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Abstract 

Silicone rubber-based outdoor polymeric insulators are widely employed in electric power 

transmission and distribution networks to replace the conventional ceramic insulators, owing 

to their superior performance in contaminated and wet environments. Silicone rubber (SIR) 

insulators offer several advantages like high hydrophobicity, low cost, vandalism resistance 

and light weight. However, when exposed to electrical (dry band arcing and partial discharge) 

and environmental stresses (humidity, ultraviolet radiation, acid rain and pollution) they suffer 

from different forms of aging. The first form of aging is the temporal loss of hydrophobicity. 

However, SIR insulators can recover the hydrophobicity property due to the diffusion of the 

low molecular weight (LMW) from the bulk of the insulating material to the insulators’ 

surface. Hence, it is important to classify the hydrophobicity status of SIR insulators as an 

indication of the aging degree. Different methods have been implemented to classify the 

hydrophobicity of the insulator surface including static contact angle measurement, dynamic 

contact angle measurement and hydrophobicity class (HC). The later technique is the most 

practical method that can be used in the field and can assess wide surface area. The surface 

wetting tendency is manually classified using one of six classes, i.e. HC1-HC6, where HC1 

refers to a completely hydrophobic surface and HC6 is a completely hydrophilic surface. The 

main objective of this thesis is to automatically assess the hydrophobicity classes of non-

ceramic insulators under a variety of conditions using deep learning techniques. A dataset of 

hydrophobicity classes (HC1-HC6) was created and prepared including 4197 images each 

having 2242×24 pixels size to train the proposed model. Several deep learning techniques, 
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including Convolutional Neural Networks (CNN), Transfer Learning (TL), and Object 

Detection (OD), were used in this thesis to categorize and assess the hydrophobicity classes of 

ceramic insulator coated with room temperature vulcanized silicone rubber (RTV-SIR). 

MobileNet model was found to have the highest accuracy and less training time after 

comparing with other CNN pretrained models. This model was then trained and tested under 

several conditions, including indoor, bright, and dark lighting conditions, and achieved 

accuracy of 97.77%, 89.44%, and 95%, respectively. Moreover, the proposed model achieved 

a recognition rate of 96.11% when tested on a full-scale silicone rubber insulator. The 

developed model was then deployed as a web application for convenience in the assessment of 

hydrophobicity classes. The proposed model could be utilized to evaluate SIR insulators 

surface conditions in an effective and automatic way under different conditions. 

Keywords: Object Detection, Silicone Rubber, Hydrophobicity Classification, Dataset, Deep 

learning, Image Processing, CNN, Transfer Learning.  
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Chapter 1 

INTRODUCTION  

This chapter will cover the background information, such as overhead lines, different types of 

insulators and their differences, aging, and degradation. Additionally, the previous study that 

the scholars have done as well as the objective of this thesis. 

1.1 Background 

1.1.1  Overhead Lines (OHL)  

The electric power network is composed of three different parts: power generation, 

power transmission, and power distribution. Electric power transmission systems 

usually transport electrical energy from power generation to power distribution 

networks using overhead transmission conductors at system voltages greater than 

33kV. On the other hand, power distribution networks distribute the power from the 

transmission system to the consumer using both overhead lines and underground 

cables. Hence, overhead lines carry most of the electrical energy in electric power 

network and are considered as a preferrable way of transmitting electrical energy than 

the underground cables because of their less cost, ease of installation and inspection, 

fault detection and localization.  A typical overhead line is composed of a utility tower, 

aluminum conductors, insulators, and different accessories as depicted in Figure 1. 

Outdoor insulators play an important part in the operation of the power system as they 

mechanically hold the conductors and electrically insulate them from the grounded 
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tower. There are mainly two different types of outdoor insulators, i.e., ceramic, and 

non-ceramic insulators [1].  

 

 

Figure 1. Typical overhead tower [2] 

1.1.2  Ceramic Insulators  

Ceramic insulators have been used in OHL for more than 100 years. Two main types 

of ceramic insulators are typically used in OHL: cap and pin and long rod [3] as shown 

in Figures 2 and 3 respectively. The traditional ceramic and porcelain insulators have 

undergone numerous enhancements over the past few years in order to increase their 
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reliability, mechanical integrity, and long-term field performance [4]. For instance, as 

depicted in Figure 4, different profiles of ceramic insulators have been introduced that 

can be used at different pollution levels and types. However, ceramic insulators suffer 

from different disadvantages like a heavyweight, prone to breakage, and hydrophilic 

surface properties. The later property leads to the accumulation of pollution on the 

insulator's surface which can lead to the development of leakage current under humid 

conditions. If no remedy actions are taken, flashover is imminent leading to power flow 

interruption. Hence, different solutions have been proposed to improve the pollution 

performance of ceramic insulators including [6]:  

• Regular washing 

• Extending creepage distance 

• Silicone grease coating on insulators 

• Semi-conductive glaze insulators 

• Application of coating on high voltage insulators  
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Figure 2. Ceramic Cap and Pin Insulators [3] 

 

Figure 3.  Insulators of the Long Rod Ceramic Type [3] 



 

 5 

Regular washing is a procedure that can be used to ensure insulation performance in 

polluted environments, but two important factors must be considered, i.e., determining 

the best cleaning time interval and the financial cost, especially if live washing cannot 

be used [7]. While washing can be used to prevent flashover, it is a very costly solution, 

especially in highly polluted areas. Alternatively, creepage extenders were utilized to 

prevent pollution flashover. Each extender is sealed to the porcelain or glass insulators 

and adds 6" (150 mm) of creepage to the existing creepage distance of the insulator. 

This overall increase in the insulator creepage distance leads to lowering the electric 

stress and hence LC. Despite of its anti-contamination efficacy, the use of creepage 

extenders is limited because it is considered as an expensive solution and could increase 

the chances of partial discharge activities resulting from the distortion of electric field 

by utilizing different surface characteristics between the creepage extender and outdoor 

insulator [8]. Another approach to improve the pollution performance of ceramic 

insulators is changing their surface properties. For example, a semi-conductive glaze 

has been used that allows small current magnitudes to pass through its surface due to 

its semi-conductive properties, limiting the impact of fog and pollution accumulation 

and improving the distribution of electric field along the length of the insulator. 

However, because of its semi-conductive properties, the glaze may experience thermal 

runaway and power loss. Furthermore, using this technology on previously installed 

insulators is impractical. 
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Another modification to the ceramic insulator surface is the use of silicone grease 

coating (SGC). SGC decreases the possibility of flashover and excessive leakage 

currents by encapsulating the pollutant and hence minimizing the impact of pollution 

accumulation. However, there is a need for frequent removal of the old SGC which is 

expensive and time-consuming [8]. Alternatively, room temperature vulcanized (RTV) 

coating is applied to ceramic insulators. RTV coating prevents the formation of leakage 

current as it changes the surface property for ceramic insulators from hydrophilic to 

hydrophobic. However, due to aging and pollution accumulation, RTV coating may 

lose its superior hydrophobic properties. Nevertheless, RTV coatings can regain their 

lost hydrophobic properties due to the migration of low molecular weight (LMW) form 

the bulk of the material to the insulator surface. The lifetime for RTV coating is 

estimated to be 10-15 years before there is a need to reapply it.  

 

Figure 4. Different Disc Insulators [5] 
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1.1.3  Composite or Non-Ceramic Insulators (NCI) 

Generally, a non-ceramic insulator (NCI) is made up of a fiber glass reinforced rod, a 

polymeric housing insulating material, and metallic end-fittings. The rod provides 

mechanical strength to the insulator which is bonded with a shed-shaped polymeric 

housing insulating material (silicone rubber (SIR), ethylene propylene diene monomer 

(EPDM)) [5]. A typical NCI is depicted in Figure 5. 

 

Figure 5.  Insulator made of polymeric materials [5] 

Non-ceramic insulators exhibit several advantages compared to ceramic insulators 

including lightweight, vandalism resistance, and hydrophobic surface properties due to 

low surface energy. However, various defects such as cracks, air voids, and impurities 

may be present in the GFR or polymeric material as a result of mishandling, aging, or 

manufacturing defects. Although the majority of serious flaws are identified during the 

installation phase, still some flaws are hard to identify. Under continuous mechanical 

and electrical loading conditions, these defects may progress and propagate over time 

leading to insulator failure. Aging is considered the main cause of non-ceramic 
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insulators failure and will be discussed in section 1.1.4. A summary of the main 

differences between ceramic and non-ceramic insulators is shown in Table 1 [10]. 

Table 1. Ceramic Insulators vs. NCIs [10] 

 FACTORS CERAMIC NCIs 

1 Resistant to contamination flashover. Low High 

2 Pollution and contamination Significantly impacted 
Performance 

slowly affected 

3 Hydrophobicity hydrophilic hydrophobic 

4 Self-cleaning capability 

Because of the glazing 

and the sheds 

inclination 

Due to recovery 

of 

hydrophobicity 

capability 

5 Maintenance 

Needs maintenance 

such as cleaning, 

washing, and greasing. 

No maintenance 

is Normally 

required 

6 Weight High 

10%-35% of the 

conventional 

ceramic insulator 

7 Vandalism and breakage resistance 

Breaks and shatters 

into piece due to 

vandalism 

Non-breakable 

 

1.1.4  Aging and Degradation of NCIs   

Because of their organic nature, NCIs and RTV-coated insulators age with time. The 

surface resistance of NCIs decreases with age, making the insulator surface more 

susceptible to deposition of contamination and moisture which may reduce the 

wettability of the insulator surface [11]. There are two influencing factors that can 

remarkably accelerate the aging of NCIs. Starting from the electrical stress, which 
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includes leakage current (LC) and partial discharge (PD). These stresses typically occur 

as a result of the development of dry bands, deposition of severe pollution, humidity, 

and because of overvoltage stresses. Environmental stresses include heat, ultraviolet 

(UV), rain, wind, snow, acid rain, coastal salt, and degradation due to biological 

organisms [9]. The synergistic effect of these stresses results in surface roughness, 

cracking, erosion, chalking, tracking, loss of hydrophobicity and elasticity, together 

they contribute to a reduction in the mechanical and electrical strength of non-ceramic 

insulators [11]. When the outdoor environmental stresses are applied at the same time 

with electrical stress, it can cause the loss of LMW siloxanes as well as the 

depolymerization of the polymeric material due to either chain scission or oxidation. 

● Leakage Current (LC) 

Silicone rubber based polymeric insulators possess a high surface resistance and, 

therefore, low surface tension. Both of these features are required to prevent the 

formation of water films and hence limit LC development. In the presence of moisture, 

fog, or mist, when conductive pollution deposits on the surface, it generates conductive 

dry spots on the surface of the insulator [9]. This leads to surface discharges that gives 

rise to the creation of a water film, which may result in the development of LC. Due to 

the uneven distribution of LC density, certain spots will be subjected to more joule 

heating than others leading to the formation of scattered and random dry bands [11]. 

As a result, these dry bands extend to both high voltage and ground electrodes across 
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the insulator length leading to the development of dry band arcing [10]. This will lead 

to an increase in the insulator surface temperature resulting in thermal degradation.  

● Partial Discharge (PD) 

Partial discharge (PD) is one of the major type of electrical stress which is caused by 

an increase in the electric field because of the loss of hydrophobicity resulting from the 

formation of continuous water films on the surface. The enhancement of the electric 

field at the triple point is attributed to difference in the dielectric permittivity of the 

insulator (ε= 2-3), water (ε=80), and air (ε=1) [12]. When the electric field surpasses 

the inception voltage for air breakdown (30 kV/cm), PD activities may be started [6]. 

The heat energy dissipated by the continuous discharges deteriorates the insulator's 

surface, causing a temporary loss of hydrophobicity in those areas. Another source of 

surface PD is the insulator close proximity with sharp electrodes resulting from 

defective hardware. Both types of surface PDs cause temporary hydrophobicity loss 

because of de-polymerization resulting from the scission of polymer chains or the 

oxidation reactions. Nevertheless, once these discharges seize to exist, SIR may regain 

some or all of its hydrophobic properties [13]. Moreover, chain scission or oxidation 

triggered by PD activities yields acidic byproducts which results in the depletion of low 

molecular weight siloxane species. This induces chemical reactions which cause bond 

breakage in molecular chains of polymer material, resulting in silanol and carbonyl 

groups, the cyclic volatile silicone oligomers, and intermolecular forces in the polymer 

matrix. Such forces prevent the volatile silicone rubber oligomers from resurfacing. 
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This, in turn, will reduce the SIR's ability for hydrophobicity recovery [11].  The 

simultaneous application of stresses can cause complete degradation and 

hydrophobicity loss on SIR insulator surface.  

● Environmental Stresses 

Environmental conditions including UV, humidity and/or pollution can contribute to 

the aging of non-ceramic insulators acting alone or synergically with the electric stress. 

For example, UV components can cause the scission of C-H and Si-C bonds as opposed 

to Si-O (siloxane and main chain) bonds. Although main chain scission is unlikely, 

crosslinking events can occur if Si-C and C-H links are broken. As a result, LMW 

chains, particularly those with n = 3 to 15 repeat units, would increase or decrease. 

Byproducts such as hydrocarbons would also be produced [14]. Also, acid rain can 

significantly cause the erosion of the SIR which results in the degradation of the 

insulator surface. The surface becomes rough as a result of acid rain causing erosion 

and deterioration, thereby decreasing surface hydrophobicity. Moreover, pollution 

accumulation on the insulator surface is responsible for a significant reduction of the 

hydrophobicity classes depending on the type, size, and chemical structure of the 

pollution. Furthermore, mold growth in humid environments can also decrease the 

hydrophobic behavior of SIR leading to LC development [11]. Finally, humidity can 

contribute to the field enhancement at the insulator surface leading to the development 

of PD activities which result in destroying the surface hydrophobicity of the SIR 

insulator [15]. 
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1.1.5  Degradation Consequences  

As a result of electrical and environmental stresses, different forms of aging can take 

place at the insulator surface including discoloration, hydrophobicity loss, crazing, 

erosion, tracking, chalking, roughness, alligatoring, punctures, and corona cutting [13]. 

Discoloration and loss of hydrophobicity are frequently the first and most visible 

indications of aging. Then, based on the severity of the aging factors, several types of 

degeneration can be formed. Electrical discharges along with UV radiation on SIR 

surface typically give the insulators a toothed and whitish dusty appearance which is 

termed as chalking [8], which can be shown in Figure 6. Chalking causes insulator to 

absorb a significant amount of water and pollution, which speeds up the degradation of 

SIR insulator. Surface cracks on the insulators are caused by electrical stresses such as 

PD and arcing. Crazing [11] is a term used to describe cracks that are less than 0.1 mm 

deep, as shown in Figure 7 [8]. Alligatoring is an worst form of crazing in which the 

cracks depth surpasses 0.1 mm which may result in rod exposure. As previously 

discussed, continuous corona discharges, particularly near the metallic end fittings or 

because of the loose connection between the rod and polymer housing insulation, can 

cause corona cutting, which significantly cause the electrical and chemical degradation 

of the insulator [8], which is depicted in Figure 8. Because of the organic nature of the 

polymeric housing materials, they lose their wettability which cause the development 

of leakage current and eventually, the permanent tracking and erosion [9]. Tracking 

results from the surface discharge activities which is considered as more severe than 
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erosion because it appears on the surface in the form of carbonaceous conducting 

traces, whereas erosion is non-conductive and degrades at a slower rate as shown in 

Figure 9 [8]. 

 

Figure 6. Chalking seen on non-ceramic insulators [8] 

 

 

Figure 7. Crazing seen on non-ceramic insulators [8] 
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Figure 8. Corona Cutting [8] 

 

a. [16]                                                                            b. [8] 

Figure 9. Degradation of polymeric insulator due to the flow of LC: (a). Tracking 

and (b). Erosion. 

1.2  Literature Review  

1.2.1  Hydrophobicity Assessment 

The degradation of a polymeric housing insulating material is often followed by the 

hydrophobicity loss of insulator. As previously stated, the surface hydrophobicity of an 

insulating material refers to its tendency to resist the water flow and resist the development 
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of continuous water channels on its surface. If an insulator surface is hydrophobic, water 

drops appear as a bead shape (independent water droplets) without flowing on the surface 

of the insulator. Such droplets have a contact angle greater than 90°. When the insulator's 

surface ages, the contact angle decreases until the surface becomes fully hydrophilic and 

the formation of water films. Figure 10 depicts the variation in hydrophobicity [8]. 

The contact angle is one technique for determining the hydrophobicity or hydrophobicity 

class (HC) of NCIs. Water droplets are injected with a syringe in this technique, and the 

contact angle (of the droplet) is measured on a flat surface. When the surface is tilted, the 

difference between the advancing and receding angles is measured, as shown in Figure 11 

[20]. This method can only be applied when the insulator is not energized. and hence is 

not used in the field. 

 

Figure 10.  Surface of SIR insulator transitioning from Hydrophobic to Hydrophilic 

Conditions [8] 
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Figure 11. Contact Angle of water droplets with respect to Flat and Tilted Surfaces [20] 

 

Another well-known measurement technique is the spraying of water in the form of mist 

on polymeric insulators is. As shown in Figure 12 [20], the wettability of the SIR surface 

is classified into seven classes starting from a fully hydrophobic surface (HC 1) to a fully 

hydrophilic surface (HC 7). These classes are evaluated based on the water drop contact 

angle, water drops pattern, and wetted surface area, as shown in Table 2 [20]. This 

technique is known as the STRI classification for hydrophobicity evaluation, which can 

also be used to comprehensively evaluate the aging condition and behavior of SIR 

insulator. The key disadvantage of this technique is it sole dependence on the judgment of 

the person conducting measurements. 
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Figure 12. HC 1 to HC 6 [20] 

Table 2. HC Evaluation Criteria [20] 

HC Description 

1 It only forms distinct droplets. significantly larger for most of the droplets. 

2  For the majority of droplets, only separate droplets form. 

3 It only forms distinct droplets. for the vast majority of drops. Most of the time, 

they are no longer circular. 

4 We see both individual droplets and wet traces left by the water runnels. Totally 

moist patches are less than 2 cm2. They collectively cover around 90% of the test 

area. 

5 Over 2 cm2 of the test area have been totally wet, or about 90% of it. 

6 Wetted areas cover more than 90% of the area; however, small un-wetted areas 

(spots/traces) are still visible. 

7 The entire tested area was covered in a continuous water film. 
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Several attempts have been proposed using digital image processing (DIP) for the analysis and 

measurement of water drops contact angle, thereby determining HC and evaluating the 

insulator's condition to reduce human error. The hydrophobicity of polymeric insulators was 

calculated and evaluated using DIP in [21]. The proposed method employs human intervention 

in specifying the area containing the water droplets by removing the useless portions of the 

images. The classification can be done possible based on a ratio of the maximum water drops 

area divided by the total area of the image. To calculate the HC, it also takes into account the 

shape coefficient of the maximum water trace. Despite the efficacy of this method for online 

assessment of aging condition of insulator, it still depends on the user’s intervention in 

identifying the region on the image and removing the background from the area selected on 

the image. Furthermore, the accuracy of this method is dependent on the user's skills while 

shooting the pictures, as well as the distance of the camera from the insulator surface. 

Authors in [22] addressed the issue of human intervention by developing an algorithm for 

image processing based on extracting water drop pictures, then fitting the contours of the water 

drops by employing the orthogonal polynomial, and lastly determining the water drop contact 

angle for the evaluation of insulator’s hydrophobicity. The major problem in this technique is 

that it is not applicable to the actual field conditions or the online evaluation of the insulator 

hydrophobicity. The researchers assumed that the water droplets contact angle should be 

limited to a change of 15° and that the water droplet should be at the center on the insulator 

surface, which does not always happen. Furthermore, the method evaluated the insulator using 

a single droplet instead of utilizing many droplets with varying size to simulate practical case. 
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This method can only be applied for localized assessment of the insulator surface and not the 

overall surface hydrophobicity evaluation. Other researchers [23-26] have utilized other DIP 

techniques to assess the hydrophobicity classes of the SIR insulators. These include circular 

factor, the Hough transformation, the scaled entropy, segmentation, the histogram analyses, 

textural analysis, surface energy, and fractal dimension were all used. While many  researchers 

were unable to define a clear relationship with the hydrophobicity classification, others were 

able to develop a mathematical relationship to the Hydrophobicity classes of insulators. 

However, none of the attempts were successful in generalizing a classifier. The authors of [27] 

and [28] combined multiple features like shape and area in order to overcome the limitation of 

using only one feature. The use of the multiple features in order to assess the insulator's HC 

has eliminated the poor reliability associated with single-feature evaluation. Despite the fact 

that these techniques have improved recognition rates, they are still insufficient for determining 

the HC of the insulator under variable conditions. the success of these approaches depends on 

a specific configuration of fixed distance, light level, insulator position, and shape. To correctly 

classify the insulator in terms of HC, any changes to the experimental conditions requires a 

reconfiguration of the decision tree boundaries.  

Attempts to automate this process using traditional machine learning (ML) techniques yielded 

high classification accuracy. Artificial neural networks (ANN) are extensively used compared 

to other intelligent approaches. The fact that NNs are very adaptive and learn fast is the key to 

accelerating their efficiency. The NN application methods can be divided into multiple 

approaches for various applications to produce effective testing results. According to [29] the 
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highest achieved accuracy was 96.5 percent when using ANN as a classifier and various image-

based features such as grey level co-occurrence matrix (GLCM), Radon transform, contourlet 

transform, discrete cosine transforms (DCT), and discrete wavelet transforms (DWT). The 

authors of [30] and [31] employed the principle of probabilistic neural networks (PPN) as a 

classifier and several feature extraction techniques such as edge detection and GLCM. After 

extensive training, the maximum achieved accuracy was 95%. Using the multilayer perceptron 

(MLP) model described in [32], the authors achieved 93.8% recognition accuracy. In addition, 

for image processing, they used the grayscale conversion of the color image, local histogram 

transformation, and the Prewitt operator for edge detection. In [33] seven geometric metrics 

were extracted and utilized to evaluate the HC which are: number, mean eccentricity, water 

droplet coverage rate, coverage rate, perimeter, shape factor, and eccentricity of the greatest 

water droplet. The back propagation neural network (BPNN) was used as a classifier and 

achieved 96.6% accuracy. Principal component analysis (PCA) was used to reduce the number 

of features along with the adaptive neuro-fuzzy inference system (ANFIS) as a classifier in 

[34]. They found that the best features selected by PCA are average intensity, correlation, 

skewness, and homogeneity, with a classification accuracy of 94.85%. However, these 

techniques are time-consuming to employ because the user must manually specify which 

features to utilize while evaluating the images. Incorrect feature selection can result in 

unsatisfactory classification, which adds another source of human error. 

Deep learning (DL) is being used instead of traditional ML algorithms as a new trend in the 

assessment of SIR. As shown in Figure 13, the difference between ML and DL approaches is 
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that DL does not require manual feature selection, making it easier to implement and less prone 

to incorrect feature selection. The authors of [35] employed DL techniques for HC and 

compared their results to those of [29] that used ML on the same dataset.  It has been reported 

that using DL techniques achieved equivalent accuracy with the extra advantage of being easier 

to implement. Convolutional neural networks (CNN) were employed in [36, 37] to overcome 

the manual dependency on feature extraction for accurate detection of insulator wettability.  

CNN training time was reduced by using the transfer learning (TL) approach. Different CNN 

architectures were investigated such as VGG16, VGG19, GoogleNet, AlexNet, and ResNet. 

The performance of all the models was satisfactory, yielding very high recognition accuracy. 

As a result, the proposed methods can potentially be used in the field for remote condition 

monitoring of overhead line insulators. However, the aforementioned proposed methods have 

limited use because the training and testing occurred in controlled conditions. 

 

Figure 13. Difference Between Machine Learning and Deep Learning 
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1.3  Thesis Objectives and Problem Formulation  

It is evident from the previous discussions, that there is currently no comprehensive approach 

for assessing the HC of SIR. Human intervention, localized evaluation, and specialized 

conditions hampered attempts to design an automatic robust system based on image 

processing. The goal of this thesis is to create a comprehensive system based on deep learning 

algorithms that can evaluate the condition of SIR insulators subjected to several conditions 

(insulator type, lighting conditions, distances, etc.) and without the need for human 

involvement. The Thesis specific goals can be summarized as follows: 

• Aggregate and analyze 6 different classes of hydrophobicity evaluation data in 

different conditions. 

• Leverage a deep learning model (MobileNet) in Python to predict the condition 

of the insulator. 

• Enhance the model using object detection to improve the accuracy of the results. 

• Develop and deploy the model as a web application to increase the usability of 

the project. 
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Chapter 2 

MATERIALS AND METHODS 

In this chapter, the collection and preparation of the dataset will be discussed. Also, the 

implemented methods and algorithms for HC will be explained.  

2.1 The Dataset 

Ceramic cap and pin insulator coated with room temperature vulcanized (RTV) high voltage 

coating were utilized to make the samples for this study. Images of classes 1–6 were obtained 

using the method proposed by [21]. The method suggests spraying the coated samples with 

distilled water and alcohol solutions. Various hydrophobicity classes (HC) can be created 

according to the quantity of alcohol by volume (ABV) in the distilled water solution, ranging 

from class 1 with 0% ABV to class 6 with 90% ABV. This is owing to the decreased RTV 

surface tension due to the increase of alcohol concentration. Such reduction in the surface 

tension will mimic the aging of the RTV surface. Figure 14 shows the obtained HC images 

with various ABV percentages. 
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Figure 14. HC classes with various percentages of ABV solution 

 

The original dataset contained a total of 2043 images, all of which were taken indoors and from 

various angles. The python library katna was used to crop each image to multiple different 

images to increase the dataset and provide enough training dataset for the DL algorithms. As 

a result, our dataset has increased to 4197 images. It is worth mentioning that only original 

RGB images were used in the training dataset without any alteration to their color. We split 

the dataset into three parts: training, validation, and testing, in the ratio of 80:10:10. Figure 15 

shows the preprocessing step. 
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Figure 15. Preprocessing 

 

2.2  Deep Learning Algorithm 

One of the powerful deep-learning algorithms is convolutional neural network (CNN) which 

is broadly used in computer vision for extracting the features and perform classification of the 

images. As depicted in figure 16, the CNN is made up three layers, an input layer, many hidden 

layers, and fully connected output layers.  

Convolutional layer: Firstly, the image inputted to this layer is processed by a number of filter 

banks which are called as kernels. In the forward paths, such filters are transversely convolved 

with the weight and height of the inputted image separately. It gives a two-dimensional (2-D) 

feature map for the detection of the pattern. Next, the rectified linear unit (ReLU) layer 

increases nonlinearity of the network by utilizing the rectified function [38]. 



 

 26 

Pooling layer: This layer is responsible for reducing the dimension of the feature map 

produced by the convolution layer while retaining the necessary and useful information. In 

addition, it also regulates data over-fitting via nonlinear down-sampling through various 

operators. 

Fully Connected Layer: This layer is the output layer which provides the function of a 

classifier. This layer gives the network forward by converting the 2-D feature maps into a 1-D 

feature vector while calculating accuracy (scores) for each class. The SoftMax layer predicts 

the accurate class from the test dataset based on the trained model after converting the scores 

into probabilities. 

 

 

Figure 16. CNN architecture [39] 
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2.3  MobileNet  

In this thesis we will use the MobileNets architecture proposed in [40], the MobileNets are a 

family of TensorFlow mobile-first computer vision models that are designed to maximize 

accuracy while keeping in mind the limited resources of an on-device or embedded application. 

MobileNet is a CNN class that is open sourced by Google, and it provides an ideal starting 

point for training using compact and quick classifiers. MobileNets are small, low-latency, low-

power models that can be parameterized to meet the resource constraints of various cases. As 

shown in Figure 17, MobileNets can be used to build classification, detection, embeddings, 

and segmentation systems. 

 

Figure 17. applications of MobileNets [40] 

To understand the compactness of MobileNets, a brief comparison in terms of size and the 

number of parameters with one of the most well-known CNN architectures, VGG16, is 

provided. The full size of the VGG16 network is approximately 553 megabytes. On the other 

hand, the size of one of the largest MobileNets is only about 17 megabytes. This relatively low 
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size of MobileNets is important when considering deploying a model to a mobile app or 

running it in the browser. Table 3 shows the comparison between VGG16 and MobileNets in 

terms of size. 

Table 3. Compares VGG16 to MobileNets in Terms of Size [40] 

Model Size Parameters 

VGG16 553 MB 138,000,000 

MobileNet 17 MB 4,200,000 

 

MobileNet used depthwise separable convolutions to develop lightweight deep neural 

networks. When compared to the network with regular convolutions of the depth of the same 

nets, it significantly reduces the number of parameters. There are 28 layers in a MobileNet 

which can be reduced by appropriately tuning the width multiplier hyperparameter. The input 

image has a size of 224×224×3 and as depicted in figure 18, two operations are used to create 

a depthwise separable convolution: 

● Depthwise convolution: 

The channel-wise DK×DK spatial convolution is depthwise convolution. If we have five 

channels in the figure below, we will have 5 DK×DK spatial convolutions. 

● Pointwise convolution: 

The 1×1 convolution is used to change the dimension to pointwise convolution. 
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Figure 18. Convolution with Depth Separation [41] 

 

The primary distinction between MobileNet architecture and traditional CNN architecture is 

that MobileNets divided the convolution into a 3x3 depth-wise conv and a 1x1 pointwise conv 

instead of a single 3x3 convolution layer followed by the batch norm and ReLU that is used in 

traditional CNN, as shown in Figure 19.  
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Figure 19. (a) Conventional convolutional layer with batch normalization and ReLU. 

(b) Depth-wise separable convolution with depth- and point-wise layers, then batch 

normalization and ReLU. [40] 

2.4  Transfer Learning 

The computation time required to train a network from scratch is an important issue in CNN. 

Another significant issue is the scarcity of insulator image data for HC classification. The 

transfer learning (TL) process is used to address these two issues. The weights of pre-trained 

models (MobileNet) that were not initially trained for HC are transferred to our model using 

TL. Only the last few hidden layers of the MobileNet pre-trained models (along with the 

classification layer) are replaced by the new layers of the HC classification problem with 

different weights and learning rates. So, instead of training the entire network from scratch 

with random weights, TL significantly reduces the network's training time, making it 

computationally faster and working reasonably well for small datasets [37]. The lower layers 
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provide traditional computer-vision feature extraction, such as edge detection, whereas the 

final layers focus on task-specific features. Furthermore, we can employ existing pre-trained 

models like VGG16 and AlexNet for previously untrained tasks like style transfer and face 

identification [42]. 

2.5  Object Detection 

A problem that may occur during model testing is that the model may have selected the 

incorrect object, extracted incorrect features, or if there is any distraction in the original photo. 

To avoid this, we will use an object detection (OD) technique in this thesis. The OD is a 

computer technique linked to computer vision and image processing that detects instances of 

semantic items of a certain class (such as individuals, buildings, or vehicles) in digital photos 

and videos. Face detection and pedestrian detection are two well-studied object detection areas. 

The OD has various applications in computer vision, such as picture retrieval and video 

monitoring. There are several OD architectures; in this thesis, we will employ the Single Shot 

MultiBox Detector (SSD) proposed in [43]. The SSD architecture is a single convolution 

network that learns to anticipate and categorize bounding box locations in a single run. As a 

result, SSD may be trained from the beginning to the end. The SSD network is made up of a 

basic architecture (in this case, MobileNet) followed by numerous convolution layers. We just 

need one shot using SSD to recognize several objects inside an image, but RPN-based 

techniques such as the R-CNN series require two shots, one for generating region suggestions 

and one for recognizing the item of each proposal. As a result, SSD is substantially quicker 

than two-shot RPN-based techniques; The SSD architecture is depicted in Figure 20. The 
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TensorFlow object detection API provides a platform for building a deep learning network that 

can detect objects. They already have pre-trained models in their framework, which are called 

Model Zoo. Among the pre-trained models, MobileNet was used. As illustrated in Figure 21, 

we trained the OD model to detect insulators, crop them, and save them to a file for use as a 

testing dataset. 

 

Figure 20. Layered SSD MobileNet Architecture [43] 

 

Figure 21. Object Detection model steps 
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2.6  Model Deployment 

Model deployment is essentially the engineering process of making a deep learning model 

available for real-world use. The deployment is frequently used interchangeably with making 

a model available via real-time APIs. It is also the process of integrating a machine learning 

model into an existing production environment in order to make realistic business decisions 

based on data. It is one of the final steps of the machine learning life cycle. Since one of our 

goals in this project is to utilize the proposed model in many conditions, one of which is to use 

the model in the field where technicians may find it difficult to run the code or use any 

programming languages. In this regard, we used the python package called Streamlit to deploy 

our model as a web application with a simple graphical user interface (GUI); Figure 22 shows 

the GUI for our project. In general, you can upload an image from your computer to the model, 

and it will predict the HC class as well as provide the probability of other classes. An example 

of the output of the GUI is shown in Figure 23. 
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Figure 22. Graphical User Interface 

 

Figure 23. GUI output 
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Chapter 3 

RESULTS AND DISCUSSIONS 

3.1  Comparison between different CNN architectures  

Different pre-trained CNN models were tested for the classification of hydrophobicity, which 

includes VGGNet16, MobileNet, MobileNetV2, and AlexNet. Initially, all the models were 

trained using the original dataset without any image processing and hence only raw RGB 

images were fed to the models for the training. We split the dataset into three parts: training, 

validation, and testing, distributed in a ratio of 80:10:10, respectively. Out of 2043 images, 

1635 images were used for training, 204 images for testing, and 204 images for validation. The 

parameters for the models were selected for training purposes for optimized performance. The 

learning rate was chosen to be 0.001, the maximum epoch (iterations) was set to 50, and the 

batch size was set to 10. The training accuracy vs the epoch is shown in Figure 24. It is apparent 

that both the MobileNet and MobileNetv2 had the best training performance among all models 

in terms of training time, which was expected given that these two networks have smaller 

number of parameters compared to other models. 
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Figure 24. Training performance for the models 

 

Following the training of the models, the testing data was used to assess the accuracy of the 

model. The overall accuracy for the 4 models is depicted in Figure 25 where it is evident that 

MobileNet scored the highest prediction accuracy. Also, while MobileNetv2 had a high 

training rate, the overall accuracy was the worst among all selected models.  
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Figure 25. Test performance of the models 

 Furthermore, the confusion matrix for all models is shown in Figure 26. Based on the 

confusion matrix outcomes, MobileNet showed the highest accuracy (100%) for class HC1 

with the lowest (90%) being shown by MobileNetV2 and VGGNet16. Also, MobileNet 

exhibited the best recognition rate (100%) for class HC2 while least (90%) being reported by 

both VGGNet16 and AlexNet models. Similarly, for HC3, MobileNet displayed the highest 

accuracy (86.7%) whereas AlexNet showed the lowest recognition rate (80%). In addition, for 

classes HC4, and HC5, the highest recognition rates were shown by MobileNet and 

VGGNet16, respectively, while the lowest recognition rates were exhibited by MobileNetV2 

and AlexNet, respectively. As can be seen that the accuracies of all models for class HC5 were 

reduced. Finally, in the case of HC6, both MobileNetV2 and AlexNet showed the highest 

accuracies (90% each), whereas MobileNet displayed the least class accuracy (73.3%). Hence, 

it is clear that MobileNet achieved both the highest training rate and overall classification 

accuracy and hence it is selected to test the HC under different conditions.  
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(a) (b) 

  
(c) (d) 

Figure 26. (a) MobileNet confusion matrix. (b) MobileNetV2 confusion matrix. (c) 

VGGNet16 confusion matrix. (d) AlexNet confusion matrix. 

3.2  MobileNet performance under different conditions 

The primary goal of this study is to propose a robust model that can detect the HC of RTV 

silicone rubber-coated insulators under different conditions. To accomplish this, an 

improvement in the accuracy of the previously discussed results under controlled indoor 

conditions is required. This can be achieved by reducing the number of parameters in the 

model, increasing the input dataset and performing image processing such as converting the 

dataset to the greyscale. The augmented dataset (4197 images), after image cropping, has been 
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utilized in the training and testing using MobileNet. Figure 27 depicts the confusion matrix 

results. It is evident that the classification accuracy has increased from 89.45% (when the 

original data was used) to 97.8%. So, increasing the dataset contributed to the increase in the 

classification accuracy.  

 

Figure 27. The indoor condition confusion matrix 

It is intended to use the proposed algorithm in the field and hence one of the main challenges 

is to conduct the classification under different lighting conditions. So, two datasets at two 

different lighting conditions have been collected, i.e., bright and dark lighting conditions. 

Samples at both the light and dark lighting conditions are shown in Figures 28 and 29 

respectively. It is worth mentioning that the samples at the different lighting conditions were 

used as testing samples on the original model without using any of these datasets in the training 

process. The overall accuracy of both the bright and dark datasets was 89.44% and 95%, 

respectively. Figures 30 and 31 show the confusion matrix for the test results under both 
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lighting conditions. It is apparent that bright lighting conditions have a more negative impact 

on the overall classification accuracy compared to dark lighting conditions. However, except 

for a few cases, all confusion between the classes happened between adjacent classes which 

minimize the negative impact of the class’s misclassification.  Authors in [44] employed the 

deep learning algorithm for online inspection of SIR under different lighting conditions. The 

model was trained based on the images taken in controlled conditions and then tested using 

images taken under light and dark lighting conditions which resulted in a drop in the model 

accuracy by around 20%. The model accuracy was improved significantly when samples taken 

under different lighting conditions were added to the training model. On the other hand, the 

drop in our model accuracy due to the change in the lighting condition was only around 8% In 

order to further enhance the model accuracy, 10 images taken in both bright and dark light 

conditions were added to the training model which resulted in increase in the overall accuracy 

for both the light and dark lighting conditions to 92.77% and 95.55% respectively.  
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Figure 28. Samples at bright light conditions 

 

Figure 29. Samples under dark lighting conditions 
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Figure 30. Confusion matrix under bright lighting conditions 

  

Figure 31. Confusion matrix under dark lighting conditions 
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Figure 32. Comparison chart of the accuracy between before and after retraining 

All previous testing of the proposed model was conducted on RTV-SIR coated insulators under 

various conditions. Silicone rubber can be in the form of either RTV coating or full insulators. 

To test the robustness of the proposed model, testing data collected from a full silicone rubber 

insulator has been utilized. The images were taken from the insulator sheds as shown in Figure 

33. Samples of the different images with different hydrophobicity classes are shown in Figure 

34. The overall accuracy of the tested data is 96.11% which is very close to the original 

classification accuracy. The confusion matrix is depicted in Figure 35 where it is apparent that 

each individual class achieved an accuracy of 90% and above. Moreover, except for one case, 

all misclassified cases were adjacent cases which minimize the negative impact of the 

misclassification.  

Befour training After training
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Figure 33. A full-scale polymeric insulator 

 

Figure 34. Samples of full insulator 
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Figure 35. The confusion matrix of full insulator 

Based on these findings, we can conclude that the proposed model has the ability to recognize 

the hydrophobicity classes (HC) in a variety of conditions, with high recognition rates without 

the need for additional training.   
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Chapter 4 

CONCLUSIONS 

Due to their low weight, low cost, and high hydrophobicity, silicone rubber (SIR) and room 

temperature vulcanized (RTV) insulators are frequently employed in transmission and 

distribution overhead lines as an alternative to traditional ceramic insulators. Silicone rubber-

based insulating materials are preferred over conventional ceramic insulators because of their 

superior hydrophobicity, which prevents flashover due to deposition of contamination on their 

surface. Silicone rubber-based insulators are organic in nature which lead to the insulators 

degradation as they are subjected to electrical and environmental stresses. As the online 

monitoring of insulator conditions is critical, numerous electric utilities across the world have 

implemented several methods to assess and analyze insulator surface conditions. Most of the 

strategies rely on monitoring the leakage current (LC) and partial discharge (PD) activities. 

Other techniques, like contact angle measurements and hydrophobicity evaluation procedures, 

are more focused on monitoring the quality and level of aging of non-ceramic insulators. 

Human error is always present in the existing hydrophobicity evaluation procedures, which 

strongly affects the reliability of such diagnostic procedures. To overcome the human judgment 

aspect, some studies were proposed using digital image processing (DIP) to assess and quantify 

the contact angle, thereby determining the hydrophobicity class (HC) and evaluating the 

insulator's surface condition. Currently, there is no comprehensive online technique for 

assessing the class and condition of non-ceramic insulators (NCIs). Attempts have been made 

to construct an automatic image processing based-online system. However, these proposed 
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systems have been hampered by a variety of issues such as human intervention, localized 

evaluation, and specialized and set conditions. 

In this thesis, an attempt is made to utilize the Convolutional Neural Networks (CNN), Transfer 

Learning (TL), and Object Detection (OD) to categorize and assess the hydrophobicity classes 

(HC) of silicone rubber insulator material. For the training purpose, a dataset of classes 1–6 

includes a total of 4197 images that were cropped and resized to (224×224 pixels) was 

collected. The MobileNet model has been trained under controlled indoor and tested in 

different conditions, including indoor, bright lighting, and dark lighting conditions, resulting 

in an accuracy of 97.77 percent, 89.44 percent, and 95 percent, respectively. Furthermore, the 

proposed model was tested on a full-scale silicone rubber insulator and achieved a recognition 

rate of 96.11 percent. The proposed model was developed and deployed as a web application 

to increase the usability of the project. The goal of this thesis is to create a robust deep learning 

based classification system that can evaluate the condition of SIR insulators under several 

conditions.  The proposed method is intended to decrease the cost and effort associated with 

the traditional human-based examination. While the proposed model achieves very high 

recognition rates in all tests, it can be improved further by retraining the model with more 

images in different conditions including addition of pollution, different insulators colors and 

profiles. 
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