we prove that these discrete operators are bounded
uniformly with respect to the mesh size and time step, and as a consequence we obtain
convergence of the sequence of discrete velocity solutions as the mesh size and time step
tend to zero. In Section 5.4, we show that the limit of this sequence of discrete solutions
is a weak solution to the Navier–Stokes equations.

This chapter is reprinted, with slight modification, from the following article:

K. L. A Kirk, A. Çeşmelioğlu, and S. Rhebergen, Convergence to weak
solutions of a space-time hybridized discontinuous Galerkin method for the incom-
pressible Navier–Stokes equations, Mathematics of Computation. https://doi.

org/10.1090/mcom/3780,

with permission from the American Mathematical Society (AMS).

5.1 Preliminaries

In this section, we discuss the weak formulation for the continuous Navier–Stokes problem
eq. (5.1), introduce the space-time HDG method that we will use to approximate solutions
of eq. (5.1), and collect a number of useful results for our analysis.

5.1.1 Notation

We use standard notation for Lebesgue and Sobolev spaces: given a bounded measurable
set D, we denote by Lp(D) the space of p-integrable functions. When p = 2, we denote the
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L2(D) inner product by (·, ·)D. We denote by W k,p(D) the Sobolev space of p-integrable
functions whose distributional derivatives up to order k are p-integrable. When p = 2,
we write W k,p(D) = Hk(D). We define H1

0 (D) to be the subspace of H1(D) of functions
with vanishing trace on the boundary of D. We denote the space of polynomials of degree
k ≥ 0 on D by Pk(D). We use standard notation for spaces of vector valued functions with
d components, e.g. L2(D)d, Hk(D)d, P k(D)d, etc. At times we drop the superscript for
convenience, e.g. we denote by ‖·‖L2(Ω) the norm on both L2(Ω) and L2(Ω)d.

Next, let U be a Banach space, I = [a, b] an interval in R, and 1 ≤ p <∞. We denote
by Lp(I;U) the Bochner space of p-integrable functions defined on I taking values in U .
When p =∞, we denote by L∞(I;U) the Bochner space of essentially bounded functions
taking values in U and by C(I;U) the space of (time) continuous functions taking values
in U . Finally, we let Pk(I;U) denote the space of polynomials of degree k ≥ 0 in time
taking values in U .

5.1.2 The continuous problem

Given a suitably chosen body force f , kinematic viscosity ν ∈ R+, and initial data u0, we
consider the transient Navier–Stokes system posed on a bounded Lipschitz domain Ω ⊂ Rd,
d ∈ {2, 3}:

∂tu− ν∆u+∇ · (u⊗ u) +∇p = f, in Ω× (0, T ], (5.1a)

∇ · u = 0, in Ω× (0, T ], (5.1b)

u = 0, on ∂Ω× (0, T ], (5.1c)

u(x, 0) = u0(x), in Ω. (5.1d)

To avoid any complications arising from curved boundaries, we will assume further that in
two spatial dimensions Ω is a polygon and in three spatial dimensions Ω is a polyhedron.
As we are interested in weak solutions, we require no assumption that Ω is convex.

Definition 5.1.1 (Weak solution). Given a body force f ∈ L2(0, T ;H−1(Ω)d) and an initial
condition u0 ∈ H, a function u ∈ L∞(0, T ;H) ∩ L2(0, T ;V ) with du

dt
∈ L1(0, T ;V ′) is said

to be a weak solution of the Navier–Stokes equations eq. (5.1) provided it satisfies for all
ϕ ∈ Cc(0, T ;V ),∫ T

0

〈
du

dt
, ϕ

〉
V ′×V

dt+

∫ T

0

((u ·∇)u, ϕ) dt+ν

∫ T

0

(∇u,∇ϕ) dt =

∫ T

0

〈f, ϕ〉H−1×H1
0

dt, (5.2)

and u(0) = u0 in V ′ (see e.g. [8, Section V.1.2.2]).
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It is well known that weak solutions in the sense of Definition 5.1.1 are weakly con-
tinuous from [0, T ] into H, and their distributional time derivative possess the further
regularity du

dt
∈ L4/d(0, T ;V ′) (see e.g. [8]). If d = 2, this solution is unique and further-

more u ∈ C(0, T ;H). Uniqueness in three dimensions remains an open problem.

Remark 5.1.1 (On the regularity of the body force). Our main result (Theorem 5.4.3)
should remain valid for f ∈ L2(0, T ;H−1(Ω)d) provided there is an appropriate smoothing
operator Eh : Vh → H1

0 (Ω)d; see e.g. [4]. In particular, if vh → v strongly in L2(Ω)d, we
require also that Ehvh → v strongly in L2(Ω)d as h→ 0. For simplicity, we focus on body
forces f ∈ L2(0, T ;L2(Ω)d).

Remark 5.1.2 (The energy inequality). In two dimensions, the weak solution to the
Navier–Stokes equations satisfies the following energy equality: for all s ∈ (0, T ),∥∥u(s)

∥∥2

L2(Ω)
+ 2ν

∫ s

0

‖u‖2
V dt = ‖u0‖2

L2(Ω) + 2

∫ s

0

〈f, u〉H−1×H1
0

dt. (5.3)

In three dimensions, we say that a weak solution is of Leray–Hopf type if it satisfies the
energy inequality: for a.e. s ∈ (0, T ),∥∥u(s)

∥∥2

L2(Ω)
+ 2ν

∫ s

0

‖u‖2
V dt ≤ ‖u0‖2

L2(Ω) + 2

∫ s

0

〈f, u〉H−1×H1
0

dt. (5.4)

5.1.3 Space-time setting and finite element spaces

In this subsection, we will introduce the space-time slabs, elements, faces, and finite element
spaces required for the space-time HDG discretization. We follow some of the definitions
introduced in [27]. We define a simplicial mesh of Ω to be a couple (Th,Fh) where the set
of mesh elements Th is a finite collection of nonempty, disjoint simplices K with boundary
∂K and diameter hK such that Ω =

⋃
K∈Th K. We define the mesh size h of Th to be

h = maxK∈Th hK .

The set of mesh faces Fh is a finite collection of nonempty, disjoint subsets of Ω such
that, for any F ∈ Fh, F is a non-empty, connected subset of a hyperplane in Rd. We
assume further that for each F ∈ Fh, either there exist distinct mesh elements K1, K2 ∈ Th
such that F = ∂K1 ∩ ∂K2, in which case we call F an interior face, or there exists one
mesh element K ∈ Th such that F = ∂K ∩ ∂Ω and we call F a boundary face. Moreover,
we assume that the set of mesh faces forms a partition of the mesh skeleton; that is,
∂Th =

⋃
K∈Th ∂K =

⋃
F∈Fh F . We collect interior faces in the set F ih and boundary faces

in the set F bh. Note that Fh = F ih ∪ F bh.
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To perform our analysis, we will make the following assumptions on the family of spatial
meshes {(Th,Fh)}h∈H:

(i) For each h ∈ H, Th is conforming in the sense that given two elements K1, K2 ∈ Th,
either K1 ∩ K2 = ∅ or K1 ∩ K2 is a common vertex (d = 2) or edge (d = 3), or a
common face of K1 and K2.

(ii) For each h ∈ H, Th is quasi-uniform; i.e., there exists a CU > 0 such that h ≤ CUhK
for all K ∈ Th.

(iii) For each h ∈ H, each face F ∈ Fh satisfies an equivalence condition: that is, given
hF = diam(F ), there exist constants Ce, C

e > 0 such that CehK ≤ hF ≤ CehK for all
K ∈ Th and for all F ∈ Fh where F ⊂ ∂K.

Let ks ≥ 1 be a fixed integer. We introduce a pair of discontinuous finite element spaces
on Th:

Vh :=
{
vh ∈ L2(Ω)d | vh|K ∈ Pks(K)d ∀K ∈ Th

}
,

Qh :=
{
qh ∈ L2

0(Ω) | qh|K ∈ Pks−1(K) ∀K ∈ Th
}
,

and on ∂Th, we introduce a pair of discontinuous facet finite element spaces:

V̄h :=
{
v̄h ∈ L2(∂Th) | v̄h|F ∈ Pks(F )d ∀F ∈ Fh, v̄h|∂Ω = 0

}
,

Q̄h :=
{
q̄h ∈ L2(∂Th) | q̄h|F ∈ Pks(F ) ∀F ∈ Fh

}
.

Next, we partition the time interval (0, T ) into a series of N + 1 time-levels 0 = t0 <
t1 < · · · < tN = T of length ∆tn = tn+1 − tn, and we define τ = max0≤n≤N−1 ∆tn. For the
compactness result in Theorem B.1.1 to hold, we require this time partition to be quasi-
uniform, i.e. there exists a CU ′ > 0 such that τ ≤ CU ′∆tn for all n = 0, . . . , N − 1 (see
[102] for details). A space-time slab is then defined as En = Ω × In, with In = (tn, tn+1).
Let kt ≥ 0 be a fixed integer (not necessarily chosen to be equal to ks). We consider
the following tensor-product space-time finite element spaces in which we will seek our
approximation on each space-time slab En:

Vh :=
{
vh ∈ L2(0, T ;L2(Ω)d) | vh|En ∈ Pkt(In;Vh), ∀n = 0, . . . , N − 1

}
,

Qh :=
{
qh ∈ L2(0, T ;L2

0(Ω)) | qh|En ∈ Pkt(In;Qh), ∀n = 0, . . . , N − 1
}
,

V̄h :=
{
v̄h ∈ L2(0, T ;L2(∂Th)d) | v̄h|En ∈ Pkt(In; V̄h), ∀n = 0, . . . , N − 1

}
,

Q̄h :=
{
q̄h ∈ L2(0, T ;L2(∂Th)) | q̄h|En ∈ Pkt(In; Q̄h), ∀n = 0, . . . , N − 1

}
.
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As the spaces Vh and Qh are non-conforming, we make use of broken differential
operators. For vh ∈ Vh, we introduce the broken gradient operator ∇hvh by the re-
striction (∇hvh)|K = ∇(vh|K) and the broken time derivative ∂τvh by the restriction
(∂τvh)|In = ∂t(vh|In). Moreover, the trace of a function vh ∈ Vh may be double-valued
on interior faces F ∈ F ih as well as across two space-time slabs En and En+1. For fixed n,
on an interior face F ∈ F ih shared by two elements KL and KR, we denote the traces of
vh ∈ Vh on F by vLh = trace of vh|KL on F and vRh = trace of vh|KR on F . We denote by
u±n the traces at time level tn from above and below, i.e. u±n = lim

ε↘0
uh(tn ± ε).

We introduce the jump J·K and average {{·}} of vh ∈ Vh across an interior face F ∈ F ih
component-wise: let Jvh,iK = vLh,i − vRh,i and {{vh,i}} = (vLh,i + vRh,i)/2 with vh,i denoting the
ith Cartesian component of vh. The quantities JvhK and {{vh}} are then the vectors with
ith Cartesian component Jvh,iK and {{vh,i}}, respectively. On boundary faces F ∈ F bh, we
set JvhK = {{vh}} = trace of vh|K on F , where K is the element such that F ⊂ ∂K ∩ ∂Ω.
Lastly, we define the time jump of vh ∈ Vh across the space-time slab En by [vh]n = v+

n −v−n .

We adopt the following notation for various product spaces of interest in this work:
V h = Vh × V̄h, Qh = Qh × Q̄h, Vh = Vh × V̄h, and Qh = Qh × Q̄h. Pairs in these
product spaces will be denoted using boldface; for example, vh := (vh, v̄h) ∈ Vh. Lastly,
we introduce two mesh-dependent norms on the spaces Vh and V h, both of which are
standard in the study of interior penalty methods:

‖vh‖2
1,h :=

∑
K∈Th

‖∇vh‖2
K +

∑
F∈Fh

1

hF
‖JvhK‖2

L2(F ) , ∀vh ∈ Vh,

~v~
2
v :=

∑
K∈Th

‖∇vh‖2
K +

∑
K∈Th

1

hK
‖vh − v̄h‖2

∂K , ∀vh ∈ V h.

Throughout we use the notation a . b to denote a ≤ Cb where C is a constant independent
of the mesh parameters h and τ , the viscosity ν, but possibly dependent on the polynomial
degrees kt and ks, the spatial dimension d, and the domain Ω.

Thanks to the equivalence condition on faces, we have

‖vh‖1,h . ~vh~v, ∀vh ∈ V h, (5.6)

and hence we can conclude the following discrete Poincaré inequality holds [28, Corollary
5.4]: for all vh ∈ V h,

‖vh‖L2(Ω) . ~vh~v. (5.7)
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5.1.4 The space-time HDG method

We discretize the Navier–Stokes problem eq. (5.1) using the exactly mass conserving space-
time HDG method studied in Chapter 4. This method combines the point-wise divergence
free and H(div; Ω)-conforming HDG method studied in Chapter 3 with a discontinuous
Galerkin time stepping scheme; see also [43, 44] for related discretizations on space-time
tetrahedral meshes on time-dependent domains.

Due to the use of discontinuous-in-time finite element spaces, the discrete space-time
HDG formulation can be localized to a single space-time slab; see e.g. [98, Chapter 12]. We
first consider the discrete formulation on a single space-time slab, and in Section 5.2.3 we
will introduce the equivalent discrete formulation obtained by summing over all space-time
slabs to aid us in our analysis. For n = 0, . . . , N − 1, the space-time HDG method for the
Navier–Stokes problem in each space-time slab En reads: find (uh,ph) ∈ Vh ×Qh such
that for all test functions (vh, qh) ∈ Vh ×Qh:

−
∫
In

(uh, ∂tvh)Th dt+ (u−n+1, v
−
n+1)Th +

∫
In

(
νah(uh,vh) + oh(uh;uh,vh)

)
dt

+

∫
In

bh(ph, vh) dt−
∫
In

bh(qh, uh) dt = (u−n , v
+
n )Th +

∫
In

(f, vh)Th dt, (5.8)

where (u, v)Th =
∑

K∈Th(u, v)K . Once we have solved eq. (5.8) for uh in the space-time

slab En, the trace u−n+1 serves as an initial condition when solving eq. (5.8) on the next
space-time slab En+1. The process is initiated by choosing u−0 = Πdiv

h u0 in the first space-
time slab E0, where u0 ∈ H is the prescribed initial condition to the continuous problem
eq. (5.1), and Πdiv

h : L2(Ω)→ V div
h is the L2-projection onto the discretely divergence free

subspace V div
h ⊂ Vh; see eq. (5.13) below and the discussion following.

The discrete forms ah(·, ·) : V h × V h → R, bh(·, ·) : Vh × Qh → R, and oh(·; ·, ·) :
Vh×V h×V h → R appearing in eq. (5.8) serve as approximations to the viscous, pressure-
velocity coupling, and convection terms, respectively. We define them as in Chapter 3:
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ah(u,v) :=
∑
K∈Th

∫
K

∇u : ∇v dx+
∑
K∈Th

∫
∂K

α

hK
(u− ū) · (v − v̄) ds (5.9a)

−
∑
K∈Th

∫
∂K

[
(u− ū) · ∂nv + ∂nu · (v − v̄)

]
ds,

oh(w;u,v) :=−
∑
K∈Th

∫
K

u⊗ w : ∇v dx+
∑
K∈Th

∫
∂K

1
2
w · n (u+ ū) · (v − v̄) ds (5.9b)

+
∑
K∈Th

∫
∂K

1
2
|w · n| (u− ū) · (v − v̄) ds,

bh(p, v) :=−
∑
K∈Th

∫
K

p∇ · v dx+
∑
K∈Th

∫
∂K

v · n p̄ ds. (5.9c)

The parameter α > 0 appearing in the bilinear form ah(·, ·) is a penalty parameter typical
of interior penalty type discretizations. The bilinear form ah(·, ·) is continuous and for
sufficiently large α enjoys discrete coercivity [77, Lemmas 4.2 and 4.3], i.e. for all uh,vh ∈
V h,

~vh~
2
v . ah(vh,vh) and

∣∣ah(uh,vh)∣∣ . ~uh~v~vh~v. (5.10)

The form oh(·; ·, ·) satisfies [14, Proposition 3.6]

oh(wh;vh,vh) =
1

2

∑
K∈T

∫
∂K

|wh · n||vh − v̄h|2 ds ≥ 0, wh ∈ V div
h , ∀vh ∈ V h. (5.11)

The form oh(·; ·, ·) also satisfies for all uh,vh ∈ V h and d ∈ {2, 3} (Lemma 4.3.2),

|oh(uh;uh,vh)| .‖uh‖1/(d−1)

L2(Ω) ~uh~
d/2
v ~vh~v. (5.12)

Frequent use will also be made of functions in the subspace of discretely divergence free
velocity fields:

V div
h :=

{
vh ∈ Vh : bh(vh, qh) = 0, ∀qh ∈ Qh

}
,

Vdiv
h := {vh ∈ Vh :

∫ T

0

bh(vh, qh) dt = 0, ∀qh ∈Qh, ∀n = 0, . . . , N − 1} .
(5.13)

We note that V div
h ⊂ H(div; Ω), and further ∇ · vh = 0 and vh · n|∂Ω = 0 for all vh ∈ V div

h

(see e.g. [78, Proposition 1]). As Ω is assumed to have a Lipschitz boundary, we therefore
have V div

h ⊂ H. In fact, it can be shown that V div
h = Vh ∩H.
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5.1.5 Properties of the space-time HDG scheme

Here, we collect a number of useful results concerning the solution of the space-time HDG
scheme eq. (5.8). The existence of solutions to the nonlinear algebraic system arising from
eq. (5.8) was shown in Theorem 4.3.1. It was also shown in Chapter 4 that the discrete
velocity uh computed using the space-time HDG scheme is conforming in L2(0, T ;H),
i.e., if uh ∈ Vh is the element velocity solution of eq. (5.8), then ∇ · uh = 0, uh|En ∈
Pk(In;H(div; Ω)), and the normal trace of uh vanishes on the spatial boundary ∂Ω.

Next, we recall an energy estimate that will allow us to conclude that the discrete
velocity pair uh ∈ Vh computed using eq. (5.8) is bounded uniformly with respect to the
mesh parameters h and τ :

Lemma 5.1.1. Let d ∈ {2, 3}, ks ≥ 1 and kt ≥ 0, and suppose that uh ∈ Vh is solution
of space-time HDG scheme eq. (5.8) for n = 0, . . . , N − 1. For all 0 ≤ m ≤ N − 1,∥∥u−m+1

∥∥2

L2(Ω)
+

m∑
n=0

∥∥[uh]n
∥∥2

L2(Ω)
+ ν

∫ tm+1

0

~uh~
2
v dt ≤ C(f, u0, ν). (5.14)

Furthermore, if kt ≥ 0 when d = 2 and kt ∈ {0, 1} when d = 3, it holds that

‖uh‖L∞(0,T ;L2(Ω)d) ≤ C(f, u0, ν). (5.15)

Here, C(f, u0, ν) denotes a constant that depends on the data f , u0, and ν.

The bounds in Lemma 5.1.1 were proven in Chapter 4 under the assumption that
kt = ks ≥ 1 for simplicity of presentation; we remark that the proofs are equally valid for
the general case ks ≥ 1 and kt ≥ 0. Note that for the lower order schemes kt ∈ {0, 1},
eq. (5.15) follows directly from eq. (5.14). This can be seen immediately when considering
constant polynomials in time (kt = 0). For linear polynomials in time (kt = 1), this follows
from the bound (see [101, Section 3]): ‖uh‖L∞(0,T ;L2(Ω)d) ≤ max0≤m≤N−1 ‖u−m+1‖L2(Ω)

+

max0≤m≤N−1 ‖[uh]m‖L2(Ω).

5.2 Lifting operators and discrete differential opera-

tors

In this section, we introduce two discrete differential operators that serve as natural approx-
imations to the distributional gradient and distributional time derivative in the space-time
HDG setting. These discrete operators enjoy convergence to their continuous counterparts
in the weak topologies of appropriate Bochner spaces.
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5.2.1 Discrete gradient

First, we introduce a discrete gradient operator that will serve as an approximation of the
distributional gradient operator following ideas in [11, 72, 50]. The basic building block
of the discrete gradient operator is the following observation [11]: as functions vh ∈ Vh
are discontinuous, their distributional gradient has a contribution from the jumps of uh
across element interfaces. Therefore, an appropriate approximation of the distributional
gradient in the HDG setting must incorporate the contribution from the jumps between
the element solution and the facet solution across element boundaries. We do so by con-
structing an HDG lifting operator following ideas in [50, 70]. For this, we need to in-
troduce the scalar broken polynomial spaces Wh :=

{
wh ∈ L2(Ω) | wh|K ∈ Pks(K)

}
and

W̄h :=
{
wh ∈ L2(∂Th) | wh|∂K ∈ Rks(∂K)

}
, with Rks(∂K) defined in Section 4.3.2.1. We

first define a local lifting R∂K
h : L2(∂K)→ Pks(K)d satisfying∫

K

R∂K
h (µ) · wh dx =

∫
∂K

µwh · n ds, ∀wh ∈ Pks(K)d. (5.16)

We then define the global lifting Rks
h : L2(∂Th) → Vh by the restriction Rks

h (µ)|K =
R∂K
h (µ|∂K) for all K ∈ Th. Note that Rks

h satisfies for all wh ∈ Vh,∑
K∈Th

∫
K

Rks
h (µ) · wh dx =

∑
K∈Th

∫
∂K

µwh · n ds, (5.17)

and it can be shown using the Cauchy–Schwarz inequality and a standard local discrete
trace inequality that

‖Rks
h (wh − w̄h)‖

2

L2(Ω) .
∑
K∈Th

1

hK
‖wh − w̄h‖2

L2(∂K) , ∀wh ∈ Wh × W̄h. (5.18)

Using the global HDG lifting, we introduce the discrete gradient operator Gks
h : Wh ×

W̄h → Vh in the same spirit as in [72, 50]: given (v, v̄) ∈ Wh × W̄h, we set

Gks
h (v, v̄) = ∇hv −Rks

h (v − v̄), (5.19)

where ∇h is the broken gradient operator. Crucially, this operator satisfies for all vh ∈ V h

and wh ∈ Vh the identity∫
Ω

Gks
h (vh,i) · wh dx =

∫
Ω

∇hvh,i · wh dx−
∑
K∈Th

∫
∂K

(vh,i − v̄h,i)wh · n ds,

where vh,i and v̄h,i denote the ith Cartesian components of vh and v̄h, respectively.
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5.2.2 Discrete time derivative

To define a discrete time derivative operator that serves as an appropriate approximation
of the distributional time derivative, we proceed by analogy with the discrete gradient
constructed in the previous section. We follow [64, 87] by introducing a local time lifting
operator Rkt

loc,n : Vh → Pkt(In;Vh) satisfying∫
In

(Rkt
loc,n(uh), vh)Th dt = ([uh]n, v

+
n )Th , ∀vh ∈ Pkt(In;Vh), (5.20)

Rkt
loc,n(uh) =

(
u+
n − u−n

)
2

kt∑
m=0

(−1)m(2m+ 1)Lnm(t), (5.21)

where the latter representation formula follows from [87, Lemma 6]. Here Lnm(t) are mapped
Legendre polynomials ; see [87, Section 3]. We then define a global time lifting Rkt : Vh → Vh
by the restriction Rkt |In = Rkt

loc,n. This lifting satisfies:∫ T

0

(Rkt(uh), vh)Th dt =
N−1∑
n=0

([uh]n, v
+
n )Th , ∀vh ∈ Vh. (5.22)

With the global time lifting in hand, we define the discrete time derivative Dktt : Vh → Vh
of vh ∈ Vh by setting

Dktt (vh) = ∂τvh +Rkt(vh). (5.23)

Lemma 5.2.1. Suppose that uh ∈ Vdiv
h . Then, it holds that Dktt (uh)|En ∈ Pkt(In;H) for all

0 ≤ n ≤ N − 1.

Proof. That Dktt (uh) is divergence free and H(div; Ω)-conforming follows from the fact that
the broken time derivative commutes with the divergence operator and the representation
formula eq. (5.21). It remains to show that Dktt (uh) · n|∂Ω = 0. Note that uh · n|∂Ω = 0
implies (∂τuh) · n|∂Ω = 0. This can be seen by considering a single space-time slab En and
expanding uh in terms of a basis {ψi}mi=0 of Pkt(In) to find (∂τuh)|In =

∑kt
i=0 ∂tψiui, where

ui ∈ Vh is such that ui ·n|∂Ω = 0. Lastly, since u+
n ·n|∂Ω = u−n ·n|∂Ω = 0, the representation

formula eq. (5.21) shows that indeed Rkt
loc,n(uh) · n|∂Ω = 0.

5.2.3 Rewriting the HDG scheme

We now recast the space-time HDG scheme into a form more amenable to the convergence
analysis in Section 5.4 using the discrete differential operators introduced above. In what
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follows, (uh,i)1≤i≤d, (ūh,i)1≤i≤d, (vh,i)1≤i≤d and (v̄h,i)1≤i≤d will denote the Cartesian compo-
nents of uh, ūh, vh and v̄h, respectively. We will adopt the convention of summation over
repeated indices. Restricting our attention to test functions vh ∈ Vdiv

h × V̄h in eq. (5.8)
to remove the contribution from the pressure-velocity coupling term, integrating by parts
in time, summing over all space-time slabs En, and using the definitions of the lifting
operators, we arrive at the problem: find uh ∈ Vdiv

h × V̄h satisfying for all vh ∈ Vdiv
h × V̄h,∫ T

0

(Dktt (uh), vh)Th dt+

∫ T

0

(
νah(uh,vh) + oh(uh;uh,vh)

)
dt =

∫ T

0

(f, vh)Th dt, (5.24)

where

ah(uh,vh) =

∫
Ω

Gks
h (uh,i) ·Gks

h (vh,i) dx−
∫

Ω

Rks
h (uh,i − ūh,i) ·Rks

h (vh,i − v̄h,i) dx

(5.25)

+
∑
K∈Th

∫
∂K

α

hK
(uh,i − ūh,i)(vh,i − v̄h,i) ds,

oh(uh;uh,vh) dt =

∫
Ω

uh ·G2ks
h (uh,i)vh,i dx (5.26)

+
∑
K∈Th

∫
∂K

1
2

(
uh · n+|uh · n|

)
(uh − ūh) · (vh − v̄h) ds.

5.3 Uniform bounds on the discrete differential oper-

ators

In this section, we derive uniform bounds on the discrete differential operators of the
discrete velocity solution introduced in the previous section. In what follows, we suppose
that uh ∈ Vdiv

h × V̄h is a discrete velocity pair solving the space-time HDG formulation
eq. (5.8) for n = 0, . . . , N − 1. We then show that subsequences of the discrete derivatives
converge weakly to their continuous counterparts.

5.3.1 Bounding the discrete gradient

Before bounding the discrete gradient of uh, we pause to mention an immediate consequence
of the energy bound Lemma 5.1.1. From the discrete Sobolev embeddings for broken
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polynomial spaces [72, Theorem 6.1], we can infer using eq. (5.6) that∫ T

0

‖uh‖2
Lq(Ω) dt ≤ C(f, u0, ν), (5.27)

where 1 ≤ q < ∞ if d = 2 and 1 ≤ q ≤ 6 if d = 3. Thus, (uh)h∈H is bounded in
L2(0, T ;Lq(Ω)d) for 1 ≤ q ≤ 6 and in particular in L2(0, T ;H).

Theorem 5.3.1. Let d ∈ {2, 3} and suppose kt ≥ 0 if d = 2 and kt ∈ {0, 1} if d = 3.
Let uh be the solution of the space-time HDG scheme eq. (5.8). Then, provided the penalty
parameter α > 0 is chosen sufficiently large, it holds that∫ T

0

‖Gk
h(uh,i)‖

2

L2(Ω) dt ≤ C(f, u0, ν). (5.28)

Proof. The result follows from eq. (5.25) and the energy bound in Lemma 5.1.1, provided
α > 0 is chosen sufficiently large, since for all uh ∈ V h we have by eq. (5.18) for i = 1, . . . , d
that

−
∥∥Rks

h (uh,i − ūh,i)
∥∥2

L2(Ω)
+
∑
K∈Th

α

hK

∥∥uh,i − ūh,i∥∥2

L2(∂K)

≥ (α− C)
∑
K∈Th

1

hK

∥∥uh,i − ūh,i∥∥2

L2(∂K)
,

and therefore,

ah(uh,uh) ≥
d∑
i=1

‖Gks
h (uh,i)‖

2

L2(Ω) . (5.29)

Consequently, the sequence Gk
h(uh,i) is bounded in L2(0, T ;L2(Ω)d).

5.3.2 Bounding the discrete time derivative

We now turn our focus to bounding the discrete time derivative of uh ∈ Vdiv
h uniformly,

first in the dual space of Vdiv
h × V̄h, and second in L4/d(0, T ;V ′). The former is required

to obtain a strong compactness result needed for passage to the limit as h → 0 in the
nonlinear convection term, and the second is essential to ensure the distributional time
derivatives of accumulation points of the sequence {uh}h∈H are sufficiently regular to satisfy

Definition 5.1.1. That Dktt (uh) can be identified with an element of L4/d(0, T ;V ′) follows
from Lemma 5.2.1 since (V,H, V ′) form a Gelfand triple (Section 2.1.4).
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5.3.2.1 Uniform bound in the dual space of Vdiv
h × V̄h

To apply the compactness theorem Theorem B.1.1 later on to prove Theorem 5.3.3, we will
require Fh : vh 7→ (Dktt (uh), vh)Th to be uniformly bounded L4/d(0, T ; (V div

h × V̄h)′), with
(V div

h × V̄h)′ the dual space of V div
h × V̄h. We shall see that it suffices to bound Fh(vh) in

the dual space of the fully discrete space Vdiv
h × V̄h, which we equip with the norm

‖Fh‖(Vdiv
h ×V̄h)′ = sup

06=vh∈Vdiv
h ×V̄h

∣∣ ∫ T
0
Fh(vh) dt

∣∣(∫ T
0

~vh~
4/(4−d)
v dt

)(4−d)/4
.

This motivates the following result (where we choose Fh : vh 7→ (Dktt (uh), vh)Th):

Lemma 5.3.1. Let d ∈ {2, 3} and suppose kt ≥ 0 if d = 2 and kt ∈ {0, 1} if d = 3. Let
uh be the discrete velocity pair arising from the solution of the space-time HDG scheme
eq. (5.8). It holds for all vh ∈ Vdiv

h × V̄h that∣∣∣∣ ∫ T

0

(Dktt (uh), vh)Th dt

∣∣∣∣ ≤ C(u0, f, ν, T )

(∫ T

0

~vh~
4/(4−d)
v dt

)(4−d)/4

.

Proof. Let vh ∈ Vdiv
h × V̄h, and use eq. (5.24) to write∫ T

0

(Dktt uh, vh)Th dt =

∫ T

0

(
(f, vh)Th − νah(uh,vh)− oh(uh;uh,vh)

)
dt. (5.30)

We now bound each of the three terms on the right-hand side of eq. (5.30), beginning with
the first term on the right-hand side. The Cauchy-Schwarz inequality, Hölder’s inequality,
and the discrete Poincaré inequality eq. (5.7) yield∫ T

0

|(f, vh)Th | dt ≤ C(f, T )

(∫ T

0

~vh~
4/(4−d)
v dt

)(4−d)/4

. (5.31)

To bound the linear viscous term on the right-hand side of eq. (5.30), we begin by using the
boundedness of ah(·, ·) eq. (5.10) and Hölder’s inequality with p = 4/d and q = 4/(4− d)
to find∫ T

0

|ah(uh,vh)| dt ≤ C

(∫ T

0

~uh~
4/d
v dt

)d/4(∫ T

0

~vh~
4/(4−d)
v dt

)(4−d)/4

. (5.32)
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If d = 2, directly using the uniform bound in Lemma 5.1.1, and if d = 3, applying Hölder’s
inequality to the first integral on the right-hand side of eq. (5.32) with p = 3 and q = 3/2,
followed by the uniform bound in Lemma 5.1.1, we find∫ T

0

|ah(uh,vh)| dt ≤ C(f, u0, ν, T )

(∫ T

0

~vh~
4/(4−d)
v dt

)(4−d)/4

. (5.33)

Lastly, we must bound the nonlinear convection term on the right-hand side of eq. (5.30).
For this, we use the bound eq. (5.12), apply the generalized Hölder’s inequality with p =∞,
q = 4/d, and r = 4/(4− d), and use Lemma 5.1.1, to find∫ T

0

|oh(uh;uh,vh)| dt ≤ C(f, u0, ν)

(∫ T

0

~vh~
4/(4−d)
v dt

)(4−d)/4

. (5.34)

Collecting eq. (5.31), eq. (5.33), and eq. (5.34) yields the result.

5.3.2.2 Construction of suitable test functions

To prove a uniform bound on the discrete time derivative in L4/d(0, T ;V ′) (see Theo-
rem 5.3.2), we will need to construct a suitable set of test functions in the discrete space
Vdiv
h × V̄h. This will require two preparatory results. The first is a density result for

functions of tensor-product type in Cc(0, T ;V ) taken from [8, Lemma V.1.2] with minor
modification:

Lemma 5.3.2. The set M of functions ϕ of the form

ϕ(t, x) =
M∑
k=1

ηk(t)ψk(x), (5.35)

where M ≥ 1 is an integer, ηk ∈ C∞c (0, T ), and ψk ∈ V , is dense in Cc(0, T ;V ).

Denote by Πt
n : L2(In) → Pkt(In), Πdiv

h : L2(Ω) → V div
h , and Π̄h : H1(Ω)d → V̄h the

orthogonal L2-projections onto the discrete spaces Pkt(In), V div
h , and V̄h, respectively. We

define the global L2-projection Πt in time by the restriction Πt|In = Πt
n. Given a function

ϕ ∈M , consider for all n = 0, . . . , N − 1,

Πϕ|En =
M∑
k=1

Πt
nηk(t)Π

div
h ψk(x) and Π̄ϕ|En =

M∑
k=1

Πt
nηk(t)Π̄hψk(x). (5.36)
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By construction, (Πv, Π̄v) ∈ Vdiv
h × V̄h. We remark that the approximation properties of

Πdiv
h obtained in Lemma 4.4.1 and listed in Lemma B.2.1 require quasi-uniformity of the

underlying spatial mesh Th.

Proposition 5.3.1. Suppose d ∈ {2, 3}. Let ϕ ∈ M and let (Πϕ, Π̄ϕ) ∈ Vdiv
h × V̄h be

the discrete test functions constructed in eq. (5.36). Then, the following stability property
holds: ∫ T

0

�

�(Πϕ, Π̄ϕ)
�

�

4/(4−d)

v
dt .

∫ T

0

‖ϕ‖4/(4−d)
V dt, ∀v ∈M . (5.37)

Proof. See Appendix B.2.2.

5.3.2.3 Uniform bound in L4/d(0, T ;V ′)

With Lemmas 5.3.1 and 5.3.2, and Proposition 5.3.1 in hand, we can now prove the
main result of this subsection. Since V ′ is separable, we can identify L4/d(0, T ;V ′) ∼=
L4/(4−d)(0, T ;V )′ (see e.g. [82, Proposition 1.38]), and since (V,H, V ′) form a Gelfand
triple, we have

‖Dktt (uh)‖L4/d(0,T ;V ′) = sup
06=v∈L4/(4−d)(0,T ;V )

∣∣ ∫ T
0

(Dktt (uh), v)Th dt
∣∣

‖v‖L4/(4−d)(0,T ;V )

. (5.38)

Theorem 5.3.2 (Uniform bound on the discrete time derivative). Let d ∈ {2, 3} and
suppose kt ≥ 0 if d = 2 and kt ∈ {0, 1} if d = 3. Let uh be the discrete velocity pair arising
from the solution of the space-time HDG scheme eq. (5.8). Then

∥∥Dktt (uh)
∥∥
L4/d(0,T ;V ′)

≤
C(f, u0, ν, T ).

Proof. We follow the strategy used in the proof of [61, Theorem 3.2]. The density of
Cc(0, T ;V ) in Lp(0, T ;V ) for 1 ≤ p <∞ gives us also the density of M in L4/(4−d)(0;T, V ).
We therefore replace the supremum over v ∈ L4/(4−d)(0;T, V ) in eq. (5.38) with the supre-
mum over ϕ ∈M . Now let ϕ ∈M be arbitrary. Using the expansion of ϕ eq. (5.35), the
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definitions of the L2-projections Πt and Πh, Proposition 5.3.1, and Lemma 5.3.1, we have

‖Dktt (uh)‖L4/d(0,T ;V ′)

= sup
06=ϕ∈M

∣∣ ∫ T
0

(Dktt (uh), ϕ)Th dt
∣∣

‖ϕ‖L4/(4−d)(0,T ;V )

= sup
06=ϕ∈M

∣∣ ∫ T
0

(Dktt (uh),Πϕ)Th dt
∣∣(∫ T

0

�

�(Πϕ, Π̄ϕ)
�

�

4/(4−d)

v
dt
)(4−d)/4

∫ T0 �

�(Πϕ, Π̄ϕ)
�

�

4/(4−d)

v
dt∫ T

0
‖ϕ‖4/(4−d)

V dt

(4−d)/4

. sup
06=ϕ∈M

∣∣ ∫ T
0

(Dktt (uh),Πϕ)Th dt
∣∣(∫ T

0

�

�(Πϕ, Π̄ϕ)
�

�

4/(4−d)

v
dt
)(4−d)/4

. sup
06=vh∈Vdiv

h ×V̄h

∣∣ ∫ T
0

(Dktt (uh), vh)Th dt
∣∣(∫ T

0
~vh~

4/(4−d)
v dt

)(4−d)/4
≤ C(f, u0, ν, T ).

5.3.3 Compactness

We end this section by summarizing the significance of the uniform bounds on the discrete
velocity collected in Lemma 5.1.1, Theorem 5.3.1, and Theorem 5.3.2. In particular, we
conclude that subsequences of the discrete velocity solution computed by the space-time
HDG scheme eq. (5.8) converge to a limit function u in suitable topologies. The goal of
Section 5.4 will be to show that u is in fact a weak solution to the Navier–Stokes problem
in the sense of Definition 5.1.1.

Theorem 5.3.3. Let H be a countable set of mesh sizes whose unique accumulation point
is 0. Let ks ≥ 1 and kt ≥ 0 if d = 2 and kt ∈ {0, 1} if d = 3 and suppose that {uh}h∈H is a
sequence of solutions of eq. (5.24) such that τ → 0 as h→ 0. Then, there exists a function
u ∈ L∞(0, T ;H) ∩ L2(0, T ;V ) with du

dt
∈ L4/d(0, T ;V ′) such that, up to a (not relabeled)
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subsequence:

(i) uh
?
⇀ u in L∞(0, T ;H),

(ii) uh → u in L2(0, T ;L2(Ω)d),

(iii) Gks
h (uh,i) ⇀ ∇ui in L2(0, T ;L2(Ω)d),

(iv) Dktt (uh) ⇀
du

dt
in L4/d(0, T ;V ′).

Proof. (i) Weak−? convergence. The existence of a u satisfying (i) is a direct consequence
of the uniform L∞(0, T ;L2(Ω)d) bound in Lemma 5.1.1 and the Banach–Alaoglu theorem
[10, Corollary 3.30].

(ii) Strong convergence. This follows from Theorem B.1.1 due to the uniform en-
ergy bound in Lemma 5.1.1, the uniform bound on Dktt (uh) in Lemma 5.3.1 (see also
Remark B.1.1 and [61, Theorem 3.2]), and the uniqueness of distributional limits.

(iii) Weak convergence of the discrete gradient. By Theorem 5.3.1 there exists w ∈
L2(0, T ;L2(Ω)d) such that, upon passage to a subsequence, Gk

h(uh,i) ⇀ w in L2(0, T ;L2(Ω)d)
as h → 0. Let φ ∈ C∞c (Rd)d and η ∈ C∞c (0, T ) be arbitrary and let Πh be the orthogonal
L2-projection onto Vh. Extending uh,i, G

ks
h (uh,i), R

ks
h (uh,i− ūh,i), u, and w by zero outside

of Ω, and integrating by parts element-wise in space, we have for all η ∈ C∞c (0, T ) and
φ ∈ C∞c (Rd)d that∫ T

0

(∫
Rd
Gks
h (uh,i) · φ dx

)
η dt

=

∫ T

0

(
−
∫
Rd
uh,i∇ · φ dx+

∑
K∈Th

∫
∂K

(uh,i − ūh,i)(φ− Πhφ) · n ds
)
η dt,

(5.39)

where we have used eqs. (5.17) and (5.19), that φ and ūh,i are single-valued on element
boundaries, and that ūh,i|∂Ω = 0. Moreover,∫ T

0

∥∥η(φ− Πhφ) · n
∥∥2

L2(∂K)
dt . h2`+1

∫ T

0

η2‖φ‖2
H`+1(Ω) dt. (5.40)

As a consequence of eqs. (5.39) and (5.40) and the strong convergence in L2(0, T ;L2(Ω)d)
of uh to u, it holds for all η ∈ C∞c (0, T ) that∫ T

0

(∫
Rd
w · φ dx

)
η dt = lim

h→0

∫ T

0

(∫
Rd
Gks
h (uh,i) · φ dx

)
η dt =

∫ T

0

(
−
∫
Rd
ui∇ · φ dx

)
η dt.

(5.41)
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Hence w = ∇ui as elements of L2(0, T ;L2(Rd)d), so ui ∈ L2(0, T ;H1(Rd)). As ui vanishes
outside of Ω, the H1(Rd)-regularity ensures that ui vanishes on the boundary. As u ∈ H,
its distributional divergence vanishes, and thus u ∈ L2(0, T ;V ).

(iv) Weak convergence of the discrete time derivative. By Theorem 5.3.2, there exists a
z ∈ L4/d(0, T ;V ′) such that, upon passage to a subsequence , Dktt (uh) ⇀ z in L4/d(0, T ;V ′).
For arbitrary v ∈ V and η ∈ C∞c (0, T ), we use the definition of Dktt (uh) eq. (5.23) and
integrate by parts in time to find∫ T

0

〈Dktt (uh), vη〉V ′×V dt

= −
∫ T

0

(uh, v)Th∂tη dt+
N−1∑
n=0

(
(u−n+1, v)Thη(tn+1)− (u−n , v)Thη(tn)

)
.

(5.42)

The telescoping sum on the right-hand side of eq. (5.42) vanishes since η(0) = η(T ) = 0.
Thus, we can take the limit as h→ 0 to find that for all η ∈ C∞c (0, T ),∫ T

0

η〈z, v〉V ′×V dt = lim
h→0

∫ T

0

〈Dktt (uh), vη〉V ′×V dt = −
∫ T

0

∂tη(u, v)Th dt,

since Dktt (uh) ⇀ z in L4/d(0, T ;V ′) and uh → u in L2(0, T ;L2(Ω)d) as h → 0. Therefore,
z = du

dt
.

5.4 Convergence to weak solutions

The remainder of this chapter is dedicated to showing that the limiting function u ∈
L∞(0;T,H) ∩ L2(0, T ;V ) guaranteed by Theorem 5.3.3 is actually a weak solution of the
Navier–Stokes problem in the sense of Definition 5.1.1. The plan is as follows: we first
construct a set of test functions in the discrete space that will allow us to conclude upon
passage to the limit that u solves eq. (5.2). We will then show that the viscous term ah(·, ·)
and the nonlinear convection term oh(·; ·, ·) enjoy asymptotic consistency in the sense of [28,
Definition 5.9], and use this to pass to the limit in eq. (5.24). Finally, we discuss the energy
(in)equality and conclude that the constructed weak solution u ∈ L∞(0, T ;H)∩L2(0, T ;V )
is a solution in the sense of Leray–Hopf.

118



5.4.1 Strong convergence of test functions

Passing to the limit in eq. (5.24) will require a suitable set of discrete test functions. We
will again use the set M of functions defined in Lemma 5.3.2 as our basic building block,
as it is sufficiently rich to ensure density in Cc(0, T ;V ) while its tensor-product structure
allows us to easily combine spatial and temporal projections onto the discrete spaces. In
particular, given ϕ ∈M , we will work with the discrete functions Πϕ and Π̄ϕ, constructed
in eq. (5.36). To set notation, we denote by Πϕi and Π̄ϕi the ith Cartesian component of
the vector functions Πϕ and Π̄ϕ, respectively. We first show a strong convergence result
for the sequence of discrete test functions {(Πϕ, Π̄ϕ)}h∈H:

Proposition 5.4.1. Let ks ≥ 1, kt ≥ 0 if d = 2, and kt ∈ {0, 1} if d = 3 and sup-
pose that τ → 0 as h → 0. Let ϕ ∈ M and consider the sequence of discrete test
functions {(Πϕ, Π̄ϕ)}h∈H defined in eq. (5.36). Then, it holds that Πϕ → ϕ strongly in

L∞(0, T ;L∞(Ω)d) and Gks
h ((Πϕi, Π̄ϕi))→ ∇ϕi strongly in L2(0, T ;L2(Ω)d) as h→ 0.

Proof. We first record the following consequences of Lemma B.2.1:

‖Πtηk − ηk‖
2

L∞(0,T ) . τ 2‖ηk‖2
W 1,∞(0,T ) , (5.43a)∑

K∈Th

‖∇(Πdiv
h ψk − ψk)‖

2

L2(K) . h2‖ψk‖2
H2(Ω) , (5.43b)

‖ψk − Πdiv
h ψk‖L∞(Ω) . h1/2|ψk|H2(Ω). (5.43c)

That Πϕ→ ϕ strongly in L∞(0, T ;L∞(Ω)d) follows from eq. (5.43), since

‖ϕ− Πϕ‖L∞(0,T ;L∞(Ω)d)

.
m∑
k=1

(
‖ηk‖L∞(0,T ) ‖ψk − Πdiv

h ψk‖L∞(Ω) + ‖ηk − Πtηk‖L∞(0,T ) ‖ψk‖H2(Ω)

)
.

(5.44)

We now prove the strong convergence of Gks
h ((Πϕi, Π̄ϕi)) to ∇ϕi in L2(0, T ;L2(Ω)d). Using

the definition of the discrete gradient eq. (5.19), the triangle inequality, and eq. (5.18), we
find ∫ T

0

‖Gks
h ((Πϕi, Π̄ϕi))−∇ϕi‖

2

L2(Ω) dt

≤
∑
K∈Th

∫ T

0

‖∇Πhϕ−∇ϕ‖2
L2(K) dt+

∑
K∈Th

∫ T

0

h−1
K

∥∥Πϕ− Π̄ϕ
∥∥2

L2(∂K)
dt.

(5.45)
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We start with the first term on the right-hand side of eq. (5.45). By the definition of Πϕ,
the triangle inequality, and eq. (5.43), we can write∑
K∈Th

∫ T

0

‖∇Πϕ−∇ϕ‖2
L2(K) dt

.
M∑
k=1

∑
K∈Th

(∫ T

0

(Πtηk)
2 ‖∇(Πdiv

h ψk − ψk)‖
2

L2(K) dt+

∫ T

0

(Πtηk − ηk)2 ‖∇ψk‖2
L2(K) dt

)

.
M∑
k=1

‖ηk‖2
W 1,∞(0,T )

(
h2

∫ T

0

‖ψk‖2
H2(Ω) dt+ τ 2

∫ T

0

‖ψk‖2
L2(Ω) dt

)
,

which can be seen to vanish as h→ 0. Turning now to the second term on the right-hand
side of eq. (5.45), we find∑

K∈Th

∫ T

0

h−1
K

∥∥Πϕ− Π̄ϕ
∥∥2

L2(∂K)
dt

.
M∑
k=1

∥∥Πtηk
∥∥2

W 1,∞(0,T )

∑
K∈Th

∫ T

0

h−1
K ‖Π

div
h ψk − Π̄hψk‖

2

L2(∂K) dt.

(5.46)

Using a discrete local trace inequality, the assumed quasi-uniformity of the spatial mesh,
and the approximation properties of Πdiv

h and Π̄h, we find

h−1
K ‖Π

div
h ψk − Π̄hψk‖

2

L2(∂K) . h2‖ψk‖2
H2(Ω) , (5.47)

and thus the right-hand side of eq. (5.46) vanishes as h→ 0. The result follows.

5.4.2 Asymptotic consistency of the linear viscous term

We are now in a position to show that the linear viscous term is asymptotically consistent
in the sense of [28, Definition 5.9]:

Theorem 5.4.1. Let ks ≥ 1 and kt ≥ 0 if d = 2 and kt ∈ {0, 1} and suppose that
{uh}h∈H is a sequence of solutions of eq. (5.24) such that τ → 0 as h → 0. Let ϕ ∈
M , denote by (Πϕ, Π̄ϕ) the discrete test functions constructed as in eq. (5.36), and let
u ∈ L∞(0, T ;H) ∩ L2(0, T ;V ) be the limit (up to a subsequence) of {uh}h∈H guaranteed
by Theorem 5.3.3. Then, the following asymptotic consistency result holds for the linear
viscous term:

lim
h→0

∫ T

0

ah(uh, (Πϕ, Π̄ϕ)) dt =

∫ T

0

∫
Ω

∇u : ∇ϕ dx dt.
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Proof. Since Gks
h ((Πϕi, Π̄ϕi))→ ∇ϕi strongly in L2(0, T ;L2(Ω)d) by Proposition 5.4.1 and

by Theorem 5.3.3 (iii), Gks
h (uh,i) ⇀ ∇ui weakly in L2(0, T ;L2(Ω)d) as (τ, h) → 0, we can

pass to the limit in the first term of eq. (5.25) to find that

lim
h→0

∫ T

0

∫
Ω

Gks
h (uh,i) ·Gks

h ((Πϕi, Π̄ϕi)) dx dt =

∫ T

0

∫
Ω

∇ui · ∇ϕi dx dt.

Turning to the second term of eq. (5.25), we have by the Cauchy-Schwarz inequality, the
bound on the global spatial lifting operator eq. (5.18), the definition of Πϕ and Π̄ϕ, and
uniform bound Lemma 5.1.1,∫ T

0

∫
Ω

Rks
h (uh,i − ūh,i) ·Rks

h (Πϕi − Π̄ϕi) dx dt

≤ C(f, u0, ν)

( M∑
k=1

∑
K∈Th

∫ T

0

h−1
K Πtηk

∥∥∥Πdiv
h ψk − Π̄hψk

∥∥∥2

L2(∂K)

)1/2

,

which can be seen to vanish as h→ 0 by eq. (5.43a) and eq. (5.47). In an identical fashion,
we find

lim
h→0

∑
K∈Th

∫ T

0

∫
∂K

α

hK
(uh − ūh) · (Πϕi − Π̄ϕi) ds dt = 0.

The result follows.

5.4.3 Asymptotic consistency of the nonlinear convection term

The goal of this subsection is to prove that the nonlinear convection term is asymptotically
consistent in the sense of [28, Definition 5.9].

Theorem 5.4.2. Let ks ≥ 1 and kt ≥ 0 if d = 2 and kt ∈ {0, 1} and suppose that {uh}h∈H
is a sequence of solutions of eq. (5.24) such that τ → 0 as h → 0. Let ϕ ∈M , denote by
(Πϕ, Π̄ϕ) the discrete test functions constructed as in eq. (5.36), and let u ∈ L∞(0, T ;H)∩
L2(0, T ;V ) be an accumulation point of {uh}h∈H guaranteed by Theorem 5.3.3. Then, the
following asymptotic consistency result holds for the nonlinear convection term:

lim
h→0

∫ T

0

oh(uh;uh, (Πϕ, Π̄ϕ)) dt =

∫ T

0

∫
Ω

(u · ∇u) · ϕ dx dt.
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Proof. We start with the first term on the right-hand side of eq. (5.26). By Hölder’s
inequality, we have∫ T

0

‖uϕi − uhΠϕi‖2
L2(Ω) dt

. ‖ϕ− Πϕ‖2
L∞(0,T ;L∞(Ω)d)

∫ T

0

‖u‖2
L2(Ω) dt+ ‖Πϕ‖2

L∞(0,T ;L∞(Ω)d)

∫ T

0

‖u− uh‖2
L2(Ω) dt,

which can be seen to vanish as h→ 0 by Proposition 5.4.1 and Theorem 5.3.3. Therefore,
uhΠϕi → uϕi strongly in L2(0, T ;L2(Ω)d) as h→ 0, and this combined with the fact that
G2ks
h (uh,i) ⇀ ∇u yields

lim
h→0

∫ T

0

∫
Ω

uh ·G2ks
h (uh,i)Πϕi dx dt =

∫ T

0

∫
Ω

(u · ∇u) · ϕ dx dt.

It remains to show that the facet term appearing in eq. (5.26) converges to 0 as h → 0.
By the definitions of Πϕ and Π̄ϕ, proceeding as in the proof of [14, Proposition 3.4], and

using the fact that
∫ T

0
~uh~

2
v dt is uniformly bounded by Lemma 5.1.1,∣∣∣∣ ∑

K∈Th

∫ T

0

∫
∂K

1
2

(
uh · n+|uh · n|

)
(uh − ūh) · (Πϕ− Π̄ϕ) ds dt

∣∣∣∣
≤ C(f, u0, ν)

M∑
k=1

‖Πtηk‖L∞(0,T )

(∑
K∈Th

h−1
K ‖Π

div
h ψk − Π̄hψk‖

2

L2(∂K)

)1/2

,

which can be seen to vanish as h → 0 by using the second bound in eq. (5.43a) and
eq. (5.47).

5.4.4 Passing to the limit

With the asymptotic consistency of the linear viscous term (Theorem 5.4.1) and the non-
linear convection term (Theorem 5.4.2), we are ready to pass to the limit in eq. (5.24).
Suppose that τ → 0 as h→ 0. Extract from {uh}h∈H the subsequence satisfying the con-
vergence results listed in Theorem 5.3.3. Let ϕ ∈M and choose vh = (Πϕ, Π̄ϕ) ∈ Vdiv

h ×V̄h
as a test function in eq. (5.24):∫ T

0

(Dktt (uh),Πϕ)Th dt+

∫ T

0

(
νah(uh, (Πϕ, Π̄ϕ))+oh(uh;uh, (Πϕ, Π̄ϕ)

)
dt

=

∫ T

0

(f,Πϕ)Th dt.

(5.48)
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By the definition of Πϕ, we have∫ T

0

(Dktt (uh),Πϕ)Th dt =

∫ T

0

(Dktt (uh), ϕ)Th dt =

∫ T

0

〈Dktt (uh), ϕ〉V ′×V dt. (5.49)

Thus, the weak convergence of Dktt (uh) to du
dt

in L4/d(0, T ;V ′) yields

lim
h→0

∫ T

0

(Dktt (uh),Πϕ)Th dt =

∫ T

0

〈du

dt
, ϕ
〉
V ′×V dt. (5.50)

This, in combination with Theorem 5.4.1 and Theorem 5.4.2, shows that upon passage
to the limit as h → 0 in eq. (5.48) that the limit u ∈ L∞(0, T ;H) ∩ L2(0, T ;V ) of the
subsequence {uh}h∈H given by Theorem 5.3.3 satisfies for all ϕ ∈M ,∫ T

0

〈
du

dt
, ϕ

〉
V ′×V

dt+

∫ T

0

((u · ∇)u, ϕ) dt+ ν

∫ T

0

(∇u,∇ϕ) dt =

∫ T

0

(f, ϕ)Th dt. (5.51)

By the density of the set M in Cc(0, T ;V ), eq. (5.51) holds also for all ϕ ∈ Cc(0, T ;V ).

We now show that u ∈ L∞(0, T ;H) ∩ L2(0, T ;V ) satisfies the initial condition in the
sense that u(0) = u0 in V ′. Our starting point is the definition of the discrete time
derivative eq. (5.23) in a single space-time slab En:∫

In

(∂tuh, vh)Th dt+ (u+
n − u−n , v+

n )Th =

∫
In

(Dktt (uh), vh)Th dt, ∀vh ∈ Vh. (5.52)

Let ψ ∈ V and η ∈ C∞(0, T ) such that η(T ) = 0. Define a function wh ∈ Vdiv
h by setting

wh|En = Πkt
n ηΠdiv

h ψ with Πkt
n : H1(In)→ Pkt(In) the DG time projection defined as in [34,

Section 69.3.2]. Define also the global projection Πkt |In = Πkt
n . We note that by definition,

(ψ, vh)Th = (Πdiv
h ψ, vh)Th for all vh ∈ V div

h , and by the defining properties of the projection
Πkt
n (see [34, Eq. (69.26)]),∫

In

(∂tuh,Π
div
h ψ)ThΠkt

n η dt =

∫
In

(∂tuh,Π
div
h ψ)Thη dt and (Πkt

n η)(t+n ) = η(tn),

since ∂tuh ∈ Pkt−1(In) (with the convention that P−1(In) = {0}). Choosing vh = wh in
eq. (5.52), we find∫

In

(∂tuh, ψ)Thη dt+ (u+
n − u−n , ψ)Thη(tn) =

∫
In

(Dktt (uh), ψ)ThΠktη dt. (5.53)
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Integrating by parts in time on the left hand side of eq. (5.53), summing over all space-time
slabs, and using that η(T ) = 0, we have

−
∫ T

0

(uh, ψ)Th∂tη dt− (u−0 , ψ)Thη(0) =

∫ T

0

(Dktt (uh), ψ)ThΠktη dt. (5.54)

From Theorem 5.3.3 (i) and (iii), and since u−0 = Πdiv
h u0 → u0 strongly in H, and

Πktη → η strongly in L4/(4−d)(0, T ) by eq. (5.43a), we can pass to the limit as h → 0 in
eq. (5.54) to find

−
∫ T

0

(u, ψ)Th∂tη dt− (u0, ψ)Thη(0) =

∫ T

0

〈
du

dt
, ψ

〉
V ′×V

η dt. (5.55)

Comparing eq. (5.55) with Theorem 2.2.9, we find that

0 = (u(0)− u0, ψ)Th = 〈u(0)− u0, ψ〉V ′×V , ∀ψ ∈ V ⇒ u(0) = u0 in V ′.

Therefore, we have proven:

Theorem 5.4.3. Let u0 ∈ H and f ∈ L2(0, T ;L2(Ω)d) be given and let H be a countable
set of mesh sizes whose unique accumulation point is 0. Let ks ≥ 1 and kt ≥ 0 if d = 2
and kt ∈ {0, 1} if d = 3 and suppose that {uh}h∈H is a sequence of solutions of eq. (5.24)
such that τ → 0 as h → 0. Then, upon passage to a subsequence, {uh}h∈H converges
(in the sense of Theorem 5.3.3) to a weak solution of the Navier–Stokes problem eq. (5.2)
u ∈ L∞(0, T ;H) ∩ L2(0, T ;V ) with du

dt
∈ L4/d(0, T ;V ′).

5.4.5 The energy inequality

In three dimensions, we are not guaranteed uniqueness of weak solutions and cannot con-
clude a priori that the weak solution obtained from Theorem 5.4.3 satisfies the energy
inequality eq. (5.4). We show below that the weak solution in fact does satisfy eq. (5.4).

Lemma 5.4.1. Let d = 3, ks ≥ 1, and kt ∈ {0, 1} and suppose that τ → 0 as h→ 0. The
weak solution u ∈ L∞(0, T ;H) ∩ L2(0, T ;V ) given by Theorem 5.4.3 satisfies the energy
inequality for a.e. s ∈ (0, T ]:

∥∥u(s)
∥∥2

L2(Ω)
+ 2ν

∫ s

0

‖u‖2
V dt ≤ ‖u0‖2

L2(Ω) + 2

∫ s

0

(f, u)L2(Ω) dt. (5.56)
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Proof. Let s ∈ (0, T ) be fixed and choose ns ∈ {0, 1, . . . , N − 1} such that tns ≤ s ≤ tns+1.
Testing eq. (5.8) with vh = uh ∈ Vdiv

h × V̄h, using eq. (5.29) and the stabillity of Πdiv
h in

L2(Ω)d, and summing from n = 0 to n = ns, we have

∥∥u−ns+1

∥∥2

L2(Ω)
+ 2ν

3∑
i=1

∫ s

0

‖Gks
h (uh,i)‖

2

L2(Ω) dt ≤ ‖u0‖2
L2(Ω) + 2

∫ tns+1

0

(f, uh)Th dt. (5.57)

Let us first suppose that kt = 0. Since u−tns+1
= uh(s) for s ∈ (tns , tns+1) in this case,

eq. (5.57) yields

∥∥uh(s)∥∥2

L2(Ω)
+ 2ν

3∑
i=1

∫ s

0

‖Gks
h (uh,i)‖

2

L2(Ω) dt ≤ ‖u0‖2
L2(Ω) + 2

∫ tns+1

0

(f, uh)Th dt. (5.58)

Our goal is to justify passage to the limit in eq. (5.58).

To this end, we multiply both sides of eq. (5.58) by an arbitrary φ ∈ C∞c (R) satisfying
φ ≥ 0 and integrate from s = 0 to s = T :∫ T

0

(∥∥uh(s)∥∥2

L2(Ω)
+ 2ν

3∑
i=1

∫ s

0

‖Gks
h (uh,i)‖

2

L2(Ω) dt

)
φ(s) ds

≤
∫ T

0

(
‖u0‖2

L2(Ω) + 2

∫ tns+1

0

(f, uh)Th dt

)
φ(s) ds.

(5.59)

We first consider the integral involving the body force f . By the triangle inequality, the
Cauchy-Schwarz inequality, discrete Poincaré inequality eq. (5.7), and the uniform energy
bound in Lemma 5.1.1, we obtain∣∣∣∣ ∫ tns+1

0

(f, uh)Th dt−
∫ s

0

(f, u)Th dt

∣∣∣∣ . (∫ s+τ

s

‖f‖2
L2(Ω) dt

)1/2

+

∫ s

0

|(f, uh−u)Th| dt. (5.60)

Since f ∈ L2(0, T ;L2(Ω)d), the primitive F (τ) =
∫ s+τ
s
‖f‖2

L2(Ω) dt is absolutely continuous.

This, combined with the fact uh → u strongly in L2(0, T ;L2(Ω)d), shows that the right-
hand side of eq. (5.60) vanishes as h→ 0, and so

lim
h→0

∫ tns+1

0

(f, uh)Th dt =

∫ s

0

(f, u)Th dt.

Thus, we can apply Lebesgue’s dominated convergence theorem (Theorem 2.2.2) to find

lim
h→0

∫ T

0

(∫ tns+1

0

(f, uh)Th dt

)
φ(s) ds =

∫ T

0

(∫ s

0

(f, u)Th dt

)
φ(s) ds. (5.61)
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With eq. (5.61) in hand, we pass to the lower limit as h→ 0 in eq. (5.59) and use Fatou’s
lemma (Theorem 2.2.1), the weak lower semicontinuity of norms, and Theorem 5.3.3:∫ T

0

(∥∥u(s)
∥∥2

L2(Ω)
+ 2ν

∫ s

0

‖u‖2
V dt

)
φ(s) ds ≤

∫ T

0

(
‖u0‖2

L2(Ω) + 2

∫ s

0

(f, u)Th dt

)
φ(s) ds.

As this holds for all φ ∈ C∞c (R) satisfying φ ≥ 0, we have for a.e. s ∈ [0, T ] [96, pp. 291],

∥∥u(s)
∥∥2

L2(Ω)
+ 2ν

∫ s

0

‖u‖2
V dt ≤ ‖u0‖2

L2(Ω) + 2

∫ s

0

(f, u)Th dt.

Next, suppose that kt = 1. In this case, eq. (5.57) does not offer direct control over
‖uh(s)‖L2(Ω) for s ∈ (tns , tns+1). Instead, we define ũh to be piecewise constant (in time)

function satisfying ũh|Em = u−m+1 = uh(t
−
m+1), so that eq. (5.57) yields

‖ũh(s)‖2
L2(Ω) + 2ν

3∑
i=1

∫ s

0

‖Gks
h (uh)‖

2

L2(Ω) dt ≤ ‖u−0 ‖
2

L2(Ω) + 2

∫ tns+1

0

(f, uh)Th dt.

Note that if uh ⇀ u in L2(0, T ;L2(Ω)d) as h→ 0, then also ũh ⇀ u in L2(0, T ;L2(Ω)d) as
h→ 0 [101, Corollary 3.2]. The weak lower semi-continuity of the norm in L2(0, T ;L2(Ω)d)
yields ∫ T

0

‖u(s)‖2
L2(Ω) φ(s) ds ≤ lim inf

h→0

∫ T

0

‖ũh(s)‖2
L2(Ω) φ(s) ds.

The remainder of the proof is identical to the case kt = 0.
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Chapter 6

Space-time HDG for the
advection-diffusion problem on
moving domains

Many important physical processes are governed by the solution of time-dependent par-
tial differential equations on moving and deforming domains. Of particular importance
are advection dominated transport problems, with applications ranging from multi-phase
flows separated by evolving interfaces to incompressible flow problems arising from fluid-
structure interaction. Since our motivation to study space-time HDG methods is the
numerical solution of the incompressible Navier–Stokes equations on time-dependent do-
mains, an appropriate first step is to analyze a space-time HDG scheme for a simpler linear
advection–diffusion model.

In this chapter, we present (to our knowledge) the first analysis of a space-time HDG
method on time-dependent domains. The first error analysis of a space-time DG method
on moving and deforming domains for the linear advection–diffusion equation, however,
was performed in [94, 95], and for the Oseen equations in [99], laying the groundwork
for the error estimates in Section 6.4. The consideration of moving domains significantly
alters the analysis of the method compared to analysis on fixed domains considered in
the previous chapters. In particular, moving meshes lack the tensor product structure
necessary to use the space-time projections or the temporal inverse and trace inequalities
used in Chapter 4, without modification. Moreover, the Bochner–Sobolev spaces used in
the previous chapters are no longer the appropriate functional setting as the function spaces
defined over a time-dependent domain are themselves time-dependent. Instead, we follow
[95, 99] by introducing anisotropic Sobolev spaces (first considered in the thesis [38]).
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This chapter is organized as follows: In Section 6.1 we discuss the scalar advection–
diffusion problem in a space-time setting. Next, in Section 6.2, we discuss the finite element
spaces necessary to obtain the weak formulation of the advection–diffusion problem, which
we subsequently introduce. Section 6.3 deals with the consistency and stability of the space-
time HDG method. Theoretical rates of convergence of the space-time HDG formulation
in a mesh-dependent norm on moving grids are derived in Section 6.4. Finally, Section 6.5
presents the results of a numerical example to support the theoretical analysis.

This chapter is reprinted, with slight modification, from the following article:

K. L. A Kirk, T. L. Horváth, A. Çeşmelioğlu, and S. Rhebergen, Anal-
ysis of a space-time hybridizable discontinuous Galerkin method for the advection-
diffusion prboelm on time-dependent domains, SIAM Journal on Numerical Analy-
sis, 57 (2019), pp. 1677–1696. https://doi.org/10.1137/18M1202049,

with permission from Society of Industrial and Applied Mathematics (SIAM).

6.1 The advection–diffusion problem

Let Ω(t) ⊂ Rd be a time-dependent polygonal (d = 2) or polyhedral (d = 3) domain whose
evolution depends continuously on time t ∈ [t0, tN ]. Let x = (x1, · · · , xd) be the spatial
variables and denote the spatial gradient operator by ∇ =

(
∂x1 , · · · , ∂xd

)
. We consider the

time-dependent advection–diffusion problem

∂tu+∇ · (β̄u)− ν∇2
u = f in Ω(t), t0 < t ≤ tN , (6.1)

with given advective velocity β̄, forcing term f and constant and positive diffusion coeffi-
cient ν.

Before introducing the space-time HDG method in Section 6.2, we first present the
space-time formulation of the advection–diffusion problem eq. (6.1). Let E := {(t, x) :
x ∈ Ω(t), t0 < t < tN} ⊂ Rd+1 be a (d + 1)-dimensional polyhedral space-time domain.
We denote the boundary of E by ∂E , and note that it is comprised of the hyper-surfaces
Ω(t0) := {(t, x) ∈ ∂E : t = t0}, Ω(tN) := {(t, x) ∈ ∂E : t = tN}, and QE := {(t, x) ∈ ∂E :
t0 < t < tN}. The outward space-time normal vector to ∂E is denoted by n := (nt, n̄), where
nt and n̄ are the temporal and spatial parts of the space-time normal vector, respectively.

To recast the advection–diffusion problem in the space-time setting we introduce the
space-time velocity field β := (1, β̄) and the operator ∇ := (∂t,∇). The space-time formu-
lation of eq. (6.1) is then given by

∇ · (βu)− ν∇2
u = f in E , (6.2)
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where f ∈ L2(E) and where β,∇ · β ∈ L∞(E).

We partition the boundary of Ω(t) such that ∂Ω(t) = ΓD(t) ∪ ΓN(t) and ΓD(t) ∩
ΓN(t) = ∅ and we partition the space-time boundary into ∂E = ∂ED ∪ ∂EN , where ∂ED :={

(t, x) : x ∈ ΓD(t), t0 < t ≤ tN
}

and ∂EN :=
{

(t, x) : x ∈ ΓN(t) ∪ Ω(t0), t0 < t ≤ tN
}

.
Given a suitably smooth function g : ∂EN → R, we prescribe the initial and boundary
conditions

−ζuβ · n+ ν∇u · n̄ = g on ∂EN , (6.3a)

u = 0 on ∂ED, (6.3b)

where ζ is an indicator function for the inflow boundary of E , i.e., the portions of the
boundary where β ·n < 0. Note that eq. (6.3a) imposes the initial condition u(x, t0) = g(x)
on Ω(t0).

6.2 The space-time hybridizable discontinuous

Galerkin method

In this section we introduce the space-time mesh, the space-time approximation spaces and
the space-time HDG formulation for the advection–diffusion problem eq. (6.2)–eq. (6.3).

6.2.1 Description of space-time slabs, faces and elements

We begin this section with a description of the discretization of the space-time domain.
First, the time interval [t0, tN ] is partitioned into the time levels t0 < t1 < · · · < tN ,
where the n-th time interval is defined as In = (tn, tn+1) with length ∆tn = tn+1 − tn. For
simplicity we will assume a fixed time interval length, i.e., ∆tn = ∆t for n = 0, 1, · · · , N−1.
For ease of notation, we will denote Ω(tn) = Ωn in the sequel. The space-time domain is
then divided into space-time slabs En = E ∩

(
In × Rd

)
. Each space-time slab En is bounded

by Ωn, Ωn+1, and QnE = ∂En \ (Ωn ∪ Ωn+1).

We further divide each space-time slab into space-time elements, En =
⋃
j Knj . To

construct the space-time element Knj , we divide the domain Ωn into non-overlapping spatial

elements Kn
j , so that Ωn =

⋃
jK

n
j . Then, at tn+1 the spatial elements Kn+1

j are obtained
by mapping the nodes of the elements Kn

j into their new position via the transformation
describing the deformation of the domain. Each space-time element Knj is obtained by

connecting the elements Kn
j and Kn+1

j via linear interpolation in time.
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Figure 6.1: An example of a space-time slab in a polyhedral (1+1)-dimensional space-time
domain.

The boundary of the space-time element Knj consists of Kn
j , Kn+1

j , and Qnj = ∂Knj \
(Kn

j ∪ Kn+1
j ). On ∂Knj , the outward unit space-time normal vector is denoted by nK

n
j =

(n
Knj
t , n̄K

n
j ), where n

Knj
t and n̄K

n
j are, respectively, the temporal and spatial parts of the

space-time normal vector. On Kn
j , nK

n
j = (−1, 0), while on Kn+1

j , nK
n
j = (1, 0). In the

remainder of the article, we will drop the subscripts and superscripts when referring to
space-time elements, their boundaries and outward normal vectors wherever no confusion
will occur.

We complete the description of the space-time domain with the tessellation T nh consist-
ing of all space-time elements in En, and Th =

⋃
n T nh consisting of all space-time elements

in E . An illustration of a space-time domain is shown in the case of one spatial dimension
in Section 6.2.1.

Finally, an interior space-time facet S is shared by two adjacent elements KL and KR,
S = ∂KL ∩ ∂KR, while a boundary facet is a face of ∂K that lies on ∂E . The set of all
facets will be denoted by F , and the union of all facets by Γ.

6.2.2 Approximation spaces

We define the Sobolev space Hs(Ω) = {v ∈ L2(Ω) : Dαv ∈ L2(Ω) for |α| ≤ s}, where Dαv
denotes the weak derivative of v, α is the multi-index symbol, s a non-negative integer, and

130



Ω ⊂ Rn is an open domain (see e.g. [9]). The space Hs(Ω) is equipped with the following
norm and semi-norm:

‖v‖2
Hs(Ω) =

∑
|α|≤s

‖Dαv‖2
L2(Ω) and |v|2Hs(Ω) =

∑
|α|=s

‖Dαv‖2
L2(Ω) , (6.4)

where ‖·‖L2(Ω) is the standard L2-norm on Ω. In the sequel, we will simply write ‖v‖Ω =
‖v‖L2(Ω).

Next, we introduce anisotropic Sobolev spaces on an open domain Ω ⊂ Rd+1 [38]. For
simplicity, we follow [95, 99] by restricting the anisotropy to the case where the Sobolev
index can differ only between spatial and temporal variables. All spatial variables will have
the same index. Let (st, ss) be a pair of non-negative integers, with st, ss corresponding
to the spatial and temporal Sobolev indices. For αt, αsi ≥ 0, i = 1, . . . , d, we define the
anisotropic Sobolev space of order (st, ss) on Ω ⊂ Rd+1 by

H(st,ss)(Ω) = {v ∈ L2(Ω) : DαtDαsv ∈ L2(Ω) for αt ≤ st, |αs| ≤ ss}, (6.5)

where αs =
(
αs1 , · · · , αsd

)
. The anisotropic Sobolev norm and semi-norm are given by,

respectively,

‖v‖2
H(st,ss)(Ω) =

∑
αt≤st
|αs|≤ss

‖DαtDαsv‖2
Ω and |v|2H(st,ss)(Ω) =

∑
αt=st
|αs|=ss

‖DαtDαsv‖2
Ω .

We assume that each space-time element K is the image of a fixed master element
K̂ = (−1, 1)d+1 under two mappings. First, we construct an intermediate tensor-product

element K̃ from an affine mapping FK : K̂ → K̃ of the form FK(x̂) = AKx̂ + b, where

AK = diag
(

∆t
2
, h1

2
, . . . , hd

2

)
. Here hi is the edge length in the i-th coordinate direction, ∆t

the time-step, and b ∈ Rd+1 is a constant vector.

Next, the space-time element K is obtained from K̃ via the suitably regular diffeomor-
phism φK : K̃ → K. The mapping φK determines the shape of the space-time element after
the size of the element has been specified by FK. Following [38], we will assume that the
Jacobian of the diffeomorphism φK satisfies:

C−1
1 ≤ | det JφK| ≤ C1,

∥∥det JφK\mn
∥∥
L∞(K̃)

≤ C2, m, n = 0, . . . , d, ∀K ∈ Th,

where C1 and C2 are constants independent of the edge lengths hi and the time-step ∆t,
and where det JφK\mn denotes the (m,n) minor of JφK .
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Figure 6.2: Construction of the space-time element K through an affine mapping FK : K̂ →
K̃ and a diffeomorphism φK : K̃ → K [95].

Following [95], we define the Sobolev space H(st,ss)(K̃) as

H(st,ss)(K̃) = {v ∈ L2(K̃) : DαtDαsv ∈ L2(K̃) for αt ≤ st, |αs| ≤ ss}. (6.6)

Furthermore, the Sobolev space H(st,ss)(K) is defined as

H(st,ss)(K) = {v ∈ L2(K) : v ◦ φK ∈ H(st,ss)(K̃)}, (6.7)

see [38, Definition 2.9].

For the analysis in Section 6.3 we require the concept of a broken anisotropic Sobolev
space. We assign to Th the broken Sobolev space

H(st,ss)(Th) = {v ∈ L2(E) : v|K ∈ H(ss,st)(K),∀K ∈ Th}, (6.8)

which we equip with the broken anisotropic Sobolev norm and semi-norm, respectively,

‖v‖2
H(st,ss)(Th) =

∑
K∈Th

‖v‖2
H(st,ss)(K) and |v|2H(st,ss)(Th) =

∑
K∈Th

|v|2H(st,ss)(K). (6.9)

For v ∈ H(1,1)(Th), we define the broken (space-time) gradient ∇hv by (∇hv)|K = ∇(v|K),
∀K ∈ Th.

Additionally, we will make use of the following (spatial) shape regularity assumption.

Suppose K ∈ Th is constructed from the fixed reference element K̂ via the mappings
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FK : K̂ → K̃ and φK : K̃ → K. Let hK and ρK denote the radii of the d-dimensional
circumsphere and inscribed sphere of the brick h1 × · · · × hd, respectively. We assume the
existence of a constant cr > 0 such that

hK
ρK
≤ cr, ∀K ∈ Th. (6.10)

For the HDG method, we require the finite element spaces

V
(pt,ps)
h =

{
vh ∈ L2 (E) : vh|K ◦ φK ◦ FK ∈ Q(pt,ps)(K̂),∀K ∈ Th

}
, (6.11)

M
(pt,ps)
h = {µh ∈ L2 (Γ) : µh|S ◦ φK ◦ FK ∈ Q(pt,ps)(Ŝ),∀S ∈ F , (6.12)

µh = 0 on ∂ED},

where Q(pt,ps)(D) denotes the set of all tensor-product polynomials of degree pt in the
temporal direction and ps in each spatial direction on a domain D. Furthermore, we define
V h = V

(pt,ps)
h ×M (pt,ps)

h .

6.2.3 Weak formulation

It will be convenient to introduce the bilinear forms

aah
(
(u, λ), (v, µ)

)
= −

∑
K∈Th

∫
K
βu · ∇hv dx+

∫
∂EN

1

2

(
β · n+ |β · n|

)
λµ ds (6.13a)

+
∑
K∈Th

∫
∂K

1

2

(
β · n(u+ λ) + |β · n|(u− λ)

)
(v − µ) ds,

adh
(
(u, λ), (v, µ)

)
=
∑
K∈Th

∫
K
ν∇hu · ∇hv dx+

∑
K∈Th

∫
Q

να

hK
(u− λ) (v − µ) ds (6.13b)

−
∑
K∈Th

∫
Q

[
ν(u− λ)∇hv · n̄+ ν∇hu · n̄ (v − µ)

]
ds,

where α > 0 is a penalty parameter. The space-time HDG method for eq. (6.2)–eq. (6.3)
is then given by: find (uh, λh) ∈ V h such that

ah
(
(uh, λh), (vh, µh)

)
=
∑
K∈Th

∫
K
fvh dx+

∫
∂EN

gµh ds ∀(vh, µh) ∈ V h, (6.14)

where ah
(
(u, λ), (v, µ)

)
= aah

(
(u, λ), (v, µ)

)
+ adh

(
(u, λ), (v, µ)

)
.
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6.3 Stability and boundedness

In this section we prove stability and boundedness of the space-time HDG method eq. (6.14).
Our analysis will make repeated use of local trace and inverse inequalities valid on the finite
element space V

(pt,ps)
h . Using ideas from [38], the dependence on the spatial mesh size hK

and time-step ∆t is made explicit in these inequalities. Motivated by the fact that these
two parameters differ in general, this will allow us to derive error bounds in section 6.4
that are anisotropic in hK and ∆t as in [95, 99]. The local trace and inverse inequalities
are summarized in the following lemma.

Lemma 6.3.1. Assume that K is a space-time element in Rd+1 constructed via the map-
pings φK : K̃ → K and FK : K̂ → K̃ as defined in section 6.2.2. Assume further that the
spatial shape regularity condition eq. (6.10) holds. Then, for all vh ∈ V (pt,ps)

h , the following
local inverse and trace inequalities hold:

‖∂tvh‖K ≤ cI,t
(
∆t−1 + h−1

K

)
‖vh‖K , (6.15a)∥∥∥∇hvh

∥∥∥
K
≤ cI,sh

−1
K ‖vh‖K , (6.15b)

‖vh‖Q ≤ cT,Qh
− 1

2
K ‖vh‖K , (6.15c)

‖vh‖∂K ≤ cT,∂K

(
∆t−

1
2 + h

− 1
2

K

)
‖vh‖K , (6.15d)

where cI,s, cI,t, cT,Q, and cT,∂K are constants depending on the polynomial degrees pt
and ps, the spatial shape-regularity constant cr, and the Jacobian of the mapping φK, but
independent of the spatial mesh size hK and the time step ∆t.

Proof. Inequalities eq. (6.15a)–eq. (6.15d) are space-time variants of those found in [38,
Corollary 3.54, Corollary 3.59].

Additionally, we will require the following discrete Poincaré inequality valid for (vh, µh) ∈
V ?
h [95],

‖vh‖2
E ≤ c2

p

∑
K∈Th

∥∥∥∇hvh

∥∥∥2

K
+
∑
K∈Th

1

hK
‖vh − µh‖2

Q

 , (6.16)

where cp > 0 is a constant independent of the spatial mesh size hK and time-step ∆t.

Consider the following extended function spaces on E and Γ:

V (h) = V
(pt,ps)
h +H2(E), M(h) = M

(pt,ps)
h +H3/2(Γ), (6.17)
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where H3/2(Γ) is the trace space of H2(E). For notational purposes we also introduce
V ?(h) = V (h) ×M(h). We define three norms on V ?(h). First, the “stability” norm is
defined as

�

�(v, µ)
�

�

2

v
=‖v‖2

E +
∥∥∥β1/2

n µ
∥∥∥2

∂EN
+
∑
K∈Th

∥∥∥β1/2
n (v − µ)

∥∥∥2

∂K

+
∑
K∈Th

ν
∥∥∥∇hv

∥∥∥2

K
+
∑
K∈Th

ν

hK
‖v − µ‖2

Q , (6.18)

where for ease of notation we have defined βn = |β·n|. Additionally, we introduce a stronger
norm obtained by endowing the “stability” norm with an additional term controlling the
L2-norm of time derivatives:

�

�(v, µ)
�

�

2

s
=

�

�(v, µ)
�

�

2

v
+
∑
K∈Th

∆th2
K

∆t+ hK
‖∂tv‖2

K . (6.19)

To prove boundedness of the bilinear form in section 6.3.1 we introduce the following norm:

�

�(v, µ)
�

�

2

s,?
=

�

�(v, µ)
�

�

2

s
+
∑
K∈Th

∥∥∥β1/2
n v

∥∥∥2

∂K+
+
∑
K∈Th

∥∥∥β1/2
n µ

∥∥∥2

∂K−
(6.20)

+
∑
K∈Th

hKν
∥∥∥∇hv · n̄

∥∥∥2

Q
+
∑
K∈Th

∆t+ hK
∆th2

K

‖v‖2
K ,

where ∂K+ denotes the outflow part of the boundary (where β · n > 0) and where ∂K−
denotes the inflow part of the boundary (where β · n ≤ 0). The additional terms are

required since the inequalities in Lemma 6.3.1 are valid only on the discrete space V
(pt,ps)
h .

Let u ∈ H2(E) solve the advection–diffusion problem eq. (6.2). Defining the trace
operator γ : H2(E) → H3/2(Γ), restricting functions in H2(E) to Γ, and letting u =
(u, γ(u)), we have

ah(u, (vh, µh)) =
∑
K∈Th

∫
K
fvh dx+

∫
∂EN

gµh ds ∀(vh, µh) ∈ V h. (6.21)

This consistency result follows by noting that u = γ(u) on element boundaries, integration
by parts in space-time, single-valuedness of β · n, ∇hu · n̄, u and µh on element bound-
aries, the fact that µh = 0 on ∂ED, and that u solves eq. (6.2)–eq. (6.3). An immediate
consequence of consistency is Galerkin orthogonality: Let (uh, λh) ∈ V h solve eq. (6.14),
then

ah
(
(u, γ(u))− (uh, λh), (vh, µh)

)
= 0, ∀(vh, µh) ∈ V h. (6.22)
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6.3.1 Boundedness

We now turn to the boundedness of the bilinear form.

Lemma 6.3.2 (Boundedness). There exists a cB > 0, independent of hK and ∆t, such
that for all u = (u, γ(u)) ∈ V ?(h) and all (vh, µh) ∈ V h,∣∣ah(u, (vh, µh))∣∣ ≤ cB~u~s,?

�

�(vh, µh)
�

�

s
. (6.23)

Proof. We will begin by bounding each term of the advective part of the bilinear form,
aah(u,vh). We note that

|aah(u, (vh, µh))| ≤
∣∣∣∣ ∑
K∈Th

∫
K
βu · ∇hvh dx

∣∣∣∣+

∣∣∣∣ ∫
∂EN

1
2

(
β · n+ |β · n|

)
γ(u)µh ds

∣∣∣∣
+

∣∣∣∣ ∑
K∈Th

∫
∂K

1
2

(
β · n(u+ γ(u)) + |β · n|(u− γ(u))

)
(vh − µh) ds

∣∣∣∣.
(6.24)

To obtain a bound for the first term on the right-hand side of eq. (6.24), we first recall
β · ∇hvh = ∂tvh + β̄ · ∇hvh, so that∣∣∣∣∣∣

∑
K∈Th

∫
K
βu · ∇hvh dx

∣∣∣∣∣∣ ≤
∑
K∈Th

∫
K
|u∂tvh| dx+

∑
K∈Th

∫
K

∣∣∣β̄u · ∇hvh

∣∣∣ dx. (6.25)

Both terms on the right-hand side may be bounded using the Cauchy–Schwarz inequality:∑
K∈Th

∫
K
|u∂tvh| dx ≤

∑
K∈Th

(
∆t+ hK

∆th2
K

) 1
2

‖u‖K

(
∆th2

K

∆t+ hK

) 1
2

‖∂tvh‖K (6.26)

≤ ~u~s,?

�

�(vh, µh)
�

�

s
,∑

K∈Th

∫
K

∣∣∣β̄u · ∇hvh

∣∣∣ dx ≤∥∥β̄∥∥
L∞(E)

∑
K∈Th

ν−1/2‖u‖K ν
1/2
∥∥∥∇hvh

∥∥∥
K

(6.27)

≤
∥∥β̄∥∥

L∞(E)
ν−1/2

~u~s,?

�

�(vh, µh)
�

�

s
.

The integral over the mixed boundary ∂EN in eq. (6.24) may also be bounded via the
Cauchy–Schwarz inequality:∣∣∣∣∣

∫
∂EN

1
2

(
β · n+ |β · n|

)
γ(u)µh ds

∣∣∣∣∣ ≤∥∥∥β1/2
n γ(u)

∥∥∥
∂EN

∥∥∥β1/2
n µh

∥∥∥
∂EN

≤ ~u~s,?

�

�(vh, µh)
�

�

s
.
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For the final term appearing on the right-hand side of eq. (6.24), we have the bound∣∣∣∣ ∑
K∈Th

∫
∂K

1
2

(
β · n(u+ γ(u)) + |β · n|(u− γ(u))

)
(vh − µh) ds

∣∣∣∣ (6.28)

≤
∑
K∈Th

∫
∂K+

∣∣β · n (vh − µh)u
∣∣ ds+

∑
K∈Th

∫
∂K−

∣∣β · n (vh − µh) γ(u)
∣∣ ds

≤
∑
K∈Th

(∥∥∥β1/2
n u

∥∥∥
∂K+

+
∥∥∥β1/2

n γ(u)
∥∥∥
∂K−

)∥∥∥β1/2
n (vh − µh)

∥∥∥
∂K

≤
√

2~u~s,?

�

�(vh, µh)
�

�

s
,

where we used the triangle inequality for the first inequality, the Cauchy–Schwarz inequality
for the second inequality, and finally combined the discrete Cauchy–Schwarz inequality with
the fact that (a+b)2 ≤ 2(a2 +b2). Collecting the above bounds we obtain, for all u ∈ V ?(h)
and (vh, µh) ∈ V h, ∣∣aah(u, (vh, µh))∣∣ ≤ cB,a~u~s,?

�

�(vh, µh)
�

�

s
, (6.29)

where cB,a = 2 +
√

2 +
∥∥β̄∥∥

L∞(E)
ν−1/2.

We now shift our focus to the diffusive part of the bilinear form, adh(u, (vh, µh)). We
note that

|adh(u, (vh, µh))| ≤
∣∣∣∣ ∑
K∈Th

∫
K
ν∇hu · ∇hvh dx

∣∣∣∣+

∣∣∣∣ ∑
K∈Th

∫
Q

να

hK
(u− γ(u)) (vh − µh) ds

∣∣∣∣
+

∣∣∣∣ ∑
K∈Th

∫
Q

[
ν(u− γ(u))∇hvh · n̄+ ν∇hu · n̄ (vh − µh)

]
ds

∣∣∣∣. (6.30)

By the Cauchy–Schwarz inequality, the first two terms on the right hand side of eq. (6.30)
can be bounded by (1 + α)~u~s,?

�

�(vh, µh)
�

�

s
. To bound the remaining term of

adh(u, (vh, µh)), we note that∣∣∣∣ ∑
K∈Th

∫
Q

[
ν(u− γ(u))∇hvh · n̄+ ν∇hu · n̄ (vh − µh)

]
ds

∣∣∣∣ (6.31)

≤
∑
K∈Th

∫
Q

∣∣∣ν(u− γ(u))∇hvh · n̄
∣∣∣ ds+

∑
K∈Th

∫
Q

∣∣∣ν∇hu · n̄ (vh − µh)
∣∣∣ ds.
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Application of the Cauchy–Schwarz inequality to the first term on the right-hand side
of eq. (6.31), followed by the trace inequality eq. (6.15c), yields∑

K∈Th

∫
Q

∣∣∣ν(u− γ(u))∇hvh · n̄
∣∣∣ ds (6.32)

≤ cT,Q

∑
K∈Th

ν

hK

∥∥u− γ(u)
∥∥2

Q

 1
2
∑
K∈Th

ν
∥∥∥∇hvh

∥∥∥2

K

 1
2

≤ cT,Q~u~s,?

�

�(vh, µh)
�

�

s
.

Finally, to bound the second term on the right-hand side of eq. (6.31), we apply the
Cauchy–Schwarz inequality:∑

K∈Th

∫
Q

∣∣∣ν∇hu · n̄ (vh − µh)
∣∣∣ ds ≤ ~u~s,?

�

�(vh, µh)
�

�

s
. (6.33)

Therefore, for all u ∈ V ?(h) and (vh, µh) ∈ V h,∣∣∣adh(u, (vh, µh))∣∣∣ ≤ cB,d~u~s,?

�

�(vh, µh)
�

�

s
, (6.34)

where cB,d = 2 + α + cT,Q. Combining eq. (6.29) with eq. (6.34) yields the assertion with
cB = cB,a + cB,d.

In the sequel, we will also make use of the following bound valid for all (uh, λh), (vh, µh) ∈
V h:

|adh((uh, λh), (vh, µh))| ≤ cd
�

�(uh, λh)
�

�

v

�

�(vh, µh)
�

�

v
, (6.35)

which follows immediately from eq. (6.34) using the equivalence of norms on
finite-dimensional spaces. However, to quantify the constant cd to ensure its independence
of hK and ∆t, we proceed as follows: note that

|adh((uh, λh), (vh, µh))| ≤
∣∣∣∣ ∑
K∈Th

∫
K
ν∇huh · ∇hvh dx

∣∣∣∣+ ∣∣∣∣ ∑
K∈Th

∫
Q

να

hK
(uh − λh) (vh − µh) ds

∣∣∣∣
+

∣∣∣∣ ∑
K∈Th

∫
Q

[
ν(uh − λh)∇hvh · n̄+ ν∇hu · n̄ (vh − µh)

]
ds

∣∣∣∣. (6.36)
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By the Cauchy–Schwarz inequality, the first two terms on the right-hand side of eq. (6.36)
can be bounded by (1 + α)

�

�(uh, λh)
�

�

v

�

�(vh, µh)
�

�

v
. To bound the remaining term on the

right-hand side of eq. (6.36), we note that∣∣∣∣ ∑
K∈Th

∫
Q

[
ν(uh − λh)∇hvh · n̄+ ν∇huh · n̄ (vh − µh)

]
ds

∣∣∣∣ (6.37)

≤
∑
K∈Th

∫
Q

∣∣∣ν(uh − λh)∇hvh · n̄
∣∣∣ ds+

∑
K∈Th

∫
Q

∣∣∣ν∇huh · n̄ (vh − µh)
∣∣∣ ds.

Application of the Cauchy–Schwarz inequality to the first term on the right-hand side
of eq. (6.37), followed by the trace inequality eq. (6.15c), yields∑

K∈Th

∫
Q

∣∣∣ν(uh − λh)∇hvh · n̄
∣∣∣ ds (6.38)

≤ cT,Q

∑
K∈Th

ν

hK
‖uh − λh‖2

Q

 1
2
∑
K∈Th

ν
∥∥∥∇hvh

∥∥∥2

K

 1
2

≤ cT,Q
�

�(uh, λh)
�

�

v

�

�(vh, µh)
�

�

v
.

Finally, to bound the second term on the right-hand side of eq. (6.37), we apply the
Cauchy–Schwarz inequality followed by the trace inequality eq. (6.15c) to find∑

K∈Th

∫
Q

∣∣∣ν∇huh · n̄ (vh − µh)
∣∣∣ ds ≤ cT,Q

�

�(uh, λh)
�

�

v

�

�(vh, µh)
�

�

v
. (6.39)

The result follows with cd = 1 + α + 2cT,Q.

6.3.2 Stability

Next we demonstrate that the method is stable in the norm eq. (6.18) over the space V ?
h :

Lemma 6.3.3 (Stability). Let α be the penalty parameter appearing in eq. (6.13b) which
is such that α > c2

T,Q where cT,Q is the constant from the local trace inequality eq. (6.15c).
Further, let cα = (α− c2

T,Q)/(1 + α) and suppose there exists a constant β0 > 0 such that

cαν

c2
p

+ inf
x∈E
∇h · β̄ ≥ β0 > 0, (6.40)
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where cp is the constant from the discrete Poincaré inequality eq. (6.16). Then there exists
a constant cc, independent of hK and ∆t, such that

ah((vh, µh), (vh, µh)) ≥ cc
�

�(vh, µh)
�

�

2

v
, ∀(vh, µh) ∈ V h. (6.41)

Proof. By definition of the bilinear form aah(·, ·) in eq. (6.13a),

aah((vh, µh), (vh, µh)) =
1

2

∑
K∈Th

∫
K
v2
h∇h · β dx−

∑
K∈Th

∫
∂K

1

2
β · nv2

h ds

+

∫
∂EN

1

2

(
β · n+ |β · n|

)
µ2
h ds+

∑
K∈Th

∫
∂K

1

2
β · n(vh + µh)(vh − µh) ds

+
∑
K∈Th

∫
∂K

1

2
|β · n|(vh − µh)2 ds, (6.42)

where we used that −2vhβ · ∇hvh = −∇h · (βv2
h) + v2

h∇h · β and applied Gauss’ Theorem.
Expanding the fourth integral on the right-hand side and using the fact that β · n and µh
are single-valued on element boundaries, and that µh = 0 on ∂ED, eq. (6.42) reduces to

aah((vh, µh), (vh, µh)) =
1

2

∑
K∈Th

∫
K
v2
h∇h · β dx+

∫
∂EN

1

2
|β · n|µ2

h ds

+
∑
K∈Th

∫
∂K

1

2
|β · n|(vh − µh)2 ds. (6.43)

Next, by definition of the bilinear form adh(·, ·) in eq. (6.13b),

adh((vh, µh), (vh, µh)) =
∑
K∈Th

∫
K
ν
∣∣∣∇hvh

∣∣∣2 dx+
∑
K∈Th

∫
Q

να

hK
(vh − µh)2 ds

−
∑
K∈Th

∫
Q

2ν∇hvh · n̄ (vh − µh) ds. (6.44)

Applying the Cauchy–Schwarz inequality and the trace inequality eq. (6.15c) to the third
term on the right-hand side of eq. (6.44),∣∣∣∣∣∣2

∑
K∈Th

∫
Q
ν∇hvh · n̄(vh − µh) ds

∣∣∣∣∣∣ ≤ 2ν1/2cT,Q

∥∥∥∇hvh

∥∥∥
K
ν1/2h

−1/2
K ‖vh − µh‖Q . (6.45)
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Combining eq. (6.44) and eq. (6.45), and choosing α > c2
T,Q,

adh((vh, µh), (vh, µh))

≥
∑
K∈Th

(
ν
∥∥∥∇hvh

∥∥∥2

K
− 2cT,Qν

∥∥∥∇hvh

∥∥∥
K
h
−1/2
K ‖vh − µh‖Q +

να

hK
‖vh − µh‖2

Q

)

≥
∑
K∈Th

α− c2
T,Q

1 + α

(
ν
∥∥∥∇hvh

∥∥∥2

K
+

ν

hK
‖vh − µh‖2

Q

)
.

(6.46)

The second inequality follows from noting that for α > ψ2, with ψ a positive real number,
it holds that x2−2ψxy+αy2 ≥ (α−ψ2)(x2 +y2)/(1+α), for x, y ∈ R [28], and taking x =

ν1/2
∥∥∥∇hvh

∥∥∥
K

, y = ν1/2h
−1/2
K ‖vh − µh‖Q and ψ = cT,Q. Combining eq. (6.43) and eq. (6.46),

and using that ∇h · β = ∇h · β̄,

ah((vh, µh), (vh, µh)) ≥
∑
K∈Th

1

2

∫
K
v2
h∇h · β̄ dx+

1

2

∥∥∥β1/2
n µh

∥∥∥2

∂EN

+
1

2

∑
K∈Th

∥∥∥β1/2
n (vh − µh)

∥∥∥2

∂K
+
∑
K∈Th

cαν
∥∥∥∇hvh

∥∥∥2

K
+
∑
K∈Th

cα
ν

hK
‖vh − µh‖2

Q . (6.47)

Using the discrete Poincaré inequality eq. (6.16) and eq. (6.40), we obtain from eq. (6.47):

ah((vh, µh), (vh, µh)) ≥
1

2
β0‖vh‖2

E +
1

2

∥∥∥β1/2
n µh

∥∥∥2

∂EN

+
1

2

∑
K∈Th

∥∥∥β1/2
n (vh − µh)

∥∥∥2

∂K
+

1

2
cα
∑
K∈Th

ν
∥∥∥∇hvh

∥∥∥2

K
+

1

2
cα
∑
K∈Th

ν

hK
‖vh − µh‖2

Q . (6.48)

The result follows with cc = min(β0, cα)/2.

6.3.3 The inf-sup condition

Stability was proven in Section 6.3.2 with respect to the norm
�

�(·, ·)
�

�

v
. To obtain the

error estimates in Section 6.4, we instead consider a norm with additional control over the
time derivatives of the solution. For this we prove an inf-sup condition with respect to the
stronger norm Equation (6.19) following ideas in [13, 28, 104]. We first state the inf-sup
condition.
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Theorem 6.3.1 (The inf-sup condition). There exists ci > 0, independent of hK and ∆t,
such that for all (wh, λh) ∈ V h

ci
�

�(wh, λh)
�

�

s
≤ sup

(vh,µh)∈V h

ah((wh, λh), (vh, µh))
�

�(vh, µh)
�

�

s

. (6.49)

The proof of the inf-sup condition follows after the following two intermediate results.

Lemma 6.3.4. Let (wh, λh) ∈ V h and let zh =
∆th2K

∆t+hK
∂twh. There exists a c1 > 0,

independent of hK and ∆t, such that

�

�(zh, 0)
�

�

s
≤ c1

�

�(wh, λh)
�

�

s
.

Proof. We bound each component of
�

�(zh, 0)
�

�

s
term-by-term. Using the inverse inequality

eq. (6.15a) and that hK < 1, we have

‖zh‖2
E =

∑
K∈Th

(
∆th2

K

∆t+ hK

)2

‖∂twh‖2
K ≤ c2

I,t‖wh‖
2
E .

Similarly, the inverse inequality eq. (6.15a) and hK < 1 yields

∑
K∈Th

ν
∥∥∥∇hzh

∥∥∥2

K
=
∑
K∈Th

ν

(
∆th2

K

∆t+ hK

)2∥∥∥∂t(∇hwh)
∥∥∥2

K
≤ c2

I,t

∑
K∈Th

ν
∥∥∥∇hwh

∥∥∥2

K
.

Next, the facet term arising from the advective portion of the norm may be bounded using
the trace inequality eq. (6.15d):∑

K∈Th

∥∥∥β1/2
n zh

∥∥∥2

∂K
≤‖β‖L∞(E)

∑
K∈Th

‖zh‖2
∂K

≤ c2
T,∂K‖β‖L∞(E)

∑
K∈Th

(
∆th2

K

∆t+ hK

)
‖∂twh‖2

K .

The facet term diffusive portion of the norm may be bounded with an application of
eq. (6.15c) and eq. (6.15a):

∑
K∈Th

ν

hK
‖zh‖2

Q =
∑
K∈Th

ν

hK

(
∆th2

K

∆t+ hK

)2

‖∂twh‖2
Q ≤ c2

T,Qc
2
I,t

∑
K∈Th

ν‖wh‖2
K .
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For the remaining term, eq. (6.15a) yields

∑
K∈Th

∆th2
K

∆t+ hK
‖∂tzh‖2

K ≤ c2
I,t

∑
K∈Th

(
∆th2

K

∆t+ hK
‖∂twh‖2

K

)
.

Collecting the above bounds, we obtain lemma 6.3.4, with c1 = 3c2
I,t + c2

T,∂K‖β‖L∞(E) +

c2
T,Qc

2
I,t.

Lemma 6.3.5. Let (wh, λh) ∈ V h and let zh =
∆th2K

∆t+hK
∂twh. There exists a c2 > 0,

independent of hK and ∆t, such that if (vh, µh) = c2(wh, λh) + (zh, 0) ∈ V h, then

1

2

�

�(wh, λh)
�

�

2

s
≤ ah((wh, λh), (vh, µh)). (6.50)

Proof. Note that ah((wh, λh), (zh, 0)) = aah((wh, λh), (zh, 0)) + adh((wh, λh), (zh, 0)). Inte-
grating by parts the volume integral of aah(·, ·) we have the following decomposition:

∑
K∈Th

∆th2
K

∆t+ hK
‖∂twh‖2

K = ah((wh, λh), (zh, 0))− adh((wh, λh), (zh, 0))

−
∑
K∈Th

∆th2
K

∆t+ hK

∫
K
wh∇h · β̄∂twh dx−

∑
K∈Th

∆th2
K

∆t+ hK

∫
K
β̄ · ∇hwh∂twh dx

+
1

2

∑
K∈Th

∆th2
K

∆t+ hK

∫
∂K

(
β · n− |β · n|

)
(wh − λh) ∂twh ds. (6.51)

From the boundedness of the diffusive part of the bilinear form eq. (6.35), and application
of Young’s inequality, with ε1 > 0, we obtain the following bound for the second term on
the right-hand side of eq. (6.51):

|adh((wh, λh), (zh, 0))| ≤ cd
2ε1

�

�(zh, 0)
�

�

2

v
+
cdε1

2

�

�(wh, λh)
�

�

2

v

≤ cdc
2
1

2ε1

�

�(wh, λh)
�

�

2

s
+
cdε1

2

�

�(wh, λh)
�

�

2

v

≤ cdc
2
1

2ε1

∑
K∈Th

∆th2
K

∆t+ hK
‖∂twh‖2

K +

(
cdc

2
1

2ε1
+
cdε1

2

)
�

�(wh, λh)
�

�

2

v
,

where we have used the fact that ~·~v ≤ ~·~s and applied Lemma 6.3.4 in the second
inequality, and the definition of ~·~s in the third inequality. Next, to bound the third term
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on the right-hand side of eq. (6.51) we apply the Cauchy–Schwarz inequality and eq. (6.15a)
to obtain ∣∣∣∣ ∑

K∈Th

∆th2
K

∆t+ hK

∫
K
wh∇h · β̄∂twh dx

∣∣∣∣ ≤ cI,t

∥∥∥∇h · β̄
∥∥∥
L∞(E)

∑
K∈Th

hK‖wh‖2
K .

As for the fourth term on the right-hand side of eq. (6.51), we first apply the Cauchy–
Schwarz inequality, Young’s inequality with some ε2 > 0 and eq. (6.15b),∣∣∣∣ ∑
K∈Th

∆th2
K

∆t+ hK

∫
K
β̄ · ∇hwh∂twh dx

∣∣∣∣ ≤ ∑
K∈Th

∆th2
K

∆t+ hK

∥∥β̄∥∥
L∞(K)

‖∂twh‖K
∥∥∥∇hwh

∥∥∥
K

≤
∥∥β̄∥∥

L∞(E)

∑
K∈Th

c2
I,s

2ε2
‖wh‖2

K +
∑
K∈Th

ε2
2

(
∆th2

K

∆t+ hK

)
‖∂twh‖2

K

 .
For the remaining term on the right-hand side of eq. (6.51), we use the Cauchy–Schwarz
inequality, Young’s inequality with some ε3 > 0, and apply the trace inequality eq. (6.15d)
to find:∣∣∣∣ ∑
K∈Th

∆th2
K

∆t+ hK

∫
∂K

1

2

(
β · n− |β · n|

)
∂twh (wh − λh) ds

∣∣∣∣
≤
c2
T,∂K

2ε3

∑
K∈Th

hK
∆th2

K

∆t+ hK
‖∂twh‖2

K +
ε3
2
‖β‖L∞(E)

∑
K∈Th

∥∥∥β1/2
n (wh − λh)

∥∥∥2

∂K
. (6.52)

Combining all of the above estimates,

∑
K∈Th

∆th2
K

∆t+ hK
‖∂twh‖2

K ≤ ah((wh, λh), (zh, 0))

+

(
cdc

2
1

2ε1
+
ε2
2

∥∥β̄∥∥
L∞(E)

+
c2
T,∂K

2ε3

) ∑
K∈Th

∆th2
K

∆t+ hK
‖∂twh‖2

K

+

(
cdc

2
1

2ε1
+
cdε1

2
+ cI,t

∥∥∥∇h · β̄
∥∥∥
L∞(E)

+
c2
I,s

2ε2

∥∥β̄∥∥
L∞(E)

+
ε3
2
‖β‖L∞(E)

)
�

�(wh, λh)
�

�

2

v
. (6.53)
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Choosing ε1 = 2cdc
2
1, ε2 = 1/(4

∥∥β̄∥∥
L∞(E)

), and ε3 = 4c2
T,∂K, adding 1

2

�

�(wh, λh)
�

�

2

v
to both

sides, and rearranging yields

1
2

�

�(wh, λh)
�

�

2

s
≤ ah((wh, λh), (zh, 0))

+

(
3
4

+ c2
dc

2
1 + cI,t

∥∥∥∇h · β̄
∥∥∥
L∞(E)

+ 2c2
I,s

∥∥β̄∥∥2

L∞(E)
+ 2c2

T,∂K‖β‖L∞(E)

)
�

�(wh, λh)
�

�

2

v
. (6.54)

From the stability of ah(·, ·), Lemma 6.3.3, we have the bound

1
2

�

�(wh, λh)
�

�

2

s
≤ ah((wh, λh), (zh, 0)) + c2ah((wh, λh), (wh, λh)) (6.55)

where c2 = c−1
c (3

4
+ c2

dc
2
1 + cI,t

∥∥∥∇h · β̄
∥∥∥
L∞(E)

+ 2c2
I,s

∥∥β̄∥∥2

L∞(E)
+ 2c2

T,∂K‖β‖L∞(E)). The result

follows.

Combining Lemma 6.3.4 and Lemma 6.3.5 now yields the proof for the inf-sup condition
stated in Theorem 6.3.1.

Proof of Theorem 6.3.1. Given any (wh, λh) ∈ V h, consider the linear combination

(vh, µh) = c2(wh, λh)+(zh, 0), with zh =
∆th2K

∆t+hK
∂twh and c2 the constant from Lemma 6.3.5.

An application of the triangle inequality and the combination of Lemma 6.3.4
and Lemma 6.3.5 yields

�

�(vh, µh)
�

�

s

�

�(wh, λh)
�

�

s
≤

�

�(zh, 0)
�

�

s

�

�(wh, λh)
�

�

s
+ c2

�

�(wh, λh)
�

�

2

s

≤ (c1 + c2)
�

�(wh, λh)
�

�

2

s

≤ 2(c1 + c2)ah((wh, λh), (vh, µh)),

which implies the inf-sup condition with ci = 1
2
(c1 + c2)−1.

6.4 Error analysis

We now turn to the error analysis of the space-time HDG method. The following Céa-like
lemma will prove useful in obtaining the global error estimate in Theorem 6.4.1.

Lemma 6.4.1 (Convergence). If u = (u, γ(u)) ∈ H2(E)×H3/2(Γ), where u solves eq. (6.1),
and (uh, λh) ∈ V h is the solution to the discrete problem eq. (6.14), then

�

�u− (uh, λh)
�

�

s
≤
(

1 +
cB
ci

)
inf

(vh,µh)∈V h

�

�u− (vh, µh)
�

�

s,?
. (6.56)
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Proof. From inf-sup stability (Theorem 6.3.1), Galerkin orthogonality eq. (6.22), and
boundedness (Lemma 6.3.2), we have for any (wh, ωh) ∈ V h

ci
�

�(uh, λh)− (wh, ωh)
�

�

s
≤ sup

(vh,µh)∈V h

ah((uh, λh)− (wh, ωh), (vh, µh))
�

�(vh, µh)
�

�

s

= sup
(vh,µh)∈V h

ah(u− (wh, ωh), (vh, µh))
�

�(vh, µh)
�

�

s

≤ cB sup
(vh,µh)∈V h

�

�u− (wh, ωh)
�

�

s,?

�

�(vh, µh)
�

�

s
�

�(vh, µh)
�

�

s

= cB
�

�u− (wh, ωh)
�

�

s,?
.

The result follows after application of the triangle inequality to
�

�u− (uh, λh)
�

�

s
.

We next define the projections P : L2(E) → V
(pt,ps)
h and P∂ : L2(Γ) → M

(pt,ps)
h which

satisfy ∑
K∈Th

∫
K

(w − Pw) vh dx = 0, ∀ vh ∈ V (pt,ps)
h , (6.57)

∑
S∈F

∫
S

(
λ− P∂λ

)
µh ds = 0, ∀ µh ∈M (pt,ps)

h . (6.58)

These projections will be used to obtain interpolation estimates.

Lemma 6.4.2 (Interpolation estimates). Assume that K is a space-time element in Rd+1

constructed via two mappings φK and FK, with FK : K̂ → K̃ and φK : K̃ → K. Assume
that the spatial shape-regularity condition eq. (6.10) holds. Suppose u|K ∈ H(pt+1,ps+1)(K)
solves eq. (6.2)–eq. (6.3). Then, the error u − Pu, its trace at the boundary ∂K, and the
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error u− P∂u on ∂K satisfy the following error bounds:

‖u− Pu‖2
K ≤ c

(
h2ps+2
K + ∆t2pt+2

)
‖u‖2

H(pt+1,ps+1)(K) , (6.59)∥∥∥∇h(u− Pu)
∥∥∥2

K
≤ c

(
h2ps
K + ∆t2pt+2

)
‖u‖2

H(pt+1,ps+1)(K) , (6.60)∥∥∂t(u− Pu)
∥∥2

K ≤ c
(
h2ps
K + ∆t2pt

)
‖u‖2

H(pt+1,ps+1)(K) , (6.61)∥∥∥∇h(u− Pu) · n̄
∥∥∥2

Q
≤ c

(
h2ps−1
K + h−1

K ∆t2pt+2
)
‖u‖2

H(pt+1,ps+1)(K) , (6.62)

‖u− Pu‖2
∂K ≤ c

(
h2ps+1
K + ∆t2pt+1

)
‖u‖2

H(pt+1,ps+1)(K) , (6.63)∥∥∥u− P∂γ(u)
∥∥∥
∂K
≤ c

(
h2ps+1
K + ∆t2pt+1

)
‖u‖2

H(pt+1,ps+1)(K) , (6.64)

where c depends only on the spatial dimension d, the polynomial degrees pt and ps, the
spatial shape-regularity constant cr, and the Jacobian of the mapping φK.

Proof. The bounds eq. (6.59), eq. (6.60) and eq. (6.63) have been obtained previously
in [95, Lemma 6.1 and Remark 6.2] by generalizing [38, Lemmas 3.13 and 3.17] to higher
dimensions. We relax the assumption in [95, Remark 6.2] that all spatial edge lengths are
equal through the spatial shape-regularity assumption eq. (6.10). In doing so, the bound
eq. (6.61) may be obtained in an identical fashion to eq. (6.60). The bound eq. (6.62)
is obtained as follows: we derive a bound for the spatial derivative of the interpolation
error over each face ∂Ki, where i = 1, . . . , d, generalizing [38, Lemma 3.20] to the space-
time setting. Then, summing over the faces i = 1, . . . , d we obtain a bound of the spatial
derivatives of the interpolation error over Q = ∂K\(Kn ∪Kn+1), and sum over all of the
spatial derivatives to obtain the result. Lastly, the bound eq. (6.64) may be inferred from
the bound eq. (6.63) by the optimality of the L2-projection P∂ on facets.

With the interpolation estimates in place, we can now derive an error bound in the
~·~s norm:

Theorem 6.4.1 (Global error estimate). Suppose that K is a space-time element in Rd+1

constructed via two mappings φK and FK, with FK : K̂ → K̃ and φK : K̃ → K, and that
the spatial shape-regularity condition eq. (6.10) holds. Let u = (u, γ(u)), where u|K ∈
H(pt+1,ps+1)(K) solves the advection–diffusion problem eq. (6.2), and where γ(u) denotes
the trace of u on ∂K. Furthermore, let (uh, λh) ∈ V h be the solution to the discrete
problem eq. (6.14). Then, the following error bound holds:

�

�u− (uh, λh)
�

�

2

s
≤ C

(
h2ps + ∆t2pt+1 + ν

(
h2ps + h−1∆t2pt+1

))
‖u‖2

H(pt+1,ps+1)(E) , (6.65)
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where h = maxK∈ThhK is the spatial mesh size ∆t is the time-step and C > 0 a constant.

Proof. By Lemma 6.4.1, we may bound the discretization error u − (uh, λh) in the ~·~s
norm by the interpolation error u− (Pu,P∂γ(u)) in the ~·~s,? norm:

�

�u− (uh, λh)
�

�

s
≤
(

1 +
cB
ci

)
�

�

�
u− (Pu,P∂γ(u))

�

�

�

s,?
. (6.66)

Thus, it suffices to bound each term of
�

�u− (Pu,P∂γ(u))
�

�

s,?
using the interpolation

estimates in Lemma 6.4.2.

First, combining the terms involving‖u− Pu‖K, applying eq. (6.59), and collecting the
leading order terms,(

1 +
∆t+ hK

∆th2
K

)
‖u− Pu‖2

K ≤ c
(
h2ps
K + ∆t2pt+2h−2

K

)
‖u‖2

H(pt+1,ps+1)(K) . (6.67)

Using the fact that
∆th2K

∆t+hK
≤ ∆thK and applying the estimate eq. (6.61), we have

∆th2
K

∆t+ hK

∥∥∂t(u− Pu)
∥∥2

K ≤ c
(
h2ps+1
K ∆t+ hK∆t2pt+1

)
‖u‖2

H(pt+1,ps+1)(K) . (6.68)

Next, an application of eq. (6.60) yields

ν
∥∥∥∇h(u− Pu)

∥∥∥2

K
≤ cν

(
h2ps
K + ∆t2pt+2

)
‖u‖2

H(pt+1,ps+1)(K) . (6.69)

Using the triangle inequality, eq. (6.63), and eq. (6.64), all of the advective facet terms
may be bounded as follows:

∑
K∈Th

(∥∥∥β1/2
n (u− Pu)

∥∥∥2

∂K
+
∥∥∥β1/2

n (u− P∂u)
∥∥∥2

∂K

)
≤

c‖β‖L∞(E)

∑
K∈Th

(
h2ps+1
K + ∆t2pt+1

)
‖u‖2

H(pt+1,ps+1)(K) . (6.70)

For the diffusive facet term, we again apply the triangle inequality, eq. (6.63), and eq. (6.64)
to obtain

ν

hK
‖u− Pu‖2

∂K +
ν

hK

∥∥∥u− P∂u∥∥∥2

∂K
≤ cν

(
h2ps
K + h−1

K ∆t2pt+1
)
‖u‖2

H(pt+1,ps+1)(K) . (6.71)
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Lastly, applying eq. (6.62),

hKν
∥∥∥∇h(u− Pu) · n̄

∥∥∥2

Q
≤ cν

(
h2ps
K + ∆t2pt+2

)
‖u‖2

H(pt+1,ps+1)(K) . (6.72)

Summing over all K ∈ Th, collecting all of the above estimates, and returning to eq. (6.66)
yields the assertion.

6.5 Numerical example

In this section we validate the results of the previous sections. For this we consider the
rotating Gaussian pulse test case on a time-dependent domain as introduced in [75, Section
4.3]. We solve eq. (6.2)–eq. (6.3) with β̄ = (−4x2, 4x1)T and f = 0. The boundary and
initial conditions are set such that the exact solution is given by

u(t, x1, x2) =
σ2

σ2 + 2νt
exp

(
−(x̃1 − x1c)

2 + (x̃2 − x2c)
2

2σ2 + 4νt

)
, (6.73)

where x̃1 = x1 cos(4t) + x2 sin(4t), x̃2 = −x1 sin(4t) + x2 cos(4t), (x1c, x2c) = (−0.2, 0.1).
Furthermore, we set σ = 0.1. The advection–diffusion problem is solved on a time-
dependent domain. The deformation is based on a transformation of a uniform space-time
mesh (t, x0

1, x
0
2) ∈ [0, tN ]× [−0.5, 0.5]2 given by

xi = x0
i + A

(
1
2
− x0

i

)
sin
(

2π
(

1
2
− x∗i + t

))
i = 1, 2, (6.74)

where and (x∗1, x
∗
2) = (x2, x1) and A = 0.1. We take tN = 1.

This example was implemented using the Modular Finite Element Methods (MFEM)
library [2, 67] on unstructured hexahedral space-time meshes. The solution on the time-
dependent domain is shown at different points in time in Figure 6.3. In Table 6.1 we
compute the rates of convergence in the

�

�(·, ·)
�

�

s
norm using polynomial degree p = pt =

ps = 1, 2, 3. We consider both ν = 10−2 and ν = 10−6. Mesh refinement is done simulta-
neously in space and time. For the case that ν = 10−2 we obtain rates of convergence of
approximately p, as expected from Theorem 6.4.1, while for ν = 10−6 we obtain slightly
better rates of convergence, namely p+ 1/2.
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Figure 6.3: The mesh and solution for ν = 10−2 at time levels t = 0, 0.4, 0.8 (left to right).

Cells per slab Nr. of slabs p = 1 rates p = 2 rates p = 3 rates
64 8 8.00e-2 - 1.52e-2 - 2.87e-3 -
256 16 3.15e-2 1.3 3.24e-3 2.2 2.92e-4 3.3
1024 32 1.30e-2 1.3 7.03e-4 2.2 3.21e-5 3.2
4096 64 5.95e-3 1.1 1.64e-4 2.1 3.80e-6 3.1
64 8 1.75e-1 - 3.71e-2 - 6.67e-3 -
256 16 7.78e-2 1.2 6.23e-3 2.6 5.60e-4 3.6
1024 32 2.51e-2 1.6 1.03e-3 2.6 4.64e-5 3.6
4096 64 7.60e-3 1.7 1.76e-4 2.5 3.88e-6 3.6

Table 6.1: Rates of convergence when solving the advection–diffusion problem eq. (6.2)–
eq. (6.3) on a time-dependent domain with mesh deformation satisfying eq. (6.74) with
ν = 10−2 (top) and ν = 10−6 (bottom).
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Chapter 7

Conclusions

In this thesis, we presented our work on the theoretical analysis of space-time HDG schemes
for incompressible flow problems. Throughout, we have extended many of the technical
tools used in the analysis of finite element methods to the HDG setting in a novel way.
In this final chapter, we briefly summarize what we have achieved and discuss possible
avenues of future research based on this work.

7.1 Summary

In Chapter 3, we presented a theoretical analysis of the HDG method of Rhebergen and
Wells [78] for the steady Navier–Stokes equations. We showed that there exists a unique
solution to the nonlinear algebraic system that arises from the HDG discretization under a
small data condition. Furthermore, we proved optimal a priori error estimates for both the
velocity and pressure. In particular, the error in the velocity is shown to be independent
of the error in the pressure, confirming theoretically what was observed in the numerical
experiments in [78].

In Chapter 4, we analyzed an exactly mass conserving space-time HDG method for the
time-dependent incompressible Navier-Stokes equations on fixed domains. We proved that
the method is energy stable, that there exists a solution to the nonlinear algebraic system
arising from the discretization in both two and three spatial dimensions, and that this
solution is unique in two spatial dimensions under a small data condition. We then derived
optimal a priori error estimates for the velocity which are independent of the pressure,
proving that the method is indeed pressure-robust. This required us to consider strong
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solutions of the Navier–Stokes equations, which placed a restriction on the shape of the
spatial domain and the size of the problem data. Finally, we derived (sub-optimal) error
estimates for the pressure, and presented a numerical experiment to verify the theoretically
predicted rates of convergence.

In Chapter 5, we filled the gap left by the analysis of the previous chapter by proving
that the space-time HDG method converges to a weak solution of the Navier–Stokes equa-
tions in the absence of additional regularity as the mesh size and time step tend to zero.
This removes the restrictions placed on the shape of the spatial domain and problem data in
Chapter 4. Our analysis required the introduction of discrete differential operators, which
we extended to the HDG setting. Moreover, a discrete compactness result reminiscent of
the Aubin–Lions–Simon theorem is proven in order to pass to the limit in the nonlinear
convection term. Finally, we showed that this weak solution satisfies a suitable energy
inequality in three spatial dimensions, and thus is a solution in the sense of Leray–Hopf.

Finally, in Chapter 6, we provide a first step toward the analysis of space-time HDG
schemes for the incompressible Navier–Stokes equations on time-dependent domains by
considering the simpler linear advection-diffusion equation. Our analysis made extensive
use of anisotropic interpolant estimates and novel anisotropic inverse and trace inequalities.
We proved that the resulting algebraic system from the space-time HDG discretization is
well-posed, and we derived error estimates that are anisotropic in the time step and spatial
mesh size which were then verified with a numerical experiment.

7.2 Future directions

The first and most immediate recommendation for future work is to remedy the sub-optimal
error estimates for the pressure obtained in Chapter 4. The source of the problem seems to
be that the time derivative of the error in the velocity is estimated in the L2-norm, which
introduces a negative power of the time-step through the use of an inverse inequality. A
more appropriate approach would be to estimate the time derivative of the error in a
discrete analogue of a negative Sobolev norm. This would be done using techniques similar
to those in Chapter 5 when bounding the discrete time derivative in the dual space V ′.
Continuing on this point, it would also be interesting to see if optimal rates of convergence
for the velocity can be obtained in the L2(0, T ;L2(Ω)d)-norm. A possible approach would
involve the consideration of a backward-in-time linearized dual problem satisfying suitable
parabolic regularity properties, analogous to the technique used to prove the L2-estimates
for the velocity in Chapter 3 in the elliptic setting.
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Next, as mentioned in the thesis introduction, our primary motivation for the use of
the space-time HDG method is for the numerical solution of the Navier–Stokes equations
on time dependent domains. Since the space-time HDG method introduced in [43, 44]
uses space-time tetrahedral elements, the techniques that we have presented in this thesis
are not applicable. Instead, we propose the use of mapped space-time prismatic elements,
so that the tensor-product structure can be exploited to combine the techniques used in
Chapter 4 with the analysis framework used in Chapter 6 for time-dependent domains.
This would require the use of the piola transformation to ensure that the discrete velocity
solution remains pointwise divergence free and divergence conforming on moving meshes.

However, if one insists on analyzing the space-time HDG method in [43, 44] on space-
time tetrahedral elements, a possible approach would be to consider the following elliptic
regularization of the momentum equation:

ε∂ttu+ ∂tu− ν∆u+∇ · (u⊗ u) +∇p = f, on Ω(t),

complemented with suitable initial and boundary conditions. Here ε > 0 is a small param-
eter. This regularized problem is now an elliptic problem in Rd+1, and thus the techniques
used for the steady elliptic problem in Chapter 4 are applicable. The difficulty in this
approach is justifying that the exact solution to the regularized system converges as ε→ 0
to a solution of the Navier–Stokes equations on time-dependent domains, which is made
especially challenging by the fact that the error analysis requires Ω(t) to be polygonal or
polyhedral (and thus, not smooth).
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[5] J. Bergh and J. Löfström. Interpolation Spaces: an Introduction, volume 223 of
Grundlehren der mathematischen Wissenschaften. Springer-Verlag Berlin Heidel-
berg, 2012.

[6] D. Boffi, F. Brezzi, and M. Fortin. Mixed Finite Element Methods and Applications,
volume 44 of Springer Series in Computational Mathematics. Springer, 2013.

[7] D. Boffi and L. Gastaldi. Stability and geometric conservation laws for ALE formu-
lations. Comput Methods Appl Mech Eng, 193(42):4717–4739, 2004.

[8] F. Boyer and P. Fabrie. Mathematical Tools for the Study of the Incompressible
Navier-Stokes Equations and Related Models, volume 183 of Applied Mathematical
Sciences. Springer, 2012.

[9] S. C. Brenner and L. R. Scott. The Mathematical Theory of Finite Element Methods,
volume 15 of Texts in Applied Mathematics. Springer, 2008.

163



[10] H. Brezis. Functional Analysis, Sobolev Spaces, and Partial Differential Equations.
Springer–Verlag New York, 2011.

[11] A. Buffa and C. Ortner. Compact embeddings of broken Sobolev spaces and appli-
cations. IMA Journal of Numerical Analysis, 29:827–855, 2009.

[12] V. Calo, M. Cicuttin, Q. Deng, and A. Ern. Spectral approximation of elliptic
operators by the Hybrid High-Order method. Math. Comp., 88:1559–1586, 2019.

[13] A. Cangiani, Z. Dong, and E. H. Georgoulis. hp-Version space–time discontinuous
Galerkin methods for parabolic problems on prismatic meshes. SIAM J. Sci. Com-
put., 39(4):A1251–A1279, 2017.

[14] A. Cesmelioglu, B. Cockburn, and W. Qiu. Analysis of a hybridizable discontinuous
Galerkin method for the steady-state incompressible Navier–Stokes equations. Math.
Comp., 86:1643–1670, 2017.

[15] K. Chrysafinos and N. J. Walkington. Error Estimates for the Discontinuous Galerkin
Methods for Parabolic Equations. SIAM J. Numer. Anal., 44:349–366, 2006.

[16] K. Chrysafinos and N. J. Walkington. Lagrangian and moving mesh methods for the
convection diffusion equation. ESAIM Math. Model. Numer. Anal., 42:25–55, 2008.

[17] K. Chrysafinos and N. J. Walkington. Discontinuous Galerkin approximations of the
Stokes and Navier–Stokes equations. Math. Comp., 79:2135–2167, 2010.

[18] P. G. Ciarlet. Linear and Nonlinear Functional Analysis with Applications. SIAM,
2013.

[19] B. Cockburn, J. Gopalakrishnan, and R. Lazarov. Unified hybridization of discon-
tinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic
problems. SIAM J. Numer. Anal., 47(2):1319–1365, 2009.

[20] B. Cockburn, G. Kanschat, and D. Schötzau. The local discontinuous Galerkin
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Appendix A

Appendix to Chapter 4

A.1 Approximation properties of Ph and P̄h
Here, we briefly outline the approximation properties of the projections Ph and P̄h in-
troduced in Definition 4.4.1. We require some results from [29] adapted to the present
setting:

Theorem A.1.1 ([29, Theorem 6.9]). The projections defined in Definition 4.4.1 exist and
are unique. Furthermore, for all n = 0, . . . , N − 1,

(Phv)|In = Ph(Phv)|In = Ph(Phv|In), (P̄hv)|In = P̄h(P̄hv)|In = P̄h(P̄hv|In).

We first introduce a temporal “DG-projection” P t : C(In)→ Pk(In) satisfying∫
In

(
P tw(t)− w(t)

)
v dt = 0,

for all v ∈ Pk−1(In) and P tw(t−n+1) = w(t−n+1) (see, e.g., [98, Chapter 12] or [29, Lemma
6.11]). For u ∈ Hk+1(In) this projection satisfies

‖u− P tu‖Hs(In) . ∆tr−s|u|Hr(In), 0 ≤ s ≤ 1 ≤ r ≤ k. (A.1)

Lemma A.1.1. Let ϕ ∈ C(In;V div
h ) and ψ̄ ∈ C(In; V̄h). Then

Phϕ(x, t) = P tϕ(x, t) ∀x ∈ {K,F} , ∀ {K ∈ Th, F ∈ Fh} , (A.2a)

P̄hψ̄(x, t) = P tψ̄(x, t) ∀x ∈ F, ∀F ∈ Fh. (A.2b)
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Proof. The proofs of eq. (A.2a) and eq. (A.2b) follow the proof of [29, Lemma 6.11] with
minor modifications.

With Lemma A.1.1 in hand, we can prove the following results:

Theorem A.1.2. Let k ≥ 1, m ∈ {0, 1}, and

u ∈ Hk+1(In;H1
0 (Ω)d ∩H2(Ω)d) ∩ C(In;Hk+1(Ω)d).

Let Ph and P̄h be the projections defined in Definition 4.4.1. Let l = 0 if m ≤ 1 and l = m
if m = 2. Then, the following estimates hold:∑

K∈Th

∫
In

|u− Phu|2Hm(K) dt (A.3a)

. h2(k−m+1)‖u‖2
L2(In;Hk+1(Ω)) + h−l∆t2k+2‖u‖2

Hk+1(In;Hm(Ω)) ,∑
K∈Th

h−1
K

∫
In

∥∥Phu− P̄hu∥∥2

L2(∂K)
dt . h2k‖u‖2

L2(In;Hk+1(Ω)) , (A.3b)

∑
K∈Th

hK

∫
In

∥∥∇(u− Phu)n
∥∥2

L2(∂K)
dt (A.3c)

. h2k‖u‖2
L2(In;Hk+1(Ω)) + ∆t2k+2‖u‖2

Hk+1(In;H2(Ω)) ,∫
In

‖∂t(u−Phu)‖2
L2(Ω)) dt (A.3d)

.
(

∆t2k‖u‖2
Hk+1(In;L2(Ω)) + h2k+2

∥∥u∥∥2

H1(In;Hk+1(Ω))

)
. (A.3e)

Proof. First, eq. (A.3a) can be shown in a similar fashion to [29, Lemmas 6.17 and 6.18]
using the approximation properties of the spatial projection Ph given in Lemma 4.4.1
and the approximation properties of P t given in eq. (A.1). For eq. (A.3b) we recall that
(Phv)|In = Ph(Phv)|In and (P̄hv)|In = P̄h(P̄hv)|In by Theorem A.1.1, so by Lemma A.1.1,
Fubini’s theorem, and the stability of P t in the L2(In) norm, we have∑

K∈Th

1

hK

∫
In

‖Phu− P̄hu‖
2

L2(∂K) dt ≤ C
∑
K∈Th

1

hK

∫
In

‖Phu− P̄hu‖
2

L2(∂K) dt.

We conclude using the triangle inequality and the approximation properties of the spatial
projections Ph and P̄h. Finally, eq. (A.3c) follows from eq. (A.3a) after noting that a local
trace inequality yields

hK
∥∥∇(u− Phu)n

∥∥2

L2(∂K)
≤ |u− Phu|2H1(K) + h2

K |u− Phu|2H2(K).
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Finally, eq. (A.3e) follows from Theorem A.1.1, Lemma A.1.1, Lemma 4.4.1, and eq. (A.1)
since

‖∂t(u− Phu)‖L2(In;L2(Ω)) = ‖∂t(u− PhPhu)‖L2(In;L2(Ω))

= ‖∂t(u− P tPhu)‖L2(In;L2(Ω))

≤ ‖∂tu− Ph∂tu‖L2(In;L2(Ω)) + ‖∂t(Phu− P tPhu)‖L2(In;L2(Ω)) ,

where we have used the fact that the spatial projection Ph commutes with differentiation
in time.
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Appendix B

Appendix to Chapter 5

B.1 Discrete compactness of the velocity

We recall the discrete compactness theory for DG time stepping developed by Walkington
in [102] with a minor modification to fit the current non-conforming spatial discretization.

Remark B.1.1. To our knowledge, the compactness theorem in [102, Theorem 3.1] for
DG-in-time discretizations was first extended to non-conforming spatial approximations in
[61]. Note that we can apply [61, Theorem 3.2] in our setting to conclude that the sequence
{uh}h∈H is relatively compact in L2(0, T ;L2(Ω)d) by selecting (using the notation of [61]
with Y and X replacing V and H therein to avoid confusion):

W = H1
0 (Ω)d, W (Th) = H1(Th)d, Y = [BV (Ω)d ∩ L4(Ω)d;L4(Ω)d]1/2,

X = L2(Ω)d, W ′ = H−1(Ω)d, Wh = Vh,

where H1(Th)d is the broken H1 space equipped with the ‖·‖1,h-norm [11, 28, 29], BV (Ω)d

is the space of functions of bounded variation [11], and [Y0, Y1]θ denotes the complex inter-
polation between Banach spaces Y0, Y1 with exponent θ ∈ (0, 1) [5].

We present below a simple proof of a special case of [61, Theorem 3.2] that stays directly
within the framework of broken polynomial spaces and their discrete functional analysis
tools. This avoids the need to construct a non-conforming space that embeds compactly
into L2(Ω)d and is made possible by the following discrete Rellich–Kondrachov theorem
valid for broken polynomial spaces [28, Theorem 5.6]:

177



Lemma B.1.1 (Discrete Rellich–Kondrachov). Let H be a countable set of mesh sizes
whose unique accumulation point is 0. Assume {(Th,Fh)}h∈H is a sequence of conforming
and shape-regular simplicial meshes. Let {vh}h∈H be a sequence in {Vh}h∈H bounded in the
‖·‖1,h-norm. Then, for all 1 ≤ q < ∞ if d = 2 and 1 ≤ q ≤ 6 if d = 3, the sequence

{vh}h∈H is relatively compact in Lq(Ω)d.

Theorem B.1.1 (Compactness). Let q = 4/d. Let the sequence {uh}h∈H be such that for
each h ∈ H, uh ∈ Vdiv

h × V̄h. Then, {uh}h∈H is relatively compact in L2(0, T ;L2(Ω)d) if:

(i) {uh}h∈H is uniformly bounded in the sense that
∫ T

0
~uh~

2
v dt ≤ M for some M > 0

independent of the mesh parameters h and τ .

(ii) For each h ∈ H, the following bound on the discrete time derivative of uh holds
uniformly for q′ = 4/(4− d):∣∣∣∣ ∫ T

0

(Dktt (uh), vh)Th dt

∣∣∣∣ . (∫ T

0

~vh~
q′

v dt

)1/q′

, ∀vh ∈ Vdiv
h × V̄h.

Proof. The proof, which proceeds in three steps, follows closely the proof of [102, Theorem
3.1] with minor modifications.

Step one (equicontinuity): Step one follows exactly the proof of [102, Lemma 3.3];
here we show that the assumptions therein can be interpreted as a uniform bound on the
discrete time derivative eq. (5.23). By definition, it holds that∫

In

(∂tuh, vh)Th + ([uh]n , v
+
n )Th =

∫
In

(Dktt (uh), vh)Th dt, ∀vh ∈ Vh. (B.1)

Comparing with [102, Lemma 3.3], we require Fh : vh 7→ (Dktt (uh), vh)Th to be uniformly
bounded Lq(0, T ; (V div

h × V̄h)′), where (V div
h × V̄h)′ is the dual space of V div

h × V̄h. We show
that assumption (ii) suffices. As the space V div

h × V̄h and its dual are finite-dimensional
(hence separable), we make the identification Lq(0, T ; (V div

h × V̄h)′) ∼= Lq
′
(0, T ;V div

h × V̄h),
and we have

‖Fh‖Lq(0,T ;(V div
h ×V̄h)′) = sup

0 6=v∈Lq′ (0,T ;V div
h ×V̄h)

∣∣ ∫ T
0
Fh(v) dt

∣∣(∫ T
0

~v~
q′

v dt
)1/q′

. (B.2)

Choose Fh in eq. (B.2) to be the functional that maps for each t ∈ [0, T ],

Lq
′
(0, T ;V div

h × V̄h) 3 (v, v̄) =: v 7→ (Dktt (uh), v)Th ∈ R.
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Since v ∈ Lq′(0, T ;V div
h ×V̄h), we have Πtv ∈ Vdiv

h ×V̄h, and the stability of the L2-projection
Πt in Lq

′
(In) [30] yields

‖Fh‖Lq(0,T ;(V div
h ×V̄h)′) . sup

v∈Lq′ (0,T ;V div
h ×V̄h)

∣∣ ∫ T
0

(Dktt (uh),Π
tv)Th dt

∣∣(∫ T
0

~Πtv~
q′

v dt
)1/q′

. sup
vh∈Vdiv

h ×V̄h

∣∣ ∫ T
0

(Dktt (uh), vh)Th dt
∣∣(∫ T

0
~vh~

q′

v dt
)1/q′

,

which is uniformly bounded by assumption (ii) of the theorem. Proceeding in an identical
fashion to [102, Lemma 3.3], we find that∫ T

δ

∥∥uh(t)− uh(t− δ)∥∥2

L2(Ω)
dt ≤ C max(τ, δ)1/q′δ1/2. (B.3)

Step two (relative compactness in L2(θ, T − θ;L2(Ω)d)): We aim to show that for
all 0 < θ < T/2, the set

{
uh|θ,T−θ | h ∈ H

}
is relatively compact in L2(θ, T − θ;L2(Ω)d).

The proof is a minor modification of [102, Theorem 3.2]. To this end, we construct a
sequence of regularized functions so that we may leverage the classical Arzelà–Ascoli the-
orem (Theorem 2.2.10). Let φ ∈ C∞c (−1, 1) be nonnegative with unit integral. For δ > 0,
set φδ(s) = (1/δ)φ(s/δ). Extend uh by zero outside of [0, T ] and consider the sequence of
mollified functions

{
uδh
}
h∈H, where uδh(t) = φδ ∗ uh(t).

Since
∫ T

0
‖uh‖2

1,h dt is uniformly bounded by assumption, we have

‖uδh(t)‖
2

1,h ≤ δ sup
|s|<δ
|φδ(t− s)|2

∫ δ

0

∥∥uh(s)∥∥2

1,h
ds ≤M?,

with M? a constant independent of h and τ . Thus, by Lemma B.1.1, the sequence
{uδh(t)}h∈H is relatively compact in L2(Ω)d for each t ∈ [0, T ]. Furthermore, the uniform
Lipschitz continuity of the mollifiers φδ(s) ensures the sequence

{
uδh(t)

}
h∈H is equicontin-

uous on [0, T ]. By the Arzelà–Ascoli theorem, the sequence
{
uδh
}
h∈H is relatively compact

in C(0, T ;L2(Ω)d) and thus also L2(0, T ;L2(Ω)d) as the former embeds continuously into
the latter. As relatively compact sets are totally bounded,

∀ε > 0, ∃h1, . . . , hM ⊂ H s.t. {uδh}h∈H ⊂
M⋃
i=1

Bε(uhi),
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where Bε is an ε-ball in the metric induced by the L2(0, T ;L2(Ω)d)-norm. The remainder
of the proof that the set

{
uh|[θ,T−θ] | h ∈ H

}
is relatively compact in L2(θ, T − θ;L2(Ω)d)

for all 0 < θ < T/2 is identical to that of [102, Theorem 3.2].

Step three (finishing up): The equicontinuity eq. (B.3) and [102, Lemma 3.4] en-
sure that the sequence {uh}h∈H is bounded uniformly in Lr(0, T ;L2(Ω)d) for 1 ≤ r < 4.
Consequently, for all ε > 0 we can find θ > 0 such that∫ θ

0

∥∥uh(t)∥∥2

L2(Ω)
dt+

∫ T

T−θ

∥∥uh(t)∥∥2

L2(Ω)
dt ≤ ε.

It follows that
{
uh | h ∈ H

}
is the uniform limit of relatively compact sets in

L2(0, T ;L2(Ω)d) [91, Section 2]. Thus,
{
uh | h ∈ H

}
is relatively compact in

L2(0, T ;L2(Ω)d).

B.2 Properties of the projections Π and Π̄

B.2.1 Approximation properties of Πt and Πdiv
h

Lemma B.2.1 (Approximation properties of Πdiv
h and Πt). Let ` ≥ 0 and suppose that

η ∈ W `+1,∞(0, T ) and ψ ∈ H`+1(Ω)d. Then, for all n = 0, . . . , N − 1,

‖η − Πtη‖L∞(In) . τ `+1|η|W `+1,∞(In), (B.4)

and if Th is conforming and quasi-uniform, we have for 0 ≤ m ≤ 2 and K ∈ Th,∑
K∈Th

‖ψ − Πdiv
h ψ‖2

Hm(K) . h2(`−m+1)|ψ|2H`+1(Ω), (B.5)

‖ψ − Πdiv
h ψ‖L∞(Ω) . h1/2|ψ|H2(Ω), (B.6)

the latter requiring ` ≥ 1.

Proof. Estimate eq. (B.4) is standard, see e.g. [33, Lemma 11.18]. The proof of eq. (B.5)
is given in Lemma 4.4.1; we note that therein it is assumed that ` ≥ 1 but the proof easily
extends to the case ` = 0. We now show eq. (B.6). Let K̂ be the reference simplex in Rd

and suppose that FK : K̂ → K is an affine mapping; denote its Jacobian matrix by JK .
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As H2(K̂) ⊂ L∞(K̂) with continuous embedding for d ≤ 3, we have by repeated use of
[33, Lemma 11.7]:

‖ψ − Πdiv
h ψ‖L∞(K) . ‖JK‖

2
`2 | det JK |−1/2 ‖ψ − Πdiv

h ψ‖H2(K) .

Since Th is assumed quasi-uniform and hence shape-regular, we have ‖JK‖2
`2 . h2

K and

| det JK |−1/2 . h
−d/2
K (see e.g. [33, Lemma 11.1], [31, Chapter 1.2]). Thus, for d ≤ 3,

‖ψ − Πdiv
h ψ‖L∞(K) . h1/2 ‖ψ‖H2(Ω) .

The result follows by noting that this bound holds uniformly for all K ∈ Th.

B.2.2 Proof of Proposition 5.3.1

It suffices to show the inequality in eq. (5.37) on a single space-time slab En; the result
then follows by summing over all space-time slabs. Let ϕ ∈M . By the definitions of the
norm ~·~v and the projections Πϕ and Π̄ϕ given in eq. (5.36), we have

�

�(Πϕ, Π̄ϕ)
�

�

4/(4−d)

v

=

(∑
K∈Th

∫
K

|∇Πdiv
h Πt

M∑
k=1

ηkψk|2 dx+
∑
K∈Th

h−1
K

∫
∂K

|(Πdiv
h − Π̄h)Π

t

M∑
k=1

ηkψk|2 dx

)2/(4−d)

.

Available approximation results for the projection Π̄h and eq. (B.5) yield for Ψ ∈ H1(Ω)d,∑
K∈Th

(
‖∇Πdiv

h Ψ‖2

L2(K) + h−1
K ‖(Π

div
h − Π̄h)Ψ‖

2

L2(∂K)

)
.‖∇Ψ‖2

L2(Ω) .

Therefore, we have

�

�(Πϕ, Π̄ϕ)
�

�

4/(4−d)

v
.

(∫
Ω

|Πt

M∑
k=1

ηk∇ψk|2 dx

)2/(4−d)

, ∀ϕ ∈M . (B.7)

If d = 2, we can integrate eq. (B.7) over In and use Fubini’s theorem and the stability of
the projection Πt in L2(In) to find∫

In

�

�(Πϕ, Π̄ϕ)
�

�

2

v
dt .

∫
In

‖ϕ‖2
V dt, ∀ϕ ∈M ,
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as required. On the other hand, if d = 3, we integrate eq. (B.7) over In, and apply a finite-
dimensional scaling argument between norms in L2(In) and L1(In) (see e.g. [28, Lemma
1.50]) to find:

∫
In

�

�(Πϕ, Π̄ϕ)
�

�

4

v
dt . Cτ−1

(∫
In

∫
Ω

|Πt

M∑
k=1

ηk∇ψk|2 dx dt

)2

. (B.8)

Using Fubini’s theorem to interchange the temporal and spatial integrals in eq. (B.8) as
necessary, we can apply the stability of the projection Πt in the L2(In) norm followed by
the Cauchy–Schwarz inequality applied to the temporal integral to find∫

In

�

�(Πϕ, Π̄ϕ)
�

�

4

v
dt . τ−1

(∫
In

‖ϕ‖2
V dt

)2

.
∫
In

‖ϕ‖4
V dt, ∀ϕ ∈M .
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