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Abstract 

To better understand the complexities of water movement on earth, hydrologists have 

developed process-based hydrological models (HMs) and data-driven models (DDMs), both 

of which have been applied to a host of water resources applications (e.g., flood forecasting, 

reservoir operations, drought monitoring, hydraulic design). HMs attempt to simplify 

hydrological processes of interest (e.g., snowmelt, sub-surface flow), while DDMs estimate 

statistical relationships between explanatory/input and response/target variables using 

historical data. Traditionally, HMs and DDMs have been developed independently, however, 

there has been growing interest in using DDMs to improve HM simulations. Among various 

approaches for combining process-based theory with DDMs, the conceptual data-driven 

approach (CDDA) was recently proposed, where DDMs are used to correct the residuals 

(errors) stemming from ensemble HMs. The CDDA was shown to substantially reduce the 

simulation uncertainty. Since the CDDA only accounts for the HM parameter uncertainty, a 

subsequent study introduced the stochastic CDDA (SCDDA) to account for various sources 

of uncertainty (i.e., input data, input variable selection, parameters, and model output). 

However, the (original) SCDDA used HMs as input to the DDMs within a stochastic 

framework, thus, estimating the uncertainty of the DDMs, not the CDDA. Here, a new 

SCDDA is introduced where the CDDA uncertainty is estimated instead of the DDM 

uncertainty (as in the original SCDDA) by taking advantage of the multiple parameter sets 

generated by the CDDA through a stochastic framework. Hence, the new SCDDA serves as 

the second stage in post-processing HMs, where the stochastic framework can be used to 

improve the CDDA simulations. The new SCDDA is tested in a daily streamflow simulation 

case study using three Swiss catchments where it is benchmarked against the CDDA as well 

as ensemble and stochastic HMs. In total, nine HM-DDM combinations (variants) are 



 

 v 

explored within the CDDA and SCDDA based on three popular HMs and three state-of-the-

art DDMs. The ensemble and stochastic HMs are based on the same three HMs used in the 

CDDA and SCDDA. A total of 34 years of daily streamflow, precipitation, maximum, 

minimum, and mean air temperatures, and potential evapotranspiration time series were 

partitioned into warm-up, calibration/training, validation, and test sets for model 

development and assessment. Several deterministic (mean absolute error, root mean squared 

error, Nash Sutcliffe Efficiency, Kling Gupta Efficiency (KGE), and percent bias) and 

probabilistic (mean continuous ranked probability score (CRPS), alpha index (𝛼𝑅), and 

average width) performance metrics, as well as graphical tools (e.g., time series plots, 

raincloud plots, coverage probability plots (CPP)), were used to assess the simulations and 

compare the various models. The CDDA improved the CRPS of the ensemble HM by 18-

69%, and the new SCDDA further improved the CRPS of the CDDA by up to 15%. 

However, it was found that the SCDDA could not improve the reliability of any CDDA 

variants that had an 𝛼𝑅 above 0.85. Since the computational requirements of the CDDA and 

SCDDA can be significant, the effect of ensemble size on model performance was analyzed 

and revealed that approximately 100 (ensemble) members, for both ensemble and stochastic 

models, could be used without sacrificing performance. Finally, to test whether the CDDA 

and SCDDA can account for important processes missing within an HM, both approaches 

adopt an HM with and without a snow routine and are tested in a snow-driven catchment. It 

is found that both cases (with and without snow) had negligible difference in performance 

suggesting that the CDDA and SCDDA may account for missing processes in HMs.  
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Chapter 1 

Introduction 

Hydrologists and water resources practitioners are commonly tasked with estimating the 

uncertainty of hydrological variables for various applications such as flood forecasting and 

water management, which have benefited from process-based (physical or conceptual) 

hydrological models (HMs) (Anand et al., 2018; Jain et al., 2018). Although statistical 

methods have been used in the hydrology domain for decades (Singh, 2018), the accelerated 

advancements in technology and computer science, especially data-driven models (DDMs), 

have given a new perspective to the hydrological modelling paradigm by producing accurate 

models that have similar or better predictive capability than process-based models (Beven, 

2020; Nearing et al., 2021). There has been a large body of research for both model types as 

one promotes understanding of the hydrological system (process-based) and the other focuses 

on predictive accuracy (data-driven), both of which are used for many hydrological 

applications. Hence, it is essential to differentiate the two model types as they can dictate the 

modelling process and guide the model objectives.  

 

To contrast process-based and data-driven modelling approaches, HMs attempt to simplify 

and mimic natural processes using mathematical expressions relevant to the hydrological 

processes (i.e., explicit descriptions of the perceived catchment response to rainfall-runoff 

using boundary conditions, initial conditions, mass balance, energy balance, etc.) (Beven, 

2012), while DDMs estimate statistical relationships between explanatory/input (e.g., 

rainfall) and response/target (e.g., streamflow) variables using historical measurements 

enabling simulations of the target variable (Bishop, 2006). Although research on these two 

approaches has advanced independently in the hydrological sciences, there is an increasing 
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interest in combining process-based theory and data-driven approaches to increase our 

understanding of the natural system and improve predictive performance beyond what is 

achievable by the individual models (Adombi et al., 2021; Karpatne et al., 2017). 

 

In the hydrological sciences, research in combining theoretical knowledge (Adombi et al., 

2021) with data-driven approaches has gained interest as initially proposed in theory-guided 

data science (Karpatne et al., 2017). Since then, there have been several applications of the 

combined approach, although many of these approaches do not follow a standard naming 

convention. For example, coupling process-based with DDMs has been referred to as 

physics-informed DDMs (Liang et al., 2019), hybrid models (Kurian et al., 2020), or simply 

post-processing (Frame et al., 2021; Nearing et al., 2020). As another example, the term 

‘physics-informed neural networks’ has been used to represent an approach where partial 

differential equations (e.g., the governing equation for subsurface flow) are incorporated 

within artificial neural networks (Raissi et al., 2019; Shen and Lawson, 2021). Furthermore, 

several recent studies have used process-based model outputs as input to DDMs, 

demonstrating that such an approach can be used to improve the predictive performance of 

the standalone HM (Frame et al., 2021; Ghaith et al., 2019; Konapala et al., 2020; 

Kumanlioglu and Fistikoglu, 2019; Lu et al., 2021; Nearing et al., 2020; Quilty et al., 2022). 

Different naming conventions may introduce linguistic uncertainty (Montanari, 2011). 

Therefore, an initial attempt is made here to classify the combined approaches to distinguish 

the different methods in the current literature (see Section 2.2). However, this classification is 

expected to evolve, given the rising popularity of the combined (HM-DDM) approaches. 
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Among various combined approaches, one method gaining popularity is ‘correcting’ process-

based simulations by using DDMs to estimate the model residuals (Cho & Kim, 2022; Li et 

al., 2021a, 2021b; Papacharalampous et al., 2020a; Sharma et al., 2021; Shen et al., 2022, 

2021; Sikorska-Senoner & Quilty, 2021). Incorporating model errors in hydrological 

simulations has traditionally been used for uncertainty estimation (see Section 2.3.2), for 

example, stochastic resampling of model errors for assessing predictive uncertainty in 

streamflow simulations (Montanari & Koutsoyiannis, 2012; Sikorska et al., 2014). As such, 

Sikorska-Senoner & Quilty (2021) (hereinafter referred to as SSQ21) developed the 

conceptual-data-driven approach (CDDA) to include an ensemble of HMs, each paired with a 

DDM that simulates the HM residuals. The CDDA only characterizes uncertainty in the HM 

parameters, while the DDMs simulate the expectation of the residuals associated with each 

HM parameter set. A key outcome of SSQ21 showed that all of the nonlinear DDMs 

considered in the study improved the streamflow simulations generated by the lumped 

conceptual HM. Although the CDDA adopted conceptual HMs, any deterministic model can 

be used in the CDDA.  

 

As uncertainty in streamflow simulations plays a significant role in water-related decisions, 

Quilty et al. (2022) (hereinafter referred to as Q22) modified the CDDA by including other 

sources of uncertainty neglected in the CDDA (input data, input variable selection (IVS), 

DDM parameters, and model output). Referred to as the stochastic conceptual data-driven 

approach (SCDDA), this new framework improved streamflow simulations in all study 

catchments compared to the CDDA. However, unlike the CDDA, which uses DDMs to 

simulate the residuals of the ensemble HMs directly, the DDMs within the SCDDA directly 

simulate streamflow using the ensemble HM simulations as DDM inputs; in other words, the 
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SCDDA proposed in Q22 did not follow the same approach for using DDMs as in the CDDA 

proposed in SSQ21. In contrast to Q22, this research proposes a new SCDDA, an analogue of 

the CDDA in SSQ21, where DDMs are used to simulate HM residuals in a stochastic 

framework that, similar to Q22, can account for the uncertainty in input data, IVS, 

parameters, and model output. The new SCDDA takes advantage of the multiple parameter 

sets generated by the routine used to optimize the DDM’s hyperparameters in the CDDA. 

 

In SSQ21 and Q22, only one HM structure, based on the Hydrologiska Byråns 

Vattenbalansavdelning (HBV) model, specifically, HBV-light (Seibert & Vis, 2012), was 

used, making it challenging to identify whether the performance of the CDDA and SCDDA 

was specific to the HM’s structure. Therefore, along with HBV-light, two additional HMs, 

the Technische Universität Wien model (TUWmodel, Parajka et al., 2007) and modèle du 

Génie Rural à 4 paramètres Journalier (GR4J, Perrin et al., 2003) are used in this work to 

explore the performance of the CDDA and SCDDA with respect to different HM structures. 

For the DDMs, eXtreme Gradient Boosting (XGB, Chen & Guestrin, 2016) and Random 

Forests (RF, Breiman, 2001) were chosen based on a recommendation in the work of SSQ21, 

which found the two DDMs to be most suitable to simulate HM residuals (out of the eight 

DDMs that were considered). Furthermore, the Long Short-Term Memory Networks (LSTM, 

Hochreiter & Schmidhuber, 1997) were included due to their prominent role in hydrological 

applications involving deep learning (Shen, 2018). LSTM is an extension of Recurrent 

Neural Networks with the capacity to learn time dependencies over long timescales, which is 

important when simulating streamflow, as persistence is commonly manifested in 

hydrological processes (Hurst, 1951; Iliopoulou et al., 2018; Koutsoyiannis, 2021; Pagano & 

Garen, 2005). The competitive predictive performance of LSTM has been well recognized in 
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hydrology and water resources and is becoming the model of choice for deep learning 

applications in these domains (Feng et al., 2021, 2020; Kratzert et al., 2018; Liu et al., 2022; 

Shen, 2018).  

 

1.1 Objectives and Thesis Organization 

The main goal of this research is to develop and test the new SCDDA in three catchments 

(the same locations in SSQ21 and Q22). It is hypothesized that the new SCDDA can improve 

the ensemble and stochastic HM as well as the CDDA. Thus, the research objectives 

presented in this thesis are to: 

1. Apply the CDDA and the new SCDDA for all (nine) combinations of HMs and DDMs 

for daily streamflow simulation in three Swiss catchments. 

2. Compare the performance of the CDDA and SCDDA against one another, as well as 

the ensemble and stochastic HMs, considering the different combinations of HMs and 

DDMs. 

3. Propose and explore the use of a diagnostic tool to predict if the SCDDA can improve 

upon the reliability obtained by the CDDA. 

The third objective is not only useful for measuring improvements by converting the CDDA 

to its stochastic counterpart, but it also serves a practical purpose. Suppose the diagnostic tool 

predicts that the SCDDA will have lower reliability than the CDDA. In this case, the 

SCDDA may be neglected, saving implementation time and computational costs. The same 

three catchments from SSQ21 and Q22 were used to develop the different models and 

address the research objectives.  
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The main novelty of this research lies in the use of multiple parameter sets explored by the 

optimization routine in the CDDA. The CDDA requires a (computationally demanding) 

search for optimal DDM hyper-parameters (settings external to the model that affect the 

calibration of parameters, model structure, etc.). In the CDDA, each HM in the ensemble is 

associated with a single set of DDM hyper-parameters and a single set of DDM hyper-

parameters is used to estimate DDM parameters (which are responsible for mapping the 

DDM inputs to the HM residuals). However, by retaining all parameter sets explored during 

optimization, the uncertainty of the CDDA (HM and DDM) parameters can be used within 

the stochastic framework (leading to the new SCDDA). In addition, adopting nine different 

HMs and DDMs within the CDDA and SCDDA for simulating streamflow in multiple 

catchments allows for the exploration of a diagnostic tool, the coverage probability plot 

(CPP), to determine if the predictive performance of the CDDA can be improved using the 

SCDDA. The CPP is also referred to as the predictive probability-probability plot and has 

proven to be a valuable tool for converting deterministic simulations to stochastic ones 

(Koutsoyiannis & Montanari, 2022). Finally, the new SCDDA can also be viewed as the 

second stage in a post-processing framework, where after the CDDA is used to correct the 

HM outputs (first stage), the stochastic framework is used to refine the CDDA and assess its 

uncertainty through stochastic resampling (transforming the CDDA into the new SCDDA). 

 

This thesis is organized as follows. Chapter 2 presents background information on HMs, 

combining process-based theory with data-driven approaches and the uncertainty of 

hydrological simulations. Chapter 3 describes the methods related to the CDDA and (new 

and original) SCDDA as well as the adopted HMs and DDMs. Chapter 4 provides the 
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experimental setup for the CDDA and SCDDA. Chapter 5 presents the main results and 

includes a discussion on their significance. Finally, Chapter 6 provides concluding remarks, 

discusses opportunities for future research, and ends with several recommendations for 

improving the proposed SCDDA.  
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Chapter 2 

Background 

This chapter provides an overview of hydrological modelling, including a brief history of its 

development, classification of hydrological models, combining process-based theory with data-

driven models, and the uncertainty of hydrological predictions along with its estimation. 

 

2.1 Hydrological Models 

Sometimes referred to as the “science of water” (National Research Council, 1991), hydrological 

science (or hydrology) emerged to better understand the complexities of water movement on 

earth - since it serves as a necessary resource for all terrestrial life - and to avoid life-threatening 

hazards (National Research Council, 2012). Hydrology is frequently associated with other 

disciplines such as meteorology, climatology, geomorphology, hydrogeology, and ecology, 

playing a significant role in earth system science (Blöschl, 2005). Typical applications of 

hydrology to water resources problems include, but are not limited to: water resources planning 

and management (Brown et al., 2009), hydraulic designs (Chow et al., 1988), and flood and 

drought forecasting (Dawson & Wilby, 2001; Konapala and Mishra, 2020). Although many of 

these applications require measuring various hydrological variables (e.g., precipitation, 

evaporation, streamflow) in both space and time, the limitation of measurement techniques 

invoked HMs to estimate and extrapolate hydrological variables where measurements were/are 

not available (Beven, 2012). For rainfall-runoff modelling, the Rational Method (Mulvany, 

1851), the first of its kind, was proposed over 150 years ago and is still used today to solve 

practical engineering problems (e.g., estimating peak discharges for drainage systems) (Singh, 

2018). Since then, various HMs have been developed by incorporating water movement, energy 

transfer, relevant hydrological processes, and statistical relationships (Devi et al., 2015) through 
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the advancement of computation in the 1960s (Singh, 2018). Since HMs can be developed using 

various approaches, researchers have attempted to classify these model types, which can be 

applied to different modelling objectives.  

 

2.1.1 Classification of Hydrological Models 

While there is no universal agreement on the classification of HMs, it is possible to group HMs 

based on their spatial discretization, prediction mode, model structure, and stochasticity. Spatial 

discretization determines if the model can incorporate the spatial variability of the hydrological 

process. By discretizing a catchment into multiple components (e.g., grids, subcatchments, and 

hydrologic response units) and solving for the variables of interest at each unit, distributed and 

semi-distributed models incorporate spatial variability of the hydrological process. The other 

approach is to lump the catchment into a single unit with the hydrologic variables representing 

the average over the area (Beven, 2012). Since incorporating spatial variability can result in high 

computational costs, spatial discretization should be selected according to the modelling 

objectives. For example, distributed models are likely to be considered if the model aims to 

estimate a particular state variable (e.g., groundwater level) for various locations within a 

catchment. However, lumped models provide an acceptable solution if the goal is to simulate the 

river discharge at the catchment outlet.   

 

The prediction mode determines if the model's objective pertains to simulation or forecasting. 

Adopting the definitions provided by Beven and Young (2013): simulation refers to the 

“quantitative reproduction of the behaviour of a system, given some defined inputs but without 

reference to any observed outputs,” while forecasting refers to the “quantitative reproduction of 
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the behaviour of the system ahead of time, but given observations of the inputs, state variables 

(where applicable), and outputs up to the present time.” In summary, simulation and forecasting 

differ by the variable of interest with respect to time (e.g., the future) and the input data required 

to retrieve the model outputs. As “prediction” is sometimes used synonymously with simulation 

and forecasting in the hydrology literature, to avoid ambiguity, this work uses prediction only 

when simulation and forecasting can be used in the same context. 

 

The following classification is associated with the choice of model structure, categorized into 

process-based hydrological models, HMs, and data-driven models, DDMs. HMs attempt to 

simplify the hydrological process using the perceived response of the catchment from rainfall 

(i.e., through mass balance, energy balance, initial conditions, boundary conditions, etc.). 

Furthermore, HMs can be divided into physically-based and conceptual models. Although some 

researchers use physically-based and process-based synonymously, both physically-based and 

conceptual models are referred to as process-based in this work since they focus on developing 

mathematical descriptions of the perceived hydrological process, whether through known 

scientific principles of energy and water fluxes (physically-based) or by macroscale 

relationships, which may not have a direct physical interpretation (conceptual) (Beven, 2012). 

Although physically-based models are often regarded as more theoretically correct, conceptual 

models are often the choice for operational surface-runoff applications due to their computational 

speed (compared to physics-based models), scale-dependent parameters, and flexibility in 

choosing relevant hydrological processes (Bergström & Graham, 1998). The other class of model 

structures are DDMs (sometimes referred to as statistical models and empirical models), which 

estimate statistical relationships between explanatory/input (e.g., rainfall) and response/target 

(e.g., streamflow) variables using historical measurements (Bishop, 2006). DDMs have gained 
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widespread popularity in recent years due to technological development (e.g., graphical 

processing units) and computer science (specifically, in the areas of machine learning (ML) and 

deep learning (DL)), improving modelling capabilities in various scientific fields (Ching et al., 

2018; Jha et al., 2018; Ravuri et al., 2021; Reichstein et al., 2019; Senior et al., 2020; Suh et al., 

2021). ML can be further classified into supervised and unsupervised learning. Supervised 

learning uses labelled datasets (i.e., target variables), allowing the model to learn the relationship 

between the target and explanatory variables. In contrast, unsupervised learning disregards 

labelled datasets and attempts to gain insights (e.g., patterns, groupings) about the data (Hastie et 

al., 2009). Since supervised learning can be considered a data-driven counterpart to HMs (i.e., 

focused on predicting a hydrological variable), supervised learning has been the most popular 

ML application in hydrology (Sit et al., 2020). However, it should be noted that DDMs have 

been regarded as an inductive approach compared to the deductive formulation of HMs (Beven, 

2012). Although induction is often viewed as weaker than deduction (Koutsoyiannis, 2021), 

DDMs have recently been shown to have comparable or more accurate predictive capability than 

HMs (Nearing et al., 2021). The cause for this is not well understood, as the departure of model 

simulations from observed values can be caused by various limitations and uncertainties (see 

Sections 2.1.3 and 2.3). 

 

The final classification relates to the stochasticity of the model. While deterministic models only 

produce a single outcome for a given set of input variables and model parameters, stochastic 

models consider uncertainty when estimating a variable of interest (Montanari & Koutsoyiannis, 

2012). Despite deterministic models being the most popular method (as many process 

descriptions are developed using a deterministic approach), the single-valued approach results in 

inaccuracies compared to the observed values, requiring uncertainty estimates (Montanari & 
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Koutsoyiannis, 2012). Uncertainty assessment is essential for decision-makers and the public 

(see Section 2.3), as they may foretell the level of risk involved in an upcoming extreme event 

(Koutsoyiannis & Montanari, 2022). It should be noted that some HMs adopt a statistical model 

structure but use the expected value (i.e., the first moment or the mean) as the output, thus, 

becoming a deterministic model. The following sub-section reviews the hydrological modelling 

process. 

 

2.1.2 Hydrological Modelling Process 

The hydrological modelling process serves as a guide for model objectives and enhancing model 

results. An outline of the hydrological modelling process is provided in Figure 1 (Beven, 2012). 

 

Figure 1. Outline of the hydrological modelling process (Beven, 2012) 
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Before selecting a model, it is essential to identify the modelling objectives as the purpose of the 

model guides the modelling process. The objectives can differ according to variable(s) of interest 

(e.g., streamflow, soil moisture, groundwater levels), the level of detail required from the model 

(e.g., meeting specific performance criteria), and project limitations (e.g., available data, funding, 

timelines). After specifying the objectives, the perceptual model of the rainfall-runoff process 

(for example) is determined (top of Figure 1). The perceptual model is defined as the perceptions 

of the catchment response to rainfall, which is limited to the modeller’s knowledge of the 

hydrological process (Beven, 2012). The perceptual model does not consist of mathematical 

equations; instead, it is the awareness of the complexities of the processes occurring in the 

system that can be gained from prior experiences, such as from the field, in the lab, and in the 

literature. Hence, it is expected that experienced hydrologists will conceive a suitable perceptual 

model by identifying the critical hydrological processes for the given catchment. The conceptual 

model follows the next stage in the hydrological modelling process (not to be confused with 

conceptual HMs), where mathematical equations (including model structure) are determined 

using the perceptual model. Here, assumptions are made to simplify the complexities of the 

hydrological process to help describe them mathematically, for example, the initial and boundary 

conditions of the HMs. 

 

Following the conceptual model, the next stage of the modelling process is the procedural model, 

where the conceptual model is translated into computer code for calibration and simulation. For 

calibration, the modeller chooses an optimization algorithm and the objective function(s) to 

determine suitable model parameters or structures that reflect the system behaviour. 

Furthermore, the dataset is traditionally split using a variant of split-sample testing (Klemeš, 

1986). One or multiple segment(s) of data is used for calibration, while the remaining is used for 
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verifying the model results. For HMs, in addition to a warm-up period to stabilize state variables 

(e.g., depth to the water table) (Kim et al., 2018), it is common to split the remaining dataset into 

two segments, one of which is used for calibration of model parameters or structures and the 

other for verifying the model. However, for DDMs (and ML algorithms, in particular), it is 

common to split the dataset into three segments: training, validation, and test sets (Xu & 

Goodacre, 2018). The training, validation, and test sets are used within DDMs to calibrate model 

parameters, tune the model hyper-parameters (i.e., settings external to the model that affect the 

calibration of parameters, model structure, etc.), and test the performance of the model out-of-

sample, respectively. Since HMs are often assumed to not include hyper-parameters, the HM 

verification set is typically synonymous with the DDM’s test set. 

Suppose the model simulations in the calibration (HM) or training and validation (DDM) sets do 

not provide acceptable performance. In this case, the modelling process is reiterated by revising 

the perceptions, equations, code, and parameter values until achieving model objectives. 

However, it should be noted that model verification using the verification set (HM) or the test set 

(DDM) should only be used at the last stage of the modelling process. The model (HM or DDM) 

should not be updated based on the verification (HM) or test (DDM) set’s performance as this 

introduces bias into the model simulations, providing the illusion of overly optimistic 

performance. Thus, the calibration (HM) or training and validation (DDM) sets should only be 

used to reiterate the modelling process.  
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2.1.3 Limitations of Hydrological and Data-driven Models 

Although this sub-section is not intended to serve as an exhaustive list of problems related to 

HMs and DDMs, it is essential to review some common issues considered in the literature to 

understand the general limitations of both approaches.  

 

First, HMs are based on perceptions of the hydrological system, making simplifications to 

describe them mathematically. However, the perceptions may be incorrect, and the 

simplifications may have a non-negligible effect on the simulation (Beven, 2001). The next issue 

with HMs is the problem of scale. The scale problem is the inability to consider the 

heterogeneity and non-linearity of the hydrological processes of interest for all scales due to the 

lack of measurement techniques (Beven, 2001). For example, soil parameters (e.g., hydraulic 

conductivity) may be estimated from point-scale geological surveys, which cannot be 

extrapolated due to their heterogeneous nature (Beven, 2009). As this problem is common in 

distributed physically-based modelling, conceptual models may be an alternative method through 

scale-dependent model structures aligned with available data (i.e., through hydrologic response 

units), often calibrated with historical records of observed streamflow. Although conceptual 

models can alleviate (to some extent) the problem of scale, the problem with developing scale-

relevant theory persists. For example, inaccuracies of conceptual models can be caused by the 

inability to specify macroscale watershed behaviours due to heterogeneity (Nearing et al., 2021). 

 

Furthermore, there are inherent problems with calibration for HMs related to searching for an 

optimal model (parameter set and/or model structure). The search space of parameters and model 

structures may lack a clear optimum (non-identifiability), and a single optimal model may be 
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improper due to multiple optima or different goodness-of-fit criteria (non-uniqueness), both of 

which are common problems with model optimization (Beven, 2009). Although it is reasonable 

to assume an (acceptable) optimal model can be found within a search space, multiple 

combinations of structures and parameter set usually provide adequate performance. Hence 

defined as equifinality (Beven, 1993), this concept is used to reject the idea of a single optimal 

model; otherwise, deciding on a single set of model parameters or structure may be an arbitrary 

choice (Beven, 2012).  

 

Another problem is related to the number of process descriptions in the model structure, where 

adding complexity to the model to increase predictive performance introduces additional tunable 

parameters. Suppose the perceived hydrological descriptions are correct for a given catchment 

but deteriorate model performance as more descriptions are added. In that case, this is often 

regarded as an overparameterized model (Beven, 2006).  

 

Although the above issues have been attributed to HMs, DDMs also have significant limitations, 

some of which may have caused hydrologists to disregard DDMs (See et al., 2007). In the 

literature, DDMs have been more heavily criticized compared to their process-based counterpart 

mainly due to their high reliance on empirical estimates without any process knowledge. In 

addition, many hydrologists are skeptical of DDMs since they do not add any scientific 

knowledge or improved understanding of hydrology as the approach attempts to learn through 

inputs and outputs (See et al., 2007). As such, DDMs are often viewed as “black-box” models as 

it is difficult to relate the internal structure of the model to hydrological processes (Beven, 2012). 

However, there are numerous examples where DDMs have been useful when attempting to 
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overcome the limitations of HMs. For example, although lumped conceptual HMs attempt to 

derive watershed-scale theories from data, DDMs have been tested on various catchments and 

shown to have, on average, better performance than HMs (Nearing et al., 2021). Hence, better 

watershed-scale theories could have been derived from data, but hydrologists were unable to find 

such relationships (Nearing et al., 2021). For predictions in ungauged basins, where observed 

streamflow is not available, one may assume that it is only possible to use theoretical knowledge 

(i.e., HMs) since DDMs require a training target (observed streamflow). However, training 

DDMs on neighbouring gauged catchments and applying the model to the ungauged catchments 

(transfer learning) shows promising performance in regions with no streamflow data (Kratzert et 

al., 2019). Similar to HMs, issues with calibration also exist for DDMs, including non-

identifiability and non-uniqueness. However, the issue with over-parameterization is managed 

effectively in DDMs through regularization, which helps avoid overfitting (i.e., strong training 

performance but low testing performance) (Ng, 2004). For example, for an artificial neural 

network (ANN), the model may have thousands of tunable parameters (e.g., weights and biases) 

yet converge to a suitable model, unlike over-parameterized HMs. Mitigating over-

parameterization is achievable since many DDMs incorporate regularization methods that assist 

in the bias-variance trade-off (Luxburg and Schölkopf, 2011). Such techniques are not widely 

used in HMs; therefore, poor-performing HMs can be caused by lack of regularization which 

may be considered as an over-parameterized model (Nearing et al., 2021). Despite these 

advantages, the “black-box” nature of DDMs remains a significant issue for some hydrologists.  

 

The inability to understand hydrological processes of interest through DDMs may be a 

significant problem for modellers since they may be interested in several hydrological variables 

(perhaps, in an interdisciplinary approach) such as water quantity, quality, and particle tracking. 
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Unless these variables are explicitly modelled, this task seems unachievable purely through the 

data-driven approach. Furthermore, some hydrologists have compared DDMs to “curve-fitting 

exercises” if it is impossible to extract knowledge about the process (Zaherpour et al., 2019). To 

combat this issue, a subfield of data-driven modelling called interpretable ML, which seeks to 

make black-box models more explainable, has been growing in popularity (Du et al., 2019; 

Molnar, 2020). In a water resources case study, Lees et al. (2022) trained a Long-Short Term 

Memory network (LSTM) to simulate streamflow using meteorological time series and static 

catchment attributes as inputs, then linearly regressed the LSTM’s state vectors against satellite-

derived soil moisture and snow depth. Their results showed that the LSTM learned from data 

alone how to represent soil moisture and snow processes internally when being trained to 

simulate streamflow. Lees et al. (2022) not only suggest that the LSTM is able to learn important 

hydrological processes internally (moving beyond curve-fitting exercises) but that it is also 

possible to utilize the internal states (of the LSTM) to simulate latent hydrological variables 

(e.g., soil moisture). Although further exploration of this interesting line of research is not 

considered herein, it is essential to recognize that DDMs may have the potential to learn hidden 

hydrological processes that hydrologists have not yet been capable of discovering (or measure). 

Nonetheless, if the model objectives prioritize prediction quality, hydrologists can take 

advantage of the predictive capability of DDMs (Beven, 2020). Hence, as this research is 

primarily concerned with improving the predictive performance of HMs, it is explored herein to 

what extent DDMs can improve upon HM simulations. 
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2.2 Combining Process-based Theory with Data-driven Approaches 

In hydrology, research on combining theoretical knowledge (Adombi et al., 2021) with DDMs 

has been growing in popularity since the introduction of theory-guided data science (Karpatne et 

al., 2017). Various approaches exist (with different naming conventions) for combining 

theoretical knowledge with DDMs. However, strictly defining and classifying these “combined 

approaches” is outside the scope of this research. The combined approaches can be broadly 

classified into three categories to reduce linguistic uncertainty (see Section 2.3.1): informed, 

constrained, and error. As many of these approaches have been applied recently, more methods 

will likely be introduced in the near future, requiring the current classification to be updated. The 

following sub-sections review the literature on the three combined approaches. 

 

2.2.1 Informed Approach 

Among the three methods, the informed approach is the most popular likely due to its ease of 

application. The informed approach is a general method of infusing DDMs with relevant 

hydrological processes (Adombi et al., 2021) or learning physical relationships from DDMs for 

use in HMs. Since most DDMs are not limited to specific input variables (unlike HMs), a 

straightforward approach is to utilize HMs to produce relevant features to be used as input to a 

DDM. For example, actual evapotranspiration may be extracted from an HM calibrated for 

streamflow simulation and used in a DDM for streamflow forecasting. The ML literature refers 

to extracting relevant features from data as feature engineering (Heaton, 2016). Thus, the 

informed approach can be considered a feature engineering exercise for the DDM, using 

information from one or more HMs. Studies using the informed approach have consistently 

found improved predictive performance compared to a standalone HM (Ghaith et al., 2019; 
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Konapala et al., 2020; Kumanlioglu and Fistikoglu, 2019; Lu et al., 2021; Quilty et al., 2022). 

However, there are examples where the informed approach did not outperform a standalone 

DDM (Frame et al., 2021; Nearing et al., 2020). Recently, Liang et al. (2019) created a database 

using numerical simulations of different weather patterns, surface topography, vegetation, soil 

conditions, and contaminants. Features were extracted from this database and used to simulate 

surface water quantity and quality using DDMs, which showed that the combined approach had 

higher predictive performance than the standalone HM. In another study, Tongal and Booij 

(2018) demonstrated how baseflow separation coupled with DDMs could be used to improve 

streamflow simulation. A physics-guided architecture based on LSTM was developed by Daw et 

al. (2020), where temporal features of the input variables (e.g., depth of water and precipitation) 

were used to generate a latent variable (i.e., water density). The model was guided by the 

physical relationship between water depth and density when modelling the lake temperature. The 

physics-guided architecture outperformed a benchmark LSTM and LSTM based on the 

constrained approach (see Section 2.2.2).  

 

Despite the popularity of the informed approach where hydrological processes or physical 

relationships are used as input to, or to guide the learning of, DDMs, it is possible to train DDMs 

to generate model parameters for HMs by using large-scale (multi-catchment) datasets. For 

example, Tsai et al. (2021) and Feng et al. (2022) used DDMs to simulate parameters for HMs 

trained across the conterminous United States. Their results demonstrate that the informed 

approach has an accuracy similar to a standalone DDM but with increased insight into the 

physical processes gained through the HM’s state variables. In the next sub-section, the 

constrained approach is explored and shown to be a promising combined approach for 

hydrological modelling. 
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2.2.2 Constrained Approach 

The constrained approach alters the DDM’s objective/loss function with physical equations 

(Raissi et al., 2019). Although the constrained approach has sometimes been presented using 

different terminology, e.g., ‘physics-informed neural networks’ (Tartakovsky et al., 2020), this 

approach integrates theory into the loss function of the DDMs (Adombi et al., 2021). For 

example, it is possible to constrain the DDM with the governing equation for subsurface flow by 

supplementing the standard loss function (e.g., mean squared error) with the residuals of the 

governing equation as well as initial and boundary conditions to achieve physically realistic 

results (Adombi et al., 2021). Applications of the constrained approach are limited, likely due to 

the difficulty of its implementation (relative to the other combined approaches). However, the 

constrained approach has been used for subsurface flow problems governed by Darcy’s law 

(saturated conditions) (Tartakovsky et al., 2020), approximating solutions to the Richards 

equation and estimating parameters of the van Genuchten model (unsaturated conditions) 

(Depina et al., 2021) solving the coupled advection-dispersion and Darcy flow equations 

considering hydraulic conductivity that is space-dependent (He & Tartakovsky, 2021), water 

depth simulation (Mahesh et al., 2022), and data assimilation (He et al., 2020). 

 

The constrained approach may benefit groundwater modellers mainly due to its computational 

speed and accuracy compared to physically-based distributed models. However, a significant 

limitation is that the model must be re-trained for new initial and boundary conditions (Shen & 

Lawson, 2021). Wang et al. (2020) extended the loss function constraints by including 

engineering control and expert knowledge for subsurface flow. The results demonstrated that the 
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new approach achieved higher predictive capability, reliability, and generalizability than the 

standalone DDM. Another example of the constrained approach is provided by Jia et al. (2021), 

where flow and water temperature are simulated in river networks. The authors use a DDM 

informed by an HM and constrained by physical relationships between different river segments. 

The model resulted in superior performance compared to the standalone HM and DDM. Xie et 

al. (2021) used synthetic samples of extreme events to inform the DDM while constraining the 

loss function using heavy rainstorm events, rainless events, and monotonicity. The results 

showed that the combined approach increased the predictive performance of the DDM, including 

simulation of flood peaks, mitigating negative streamflow, and maintaining monotonicity. 

Another constrained approach directly introduces conservation laws (e.g., mass balance) into the 

DDM. Hoedt et al. (2021) constrained the internal structure of an LSTM to allow mass 

conservation within the DDM. Referred to as the Mass-Conserving LSTM (MC-LSTM), this 

approach enables users to apply the model for a wide range of problems, not just related to 

hydrology (such as traffic forecasting, where the number of cars in and out of the system is 

conserved). Although their results showed that the standalone LSTM outperformed MC-LSTM, 

the latter achieved more accurate high-volume flows, which the authors assumed was likely due 

to MC-LSTM ensuring mass conservation. In the next sub-section, the error approach is 

described, which is the combined approach adopted in this work. 

 

2.2.3 Error Approach 

The error approach focuses on the refinement of HM or DDM outputs and can be applied in two 

ways: post-processing the DDM outputs to conform with governing equations (e.g., Chen et al., 

2021) or post-processing the HM outputs by correcting their residuals (errors) using DDMs. The 
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former type of error approach is very similar to the constrained approach (Adombi et al., 2021); 

therefore, details of this approach are not discussed. However, the second type of error approach 

is desirable due to its simplicity and the amenability of estimating prediction uncertainty by 

converting deterministic predictions to probabilistic ones. In the error approach, an HM is 

simulated for a given catchment, and its residuals/errors (i.e., the difference between the 

observed and simulated results) are used as the target variable for a DDM. The simulation of 

residuals from the DDM is summed together with the HM simulations to provide an updated (or 

corrected) simulation (Sikorska-Senoner & Quilty, 2021). Although simple to implement, this 

approach has seldom been explored. Booker and Woods (2014) corrected HMs using flow 

duration curves and Random Forests (RF), showing significant performance gains compared to 

the standalone HM. Cho and Kim (2022) used LSTM to correct an HM applied to streamflow 

simulation, finding that the model bias significantly improved using the error approach compared 

to the standalone LSTM. Sharma et al. (2021) used LSTM to correct numerical weather 

forecasts, which improved bias for medium-range timescales. Sikorska-Senoner and Quilty 

(2021) used ensemble HMs where each ensemble member was corrected with a DDM. Their 

results indicate that any of their studied non-linear DDM improved the HM.  

 

In contrast to the other combined approaches, the error approach has also been used to determine 

the prediction uncertainty by using the model error to convert deterministic predictions to 

probabilistic ones (see Section 2.3). Probabilistic predictions are useful for assessing the 

uncertainty of water resource systems and play a key role in water resources planning, 

management, and operations. Thus, probabilistic predictions generated by the error approach can 

supplement decision-making tasks in hydrology and water resources (e.g., flood forecasting, 

drought mitigation, reservoir operations). The new SCDDA developed and explored in this 
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research is an error approach that can convert ensembles of deterministic HMs into stochastic 

coupled-data-driven models that produce probabilistic simulations. Aside from the new SCDDA 

presented here, to the best of the author’s knowledge, only two other error approaches that 

produce probabilistic simulations exist in the hydrology and water resources literature. However, 

these two studies (described briefly below) only focused on a single HM (while this research 

considers three HMs).  

 

In Papacharalampous et al. (2020a),  an error approach was introduced where HM simulations 

based on a single model structure using different parameter sets (referred to as sister predictions) 

were used to generate a set of model errors (attached to each parameter set), which were 

simulated using quantile regression models at various quantiles.  Probabilistic simulations were 

obtained by combining the HM simulations with the model error simulations (from the quantile 

regression models).  Another error approach resulting in probabilistic simulations was proposed 

by Li et al. (2021b), where the error distribution of an optimized LSTM model (used to correct 

HM simulations) was estimated using a Markov Chain Monte Carlo algorithm. However, in both 

studies (Papacharalampous et al., 2020a; Li et al., 2021b), the authors do not evaluate the extent 

to which the probabilistic methods improve upon the deterministic HMs. In this research, the 

ensemble models (ensemble HM and CDDA) are extensively compared against their stochastic 

counterparts (stochastic HM and new SCDDA) to demonstrate the benefits of adopting the 

stochastic framework. The next sub-section provides an overview of the uncertainty of 

hydrological predictions, given its central importance to the new SCDDA and, more generally, 

the planning, management, and operation of water resources systems.  
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2.3 Uncertainty of Hydrological Predictions 

Uncertainty estimation in hydrological simulation is one of the most critical subfields in 

hydrology, as it quantifies the reliability of the model reflecting real-life conditions (Montanari, 

2011). Although most HMs are deterministic (see Section 2.1.1), uncertainty estimation is not a 

norm in practice or research, despite its importance in decision-making (Pappenberger & Beven, 

2006). For example, hydraulic engineers use empirical techniques, such as safety factors and 

freeboard, to account for the uncertainty of the designers’ knowledge about extreme 

rainfall/streamflow events (Montanari, 2011). Perhaps, uncertainty estimation is not a norm 

because it is challenging to implement or may be influenced by subjectivity (Pappenberger & 

Beven, 2006). However, through the improvement of technology, management, and risk 

assessment (dependent on uncertainty assessment), the number of victims of hydroclimatic 

disasters has significantly reduced since the 20th century, and there is potential for further 

improvement (Koutsoyiannis, 2020). 

  

While it is common to encounter the term ‘uncertainty,’ its exact definition is also uncertain, as 

some have attributed the term to inexactness, imprecision, indeterminacy, vagueness, etc. 

(Beven, 2009). However, practical definitions of uncertainty are related to the model objectives 

or the focus of relevant questions, such as indeterminacy of hydrological simulations (Montanari, 

2007). To provide context to the term ‘uncertainty’ adopted in this research, the rest of this 

section is dedicated to classifying (different types of) uncertainties and uncertainty assessment. 
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2.3.1 Classification of Uncertainties 

Prediction uncertainty (sometimes described as global uncertainty) refers to the uncertainty 

related to the model output and actual/observed value of the variable of interest (Montanari, 

2011). Researchers have classified prediction uncertainty into distinct types to assess the overall 

uncertainty and attempt to reduce the individual components of uncertainty. Uncertainty in 

hydrological predictions is generally grouped into aleatory and epistemic uncertainties. Aleatory 

uncertainty is interpreted as the inherent randomness from nature or natural variability, while 

epistemic uncertainty refers to non-random factors, mainly the uncertainty of our knowledge of 

the system (Beven, 2009). Since aleatory and epistemic uncertainties are often inseparable, they 

are typically evaluated in an integrated manner, lumping all uncertainties into a single source 

(Montanari, 2011). The other approach is to classify the individual uncertainties into separate, 

explicit sources (input, structure, parameter, etc.) and lump all remaining uncertainties (e.g., 

initial conditions) within the model error, which can be done without differentiating between 

aleatoric and epistemic uncertainty (Montanari & Koutsoyiannis, 2012). A description of 

uncertainty sources commonly considered in the hydrology and water resources literature is 

given below. 

 

Input uncertainty refers to the uncertainty of data used as input to a model, which is important in 

hydrological forecasting applications since hydro-meteorological inputs (e.g., precipitation) are 

typically represented as ensembles, translating into the uncertainty of the forecasted variable 

(Han & Coulibaly, 2019). Structural uncertainty is defined as the inability of the model to 

reproduce the system dynamics given ideal inputs (i.e., inputs without uncertainty; for example, 

measurement errors). Since the model’s structure depends on (perhaps, biased) decisions of the 

modelling process, the structural uncertainty is typically classified as epistemic. In addition, 
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extensive studies on hydrological modelling are focused on improving our understanding of the 

natural process. Therefore, many water resource practitioners attempt to reduce structural 

uncertainty (Renard et al., 2010). Another uncertainty source related to the model structure is 

parameter uncertainty. As many models require parameters to control the model behaviour, 

parameter uncertainty refers to the inability to estimate the true value of the parameters given 

incomplete and/or inconsistent data. Parameter uncertainty is influenced by the model structure, 

calibration method, and the consistency of the data (Montanari & Koutsoyiannis, 2012). Given 

the input data, model structure, and parameter(s), a model is simulated and compared with the 

observed data. The model error is the discrepancy between the simulated and observed values. 

The model error is especially useful since it includes all sources of uncertainty not explicitly 

accounted for in the model (uncertainty in initial conditions, boundary conditions, state variables, 

etc.). As a result, the model error can be used to estimate the model output uncertainty and assess 

the prediction uncertainty without directly accounting for all individual uncertainties.  

 

Other uncertainties (which are rarely discussed) include linguistic and operation uncertainties 

(Montanari, 2011). As the name implies, linguistic uncertainty refers to the lack of clarity in 

terminology, as exemplified by the classification of the combined approaches in Section 2.2. 

Since coherent terminology and clarity in communication is essential for ease of understanding 

and mitigating errors, linguistic uncertainty plays a substantial role in all fields of science. 

Lastly, operation uncertainty is related to applying the model in real-life scenarios. Despite most 

HMs being calibrated with observed streamflow data, observations are prone to errors. 

Streamflow measurements are commonly based on stage-discharge relationships where 

discharge can significantly vary with a given stage measurement (Herschy, 2008) but are often 

delivered to the end-users in a deterministic way (Domeneghetti et al., 2012). Due to errors in 
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measurement techniques, measured streamflow will often disobey the closure of mass balance, 

leading to uncertainty in the HMs. As the models in this work are applied in a research setting, 

errors due to measurement techniques are omitted, but interested readers are referred to 

Montanari (2011) for more information.  

 

2.3.2 Uncertainty Assessment 

A model's reliability and, therefore, confidence in the model’s simulations is quantified through 

uncertainty assessment. Consequently, uncertainty assessment should be carried out carefully; 

otherwise, the credibility of the model and modeller may be diminished. It should be noted that 

uncertainty assessment, estimation, characterization, and quantification are used interchangeably 

in the literature on probabilistic methods (Montanari, 2011). Since uncertainty assessment in the 

literature typically uses probabilistic methods, non-probabilistic methods are not discussed here 

(although Beven (2009) and Montanari (2011) discuss these methods). Probabilistic methods use 

the probability theory, where uncertainty can be quantified by relying on one or more probability 

distributions. The popularity of probabilistic approaches for uncertainty assessment likely 

originates from the vast literature on probability, statistics, and stochastics, which can be used to 

alleviate the limitations of deterministic models (Montanari & Koutsoyiannis, 2012). One of the 

most commonly adopted uncertainty estimation methods uses a Bayesian approach, where the 

likelihood (the evidence, given model predictions) is used to update the prior probability of 

different models under consideration. The Bayesian approach is presumably the foundation of 

the Generalized Likelihood Uncertainty Estimation (GLUE, Beven & Binley, 1992) method, 

arguably the most popular uncertainty assessment method among hydrological modellers. 
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Despite its popularity, the GLUE method remains controversial, primarily due to the assumptions 

needed to compute the informal likelihood function (Montanari, 2005).  

 

Limitations of the GLUE method led to the development of a blueprint for converting a 

deterministic model to a stochastic one, centred on using the model error distribution to estimate 

the (deterministic) model output uncertainty (Montanari & Koutsoyiannis, 2012). As discussed 

in Section 2.2.3, one method of combining HMs with DDMs is through the error approach. 

Using the error approach, SSQ21 proposed the CDDA, where each member of the ensemble HM 

(based on multiple parameter sets using a single structure) is paired with a DDM (one per HM 

ensemble member) to correct the HM simulations. A fundamental limitation of the CDDA is that 

the method only considered parameter uncertainty in the HM when generating the ensemble 

streamflow simulations. Therefore, a subsequent study by Q22 developed the stochastic CDDA 

(SCDDA) to include other sources of uncertainty neglected in the CDDA (input data, input 

variable selection (IVS), parameters, and model output). Since Q22 used HMs as input to the 

DDMs (informed approach, see Section 2.2.1), this approach inherently differs from the error 

approach adopted by the CDDA. Thus, a new SCDDA based on the error approach is introduced 

in this work, where uncertainty is estimated using the stochastic framework described in Quilty 

et al. (2019) (motivated by the blueprint introduced in Montanari & Koutsoyiannis, 2012) (see 

Chapter 3). 

 

Before introducing the methods adopted in this research, it is essential to review the assumptions 

required for probabilistic approaches, which may determine the model limitations. First, the 

stochastic process (e.g., runoff) considered in this research is assumed ergodic since its statistical 
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properties are deduced from an extended sample of the process (Montanari, 2011). In detail, as 

time tends to infinity, the sample statistical descriptions are assumed to be equivalent to the true 

statistical properties. Next, the stochastic process is assumed stationary, meaning the statistical 

properties are invariant to a shift in time origin (Koutsoyiannis, 2021). The assumption of 

stationarity adopted herein may seem impractical in light of environmental change. However, the 

stochastic framework introduced in Chapter 3 considers an approach for estimating the 

probability distribution of the model error that inherently accounts for heteroscedasticity (of the 

model error) and is amenable to real-time updates that may be useful for capturing ongoing 

environmental change. Although the methods considered herein require additional assumptions, 

they are described in Chapter 3.   
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Chapter 3 

Methods 

This chapter provides an overview of the main methods, including the ensemble-based 

conceptual-data-driven approach (CDDA), its stochastic version (SCDDA) (including a 

comparison between the original SCDDA from Quilty et al. (2022) and the new SCDDA, 

proposed in this research) as well as the different hydrological models, HMs, and data-driven 

models (DDMs). 

 

3.1 Ensemble-based Conceptual-data-driven Approach (CDDA) 

The CDDA utilizes an ensemble of HMs using a single model structure and multiple parameter 

sets to generate streamflow simulations, where a DDM is used to correct the residuals of each 

HM. The CDDA is given by the following equation (Quilty et al., 2022): 

 

𝑌𝑖(𝑃𝑡,…,𝑡−𝐷 , 𝑇𝑡,…,𝑡−𝐷 , 𝑄𝑡−1,…,𝑡−𝐷|𝛩𝐶𝐷𝐷𝐴𝑖)

= 𝑦𝑖(𝑃𝑡, 𝑇𝑡|𝛩𝐻𝑀𝑖
) + 𝑟𝑖(𝑃𝑡,…,𝑡−𝐷 , 𝑇𝑡,…,𝑡−𝐷 , 𝑄𝑡−1,…,𝑡−𝐷|𝛩𝐷𝐷𝑀𝑖

) 

(1) 

 

where 𝑌𝑖, 𝑦𝑖, and 𝑟𝑖 are the CDDA simulations, HM streamflow simulations, and DDM residual 

simulations for ensemble member 𝑖, respectively, 𝑃𝑡,…,𝑡−𝐷 , 𝑇𝑡,…,𝑡−𝐷 and 𝑄𝑡−1,…,𝑡−𝐷 are observed 

precipitation and air temperature at time lags 𝑡, … , 𝑡 − 𝐷  and streamflow at time lags 𝑡 −

1, … , 𝑡 − 𝐷 (where 𝐷 is the maximum time lag),  respectively, 𝛩𝐶𝐷𝐷𝐴𝑖, 𝛩𝐻𝑀𝑖
, 𝛩𝐷𝐷𝑀𝑖

, are the 
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parameter sets associated with the 𝑖-th ensemble member of the CDDA, HM, and DDM, 

respectively, with 𝛩𝐶𝐷𝐷𝐴𝑖 = {𝛩𝐻𝑀𝑖
, 𝛩𝐷𝐷𝑀𝑖

}. 

 

While for a given HM (e.g., HBV-light, GR4J) the input variables remain fixed, the DDM can 

accept various input variables, not just limited to those in Equation 1, which may be useful for 

improving the CDDA simulations. The CDDA adopted in the research is of the general form: 

 

𝑌𝑖(𝑋𝐻𝑀, 𝑋𝐷𝐷𝑀|𝛩𝐶𝐷𝐷𝐴𝑖) = 𝑦𝑖(𝑋𝐻𝑀|𝛩𝐻𝑀𝑖
) + 𝑟𝑖(𝑋𝐷𝐷𝑀|𝛩𝐷𝐷𝑀𝑖

) (2) 

 

where 𝑋𝐻𝑀 and 𝑋𝐷𝐷𝑀 represent the HM and DDM inputs, respectively. Since this work 

considers HMs with different input variable requirements, 𝑋𝐻𝑀 includes 𝑃𝑡 as well as 𝑇𝑚𝑒𝑎𝑛𝑡 

and/or 𝑃𝐸𝑇𝑡 (depending on the HM); where 𝑇𝑚𝑒𝑎𝑛 is the mean air temperature and 𝑃𝐸𝑇 is the 

potential evapotranspiration (Lindström & Bergström, 1992). However, for all HM-DDM 

combinations, 𝑋𝐷𝐷𝑀 includes 𝑃𝑡,…,𝑡−𝐷, 𝑇min𝑡,…,𝑡−𝐷
, 𝑇max𝑡,…,𝑡−𝐷

, 𝑇mean𝑡,…,𝑡−𝐷
, 𝑃𝐸𝑇𝑡,…,𝑡−𝐷, and 

𝑄𝑡−1,…,𝑡−𝐷; where 𝑇min and 𝑇max are the minimum and maximum air temperatures, respectively. 

Since the new SCDDA applies the stochastic framework to the CDDA (see Section 3.3), the new 

SCDDA considers the exact same input variables as the CDDA. 

 

The most significant limitation of the CDDA is that it only accounts for the HM parameter 

uncertainty (uncertainty associated with the true value of the estimated parameter(s)). Thus, the 

CDDA can only estimate confidence intervals (rather than prediction intervals) when quantifying 
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uncertainty in the simulations (since prediction intervals account for the uncertainty associated 

with the prediction of the true value of a given hydrological variable) (Montanari & 

Koutsoyiannis, 2012). In other words, as a single DDM is used to correct the residuals of each 

HM ensemble member (one DDM for HM), the DDMs’ output within the CDDA is related to the 

expected value of the HM residuals, not their distribution. 

 

3.2 Stochastic Conceptual-data-driven Approach (SCDDA) 

The SCDDA was introduced in Q22 to account for additional sources of uncertainty (i.e., input 

data, IVS, model output) not considered in the CDDA. The SCDDA is an extension of the earlier 

frameworks proposed by Montanari and Koutsoyiannis (2012) (which focused on HMs) and 

Quilty et al. (2019) (which focused on DDMs), where an HM is coupled with a DDM in a 

stochastic framework. The SCDDA makes use of the original equation proposed in Montanari 

and Koutsoyiannis (2012) for converting a deterministic HM into a stochastic one: 

 

𝑓𝑄(𝑄) =  ∫ ∫𝑓𝑒(𝑄 − 𝑆(𝛩, 𝑋)|𝛩, 𝑋)𝑓𝛩(𝛩)𝑓𝑋(𝑋) 𝑑𝛩 𝑑𝑋
𝑿𝜣

 

 

(3) 

where 𝑓𝑄 represents the probability density function (PDF) of the target variable (e.g., 

streamflow) to be simulated (or forecasted) and 𝑓𝑋, 𝑓𝛩, and 𝑓𝑒 represent the PDF of the input 

data, the PDF of the parameter(s), and the PDF of the model error conditioned on the 

parameter(s) and input data, respectively, with 𝑄, 𝑋, and 𝛩 as target variables (i.e., streamflow), 

input data, and parameter(s), respectively, and 𝑆 as the function for the deterministic model for 
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streamflow. In Q22, the SCDDA is obtained by modifying Equation (3) to include (ensemble) 

HM simulations within 𝑋 (along with other hydro-meteorological variables) and using a DDM 

for 𝑆 (rather than an HM). Along with the original assumptions in Montanari and Koutsoyiannis 

(2012), it was further assumed in Q22 that the DDM parameters could be estimated 

independently of the HM parameters since the ensemble HM simulations were used as input to 

the DDMs (and represented input data uncertainty). The interested reader is referred to Quilty et 

al. (2022) for additional details on the original formulation of the SCDDA. The difference 

between the original SCDDA used in Q22 and the one proposed here is discussed in the next 

sub-section. 

 

3.3 Comparing the New and Original SCDDAs 

The SCDDA proposed in this work uses the ensemble HM simulations differently than in Q22. 

Notably, the SCDDA proposed in this research sums the HM simulations and the DDM residual 

simulations of HM (i.e., the error approach), while in Q22, the HM simulations were used as 

input to the DDMs (i.e., the informed approach). Figure 1 shows the difference between the 

original SCDDA presented in Q22 (A) and the new SCDDA proposed in this research (B). 
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Figure 2. The (original) SCDDA from Q22 (A) and its new version proposed in this 

research (B), using the notation from Q22 
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In Figure 2 (A), 𝑃 and 𝑇 are inputs to the HMs with parameter vector (𝛩HM), producing 

streamflow simulation (𝑦). The DDM uses the ensemble mean of the HM simulations, 𝑃 and 𝑇, 

and their time-lagged versions up to time 𝑡 − 𝐷  (where 𝐷 is the maximum time lag) along with 

DDM parameters (𝛩𝐷𝐷𝑀) to produce the deterministic streamflow simulation. Optionally, the 

DDMs can also use time-lagged versions (𝑡 − 1 , …, 𝑡 − 𝐷) of observed streamflow (𝑄) as 

additional inputs. For the stochastic framework, given a new set of inputs, the distribution of the 

DDM model inputs (𝑓𝑋, where the uncertainty is due solely to the ensemble HM simulations as 

the other inputs remain fixed at their observed values by randomly sampling HM parameter sets 

and using the HM simulations as inputs to the DDM), model parameters (𝑓𝛩𝐷𝐷𝑀), and errors 

(𝑓𝑒|𝛩𝐷𝐷𝑀,𝑋) are stochastically sampled to estimate 𝑓𝑄(𝑄). 

 

In Figure 2 (B), the HM residuals (𝑄 − 𝑦) are used as the target variable for the DDM, and its 

associated simulation (𝑟, the estimated HM residual) is summed with the HM simulation to 

produce a simulation from the CDDA for a given ensemble member (𝑌). For the new SCDDA 

proposed here, the ensemble of HMs and DDMs is simulated via stochastic resampling using the 

distribution of model parameters (𝑓𝛩𝐻𝑀, 𝑓𝛩𝐷𝐷𝑀|𝛩𝐻𝑀) and errors (𝑓𝑒|𝛩𝐻𝑀,𝛩𝐷𝐷𝑀) to estimate the 

streamflow distribution (𝑓𝑄(𝑄)). In this setup, the DDM parameters are conditioned by the HM 

parameters, while the error distribution (𝑓𝑒|𝛩𝐻𝑀,𝛩𝐷𝐷𝑀) is related to the CDDA simulation (𝑌). It is 

also possible to formulate the SCDDA such that the HM and DDM parameters are jointly 

estimated (see Chapter 6).  
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By contrasting panels A and B in Figure 2, it can be seen that the new SCDDA directly 

incorporates the CDDA (B) while the SCDDA from Q22 (A) only adopts the ensemble HM 

simulations as input data and does not generate simulations by aggregating the outputs of the 

HMs and DDMs. An important benefit of having the CDDA ‘built-in’ to the SCDDA is that 

users can preserve both the HMs and DDMs generated by the CDDA and use the stochastic 

framework to estimate the uncertainty of the CDDA. As the new SCDDA uses stochastic 

resampling as the second stage in the post-processing framework, it is possible to revert to the 

CDDA if the SCDDA (as determined by the CPP) is not expected to improve model 

performance.  

 

A significant difference between the SCDDA in Q22 and the new version proposed here is how 

HM parameter uncertainty is accounted for in the stochastic framework. The SCDDA in Q22 

accounts for HM parameter uncertainty by using the ensemble HM simulations to represent input 

uncertainty in the DDM. Specifically, for a new set of model inputs, a single parameter vector 

(𝛩HM) from the ensemble of HM parameter vectors {𝛩𝐻𝑀1
, … , 𝛩𝐻𝑀𝑀

} is randomly sampled, the 

HM associated with this parameter vector is used to generate a simulation and concatenated to 

the other hydro-meteorological variables and used as input to the DDM. In the new SCDDA 

proposed here, DDM parameter uncertainty is conditioned on the HM parameters. In detail, for a 

randomly selected HM parameter vector, a DDM parameter vector, conditioned on the randomly 

selected HM parameter vector, is chosen at random from {𝛩𝐷𝐷𝑀1
, … , 𝛩𝐷𝐷𝑀𝑁

} (where 𝑁 is the 

total number of DDM parameters for each HM ensemble member), since multiple DDMs are 

trained to simulate the residuals associated with each HM parameter vector. Thus, the function 𝑆 

in Equation 3 is a DDM in the original SCDDA in Q22, and the CDDA in the new SCDDA 

proposed here. A pseudo-code for the new SCDDA is provided in Section 4.4. 
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In the case studies explored herein, the input data uncertainty is not considered in the SCDDA 

since information on the input variable uncertainty was not available. IVS uncertainty was 

considered in two of the three DDMs, RF and XGB, since these methods inherently perform IVS 

when model parameters are calibrated. Thus, the model parameter uncertainty also includes IVS 

uncertainty in RF and XGB. However, DDMs that do not (inherently) perform IVS as part of the 

parameter calibration stage require IVS uncertainty to be estimated through explicit methods 

(e.g., via the bootstrap) if this source of uncertainty is to be considered (see, for example, Quilty 

& Adamowski (2020)). However, the LSTM implemented in this research did not account for 

IVS uncertainty. It was assumed that IVS would not significantly impact the model performance 

since the LSTM model structure inherently accounts for the relationship between the target 

variable and previous time lags of the explanatory variables, which was previously shown to be 

important to consider when simulating streamflow in the study catchments (Sikorska-Senoner & 

Quilty, 2021).  

 

3.4 Hydrological Models 

Previous work on the CDDA and SCDDA focused on a single HM structure, HBV-light (Seibert 

& Vis, 2012). To better assess the impact of the model structure on the performance of the 

CDDA and SCDDA, three different HM structures were considered in this research. The 

conceptual TUWmodel (Parajka et al., 2007; Viglione & Parajka, 2020) was adopted as the 

model is formulated based on the HBV model structure. Similarities and differences between the 

TUWmodel and HBV-light are discussed in Section 3.4.2. Furthermore, to assess the 

performance of CDDA and SCDDA when using a model with lower structural complexity and to 
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benchmark the performance of such a model against higher complexity HMs (HBV-light and 

TUWmodel), the modèle du Génie Rural à 4 paramètres Journalier (GR4J, Perrin et al., 2003) 

was also adopted. Both TUWmodel and GR4J were calibrated using Bayesian Optimization with 

Gaussian Processes (BO, Snoek et al., 2012), a popular algorithm for tuning DDM hyper-

parameters (Shahriari et al., 2016; Snoek et al., 2012b) that was recently used for calibrating 

process-based HMs (Ma et al., 2021; Ma et al., 2022). As the BO algorithm is known for finding 

suitable parameter sets at low computational costs, it is expected that the TUWmodel will not 

provide the same level of performance as achieved by HBV-light in SSQ21, which used a higher 

number of calibration iterations. However, utilizing BO to find suitable (but not necessarily 

optimal) model parameters may provide the opportunity for the CDDA and SCDDA to correct 

under-calibrated HMs leading to reliable simulations. The following three sub-sections briefly 

summarize the HMs used in this work. 

 

3.4.1 HBV-light 

An HBV variant, HBV-light (Seibert & Vis, 2012), was adopted as a (conceptual) lumped 

catchment rainfall-runoff model that simulates the catchment response to hydro-meteorologic 

input data through four routines (precipitation and snowmelt, soil moisture, groundwater, and 

routing). The model consists of 15 tunable parameters with 𝑇mean and long-term averaged 𝑃𝐸𝑇 

as inputs to HBV-light. The HBV-light simulations used in this research are from SSQ21, where 

the model parameters were calibrated using the Genetic Algorithm and Powell method (GAP, 

Seibert, 2000) and the Kling-Gupta Efficiency (KGE, Gupta et al., 2009) as the objective 

function. For more information on HBV-light and the calibration procedure, see Sikorska-

Senoner et al. (2020). 
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3.4.2 TUWmodel 

Another HBV-based model adopted here, TUWmodel, a lumped catchment rainfall-runoff model 

consisting of three major routines (precipitation and snowmelt, soil moisture, and routing) and 15 

tunable parameters. While most of the processes are similar, the main differences between 

TUWmodel and HBV-light are summarized below:  

1. For the snow routine, TUWmodel uses a threshold temperature interval to distinguish 

rain, snow, or a mixture of both, while HBV-light uses a single temperature threshold 

where meltwater and rainfall are contained in the snow until it exceeds a certain threshold 

with a refreezing component 

2. PET is required as a user-defined input to TUWmodel and is calculated by HBV-light. 

3. The triangular transfer function for routing.  

Along with 𝑃𝐸𝑇, 𝑃, and 𝑇mean are also used as inputs to TUWmodel. The parameters in 

TUWmodel were calibrated using BO, with additional details described in Section 4.2. The 

mathematical background of the TUWmodel can be found in Parajka et al. (2007). 

 

3.4.3 GR4J 

GR4J is a lumped rainfall-runoff model with four tunable parameters, where 𝑃 and 𝑃𝐸𝑇  are used 

as input to simulate streamflow (Perrin et al., 2003). Due to the model’s parsimony, robustness, 

computation speed, and simplicity, GR4J has become popular in the hydrology domain and has 

been shown to provide competitive performance when benchmarked against other HMs 

(Darbandsari & Coulibaly, 2020; Gaborit et al., 2017; Kunnath-Poovakka & Eldho, 2019; Oudin 

et al., 2008; Perrin et al., 2003; Wijayarathne & Coulibaly, 2020). The four parameters in GR4J 

that require calibration include the maximum capacity of the production store (mm), the 



 

 41 

catchment water exchange coefficient (mm/d), the maximum capacity of the routing store (mm), 

and the time base of the unit hydrograph (d). GR4J is also coupled with the Cema-Neige snow 

routine (GR4JCN, Valery, 2010) in Section 5.5 to explore the impact the snow routine has on 

model performance; in this case, GR4JCN has two additional parameters, ponderation coefficient 

(dimensionless) and degree-day factor (mm/°C/d) that require calibration. Since GR4JCN is only 

adopted in a single experiment and follows the same model development procedure as GR4J, 

GR4J is primarily referred to throughout the text. The GR4J parameters were calibrated using 

BO according to the details provided in Section 4.2. The mathematical formulation of GR4J can 

be found in Perrin et al. (2003). 

 

3.5 Data-driven Models 

Based on the recommendations in SSQ21, XGB and RF were evaluated in the CDDA and 

SCDDA. Furthermore, due to its increasing popularity in the hydrological modelling literature, 

LSTM was also adopted within the CDDA and SCDDA. Brief descriptions of the three DDMs 

are outlined in this section. 

 

3.5.1 eXtreme Gradient Boosting (XGB) 

A recent tree-based ensemble learning method, eXtreme Gradient Boosting (Chen and Guestrin, 

2016), accurately simulated HM residuals (related to streamflow) in SSQ21. In contrast to RF, 

where predictions are made by bagging an ensemble of trees, the trees in the XGB are combined 

sequentially by scaling each tree according to a learning rate (also known as boosting), similar to 

the Gradient Boosting method (Hastie et al., 2009). In short, XGB is an efficient ensemble 

learning method that results in a parsimonious structure through regularization and inherently 
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measures input variable importance while providing competitive performance compared to 

existing tree-based methods (Chen & Guestrin, 2016). Recent applications of XGB in the 

hydrology and water resources domains include flash flood risk assessment (Ma et al., 2021), 

prediction of dew point temperature (Dong et al., 2022), detecting leakage in urban water 

distribution networks (Wu et al., 2021), water quality prediction (Wang et al., 2022), and 

modelling lake bathymetry (Liu & Song, 2022).  

 

3.5.2 Random Forests (RF) 

Based on the family of decision tree models, RF was first introduced by Breiman (2001), and has 

gained widespread popularity due to its high performance, flexibility, amenability to perform 

quantile regression, and ability to measure each input variables’ importance, among other useful 

qualities. RFs generate a bootstrapped dataset by randomly selecting samples from the training 

data with replacement, build multiple decision trees using a random subset of input variables for 

each root and node in each tree, and generate a final set of predictions by taking the mean of the 

outputs from all decision trees. By using the bootstrapped dataset and aggregating predictions 

across multiple trees, also known as bagging (Breiman, 1996), the diversity of decision trees 

created by RF assists in the bias-variance trade-off (Luxburg & Schölkopf, 2011). 

 

In addition to streamflow simulation and forecasting (Papacharalampous & Tyralis, 2018; 

Schoppa et al., 2020), RF has been used for numerous hydro-meteorological applications, 

including the classification of severity of mid-winter ice breakups (de Coste et al., 2022), 

estimating regional groundwater fluoride concentrations (Rosecrans et al., 2022), downscaling 

spatial resolution of soil moisture satellite products (Triantakonstantis et al., 2022), prediction of 



 

 43 

the seasonal freeze-thaw cycle (Zhong et al., 2022), spatial interpolation of climate surfaces 

(precipitation and air temperature) (Tan et al., 2021), regional flood frequency analysis (Desai & 

Ouarda, 2021). For a detailed exploration of RF within water resources, see Tyralis et al. 

(2019b).  

 

As noted above, RF intrinsically measures input variable importance. This useful feature of RF 

was formulated into a new IVS method, Guided Regularized Random Forests, by Deng and 

Runger (2013), and was shown to select a lower number of input variables that provide similar 

(or better) performance than the original input variable set when used in RF. In Q22, Guided 

Regularized Random Forests were used for IVS in the RF-based SCDDA; hence all RFs in this 

study use the Guided Regularized Random Forests.  

 

For the input variable importance score, the residual sum of squares is calculated for each split to 

measure the total decrease in node impurities from splitting on the input variable, which is then 

averaged across all trees. The input variable importance score is then normalized. Afterwards, an 

importance weight and a regularization coefficient are used to calculate a penalty weight vector 

for all input variables. The penalty weight vector is used to guide the IVS procedure within RF. 

For more information on Guided Regularized Random Forests, see Deng and Runger (2013) and 

Quilty et al. (2022). 
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3.5.3 Long-Short Term Memory Network (LSTM) 

Along with various deep learning neural networks applied to model time series, the Recurrent 

Neural Network (RNN) has been used for embedding sequential memory (time-based 

correlation) in the network architecture. The main limitation of RNN is that it is incapable of 

learning long-term dependencies due to vanishing or exploding gradients when training models 

with backpropagation (Hochreiter & Schmidhuber, 1997), which is undesirable for simulating 

streamflow that exhibits long-term dependence. Hence, a modified configuration of the RNN, the 

Long-Short Term Memory network (LSTM), overcomes this weakness of the RNN, with the 

capability of storing long-term information through cell states (Hochreiter & Schmidhuber, 

1997). Compared to the RNN, the LSTM includes a cell state that stores long-term information 

and multiple gates (i.e., the forget gate, input gate, output gate), controlling the flow of 

information within the network. The forget gate controls the flow of information from the cell 

state to the forget gate. The input gate controls what new information can be updated in the cell 

state, and the output gate controls the information that passes from the cell state to the next 

hidden state. The output of the LSTM is connected through a single neuron dense layer that 

simulates the target variable. For a detailed description of the LSTM in the context of a large-

scale rainfall-runoff modelling case study, see Kratzert et al. (2018). 

 

The LSTM has become increasing popular relative to other DDMs in hydrology in the last three 

years due to its ability to process large datasets, inherently capture long-term dependencies, and 

accurately predict hydrological variables (Chen et al., 2020; Fan et al., 2020; Gauch et al., 2021; 

Kratzert et al., 2018; Rahimzad et al., 2021). In particular, several recent studies have focused on 

combining HMs with LSTMs. For example, Frame et al. (2021), Konapala et al. (2020), Lu et al. 

(2021), and Nearing et al. (2020) used HMs as inputs to the LSTM, showing instances where the 
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LSTM was able to improve the simulation quality of the standalone HMs. Furthermore, similar 

to the approach adopted here, LSTMs have also been used to simulate the residuals of the HM 

outputs. For instance, Cho and Kim (2022), Han (2021), and Sharma et al. (2021) used LSTM to 

correct the HM outputs, improving upon the streamflow simulations of the standalone HM. 

However, to date, no studies have used LSTM within a stochastic framework to correct the 

outputs of multiple HMs.  
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Chapter 4 

Experiment Setup 

This chapter describes the experimental setup, including information on the study area, HM 

setup, DDM setup, stochastic simulation, and performance assessment. 

 

4.1 Study Area 

The experiments use the same three Swiss mountainous catchments as presented in SSQ21. 

 

Figure 3. Locations of the three Swiss catchments in the Swiss coordinate system (Sikorska-

Senoner, 2021) 
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All catchments in Figure 3 have an insignificant contribution from glaciers or human impacts 

during the time period used in this case study (1981-2014). Considering the dominant 

hydrological processes, the Dünnern catchment (234 km2) is driven by rainfall, while both 

Kleine-Emme (478 km2) and Muota (317 km2) are driven by a mixture of rainfall and snowmelt 

processes. As the goal of this study is to simulate the streamflow at the outlet of the catchment, 

all models were built with basin-averaged variables using Thiessen’s polygon method. The 

following variables were considered as potential model inputs to the various HMs and DDMs, 

including precipitation (mm/d), minimum, maximum, and mean air temperature (˚C), and 

potential evapotranspiration (mm/d) at daily time steps. Measurements of all variables, including 

the streamflow at the catchment outlet (mm/d), were available during 1981-2014 and sourced 

from the Swiss Federal Office for the Environment (FOEN). Dataset partitioning followed the 

same calendar years used in Q22, where 1981-1984 was used as warm-up for the HMs, 1985-

2004 as calibration, 2005-2009 as validation, and 2010-2014 for testing. Apart from the warm-up 

period, both HMs and DDMs followed the same dataset partitioning (i.e., the DDMs did not 

require a warm-up period). Summary statistics of the variables used to develop the HMs and 

DDMs are included in Appendix A. 

 

4.2 HM Setup 

Of the three HMs adopted in this research, HBV-light used the same model setup as presented in 

SSQ21, where the GAP method was used to calibrate the model with KGE as the objective 

function. The parameter ranges considered during the calibration of the individual HBV-light 

models are listed in Sikorska-Senoner et al. (2020). For GR4J and TUWmodel, BO is used to 

calibrate the model parameters. In detail, using BO, each ensemble member was optimized using 
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100 iterations (including 15 initial evaluations) with the KGE as the objective function. Although 

the CDDA in SSQ21 used 1000 ensemble members, their analysis showed that, for the studied 

catchments, approximately 100 members led to a performance that did not significantly differ 

from the 1000 member ensembles (as measured by the continuous ranked probability score, 

CRPS). Since the number of ensemble members has a significant impact on the computation 

time, 200 members were generated for each of the three HMs and catchments to ensure stable 

CRPS was achieved for each HM across all catchments. For HBV-light, the first 200 members of 

the original 1000-member ensemble were selected from SSQ21. The data were partitioned 

according to 4.1. Both TUWmodel and GR4J used the 𝑃𝐸𝑇 estimates from HBV-light (see 

Section 3.4.1, 3.4.2, and 3.4.3 for the input requirements for HBV-light, TUWmodel, and GR4J, 

respectively). TUWmodel and GR4J were implemented using TUWmodel (Viglione & Parajka, 

2020) and airGR (Coron et al., 2022, 2017) R packages, respectively. The parameter ranges 

considered by BO for TUWmodel and GR4J models are listed in Appendix B. 

 

4.3 DDM Setup 

4.3.1 XGB and RF Setup 

Since the DDMs do not consider explicit state variables as in HMs, the warm-up period (1981-

1984) was not used as part of the DDM training. Instead, the same calibration (1985-2004) and 

validation periods (2005-2009) adopted for the HM were used to train and validate the DDMs. 

The DDMs used the residual of the HM simulations as the target variable and considered time-

lagged versions of 𝑃, 𝑇min, 𝑇max, 𝑇mean, 𝑃𝐸𝑇, and 𝑄 as input variables, with the maximum time 

lag (𝐷) for each input variable determined by the conditional mutual information (Brown et al., 

2012) (see, SSQ21). To minimize the number of input variables while ensuring a sufficient 
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number of previous time lags, the DDMs considered the current and previous nine time-lagged 

versions of 𝑃, 𝑇min, 𝑇max, 𝑇mean, 𝑃𝐸𝑇, as well as the previous nine prior days of 𝑄, using the 

same maximum time lag (𝐷 = 9) as in SSQ21. Although the maximum time lags can be 

considered as a hyper-parameter to be optimized by BO, considering a single maximum time lag 

significantly reduces the computation time and is thus followed in this work. The same XGB and 

RF hyper-parameters and their ranges as described in SSQ21 and Q22, respectively, are also 

used here for BO hyper-parameter tuning. Thus, for brevity, the BO setup for XGB and RF is not 

discussed in detail. Due to the memory size requirements and computational cost, for each HM 

ensemble member, the BO configuration for RF and XGB used 16 iterations (in addition to four 

initial evaluations) and 25 iterations (in addition to five initial evaluations), respectively. The 

XGB and RF models were implemented using the xgboost (Chen et al., 2021) and RRF (Deng, 

2013)  R packages, respectively. 

 

4.3.2 LSTM Setup 

In addition to the maximum of time lag considered for each input variable (𝑃, 

𝑇min, 𝑇max, 𝑇mean, and 𝑃𝐸𝑇), the LSTM requires a time window (sequence length) hyper-

parameter as it learns from a sequence of data. Preliminary experimentation showed that a 90-

day sequence length provided suitable performance while keeping the computation time fast. The 

remaining hyper-parameters that required careful tuning were optimized using BO using the 

same objective function as other HM and DDM models and are listed below along with the 

ranges considered during optimization, which are values similar to those adopted in  Alizadeh et 

al. (2021) (where integers are denoted by ‘L’): 

• Learning rate (1e-4, 1e-1) 
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• Number of hidden units (16L, 128L) 

• Dropout rate (0.2, 0.5) 

The LSTM used the Adam optimizer (Kingma & Ba, 2015) for training via backpropagation and 

the same number of iterations (25) and initial evaluations (five) for BO as XGB. However, 

unlike XGB and RF, the target and explanatory/input were normalized using each variable’s 

mean and standard deviation from the training set to enable faster convergence during model 

training. The CDDA requires training multiple DDMs for each HM ensemble member. Thus, to 

keep model training fast while enabling high-quality simulations, the batch size (used for training 

models in smaller batches of data for computational time) and number of training epochs (the 

number of times that the DDM will evaluate the training data) were set to 256 and 5, 

respectively. The batch size was set according to the upper limit used in Alizadeh et al. (2021), 

while the number of training epochs was determined based on trial-and-error. It is important to 

note that the goal of optimizing the individual LSTM models within the CDDA and SCDDA was 

not to achieve the best possible performance for every single model but to generate a set of 

models that provided high performance with diverse simulations; thus, the performance of 

individual LSTM models may be further improved using other settings. LSTM was implemented 

using Tensorflow (Abadi et al., 2015) and Keras (Chollet, 2015) with scikit-optimize for BO 

(Head et al., 2021) 

 

4.4 Stochastic Simulation 

Similar to Q22, the stochastic (simulation) framework used in the new SCDDA is formulated 

using two modes: an offline mode, where PDFs (e.g., input, parameter, model error) are 

estimated, and an online mode, where the distribution of streamflow is estimated using a new set 



 

 51 

of inputs and the previously estimated PDFs. As mentioned in Section 3.3, input data uncertainty 

was not considered in the SCDDA presented here since uncertainty in the input variables was not 

available; thus, all input variables remain fixed at their observed values during stochastic 

simulation. The parameter uncertainty is represented by the HM parameter sets obtained by the 

GAP (HBV-light) or BO (TUWmodel or GR4J) methods and the DDM parameter sets (obtained 

by BO) that are attached to each HM parameter set. During the online mode, parameter 

uncertainty is estimated by first sampling (uniformly at random) from the HM parameter sets and 

then by sampling (uniformly at random) from the DDM parameter set associated with the earlier 

sampled HM parameter set (i.e., each of the 200 HM parameter sets is considered at each step of 

the stochastic simulation and determine/condition the DDM parameter sets that are sampled from 

thereafter). Using the randomly sampled HM and DDM parameters, the streamflow is simulated 

on the validation set by combining HM and DDM (i.e., the CDDA) outputs. The combined 

(CDDA) simulation for the validation set is compared against the observed streamflow (also for 

the validation set) to generate a set of residuals, which are used to estimate the conditional PDF 

of the CDDA model error. The CDDA (represented by the randomly sampled HM and DDM 

parameter sets) is simulated for the new set of inputs, and the simulation is used to conditionally 

sample a model error (i.e., from the conditional PDF of the CDDA model error). Since the 

optimization of the CDDA considers multiple DDMs for each HM, the new SCDDA exploits the 

different DDM parameter sets associated with each HM parameter set to give a more realistic 

assessment of simulation uncertainty (i.e., the probability distribution of the true value of 

variable to be simulated), opposite of the CDDA that considers only a single DDM parameter 

set. 
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To implement the new SCDDA in an operational setting, the online mode of the stochastic 

simulation is carried out using the following steps:  

1. For new input data at time 𝑡, (𝑃𝑡, 𝑇mean𝑡, and if applicable, 𝑃𝐸𝑇𝑡) an HM parameter 

vector (𝛩𝐻𝑀𝑖
) is sampled uniformly at random from {𝛩𝐻𝑀1

, … , 𝛩𝐻𝑀𝑀
} and used alongside 

the new input data to generate an HM simulation. 

2. A DDM parameter vector, conditioned on the randomly selected HM parameter vector 

from Step 1, Θ𝐷𝐷𝑀𝑗
|Θ𝐻𝑀𝑖

, is sampled uniformly at random from the parameter set 

{Θ𝐷𝐷𝑀1
,   … , Θ𝐷𝐷𝑀𝑁

|Θ𝐻𝑀𝑖
} and is used alongside 𝑃𝑡, 𝑇𝑡 (and if applicable, 𝑃𝐸𝑇𝑡), 

previously observed flow (𝑄𝑡−1) and their lagged values (e.g., 𝑃𝑡−1, … , 𝑃𝑡−𝐷,  

𝑇max𝑡−1 , … , 𝑇max𝑡−𝐷, 𝑇mean𝑡−1 , … , 𝑇mean𝑡−𝐷, 𝑇min𝑡−1 , … , 𝑇min𝑡−𝐷 ,  𝑄𝑡−2, … , 𝑄𝑡−𝐷) to 

generate a DDM simulation (i.e., a simulation of the HM residual from Step 1).  

3. HM and DDM simulations are summed together to retrieve a streamflow simulation from 

the CDDA for the new inputs. 

4. An error is sampled from the conditional PDF of the CDDA model error (𝑓𝑒|𝛩𝐷𝐷𝑀𝑗
,𝛩𝐻𝑀𝑖

) 

and added to the CDDA simulation for the new inputs. 

5. Steps 1-4 are repeated 𝐾 times (200 here) to generate an estimate of 𝑓𝑄. 

Similar to Q22, the conditional PDF of the CDDA model error is estimated using the K Nearest 

Neighbours (KNN) resampling approach (Sikorska et al., 2014), where the CDDA simulation for 

new input data (i.e., from the test set) is used to conditionally sample model errors from the same 

CDDA’s validation set. The same method can be utilized to retrieve the stochastic HM by 

disregarding the DDM component and resampling the model error from the HM as described in 

the original blueprint paper (Montanari & Koutsoyiannis, 2012). While the KNN approach was 

adopted here, other approaches could be used to estimate the conditional PDF of the model error, 
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such as those described in Papacharalampous et al. (2020a, 2020b), or Tyralis et al. (2019a). 

Furthermore, if the modeller prefers, the DDMs can use other available explanatory variables 

and/or disregard using previously observed streamflow time lags as input. A pseudo-code for the 

new SCDDA is provided in Algorithm 1. 

 

 

Finally, since the stochastic models (stochastic HM and SCDDA) require training data to 

estimate the parameter PDF and the validation data to estimate the conditional PDF of the model 

error, the stochastic models are only evaluated on the test set (representative of out-of-sample 

performance).  

 

Algorithm 1: The new SCDDA

for m  = 1:L # length of the time series

for n  = 1:K # number of stochastic simulations

# inputs may vary depending on HM

 

# obtain                          by running CDDA for entire validation set

# e contains the CDDA's validation set errors

Θ𝐻𝑀𝑖
   {Θ𝐻𝑀1

,… , Θ𝐻𝑀𝑀
}

Θ𝐷𝐷𝑀𝑗
   Θ𝐷𝐷𝑀1

,… , Θ𝐷𝐷𝑀𝑁
Θ𝐻𝑀𝑖

}

𝑦 =   𝑃𝑡 ,𝑇mean𝑡 Θ𝐻𝑀𝑖
)

𝑟 = 𝐷𝐷 (𝑃𝑡,…,𝑡−𝐷 , 𝑇    𝑡,…,𝑡−𝐷,𝑇 𝑖 𝑡 ,…,𝑡−𝐷, 𝑇   𝑡,…,𝑡−𝐷,𝑄𝑡−1,…,𝑡−𝐷|Θ𝐷𝐷𝑀𝑗
) 

 𝐷𝐷 = 𝑦+ 𝑟

𝑆 𝐷𝐷 𝑚,𝑛 =  𝐷𝐷 +𝐾𝑁𝑁( , 𝐷𝐷  𝑎 𝑖 𝑎𝑡𝑖 𝑛, 𝐷𝐷 )

 = 𝑄 𝑎 𝑖 𝑎𝑡𝑖 𝑛−  𝐷𝐷  𝑎 𝑖 𝑎𝑡𝑖 𝑛

 𝐷𝐷  𝑎 𝑖 𝑎𝑡𝑖 𝑛
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4.5 Performance Assessment 

Deterministic and probabilistic metrics are used to assess the performance of the different 

approaches (HM, CDDA, and SCDDA) on the test set (to measure out-of-sample performance). 

The deterministic metrics are calculated using the mean of the ensemble or stochastic 

simulations, while the probabilistic metrics consider all ensemble members or stochastic 

simulations. The performance of the ensemble and stochastic HMs (HBV-light, TUWmodel, and 

GR4J) serves as a benchmark for the CDDA and SCDDA, respectively, while the SCDDA is 

also compared against the CDDA to better understand the added value of adopting the stochastic 

framework.  

 

An intercomparison of HMs is considered where HBV-light is used as the benchmark (as it was 

used in SSQ21 and Q22), TUWmodel is compared against HBV-light to explore the potential of 

BO to find suitable model parameters, given that both HMs have the same number of parameters 

and a similar model structure. GR4J is compared against HBV-light and TUWmodel to explore 

whether similar performance can be achieved with a simplified model structure. The intent is 

similar in Section 5.5, where GR4J is compared against GR4JCN, although the purpose of the 

comparison is to decipher whether CDDA and SCDDA can inherently account for snow 

processes absent from GR4J. The CDDA and SCDDA variants based on the different DDMs 

(XGB, RF, and LSTM) are compared against one another and the ensemble and stochastic HMs, 

to ascertain whether there are any HM-DDM combinations that consistently perform better than 

the others. 
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The performance assessment uses several deterministic metrics, including the mean absolute 

error (MAE), root mean squared error (RMSE), Nash Sutcliffe Efficiency (NSE), KGE, and 

percent bias (PBIAS) (Althoff and Rodrigues, 2021). In addition, the following probabilistic 

metrics are considered: average width (AW, Papacharalampous et al., 2020a), mean continuous 

ranked probability score (CRPS, Gneiting and Raftery, 2007), and the alpha index (𝛼𝑅, Renard et 

al., 2010). Since these performance metrics are commonly used in the hydrology and water 

resources literature, the earlier sources should be referred to for further details. 

 

The 𝛼𝑅, a measure of a probabilistic simulation’s reliability, is estimated from the coverage 

probability plot (CPP, see Montanari & Koutsoyiannis, 2012) by measuring the area between the 

CPP and the bisector. The CPP has been given different names in the literature, for example, the 

predictive quantile-quantile plot (Eslamian, 2014) and the predictive probability-probability plot 

(Koutsoyiannis & Montanari, 2022). The CPP provides a visual assessment of the probabilistic 

simulations, characterizing the simulations’ profile and helping diagnose issues with the 

simulations’ spread and bias. For example, narrow/sharp simulations indicate that the observed 

values lie more frequently than expected on the tail ends of the simulated distributions, while 

large/over-dispersed simulations indicate that the observed values lie more frequently than 

expected on the middle quantiles of the simulated distribution. Hence, simulations generated by 

the ensemble HMs, stochastic HMs, the CDDA, and the SCDDA are evaluated via the CPP to 

visually assess the simulations’ performance, complementing the other (deterministic and 

probabilistic) metrics. 
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Given that CPPs can characterize the profile of ensemble and probabilistic simulations, the CPPs 

for the three different HMs and the nine different CDDA and SCDDA variants are analyzed for 

the three study catchments (see Section 4.3). The validation set CPPs for the ensemble models 

(HM and CDDA) were compared against the test set CPPs of their stochastic counterparts 

(stochastic HM or SCDDA) to determine whether the CPPs could be used as a diagnostic tool to 

predict whether the stochastic framework can be used to improve upon the reliability of the 

ensemble models. 

 

One of the main limitations of the SCDDA is the computational time needed for training the 

DDMs and running the online mode of the stochastic simulation. Computation time can be 

reduced by selecting models with lower complexity and/or selecting fewer ensemble members, 

although this may reduce model performance. Thus, the probabilistic metrics are computed for 

various ensemble sizes to depict the trade-off between model performance and ensemble size. In 

addition to the probabilistic metrics mentioned above, the decomposed CRPS (Hersbach, 2000) 

is also considered to further assess the impact of ensemble size on reliability and sharpness, as 

the CRPS jointly considers reliability and sharpness in a single metric. The deterministic metrics 

were computed using the hydroGOF R package (Zambrano-Bigiarini, 2020), while the CRPS 

was estimated using the verification R package (NCAR – Research Applications Laboratory, 

2015); the remaining metrics were calculated using custom R scripts. 
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Chapter 5 

Results and Discussion 

This section investigates the new SCDDA, comparing it against the ensemble and stochastic 

HMs and the CDDA. Unless otherwise stated, the various metrics and plots in the section are 

for the test set (2010-2014) (see Appendix C for the training (1985-2004) and validation 

(2005-2009) set performance). It should be noted that all metrics are reported to two decimal 

places except PBIAS, which is rounded to the nearest decimal place (given as a percent), as 

returned by the hydroGOF package (Zambrano-Bigiarini, 2020). The MAE, RMSE, AW, and 

CRPS have units of mm/d while NSE, KGE, and 𝛼𝑅 are unitless. The PBIAS is reported as a 

percentage (%).  

 

5.1 Assessment of Ensemble HMs and CDDA Variants 

Table 1 summarizes the deterministic performance of the ensemble HMs (using the mean of 

the ensemble streamflow simulations) for Dünnern, Kleine-Emme, and Muota catchments. 
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Table 1. Deterministic performance of HBV-light, TUWmodel, and GR4J using the 

mean of the ensemble streamflow simulations for the test set. 

Criteria 
HBV-

light 
TUWmodel GR4J 

 Dünnern 

MAE 0.54 0.73 0.62 

RMSE 1.00 1.09 1.05 

NSE 0.75 0.70 0.72 

KGE 0.80 0.68 0.76 

PBIAS -1.4 22.1 2.4 
 Kleine-Emme 

MAE 0.80 1.12 0.97 

RMSE 1.57 1.69 1.65 

NSE 0.69 0.63 0.65 

KGE 0.84 0.76 0.81 

PBIAS -3.5 15.6 -3.4 
 Muota 

MAE 1.17 2.66 2.75 

RMSE 2.17 4.05 4.03 

NSE 0.82 0.39 0.39 

KGE 0.82 0.51 0.58 

PBIAS -8.5 -25.7 -4.6 

 

In Table 1, HBV-light shows superior deterministic performance over GR4J and TUWmodel 

with lower MAE and RMSE and higher NSE and KGE scores. Although GR4J and 

TUWmodel have similar NSE as HBV-light in Dünnern and Kleine-Emme catchments, they 

show unsatisfactory performance in the Muota catchment, with NSE values below 0.5 

(Moriasi et al., 2007) as well as MAE and RMSE that are 86-135 % higher. The discrepancy 

in the deterministic model performance between the two HBV variants is likely caused by the 

different calibration procedures since the models have a similar model structure. Regarding 

PBIAS, TUWmodel significantly underperforms compared to the other models, while GR4J 
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and HBV-light show similar performance. Despite the poor model performance in the Muota 

catchment, GR4J in Dünnern and Kleine-Emme catchments shows deterministic performance 

that is competitive with HBV-light for most metrics. 

 

The probabilistic metrics of the three ensemble HMs are given in Table 2. 

Table 2. Probabilistic performance of HBV-light, TUWmodel, and GR4J for the test 

set. 

Criteria 
HBV-

light 
TUWmodel GR4J 

 Dünnern 

AW 0.52 1.98 1.30 

𝛼𝑅 0.59 0.47 0.74 

CRPS 0.47 0.54 0.49 

  Kleine-Emme 

AW 1.19 3.05 2.17 

𝛼𝑅 0.78 0.58 0.82 

CRPS 0.68 0.83 0.77 

  Muota 

AW 1.03 4.60 3.67 

𝛼𝑅 0.58 0.71 0.66 

CRPS 1.05 2.20 2.35 

 

Considering the sharpness of the three HMs (AW in Table 2), it is evident that HBV-light 

consistently results in the lowest AW for each catchment. Despite sharp simulations being 

desirable, they may not be useful if deemed unreliable. Since the goal is to have sharp and 

reliable simulations, sharper simulations may only be justified if they maintain an acceptable 

level of reliability. Here, the 𝛼𝑅  for HBV-light indicates lower reliability than GR4J for all 

catchments. However, HBV-light should not be disregarded due to its lower reliability since 
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the CRPS (which simultaneously accounts for sharpness and reliability) shows that HBV-

light outperforms TUWmodel and GR4J across all catchments. Comparing the two ensemble 

HMs calibrated using BO, GR4J provides sharper simulations (lower AW) while having 

similar or higher reliability levels when compared to TUWmodel. Of note, all three HMs did 

not overfit the training data and, in some cases, had a better out-of-sample performance 

(training set results are not shown for brevity).  

 

The ensemble HM results from Table 1 and Table 2 make it possible to identify some 

potential strengths and weaknesses of using BO to calibrate HMs. It is important to recognize 

that the goal of BO is to find reasonable parameters with few model evaluations since they 

are designed for computationally expensive problems, for example, deep learning models 

(Shahriari et al., 2016). Indeed, with only a small fraction of model evaluations (calibration 

runs) compared to the HBV-light calibration procedure, BO identified parameters that lead to 

high and moderate performance for GR4J and TUWmodel, respectively, for Dünnern and 

Kleine-Emme basins. However, BO did not lead to a satisfactory (deterministic or 

probabilistic) performance in the Muota basin. 

 

Next, the deterministic performance of the CDDA variants is summarized in Table 3. 
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Table 3. Deterministic performance of the CDDA variants for all combinations of HMs 

(HBV-light, TUWmodel, GR4J) and DDMs (XGB, RF, and LSTM) using the mean of 

the ensemble streamflow simulations for the test set. 

Criteria HBV-light TUWmodel GR4J 

XGB 

CDDA 

RF 

CDDA 

LSTM 

CDDA 

XGB 

CDDA 

RF 

CDDA 

LSTM 

CDDA 

XGB 

CDDA 

RF 

CDDA 

LSTM 

CDDA 

 Dünnern 

MAE 0.39 0.40 0.30 0.35 0.36 0.33 0.34 0.38 0.31 

RMSE 0.86 0.86 0.84 0.76 0.79 0.84 0.72 0.76 0.80 

NSE 0.81 0.81 0.83 0.85 0.84 0.83 0.87 0.85 0.85 

KGE 0.81 0.81 0.86 0.84 0.84 0.86 0.84 0.84 0.83 

BIAS -7.5 -7.5 -4.0 -5.2 -5.3 -3.1 -3.2 -3.1 -2.3 

 Kleine-Emme 

MAE 0.61 0.62 0.64 0.59 0.62 0.66 0.59 0.64 0.62 

RMSE 1.26 1.30 1.33 1.18 1.22 1.34 1.16 1.21 1.27 

NSE 0.80 0.79 0.78 0.82 0.81 0.78 0.83 0.81 0.80 

KGE 0.87 0.87 0.88 0.89 0.89 0.89 0.88 0.88 0.86 

BIAS -3.4 -3.3 -3.1 -3.2 -3.3 -1.9 -3.7 -3.6 -2.6 

 Muota 

MAE 0.94 0.99 0.78 0.92 1.04 1.12 1.02 1.21 0.95 

RMSE 1.94 2.02 1.81 1.75 1.92 2.18 1.79 2.00 1.95 

NSE 0.86 0.85 0.88 0.89 0.86 0.83 0.88 0.85 0.86 

KGE 0.83 0.82 0.89 0.91 0.91 0.90 0.91 0.91 0.87 

BIAS -8.3 -8.7 -2.9 -2.8 -3.0 -0.7 -3.8 -3.8 -0.7 

 

 

From Table 3, the results show that the three CDDA variants (XGB, RF, and LSTM) provide 

similar deterministic performance for each HM except for PBIAS. The LSTM CDDA variant 
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consistently resulted in better PBIAS in all cases, with the most significant difference shown 

in the Muota basin. Comparing the CDDA performance across the HMs, all variants provide 

strong deterministic performance in each basin. For example, the CDDA variants achieve 

KGE above 0.8 for the Dünnern (0.81-0.86), Kleine-Emme (0.86-0.89), and Muota (0.82-

0.91) basins. It was anticipated that given the superior deterministic performance of HBV-

light, as shown in Table 1, the corresponding CDDA variants would also provide the highest 

performance. However, the results demonstrate that poorly performing HMs can be 

substantially improved through the CDDA, leading to competitive models. Furthermore, in 

several cases, the PBIAS of the TUWmodel CDDA variants is much lower than that of the 

HBV-light CDDA variants, despite the TUWmodel having the highest PBIAS amongst the 

HMs (Table 1). To assess the generalization performance of the DDMs used within the 

CDDA, the deterministic metrics for the training, validation and test sets were evaluated. 

This analysis showed that XGB and RF were overfitting the training data, with training set 

KGE of ~0.99 being common, yet both XGB and RF provided a test set KGE of ~0.85. 

However, LSTM exhibited the most stable performance with a KGE of ~0.85 across the three 

sets (training, validation, and test).  

 

The probabilistic performance of the CDDA variants is summarized in Table 4. 
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Table 4. Probabilistic performance of CDDA variants for all combinations of HMs 

(HBV-light, TUWmodel, and GR4J) and DDMs (XGB, RF, and LSTM) for the test set. 

Criteria HBV-light TUWmodel GR4J 

XGB 

CDDA 

RF 

CDDA 

LSTM 

CDDA 

XGB 

CDDA 

RF 

CDDA 

LSTM 

CDDA 

XGB 

CDDA 

RF 

CDDA 

LSTM 

CDDA 

 Dünnern 

AW 0.82 0.46 0.41 1.78 1.32 1.17 1.31 0.73 0.83 

𝛼𝑅 0.76 0.67 0.77 0.93 0.92 0.94 0.94 0.77 0.83 

CRPS 0.31 0.34 0.26 0.25 0.27 0.25 0.25 0.30 0.24 

 Kleine-Emme 

AW 1.72 1.03 0.95 3.01 2.10 1.92 2.28 1.17 1.67 

𝛼𝑅 0.88 0.78 0.71 0.92 0.89 0.82 0.90 0.74 0.85 

CRPS 0.47 0.51 0.54 0.43 0.47 0.50 0.44 0.51 0.48 

 Muota 

AW 1.88 1.15 0.76 4.72 3.08 2.77 4.04 1.93 2.04 

𝛼𝑅 0.70 0.63 0.67 0.93 0.83 0.84 0.90 0.68 0.82 

CRPS 0.77 0.86 0.69 0.67 0.80 0.87 0.73 0.98 0.74 

 

Considering the sharpness of the simulations (AW in Table 4), the RF CDDA and LSTM 

CDDA produce similar AW scores, while XGB CDDA provides simulations with a higher 

spread. Notably, the AW of XGB CDDA is nearly double that of RF CDDA and LSTM 

CDDA, considering GR4J in the Muota catchment. In terms of reliability, the XGB CDDA 

and LSTM CDDA result in the highest 𝛼𝑅 across the three catchments, while RF CDDA 

frequently results in lower reliability than the former approaches. Despite the similar levels 

of sharpness for RF CDDA and LSTM CDDA, the higher reliability of LSTM CDDA 

indicates that LSTM should be preferred (instead of RF) when simulating streamflow 

residuals from the HMs in the study catchments. When considering the CRPS, the best 

performing CDDA variant for each HM provides similar CRPS across each basin. Thus, it 

can be seen that RF CDDA frequently underperforms compared to its XGB and LSTM 
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counterparts, XGB CDDA tends to have higher reliability than the RF and LSTM CDDA 

variants, but this comes at the cost of a higher AW. 

 

Summarizing results from Table 1, Table 2, Table 3, and Table 4, the CDDA improves the 

ensemble HM performance. For example, for the three catchments, the CDDA improved the 

RMSE by 7-20%, 20-57%, and 23-55% for the HBV-light, TUWmodel, and GR4J, 

respectively. However, it should be noted that there were several instances where the CDDA 

variants had higher PBIAS than the ensemble HMs, the exception being the TUWmodel and 

most LSTM variants. For instance, the best performing HBV-light CDDA for the Dünnern 

catchment increased PBIAS from 1.4% to 4%. For the probabilistic performance, the XGB 

CDDA maintains or increases the ensemble HMs’ AW, while the RF and LSTM CDDA tend 

to decrease the AW, thus increasing the sharpness. In most cases, the reliability of the HMs 

was improved through the CDDA. However, a decrease in reliability was found when using 

RF CDDA with GR4J and HBV-light for the Kleine-Emme basin. Finally, the CDDA 

variants improved the ensemble HMs’ CRPS by 18-45%, 40-70%, and 34-69% for HBV-

light, TUWmodel, and GR4J, respectively. 

 

5.2 Assessment of the Stochastic HMs and SCDDA Variants 

The deterministic and probabilistic performance of the stochastic approaches (stochastic HM 

and SCDDA) are presented in and, respectively.  
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The results from Table 5 show that the SCDDA variants provide superior deterministic 

performance for most metrics compared to the stochastic HMs. Analyzing each SCDDA for a 

given HM reveals that the performance of the mean of the stochastic simulations has low 

variance across the models. Similar to the CDDA variants, the LSTM SCDDA has lower 

PBIAS compared to the other variants. The probabilistic scores (Table 6) reveal that the 

stochastic HMs have higher AW than the SCDDA variants but similar reliability. 

Interestingly, there seems to be no discernible pattern as to which DDM leads to the highest 

reliability and lowest CRPS amongst SCDDA variants. However, in all cases, the SCDDA 

variants result in superior CRPS scores compared to the stochastic HMs. Thus, given that the 

SCDDA variants have similar reliability but sharper simulations and lower CRPS than their 

stochastic HM counterparts, the SCDDA variants should be preferred to the stochastic HM 

for the study catchments. 

 

Comparing the stochastic methods with the ensemble HM from Table 1 and Table 2, the 

SCDDA variants substantially improve most performance metrics. For example, for the three 

catchments, the SCDDA variants improved the RMSE 5-20%, 22-53%, and 21-54% 

considering HBV-light, TUWmodel, and GR4J, respectively. Furthermore, the SCDDA 

improved the CRPS by 27-49%, 41-66%, and 39-68% considering the same HMs. It is 

important to note that, unlike the CDDA, the LSTM SCDDA improved the PBIAS of the 

ensemble HMs for all cases. Thus, it can be said that LSTM SCDDA dominated the HM 

across all performance metrics.  
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Comparing the CDDA variants (Table 3 and Table 4) with the corresponding SCDDA 

variants (Table 5 and Table 6) interesting outcomes are found. First, not all SCDDA variants 

significantly improve the MAE, RMSE, NSE or KGE of the corresponding CDDA. Although 

most SCDDA variants tend to have similar deterministic scores as their CDDA counterparts, 

some SCDDA variants have significantly poorer performance. For example, considering 

TUWmodel for the Muota catchment, the KGE of XGB CDDA and XGB SCDDA was 0.91 

and 0.78, respectively, representing a relative difference of 17 %. However, this could be due 

to deficiencies with the TUWmodel (rather than the stochastic framework) as there was a 

higher relative difference (28 %) in KGE for the ensemble HM (0.51, see Table 1) versus the 

stochastic HM (0.40, see Table 5) than the CDDA versus SCDDA (for the same HM and 

catchment). Considering the probabilistic performance, the AW of the SCDDA is higher 

compared to the CDDA, suggesting that the SCDDA is more conservative than the CDDA. 

In terms of reliability, the SCDDA had higher (lower) reliability than its CDDA counterparts 

that have 𝛼𝑅< 0.85 (𝛼𝑅> 0.85). This interesting finding (explored further in Section 5.4) 

suggests that there may be a level of reliability beyond which CDDA cannot be further 

improved by the stochastic framework. Considering both sharpness and reliability, the 

SCDDA variants that improved the reliability of their CDDA counterparts tend to have 

similar or improved CRPS.  

 

To visualize the streamflow simulations generated by the CDDA and SCDDA as well as the  

ensemble and stochastic HMs Figure 4-6 include time series plots of the different models’ 

simulations. The mean simulation is included for each model along with the 95% confidence 

(ensemble HM and CDDA) or prediction (stochastic HM and SCDDA) intervals. 
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Figure 4. A comparison of the mean streamflow simulation and its 95% (confidence or) 

prediction intervals in 2014 using CDDA and SCDDA variants in the Dünnern 

catchment. The ensemble HM and stochastic HM are compared against their CDDA 

and SCDDA counterparts, respectively. 
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Figure 5. A comparison of the mean streamflow simulation and its 95% (confidence or) 

prediction interval in 2014 CDDA and SCDDA variants in the Kleine-Emme catchment. 

The ensemble HM and stochastic HM are compared against their CDDA and SCDDA 

counterparts, respectively. 
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Figure 6. A comparison of the mean streamflow simulation and its 95% (confidence or) 

prediction interval in 2014 CDDA and SCDDA variants in Muota catchment. The 

ensemble HM and stochastic HM are compared against their CDDA and SCDDA 

counterparts, respectively. 
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The time series plots in Figure 4-6 illustrate several items worth mentioning. The AW scores 

reported above indicate that the CDDA variants result in sharp simulations, which is 

confirmed in Figure 4-6, although some CDDA variants have extremely sharp simulations. 

For example, the 95% confidence intervals of the HBV-light RF and LSTM CDDA variants 

are concentrated at the mean of the simulated streamflow for all catchments. Thus, the 95% 

confidence interval is unable to capture high streamflow events. However, the CDDA 

variants with sharp simulations appear to improve upon the low and mid-flow simulations of 

the corresponding ensemble HM. Considering the stochastic approaches, the SCDDA seems 

to compensate for the CDDA and provide conservative simulations by increasing their 

spread. For instance, many high flow events missed by the ensemble HM and CDDA are 

captured by the SCDDA, though not all observations are covered within the 95% prediction 

interval (as is expected). The SCDDA is also able to noticeably reduce the bias of the 

ensemble HM. In particular, the SCDDA seems to improve the bias of the ensemble HM 

simulations for GR4J and TUWmodel in the Muota catchment (Figure 6). Finally, Figure 4 

and Figure 6 reveal that, in general, the SCDDA variants have sharp simulations for low 

flows and wide simulations for high flows. This result is likely due to the KNN algorithm 

used for estimating the conditional PDF of the model error, which inherently accounts for the 

heteroscedasticity of the model error (Sikorska et al., 2015) 

 

Analyzing the distribution of the streamflow simulations (for specific events, such as floods) 

may extract additional characteristics, such as modality, to better understand the ensemble 

and probabilistic simulations. Here, raincloud plots (Allen et al., 2019) were used to enhance 

the visualization of the simulations’ distribution, which combines a boxplot, a jittered scatter 
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plot, and a probability density plot. The boxplot provides the summary statistics (e.g., the 

median), the jittered scatter plot shows the raw data (which can be used to identify outliers), 

and the density plot shows the distribution to check the spread and the modes of the 

simulated streamflow. In Figure 7-9, an example high flow event was extracted from the test 

set to visualize the distribution of the streamflow simulations generated by the different 

models. 
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Figure 7. Raincloud plot of a high flow event (2014-07-22) for the ensemble and 

stochastic HM (HBV-light, TUWmodel, and GR4J) as well as the CDDA, and SCDDA 

variants in the Dünnern catchment. Note: the area under the curve of the density plot is 

scaled to the sharpest model. 
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Figure 8. Raincloud plot of a high flow event (2014-07-22) for the ensemble and 

stochastic HM (HBV-light, TUWmodel, and GR4J) as well as the CDDA, and SCDDA 

variants in the Kleine-Emme catchment. Note: the area under the curve of the density 

plot is scaled to the sharpest model. 
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Figure 9. Raincloud plot of a high flow event (2014-07-22) for the ensemble and 

stochastic HM (HBV-light, TUWmodel, and GR4J) as well as the CDDA, and SCDDA 

variants in the Muota catchment. Note: the area under the curve of the density plot is 

scaled to the sharpest model. 
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Figure 7-9 show that HBV-light provides sharp simulations where no ensemble members 

capture the high streamflow event. Furthermore, HBV-light and its corresponding CDDA 

generally result in symmetric distributions. However, the modality of the streamflow 

simulations’ distribution can change substantially by incorporating multiple uncertainty 

sources (e.g., parameters, model output) via the stochastic framework. For example, the 

ensemble simulations generated by HBV-light in Kleine-Emme, and TUWmodel in Muota, 

are approximately symmetric about their median, while their SCDDA counterparts produce 

simulations with multiple modes that often contain the observed value. In general, the 

SCDDA tends to capture the high streamflow events more so than its ensemble HM and 

CDDA counterparts. Although there are many cases where the SCDDA captures the 

observed streamflow (and, in many cases, has a simulation distribution that shifts upwards 

surrounding higher flows), the distribution widens, assigning a non-negligible probability to 

lower streamflow ranges. For example, the LSTM SCDDA using TUWmodel in the Kleine-

Emme catchment has a wide simulation distribution, which better captures the observed 

value, although the mode of its distribution is much lower compared to its ensemble HM 

counterpart. In the following sub-section, the CPP is used to assess the reliability of the 

ensemble and stochastic models and is shown how the CPP can be used as a diagnostic tool 

to predict whether the stochastic framework (i.e., SCDDA) can further improve the CDDA. 

 

5.3 CPPs as a Diagnostic Tool 

The validation and test set CPPs for the ensemble and stochastic HMs as well as the CDDA, 

and SCDDA variants are given in Figure 10-12 for the three catchments. Utilizing the shape 

of the CPPs, it is possible to classify the streamflow simulation profile. First, when analyzing 



 

 78 

the ensemble HM results for all basins, GR4J and HBV-light provide sharp simulations, 

which confirms earlier results. For TUWmodel, the CPPs show that the ensemble HM has a 

large bias. For example, the Dünnern and Kleine-Emme basins for TUWmodel distinctly 

result in over-prediction. Furthermore, the validation set CPPs of the ensemble HMs and 

CDDA variants are very similar to the test set CPPs. Thus, the validation set CPPs can be 

used to predict the reliability of the test for the study catchments and the HMs and HM-DDM 

combinations explored herein.  

 

When analyzing the CPPs, a pattern can be seen with respect to the ensemble HMs and the 

CDDA variants. An important observation is that all HBV-light and most GR4J simulations 

for the ensemble HM have sharp simulations, and their CDDA counterparts results in the 

same profile, suggesting that HMs with sharp simulations tend to result in CDDA with sharp 

simulations. However, it is difficult to find a common pattern with over-and under-

predictions. Notably, TUWmodel has CPPs that show over-prediction; however, the 

corresponding CDDA variants produces CPPs with different shapes. Next, looking at the 

validation set CPPs for the CDDA (TUWmodel in Figure 10, GR4J in Figure 11, and 

TUWmodel in Figure 12), the CDDA variants that lie close to the bisector have 

corresponding SCDDA variants that are less reliable. This result is a visual representation of 

the previous section, where the CDDA variants with 𝛼𝑅 > 0.85 had SCDDA counterparts 

that were less reliable. One explanation is that, for a highly reliable CDDA, the error 

approaches white noise (is purely random); thus, the KNN-based stochastic resampling of 

model errors adds ‘noise’ to the streamflow simulation. Therefore, for a CDDA that already 

has high reliability, the stochastic resampling scheme results in SCDDA variants with lower 
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reliability. However, the important discovery is that the CDDA’s CPPs from the validation 

set can be used to predict the reliability of the SCDDA (on the test set). 

 

In general, the CDDA and SCDDA have similar or higher reliability than their ensemble or 

stochastic HM counterparts. Another important finding is that most of the SCDDA variants 

produce CPPs that are either close to the bisector line or indicate large simulations. Since 

reliable and conservative (large) simulations are critical in water resources applications (e.g., 

flood forecasting), the SCDDA can be a useful framework for hydrologists as well as water 

scientists and practitioners. Further considering the practicality of the above mentioned 

results, suppose simulation quality is only of interest. Then, using the CPPs as a diagnostic 

tool, modellers and/or users can decide to implement the stochastic resampling scheme 

depending on the CDDA’s validation set CPP. Thus, in a practical setting, if the CPP shows 

that the CDDA is sufficiently reliable, the user may benefit from lower computation time 

when generating simulations and/or forecasts in real-time (since the stochastic resampling 

scheme may be abandoned). 
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Figure 10. Validation (left) and test set (right) CPPs for the ensemble and stochastic 

HMs (HBV-light, TUWmodel, and GR4J) as well as the CDDA and SCDDA variants 

for the Dünnern catchment. 

 

Figure 11. Validation (left) and test set (right) CPPs for the ensemble and stochastic 

HMs (HBV-light, TUWmodel, and GR4J) as well as CDDA and SCDDA variants for 

the Kleine-Emme catchment. 
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Figure 12. Validation (left) and test set (right) CPPs for the ensemble and stochastic 

HM (HBV-light, TUWmodel, and GR4J) as well as CDDA and SCDDA variants for the 

Muota catchment. 

 

5.4 Effect of Ensemble Size on Model Performance 

Since the computational demand of DDMs and/or stochastic resampling may deter users 

from using the CDDA and/or SCDDA, it is critical to assess the possibility of reducing the 

computational requirements while providing similar performance levels. One way to achieve 

this is to evaluate the effect of ensemble size (the number of ensemble members) on model 

performance to find a lower number of ensemble members that characterize the simulation 

uncertainty to a similar degree as ensembles with more members. The probabilistic 

performance metrics from Table 2, Table 4, and Table 6 were chosen to evaluate the effect of 

ensemble size on model performance. Although the AW and 𝛼𝑅 can indicate changes in the 

sharpness and reliability, respectively, of an ensemble or probabilistic simulation for 
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increasing (or decreasing) ensemble size, it is much more challenging to understand the 

overall improvement in model performance using these metrics compared to a single metric 

that simultaneously considers sharpness and reliability (such as the CRPS). Of practical value 

to the following analysis, it is possible to decompose the CRPS into reliability and sharpness 

components (Hersbach, 2000), known as the reliability CRPS and potential CRPS, where the 

latter is defined as the CRPS that would be achieved if the simulation was perfectly reliable 

and sensitive to the average spread of the ensemble simulation. For more information on 

CRPS decomposition, see Hersbach (2000). In what follows, the AW, 𝛼𝑅, CRPS as well as 

the reliability and potential components of the CRPS, are evaluated for various ensemble 

member sizes. 

 

In Figure 13, the AW is plotted as a function of ensemble size for the ensemble and 

stochastic HM, CDDA, and SCDDA. 
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Figure 13. AW vs. ensemble size for the ensemble HM (HBV-light, TUWmodel, and 

GR4J), CDDA (XGB, RF, and LSTM) (left), and their stochastic counterparts (SHM 

and SCDDA) (right) for the test set. 

From Figure 13, it appears that most ensemble HMs and CDDA variants have similar AW 

after 100 ensemble members. One noticeable difference between the HMs is that models 
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calibrated by BO seem to be less stable, with fluctuating AW for increasing ensemble 

member sizes. This outcome is likely caused by BO searching diverse parameter spaces 

resulting in highly variable parameter sets (whereas the GAP method, due to the high number 

of calibration runs, converges to similar parameter sets with low variance). Similar levels of 

instability in the AW are also found for the CDDA variants adopting the HMs calibrated by 

Bo, regardless of the adopted DDM. For the stochastic HM and SCDDA, all models appear 

to have similar curves as the ensemble size increases. Notably, beyond 25 ensemble 

members, the AW seems to have stabilized although; however, an inflection point occurs 

around 40 ensemble members, causing a substantial change in AW that eventually stabilizes. 

Although the cause of this inflection point is unknown, the change in AW from 100-200 

members is minor. Next, the effect of ensemble size on 𝛼𝑅 is shown in Figure 14. 
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Figure 14. 𝜶𝑹 index vs. ensemble size for the ensemble HM (HBV-light, TUWmodel, 

and GR4J), CDDA (XGB, RF, and LSTM) (left), and their stochastic counterparts 

(SHM and SCDDA) (right) for the test set. 
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Regarding the reliability of the ensemble HM and CDDA (Figure 14), it appears that the 𝛼𝑅 

for most models is relatively stable beyond 50 members. However, for the stochastic models, 

all models seem to rapidly increase in reliability from one to approximately 15 members, 

then slowly stabilize around 100 members. For some models (e.g., TUWmodel XGB 

SCDDA), it appears that the reliability of the model asymptotically decreases from 15 to 100 

ensemble members. The instability of the 𝛼𝑅 for a low number of ensemble members may be 

due to a poor estimation of the simulation uncertainty, which could be explained by the 

stabilization of the around 100 ensemble members. Finally, the CRPS and its decomposed 

metrics (potential CRPS and reliability CRPS) for varying ensemble sizes are shown in 

Figure 15-17 for the three catchments. 
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Figure 15. CRPS, potential CRPS (Pot CRPS), and reliability CRPS (Rel CRPS) vs. 

ensemble size for the ensemble HM (HBV-light, TUWmodel, and GR4J), CDDA (XGB, 

RF, and LSTM) (left), and their stochastic counterparts (SHM and SCDDA) (right) for 

the Dünnern catchment for the test set. 
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Figure 16. CRPS, potential CRPS (Pot CRPS), and reliability CRPS (Rel CRPS) vs. 

ensemble size for the HM (GR4J, HBV-light, TUWmodel), CDDA (XGB, RF, and 

LSTM) (left), and their stochastic counterparts (SHM and SCDDA) (right) for the 

Kleine-Emme catchment for the test set. 
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Figure 17. CRPS, potential CRPS (Pot CRPS), reliability CRPS (Rel CRPS) vs. 

ensemble size for the ensemble HM (HBV-light, TUWmodel, and GR4J), CDDA (XGB, 

RF, and LSTM) (left), and their stochastic counterparts (SHMs and SCDDA) (right) for 

the Muota catchment for the test set. 
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It appears that most models stabilize at approximately 100 ensemble members according to 

the potential CRPS of the ensemble HM, CDDA, and the stochastic models in all catchments. 

However, the potential CRPS of some models may continue to improve beyond 200 

members, for example, the stochastic HM using GR4J in Dünnern and Kleine-Emme 

catchments, although the improvement may not be significant. Comparing the results of the 

potential CRPS with the AW from Figure 13, it appears that the increase in the AW with an 

increasing number of ensemble members does not meaningfully impact the potential CRPS 

beyond 100 members. Next, analyzing the reliability CRPS shows that, for most models, it 

stabilizes around 100 ensemble members, similar to the 𝛼𝑅. Furthermore, the shape of the 𝛼𝑅 

curves in Figure 14 closely match the reliability CRPS curves for the stochastic HM and 

SCDDA. Although the potential CRPS and reliability CRPS of some models in Figure 15-17 

do not appear to stabilize by 200 members, the overall CRPS suggests that most models 

provide a stable estimation of simulation uncertainty by 100 members, showing little 

improvement in performance beyond this point. Therefore, the analysis of ensemble size 

versus model performance indicates that approximately 100 members are required for a 

stable estimation of simulation uncertainty in the study catchments.  

 

It is important to recognize that the CRPS decomposition also estimates how much the 

sharpness and reliability of the simulations contribute to the overall CRPS. In detail, for most 

ensemble models (ensemble HM and CDDA), the reliability CRPS is a significant portion of 

the overall CRPS. In contrast, the potential CRPS contributes the most to the overall CRPS 

for the stochastic models (stochastic HM and SCDDA), with a minimal contribution coming 

from the reliability CRPS. Comparing the overall CRPS of CDDA and SCDDA variants, it 

was previously determined that the SCDDA could improve upon (or at least maintain) the 
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CRPS of its CDDA counterpart that is less reliable. Thus, it appears that the stochastic 

framework approach tends to convert the ensemble models (ensemble HM and CDDA) into 

more reliable models at the cost of simulation sharpness. This result enhances the previous 

conclusion that the SCDDA tends to generate simulations that are more conservative while 

improving the reliability of its (less reliable) CDDA counterpart. 

 

5.5 Effect on Model Performance Using a Snow Module in GR4J 

Among the three HMs, GR4J does not incorporate a snow routine, although snow processes 

play a significant role in the hydrology of two study catchments (Kleine-Emme and Muota). 

Not including snow processes in an HM can be viewed as an error of the perceptual model 

(see Section 2.1.2), where deciding on the important hydrological processes is the first step 

of modelling and iteratively refined until the model is deemed to be satisfactory (Beven, 

2012). However, since the CDDA and SCDDA are used to correct the residuals of the 

ensemble HM, they may also implicitly account for processes not included in the HM (e.g., 

overcoming the need to couple a snow module with GR4J).  

 

In what follows, GR4J is used to test whether a similar performance could be achieved by the 

CDDA and SCDDA when an important hydrological process is and is not explicitly 

accounted for in the model. Therefore, the CemaNeige (Valery, 2010) snow module is 

coupled with GR4J (GR4JCN) and compared against GR4J (without the snow module) using 

the CDDA and SCDDA variants. With the same calibration procedure as GR4J (see Section 

4.2), the CRPS for GR4JCN in Dünnern, Kleine-Emme, and Muota catchments is estimated 

as 0.47, 0.68, and 2.22, representing approximately a 4%, 12%, and 6% improvement over 
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GR4J, respectively, on the test set. The minimal improvement in KGE with the snow routine 

may be caused by BO unable to find suitable parameter sets with the current setup. Since 

Kleine-Emme showed the most substantial improvement in performance using GR4JCN, this 

catchment was chosen to evaluate any differences in performance (KGE, 𝛼𝑅, and CRPS) 

between the GR4J and GR4JCN CDDA and SCDDA variants. In Table 7, the test set 

performance for the ensemble and stochastic HMs using GR4JCN as well as GR4JCN 

CDDA and SCDDA variants is summarized for the Kleine-Emme catchment 

 

Table 7. Performance of ensemble and stochastic HMs using GR4JCN as well as the 

GR4JCN CDDA and SCDDA variants for the Kleine-Emme catchment. 

Models KGE 𝛼𝑅 CRPS 

Ensemble HM 0.81 0.88 0.68 

Stochastic HM 0.77 0.89 0.64 

XGB CDDA 0.88 0.90 0.46 

XGB SCDDA 0.88 0.85 0.46 

RF CDDA 0.88 0.77 0.52 

RF SCDDA 0.89 0.88 0.48 

LSTM CDDA 0.86 0.87 0.47 

LSTM SCDDA 0.83 0.84 0.48 

 

It is possible to identify that GR4J and GR4JCN CDDA and SCDDA variants provide similar 

results when comparing Table 7 with Table 5 and Table 6. Considering all three DDMs, the 

difference in CRPS for GR4J and GR4JCN CDDA and SCDDA variants is 0.02 or less. 

Similarly, the 𝛼𝑅 differs by 0.03 or less, while the deterministic KGE is the same. Therefore, 

it appears that the CDDA and SCDDA have the potential to correct for hydrological 

processes absent from the HM. This result is aligned with Lees et al. (2022) where it has 
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shown that the LSTM is able to reproduce hydrological processes from data (historical 

streamflow, meteorological variables, and catchment attributes). Thus, it appears that XGB 

and RF also share this ability. However, to generalize this finding, a much larger experiment 

with additional catchments, HM parameter optimization methods, and more flexible HMs 

where model structure complexity can be closely controlled (e.g., Raven (Craig et al., 2020)) 

should be considered. 
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Chapter 6 

Conclusions, Future Work, and Recommendations 

The conceptual data-driven approach (CDDA) can improve the simulations of ensemble 

hydrological models (HMs) by correcting their residuals/errors using data-driven models 

(DDMs). The research introduces a new stochastic CDDA (SCDDA) that can account for 

additional sources of uncertainty not considered in the CDDA (e.g., model output 

uncertainty). Here, the new SCDDA is tested using nine HM-DDM combinations (three HMs 

and three DDMs) and compared against the CDDA as well as ensemble and stochastic HMs 

for daily streamflow simulation in three Swiss catchments. The models are evaluated using 

several (deterministic and probabilistic) metrics and graphical aids (time series plots, 

raincloud plots, etc.). The coverage probability plot (CPP) is proposed as a diagnostic tool for 

predicting when the out-of-sample reliability of the ensemble models (ensemble HMs and 

CDDA) can be improved by the stochastic framework. Experiments showed that the new 

SCDDA could significantly improve the ensemble HM simulations across most performance 

metrics with improvements in the mean continuous ranked probability score (CRPS) of 27-

68%. While the SCDDA improved upon the CRPS of the CDDA by up to 15%, it did not 

consistently outperform the CDDA. The CPPs showed that ensemble HMs with narrow 

simulations tended to result in CDDAs with narrow simulations, and unreliable ensemble 

models (CDDA and ensemble HMs) were improved using the stochastic framework. 

Meanwhile, CDDA variants with high reliability (𝛼𝑅 > 0.85) had SCDDA counterparts with 

lower reliability. Regardless, all SCDDA variants had reliable and/or conservative 

simulations, making them a valuable tool for decision-making. Studying probabilistic 

performance as a function of ensemble size (number of ensemble members) revealed that an 

ensemble size of 100 members led to stable performance. In one of the snow-dominated 
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catchments (Kleine-Emme), the HM without a snow routine led to lower performance than 

when it was included. However, neglecting the snow module had no discernible impact on 

the deterministic performance and negligible impact on the probabilistic performance of the 

CDDA and SCDDA, indicating that both approaches have the potential to account for 

missing processes in HMs.  

 

The new SCDDA, in conjunction with the CPP, can benefit hydrologists and water resource 

practitioners in several respects. First, hydrological modellers that already have access to 

ensemble HMs can use the new SCDDA to improve the predictive capabilities of their 

model. The new SCDDA can be especially useful where reliable and/or conservative 

simulations are required. If users are hesitant to apply the stochastic framework (e.g., for 

hydrological simulation along large river networks), the CPP can be checked for the CDDA 

to see if implementing the new SCDDA is worth the computational investment. However, if 

it is decided by the modeller or user that DDMs are too computationally demanding, an 

ensemble HM can easily be converted to a stochastic HM using the stochastic framework and 

(potentially) achieve levels of reliability similar to the new SCDDA. Finally, although not 

explored in this work, the new SCDDA is not limited to streamflow simulation and can be 

paired with other HMs to help address diverse problems related to geochemistry, land use 

effects, channel hydraulics, etc. 

 

Given the flexibility of the SCDDA, it is possible to identify several potential improvements 

for the framework. As the DDMs are not restricted to the input variables used in this work, 

performance may be improved using other variables generated by the HM, such as actual 
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evaporation and soil moisture. Furthermore, other HM structures and optimization algorithms 

may enhance the SCDDA simulations. For example, future work may involve using a 

blended model structure (Mai et al., 2020) with simultaneous calibration of structure and 

parameters (Chlumsky et al., 2021) within SCDDA and testing its efficacy in diverse 

catchments (Newman et al., 2014). In future studies, BO could also be used (alongside other 

optimization algorithms) for jointly estimating HM and DDM parameters by optimizing HM 

parameters and DDM hyper-parameters simultaneously. If successful, this approach may 

significantly reduce the computation time required for the proposed SCDDA. A set of 

recommendations are included below for improving upon the new SCDDA and generalizing 

the results obtained in this work: 

1. Large-scale experiments: with the rising availability of big datasets in hydrology  

(Addor et al., 2017; Alvarez-Garreton et al., 2018; Arsenault et al., 2016; Chagas et 

al., 2020; Coxon et al., 2020; Fowler et al., 2021), it is possible to improve the 

performance of the new SCDDA by aggregating hydro-meteorological data from 

multiple catchments along with their catchment attributes. However, implementing 

the new SCDDA within large-scale experiments may significantly increase the 

computational requirements and restrict the DDM candidates to those that can be 

trained in batches (e.g., LSTM; see, for example, Klotz et al., 2022 ). However, once 

the HMs and DDMs have been calibrated/trained (offline mode), the new SCDDA is 

much faster when running in simulation/online mode. Using big datasets spanning 

specific regions or the globe, the new SCDDA could be designed as a regional or 

global model. In such cases, the HM and DDM parameters could be used to 

(generally) represent regional or global hydrological processes, while the model error 
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could be used to tailor the model simulations to specific locations (e.g., a catchment 

outlet of interest).  

2. Online estimation of model error: the KNN method for stochastic resampling of 

model errors inherently account for heteroscedasticity in model error. However, by 

applying the KNN method to rolling or growing time-windows (i.e., shifting or 

increasing (the size of) the validation set with each new measurement of the input 

variables), environmental changes could be better accounted for when estimating the 

conditional probability density function of the model error. In this way, the 

assumption of stationarity of the model error could be relaxed. 

3. Online estimation of DDM parameter uncertainty: instead of considering the DDM 

parameters to be static quantities, online machine learning methods, such as online 

recurrent extreme learning machines (Park & Kim, 2017), could be used to relax the 

assumption of stationarity of the model parameters. 

4. Forecasting with ensemble meteorological forcings: by using meteorological 

forecasts (e.g., precipitation, potential evapotranspiration) as input to new SCDDA, it 

can easily be converted into a forecasting framework. Since many operational 

meteorological forecasting products output ensembles (e.g., Global Ensemble 

Forecast System (Zhou et al., 2022)), the new SCDDA can naturally include this 

information as a form of input data uncertainty.  

5. Augmenting the input variable set: only a small number of potential input variables 

(see Section 3.1) were considered in the new SCDDA. However, given that DDMs 

can accept various input variables (e.g., numerical weather predictions from different 

products, time-based indices to reflect seasonality, state variables from HMs), it is 
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highly recommended that all potentially useful inputs be available to the modeller be 

considered when building models using the new SCDDA. If the number of input 

variables is exceedingly large, different feature extraction (e.g., variational 

autoenconders; Lopez‐Alvis et al., 2022) or input variable selection methods (e.g., 

conditional mutual information; Quilty et al., 2016) could be used to reduce the 

number of potential input variables before the new SCDDA is implemented.  

By implementing the above recommendations, the new SCDDA can be further improved and 

used as a hydrological modelling tool to help address water resources planning, management, 

and operational issues, at local, regional, and global scales.  
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Appendix B 

HM Parameter Ranges 

 

Table B1.9Parameter ranges for TUWmodel used in BO (retrieved from the 

TUWmodel R package, (Viglione & Parajka, 2020)). 

.Parameter Explanation Minimum Maximum Units 

SCF Snow correction factor 0.9 1.5 - 

DDF Degree-day factor 0 5 mm/°C/d 

Tr Threshold temperature for rain above 1 3 °C 

Ts Threshold temperature for snow below -3 1 °C 

Tm Threshold temperature for melt above -2 2 °C 

LPrat Parameter for potential evaporation 0 1 - 

FC Field capacity 0 600 mm 

BETA Parameter for runoff production 0 20 - 

k0 

Storage coefficient for very fast 

response 0 2 d 

k1 Storage coefficient for fast response 2 30 d 

k2 Storage coefficient for slow response 30 250 d 

lsuz Threshold storage state 1 100 mm 

cperc Constant percolation rate 0 8 mm/d 

bmax Maximum base at low flows 0 30 d 

croute Free scaling parameter 0 50 d2/mm 
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Table B2.10Parameter ranges for GR4JCN used in BO (retrieved from the airGR R 

package (Coron et al., 2022)). Note: GR4J used the same parameter ranges as GR4JCN 

but did not consider x5 and x6. 

Parameter Explanation Minimum Maximum Units 

x1 Production store maximal capacity 0.9 1.5 mm/°C/d 

x2 Catchment water exchange coefficient 0 5 mm/d 

x3 

One-day maximal capacity of routing 

reservoir 1 3 mm 

x4 Unit hydrograph time base -3 1 d 

x5 Ponderation coefficient 0 1 - 

x6 Degree-day factor 2 6 mm/°C/d 
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Appendix C 

Results for Calibration and Validation of Ensemble HMs and CDDA 

Variants 
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Table C1.11Summary table for ensemble HM and CDDA variants for the training set. 

Note: performance metrics for the stochastic models only applies to the test set (Section 

4.4). 

Criteria 
HBV-light TUWmodel GR4J 

HM 

CDDA 

XGB 

CDDA 

RF 

CDDA 

LSTM HM 

CDDA 

XGB 

CDDA 

RF 

CDDA 

LSTM HM 

CDDA 

XGB 

CDDA 

RF 

CDDA 

LSTM 

 Dünnern 

MAE 0.57 0.25 0.17 0.32 0.77 0.18 0.17 0.37 0.68 0.17 0.17 0.34 

RMSE 0.95 0.36 0.33 0.72 1.17 0.25 0.35 0.85 1.16 0.24 0.36 0.85 

NSE 0.81 0.97 0.98 0.89 0.71 0.99 0.97 0.85 0.71 0.99 0.97 0.85 

KGE 0.89 0.98 0.97 0.94 0.73 0.98 0.96 0.91 0.81 0.98 0.95 0.87 

PBIAS 5.5 0.0 0.2 -0.8 22.0 0.0 0.1 -1.2 1.8 0.0 0.1 -1.5 

AW 0.59 0.67 0.25 0.46 2.15 1.04 0.59 1.23 1.50 0.81 0.37 0.93 

αR 0.61 0.78 0.69 0.74 0.52 0.97 0.93 0.90 0.74 0.96 0.77 0.91 

CRPS 0.50 0.18 0.14 0.27 0.57 0.11 0.12 0.28 0.54 0.11 0.13 0.26 

 Kleine-Emme 

MAE 0.86 0.30 0.26 0.67 1.23 0.20 0.27 0.68 1.04 0.21 0.27 0.65 

RMSE 1.62 0.48 0.56 1.33 1.90 0.29 0.55 1.36 1.85 0.30 0.55 1.35 

NSE 0.73 0.98 0.97 0.82 0.63 0.99 0.97 0.81 0.66 0.99 0.97 0.82 

KGE 0.87 0.96 0.95 0.91 0.74 0.98 0.95 0.90 0.81 0.97 0.94 0.86 

PBIAS 1.0 0.0 0.1 -0.3 18.5 0.0 0.2 -0.3 -1.3 0.0 0.2 -1.4 

AW 1.21 1.13 0.51 0.95 3.09 1.32 0.9 1.9 2.24 1.08 0.57 1.67 

αR 0.75 0.91 0.8 0.73 0.56 0.92 0.93 0.87 0.83 0.98 0.78 0.86 

CRPS 0.73 0.21 0.21 0.56 0.93 0.13 0.2 0.52 0.83 0.13 0.21 0.51 

 Muota 

MAE 1.12 0.41 0.38 0.69 2.93 0.18 0.38 1.11 3.19 0.20 0.42 0.88 

RMSE 1.85 0.58 0.70 1.40 4.51 0.25 0.68 2.04 4.68 0.27 0.72 1.59 

NSE 0.86 0.99 0.98 0.92 0.18 1.00 0.98 0.83 0.12 1.00 0.98 0.90 

KGE 0.93 0.99 0.98 0.96 0.48 0.99 0.98 0.91 0.49 0.99 0.98 0.93 

PBIAS 0.3 0.0 0.1 0.6 -20.4 0.0 0.1 2.1 0.6 0.0 0.1 1.1 

AW 1.15 1.24 0.62 0.77 4.89 1.57 1.32 2.86 3.91 1.41 0.90 2.08 

αR 0.65 0.82 0.72 0.70 0.77 0.85 0.88 0.84 0.62 0.91 0.75 0.82 

CRPS 0.98 0.29 0.31 0.61 2.45 0.12 0.28 0.85 2.74 0.13 0.32 0.67 
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Table C2.12Summary table for ensemble HM and CDDA variants for the validation set. 

Note: performance metrics for the stochastic models only applies to the test set (Section 

4.4) 

Criteria 

HBV-light TUWmodel GR4J 

HM 

CDDA 

XGB 

CDDA 

RF 

CDDA 

LSTM HM 

CDDA 

XGB 

CDDA 

RF 

CDDA 

LSTM HM 

CDDA 

XGB 

CDDA 

RF 

CDDA 

LSTM 

 Dünnern 

MAE 0.55 0.44 0.45 0.34 0.88 0.41 0.44 0.38 0.78 0.42 0.48 0.40 

RMSE 1.14 1.02 1.02 0.98 1.36 0.95 1.00 1.01 1.48 0.98 1.08 1.15 

NSE 0.77 0.82 0.82 0.84 0.68 0.84 0.82 0.83 0.62 0.83 0.79 0.77 

KGE 0.80 0.79 0.79 0.83 0.68 0.84 0.84 0.88 0.74 0.84 0.83 0.82 

PBIAS -2.4 -8.9 -8.5 -4.0 23.2 -1.3 -1.0 -1.5 2.8 -1.8 -1.4 -1.4 

AW 0.56 0.92 0.52 0.45 2.17 1.92 1.45 1.27 1.58 1.45 0.88 1.02 

αR 0.61 0.75 0.66 0.77 0.45 0.90 0.89 0.96 0.70 0.91 0.76 0.85 

CRPS 0.48 0.35 0.39 0.29 0.66 0.29 0.32 0.29 0.63 0.31 0.38 0.31 

 Kleine-Emme 

MAE 0.85 0.63 0.64 0.66 1.24 0.63 0.66 0.70 1.05 0.62 0.66 0.67 

RMSE 1.58 1.24 1.27 1.31 1.86 1.23 1.27 1.40 1.87 1.21 1.26 1.36 

NSE 0.82 0.89 0.89 0.88 0.76 0.89 0.89 0.87 0.75 0.90 0.89 0.87 

KGE 0.88 0.89 0.88 0.91 0.78 0.91 0.91 0.92 0.86 0.92 0.91 0.90 

PBIAS -5.3 -5.0 -5.0 -3.3 14.7 -2.1 -2.4 -1.8 -4.7 -2.8 -2.9 -2.0 

AW 1.15 1.75 1.05 0.95 3.10 3.12 2.17 1.96 2.28 2.36 1.26 1.75 

αR 0.73 0.86 0.76 0.72 0.56 0.94 0.92 0.85 0.83 0.96 0.78 0.86 

CRPS 0.72 0.48 0.53 0.55 0.93 0.46 0.49 0.53 0.86 0.46 0.53 0.52 

 Muota 

MAE 1.04 0.88 0.90 0.66 2.72 0.83 0.92 1.03 3.03 0.84 1.03 0.80 

RMSE 1.78 1.61 1.65 1.39 3.99 1.52 1.65 1.96 4.20 1.47 1.68 1.56 

NSE 0.86 0.89 0.88 0.92 0.30 0.90 0.88 0.83 0.22 0.91 0.88 0.89 

KGE 0.92 0.92 0.92 0.95 0.51 0.95 0.94 0.92 0.53 0.95 0.94 0.92 

PBIAS -3.3 -4.1 -3.7 -0.7 

-

21.4 1.9 1.9 1.6 -0.2 0.5 0.7 1.0 

AW 1.04 1.82 1.13 0.76 4.99 4.90 3.33 2.86 3.72 3.92 1.94 2.00 

αR 0.64 0.73 0.68 0.68 0.75 0.92 0.89 0.85 0.63 0.97 0.74 0.84 

CRPS 0.92 0.71 0.78 0.57 2.22 0.59 0.68 0.78 2.61 0.61 0.82 0.61 
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