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Abstract

In this thesis, we concern ourselves with asking questions about the basic structure
of group C*-algebras C∗

λ(G), crossed products A ⋊ G and A ⋊λ G, and groupoid C*-
algebras C∗

r (G) and C∗
ess(G). Specifically, we are concerned with two main topics. One is

the simplicity of these algebras, and we either extend work that was already done in the
case of group C*-algebras and crossed products, or characterize simplicity altogether in
the case of groupoid C*-algebras. The other is the structure of traces on these algebras,
in particular in the case of crossed products.

In the third chapter, we give complete descriptions of the tracial states on both the
universal and reduced crossed products A ⋊ G and A ⋊λ G of a C*-dynamical system
consisting of a unital C*-algebra A and a discrete group G. In particular, we also answer
the question of when the tracial states on the crossed products are in canonical bijection
with the G-invariant tracial states on A. This generalizes the unique trace property for
discrete groups. The analysis simplifies greatly in various cases, for example when the
conjugacy classes of the original group G are all finite, and in other cases gives previously
known results, for example when the original C*-algebra A is commutative. We also obtain
results and examples in the case of abelian groups that contradict existing results in the
literature of Bédos and Thomsen. Specifically, we give a finite-dimensional counterexample,
and provide a correction to the result of Thomsen.

The fourth chapter is a short note on results in the von Neumann crossed product
case that were never submitted for publication, and the author suspects might potentially
be folklore, but cannot actually find anywhere. We extend the results on C*-crossed
products from the third chapter to the case of von Neumann crossed products M⋊G. In
particular, we obtain results that characterize when a G-invariant normal tracial state on
M has a unique normal tracial extension to the crossed product. As a consequence, we
also characterize when such crossed products are finite factors (i.e. either of type II1, or
isomorphic to Mn).

In the fifth chapter, we consider the notion of a plump subgroup that was recently
introduced by Amrutam. This is a relativized version of Powers’ averaging property, and it
is known that Powers’ averaging property for G is equivalent to C*-simplicity, i.e. simplicity
of C∗

λ(G). With this in mind, we introduce a relativized notion of C*-simplicity, and show
that for normal subgroups N ◁ G it is equivalent to plumpness, along with several other
characterizations.

For the sixth chapter, we prove a generalized version of Powers’ averaging property that
characterizes simplicity of reduced crossed products C(X) ⋊λ G, where G is a countable
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discrete group, and X is a compact Hausdorff space which G acts on minimally by home-
omorphisms. As a consequence, we generalize results of Hartman and Kalantar on unique
stationarity to the state space of C(X)⋊λG and to Kawabe’s generalized space of amenable
subgroups Suba(X,G). This further lets us generalize a result of the first named author
and Kalantar on simplicity of intermediate C*-algebras. We prove that if C(Y ) ⊆ C(X) is
an inclusion of unital commutative G-C*-algebras with X minimal and C(Y )⋊λG simple,
then any intermediate C*-algebra A satisfying C(Y )⋊λ G ⊆ A ⊆ C(X)⋊λ G is simple.

For the seventh chapter, we characterise, in several complementary ways, étale groupoids
with locally compact Hausdorff space of units whose essential groupoid C*-algebra has the
ideal intersection property, assuming that the groupoid is either Hausdorff or σ-compact.
This leads directly to a characterisation of the simplicity of this C*-algebra which, for
Hausdorff groupoids, agrees with the reduced groupoid C*-algebra. Specifically, we prove
that the ideal intersection property is equivalent to the absence of essentially confined
amenable sections of isotropy groups. For groupoids with compact space of units we more-
over show that this is equivalent to the uniqueness of equivariant pseudo-expectations. A
key technical idea underlying our results is a new notion of groupoid action on C*-algebras
including the essential groupoid C*-algebra itself. For minimal groupoids, we further ob-
tain a relative version of Powers averaging property. Examples arise from suitable group
representations into simple groupoid C*-algebras. This is illustrated by the example of the
quasi-regular representation of Thompson’s group T with respect to Thompson’s group F,
which satisfies the relative Powers averaging property in the Cuntz algebra O2.
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Chapter 1

Introduction

This thesis is largely a collection of papers that the author wrote over his PhD program,
either singly-authored or coauthored. Each chapter, with the exception of Chapter 4,
corresponds to an individual paper that is either already published, or posted on arXiv.
Information on these papers and any coauthors can be found in both the Statement of
Contributions section and the Acknowledgements section. While each chapter comes with
its own introduction and motivation, we provide a brief, somewhat more unified overview
here as well.

We will concern ourselves with C*-algebras and von Neumann algebras, in particular
those arising out of some kind of construction involving groups or groupoids, such as
reduced group C*-algebras C∗

λ(G), crossed products A ⋊λ G, and groupoid C*-algebras
C∗
r (G) and C∗

ess(G). Most basic facts about these constructions, and C*-algebras in general,
can either be found in Chapter 2, or in one of the chapter-specific preliminary sections.

The first couple of chapters are concerned with the question of describing the tracial
states on many of these algebras. This is often of interest, as for example, tracial data
shows up in the Elliot invariant in classification theory. In the case of commutative crossed
products and groupoid C*-algebras, the problem is essentially solved in the case of uni-
versal groupoid C*-algebras C∗(G) by Neshveyev in [Nes13] (and consequently in universal
commutative crossed products C(X)⋊G), and results can at least be obtained on reduced
commutative crossed products C(X) ⋊λ G by a result of Bryder and Kennedy [BK16,
Theorem 5.2] reducing things to the amenable radical of G.

In Chapter 3, we focus on noncommutative crossed products A⋊G andA⋊λG, obtaining
complete descriptions of tracial extensions of G-invariant traces on A. In particular, we
also attempt to answer the question of when a G-invariant trace on A has a unique tracial
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extension to each of the crossed products, with respect to various assumptions on G. It
was already known that some form of proper outerness of the action is usually sufficient,
but we provide weaker conditions that turn out to be true if and only if conditions in
many cases. We also give counterexamples to results of Bédos [Béd96, Proposition 11] and
Thomsen [Tho95, Theorem 4.3] in the case of G being abelian, providing corrections to
Thomsen’s result (with an analogous correction likely holding for Bédos’ result, but not
being explicitly worked out). We also work out the cases when G is an FC-group, and
when G = Z. Interestingly enough, this last case thankfully turns out to agree with the
original result of Thomsen, and it is often a case that people are interested in.

Chapter 4 is a short unpublished note that takes inspiration from the results of Chap-
ter 3, but this time works in the case of von Neumann crossed products M⋊G. We answer
the question of when G-invariant normal tracial states on M have unique normal tracial
extension to the entire crossed product, and as a result, also deduce exactly when the
crossed product is a finite factor. I suspect that some of the results in this chapter might
already be folklore among the von Neumann algebra community, but I cannot actually find
them anywhere.

Moving away from traces, another basic question about the various C*-algebraic con-
structions mentioned earlier that gathered much interest over time is that of figuring out
when these are simple. While this is an older question, with one of the first major results
being the result of Powers in [Pow75] that C∗

λ(F2) is simple, the first true if and only if
results only started arising over the last few years, due to Breuillard, Kalantar, Kennedy,
and Ozawa over several papers. A brief history of their results, along with a short proof,
can be found in Appendix A.

One of the results that arose out of this, and we will draw our attention to, was Kennedy
and Haagerup independently demonstrating in [Ken20] and [Haa16], respectively, that C*-
simplicity of G is equivalent to an averaging property originally considered by Powers to
show that F2 is C*-simple. In short, Powers’ averaging property can be formulated as
follows: given any a ∈ C∗

λ(G), we have that

τλ(a) ∈ conv {g · a | g ∈ G} ,

where τλ is the canonical trace on C∗
λ(G).

Subsequent results of a similar flavour that arose afterwards was some work done by
Amrutam in [Amr21]. In particular, he was interested in characterizing a property of
subgroups H ≤ G which he called plump, which is a relativized version of Powers’ averaging
property, as it allowed him to easily describe in certain cases C*-subalgebras lying between
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C∗
r (G) and A⋊λG, as long as the kernel of the action of G on A contains a plump subgroup.

We say that H ≤ G is plump if for any a ∈ C∗
λ(G), we have

τλ(a) ∈ conv {h · a | h ∈ H} .
In Chapter 5, we give complete characterizations for plumpness for normal subgroups N◁G,
as the interest originally arose out of studying kernels anyways. In particular, we also show
that it is equivalent to a relativized notion of C*-simplicity, along with other relativized
characterizations inspired from the existing C*-simplicity results.

Chapter 6 also takes inspiration from Powers’ averaging property, but in a different
direction. The simplicity of commutative crossed products C(X) ⋊λ G was already char-
acterized by Kawabe in [Kaw17], but an equivalent version of Powers’ averaging property
was lacking. This is what is done in this chapter. Namely, we show that C(X) ⋊λ G is
simple if and only if the action of G on X is minimal and

E(a) ∈ C(X)− conv {g · a | g ∈ G} ,
where we now make use of C(X)-convex combinations. From here, we proceed to generalize
results of Hartman and Kalantar [HK17] on unique stationarity of states on either the
reduced group C*-algebra C∗

λ(G) and the space of subgroups C(Suba(G)), except this time
to the crossed product C(X)⋊λG, and to Kawabe’s space of amenable stabilizer subgroups
C(Suba(X,G)). We also generalize results of Amrutam and Kalantar [AK20] on simplicity
of intermediate C*-algebras C∗

λ(G) ⊆ A ⊆ C(X)⋊λ G in the case of C*-simple groups G,
but this time in the case of intermediate C*-algebras between arbitrary simple commutative
crossed products.

Going back to the question of characterizing when such algebras are simple, the next
logical step after commutative crossed products is the case of étale groupoids. It is worth
noting that groupoid C*-algebras provide quite a large class of C*-algebras, as it is the
combined result of several authors that every classifiable C*-algebra is the reduced twisted
groupoid C*-algebra of a Hausdorff étale groupoid. While the case of commutative crossed
products was solved without much difficulty in [AS94] for universal crossed products
C(X) ⋊ G, and generalized from reduced group C*-algebras C∗

λ(G) to reduced crossed
products C(X)⋊λ G in [Kaw17] without too much hassle either, the case of groupoid C*-
algebras proved to be much harder. A generalization of Archbold and Spielberg’s result for
C(X)⋊G would only arrive for the universal groupoid C*-algebra C∗(G) twenty years later
in [BCFS14], and partial results in the reduced case very recently by Borys in [Bor19] and
[Bor20]. Our main contribution in Chapter 7 was making Borys’ results a true if and only
if, but also obtaining far more general results that don’t assume the groupoid is minimal,
has compact unit space, or is even Hausdorff. Generalizations of the generalized Powers’
averaging property mentioned earlier for crossed products C(X)⋊λ G are also obtained.
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Chapter 2

General preliminaries

Each individual chapter has chapter-specific preliminaries. However, there are some com-
mon facts that the reader should be aware of, and will often be used without reference.
A good reference for completely positive maps and related topics is [Pau03], and a good
reference for group C*-algebras, amenability, and many other things is [BO08] and [Dav96].
It is assumed that the reader is at least familiar with basic facts about C*-algebras. The
C*-algebras that we work with will always be unital unless otherwise specified, and likewise
the groups will always be discrete.

2.1 Completely positive maps

First, we recall the basics of unital and completely positive maps. Given a C*-algebra
A, consider the matrix algebra Mn(A). By faithfully representing A ⊆ B(H), we can
view Mn(A) ⊆ B(Hn). This gives us a norm structure on Mn(A) that makes it a C*-
algebra as well. The norm structure is unique and hence does not depend on the choice of
representation A ⊆ B(H).

A linear map ϕ : A→ B between C*-algebras is called positive if whenever a ∈ A with
a ≥ 0, we have ϕ(a) ≥ 0. Such maps will automatically satisfy ϕ(a∗) = ϕ(a)∗ for all a ∈ A.
We may also consider the linear map ϕ(n) :Mn(A)→Mn(B) given by

ϕ(n)([aij]) = [ϕ(aij)]

The map ϕ is called completely positive if ϕ(n) is positive for each n ∈ N. It is known that
if a map ϕ : A→ B is unital and completely positive, then it is also completely contractive
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as well, in the sense that each ϕ(n) is contractive. A map ϕ : A → B is called a complete
order embedding if given any x ∈ Mn(A), we have x ≥ 0 if and only if ϕ(n)(x) ≥ 0. Every
unital injective *-homomorphism is automatically a complete order embedding.

In the category of unital C*-algebras, together with unital and completely positive
maps as morphisms, we automatically have that isomorphisms in this category exactly
coincide with *-isomorphisms. That is, if ϕ : A → B and ψ : B → A are unital and
completely positive maps with the property that ψ ◦ ϕ = idA and ϕ ◦ ψ = idB, then they
are automatically *-isomorphisms. In particular, if ϕ : A → B is a unital, surjective,
complete order embedding, then it is automatically a *-isomorphism.

Given any unital and completely positive map ϕ : A → B, we canonically have a left
ideal and a right ideal associated to it by:

Lϕ = {a ∈ A | ϕ(a∗a) = 0}

and
Rϕ = {a ∈ A | ϕ(aa∗) = 0} ,

respectively.

Every unital and completely positive map also has a multiplicative domain given by

mult(ϕ) = {a ∈ A | ϕ(a∗a) = ϕ(a)∗ϕ(a) and ϕ(aa∗) = ϕ(a)ϕ(a)∗} .

As it turns out, this is in fact a unital C*-subalgebra of A, and moreover, given any a ∈ A
and b ∈ mult(ϕ), we have that

ϕ(ab) = ϕ(a)ϕ(b) and ϕ(ba) = ϕ(b)ϕ(a)

2.2 Amenability

The standard definition of amenability is as follows. A discrete group G is called amenable
if there is a left-invariant state on ℓ∞(G), where we are considering the left-translation
action given by (s · f)(t) = f(s−1t).

There is a more geometric interpretation of amenability. Consider a compact convex
subset K of a locally convex Hausdorff vector space V . An example that will show up very
often is the state space of a unital C*-algebra. We say that a map ϕ : K → K is affine if
it respects convex combinations, i.e.

ϕ(αk + (1− α)l) = αϕ(k) + (1− α)ϕ(l).
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A discrete group G is amenable if and only if any action on a compact convex set K by
affine homeomorphisms has a fixed point, i.e. a point k ∈ K such that s · k = k for all
s ∈ G.

Amenability is preserved under taking subgroups H ≤ G. Moreover, given a group G
and a normal subgroup N , we have that G is amenable if and only if both N and G/N
are. It is also preserved under taking direct limits.

The two most basic examples of amenable groups are all finite groups and all abelian
groups. The most basic example of a nonamenable group is Fn, the free group on n
generators, for n ≥ 2.

2.3 Group C*-algebras and crossed products

Before we begin, recall that, given an inclusion A ⊆ B of unital C*-algebra, a conditional
expectation E : B → A is a unital and completely positive map such that E|A = idA.

Given a discrete group G, we may consider the left-regular representation on ℓ2(G),
the Hilbert space with orthonormal basis {δs | s ∈ G}. The group G acts on this space
by unitaries λs, which permute the basis vectors around by left translation as follows:
λsδt = δst. It is easy to check that λ∗s = λs−1 and λsλt = λst. This representation
λ : G → U(ℓ2(G)) extends to a *-representation of the group ring λ : C[G] → B(ℓ2(G)),
which is in fact injective on the group ring. From here, we may define the reduced group
C*-algebra as follows:

C∗
λ(G) := span∥·∥ {λs | s ∈ G} = λ(C[G])

∥·∥
.

It is easy to see that every element a ∈ C∗
λ(G) has a unique associated Fourier series

a ∼
∑

t∈G αtλt (convergence is irrelevant), which corresponds to a matrix in B(ℓ2(G))
whose (r, s)-entry is αrs−1 . Thus, we get a faithful trace τλ : C∗

λ(G) → C that sends an
element a ∼

∑
t∈G αtλt to αe. In other words, τλ(a) = ⟨ aδe | δe ⟩.

The reduced group C*-algebras play quite nicely with respect to subgroups. Given a
subgroup H ≤ G, we canonically have an inclusion C∗

λ(H) ⊆ C∗
λ(G), and a conditional

expectation EH : C∗
λ(G)→ C∗

λ(H) sending λs to itself if s ∈ H, and zero otherwise.

There is also a universal group C*-algebra C∗(G), which is the norm-completion of C[G]
under the norm given by

∥a∥ = sup {∥π(a)∥ | π : G→ U(H) representation}
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for every a ∈ C[G] (we are using the fact that every representation π : G→ U(H) extends
to a *-representation π : C[G]→ B(ℓ2(G))). This C*-algebra has the property that given
any representation π : G → U(H), there is an extension π̃ : C∗(G) → B(H) with the
property that π̃(us) = π(s) for all s ∈ G. Observe that, as a consequence of applying
this to the left-regular representation on ℓ2(G), we have that C[G] canonically embeds into
C∗(G) as well.

Amenability of groups is characterized by these two group C*-algebras. Namely, a
discrete group G is amenable if and only if the canonical *-homomorphism π : C∗(G) →
C∗
λ(G) is given by π(us) = λs is in fact a *-isomorphism. This is also equivalent to

the trivial representation of G on C (sending each group element to 1) extending to a
*-homomorphism 1G : C∗

λ(G)→ C.
Crossed products are a similar story. Consider a unital C*-algebra A, and a discrete

group G acting on A by *-automorphisms. We say that a unital C*-algebra B is a C*-
crossed product of A and G if:

� A ⊆ B as a unital C*-subalgebra.

� G ⊆ B as unitaries us.

� The action of G on A is inner inside of B, in the sense that usau
∗
s = s · a.

� B is generated as a C*-algebra by A and G.

Observe that we canonically have that if B is a crossed product of A and G, then

B =

{∑
finite

atut

∣∣∣∣∣ t ∈ G, at ∈ A
}∥·∥

.

Multiplying two elements aus and but occurs as follows:

ausbut = ausbu
∗
susλt = a(s · b)ust.

It will sometimes be useful to consider the algebraic crossed product

A[G] =

{∑
finite

atut

∣∣∣∣∣ t ∈ G, at ∈ A
}
,

where the above is formal finite sums. Given any C*-crossed product B, there is always
canonically a *-homomorphism π : A[G]→ B such that π is the identity on A and G, and
has dense range.
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There are again two canonical C*-crossed products of A and G. The first is the reduced
crossed product A ⋊λ G. To construct this, we first faithfully represent A ⊆ B(H), and
then consider the Hilbert space H ⊗ ℓ2(G), and a *-homomorphism π : A→ B(H ⊗ ℓ2(G))
and representation λ : G→ U(H ⊗ ℓ2(G)) given by:

π(a)(h⊗ δt) = ((t−1 · a)h)⊗ δt

and
λs(h⊗ δt) = h⊗ δst.

The reduced crossed product A ⋊λ G is the C*-algebra generated by π(A) and λ(G), or
equivalently, the norm closure of the representation of A[G] induced by π and λ. This
norm completion of A[G] is independent of the choice of faithful representation A ⊆ B(H)
from earlier. It is also the case that we canonically have an embedding A[G] ⊆ A⋊λ G.

We also again get matrix representations and Fourier series. Every element x ∈ A⋊λG
has a unique associated Fourier series x ∼

∑
t∈G atλt (convergence is irrelevant), which in

turn corresponds to the matrix in B(H ⊗ ℓ2(G)) whose (r, s)-entry is r−1ars−1 .

Observe that, using the matrix representations from earlier, the projection to the (e, e)-
corner gives us a faithful conditional expectation E : A ⋊λ G → A, which maps x ∼∑

t∈G atλt to ae. Moreover, equipping the C*-algebra A⋊λ G with the conjugation action
s · x = λsxλ

∗
s, the expectation is G-equivariant. Finally, the expectation can actually

uniquely determine the reduced crossed product, as we will see later.

There is a universal crossed product A ⋊ G constructed as follows. Given any repre-
sentation π : A → B(H), and any representation σ : G → U(H), with the property that
π(s · a) = σ(s)π(a)σ(s)∗, we say that (π, σ) are a covariant pair. These correspond to
*-representations ρ : A[G]→ B(H) satisfying ρ|A = π and ρ|G = σ. The universal crossed
product A⋊G is given by the norm completion of A[G] under the norm

∥x∥ = sup {ρπ,σ(x) | π : A→ B(H), σ : G→ U(H),with (π, σ) a covariant pair} .

It has the property that whenever (π, σ) are a covariant pair for A and G on the Hilbert
space H, there is a *-homomorphism ρ : A ⋊ G → B(H) with the property that ρ|A = π
and ρ|G = σ. Again, A[G] canonically embeds into the universal crossed product.

It is worth noting that by letting A = C in the above constructions, we have that
A ⋊λ G = C∗

λ(G) and A ⋊ G = C∗(G). Furthermore, given a subgroup H ≤ G and an
H-C*-subalgebra B ⊆ A, we canonically have B⋊λH ⊆ A⋊λG. For the universal crossed
products, we still obtain a *-homomorphism, but we might no longer obtain an embedding.
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Going back to amenability of groups, we have that if G is amenable, then the reduced
and universal crossed products coincide. More specifically, the canonical *-homomorphism
π : A⋊G→ A⋊λG satisfying π|A = idA and π(us) = λs is in fact a *-isomorphism. For a
fixed A, the converse is not true, but it is now clearly true if A is allowed to vary over all
C*-algebras (just let A = C).

A convenient fact that I have not seen anywhere, but is probably well-known, is the
following: the reduced crossed product A⋊λ G is characterized as the unique (semi)norm
completion of A[G] such that the map E : A[G]→ A given by E(

∑
atλt) = ae extends to a

faithful conditional expectation on the completion. In other words, the norm is big enough
so that the map is continuous, but small enough so that the map is faithful. Observe that
by letting A = C, a similar statement can be made about the reduced group C*-algebra.

To see this, assume that A ⋊w G is some arbitrary norm completion of A[G] with E :
A⋊wG→ A being the canonical conditional expectation on A[G]. Consider the canonical

*-homomorphism π : A⋊G→ A⋊wG, and consider the composition Ẽ = E◦π : A⋊G→ A.
Observe that this map is G-equivariant with respect to the conjugation action on A⋊ G.
We claim that the left ideal

I =
{
x ∈ A⋊G

∣∣∣ Ẽ(x∗x) = 0
}

in fact is equal to ker π. To see this, assume x ∈ I. Then

0 = Ẽ(x∗x) = E(π(x∗x)) = E(π(x)∗π(x)),

and by faithfulness, we have π(x)∗π(x) = 0, i.e. π(x) = 0. Conversely, if we start with
x ∈ ker π, then

Ẽ(x∗x) = E(π(x∗x)) = E(π(x)∗π(x)) = 0,

i.e. x ∈ I. Thus, I = ker π. It follows that there is an isomorphism

(A⋊G)/I ∼= A⋊w G

that canonically maps the image of A[G] in one to the image of A[G] in the other. However,

by density of A[G], the map Ẽ : A⋊G→ A does not depend on the choice of completion
A ⋊w G, and therefore the ideal I does not either. Thus, any two completions of the
aforementioned form are also isomorphic in the same way, or in other words, there is only
one possible completion.

The von Neumann algebra constructions are similar. For groups, L(G) is obtained by
taking a completion of C[G] in B(ℓ2(G)) under your favourite topology that is not the norm
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topology (weak operator, weak*, strong operator, etc... will all give the same result), and
the trace τλ is now a faithful normal trace. For M⋊G, it is again a closure of M [G] under
an appropriate topology in B(H ⊗ ℓ2(G)) for a faithful normal representation M ⊆ B(H),
and we obtain a faithful normal conditional expectation E : M⋊G → M . The universal
equivalents are not usually studied, as they are usually far too massive. For example, the
universal group von Neumann algebra would be C∗(G)∗∗.
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Chapter 3

Characterizing traces on crossed
products of noncommutative
C*-algebras

3.1 Introduction and statement of main results

Understanding the tracial states on a C*-algebra is often of interest, for example in clas-
sification theory. In this paper, we concern ourselves with both the reduced and universal
crossed products arising from C*-dynamical systems consisting of a unital C*-algebra A and
a discrete group G. Given any G-invariant tracial state on A, we give complete descriptions
of the tracial extensions to the crossed products. We also translate our characterization
into an equivalent condition for when the tracial extension is unique. Finally, in various
special cases, we simplify this condition on uniqueness of tracial extension.

To establish notation, A will always denote a unital C*-algebra, and G a discrete group
acting on A by *-automorphisms. In addition, the term “automorphism” will always mean
*-automorphism. The reduced crossed product of this action will be denoted by A ⋊λ G,
and the universal crossed product by A ⋊ G. The unitary corresponding to t ∈ G in
A ⋊λ G will be denoted by λt, and in A ⋊ G will simply be denoted by t. Furthermore,
T (A) will denote the set of all tracial states on A, and TG(A) the set of tracial states that
are invariant under the action of G. Finally, “trace” will only be used to refer to tracial
states.

A key idea in our paper takes inspiration from one of the techniques used by Kennedy
and Schafhauser in [KS19]. In their paper, they study the intersection property of reduced
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crossed products, i.e. the property that every nonzero ideal of A ⋊λ G has nonzero in-
tersection with A. A key point in their paper is that what they call pseudoexpectations,
introduced in [KS19, Section 6], can be used to characterize the intersection property.
These are G-equivariant, unital, completely positive maps ϕ : A ⋊λ G → IG(A) with ϕ|A
being the identity map, where IG(A) is the G-injective envelope of A. It is worth noting
that this notion of pseudoexpectation is based on the original, different notion of pseu-
doexpectation introduced by Pitts in [Pit17], and studied by both Pitts and Zarikian in
subsequent papers.

We adapt the notion of pseudoexpectations used by Kennedy and Schafhauser to one
that can instead be used to characterize tracial extensions of τ ∈ TG(A) to both the
universal and reduced crossed products. It has been previously recognized (for example in
[Béd93, Section 2]) that the dynamics of G on π(A)′′, where π : A → B(Hτ ) is the GNS
representation of τ , plays an important role in determining the tracial extensions to the
crossed products. See the review we give in Section 3.2.1 for why we have an action of G
on this von Neumann algebra, along with other basic properties. This seems to suggest
that π(A)′′ is the appropriate object to consider in place of the G-injective envelope IG(A).

As we will make use of the amenable radical of G when dealing with the reduced crossed
product, the notion of pseudoexpectation that we introduce works relative to any normal
subgroup of G. Note that, given a normal subgroup N ◁G, we canonically have an action
of G on A ⋊ N satisfying s · (at) = (s · a)(sts−1) for s ∈ G and t ∈ N , by the universal
property of A⋊N .

We also note ahead of time that we will not use the term “pseudoexpectation”, which as
mentioned above refers to maps whose codomain is some kind of injective envelope. Instead,
for our purposes, we will adopt the term “weak expectation”, which instead typically refers
to maps whose codomain is an enveloping von Neumann algebra. For example, the usual
notion of a weak expectation of a unital inclusion of C*-algebras A ⊆ B is a unital and
completely positive map F : B → A∗∗ extending the canonical inclusion ι : A ↪→ A∗∗.
In our case, we replace the universal enveloping von Neumann algebra A∗∗ with the von
Neumann algebra π(A)′′ generated under the GNS representation π : A → B(Hτ ) of our
fixed trace τ ∈ TG(A). Note that the canonical map π : A → π(A)′′ is not necessarily
faithful, contrary to the case of A∗∗, I(A), or IG(A).

Definition 3.1.1. Let τ ∈ TG(A), let π : A→ B(Hτ ) be the GNS representation of (A, τ),
let M = π(A)′′, and let N ◁ G be a normal subgroup. A map F : A ⋊ N → M is called
a weak expectation for (A, τ,G,N) if it is unital, completely positive, G-equivariant, and
satisfies F |A = π. If N = G, then we call such a map a weak expectation for (A, τ,G).
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Theorem 3.1.2. Let τ ∈ TG(A), let π : A→ B(Hτ ) be the GNS representation of (A, τ),
let M = π(A)′′, and let τM denote the corresponding faithful normal trace on M . Then the
following sets are in natural bijection with each other:

1. The set of all weak expectations F : A⋊G→M for (A, τ,G).

2. The set of all {xt}t∈G ⊆M satisfying:

(a) xe = 1.

(b) xty = (t · y)xt for all y ∈M and t ∈ G.
(c) s · xt = xsts−1 for all s, t ∈ G.
(d) The matrix [xst−1 ]s,t∈F is positive for all finite F ⊆ G.

3. {σ ∈ T (A⋊G) | σ|A = τ}.

The natural map from (1) to (2) is given by letting xt = F (t), and the natural map from
(2) to (3) is given by defining a trace σ ∈ T (A⋊G) by σ(at) = τM(π(a)xt).

For the case of the reduced crossed product, we replace almost all instances of G with
the amenable radical Ra(G), which is the largest amenable normal subgroup of G. This was
originally introduced by Day in [Day57, Section 4, Lemma 1]. The main idea making the
case of the reduced crossed product tractable is that, by a result of Bryder and Kennedy
[BK16, Theorem 5.2], any trace on A⋊λ G concentrates on A⋊λ Ra(G), in the sense that
it vanishes on aλt whenever t /∈ Ra(G). However, A⋊λRa(G) = A⋊Ra(G) by amenability
of Ra(G), and so we may apply the results we obtained in the case of universal crossed
products.

Theorem 3.1.3. Let τ ∈ TG(A), let π : A→ B(Hτ ) be the GNS representation of (A, τ),
let M = π(A)′′, and let τM denote the corresponding faithful normal trace on M . Then the
following sets are in natural bijection with each other:

1. The set of all weak expectations F : A⋊Ra(G)→M for (A, τ,G,Ra(G)).

2. The set of all {xt}t∈Ra(G) ⊆M satisfying:

(a) xe = 1.

(b) xty = (t · y)xt for all y ∈M and t ∈ Ra(G).

(c) s · xt = xsts−1 for all s ∈ G and t ∈ Ra(G).
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(d) The matrix [xst−1 ]s,t∈F is positive for all finite F ⊆ Ra(G).

3. {σ ∈ T (A⋊λ G) | σ|A = τ}.

The natural map from (1) to (2) is given by letting xt = F (λt), and the natural map from
(2) to (3) is given by defining a trace σ ∈ T (A⋊λG) by σ(aλt) = τM(π(a)xt) for t ∈ Ra(G),
and σ(aλt) = 0 for t /∈ Ra(G).

Traces on A⋊G and A⋊λ G are easiest to understand when they correspond exactly
to G-invariant traces on A. Let E : A⋊λ G→ A denote the canonical expectation. There
is also a canonical expectation from A⋊G to A given by composing E with the canonical
*-homomorphism from A⋊G to A⋊λ G.

Remark 3.1.4. Any trace σ ∈ T (A⋊λG) satisfies σ|A ∈ TG(A). Conversely, any τ ∈ TG(A)
gives rise to a trace on A ⋊λ G by composing with the canonical expectation. That is,
τ ◦ E ∈ T (A⋊λ G). Analogous results hold for the universal crossed product.

Keeping the above in mind, we generalize the notion of the unique trace property
for discrete groups. Recall that G is said to have the unique trace property if the only
trace on the reduced group C*-algebra C∗

λ(G) ⊆ B(ℓ2(G)) is the canonical one, given by
τλ(a) = ⟨ aδe | δe ⟩. This was shown in [BKKO17, Corollary 4.3] to be equivalent to G
having trivial amenable radical.

Definition 3.1.5. Given any σ ∈ T (A⋊λG), we will say that σ is canonical if it is of the
form σ = τ ◦E for some τ ∈ TG(A), or equivalently, if σ = σ◦E. Canonical traces on A⋊G
are defined analogously. Given τ ∈ TG(A), we will say that it has unique tracial extension
to A⋊λG (or A⋊G) if the only σ ∈ T (A⋊λG) (respectively, T (A⋊G)) satisfying σ|A = τ
is the canonical one.

Before proceeding further, we note that setting A = C in both of the above theorems
indeed gives back previously known results.

Remark 3.1.6. Setting A = C in Theorem 3.1.2 gives back the well-known result that
traces on the universal group C*-algebra C∗(G) correspond to positive definite functions
f : G→ C that are constant on conjugacy classes and satisfy f(e) = 1. In addition, setting
A = C in Theorem 3.1.3 gives back the fact that the unique trace property for the reduced
group C*-algebra C∗

λ(G) is equivalent to having Ra(G) = {e}, as in set (2), we may always
let xt = 1 for t ∈ Ra(G).
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In the above theorems in set (2), condition (b) in particular highlights a link with
proper outerness of the action (see the review in Section 3.2.2 for definitions). Thus, we
obtain an immediate corollary which is perhaps a slight generalization of some previously
known results (see [Béd96, Proposition 9], for example).

Corollary 3.1.7. Let τ ∈ TG(A), let π : A→ B(Hτ ) be the GNS representation of (A, τ),
and let M = π(A)′′. If the action of Ra(G) on M is properly outer, then τ has unique
tracial extension to A⋊λ G. If the action of G on M is properly outer, then τ has unique
tracial extension to A⋊G.

Another key idea in our paper is developed in Section 3.3, where we convert the con-
ditions in set (2) in Theorems 3.1.2 and 3.1.3 into conditions on what we call a partial
almost inner action, with an optional property which we call positively compatible. This is
similar to the notion of a partial group representation—see, for example, the book of Exel
[Exe17]—together with its applications in the work done by Kennedy and Schafhauser in
[KS19]. We adapt the notion of a properly outer action (for single automorphisms), giving
us what we call a jointly almost properly outer action. This condition is again sufficient,
and in some special cases necessary, for τ ∈ TG(A) to have unique tracial extension. All of
the definitions required for this theorem and its corollaries can be found in Definitions 3.3.1
and 3.3.3.

Theorem 3.1.8. Let τ ∈ TG(A), let π : A→ B(Hτ ) be the GNS representation of (A, τ),
and let M = π(A)′′.

1. The trace τ has unique tracial extension to the reduced crossed product A ⋊λ G if
and only if the action of G on M is not partially almost inner relative to the normal
subgroup Ra(G) with respect to some nontrivial positively compatible {(pt, ut)}t∈Ra(G).
In particular, it is sufficient for the action to be jointly almost properly outer relative
to Ra(G).

2. The trace τ has unique tracial extension to the universal crossed product A ⋊ G if
and only if the action of G on M is not partially almost inner with respect to some
nontrivial positively compatible {(pt, ut)}t∈G. In particular, it is sufficient for the
action to be jointly almost properly outer.

The rest of our results are simplifications of the above theorem in certain special cases.
Recall that the FC center of a group G is the set of all elements of G with finite conjugacy
classes. An FC group is a group in which every conjugacy class is finite, i.e. one that is
equal to its FC center. It is known that FC groups are amenable, and so in particular this
next result applies to such groups.
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Corollary 3.1.9. Assume G is a group with the property that the amenable radical Ra(G)
and the FC center coincide. Let τ ∈ TG(A), let π : A → B(Hτ ) denote the GNS repre-
sentation, and let M = π(A)′′. Then τ has unique tracial extension to A⋊λ G if and only
if the action of G on M is jointly almost properly outer relative to the normal subgroup
Ra(G).

The conditions of the above theorem simplify even further in the case of groups whose
amenable radical is equal to the center. In particular, the following corollary applies to
abelian groups.

Corollary 3.1.10. Assume G is a group with the property that Ra(G) = Z(G). Let
τ ∈ TG(A), let π : A→ B(Hτ ) denote the GNS representation, and let M = π(A)′′. Then
τ has unique tracial extension to A⋊λG if and only if for any t ∈ Ra(G) \ {e}, there does
not exist a central projection p ̸= 0 in M and u ∈ U(Mp) with the properties that:

1. s · p = p and s · u = u for all s ∈ G.

2. t acts by Adu on Mp.

In the case of abelian groups, various results of Bédos and Thomsen on finite factoriality
of von Neumann crossed products [Béd96, Proposition 11], and unique tracial extension
for C*-crossed products [Tho95, Theorem 4.3], respectively, already exist in the literature,
but they are incorrect. This is investigated in Section 3.5.1, where a finite-dimensional
counterexample is given. Corollary 3.1.10 serves as a correction to the result of Thomsen.
Interestingly enough, even though Section 3.5.2 gives a counterexample in the case of finite
cyclic groups, Thomsen’s result still holds in the case of integer actions.

Theorem 3.1.11. Assume α ∈ Aut(A), and consider the corresponding action of Z on A.
Let τ ∈ TZ(A), let π : A → B(Hτ ) denote the GNS representation, and let M = π(A)′′.
Then τ has unique tracial extension to A ⋊λ Z if and only if the action of Z on M is
properly outer.

Another case in which the characterization simplifies is in the case of crossed products of
commutative C*-algebras. The case of the universal crossed product is already known—see
[KTT90, Theorem 2.7]. Essential freeness and its relation to proper outerness are reviewed
in Section 3.2.2.

Corollary 3.1.12. Assume G acts on a compact Hausdorff space X by homeomorphisms,
and µ is a G-invariant Radon probability measure on X. Then µ has unique tracial ex-
tension to C(X)⋊λ G if and only if the action of Ra(G) on (X,µ) is essentially free. For
the universal crossed product C(X) ⋊ G, µ has unique tracial extension if and only if the
action of G on (X,µ) is essentially free.
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3.2 Preliminaries

3.2.1 Tracial GNS representations

Throughout this paper, we will make heavy use of passing from a tracial C*-algebra to the
von Neumann algebra it generates under the GNS representation. Here, we establish the
basic facts that we will use. This first proposition is well-known—see, for example, [Tak02,
Chapter V, Proposition 3.19].

Proposition 3.2.1. Assume A is a unital C*-algebra, and τ ∈ T (A). Let π : A→ B(Hτ )
denote the GNS representation and let M = π(A)′′. Then there is a faithful normal trace
τM on M satisfying τM ◦ π = τ .

Observe that the above proposition makes no assumptions on τ ∈ T (A) being faithful—
it is always the case that τM ∈ T (M) is faithful. In addition, τM is uniquely determined
by normality.

It is also a basic fact of von Neumann algebras that we do not need to worry about
normality when dealing with *-isomorphisms. The following can be found, for example, in
[Tak02, Chapter III, Corollary 3.10].

Proposition 3.2.2. Assume π : M → N is a *-isomorphism of von Neumann algebras.
Then π is automatically normal and has normal inverse.

It is well-known that any trace-preserving group action on a C*-algebra will extend to
the GNS von Neumann algebra. First, we note the following result, the proof of which is
straightforward and left as an exercise to the reader.

Lemma 3.2.3. Assume A and B are unital C*-algebras, τ ∈ T (A) and σ ∈ T (B), and ρ :
A→ B is a *-isomorphism satisfying σ ◦ρ = τ . Let πτ : A→ B(Hτ ) and πσ : B → B(Hσ)
denote the GNS representations, let M = πτ (A)

′′ and N = πσ(B)′′, and let τM ∈ T (M)
and τN ∈ T (N) the corresponding faithful normal traces. There is a unique *-isomorphism
ρ̃ :M → N that satisfies ρ̃ ◦ πτ = πσ ◦ ρ. In addition, σN ◦ ρ̃ = τM .

Proposition 3.2.4. Assume A is a unital C*-algebra and τ ∈ TG(A). Let π : A→ B(Hτ )
denote the GNS representation, letM = π(A)′′, and let τM denote the corresponding faithful
normal trace on M . Letting αt : A → A denote the action of t ∈ G on A, there are *-
automorphisms α̃t :M →M satisfying α̃t ◦π = π ◦αt, and each α̃t is uniquely determined.
In addition, t 7→ α̃t defines a valid group action, and with respect to this action, we have
that τM ∈ TG(M), and π : A→M is G-equivariant.

17



Proof. Existence and uniqueness of α̃t : M → M satisfying α̃t ◦ π = π ◦ αt immediately
follows from Lemma 3.2.3. It remains to check that t 7→ α̃t indeed gives a group homo-
morphism:

α̃s(α̃t(π(a))) = α̃sπ(αt(a)) = π(αs(αt(a))) = π(αst(a)).

Our earlier remark on the uniqueness of these *-automorphisms tells us that α̃s ◦ α̃t = α̃st.
Finally, the fact that τM ◦ α̃t = τM tells us τM ∈ TG(M), and the fact that α̃t ◦ π = π ◦ αt
tells us π : A→M is G-equivariant. ■

GNS representations also behave nicely with respect to trace-preserving inclusions of
C*-algebras. The following lemma is likely already known—we offer a proof here for
convenience.

Proposition 3.2.5. Assume A ⊆ B is a unital embedding of C*-algebras, and τ ∈ T (B).
Let π : A→ B(L2(A, τ)) and σ : B → B(L2(B, τ)) be the GNS representations of (A, τ |A)
and (B, τ), respectively, let M = π(A)′′ and N = σ(B)′′, and let τM ∈ T (M) and τN ∈
T (N) be the corresponding faithful normal traces. Then we have an embedding ι :M → N
with the properties that ι(M) is a von Neumann subalgebra of N , ι : M → ι(M) is a
normal *-isomorphism with normal inverse, ι ◦ π = σ|A, and τN ◦ ι = τM .

Proof. Observe that we canonically have L2(A, τ) ⊆ L2(B, τ), and let F : B(L2(B, τ)) →
B(L2(A, τ)) denote the compression map. Given that L2(A, τ) is σ(A)-invariant, we have
that F (σ(a)) = π(a) for all a ∈ A. By normality, we have F (σ(A)′′) ⊆ π(A)′′.

We claim that F |σ(A)′′ : σ(A)′′ → π(A)′′ is injective. Observe that τM ◦ F and τN agree
on σ(A), and so by normality, on σ(A)′′. But τN is faithful, and this forces F to be faithful
on σ(A)′′.

Surjectivity of F |σ(A)′′ : σ(A)′′ → π(A)′′ is also easy enough to deduce—the unit ball
of σ(A)′′ is weak*-compact, and hence by normality it maps to a weak*-closed subset of
π(A)′′. In addition, the unit ball of σ(A) maps to a norm-dense subset of the unit ball of
π(A) (this is true for any quotient map of C*-algebras). These two facts, combined with
Kaplansky density, tell us that the image of the unit ball of σ(A)′′ is the entire unit ball
of π(A)′′. Linearity takes care of the rest.

In summary, we have shown that F |σ(A)′′ : σ(A)′′ → π(A)′′ is a *-isomorphism. We
claim that ι := (F |σ(A)′′)−1 : π(A)′′ → σ(A)′′ is the embedding we are looking for. By
construction, we have ι(π(a)) to σ(a). From here, we see that

τN(ι(π(a))) = τN(σ(a)) = τ(a) = τM(π(a)),

and so by normality, τN ◦ ι and τM agree on all of M . ■
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3.2.2 Properly outer automorphisms

It has long been recognized that proper outerness of an action of G on a C*-algebra or a
von Neumann algebra leads to nice structure theory for the corresponding crossed product,
particularly in the von Neumann algebra case—see, for example, [Kal69, Theorem 3.3].
This is a generalization of essential freeness for measure spaces. To establish notation,
given a set X and a map α : X → X, we denote the set of fixed points {x ∈ X | α(x) = x}
by Fix(α).

Definition 3.2.6. AssumeX is a compact Hausdorff space, α : X → X a homeomorphism,
and µ an α-invariant Radon probability measure on X. We say that α is essentially free on
(X,µ) if µ(Fix(α)) = 0. If G is a group acting on X by µ-invariant homeomorphisms αt, we
say that the action is essentially free on (X,µ) if each αt is essentially free for t ∈ G \ {e}.

Kallman introduced in [Kal69, Definition 1.3] a notion of freely acting automorphisms
for general von Neumann algebras, as opposed to just L∞(X,µ):

Definition 3.2.7. Let M be a von Neumann algebra and α ∈ Aut(M). We say that α is
freely acting if whenever xy = α(y)x for all y ∈M , we have x = 0.

General automorphisms on von Neumann algebras enjoy a very nice decomposition
theory into an inner part and a freely acting part—see [Kal69, Theorem 1.11], along with
its proof.

Theorem 3.2.8. Let M be a von Neumann algebra and α ∈ Aut(M). There is a largest
α-invariant central projection p ∈ M with the property that α|Mp is inner. In addition,
α|M(1−p) is freely acting. Finally, the decomposition α = α1 ⊕ α2 and M =M1 ⊕M2, with
αi ∈ Aut(Mi) and the property that α1 is inner and α2 is freely acting, is unique.

Proper outerness is an equivalent formulation of freeness (nowadays, the terms are often
used interchangeably), and is usually defined as follows:

Definition 3.2.9. Let M be a von Neumann algebra and α ∈ Aut(M). We say that
α is properly outer if there is no nonzero α-invariant central projection p ∈ M with the
property that α|Mp is inner. If G is a group acting on M by *-automorphisms αt, we say
that the action is properly outer if each αt is properly outer for t ∈ G \ {e}.

We will not make use of this following definition, but it is worth noting that we call a
group action α : G → Aut(M) inner if there is a group homomorphism β : G → U(M)
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with the property that α(t) = Ad β(t). It is important to keep in mind that this is not
equivalent to having each α(t) be inner—indeed, it is not hard to check that the example
in Section 3.5.1 is in fact a finite-dimensional example of this phenomenon. In addition,
we call the action outer if each α(t), t ∈ G \ {e}, is outer. Observe that if M is a factor,
then outer and properly outer are equivalent.

This next result is well-known, and highlights the fact that proper outerness truly does
generalize the notion of essential freeness. The proof is slightly nontrivial and hard to find
in the literature, and so we include it here.

Proposition 3.2.10. Assume X is a compact Hausdorff space, α : X → X a homeo-
morphism, and µ an α-invariant Radon probability measure. Then α is essentially free on
(X,µ) if and only if the corresponding automorphism on L∞(X,µ) is properly outer.

Proof. If α were not essentially free on (X,µ), then p = 1Fix(α) is a nonzero α-invariant
central projection in L∞(X,µ), and the action on (L∞(X,µ))p is trivial.

Conversely, assume such a projection p ∈ L∞(X,µ) exists, and let E = supp p. Re-
placing E by ∪n∈Zαn(E), we may assume without loss of generality that E is α-invariant.
We claim that Y := E \ Fix(α) is a null set. Given y ∈ Y , we may choose an open neigh-
borhood Uy with the property that α(Uy) ∩ Uy = ∅. Observe that Uy ∩ Y is a null set by
our assumption that α acts trivially on L∞(E, µ). Now, µ is inner regular on all sets (it is
outer regular, and we may take complements), and so given any ε > 0, we may choose a
compact set K ⊆ Y with µ(Y \K) < ε. By compactness, K admits a finite subcover from
{Uy}y∈Y , and using the fact that every Uy ∩ K is a null set, we deduce that K is a null
set. Consequently, so is Y . Thus, without loss of generality, we have E ⊆ Fix(α), and so
the action of α on (X,µ) is not essentially free. ■

Although we will not make use of this fact, it is worth keeping in mind that “central” is
often omitted from Theorem 3.2.8 and Definition 3.2.9. It is a result of Borchers, [Bor74,
Lemma 5.7], that if e is any projection in M , not necessarily central, and α ∈ Aut(M)
satisfies α(e) = e and is inner on eMe, then it is inner on Mp, where p is the central cover
of e.

3.3 Almost inner actions

This section builds on what was reviewed in Section 3.2.2. As previously mentioned, we
aim to convert the conditions in Theorems 3.1.2 and 3.1.3, set (2), into conditions on inner
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actions on corners of the von Neumann algebra M , which are often much easier to check in
practice. This will be done by taking the polar decomposition of the elements xt, and this
is the motivation behind the definitions that follow. Observe that condition (b) in these
theorems is precisely the identity used in the definition of freely acting automorphisms.
Condition (d), however, has no obvious nice resulting condition on the unitaries that we
obtain, and so we do not include any analogous condition in our definition of partially
almost inner below. Instead, we include it as a separate property which we call positively
compatible.

Definition 3.3.1. Assume M is a von Neumann algebra, N ◁ G is normal, and G acts
on M by *-automorphisms. We say that the action is partially almost inner relative to N
with respect to {(pt, ut)}t∈N if:

1. Given any t ∈ N , pt is a central projection in M satisfying t · pt = pt, ut is a unitary in
Mpt, and moreover, t acts on Mpt by Ad ut.

2. pe = 1 and ue = 1.

3. pt = pt−1 and u∗t = ut−1 for all t ∈ N .

4. s · pt = psts−1 and s · ut = usts−1 for all s ∈ G and t ∈ N .

If pt = 0 for all t ∈ N \ {e}, we call {(pt, ut)}t∈N trivial, and nontrivial otherwise. If there
exists a choice of {(pt, ut)}t∈N with pt = 1 for all t ∈ N , then we say that the action is
almost inner relative to N . If, in addition, N = G, then we simply call the action almost
inner. We say that the action is jointly almost properly outer relative to N if the only
{(pt, ut)}t∈N with respect to which it is partially almost inner is the trivial one. We will
simply call the action jointly almost properly outer if it is jointly properly outer relative to
G.

Remark 3.3.2. Consider the above definition in the case of N = G. It is worth noting
that if pt = 1 for all t ∈ G, then the map t 7→ ut is not necessarily an inner action of
G on M , i.e. we are not guaranteed that ust = usut. This is the motivation behind the
term almost. In addition, the usual definition of a properly outer (or just outer) action
α : G→ Aut(M) is that each individual α(t), t ̸= e, is properly outer (respectively, outer).
The term jointly highlights the fact that we require compatibility conditions between each
of the individual α(t).

Definition 3.3.3. Let {(pt, ut)}t∈N be as in Definition 3.3.1. We say that {(pt, ut)}t∈N are
positively compatible if there exist elements {yt}t∈N ⊆M such that:
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1. yt ∈ Z(M) and yt ≥ 0 for all t ∈ N .

2. The projection onto ranyt is pt for all t ∈ N .

3. ye = 1.

4. yt = yt−1 for all t ∈ N .

5. s · yt = ysts−1 for all s ∈ G and t ∈ N .

6. Given any finite F ⊆ N , the matrix [ust−1yst−1 ]s,t∈F is positive.

It is worth noting that positive compatibility is not a redundant condition, as the
following example shows:

Example 3.3.4. It is known that it is possible to construct an infinite group G with only
two conjugacy classes, using HNN extensions. A proof can be found in the original paper
by Higman, Neumann, and Neumann—see [HNN49, Theorem III]. Let A = C, let pt = 1
for all t ∈ G, and let ut = −1 for t ̸= e. It is clear that the trivial action is almost
inner with respect to {(pt, ut)}t∈G. However, we claim that {(pt, ut)}t∈G is not positively
compatible. To this end, assume otherwise and let {yt}t∈G be as in Definition 3.3.3, and
observe that yt are all some positive constant γ > 0 for t ̸= e. Now letting F ⊆ G be any
finite subset with |F| = n, we have that the matrix

1 −γ . . . −γ
−γ 1

. . .
...

...
. . . . . . −γ

−γ . . . −γ 1


is positive. Letting [−γ] denote the n × n matrix with all entries being −γ, the above
matrix is equal to (1 + γ)I + [−γ], and basic linear algebra tells us that the eigenvalues of
this matrix are (1 + γ)− nγ and 1 + γ. In particular, (1 + γ)− nγ < 0 if n is sufficiently
large, contradicting the positivity of the above matrix.

Proposition 3.3.5. Assume M is a von Neumann algebra, N ◁ G is normal, G acts on
M by *-automorphisms, and {xt}t∈N ⊆M is such that:

1. xty = (t · y)xt for all y ∈M and t ∈ N .

2. xe = 1.
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3. x∗t = xt−1 and t ∈ N .

4. s · xt = xsts−1 for all s ∈ G and t ∈ N .

Given t ∈ N , consider the polar decomposition of xt, i.e. let ut be the unique partial
isometry such that both xt = ut |xt| and u∗tut is the projection onto ran |xt|, and furthermore
denote this projection by pt. Then the action is partially almost inner relative to N with
respect to {(pt, ut)}t∈N . Moreover, if for every finite F ⊆ N , we have that the matrix
[xst−1 ]s,t∈F is positive, then {(pt, ut)}t∈N is positively compatible with respect to {|xt|}t∈N .

Conversely, if the action is partially almost inner relative to N with respect to
{(pt, ut)}t∈N , then xt = ut satisfy the above conditions. If, in addition, {(pt, ut)}t∈N is
positively compatible with respect to {yt}t∈N , then xt = utyt satisfy the above conditions,
and also satisfy the property that for any finite F ⊆ N , the matrix [xst−1 ]s,t∈F is positive.

Proof. This proof is somewhat similar to the proof of [Kal69, Theorem 1.1]. For conve-
nience, we recreate the necessary parts here. Assume {xt}t∈N is such a collection. Observe
that for w ∈ U(M), we have

w∗x∗txtw = x∗t (t · w)∗(t · w)xt = x∗txt,

which shows x∗txt ∈ Z(M). Thus, we have that |xt| and pt ∈ W ∗(|xt|) also lie in the center.
Given xt is fixed by t, so is pt. In addition,

xtx
∗
t = (t · x∗t )xt = x∗txt,

i.e. xt is normal. Now, the equality

ranxt = (ker x∗t )
⊥ = (ker |x∗t |)⊥ = ran |x∗t | = ran |xt|

tells us that utu
∗
t = u∗tut, i.e. ut is a unitary in Mpt. Furthermore, we note that

uty |xt| = ut |xt| y = xty = (t · y)xt = (t · y)ut |xt| ,

which shows that t acts by Ad ut on Mpt. This gives us property (1) of partial almost
inner actions. Furthermore, it is clear that we have both ue = 1 and pe = 1 (property (2)).

Given that |xt−1 | = |x∗t | = |xt|, we have pt−1 = pt. Now observe that

u∗t |xt| = |xt|
∗ u∗t = x∗t = xt−1 = ut−1 |xt−1 | = ut−1 |xt| .
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Given that u∗t and ut−1 share the same initial projection pt, it follows from uniqueness of
polar decomposition that u∗t = ut−1 . This is property (3).

Finally, given s ∈ G and t ∈ N , we see that

usts−1 |xsts−1 | = xsts−1 = s · xt = (s · ut)(s · |xt|) = (s · ut) |xsts−1 | .

We wish to conclude that usts−1 and s · ut have the same initial projection. By the crossed
product construction, we may assume without loss of generality that M ⊆ B(H), where G
acts on H by unitaries λt, and t·y = λtyλ

∗
t for all y ∈M . This gives us that (s·ut)∗(s·ut) =

λs(u
∗
tut)λ

∗
s is the projection onto

λs(ran |xt|) = ran(λs |xt|) = ran(λs |xt|λ∗s) = ran |xsts−1 | .

Thus, usts−1 and s · ut share the same initial projection psts−1 . Uniqueness of polar decom-
position tells us that they are therefore equal, which also gives us that s · pt = psts−1 . This
is property (4).

If [xst−1 ]s,t∈F is positive for all finite F ⊆ N , then it follows immediately from the defi-
nition and from the work that was done above that {(pt, ut)}t∈N are positively compatible
with respect to {|xt|}t∈N .

The converse given for converting {(pt, ut)}t∈N back into elements xt satisfying the
given properties follows from the definitions and is straightforward to verify. ■

The intersection property for noncommutative reduced crossed products is studied in
[KS19]. Their results show that if the action G ↷ IG(A), where IG(A) denotes the G-
injective envelope of A, is properly outer, then A ⋊λ G has the intersection property.
Moreover, if the action G ↷ I(A), where I(A) denotes the usual injective envelope of A,
has a property they call vanishing obstruction, then the converse to this result holds. Here,
we show that a very mild adaptation of the intersection property is enough to guarantee
that a partial almost inner action is positively compatible.

Proposition 3.3.6. Assume M is a von Neumann algebra, N ◁ G is normal, G acts on
M by *-automorphisms, and the action is partially almost inner relative to N with respect
to {(pt, ut)}t∈N . If, in addition, we have that pspt ≤ pst and usut = ustpspt for all s, t ∈ N ,
then {(pt, ut)}t∈N is positively compatible with respect to {pt}t∈N .

Proof. Let {s1, . . . , sn} be a finite subset of N . We wish to show that the matrix [usis−1
j
]

is positive. Let Z(M) = C(X), and consider the sets supp psis−1
j
⊆ X. We may choose
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finitely many disjoint sets Ek ⊆ X such that ⊔kEk = X, and for any i, j, and k, we have
Ek ⊆ supp psis−1

j
or Ek∩ supp psis−1

j
= ∅. These sets can be chosen to be finite intersections

of sets of the form supp psis−1
j

and their complements, making each Ek clopen. We will

prove that [usis−1
j
1Ek

] ≥ 0 for every k.

To this end, fix k, and define a relation on {1, . . . , n} by i ∼ j if and only if Ek ⊆
supp psis−1

j
. This is in fact an equivalence relation—it is clear that this is reflexive and

symmetric. Transitivity follows from the fact that psi1s
−1
i2

psi2s
−1
i3

≤ psi1s
−1
i3

. Thus, if we

assume without loss of generality that {s1, . . . , sn} are ordered such that the equivalence
classes are of the form {m,m+ 1, . . . ,m+ l}, then [usis−1

j
1Ek

] becomes a block diagonal

matrix, where each block of the diagonal is of the form [usis−1
j
1Ek

]i,j=m,...,m+l, and Ek ⊆
supp psis−1

j
for every element in this submatrix. Hence, to prove our original matrix is

positive, we may assume without loss of generality that Ek ⊆ supp psis−1
j

for all i and j.

This matrix is positive, asus1s−1
1
1Ek

...
usns−1

1
1Ek


us1s−1

1
1Ek

...
usns−1

1
1Ek


∗

= [usis−1
j
1Ek

].

■

3.4 Proof of main results

As before, A denotes a unital C*-algebra and G a discrete group acting on A by *-
automorphisms. Throughout this section, we will fix an invariant trace τ ∈ TG(A), denote
by π : A→ B(Hτ ) the GNS representation, let M = π(A)′′, and let τM be the correspond-
ing faithful normal trace on M .

This first lemma is likely already known, and we give a quick proof for convenience.
We will denote A[G] := {

∑
finite atwt}, i.e. the set of finitely-supported functions from G

to A, together with the usual *-algebraic operations obtained by viewing this as a subset
of A ⋊ G. A function ϕ : A[G] → C is said to be positive definite if for any f ∈ A[G], we
have ϕ(f ∗f) ≥ 0.

Lemma 3.4.1. Assume ϕ : A[G] → C is a positive definite function satisfying ϕ(1) = 1.
Then ϕ extends to a state on A⋊G.
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Proof. This proof is essentially a modified GNS construction. Define a sesquilinear form
on A[G] by ⟨ f1 | f2 ⟩ := ϕ(f ∗

2 f1), and observe that this is positive, as ϕ is positive definite.
Letting N = {f ∈ A[G] | ⟨ f | f ⟩ = 0}, we have that the completion of A[G]/N with re-
spect to the corresponding quotient inner product becomes a Hilbert space, which we will
denote by H.

It is clear that we have a unitary representation u : G → U(H) given by u(s)f = wsf
for f ∈ A[G]. We also have a *-representation ρ : A→ B(H) given by ρ(a)f = af , as

⟨ af | af ⟩ = ϕ(f ∗a∗af) ≤ ∥a∥2 ϕ(f ∗f),

where this last equality holds due to the fact that

ϕ(f ∗(∥a∥2 − a∗a)f) = ϕ(f ∗(∥a∥2 − a∗a)1/2(∥a∥2 − a∗a)1/2f) ≥ 0.

(It is a subtle but important point that ∥a∥2 − a∗a still admits a positive square root in
A[G]. This is not necessarily true anymore if we replace a with an arbitrary element of
A[G]). Moreover, ρ and u form a covariant pair. By the universal property of A ⋊ G, we
obtain a *-homomorphism ρ̃ : A ⋊ G → B(H) given by ρ̃(as) = ρ(a)u(s). Consequently,
we obtain a positive functional σ ∈ (A⋊G)∗ given by σ(at) = ⟨ ρ̃(at)we |we ⟩ = ϕ(awt). It
is clear that, in addition, σ(1) = 1. ■

Proposition 3.4.2. Assume {xt}t∈G ⊆ M satisfy the assumptions of Theorem 3.1.2, set
(2). Then there is a trace σ ∈ T (A⋊G) satisfying σ(at) = τM(π(a)xt).

Proof. In light of Lemma 3.4.1, to show that we at least obtain a state σ ∈ S(A ⋊ G)
with the above property, it suffices to show that the function σ : A[G] → C given by
σ(awt) = τM(π(a)xt) is positive definite. To this end, assume f =

∑n
i=1 asiwsi ∈ A[G]. We

have that

σ(f ∗f) =
n∑
i=1

n∑
j=1

σ(w∗
si
a∗siasjwsj)

=
n∑
i=1

n∑
j=1

σ((s−1
i · (a∗siasj))ws−1

i sj
)

=
n∑
i=1

n∑
j=1

τM((s−1
i · π(asi)∗)(s−1

i · π(asj))xs−1
i sj

)

= τM

(
n∑
i=1

n∑
j=1

(s−1
i · π(asi)∗)xs−1

i sj
(s−1
j · π(asj))

)
.
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Observe, however, thats
−1
1 · π(as1)

...
s−1
n · π(asn)


∗ xs−1

1 s1
. . . xs−1

1 sn
...

...
xs−1

n s1
. . . xs−1

n sn


s

−1
1 · π(as1)

...
s−1
n · π(asn)


=

n∑
i=1

n∑
j=1

(s−1
i · π(asi)∗)xs−1

i sj
(s−1
j · π(asj)),

guaranteeing that σ is positive definite. It remains to show that the extension to A⋊G is
still a trace:

σ((as)(bt)) = σ((a(s · b))st)
= τM(π(a)(s · π(b))xst)
= τM(s−1 · (π(a)(s · π(b))xst))
= τM((s−1 · π(a))π(b)xts)
= τM(π(b)xts(s

−1 · π(a)))
= τM(π(b)(t · π(a))xts)
= σ((b(t · a))ts)
= σ((bt)(as))

■

Remark 3.4.3. The first half of the proof of Proposition 3.4.2 does not use the fact that
τ (and hence τM) is a trace. Thus, if we assume that τ is only a G-invariant state, we
still obtain a state σ ∈ S(A ⋊ G) given by σ(at) = τM(π(a)xt), except σ is of course not
necessarily a trace anymore.

Lemma 3.4.4. Assume σ1, σ2 ∈ T (A ⋊ G) are two states satisfying σ1(at) = τM(π(a)xt)
and σ2(at) = τM(π(a)yt) for some {xt}t∈G , {yt}t∈G ⊆ M . If σ1 = σ2, then xt = yt for all
t ∈ G.

Proof. Assume otherwise, and fix some t ∈ G with xt ̸= yt. Letting (aλ) ⊆ A be a net with
the property that (π(aλ)) is weak*-convergent to (xt − yt)∗, we see that

(σ1 − σ2)(aλt) = τM(π(aλ)(xt − yt))→ τM((xt − yt)∗(xt − yt)).

This limit value is nonzero, as τM is faithful. Thus, there is some λ such that σ1(aλt) and
σ2(aλt) differ. ■
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Proof of Theorem 3.1.2. Starting with any weak expectation F : A⋊G→M for (A, τ,G)
and letting xt = F (t), we note that A lies in the multiplicative domain of F—see, for
example, [BO08, Proposition 1.5.7], for a review of multiplicative domain. Thus, F (at) =
π(a)xt, and so the map between sets (1) and (2) is necessarily injective. It remains to show
that xt indeed satisfy all of the aforementioned properties. We have that xe = 1 follows
from F being unital, and s · xt = xsts−1 follows from F being G-equivariant. Now, given
any a ∈ A and t ∈ G, observe that

xtπ(a) = F (ta) = F ((t · a)t) = (t · π(a))xt.

Given that π(A) is weak*-dense inM , taking limits allows us to conclude that xty = (t·y)xt
holds for all y ∈M . Finally, given s1, . . . , sn ⊆ G, we note that

F (n)


s1...
sn


s1...
sn


∗ =

xs1s−1
1

. . . xs1s−1
n

...
...

xsns−1
1

. . . xsns−1
n

 .
Complete positivity of F says that [xsis−1

j
] is therefore positive.

Now, starting with any {xt}t∈G ⊆ M as in (2), Proposition 3.4.2 tells us that σ(at) =
τM(π(a)xt) indeed defines a valid trace. Moreover, this map from (2) to (3) is injective by
Lemma 3.4.4.

Finally, we can show the maps from sets (1) to (2) and (2) to (3) are bijective by showing
that their composition is surjective. That is, we need to show that for any σ ∈ T (A⋊G)
satisfying σ|A = τ , there exist some weak expectation F : A ⋊ G → M for (A, τ,G) such
that σ = τM ◦ F .

To this end, fix such a σ, let ρ : A⋊G→ B(Hρ) be the GNS representation of (A⋊G, σ),
let N = ρ(A⋊G)′′, and let σN denote the corresponding faithful normal trace on N . Given
that (A, τ) ⊆ (A ⋊ G, σ) is a trace-preserving embedding, this canonically gives a trace-
preserving embedding (M, τM) ⊆ (N, σN) sending π(a) to σ(a) by Proposition 3.2.5. There
is a unique normal conditional expectation F ′ : N →M satisfying σN = τM ◦ F ′—see, for
example, [BO08, Lemma 1.5.11]. We let F = F ′ ◦ ρ, and show that this is the map we are
looking for. Observe that

τM(F (at)) = τM(F ′(ρ(at))) = σN(ρ(at)) = σ(at),

i.e. τM ◦ F = σ. The only non-trivial fact remaining is to show that F is G-equivariant.
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Given that τM and σ are G-invariant, we have

τM(π(a)(s−1 · F (sts−1))) = τM(π(s · a)F (sts−1))

= σ((s · a)sts−1)

= σ(at)

= τM(π(a)F (t)),

and so we may apply Lemma 3.4.4 to conclude that s−1 · F (sts−1) = F (t), i.e. s · F (t) =
F (sts−1). This is enough to guarantee G-equivariance on the entire domain, as

F (s · (at)) = F ((s · a)sts−1) = π(s · a)F (sts−1) = s · (π(a)F (t)) = s · F (at).

■

Proof of Theorem 3.1.3. The proof that the given map from set (1) to set (2) is well-defined
and injective is analogous to what was done in the proof of Theorem 3.1.2.

To go from (2) to (3), we first note that A ⋊λ Ra(G) = A ⋊ Ra(G) by amenability of
Ra(G), and so there is a trace σ′ ∈ T (A ⋊λ Ra(G)) satisfying σ′(aλt) = τM(π(a)xt) by
Theorem 3.1.2. Composing with the canonical conditional expectation ERa(G) : A⋊λ G→
A ⋊λ Ra(G), which maps aλt to itself if t ∈ Ra(G) and zero otherwise, gives us a state
σ := σ′ ◦ ERa(G) ∈ S(A ⋊λ G). It remains to check that this is indeed still a trace on
A⋊λG. Note that for s, t ∈ G, we have st ∈ Ra(G) if and only if ts ∈ Ra(G) by normality
of Ra(G). Hence, if st /∈ Ra(G), then

σ(aλsbλt) = σ(a(s · b)λst) = 0 = σ(b(t · a)λts) = σ(bλtaλs).

The case of st ∈ Ra(G) is identical to what was done in the proof of Proposition 3.4.2.

Finally, we again wish to show that the composition of the maps from (1) to (2) and
(2) to (3) is surjective, i.e. given σ ∈ T (A ⋊λ G) with σ|A = τ , there exists some weak
expectation F : A ⋊ Ra(G) → M for (A, τ,G,Ra(G)) satisfying σ = τM ◦ F ◦ ERa(G).
(This last composition makes sense, as A⋊Ra(G) = A⋊λRa(G) by amenability). Letting
ρ : A⋊G→ A⋊λG be the canonical *-homomorphism, we note that σ◦ρ ∈ T (A⋊G), and
so there is some weak expectation F ′ : A⋊G→M for (A, τ,G) satisfying σ ◦ ρ = τM ◦ F ′

by Theorem 3.1.2. Observe that we canonically have A⋊Ra(G) ⊆ A⋊G—this is because
the following composition of canonical maps yields the identity map:

A⋊Ra(G)→ A⋊G→ A⋊λ G→ A⋊λ Ra(G) = A⋊Ra(G)

We claim that F := F ′|A⋊Ra(G) is the map we are looking for. This follows from [BK16,
Theorem 5.2], which says that σ = σ ◦ ERa(G). ■
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Proof of Corollary 3.1.7. This follows immediately from Theorems 3.1.2 and 3.1.3, and the
fact that properly outer and freely acting are equivalent (see the review in Section 3.2.2).

■

Proof of Theorem 3.1.8. This follows immediately from Theorems 3.1.2 and 3.1.3, together
with the correspondence given in Proposition 3.3.5. ■

Proof of Corollary 3.1.9. If the action is jointly almost properly outer relative to Ra(G),
then Theorem 3.1.8 tells us that τ has unique tracial extension. Conversely, assume
the action is partially almost inner relative to Ra(G) with respect to some nontrivial
{(pt, ut)}t∈Ra(G). Pick t0 ̸= e such that pt0 ̸= 0, and let C denote the conjugacy class of t0
in G. Now define

vt =


1 if t = e

ut if t ∈ C ∪ C−1

0 otherwise

, qt =


1 if t = e

pt if t ∈ C ∪ C−1

0 otherwise

, yt =


1 if t = e
1

2|C|pt if t ∈ C ∪ C−1

0 otherwise

Observe that [vst−1yst−1 ]s,t∈G = 1 +
∑

t∈C∪C−1
1

2|C|ut ⊗ λt is in fact a positive element in

M ⊗min C
∗
λ(G), as

∑
t∈C∪C−1

1
2|C|ut ⊗ λt is a self-adjoint element of norm at most 1, and

so the action is partially almost inner relative to Ra(G) with respect to the nontrivial and
positively compatible set {(qt, vt)}t∈Ra(G). By Theorem 3.1.8, we are done. ■

Proof of Corollary 3.1.10. If τ does not have unique tracial extension, then Corollary 3.1.9
says that the action is partially almost inner relative to Ra(G) with respect to some non-
trivial {(pt, ut)}t∈Ra(G). Choosing t ∈ Ra(G) \ {e} with pt ̸= 0 gives us what we want.

Conversely, assume that we do have such a t ∈ Ra(G)\{e}, p ̸= 0 inM , and u ∈ U(Mp).
If t ̸= t−1, then letting pt = pt−1 = p, ut = u, ut−1 = u∗, and ps, us = 0 for s ̸= e, t, t−1

gives us a nontrivial {(pt, ut)}t∈Ra(G), and so τ cannot have unique tracial extension by
Corollary 3.1.9.

The case of t = t−1 requires just a bit more work. Letting w = u2, observe that
Adw = id, and so w ∈ (Z(Mp))G, which is a commutative von Neumann algebra. Even
in the non-separable setting, every such algebra is isomorphic to L∞(Y, ν) for some locally
compact Y and positive Radon measure ν on Y—see, for example, [Tak02, Chapter III,
Theorem 1.18]. (This is the space of all measurable, locally essentially bounded functions
from Y to C, modulo agreeing locally almost everywhere). Thus, we may choose a unitary
v ∈ (Z(Mp))G with the property that v2 = w∗. Now letting pt = p, ut = uv, and ps, us = 0
for s ̸= e, t, we obtain a nontrivial {(pt, ut)}t∈Ra(G) as before, and again τ cannot have
unique tracial extension by Corollary 3.1.9. ■
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The following results describe how the spectrum of a commutative von Neumann al-
gebra breaks up with respect to a periodic automorphism, and are needed for the proof
of Theorem 3.1.11. Recall that an extremally disconnected topological space is one where
the closure of any open set is open, and that the spectrum of a commutative von Neu-
mann algebra is always extremally disconnected—see, for example, [Tak02, Chapter III,
Theorem 1.18]. In terms of notation, d|n will denote “d divides n”.

Lemma 3.4.5. Assume X is an extremally disconnected compact Hausdorff space, and
α : X → X is a homeomorphism satisfying αn = id for some n ∈ N. Then X breaks up as
X = ⊔d|nXd, where each Xd is clopen, α-invariant, and has the property that every x ∈ Xd

has orbit of size d.

Proof. Letting Yd = Fix(αd) for d|n, we know that Yd is clopen by Froĺık’s theorem—see
[Fro71, Theorem 3.1]. This is the set of all points whose orbit size divides d. From here,
we can let Xd = Yd \ (∪m|n

m<d

Ym). ■

Lemma 3.4.6. Assume X is an extremally disconnected compact Hausdorff space, and
α : X → X is a homeomorphism with the property that every orbit is finite and of the
same size n ∈ N. Then there is a clopen transversal of the orbits, i.e. there is some clopen
E ⊆ X with the property that X = ⊔n−1

k=0α
k(E).

Proof. We claim that there is at least one nonempty open subset U ⊆ X with the property
that all of U, α(U), . . . , αn−1(U) are pairwise disjoint. To see this, choose any x ∈ X, and
let Uk, k = 0, . . . , n− 1, be pairwise disjoint open sets satisfying pk(x) ∈ Uk. Now letting

U = U0 ∩ p−1(U1) ∩ · · · ∩ p−(n−1)(Un−1),

we have that U, p(U), . . . , pn−1(U) are all pairwise disjoint.

Given an ascending chain (Uλ) of such open sets, the union ∪Uλ is still such a set, and
so by Zorn’s lemma, there is a maximal open set U with this property. We claim that it is
in fact clopen. This follows from the following fact: if V,W ⊆ X are open and V ∩W = ∅,
then V ∩W = ∅, and as W is open, we have V ∩W = ∅.

Finally, we claim that our maximal set U is in fact the set we are looking for, i.e. X =
⊔n−1
k=0α

k(U). Assume otherwise, and consider the smaller space X \ ⊔n−1
k=0α

k(U) (a clopen,
α-invariant subset of X). Obtaining as before a nonempty open subset V ⊆ X \⊔n−1

k=0α
k(U)

with the property that V, α(V ), . . . , αn−1(V ) are all pairwise disjoint, the set U ∪ V again
satisfies this property, contradicting maximality of U . ■
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Proof of Theorem 3.1.11. First, if the action of Z on M is properly outer, then τ has
unique tracial extension by Corollary 3.1.7. Conversely, assume the action of Z on M is
not properly outer, and let n ≥ 1 be such that αn is not properly outer on M . Let p
be the largest αn-invariant central projection such that αn|Mp is inner, and fix a unitary
u ∈ U(Mp) implementing this action. Observe that for any x ∈Mα(p), we have

α(u)xα(u)∗ = α(uα−1(x)u∗) = ααnα−1x = αnx.

In other words, αn is inner on Mα(p). By assumption, α(p) ≤ p. But then

p = αn(p) ≤ αn−1(p) ≤ · · · ≤ α(p) ≤ p.

This shows p is in fact α-invariant. In general, even though the choice of unitary u ∈ U(Mp)
satisfying αn = Adu is not unique, we still cannot guarantee that there is some choice that
also satisfies α(u) = u—see [Con77, Proposition 1.6] for an example of this phenomenon
on the separable hyperfinite II1 factor. However, we will show that it is always possible to
choose an α-invariant unitary implementing the action of αn

2
. From here, Corollary 3.1.10

will apply, giving us the fact that τ cannot have unique tracial extension.

To simplify notation, we can assume without loss of generality that p = 1. Observe
that our previous computations above show that Adα(u) = Ad u, and so α(u) = uv for
some v ∈ Z(M). Moreover, the fact that αn = Adu tells us that

u = αn(u) = αn−1(uv) = · · · = uvα(v) . . . αn−1(v),

or in other words,
vα(v) . . . αn−1(v) = 1.

Now let Z(M) = C(X). We know that α induces a homeomorphism on X, which we
will denote by αX . Given that αn is inner, we know that αnX is the identity map. By
Lemma 3.4.5, we have X = ⊔d|nXd, where Xd is the set of all x ∈ X with the size of the
αX-orbit being exactly d, and furthermore each Xd is clopen and αX-invariant.

We will show for every d|n that there is some central unitary wd ∈ M1Xd
with the

property that α(unwd) = unwd. Again to simplify notation, we may assume without loss
of generality that X = Xd for a single d|n. Applying Lemma 3.4.6, there exists a clopen
transversal E ⊆ X of the orbits of αX . Let q = 1E, and observe that q, . . . , αd−1(q) are
pairwise orthogonal projections that sum to 1. Keeping this in mind, we may decompose
v as follows: let vk = α−k(v)q ∈Mq for k = 0, . . . , d− 1, so that

v = v0 + · · ·+ αd−1(vd−1).
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Now define w as follows:

w = q + α(vn1 ) + α2(vn1 v
n
2 ) + · · ·+ αd−1(vn1 . . . v

n
d−1),

and note that

α(w)∗ = (vn1 . . . v
n
d−1)

∗ + α(q) + α2(vn1 )
∗ + · · ·+ αd−1(vn1 + . . . vnd−2)

∗,

so that
wα(w)∗ = (vn1 . . . v

n
d−1)

∗ + α(vn1 ) + α2(vn2 ) + · · ·+ αd−1(vnd−1).

We claim that we in fact have wα(w)∗ = vn. Our earlier equality v . . . αn−1(v) = 1 gives
us (v0 . . . vd−1)

n/d = 1, and so we obtain the equality (vn1 . . . v
n
d−1)

∗ = vn0 .

In summary, we have obtained a central unitary w with the property that α(w) =
(vn)∗w. Keeping in mind that αn

2
= Adun = Ad(unw), and also that

α(unw) = α(u)nα(w) = unvn(vn)∗w = unw,

we may apply Corollary 3.1.10 to conclude that τ cannot have unique tracial extension to
A⋊λ Z. ■

Proof of Corollary 3.1.12. The proofs for the universal crossed product and reduced crossed
product are almost identical. Hence, we only prove the reduced case.

First, assume that the action of Ra(G) on (X,µ) is essentially free. This is equivalent
to the action of Ra(G) on L

∞(X,µ) being properly outer. By Corollary 3.1.7, µ has unique
tracial extension.

Now assume that the action of Ra(G) on (X,µ) is not essentially free, and let pt = ut =
1Fix(t). It is straightforward to check that the action of G on L∞(X,µ) is partially almost
inner relative to Ra(G) with respect to the (nontrivial by assumption) {(pt, ut)}t∈Ra(G).
Furthermore, it is clear that the additional assumptions of Proposition 3.3.6 are satisfied,
and so {(pt, ut)}t∈Ra(G) is also positively compatible. Again by Theorem 3.1.8, µ cannot
have unique tracial extension. ■

3.5 Examples

3.5.1 A finite-dimensional (counter)example

Here, we give an action of Z2×Z2 on M2 such that the action of each t ∈ Z2×Z2 is inner,
but the crossed product is isomorphic to M4. Observe that, letting τ be the unique (hence,
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automatically invariant) trace on M2, and π : M2 → B(Hτ ) be the GNS representation,
we canonically have π(M2)

′′ ∼= M2. In particular, the action of Z2 × Z2 on π(M2)
′′ is not

properly outer, but the only invariant trace on M2 extends to a unique trace on the crossed
product. Of course, one could also view the crossed product as a von Neumann crossed
product, and from this perspective it is a finite factor of type I.

This contradicts [Tho95, Theorem 4.3], which claims that if G is countable and abelian
and A is unital and separable, then four various conditions are equivalent. In particular,
condition (1), which states that T (A⋊λG) and TG(A) are in canonical bijection, is equiv-
alent to condition (4), which states that for any τ ∈ ∂e(TG(A)), letting π : A→ B(Hτ ) be
the GNS representation, the action of G on π(A)′′ is properly outer. The example in this
section contradicts (1) =⇒ (4). The converse, along with the equivalence between (1),
(2), and (3), still appear to be correct.

Similarly, this example also contradicts the precursor result [Béd96, Proposition 11],
which again gives an equivalence between three conditions. It, in particular, claims that
if G is abelian and acts on a finite factor N , then condition (a) stating the von Neumann
crossed product N⋊G is a finite factor is equivalent to condition (c) stating the action is
properly outer. Again, (a) =⇒ (c) is false, but the converse, along with (a) ⇐⇒ (b),
still appear to be correct.

We first present a proof of the following example using purely elementary techniques,
and afterwards show how our results apply.

Example 3.5.1. Consider G = Z2 × Z2 = ⟨u⟩ × ⟨v⟩, acting on A =M2, where the action
α : G→ Aut(M2) is given by αu = AdU and αv = AdV , where

U =

[
1 0
0 −1

]
, V =

[
0 1
1 0

]
.

Then this is a well-defined action, and the crossed product isomorphic to M4, and is hence
simple and has unique trace.

Proof using elementary techniques. It is easy to check that αs and αt are commuting auto-
morphisms, both of order 2, and so we obtain a group homomorphism α : G→ Aut(M2).
Given that the crossed product is 16-dimensional, it suffices to show that it has trivial
center in order to prove it is isomorphic to M4.

To this end, assume that
∑

s asλs ∈ Z(A⋊λ G). Then given any t ∈ G, we have

λt

(∑
s

asλs

)
=
∑
s

(t · as)λts =
∑
s

(t · as)λst,
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while (∑
s

asλs

)
λt =

∑
s

asλst.

This shows each as is invariant under the action of each t ∈ G. In other words, as commutes
with each of the matrices I, U , V , and UV . But these matrices are easily seen to span
M2, and so as ∈ Z(M2) = C.

Now letting b ∈M2 be arbitrary, we have

b

(∑
s

asλs

)
=
∑
s

(bas)λs,

while (∑
s

asλs

)
b =

∑
s

(as(s · b))λs.

If s ∈ G is such that as ̸= 0, then b = s · b for all b. Writing αs = AdW , this tells us
W ∈ Z(M2) = C, so s = e. ■

Proof using Corollary 3.1.10. As the crossed product is 16-dimensional, it suffices to prove
that it has unique trace. Note thatM2 has a unique trace, and the double commutant under
its GNS representation is again M2. Assume there is a nontrivial element t ∈ Z2×Z2 \{e},
a nontrivial central projection p ∈M2, and a unitary w ∈ (M2)p with the properties that

1. s · p = p and s · w = w for all s ∈ Z2 × Z2.

2. t acts by Adw on (M2)p.

Clearly, we must have p = 1. Also, as Z(M2) = C, if there is one unitary w ∈ M2

implementing the action of t and satisfying s · w = w for all s ∈ Z2 × Z2, then all
unitaries implementing this inner action necessarily satisfy this invariance property. But
UV = −V U , and so v · U = −U , u · V = −V , and v · (UV ) = −UV . Thus, the above
situation cannot occur, and so by Corollary 3.1.10, we are done. ■

3.5.2 A finite cyclic group (counter)example

This section aims to give another counterexample to results cited in Section 3.5.1, but in
the case of G being a finite cyclic group instead, and also show how our results apply.
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Before proceeding further, we first recall the notion of separably inheritable in the sense
of Blackadar [Bla06, Definition II.8.5.1]. We say that a property (P ) is separably inheritable
if the following two hold:

1. Whenever A is a C*-algebra satisfying (P ), and B ⊆ A is a separable C*-subalgebra,
then there is an intermediate C*-algebra C with B ⊆ C ⊆ A with C separable and
satisfying (P ).

2. Whenever A1 ↪→ A2 ↪→ . . . is an inductive system of separable C*-algebras, each
satisfying (P ), with injective connecting maps, then the direct limit lim−→An also
satisfies (P ).

It is remarked that, in the unital category, the property of having a unique trace is sep-
arably inheritable [Bla06, II.8.5.5]. The following lemma shows that this works in the
unital equivariant category as well, and will allow us to construct a counterexample in the
separable setting.

Lemma 3.5.2. Let G be a countable discrete group, and consider the category of unital
G-C*-algebras.

1. If A is a C*-algebra in this category with a unique trace, and B is any separable C*-
subalgebra (not necessarily unital or G-invariant), then there is a unital G-invariant
C*-subalgebra C ⊆ A with C separable and having a unique trace, and also containing
B.

2. Whenever A1 ↪→ A2 ↪→ . . . is an inductive system of separable C*-algebras in this
category, each with a unique trace, with injective connecting maps, then the direct
limit lim−→An also has a unique trace.

Proof. The fact that the inductive limit property works is clear. Hence, we prove the
intermediate C*-algebra property. Let A and B be as above. We claim that there is
always a unital G-invariant intermediate C*-subalgebra B̃ satisfying B ⊆ B̃ ⊆ A. To see
this, let (bn) ⊆ B be a norm-dense sequence, and let

B̃ := C∗(1, {gbn | n ∈ N, g ∈ G}).

From here, we may construct a sequence of subalgebras of A satisfying

A1 ⊆ Ã1 ⊆ A2 ⊆ Ã2 ⊆ . . . ,
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where A1 = B, Ãn is defined as before in relation to An, and An+1 has a unique trace.
Then it is clear that

C :=
⋃
n∈N

An =
⋃
n∈N

Ãn

will satisfy the properties we want. ■

Example 3.5.3. There is a separable C*-algebra A and an automorphism α ∈ Aut(A) of
order 4 such that the following is true: A has a unique trace τ , and if we let π : A→ B(Hτ )
be the GNS representation of (A, τ) and M = π(A)′′, then:

1. M is the separable hyperfinite II1 factor.

2. The corresponding action of Z4 on M is not (properly) outer. In fact, the action of
2 ∈ Z4 on A is inner (and hence also inner on M).

3. The C*-crossed product A⋊λ Z4 has a unique trace.

4. The von Neumann crossed product M⋊Z4 is a II1 factor.

Proof. Let R be the separable hyperfinite II1 factor. It was shown in [Con77, Propo-
sition 1.6] that for any p ∈ N and any p-th root of unity γ, there is an automorphism
sγp ∈ Aut(R) with the properties that p is the smallest positive integer with (sγp)

p being
inner, (sγp)

p = AdUγ, where writing R = ⊗∞
n=1Mp, we have

Uγ =


γ

γ2

. . .

γp

⊗ (⊗∞
n=2I) ,

and moreover, sγp(Uγ) = γUγ. Observe that, as Z(R) = C, then sγp(W ) = γW for any
unitary W ∈ R satisfying (sγp)

p = AdW . For our purposes, we will let p = 2 and γ = −1,
and fix an outer automorphism α ∈ Aut(R) with α2 = Adu and α(u) = −u. Observe that
u = U2 as defined above guarantees u2 = 1, and so α4 = id.

Consider the Z4 action on R induced by α, and observe that by weak*-separability of
R, we have that u ∈ R is contained in a norm-separable, weak*-dense C*-subalgebra. By
Lemma 3.5.2, there is a Z4-invariant, norm-separable, weak*-dense unital C*-subalgebra
A ⊆ R containing u and having a unique trace (denote the unique trace on both R and A
by τ). We claim that this is the C*-algebra we are looking for.
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First, we verify that if π : A → B(Hτ ) is the GNS representation, then we get
π(A)′′ = R. Denote the GNS Hilbert spaces of (A, τ) and (R, τ) by L2(A, τ) and L2(R, τ),
respectively, and note that L2(A, τ) ⊆ L2(R, τ). As A is SOT-dense in R ⊆ B(L2(R, τ)),
then if x ∈ R with (aλ) ⊆ A SOT-convergent to x, it is easy to see that (aλ) is also
∥·∥2-convergent to x. It follows that L2(A, τ) = L2(R, τ), and so π(A)′′ = R.

By normality, the unique extension of α|A ∈ Aut(A) to π(A)′′ = R is again α. By
construction, the corresponding action of Z4 on R is not (properly) outer, as α2 is inner
(and is in fact inner on A by construction).

We wish to apply Corollary 3.1.10 to conclude that the crossed product A ⋊λ Z4 has
a unique trace. This follows from our previous computations—the only nontrivial n ∈ Z4

that admits a nontrivial central projection p ∈ R with the properties that α(p) = p and αn

is inner on Rp is n = 2 (together with p = 1). However, as we saw earlier, it is impossible
to choose a unitary w satisfying both α2 = Adw and α(w) = w. This gives us that τ has
unique tracial extension to the crossed product A⋊λ Z4.

From here, we can conclude that the von Neumann crossed product R⋊Z4 is still a
II1 factor. We know it admits at least one faithful normal trace, namely τ ◦ E, where
E : R⋊Z4 → R is the canonical expectation. Given any other normal trace, it necessarily
agrees with τ ◦ E on A ⋊λ Z4, and by normality and weak*-density therefore agrees with
τ ◦ E on all of R⋊Z4. ■

3.5.3 Various crossed products with reduced group C*-algebras

Let C∗
λ(G) denote the reduced group C*-algebra, L(G) the group von Neumann algebra,

and τλ ∈ T (L(G)) the canonical trace. We will, furthermore, denote by Char(G) the set of
all group homomorphisms from G to the circle group T. We say that Char(G) separates
the points of G if for any s ̸= t in G, there is some χ ∈ Char(G) such that χ(s) ̸= χ(t).
Equivalently, for any t ̸= e, there is some character χ ∈ Char(G) with χ(t) ̸= 1. This
definition generalizes to any H ≤ G and K ≤ Char(G).

The following facts are likely well-known. In particular, this first proposition is proven
in greater generality in [Beh69, Theorem 5.2]. We provide quick proofs of them for conve-
nience.

Proposition 3.5.4. Every χ ∈ Char(G) induces an automorphism αχ on C∗
λ(G) and L(G)

given by mapping λt to χ(t)λ(t). If G is ICC, then αχ is (properly) outer on L(G) for every
χ ̸= 1.
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Proof. Viewing C∗
λ(G) ⊆ L(G) ⊆ B(ℓ2(G)), we may define a unitary Uχ ∈ U(ℓ2(G))

mapping δt to χ(t)δt. From here, we see that

UχλsU
∗
χδt = Uχλs(χ(t)δt) = χ(t)Uχδst = χ(t)χ(st)δst = χ(s)λsδt,

i.e. UχλsU
∗
χ = χ(s)λs. It follows that αχ := AdUχ induces the automorphism we want on

C∗
λ(G) and L(G).

Now assume thatG is ICC and that χ ∈ Char(G) satisfies αχ = Adu for some u ∈ L(G).
Write u ∼

∑
t αtλt, and observe that

uλsu
∗ = χ(s)λs

⇐⇒ uλs = χ(s)λsu

⇐⇒
∑
t

αtuts =
∑
t

χ(s)αtust

⇐⇒
∑
t

αts−1ut =
∑
t

χ(s)αs−1tut

⇐⇒ αts−1 = χ(s)αs−1t

⇐⇒ αsts−1 = χ(s)αt

It follows from square-summability of (αt)t∈G that αt = 0 for t ̸= e. Hence, αχ = id, so
χ = 1. ■

Lemma 3.5.5. For any groups G and H, we have Ra(G×H) = Ra(G)×Ra(H).

Proof. Let πG : G×H → G and πH : G×H → H denote the canonical projections. Observe
that πG(Ra(G×H)) is an amenable normal subgroup of G, and hence πG(Ra(G×H)) ⊆
Ra(G). Similarly, πH(Ra(G × H)) ⊆ Ra(H), and so Ra(G × H) ⊆ Ra(G) × Ra(H). But
Ra(G)×Ra(H) is an amenable normal subgroup of G×H, and so we get equality. ■

It is easy to check that for any t ∈ G and χ ∈ Char(G), we have that Ad λt and αχ
commute. Thus, for any H ≤ G and K ≤ Char(G), we have an action of H×K on C∗

λ(G).
This action of course cannot be properly outer on L(G) if H ̸= {e}. However, as this next
example shows, τλ can still have unique tracial extension to the corresponding reduced
crossed product.

Example 3.5.6. Assume G is ICC, and let H ≤ G and K ≤ Char(G). Then τλ has unique
tracial extension to C∗

λ(G)⋊λ (H ×K) if and only if K separates the points of Ra(H).

39



Proof. We know that the GNS representation of (C∗
λ(G), τλ) is the canonical representation

π : C∗
λ(G)→ B(ℓ2(G)), and so π(C∗

λ(G))
′′ = L(G).

First, assume that K separates the points of Ra(H), and assume the action is partially
almost inner relative to Ra(H) × K with respect to {(pt,χ, ut,χ)}(t,χ)∈Ra(H)×K (note that

Ra(H ×K) = Ra(H) ×K by Lemma 3.5.5). Observe that by Proposition 3.5.4, in order
for pt,χ ̸= 0, it must be the case that χ = 1, as the action of t ∈ H is always inner. Assume
pt,e = 1 for some nontrivial t ∈ H \ {e}. Then ut,e = γλt,e for some γ ∈ T. By assumption,
there is some χ ∈ K with the property that χ(t) ̸= 1, and so

χ · (γλt) = γχ(t)λt ̸= γλt.

This contradicts the definition of being partially almost inner, and therefore the set
{(pt,χ, ut,χ)}(t,χ)∈Ra(H)×K is trivial. By Theorem 3.1.8, τλ must have unique tracial ex-
tension.

Now assume K does not separate the points of Ra(H), and let

N := {h ∈ Ra(H) | χ(h) = 1 for all χ ∈ K} ≠ {e} .

Observe that this is still an amenable normal subgroup of H. Now, we will define a partial
almost inner action as follows. Given (t, χ) ∈ Ra(H)×K, let

pt,χ =

{
1 if t ∈ N and χ = 1

0 otherwise
and ut,χ =

{
λt if t ∈ N and χ = 1

0 otherwise
.

It is straightforward to check that the action of H×K on C∗
λ(G) is indeed partially almost

inner relative to Ra(H) × K with respect to {(pt,χ, ut,χ)}(t,χ)∈Ra(H)×K . Moreover, this is
positively compatible by Proposition 3.3.6. Thus, by Theorem 3.1.8, τλ cannot have unique
tracial extension. ■

It is worth noting that the above example is not vacuous. For example, we could let
G = F2 with canonical generators a and b, H = ⟨a⟩, and K any subgroup that contains a
character mapping a to e2πiθ, where θ is an irrational number.
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Chapter 4

A note on traces on von Neumann
crossed products

4.1 Introduction and statement of main results

This is a short note, meant to take the results in Chapter 3, which dealt with C*-crossed
products, and generalize them to von Neumann crossed products. I suspect that many
of the results in this short note might be folklore, but I cannot find them anywhere, and
hence still find it worthwhile to write up a note on them.

Throughout this note, M will denote a von Neumann algebra, and G a discrete group
acting on M by *-automorphisms. The von Neumann crossed product will be denoted by
M⋊G. In Chapter 3, which is essentially just [Urs21], we gave complete descriptions of the
tracial states on both the universal and reduced crossed products of a unital C*-algebra A
and a discrete group G acting on A by *-automorphisms. We denote these crossed products
by A⋊G and A⋊λG, respectively. The proof in both cases relies heavily on universality of
the crossed product one way or another (in the reduced case, universality of A⋊λRa(G) is
used, where Ra(G) denotes the amenable radical of G). While it appears unlikely that an
analogous description of normal tracial states on a von Neumann crossed product M⋊G
holds, due to the lack of any universal property, it is still possible to use the results in
the C*-algebraic case to characterize when a G-invariant normal tracial state on M has
unique normal tracial extension to the crossed product. Recall that there always exists at
least one such extension, given by composing with the canonical conditional expectation
E :M⋊G→M .
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This result makes use of the FC-center of G, denoted FC(G), which is the set of all
elements of G with a finite conjugacy class. It is known that FC(G) is always amenable,
which we prove for convenience in Section 4.2. Moreover, we denote the centralizer of an
element t ∈ G by CG(t). Finally, we also make use of an action being jointly almost properly
outer, which was a property weaker than proper outerness introduced in Section 3.3. We
briefly recall the necessary concepts in Section 4.2.

Theorem 4.1.1. Assume τ is a G-invariant normal tracial state on M , and let pτ denote
the support projection of τ . The following are equivalent:

1. τ has unique normal tracial extension to M⋊G.

2. The action of G on Mpτ is jointly almost properly outer relative to the normal sub-
group FC(G), in the sense of Definition 4.2.2.

3. There is no t ∈ FC(G) \ {e}, nonzero t-invariant central projection q ∈ M with
q ≤ pτ , and unitary u ∈Mq such that:

(a) t acts by Adu on Mq.

(b) s · q = q and s ·u = u for all s ∈ CG(t). Optionally, we may additionally require
that s · p = p and s · u = u∗ for any s ∈ G with the property that sts−1 = t−1.

Given that it is well known that a tracial von Neumann algebra (that is, one admitting
a faithful normal tracial state) is a factor if and only if it has a unique normal tracial state,
it is possible to convert the above equivalence into one that characterizes exactly when
M⋊G is a finite factor. It is already well-known that if M admits a G-invariant normal
tracial state, and the action of G on M is properly outer in the sense of Definition 4.2.1,
then M⋊G is a factor if and only if the action of G on Z(M) is ergodic, i.e. Z(M)G = C.

Corollary 4.1.2. The von Neumann crossed product M⋊G is a finite factor if and only
if the following conditions hold:

1. M admits a G-invariant normal tracial state.

2. Z(M)G = C. That is, G acts ergodically on Z(M).

3. There is no t ∈ FC(G) \ {e}, nonzero t-invariant central projection q ∈ M , and
unitary u ∈Mq satisfying:

(a) t acts by Adu on Mq.

(b) s · q = q and s ·u = u for all s ∈ CG(t). Optionally, we may additionally require
that s · p = p and s · u = u∗ for any s ∈ G with the property that sts−1 = t−1.
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4.2 Preliminaries

It is well-known that freeness or proper outerness of the action of G on a von Neumann
algebra M leads to nice structure theory of the crossed product M⋊G. We briefly recall
the notion here:

Definition 4.2.1. An automorphism α on a von Neumann algebraM is said to be properly
outer if there is no nonzero α-invariant central projection p ∈ M with the property that
α|Mp is inner. A group action by *-automorphisms G ↷ M is called properly outer if the
action of every t ∈ G \ {e} is properly outer.

A weaker notion which adds compatibility conditions between the individual group
elements was introduced in Section 3.3, and used for studying tracial states on crossed
products of C*-algebras. See the discussion presented there for more details, along with
an explanation of the naming convention.

Definition 4.2.2. Assume G acts on a von Neumann algebra M by *-automorphisms,
and N ◁G is a normal subgroup. We say that the action is partially almost inner relative
to N and with respect to {(pt, ut)}t∈N if:

1. pt is a t-invariant central projection in M , ut is a unitary in Mpt, and t acts by Ad ut
on Mpt.

2. pe = 1 and ue = 1.

3. pt = pt−1 and u∗t = ut−1 .

4. s · pt = psts−1 and s · ut = usts−1 for all t ∈ N and s ∈ G.

The set {(pt, ut)}t∈N above is called trivial if pt = 0 for all t ∈ N \ {e}, and nontrivial
otherwise. The action is called jointly almost properly outer relative to N if the only such
{(pt, ut)}t∈N is the trivial one.

Finally, given the difficulty I had in finding a paper written in English showing that
the FC-center FC(G) of a group G is always amenable, a short proof is included here.

Proposition 4.2.3. The FC-center FC(G) of a group G is always amenable.
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Proof. Clearly, this is equivalent to showing that if every element of G has finite conjugacy
class, then G is amenable. Given that amenability is preserved under taking direct limits,
and G is the direct limit of its finitely-generated subgroups, we may assume without loss
of generality that G is finitely-generated as well.

To this end, let G = ⟨h1, . . . , hn⟩. Consider the action of G on itself by conjugation.
The orbit-stabilizer theorem tells us that because the orbit of an element hi is finite, the
stabilizer CG(hi) is finite-index. But because h1, . . . , hn generate G, we have that

Z(G) = CG(h1) ∩ · · · ∩ CG(hn),

and so the center Z(G) is finite-index as well. Given that Z(G) is abelian, hence amenable,
this forces G to be amenable. ■

4.3 Proof of main results

As before, M will denote a von Neumann algebra, G a discrete group acting on M by
*-automorphisms, and the von Neumann crossed product by M⋊G.

Lemma 4.3.1. Every normal G-invariant state σ ∈ S(M⋊G) concentrates onM⋊FC(G),
in the sense that σ(yλt) = 0 whenever t /∈ FC(G). In particular, this applies to normal
tracial states.

Proof. Consider an element yλt ∈ M⋊G, where t /∈ FC(G), and assume that σ(yλt) =
α ̸= 0. Consider a sequence of subsets Fn ⊆ G with the property that |Fn| = n, and sts−1

are distinct for s ∈ Fn. Letting

an =
1

|Fn|
∑
s∈Fn

s · (yλt) =
∑
s∈Fn

1

n
(s · y)λsts−1 ,

any weak*-cluster point of (an) necessarily converges to zero, as the Fourier series coeffi-
cients converge (in norm) to zero. This, however, is a problem, as σ(an) = α ̸= 0, and so
the normality of σ is violated. ■

Remark 4.3.2. The above result is, in a sense, analogous to [BK16, Theorem 5.2], which
says that tracial states on a reduced C*-crossed product A⋊λG concentrate on A⋊λRa(G),
where Ra(G) denotes the amenable radical of G.
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Before we begin the proof of Theorem 4.1.1, we again note that we will make heavy
use of the results in Chapter 3 that deal with the case of C*-crossed products. To apply
these results, we first make two observations. The first is that norm-separability of the
C*-algebra is not a requirement for any of the main results in Chapter 3 to hold. (It is
worth noting that, even if it were, it would still be possible in the case of separable M to
modify the following proof to work with a norm-separable, weak*-dense C*-subalgebra).
The second observation is that, given a normal tracial state τ onM with support projection
pτ , letting π : M → B(H) be the GNS representation, we have that π(M)′′ is canonically
isomorphic to Mpτ .

Proof of Theorem 4.1.1. To show (2) =⇒ (1), assume that τ has a nontrivial normal
tracial extension σ to M⋊G. Letting pτ be the support projection of τ , we have by Theo-
rem 3.1.3 that the restriction to the C*-crossed product σ|M⋊λG corresponds to coefficients
{xt}t∈Ra(G) ∈ Mpτ (satisfying a list of properties which will not be repeated here), and σ
is given by

σ(yλt) = τ((ypτ )xt)

for t ∈ Ra(G), and zero otherwise. Observe that by Lemma 4.3.1, these coefficients xt are
in fact zero if t /∈ FC(G), as we have

0 = σ(x∗tλt) = τ(x∗txt),

and τ is faithful on Mpτ . Moreover, we have that these values determine σ on the von
Neumann crossed product by normality, and so at least one of the coefficients xt is nonzero
for some t ∈ FC(G) \ {e}. By Proposition 3.3.5, taking polar decomposition shows that
the action on Mpτ cannot be jointly almost properly outer relative to FC(G).

Now we show (3) =⇒ (2). Assume the action were not jointly almost properly outer
relative to FC(G), and let {(pt, ut)}t∈FC(G) be as in Definition 4.2.2 with pt0 ̸= 0 for some
fixed t0 ∈ FC(G) \ {e}. Then it is clear that t = t0, q = pt0 , and u = ut0 violate the
requirements of (3), including the optional one.

Finally, to show (1) =⇒ (3), assume t, q, and u are as in (3), not assuming the
additional optional assumption, and let C be the conjugacy class of t. Define xsts−1 := s ·u,
and observe that this is well-defined on the conjugacy class of t. It is also not hard to
check that s · xr = xsrs−1 for all s ∈ G and r ∈ C, and that moreover, xry = (r · y)xr for
all y ∈Mpτ . From here, we let

z :=
∑
r∈C

x∗tλt,
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which is a non-scalar central element of M⋊G. Thus, either 1
2
(z + z∗) or 1

2i
(z − z∗) is

also non-scalar, and now self-adjoint. Adding a sufficiently large positive scalar, we obtain
an element w ∈ Z(M⋊G) with the property that w is non-scalar, positive, supported on
{e} ∪C ∪C−1, and all Fourier coefficients in w =

∑
r wrλr except we lie in Mpτ . This can

be rescaled to guarantee that we = 1. From here, we define a non-trivial normal tracial
extension as follows. Let E : M⋊G → M be the canonical conditional expectation, and
observe that τ ◦ E is a tracial state, and define

σ(a) = (τ ◦ E)(wa).

It is not hard to check that σ is a normal tracial state on M⋊G, and it is nontrivial, as
letting w =

∑
r wrλr and choosing some r ̸= e with wr ̸= 0, we have

σ(λ∗rw
∗
r) = τ(wrw

∗
r) > 0,

by faithfulness of τ on Mpτ . ■

Proof of Corollary 4.1.2. First, assume that the crossed product M⋊G is a finite factor.
Let σ ∈ T (M⋊G) be the unique normal tracial state, and let τ = σ|M . It is clear that
τ is G-invariant. Furthermore, as Z(M)G ⊆ Z(M⋊G), we also have that Z(M)G = C.
Finally, by faithfulness of τ , its support projection is 1, and so by Theorem 4.1.1, we get
the last condition that we require.

Conversely, assume that all of the stated conditions hold. First, we claim that from
Z(M)G = C, we can only have at most one G-invariant normal tracial state on M . To
see this, assume τ1 and τ2 are two distinct such states. Recall that the Dixmier averaging
property for von Neumann algebras says that for any x ∈M , we have

conv {uxu∗ | u ∈ U(M)} ∩ Z(M) ̸= ∅.

Thus, if τ1 and τ2 are different on some x ∈M , it follows that they are necessarily different
on Z(M) as well. Fix any weak*-dense C*-subalgebra C(X) ⊆ Z(M) (or just let them
be equal). It is a consequence of Proposition 3.2.5 that Z(M) = L∞(X, τ1). Given that
τ2 is also a normal trace on this algebra, it necessarily corresponds to some function in
f ∈ L1(X, τ1) satisfying ∫

F dτ2 =

∫
Ff dτ1

for all F ∈ L∞(X, τ1). Given that both τ1 and τ2 are G-invariant, it follows that f is also
G-invariant. But then if we choose a concrete representative from the almost-everywhere
equivalence class of f , and consider the set

{x ∈ X | f(x) ≤ n}
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for any n ∈ N, this set is necessarily almost-everywhere nonempty for a large enough
n, and corresponds to some G-invariant projection p ∈ L∞(X, τ1). Thus, p = 1, and
f ∈ L∞(X, τ1) in fact, thus being constant by G-invariance. It follows that τ1 = τ2.

Observe that the unique G-invariant normal tracial state τ ∈ T (M) has support pro-
jection pτ lying in Z(M)G = C, and hence pτ = 1. It follows from Theorem 4.1.1 that
the only normal tracial extension to M⋊G is τ ◦ E. Given that this is a composition of
faithful maps, this just says that M⋊G has a unique normal faithful tracial state, which
is equivalent to being a finite factor. ■

4.4 A subnote on the non-tracial and twisted cases

The following example is meant to highlight the fact that if we do not require our von
Neumann algebra M to admit a normal G-invariant tracial state, even if we have the
remaining conditions of Corollary 4.1.2, we still cannot expect the crossed product M⋊G
to be a factor. Recall that it is known that it is possible to construct infinite groups with
exactly two conjugacy classes. See [HNN49, Theorem III].

Example 4.4.1. Let G be an infinite group with only two conjugacy classes. It is clear
that G is ICC, i.e. FC(G) = {e}. Let M = ℓ∞(G \ {e}), equipped with the action of
(s · f)(t) = f(s−1ts). It is clear that Z(M)G = C. We claim, however, that M⋊G is not a
factor.

Observe that, in general,
∑

t xtλt ∈M⋊G lies in the center if and only if s · xt = xsts−1

(commutes with λs) and xty = (t−1 · y)xt (commutes with y ∈M). We claim that there is
an element with Fourier series given by xt = δt if t ̸= e, and xe = 0. Observe that these
Fourier coefficients, if they define a valid element of the crossed product, indeed satisfy the
required invariance conditions.

To show that they define a valid element, we will work in a concrete representation
of the crossed product. Consider the Hilbert spaces H = ℓ2(G \ {e}). Any Fourier series∑

t xtλt corresponds to an operator on ℓ2(G,H) whose entries are elements of ℓ∞(G \ {e}),
and whose (r, s)-entry given by r−1 · xrs−1 = xs−1r. For our particular choice of xt from
earlier, note that if r1 ̸= r2, then the (r1, s) and (r2, s) entries, assuming they are nonzero,
are δs−1r1 ̸= δs−1r2 . A similar result holds for s1 ̸= s2 for the (r, s1) and (r, s2) entries. Thus,
viewing ℓ2(G,H) = ℓ2(G × (G \ {e})), every row and every column of the corresponding
matrix has at most a single nonzero entry, namely 1. From here, it is not hard to convince
yourself that such a matrix is indeed a bounded linear operator on ℓ2(G × (G \ {e})) of
norm at most 1. The same goes for the matrix corresponding to any sum

∑
t∈F xtλt for
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F ⊆ G finite. Thus, the net consisting of such finite sums, and indexed by finite sums
ordered under inclusion, has the element

∑
t xtλt as a weak*-cluster point, and this finishes

the example.

Going back to the tracial case for a second, one can suddenly ask about the case of
twisted crossed products. After some scrap work, and some helpful feedback from Erik
Bédos, I strongly suspect it is possible to show that if M⋊σG is a twisted von Neumann
crossed product corresponding to an action of G onM and a 2-cocycle σ : G×G→ U(M),
then the exact same results should hold with some small modification to the invariance
conditions presented. Namely, the following should hold true:

Conjecture 4.4.2. Assume M⋊σG is a twisted von Neumann crossed product with 2-
cocycle σ : G× G → U(M). Then Theorem 4.1.1 (1) ⇐⇒ (3), and Corollary 4.1.2 still
hold if one replaces the condition “s · u = u for all s ∈ CG(t)” with “s · u = σ(s, t)σ(t, s)∗u
for all s ∈ CG(t)” (ignoring the optional condition presented afterwards).

This can be seen as generalizing the work done by Kleppner in [Kle62], where he shows
in the case of M = C that the twisted group von Neumann algebra W ∗(G, σ) is a factor if
and only if whenever we have an element t ∈ G satisfying σ(s, t) = σ(t, s) for all s ∈ CG(t)
(in this case, t is said to be σ-regular), we necessarily have that t has infinite conjugacy
class. Specifically, this follows from [Kle62, Lemma 3] and [Kle62, Lemma 4], which say
that the σ-regular elements are indeed closed under conjugation, and the dimension of the
center of the algebra corresponds to the number of σ-regular finite conjugacy classes.

Rigorously proving the above conjecture would likely involve doing similar work to what
was done in the non-twisted case, except with lots of σ(·, ·) floating around.
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Chapter 5

Relative C*-simplicity and
characterizations for normal
subgroups

5.1 Introduction and statement of main results

Throughout this paper, unless specified otherwise, G denotes a discrete group, H a sub-
group of G, N a normal subgroup of G, and A a C*-algebra equipped with an action of
G by *-automorphisms. The reduced group C*-algebra of G is denoted by C∗

λ(G), the
canonical trace on C∗

λ(G) by τλ, and the reduced crossed product of A and G by A⋊λ G.
All topological G-spaces will be assumed to be compact and Hausdorff.

A recent result of Amrutam [Amr21, Theorem 1.1] gives a sufficient condition for all
intermediate C*-subalgebras B satisfying C∗

λ(G) ⊆ B ⊆ A⋊λG to be of the form A1⋊λG for
some G-C*-subalgebra A1 ⊆ A. Namely, he introduces the notion of a plump subgroup, and
proves that the above intermediate subalgebra property holds if G has the approximation
property (AP), and the kernel of the action G↷ A contains a plump subgroup of G. For
convenience, we recall the definition here:

Definition 5.1.1. A subgroup H ≤ G is plump if for any ε > 0 and any finite F ⊆ G\{e},
there are s1, . . . , sm ∈ H such that∥∥∥∥∥ 1

m

m∑
j=1

λsjλtλ
∗
sj

∥∥∥∥∥ < ε ∀t ∈ F.
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However, the following remark shows that, for [Amr21, Theorem 1.1], it suffices to
consider only normal subgroups:

Remark 5.1.2. Assume H ≤ K ≤ G, and H is plump in G. Then it is clear that K is
also plump in G. In particular, the kernel of the action G↷ A contains a plump subgroup
of G if and only if the kernel itself is plump.

Sufficient characterizations of plumpness are given in [Amr21, Section 3]. Recall that,
if N is a normal subgroup of G, then the action of N on its Furstenberg boundary ∂FN
extends uniquely to an action of G - see the review given in Section 5.2.1. It is shown that
if N is C*-simple and has trivial centralizer in G, then G acts freely on ∂FN , which in turn
implies N is plump in G [Amr21, Corollary 3.2]. One of the results we will show is that
the converses to these statements also hold:

Theorem 5.1.3. Assume N ◁ G is normal. The following are equivalent:

1. N is plump in G.

2. The action G↷ ∂FN is free.

3. There exists some G-minimal, N-strongly proximal, G-topologically free space.

4. N is C*-simple and CG(N) = {e}.

5. G is C*-simple and CG(N) = {e}.

Setting N = G in the above theorem gives back various equivalences between C*-
simplicity and other characterizations. For a review of these characterizations, together
with necessary definitions, see the review in Section 5.2.2.

Remark 5.1.4. Plumpness is a relativized version of Powers’ averaging property, and so
setting N = G in Theorem 5.1.3, we get back that G is C*-simple if and only if it satisfies
Powers’ averaging property. In fact, if G contains any (not necessarily normal) plump
subgroup H, then we see that both H and G satisfy Powers’ averaging property, and so
both are C*-simple. Similarly, one also obtains the various dynamical characterizations of
C*-simplicity by setting N = G.

From here, it is natural to ask if plumpness is equivalent to some generalized notion
of C*-simplicity. To answer this question, we introduce the notion of relative simplicity of
C*-algebras, and using this, relative C*-simplicity for groups.
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Definition 5.1.5. Assume A is a unital C*-algebra, and B ⊆ A is a unital sub-C*-algebra.
We say that B is relatively simple in A if any unital completely positive map ϕ : A→ B(H)
which is a *-homomorphism on B is faithful on A. Given H ≤ G, we say that H is relatively
C*-simple in G if C∗

λ(H) is relatively simple in C∗
λ(G).

Theorem 5.1.6. Assume N ◁ G is normal. The following are equivalent:

1. N is plump in G.

2. N is relatively C*-simple in G.

3. C∗
λ(N) is relatively simple in C(∂FN)⋊λ G.

4. C(∂FN)⋊λ N is relatively simple in C(∂FN)⋊λ G.

Remark 5.1.7. For consistency, we will use the term relatively C*-simple in place of plump
throughout the rest of this paper when it comes to normal subgroups.

We may also ask what other characterizations of C*-simplicity generalize to an equiv-
alent characterization of relative C*-simplicity. Kennedy’s intrinsic characterization is one
such result. For a review of this, along with a review of the Chabauty topology on the space
of subgroups Sub(G), again see the review in Section 5.2.2. Note that instead of using the
former term residually normal, all instances were updated to the current terminology of
confined.

Definition 5.1.8. Assume H ≤ G. An H-uniformly recurrent subgroup of G is a (non-
empty) closed H-minimal subset of Sub(G). It is called amenable if one (equivalently
all) of its elements are amenable. It is called nontrivial if it is not {{e}}. A subgroup
K ≤ G is called H-confined if the closed H-orbit of K in Sub(G) does not contain the
trivial subgroup {e}. Algebraically, K ≤ G is H-confined if and only if there exists a finite
F ⊆ G \ {e} such that F ∩ sKs−1 ̸= ∅ for any s ∈ H.

Theorem 5.1.9. Assume N ◁ G is normal. The following are equivalent:

1. N is relatively C*-simple in G.

2. There is no amenable N-confined subgroup of G.

3. There is no nontrivial amenable N-uniformly recurrent subgroup of G.
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5.2 Preliminaries

5.2.1 Boundary theory

Boundary theory was originally developed by Furstenberg in [Fur73], and played an im-
portant role in [KK17] and [BKKO17], which study C*-simplicity of discrete groups. For
convenience, we recall all of the basic facts that we will use here. To establish notation, G
will always denote a discrete group.

Definition 5.2.1. Let X be a compact Hausdorff space, and assume that G acts by
homeomorphisms on X. The action is minimal if X has no nontrivial closed G-invariant
subsets. The action is strongly proximal if for any Borel Radon probability measure µ ∈
P (X), the weak*-closed G-orbit of µ contains a Dirac mass δx. A boundary is a minimal
and strongly proximal compact Hausdorff space.

The appropriate notion of morphism between boundaries is a G-equivariant, continuous
map.

Proposition 5.2.2. Morphisms between boundaries are unique, assuming they exist.

Proof. This follows almost immediately from [Fur73, Proposition 4.2]. ■

Proposition 5.2.3. There is a universal boundary ∂FG, in the sense that every other
boundary is the image of ∂FG under some morphism. This universal boundary is also
unique up to isomorphism.

The universal boundary ∂FG given above is nowadays called the Furstenberg boundary,
and a proof of its existence can be found in [Fur73, Proposition 4.6].

Recall that an extremally disconnected space is one where the closure of any open set
is open. The following is a well-known theorem of Froĺık, and can be found in [Fro71,
Theorem 3.1].

Theorem 5.2.4. The fixed point set of any homeomorphism of an extremally disconnected
space is clopen.

Corollary 5.2.5. The fixed point set of any homeomorphism of ∂FG is clopen.

Proof. It is known that the Furstenberg boundary of a discrete group is always extremally
disconnected - see [KK17, Remark 3.16] or [BKKO17, Proposition 2.4]. ■
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A well-known relativization fact that will come in extremely useful is the following:

Proposition 5.2.6. Assume N ◁G is normal. The action of N on ∂FN extends uniquely
to an action of G.

A proof of this fact can be found in [Oza14, Lemma 20]. Note that, by uniqueness,
there is no ambiguity when referring to the action of G on ∂FN .

5.2.2 C*-simplicity

Again, G will always denote a discrete group. The group G is called C*-simple if its
reduced group C*-algebra C∗

λ(G) is simple. Here, we collect the various characterizations
of C*-simplicity that we will make use of throughout this paper.

The Furstenberg boundary ∂FG (see the review in Section 5.2.1) played a central role in
the original characterizations of C*-simplicity. Recall that an action G ↷ X is said to be
free if the fixed point sets Fix(t) are empty for t ̸= e. If X is a topological space, a weaker
notion is topologically free, where the fixed point sets Fix(t) have empty interior for t ̸= e.
The following theorem is collectively proven in [BKKO17, Theorem 3.1] (Theorem 5.2.7,
(i) ⇐⇒ (iii) ⇐⇒ (iv)) and [KK17, Theorem 6.2] (Theorem 5.2.7, (i) ⇐⇒ (ii), along
with other equivalences).

Theorem 5.2.7. The following are equivalent:

1. G is C*-simple.

2. C(∂FG)⋊λ G is simple.

3. The action of G on ∂FG is free.

4. The action of G on some boundary is topologically free.

It is now known that C*-simplicity is equivalent to an averaging property originally
considered by Powers. The definition we present here is easily seen to be equivalent to the
definition presented in [Ken20, Definition 6.2].

Definition 5.2.8. A discrete group G is said to satisfy Powers’ averaging property if for
any ε > 0 and any finite F ⊆ G \ {e}, there are s1, . . . , sm ∈ G such that∥∥∥∥∥ 1

m

m∑
j=1

λsjλtλ
∗
sj

∥∥∥∥∥ < ε ∀t ∈ F.
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The equivalence between C*-simplicity and Powers’ averaging property was indepen-
dently proven in [Ken20, Theorem 6.3] and [Haa16, Theorem 4.5].

Theorem 5.2.9. The following are equivalent:

1. G is C*-simple.

2. G has Powers’ averaging property.

Finally, there is an intrinsic characterization of C*-simplicity by Kennedy. Recall that
we may view the space of subgroups of G, i.e. Sub(G), as a closed (hence compact) subset
of 2G. The corresponding topology on Sub(G) is known as the Chabauty topology, and
the space of amenable subgroups Suba(G) is again a closed (hence compact) subset of this
space. More information can be found in [Ken20, Section 4]. The following definitions can
be found at the start of [Ken20, Section 4] and in [Ken20, Definition 5.1].

Definition 5.2.10. A uniformly recurrent subgroup of G is a nonempty closed minimal
subset of Sub(G). It is called amenable if one (equivalently all) of its elements are amenable,
and nontrivial if it is not {{e}}. A subgroup K ≤ G is called confined (formerly called
residually normal, but we have updated all occurrences of the term) if the closed orbit in
Sub(G) does not contain the trivial subgroup {e}. Algebraically, K ≤ G is confined if and
only if there exists a finite F ⊆ G \ {e} such that F ∩ sKs−1 ̸= ∅ for any s ∈ G.

The following equivalence is proven in [Ken20, Theorem 4.1] and [Ken20, Theorem 5.3]:

Theorem 5.2.11. The following are equivalent:

1. G is C*-simple.

2. G has no nontrivial amenable uniformly recurrent subgroup.

3. G has no amenable confined subgroup.

Remark 5.2.12. It is worth noting that countability of G is not a requirement for any of
the characterizations of C*-simplicity listed here. We will use some of these equivalences
to prove our results, which in turn will be used for some examples, some of which involve
uncountable groups.
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5.3 Proof of main results

We first prove Theorem 5.1.3, most of which is already proven in [Amr21]. First, we dualize
the definition of plumpness to pass from the C*-algebra C∗

λ(G) to its state space:

Lemma 5.3.1. Assume H ≤ G. Then H is plump in G if and only if for any ϕ ∈
S(C∗

λ(G)), the closed convex hull convHϕ contains the canonical trace τλ.

Proof. The proof is analogous to the proof given in [Haa16, Theorem 4.5]. ■

Lemma 5.3.2. Assume N ◁G is normal. Then any G-minimal, N-strongly proximal space
X is also N-minimal.

Proof. Given that N -minimal components are always disjoint, it follows from strong prox-
imality that there can only be exactly one N -minimal component in X - call it M .
Further, we note that any translate tM (where t ∈ G) is still N -invariant. Indeed,
NtM = tNM = tM , and so M ⊆ tM by uniqueness. Using this, we also obtain
tM ⊆ t(t−1M) = M , and so M is G-invariant. But X is assumed to be G-minimal,
and so M = X, i.e. X is N -minimal. ■

Lemma 5.3.3. Assume that N and X are as in Lemma 5.3.2, and ϕ : ∂FN → X is a
G-equivariant continuous map. If, in addition, X is G-topologically free, then the action
of G on ∂FN is free.

Proof. Assume otherwise, so that there is some t ∈ G with U := Fix∂FN(t) nonempty. It is
known that U is necessarily clopen (see Corollary 5.2.5). We know that ∂FN = s1U ∪· · ·∪
snU for some si ∈ N , by minimality and compactness. Thus, X = s1ϕ(U)∪· · ·∪snϕ(U), and
so ϕ(U) being closed implies it has non-empty interior. But ϕ(U) ⊆ FixX(t), contradicting
topological freeness. This shows that the action of G on ∂FN is free. ■

Remark 5.3.4. This argument is analogous to the proof of [BKKO17, Lemma 3.2], which
claims that maps π : Y → X between minimal G-spaces map closed sets of nonempty
interior to closed sets of nonempty interior. However, without the additional assumption
that U is clopen (hence ϕ(U) is closed), one cannot conclude that ϕ(U) has interior just
from having X = s1ϕ(U)∪· · ·∪snϕ(U). Consider, for example, [0, 1] = ([0, 1]∩Q)∪([0, 1]∩
Q∁). Hence, the above lemma also serves as a slight correction to the proof of [BKKO17,
Theorem 3.1, (2) ⇐⇒ (3)], which uses [BKKO17, Lemma 3.2] as a prerequisite.
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Remark 5.3.5. Before beginning the proof of Theorem 5.1.3, the author would like to
thank Sven Raum for giving a much cleaner proof of (iii) =⇒ (ii), which is the argument
presented here. The original proof can be found in Section 5.4.

Proof of Theorem 5.1.3. The implications (iv) =⇒ (ii) =⇒ (i) are given in [Amr21,
Theorem 3.1, Corollary 3.2]. Further, (iv) ⇐⇒ (v) follows easily from [BKKO17, Theo-
rem 1.4]. It is clear that (ii) =⇒ (iii) holds, as ∂FN is such a space.

To show that (iii) =⇒ (ii) holds, assume X is such a space. By Lemma 5.3.2, we
have that X is in fact N -minimal, and therefore an N -boundary. Hence, we obtain an
N -equivariant continuous map ϕ : ∂FN → X. We claim it is G-equivariant. Letting s ∈ N
and t ∈ G, and slightly abusing notation by directly viewing these as automorphisms on
∂FN and X, we have that

(t ◦ ϕ ◦ t−1)(sy) = (t ◦ ϕ)(t−1stt−1y) = tt−1st(ϕ(t−1y)) = s((t ◦ ϕ ◦ t−1)(y)).

As morphisms between boundaries (in this case, N -equivariant continuous maps) are nec-
essarily unique, we have that t ◦ ϕ ◦ t−1 = ϕ, or in other words, ϕ is G-equivariant. By
Lemma 5.3.3, we have that the action of G on ∂FN is free.

It remains to show (i) =⇒ (iv). To this end, we note that N is C*-simple by
Remark 5.1.4. Assume it is not the case that CG(N) = {e}, and choose a nontrivial
amenable subgroup K ≤ CG(N). We know that the canonical character 1K : K →
C extends to a *-homomorphism 1K : C∗

λ(K) → C, and that there is also a canonical
conditional expectation EK : C∗

λ(G) → C∗
λ(K) mapping λt to itself if t ∈ K, and zero

otherwise. It is easy to check that the composition 1K ◦ EK : C∗
λ(G) → C is an N -fixed

state, which contradicts Lemma 5.3.1. ■

We now aim to prove Theorem 5.1.6. Some easy observations about relative simplicity
as defined in Definition 5.1.5 are in place.

Proposition 5.3.6. Let A, B, and C denote unital C*-algebras.

1. A is relatively simple in itself if and only if it is simple.

2. If A ⊆ B ⊆ C with A relatively simple in C, then B is simple.

3. If A ⊆ B ⊆ C with A relatively simple in C, then A is relatively simple in B and B
is relatively simple in C.
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Proof. First, to prove (iii), let ϕ : B → B(H) be a unital completely positive map which is

a *-homomorphism on A. This extends to a unital completely positive map ϕ̃ : C → B(H),
which is faithful by assumption, and so ϕ is faithful, showing A is relatively simple in B.
It is clear that B is relatively simple in C almost by definition. Claim (i) follows from the
fact that for *-homomorphisms, faithfulness and injectivity are equivalent. Finally, (ii)
follows by applying (iii) to get that A is relatively simple in B, then applying (iii) again
to the containment A ⊆ B ⊆ B to conclude that B is relatively simple in itself, and finally
applying (i). ■

We also make use of the following lemma:

Lemma 5.3.7. Assume H ≤ G. Then H is plump in G if and only if the only H-
equivariant unital completely positive map ϕ : C∗

λ(G) → C(∂FH) is the canonical trace
τλ.

Proof. Observe that Lemma 5.3.1 tells us that, because τλ is H-invariant, H is plump if
and only if there are no nontrivial H-irreducible closed convex subsets of S(C∗

λ(G)). As the
closure of the extreme points of any such subset is an H-boundary [Gla76, Theorem III.2.3],
this is equivalent to there being no nontrivial H-boundaries in S(C∗

λ(G)). From here, the
proof is analogous to that of [Ken20, Proposition 3.1]. ■

Proof of Theorem 5.1.6. (i) =⇒ (iii) This argument is adapted from part of the proof of
(2) =⇒ (1) in [BKKO17, Theorem 3.1]. Assume ϕ : C(∂FN)⋊λ G→ B(H) is unital and
completely positive, and also a *-homomorphism on C∗

λ(N). We may equip B(H) with
an N -action given by s · T = ϕ(λs)Tϕ(λs)

∗ for s ∈ N and T ∈ B(H). Further, ϕ is N -
equivariant with respect to this action on B(H), as C∗

λ(N) lies in the multiplicative domain
of ϕ. We also have that, by injectivity, there is an N -equivariant unital completely positive
map ψ : B(H)→ C(∂FN). We note that ψ ◦ ϕ : C(∂FN)⋊λ G→ C(∂FN) restricts to the
canonical trace on C∗

λ(G) by Lemma 5.3.7. Furthermore, ψ ◦ ϕ is the identity on C(∂FN)
by rigidity, and so C(∂FN) lies in the multiplicative domain of this map. Combining these
two observations yields that ψ ◦ ϕ is the canonical expectation, which is faithful, and so ϕ
is faithful.

(iii) =⇒ (ii) This follows from Proposition 5.3.6.

(ii) =⇒ (i) Assume (i) does not hold. We know that N must be C*-simple by
Proposition 5.3.6, and so looking back at Theorem 5.1.3, it must be the case that CG(N) ̸=
{e}. Choose any nontrivial amenable subgroup K of CG(N), and note that N∩K = {e}, as
N has trivial center (C*-simplicity implies trivial amenable radical). Thus, NK ∼= N ×K,
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and so C∗
λ(NK) ∼= C∗

λ(N)⊗C∗
λ(K). Letting λN : C∗

λ(N)→ B(ℓ2(N)) denote the extension
of the left-regular representation of N to C∗

λ(N), and 1K : C∗
λ(K) → C the extension of

the trivial character, we have that λN ⊗ 1K : C∗
λ(N)⊗C∗

λ(K)→ B(ℓ2(N)) is a non-faithful
*-homomorphism. Thus, any unital completely positive extension ϕ : C∗

λ(G) → B(ℓ2(N))
will be non-faithful, yet be a *-homomorphism on C∗

λ(N).

(iii) =⇒ (iv) This follows from Proposition 5.3.6.

(iv) =⇒ (i) This implication will be quite similar to (ii) =⇒ (i). Assume that (i)
doesn’t hold, and observe that by Proposition 5.3.6, C(∂FN)⋊λN is simple, which is known
to imply that N is C*-simple (see Theorem 5.2.7). Again, CG(N) ̸= {e}, and choosing
any nontrivial amenable subgroup K ≤ CG(N), we have NK ∼= N ×K. Further, K acts
trivially on ∂FN by [BKKO17, Lemma 5.3], and so C(∂FN)⋊λ (NK) ∼= (C(∂FN)⋊λN)⊗
C∗
λ(K). Letting π : C(∂FN) ⋊λ N → B(H) be any (necessarily faithful) representation,

and 1K : C∗
λ(K) → C be the extension of the trivial character, we have that π ⊗ 1K :

(C(∂FN)⋊λN)⊗C∗
λ(K)→ B(H) is a non-faithful *-homomorphism. Any unital completely

positive extension to C∗
λ(G) will contradict the assumption of (iv). ■

Proof of Theorem 5.1.9. (ii) =⇒ (i) Assume (i) does not hold. Applying Theorem 5.1.3,
we either have that N is not C*-simple, or CG(N) ̸= {e}. If N is not C*-simple, then
by Kennedy’s intrinsic characterization of C*-simplicity (see Theorem 5.2.11), N has a
nontrivial amenable N -confined subgroup. If, on the other hand, CG(N) ̸= {e}, then any
nontrivial amenable subgroup of CG(N) is N -confined.

(i) =⇒ (ii) This is analogous to [Ken20, Remark 4.2]. For convenience, we give
the modified argument here. Assume (ii) doesn’t hold, and K is a nontrivial amenable
N -confined subgroup of G. Amenability tells us that there is some K-invariant measure
µ ∈ P (∂FN). Strong proximality tells us that there is a net (sλ) ⊆ N with sλµ → δx for
some x ∈ ∂FN . Dropping to a subnet, we may assume that (sλKs

−1
λ ) is also convergent

to some L, and L ̸= {e} by assumption. Chopping off the start of our net, we may in
addition assume that there is some l ∈ L \ {e} with l ∈ sλKs−1

λ for all λ, i.e. l = sλkλs
−1
λ

for some kλ ∈ K. From here, we note that

lsλµ→ lδx = δlx,

while we also have
lsλµ = sλkλµ = sλµ→ δx.

This shows lx = x, and so G cannot act freely on ∂FN .

(ii) ⇐⇒ (iii) If K is any nontrivial amenable N -confined subgroup of G, then
any N -minimal subset of the closed N -orbit of K is an N -uniformly recurrent subgroup.
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Conversely, any element of an N -uniformly recurrent subgroup is N -confined by definition.
■

We conclude this section with some remarks.

Remark 5.3.8. Countability of N or G is not a requirement for any of the above proofs,
nor is it required for any of the C*-simplicity analogues of the above characterizations
obtained by setting N = G (see Remark 5.2.12), some of which were applied here.

Remark 5.3.9. Some of the characterizations we have given are closed under taking
supergroups. Namely, if H ≤ G is any (not necessarily normal) subgroup that satisfies any
of Theorem 5.1.3 (iii) or (v), Theorem 5.1.6 (ii), or Theorem 5.1.9 (ii) or (iii), then so
does any subgroup of G containing H. In particular, any normal subgroup of G containing
H is relatively C*-simple.

5.4 The universal G-minimal, H-strongly proximal space

This section was originally dedicated to proving (iii) =⇒ (ii) in Theorem 5.1.3, until a
much cleaner proof was suggested by Sven Raum - see Remark 5.3.5. The existence of a
type of relative Furstenberg boundary with respect to arbitrary (not necessarily normal)
subgroups might still be interesting, and for this reason this section is still kept.

Proposition 5.4.1. Assume H is a (not necessarily normal) subgroup of G. There is a
universal G-minimal, H-strongly proximal G-space B(G,H), in the sense that any other
such space X is a G-equivariant continuous image of B(G,H). Further, this space is
unique up to G-equivariant homeomorphism.

Proof. The proof is quite similar to the topological proof of the existence of the Furstenberg
boundary, a very brief sketch of which is given in [Fur73, Proposition 4.6]. We fill in the
details and modify the argument appropriately here.

Let {Xα}α∈A denote the set of all up-to-isomorphism G-minimal, H-strongly proximal
spaces, where isomorphism refers to G-equivariant homeomorphism. Note that these can
indeed be put into a set, as all of these spaces are necessarily the continuous image of βG
by minimality, so there is a limit on the cardinality of these spaces.

We claim that the space X :=
∏

αXα is still H-strongly proximal. To see this, given
any measure µ ∈ P (X), we note that for any α ∈ A, there is a net (hλ) ⊆ H with (hλµ)
converging to a Dirac mass when restricted to C(Xα). From here, it is easy to see that this
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can be done on finitely many α1, . . . , αn ∈ A. Now for each finite F ⊆ A, letting µF ∈ Hµ
be a Dirac mass when restricted to each C(Xα) for α ∈ F , we note that any cluster point
of the net (µF ) (indexed over finite subsets of A, ordered under inclusion) is necessarily a
Dirac mass on the entire space X.

Let B(G,H) be a G-minimal subset of X. It is clear that this space is still H-strongly
proximal. We will also show that it is universal. Given any Xα, consider the coordinate
projection map πα : X → Xα. We see that πα|B(G,H) : B(G,H)→ Xα is still surjective, as
the image of this map is closed and G-invariant, and Xα is G-minimal.

Finally, this space is unique up to isomorphism. Indeed, if B′ is another universal space,
then there are G-equivariant continuous maps ϕ1 : B(G,H)→ B′ and ϕ2 : B

′ → B(G,H).
But their compositions ϕ2 ◦ϕ1 : B(G,H)→ B(G,H) and ϕ1 ◦ϕ2 : B

′ → B′ are necessarily
the respective identity maps between these spaces, as these spaces are both G-boundaries,
and, assuming they exist, morphisms between G-boundaries are unique. ■

Remark 5.4.2. A different notion of relative Furstenberg boundary is presented in [Mon21],
and so we avoid using the term Furstenberg boundary and notation ∂(G,H) to describe the
universal object from Proposition 5.4.1. Our notation B(G,H) is derived from Fursten-
berg’s notation B(G) for the Furstenberg boundary of G, given in [Fur73, Proposition 4.6].

Corollary 5.4.3. If N ◁G is normal, the universal G-minimal, N-strongly proximal space
is ∂FN .

Proof. Letting B(G,N) denote the universal such space, there is a G-equivariant contin-
uous surjection ϕ1 : B(G,N) → ∂FN . However, Lemma 5.3.2 tells us that B(G,N) is in
fact an N -boundary, and so there is an N -equivariant continuous surjection ϕ2 : ∂FN →
B(G,N). The composition ϕ1 ◦ ϕ2 : ∂FN → ∂FN is N -equivariant, and thus necessarily
the identity map. This shows ϕ2 is injective, hence bijective. Thus, ϕ1 is also bijective,
and therefore the isomorphism we are looking for. ■

It is worth emphasizing a subtle point - Lemma 5.3.2 tells us that any G-minimal,
N -strongly proximal space is the N -equivariant image of ∂FN . However, Corollary 5.4.3
gives us a G-equivariant map.

Proof of Theorem 5.1.3, (iii) =⇒ (ii). Assume X is G-minimal, N -strongly proximal,
and G-topologically free. By Corollary 5.4.3, there is a G-equivariant continuous map
ϕ : ∂FN → X. By Lemma 5.3.3, the action of G on ∂FN is free. ■
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5.5 Examples

It is worth noting that the characterization of being C*-simple and having trivial central-
izer, originally given as a sufficient condition in [Amr21, Corollary 3.2], is perhaps the
“nicest” characterization of relative C*-simplicity. As such, some of the examples below
will still be proven with this result, as opposed to our new results.

5.5.1 Free products

Given that the canonical example of a C*-simple group is F2, the free group on two gen-
erators, it is worthwhile to use this as an easy example. We will re-prove the following
special case of [Amr21, Example 3.8] using one of our new results.

Example 5.5.1. Let F2 = ⟨a, b⟩ denote the free group on two generators. Then the normal
closure of a is relatively C*-simple in F2.

Proof. The Nielsen-Schreier theorem tells us that any subgroup of a free group is free.
Thus, the only nontrivial amenable subgroups of F2 are the cyclic subgroups. Given
any such subgroup ⟨x⟩, assume first that the reduced word of x starts with b or b−1.
Then the reduced word length of anxa−n is eventually strictly increasing, showing that
⟨anxa−n⟩ → {e} in the Chabauty topology. This is also true if the reduced word of x ends
with b or b−1. Finally, if both the start and end of x lie in {a, a−1}, then the reduced
word length of (bab−1)nx(bab−1)−n is strictly increasing, and so ⟨(bab−1)nx(bab−1)−n⟩ is
Chabauty-convergent to {e}. By Theorem 5.1.9, we are done. ■

We will also generalize [Amr21, Example 3.8] to free products as follows:

Theorem 5.5.2. Assume G = H ∗K, where H and K are nontrivial, and they are also
not both Z2. Then any nontrivial normal subgroup of G is relatively C*-simple.

Proof. It is known that any such group is C*-simple [PS79]. Hence, any normal subgroup
N ◁ G is C*-simple as well by [BKKO17, Theorem 1.4]. It remains to show that any
nontrivial normal subgroup has trivial centralizer. Assume otherwise, so that there exists
some normal subgroup N ̸= {e} with CG(N) ̸= {e}, and pick nontrivial elements x ∈ N
and y ∈ CG(N). C*-simplicity of N tells us that N has trivial center, i.e. N∩CG(N) = {e},
and so ⟨x, y⟩ ∼= ⟨x⟩ × ⟨y⟩. But the Kurosh subgroup theorem tells us that

⟨x⟩ × ⟨y⟩ = FX ∗
∗∏
i∈I

siHis
−1
i ∗

∗∏
j∈J

tjKjt
−1
j
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for some subset X ⊆ G and subgroups Hi ≤ H, Kj ≤ K. There are two cases when
such a subgroup is abelian. The first case is if X is a singleton, and I and J are empty.
This is impossible, as ⟨x⟩ × ⟨y⟩ is not isomorphic to Z. The second case is if, without
loss of generality, ⟨x⟩ × ⟨y⟩ is some conjugate siHis

−1
i , where Hi ≤ H. Equivalently,

⟨s−1
i xsi⟩ × ⟨s−1

i ysi⟩ is a subgroup of H. But both N and CG(N) are normal subgroups of
G, and so this says that there are some nontrivial s ∈ N and t ∈ CG(N) that both lie in
H. However, if we choose any nontrivial r ∈ K, then t cannot commute with rsr−1 ∈ N ,
a contradiction. ■

5.5.2 Direct products

Taking direct sums and direct products of existing examples can provide some easy new
examples:

Lemma 5.5.3. Let (Gi) be a family of C*-simple groups. Then both ⊕Gi and
∏
Gi are

C*-simple.

Proof. We know that each Gi acts freely on its Furstenberg boundary ∂FGi (see Theo-
rem 5.2.7). From here, it is not hard to check that

∏
∂FGi is a free boundary action for

both ⊕Gi and
∏
Gi, and so both of these groups are C*-simple by the same theorem. ■

Theorem 5.5.4. Let (Gi) be a family of groups with relatively C*-simple normal subgroups
Ni ◁ Gi. The direct sum ⊕Ni is relatively C*-simple in the direct product

∏
Gi.

Proof. Observe that ⊕Ni is normal in
∏
Gi, and the commutator of this subgroup is∏

CGi
(Ni). By Theorem 5.1.3, this commutator is trivial, and so applying this theorem

again together with Lemma 5.5.3, ⊕Ni is relatively C*-simple in
∏
Gi. ■

Remark 5.5.5. This shows that there exists an uncountable group with a countable
relatively C*-simple normal subgroup, for example ⊕n∈NF2◁

∏
n∈N F2. From the C*-algebras

perspective, there is a non-separable C*-algebra with a separable relatively simple sub-C*-
algebra.

5.5.3 Wreath products

Recall that the (unrestricted) wreath product G ≀ H is (
∏

H G) ⋊ H, where H acts by
left-translation on

∏
H G.

62



Theorem 5.5.6. Assume N is a relatively C*-simple subgroup of some group G ̸= {e},
and let H be any arbitrary group. Then the direct sum ⊕HN is relatively C*-simple in
G ≀H.

Proof. Note that ⊕HN is normal in G ≀H. It is easy to check that the canonical action of∏
H G on

∏
H ∂FN , together with the action of H on

∏
H ∂FN by left-translation, extend

to an action of all of G ≀H. It is also not hard to see that ⊕HN acts strongly proximally
and G ≀H acts minimally on this space.

It remains to show that the action of G ≀H is still topologically free. To this end, first
consider any nontrivial element of the form ((gh), e) ∈ G ≀ H. Its fixed point set is given
by
∏

H Fix(gh), which is empty by Theorem 5.1.3 and the assumption that at least one
gh ̸= e. Now given any element ((gh), h0) ∈ G ≀H with h0 ̸= e, we note that

((gh), h0)(xh) = (ghxh−1
0 h),

and so (xh) lies in the fixed point set of this element if and only if ghxh−1
0 h = xh for all h.

In particular, setting h = h0 gives us gh0xe = xh0 . If Fix((gh), h0) were to have interior,
then it would contain a basic open subset of the form

∏
H Uh, where Uh ⊆ X is open, and

all but finitely many Uh = X. Given that N is C*-simple and N ̸= {e} (as N is relatively
C*-simple in G ̸= {e} by assumption) we know that ∂FN has no isolated points [KK17,
Proposition 3.15], and so no Uh is a singleton. But given that xh0 is entirely determined
by the value xe takes, this cannot be the case. We conclude that Fix((gh), h0) has empty
interior, and so by Theorem 5.1.3, we are done. ■

Remark 5.5.7. The sufficient condition for plumpness given in [Amr21, Lemma 3.5] as-
sumes the group is countable and has countable fixed point sets. The proof of Theo-
rem 5.5.6, however, gives a natural class of topologically free boundary actions admit-
ting uncountably many fixed points. Here, we see that H ≤ G ≀ H fixes the diagonal of∏

H ∂FN , and ∂FN is uncountable as it is a nontrivial compact Hausdorff space with no
isolated points. One could also replace ∂FN by any G-minimal, N -strongly proximal, G-
topologically free space X, and so any element ((gh), e) ∈ G ≀H admits the fixed point set∏

H Fix(gh), which is uncountable if, for example, Fix(gh) are nonempty for all h, and at
least one gh = e. Finally, while wreath products G ≀H are often uncountable (for example,
if G ̸= {e} and H is infinite), the same observations hold for the restricted wreath product
(⊕HG)⋊H as well, which is countable if G and H are countable.
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5.5.4 Groups with trivial center and only cyclic amenable sub-
groups

It is sometimes the case that the only amenable subgroups of a given group are the cyclic
subgroups. For example, this property is true of the free groups by the Nielsen-Schreier
theorem. Our aim is to show the following:

Theorem 5.5.8. Assume G is such that any amenable subgroup is cyclic, Z(G) = {e},
and in addition, no two elements have finite coprime order. Then any nontrivial normal
subgroup of G is relatively C*-simple.

Remark 5.5.9. It is worth noting that this last requirement that G should have no two
elements of finite coprime order is true for a large class of groups, including torsion-free
groups and p-groups.

Whether or not G has trivial center is surprisingly sufficient in determining whether G
is C*-simple or not. In the case of countable groups, [BKKO17, Theorem 6.12] tells us it
suffices to prove that Ra(G) ⊆ Z(G). The argument we present here avoids countability,
but requires a bit of a detour into theory on the Furstenberg boundary.

Lemma 5.5.10. Let G denote any discrete group, and let x ∈ ∂FG be arbitrary. Letting
Gx denote the point-stabilizer of x, if s ∈ Gx is nontrivial, and y1, . . . , yn ∈ ∂FG, then
Gy1 ∩ · · · ∩Gyn always contains some conjugate of s.

Proof. This is a special case of [BKKO17, Lemma 3.7] obtained by setting U = Fix(s)
(necessarily clopen - see Corollary 5.2.5), ε = 1

n
, and µ = 1

n
(δy1 + · · ·+ δyn). Our end result

is that there is some r ∈ G with ryi ∈ Fix(s) for all i, or in other words, r−1sr ∈ Gyi for
all i. ■

Proposition 5.5.11. Assume G has the property that any amenable subgroup is cyclic.
Then G is C*-simple if and only if Z(G) = {e}.

Proof. As the center is always an amenable normal subgroup, any C*-simple group G
must have trivial center. Conversely, assume G has trivial center. We will first show that
G has trivial amenable radical. Given any t ∈ G, we have that (⟨t⟩Ra(G))/Ra(G) ∼=
⟨t⟩ /(⟨t⟩ ∩ Ra(G)), which is amenable, and so by extension, ⟨t⟩Ra(G) is amenable, thus
cyclic. This shows t commutes with every element of Ra(G). Since t was arbitrary, Ra(G) ⊆
Z(G) = {e}.
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Now we wish to show that none of the point-stabilizers Gx for x ∈ ∂FG can be nontriv-
ial. Assume otherwise. Recall that Gx is always amenable - see, for example [BKKO17,
Proposition 2.7]. This tells us that Gx = ⟨s⟩ for some x ∈ ∂FG and s ̸= e. If Gx were
finite, it follow from

⋂
y∈∂FGGy = Ra(G) = {e} that there are y1, . . . , yn ∈ ∂FG with

Gx ∩ Gy1 ∩ · · · ∩ Gyn = {e}. This contradicts Lemma 5.5.10. If Gx is infinite cyclic, this
tells us that there is some y ∈ ∂FG with Gx ̸= Gy. Without loss of generality, Gx ̸⊆ Gy,
and so Gx ∩ Gy = ⟨sn⟩ for some |n| ≥ 2. Again, Lemma 5.5.10 gives us that there is
some r ∈ G with rsr−1 = sm for some |m| ≥ 2. It is easy to show that, inductively,
rksr−k = sm

k
, and so rk ⟨s⟩ r−k converges to {e} in the Chabauty topology. This can

never happen if Gx ̸= {e}, as {Gx}x∈∂FG is an amenable uniformly recurrent subgroup -
see [Ken20, Remark 4.3]. ■

Proof of Theorem 5.5.8. By Proposition 5.5.11, any such group is C*-simple. Assume N
is a nontrivial normal subgroup, and CG(N) ̸= {e}. We know that G being C*-simple
implies N is C*-simple by [BKKO17, Theorem 1.4], and so Z(N) = N ∩ CG(N) is trivial.
Thus, if we choose nontrivial x ∈ N and y ∈ CG(N), then ⟨x, y⟩ ∼= ⟨x⟩× ⟨y⟩. Such a group
is both amenable and non-cyclic, contradicting our assumption. Hence, any nontrivial
normal subgroup has trivial centralizer, and so by Theorem 5.1.3, we are done. ■

Recall that the free Burnside group B(m,n) is the universal group on m generators
satisfying xn = e for all elements x in the group. The Burnside problem, which was one
of the largest open problems in group theory, asked whether such groups are always finite.
The answer, as it turns out, is no, and in addition, some of these groups are C*-simple -
see [BKKO17, Corollary 6.14]. In particular, they remark that for any m ≥ 2 and n odd
and sufficiently large, any non-cyclic subgroup contains a copy of the non-amenable group
B(2, n). Hence, we obtain the following:

Example 5.5.12. Assume m ≥ 2 and n is prime and sufficiently large. Then any non-
trivial normal subgroup of B(m,n) is relatively C*-simple.

5.5.5 A remark on Thompson’s group F

Thompson’s group F was the original candidate counterexample for the now-disproven
Day-von Neumann conjecture, which stated that a group is non-amenable if and only if it
contains a copy of F2, the free group on two generators. A good introduction to this, and
related groups, can be found in [CFP96]. It is known that F does not contain a copy of F2,
but whether or not it is amenable is still a large open question in group theory. However,
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it is known that F is non-amenable if and only if it is C*-simple - see [LM18, Theorem 1.6].
Hence, with a bit of extra work, we obtain the following equivalence:

Theorem 5.5.13. Thompson’s group F is non-amenable if and only if its derived subgroup
[F, F ] is relatively C*-simple in F .

Proof. Relative simplicity of [F, F ] in F would imply that both [F, F ] and F are C*-simple,
in particular non-amenable. It remains to prove the converse.

Assume F is non-amenable, hence C*-simple. It is known that every proper quotient of
F is abelian [CFP96, Theorem 4.3], or equivalently, [F, F ] ⊆ N for any normal subgroup
N ◁ F with N ̸= {e}. In particular, we must have that CF ([F, F ]) = {e}, otherwise [F, F ]
would be abelian (and thus F would be amenable). By Theorem 5.1.3, we are done. ■

This shows, for example, that to prove amenability of F , it would suffice to construct a
non-faithful unital completely positive map ϕ : C∗

λ(F )→ B(H) that is a *-homomorphism
on C∗

λ([F, F ]).
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Chapter 6

A generalized Powers averaging
property for commutative crossed
products

6.1 Introduction

The notion of Powers’ averaging property for discrete groups has played an important role
in recent years in questions about simplicity related to reduced group C*-algebras and
reduced crossed products. In this paper, we introduce a generalized version of Powers’
averaging property for reduced crossed products of the form C(X) ⋊λ G, and prove that
it is equivalent to simplicity of the crossed product. We then derive various consequences.

First, we recall the notion of Powers’ averaging property, along with a brief history
of recent applications. Let G be a countable discrete group, and let P (G) denote the
set of probability measures on G. For convenience, we will denote the finitely supported
probability measures on G by Pf (G). Recall that we canonically have an action of P (G)
on any G-C*-algebra A as follows: given µ ∈ P (G) and a ∈ A, we let

µa =
∑
g∈G

µ(g)(g · a).

The group G is said to be C*-simple if its reduced group C*-algebra C∗
λ(G) is simple.

It was shown independently in [Ken20, Theorem 6.3] and [Haa16, Theorem 4.5] that C*-
simplicity is equivalent to an averaging property originally considered by Powers, which

67



can most conveniently be stated as follows: G is said to have Powers’ averaging property
if for any a ∈ C∗

λ(G), we have

τλ(a) ∈ {µa | µ ∈ Pf (G)}.

Here, τλ denotes the canonical trace on C
∗
λ(G), and we are canonically viewing C ⊆ C∗

λ(G).
The set Pf (G) above can be replaced by P (G) instead. It is also clear that it suffices to
check only the a ∈ C∗

λ(G) satisfying τλ(a) = 0, as it is always possible to “normalize” an
arbitrary a ∈ C∗

λ(G) by considering a− τλ(a).
It was later shown by Hartman and Kalantar in the proof of [HK17, Theorem 5.1]

that averaging with respect to all of Pf (G) is not necessary, and that if G is countable,
then Powers’ averaging property for C∗

λ(G) is equivalent to the existence of a single measure
µ ∈ P (G) (not guaranteed to have finite support) satisfying µna→ τλ(a) for all a ∈ C∗

λ(G).

A generalization of Powers’ averaging property to reduced (twisted) crossed products
of unital C*-algebras and C*-simple groups was given by [BK16, Section 3]. They showed
that the same averaging property holds for elements a ∈ A⋊λG satisfying E(a) = 0, where
E : A⋊λ G→ A denotes the canonical conditional expectation, i.e.

0 ∈ {µa | µ ∈ Pf (G)}.

The ideas mentioned above were used by the first named author and Kalantar in [AK20]
to show that if G is C*-simple and the action of G on a compact Hausdorff space X is
minimal, then not only is the reduced crossed product C(X) ⋊λ G simple, but so is any
intermediate C*-algebra lying between C∗

λ(G) and C(X)⋊λ G.

Of course, if G is not C*-simple, then A⋊λ G can never have Powers’ averaging prop-
erty, but it is still possible for the crossed product to be simple. An easy example is
C(T) ⋊λ Z, where Z acts on the circle T by an irrational rotation. For this reason, we
introduce a generalized version of Powers’ averaging which does turn out to be equivalent
to simplicity in the end. Let X be a compact Hausdorff space equipped with an action of
G by homeomorphisms.

We define in Section 6.2, and in particular in Definition 6.2.3, the spaces P (G,C(X))
and Pf (G,C(X)) of what we call generalized (G,C(X))-probability measures. Given an
inclusion of unital G-C*-algebras C(X) ⊆ A, the space P (G,C(X)) canonically admits a
left action on A, and a right action on the state space S(A). With this, we are able to
conveniently generalize Powers’ averaging property to crossed products as follows:

Definition 6.1.1. Let G be a countable discrete group acting on a compact Hausdorff
space X by homeomorphisms, and let E : C(X) ⋊λ G → C(X) denote the canonical
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conditional expectation. We say that C(X) ⋊λ G has the generalized Powers’ averaging
property if for every a ∈ C(X)⋊λ G with E(a) = 0, we have

0 ∈ {µa | µ ∈ Pf (G,C(X))}.

One might define other generalized analogues of Powers’ averaging property, for example
requiring that E(a) lie in the above set given any a ∈ C(X)⋊λG not necessarily satisfying
E(a) = 0. It is not immediately obvious, however, that this is equivalent with the version
in Definition 6.1.1, as considering a − E(a) for an arbitrary a ∈ C(X) ⋊λ G just tells us
that for any ε > 0, there is a µ ∈ Pf (G,C(X)) with the property that ∥µa− µE(a)∥ < ε.
However, unlike in the case where C(X) = C, we do not have that µE(a) = E(a) in general.
Hence, our first main result is perhaps a bit surprising:

Theorem 6.1.2. Let G be a countable discrete group acting on a compact Hausdorff space
X by homeomorphisms, and assume that the action is minimal. Let E : C(X)⋊λG→ C(X)
denote the canonical conditional expectation. The following are equivalent:

1. C(X)⋊λ G is simple.

2. C(X)⋊λ G has the generalized Powers’ averaging property.

3. E(a) ∈ {µa | µ ∈ Pf (G,C(X))} for all a ∈ C(X)⋊λ G.

4. ν(E(a)) ∈ {µa | µ ∈ Pf (G,C(X))} for all a ∈ C(X)⋊λ G and ν ∈ P (X).

Next we generalize Hartman and Kalantar’s results. It is worth noting that they operate
under a slightly different action of P (G) on any G-C*-algebra, with a convolution product
given by

µ ∗ a =
∑
g∈G

µ(g)(g−1 · a)

for any µ ∈ P (G), and a left action of P (G) on S(A) given by

µ ∗ ϕ =
∑
g∈G

µ(g)(g · ϕ).

However, this is only a minor technicality to keep in mind, and it is easy to rephrase their
results (which we do) in terms of the actions we use in our paper.

As previously mentioned, they show that Powers’ averaging property for C∗
λ(G) is equiv-

alent to the existence of a measure µ ∈ P (G) with the property that µna→ τλ(a) for any
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a ∈ C∗
λ(G) [HK17, Theorem 5.1]. As a consequence, the only state ϕ ∈ S(C∗

λ(G)) that
is µ-stationary (that is, satisfying ϕµ = ϕ) is the canonical trace τλ, and this is in fact a
characterization of C*-simplicity of G [HK17, Theorem 5.2]. Similar result holds in the
crossed product setting:

Theorem 6.1.3. Let G be a countable discrete group acting on a compact Hausdorff space
X by homeomorphisms, and assume that the action is minimal. Let E : C(X)⋊λG→ C(X)
denote the canonical conditional expectation. If C(X) ⋊λ G is simple, then there is a
generalized measure µ ∈ P (G,C(X)) with the property that µna → 0 whenever E(a) = 0.
Optionally, we may also require that µ have full support.

Corollary 6.1.4. Let G be a countable discrete group acting on a compact Hausdorff space
X by homeomorphisms, and assume that the action is minimal. Let E : C(X)⋊λG→ C(X)
denote the canonical conditional expectation. Then the crossed product C(X)⋊λG is simple
if and only if there is some µ ∈ P (G,C(X)) with full support and with the property that
any µ-stationary state on C(X)⋊λG is of the form ν ◦E for some µ-stationary ν ∈ P (X).

It is worth noting in Corollary 6.1.4 that, given a generalized measure µ ∈ P (G,C(X)),
there is no guarantee that there be a unique µ-stationary measure ν ∈ P (X). If one could
strengthen the averaging in Theorem 6.1.2 (4) to work with a single measure, for example
if there were some ν ∈ P (X) and µ ∈ P (G,C(X)) such that µna → ν(E(a)) for any
a ∈ C(X)⋊λ G, then it would be possible to obtain uniqueness of ν as well. However, we
were unable to prove such a result.

Our first application of Powers’ averaging property is a natural generalization of the
main result in [AK20].

Theorem 6.1.5. Let G be a countable discrete group, and assume that C(Y ) ⊆ C(X) is
an equivariant inclusion of commutative unital G-C*-algebras. Assume moreover that the
action of G on X is minimal. If C(Y )⋊λG is simple, then every intermediate C*-algebra
A satisfying C(Y )⋊λ G ⊆ A ⊆ C(X)⋊λ G is simple.

One other result of Hartman and Kalantar that we generalize is the following. Denote
the space of amenable subgroups of G by Suba(G). This is naturally a compact Hausdorff
space if we equip it with the Chabauty topology, which is the topology induced by viewing
this canonically as a subset of 2G (the power set of G), and it also carries a G-action
by homeomorphisms given by conjugation. It has been known for a few years that the
dynamics on this space characterizes C*-simplicity, with [Ken20, Theorem 4.1] essentially
stating that G is C*-simple if and only if {{e}} is the unique minimal component in
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Suba(G), and [HK17, Corollary 5.7] stating that C*-simplicity is equivalent to unique
stationarity of δ{e} with respect to some µ ∈ P (G).

The dynamical analogue for crossed products C(X) ⋊λ G (where X is minimal) is a
result of Kawabe [Kaw17, Theorem 6.1]. Consider the space

Suba(X,G) := {(x,H) | x ∈ X,H ≤ Gx, and H amenable} ,

where Gx denotes the stabilizer subgroup of x. This is again a compact Hausdorff space
with G-action given by s · (x,H) = (sx, sHs−1), and Kawabe’s result amounts to saying
that C(X) ⋊λ G is simple if and only if the only minimal component in Suba(X,G) is
X × {{e}}. This hints that there should also be a “unique stationarity result” involving
measures supported on this minimal component.

Corollary 6.1.6. Let G be a countable discrete group acting on a compact Hausdorff space
X by homeomorphisms, and assume that the action is minimal. Let Suba(X,G) denote
Kawabe’s generalized space of amenable subgroups, and view C(X) ⊆ C(Suba(X,G)) as
dual to the canonical projection Suba(X,G) ↠ X mapping (x,H) to x. The crossed product
C(X) ⋊λ G is simple if and only if there is some µ ∈ P (G,C(X)) with the property that
any µ-stationary measure in P (Suba(X,G)) is supported on X × {{e}}.

6.2 The space of generalized probability measures

To establish notation, G will denote a countable discrete group, and X will denote a
compact Hausdorff space which G acts on by homeomorphisms. All C*-algebras and
morphisms are assumed to be unital.

We define the notion of a generalized probability measure. As motivation, consider the
case of a G-C*-algebra A. Given a fixed a ∈ A, any probability measure µ ∈ P (G) provides
a convenient way of representing a convex combination of the elements {g · a | g ∈ G}.
Namely, we may define µa :=

∑
g∈G µ(g)g · a.

With this in mind, we want a space of generalized probability measures which represents
C(X)-convex combinations. For convenience, we first review this notion here:

Definition 6.2.1. Assume C(X) ⊆ A is an inclusion of unital C*-algebras, and let K ⊆ A.
We say that K is C(X)-convex if, given finitely many f1, . . . , fn ∈ C(X) with

∑n
i=1 f

2
i = 1,

and any a1, . . . , an ∈ K, we have
∑n

i=1 fiaifi ∈ K. Such a sum is called a C(X)-convex
combination of a1, . . . , an.
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Remark 6.2.2. The usual notion of C(X)-convex combinations is slightly more general,
and deals with sums of the form

∑n
i=1 f

∗
i aifi, where

∑n
i=1 f

∗
i fi = 1 and fi is no longer

assumed to be positive. For our purposes, we will stick with the definition given in Def-
inition 6.2.1, as working with positive fi is in particular necessary for Lemma 6.4.1 later
on.

If C(X) ⊆ A is an inclusion of unital G-C*-algebras, and a ∈ A, we want our
notion of generalized probability measures to represent C(X)-convex combinations of
{g · a | g ∈ G}.

Definition 6.2.3. Consider a formal sum

µ =
∑
s∈G

∑
i∈Is

fisfi

(where all Is are disjoint), with the properties fi ≥ 0, fi ̸= 0, and
∑

s∈G
∑

i∈Is f
2
i = 1.

Equivalenty, we may also combine the above double-sum into a single sum

µ =
∑
i∈I

fisifi

if we allow repetition among the group elements si. We say that µ is a generalized
(G,C(X))-probability measure, and denote the set of all such generalized measures by
P (G,C(X)). The set of all finite-sum generalized measures is denoted by Pf (G,C(X)).
Given a unital G-C*-algebra A containing an equivariant copy of C(X), and any µ =∑

i∈I fisifi ∈ P (G,C(X)), we have a unital and completely positive map on A given by

µa =
∑
i∈I

fi(si · a)fi.

Moreover, this induces a right action on the state space S(A), given by (ϕµ)(a) = ϕ(µa).

Remark 6.2.4. We note a couple of things. First, observe that for a fixed s ∈ G, it is in
general not possible to simplify an expression of the form f1sf1 + f2sf2 as a single hsh for
some h ∈ C(X). This is a consequence of noncommutativity. If C(X) ⊆ A and we were
to consider the action of this element on some a ∈ A, this becomes

f1(s · a)f1 + f2(s · a)f2,

which in general is not equal to any h(s ·a)h for any h ∈ C(X). Because of this, repetition
of group elements is allowed, and this is also reasoning behind the choice of terminology
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and notation, namely “finite-sum” and Pf (G,C(X)), as opposed to “compactly supported”
and Pc(G,C(X)). Given a generalized probability measure µ =

∑
i∈I fisifi, it is possible

to have infinitely many elements i ∈ I with si all being equal. In other words, it is possible
to have an infinite sum (which doesn’t necessarily simplify to a finite sum) that is still
“compactly supported” on G.

The rest of this section is dedicated to proving various technicalities and basic properties
of the space P (G,C(X)). First, the following is an easy exercise in functional analysis:

Lemma 6.2.5. Assume X is a Banach space, and
∑

i∈I xi is an infinite unordered sum.
Then this sum converges if and only if for all ε > 0, there exists a finite set F ⊆ I such

that for all finite sets J ⊆ I \ F , we have
∥∥∥∑j∈J xj

∥∥∥ < ε.

From this, we obtain two important results:

Corollary 6.2.6. Any µ =
∑

i∈I fisifi in P (G,C(X)) has the property that I is countable.
In particular, P (G,C(X)) is indeed a set.

Proof. Consider the sum
∑

i∈I f
2
i = 1 and ε = 1

n
(n ∈ N) in Lemma 6.2.5. Then necessarily,

only finitely many f 2
i can have norm at least 1

n
. Hence, at most countably many fi can be

nonzero. ■

Corollary 6.2.7. Assume C(X) ⊆ A is an inclusion of G-C*-algebras, µ =
∑

i∈I fisifi ∈
P (G,C(X)), and a ∈ A. Then the sum given by

∑
i∈I fi(si · a)fi is convergent, or in other

words, the value µa is well-defined. Moreover, the map a 7→ µa is unital and completely
positive.

Proof. We first prove this for positive a. Let ε > 0, and let F ⊆ I be such that for all

finite J ⊆ I \ F , we have
∥∥∥∑j∈J f

2
j

∥∥∥ < ε. Then∥∥∥∥∥∑
j∈J

fj(sj · a)fj

∥∥∥∥∥ ≤ ∥a∥
∥∥∥∥∥∑
j∈J

f 2
j

∥∥∥∥∥ < ε ∥a∥ .

To see that general values of a work, let µF =
∑

i∈F fisifi for finite F ⊆ I. Writing a as

a finite linear combination of four positive elements
∑4

k=1 ckak, we have that each of the
nets (µFak)F converges for each k. In particular, the net

µFa =
4∑

k=1

ckµFak
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must therefore also be convergent. The fact that a 7→ µa is completely positive follows
from the fact that a 7→ µFa is completely positive for each finite F ⊆ I. ■

Similar to how P (G) is a convex semigroup, we have that the spaces Pf (G,C(X)) and
P (G,C(X)) also form semigroups, and moreover satisfy an appropriate notion of C(X)-
convexity.

Proposition 6.2.8. The space Pf (G,C(X)) is C(X)-convex, in the sense that given
finitely many {gj}j∈J ⊆ C(X) with

∑
j∈J g

2
j = 1 and any {µj}j∈J ⊆ Pf (G,C(X)) with

µj =
∑

i∈Ij fisifi (and all index sets Ij disjoint for distinct values of j), we have that∑
j∈J

gjµjgj :=
∑
j∈J

∑
i∈Ij

gjfisifigj

also lies in Pf (G,C(X)). The same is true for P (G,C(X)), except that J can be infinite.

Proof. We prove the case of P (G,C(X)), as the case of Pf (G,C(X)) is almost the same
except without needing to worry about convergence. Observe that, given any finite subsets
F ⊆ J and Fj ⊆ Ij for j ∈ F , we have∑

j∈F

∑
i∈Fj

g2j f
2
i =

∑
j∈F

g2j
∑
i∈Fj

f 2
i ≤

∑
j∈F

g2j · 1 ≤ 1.

Moreover, given ε > 0, if we choose F ⊆ J finite with
∑

j∈J g
2
j ≥ 1− ε and finite Fj ⊆ Ij

for j ∈ F with
∑

i∈Fj
f 2
i ≥ 1− ε, then∑

j∈F

∑
i∈Fj

g2j f
2
i =

∑
j∈F

g2j
∑
i∈Fj

f 2
i ≥

∑
j∈F

g2j · (1− ε) ≥ (1− ε)2.

This proves that
∑

j∈J
∑

i∈Ij g
2
j f

2
i = 1. ■

It is perhaps worthwhile to do an example of a C(X)-convex combination.

Example 6.2.9. Consider X = [0, 1], let G be some group acting on X, let s and t be
distinct group elements, and consider the following set of generalized probability measures
and coefficients:

µ1 =
√
xs
√
x+
√
1− xt

√
1− x

µ2 =
√
1− xs

√
1− x+

√
xt
√
x

g1 =
1√
2

g2 =
1√
2
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We have that

g1µ1g1 + g2µ2g2 = (
1√
2

√
x)s(

1√
2

√
x) + (

1√
2

√
1− x)s( 1√

2

√
1− x)

+ (
1√
2

√
x)t(

1√
2

√
x) + (

1√
2

√
1− x)t( 1√

2

√
1− x)

which cannot be simplified further (see Remark 6.2.4), and is left as-is, with group elements
being repeated in the expression.

Remark 6.2.10. Given an inclusion of G-C*-algebras C(X) ⊆ A, a ∈ A, finitely many
{gj}j∈J ⊆ C(X) with

∑
j∈J g

2
j = 1, and {µj}j∈J ⊆ Pf (G,C(X)), we have that(∑
j∈J

gjµjgj

)
(a) =

∑
j∈J

gjµj(a)gj.

Consequently,
{µa | µ ∈ Pf (G,C(X))}

is C(X)-convex as well. In fact, it is the smallest G-invariant, C(X)-convex subset of A
containing a.

Now we define a semigroup structure on Pf (G,C(X)) and P (G,C(X)).

Proposition 6.2.11. The space P (G,C(X)) is a semigroup under the following multipli-
cation: given µ =

∑
i∈I fisifi and ν =

∑
j∈J gjtjgj, let

µν :=
∑
i∈I

∑
j∈J

(fi(sigj))(sitj)((sigj)fi).

Moreover, Pf (G,C(X)) is a subsemigroup of P (G,C(X)).

Proof. Observe that, given any finite subsets FI ⊆ I and FJ ⊆ J , we have∑
i∈FI

∑
j∈FJ

(f 2
i (sigj))

2 =
∑
i∈FI

f 2
i si

(∑
j∈FJ

g2j

)
≤
∑
i∈FI

f 2
i si1 ≤ 1.

Moreover, any finite subset of I×J is contained in a set of the form FI×FJ . Finally, given
ε > 0, if one chooses FI and FJ to be such that

∑
i∈FI

f 2
i ≥ 1 − ε and

∑
j∈FJ

g2j ≥ 1 − ε,
then we have∑

i∈FI

∑
j∈FJ

(fi(sigj))
2 =

∑
i∈FI

fisi

(∑
j∈FJ

g2j

)
≥
∑
i∈FI

fisi(1− ε) ≥ (1− ε)2.
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This proves that
∑

i∈I
∑

j∈J(fi(sigj))
2 = 1, and so this multiplication on P (G,C(X)) is

well-defined. Associativity is tedious but not hard to check. The fact that Pf (G,C(X)) is
a subsemigroup is clear. ■

Remark 6.2.12. The multiplication on P (G,C(X)) is defined in such a way so that if
C(X) ⊆ A is an inclusion of unital G-C*-algebras, µ1, µ2 ∈ P (G,C(X)), and a ∈ A, then

(µ1µ2)(a) = µ1(µ2a).

In other words, we canonically have a left semigroup action of P (G,C(X)) on A, and
consequently a right semigroup action on S(A).

Let C(X) ⊆ A be an inclusion of unital G-C*-algebras, and let µ ∈ P (G,C(X)) be a
generalized measure. We say that a state ϕ ∈ S(A) is µ-stationary if ϕµ = ϕ, and denote
the set of all µ-stationary states on A by Sµ(A). Observe that this definition makes sense
even for C*-subalgebras that don’t necessarily contain C(X), but are at least µ-invariant.
It is not hard to see that µ-stationary states always exist and can be extended to a larger
C*-algebra. The proof is a mere modification of [HK17, Proposition 4.2]. We include it
for the sake of completeness.

Proposition 6.2.13. Suppose that C(X) ⊆ A is an inclusion of unital G-C*-algebras, µ ∈
P (G,C(X)), and B ⊆ A is a µ-invariant unital C*-subalgebra. Then every µ-stationary
state τ ∈ Sµ(B) can be extended to a µ-stationary state η ∈ Sµ(A). In particular, Sµ(A)
is always nonempty.

Proof. Let K = {ζ ∈ S(A) | ζ|B = τ}, a compact convex set. For any µ ∈ P (G,C(X)),
the map Φµ : K → K defined by Φµ(ζ) = ζµ is an affine continuous map. It is well-known
that Φµ has a fixed point, say η. Then, η ∈ Sµ(A) and η|B = τ . To see that Sµ(A) is
nonempty, let B = C. ■

We wish to define an appropriate notion of full support for measures in P (G,C(X)).
For this, the following observation will come in useful.

Lemma 6.2.14. Assume X is a Banach space, and
∑

i∈I xi is an infinite unordered sum
that converges in norm. Then given any J ⊆ I, the sum

∑
j∈J xj also converges.

Proof. We know by Lemma 6.2.5 that given any ε > 0, there is a finite subset F ⊆ I such
that for any finite subset E ⊆ I \F , we have

∥∥∑
i∈E xi

∥∥ < ε. But then, letting F ′ = F ∩J ,
it is clear that for any finite set E ′ ⊆ J \ F ′, we also have

∥∥∥∑j∈E′ xj

∥∥∥ < ε. ■
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Definition 6.2.15. We say that a generalized measure µ ∈ P (G,C(X)) has full support
if, writing

µ =
∑
s∈G

∑
i∈Is

fisfi,

we have that for each s ∈ G, there is some δ > 0 such that
∑

i∈Is f
2
i ≥ δ. Equivalently (by

compactness of X), given any s ∈ G and x ∈ X, we can find i ∈ Is such that fi(x) > 0.

6.3 Proof of generalized Powers averaging

In this section, we prove Theorem 6.1.2. To give a brief overview, we first recall how this
is proven in the case of the usual reduced group C*-algebra.

Both in [Ken20] and [Haa16], which independently prove C*-simplicity is equivalent
to Powers’ averaging property, the key tool used was the dynamical characterization of
C*-simplicity of G in terms of its action on the Furstenberg boundary ∂FG (see [KK17,
Theorem 1.5] or [BKKO17, Theorem 1.1]). The Furstenberg boundary of a group was
originally developed by Furstenberg [Fur73] (see also [Fur63]) as a topological object, but
it can also be realized as the G-injective envelope of the complex numbers C (see [KK17,
Definition 3.1, Theorem 3.11]). Briefly, we recall the topological characterization below:

Definition 6.3.1. Let X be a G-space. A measure ν ∈ P (X) is called contractible if

{δx | x ∈ X} ⊆ Gν
w*
. A G-boundary is a G-space X with the additional property that

every measure ν ∈ P (X) is contractible.

It is worth noting that, from the perspective of convexity, being a G-boundary is the
same as saying that P (X) is irreducible as a compact convex G-space.

Theorem 6.3.2. There is a universal G-boundary ∂FG (known as the Furstenberg bound-
ary of G) with the property that every G-boundary X is the image of ∂FG under a surjective,
G-equivariant map.

It is shown in [Ken20] that C*-simplicity of G is equivalent to {τλ} being the unique
G-boundary in S(C∗

λ(G)). A similar result can consequently be achieved in the entire dual
space of C∗

λ(G), and a Hahn-Banach separation argument yields that this is equivalent to
Powers’ averaging property.

There is a generalized notion of boundaries introduced in [KS19, Section 7], which is
used for dealing with noncommutative crossed products A ⋊λ G. However, this notion is
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more technical, as it involves working with matrix convex sets and matrix state spaces. It
is possible to develop a similar notion, but using only usual convex sets instead of matrix
convex ones, and use this in the case of commutative crossed products C(X)⋊λG. However,
[Kaw17], which deals with proving equivalences of simplicity of such crossed products, does
not develop such a theory of generalized boundaries. Instead, the generalized notion of
boundary necessary here is developed in [Nag20, Section 3], albeit from the perspective of
compact sets and their measures rather than from convex sets.

From Naghavi’s results, we use (part of) [Nag20, Theorem 3.2] and the discussion
following it, which we quickly paraphrase as follows:

Theorem 6.3.3. For a countable discrete group G, let X be a minimal G-space, and let
C(X) ⊆ C(Y ) be an inclusion of unital G-C*-algebras. The following are equivalent:

1. C(Y ) is a G-essential extension of C(X).

2. Given any measure ν ∈ P (Y ) with the property that the restriction ν|C(X) ∈ P (X) is
contractible, we have that ν is also contractible.

In particular, the above is true for the G-injective envelope C(Y ) = IG(C(X)), which is a
maximal G-essential extension of C(X).

Definition 6.3.4. Assume G is a countable discrete group, X is a minimal G-space, and
C(X) ⊆ C(Y ) is an inclusion of unital G-C*-algebras. We say that Y is a (G,X)-boundary
if C(Y ) satisfies any of the equivalent conditions above. Furthermore, we let ∂F (G,X)
denote the Gelfand spectrum of the G-injective envelope of C(X), i.e. IG(C(X)) =
C(∂F (G,X)). It can be shown that ∂F (G,X) is universal among all (G,X)-boundaries.

We also recall the result [Kaw17, Theorem 3.4] of Kawabe characterizing the ideal
intersection property for C(X)⋊λ G in the special case of minimal dynamical systems (in
which case, simplicity and the intersection property coincide).

Theorem 6.3.5. For a countable discrete group G, let X be a minimal G-space, and let
∂F (G,X) be the Gelfand spectrum of the G-injective envelope of C(X). Then the following
are equivalent:

1. The crossed product C(∂F (G,X))⋊λ G is simple.

2. The crossed product C(X)⋊λ G is simple.

3. The action of G on ∂F (G,X) is free.
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With the above, we are ready to tackle proving our generalized version of Powers’
averaging property. The following lemma shows that, although measures on minimal spaces
need not be contractible in general, they have the weaker property that arbitrary measures
can still be pushed to Dirac masses using P (G,C(X)).

Lemma 6.3.6. Assume X is a minimal G-space, and fix any x ∈ X. There is a net

(µλ) ⊆ Pf (G,C(X)) with the property that for any ν ∈ P (X), we have νµλ
w*−→ δx.

Proof. Fix an open neighbourhood V of x. Observe that, given any y ∈ X, we have that
Gy is dense in X by minimality. In particular, there exists some s ∈ G with the property
that sy ∈ V , or equivalently, y ∈ s−1V . It follows that the sets sV form an open cover
of X, and so there is some finite subcover s1V, . . . , snV . Now let F1, . . . , Fn ∈ C(X) be a

partition of unity subordinate to this open cover, let fi = F
1/2
i , and let

µV =
n∑
i=1

fisifi.

It is not hard to see that, given any ν ∈ P (X), νµV is a measure with support contained
in V . It follows that the net (νµV ), indexed by open neighbourhoods of x ordered under
reverse inclusion, converges weak* to δx. ■

This allows us to push arbitrary measures towards the trivial boundary in S(C(X)⋊λG)
in the case of simple crossed products.

Proposition 6.3.7. Let X be a minimal G-space, and assume that the crossed product
C(X)⋊λ G is simple. Then given any state ϕ ∈ S(C(X)⋊λ G), we have that

{ν ◦ E | ν ∈ P (X)} ⊆ {ϕµ | µ ∈ Pf (G,C(X))}
w*
.

Proof. For convenience, denote the latter set above by K. By G-invariance, convexity, and
weak*-closure, it suffices to prove that K contains δx ◦ E for any single point x ∈ X.

To this end, let IG(C(X)) = C(∂F (G,X)) be the G-injective envelope of C(X). Extend

the state ϕ to a state ϕ̃ on C(∂F (G,X)) ⋊λ G. By Lemma 6.3.6, we can find a net

(µλ) ⊆ Pf (G,C(X)) with the property that ϕ̃|C(X)µλ → δx for some x ∈ X. Dropping to

a subnet if necessary, we have that ϕ̃µλ → ψ ∈ S(C(∂F (G,X)) ⋊λ G) with the property
that ψ|C(X) = δx. Observe that ψ|C(X)⋊λG ∈ K.

Minimality tells us that ψ|C(X) is contractible, and so ψ|C(∂F (G,X)) is contractible as well
by Theorem 6.3.3. This tells us that there is a net (gi) with ψ|C(∂F (G,X))gi → δy for some
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y ∈ ∂F (G,X). Again dropping to a subnet yields a state η ∈ S(C(∂F (G,X)) ⋊λ G) with
the property that η|C(∂F (G,X)) = δy. Observe once more that η|C(X)⋊λG ∈ K.

We claim that η|C(X)⋊λG is the state we are looking for. Simplicity of C(X) ⋊λ G
implies that the action of G on ∂F (G,X) is free by Theorem 6.3.5. From here, the rest
is a common argument. We know that C(∂F (G,X)) lies in the multiplicative domain of
η. Thus, it suffices to show that η(λt) = 0 for t ̸= e, as this will imply that for any
f ∈ C(∂F (G,X)), we have

η(fλt) = f(y)η(λt) = 0.

Now let f ∈ C(∂F (G,X)) be such that f(y) = 1 and f(ty) = 0. This is possible because
ty ̸= y. We have

f(y)η(λt) = η(fλt) = η(λt(t
−1 · f)) = η(λt)f(ty).

This forces η(λt) = 0, as desired. ■

The fact that arbitrary functionals on a C*-algebra are a finite linear combination of
states gives us a similar result on the entire dual space (C(X)⋊λ G)

∗.

Proposition 6.3.8. Let X be a minimal G-space, and assume that the crossed product is
simple. Then given any ω ∈ (C(X)⋊λ G)

∗, we have

{ω(1)ν ◦ E | ν ∈ P (X)} ⊆ {ωµ | µ ∈ Pf (G,C(X))}
w*
.

Proof. Again, for convenience, denote this latter set by K. Write ω =
∑4

i=1 ciϕi, a linear
combination of four states. By Proposition 6.3.7, we can find a net (µλ) ⊆ Pf (G,C(X))
with the property that ϕ1µλ → ν1 ◦ E. Dropping to a subnet if necessary, we may also
assume that (ϕiµλ) are all convergent to some ϕ′

i for i ≥ 2. In particular, (ωµλ) converges
to some ω′ ∈ K with the property that ω′ = c1ν1 ◦ E +

∑4
i=2 ciϕ

′
i. Noting that the set

{ν ◦ E | ν ∈ P (X)} is weak*-closed and closed under the right action of Pf (G,C(X)),
repeating this averaging trick three more times nets us (no pun intended) that there is
some element in K of the form η ◦ E satisfying η(1) = ω(1).

Writing η =
∑4

i=1 diψi as a linear combination of four states on C(X), fixing x ∈ X,
and letting (µj) be as in Lemma 6.3.6, we have that (η ◦ E)µj = (ηµj) ◦ E converges to
ω(1)δx ◦ E, which must lie in K. Minimality of X and G-invariance, weak*-closure, and
convexity of K yield that every ω(1)ν ◦ E lies in K as well. ■
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From here, it is an application of the Hahn-Banach separation argument that gives us
the strong generalized Powers’ averaging property. Conversely, lack of nontrivial ideals
can be directly deduced even from just being able to average elements a ∈ C(X) ⋊λ G
satisfying E(a) = 0.

Proof of Theorem 6.1.2. (1) =⇒ (4) Given that the extreme points of P (X) are the Dirac
masses δx, it suffices to prove the following: if a ∈ C(X)⋊λ G and x ∈ X, then

E(a)(x) ∈ {µa | µ ∈ Pf (G,C(X))}.

Assume otherwise, so that there is some a ∈ C(X)⋊λ G and x ∈ X for which this doesn’t
hold. Then there is some functional ω ∈ (C(X)⋊λ G)

∗ and α ∈ R with the property that

Reω(E(a)(x)) < α ≤ Reω(µa) ∀µ ∈ Pf (G,C(X)).

However, given that ω(E(a)(x)) = ω(1)E(a)(x), and by Proposition 6.3.8, ω(µa) can be
made arbitrarily close to ω(1)(δx ◦ E)(a), this cannot happen.

(4) =⇒ (3) Our aim is to show that we may approximate E(a) by C(X)-convex
combinations of E(a)(x), where x ∈ X. Let a ∈ C(X) ⋊λ G, and let ε > 0. Given any
x ∈ X, by continuity of E(a) ∈ C(X), there is some open neighbourhood Ux of x for which
|E(a)(x)− E(a)(y)| < ε for all y ∈ Ux. By compactness, there is some finite subcover
Ux1 , . . . , Uxn of X. Let Fi be a partition of unity subordinate to the open cover, and let

fi = F
1/2
i . Observe that, given any x ∈ X, we have∣∣∣∣∣

n∑
i=1

fi(x)(E(a)(xi))fi(x)− E(a)(x)

∣∣∣∣∣
=

∣∣∣∣∣
n∑
i=1

fi(x)(E(a)(xi)− E(a)(x))fi(x)

∣∣∣∣∣
≤

n∑
i=1

fi(x)
2 |E(a)(xi)− E(a)(x)|

<
n∑
i=1

fi(x)
2 · ε

= ε

Thus, we have ∥
∑n

i=1 fiE(a)(xi)fi − E(a)∥ < ε. By Remark 6.2.10, we have that E(a) ∈
{µa | µ ∈ Pf (G,C(X))}, as this set is closed under C(X)-convex combinations.
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(3) =⇒ (2) This direction is clear.

(2) =⇒ (1) Let I be any nontrivial ideal of C(X) ⋊λ G, and let a be any nonzero
element of I. Replacing a by a∗a, we may assume without loss of generality that a is
a nonzero positive element. Faithfulness of the canonical expectation tells us that E(a)
is also a nonzero positive element, and so there is some ε > 0 and open subset U ⊆ X
with the property that E(a)(x) > ε for all x ∈ U . Using the same trick as in the proof
of Lemma 6.3.6, minimality of X gives us that X = s1U ∪ · · · ∪ snU for finitely many
si ∈ G. Hence, replacing a by s1a + · · · + sna, we may assume without loss of generality
that E(a) > ε. If we choose µ ∈ P (G,C(X)) so that ∥µ(a− E(a))∥ < ε

2
, then as this value

is in particular self-adjoint, we have that µ(a− E(a)) ≥ − ε
2
. Consequently,

µa = µ(E(a)) + µ(a− E(a)) ≥ ε− ε

2
=
ε

2
.

In particular, µa ∈ I is invertible, which gives us that I is the entire crossed product
C(X)⋊λ G. ■

6.4 Unique stationarity and applications

This section generalizes the various results in [HK17] on equivalence between C*-simplicity
and unique stationarity of the canonical trace in C∗

λ(G), along with its consequences.

It is worth noting that one cannot expect simplicity of C(X) ⋊λ G to be equivalent
to unique stationarity of an element of S(C(X)⋊λ G), even with respect to a generalized
measure µ ∈ P (G,C(X)). This is because of the fact that there may not exist a uniquely
stationary state on C(X), and any µ-stationary state on C(X) will extend to one on the
whole crossed product. The natural fix is to instead expect that the µ-stationary states
on C(X) ⋊λ G all be of the form ν ◦ E, where ν ranges over the µ-stationary measures
ν ∈ P (X). It is also worth noting that one cannot expect to work with the usual notion of
measure µ ∈ P (G), as this would again imply unique stationarity of τλ ∈ S(C∗

λ(G)). How-
ever, this is equivalent to C*-simplicity of G [HK17, Theorem 5.2], which is by no means
necessary for the crossed product C(X)⋊λG to be simple - take, for example, C(T)⋊λ Z,
where Z acts on the circle T by an irrational rotation.

We begin with the observation that averaging elements in the reduced group C*-algebra
C∗
λ(G), even with respect to a generalized measure µ ∈ P (G,C(X)), is enough to average

elements in the crossed product C(X)⋊λ G.
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Lemma 6.4.1. Let X be a minimal G-space, and let µ ∈ P (G,C(X)). Then given any
t ∈ G and f ∈ C(X), we have

∥µ(fλt)∥ ≤ ∥f∥ ∥µλt∥ .

Proof. It is well-known that the crossed product ℓ∞(G) ⋊λ G (the uniform Roe algebra),
can canonically be viewed as a C*-subalgebra of B(ℓ2(G)). Fixing x0 ∈ X gives us a unital
G-equivariant injective *-homomorphism ι : C(X) ↪→ ℓ∞(G), given by ι(f)(t) = f(tx0).
This lets us view C(X)⋊λ G as a C*-subalgebra of B(ℓ2(G)) as well.

Write µ =
∑

i∈I gisigi. Given ξ ∈ ℓ2(G) and r ∈ G, we have

((µ(fλt))ξ)(r) =

(∑
i∈I

gi(sif)(sits
−1
i gi)λsits−1

i
ξ

)
(r)

=
∑
i∈I

gi(rx0)f(s
−1
i rx0)gi(sit

−1s−1
i rx0)ξ(sit

−1s−1
i r).

Now letting |ξ| ∈ ℓ2(G) be given by |ξ| (r) = |ξ(r)|, we note that ∥|ξ|∥ = ∥ξ∥. Moreover,
we have

∥(µ(fλt))ξ∥2 =
∑
r∈G

∣∣∣∣∣∑
i∈I

gi(rx0)f(s
−1
i rx0)gi(sit

−1s−1
i rx0)ξ(sit

−1s−1
i r)

∣∣∣∣∣
2

≤ ∥f∥2
∑
r∈G

(∑
i∈I

gi(rx0)gi(sit
−1s−1

i rx0)
∣∣ξ(sit−1s−1

i r)
∣∣)2

= ∥f∥2 ∥(µλt) |ξ|∥2 .

It follows that ∥µ(fλt)∥ ≤ ∥f∥ ∥µλt∥. ■

It is also an easy remark that Powers’ averaging property can be made to work with
finitely many elements at once.

Lemma 6.4.2. Assume C(X) ⋊λ G has Powers’ averaging property. Then given any
a1, . . . , an ∈ C(X) ⋊λ G satisfying E(ai) = 0, and ε > 0, there is some µ ∈ P (G,C(X))
with the property that ∥µai∥ < ε for all i = 1, . . . , n.

Proof. Let µ1 ∈ P (G,C(X)) be such that ∥µ1a1∥ < ε. Choosing µk+1 ∈ P (G,C(X))
inductively by letting µk+1 be such that ∥µk+1(µk . . . µ1ak+1)∥ < ε, we see that µ = µn . . . µ1

is the generalized measure we are looking for. ■
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Proof of Theorem 6.1.3. First, we claim that there is such a measure that works for all
elements a ∈ C∗

λ(G) ⊆ C(X)⋊λ G satisfying τλ(a) = 0. This is a near-verbatim repeat of
the proof of [HK17, Theorem 5.1]. We repeat the construction of µ here, along with the
appropriate modifications.

Let (nk) be an increasing sequence of positive integers satisfying
(∑k

i=1
1
2i

)nk

< 1
2k
, and

let (ai) be any dense sequence in the unit ball of ker τλ ⊆ C∗
λ(G). Let µ1 ∈ P (G,C(X)) be

anything. Using Lemma 6.4.2, we may inductively build µl for l ≥ 2 so that

∥µlµkr . . . µk1as∥ <
1

2l

for all 1 ≤ s, k1, . . . , kr < l and 0 ≤ r < nl. Here, by r = 0, we mean that µlµkr . . . µk1as
becomes µlas. A tedious computation then shows that µ =

∑∞
l=1

1
2l
µl will satisfy µ

na→ 0
for any a ∈ ker τλ.

To force µ to have full support, observe that if (sn)n∈N is an enumeration of G, then
the measure

ν =
∞∑
n=1

1

2n+1
sn

1

2n+1
∈ P (G,C(X))

has full support. Then fixing any l and letting α > 0 be sufficiently small, we may replace
µl by αν + (1− α)µl and still satisfy the required approximation properties above. Thus,
without loss of generality, some µl has full support, and hence so does µ.

Now, to see that µna → 0 whenever a ∈ C(X) ⋊λ G satisfies E(a) = 0, we first prove
this for elements a0 = f1λt1 + · · · + fnλtn , where ti ̸= e. Note that by Lemma 6.4.1, we
have

∥µna0∥ ≤
n∑
i=1

∥µ(fiλti)∥ ≤
n∑
i=1

∥fi∥ ∥µλti∥ → 0.

Now given an arbitrary a with E(a) = 0, and ε > 0, we may choose a0 as before with
∥a− a0∥ < ε. Choosing N such that, given n ≥ N , we have ∥µna0∥ < ε, we also have

∥µna∥ ≤ ∥µna0∥+ ∥µn(a− a0)∥ < ε+ ε = 2ε.

■

Remark 6.4.3. In the above proof, if we instead wanted to directly construct a generalized
measure µ ∈ P (G,C(X)) with the property that µna → 0 for all a ∈ C(X) ⋊λ G with
E(a) = 0, as opposed to a ∈ C∗

λ(G) with τλ(a) = 0, we would have required separability of
kerE ⊆ C(X)⋊λ G, which requires separability of C(X) (metrizability of X). Proceeding
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with ker τλ ⊆ C∗
λ(G) first and then lifting the averaging to the entire crossed product avoids

this extra assumption. There are natural examples of spaces on which G acts that are not
metrizable. For example, if G is not amenable, then the Furstenberg boundary ∂FG is such
a space [KK17, Corollary 3.17].

For a minimal G-space X, it is well known that if µ ∈ P (G) has full support, then any
µ-stationary state on C(X) is faithful. A similar result holds for generalized probability
measures (with the definition of full support given in Definition 6.2.15).

Lemma 6.4.4. Let X be a minimal G-space. Let µ ∈ P (G,C(X)) be a generalized proba-
bility measure with full support. Then every µ-stationary state on C(X) is faithful.

Proof. Let f ∈ C(X) be such that f ≥ 0 and f ̸= 0. Let µ =
∑

s∈G
∑

i∈Is fisfi be a
generalized probability measure with full support. Since f is nonzero, there exists x0 ∈ X
such that f(x0) > 0. It follows from X being minimal that, for every x ∈ X, there exists
sx ∈ G such that f(s−1

x x) > 0. Moreover, since µ has full support, there exists ix ∈ Isx
such that fi(x) > 0. Therefore,

µ(f)(x) =
∑
s∈G

∑
i∈Is

fi(x)f(s
−1x)fi(x) > fix(x)f(s

−1
x x)fix(x) > 0.

By compactness of X, it follows that there exists a δ > 0 such that µ(f) ≥ δ. Consequently,
for any µ-stationary state τ on C(X), we see that

τ(f) = τ(µ(f)) ≥ δ.

Hence, τ is faithful. ■

Proof of Corollary 6.1.4. Let X be a minimal G-space. Suppose that C(X)⋊λG is simple.
Let µ ∈ P (G,C(X)) be the generalized measure obtained from Theorem 6.1.3 and let τ
be a µ-stationary state on C(X) ⋊λ G. Then, for any a ∈ C(X) ⋊λ G with E(a) = 0, we
have that

τ(a) = τ(µna)→ τ(0) = 0,

and so for general a ∈ C(X)⋊λ G, we have

τ(a) = τ(E(a)) + τ(a− E(a)) = τ(E(a)).

In other words, τ = τ |C(X) ◦ E.
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On the other hand, suppose that there exists a generalized probability measure µ ∈
P (G,C(X)) with full support along with the property that every µ-stationary state on
C(X) ⋊λ G is of the form ν ◦ E for some µ-stationary ν ∈ P (X). By faithfulness of E
and Lemma 6.4.4, every µ-stationary state on C(X) ⋊λ G is faithful. This is enough to
guarantee that the C(X)⋊λ G is simple - the proof is similar to [HK17, Proposition 4.9].

Assume that there was a nontrivial ideal I ⊆ C(X) ⋊λ G. Observe that the quotient
map π : C(X) ⋊λ G → (C(X) ⋊λ G)/I is nonfaithful, as nontrivial ideals always contain
nonzero positive elements. Moreover, the quotient (C(X)⋊λ G)/I is canonically a G-C*-
algebra, with t ∈ G acting by Ad π(λt), and the quotient map π is G-equivariant. In
particular, we still canonically have C(X) ⊆ (C(X) ⋊λ G)/I (under the quotient map π)
by minimality of X, and so there is at least one µ-stationary state ϕ ∈ Sµ((C(X)⋊λG)/I)
by Proposition 6.2.13. The composition ϕ ◦ π is a µ-stationary state on C(X)⋊λG that is
not faithful, contradicting our earlier conclusion. ■

One should notice that G-simplicity doesn’t necessarily pass to sub-algebras and there-
fore, simplicity for invariant sub-algebras of simple crossed products shouldn’t be expected
to hold in general. Consider, for example, any simple C*-algebra A, any C*-simple group
G acting on A trivially, and any abelian C*-subalgebra B ⊆ A. However, given an in-
clusion of unital G-C*-algebras C(Y ) ⊂ C(X) (via a factor map π : X → Y ), since any
G-invariant C*-subalgebra A, C(Y ) ⊂ A ⊂ C(X) is of the form C(Z) where Z is an equiv-
ariant factor of X, and minimality passes to factors, it follows from the characterization
of Kawabe [Kaw17, Theorem 6.1] that C(Z)⋊λ G is simple. We follow arguments similar
to the proof of [AK20, Theorem 1.3] to deal with general intermediate C*-subalgebras
between C(Y )⋊λ G and C(X)⋊λ G, not necessarily of the above form.

Proof of Theorem 6.1.5. By Theorem 6.1.3, there exists a generalized measure µ ∈
P (G,C(Y )) with full support and the property that µna→ 0 whenever a ∈ C(Y )⋊λ G is
such that E(a) = 0. Observe that we canonically have P (G,C(Y )) ⊆ P (G,C(X)). Since
X is minimal and µ has full support, it follows from Lemma 6.4.4 that every µ-stationary
state ν on C(X) is faithful, and since E is also faithful, it follows that every µ-stationary
state on C(X)⋊λG of the form ν ◦E is faithful. We claim that the proof is complete once
we establish that every µ-stationary state τ on C(X)⋊λ G is of the form ν ◦ E.

Indeed, if this is the case, let A be any intermediate C*-algebra of the form C(Y )⋊λG ⊆
A ⊆ C(X)⋊λ G. Suppose that I is a proper closed two-sided ideal of A. Then the action
of G on A induces an action of G on A/I (as I is necessarily G-invariant). Moreover, by
minimality of Y , we also canonically have C(Y ) ⊆ A/I. By Proposition 6.2.13, there exists
a µ-stationary state φ on A/I. Upon composing φ with the canonical quotient map A→
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A/I, we obtain a µ-stationary state φ̃ on A which vanishes on I. Using Proposition 6.2.13
again, extend φ̃ to a µ-stationary state τ on C(X) ⋊λ G. By our assumption, τ being of
the form ν ◦ E, is faithful. But τ |I = 0, which cannot occur if I is nontrivial.

We return to the question of showing that every µ-stationary state on C(X) ⋊λ G is
indeed of the form ν ◦E for some µ-stationary ν ∈ P (X). We claim that µna→ 0 whenever
a ∈ C(X) ⋊λ G (not just C(Y ) ⋊λ G) satisfies E(a) = 0. To see this, first let f ∈ C(X)
and t ̸= e. Lemma 6.4.1 tells us that

∥µn(fλt)∥ ≤ ∥f∥ ∥µnλt∥ → 0.

It follows that for finite linear combinations a0 = f1λt1 + · · ·+ fnλtn , where fi ∈ C(X) and
ti ̸= e, we have µna0 → 0 as well. Finally, let a ∈ C(X) ⋊λ G with E(a) = 0, ε > 0, and
a0 as before with the additional property that ∥a− a0∥ < ε. Then given N ∈ N such that
∥µna∥ < ε for any n ≥ N , we have

∥µna∥ ≤ ∥µna0∥+ ∥µn(a− a0)∥ < ε+ ε = 2ε.

It follows that µna→ 0. The proof of Corollary 6.1.4 shows that any µ-stationary state on
C(X)⋊λ G is of the form we want. ■

With Theorem 6.1.3 in hand, we generalize Hartman and Kalantar’s result on C*-
simplicity being equivalent to unique stationarity of the action of G on the space of
amenable subgroups Suba(G). Recall that Kawabe [Kaw17, Theorem 5.2] introduced the
G-space Suba(X,G) of pairs (x,H), where x ∈ X and H is an amenable subgroup of the
stabilizer group Gx. Observe that the canonical projection Suba(X,G) ↠ X induces an
inclusion C(X) ⊆ C(Suba(X,G)).

Proof of Corollary 6.1.6. There is a G-equivariant, unital and completely positive map
θ : C(X)⋊λG→ C(Suba(X,G)) given by θ(fλt)(x,H) = f(x)1H(t). A similar map can be
found used in the proof of [Kaw17, Theorem 5.2], but a proof of the existence of such a map
is not given. We briefly argue existence here. Given any (x,H) ∈ Suba(X,G), it is not hard
to show that there is a state ϕ ∈ S(C(X)⋊λG) given by ϕ(fλt) = f(x)1H(t). This gives us
a continuous map from Suba(X,G) to S(C(X)⋊λG), and θ : C(X)⋊λG→ C(Suba(X,G))
is dual to this map.

Choose a generalized measure µ ∈ P (G,C(X)) as in Corollary 6.1.4. Now given a
µ-stationary η in P (Suba(X,G)), we have that η ◦ θ : C(X)⋊λG→ C is necessarily of the
form ν ◦ E. In particular, we note that for t ̸= e,

η({(x,H)|t ∈ H}) = η(θ(λt)) = 0.
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Countability of G gives us that
⋃
t ̸=e{(x,H)|t ∈ H} is also a null set, or in other words,

its complement X × {{e}} has measure 1.

Conversely, assume that the crossed product C(X)⋊λG is not simple. Then by [Kaw17,
Theorem 6.1], there must exist a closed G-invariant subset of Z ⊆ Suba(X,G) that does
not intersect X × {{e}}. Observe that we still canonically have C(X) ⊆ C(Z) by mini-
mality of X. Thus, for any µ ∈ P (G,C(X)), if we choose any µ-stationary state on C(Z)
(such a state always exists by Proposition 6.2.13), composing with the canonical quotient
C(Suba(X,G)) ↠ C(Z) gives us a µ-stationary state on C(Suba(X,G)) with support
disjoint from X × {{e}}. ■
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Chapter 7

The ideal intersection property for
essential groupoid C*-algebras

7.1 Introduction

Groupoids provide a framework encompassing both groups and topological spaces, and
provide an abstraction of the notion of a quotient space in these settings, much like stacks
in algebraic geometry. They naturally arise as transformation groupoids encoding the
topological dynamical structure of discrete groups, and as transversal groupoids of folia-
tions in differential geometry. Groupoids arising from these and many other examples are
étale, which is a notion suitably abstracting the topological properties of groupoids aris-
ing from actions of discrete groups. Renault [Ren80] and Connes [Con82], by introducing
various C*-algebraic completions of an appropriate convolution algebra, discovered that
étale groupoids give rise to an extraordinarily rich class of operator algebras. On the other
hand, since the structure of these algebras encodes much of the structure of the underlying
groupoid, they are capable of serving as a proxy for the study of structures relevant to
other areas of mathematics, such as semigroup C*-algebras [CELY17] and Bost-Connes
systems for arbitrary number fields [LLN09]. Furthermore, étale groupoids also naturally
arise from within the theory of operator algebras, where they encode important structural
features through the notion of Cartan subalgebras [Ren08, Li20].

Groupoids appearing in applications are frequently étale or, after choosing a transversal,
Morita equivalent to an étale groupoid. However, they may be non-Hausdorff, and there is
no way to remedy this fact. Nevertheless, even in the non-Hausdorff case, the unit space of
an étale groupoid is typically locally compact and Hausdorff. Therefore, understanding the
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structural properties of the C*-algebras associated to étale groupoids with locally compact
Hausdorff unit spaces is an important challenge at the intersection of operator algebras and
many other areas of mathematics. We meet this challenge in the present article in four ways.
First, we provide a complete characterisation of étale Hausdorff groupoids whose reduced
groupoid C*-algebra is simple. Second, for non-Hausdorff groupoids satisfying the mild
countability assumption of σ-compactness, we characterise the simplicity of their essential
groupoid C*-algebra. It has recently become clear that this C*-algebra, which agrees
with the reduced groupoid C*-algebra in the Hausdorff setting, is the correct replacement
for the reduced groupoid C*-algebra in the non-Hausdorff setting, when searching for an
algebraic-dynamical description of the ideal space of a groupoid C*-algebra. It comes as
a surprise that a careful development of the necessary techniques and notions leads to a
clean characterisation of C*-simplicity also in the non-Hausdorff case. Third, we obtain
appropriate analogues in the setting of groupoids of the averaging results considered by
Powers and many others for reduced group C*-algebras. This allows us to strengthen
previously known results on C*-irreducibility of inclusions arising from groupoids of germs.
Fourth, behind these results lies the development of a novel category of groupoid C*-
dynamical systems, including a theory of boundaries for groupoids that culminates in a
dynamical construction of the Furstenberg boundary of a groupoid.

The first main result of this article completely solves the problem of characterising the
simplicity of reduced groupoid C*-algebras of étale Hausdorff groupoids, and the simplicity
of essential groupoid C*-algebras of σ-compact étale groupoids.

Theorem 7.1.1 (See Theorem 7.7.13). Let G be an étale groupoid with locally compact
Hausdorff space of units. Assume that G is Hausdorff, G is σ-compact or G has a compact
space of units. Then the essential groupoid C*-algebra C∗

ess(G) is simple if and only if G is
minimal and has no essentially confined amenable sections of isotropy groups.

Let us explain the notation we use and put our results into the context of previ-
ous work. Theorem 7.1.1 generalises the breakthrough results characterising C*-simple
discrete groups [KK17, BKKO17, Ken20, Haa16], and completes a sequence of partial
results obtained for dynamical systems [Kaw17, KS21] and special classes of groupoids
[FS82, Ren91, KS02, BCFS14, Bor20, Bor19, KM21]. The notion of confined sections of
isotropy groups emerged from work on group rings [HZ97] and C*-simple groups [Ken20]
and was subsequently generalised to dynamical systems [Kaw17] and Hausdorff groupoids
[Bor19]. In this setting, a section of isotropy groups is confined if, roughly speaking, it can-
not be approximately conjugated into the groupoid’s unit space. The terminology stems
from the special case of groups, where a confined subgroup is separated in a strong sense
from the trivial subgroup. For non-Hausdorff groupoids, it is necessary to consider a more
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general notion of essential confinedness, taking into account the closure of the unit space.
Definition 7.7.1 captures this notion rigorously.

While the essential groupoid C*-algebras of a Hausdorff groupoid is identified with its
reduced groupoid C*-algebra, for non-Hausdorff groupoids, it is necessary to adapt the
construction of the reduced groupoid C*-algebra, if one aims to relate the ideal struc-
ture of a groupoid C*-algebra to the algebraic and dynamical structure of the groupoid.
The need to consider a modification of the reduced groupoid C*-algebra became apparent
beginning with work of Khoshkam-Skandalis [KS02], followed by instructive examples of
Exel [Exe11], and work of Exel-Pitts [EP19] and Clark-Exel-Pardo-Sims-Starling [CEP+19]
and Kwaśniewski-Meyer [KM21]. The essential groupoid C*-algebra is the quotient of the
reduced groupoid C*-algebra by an ideal of singular elements [CEP+19, KM21]. This
explains the need for some kind of countability assumption, such as σ-compactness, in
order to control the singular elements in a suitable way. By adopting this perspective,
[CEP+19, KM21] obtained a characterisation of certain amenable groupoids whose essen-
tial groupoid C*-algebra is simple. In particular [KM21] showed that topologically free
groupoids have simple essential groupoid C*-algebras.

Let us now explain the technical core of the present work. In the context of groupoid
C*-algebras, the problem of proving simplicity is subdivided by considering the ideal inter-
section property [Tom92, ST09] and the study of orbits. The inclusion C0(G(0)) ⊆ C∗

ess(G)
has the ideal intersection property if every nonzero ideal of C∗

ess(G) has nonzero intersec-
tion with C0(G(0)). We abuse terminology slightly and refer to C∗

ess(G) having the ideal
intersection property. This C*-algebra is simple if and only if it has the ideal intersection
property and G is minimal. While it is straightforward to determine the minimality of a
groupoid, it has been a major open problem to characterise the ideal intersection property
for essential groupoid C*-algebras.

Existing work on simplicity and the ideal intersection property for groupoid C*-algebras
has generally proceeded in two different directions. First, for amenable groupoids, the re-
duced and the full groupoid C*-algebras agree, making characterisations of simplicity more
accessible, as is also visible from our main results, where the amenability condition on sec-
tions of isotropy groups is automatically satisfied. From an operator algebraic perspective
this is reflected in the abundance of *-homomorphisms defined on the full groupoid C*-
algebra. Previous work on amenable groupoids includes the work of Archbold-Spielberg
on transformation groups associated with actions of abelian groups [AS94], the work of
Kumjian-Pask [KP00] and Robertson-Sims [RS07] characterising simplicity of groupoid
C*-algebras arising from higher-rank graphs, and finally the work of Brown-Clark-Farthing-
Sims [BCFS14] resulting in a complete characterisation of étale Hausdorff groupoids with
simple full groupoid C*-algebra. As explained above, characterisations of the simplic-
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ity of essential groupoid C*-algebras of amenable non-Hausdorff groupoids can be deduced
from recent work by Clark-Exel-Pardo-Sims-Starling [CEP+19] and by Kwaśniewski-Meyer
[KM21].

Second, a completely different approach to simplicity and the ideal intersection property
for groupoid C*-algebras emerged from the breakthrough results about C*-simple discrete
groups obtained by Kalantar-Kennedy [KK17] and Breuillard-Kalantar-Kennedy-Ozawa
[BKKO17]. The crucial insight of [KK17] was that the simplicity of reduced group C*-
algebras has to be coupled to and understood through the group’s action on its Furstenberg
boundary. Combined with Le Boudec’s work [LB17], along with further characterisations
obtained by Kennedy [Ken20] and Haagerup [Haa16], this resolved the long-standing prob-
lem of characterising discrete groups whose reduced group C*-algebra is simple, as reported
in the Séminaire Bourbaki [Rau20].

The success of these methods in understanding the C*-simplicity of groups triggered
subsequent work on simplicity and the ideal intersection property for reduced crossed
product C*-algebras associated with dynamical systems of discrete groups [BK16, Bry22,
Kaw17, KS19]. In all of this work, the C*-algebra being acted on is unital, which in the
setting of a dynamical system translates to the assumption that the underlying topological
space is compact. The next advance in this direction was obtained by Borys [Bor20, Bor19],
who introduced an analogue of the Furstenberg boundary for étale Hausdorff groupoids
with compact unit space that enabled him to prove the ideal intersection property for
groupoids with no confined amenable sections of isotropy groups. This necessary con-
dition was a partial analogue of results obtained by Kennedy [Ken20] for groups and by
Kawabe [Kaw17] for topological dynamical systems. The most recent advance was achieved
by Kalantar-Scarparo [KS21], who utilised the Alexandrov one-point compactification to
extend results of Kawabe to group actions on locally compact spaces.

Our proof of Theorem 7.1.1 begins with the study of the ideal intersection property.
We first treat in Theorem 7.7.2 groupoids with compact space of units, and subsequently
obtain a result for groupoids with locally compact space of units in Section 7.7.2. For
groupoids that do not necessarily arise from a group action, a one-point compactification
of the unit space leads to the notion of Alexandrov groupoid G+, which allows us to obtain
the following theorem from the corresponding result for groupoids with compact space of
units.

Theorem 7.1.2 (See Theorems 7.7.2 and 7.7.10). Let G be an étale groupoid with locally
compact Hausdorff space of units. Assume that G is Hausdorff, that G+ is σ-compact, or
that G is minimal and has a compact space of units. Then C∗

ess(G) has the ideal intersection
property if and only if G has no essentially confined amenable sections of isotropy groups.
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Further, G+ is σ-compact if G is σ-compact.

In Corollary 7.7.12, we combine work of Bönicke-Li [BL20] with our results to obtain a
characterisation of étale Hausdorff groupoids whose reduced groupoid C*-algebra has the
ideal separation property, that is its ideals can be completely described in terms of the
groupoid’s dynamics.

Following the paradigm established by [KK17, BKKO17], an important intermediate
step in establishing our elementary characterisation of the ideal intersection property is
the control of equivariant ucp maps defined on the essential groupoid C*-algebras of G by
means of a suitable boundary, which implicitly requires a G-action on the groupoid C*-
algebra. However, the lack of such an action has been recognised as a major obstruction to
extending the previous-mentioned work on groups and dynamical systems to the present
setting. In particular, the C*-algebra C∗

ess(G) is not a G-C*-algebra in the sense of [Ren87],
which is also the definition employed in [Bor20, Bor19], and requires a G-C*-algebra to be
fibered over the unit space of the groupoid. Therefore, an important step in developing
the results of the present article is the introduction of a new notion of groupoid action
on C*-algebras. For this, we replace elements of the groupoid with elements from the
pseudogroups of open bisections [LL13]. Groupoid C*-algebras are then defined in terms
of families of hereditary C*-subalgebras with *-isomorphisms associated to open bisections
of the groupoid. See Section 7.3 for details.

With respect to the above definition, we prove that C∗
ess(G) is naturally a G-C*-algebra.

The following result is an important first step towards Theorem 7.1.2.

Theorem 7.1.3 (See Proposition 7.4.7 and Theorem 7.4.9). Let G be a étale groupoid
with compact Hausdorff unit space. Then ℓ∞(G) is an injective object in the category of
G-C*-algebras. Further, there is a unique injective envelope of C(G(0)) in the category of
G-C*-algebras, which is commutative.

The spectrum of the G-injective envelope of C(G(0)) is, by definition, the Hamana
boundary ∂HG of G. Expressed using this terminology, Borys actually constructed the
Hamana boundary of an étale Hausdorff groupoid with compact space of units, considered
within the category of classical G-C*-algebras from [Ren87]. We show in Theorem 7.4.9
that, in the setting considered by Borys, his construction of the Hamana boundary agrees
with our construction of the Hamana boundary in the larger category of G-C*-algebras.
We also develop a dynamical approach to boundary theory for an étale groupoid G with
compact Hausdorff unit space and construct the Furstenberg boundary ∂FG of G within this
framework. Specifically, we consider the category of G-flows, which are compact Hausdorff
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spaces equipped with a G-action. We single out the G-boundaries, which are the G-flows
that are both minimal and strongly proximal in an appropriate sense. The Furstenberg
boundary ∂FG is the universal G-boundary, meaning that every G-boundary is the image of
∂FG under a morphism of G-flows. Using the universal properties satisfied by the Hamana
boundary and the Furstenberg boundary, we establish in Theorem 7.4.19 that they coincide.
This identification is an important ingredient in the study of Powers averaging property,
leading to Theorem 7.1.5 below.

Having developed a boundary theory for groupoids and, specifically, having constructed
the Hamana boundary, we are able to introduce an equivariant analogue of Pitts’ pseudo-
expectations [Pit17], in particular obtaining a natural G-pseudo-expectation C∗

ess(G) →
C(∂FG) in Section 7.5.1. This provides a new perspective on work of Kwaśniewski-Meyer
on local conditional expectations [KM21] in terms of C*-simplicity theory. We are able
to prove the following characterisation of the ideal intersection property, which is the
foundation for all of our subsequent results.

Theorem 7.1.4 (See Theorem 7.6.1). Let G be an étale groupoid with compact Hausdorff
space of units and denote by ∂FG the Furstenberg boundary of G. Assume that G is Haus-
dorff, that G is minimal or G is σ-compact. Then the following statements are equivalent.

� C∗
ess(G) has the ideal intersection property.

� C∗
ess(G ⋉ ∂FG) has the ideal intersection property.

� There is a unique G-pseudo expectation C∗
ess(G)→ C(∂FG).

Let us mention Remark 7.6.9, which shows that the intersection property for C∗
r (G ⋉

∂FG) implies that G is Hausdorff. Hence, for non-Hausdorff groupoids, there is no possible
variant of Theorem 7.1.4 that solely relies on the reduced groupoid C*-algebra.

Research on C*-simplicity began with an averaging argument devised by Powers [Pow75],
based on the Dixmier averaging theorem for von Neumann algebras. Following the work on
C*-simplicity in [KK17, BKKO17], it was subsequently shown independently by Haagerup
[Haa16] and Kennedy [Ken20] that Powers’ averaging property characterises C*-simplicity.
That is, G is a C*-simple group if and only if the norm-closed convex hull of the set
of G-conjugates of an element of the reduced group C*-algebra contains the trace of the
element.

This is not only of aesthetic value, but is the basis for transferring simplicity results
to related operator algebras, as happened for example with Hecke C*-algebras in [CKL21,
Kli21] and in Phillips’ work on Lp-simplicity [Phi19].
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Very recently, the correct analogue of Powers averaging for crossed product C*-algebras
associated with group actions on compact spaces was developed in [AU22], using the con-
cept of a generalised probability measure. We introduce a suitable notion of generalised
probability measure along with a suitable variant of the Powers averaging property for
étale groupoids in Section 7.8. We then obtain a corresponding characterisation of simple
essential C*-algebras generalising the results in [AU22], as well as the results about relative
versions of Powers averaging property in [AK20, Amr21, Urs22].

An inclusion A ⊆ B of unital C*-algebras was termed C*-irreducible in [Rør21] if
every intermediate C*-algebra is simple. Such inclusions are an important ingredient in
an emerging C*-algebraic analogue of Jones’ subfactor theory [Jon83]. In particular, C*-
irreducible inclusions arising from group C*-algebras, crossed products and groupoids of
germs have recently received a great deal of interest [AK20, AU22, Rør21, KS21]. The
relative Powers averaging property implies C*-irreducibility of the associated inclusion of
C*-algebras.

Theorem 7.1.5 (See Theorem 7.8.14). Let G be a minimal étale groupoid with compact
Hausdorff space of units. Then the following statements are equivalent.

� C∗
ess(G) is simple

� C∗
ess(G) satisfies the relative Powers averaging property with respect to any covering

and contracting semigroup of generalised probability measures.

� A ⊆ C∗
ess(G) is C*-irreducible for every C*-subalgebra A ⊆ C∗

ess(G) supporting a
covering and contracting semigroup of generalised probability measures.

Applying Theorem 7.1.5 to suitable subgroups of the topological full group, we obtain
many examples of groups of unitaries satisfying the relative Powers averaging property. We
remark that in view of the degeneration phenomena described in [BS19], it is important
to allow for the consideration of proper subgroups of the topological full group.

Corollary 7.1.6 (See Corollary 7.9.1). Let G be an étale groupoid with compact Hausdorff
space of units. Assume that there is a subgroup of the topological full group G ≤ F(G) that
covers G and such that G↷ G(0) is a G-boundary. Denote by π : G→ C∗

ess(G) the unitary
representation of G in the essential groupoid C*-algebra of G. If C∗

ess(G) is simple, then
C∗

ess(G) satisfies Powers averaging property relative to π(G).

Considering groupoids of germs, simplicity of the associated essential groupoid C*-
algebra can be guaranteed thanks to topological freeness. Applied to this situation, our
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Theorem 7.1.6 yields the following result, extending work of Kalantar-Scarparo [KS22,
KS21].

Theorem 7.1.7 (See Theorem 7.9.2). Let G be a countable discrete group and G ↷ X a
boundary action. Denote by G its groupoid of germs and by π : G → C∗

ess(G) the associ-
ated unitary representation. Then π(G) ⊆ C∗

ess(G) satisfies the relative Powers averaging
property.

Let us explain the terminology in the statement of the previous theorem, referring to
Section 7.9 for more details. An action of a discrete group G ↷ X is a boundary action
if X is compact and the action is minimal and strongly proximal. These actions were
introduced by Furstenberg [Fur63] and further developed by Glasner [Gla76], and are of
fundamental importance in topological dynamics. Given an action of a discrete group
G ↷ X, its groupoid of germs is the quotient groupoid G⋉X/Iso(G⋉X)◦, dividing out
the interior of its isotropy from the associated transformation groupoid.

Recall that Thompson’s group F consists of the piecewise linear transformations of [0, 1]
with slopes and breakpoints in Z[1

2
]. The amenability of F is a major open problem in group

theory. It is a subgroup of Thompson’s group T, which consists of the piecewise PSL2(Z[12 ])
transformations of S1 with breakpoints in e2πiZ[

1
2
]. The quasi-regular representation of T

with respect to F has received a great deal of attention since Haagerup-Olesen and Le
Boudec-Matte Bon considered it within the context of the amenability of F [HO17, LM18].
The amenability of F is equivalent to the statement that this quasi-regular representation
is weakly contained in the regular representation of T. This fact motivated Kalantar-
Scarparo to establish the simplicity of the C*-algebra generated by this representation in
[KS22]. Thanks to Theorem 7.1.7, we obtain a significant strengthening of their result.

Example 7.1.8 (See Example 7.9.8). Denote by K the totally disconnected cover of S1,
doubling dyadic integer points. Let G be the groupoid of germs of the action T ↷ K and
π : T → C∗

r (G) the associated unitary representation. Then π(T) ⊆ C∗
r (G) satisfies the

relative Powers averaging property.

Since it is known that C∗
r (G) ∼= O2, in the setting of Examples 7.1.8, the above result

shows that if F is amenable, then there is a unitary representation of T into the Cuntz
algebra O2 that enjoys the relative Powers averaging property. Many more examples of
unitary representations satisfying the relative Powers averaging property can be obtained
from groups of homeomorphisms of the circle, as we explain in Remark 7.9.7.
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Organisation of the article

This article has 9 sections. After this introduction, Section 7.2 describes preliminary
results and fixes notation concerning groupoids and inverse semigroups. In Section 7.3, we
introduce our new notion of groupoid C*-algebras. In Section 7.4, we prove Theorem 7.1.3
and develop the dynamical approach to boundary theory for étale groupoids and prove
the identification of the Furstenberg and the Hamana boundary. In Section 7.5, we study
essential groupoid C*-algebra of groupoids with compact space of units from the point of
view of the Furstenberg boundary and show that there is a natural inclusion of C*-algebras
C∗

ess(G) ⊆ C∗
ess(G ⋉ ∂FG) if G is either minimal or σ-compact. In Section 7.6 we prove

some fundamental characterisations of the ideal intersection property for groupoids with
compact space of units, eventually leading to Theorem 7.1.4. In Section 7.7, we introduce
the notion of essentially confined sections of isotropy groups, as well as the Alexandrov
groupoid, leading to a proof of Theorem 7.1.2. Theorem 7.1.1 is a special case of this.
In Section 7.8, we single out the appropriate notion of relative Powers averaging property
for essential groupoid C*-algebras and prove Theorem 7.1.5 as well as Corollary 7.1.6. In
Section 7.9, we apply the previous results and prove Theorem 7.1.7. We also describe
Example 7.1.8.

7.2 Preliminaries

7.2.1 Groupoids and their C*-algebras

For basics on étale groupoids and their C*-algebras, we refer the reader to Renault’s book
[Ren80] and Sims’ lecture notes [SSW20].

A groupoid is a small category whose morphisms are invertible. We denote by r and s
the range and source map of a groupoid and we adopt the convention that g · h is defined
if r(h) = s(g). We denote by G(0) = {gg−1 | g ∈ G} ⊆ G the set of units of a groupoid
G and by Iso(G) = {g ∈ G | s(g) = r(g)} its isotropy bundle. For x, y ∈ G(0), we denote
by Gx = s−1(x) and Gx = r−1(x) the fibres of range and source map. We also write
Gxx = Gx ∩ Gx for the isotropy group at x.

A topological groupoid is a groupoid equipped with a topology such that multiplication
and inversion become continuous and the range and source maps are open. An étale
groupoid is a topological groupoid whose range and source maps are local homeomorphisms.
Every étale groupoid G has a basis of its topology consisting of open bisections, that is open
subsets U ⊆ G such that s|U and r|U are homeomorphisms onto their image. A topological
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groupoid G is effective if it satisfies Iso(G)◦ = G(0), that is the interior of its isotropy bundle
equals its space of units. We will need the following proposition, which generalises [Bor20,
Proposition 4.2.19] to arbitrary étale groupoids with extremally disconnect space of units.

Proposition 7.2.1. Let G be an étale groupoid with extremally disconnected, locally com-
pact space of units. Then the isotropy bundle of G is clopen.

Proof. It follows from continuity of range and source map that Iso(G) is closed. Let g ∈
Iso(G) and let U be a compact open bisection containing g. Since range and source map are
continuous and open, U defines a partial homeomorphism φ : s(U)→ r(U) between clopen
subsets of G(0). So [Pit17, Proposition 2.11] (see also [Arh00, Proof of Theorem 1]) implies
that Fix(φ) ⊆ G(0) is clopen. Now (s|U)−1(Fix(φ)) ⊆ U ⊆ G is an open neighbourhood of
g inside Iso(G). So Iso(G) is open. ■

Given a topological groupoid G, a G-space is a topological space with a surjection
p : X → G(0) and a continuous action map G ×s pX → X satisfying the natural associativity
condition. Here

G ×s p X = {(g, x) ∈ G ×X | s(g) = p(x)}

denotes the fibre product with respect to s and p. A G-space p : X → G(0) is called
irreducible, if every closed G-invariant subset A ⊆ X satisfying p(A) = G(0) must equal X.

Given a G-space X, one defines the transformation groupoid G ⋉X as the topological
space G ×s p X equipped with the range and source maps s(g, x) = x and r(g, x) = gx,
respectively, and the multiplication (g, x)(h, y) = (gh, y).

A subgroupoid H ⊆ Iso(G) is normal if ghg−1 ∈ H holds for all h ∈ H and all g ∈
Gr(h). Assuming that H ⊆ Iso(G) is an open normal subgroupoid of an étale groupoid, a
straightforward verification shows that the quotient space G/H carries a natural structure
of an étale groupoid too. It does not need to be Hausdorff.

The next definition of groupoid C*-algebras for not-necessarily Hausdorff groupoids
goes back to Connes’ work on foliations [Con82]. We also refer to the article of Khoshkam-
Skandalis for the construction of the regular representation for non-Hausdorff groupoids
[KS02].

Definition 7.2.2. Let G be an étale groupoid with locally compact Hausdorff space of
units. Denote by C(G) the linear span inside ℓ∞(G) of all subspaces Cc(U), where U ⊆
G runs through open bisections. For x ∈ G(0), denote by λx : C(G) → B(ℓ2(Gx)) the
convolution representation satisfying λx(f)δg =

∑
h∈Gr(g)

f(h)δhg. We adapt the following

notation:

98



� The maximal groupoid C*-algebra C∗(G) is the universal enveloping C*-algebra of
C(G).

� The reduced groupoid C*-algebra C∗
r (G) is the C*-completion of C(G) with respect

to the family of *-representations (λx)x∈G(0) .

� The universal enveloping von Neumann algebra of the maximal groupoid C*-algebra
is denoted by W ∗(G) = C∗(G)∗∗.

To each element a ∈ C∗
r (G) we associate the function

g 7→ â(g) = ⟨λs(g)(a)δs(g), δg⟩ .

If f ∈ C(G), then f̂ = f holds. We remark that unless G is Hausdorff, there are always
non-continuous functions in C(G) and a fortiori elements a ∈ C∗

r (G) such that â is non-
continuous.

While the correct definition of the maximal and reduced groupoid C*-algebra for non-
Hausdorff groupoids was already clarified in the 1980’s by Connes, it is only much more
recently that a clear picture of the essential groupoid C*-algebra has emerged. After work of
Khoshkam-Skandalis [KS02], Exel [Exe11], Exel-Pitts [EP19] and Clark-Exel-Pardo-Sims-
Starling [CEP+19], the abstract framework of local conditional expectations described in
[KM21] allowed to define the essential crossed product of semigroup actions on Fell bundles
of bimodules. Even in the setup of groupoid C*-algebras, removing any action from the
picture, the work of Kwaśniewski-Meyer provided the first complete and systematic account
on this problem (see [KM21, End of Section 4]). It slightly differs from the treatment given
in [CEP+19] in as far as the reference to functions with meager strict support allows for
a more systematic framework than considering functions whose strict support has empty
interior.

For a locally compact Hausdorff space X denote by B∞(X) the algebra of all bounded
Borel functions on X and by M∞(X) its ideal of functions with meager support. We
denote by Dix(X) = B∞(X)/M∞(X) the Dixmier algebra of X. Then by a result of
Gonshor, Dix(X) is isomorphic with the local multiplier algebra Mloc(C0(X)) of C0(X)
and the injective envelope of C0(X) in the category of C*-algebras with *-homomorphisms
as morphisms [Gon70]. Recall that Mloc(C0(X)) = lim−→Cb(U), where U runs through dense
open subsets of X.

Let G be an étale groupoid with locally compact Hausdorff space of units. The local
conditional expectation Ered : C∗

r (G) → Mloc(C0(G(0))) defined by Kwaśniewski-Meyer is
characterised by the formula Ered(f) = f |U for every f ∈ C(G), where U ⊆ G(0) is a
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dense open subset on which f is continuous. Thanks to [KM21, Proposition 4.3], it can be
identified with the continuous extension of the natural map C(G)→ Dix(G(0)) induced by
restriction.

There is a representation of C∗
r (G) into the adjointable operators on a Hilbert-Dix(G(0))-

module associated with Ered by the KSGNS-construction [Lan95, Theorem 5.6].

Definition 7.2.3. Let G be an étale groupoid with locally compact Hausdorff space of
units. The essential groupoid C*-algebra of G is the image C∗

ess(G) of C∗
r (G) in the Hilbert-

Dix(G(0))-module associated with Ered.

By construction, the essential groupoid C*-algebra comes with a generalised conditional
expectation Eess : C∗

ess(G) → Dix(G(0)), which is faithful by [KM21, Theorem 4.11]. We
follow Kwaśniewski-Meyer’s development and call the kernel of the map C∗

r (G)→ C∗
ess(G)

its ideal of singular elements and denote it by Jsing. By faithfulness of Eess, we have

Jsing = {a ∈ C∗
r (G) | Ered(a

∗a) = 0} .

For groupoids covered by countably many open bisections, [KM21, Proposition 7.18] shows
that Jsing consists exactly of those elements such that s(supp â) ⊆ G(0) is meager, thereby
connecting to the treatment in [CEP+19]. For general groupoids the following description of
elements vanishing under the local conditional expectation, extracted from [KM21, Section
4], is useful. We give a proof for the reader’s convenience.

Proposition 7.2.4. Let G be an étale groupoid with locally compact Hausdorff space of
units. Assume that a ∈ ker(Ered). Then there is a dense subset U ⊆ G(0) such that
â|U = 0.

Proof. Let a ∈ ker(Ered) and let (an)n∈N be a sequence in C(G) converging to a in C∗
r (G).

Then also an = ân → â in ∥ · ∥∞. For every n ∈ N there is a dense open subset Un ⊆ G(0)
such that an|Un is continuous and Ered(an) = an|Un ∈ Cb(Un) ⊆ Mloc(C0(G(0))). Since
Ered(an) → Ered(a) = 0, it follows that ∥an|Un∥∞ → 0. Let U =

⋂
n Un, which is a

comeager subset of G(0). Since G(0) is locally compact, we infer that U ⊆ G(0) is dense. We
also have â|U = lim ân|U = 0. ■

We will need the following observation made in [KM21, Lemma 7.15], which follows

directly from the fact that for every open bisection U , the intersection U ∩ (G(0) \ G(0)) is
meager.
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Proposition 7.2.5. Let G be an étale groupoid with locally compact Hausdorff space of
units. Assume that G is covered by countably many open bisections. Then the set

{x ∈ G | G(0)x = {x}} ⊆ G(0)

is dense.

We say that an inclusion of C*-algebras A ⊆ B has the ideal intersection property
if zero is the only ideal I ⊴ B satisfying I ∩ A = 0. We will in particular consider the
intersection property for C0(G(0)) ⊆ C∗

r (G) and C0(G(0)) ⊆ C∗
ess(G). In these cases we will

write that C∗
r (G) and C∗

ess(G), respectively, have the ideal intersection property.

We will need several times the fact that if N ⊆ Iso(G) is a normal open subgroupoid
whose isotropy groups are amenable, then the quotient map G → G/N extends to a
quotient map C∗

r (G) → C∗
r (G/N ). While this seems to be a folklore result, we are not

aware of any written account. We therefore provide a full proof for the convenience of the
reader.

Proposition 7.2.6. Let G be an étale groupoid with locally compact Hausdorff space. Let
N ⊆ Iso(G) be a normal open subgroupoid with amenable isotropy groups and denote by
p : G → G/N be the quotient map. Then there is a unique *-homomorphism π : C∗

r (G)→
C∗
r (G/N ) which restricts to the natural *-isomorphism p∗ : Cc(U) → Cc(p(U)) on every

open bisection U ⊆ G.

Proof. Write H = G/N for the quotient and observe that the quotient map p : G → H
restricts to a homeomorphism on every open bisection of G. So there is a well-defined *-
homomorphism πalg : C(G) → C(H). Let us show that πalg extends to a *-homomorphism
π : C∗

r (G) → C∗
r (H). Fix x ∈ H(0) ∼= G(0) and we will show that λHx ◦ πalg extends to

C∗
r (G), where λHx denotes the left-regular representation λHx : C∗

r (H) → B(ℓ2(Hx)). Since
the group N x

x is amenable, we can find a Følner net (Fi)i in there and consider the states

φi =
1

|Fi|
∑
g∈Fi

⟨λGx(·)δg, δg⟩ℓ2(Gx) .

Passing to a subnet, we may assume that φi → φ ∈ (C∗
r (G))∗ in the weak-*-topology. Then

an elementary computation shows that for all open bisections U ⊆ G and all f ∈ Cc(U)
we have

φ(f) =

{
f(g) if U ∩N x

x = {g} ,
0 if U ∩N x

x = ∅ .
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So φ|C(G) = ⟨λHx ◦ πalg(·)δx, δx⟩. For a, b ∈ C(G) we find that

⟨λHx ◦ πalg(a∗a)(λHx ◦ πalg(b)δx), λHx ◦ πalg(b)δx⟩ = φ(b∗a∗ab)

≤ ∥a∥2C∗
r (G)φ(b

∗b)

= ∥a∥2C∗
r (G)∥λ

H
x ◦ πalg(b)δx∥2 .

Since πalg(C(G)) = C(H) and C(H) acts cyclically on ℓ2(Hx), this shows that ∥λHx ◦
πalg(a)∥ ≤ ∥a∥C∗

r (G). So λHx ◦ πalg extends to C∗
r (G). Since x ∈ G(0) was arbitrary, this

proves that πalg extends to a *-homomorphism πred : C∗
r (G)→ C∗

r (H). ■

7.2.2 Inverse semigroups and pseudogroups of open bisections

We refer the reader to Lawson’s book [Law98] for a comprehensive introduction to inverse
semigroups. Recall that an inverse semigroup is a semigroup S such that for every s ∈ S
there is a unique s∗ ∈ S such that ss∗s = s and s∗ss∗ = s∗. The following notion of
pseudogroups goes back to Resende [Res07] and Lawson-Lenz [LL13].

Definition 7.2.7. Let S be an inverse semigroup. Elements s, t ∈ S are compatible if s∗t
and t∗s are idempotent. Given a family of compatible elements (si)i in S its join is the
minimal element s ∈ S such that si ≤ s for all i. We say that S has infinite compatible
joins if every if any compatible family in S admits a join. A pseudogroup is an inverse
semigroup with infinite compatible joins in which multiplication distributes over arbitrary
joins.

Example 7.2.8 (Proposition 2.1 of [LL13]). Let G be an étale groupoid with compact
Hausdorff space of units. Then the semigroup of open bisections Γ(G) is a pseudogroup
when equipped with the multiplication U · V = {gh | g ∈ U, h ∈ V, s(g) = r(h)}. Then
U∗ = {g−1 | g ∈ U} follows.
Notation 7.2.9. In this article, we will refer to open bisections of an étale groupoid
G either as subsets, usually denoted by U, V ⊆ G or alternatively as elements of the
pseudogroup of G, usually denoted by γ ∈ Γ(G). Both kinds of notation make sense in
different contexts. We denote by supp γ = γ∗γ = s(γ) the support and by im γ = γγ∗ =
r(γ) the image of γ ∈ Γ(G).

7.3 A new notion of groupoid C*-algebras

In this section we introduce a new notion of groupoid C*-algebras that will allow us to
apply methods from the toolbox of C*-simplicity developed over the past years. The key
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point is that the reduced groupoid C*-algebra C∗
r (G), as well as the essential groupoid

C*-algebra C∗
ess(G), become G-C*-algebras, which is not the case for existing notions of

groupoid C*-algebras used in [Bor19, Bor20].

The next example frames the action of a groupoid on its base space in a way that is
compatible with the perspective of operator algebras and pseudogroups. It will serve as a
building block for the subsequent definition of groupoid C*-algebras.

Example 7.3.1. Let G be an étale groupoid with locally compact Hausdorff space of
units G(0). Every open bisection γ ∈ Γ(G) defines a partial homeomorphism ψγ = r|γ ◦
(s|γ)−1 : supp γ → im γ. Dually, we obtain a *-homomorphism αγ : C0(supp γ)→ C0(im γ)
by the assignment αγ(f) = f ◦ ψγ∗ = f ◦ ψ−1

γ . Associativity of the multiplication in
Γ(G) implies that ψγ1γ2 = ψγ1 ◦ ψγ2 on ψγ∗2 (supp γ1 ∩ im γ2) and αγ1 ◦ αγ2 = αγ1γ2 on
C0(ψγ∗2 (supp γ1 ∩ im γ2)).

Let us also introduce the following notation for hereditary C*-subalgebras.

Notation 7.3.2. Let X be compact Hausdorff space, A a unital C*-algebra and C(X) ⊆ A
a unital inclusion of C*-algebras. For an open subset U ⊆ X we denote by

AU = C0(U)AC0(U)

the hereditary C*-subalgebra of A associated with U .

We are now ready to formulate our definition of groupoid C*-algebras. In Proposi-
tion 7.3.11 we will compare this new definition with the classical definition of G-C*-bundles
introduced by Renault [Ren87], showing that our definition is a suitable generalisation. We
will only require this definition for groupoids with compact space of units, fitting the needs
of Sections 7.4 and 7.6.

Definition 7.3.3. Let G be an étale groupoid with compact Hausdorff space of units. A
unital G-C*-algebra is a unital C*-algebra A with an injective unital *-homomorphism
ι : C(G(0))→ A and a family of *-isomorphisms αγ : Asupp γ → Aim γ indexed by γ ∈ Γ(G)
such that

� for all γ ∈ Γ(G) and all f ∈ C0(supp γ) we have ι(f ◦ ψγ∗) = αγ ◦ ι(f), and

� for all γ1, γ2 ∈ Γ(G) the following diagram commutes.

Aψγ∗2
(supp γ1)

αγ2

��

αγ1γ2 // Aψγ1 (im γ2)

Asupp γ1∩im γ2

αγ1

77
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When working with a unital G-C*-algebra A, we will frequently identify C(G(0)) with
its image in A under ι and suppress the explicit map ι.

Remark 7.3.4. In the setting of Fell bundles over semigroups as used in [KM21], it is pos-
sible to replace actions of the pseudogroup of bisections by actions of wide subsemigroups
[KM21, Definition 2.1 and Proposition 2.2]. The analogue of this fact for G-C*-algebras as
introduced here does not hold, since this notion is genuinely noncommutative. An example
can be found by considering the discrete groupoid G = {0, 1}×Z with unit space {0, 1}. Its
group of global bisections can be identified with Z ⊕ Z. We identify bisections supported
on 0 and 1, respectively, with {∅} × Z and Z × {∅}. Then the pseudogroup of bisections
can be described as

Γ(G) = (Z⊕ Z) ⊔ ({∅} × Z) ⊔ (Z× {∅}) ⊔ ∅ .

The subsemigroup S = ({∅} × Z) ⊔ (Z × {∅}) ⊔ ∅ ⊆ Γ(G) is wide in the sense of [KM21,
Definition 2.1]. Consider the non-central, diagonal, unitary matrix diag(1,−1) and the
embedding as diagonal matrices C(G(0)) ∼= C2 ⊆ M2(C). The action of Γ(G) on M2(C)
for which the global bisection (1, 1) acts by conjugation with diag(1,−1) is non-trivial.
However, its restriction to S is trivial.

In Proposition 7.3.6 we will see that for sufficiently large subsemigroups S ⊆ Γ(G), there
is a well-behaved correspondence between G-C*-algebras and their obvious generalisations
to S-C*-algebras.

A key role in the theory of C*-simplicity is played by unital completely positive maps.
Let us fix the corresponding notion of G-ucp maps and define the category of unital G-C*-
algebras considered in subsequent sections.

Definition 7.3.5. Let G be an étale groupoid with compact Hausdorff space of units.

� A G-ucp map between unital G-C*-algebras (A, ιA, α) and (B, ιB, β) is a unital com-
pletely positive map φ : A→ B such that φ ◦ ιA = ιB holds and the diagram

Asupp γ
αγ //

φ|supp γ

��

Aim γ

φ|im γ

��
Bsupp γ

βγ // Bim γ

commutes for every γ ∈ Γ(G), where φ|U : AU → BU is the restriction of φ.
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� The category of unital G-C*-algebras has as its objects unital G-C*-algebras and as
morphisms G-ucp maps.

� For unital G-C*-algebras A and B, a G-ucp map ϕ : A→ B is an embedding if it is
a complete order embedding.

In Remark 7.3.4, we saw that there are wide subsemigroups S ⊆ Γ(G) that do not
contain enough elements to remember a G-C*-algebra. However, for sufficiently large
semigroups it is desirable to know that there is a well-behaved correspondence. The prime
examples should be the Boolean inverse semigroup of all compact open bisections of an
ample groupoid [Law10, Law12] and the Boolean inverse semigroup of all locally regular
open bisections. Modifying Definition 7.3.3, one obtains the notion of a unital S-C*-algebra
A, which is equipped with a unital embedding C(G(0)) → A and a compatible family of
*-isomorphism αs : Asupp s → Aim s, s ∈ S.

Proposition 7.3.6. Let G be an étale groupoid with compact Hausdorff space of units.
Let S ⊆ Γ(G) be a subsemigroup such that for all all γ ∈ Γ(G) and all compact subsets
K ⊆ supp γ there is some open set K ⊆ U ⊆ supp γ and an element s ∈ S such that
s|U = γ|U . Denote by G-C∗-alg the category of unital G-C*-algebras and by S-C∗-alg the
category unital S-C*-algebras. Then the forgetful functor from G-C∗-alg to S-C∗-alg is an
isomorphism of categories.

Proof. We will show that every S-C*-algebra carries a unique compatible structure of a
G-C*-algebra. Let (A,α) be a unital S-C*-algebra, let γ ∈ Γ(G) and a ∈ Asupp γ be positive.
There is an ascending sequence of positive functions fn ∈ Cc(supp γ) such that fnafn → a.
Since supp fn is compact for all n, there are open subsets supp fn ⊆ Un ⊆ supp γ and
elements sn ∈ S satisfying sn|Un = γ|Un . Note that in particular sn|Um = sm|Um holds for
all m < n. So if m < n satisfy ∥fnafn − fmafm∥ < ε, then we find that

∥αsm(fmafm)− αsn(fnafn)∥ ≤ ∥αsm(fmafm)− αsn(fmafm)∥+ ε = ε .

Consequently (αsn(fnafn))n is a Cauchy sequence in Asupp γ. We then define αγ(a) =
limn αsn(fnafn). Straightforward calculations show that this defines a Γ(G)-action on A
and it is clear that it is the unique such action that extends the action of S. ■

The main motivation to pass to the greater generality of Definition 7.3.3 is the fact that
the maximal groupoid C*-algebra C∗(G) becomes a G-C*-algebra in a natural way. Indeed,
our approach to G-C*-algebras via a pseudogroup action allows for a straightforward def-
inition of inner actions, which we will now present. We need the following preparatory
lemma.
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Lemma 7.3.7. Let G be an étale groupoid with a compact Hausdorff space of units. Denote
by S the inverse semigroup of partial isometries in the universal enveloping von Neumann
algebra W ∗(G). There is a semigroup homomorphism Γ(G)→ S : γ 7→ uγ such that for all
γ ∈ Γ(G) the following statements hold.

1. The net (f)0≤f≤1γ in Cc(γ) ⊆ C(G) converges to uγ in the weak-*-topology.

2. We have uγu
∗
γ = 1im γ and u∗γuγ = 1supp γ.

3. If g ∈ Cc(supp γ), then we have uγg = g ◦ mγ∗, where mγ : h 7→ γh denotes left
multiplication with γ.

Proof. Fix γ ∈ Γ(G) and consider the subspace Cc(γ) ⊆ C∗(G). For every g ∈ Cc(γ), the
convolution product satisfies g ∗ g∗ ∈ C(G(0)). So the C*-identity implies that there is
an isometric isomorphism of Banach spaces C0(γ) ∼= Cc(γ) ⊆ C∗(G). Thus, we obtain an
isometric embedding

B∞(γ) ⊆ C0(γ)
∗∗ ⊆ C∗(G)∗∗ = W ∗(G) ,

where B∞(γ) denotes the space of bounded Borel functions on γ. The net (f)0≤f≤1γ is
monotone and converges pointwise to the indicator function 1γ in B∞(γ). By the monotone
convergence theorem, it also converges in the weak-*-topology. Since C0(γ)

∗∗ is weak-*-
closed in W ∗(G), the net (f)0≤f≤1γ converges also in W ∗(G). We denote its limit by uγ.

Next take g ∈ Cc(V ) for some open bisection V satisfying s(V ) ⊆ supp γ. Then for
every 0 ≤ f ≤ 1γ in Cc(γ), we have

f ∗ g(x) =

{
f(y)g(y−1x) for y ∈ γ and y−1x ∈ V ,

0 otherwise.

Considering the map B∞(γ) → B∞(γV ) : f 7→ f ∗ g, the definition of the convolution
product shows continuity with respect to the topology of pointwise convergence in B∞(γ)
and B∞(γV ). This implies that uγg = g(γ∗·) = g ◦mγ∗ holds.

Let us now show that γ 7→ uγ is a semigroup homomorphism. We have

uγ1uγ2 = lim
0≤f≤1γ2

uγ1f = lim
0≤f≤1γ2

f ◦mγ∗1
= uγ1γ2

where the convergence claimed by the last equality holds because of the first part of this
proof. It similarly follows that

u∗γ = lim
0≤f≤1γ

f ∗ = uγ∗ ,
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and

uγu
∗
γ = lim

0≤f≤1γ∗
uγf = lim

0≤f≤1γ∗
f ◦mγ∗ = 1im γ .

Combining the previous statements, we also find that

u∗γuγ = uγ∗u
∗
γ∗ = 1im γ∗ = 1supp γ .

■

We can now conclude that there is a natural structure of a G-C*-algebra on the maximal
groupoid C*-algebra of an étale groupoid with compact unit space. Applied to the quotient
maps C∗(G)→ C∗

r (G) and C∗(G)→ C∗
ess(G) it also exhibits natural G-C*-algebra structures

on the reduced and the essential groupoid C*-algebra, respectively.

Proposition 7.3.8. Let G be an étale groupoid with compact Hausdorff space of units.
Consider the standard embedding C(G(0)) ⊆ C∗(G). Then there is a unique structure
(αγ)γ∈Γ(G) of a unital G-C*-algebra on C∗(G) satisfying

αγ(f) = f ◦ cγ∗

for all γ ∈ Γ(G), all open bisections U ⊆ G satisfying s(U), r(U) ⊆ supp γ and all f ∈
Cc(U). Here cγ : h 7→ γhγ∗ denotes conjugation with γ.

Further, if π : C∗(G) → A is a unital *-homomorphism that is injective on C(G(0)),
there is the structure of a unital G-C*-algebra on A so that π is G-equivariant. If π is
surjective, this structure is unique.

Proof. Consider the partial isometries uγ, γ ∈ Γ(G) provided by Lemma 7.3.7. It follows
from this lemma that the inclusion C(G(0)) ⊆ C∗(G) and the maps Ad uγ : W

∗(G)supp γ →
W ∗(G)im γ turn the enveloping von Neumann algebra into a G-C*-algebra in such a way
that the formula Ad uγ(f) = f ◦ cγ∗ holds for all γ ∈ Γ(G), all open bisections U ⊆ G
satisfying s(U), r(U) ⊆ supp γ and all f ∈ Cc(U). In order to show that C∗(G) is a
unital G-algebra satisfying the conditions of the proposition, it suffices to fix γ ∈ Γ(G)
and show that Ad uγ maps C∗(G)supp γ to C∗(G). To this end, recall that C∗(G)supp γ =

C0(supp γ)C∗(G)C0(supp γ). Invoking item 3 of Lemma 7.3.7 we thus find that

uγC
∗(G)supp γu∗γ = uγCc(supp γ)C∗(G)Cc(supp γ)u∗γ

⊂ C(G)C∗(G)C(G)
= C∗(G) .
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Note that this is the unique G-C*-algebra structure on C∗(G) satisfying the conditions of
the proposition, since

span
s(U)⊆supp γ

Cc(U) = C0(supp γ)C(G)C0(supp γ) ⊆ C∗(G)supp γ

is dense.

Assume now that π : C∗(G) → A is a unital *-homomorphism that is injective on
C(G(0)). We identify C(G(0)) with a C*-subalgebra of A, that is π|C(G(0)) = id. For γ ∈ Γ(G),
we start by defining a contractive *-homomorphism

βγ,c : spanCc(supp γ)ACc(supp γ)→ spanCc(im γ)ACc(im γ) .

Let a =
∑n

i=1 f1,iaif2,i ∈ spanCc(supp γ)ACc(supp γ). Put K =
⋃n
i=1 supp f1,i ∪ supp f2,i.

Then K ⊆ supp γ is compact, so that there is some function g ∈ Cc(supp γ) satisfying
0 ≤ g ≤ 1 and g|K ≡ 1. Observe that uγg ∈ C(G). We claim that the expression
π(uγg)aπ(uγg)

∗ does not depend on the choice of g. Indeed, if h ∈ Cc(supp γ) is another
function satisfying 0 ≤ h ≤ 1 and h|K ≡ 1, then

π(uγgh)aπ(uγgh)
∗ =

n∑
i=1

π(uγgh)f1,iaif2,iπ(hguγ∗)

=
n∑
i=1

π(uγf1,i)aiπ(f2,iuγ∗)

= π(uγg)aπ(uγg)
∗ .

Also observe that

π(uγg)aπ(uγg)
∗ =

n∑
i=1

αγ(f1,i)π(uγ)aiπ(uγ∗)αγ(f2,i)

So we can put βγ,c(a) = π(uγg)aπ(uγg)
∗. Since βγ,c is contractive it extends to a *-

homomorphism βγ : Asupp γ → Aim γ.

If γ1, γ2 ∈ Γ(G) satisfy im γ2 ∩ supp γ1 ̸= ∅, we want to show that βγ1γ2 = βγ1 ◦
βγ2 |Asupp γ1γ2

. To this end let K ⊆ supp γ1γ2 be a compact subset, let g2 ∈ Cc(supp γ1γ2)
satisfy 0 ≤ g2 ≤ 1 and g2|K ≡ 1 and let g1 ∈ Cc(im γ2 ∩ supp γ1) satisfy g1|φγ2 (K) ≡ 1.
Then Lemma 7.3.7 implies that

uγ1f1uγ2f2 = uγ1uγ2αγ∗2 (f1)f2 = uγ1γ2αγ∗2 (f1)f2 .
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Since αγ∗2 (f1)f2|K ≡ 1, this implies

βγ1γ2,c = βγ1,c ◦ βγ2,c|spanCc(supp γ1γ2)ACc(supp γ1γ2) .

By continuity the desired equality follows.

Assume now that π : C∗(G) ↠ A is surjective *-homomorphism and let βγ : Asupp γ →
Aim γ define some G-action on A making π equivariant. Fix γ ∈ Γ(G) and a ∈ Asupp γ. By
approximation, we may assume that a = π(f)a0π(f) for some f ∈ C0(supp γ) and a0 ∈ A.
Let b0 ∈ C∗(G) be a preimage of a0 and put b = fb0f . Then π(b) = a and thus

βγ(a) = βγ(π(b)) = π(Ad uγ(b)) = π(uγ)π(b)π(u
∗
γ) = Ad π(uγ)(a) .

This shows uniqueness of the G-C*-algebra structure on A. ■

Next we will show that the classical notion of G-C*-algebras introduced in [Ren87] is
in a precise sense subsumed by our notion. Recall that given a compact Hausdorff space
X, a unital C(X)-algebra is a unital C*-algebra A with a unital inclusion C(X)→ Z(A)
into the centre of A. Given such algebra, the evaluation maps evx : C(X)→ C extend to
quotient maps A→ Ax onto the fibres of a C*-bundle.

Definition 7.3.9. Let G be an étale groupoid with compact Hausdorff space of units. A
unital G-C*-bundle is a unital C(G(0))-algebra A with an associative and continuous map
α : G s×

⊔
x∈G(0) Ax →

⊔
x∈G(0) Ax such that αx = id for all x ∈ G(0) and αg ◦ αh = αgh

whenever s(g) = r(h).

A G-ucp map between unital G-C*-bundles (A,α) and (B, β) is a unital C(G(0))-modular
unital completely positive map φ : A→ B satisfying φr(g) ◦ αg = βg ◦ φs(g) for all g ∈ G.

Let us make the following ad-hoc definition.

Notation 7.3.10. Let A be a C*-algebra. Writing groupoid actions implicitly, we call a
structure of a G-C*-bundle on A and the structure of a G-C*-algebra on A compatible, if
they define the same inclusion C(G(0)) ⊆ A and the equality

(γa)r(g) = gas(g)

is satisfied for every γ ∈ Γ(G), every g ∈ γ and every a ∈ Asupp γ.

Proposition 7.3.11. Let G be an étale groupoid with compact Hausdorff space of units.
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� If A is a unital G-C*-bundle, then there is a unique compatible structure of a unital
G-C*-algebra on A.

� If A is a unital G-C*-algebra such that C(G(0)) ⊆ A is central, then there is a unique
compatible structure of a unital G-C*-bundle on A.

� If A and B are unital G-C*-algebras such that C(G(0)) is central in A and B and
φ : A → B is a unital completely positive map, then φ is G-equivariant in the sense
of G-C*-algebras if and only if it is G-equivariant in the sense of G-C*-bundles.

Proof. Let A be a unital G-C*-bundle. Let γ ∈ Γ(G) be an open bisection, f1, f2 ∈
C0(supp γ) and a ∈ A. Then f1af1 ∈ Asupp γ and

supp γ → G ×s
⊔

x∈G(0)

Ax : x 7→ ((s|γ)−1(x), (f1af2)s(g))

extends by zero to a continuous section of G ×s
⊔
x∈G(0) Ax. Its image under the action

of G defines a continuous section in
⊔
x∈G(0) Ax whose support lies in im γ. We denote

this element by αγ(f1af2) ∈ Aim γ ⊆ A. The map f1af2 7→ αγ(f1af2) is bounded on
C0(supp γ)AC0(supp γ) and thus extends to a bounded map Asupp γ → Aim γ. It is straight-
forward to check that this defines a compatible structure of a unital G-C*-algebra on A.

Vice versa, assume that (A,α) is a unital G-C*-algebra such that C(G(0)) ⊆ A is central.
Let g ∈ G and as(g) ∈ As(g). Let a ∈ A be a lift of as(g) and γ ∈ Γ(G) an open bisection
containing g. Let f1, f2 ∈ Cc(supp γ) such that 0 ≤ f1, f2 ≤ 1 and f1(s(g)) = 1 = f2(s(g)).
Then

αγ(f1f2af2f1)|r(g) = f1(γ
∗r(g))2αγ(f2af2)r(g) = αγ(f2af2)r(g) .

This shows well-definedness of a map G ×s
⊔
x∈G(0) Ax →

⊔
x∈G(0) Ax satisfying the compat-

ibility condition of Notation 7.3.10. A straightforward calculation shows that this defines
a groupoid action, and it remains to check continuity. We denote by p the map from
the bundle

⊔
x∈G(0) Ax to its base space. Let (g, as(g)) ∈ G ×s

⊔
x∈G(0) Ax and take a basic

neighbourhood of gas(g), given by

N(b̃, U, ε) = {b ∈
⊔

x∈G(0)

Ax | p(b) ∈ U and ∥b− b̃p(b)∥ < ε}

for b̃ ∈ A, U ⊆ G(0) open and ε > 0. Without loss of generality, we may reduce the size of
U in order to assume that there is an open bisection γ ∈ Γ(G) that contains g and satisfies
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U ⊆ im γ. Further, replacing b̃ by f b̃f for some f ∈ C0(im γ) satisfying f |U ≡ 1, we may
assume that b̃ ∈ Aim γ. Put ã = γ∗b̃. Then by construction N(ã, U, ε) maps into N(b̃, U, ε),
proving continuity of the action at (g, as(g)).

A straightforward calculation shows the notions of G-equivariance for ucp maps agree.
■

7.4 Boundary theory for étale groupoids

Boundary theory for discrete groups has played an important role in the analysis of the
algebraic structure of the reduced C*-algebra of the group. A key result established in
[KK17], is that the Furstenberg boundary and the Hamana boundary of a discrete group
coincide, that is the C*-algebra of continuous functions on the Furstenberg boundary is
the unique essential and injective object in the category of C*-dynamical systems. In this
section, we will construct the Hamana boundary and the Furstenberg boundary of any
étale groupoid G with compact Hausdorff unit space and identify the two.

A Hamana boundary of an étale Hausdorff groupoid G with compact unit space was
constructed by Borys in [Bor19, Bor20] and directly termed Furstenberg boundary. In
this section, we denote the object he constructed by ∂BG. He constructed C(∂BG) as the
injective envelope of C(G(0)) in the category of concrete G-operator systems, which agrees
with the injective envelope in the category of G-C*-bundles.

We will construct the Hamana boundary ∂HG of G, for groupoids that are not necessarily
Hausdorff. The Hamana boundary is the spectrum of the injective envelope of C(G(0))
in the category of unital G-C*-algebras as introduced in Section 7.3. This terminology
highlights that the identification with the Furstenberg boundary is an à posteriori result
and honours Hamana’s development of the theory of injective envelopes [Ham79, Ham85].
Our proof of the existence of injective envelopes in the category of unital G-C*-algebras
builds on Sinclair’s proof from [Sin15] of the existence of injective envelopes in the category
of operator systems. The key technical device utilised in his proof is the existence of
idempotents in compact right topological semigroups. Utilising the convexity of the specific
semigroup under consideration allows us to further deduce the rigidity and essentiality of
the Hamana boundary.

We also develop a dynamical approach to boundary theory for an étale groupoid G
with compact Hausdorff unit space and construct the Furstenberg boundary ∂FG of G
within this framework. Specifically, consider the category of G-flows, which are compact
Hausdorff spaces equipped with a G-action. We single out the G-boundaries, which are
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the G-flows that are both minimal and strongly proximal in a sense made precise in Defi-
nition 7.4.11. The Furstenberg boundary ∂FG is the universal G-boundary, meaning that
every G-boundary is the image of ∂FG under a morphism of G-flows.

Once we have established the existence and uniqueness of the Furstenberg boundary
∂FG, we will prove that it coincides with the Hamana boundary ∂HG. Moreover, we will
prove that if G is Hausdorff, then ∂FG also coincides with the boundary ∂BG constructed
by Borys.

Both perspectives on the Furstenberg boundary developed here are of critical impor-
tance to our results. We will utilise the operator algebraic approach to the Furstenberg
boundary throughout this paper, and in particular when we introduce pseudo-expectations
in Section 7.6. We will utilise the dynamical approach to the Furstenberg boundary when
we consider Powers averaging property in Section 7.8.

7.4.1 Groupoid actions on states and probability measures

Let G be an étale groupoid with compact Hausdorff unit space and let A be a unital G-C*-
algebra. Let ι∗ : S(A)→ P(G(0)) denote the restriction map, where S(A) denotes the state
space of A equipped with the weak* topology and P(G(0)) denotes the space of probability
measures on G(0) equipped with the weak* topology. Although the G-C*-algebra structure
on A does not necessarily induce a G-space structure on S(A), it does induce a G-space
structure on a canonical closed subspace of S(A).

Definition 7.4.1. Let G be an étale groupoid with compact Hausdorff unit space. For a
unital G-C*-algebra A, we denote by SG(0)(A) ⊆ S(A) the closed subspace defined by

SG(0)(A) = {φ ∈ S(A) | ι∗φ = δx for some x ∈ G(0)} .

The next lemma shows how the G-C*-algebras structure on A induces a G-space struc-
ture on SG(0)(A).

Lemma 7.4.2. Let G be an étale groupoid with compact Hausdorff space of units. Let
(A,α) be a unital G-C*-algebra, let φ ∈ S(A) be such that φ|C(G(0)) = evx for some x ∈ G(0)
and let g ∈ Gx. Let γ be an open bisection of G containing g and let f ∈ Cc(im γ) be a
positive function satisfying f(r(g)) = 1. The formula

gφ(a) = φ(αγ∗(faf))

defines a state on A satisfying (gφ)|C(G(0)) = evr(g). It does not depend on the choice of γ
and f .
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Proof. Since the intersection of any pair of open bisections containing g is another open
bisection containing g, it suffices to observe that for any pair of functions f, h ∈ Cc(im γ)
satisfying 0 ≤ f, h ≤ 1 and f(r(g)) = h(r(g)) = 1, the equality

φ(αγ∗(hfafh)) = evx(αγ∗(h))
2φ(αγ∗(faf)) = h(r(g))2φ(αγ∗(faf)) = φ(αγ∗(faf))

holds. It is clear that (gφ)|C(G(0)) = evr(g), showing in particular that gφ is a state. ■

Let us consider the special case of commutative G-C*-algebras separately. We observe
that there is a correspondence between commutative unital G-C*-algebras C(X) and G-
spaces p : X → G(0). This leads to the following reformulation of Definition 7.4.1.

Definition 7.4.3. Let G be an étale groupoid with compact Hausdorff unit space. For a
compact G-space p : Z → G(0), we define

PG(0)(Z) = {ν ∈ P(Z) | p∗ν = δx for some x ∈ G(0)} .

Remark 7.4.4. It is clear that PG(0)(Z) is closed in the relative weak* topology, because
G(0) ⊆ P(G(0)) is weak-*-closed. The G-space structure on Z induces a canonical G-space
structure on PG(0)(Z). Namely, for ν ∈ PG(0)(Z) and g ∈ G with δs(g) = p∗ν, we observe
that supp(ν) ⊆ p−1(p∗ν) ⊆ Z and we can define the probability measure gν ∈ P(Z) by∫

Z

f d(gν) =

∫
p−1(s(g))

f(gz) dν(z) for f ∈ C(Z) .

This is the dual of the action of G on SG(0)(C(Z)) described by Lemma 7.4.2.

7.4.2 The Hamana boundary

Let G be an étale groupoid with compact Hausdorff unit space. In this section we will prove
the existence of injective envelopes in the category of unital G-C*-algebras, as defined in
Definition 7.4.6. We will begin by establishing the injectivity of the unital G-C*-algebra
ℓ∞(G).

We first observe that ℓ∞(G) is a G-C*-algebra. Since G(0) is compact, the canonical
embedding of C(G(0)) into ℓ∞(G) given by f 7→ f ◦ r is a unital *-homomorphism. Recall

from Notation 7.3.2 that for an open subset U ⊆ G(0), we write ℓ∞(G)U = C0(U)ℓ∞(G)
∥·∥

for the hereditary C*-subalgebra associated with U . Observing that C(G(0)) ⊆ ℓ∞(G) is
unital, it is straightforward to see that

ℓ∞(G)U ⊆ {f ∈ ℓ∞(G) | supp(f) ⊆ r−1(U)} = ℓ∞(G)U
w*

.
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For an open bisection γ ∈ Γ(G), the partial homeomorphism of γ on G defines a *-
isomorphism αγ : ℓ

∞(G)supp(γ) → ℓ∞(G)im(γ) satisfying

αγ(f)(g) =

{
f(γ∗g) if r(g) ∈ im(γ)

0 otherwise.

The next result characterises G-C*-algebra morphisms into ℓ∞(G).

Proposition 7.4.5. Let G be an étale groupoid with compact Hausdorff unit space. Let
(A,α) be a unital G-C*-algebra. There is a bijective correspondence between the following
objects:

1. G-ucp maps ϕ : A→ ℓ∞(G).

2. Unital completely positive maps ψ : A→ ℓ∞(G(0)) satisfying ψ|C(G(0)) = idC(G(0)).

3. Families of states {µx}x∈G(0) on A satisfying µx|C(G(0)) = δx.

For a map ϕ as in 1, the map ψ is defined by ψ(f) = ϕ(f)|G(0). For a map ψ as in 2, the
family {µx}x∈G(0) is defined by setting µx = δx◦ψ for each x ∈ G(0). For a family {µx}x∈G(0)

as in 3, the map ϕ is defined by ϕ(a)(g) = (gµs(g))(a) for a ∈ A.

Proof. It is easy to verify the bijective correspondence between maps as in 2 and families
of states as in 3. We will prove the bijective correspondence between maps as in 1 and
families of states as in 3.

Denote by (βγ)γ∈Γ(G) the G-action on ℓ∞(G). Let {µx}x∈G(0) be a family of states on A
as in 3. Then defining ϕ : A → ℓ∞(G) by ϕ(a)(g) = (gµs(g))(a) for a ∈ A yields a unital
completely positive map ϕ : A → ℓ∞(G). Furthermore, ϕ is the identity on C(G(0)) since
for f ∈ C(G(0)) and g ∈ G,

ϕ(f)(g) = (gµs(g))(f) = δr(g)(f) = (f ◦ r)(g) .

In particular ϕ(αγ(a)) ∈ ℓ∞(G)im γ for all a ∈ Asupp γ. To see that ϕ is G-equivariant, choose
γ ∈ Γ(G) and a ∈ Asupp(γ). We must show that ϕ(αγ(a))(g) = βγ(ϕ(a))(g) for all g ∈ im γ.

Suppose g ∈ G satisfies r(g) ∈ im γ. Choose η ∈ Γ(G) with g ∈ η. Then r(g) ∈
im γ ∩ im η, so in particular im γ ∩ im η ̸= ∅. Choose f ∈ Cc(im γ ∩ im η) such that
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f(r(g)) = 1. Then

ϕ(αγ(a))(g) = (gµs(g))(αγ(a))

= µs(g)(αη∗(fαγ(a)f))

= µs(g)(α(γ∗η)∗(αγ∗(f)aαγ∗(f)))

= µs(γ∗g)(α(γ∗η)∗(αγ∗(f)aαγ∗(f)))

= ((γ∗g)µs(γ∗g))(a)

= ϕ(a)(γ∗g)

= βγ(ϕ(a))(g) .

Hence ϕ is equivariant. Moreover, it is clear that ϕ satisfies δx ◦ ϕ = µx for all x ∈ G(0).
Therefore, the map from families of states as in 3 to G-ucp maps as in 1 is injective.

It remains to show that the map is surjective. For this, let ϕ : A→ ℓ∞(G) be a G-ucp
map as in 1. Define a family of states {µx}x∈G(0) on A by µx = δx◦ϕ and let ϕ′ : A→ ℓ∞(G)
be the corresponding G-ucp map constructed as above. For g ∈ G, let γ ∈ Γ(G) be an open
bisection with g ∈ γ and let f ∈ Cc(im γ) be a function satisfying f(r(g)) = 1. Then by
the equivariance of ϕ, we have

ϕ′(a)(g) = (gµs(g))(a)

= µs(g)(αγ∗(faf))

= (δs(g) ◦ ϕ)(αγ∗(faf))
= δs(g)(βγ∗ ◦ ϕ(faf))
= ϕ(faf)(γs(g))

= ϕ(faf)(g).

Now using the fact that ϕ is a C(G(0))-bimodule map gives

ϕ(faf)(g) = f(r(g))ϕ(a)(g)f(r(g)) = ϕ(a)(g) .

Hence ϕ′(a)(g) = ϕ(a)(g) for all g ∈ G, and we conclude that ϕ′ = ϕ. It follows that the
map from families of states as in 3 to G-ucp maps as in 1 is surjective. ■

We now define injectivity in the category of unital G-C*-algebras. For unital G-C*-
algebras A and B, recall that a G-ucp map ϕ : A→ B is an embedding if it is a complete
order embedding and note that if either of A or B is commutative, then ϕ is an embedding
if and only if it is isometric.
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Definition 7.4.6. Let G be an étale groupoid with compact Hausdorff unit space. We
say that a unital G-C*-algebra C is injective in the category of unital G-C*-algebras if
whenever A and B are unital G-C*-algebras with an embedding ι : A → B and a G-ucp
map ϕ : A → C, there is a G-ucp map ψ : B → C extending ϕ, that is the following
diagram commutes.

B

A C

ψ
ι

ϕ

With the correspondence from Proposition 7.4.5, we are now able to prove the injectivity
of ℓ∞(G) in the category of unital G-C*-algebras.

Proposition 7.4.7. Let G be an étale groupoid with compact Hausdorff unit space. The
C*-algebra ℓ∞(G) is injective in the category of unital G-C*-algebras.

Proof. Let ι : A → B be a unital G-C*-algebra embedding and let ϕ : A → ℓ∞(G) be a
G-ucp map. Let ψ : A → ℓ∞(G(0)) be the corresponding unital completely positive map
satisfying ψ|C(G(0)) = idC(G(0)) as in Proposition 7.4.5. Since ℓ∞(G(0)) is a commutative von
Neumann algebra, it is injective in the category of operator systems. Hence there is a unital
positive map ψ̃ : B → ℓ∞(G(0)) extending ψ, that is the following diagram commutes.

B

A ℓ∞(G(0))

ψ̃
ι

ψ

Applying Proposition 7.4.5 again, we obtain a G-ucp map ϕ̃ : B → ℓ∞(G). For a ∈ A,
we have ϕ̃(a)|G(0) = ψ̃(a) = ψ(a) = ϕ(a)|G(0) , so it follows from the correspondence in

Proposition 7.4.5 that ϕ̃|A = ϕ. We conclude that ℓ∞(G) is injective. ■

Now that we have established the existence of a von Neumann algebra in the category
of unital G-C*-algebra, we will be able to establish the existence an injective envelope.

Definition 7.4.8. Let G be an étale groupoid with compact Hausdorff unit space and let
A ⊆ B be a G-ucp embedding of unital G-C*-algebras.

1. We say that B is a rigid extension of A if any G-ucp map ϕ : B → B with ϕ|A = idA
satisfies ϕ = idB.
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2. We say that B is an essential extension of A if whenever C is a unital G-C*-algebra
and ϕ : B → C is a G-ucp map such that the restriction ϕ|A is an embedding, then
ϕ is an embedding.

3. A G-injective envelope of A is an injective unital G-C*-algebra C with an essential
G-ucp embedding A ↪→ C.

The next result establishes the existence and uniqueness of the injective envelope of
C(G(0)) in the category of unital G-C*-algebras, along with its rigidity property. The
first part of the proof closely follows Sinclair’s proof from [Sin15] of the existence of the
injective envelope of an operator system using the existence of minimal idempotents in
compact right topological semigroups. By utilising the convexity of the semigroup under
consideration, we then deduce rigidity and essentiality. The proof will make use of basic
facts about compact right topological semigroups as presented for example in [HS12].

Theorem 7.4.9. Let G be an étale groupoid with compact Hausdorff unit space. The G-
C*-algebra C(G(0)) admits an injective envelope in the category of unital G-C*-algebras.
It is a rigid extension of C(G(0)). It is also a commutative C*-algebra and unique up to
*-isomorphism.

Proof. By Proposition 7.4.7, the commutative von Neumann algebra ℓ∞(G) is injective in
the category of unital G-C*-algebras. Let S denote the set of G-C*-ucp maps ϕ : ℓ∞(G)→
ℓ∞(G) satisfying ϕ|C(G(0)) = idC(G(0)), equipped with the relative point-weak* topology.
Then S is a compact convex right topological semigroup under composition, meaning that
for fixed ψ ∈ S and a net (ϕi) in S converging to ϕ ∈ S, we have limϕi ◦ ψ = ϕ ◦ ψ.

Since S is a compact right topological semigroup, it contains a minimal left ideal L ⊆ S.
Note that L is necessarily closed. We claim that L is also a left zero semigroup, in the
sense that ϕ ◦ ψ = ϕ for all ϕ, ψ ∈ L. To see this, fix ψ ∈ L and observe that Sψ is a left
ideal of S contained in L, so the minimality of L implies L = Sψ. In particular, since S is
convex, this implies that L is convex. The map L → L : ϕ 7→ ϕ ◦ ψ is thus a continuous
affine map, so it admits a fixed point. Hence L0 = {ϕ ∈ L : ϕ ◦ ψ = ϕ} is a left ideal of S
contained in L. Applying the minimality of L again implies that L0 = L. Hence L is a left
zero semigroup. This implies that every element of L, and in particular ψ, is idempotent.

Let A = imψ. Since ψ is idempotent, A is a C*-algebra under the Choi-Effros product
defined by a ◦ b = ψ(ab). Since ℓ∞(G) is commutative, A is commutative. Also, since
ψ|C(G(0)) = idC(G(0)), it follows that C(G(0)) is a C*-subalgebra of A and belongs to the
multiplicative domain of ψ. Thanks to G-equivariance of ψ, the G-C*-algebra structure on
ℓ∞(G) restricts to a G-C*-algebra structure on A. Furthermore, since A is the range of an
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idempotent G-ucp map from the injective G-C*-algebra ℓ∞(G), it follows that A is injective
in the category of G-C*-algebras.

Before proving that A is actually the injective envelope of C(G(0)), it will be convenient
to first prove that it is a rigid extension of C(G(0)). To see this, let ϕ : A→ A be a G-ucp
map. Let ι : A→ ℓ∞(G) denote the G-embedding as a subset. Then ι ◦ϕ ◦ψ ∈ S and even
ι ◦ ϕ = ι ◦ ϕ ◦ ψ2 ∈ L. Since L is a left zero semigroup, ψ = ψ ◦ ι ◦ ϕ ◦ ψ, which implies
that ϕ = idA. Hence A is a rigid extension of C(G(0)).

To see that A is an essential extension of C(G(0)), let C be a unital G-C*-algebra and
let ϕ : A → C be a G-ucp map. Note that ϕ|C(G(0)) = idC(G(0)), so in particular ϕ|C(G(0))

is an embedding. By the injectivity of A, there is a G-ucp map η : C → A satisfying
(η ◦ ϕ)|C(G(0)) = idC(G(0)). Hence by the rigidity of A, we have η ◦ ϕ = idA, implying that ϕ
is an embedding.

Finally, to see that A is unique, let D be an injective envelope of C(G(0)) in the category
of unital G-C*-algebras. By the injectivity of D, there is a G-ucp map ϕ : A → D such
that ϕ|C(G(0)) is an embedding. So the essentiality of A implies that ϕ is an embedding.
Symmetrically, we obtain an embedding ψ : D → A. The composition ψ ◦ ϕ, must be the
identity map, since A is rigid, which implies that ϕ is surjective. Hence ϕ is an isometric
complete order isomorphism between C*-algebras, and therefore is a *-isomorphism. ■

We are now able to define the Hamana boundary of G.

Definition 7.4.10. Let G be an étale groupoid with compact Hausdorff unit space. The
Hamana boundary ∂HG of G is the spectrum of the injective envelope of C(G(0)) in the
category of unital G-C*-algebras.

We observe that C(∂HG) is also injective in the category of unital C*-algebras. In
particular, this implies that ∂HG is extremally disconnected. We will make use of this fact
below.

7.4.3 The Furstenberg boundary

Let G be an étale groupoid with compact Hausdorff unit space. In this section we will con-
struct the Furstenberg boundary of G by developing an analogue for groupoids of Fursten-
berg and Glasner’s theory of topological dynamical boundaries for groups (see e.g. [Gla76]).

In the next definition, we make use of the notation G · A = {ga | s(g) = p(a)} for a
subset A ⊆ X of a G-space p : X → G(0).
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Definition 7.4.11. Let G be an étale groupoid with compact Hausdorff space of units and
let p : Y → G(0) be a compact G-space.

� We will say that Y is irreducible if whenever Z ⊆ Y is a closed G-invariant subspace
satisfying p(Z) = G(0), then Z = Y .

� We will say that Y is strongly proximal if whenever (µx)x∈G(0) is a family of probability
measures on Y satisfying p∗µx = δx for all x ∈ G(0), then

G(0) ⊆ p(Y ∩ G · {µx | x ∈ G(0)}) .

� We will say that Y is a G-boundary if it is both irreducible and strongly proximal.

Remark 7.4.12. We will use the fact that a compact G-space p : Y → G(0) is a G-
boundary if and only if for every family (µx)x∈G(0) of probability measures µx ∈ P(Y )

satisfying p∗µx = δx, we have Y ⊆ G · {µx | x ∈ G(0)}.

The next proposition provides a characterisation of strong proximality in the minimal
setting that will be useful for the arguments in Section 7.8.

Proposition 7.4.13. Let G be a minimal étale groupoid with compact Hausdorff unit space.
Let p : Y → G(0) be an irreducible G-space. Then Y is strongly proximal if and only if the
following condition holds: for every x ∈ G(0) and every probability measure µ ∈ P(Y )
satisfying p∗µ = δx, there is y ∈ p−1(x) and a net (gi) in Gx such that giµ→ δy.

Proof. If Y satisfies the condition of the proposition, then it is clear that Y is strongly
proximal. For the converse, suppose that Y is strongly proximal and that µ ∈ P(Y )
satisfies p(µ) = δx0 for some x0 ∈ G(0). By the minimality of G,

p∗(G · µ) = G · p∗µ = G(0) .

So we can find a family (µx)x∈G(0) in G · µ satisfying p(µx) = δx for all x ∈ G(0). From the
strong proximality of Y , we infer that

p(Y ∩ G · µ) ⊇ p(Y ∩ G · {µx | x ∈ G(0)}) = G(0) ,

which finishes the proof of the proposition. ■

119



In Furstenberg and Glasner’s theory of topological dynamical boundaries for groups,
the affine flow of probability measures on a compact flow plays an important role. In the
present setting, a complication arises from the fact that a G-flow Z does not necessarily
induce a G-flow structure on the entire space P(Z) of probability measures on Z. Instead,
it is necessary to work with the subspace PG(0)(Z) ⊆ P(Z) introduced in Section 7.4.1.

Proposition 7.4.14. Let G be an étale groupoid with compact Hausdorff unit space. Let
pZ : Z → G(0) be a G-boundary and let pY : Y → G(0) be any compact G-space.

1. The image of every G-map Y → PG(0)(Z) contains Z.

2. If Y is irreducible, then every G-map Y → PG(0)(Z) maps onto Z, and there is at
most one G-map Y → Z.

Proof. Let ϕ : Y → PG(0)(Z) be a G-map. Then (pX)∗ϕ(y) = δpY (y) holds for all y ∈ Y .

Since Z is a G-boundary, we have Z ⊆ G · ϕ(Y ) by Remark 7.4.12. Because ϕ is G-
equivariant and Y is compact, we infer that Z ⊆ ϕ(Y ).

Now assume in addition that that Y is irreducible. The subset ϕ−1(Z) ⊆ Y satisfies
pY (ϕ

−1(Z)) = G(0), so by the irreducibility of Y , we have ϕ−1(Z) = Y . Combined with
the previous paragraph, this implies that ϕ(Y ) = Z. If ψ : Y → Z is another G-map,
then 1

2
(ϕ+ ψ) : Y → PG(0)(Z) is also a G-map that, from above, must take values in Z. It

follows that ϕ = ψ. ■

The next theorem establishes the existence of a Furstenberg boundary in analogy with
the classical argument for groups.

Theorem 7.4.15. Let G be an étale groupoid with compact Hausdorff space of units. There
is a G-boundary ∂FG that is universal in the sense that for every G-boundary Y there is
a (necessarily surjective) G-map ∂FG → Y . Furthermore, ∂FG is the unique G-boundary
with this property up to isomorphism of G-spaces.

Proof. We will prove the existence of ∂FG, whereupon uniqueness will follow from Proposi-
tion 7.4.14. First observe that by irreducibility, the density character of every G-boundary
does not exceed |G|. So there is a family of representatives for isomorphism classes of
G-boundaries qi : Yi → G(0), i ∈ I. Consider the fibre product

Y =
∏
I

(Yi, qi) = lim←−
i1,...,in∈I

Yi1 ×G(0) Yi2 ×G(0) · · · ×G(0) Yin
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and note that Y is compact, being the projective limit of compact Hausdorff spaces. Let
p : Y → G(0) and pi : Y → Yi denote the natural projections.

We now show that Y is strongly proximal. Let (µx)x∈G(0) be a family of probability
measures on Y satisfying p∗µx = δx for all x ∈ G(0). For a finite subset F ⊆ I, write
YF =

∏
F (Yi, qi) and denote by pF : Y → YF and qF : YF → G(0) the natural projections.

We will show by induction on the size of F that

G(0) ⊆ qF (YF ∩ G · (pF )∗{µx | x ∈ G(0)}) .
The case |F | = 1 follows from the assumed strong proximality for all Yi. Fix a finite set
F ⊆ I and assume that the statement is proven for all strictly smaller sets than F . Let
i ∈ F . Then by induction hypothesis, we have

G(0) ⊆ qF\{i}(YF\{i} ∩ G · (pF\{i})∗{µx | x ∈ G(0)}) .

By the compactness of P(Y ) this means that for every x ∈ G(0) there is

νx ∈ G · {µx | x ∈ G(0)} such that (pF\{i})∗νx ∈ YF\{i} and p∗νx = δx. By the strong
proximality of Yi, we find that

G(0) ⊆ qi(Yi ∩ G · (pi)∗{νx | x ∈ G(0)}) .

Choose probability measures σx, x ∈ G(0) in G · {νx | x ∈ G(0)} such that (pi)∗σx ∈ Yi and
p∗σx = δx. We observe that

(pF\{i})∗σx ∈ (pF\{i})∗(G · {νx | x ∈ G(0)}) ⊆ YF\{i}

so that (pF )∗σx ∈ YF follows for all x ∈ G(0). This finishes the induction.

In summary, we have found for every x ∈ G(0) a net of probability measures (µx,F )F⊆I finite

in G · {µx | x ∈ G(0)} such that p∗(µx,F ) = δx and (pF )∗(µx,F ) ∈ YF for all x ∈ G(0) and all
finite subsets F ⊆ I. By compactness, there are probability measures νx, x ∈ G(0) on Y
satisfying p∗(νx) = δx and (pF )∗(νx) ∈ YF for all x ∈ G(0) and all finite subsets F ⊆ I.
Since cylinder sets generate the Σ-algebra of Y , this implies that νx ∈ Y for all x ∈ G(0),
which finishes the proof of strong proximality.

Consider now the family of closed G-invariant subsets A ⊆ Y that satisfy p(A) = G(0).
This family is ordered by inclusion and by compactness satisfies the descending chain
condition. Hence it contains a minimal element, which necessarily will be an irreducible
G-space. Since it inherits strong proximality from Y , this proves the existence of ∂FG. ■

We are now able to define the Furstenberg boundary of G.
Definition 7.4.16. Let G be an étale groupoid with compact Hausdorff unit space. The
Furstenberg boundary ∂FG of G is the G-boundary constructed in Theorem 7.4.15.
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7.4.4 Equivalence of boundaries

In this section we will prove that the Hamana boundary and the Furstenberg boundary
coincide.

Let us start by the following lemma, which leads to a characterisation of G-boundaries
in Proposition 7.4.18. Its proof is based on Milman’s partial converse to the Krein-Milman
theorem, which states that if Y is a closed subset of a compact convex set K with the
property that the closed convex hull of Y is equal to K, then Y contains all of the extreme
points of K.

Lemma 7.4.17. Let G be an étale groupoid with compact Hausdorff unit space. Let Y be a
compact Hausdorff space identified with the closed subset of Dirac measures in P(Y ). Let

(µi)i∈I be a family of probability measures on Y . Then Y ⊆ {µi}i∈I
w*

if and only if the
map

⊕
i∈I µi : C(Y )→ ℓ∞(I) is isometric.

Proof. Suppose that the map
⊕

i∈I µi : C(Y )→ ℓ∞(I) is isometric but that there is y ∈ Y
such that y /∈ {µi}i∈I

w*
. Then letting K ⊆ P(Y ) denote the closed convex hull of the set

{µi}i∈I , we infer that K is a proper subset of P(Y ). Hence by the Hahn-Banach separation
theorem there is positive f ∈ C(Y ) and α ≥ 0 such that

sup
i∈I

µi(f) ≤ α < f(y) ,

contradicting the fact that the map
⊕

i∈I µi is isometric.

Conversely, suppose that Y ⊆ {µi}i∈I
w*
. The map

⊕
i∈I µi induces a continuous map

ϕ : P(βI) → P(Y ) satisfying ϕ(δi) = µi for i ∈ I. Hence ϕ(βI)
w*
⊇ Y . Since ϕ(P(βI))

is compact and weak*-closed, the Krein-Milman theorem implies that ϕ(P(βI)) = P(Y ),
that is ϕ is surjective. It follows that the map

⊕
i∈I µi is isometric. ■

Recall the bijective correspondence between commutative unital G-C*-algebras and
compact G-spaces from Section 7.4.1. The next result implies that this correspondence
restricts to a bijective correspondence between essential commutative unital G-C*-algebra
extensions of C(G(0)) and G-boundaries.

Proposition 7.4.18. Let G be an étale groupoid with compact Hausdorff unit space. Let
C(Y ) be a commutative unital G-C*-algebra. Then C(Y ) is an essential extension of
C(G(0)) if and only if Y is a G-boundary.
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Proof. First recall from Remark 7.4.12 that Y is a G-boundary if and only if for any family
of probability measures (µx)x∈G(0) on Y with the property that µx|C(G(0)) = δx for each

x ∈ G(0), we have

Y ⊆ {gµs(g) | g ∈ G}
w*

.

Suppose that Y is a G-boundary. Let B be a G-C*-algebra and let ϕ : C(Y )→ B be a G-ucp
map. We must show that ϕ is an embedding. Equivalently, since C(Y ) is commutative, we
must show that ϕ is isometric. By Proposition 7.4.7, we know that ℓ∞(G) is an injective G-
C*-algebra. So there is a G-ucp map B → ℓ∞(G). It suffices to show that the composition
ψ ◦ ϕ is isometric. Hence without loss of generality, we can assume that B = ℓ∞(G). For
x ∈ G(0), let µx = δx ◦ ϕ. Then by Proposition 7.4.7, we have ϕ =

⊕
g∈G gµs(g). It now

follows from Lemma 7.4.17 and the characterisation of G-boundaries from the beginning
of the proof that ϕ is isometric.

Conversely, suppose that C(Y ) is an essential extension of C(G(0)). Let (µx)x∈G(0)

be a family of probability measures on Y satisfying p∗µx = δx for all x ∈ G(0). By
Proposition 7.4.7, we obtain a G-ucp map ϕ =

⊕
g∈G gµs(g). By essentiality, ϕ is isometric.

Hence by Lemma 7.4.17, we have Y ⊆ {gµs(g) | g ∈ G}
w*
, so by the characterisation of

G-boundaries from Remark 7.4.12, Y is a G-boundary. ■

We now deduce the equality of the Hamana boundary ∂HG and the Furstenberg bound-
ary ∂FG.

Theorem 7.4.19. Let G be an étale groupoid with compact Hausdorff unit space. The
Hamana boundary ∂HG and the Furstenberg boundary ∂FG are isomorphic as G-spaces.

Proof. We will prove that C(∂HG) and C(∂FG) are isomorphic as G-C*-algebras. The
result will then follow from the discussion in Section 7.4.1.

Theorem 7.4.9 and Proposition 7.4.18 imply that ∂HG is a G-boundary. Hence by the
universal property of ∂FG there is a (necessarily surjective) G-map π : ∂FG → ∂HG. This
map corresponds to a G-ucp embedding ϕ : C(∂HG) → C(∂FG). By the injectivity of
C(∂HG), there is a G-ucp map ψ : C(∂FG) → C(∂HG) such that the following diagram
commutes:

C(∂FG)

C(∂HG) C(∂HG)

ψ
ϕ

id
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Applying Proposition 7.4.18 again, C(∂FG) is an essential extension of C(G(0)), so ψ must
be an embedding, forcing all of the maps in the above diagram to be *-isomorphisms. In
particular, ϕ is a *-isomorphism. ■

Finally, in the Hausdorff setting, we deduce the equality of the Furstenberg boundary
as constructed in this section with the Furstenberg boundary constructed by Borys, which
we denote by ∂BG. Recall that C(∂BG) is the injective envelope of C(G(0)) in the category
of concrete G-operator systems in the terminology of [Bor19, Bor20]. In particular, it is
the injective envelope of C(G(0)) in the category of G-C*-bundles.

Theorem 7.4.20. Suppose that G is an étale Hausdorff groupoid with compact space of
units. Then the Furstenberg boundary ∂FG and the boundary ∂BG constructed by Borys are
isomorphic as G-spaces.

Proof. We will prove that C(∂FG) and C(∂BG) are isomorphic as G-C*-algebras. The
result will then follow from the discussion in Section 7.4.1.

Since C(∂FG) is a commutative unital G-C*-algebra, Proposition 7.3.11 says that it
has a unique compatible structure of a unital G-C*-bundle. By Proposition 7.3.11 and
injectivity of C(∂BG) in this category, there is a G-ucp map ϕ : C(∂FG)→ C(∂BG). Since
C(∂BG) is a unital G-C*-algebras, there is also a G-ucp map ψ : C(∂BG)→ C(∂FG).

By the rigidity of C(∂FG), we infer that ψ ◦ ϕ is the identity map. Similarly, by the
rigidity of C(∂BG), we have that ϕ ◦ ψ is the identity map. Hence ϕ and ψ are both
*-isomorphisms. ■

7.5 Essential groupoid C*-algebras

In this section, we develop some understanding of essential groupoid C*-algebras, which
will be necessary to adapt methods from the theory of C*-simplicity to non-Hausdorff
groupoids. While there is always an inclusion C∗

r (G) ⊆ C∗
r (G ⋉ ∂FG), it is à priori not

clear that there is a similar inclusion on the level of essential groupoid C*-algebras. In
Section 7.5.2, we will show that this is the case for minimal groupoids and σ-compact
groupoids. For the proof of this fact, we reformulate the local conditional expectation of
Kwaśniewski-Meyer in terms of continuous extensions of functions on extremally discon-
nected spaces, such as the Furstenberg boundary ∂FG. This will be done in Section 7.5.1.
Finally, the point of view developed here, naturally leads to the question whether the lo-
cal conditional expectation of the Furstenberg groupoid is actually related to a reduced
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groupoid C*-algebra, which appears in the background. This is indeed the case, as we
will show in Section 7.5.3, when introducing the Hausdorffification of a groupoid with ex-
tremally disconnected unit space. Also this concept will be useful in our further discussion
on the intersection property in Sections 7.6 and 7.7.

7.5.1 The local conditional expectation for groupoid C*-algebras
via continuous extensions on extremally disconnected spaces

In this section we describe an alternative point of view on the local conditional expecta-
tion introduced by of Kwaśniwski-Meyer [KM21], by means of continuous extensions of
functions.

The next lemma is an adaption of [BKKO17, Lemma 3.2] (see also [Urs22, Lemma 3.3])
to the setting of groupoid dynamical systems that are not necessarily minimal.

Lemma 7.5.1. Let G be an étale groupoid with compact Hausdorff space of units and
assume that G is minimal or σ-compact. Let p : X → G(0) be a totally disconnected,
irreducible, compact G-space. Then

� for every open subset U ⊆ X the projection p(U) ⊆ G(0) has non-empty interior.

� for every dense subset D ⊆ G(0), the inverse image p−1(D) ⊆ X is dense.

Proof. Denote by π : G⋉X → G the natural extension of p. Let U ⊆ X be an open subset.
Denote by φγ the partial homeomorphism of X associated to an open bisection γ of G⋉X
and ψγ the partial homeomorphism of G(0) associated with an open bisection of G.

If G is minimal, then G ↷ X is minimal too. By compactness of X we find finitely many
compact open bisections (γn)n of G ⋉X such that (imφγn)n covers X and for every n, we
have suppφγn ⊆ U and there is an open bisection βn of G such that γn ⊆ π−1(βn). Since
each of the sets p(imφγn) is closed and X is a Baire space, it follows that there is some n
such that p(imφγn) has non-empty interior. Then also ψβ∗

n
◦ p(imφγn) = p(suppφγn) has

non-empty interior.

If G is σ-compact, observe that π : G ⋉X → G is proper, so that G ⋉X is σ-compact
and as such covered by countably many compact open bisections (γn)n∈N, each contained in
π−1(βn) for a some open bisection βn of G. Consider the open subset O =

⋃
n∈N φγn(U) ⊆

X. Then X \ O ⊆ X is a proper closed G-invariant subset. Thus p(X \ O) ⊆ G(0) is a
proper subset by irreducibility of X. Further, since X is compact and G(0) is Hausdorff,
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p(X\O) is also closed. It follows that p(O) has non-empty interior. Since it is the countable
union of the closed subsets (p(φγn(U)))n∈N and X is a Baire space, there is n ∈ N such
that p(φγn(U)) has non-empty interior. As before, one concludes that ψβ∗

n
◦ p(φγn(U)) =

p(U ∩ suppφγn) has non-empty interior.

Let now D ⊆ G(0) be a dense subset. Given an open subset U ⊆ X, we know by
the first part that p(U) has non-empty interior and thus intersects D non-trivially. Thus
U ∩ p−1(D) is non-empty either, which proves density of p−1(D) ⊆ X. ■

Remark 7.5.2. A topological space X is extremally disconnected if and only if for every
open subset U ⊆ X and every continuous function f ∈ Cb(U) there is a continuous
function g ∈ Cb(X) satisfying g|U = f . We refer to [GJ60, Exercise 1.H.6, p.23], which
uses a suitable version of Urysohn’s extension theorem (see [GJ60, 1.17, p.18]). One may
choose g to be supported in the clopen subset U ⊆ X.

Let us now describe our perspective on the local conditional expectation. We adopt
the original perspective of the local multiplier algebra as explained in Section 7.2.1. Recall
the terminology of [KM21, Section 3.1] that for an inclusion A ⊆ B of C*-algebras, a
generalised conditional expectation is given by another inclusion A ⊆ C and a completely
positive, contractive map F : B → C that restricts to the identity on A. In the next
proposition, the role of A is played by C(G(0)).

Proposition 7.5.3. Let G be an étale groupoid with compact Hausdorff space of units and
assume that G is minimal or σ-compact. Let p : X → G(0) be an extremally disconnected,
irreducible, compact G-space and denote by π : G⋉X → G its natural extension. Then there
is a unique generalised conditional expectation F : C∗

r (G)→ C(X) such that supp(F(f)) ⊆
p−1(U ∩ G(0)) and

F(f)|p−1(U∩G(0)) = (f ◦ π)|p−1(U∩G(0))

for all open bisections U ⊆ G and all f ∈ Cc(U). If Ered : C∗
r (G) → Mloc(C(G(0)))

denotes the local conditional expectation, then there is a unique G-equivariant embedding
Mloc(C(G(0)))→ C(X) such that the following diagram commutes

C∗
r (G) C(X)

Mloc(C(G(0)))

Ered

F
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Proof. Let U ⊆ G be an open bisection and f ∈ Cc(U). Write V = p−1(U ∩G(0)) ⊆ X and
denote by g ∈ C(X) the unique continuous extension of (f ◦ π)|V having support in V .
This defines a map F :

⊕
U Cc(U) → C(X). Let f =

∑n
i=1 fi ∈ C(G) for open bisections

Ui ⊆ G and fi ∈ Cc(Ui). Write Vi = p−1(Ui ∩ G(0)) and observe that |
∑

i F(fi)(x)| =
|
∑

i fi ◦ π(x)| ≤ ∥
∑

i fi∥C∗
r
for all x ∈ X \

⋃
i ∂Vi, where fi is considered as a Borel

function defined on all of G and having support in Ui. So continuity of each F(fi) implies
that

∥
∑
i

F (fi)∥ = sup{|
∑
i

F (fi)(x)| | x ∈ X}

= sup{|
∑
i

F (fi)(x)| | x ∈ X \
⋃
i

∂Vi}

≤ ∥f∥C∗
r

So F factors through C(G) and extends to a well-defined map C∗
r (G)→ C(X).

Given a dense open subset O ⊆ G(0) and f ∈ Cb(O), Lemma 7.5.1 says that p−1(O) ⊆ X
is dense, so that there is a unique continuous extension of f ◦ π to X, which defines an
element in C(X). We thus obtain a well-defined map Cb(O) → C(X). Varying O, these
embeddings define an injective *-homomorphism ι : Mloc(C(G(0)))→ C(X).

Given an open bisection U ⊆ G and f ∈ Cc(U), fix O = G(0) \ ∂U . Then Ered(f) ∈
Cb(O) ⊆ Mloc(C(G(0))) by definition. Further, ι(Ered(f))(x) = F(f)(x) for all x ∈ X \
p−1(G(0) ∩ ∂U). By Lemma 7.5.1 the latter set is dense in X and we can infer ι(Ered(f)) =
F(f) from continuity. ■

7.5.2 Inclusions of essential groupoid C*-algebras

Using the skyscraper groupoid as in [KS02, Example 2.5], it was observed in [KM21,
Remark 4.8] that the essential groupoid construction is not functorial. The present section
demonstrates that in the situations arising from the study of C*-simplicity, we do see
a natural inclusion of essential groupoid C*-algebras arising from suitable surjections of
groupoids. We make use of the Dixmier algebra picture of the local conditional expectation,
as explained in Section 7.2.1.

Theorem 7.5.4. Let G and H be étale groupoids with compact Hausdorff space of units
and that H is minimal or σ-compact. Assume that π : G → H is a fibrewise bijective,
proper surjection of groupoids. Then precomposition with π defines a *-homomorphism

127



C(H)→ C(G) giving rise to the following commuting diagram of inclusions.

C(H) C∗
r (H) C∗

ess(H)

C(G) C∗
r (G) C∗

ess(G)

Proof. Whenever U ⊆ H is an open bisection, then π−1(U) ⊆ G is an open bisection, since
π is fibrewise bijective. Since π is proper, precomposition with π defines a *-isomorphism
Cc(U) ∼= Cc(π

−1(U)). This proves that π∗ : C(H) → C(G) is well-defined. It is injective,
since π is surjective.

For x ∈ G(0), we have λGx ◦ π∗ = λHπ(x) as a straightforward calculation on the subspaces

Cc(U) ⊆ C(H) for open bisections U ⊆ H shows. It follows that π∗ extends continuously
to an embedding C∗

r (H) ↪→ C∗
r (G).

Write now X = spec(Dix(G(0))) and observe that X is an extremally disconnected G-
space. Denote its unit space projection by p : X → G(0). Since π is fibrewise bijective,
X also becomes an H-space. For an element h ∈ H and an element x ∈ X satisfying
π ◦ p(x) = s(h), there is a unique g ∈ π−1(h) satisfying s(g) = p(x). Then hx = gx holds
by definition. Denote by EG

red : C∗
r (G)→ C(X) the local conditional expectation. Then

EG
red ◦ π∗ : C

∗
r (H)→ C(X)

falls in the scope of Proposition 7.5.3. Hence we find that EG
red ◦ π∗ = ι ◦ EH

red, where we
denote by ι : Dix(H(0)) → C(X) the natural inclusion and by EH

red : C∗
r (H) → Dix(H(0))

the local conditional expectation of H.

ker(C∗
r (H)→ C∗

ess(H)) = {a ∈ C∗
r (H) | EH

red(a
∗a) = 0}

= {a ∈ C∗
r (H) | EG

red ◦ π∗(a
∗a) = 0}

= ker(C∗
r (H)→ C∗

ess(G)) .

■

Remark 7.5.5. Our proof of Theorem 7.5.4 makes direct use of the definition of the
essential groupoid. It should be remarked that Lemma 7.5.1 applied to the map G⋉X → G
also implies that preimages of meager sets remain meager. So functions with meager
support are pulled back to functions with meager support. Recall from Section 7.2.1 that for
a ∈ C∗

r (G), one defines a function on G by â(g) = ⟨λs(g)(a)δs(g), δg⟩. It follows from [KM21,
Proposition 7.18] and its proof that for étale groupoids G, the kernel of C∗

r (G) → C∗
ess(G)

consists exactly of elements a ∈ C∗
r (G) such that â∗a has meager support. This provides an

alternative approach to Theorem 7.5.4 for σ-compact groupoids and minimal groupoids.
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Remark 7.5.6. Despite a long list of characterisations obtained in [KM21, Proposition
7.18] an elementary description of singular elements has not yet been obtained. We observe
the following restriction on such elements, strengthening [KM21, Lemma 7.15]. It follows
from Theorem 7.5.4 that an element a ∈ C∗

r (G) is singular if and only if it is singular in

C∗
r (G ⋉ ∂FG). Let D = s(G(0) \ G(0)) and D∂ = s(∂FG \ ∂FG). Then â ◦ π is supported on

s−1(D∂) by [KM21, Proposition 7.18], so that â is supported in

s−1(D) ∩ {g ∈ G | π−1(g) ⊂ s−1(D∂)} = s−1(D) \ π(G \ s−1(D∂)) .

In the terminology of [KM21], the preimage of s(g) under π must consists entirely of
dangerous points.

Remark 7.5.7. We currently do not know whether the assumption of minimality or σ-
compactness is necessary in Theorem 7.5.4. It is a natural problem to either prove a result
or provide a counterexample in this generality.

continue here

7.5.3 Hausdorffification of groupoids with extremally disconnected
space of units

In this section we describe the essential groupoid C*-algebra of a non-Hausdorff groupoid
with an extremally disconnected space of units as the reduced groupoid C*-algebra of a
suitable Hausdorffification. In doing so, the main object we have in mind is of course the
Furstenberg groupoid G ⋉ ∂FG.

Recall from Proposition 7.2.1 that the isotropy groupoid of an étale groupoid with an
extremally disconnected space of units is clopen. The analogue statement holds true for the
closure of its space of units, which will be the starting point of defining a Hausdorffification.

Lemma 7.5.8. Let G be an étale groupoid whose space of units is an extremally discon-
nected, locally compact Hausdorff space. Then G is extremally disconnected. In particular,
G(0) ⊆ G is a clopen normal subgroupoid.

Proof. Let O ⊆ G be an open subset and g ∈ O. Let U ⊆ G be an open bisection
containing g. Then U ∩ O contains a net converging to g, so that g lies in the relative

closure U ∩OU ⊆ U . Since U is an open bisection and as such homeomorphic to an open

subset of G(0), it is extremally disconnected. So U ∩OU ⊆ O is an open neighbourhood of
g. ■
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Recall that quotients of étale groupoids by open normal subgroupoids remain étale. In
the setting of Lemma 7.5.8, the extended unit space is even clopen, so that we obtain a
Hausdorff quotient.

Definition 7.5.9. Let G be an étale groupoid whose space of units is an extremally dis-
connected, locally compact Hausdorff space. The extended unit space of G is G(0) ⊆ G. The
Hausdorffification of G is GHaus = G/G(0).

Before we proceed to the next theorem, let us remark that if G is an étale groupoid
with extremally disconnected compact Hausdorff space of units, then Proposition 7.5.3 can
be applied to the trivial G-space G(0). It follows that there is a conditional expectation
C∗
r (G)→ C(G(0)).

Theorem 7.5.10. Let G be an étale groupoid whose space of units is an extremally dis-
connected, compact Hausdorff space and whose extended unit space has amenable isotropy
groups. Denote by p : G → GHaus the quotient map to its Hausdorffification.

� There is a unique *-isomorphism π : C∗
ess(G) → C∗

r (GHaus) which restricts to the
natural *-isomorphism p∗ : Cc(U)→ Cc(p(U)) for every open bisection U ⊆ G.

� Denote by E : C∗
r (GHaus) → C(G(0)) and Eess : C

∗
ess(G) → C(G(0)) the natural condi-

tional expectations. Then E ◦ π = Eess.

Proof. By assumption every isotropy group of G(0) is amenable, so that Proposition 7.2.6
implies that there is a *-homomorphism πred : C∗

r (G)→ C∗
r (GHaus) restricting to the natural

*-isomorphism p∗ : Cc(U) → Cc(p(U)) for every open bisection U ⊆ G. We will show
that πred factors through the essential groupoid C*-algebra of G to a *-homomorphism
π : C∗

ess(G)→ C∗
r (GHaus) satisfying E ◦ π = Eess. Since E is faithful, it suffices to show that

E ◦πred is the local conditional expectation of C∗
r (G). To this end, we verify the conditions

of Proposition 7.5.3 for X = G(0). For every open bisection U ⊆ G and every f ∈ Cc(U)
the function satisfying

E ◦ πred(f)(x) =
∑

g∈G(0)
x

f(g)

is continuous, supported in U ∩ G(0) and satisfies E ◦ πred(f)|U∩G(0) = f |U∩G(0) . So E ◦
πred(f) = Eess(f) follows. ■
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7.6 Fundamental characterisations of the ideal inter-

section property

In this section we establish characterisations of the ideal intersection property that will be
of fundamental importance for further reasoning both about the existence of essentially
confined amenable sections of the isotropy group in Section 7.7, and about Powers averaging
property in Section 7.8.

The characterisations we will consider here come in three different flavours. First,
the ideal intersection property of C(G(0)) ⊆ C∗

ess(G) is equivalent to the ideal intersection
property of C(∂FG) ⊆ C∗

ess(G ⋉ ∂FG), making it possible to exploit the extremal discon-
nectedness of the Furstenberg boundary. Second, on the level of G ⋉ ∂FG, it is possible
to express the ideal intersection property as a simple statement about principality, which
must, however, take into account the possible non-Hausdorffness of the groupoid. This
is expressed in the definition of essentially principal groupoids in Definition 7.6.3. Third,
the ideal intersection property can be expressed in terms of a uniqueness statement for
G-pseudo expectations. It is this last characterisation that will be most frequently applied
in further results. Recall that, following Pitts [Pit17], a G-pseudo expectation on C∗

ess(G)
is a G-equivariant generalised conditional expectation with values in C(∂FG).

Theorem 7.6.1. Let G be an étale groupoid with compact Hausdorff space of units. As-
sume that G is Hausdorff, that G is minimal or that G is σ-compact. Then the following
statements are equivalent.

1. C(G(0)) ⊆ C∗
ess(G) has the ideal intersection property.

2. C(∂FG) ⊆ C∗
ess(G ⋉ ∂FG) has the ideal intersection property.

3. Iso(G ⋉ ∂FG) = ∂FG
G⋉∂FG

.

4. There is a unique G-pseudo expectation C∗
ess(G)→ C(∂FG).

Remark 7.6.2. It is worth commenting on the necessity of the assumption of minimality or
σ-compactness for non-Hausdorff groupoids in Theorem 7.6.1. Most C*-simplicity results
for groups hold without any assumption on countability of the group, and this is also
reflected in the Hausdorff case for étale groupoids. However, the essential groupoid C*-
algebra, which replaces the reduced groupoid C*-algebra in the non-Hausdorff case, is by
its very definition governed by the interaction between open dense subsets of the groupoid.
As a consequence, it is not even clear that there is an inclusion of C∗

ess(G) into C∗
ess(G⋉∂FG).
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Only under the additional assumption of Theorem 7.6.1 have we been able to prove the
existence of such an inclusion in Section 7.5.2. This inclusion is therefore vital for arguments
pertaining to the theory of C*-simplicity.

We will adopt the following terminology in the remainder of this article.

Definition 7.6.3. Let G be an étale groupoid with locally compact Hausdorff space of
units. We will say that G is essentially principal if Iso(G) = G(0). It is essentially effective

if Iso(G)◦ ⊆ G(0).

We remark that, by Proposition 7.2.1, an essentially effective groupoid with extremally
disconnected unit space is automatically essentially principal.

Let us begin with the following result, proving one implication of Theorem 7.6.1.

Proposition 7.6.4. Let G be an étale groupoid with extremally disconnected, compact
Hausdorff space of units. Further assume that all isotropy groups of G are amenable. If
C(G(0)) ⊆ C∗

ess(G) has the ideal intersection property, then G is essentially principal.

Proof. First assume that G is Hausdorff. Since the unit space of G is extremally dis-
connected, Proposition 7.2.1 says that the isotropy groupoid of G is clopen. So there is a
well-defined conditional expectation C∗

r (G)→ C∗
r (Iso(G)). Further, consider the trivial rep-

resentation C∗
r (Iso(G))→ C(G(0)), which exists by Proposition 7.2.6 thanks to amenability

of isotropy groups. We denote by F : C∗
r (G) → C(G(0)) the composition of these two

maps. Observe that F is tracial and that C∗
r (Iso(G)) lies in the multiplicative domain of

F . Denote by H the Hilbert-C(G(0))-module obtained from separation-completion coming
with a map Λ : C∗

r (G)→ H satisfying

⟨Λ(a),Λ(b)⟩ = F (ab∗)

for all a, b ∈ C∗
r (G). Denote by π the associated KSGNS-representation of C∗

r (G) [Lan95],
which is faithful on C(G(0)). Since C0(G(0)) ⊆ C∗

r (G) has the ideal intersection property,
this implies that π is faithful on C∗

r (G).
Let U ⊆ Iso(G) be an open bisection and f ∈ Cc(U). Write g = f ◦ (s|U)−1 ∈ Cc(s(U)).

Then F (f − g) = 0. Combined with the fact that C∗
r (Iso(G)) lies in the multiplicative

domain of F , this leads to the calculation

⟨Λ(a), π(f − g)Λ(b)⟩ = F (a∗(f − g)b)
= F (ba∗(f − g))
= F (ba∗)F (f − g)
= 0 ,
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for all a, b ∈ C∗
r (G). This shows that f − g is zero. Since f ∈ Cc(U) was arbitrary, this

shows that U = s(U) ⊆ G(0). Since Iso(G) is open by Proposition 7.2.1, this proves the
proposition for Hausdorff groupoids.

If G is a possibly non-Hausdorff groupoid satisfying the assumptions of the lemma,
we observe that C(G(0)) ⊆ C∗

ess(G) ∼= C∗
r (GHaus) has the ideal intersection property. So

the Hausdorffification GHaus introduced in Section 7.5.3 is principal. This implies that
Iso(G) = G(0). ■

In order to apply Proposition 7.6.4 to Furstenberg groupoids, we need to verify that
their isotropy groups are amenable. This was shown by Borys for Hausdorff groupoids.
We present a different proof, which is a suitable adaption of the standard argument for
groups.

Proposition 7.6.5. Let G be an étale groupoid with compact Hausdorff space of units and
let x ∈ ∂FG. Then (G ⋉ ∂FG)xx is an amenable group.

Proof. Write H = G ⋉ ∂FG for the Furstenberg groupoid and fix x ∈ ∂FG. Consider the
unital G-C*-algebra ℓ∞(H). By G-injectivity, the inclusion C(∂FG) ⊆ ℓ∞(H) gives rise to a
G-ucp map ℓ∞(H)→ C(∂FG). Passing to the fibre at x of both C(∂FG)-algebras, we obtain
an Hx

x-invariant state ℓ
∞(Hx)→ C. After choice of any Hx

x-equivariant map Hx → Hx
x, we

obtain an Hx
x-equivariant *-homomorphism ℓ∞(Hx

x)→ ℓ∞(Hx). The composition of these
maps gives an Hx

x-invariant state on ℓ∞(Hx
x), which proves amenability of Hx

x. ■

Proposition 7.6.6. Let G be an étale groupoid with compact Hausdorff space of units.
Assume that G is Hausdorff, that G is minimal or that G is σ-compact. If G ⋉ ∂FG is
essentially principal then there is a unique G-pseudo expectation C∗

ess(G)→ C(∂FG).

Proof. Existence of a G-pseudo expectation C∗
ess(G) → C(∂FG) follows from Proposi-

tion 7.5.3 and the fact that the local conditional expectation Ered : C∗
r (G) → Dix(G(0))

factors through C∗
ess(G). We will prove uniqueness. Let φ : C∗

ess(G) → C(∂FG) be a
G-pseudo expectation. Let us write H = G ⋉ ∂FG throughout the rest of the proof.
If G is Hausdorff, then C∗

ess(G) = C∗
r (G) ⊆ C∗

r (H) = C∗
ess(H). If G is minimal or σ-

compact, then by Theorem 7.5.4 there is an inclusion C∗
ess(G) ⊆ C∗

ess(H). Applying G-
injectivity of C(∂FG) we can extend φ to C∗

ess(H). Theorem 7.5.10 provides the natural
identification C∗

ess(H) ∼= C∗
r (HHaus), and we denote the resulting G-pseudo expectation by

ψ : C∗
r (HHaus) → C(∂FG). By G-rigidity we find that ψ restricted to C(H(0)

Haus) = C(∂FG)
is the identity. Consequently, C(∂FG) lies in the multiplicative domain of ψ. Let now
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γ ⊆ HHaus \ ∂FG be some open bisection and f ∈ Cc(γ). Since H is essentially prin-
cipal, we have Iso(HHaus) = ∂FG. So if f ̸= 0, then for every non-empty open subset
V0 ⊆ suppψ(f) there is some nonempty open subset V ⊆ V0 such that γV ∩ V = ∅. This
leads to

ψ(f)1V = ψ(f1V ) = ψ(1γV f) = 1γV ψ(f) .

This is a contradiction, showing that ψ(f) = 0. We showed that ψ is the natural conditional
expectation of C∗

r (HHaus). So the composition

φ : C∗
ess(G) ↪→ C∗

ess(H)
∼=→ C∗

r (HHaus)→ C(∂FG)

equals the natural G-pseudo expectation by Theorem 7.5.10. ■

Proposition 7.6.7. Let G be an étale groupoid with compact Hausdorff space of units.
Assume that there is a unique G-pseudo expectation C∗

ess(G) → C(∂FG). Then C(G(0)) ⊆
C∗

ess(G) has the ideal intersection property.

Proof. Let π : C∗
ess(G) ↠ A be a surjective *-homomorphism that is faithful on C(G(0)).

Proposition 7.3.8 shows that A carries a unital G-C*-algebra structure such that π is G-
equivariant. Then (π|C(G(0)))

−1 : π(C(G(0))) → C(G(0)) extends to a G-ucp map φ : A →
C(∂FG). The composition φ ◦ π : C∗

ess(G) → C(∂FG) is a G-pseudo expectation of G.
By assumption of the lemma, it must thus be the natural G-pseudo expectation, which is
faithful. So also π must be faithful. ■

Proposition 7.6.8. Let G be an étale groupoid with a compact Hausdorff space of units.
Assume that G is Hausdorff, that G is minimal or that G is σ-compact. If C∗

ess(G) has the
ideal intersection property, then also C∗

ess(G ⋉ ∂FG) has the ideal intersection property.

Proof. We write H = G ⋉ ∂FG throughout the proof. Let π : C∗
ess(H) ↠ A be a surjective

*-homomorphism that is faithful on C(∂FG). Consider the inclusion C∗
ess(G) ⊆ C∗

ess(H)
provided by Theorem 7.5.4 in case G is minimal or σ-compact. If G is Hausdorff, then alsoH
is Hausdorff so that their essential groupoid C*-algebras are equal to their reduced groupoid
C*-algebras, and we also obtain the inclusion C∗

ess(G) ⊆ C∗
ess(H). Since C(G(0)) ⊆ C∗

ess(G)
has the ideal intersection property, it follows that π is faithful on C∗

ess(G). Denote by
Eess : C

∗
ess(G) → C(∂FG) the natural G-pseudo expectation. We observe that A becomes

a unital G-C*-algebra by Proposition 7.3.8. So Eess ◦ (π|C∗
ess(G))

−1 : π(C∗
ess(G)) → C(∂FG)

extends to a G-ucp map φ : A → C(∂FG). Write ψ = φ ◦ π : C∗
ess(H) → C(∂FG). Then

G-rigidity implies that ψ|C(∂FG) is the identity map. In particular, C(∂FG) lies in the
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multiplicative domain of ψ. Since C∗
ess(H) = spanC∗

ess(G)C(∂FG) and ψ|C∗
ess(G) = Eess, we

find that ψ is the natural conditional expectation of C∗
ess(H). In particular ψ, and thus

also π, is faithful. ■

Let us summarise how the principal result of this section follows.

Proof of Theorem 7.6.1. If C(G(0)) ⊆ C∗
ess(G) has the ideal intersection property, then also

C(∂FG) ⊆ C∗
ess(G ⋉ ∂FG) has it by Proposition 7.6.8 since G is assumed to be Hausdorff,

to be minimal or to be σ-compact. Since all isotropy groups of G ⋉ ∂FG are amenable
by Proposition 7.6.5, we can invoke Proposition 7.6.4 to infer that the ideal intersection
property for C(∂FG) ⊆ C∗

ess(G ⋉ ∂FG) implies that G ⋉ ∂FG must be essentially principal.
In turn, Proposition 7.6.6 says that essential principality of G⋉∂FG implies that there is a
unique G-pseudo expectation C∗

ess(G) → C(∂FG), using another time the assumption that
G is Hausdorff, minimal or σ-compact. Finally, Proposition 7.6.7 shows that uniqueness
of the G-pseudo expectation C∗

ess(G)→ C(∂FG) implies the ideal intersection property for
C(G(0)) ⊆ C∗

ess(G). ■

Remark 7.6.9. We made it clear that it is necessary to consider the essential groupoid
C*-algebra in order to obtain a relation between the ideal structure and the algebraic-
dynamical structure of a groupoid. This can be underpinned by the fact the ideal intersec-
tion property for C∗

r (G⋉∂FG) implies that G is Hausdorff. Indeed, assume that C∗
r (G⋉∂FG)

has the ideal intersection property. Since the map C∗
r (G⋉∂FG)→ C∗

ess(G⋉∂FG) is injective
on C(∂FG), it follows that the ideal of singular functions in C∗

r (G ⋉ ∂FG) is trivial. Since
∂FG ⊆ G ⋉ ∂FG is clopen by Lemma 7.5.8, this implies that G ⋉ ∂FG is Hausdorff. Then
also G is Hausdorff, since the quotient map G ⋉ ∂FG → G maps ∂FG onto G(0).

7.7 Essentially confined subgroupoids

An important point in our understanding of C*-simplicity of discrete groups has been the
characterisation in terms of confined subgroups from [Ken20], since this provides criteria
that can be checked in terms of the group itself. Note that the terminology of “confined”
subgroups does not appear in [Ken20], although it does appear in prior work on group
algebras of locally finite groups [HZ97].

In this section we obtain results about the ideal intersection property for groupoids.
The key achievement is Theorem 7.7.2, which establishes a characterisation in terms of
confined amenable sections of isotropy groups for groupoids with a compact Hausdorff
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space of units that satisfy a regularity property such as Hausdorffness, minimality or σ-
compactness. Subsequently, we will be able to remove the compactness assumption on the
unit space by considering a notion of Alexandrov groupoid, whose unit space is the one-
point compactification of the unit space of the original groupoid. In this we way, we will
obtain complete results for Hausdorff groupoids and σ-compact groupoids in Section 7.7.2.

Given an étale groupoid G with locally compact Hausdorff space of units, as in [Bor20,
§ 4.2.4, p. 78], we define Sub(G) as the space of all subgroups of the isotropy groups
of G, viewed as a subspace of the space C(G) of all closed subsets of G equipped with
the Chabauty topology (see for instance [Fel62]). We will denote elements of Sub(G) by
(x,H), where x ∈ G(0) and H is a subgroup of Gxx . Observe that the first factor projection
Sub(G)→ G(0) together with the conjugation action of G turns Sub(G) into a G-space.

The next definition extends [Bor20, Definition 4.2.24] to the non-Hausdorff case.

Definition 7.7.1. Let G be an étale groupoid with locally compact Hausdorff space of
units. A section of isotropy subgroups is a collection {(x,Hx) | x ∈ G(0)} of isotropy
subgroups Hx ⊆ Gxx for all x ∈ G(0). Such a section is called amenable if all Hx are
amenable. A section of isotropy subgroups Λ = {(x,Hx) | x ∈ G(0)} is called essentially

confined if there exists x ∈ G(0) such that H ̸⊆ G(0) for all (x,H) ∈ G · Λ.

We recall that the terminology of confinedness, first arose in the study of groups, where
it qualifies subgroups that are isolated from the trivial group in a strong sense.

7.7.1 The ideal intersection property for groupoids with compact
space of units

Combining arguments similar to those used by Kawabe [Kaw17] and Borys [Bor20] with
the techniques developed in the present article yields the following characterisation of the
intersection property for étale groupoids with compact space of units, which is new in the
non-Hausdorff case and completes Borys’s sufficient criterion in the Hausdorff case.

Theorem 7.7.2. Let G be an étale groupoid with compact Hausdorff space of units. Assume
that G is Hausdorff, that G is minimal or that G is σ-compact. Then C(G(0)) ⊆ C∗

ess(G)
has the intersection property if and only if G has no essentially confined amenable sections
of isotropy subgroups.

Remark 7.7.3. Previous work on crossed product C*-algebras and groupoid C*-algebras
obtained partial results that can be recovered from Theorem 7.7.2.
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Kawabe considered in [Kaw17] crossed product C*-algebras C(X) ⋊r Γ for a compact
Hausdorff spaceX and a discrete group Γ. Note that C(X)⋊rΓ ∼= C∗

r (Γ⋉X) is the groupoid
C*-algebra associated with the transformation groupoid Γ ⋉ X. Kawabe’s main result
[Kaw17, Theorem 1.6] characterised the ideal intersection property for C(X) ⊆ C(X)⋊r Γ
by the following property: For every point x ∈ X and every amenable subgroup Λ ≤ Γx,
there is a net (gi) in Γ such that (gix) converges to x and (giΛg

−1
i ) converges to {e} in the

Chabauty topology. We observe that Sub(X ⋊ Γ) = {(x,Λ) ∈ X × Sub(Γ) | Λ ≤ Γx} as
topological spaces. This shows how Kawabe’s result is generalised by our Theorem 7.7.2.

Borys considered in [Bor20, Bor19] étale Hausdorff groupoids with compact space of
units and proved that the absence of confined amenable sections in the isotropy is a suffi-
cient criterion for simplicity of C∗

r (G). Since for any such Hausdorff groupoid, we have a
*-isomorphism C∗

r (G) ∼= C∗
ess(G) and the notions of essentially confined sections of isotropy

groups agrees with the notion of confined sections of isotropy groups, our Theorem 7.7.2
recovers Borys sufficient criterion and shows its necessity.

Additionally, we will comment on Kwaśniewski-Meyer’s result [KM21, Theorem 7.29]
in Remark 7.7.15, since groupoids with locally compact space of units are considered in
this work.

We begin with the following observation, which is probably well known.

Lemma 7.7.4. Let G be an étale groupoid with locally compact Hausdorff space of units.
Sub(G) is closed in C(G).

Proof. Suppose that (xi, Hi) ∈ Sub(G) converges to C in C(G). As explained in [Fel62],
the subset C consists precisely of the elements of g ∈ G with the following property: For
every open subset U ⊆ G with g ∈ U , we have Hi∩U ̸= ∅ eventually. First of all, we claim
that C ⊆ Gxx for some x ∈ G(0). Indeed, take g, h ∈ C with s(g) = x and s(h) = y. If x ̸= y,
then we can find disjoint open subsets U and V of G(0) containing x and y, respectively.
Then we must have Hi∩ s−1(U) ̸= ∅ eventually, which implies xi ∈ U eventually. Similarly,
xi ∈ V eventually. This shows that x = y. The same argument, applied to the range map,
shows that C ⊆ Gxx . This also shows that we must have limi xi = x. It remains to show
that C is a subgroup of Gxx . Take g ∈ C and an open subset V ⊆ G with g−1 ∈ V . Then
g ∈ V −1, so that Hi ∩ V −1 ̸= ∅ eventually. Applying the inverse map, we deduce that
Hi ∩ V ̸= ∅ eventually. Hence g−1 ∈ C. Now take g, h ∈ C and an open subset W ∈ G
with gh ∈ W . By continuity of multiplication, we find open subsets U, V ⊆ G with g ∈ U ,
h ∈ V such that UV ⊆ W . Then g, h ∈ C implies Hi ∩ U ̸= ∅ and Hi ∩ V ̸= ∅ eventually.
Thus Hi ∩ UV ̸= ∅ eventually. We conclude that gh ∈ C. So C ∈ Sub(G), as desired. ■
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The next proposition establishes the reverse implication of Theorem 7.7.2. Portions of
the proof will closely follow the presentation in [Bor20] for Hausdorff groupoids. Neverthe-
less, we include a complete proof for the convenience of the reader.

Proposition 7.7.5. Let G be an étale groupoid with compact Hausdorff space of units.
Suppose that G is Hausdorff, G is minimal or G is covered by countably many bisections.
If G has no essentially confined amenable sections of isotropy subgroups, then G ⋉ ∂FG is
essentially principal.

Proof. The theorem is proven in [Bor20, Theorem 4.2.25] for the case of Hausdorff groupoids,
in which case C∗

ess(G⋉∂FG) = C∗
r (G⋉∂FG) holds. So we need to consider the cases where G

is minimal and where G is covered by countably many bisections. Let π : G⋉ ∂FG → G be
the canonical projection and consider the set of isotropy subgroups Λ = {π((G ⋉ ∂FG)yy) |
y ∈ ∂FG}. The same argument as in [Bor20, Proof of Theorem 4.2.25], which does not use
the assumption that G is Hausdorff, shows that Λ is a closed invariant subspace of Sub(G).
So our assumption that G has no essentially confined amenable section of isotropy sub-
groups implies that for all x ∈ G(0), there exists y ∈ π−1(x) such that π((G⋉∂FG)yy) ⊆ G(0)x.

Let us consider the case when G is minimal. Then we define

Z = {y ∈ ∂FG | π((G ⋉ ∂FG)yy) ⊆ G(0)π(y)}

and observe that π(Z) = G(0) and Z is G-invariant. If y ∈ Z and g ∈ (G ⋉ ∂FG)yy, we
take an open bisection U ⊆ Iso(G ⋉ ∂FG) that contains g. Let (yi)i be a net in s(U) ∩ Z
converging to y. Then (s|U)−1(yi) → g and thus π(g) = limi π((s|U)−1(yi)) ∈ G(0). This
proves that y ∈ Z. So Z is closed, which implies Z = ∂FG by irreducibility. Equivalently,
π(Iso(G ⋉ ∂FG)) ⊆ G(0). Put A = Iso(G ⋉ ∂FG) \ ∂FG. We will conclude the proof in the
minimal case by assuming that A ̸= ∅ and deducing a contradiction. If A ̸= ∅, we can find
an open bisection U ⊆ G such that U ∩ π(A) ̸= ∅. Then V = π−1(U) ∩ A ⊆ G ⋉ ∂FG is a
non-empty open bisection. Since G is minimal, Lemma 7.5.1 says that s(π(V )) = π(s(V ))
contains a non-empty open subset. Since π(V ) ⊆ U is contained in an open bisection, this

implies that ∅ ̸= π(V )◦ ⊆ π(A) ⊆ G(0) \ G(0). This is the desired contradiction. Hence
G ⋉ ∂FG is essentially principal.

Assume now that G is covered by countably many open bisections, we define

Z = {y ∈ ∂FG | (G ⋉ ∂FG)yy ⊆ ∂FGy} .

As the extended unit space ∂FG is normal in G ⋉ ∂FG, it follows that Z is G-invariant.
Moreover, the identity ∂FG \ Z = s

(
Iso(G ⋉ ∂FG) \ ∂FG

)
implies that Z is closed. Hence
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π(Z) is a closed subset of G(0). We want to show that π(Z) = G(0) and to this end it will
suffice to prove that π(Z) ⊆ G(0) is dense. Since G is covered by countably many open

bisections, Proposition 7.2.5 says that the set {x ∈ G(0) | G(0)x = {x}} is dense in G(0).
Now for all x in this set, there exists y ∈ π−1(x) with π((G ⋉ ∂FG)yy) ⊆ G(0)x = {x}, that
is π((G ⋉ ∂FG)yy) = {x} and thus (G ⋉ ∂FG)yy = {y}. This shows that π(Z) is dense in

G(0). Since π(Z) is also closed, we conclude that π(Z) = G(0), as desired. Since ∂FG is
G-irreducible, it follows that Z = ∂FG, that is Iso(G ⋉ ∂FG) ⊆ ∂FG. ■

Let us now explain the proof of the forward implication of Theorem 7.7.2. The following
proof is an adaptation of Kawabe’s argument for dynamical systems of groups [Kaw17], as
presented in [Bor20, Proof of Theorem 3.3.6]. Note that this proposition is new even in
the Hausdorff case.

Proposition 7.7.6. Let G be an étale groupoid with compact Hausdorff space of units.
Assume that G is Hausdorff, that G is minimal or that G is σ-compact. If there is a unique
G-pseudo-expectation C∗

ess(G) → C(∂FG), then G has no essentially confined amenable
sections of isotropy subgroups.

Proof. Let Λ = {(x,Hx) | x ∈ G(0)} be an amenable section of isotropy subgroups and Y
its orbit closure, that is Y = G · Λ ⊆ Sub(G). Define θ : C∗

r (G)→ C(Y ) as follows. Given
a ∈ C∗

r (G) and (x,H) ∈ Y , let θ(a)(x,H) be the image of a under the composition

C∗
r (G) C∗

r (Gxx) C∗
r (H) CEx EH χ

where Ex and EH are the natural conditional expectations and χ is the character corre-
sponding to the trivial representation. It is clear from the construction that θ is unital and
completely positive, once we showed that θ(a) is continuous on Y . It suffices to prove this
for a ∈ Cc(U), where U ⊆ G is an open bisection. For such a, our construction yields

θ(a)(x,H) =

{
a(Ux)1H(Ux) if x ∈ s(U)

0 otherwise.

Now let O = {g ∈ U | a(g) ̸= 0}, which is open, and let K ⊆ U be compact such that
O ⊆ K. The sets OO = {(x,H) ∈ Sub(G) | H ∩ O ̸= ∅} and O′

K = {(x,H) ∈ Sub(G) |
H ∩K = ∅} are open in Sub(G). We have θ(a)|(Y ∩OO)c ≡ 0, and θ(a)|(Y ∩O′

K)c is given as
the composition

(Y ∩ O′
K)

c → s(K)→ C : (x,H) 7→ x 7→ a(Ux) .
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It follows that both restrictions θ(a)|(Y ∩OO)c and θ(a)|(Y ∩O′
K)c are continuous. Moreover,

O ⊆ K implies that (Y ∩OO)∩ (Y ∩O′
K) = ∅, so that we obtain a decomposition into two

closed sets Y = (Y ∩ OO)c ∪ (Y ∩ O′
K)

c. Since θ(a) is continuous on both of these closed
subsets, it follows that θ(a) is continuous on Y .

Now we show that θ is G-equivariant. Take an open bisection γ, an open bisection U
with r(U), s(U) ⊆ s(γ) and a ∈ Cc(U). Then αγ(a) ∈ Cc(γUγ∗). For all (x,H) ∈ Y , we
have θ(αγ(a))(x,H) = 0 if x /∈ s(γUγ∗) and θ(a)(ψγ∗(x), γ

∗Hγ) = 0 if ψγ∗(x) /∈ s(U). The
conditions x /∈ s(γUγ∗) = ψγ ◦ s(U) and ψγ∗(x) /∈ s(U) are equivalent. Using the fact that
ψγ∗(x) = γ∗xγ, for x ∈ s(γUγ∗), we have

θ(αγ(a))(x,H) = αγ(a)(γUγ
∗x)1H(γUγ

∗x)

= a(Uγ∗xγ)1H(γUγ
∗x)

= a(Uγ∗xγ)1γ∗Hγ(Uγ
∗xγ)

= θ(a)(ψγ∗(x), γ
∗Hγ) .

The projection onto the first coordinate Y → G(0) induces a G-equivariant embedding
C(G(0)) → C(Y ). Hence G-injectivity of C(∂FG) provides us with a G-equivariant ucp
map φ : C(Y ) → C(∂FG). It follows that φ ◦ θ : C∗

r (G) → C(∂FG) is a G-ucp map with
(φ ◦ θ)|C(G(0)) = id. We claim that φ ◦ θ factors as

C∗
r (G) C∗

ess(G) C(∂FG),
q Ψ

or equivalently, that (φ ◦ θ)(Jsing) = 0. If G is Hausdorff, this is tautological. Otherwise,
given a ∈ Jsing we have Ered(a

∗a) = 0. So by Proposition 7.2.4, there is a dense subset
U ⊆ G(0) such that â∗a|U = 0. Since

â∗a(x) =
∑
g∈Gx

|â(g)|2

for all x ∈ G(0), it follows that â|Gx = 0 for all x ∈ U . Thus θ(a)|{x}×Sub(Gx
x) = 0. By C(G(0))-

modularity, it follows that (φ ◦ θ)(a)|π−1(x) = 0 for all x ∈ U , where π : ∂FG → G(0) is the
natural projection. By Lemma 7.5.1 the preimage of U in ∂FG is dense. So (φ ◦ θ)(a) = 0
follows. Hence, indeed, (φ ◦ θ)(Jsing) = 0.

Now it follows that Ψ is a G-pseudo-expectation C∗
ess(G) → C(∂FG). By assumption,

there is only one such G-pseudo-expectation. It follows that Ψ◦q = E◦π∗, where E : C∗
r (G⋉

∂FG) → C(∂FG) is the (unique) conditional expectation described in Proposition 7.5.3.
Thus φ ◦ θ = E ◦ π∗.

140



Now take y ∈ ∂FG and set x = π(y). The composition evy ◦ φ defines a state on
C(Y ), hence it corresponds to a probability measure µy = φ∗(δy) on Y . The commutative
diagram

∂FG P(Y )

P(G(0))

φ∗

shows that supp(µy) ⊆ {x} × Sub(Gxx). Now assume, for the sake of contradiction, that

Λ is essentially confined. Then there exists x ∈ G(0) such that H ̸⊆ G(0)x for all (x,H) ∈
Y = G · Λ. Choose y ∈ ∂FG with π(y) = x. We claim that µy({(x,H) ∈ Y | g ∈ H}) = 0

for all g ∈ Gxx with g /∈ G(0). Indeed, take an open subset U ⊆ G \ G(0) with g ∈ U . Choose
a ∈ Cc(U) satisfying a(g) = 1. Then U ∩ G(0) = ∅ implies that π−1(U) ∩ ∂FG = ∅. Hence
it follows that E(a ◦ π) = 0. Now, using supp(µy) ⊆ {x} × Sub(Gxx), we obtain

µy({(x,H) ∈ Y | g ∈ H}) =
∫
Y

1H(g)dµy(x,H)

=

∫
Y

θ(a)(x,H)dµy(x,H)

= (evy ◦ φ ◦ θ)(a)
= evy((E ◦ π∗)(a))

= 0.

To finish the proof, let us observe that H ̸⊆ G(0)x for all (x,H) ∈ Y implies that

({x} × Sub(Gxx)) ∩ Y =
⋃

g∈Gx
x\G(0)

x

{(x,H) | g ∈ H} .

The latter set is exhausted by compact subsets of the form {x} ×KF , where KF = {H ∈
Sub(Gxx) | F ∩H ̸= ∅} and F ⊆ Gxx \ G(0) is finite. Since µy is supported on {x}× Sub(Gxx),
inner regularity implies that there is a finite subset F ⊆ Gxx \ G(0)x such that 0 < µy({x}×
KF ). We find that

0 < µy({x} ×KF ) ≤
∑
g∈F

µy({(x,H) | g ∈ H}) = 0 .

This is a contradiction. ■
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Let us finish by proving the main theorem in this section.

Proof of Theorem 7.7.2. By Theorem 7.6.1, we know that the ideal intersection property
for C∗

ess(G) is equivalent to essential principality of G ⋉ ∂FG and to the uniqueness of
a G-pseudo expectation C∗

ess(G) → C(∂FG). Also observe that every σ-compact étale
groupoid is covered by countably many open bisections. So the present theorem follows
from Propositions 7.7.5 and 7.7.6. ■

7.7.2 The Alexandrov groupoid

In this section we provide a full characterisation of the ideal intersection property for étale
groupoids with locally compact space of units which are either Hausdorff or σ-compact. To
this end, we will combine Theorem 7.7.2 with the study of a suitable notion of Alexandrov
groupoid.

Recall that if X is a locally compact Hausdorff space, its Alexandrov or one-point com-
pactification is the compact Hausdorff space X+ = X ⊔{∞} whose topology is determined
by specifying that the inclusion X ↪→ X+ is a homeomorphism onto its image and a neigh-
bourhood basis of ∞ is provided by the set {∞} ∪ (X \K), where K ⊆ X runs through
compact subsets of X. In particular, X ⊆ X+ is dense if X is non-compact and ∞ is an
isolated point in X+ if X is compact.

The next definition provides a suitable notion of Alexandrov compactification for group-
oids whose unit space is not necessarily compact.

Definition 7.7.7. Let G be an étale groupoid with locally compact Hausdorff space of
units. Then the Alexandrov groupoid G+ is the set G∪(G(0))+ with the topology determined
by specifying that the inclusions G, (G(0))+ ⊆ G+ are open, and the groupoid structure
extending the groupoid structure of G and making ∞ a unit.

We directly observe that G+ is an étale groupoid whose unit space is, by construction,
the compact Hausdorff space (G(0))+.

We identify the essential groupoid C*-algebra of the Alexandrov groupoid.

Proposition 7.7.8. Let G be an étale groupoid with locally compact Hausdorff space of
units. Then the inclusion C(G) ⊆ C(G+) extends to an inclusion C∗

ess(G) ⊴ C∗
ess(G+) iso-

morphic with the unitisation C∗
ess(G)⊴ C∗

ess(G)+.
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Proof. Let us first observe that there is indeed an inclusion C(G) ⊆ C(G+), since G ⊆ G+
is open. It moreover defines a *-isomorphism C(G)+ ∼= C(G+) mapping 1 ∈ C(G)+ to
1(G(0))+ . Let us identify the essential C*-algebra norm on C(G) and C(G+). To this end,

we show that for all f ∈ C(G+) and h1, . . . , hn ∈ C(G) there is f̃ ∈ C(G) such that
f ∗ hi = f̃ ∗ hi for all i ∈ {1, . . . , n}. For each i, we know that supp hi ⊆ G is compact.
So also K =

⋃n
i=1 r(supphi) ⊆ G(0) is compact. Let g ∈ Cc(G(0)) be a function satisfying

0 ≤ g ≤ 1 and g|K ≡ 1. Put f̃ = f · (g ◦ s) and observe that f̃ ∈ C(G). Then for x ∈ G and
i ∈ {1, . . . , n}, we have

f̃ ∗ hi(x) =
∑
x=yz

f̃(y)hi(z) =
∑
x=yz

f(y)g(r(z))hi(z) =
∑
x=yz

f(y)hi(z) = f ∗ hi(x) .

Denote by Eess : C
∗
ess(G)→ Dix(G(0)) the local condition expectation and let f ∈ C(G).

Recall that G(0) ⊆ (G(0))+ is dense if G(0) is non-compact and ∞ is an isolated point
in (G(0))+ otherwise. Combining this with [KM21, Proposition 4.10] and the previous
paragraph, we find that for f ∈ Cc(G),

∥f∥2C∗
ess(G) = sup{∥E(g∗ ∗ f ∗ ∗ f ∗ g)∥ | g ∈ C(G)}

= sup
g∈C(G)

inf
U⊆G(0) dense open

sup
x∈U
|g∗ ∗ f ∗ ∗ f ∗ g|(x)

= sup
g∈C(H)

inf
U⊆(G(0))+ dense open

sup
x∈U
|g∗ ∗ f ∗ ∗ f ∗ g|(x)

= ∥f∥2C∗
ess(G+) .

This shows that C(G) ⊆ C(G+) extends to an inclusion C∗
ess(G) ⊆ C∗

ess(G+). The uni-
versal property of the unitisation provides an injective extension to a *-homomorphism
C∗

ess(G)+ ↪→ C∗
ess(G+), which must also be surjective since it restricts to the *-isomorphism

C(G)+ ∼= C(G+). ■

Let us now translate the condition about the absence of essentially confined amenable
sections of isotropy.

Lemma 7.7.9. Let G be an étale groupoid with locally compact Hausdorff space of units.
Then G has no essentially confined amenable sections of isotropy groups if and only if G+
has no essentially confined amenable sections of isotropy groups.

Proof. Assume that G+ has no essentially confined amenable sections of isotropy groups and
let (Λx)x∈G(0) be an amenable section of isotropy groups of G. Putting Λ∞ = {∞}, we obtain
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an amenable section of isotropy groups of G+. Put Y = G+ · {(x,Λx) | x ∈ (G(0))+} ⊆
Sub(G+). By assumption, for every x ∈ (G(0))+ there is (x,H) ∈ Y such that H ⊆ G(0)+x.
Since ∞ is G+ invariant, this shows that (Λx)x∈G(0) is not essentially confined.

Assume that G has no essentially confined amenable sections of isotropy groups and
let (Λx)x∈(G(0))+ be an amenable section of isotropy groups of G+, and then put Y =

G · {(x,Λx) | x ∈ G(0)} ⊆ Sub(G). By assumption, for every x ∈ G(0), there is (x,H) ∈ Y
such that H ⊆ G(0)x. Since G+∞ = {∞}, this implies that (Λx)x∈(G(0))+ is not confined. ■

We are now able to combine the discussion in this section with our results from Sec-
tion 7.7.1. This completes the proof of Theorem 7.1.2.

Theorem 7.7.10. Let G be an étale groupoid with locally compact Hausdorff space of units.
Assume that G is Hausdorff or G+ is σ-compact. Then C∗

ess(G) has the ideal intersection
property if and only if G has no essentially confined amenable sections of isotropy groups.
Further, G+ is σ-compact if G is σ-compact.

Proof. Consider the Alexandrov groupoid G+. If G is Hausdorff, then G(0) ⊆ G is closed, so
that also (G+)(0) = G(0) ∪ {∞} ⊆ G+ is closed. So also G+ is Hausdorff. If G is σ-compact
and (Kn)n is a sequence of compact subsets exhausting G, then (Kn∪{∞})n exhausts G+.
So the Alexandrov groupoid is also σ-compact.

Since C∗
ess(G) ⊆ C∗

ess(G+) is isomorphic with the inclusion C∗
ess(G) ⊆ C∗

ess(G)+ by Propo-
sition 7.7.8, it follows that C0(G(0)) ⊆ C∗

r (G) has the ideal intersection property if and
only if C((G(0))+) ⊆ C∗

r (G+) has the ideal intersection property. We can now combine
Theorem 7.7.2 and Lemma 7.7.9 to conclude the proof. ■

Remark 7.7.11. As stated in Theorem 7.7.10, the Alexandrov groupoid G+ is always σ-
compact if G is so. The converse holds if {x ∈ G(0) | Gx = {x}} is σ-compact, in particular
if Gx ̸= {x} holds for every x ∈ G(0). Indeed, if (Kn)n is a sequence of compact subsets
exhausting G+, then the subsets Cn = Kn \ (G(0))+ ⊂ G are compact and exhaust G \ G(0).
Then G(0) = {x ∈ G(0) | Gx = {x}} ∪

⋃
n s(Cn), showing that G is σ-compact.

A significant strengthening of the ideal intersection property is the ideal separation
property. Given an étale Hausdorff groupoid with locally compact Hausdorff space of units,
the inclusion C0(G(0)) ⊆ C∗

r (G) separates ideals if and only if every ideal in C∗
r (G) is induced

from C0(G(0)) (see [BL20, Theorem 3.10]). The following result provides a characterisation
of the ideal separation property of C∗

r (G) in terms of the groupoid G itself, solving a problem
described in [BL20, Paragraph after the proof of Theorem 3.10]. Its formulation employs
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the notion of inner exactness. Recall that a locally compact étale Hausdorff groupoid G is
inner exact if and only if for every closed G-invariant subset X ⊆ G(0) the sequence

0→ C∗
r (G|G(0)\X)→ C∗

r (G)→ C∗
r (G|X)→ 0 .

is exact.

Corollary 7.7.12. Let G be a locally compact étale Hausdorff groupoid. Then C∗
r (G) has

the ideal separation property if and only if G is inner exact and for every G-invariant closed
subset X ⊆ G(0) the restricted groupoid G|X has no confined amenable sections of isotropy.

Proof. By [BL20], C∗
r (G) has the ideal separation property if and only if G is inner exact

and has the residual ideal intersection property. The latter means by definition that G|X
has the ideal intersection property for every G-invariant closed subset X ⊆ G(0). So the
result follows directly from Theorem 7.1.2. ■

Let us now give a prove of Theorem 7.1.1, combining the results of this section.

Theorem 7.7.13. Let G be an étale groupoid with locally compact Hausdorff space of units.
Assume that G is Hausdorff, G is σ-compact or G has a compact space of units. Then the
essential groupoid C*-algebra C∗

ess(G) is simple if and only if G is minimal and has no
essentially confined amenable sections of isotropy groups.

Proof. In view of Theorems 7.7.2 and 7.7.10, we only have to show that G is minimal if
C∗

ess(G) is simple. Assume that G is not minimal and let U ⊆ G(0) be a non-empty, proper,
open G-invariant subset of its unit space. Consider the ideal I = C∗

ess(G)C0(U)C∗
ess(G)

generated by C0(U) inside the essential groupoid C*-algebra. It is non-zero since U is non-
empty and it is proper since its preimage in C∗

r (G) is the proper ideal C∗
r (G)C0(U)C∗

r (G).
So C∗

ess(G) is not simple. ■

Let us next compare our Theorem 7.7.10 with the work of Kwaśniewski-Meyer [KM21]
and Kalantar-Scarparo [KS21]. In order to do so, we need to introduce their notion of
topologically free groupoids, which is a strengthening of essentially effective groupoids as
introduced in Definition 7.6.3, as we will observe below.

Definition 7.7.14 (See [KM21, Definition 2.20]). Let G be an étale groupoid with locally
compact Hausdorff space of units. Then G is topologically free, if for every bisection
U ⊂ G \ G(0) the set {x ∈ G(0) | Gxx ∩ U ̸= ∅} has empty interior.
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Remark 7.7.15. In their recent work [KS21, Theorem 6.3], Kalantar-Scarparo obtained
a characterisation of simplicity for crossed product C*-algebra. Their result is implied by
our Theorem 7.7.10 as applied to transformation groupoids arising from minimal group
actions.

Kwaśniewski-Meyer [KM21, Theorem 7.29] characterised étale groupoids with locally
compact Hausdorff space of units for which the kernel of C∗(G) → C∗

ess(G) is the unique
maximal ideal of C∗(G) that intersects C0(G(0)) trivially. These are precisely the topologi-
cally free groupoids in the sense of Definition 7.7.14. In particular, the essential groupoid
C*-algebra of a topologically free groupoid is simple. Let us explain how simplicity of
C∗

ess(G) can be proven by means of our Theorem 7.7.10, and we refer to Corollary 7.7.16 for
a related characterisation of simplicity. We assume that G is topologically free and observe
that the bisection U in Definition 7.7.14 may be assumed to be open and a subset of G\G(0).
Fix a compact subset C ⊂ G(0) with non-empty interior. Given a section of isotropy groups
(Λx)x∈G(0) (amenable or not), we will exhibit a net (xK)K in C indexed by compact subsets

of G(0) such that ΛxK ∩ K = ∅. Compactness of the Chabauty space Sub(G), which is a
non-trivial fact for non-Hausdorff groupoids [Fel62], then implies that (ΛxK )K has a cluster

point, which is a subgroup of G(0)x for some x ∈ C. Let K ⊆ G \ G(0) be a compact subset
and let U1, . . . , Un be open bisections of G covering K. Then {x ∈ G(0) |

⋃n
i=1 Ui ∩Gxx ̸= ∅}

has empty interior. In particular, there is x ∈ C such that Λx∩K = ∅. We can put xK = x
and finish the argument, showing that (Λx)x is not essentially confined.

As explained in the introduction, characterisations of simplicity and a suitable gen-
eralised ideal intersection property of groupoid C*-algebras were limited to the maxi-
mal groupoid C*-algebra, as in [BCFS14, Theorem 5.1] and [KM21, Theorem 7.29]. For
amenable groupoids, this leads to characterisations of simplicity of the essential groupoid
C*-algebra. The next corollary clarifies the relation of our Theorem 7.7.10 to such charac-
terisations for amenable groupoids.

Corollary 7.7.16. Let G be a σ-compact étale groupoid with locally compact Hausdorff
space of units and amenable isotropy groups. Then C∗

ess(G) has the ideal intersection prop-
erty if and only if G is topologically free.

Proof. If G is topologically free, it follows from [KM21, Theorem 7.29] (see also Re-
mark 7.7.15) that C∗

ess(G) has the ideal intersection property. Assume that G is not topo-
logically free. Then there is a bisection U ⊆ G \ G(0) such that {x ∈ G(0) | Gxx ∩U ̸= ∅} has
non-empty interior. We may assume that U is open and that U ⊂ Iso(G). Putting Λx = Gxx ,
we obtain an amenable section of isotropy groups of G. We will show that it is confined. For
every g ∈ Gx, the equality gΛxg−1 = Λr(g) holds, so that G · {Λx}x = {Λx}x. Let us denote
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this set by Y . Since for all x ∈ s(U), we have Λx ∩ U ̸= ∅, also every element (H, x) ∈ Y
with x ∈ s(U) satisfies H ∩ U ̸= ∅. So H ̸⊆ G(0). We can now apply Theorem 7.7.10 and
conclude that C∗

ess(G) does not have the ideal intersection property. ■

7.8 Powers averaging for minimal groupoids

In this section, we generalise the work done in [AU22], and derive the Powers averag-
ing property for simple essential groupoid C*-algebras based on the notion of generalised
probability measures. We also prove the relative Powers averaging property for certain
semigroups of generalised probability measures, leading to natural C*-irreducible inclu-
sions into essential groupoid C*-algebras and applications to unitary representations in
Section 7.9.

7.8.1 Generalised probability measures

In [AU22], a notion of generalised probability measure on a compact space X was intro-
duced. It combines the action of a group G ↷ X with the action of positive elements in
C(X) by elementary operators. This idea naturally fits with our approach to the ideal
intersection property for groupoid C*-algebras by means of the pseudogroup of open bi-
sections.

Definition 7.8.1. Let G be an étale groupoid with compact Hausdorff space of units. A
(finite) generalised G-probability measure on G(0) is a finite formal sum of pairs

∑
i∈I(γi, fi)

such that γi ∈ Γ(G) and fi ∈ Cc(supp(γi),R≥0) is a positive, continuous, compactly sup-
ported function on the support of γi satisfying

∑
i fi ◦ ψγ∗i = 1G(0) . We denote the set of

(finite) generalised G-probability measures on G(0) by CPG(G(0)).

We point out that the concept of generalised probability measures allows for the repeti-
tion of bisections. Therefore, it is not necessarily true that the formal sum in the definition
can be indexed by a subset of Γ(G).

Remark 7.8.2. In some situations it is preferable to think of a pair (γ, f) as in Def-
inition 7.8.1 and being represented as (f ◦ ψγ∗ , γ). This is for example the case when
interpreting the unitality condition

∑
i fi ◦ ψγ∗i = 1G(0) and later in Definition 7.8.5, where

covering semigroups of generalised probability measures are introduced.
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Generalised probability measures naturally act both on groupoid C*-algebras and on
their state spaces. To prove this, we will first exhibit their natural semigroup structure.

Proposition 7.8.3. Let G be an étale groupoid with compact Hausdorff space of units.
Given two generalised probability measures µ1 =

∑
i(γ1,i, f1,i) and µ2 =

∑
j(γ2,j, f2,j) from

CPG(G(0)), we define their product by the following formula.

µ1µ2 =
∑
i,j

(γ1,iγ2,j, (f1,i ◦ ψγ2,j)f2,j) .

Then CPG(G(0)) becomes a semigroup with this product.

Proof. Once the product is well-defined, its associativity follows from associativity of the
product in Γ(G) and the fact that Γ(G) acts on C(G(0)). Thus, we only have to prove that
µ1µ2 as defined above is again an element of CPG(G(0)).

First observe that for all i, j the product (f1,i ◦ψγ2,j)f2,j is a continuous function whose
support lies in ψγ∗2,j(supp γ1,i ∩ im γ2,j) = supp γ1,iγ2,j. Further,

(f1,i ◦ ψγ2,j)f2,j = (f1,i(f2,j ◦ ψγ∗2,j)) ◦ ψγ2,j ∈ Cc(supp γ1,iγ2,j) .

Evaluating the following sum in the space of Borel functions on G(0), we find that∑
i,j

((f1,i ◦ ψγ2,j)f2,j) ◦ ψ(γ1,iγ2,j)∗ =
∑
i

f1,i ◦ ψγ∗1,i ·

(∑
j

f2,j ◦ ψγ∗2,j

)
◦ ψγ∗1,i

=
∑
i

(f1,i ◦ ψγ∗1,i) · 1im γ1,i

= 1G(0) .

This finishes the proof of the proposition. ■

Generalised probability measures were introduced in [AU22] to provide a notion of con-
tractibility of measures on spaces admitting a minimal group action. In order to generalise
this to groupoids in the context of C*-simplicity, we require suitable actions of CPG(G(0))
on C(G(0)) and on C∗

ess(G).
Proposition 7.8.4. Let G be an étale groupoid with compact Hausdorff space of units and
let (A,α) be a unital G-C*-algebra. There is a semigroup action of CPG(G(0)) on A by
completely positive, completely contractive and non-degenerate maps defined by

µa =
∑
i

αγi(f
1/2
i af

1/2
i )
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for a ∈ A and µ =
∑

i(γi, fi). Consequently, there is a right semigroup action on the state
space S(A) of A defined by

(φµ)(a) = φ(µa)

for φ ∈ S(A), µ ∈ CPG(G(0)) and a ∈ A.

Proof. Let us first check that the formula in the statement defines an action. Given two
generalised G-probability measures µ1 =

∑
i(γ1,i, f1,i) and µ2 =

∑
j(γ2,j, f2,j) and an ele-

ment a ∈ A, we find

µ1(µ2a) = µ1(
∑
j

αγ2,j(f
1
2
2,jaf

1
2
2,j))

=
∑
i

αγ1,i(f
1
2
1,i

∑
j

αγ2,j(f
1
2
2,jaf

1
2
2,j)f

1
2
1,i)

=
∑
i

αγ1,i(
∑
j

αγ2,j((f1,i ◦ ψγ2,j)
1
2f

1
2
2,jaf

1
2
2,j(f1,i ◦ ψγ2,j)

1
2 ))

= (µ1µ2)(a) .

For every µ ∈ CPG(G(0)) the map a 7→ µa is completely positive as a sum of a composition
of completely positive maps. Further, it is unital on A, since

µ(1A) =
∑
i

αγi(f
1
2
i 1Af

1
2
i ) =

∑
i

αγi(f
1
2
i f

1
2
i ) =

∑
i

αγi(fi) = 1G(0) = 1A .

This shows that a 7→ µa is completely contractive and non-degenerate on A. It follows
directly that φµ(a) = φ(µa) defines an action on the state space of S(A). ■

7.8.2 Contractive and covering semigroups

When we consider Powers averaging property, we will require the following definition, which
provides a suitable generalisation of boundary actions of groups.

Definition 7.8.5. Let G be an étale groupoid with compact Hausdorff space of units.
We will say that a subsemigroup S ⊆ CPG(G(0)) is covering if for every g ∈ G there is
µ =

∑
i(γi, fi) ∈ S such that fi ◦ ψγ∗i (r(g)) ̸= 0 implies g ∈ γi. If G is minimal, we will say

that S is contractive if for any ν ∈ P(G(0)) and any x ∈ G(0) there is a net (µi)i in S such

that νµi
w*−→ δx.
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The following result was established for the special case of crossed products by minimal
group actions in [AU22, Lemma 3.6].

Proposition 7.8.6. Let G be an étale groupoid with compact Hausdorff space of units.
Then CPG(G(0)) is a covering semigroup. If G is minimal, then CPG(G(0)) is contractive.

Proof. Let us first prove that CPG(G(0)) is covering. To this end take g ∈ G, let γ be an
open bisection of G containing g and let f ∈ Cc(im γ) with 0 ≤ f ≤ 1 and f(r(g)) = 1.
Denoting by e ∈ G the neutral element, define

µg = (γ, f ◦ ψγ) + (e, 1− f) .

Then µg satisfies the conditions of Definition 7.8.5 and hence witnesses that CPG(G(0)) is
covering.

Assume that G is minimal. Fix any x ∈ G(0) and an open neighbourhood V of x. We
will find µV ∈ CPG(G(0)) such that νµV is supported in V for all ν ∈ P(G(0)). Given any
y ∈ G(0), by minimality there exists some γy ∈ Γ(G) with y ∈ supp γy and ψγy(y) ∈ V .
In other words, y ∈ ψγ∗y (V ). It follows that the family (ψγ∗(V ))γ∈Γ(G) is an open cover of

G(0). So by compactness, there is a finite number of open bisections γ1, . . . , γn such that
(ψγ∗i (V ))ni=1 covers G(0). Let gi be a partition of unity subordinate to this open cover and
put fi = gi◦ψγi as well as µV =

∑n
i=1(γi, fi). Then µV is a generalised probability measure.

Let ν ∈ P(G(0)) and let h ∈ C(G(0)) be such that h ≥ 0 and h|V = 0. We have

(νµV )(h) = ν(µV h) =
∑
i

ν(αγi(f
1
2
i hf

1
2
i )) = 0 ,

since all functions fi are supported in V . ■

Recall from Section 7.4.1 the action of G on states in SG(0)(A) for a G-C*-algebra A.
That is, if φ ∈ S(A) satisfies φ|C(G(0)) = evx, then gφ = φ(αγ∗(f · f)) for any g ∈ Gx,
any open bisection γ containing g and any f ∈ Cc(im γ) satisfying f(r(g)) = 1. The next
lemmas shows how covering semigroups can be used to implement this action.

Lemma 7.8.7. Let G be an étale groupoid with compact Hausdorff space of units and let
(A,α) be a unital G-C*-algebra. Assume that S ⊆ CPG(G(0)) is a semigroup covering G
and let φ ∈ S(A) be a state satisfying φ|C(G(0)) = evx for some x ∈ G(0). Then for every
g ∈ Gx there is µg ∈ S such that φµg = gφ.
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Proof. Since S is covering, we can choose µg =
∑

i(γ
∗
i , fi) ∈ S such that fi ◦ ψγi(s(g)) ̸= 0

implies g ∈ γi. The intersection of all γi containing g is an open bisection γ containing
g. Since all functions fi have compact support and G(0) is Hausdorff, we can choose
h ∈ Cc(im γ) with 0 ≤ h ≤ 1 and h(x) = 1 such that supp h ∩ supp fi ◦ ψγi = ∅ whenever
g /∈ γi. Then we can calculate

φµg =
∑
i

φ(αγ∗i (f
1
2
i · f

1
2
i ))

=
∑
i

h(x)φ(αγ∗i (f
1
2
i · f

1
2
i ))

=
∑
i

φ(hαγ∗i (f
1
2
i · f

1
2
i ))

=
∑
i

φ(αγ∗((αγ(h)fi)
1
2 · (αγ∗(h)fi)

1
2 ))

= gφ ·

(∑
i

(αγ(h)fi)(r(g))

)

= gφ ·

(∑
i

(h(x)fi ◦ ψγi(s(g))

)
= gφ .

This finishes the proof. ■

We will need to know that the contractivity of certain semigroups of generalised prob-
ability measures is preserved by passing to the Furstenberg groupoid.

Lemma 7.8.8. Let G be a minimal étale groupoid with compact Hausdorff space of units
and let S ⊆ CPG(G(0)) be a contractive and covering semigroup. Denote by π : ∂FG → G(0)
the projection map. For µ =

∑
i(γi, fi) ∈ CPG(G(0)) write π∗(µ) =

∑
i(π

−1(γi), fi ◦ π) ∈
CPG⋉∂FG(∂FG). Then π∗(S) ⊆ CPG⋉∂FG(∂FG) is contractive and covering.

Proof. It is clear that π∗(S) is covering, so we have to show that it is contractive. Note
that considering C(∂FG) as a G-C*-algebra, we have νπ∗(µ) = ν ·µ, for all ν ∈ P(∂FG) and
all µ ∈ CPG(G(0)). We will use the simple notation νµ. Let ν ∈ P(∂FG) and y ∈ ∂FG. Put
x = π(y) ∈ G(0). Since S is contractive, we can find a net (µi)i in S such that π∗(ν)µi → δx.
Passing to a subnet, we may assume that νµi → ν̃ for some ν̃ ∈ P(∂FG). Then π∗(ν̃) = δx
holds. Since G is minimal, Proposition 7.4.13 and strong proximality of ∂FG imply that
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there is a net (gi)i in Gx such that giν̃ → δy for some y ∈ π−1(x). Lemma 7.8.7 shows
that there is a net (µ̃i)i in S such that ν̃µ̃i = giν̃ → δy. Summarising, we found that

δy ∈ ν · S = ν · π∗(S), which proves contractivity of π∗(S). ■

7.8.3 Powers averaging

We are ready to establish Powers averaging property for simple essential groupoid C*-
algebras. We begin by considering the state space of C∗

ess(G). To put the statement of
the next proposition into context, let us recall that the natural conditional expectation
Eess : C∗

ess(G) → C(∂FG) does not take values in C(G(0)) if G is not Hausdorff. Also
recall from Theorem 7.7.13 that if C∗

ess(G) is simple, then G is necessarily minimal, so
that Theorem 7.5.4 implies there is a natural inclusion C∗

ess(G) ⊆ C∗
ess(G ⋉ ∂FG). In the

remainder of this section, we let E : C∗
ess(G ⋉ ∂FG) → C(∂FG) denote the conditional

expectation described in Proposition 7.5.3.

In order to formulate averaging results conveniently, it is useful to introduce a notion
of convex combinations of generalised probability measures.

Definition 7.8.9. Let G be an étale groupoid with compact Hausdorff space of units.
For generalised probability measures indexed over disjoint sets I and J , a formal convex
combination is an expression of the form

c
∑
i∈I

(γi, fi) + (1− c)
∑
j∈J

(γj, fj) =
∑
i∈I⊔J

(γi, 1I(i)cfi + 1J(i)(1− c)fi). ,

We call a subset of CPG(G(0)) convex if it is closed under convex combinations.

Proposition 7.8.10. Let G be an étale groupoid with compact Hausdorff space of units.
Let S ⊆ CPG(G(0)) be a contractive and covering convex semigroup. Assume that C∗

ess(G)
is simple. Then given any φ ∈ S(C∗

ess(G ⋉ ∂FG)), we have

{ν ◦ E | ν ∈ P(∂FG)} ⊆ {φµ | µ ∈ S}
w*

Proof. Write K = {φµ | µ ∈ S}
w*

and observe that K is weak-* closed and convex. Hence,
it suffices to prove that evy ◦ E ∈ K for all y ∈ ∂FG. Fix y ∈ ∂FG and let x = π(y) ∈ G(0).
By contractivity of S, there is σ ∈ K satisfying σ|C(G(0)) = evx. Since S is both contractive
and covering, Lemma 7.8.8 shows that there is a net (µi)i in S such that σ|C(∂FG)µi → evy.
Dropping to a subnet, we may assume that σµi → ω ∈ S(C∗

ess(G ⋉ ∂FG)). Observe that
ω|C∗

ess(G) ∈ K.
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By Theorem 7.5.10 we can identify C∗
ess(G ⋉ ∂FG) ∼= C∗

r (H) for the Hausdorffification
H = (G⋉∂FG)Haus. Then E is identified with the natural conditional expectation of C∗

r (H).
We use the fact that C∗

r (H) is simple to infer by Theorem 7.6.1 that H is principal. So
it suffices to show that ω(uγf) = 0 for all open bisections γ ⊆ H \ ∂FG and all positive
functions f ∈ Cc(supp γ). If y /∈ supp γ, then we see that

ω(uγf) = ω(uγf
1
2 )ω(f

1
2 ) = ω(uγf

1
2 )f

1
2 (y) = 0 .

If y ∈ supp γ, the fact that ψγ(y) ̸= y allows us to choose a function h ∈ Cc(supp γ) such
that h(y) = 1 and h(ψγ(y)) = 0. It follows that

ω(uγf) = h(y)ω(uγf) = ω(huγf) = ω(uγf(αγ∗(h))) = ω(uγf)h(ψγ(y)) = 0 .

This finishes the proof. ■

We now extend the previous result to the entire dual space of C∗
ess(G).

Corollary 7.8.11. Let G be an étale groupoid with compact Hausdorff space of units.
Assume that C∗

ess(G) is simple, let S ⊆ CPG(G(0)) be a contractive and covering convex
semigroup and let ω ∈ C∗

ess(G ⋉ ∂FG)∗. Then

{ω(1)ν ◦ E | ν ∈ P (∂FG)} ⊆ {ωµ | µ ∈ S}
w*

.

Proof. We write K = {ωµ | µ ∈ S}
w*
. Since K is convex and weak-* closed, it suffices to

shows that ω(1)evy ◦ E ∈ K for any y ∈ ∂FG. We decompose ω =
∑4

k=1 ckφk as a convex
combination with four states φi ∈ S(C∗

ess(G ⋉ ∂FG)). By Proposition 7.8.10, we may find

a net (µi) in S with φ1µi
w*−→ ν1 ◦ E for some ν1 ∈ P(∂FG). Dropping to a subset, we may

assume that ωµi
w*−→ ν1 ◦ E +

∑4
k=2 ckφ

′
k for some new states φ′

k ∈ S(C∗
ess(G)). Repeating

this process three more times, and noting that the set {ν ◦ E | ν ∈ P(∂FG)} is invariant
under the right action of CPG(G(0)), we see that there is some element of K of the form
ω(1)ν ◦E for some finite complex measure ν on ∂FG. Thanks to Lemma 7.8.8 we find that
ω(1)evy ◦ E ∈ K for every y ∈ ∂FG. ■

We are now able to dualise Corollary 7.8.11 in order to obtain a version of Powers
averaging property for essential groupoid C*-algebras. The next definition provides a
notion of Powers averaging that subsumes the classical notion for groups and dynamical
systems.
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Definition 7.8.12. Let G be an étale groupoid with compact Hausdorff space of units
and let S ⊂ CPG(G(0)) be a subsemigroup. We say that C∗

ess(G) satisfies relative Powers
averaging property with respect to S if 0 ∈ conv{µa | µ ∈ S} for all a ∈ C∗

ess(G) satisfying
Eess(a) = 0.

Recall that in [Rør21] a unital inclusion of C*-algebras A ⊆ B is said to be C*-
irreducible if every intermediate C*-algebra is simple. This notion will be linked to the
relative Powers averaging property by means the following definition, relating generalised
probability measures to C*-subalgebras of C∗

ess(G).

Definition 7.8.13. Let G be an étale groupoid with compact Hausdorff space of units and
let µ =

∑n
i=1(γi, fi) ∈ CPG(G(0)) be a generalised probability measure. Let A ⊆ C∗

ess(G) be
a C*-subalgebra. Then A is said to support µ, if uγifi ∈ A for all i ∈ {1, . . . , n}. Further, if
S ⊆ CPG(G(0)) is a subsemigroup, then A is said to support S if it supports every element
of S.

We observe that C∗
ess(G) supports CPG(G(0)).

We are now ready to state our main result on Powers averaging for essential groupoid
C*-algebras.

Theorem 7.8.14. Let G be a minimal étale groupoid with compact Hausdorff space of
units. Then the following statements are equivalent.

1. C∗
ess(G) is simple.

2. C∗
ess(G⋉∂FG) satisfies relative Powers averaging property with respect to any covering

and contractive semigroup of generalised probability measures on G.

3. Given any a ∈ C∗
ess(G⋉∂FG) and any ν ∈ P(∂FG), we have ν ◦E(a) ∈ conv{µa | µ ∈

S} for any covering and contractive semigroup S of generalised probability measures
on G.

4. A ⊆ C∗
ess(G) is C*-irreducible for every C*-subalgebra A supporting a covering and

contractive semigroup of generalised probability measures on G.

5. A ⊆ C∗
ess(G⋉ ∂FG) is C*-irreducible for every C*-subalgebra A supporting a covering

and contractive semigroup of generalised probability measures on G.

If G is Hausdorff, then all these conditions are equivalent to the following statement.
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6. Given any a ∈ C∗
r (G), we have E(a) ∈ conv{µa | µ ∈ S} for every covering and

contractive semigroup S of generalised probability measures on G.

Remark 7.8.15. The assumptions on S being covering and contractive are satisfied for
S = CPG(G(0)) by Proposition 7.8.6, since G is assumed to be minimal.

Proof of 7.8.14. The implication from 5 to 4 is clear. It is also clear that 4 implies 1.

For the rest of the proof we fix a covering and contractive semigroup S of generalised
probability probability measures on G. Without loss of generality, we may assume that S
is convex.

Let us show that 1 implies 3. For a contradiction, assume there were some ν ∈ P(∂FG)
and some a ∈ C∗

ess(G ⋉ ∂FG) for which the conclusion of 3 does not hold. By the Hahn-
Banach separation theorem, there is some functional ω ∈ C∗

ess(G ⋉ ∂FG)∗ and some α ∈ R
with

Reω(1)ν(E(a)) < α ≤ Reω(µa)

for all µ ∈ S. This contradicts Corollary 7.8.11.

Let us next assume that 3 holds. Given a ∈ C∗
ess(G⋉ ∂FG) such that E(a) = 0, we have

0 = ν(E(a)) ∈ {µa | µ ∈ S} for any auxiliary ν ∈ P(∂FG). This proves 2.
We will now show that 2 implies 5. Assume that I ⊆ C∗

ess(G ⋉ ∂FG) is a nonzero
C*-subalgebra which is invariant under multiplication with elements from A. Let a ∈ I be
nonzero. Replacing a by a∗a, we may assume without loss of generality that a is positive.
Consider the nonzero positive function f = E(a) ∈ C(∂FG). Fix x ∈ ∂FG such that
f(x) ̸= 0. Denote by π : G⋉∂FG → G the natural projection. Since S is covering G, it also
covers G ⋉ ∂FG by Lemma 7.8.8. So for every g ∈ (G ⋉ ∂FG)x there is some µ =

∑
i(γi, fi)

such that fi ◦ ψγ∗i (r(g)) ̸= 0 implies g ∈ γi. Hence,

µf(r(g)) =
∑
i

αγi(f
1
2
i ff

1
2
i )(r(g)) =

∑
i

(fif)(ψγ∗i (r(g))) =
∑
i

(fif)(x) = f(x) ̸= 0 .

So gx ∈ suppµf follows. By minimality of G ⋉ ∂FG and compactness of ∂FG there are
finitely many elements µ1, . . . , µn ∈ S such that 1

n

∑
i µif is nowhere zero. By compactness

of ∂FG, there is δ > 0 such that 1
n

∑
i µif ≥ δ. Since E is a G-expectation, it follows

that E( 1
n

∑
i µia) = 1

n

∑
i µiE(a) ≥ δ. So we found a positive element b ∈ I such that

E(b) ≥ δ > 0. Then for arbitrary µ ∈ S, we have

µb = µ(b− E(b)) + µ(E(b)) ≥ µ(b− E(b)) + δ .
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Since S is convex, our assumption allows to choose µ ∈ S such that ∥µ(b−E(b))∥ ≤ δ
2
. Then

we infer that µb ≥ δ
2
, and hence µb ∈ I is invertible. This shows that I = C∗

ess(G ⋉ ∂FG),
and thus 5.

Assuming additionally that G is Hausdorff, we observe that the proof that 6 implies 1
follows from an obvious simplification of the argument that 2 implies 5, making use of the
fact that Ered(a) ∈ C(G(0)) holds for all a ∈ C∗

r (G). The implication from 3 to 6 follows
from contractivity of S, since every function f ∈ C(G(0)) lies in the S closure the functions
f(x)1G(0) . ■

7.9 From boundary actions to Powers averaging

In this section, we will apply Theorem 7.8.14 in order to obtain concrete examples of unitary
group representations into C*-algebras satisfying relative Powers averaging property. Let
us recall that for a discrete group G, a G-boundary is a compact Hausdorff space with a
minimal and strongly proximal action of G. Also recall that the topological full group F(G)
of a groupoid is the group of its global bisections. We can now formulate the following
corollary of Theorem 7.8.14.

Corollary 7.9.1. Let G be an étale groupoid with compact Hausdorff space of units. As-
sume that there is a subgroup of the topological full group G ≤ F(G) that covers G and such
that G ↷ G(0) is a G-boundary. Denote by π : G → C∗

ess(G) the unitary representation
of G in the essential groupoid C*-algebra of G. If C∗

ess(G) is simple, then C∗
ess(G) satisfies

Powers averaging relative to π(G).

Proof. We define S to be the convex subsemigroup generated by G inside CPG(G(0)). Then
it suffices to note that S is contractive and covering to apply Theorem 7.8.14. ■

Recall that the groupoid of germs associated with an action of a discrete group G↷ X
is the quotient (G⋉X)/Iso(G⋉X)◦. We will apply Corollary 7.9.1 to groupoids of germs,
thereby obtaining concrete examples of groupoid C*-algebras satisfying relative Power
averaging with respect to a natural group of unitaries. C*-irreducibility of the associated
inclusions has been studied in [KS21].

Theorem 7.9.2. Let G be a countable discrete group and G ↷ X a boundary action.
Denote by G its groupoid of germs and by π : G→ C∗

ess(G) the associated unitary represen-
tation. Then π(G) ⊆ C∗

ess(G) satisfies the relative Powers averaging property.
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Proof. Let us first show that C∗
ess(G) is simple. To this end, we observe that G is minimal,

since it has the same orbits as G↷ X. Further, since G is countable, the set
⋃
g∈G ∂ Fix(g)

is meager in X. Hence, its complement is dense in X, and it follows that G is topologically
principal. It follows from Theorem 7.1.2 (and already from [KM21, Theorem 7.26]) that
C∗

ess(G) is simple. By Corollary 7.9.1 applied to G/ ker(G ↷ X), it now follows that
π(G) ⊆ C∗

ess(G) satisfies the relative Powers averaging property. ■

Remark 7.9.3. The representation of π appearing in Theorem 7.9.2 can be identified
with a quasi-regular representation as employed in [KS22, KS21]. To this end recall the
following notation, given an action of a discrete group G ↷ X. The open stabiliser at
x ∈ X is defined as

G◦
x = {g ∈ G | there is a neighbourhood x ∈ U such that g|U = id} ,

and, for g ∈ G, we denote by Fix(g) = {x ∈ X | gx = x} the fixed point set of g.

Now if x ∈ X is such that

� the subquotient Gx/G
0
x is amenable, and

� x /∈ ∂(Fix(g)◦) for every g ∈ G,

then the inclusion π(G) ⊆ C∗
ess(G) is isomorphic with an inclusion λG/Gx(G) ⊆ C∗

ess(G)
arising from the regular representation of G associated with x.

Indeed, consider the regular representation λx of C∗
r (G) on ℓ2(Gx). We recall from Sec-

tion 7.2.1 that if a ∈ C∗
r (G) is singular, then s(supp â) ⊆ s(G(0) \ G(0)) =

⋃
g∈G ∂(Fix(g)

◦).
So by the assumption on x, it follows that λx factors through a *-homomorphism C∗

ess(G)→
B(ℓ2(Gx)). Since Gxx = Gx/G

0
x is amenable, it factors further to a *-homomorphism

C∗
ess(G) → B(ℓ2(Gx/Gxx)). Observe that this map is injective, because C∗

ess(G) is simple.
The associated representation of G on ℓ2(Gx/Gxx) ∼= ℓ2(G/Gx) is the quasi-regular repre-
sentation λG,Gx .

Remark 7.9.4. Previous results about relative Powers averaging arising from group ac-
tions were obtained by Amrutam-Kalantar [AK20], who showed that if G is a C*-simple dis-
crete group and X is any minimal, compact G-space, then the inclusion G ⊆ C(X)⋊rG =
C∗
r (X ⋊ G) satisfies relative Powers averaging. In these examples, C*-simplicity of the

group is the source of Powers averaging. In contrast, our Theorem 7.9.2 makes no assump-
tion on the acting group G, but relies instead on the assumption that X is a G-boundary.
Nevertheless, there are some situations where the two results overlap such as hyperbolic
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groups G with trivial finite radical acting on their Gromov boundary ∂G. Since ∂G is
a topologically free boundary action of a C*-simple group, both [AK20, Theorem 1.3]
and our Theorem 7.9.2 imply the relative Powers averaging property for the inclusion
G ⊆ C∗

r (∂G⋊G).

Remark 7.9.5. In their work [KS22], Kalantar-Scarparo considered boundary actions of
a discrete group G↷ X, and obtained a characterisation of C*-simplicity for quasi-regular
representations arising from point stabilisers Gx with x ∈ X \

⋃
g∈G ∂(Fix(g)

◦) [KS22,
Corollary 5.3]. Our Theorem 7.9.2 and Remark 7.9.3 consider the associated groupoid
of germs G and say that there the inclusion λG,Gx(G) ⊆ C∗

ess(G) satisfies relative Powers
averaging. This is a considerably stronger conclusion. No prediction about C*-simplicity
of the associated quasi-regular representations for Gx is made for x ∈

⋃
g∈G ∂(Fix(g)

◦),
and [KS22, Example 6.4] even shows that in general λG,Gx it will not necessarily be C*-
simple in this case. Theorem 7.9.2 provides a conceptual explanation of this phenomenon,
by drawing attention to the difference between the reduced and the essential groupoid
C*-algebra.

More recently in [KS21, Theorem 5.6] simplicity results for the groupoid of germs
associated with a minimal group action on a locally compact space G↷ X were obtained.
This result is implied by Theorem 7.7.10. However, in this situation there is no natural
map from G to the essential groupoid C*-algebra of the groupoid of germs, so that Powers
averaging and thus an analogue of Theorem 7.9.2 needs further care to be even formulated.

We now consider the concrete case of Thompson’s group T acting on the circle as well
as Thompson’s group V acting on a totally disconnected cover of the circle. The latter
action was previously considered in [KS22], in order to reprove the simplicity of the Cuntz
algebra O2 using techniques from the theory of C*-simplicity.

Example 7.9.6. Consider Thompson’s group T ⊆ Homeo(S1). It is the group of piece-
wise linear transformations of S1 ∼= RP1 with breakpoints in exp(2πiZ[1

2
]) and derivatives

in Z[1
2
]. It acts transitively on non-trivial intervals of the circle, whose end points lie in

exp(2πiZ[1
2
]). In particular, T ↷ S1 is a boundary action. Let G be the groupoid of

germs for T ↷ S1. We observe that G is non-Hausdorff, since T does not act topologically
freely while S1 is connected. Denote by π : T → C∗

ess(G) the associated unitary repre-
sentation of T. By Theorem 7.9.2 the inclusion π(T) ⊆ C∗

ess(G) satisfies relative Powers
averaging. If x ∈ S1 \ exp(2πiZ[1

2
]) then Remark 7.9.3 further identifies this inclusion

with λT,Tx(T ) ⊆ C∗
ess(G). Considering the action of Tx on S1 \ {x} ∼= R, one sees that

Tx
∼= [F, F ] is isomorphic to the subgroup of F ⊆ Homeo(R) acting with trivial germs at

infinity. In contrast, it was shown in [KS22, Example 6.4] that the quasi-regular represen-
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tation associated with the standard inclusion [F, F ] ∼= T0
1 ⊆ T does not even generate a

simple C*-algebra.

Remark 7.9.7. The example of Thompson’s group T acting on the circle should be con-
sidered in the more general context of groups of homeomorphisms of the circle and the real
line, which provides many examples of boundary actions that are not topologically free. We
mention several concrete examples. First, Monod considered in [Mon13] groups of piecewise
projective homeomorphisms of the real line, arising as point stabiliser of ∞ ∈ RP1 ∼= S1

of PSL2(A) for arbitrary countable subrings A ⊆ R. We have PSL2(Z[12 ]) = T as sub-
groups of Homeo+(S1). Second, we like to point out recent work of Hyde-Lodha [HL19]
producing finitely generated, simple groups of homeomorphisms of the real line, which are
constructed as variations of Thompson’s group T. Finally, Navas’ survey [Nav18, p. 2056ff]
and the recent book of Kim and Koberda [KK21] contain concrete questions about and
provide examples of groups of homeomorphism of the circle, and include consideration of
their contraction properties. It should be pointed out that a group G acting by homeomor-
phisms on a one-dimensional manifold M ∈ {R, S1} is strongly proximal if and only if it is
extremally proximal, in the sense that for every pair of non-trivial open intervals I, J ⊆M
there is g ∈ G such that gI ⊆ J . This is because an open interval can be described by its
endpoints together with a point in its interior. Such actions are also called CO-transitive
in the dynamics community.

The next example considers the action of T on a suitable totally disconnected cover of
the circle, and it yields a Hausdorff groupoid of germs. A particularly interesting feature
is that it produces a unitary representation of T into the Cuntz algebra O2 satisfying the
relative Powers averaging property.

Example 7.9.8. Consider the following cover of the circle,

K =
(
S1 \ exp(2πiZ[1

2
])
)
∪
(
{+,−} × exp(2πiZ[

1

2
])
)

equipped with the natural topology arising from the cyclic order. We write z+ and z− for
the elements (+, z) and (−, z), respectively. The action of T lifts uniquely to an action
on K preserving the cyclic order. By definition, V is the topological full group of this
action. It follows directly from the definitions that V ↷ K is a boundary action, so
that Theorem 7.9.2 applies to the groupoid of germs G(V ↷ K) = G(T ↷ K) = G.
This groupoid is Hausdorff, since Fix(g)◦ is clopen for every g ∈ T. Considering the
stabiliser F ∼= T1+ ≤ T, and employing Remark 7.9.3 we obtain an inclusion λT,F(T) ⊆
C∗
r (G) satisfying the relative Powers averaging property. By [BS19] we know that C∗

r (G)
is generated by the image of Thompson’s group V, so that [HO17, Proposition 5.3] allows
to make the identification with the Cuntz algebra C∗

r (G) ∼= O2.
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Remark 7.9.9. It is known that F(G) ↷ G(0) is extremally proximal for every purely
infinite Hausdorff groupoid G. But the work in [BS19] shows that F(G) generates C∗

r (G)
in this case. In view of Theorem 7.9.2 and Example 7.9.8, it is natural to ask the following
question. Is there a systematic approach to constructing subgroups G ≤ F(G) such that
the C*-algebra inclusion generated by G inside C∗

r (G) is proper?
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male Supérieure 51 (2018), no. 3, 557–602.

[Mon13] Nicolas Monod, Groups of piecewise projective homeomorphisms, Proceedings
of the National Academy of Sciences of the United States of America 110
(2013), no. 12, 4524–4527.

[Mon21] , Furstenberg boundaries for pairs of groups, Ergodic Theory and Dy-
namical Systems 41 (2021), no. 5, 1514–1529.

[Nag20] Zahra Naghavi, Furstenberg boundary of minimal actions, Integral Equations
and Operator Theory 92 (2020), no. 2, 14.

[Nav18] Andrés Navas, Group actions on 1-manifolds: a list of very concrete open ques-
tions, Proceedings of the International Congress of Mathematicians, Rio de
Janeiro 2018 (Boyan Sirakov, Paulo Ney de Souza, and Marcelo Viana, eds.),
vol. III, World Scientific, Singapore, 2018, pp. 2035–2062.

[Nes13] Sergey Neshveyev, KMS states on the C*-algebras of non-principal groupoids,
Journal of Operator Theory 70 (2013), no. 2, 513–530.

170



[Oza14] Narutaka Ozawa, Lecture on the Furstenberg boundary and C*-simplicity,
Available at http://www.kurims.kyoto-u.ac.jp/~narutaka/notes/

yokou2014.pdf, 2014.

[Pau03] Vern Paulsen, Completely bounded maps and operator algebras, Cambridge
Studies in Advanced Mathematics, vol. 78, Cambridge University Press, Cam-
bridge, 2003.

[Phi19] N. Christopher Phillips, Simplicity of reduced group Banach algebras, arXiv
e-prints (2019), arXiv:1909.11278.

[Pit17] David R. Pitts, Structure for regular inclusions. I, Journal of Operator Theory
78 (2017), no. 2, 357–416.

[Pow75] Robert T. Powers, Simplicity of the C*-algebra associated with the free group
on two generators, Duke Mathematical Journal 42 (1975), no. 1, 151–156.

[PS79] William Paschke and Norberto Salinas, C*-algebras associated with free prod-
ucts of groups, Pacific Journal of Mathematics 82 (1979), no. 1, 211–221.

[Rau20] Sven Raum, C*-simplicity [after Breuillard, Haagerup, Kalantar, Kennedy and
Ozawa], Astérisque 422 (2020), 225–252, Séminaire Bourbaki, Exposé 1156.
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of Operator Theory 18 (1987), no. 1, 67–97.

[Ren91] , The ideal structure of groupoid crossed product C*-algebras, Journal
of Operator Theory 25 (1991), no. 1, 3–36.

[Ren08] , Cartan subalgebras in C*-algebras, Bulletin of the Irish Mathematical
Society 61 (2008), 29–63.

[Res07] Pedro Resende, Étale groupoids and their quantales, Advances in Mathematics
208 (2007), no. 1, 147–209.

[Rør21] Mikael Rørdam, Irreducible inclusions of simple C*-algebras, arXiv e-prints
(2021), arXiv:2105.11899, to appear in L’Enseignement mathématique.
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Appendix A

The simplest proof of when reduced
group C*-algebras are simple

It is often the case in math that the first discovered proof of a result is quite roundabout
and overcomplicated, and the proof gradually becomes simpler as time goes on. The
question of characterizing when the reduced group C*-algebra C∗

λ(G) of a discrete group G
is simple is no exception, with the results having been worked out by Breuillard, Kalantar,
Kennedy, and Ozawa in the following papers: [KK17], [BKKO17], [Ken20] (in chronological
order). Easier arguments are also occasionally given in [KS19], a paper of Kennedy and
Schafhauser which deals with noncommutative crossed products A⋊λ G.

This appendix serves the purpose of picking out the easiest proofs in all of these,
arranging them in just the right way, and perhaps also adding a pinch of originality, all
in order to give the easiest possible path to deducing when C∗

λ(G) is simple. To my
knowledge, no such work exists anywhere. In terms of simplification, much of the work
in the aforementioned papers was done from the perspective of topological spaces (in
the context of group boundaries), but this can be almost completely avoided, and it is
possible to mostly stick with the category of C*-algebras. Moreover, it is possible to avoid
any annoying ε-estimates, and also a particularly difficult proof of the fact that if the
Furstenberg boundary crossed product C(∂FG) ⋊λ G is simple, then the reduced group
C*-algebra is.

It is very much worth mentioning that such a compilation will skip much of the impor-
tant intuition that can still be obtained by reading the original works. In particular, we
can avoid most of the topological properties of the Furstenberg boundary ∂FG, including
the fact that it is the universal minimal strongly proximal G-space. All this is to say, there
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is still plenty to be gained by reading the original papers.

It is also worth noting that in the unpublished paper [Kaw17], Kawabe generalizes this
to asking when the reduced crossed product C(X)⋊λG has the ideal intersection property.
For the purpose of elegance, we will stick to the group C*-algebra setting, and it is worth
noting that most of the proofs in the crossed product setting will be almost identical
anyways (with perhaps a little bit of care being needed in the non-minimal setting).

A.1 A brief word on injective envelopes

One of the key ideas underpinning the simplicity proofs is the use of an injective envelope
of a certain object in the appropriate category, and the original constructions relating to
C*-algebras and operator systems were given by Hamana in [Ham79], and in [Ham85] in
the equivariant case. It is possible to simplify Hamana’s original proofs as is done by
Sinclair in [Sin15], using the theory of compact semigroups. However, it is worth noting
that Sinclair’s proof skips out on proving an extremely useful property known as rigidity
of the injective envelope.

Given that the injective envelope is constructed in the context of groupoid C*-algebras
in Section 7.4.2, and in particular in Theorem 7.4.9 (including proving rigidity), we will not
repeat the construction here. However, we will at least repeat the appropriate definitions
and results for completeness.

Of interest to us is the category whose objects are unital G-C*-algebras, morphisms
are G-equivariant unital and completely positive maps, and embeddings are G-equivariant
unital complete order embeddings. Note that we do not require an embedding to be the
same as the usual category-theoretic definition of a monomorphism.

Definition A.1.1. Consider a category, and let I be an object in this category. We say
that I is injective if whenever A and B are objects in this category, ι : A → B is an
embedding, and ϕ : A → I is a morphism, then there is a map ϕ̃ : B → I making the
following diagram commute:

B

A I

ϕ̃
ι

ϕ

Definition A.1.2. Assume that A and B are objects in our category with A ⊆ B.
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1. We say that B is an injective envelope of A if B is injective, and it is also minimal, in
the sense that for any other injective object C together with an embedding κ : A→ C,
if ϕ : C → B is an embedding that makes the following diagram commute:

C B

A A

ϕ

id

κ

then ϕ(C) = B, or equivalently, ϕ is an isomorphism.

2. We say that B is a rigid extension of A if whenever ϕ : B → B is a morphism in our
category with ϕ|A = idA, we have that ϕ = idB.

3. We say that B is an essential extension of A if whenever we have another object C,
and a morphism ϕ : B → C, if ϕ|A is an embedding, then ϕ is an embedding.

Theorem A.1.3. Consider the category of G-C*-algebras. Every object A admits a G-
injective envelope IG(A), such that A ⊆ IG(A) as a unital G-C*-subalgebra. It is unique
up to isomorphism, in the sense that if C is any other such object, there is a G-equivariant
*-isomorphism π : IG(A)→ C making the following diagram commute:

IG(A) C

A A

π

id

The object IG(A) is also G-rigid and G-essential. If A is commutative, then so is IG(A).

A.2 Dynamical characterization of C*-simplicity

In this section, G will denote a discrete group. While the assumption of countability
is often added when these results are cited, it is in fact not necessary for the simplicity
results mentioned here. (Other things, like the unique stationarity results of Hartman and
Kalantar [HK17] might indeed require countability).

The main ideas of Breuillard, Kalantar, Kennedy, and Ozawa for proving simplicity of
C∗
λ(G) can be summarized as follows. First, consider the G-injective envelope of C, i.e.
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IG(C), which we know is commutative and can be written as C(∂FG). Due to historical
reasons, this spectrum is often called the Furstenberg boundary of G, due to Furstenberg
originally studying it mostly from a topological and measure-theoretic perspective. See for
example [Fur73] (and also [Fur63]). It is also sometimes called the Hamana boundary, due
to Hamana’s original construction of the injective and G-injective envelopes of operator
systems and C*-algebras. See the discussion in Section A.1.

As it turns out, the crossed product C(∂FG)⋊λ G shares much of the simplicity prop-
erties of C∗

λ(G), as one is simple if and only if the other is. However, the larger crossed
product C(∂FG) ⋊λ G is much nicer to work with in general, as explicitly writing down
ideals in this C*-algebra is much easier. Dropping down to ideals on C∗

λ(G) is an injectivity
(hence, axiom of choice) argument, explaining the difficulty.

Simplicity is linked to the dynamics of G on ∂FG. Given the fact that ∂FG shows
up as an injective envelope construction (hence, axiom of choice), it is extremely difficult
to describe in practice. The only description to my knowledge is given in [KRS22]. It is
therefore much nicer to drop down to dynamics on a space more easily understood, and
this turns out to be the space of amenable subgroups of G.

We begin with the first half of the simplicity results. One of the tools we will use are
something called pseudoexpectations E : C∗

λ(G)→ C(∂FG) (or more precisely, equivariant
pseudoexpectations, given that the term pseudoexpectations shows up in a non-equviariant
sense in papers of Pitts and Zarikian. See for example [Pit17]). The following definition
explains the terminology.

Definition A.2.1. Let A ⊆ B be an inclusion of unital G-C*-algebras. A pseudoexpec-
tation is a G-equivariant unital and completely positive map E : B → IG(A) with the
property that E|A = idA.

Moreover, one of the more convenient topological facts that comes into play here is
the fact that the fixed point sets Fix(s) ⊆ ∂FG are clopen for every s ∈ G. It is almost
certainly possible to get around this, and work purely operator algebraically by using
Kallman’s inner/properly outer decomposition of von Neumann algebras, which also applies
to monotone complete C*-algebras. For reference, this sort of decomposition is used in the
traces results of Chapter 3, and Kallman’s results are stated in Theorem 3.2.8 and the
discussion around it. However, for the purpose of C*-simplicity of discrete groups, this is
one of the few instances where, in my opinion, a slight detour into topology makes things
easier.

In essence, we will show that the G-injective envelope is non-equivariantly injective, and
it is known that injective commutative C*-algebras have extremally disconnected spectrum
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due to a result of Gleason and others. Afterwards, it is a result of Froĺık that fixed point
sets of homeomorphisms of these spaces are clopen.

Proposition A.2.2. The G-injective envelope C(∂FG) is non-equivariantly injective as
well.

Proof. It is well-known that the space ℓ∞(G) is G-injective and non-equivariantly injective
as well. By G-injectivity of ℓ∞(G), there is a G-equivariant map ι : C(∂FG) → ℓ∞(G).
By G-essentiality of C(∂FG), this map is a complete order embedding. By G-injectivity of
C(∂FG), there is a G-equivariant map ϕ : ℓ∞(G)→ C(∂FG) making the following diagram
commute:

ℓ∞(G)

C(∂FG) C(∂FG)

ϕ

id

ι

Given that we can just forget that all of the above maps are G-equivariant, it follows from
non-equivariant injectivity of ℓ∞(G) that C(∂FG) is non-equivariantly injective as well. ■

Definition A.2.3. A compact Hausdorff space is called extremally disconnected if the
closure of any open set is still open.

Theorem A.2.4. Consider a commutative unital C*-algebra C(X). The following are
equivalent:

1. C(X) is non-equivariantly injective.

2. X is extremally disconnected.

Theorem A.2.5 (Froĺık’s theorem, [Fro71, Theorem 3.1]). Assume X is an extremally
disconnected compact Hausdorff space, and α : X → X is a homeomorphism. Then the set
of fixed points Fix(α) = {x ∈ X | α(x) = x} is clopen.

With the above in hand, we obtain the topological result we were after:

Corollary A.2.6. Given any s ∈ G, the fixed point set Fix(s) ⊆ ∂FG, i.e. Fix(s) =
{x ∈ ∂FG | sx = x}, is clopen.

Furthermore, another very convenient fact is the following, as it will allow us to use the
fact that the universal and reduced group C*-algebras coincide for amenable groups:
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Lemma A.2.7. Let H ≤ G be a containment of discrete groups. The group H is amenable
if and only if ℓ∞(G) admits an H-invariant state.

Proof. First, recall that for any subgroup H ≤ G, there is always a (very non-canonical)
H-equivariant injective *-isomorphism ι : ℓ∞(H)→ ℓ∞(G), given as follows: let T ⊆ G be
a right-transversal (axiom of choice) of the right coset space H\G. That is, G = ⊔r∈THr.
We can then let the map ι be given by

ι(f)(hr) = f(h).

As a consequence, if we can obtain an H-invariant state on ℓ∞(G), then H is amenable.
Conversely, if H is amenable, then any compact convex H-space admits a fixed point, and
in particular this applies to the state space of ℓ∞(G). ■

Proposition A.2.8. Given any x ∈ ∂FG, the point stabilizer Gx = {s ∈ G | sx = x} is
amenable.

Proof. We will construct a Gx-invariant state on ℓ
∞(G), and consequently we will be done

by Lemma A.2.7. Let x ∈ ∂FG, let ϕ : ℓ∞(G) → C(∂FG) be a G-equivariant morphism
(existence guaranteed by G-injectivity), and observe that the composition δx◦ϕ : ℓ∞(G)→
C is indeed a Gx-invariant state. ■

Now we are ready to prove the first half of the main result:

Theorem A.2.9. The following are equivalent:

1. C∗
λ(G) is simple.

2. C(∂FG)⋊λ G is simple, where C(∂FG) = IG(C).

3. There is a unique pseudoexpectation E : C∗
λ(G)→ C(∂FG).

4. There is a unique G-equivariant conditional expectation E : C(∂FG)⋊λG→ C(∂FG).

5. All G-equivariant conditional expectations E : C(∂FG)⋊λ G→ C(∂FG) are faithful.

6. The action of G on ∂FG is free.

Proof. For convenience, the following is the chain of implications that will be proven:
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1 2 3 4 5 6

There may be slight redundancy in the above implications, but it is used to highlight some
important connections.

First, we show that items (3) and (4) are indeed equivalent, by showing there is a
correspondence between the two sets of expectations. Given any conditional expectation
E : C(∂FG) ⋊λ G → C(∂FG), it clearly restricts to a pseudoexpectation on C∗

λ(G). We
claim that this restriction map is bijective. First, to see that it is injective, note that
because any such E is the identity on C(∂FG), we have that C(∂FG) is in the multiplicative
domain of E, and therefore E is in fact uniquely determined by the values it takes on
C∗
λ(G). To see that the restriction map is also surjective, start with any pseudoexpectation

E : C∗
λ(G) → C(∂FG). It extends to a G-equivariant map Ẽ : C(∂FG) ⋊λ G → C(∂FG)

by injectivity. By rigidity, Ẽ must in fact be the identity on C(∂FG), and therefore a
conditional expectation.

It is clear that (4) =⇒ (5), as the canonical conditional expectation is faithful. What
is certainly not as clear is the converse, and this will end up being proven in a more
roundabout way through the rest of the implications.

Now we show (1) =⇒ (2). Assume π : C(∂FG) ⋊λ G → A is a *-homomorphism.
Our aim is to show that it is injective. Note that there is a G-action on A, given by
conjugation by the unitaries π(g) ∈ A, and with respect to this action, π is G-equivariant.
Furthermore, given that C∗

λ(G) is simple, we have that π|C∗
λ(G) is an embedding. Thus,

letting τλ : C∗
r (G) → C be the canonical trace, by injectivity, there is a map ϕ : A →

C(∂FG) making the following diagram commute:

C(∂FG)⋊λ G A

C∗
λ(G) C C(∂FG)

π

ϕπ|C∗
λ
(G)

τλ

The composition ϕ◦π : C(∂FG)⋊λG→ C(∂FG) is the identity on C(∂FG) by rigidity, and
also coincides with the canonical trace on C∗

λ(G). By a multiplicative domain argument,
it must be the case that ϕ ◦ π is the canonical conditional expectation, which is faithful.
This forces π to be faithful, or equivalently, injective.
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Showing (3) =⇒ (1) follows a similar idea, but is a bit shorter. Assume that π :
C∗
λ(G) → A is a *-homomorphism. Again, there is a G-action on A given by conjugation

by the unitaries π(g) ∈ A, and this makes the map π G-equivariant. By injectivity, we
have that there is a G-equivariant map ϕ : A→ C(∂FG). The composition ϕ◦π : C∗

λ(G)→
C(∂FG) is a pseudoexpectation, and therefore must coincide with the canonical trace on
C∗
λ(G), which is faithful. This forces π to be faithful, and thus surjective.

Now we show (6) =⇒ (4). To see this, let x ∈ ∂FG, and let s ∈ G be such that s ̸= e.
Our aim is to show that E(λs)(x) = 0. As the action of G on ∂FG is free, we have that
sx ̸= x. By Urysohn’s lemma, we have that there is some f ∈ C(∂FG) with f(x) = 1 and
f(sx) = 0. Thus, using multiplicative domain again, we have:

fE(λs) = E(fλs) = E(λs(s
−1f)) = E(λs)(s

−1f).

Evaluating both sides at x gives us that

E(λs)(x) = f(x)E(λs)(x) = E(λs)(x)f(sx) = 0,

and since x was arbitrary, this says that E(λs) = 0 for any s ̸= e. It follows, once more,
from multiplicative domain that E must be the canonical conditional expectation.

The implication (2) =⇒ (5) is next. We argue by contrapositive. Assume that
E : C(∂FG)⋊λG→ C(∂FG) is a G-equivariant conditional expectation that is not faithful.
It is a well-known fact of unital and completely positive maps that the set

I = {a ∈ C(∂FG)⋊λ G | E(a∗a) = 0}

is a closed left-ideal of C(∂FG) ⋊λ G, which must also be nonempty as E is not faithful.
Magically, this set actually turns out to be a two-sided ideal. To see this, let f ∈ C(∂FG),
and let a ∈ I. Then by multiplicative domain, we have

E((af)∗(af)) = E(f ∗a∗af) = f ∗E(a∗a)f = 0,

and so af ∈ I. Similarly, if s ∈ G, then

E((aλs)
∗(aλs)) = E(λ∗s(a

∗a)λs) = E(s · (a∗a)) = s · E(a∗a) = 0,

and so aλs ∈ I as well. It follows that I is a two-sided ideal, which as remarked before
is nonzero, and does not contain the identity either. Thus, the crossed product cannot be
simple.

Finally, it remains to show (5) =⇒ (6). We argue by contrapositive. Assume that
the action of G on ∂FG is not free. We know that the collection of fixed point sets
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Fix(s) are clopen by Corollary A.2.6, and therefore we can talk about the projections
ps = 1Fix(s) ∈ C(∂FG), at least one of which is nonzero for some s ̸= e. Observe that these
projections satisfy s ·pt = psts−1 and ps−1 = ps. We claim that there is a pseudoexpectation
E : C∗

λ(G)→ C(∂FG) given by E(λs) = ps.

To see this, fix any x ∈ ∂FG, and consider the state ϕx : C∗
λ(G) → C given by the

composition

C∗
λ(G)

EGx−−→ C∗
λ(Gx) = C∗(Gx)

1Gx−−→ C,

where the map EGx is the canonical conditional expectation onto the smaller group C*-
algebra, and 1Gx is the canonical *-homomorphism corresponding to the trivial represen-
tation. Note that we are using amenability of Gx from Proposition A.2.8 to say that the
reduced and universal group C*-algebras coincide. In short, ϕx : C

∗
λ(G)→ C maps λs to 1

if s ∈ Gx and 0 if s /∈ Gx. Now consider the giant direct sum

E =
⊕
x∈∂FG

ϕx : C
∗
λ(G)→ ℓ∞(∂FG).

We claim that it is the pseudoexpectation we are looking for. First, note that we indeed
have E(λs) = ps. Given that all of the projections ps lie in C(∂FG), it follows that the
range of the entire map also lies in C(∂FG). Moreover, the map E is in fact equivariant,
as

E(s · λt) = E(λsts−1) = psts−1 = s · pt = s · E(λt).

Now recall the correspondence given in the proof of (3) ⇐⇒ (4). This map extends

to a G-equivariant conditional expectation Ẽ : C(∂FG) ⋊λ G → C(∂FG) determined by
E(fλs) = fps. This map is not faithful, as if we consider an s ̸= e with ps ̸= 0, we have a
nonzero element a = ps − λsps ∈ C(∂FG)⋊λ G satisfying

E(a∗a) = E(ps(1− λs)∗(1− λs)ps) = psE(2− λs − λ∗s)ps = ps(2− ps − ps)ps = 0.

■

A.3 Intrinsic characterization of C*-simplicity

As mentioned earlier, the space ∂FG turns out to be extremely difficult to describe in
practice, and so it would be nice to have a space that is easier to get a handle on. This
turns out to be the space of amenable subgroups of G.
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Definition A.3.1. The space of subgroups of G, denoted Sub(G), viewed as a subset
of the compact Hausdorff space 2G =

∏
G {0, 1}, admits an induced topology called the

Chabauty topology. Similarly, the space of amenable subgroups Suba(G) also admits such
a topology.

Proposition A.3.2. Both the spaces Sub(G) and Suba(G) are compact under the Chabauty
topology.

Proof. Essentially, a net of subsets (Aλ) converges to A in 2G if and only if whenever a ∈ A,
we eventually have a ∈ Aλ, and when a /∈ A, we eventually have a /∈ Aλ. From this, it is
extremely easy to check that Sub(G) is closed, hence compact.

The space of amenable subgroups is only slightly more challenging, and involves ap-
plying Lemma A.2.7. Assume (Hλ) is a net of amenable subgroups converging to some
H ≤ G. We know there are Hλ-invariant states ϕλ ∈ S(ℓ∞(G)). Dropping to a subnet, we
may assume that ϕλ → ϕ ∈ S(ℓ∞(G)) as well in the weak*-topology. Thus, if h ∈ H, we
eventually have h ∈ Hλ, and so

ϕ(hf) = lim
λ
ϕλ(hf) = lim

λ
ϕλ(f) = ϕ(f),

or in other words, ϕ is H-invariant. ■

Our main theorem will be in terms of existence of amenable confined subgroups, with
the appropriate definition given below:

Definition A.3.3. We say that a subgroup H ≤ G is confined if the closure of the
conjugation orbit {gHg−1 | g ∈ G} in Sub(G) does not contain the trivial subgroup {e}.

We also need minimality of the Furstenberg boundary ∂FG. The original C*-simplicity
proofs take a large detour into a discussion of the fact that this is indeed the universal
minimal and strongly proximal space, but this can for the most part be skipped for our
purposes.

Proposition A.3.4. The space ∂FG is minimal, in the sense that there are no nonempty
proper G-invariant closed subsets.

Proof. If there were such a subset Y ⊆ ∂FG, then the restriction map C(∂FG) → C(Y )
would not be a complete order embedding, which would contradict G-essentiality. ■

Theorem A.3.5. The following are equivalent:
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1. G has no amenable confined subgroups.

2. C∗
λ(G) is simple.

Proof. Assume C∗
λ(G) is not simple, so that the action of G on ∂FG is not free by The-

orem A.2.9. Consider the map ω : ∂FG → Suba(G) given by mapping x to Gx. It is
well-defined by Proposition A.2.8.

Moreover, we will use Corollary A.2.6 to show that the map is continuous. Assume
xλ → x. We wish to show that Gxλ → Gx. Assume s ∈ Gx, so that x ∈ Fix(s). Given that
Fix(s) is clopen, we eventually have xλ ∈ Fix(s) as well, s ∈ Gxλ . Similarly, if s /∈ Gx, i.e.
x /∈ Fix(s), then we eventually have s /∈ Gxλ .

It is clear that ω is G-equivariant, as sGxs
−1 = Gsx. Using this, continuity, and the

fact that ∂FG is minimal, we have that the image ω(∂FG) is a minimal compact Hausdorff
G-space as well. Thus, given that we know one of the stabilizers Gx has to be nontrivial, it
follows that its orbit cannot contain the trivial subgroup, or in other words, Gx is confined
(and we already know it is amenable).

To show the converse, assume that H is an amenable confined subgroup. It is an easy
exercise in topology that because of the fact that {e} /∈ {gHg−1 | g ∈ G}, there must
exist some nonempty finite F ⊆ G \ {e} with the property that for every g ∈ G, we have
gHg−1 ∩ F ̸= ∅.

Now recall that for any amenable K ≤ G, there is a map ϕK : C∗
λ(G)→ C mapping λg

to 1 if g ∈ K, and 0 if g /∈ K. It is obtained through the following composition:

C∗
λ(G)

EK−−→ C∗
λ(K) = C∗(K)

1K−→ C.

Letting

P =
⊕
g∈G

ϕgHg−1 : C∗
λ(G)→ ℓ∞(G)

be a giant direct sum over all these maps (easily checked to be G-equivariant), we observe
that the element a =

∑
g∈F λg maps to some element P (a) ≥ 1. Thus, letting ψ : ℓ∞(G)→

C(∂FG) be obtained through G-injectivity, we have that the composition ψ ◦P maps a to
a nontrivial element. In other words, C∗

λ(G) admits a nontrivial pseudoexpectation, and
by Theorem A.2.9, we are done. ■
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