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Abstract

Polymers are long molecular chains formed from smaller molecular units called
monomers. Polymers display interesting macroscopic properties, are ubiquitous
in everyday materials, and are also important biomolecules among much else.
The field of polymer science has been widely recognized for its contribution to
using and understanding polymers in a wide range of applications. Here, using
the common wormlike chain (WLC) polymer model, two systems are investi-
gated. The first is polymer stretching. Finite length polymers are modelled
under an external stretching field, and the resulting extension is analysed. The
calculations are done numerically, as well as analytically when possible. Rep-
resentative measures of the polymer conformations are computed using a novel
perturbation theory, and the results are compared to other theories. Interpola-
tion formulas are presented to summarize the theoretical findings. The second
system is a single walled carbon nanotube, wrapped by a semiflexible polymer
in a helical configuration. This type of spontaneous helical wrapping is widely
studied experimentally due to its beneficial effects on nanotube solvation, with
minimal effects on the underlying electronic properties of the nanotube. The
WLC model is used to calculate the expected helix pitch, which is then com-
pared against experimental observations. It is found to reproduce the results,
as well as outperform the predictions of another competing model. The find-
ings in both cases are summarized, and possible future research directions are
discussed.
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Chapter 1

Introduction

1.1 Background and Motivation

Brief Introduction to Polymer Science

Polymers are a unique class of molecules that are widespread both in modern
technologies and materials, and fundamental to life in their important roles
played as biomolecules in all organisms. The reader is no doubt familiar with
many types of plastics and their uses, which are all composed of long polymer
chains entangled with each other [26]. Long DNA polymers serve as the en-
coding material for genetic information in many organisms, humans included,
while shorter liquid crystal polymers are the driving force behind many digital
displays.

Since the 1950s, polymer physics has seen many important developments,
and has had a large impact on both chemistry and physics. The impact of
the field has been recognized through 7 Nobel Prizes, 6 in chemistry and one
in physics. The first was awarded to Hermann Staudinger in 1953, who first
contributed to the understanding of polymers as long chains of molecules linked
together, breaking the common assumption that they were colloidal groupings
of individual molecules [27]. It was followed up with the second Nobel Prize
for chemistry in the field, jointly awarded to Julio Natta and Karl Ziegler for
their work on the synthesis of these large molecules [28]. The first recognition
of theoretical contributions was given to Paul J. Flory who was awarded the
1974 Prize in chemistry. Flory made several important developments to the
field, for example, he introduced the concept of the theta temperature, at which
the interactions of the polymer with itself are balanced out by the interactions
between the polymer and the solvent, causing the polymer to behave as if it
was in an ideal state; and important concept for understanding the behaviour
of polymers in solution [29]. Following the work of Flory, the first Nobel Prize
in physics for polymer science was awarded to Pierre-Gilles de Gennes in 1991.
de Gennes made many contributions to both liquid crystals (semiflexible short
molecules that can be described by the some of the same theory used for semi-



fliexible polymers discussed later), as well as the dynamics of polymers systems
[30].

These works contributed much to the basis of the modern field of polymer
science, in addition to the works of other authors such as Masao Doi, and Samuel
F. Edwards who authored a classic textbook on the subject [31], and Theo Odijk,
who made many classic contributions to scaling theories, among a host of other
authors not mentioned here who made significant contributions to the field.
The remaining Nobel Prizes in 2000 (Alan G. MacDiarmid, Alan J. Heeger,
Hideki Shirakawa), 2002 (John Bennett Fenn, Koichi Tanaka, Kurt Wuthrich),
and 2005 (Robert Grubbs, Richard Schrock, Yves Chauvin), recognized the
expansion of the subject. The Prize in 2000 saw recognition for the development
of electrically conductive polymer plastics with novel applications in electronics,
and the 2002 Prize illustrated the important work done in analyzing biological
macromolecules [32, 33]. The prize in 2005 furthered synthesis methods, paving
the way for further advances in polymer types [34]. Of course, much work
besides those recognized with a Nobel Prize has been carried out, with research
in the field only continuing to grow, and further improvements and advances in
both experimental and theoretical polymer physics are being made to this day.

Motivation

Polymers at their core are long molecules, composed of individual molecular
units called monomers. The monomers themselves, how they bind together,
and how many of them there are, determine the overall global properties of the
polymer [35].
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Figure 1.1: a) A sketch of the skeletal structure of polyacetylene, a basic polymer.
The n th monomer is bracketed. b) A possible macroscopic configuration of
polyacetylene, at large scales it behaves as a random curve, regardless of the
microscopic structure.



Owing to the wide range of applications, there is a large body of both theo-
retical and experimental research on polymer systems. This includes both single
chains and entangled polymer systems, in free space and confinement [31, 35].
In order to further development in the field, it is desirable to be able to ex-
plain experimentally studied systems using simple theories with a broad range
of applications, as well as to improve upon older studies in areas where they are
lacking.

This thesis takes a theoretical viewpoint on the subject. Theoretical meth-
ods in polymer science can be broken up into two general approaches, solving
fundamental model, or simulating polymer systems using computers.

Within the realm of computer simulations, there are two common techniques:
Monte Carlo (MC) simulations, and molecular dynamics (MD) simulations. MC
simulations use random sampling to look for solutions of complex problems [36].
For example, one might obtain an accurate representation of the distribution
function for a random walk polymer using MC methods by generating numer-
ous random polymers and computing the statistics of the resulting samples.
MD simulations approach the problem by modelling the interaction forces and
potentials of the molecules, then simulating the evolution of the system using
Newton’s equations of motion, usually until an equilibrium state is achieved
[37, 38]. One might construct the polymer of interest, model the interactions
between the monomers making up the chain, and then evolve it in time to find
an equilibrium configuration.

This thesis takes the other approach of solving a theoretical model and its
associated equations. The basic model is the wormlike chain (WLC, see section
1.4), and the core technique is the Green’s function method. The basic idea car-
ried out is to construct a Hamiltonian described by the model, then construct
a polymer by adding infinitesimal segments together, where the probability of
adding each segment is described by a Boltzmann weight given by the Hamil-
tonian. Such a construction allows the formulation of a differential equation
for the local distribution function (Green’s function, see section 1.3.2 and 1.4).
This local distribution function can be used to compute properties that depend
on the average monomer positions, and it can also be used to compute the total
partition function of the system. Once the total partition function is obtained,
associated thermodynamic quantities of interest, such as the free energy, can be
calculated from straightforward thermodynamic relations [39].

The current work aims apply this second approach to two problems, using
the general WLC polymer theory. The first application is polymer stretching.
The stretching of long double-stranded DNA was a seminal work in showing the
applicability of the WLC model, by accurately reproducing experiments that
stretched long DNA segments, which were not able to be reproduced using the
simpler freely jointed chain (FJC, see section 1.3.1) [2]. However, there are
many shorter polymers that can now be manipulated experimentally, and the
theory developed only for long polymers, is in need of an update [40-45]. Fol-
lowing the basic WLC theory outlined in section 1.4, the problem of stretching
a semiflexible polymer of finite length is covered in chapter 2.

The second problem is the helical wrapping of singled walled carbon nan-



otubes by long semiflexible polymers. The wrapping of carbon nanotubes by
polymers is widely studied experimentally due to the ability of the polymers
to solvate the nanotubes without affecting their electronic properties [46-51].
While molecular dynamics simulations have been carried out for individual ex-
perimental systems, no comprehensive study has been done using the WLC
model [8-10, 13-15]. As is shown in chapter 3, use of the WLC model allows
examination of the problem over a large parameter range, which in turn enables
comparison against multiple experimental and theoretical systems.

1.2 Structure

This work is structured as follows. The remainder of the introduction contains
the theoretical background that is required to understand the contributions in
later chapters. Section 1.3 introduces some basic polymer models, and addresses
their shortcomings. Section 1.4 discusses the WLC theory, the model used in the
rest of this work, and notes how the relevant physical parameters are extracted
from its framework. The numerical methods used to solve the general WLC
theory in the absence of analytic solutions is given in section 1.5.

Chapter 2 discusses the stretching of semiflexible polymers using the WLC
model. The background and motivations are introduced in detail. The extension
of the general WLC to the stretching problem is shown, along with numerical
and analytic results, and a comparison to other theories.

Modelling the helical wrapping of carbon nanotubes is discussed in chapter
3. Again, the extension of the general model to the carbon nanotube system is
discussed. Numerical and closed form results are presented, and a full compar-
ison to a range of experimental data as well as a competing theory is given.

Finally, chapter 4 provides a general summary of the results presented in
this work. In addition, an outlook on possible further research is given, along
with potential impacts.

1.3 A Simple Polymer Model

1.3.1 Freely Jointed Chain

The most basic polymer model is the Freely Jointed Chain (FJC). It assumes
that the basic monomeric units can freely rotate around each other, mean-
ing there is no energy cost for deforming the polymer, and the orientation of
the bonds connecting the individual monomers together are uncorrelated [31].
Though there are no relations between monomers in the FJC, entropic con-
siderations give rise to a finite polymer size in free space. Its size cannot be
characterized by average end-to-end distance of the polymer (R), because for
such an isotropic distribution (R) = 0. Instead, a common measure of polymer
size is the mean squared end-to-end distance (R?), which has a finite value. For
the FJC this can be simply calculated. Taking r,, as the bond vector for the



Figure 1.2: A schematic of a freely jointed chain (FJC) in 2D. The monomers
are all separated by the same distance, and are oriented randomly with respect
to each other, creating a random walk configuration.

nt" bond of a chain with N monomers [31]:

(R?) =) (1) =) (r2)+2 > (v 1) (1.1)
| (R?) = Nb? (1.2)

where the second sum in (1.1) disappears because the bond vectors are uncorre-
lated. The bond length between two monomers by has been introduced. When
compared to the distribution of a real polymer, the FJC grossly underestimates
(R?), due to the bond vector correlations present in real polymers. However,
the FJC can be made to match the distribution of undeformed polymer in solu-
tion through the introduction of an effective bond length b, known as the Kuhn
length. The Kuhn length is the distance over which the correlations between
the bond vectors in the real polymer have died out, and so monomers separated
by this distance appear uncorrelated, and the polymer acts as a FJC with an
effective monomer size b [35]. This gives

(R?) = NV? (1.3)
or in terms of the total contour length of the polymer L = Nb,
(R?) = Lb (1.4)

1.3.2 Gaussian Chain

For the calculation of other statistical properties (and as a primer for later the-
ory), it is useful to consider the continuous Gaussian chain (or simply Gaussian



chain) GC model. The discrete GC is a FJC where the bond lengths are taken
to have a Gaussian distribution such that (r?) = b2, and so it exhibits the same
statistics as the FJC model. This is equivalent to having a harmonic potential
between the bonds, and in the continuum limit allows the easy definition of the
Hamiltonian for the GC as [31, 52].

1
D
BHae —/O lsz

Here, the polymer has been parametrized using the arc variable ¢, where the
polymer ends are specified by ¢ = 0 and ¢t = 1, and a polymer segment from
t =0 tot =1t has a contour length Lt'. The spatial position of the polymer
curve is given by r(¢), and U[r(¢)] is a reduced external potential that has spatial
dependence. The factor of D is the dimensionality of the problem, and in free
space is 3.

2

O L ()

dt

dt (1.5)

Figure 1.3: Schematic of a discrete Gaussian chain (GC). Harmonic springs
connect the monomers, which are randomly oriented relative to one another.
This results in each bond length, and hence the overall polymer end to end
distance, having a Gaussian distribution.

Although statistically identical to the freely jointed chain model in terms
of its free space distribution, this form has a distinct advantage over is discrete
counterpart when it comes to computing elements of the distribution. We can in
most cases, without a loss of generality, fix one end of the polymer at the origin
r(0) = 0. We can then introduce the Green’s function, or propagator, ¢(r,t),
which represents the partition function of all chain conformations with an end
point at r(¢). By constructing a polymer by considering infinitesimal additions
governed by a Boltzmann weight exp(—SHgc), one finds that the propagator
satisfies a diffusion type differential equation

Lb

%QGC(I‘J) = [QDV‘% - U(r)] qac(r,t) (1.6)

The derivation of the above has been well documented elsewhere [31]. The use
of the Green’s function formalism provides several advantages. Since ¢(r,t) rep-



resents the partition function for a fixed end point, the total partition function
of the chain is given by integrating the endpoint over volume of the system

Qac = /QGC(I‘J =1)dr (1.7)

hence the free energy and associated quantities of the system can be easily
computed.

Physical properties dependent on the position of individual segments can
be calculated using the monomer density distribution, obtained by integrating
over all monomers along the chain the product of the partition functions for
each segment on either side of the monomer of interest:

_ 1
Qac

The solving of equation (1.6) can either be done exactly, or numerically when an
exact solution is not available. For details on different numerical methods that
can be used, see section 1.5. The mean squared end-to-end distance for a free
space polymer can easily be calculated under this formalism. The propagator
solving equation 1.6 in 1D is the normalized Gaussian

pPcc (I‘) /0 qcc (I‘, t)ch (I‘, 1-— t) de¢ (1.8)

q(x,t) = (2w Lbt)~1/2e— " /2Lbt (1.9)

because there are no correlations between the bonds, the propagator for an n
dimensional system is simply the product of n 1D propagators

qlr,t) = (2mLbt) " 2er /210 (1.10)

The mean squared end-to-end distance is then given by the second moment of
the above distribution at ¢ = 1 (the distribution function for the endpoints),
which for a Gaussian can be read off of directly, giving

(R%c) = Lb (1.11)

which as stated is the same for the FJC. In general, the GC model fails to
properly capture the physics of the underlying polymer by not accounting for
polymer stiffness, and instead the more advanced wormlike chain model, which
takes into account the stiffness of the chain through the persistence length A,
must be used. It is worth noting however, that under certain conditions the
GC model is valid, and may be readily applied to produce equivalent results
to the wormlike chain model discussed in the next section. The conditions for
equivalence are summarized in section 1.4.1.

1.4 Wormlike Chain Polymer Model

The wormlike chain (WLC) is a more advanced polymer model, that incorpo-
rates the polymer backbone stiffness through an energy cost for bending ad-
jacent monomers, characterized through the persistence length A\. The persis-
tence length is the characteristic distance over which the correlations between



tangent vectors along the chain die off. Specifically, for a free space chain with
no external field and a energetic cost for bending two adjacent monomers €, the
correlations between the tangent vector at a point Lt along the chain, and the
tangent vector at a point Lt’ along the chain can be shown to be [53]

(u(t) - u(t')) = e Mt/ (1.12)

where the persistence length A, the elastic bending constant e¢ divided by the
Boltzmann constant times the temperature A\ = €/kgT, is the characteristic
decay rate of the correlation function. The discrete WLC model was first pro-
posed by Kratky and Porod, but here we focus on the continuous version best
formulated by Saitd et al., which allows use of the Green’s function formalism,
and has a corresponding Hamiltonian [53, 54]

1
BHwLc = /
0

As before, L represents the total contour length of the polymer. The energy cost
of bending is related to the tangent vector along the chain u(t) = dr(¢)/dt. The
reduced external potential Ulr(t), u(t)] can now have orientational dependence.

du(t)

dt

)\ 2
oL + Ulr(t), u(t)]] dt (1.13)

Figure 1.4: Schematic of a continuous wormlike chain (WLC), showing the
position vector r(t), tangent vector u(t), and persistence length .

In the absence of any external field or confinement, the mean squared end-
to-end distance of this model in 3D, called the Krakty-Porod mean squared
end-to-end distance, is [54]

(Rip/wre) = 2\ [L//\ et - 1} (1.14)
In the limit of a long / flexible chain L/ > 1, the above reduces to the GC

result
(Riyro) = (REc) = 2AL (1.15)



where the Kuhn length is b = 2\. In the rodlike limit, where the persistence
length is much greater than the contour length LA < 1, the mean squared
end-to-end distance reduces to that of a freely rotating rod in free space

(Riyrc) = L* (1.16)

By following a similar derivation as for the Gaussian chain, under the Green’s
function formalism, one can show that the propagator ¢(r(t),u(t),t) satisfies a
similar modified diffusion equation [52, 53, 55]

0 L

—q(r,u,t)=|—-Lu-V —V2 - Ulr,u r,u,t 1.17
Sale ) ot o VE - Ul gt (117)
Here, the first term represents contributions from variations in the monomer
density (e.g from confinement), and is inversely proportional to the size of the
confinement. The second term is always present, and is due to the WLC bend-
ing. The third term is the reduced external potential as written in the Hamil-

tonian [52]. Once the propagator ¢(r,u,t) is found, the partition function can
be obtained through

QwLc = /q(r,u,t =1)drdu (1.18)

and the density distribution can be obtained through

1

QwLc

1

p(r,u) = / q(r,u,t)q"(r,u,t)dt (1.19)
0

Here ¢(r, u,t) represents the partition function of the chain segment from ¢t = 0

to t = t', the complementary propagator ¢*(r, u, t) is the partition function from

t =1t tot =1. As before their product links the two distributions on either

side of the monomer of interest. The partition function Qwrc and the density

distribution p(r,u) together can be used to find most physical properties of

interest.

The WLC model as presented under the Green’s function formalism is a fun-
damental model that is widely used in polymer physics. It not only captures the
undeformed free space statistics as does the Gaussian chain, but also accurately
reproduces experiments where polymers are strongly deformed, such as stretch-
ing [2]. In many specific cases, solutions to equation (1.17) can be determined
through careful analysis. However, in general, a full solution must be obtained
numerically. Fortunately, numerical solutions for these types of equations are
well studied, and several common methods are discussed later in section 1.5.

1.4.1 Reduction to the Gaussian Chain

In general, the WLC model is required to properly capture the physics of the
underlying polymer. However, under several limits, the WLC model reduces to
the GC model. The three conditions for equivalence are [52]



1. Long chain / Flexible. The contour length of the polymer needs to be
much larger than the persistence length, L/A > 1.

2. Weak variation. The typical length scale over which the system varies is
of the order v Lb or larger.

3. Weak external field. The reduced external potential U must be of order
(b/L)° =1 or smaller.

If all three conditions are satisfied, then it is valid to use the GC model in place
of the WLC. They insure the system is being probed entropically, and so the
underlying structure of the polymer has little effect on the statistics. If any one
of them is not satisfied, then the full WLC model must be used. For the systems
dealt with in the later chapters, the strong external potential breaks condition
3, and hence use of the WLC is paramount.

1.5 Numerical Methods

This section covers the general idea of numerical solutions to partial differential
equations, in which the function domain is discretized into a finite set of points,
and the equation of interest is solved numerically. Section 1.5.1 covers the very
basics of the theory, while sections 1.5.2 and 1.5.3 cover the two simplest tech-
niques, the forward and backward FEuler methods. Section 1.5.4 discusses the
Crank-Nicolson method, which is the numerical method used for the solutions
in this work, and is based off of the two Euler methods. Finally, section 1.5.5
talks about Richardson extrapolation, which can be used to improve the scaling
of the error with regard to grid size.

1.5.1 Numerical Integration

The basic idea behind numerical integration is to approximate the operators
in a differential equation with a finite difference, allowing them to be treated
numerically. Consider a 1D function f(z), one can separate its domain into a
grid with a uniform spacing Az. There are then three basic ways to approximate
the differential operator 9/dz, either by considering the forward, backwards, or
central differences of the function over the grid points [56].

0 flz+ Az) — f(z)

i - Forward difference (1.20)
0 _ [flzx) — flz—Ax) .

i Ag Backwards difference (1.21)
9 = fle+Az) = flz - A) Central difference (1.22)
ox Az
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Similarly, by recursive application of the above, one can arrive at the approxi-
mation for second order derivatives

2 _
0 = fw+2Az) = 2f(x + Ax) + f(x) Forward difference  (1.23)

x2? Ax?

0? f@)—2f(x — Ax) + f(x — 2Ax) .

ke A2 Backwards difference  (1.24)
0%  flz+ Ax) —2f(z) + f(x — Ax) )

ke N Central difference  (1.25)

The choice of approximations defines the numerical method.

1.5.2 Forward Euler

The most basic method is the forward Euler method, which uses the forwards
approximation of the derivative [56]. For the problems discussed in this work,
the spatial derivative can always be best approximated by the central difference,
and the choice of method only effects how the 9/0t derivative is handled. As
an example, consider the free space 1D version of the general 3D WLC diffusion
equation given in equation (1.17) with no external potential

%q(m,t) = [QI;\;wQ] q(z,t) (1.26)

By approximation the arc derivative along the contour with a forwards differ-
ence, and the spatial derivative with a second order central difference, then we
arrive at the forward Euler method for this equation:

q(z,t + At) — g(z,t) L (q(z + Ax,t) — 2q(z,t) + qlz — Ax,t)
At - {%( Az? )} (127)

Using the initial condition ¢(x,t = 0) = 1 and iterating using the above until
q(z,t = 1) is determined solves the equation. The error per step for this method
is O(At) + O(Ax?), which can be determined by substituting the exact solution
into the numerical scheme equation (1.27), then Taylor expanding and keeping
the lowest order terms in both z and ¢. This method is fast, with reasonable
accuracy, but can exhibit stability issues depending on At and Az [57].

1.5.3 Backward Euler

The backward Euler method follows the same ideas as laid out in the discussion
on the forward Euler method, but this time the derivative 8/t is replaced with
the backwards difference [56]. This results in

q(z,t + At) — (., t)
At
[ L <q(x + Azt + At) — 2q(x,t + At) + g(z — Az, t + At))] (1.28)

2\ Az
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This error scaling is, O(At) + O(Az?), the same as the forward Euler method,
but with the benefit of being stable for any At. The downside is that the
numerical method is an implicit equation for g(z,t + At) and so each step
requires multiplication of ¢(z,t) by an n x n solution matrix to the implicit
scheme, where n is the number of grid points in z. The n? multiplication
operations per step contributes to a significant increase in time compared to the
3n typically required for the forward Euler method. It is worth noting however,
that the matrix inversion needs only to be done once with the inverted matrix
reused for each time step, and hence only adds a (typically small) overhead to
the method.

1.5.4 Crank-Nicolson

Crank-Nicolson is the numerical method that is used for all the calculations
in this work that require full solutions of the WLC diffusion equation. If we
denote the forward Euler method as FE(x,t) and the backward Euler method
as BE(z,t), the Crank-Nicolson is given as the average of the two
alw,t+ A8 —q(@ ) _ L IFE(2,t) + BE(z, 1)] (1.29)
At 2
This inherits both the stability and the implicit nature of the backward Euler
method, but with a better local truncation error of O(At?)+O(Ax?). Although
being an implicit scheme the method is inherently slower than the forward Eu-
ler method, it is by no means slow, and can reasonably be implemented on a
personal computer for At ~ 1073 with a 103 x 10% matrix. If high accuracy is re-
quired, further computational techniques, such as the Richardson extrapolation
discussed in the next section, can be used.

1.5.5 Richardson Extrapolation

In the cases when high accuracy is desired, it is beneficial to employ other
numerical techniques instead of simply increasing the number of grid points in
the numerical method. One of these methods is Richardson extrapolation. The
basic principle is this [58]: the error E” for a finite difference method typically
goes as

EM = CAz” + O(Az”th) (1.30)
where C is some constant and v is an integer. This is the case for all the methods
discussed in this work. The differences between two approximations U; — U”
and Uy — U", if the U; approximation is generated with half the grid spacing
compared to Uy, is

1
U, -U"= 5 [Uo = UM +o(Azv ) (1.31)
which is obtained through equation 1.30. Rearranging the above for the numer-
ical approximation U" gives

U -

Ut
2v -1

+O(A"H) (1.32)
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So by using two approximations Uy and U; where the grid spacing of one is half
that of the other, a third approximation U with an improved truncation error
of O(Az"*1) can be obtained. U”" is referred to as the Richardson extrapolation
of Uy and Uy [58-60].

Although this requires the generation of two separate data sets, due to the
improved error scaling it ends up being computationally more efficient than
simply reducing the grid spacing until the desired error is achieved. In our
case where the error depends both on the grid spacing of ¢, At, and that of =z,
Ax, applying Richardson extrapolation in both variables requires the generation
of 4 unique data sets. However, even in this case it remains computationally
efficient, and the data sets can be generated in parallel by leveraging distributed
computational resources. For example, the data sets in 2 where generated using
Compute Canada’s Graham cluster, with caculations being complete in less than
24 hours, and using less than 10 GB of memory.
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Chapter 2

Stretching Wormlike
Chains of Finite Length

This chapter tackles the first major application of the wormlike chain (WLC)
theory outlined in chapter 1. The WLC model is updated with an external
potential corresponding to an applied force, and employed to the problem of
polymer stretching. The theory presented then depends on two parameters,
the stiffness and the external force. Adopting common theoretical and com-
putational approaches, a high precision numerical solution is presented over a
large range of the parameter space, with new analytic theories developed for
certain limits. The validity of previous theoretical studies, and new analytic
theories presented in this chapter, are analysed using the numerical solution as
the benchmark. The contents of this chapter were published in Macromolecules
in 2021 [1]

2.1 Introduction

Following several experimental studies, in 1995 Marko and Siggia presented a
seminal paper capturing the physics behind the stretching of long polymers
using the wormlike chain model [2, 31, 61-63]. The system is conceptually
shown in Fig. 2.1(a). Analytic theories and approximate formulae have been
presented to relate the polymer extension, (z), to the magnitude of the applied
force, f, both in the original Marko and Siggia version and the later improved
versions [3, 4]. The applicability of the above theoretical studies is limited
to the case of long polymer, i.e., when the contour length of the polymer L
is much greater than its persistence length A\. Many real systems, such as
actin filaments, can have a finite L comparable to their A\. This has naturally
prompted numerous theoretical and experimental studies on the force-extension
properties of semiflexible polymers of finite length [5, 6, 40-45, 64—66].

The wormlike chain (WLC) model, as outlined in section 1.4, has been used
as a theoretical tool for the description of polymer conformations. The forced
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stretching problem adds to the original free-space model a potential energy
term characterized by a prefactor f. For the finite-chain problem, previous
theoretical studies featured Monte Carlo computer simulations (mostly based
on the discrete version of the WLC) or analytical solutions to the partition
function of the WLC Hamiltonian, for specific parameter regimes [40, 64, 67, 68].
Figure 2.1(b) shows the parameter space, described by L/2)\ and a reduced force.
Considering the even simpler problem of a finite WLC without excluded volume,
most studies have not provided a comprehensive view of the behaviour spanning
from the known extension-force relations of rodlike filaments, through to the
long polymer results originally presented by Marko and Siggia. The exceptions
are the theoretical studies of Kierfeld et al. as well as Kessler and Rabin [5,
6]. As will be discussed below, a critical examination of their interpolation
formulae against the high-precision numerical solution found in this work reveals
inadequacy.

The goal of the current chapter is three-fold. First, to present a numerical
solution to the standard WLC polymer model with the stretching potential, in
order to provide comprehensive extension-force data covering the entire param-
eter space. The high precision data is presented for the crossover from rodlike to
long-chain behaviour, as well as from weak to strong stretching behaviour, both
as tabulated data, and as an interpolation formula. Second, to validate key an-
alytic results in the three asymptotic regimes of weakly stretched, rodlike, and
strongly stretched, which are assessed and clearly identified in the parameter
space shown in Fig. 2.1(b). Finally, to calculate and analyse the mean square
end-to-end distance of the stretched polymer projected on the plane perpendic-
ular to the applied force. Both known and new analytic theories are presented
and verified via numerical calculations, which are in turn all covered by a sin-
gle interpolation formula. Together these three points allow an examination
of previously unverified analytic results, while presenting both numerical and
closed-form solutions for a regime that has not been generally addressed.

2.2 Free Space WLC with Stretching Force

We start with the ideal WLC model as discussed in section 1.4, where the general
external potential becomes an external stretching force along the z direction
f = fZ. As before, the variable ¢ ranges from 0 to 1, and parametrizes the
curve representing the polymer. Because the system is in free space, there is no
spatial dependence, and the Hamiltonian depends only on the tangent vector
u(t) = dr(t)/dt. The stretched WLC is described by the reduced Hamiltonian

[2, 31],
BH = /

Here u, = u- 2 = cos# is the projection of the unit vector u on z. The ratio
between the contour length L and the persistence length A characterizes the rel-
ative flexibility of the chain. We refer to the limit L/ > 1 as the flexible-chain

u(t)
dt

Ad
2L

~ AL fuz(t)] dt, (2.1)
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Figure 2.1: (a) Schematic of a stretched polymer of length L and persistence
length A, (b) the parameter regimes considered, (c)-(g) comparison of interpola-
tion formulae (see Sect. 2.3.3) relating the force to the extension [2-6], against
the numerical result. The new global interpolation formula presented here, Eq.
(2.21), is used in (h), and has a maximum percent error of 1%. The shaded
areas in (b) are discussed in the text. The reduced length L = L/2) and force

f = (R&p)Bf/L are used as the system parameters.
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limit, L/A < 1 the rodlike limit, and a finite nonzero L/ as a semiflexible chain
having a finite length. The model has two reduced, dimensionless parameters,

L=LJ/2\ (2.2)

and SLf. Because in free space for long WLC the effective Kuhn length is 2,
we scale L using 2\ as a basic unit.

The first goal is the extension between the two polymer ends, (z), which can
be computed from

% = </0 u(t) dt> = (cosb) = 3%8(1’;}@’ (2.3)

through the standard thermodynamic relation for the Gibbs free energy, ob-
tained through the partition function . The partition function itself is obtained
using the propagator ¢(u,t), through

Q/V = /q(u,t =1)du (2.4)

In spherical coordinates, with 6 being the angle from the z axis, and ¢ being
the azimuthal angle, the stretched wormlike chain has rotational symmetry in
¢ and so the propagator reduces to have a dependence on € only. The diffusion
equation for the WLC in spherical coordinates under this symmetry can be
shown to be [52]

0 -( 1 0 . 0
aq(@,t) = [L <sin9898m 069) + BLf cos 0} q(6,1) (2.5)

where the initial condition is still ¢(6,0) = 1. While for this system, no general
closed form solution exists, under certain limits exact solutions can be deter-
mined. These are discussed along with full numerical results in section 2.3.

2.3 Results

2.3.1 Analysis in Exact Limits

In three limits of the parameter space (rodlike, weakly stretched, strongly
stretched) shown in Fig. 2.1(b), analytic expressions can be found for (z)/L.
No closed form eFor a rodlike polymer when L — 0, one analytically obtains
q(0,t) = exp(LtBf cosf) from (2.5), equivalent to a freely jointed chain with
two monomers and a bond length L, which yields [35]

(z) 1 -
T = COth(/BfL) — ﬂfiL (fOI' L =0 and any f), (26)
through (2.3).
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The second analytic expression is in the weakly stretched regime when f is
small. Based on the energy-fluctuation theorem, one has a general relation,

<22 _ <Z>2> 8(2)

~ oBf

For small forces the polymer behaves as a harmonic spring, hence, taking a
linear relation between (z) and 8 f,

(2.7)

(z) = (:*)Bf = (Rikp)Bf /3 (2.8)
where
(R%p) = 2ALK ()\/L) (2.9)
together with
K(z)=1—xz+zexp(—1/z) (2.10)

gives the Kratky-Porod expression for the mean square end-to-end distance of
an unstretched, free WLC [54]. The extension can be conveniently expressed by

% = g (for f < 1 and any L) (2.11)
in which a dimensionless R
f=REp)BI/L (2.12)

is defined. Using the Kraky-Porod mean squared end to end distance here scales
out stretching dependence on the size of the polymer in question, allowing a
direct comparison between them on the same plots, as seen later in figure 2.3.
In conjunction with the reduced L defined in (2.2), these two are used in Fig. 2.1
as the basic system parameters.

The third analytic solution is in the strongly stretched regime when f>1.
In this case, the external potential term in (2.1), cosf, is approximated by
1 — 62/2. Due to the quadratic nature of the potential in 6, the partition
function can be exactly evaluated by carrying out a path integral, based on
the same approach as in the original quantum-mechanical problem for a simple
harmonic potential formulated by Feynman [69]. The force-extension relation
for strong stretching can then be deduced [5],

(z) 1 Bf 7 =
= 1- mD (L A) (for f > 1 and any L) (2.13)
where
D(x) = [1 4 xcoth (x)] /2 (2.14)

defines key strongly stretched behaviour. The exact region of validity of the
above is illustrated in Fig. 2.1(b) and further discussed in section 2.3.2
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Figure 2.2: An example of Richardson extrapolation for the <R§y>, the mean
squared end-to-end distance in the direction perpendicular to the applied force
(see section 2.3.4), GSD long chain limit data. The solid black line is the final
numerical data set, the circles are the solution from a 500 x 500 matrix (1/50
of points shown), while the squares are for a 1000 x 1000 matrix (1/50 of points
shown). The error scaling on the black line is an order better than that for the
squares and circles from the application of Richardson extrapolation. The inset
shows a zoom in of one set of data points.

2.3.2 Numerical Results

The partial differential equation (2.5) admits no closed form solution in other
regions, and must be solved numerically to obtain the extension-force curves
over the full parameter range of [f/, f] To do this we employ the Crank-Nicolson
method to solve the differential equation for the propagator, based on dividing
the variable domains ¢ and 6 into a finite grid system to carry out the numerical
computation using finite difference approximations of the differential operators
[70]. The Crank-Nicolson method is the average of Forward and Backward Euler
methods in ¢, and our scheme uses a central difference to handle the derivatives
in #. The methods and the types of differences are discussed in section 1.5.
Once the numerical representation of the propagator ¢(6,t) is obtained, it is
numerically integrated using Simpson’s method to find the partition function @
via equation (2.4). A numerical derivative of @ is then taken with respect to
the force, in order to obtain the average extension through equation (2.3).

We generate 4 sets of data, dividing the grid into combinations of 1 x 10 or
0.5 x 10° points in ¢, and 1 x 103 or 0.5 x 102 points in @, then apply Richardson
extrapolation (see section 1.5.5) in both ¢ and @ to reduce the errors due to the
finite Af, and At [58]. An example of the process for the long chain L>> 1 limit
(independent of ) is shown in figure 2.2, the error scaling of (R2,) is improved
from O(A0) to O(AH?).

The numerical solution is presented in Fig. 2.3(a) as a function of f for
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Figure 2.3: Full numerical solution (circles) and our interpolation formula (blue
lines) for (a) the extension (z)/L, and (b) the mean square end-to-end distance
projected on the xy plane, (RZ,)/(R%p). The numerical solution is arranged
for selected L = 277 (top curve), 27%,...,2% (bottom curve), The blue lines
connecting the data points are our interpolation formulae (2.21) and (2.46). The
solid lines represent the exact rodlike limits Eqgs. (2.6) and (2.28), the dashed
lines the GSD results (see appendix A), and the dash-dot lines the analytic
weakly stretched limits Eqs. (2.11) and (2.30).
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L =2"7,276 .. 95 and is available online [71]. In all cases the estimated error
bars are smaller than the linewidth of the curves or size of the symbols used
in the figures. With the use of f defined in (2.12), all data points in the full
range [L, f] can be accommodated within a single plot. For comparison, the
exact solution, (2.6), for the rodlike limit, and (2.11), for the weakly stretched
regime, are plotted as the solid and dot-dashed curves in the figure. The long
chain results of Marko and Siggia are reproduced as the dashed line in figure
2.3 (a), while the dashed line in figure 2.3 (b) are presented in this work for the
first time, using a very similar approach. The technique used is known as the
ground state dominance (GSD) approach, and is discussed in appendix A.
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Figure 2.4: Comparison between the analytic expressions in the strong force
regime and the numerical solutions (circles) for L = 2~7 (rightmost curve in
(a) and topmost curve in (b)), 276...25 (leftmost curve in (a) and bottom
most curve in (b)). In (a) the solid curve represents the function D(() in eq.
(2.14) and the dotted line eq. (40) in Ref. [6]. The result from Ref. [6] shows
agreenments in the limits of L>>1and L < 1, but does not capture the results
in the intermediate regime, as is visible in (a). In (b), the solid curve is given
by (2.30), The connecting blue lines are our interpolation formulae, (2.21) and
(2.46).

To compare against the exact stronlgy stretched expression (2.13), (1 —
(z)/L)BfL is plotted as a function of { = L/Bf/\ for various L. Accord-

ing to (2.13), a single solid curve is drawn in Fig. 2.4(a) for all values of L.
The overlap between the numerical data and the solid curve indicates the re-
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gion of applicability of (2.13). Taking 1% agreement with the numerical data as
the criterion, the strongly stretching regime is quantitatively established in Fig.
2.1(b) by the line-shaded area on the right. While (2.13) is validated by our
numerical results, another analytic expression for the force-extension relation,
Eq. (40) in Ref. [6], is shown to contain flaw in the intermediate region, as
illustrated by the dotted curve in Fig. 2.4 (a).

The validity of (2.11) for the weakly stretched regime can be assessed in a
similar way. Again taking 1% agreement as the criterion, Eq. (2.11) (the dot-
dashed curve in Fig. 2.3 (a)) and the numerical data overlap below f & 0.3 for
all L, within the weakly stretched region displayed by the line-shaded region on
the left in Fig. 2.1(b).

2.3.3 Interpolation Formulae

Although the full numerical solution is available, and the theory facilitates cal-
culations for arbitrary values of L, A and f if desired, it is convenient to have
an accessible form of the results which does not require large computation or
a deep understanding of the underlying theory. A summary of the results can
be obtained through the use of an interpolation formula, which interpolates
between the known exact solutions in order to obtain an approximation of the
full results. Many interpolation formulae have been proposed since the first
suggestion by Marko and Siggia for L > 1 [2]

pa= iy 1

L 41— (z)/L)? 4 (2.15)

attempting to capture the area between the weakly stretched and strongly
stretched regions in a closed form. Notably, within the same L > 1 limit,
several improvements were made. Petrosyan proposed both force-extension

B (2) (2) 2.15 1 1

and extension-force

(z) 4 4

L 3 3(BfA+1)1/2
(B2
3.55 + 3.8(Bf )22

(BfA)Y/2(exp[(900/BfN)/4] = 1)2
formulae, both with less than 1% relative error [4]. Bouchiat et al. proposed a
more accurate force-extension formula using a seventh-order polynomial, giving
at most 0.01% relative error [3].

+

i<7

_ L Lo (2
BfA—L+4(1_<Z>/L)2 4+; <L> (2.18)
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where s = —0.5164228, a3 = —2.737418, ay = 16.07497, a5 = —38.87607,
ag = 39.49944, a7 = —14.17718.

For the small-L regime, Kessler and Rabin proposed an extension-force in-
terpolation formula [5]. Their expression,

@ = L ! coth (L Bf)

L~ 23fL 2JBFX A
+ coth(BfL) — é§ {coth(ﬂfL) - smhéf(éfL) —-1], (2.19)

can be compared with our numerical result, shown in Fig. 2.1(f), and is valid
over the entire strongly stretched regime, due to their success of finding the
analytic result. The same formula, however, gives the wrong (z)/L in the weakly
stretched, large L region (red in Fig. 2.1(f)), where (2.19) yields an unphysical
value, due to their focus on capturing the rodlike and strongly stretched limits,
at the expense of the flexible limit.

For the entire [f, f] space, Kierfeld et al. suggested using the force-extension
interpolation formula [6],

1 1
Pr=mla—wme - 1}

“z [z )
R

3 11
L |2AK(\/L) L 2x]|°

(2.20)

This is evaluated here against our numerical solution as well. The original
formula took the large and small f behaviour into consideration, hence it agrees
well with the numerical solution in these two regions. On the other hand, it
produces a large error in the intermediate f regime, which can be partially traced
back to the problematic handling of intermediate force regime demonstrated in
Fig. 2.4(a).

Overall, the quality of the above interpolation formulae is evaluated and
summarized in Fig. 2.1(c)-(g). As the numerical solution presented in this
chapter is a function of the force, the force extension formulae were numerically
inverted (2.15, 2.18, 2.20) in order to present a meaningful perspective. All
equations in the above have been updated with the exact notation used in the
current work.

While the numerical solution from the full-WLC is available and tabulated
for specific L and f values [71], it can be represented within 1% globally by
a new interpolation formula. Using the expression for the rodlike limit as a
template

(z)/L = coth(f") — 1/f1 (for any [L, f] ) (2.21)
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Table 2.1: Numerical values of the coefficients in Eqgs. (2.21) and (2.46).

ag ay al
Eq. (2.21) 1.1268 0.3277 0.2127
Eq. (2.46) 8.2600 1.4868 -0.2576
by by b
Bq. (2.21) 0.3843 ~0.2574 0.7261
Eq. (2.46) 7.6606 2.5013 0.0002
co c1 ch
Eq. (2.21) 0.9586 20.2030 1.3795
Eq. (2.46) 0.0796 0.2170 -0.7154

is proposed, where a rescaled force

_ A+ AL+ As(D) [ + As(L)

/i )+ AL+ As(D) (2.22)
L+ aof +bof? + As(L)D(C) f?
is defined. The A-functions are expressed by
A . a0+a1K(/\/L) - b0+b1K(>\/L)
YT dKOA/L) TP 146 K(AL)
A, = GO aK(A\/L) (2.23)

1+, K(\/L)’

with the functions D and K given by (2.14) and (2.10) respectively, and { =
L(Bf/N)Y2.  All three known analytic expressions, for the rodlike, weakly
stretched, and strongly stretched regimes, are exactly recovered from this pro-
posal. The coefficients are determined by fitting to the full data set and are listed
in Table 2.1. The formula accurately captures the numerical L > 1 and finite
L results, with the accuracy being within 1% of the numerical data, globally.

2.3.4 Perpendicular Projection of the Mean Squared End-
to-end Distance

The rest of this chapter presents the theoretical calculations, for the mean
squared end-to-end distance, projected on the zy-plane, <Riy> Except for the
trivial rodlike and weakly stretched limits, little has been presented on this in
the literature.

Analytic Solutions

The rodlike limit, L < 1, is relatively straightforward. As previously discussed
for the extention, the propagator under the rodlike limit L — 0 is

q(0,t) = LBl cost (2.24)
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Calculation of the associated partition funciton through equation (2.4) gives

Q ./“ BLfcosO s 2sinh 8fL
—= = e ©5%sinf0df = ———— 2.25
Vi Jo BfL (2.25)

One can then use the parition function to calculate the average of Riy
1 _
m@:@/meMMr (2.26)
Vv T . 2 _BLfcos6 _:
= 0 (Lsinf)<e sin # df (2.27)
0

Subsituting the parition function and evaluating the integral then yields

which is the rodlike result for the projection of the squared end-to-end distance
in the direction perpendicular to the stretching.

In the weakly stretched regime, the conformational properties reduce to those
described by the Kratky-Porod expression (eq. (2.9)), hence

R? . -
<<R2xy>> = ;, (for f < 1 and any L). (2.29)
KP

These limits are well known.

A derivation based on the two-point correlation function to obtain the ex-
pression for the strongly stretched regime can be done, as presented in appendix
B. The same Feynman integral of the quadratic potential well, used in Ref. [5]
for the calculation of the partition function, can be used here, but in a more
involved algebraic exercise. The final result is a surprisingly simple relation,
(R2,) =2L/Bf for all L, which can be recast in the form

(RZ,) 2
(Rgp)  f

structurally simpler than (2.13).

(for f > 1 and any L), (2.30)

Numerical Solutions

As in the case for the extension, beyond these three regimes a numerical ap-
proach must be taken, as there is no analytic solution. To numerically calculate
<Riy>, we perturb the original problem by adding an auxiliary field

1
H:fAL%m& (2.31)
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to the Hamiltonian (Eq. 2.1) with magnitude €, giving H = Hy + eH'/ where
the subscript 0 referes to the original problem without the newly added external
field. The new Hamiltonian is then

ﬁHz/Oll;L

Using the energy fluctuation theorem in classical mechanics, we have

2

QO " ar (1) — eLun ()

dt

dt. (2.32)

0
(H'P = (H')2) =~ () (2:33)
€
Because of the symmetry of the distribution for € = 0, we have
ey =2 (2:34)
e=0 86 e=0
From the definition of H’, we can then see that
1
([H) = L2(u3) = 5(RZ,) (2.35)
or, with the help of equation (2.34),
0
2\ _972/,2\ _ 972
(Ryy) = 2L (uy) = 2L &<u¢> o (2.36)

where all the averaging is performed with the full probability distribution of
the original Hamiltonian plus the auxillary field. As u, = sin# cos ¢, the new
propagator under the perturbing field now satisfies

0 (1 0 . 0 .
aq(é),t) = {L <sin989 sin 0) + BLf cosB + eLsin 6 cos gf)] q(6,t) (2.37)

In order to compute (u,), the propagator from the above equation can be used
to calculate the monomer density distribution p (see section 1.4). We first
expand both the propagator ¢ and density distribution p to first order in e,
giving ¢ = qo + €q1 cos ¢ and p = pg + €p1 cosg. The ¢ dependence has been
explicitly included for clarity. The expanded forms are then substituted into
the definition of the density distribution

1 1
p= */ q(0,t)q" (0,t) dt (2.38)
B Jo
which after matching powers of € gives
1 1
0
1 1
p1 = E/ [q0(0,t)q5(0,t) + q5(0,t)q1(0,1)] dt (2.40)
0
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where ¢ (0,t) = qo(6,1 — 1) ¢} (0,t) = ¢1(6,1 — t) are the complementary prop-
agators. The normalization factor B can be obtained through equation (2.39).
The propagator ¢ (6,t) associated with the external field can be obtained by
substituting the expanded form into equation (2.37), which yields

0] {L 0?

gql(ﬂ,t) = |ox a2 + BfLcos 0} q1(0,t) +sinf cos ¢ qo (2.41)

Once both propagators have been obtained, the average (sin# cos¢) can then
be obtained through

™ 2m
(sin @ cos ¢) = / / p(sin @ cos ¢) sin § dd¢ (2.42)
o Jo
which, because the pg distribution is symmetric in ¢, reduces to

(sinfcos ¢) = em / p1sin” 6.do (2.43)
0

Therefore, going back to equation (2.36), the projection of the mean squared
end-to-end distance in the direction perpendicular to the stretching is given by

<R3y> = 2L2%<Sin9cos o) (2.44)

R2 Q

<Lg;y> = 27r/ 1 sin? 6 d6 (2.45)
0

This procedure is similar to that described in detail in Ref. [72]. The partial
differential equations are tackled by the Crank-Nicolson method and Richardson
extrapolation, as described previously, although the ¢ spacing is increased by a
factor of 10 to avoid computational issues.

As before, using f as the reduced force, the entire data can again be captured
in a single plot, shown in Fig. 2.3(b) by the circular symbols. Plotted alongside
are the exact solutions for the rodlike limit, (2.28) and the weakly stretched
region (2.29).

Based on the theory and data we propose a global interpolation formula for
<R926y> covering the entire [L, f] plane, to our knowledge the first of its kind in
the literature. Using (2.28) as a template, we propose

(RZ,) _ 2 P

RZ.) 1 (cothf fT) . (2.46)
The definition of the reduced force, f', is the same as in (2.22) but D = 1 is
enforced. It can be shown, by taking the asymptotic limits, that this representa-
tion fully recovers the analytic expressions, (2.28), (2.29) and (2.30). The fitted
coefficients are listed in Table 2.1. This global interpolation formula represents
our numerical (R2,) data with a maximum error of 6 x 10~*.
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2.4 Summary

In summary, taking the the Green’s function approach to solving the WLC
model, a full high-precision numerical solution of the forced stretching prob-
lem of a wormlike chain, covering a large range of L/2\ and f, is presented.
The solution clearly illustrates the crossover from weakly stretched to strongly
stretched, and from rodlike to long chain behaviour. This allowed assessment of
the validity of known analytic solutions in asymptotic regimes as well as the ef-
ficacy of several interpolation formulae between them. A global extension-force
interpolation formula that reproduces all known exact limits while matching the
numerical data to high accuracy, was also presented.

Calculations in this chapter were done by fixing the force, then computing
the ensemble average of the extension from the Gibbs free energy. Another
theoretical approach is to fix the extension and calculate the ensemble average
of the force required to maintain that extension through the Helmholtz free
energy. For a stretched WLC, these two correspond to two different types of
experiments, where the difference between the force-extension curves diminishes
only in the thermodynamic limit of L — oo and strongly stretched regime of
f>1173].

The starting point of the theoretical approach taken here is exactly the same
as those used in Refs. [2-6]. The interpolation formulae compared in section
2.3.3 differ from each other due to approximations made in the mathematical
representations. A key quantity used in calculating the total partition function
is the propagator that takes into account all polymer configurations with a fixed
terminal direction. A recent publication [74] focuses on the conditional partition
function of a two-dimensional, loop-constrained WLC, which is a different type
of Green’s function.

The theoretical results presented here are for a stretched polymer with free
ends and no excluded-volume interactions. Hori et al. examined in detail the
strongly stretched regime for the case where the polymer terminals are restricted
to point in the same direction as the applied force, as well as for the case where
the polymer’s end-to-end vector is forced to be collinear with the applied force
[65]. An experimental discussion on the collinear case can be found in [45].
The effects of excluded volume for the discrete wormlike chain model with free
ends over the full parameter regime were examined by computer simulations in
[67], which showed a decrease of its importance as finite length effects dominate,
which was the main consideration in this chapter.
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Chapter 3

Wrapping of Carbon
Nanotubes by Wormlike
Chains

The helical wrapping of single walled carbon nanotubes (SWNTs) by long poly-
mer segments is an experimentally well studied problem owing to the ability of
the polymers to effectively solvate and separate individual nanotubes in solu-
tion, without affecting their underlying electronic properties. However, there
is only one theoretical model for this system, by Lundberg and Strano [25].
This chapter analyses these systems by presenting the first theory based on
the Green’s function approach, using the standard wormlike (WLC) chain poly-
mer model, and shows that it accurately predicts the experimental helix pitch
for polymer wrapped nanotubes. The system is modelled as a polymer with
persistence length A confined to the surface of an infinitely long cylinder of
radius R. Using the Green’s function theory, a full numerical solution is ob-
tained. Examining the limit of small R nanotubes, we find the exact pitch
to be P/R = (27/0.975)(A/R)"/3, which has the expected Odijk exponent for
a tightly confined WLC system. An interpolation formula covering the experi-
mental range is provided. The chapter is concluded by comparing to an existing
theory, and discussing the differences. The contents of the chapter have been
prepared for publication, but at the time of writing are yet unpublished.

3.1 Introduction

The helical wrapping of nanotubes has been recognized as an important problem
for nanotechnology. The wrapping of single walled carbon nanotubes (SWNTs)
in particular has received much experimental and theoretical study, owing to
the beneficial effects on solvation and separation, with minimal modification
to the underlying electronic properties. SWNTs are poorly soluble in both
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water and organic solvents, and previous methods relied on techniques such
as chemical modification of the tubes to facilitate solvation; by wrapping the
nanotube with a polymer which is soluble in the solvent of interest (eg. water),
the nanotube itself is readily solvated [46-51]. Polymer wrapping has proved
particularly useful for the purification of SWNTs from commercial samples, as it
allows the separation of semiconducting nanotubes with specific diameters [75,
76]. Polymer wrapping has also shown potential to improve certain applications
of SWNTs, for example, developing sensitive COs detectors [77], as well as
potentially serving as material for solar cells [78].

< 2R »
< P P
5 (
< —
~ 4

Figure 3.1: Schematic of a polymer wrapped nanotube. A smaller nanotube
has a higher degree of confinement, resulting in a larger pitch (relative to the
radius). For the long polymers considered here, the exact behaviour depends
on the polymer stiffness and nanotube radius in tandem.

To form a comprehensive understanding of a polymer wrapped SWNT, two
problems need to be examined. The first is the adsorption process, showing how
the polymer becomes confined to the nanotube itself. The adsorption process
where the polymer segment wraps around the nanotube, especially for single
stranded DNA (ssDNA), has been studied extensively both experimentally and
theoretically [79-84].

This chapter focuses on the second problem: what is the adopted conforma-
tion of the polymer after it has adsorbed to the nanotube surface? Although
the adsorbed polymers can adopt a hairpin like structure, the lowest energy
conformation is known to be a helix, and a polymer allowed to slowly adsorb
onto the surface spontaneously adopts a helical conformation [81, 84]. Helically
wrapped SWNTs have been observed experimentally and by molecular dynamics
simulations (MD) for several polymers, with ssDNA (A = 1.5) as a prominent
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choice [7-15]. While some experimental results were also verified using MD
simulations, these approaches are limited to specific system parameters.

In this work, the wormlike chain (WLC) polymer model is used to describe
a semi-flexible polymer helically wrapping the surface of a nanotube, and to
compute its pitch as a function of the nanotube radius and polymer stiffness.
The polymer is considered to be fully adsorbed to the nanotube surface, and
therefore the problem becomes effectively 2D. The surface attraction between
the nanotube’s carbon lattice and the polymer’s constituent monomers con-
strains the chain to the plane of the nanotube’s surface, but allows it to move
freely within this plane. The optimal configuration is then determined through
a competition of entropic factors, which drive the system towards a random
coil, and energetic factors, where the forced bending around the tube surface
raises the free energy of the system. The WLC is a fundamental model, and has
been applied to good effect on confinement problems before [72, 85]. Section
3.3.1 describes the basic theory, and shows that when applied to a long polymer
with contour length L much larger than it’s persistence length A (L > \) the
model accurately reproduces experimental observations. For small nanotubes,
the pitch follows the expected Odijk power law, the exact form of which we
derive here.

The only other theory that models the same type of system was published
recently by Lundberg and Strano [25]. This is discussed in section 3.3.4, and
the results of both theories are compared and differences examined.

3.2 Wormlike Chain on a Curved Surface

Again, the WLC model is used to model the system. In a typical experimental
system, the nanotube length is much larger than the contour length L of the
polymer, and edge effects near the ends of the SWNT can be ignored. Hence, we
represent the nanotube as an infinitely long cylinder of radius R, the symmetries
of which remove the dependence on the position r(¢) from the problem, and
reduce the orientation tangent vector u(t¢) to depend only on the angle 6 from
the polymer tangent to the z axis of the nanotube u = u(#). As will be shown,
for a long polymer, the ratio of the persistence length to the nanotube radius
A/R is the only system parameter that controls the conformational behaviour.
We will consider here the long chain approximation that L > A, which we find
to be adequate to capture the experimental results.

When the polymer is confined to the nanotube, the external field in the
WLC Hamiltonian given in equation (1.13), Ulr(¢), u(t)] becomes the confining
potential, representing a harmonic bending energy penalty proportional to the
squared curvature of the nanotube surface

2
Ulr(t),u(t)] = % (1/\%) sin*(0) (3.1

representing the energy cost associated with confining the polymer to the surface
of the nanotube. To determine the helix pitch for a given system, the monomer
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density distribution for the polymer

p(0) = B—1/0 q(0,t)q(0,1 — t)dt (3.2)

as discussed in section 1.4, is used. In equation 3.2, ¢*(r,u,t) = ¢(6,1 —t) due
to the symmetry of the problem. The prefactor B is a normalization factor
ensuring that

/ " O)d0 =1 (3.3)

The modified diffusion equation for the propagator under the curvature in equa-
tion 3.1 is [53, 86]
9 L & LA\
—q0,t) = |~ 55 — = = | sin*0|q(0,t 4
50000 = | 35 5~ 35 () sin*oate. (3.4
To find ¢(f) from (3.4), we consider an expansion of ¢(f) in the eigenbasis of

the right-hand side of (3.4)

Ny _ .
o = MY (3.5)

Taking the long chain limit L — oo (with A fixed), allows application of
the ground state dominance (GSD) theory (see appendix A), giving ¢(0,t) =
Ymin(0,t). The eigenvectors ¢ are numerically computed by discretizing the

operator
2 2
% - (;{) sin? 9] (3.6)

A:

Numerical Method

The discretization of the A operator is done using a central difference scheme to
numerically approximate 9% /062, as discussed in section 1.5.1. The domain, 6, is
discretized into a grid with 10 points. The discretized operator A is represented
on this grid as a square sparse matrix with 3 x 105 elements, and the eigenvector
corresponding to the smallest eigenvalue p is numerically determined. This gives
the GSD propagator ¢(0,t) = ¥min(0,t). Full details on the GSD theory used
are given in appendix A.

3.3 Results

3.3.1 Helix Pitch and Comparison to Experiment

The pitch P of a long polymer with persistence length A in a helical configuration
on the surface of a SWNT of radius R can be found through

P 2T

R tan(6)

(3.7)
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Where the angle 6 that the tangent vector of the polymer u makes with the
vertical defines the helix. The average helix angle is computed using the density
distribution p(#) (see sections 1.4 and 3.2) that is numerically computed under
the GSD scheme (see appendix A)

Qo= [ iolpe)a0 (3.8)

—T

The absolute value is taken to avoid the () = 0 symmetry of the system. The
normalization factor B for the density distribution p under GSD is

B= % / q(0,1)q(0,1 — t)dodt = % Ymin (6)>d0 (3.9)

where the factor of 1/2 is included to compensate for over counting helices
related through angular rotations of 8 = m — 8, which are indistinguishable by
experimental pitch measurements (the pitch of a left-handed helix is the same
as that of a right-handed helix), but are distinguishable through their € in our
base theory. Dividing the configuration space by the number of indistinguishable
permutations in this way is analogous to the over counting of indistinguishable
states in classical mechanics [39], and is required to compare our theory to
experiment.

Once the average angle (|0]) of the helical conformation is determined using
equation 3.8, the pitch of the average helix for a given value of A\/R is obtained
through

P 27

R~ tan({|4]))

We computed the pitch for A\/R € [107,102], by taking a central difference
discretization of (3.6) with 10° equally spaced points in 6 € [0, 7/2] (exploiting
the symmetry over the domain), and numerically computed its smallest eigen-
value and corresponding eigenvector, then used (3.2) and (3.8) under the GSD
limit to obtain (|f|) and hence the associated pitch.

The results are given in Figure 3.2 as the solid black curve, compared against
10 different experimental and molecular dynamics studies for ssDNA, Chitosan,
Alginic Acid, PNES, and PPES (the last two are abbreviations of chemical
names, see the List of Abbreviation for the full definitions) [7-15]. The exact
data points are presented in appendix C.2, along with their persistence lengths.
Excellent agreement is seen with the data, save for two exceptions in the top
left. These points correspond to atomic force microscopy (AFM) measurements
by Zheng et al., and Campbell et al. [11, 12]. Both use the same ssDNA se-
quence, (GT)zp, and use nanotubes of similar radii. Zheng et al. posited that
the repeating structure allowed two ssDNA segments to interact and form a
“charge strip”; a single long polymer with both segments linked through hy-
drogen bonding [11]. If we assume this double ssDNA structure has a similar
persistence length to dsDNA (~50 nm, or ~25x that of ssDNA) [87], then we
see find the data (grey circles in figure 2.3) agrees with our WLC theory. Our

(3.10)
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Figure 3.2: Comparison with data from 10 different studies in the literature,
spanning 6 different polymer types. The square markers are experimental mea-
surements [7—12], while the diamonds are simulations [9, 13-16]. The solid black
curve is the numerical calculation done in this chapter. The grey circles (top
right) are the data from Zheng et al. and Campbell et al. (top left squares),
shifted to approximate the persistence length of the “charge strip” 2x ssDNA
structure suggested by Zheng et al. [11, 12]. Details are discussed in the text.
The persistence lengths for each of the polymers was estimated based on the
experimental conditions and existing literature [17-24]. The inset shows the
large A/R scaling behaviour eq. (3.16) as the dashed line, and the numerical
data as the solid black line.
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results therefore support the existence of such a hydrogen bonded ssDNA dimer,
as a double-stranded ssDNA structure should have a persistence length on the
order of dsDNA (M ~ 50nm). However, the existence of this “charge strip”
structure has been disputed by other studies [80].

3.3.2 Small R Scaling

By examining eq. (3.6) for large A/ R, the scaling behaviour for small nanotubes
can be deduced. For such cases, the strong confinement causes the density
distribution to peak around # = 0, and so sin(#) can be well approximated by
a first order Taylor expansion, giving

02 AN\,

— — | = A1
062 (R) b (3.11)
Making the substitution § = ¢/y/a and balancing the terms gives o = (R/\)~%/3

hence
A\ /3
0=_ (R) (3.12)

Therefore, under the strong confinement A\/R > 1, the pitch defined in eq. (3.7)
becomes

A=

(3.13)

k(o) ({<h

where the average of the scaled angle (|C|) is obtained by solving for the eigen-
function of

P2 2r (A
R

0? 4
Ar~ | =— — 3.14
= (314)
and computing the average via the scaled density distribution p¢(¢), which is
obtained using the same procedure used for the general density distribution p,
as discussed in sections 3.2 and 3.3.1:

(e = | T lpe(o) d¢ (3.15)

Numerically, we find (|¢|) = 0.975, and so for polymers tightly confined to small
nanotubes the wrapping pitch is

P_ 2m (AN (3.16)
R 0975 \ R '

This scaling is clearly seen for large A/R, plotted as the dashed line in the inset
in Figure 3.2. The scaling exponent 1/3 is the same as that derived by Odijk
for a WLC trapped within a cylindrical pore [88]. This in turn then naturally
defines the deflection length, the characteristic length between changes in the
polymer configuration, as Ager = P.
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Figure 3.3: Comparison between the interpolation formula eq. (3.17), and the
full numerical GSD solution. It closely matches the exact solution for strong and
medium confinement, and gives a mean squared error of 1.5 over the numerical
data range.
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3.3.3 Interpolation Formula

The results of the WLC theory can be made more accessible through an interpo-
lation formula, which approximates the results over the range of the parameter
space valid to experiments. We find that the following form

P 1+ g9(\/R)
— =Af(A — 1
7= /R)<1+Af(/\/R) (3.17)
is able to adequately capture the results, with
f(z) = 2? (3.18)
o 2’/T 1/3
g(z) = ooEs (3.19)

Because the exact small R result is known, we fit the linear large R region of
the data, and obtain A = 0.148 as the numerical coefficient. A comparison
between the two is given in Figure 3.3, showing excellent agreement with the
WLC theory over the experimental region (from A\/R ~ 2 to A\/R ~ 10%). Over
the entire data range, the interpolation formula has a mean squared error of 1.5
in P/R.

3.3.4 Comparison Against Lundberg Theory

In addition to molecular dynamics simulations for specific systems, there has
been another attempt to explain the observed helix pitch over a large range
of system parameters. Lundberg and Strano constructed an implicit equation
for the pitch based in part on approximations of the WLC model [25]. They
also compare their theory to many of the same experimental measurements
and molecular dynamics data that we do, and so a comparison between our
two models is necessary. Although they made a good attempt, their use of an
approximate WLC force, and a restriction of its direction to along the nanotube
background were not fully justified, and so an examination of the problem from
the perspective of the well established WLC model is valuable. We also note
that we were unable to replicate the literature data points listed by Lundberg
and Strano using the references given, and so our own interpretation of the
studies cited in the work was required.

Pitch measurements were taken directly from the papers of interest. When
a persistence length was provided in these works for the studied system, it was
used. When a value for the persistence length was not given, it was estimated
using a separate study on the polymer system of interest, and the change in
persistence length due to salt concentration was taken into account using ex-
perimental measurements. Hence, it is believed that the data points presented
in Figure 3.2 are accurate. All data points used can be found in the appendix
C.2, and details on the numerical results of Lundberg and Strano reproduced
from their theory is given in appendix C.1.

Both theories are compared, the numerical solution to equation (3.7) in this
chapter, and the numerical solution to their equation (23). These are plotted
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Figure 3.4: Comparison between the theory and data of this work, against the
theory and data presented in Lundberg and Strano [25]. The white squares are
our interpretation of the literature data, while the grey circles are the interpre-
tation of Lundberg and Strano. Although there is disagreement in the low end,
both interpretations agree best with our theory for large A/R.

side by side in Figure 3.4 with the numerical solution presented in this chapter as
the solid black curve, and that of Lundberg and Strano as the dashed grey curve,
with the interpretation of the data here represented by the squares, and theirs by
the filled circles. They have two extra data points in the small R region, which
are excluded from this chapter’s data, as no mention of them could be found
using the references given in their original paper. For small A/ R, Lundberg and
Strano’s interpretation agrees better with their results, while the interpretation
of the data in this chapter aligns best with the WLC theory. However, both
data sets agree best with the WLC results for large A/R.

3.4 Summary

In this chapter, using the wormlike chain (WLC) polymer model, a numerical
solution was produced for the helix pitch P of an infinitely long polymer of
persistence length A wrapped around a nanotube of radius R, using the Green’s
function approach. It was directly compared to experimental measurements
and molecular dynamics simulations for a range of polymers, and was found
to accurately predict the observed pitch. Excluded volume effects were not
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considered, as monomers in the helix forming polymers are well separated, and
experience little overlap. By examining the structure of the theory for large
M\/R, the exact scaling behaviour was derived as P = (27/0.975)(\/R)'/? for a
polymer wrapped on a small nanotube, which follows the expected Odijk power
law that is universal for tightly confined WLC systems.

The results were compared against a different theoretical framework pro-
posed by Lundberg and Strano [25]. It was found that due to differing in-
terpretations of experimental results no conclusions could be drawn for large
nanotubes, however both the data in this chapter and Lundberg and Strano’s
data agreed the best with the WLC theory used for small nanotubes.

The polymers studied in this work were all assumed to have a total contour
length much greater than their persistence length (L > ). Although the
considerations of finite length (finite L/\) are theoretically interesting, and do
effect the observed pitch, the effect in this case is small even for L ~ A. This
puts all the data compared to in this work firmly in the long chain limit, and
so it is well modelled by the ground state dominance approach taken here.
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Chapter 4

Conclusions

4.1 Summary

The three main chapters of this thesis provided an introduction to the wormlike
chain (WLC) polymer theory, numerical methods used to tackle it, and two
applications to interesting systems: stretched polymers and helically wrapped
carbon nanotubes. The WLC is a common polymer model that accounts for
innate polymer stiffness, through a bending energy characterized through the
persistence length A, which is the distance over which tangent vector correlations
along the polymer backbone die off. The WLC theory can be analysed using
a Green’s function approach, which formats the problem in terms of a propa-
gator ¢(r,u,t) which represents the partition function of the polymer with its
ends fixed. The propagator in turn can be used to compute global statistical
properties through the overall partition function @, or properties that depend
on the monomer positional and orientation distributions, through the density
function p(r,u). The propagator itself is the solution to a modified diffusion
type equation (MDE) derived from the WLC Hamiltonian.

Although closed form solutions to the MDE for the propagator exist only
under certain limits, numerical methods based on discretizing the differential
operators over the domain, allow a general solution to be obtained numerically.
Here, the Crank-Nicolson method, an average of the backwards and forwards
Euler methods, was used to obtain high accuracy numerical solutions. When
further accuracy was needed, Richardson extrapolation (see sections 2.2 and
2.3.2) was used to enhance the accuracy of the computations while being more
efficient than an equivalent increase in grid points.

Chapter 2 looked at the stretching of polymers with finite length using the
WLC model. The treatment of infinitely long chains had been tackled previ-
ously, and the approximation was valid due to the long length of the polymer
segments used in experiments at that time [2]. Recent experiments have been
able to stretch shorter polymer segments, and so a re-examination of the prob-
lem that considered finite length effects was needed [40-45]. The average ex-
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tension was examined, and an interpolation formula that accurately captured
the results, which reduces exactly to the analytic expressions in the high force,
low force, and rodlike limits was developed. This formula matched the full set
of numerical data to within 1%, and was applicable over the entire parameter
space of polymer length and applied forces. This was shown to outperform other
finite length theories in the literature, which were either accurate but not ap-
plicable over the full parameter space, or applicable everywhere but inaccurate.
The mean squared excursion in the direction perpendicular to the applied force
was examined, with closed form solutions for rodlike and weak stretching limits
presented. This was the first analysis of this parameter for a stretched WLC of
finite length in the literature. An interpolation formula was also presented in
this case, which captured the numerical results with a maximal error of 6 x 10~4.
The results of this chapter were published in Macromolecules in 2021 [1].

In chapter 3, the WLC was applied to model the helical wrapping of sin-
gle walled carbon nanotubes by various polymers. Carbon nanotubes are a
promising nanomaterial, but solvating and separating them has proven to be a
challenging task. Helically wrapping them with different polymers has shown
to effectively solvate them, while leaving their interesting electronic properties
mostly intact [46-51]. These polymer nanotube systems were modelled as a
WLC wrapped around an infinitely long cylindrical surface. Numerically, the
helix pitch was computed for a range of nanotube radii. The theoretical frame-
work was also examined to determine the scaling behaviour of the pitch for
small nanotubes. Both the scaling and numerical results were found to agree
extremely well with experimental measurements for the helix pitch. We com-
pared against another theory, and found that although there was disagreement
between the interpretation of the data between this work and theirs, both sets
of data agreed best with scaling and numerical data presented here in chapter 3
for small nanotubes. An interpolation formula with a mean squared error of ap-
proximately 1.5 in the ratio of helix pitch to nanotube radius was constructed to
reproduce the numerical pitch. A draft containing the results from this chapter
is being prepared for publication, but is unfinished at the time of writing.

4.2 OQOutlook

This thesis has shown the application of the common WLC model to two prob-
lems, the first was the stretching of finite length polymers in free space, and the
second was the helical wrapping of carbon nanotubes by various long polymers.
In both cases, the ideal WLC model was used, meaning there was no consid-
eration for any excluded volume interactions, the repulsion of monomers from
each other due to the physical space they occupy [89]. Excluded volume is a
long range interaction between separated polymer segments, and is difficult to
treat theoretically. Under most solvent conditions, it plays an important role
in determining the adopted conformation of the polymer. The omission, how-
ever, is not striking for the two systems considered. For the shorter polymers
modelled for the discussion of finite length stretching, there is little probability
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that two monomers with overlap in free space, and so the excluded volume in-
teraction can reasonably be ignored. The same is true for polymers forming a
helix around the surface of a nanotube. In a regular helical conformation with
a large pitch, as is the adopted conformation, the monomers are well separated
from each other and do not interact; excluded volume can safely be ignored in
this case as well.

In the case of polymer stretching, the more interesting limit is then the long
chain limit, which was originally studied without excluded volume [2]. For a
long weakly stretched polymer the chance of overlap is greatly increased, and
the excluded volume noticeably swells the chain. This has been demonstrated
using Monte Carlo simulations, but no work has been done from the perspective
of the WLC [67]. A full WLC treatment, showing the effect of excluded volume,
and mapping out its region of importance as a function of polymer length, is
then of great interest for future calculations.

There are several points for expansion for the theory of polymer wrapped
nanotubes as well. While a full theory was presented for the helix pitch, there are
several other metrics of the polymer conformations that are of interest. The first
is the confinement free energy. Using the WLC model, it is possible to deduce
the free energy scaling in the exact limits of strong and weak confinement, as well
as for rodlike and infinitely flexible polymers. Furthermore, the mean squared
end-to-end distance both around the nanotube and along it serve as measures of
the conformations. These can be calculated using the same type of perturbation
theory as was used for the WLC stretching and has been previously used for
WLCs in slit confinement [1, 72].

In conclusion, the WLC model has shown itself to be widely applicable,
and has been successfully applied to polymer stretching and the wrapping of
carbon nanotubes by various polymers. The techniques demonstrated herein
can be used to further investigate interesting experimental systems and relevant
physical effects that have not yet been considered.
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Appendix A

Ground State Dominance

(GSD)

A.1 GSD Theory

The goal behind the ground state dominance (GSD) theory is to develop a
method to calculate the long chain limit L — oo (keeping A fixed) of the system
of interest. This theoretical limit applies to polymers whose length is much
larger than their persistence length, mathematically L/\ > 1. It is not uncom-
mon to find real experimental polymers that are well approximated under this
limit, and so the GSD method finds use in a number of applications [90].

The starting point is the wormlike chain (WLC) modified diffusion equation
(MDE), equation 1.17

9 _ 2
aq(r,u,t) = [Lu . Vr| + ﬁv U[r,u]} q(r,u,t)

The idea is to expand the propagator ¢(r,u,t) in terms of the eigenstates ¢ of
the operator on the right-hand side of the equation, denoted A

A= { Lu- V.|, +5 v2 U[r,u]} (A1)

where p is the dimensionless free energy per unit length. The eigenvalue equa-
tion is

Atpy = —pn Liby, (AQ)
The eigenstates of the propagator are assumed to have the variable separated
form

(1, u,t) = e Frlly (v u) (A.3)
and so the expansion of ¢(r,u,t) then has the general form
q(r,u,t) ZC’ e MLty (r,u) (A.4)
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where C,, are the expansion coefficients. In taking the limit L — oo, the sum
becomes dominated by the term with the lowest energy u, corresponding to
the ground state. For the long chain limit then, it is sufficient to compute the
smallest eigenvalue p, and its associated eigenvector ¥,i,. This gives

q(r,u,t) = CpeFmintlap; (r, 1) (A.5)

As discussed in section 1.4, the partition function is related to the integral of
the propagator

Q= /q(r, u,t =1)drdu (A.6)
Under GSD, this then becomes
Q= /C’ne_“"““Lil)min(r,u) drdu (A7)

As the integral over i (r, u) is a constant, B, the partition function then has
the form

Q = De tmink (A.8)
If one is working in the canonical / Helmholtz ensemble, then the Helmholtz
free energy is readily obtained from the partition function

BF =—-1nQ (A.9)

where 8 = 1/k,T is the inverse of the product of the Boltzmann constant times
the temperature. Substituting in the GSD partition function directly yields

BF =puL —1InD =~ pL (A.10)

for L — oo. Hence, computing p directly gives the energy (Helmholtz free en-
ergy, or Gibbs free energy, depending on the problem). The eigenstate ¥y, can
be used to compute the density distribution pgsp following the same reasoning
(see section 1.4) and its associated long chain results, as is done throughout
chapter 3.

A.2 GSD Numerical Implementation

The exact implementation of the diagonalization scheme of the operator A can
vary. Marko and Siggia solved the polymer stretching problem for L — oo by
expanding ¢(6) in terms of spherical harmonics analytically, then solving the
resulting matrix equation up to degree I = 100 numerically for the smallest
eigenvalue [2]. This approach was reproduced in chapter 2 to produce the GSD
limit in figure 2.3 (a).

For the GSD results in figure 2.3 (b) and in chapter 3, the operator A is
numerically discretized, using a central difference scheme (see section 1.5.1).
The resulting smallest eigenvalue and associated eigenvector are then solved for
numerically, using the NumPy Python library, which in turn uses the optimized
BLAS and LAPACK linear algebra libraries [91]. In chapter 3, the GSD matrix
was implemented as a sparse matrix, with 3 x 10% non-zero elements, using the
SciPy Python library [92].
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Appendix B

Exact Strong Stretching
Calculation

Here, the calculation of the exact strong stretching results for (z) and (R2,),
as presented in chapter 2, are shown. The Hamiltonian for a stretched WLC is

given by
BH = / dt

Under high force, the tangent vector u, deviates only slightly from the stretching
direction z, and so it can be expanded to quadratic order in terms of the tangent
vector in the xy plane 1., to give u, ~ 1 — uiy /2, and so the strongly stretched
WLC Hamiltonian becomes

BH = /dt

This approximation to the tangent vector fluctuations at high force is the basis
for all the high force results used by the studies discussed in chapter 2, for both
long and short chains.

A Hamiltonian of this type is similar to that for a quantum harmonic oscil-
lator, and mapping to such a problem allows the use of existing solutions for
the propagators in quantum mechanics to be applied to the WLC. Using the
result from Feynman for the two point greens function of a quantum harmonic
oscillator [69]

du(t) |

ﬁdt

- 5quz(t)]

du(?) |”

iy —BLf (B.1)

1

2L

2 2 -
G(umya ugmﬁ T) _ AB_B(“my+“my)+2”Auwy ug, (BQ)

where the terminal ends are separated by a fractional length 7 = ¢t — ', and the
value of the perpendicular vectors at the points are u,, and u;y respectively.
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The A, B functions are

o 1

= -— B.3
27 sinh y1 (B.3)

B = mAcosh~yr (B.4)

and the associated coefficients are @ = (A3f)'/2 and v = L(Bf/\)'/2. Inte-
grating the Green’s function over all values of u,, and uj, gives the partition
function

Q 27

V  asinhy

(B.5)

which can then be used to calculated the Gibbs free energy, and associated
extension

(z) _ 1 Bf 7 =
T = 1- ﬁD (L )\> (for f > 1 and any L) (B.6)
with
D(z) = [1 4 x coth (x)] /2 (B.7)

as was presented in the main text.

A similar procedure is taken in order to calculate the strong stretching limit
of (R%,). First, one looks at the orientational correlation function for the two
monomers at ¢ and ¢', which is obtained from the product of the three Green’s
functions G(ug, u,u’,uy,t) = G(ug, u, t)G(u,u’,t—t')G(u’,uy, 1 —t'), where all
the u vectors are confined to the zy plane. Each component Green’s function
here represents a segment of the polymer connected to the two monomers (ter-
minal to monomer 1, monomer 1 to 2, and monomer 2 to terminal). Integrating,
one obtains the two point correlation function

o) < OO ez e

Performing an integral over the correlation function for all ¢, ¢/, then gives the
projection of the mean squared end-to-end distance in the xy plane.

(R2,)=L? /01 /01<u ~u')ydt'dt = % (B.9)

which although simple is applicable to any chain length L for large forces f > 1.
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Appendix C

Polymer Wrapped SWNT:
Literature Data and
Lundberg Theory

This appendix contains two items supporting the discussion presented on poly-
mer wrapped single walled carbon nanotubes (SWNTS) in chapter 3. The first
is the implicit equation for the helix pitch presented by Lundberg and Strano,
and how the results from their theory were reproduced in this work. The second
is the list of experimental data points (10 unique studies spanning 6 different
polymer systems) used to compare to our numerical theory in chapter 3, and
how they were adapted from their respective papers. A separate analysis of the
literature for an independent quotation of the same studies used for comparison
in the work of Lundberg and Strano was necessary, as their table presenting the
data points and how they were obtained was unclear [25].

C.1 Comparison Against Lundberg and Strano

For the comparison against the theory by Lundberg and Strano, their inter-
pretation of the experimental data was taken directly as presented in their SI,
without any modifications [25]. Their theory, given as the dashed grey curve
in Figure 4 in the main text, was obtained by solving their eq. (23). Using the
notation in this work, the equation is

R*P/27 1 (P/2m)? B
BRI WY e i (@ <P/2w>2>3/2)] =0
(C.1)
Where F(a) is
P =BT (a1 ) o)



and o = (P/2m)/\/R? + (P/2m)2.

For each data point, R was fixed, and the value of P/27 that satisfies the
equation was numerically solved for via a root finding algorithm, as implemented
in the SciPy numerical library [92]. The resulting curve exactly matches the
numerical curve presented by Lundberg and Strano in their Figure 2.

C.2 Literature Data

The experimental data values for the helix pitch of single walled carbon nan-
otubes (SWNTs) wrapped by various polymers as presented in Figure 2 in the
main text are given here. Values of for the helix pitch were taken directly from
the papers of interest. If the paper gave a value of for the persistence length
A of the system, it was used. If no value for A was given, it was estimated
using separate experimental studies, with the specific value selected to properly
account for the ionic strength of the experimental / theoretical system. See the
table below for details on what papers were used. The cylinder radius used in
our model was taken as the radius of the SWNT, plus the distance from the
surface of the nanotube to the polymer backbone, and is referred to as the hy-
brid radius. This is given in tabulated form in Table C.1 below. All values for
the hybrid radius were taken directly as reported in their papers, save for two
papers which did not report a nanotube radius. These exceptions and how the
nanotube radius was estimated are noted in the table on the next page. The
table lists if the paper is experimental or theoretical, with the theoretical further
divided into Monte Carlo (MC) and Molecular Dynamics (MD) simulations.
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