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Abstract

Measurement error is a pervasive issue in questions of estimation and inference. Gen-
erally, any data which are measured with error will render the results of an analysis which
ignores this error unreliable. This is a particular concern in health research, where many
quantities of interest are typically subject to measurement error. One particular field of
health research, precision medicine, has not yet seen a substantive attempt to account
for measurement error. Dynamic treatment regimes (DTRs), which can be used to repre-
sent sequences of treatment decisions in a medical setting, have historically been analyzed
assuming, implicitly, that all quantities are perfectly observable.

We consider the problem of optimal DTR estimation where quantities of interest may
be subject to measurement error. The nature of this problem is such that many existing
techniques to account for the effects of measurement error need to be expanded in order to
accommodate the data which are available in practice. This expansion further highlights
theoretical shortcomings in the existing methodologies.

This thesis begins by expanding existing methods for correcting for the effects of mea-
surement error to accommodate issues which are frequently observed in real-world data.
We expand the most commonly applied measurement error corrections (regression cali-
bration and simulation extrapolation), demonstrating how they are able to be conducted
with non-identically distributed replicate measurements. We further expand simulation
extrapolation, which typically assumes normality of the underlying error terms, propos-
ing a nonparametric simulation extrapolation. These expansions are conducted generally,
separate from the specific context of optimal DTR estimation.

Following the expansion of these extant techniques, we consider the problem of errors
in covariates within the DTR framework. We apply the aforementioned generalized error
correction techniques to this setting, and demonstrate how valid estimation and inference
can proceed. Finally, we consider problems which are present when there is treatment
misclassification in DTRs, proposing techniques to restore consistency and perform valid
inference. To our knowledge this work represents the first substantive attempt to explore
these problems. Thus, in addition to proposing methodological solutions, we also elucidate
the particular challenges of estimation in this setting. All proposed techniques are explored
theoretically, using simulation studies, and through real-world data analyses.
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Chapter 1

Introduction

1.1 Measurement Error and Precision Medicine

In this thesis we will address problems related to measurement error and precision medicine.
We begin by introducing both measurement error and precision medicine at a high-level,
before considering the specific problems that this thesis will address. Measurement error
refers to any scenario where a variable of interest cannot be accurately observed. If the
discrepancy between the truth and what is available is stochastic, we will refer to this
as measurement error. Our definition excludes systematic errors, where measurements
deviate in a deterministic manner. There are many possible causes of measurement error.
For instance, the instrument that we are using to take measurements may have random
error inherent in it (as is the case with using calorimetry for evaluating the mass of nuclear
materials [83]), or it may be an innately immeasurable quantity (as is the case when we are
interested in someone’s underlying blood pressure, and can only take discrete measurements
at clinical visits [88]).

While it is generally best practice to minimize the occurrence of measurement error, it
is not typically possible to eliminate errors entirely. This matters because of the “Iriple
Whammy of Measurement Error”, [[] which specifies that measurement error in covariates:

1. Causes bias in parameter estimation.

LA phrase coined in Carroll, Ruppert, Stefanski, and Crainiceanu [7, p. 1]; they originally referred to
the first two components as the “Double Whammy of Measurement Error”, but emphasize the masking
effect in the second version of their book.



2. Leads to a loss of power.

3. Masks possibly interesting features of the data.

There have been many methods proposed to correct for these effects of measurement er-
ror. The goal of a measurement error correction is to restore analytical guarantees to the
underlying analysis, so that any estimation or inference can be relied upon. Providing a
comprehensive list of correction techniques is infeasible (see, for example, Carroll, Ruppert,
Stefanski, and Crainiceanu [7], Yi [101], Buonaccorsi [6], and the included references). This
thesis will focus primarily on two widely used techniques: regression calibration [10} 31] and
simulation extrapolation (SIMEX) [I6]. We also consider how likelihood and estimating
equations are leveraged to correct for the effects of measurement error.

As a clarification on language we often speak of “measurement error correction tech-
niques.” This is a convenient shorthand to describe techniques which are designed to
reduce, or eliminate, the impacts of measurement error in an analysis. It is more accu-
rate to describe such techniques as “corrections for the impacts of measurement error”,
though the shortened “measurement error corrections” can be a convenient stand-in. It is
important to note that, despite the occasional use of this language, these techniques are
not eliminating or addressing the errors directly: once measurement error is present, it
remains so. Instead, these are techniques that are designed to account and adjust for the
induced bias or loss of power that would otherwise be present if the errors were ignored.

Measurement error correction techniques have been used frequently in health and med-
ical statistics. The nature of health data is such that many quantities of interest (including
blood pressure [88], dietary intake [89], or smoking status [60]) are commonly subject to
error. As such, many of the recently developed measurement error corrections have been
motivated through a biostatistical lens. In parallel with these developments, the field of
precision medicine has emerged as central to evidence-based medical practice.

Precision medicine is the practice of using patient-specific information (such as demo-
graphic, genetic, or lifestyle factors) to tailor the treatment that a patient receives [49].
This approach stands in contrast with a disease-centric view of medicine, where the best
treatment for a particular condition is sought. Generally, medical researchers are inter-
ested in determining causal relationships between treatments and outcomes. When these
relationships are allowed to be mediated by patient characteristics, this is causal inference
for the purpose of precision medicine.

One framework for formalizing causal inference in this setting is through the use of dy-
namic treatment regimes (DTRs). Broadly, a DTR is a (set of) decision rule(s) which take
as input patient information and produce as output a treatment decision. These stand in



contrast to static treatment regimes, which do not tailor their outputs based on the partic-
ular patient. DTRs are capable of encompassing both acute, single-stage treatments (for
instance, deciding on the best treatment during a clinic visit where the patient is exhibit-
ing flu-like symptoms), and longitudinal, multi-stage treatments (for instance, providing
ongoing therapy for a patient with depression). When considering DTRs, interest may be
in the estimation of the optimal treatment rules, in the prediction of the optimal outcome,
or in the assessment and comparison of specific treatment strategies (relevant methods for
DTRs are summarized in Tsiatis, Davidian, Holloway, and Laber [90] and Chakraborty
and Moodie [14]).

Despite the parallel development of methods for correcting for the effects of measure-
ment error, and methods for conducting precision medicine, there has not been a substantial
attempt to integrate these two fields of study. When we consider the known impacts of
measurement error generally, and the degree to which measurement error is a problem
in health research, it is sensible to assume that many of the same issues will need to be
addressed in the context of precision medicine. Addressing this gap is the motivating goal
for the work conducted throughout this thesis.

1.2 Problems of Interest and Thesis Structure

The problem of assessing, and correcting for, the impacts of measurement error in dynamic
treatment regimes is a problem with several important branches. It is important to consider
where the errors are: the impacts and required corrections are different if errors are in the
tailoring variables as compared to the treatment indicators. There has been a growing
field of literature considering measurement error in causal inference generally. While some
of this research is applicable to our setting, the added complexity of DTRs necessitates
further consideration.

The estimation of optimal DTRs is conceptually similar to standard regression proce-
dures. Despite this underlying simplicity, much of the foundational literature establishing
methods for optimal DTR estimation is presented for methodological researchers, relying on
deep, mathematical sophistication, rather than for prospective practitioners [59, [70]. Over
time there has been a more concerted effort to increase the accessibility of these techniques,
both through more accessible communication (as in the monographs by Chakraborty and
Moodie [14] and Tsiatis, Davidian, Holloway, and Laber [90]) as well as through the de-
velopment of methods that are more explicitly grounded in familiar techniques (as with
Wallace and Moodie [95]). The observed “research-practice gap” [90] within the DTR lit-



erature emphasizes the need for techniques which are accessible to applied researchers for
the continued success of the field.

Within the context of measurement error corrections broadly, this need has been fur-
ther demonstrated in a recent study. In an analysis of applied literature, Shaw et al. [80]
concluded that, at least in the fields that were considered, when measurement error correc-
tions were used, they tended to be corrections that are comparatively straightforward to
implement. Most analyses that they looked at made no meaningful correction for the im-
pacts of measurement error, and when researchers did, they tended to leverage techniques
which are less mathematically principled but far more accessible. These findings, along-
side the aforementioned research-practice gap, underscore the importance of considering
accessibility at the stage of methodological development.

Against this backdrop, this thesis will balance two goals in the pursuit of understanding
and addressing the impacts of measurement error in the estimation of optimal DTRs. On
one hand, we wish to rigorously approach these problems and provide principled guidance
which is theoretically grounded. On the other hand, we wish to approach these problems
using methods which are comparatively straightforward, with an eye towards those which
can be made to be accessible. This desire for “rigorous accessibility” will be extended
beyond the context of measurement error in DTRs, as we try to achieve this balance
within the context of general measurement error correction procedures. While the focus
will be on ensuring that the techniques are comparatively straightforward to implement,
at least for those who are generally familiar with the subject matter that we cover, the
primary aim of this thesis is the mathematical justifications for these accessible techniques.
As such, much of what follows will focus on communicating the mathematical ideas, rather
than serving as a tutorial for the implementation.

This thesis is structured primarily around four different questions.

1. In Chapter [3] we introduce methods for generalizing some commonly applied mea-
surement error correction techniques, so that they are useful in a wider range of
settings. These generalizations were initially motivated through shortcomings with
the existing techniques, when attempting to apply them to data used to estimate op-
timal DTRs. We present the results generally here in service of the goal of accessible,
defensible methods for measurement error correction.

2. In Chapter [ we develop methods for extending a commonly applied measurement
error correction technique to the case where the measurement error is not assumed to
be normally distributed. Just as with the previous point, these results are motivated
via problems observed in actual data. They are presented generally, as a way of
broadening the settings in which these techniques can be applied with principle.

4



3. In Chapter [0 we investigate the impacts of, and propose corrections for, measurement
error in the estimation of an optimal dynamic treatment regime. Specifically, this
chapter considers the problem of errors-in-variables, for the factors that we wish to
use as tailoring variables to cater treatment recommendations with. In this chapter
we propose a correction procedure that permits the valid estimation of an optimal
DTR when tailoring covariates are subject to measurement error.

4. In Chapter [7| we consider measurement error in dynamic treatment regimes, where
the errors are in the assigned treatments. We consider this as a problem of nonad-
herence, where an individual may not (correctly) take their prescribed treatment and
so there is a disconnect between the recorded treatment in the available data, and
the true treatment that the individual took. In this chapter we explore the impacts
of this setting, and describe a method for correcting for the bias that this form of
measurement error introduces.

Within each of these chapters we first motivate and contextualize the problem, before
briefly presenting the proposed techniques in a summarized manner, indicating the key
implementation details. Following this, we explore in depth the theoretical concerns related
to each problem, and demonstrate the utility of the proposed methods through simulations,
and applications to real-world data analyses.

The remainder of the thesis is structured as follows. We first finish the introduction,
presenting four motivating examples: the Framingham Heart Study (FHS) [44], The Ko-
rean Longitudinal Study of Aging (KLoSA) [99], the Sequenced Treatment Alternatives to
Relieve Depression (STAR*D) |26, [76], and the Multicenter AIDS Cohort Study (MACS)
[45]. These four studies represent the four data analyses used within each of the aforemen-
tioned chapters, respectively. We introduce them as a means of motivating the problems
we will consider, and provide more details within each chapter where they are analyzed.
In Chapter [2| we discuss the methodological background required for measurement error
corrections. This includes a discussion of measurement error models, regression calibration,
SIMEX, and estimating equation correction techniques. With the background established,
Part [[ is completed with Chapters [3] and [d] Part [[]| explores dynamic treatment regimes,
starting with Chapter [5| which introduces the background methodology for DTR estima-
tion. This includes a discussion of potential outcomes, the formal DTR framework, and
optimal DTR estimation through Q-learning, dynamic weighted ordinary least squares
(dWOLS), and G-estimation. Following this, Chapters |§] and [7| are presented, building on
the introduced concepts. Finally, Chapter 8| contains a brief discussion and summary of the
presented work. Additionally, we include several appendices. In Appendix [A] we present



background theory on M-estimation, a technique used widely throughout this thesis. Ap-
pendix [B] gives proofs for all of the theoretical results throughout. Appendix [C] provides a
worked example of non-regularity in dynamic treatment regimes, a technical concern that
we address with our methods but which is otherwise mathematically involved. Appendix (D]
provides additional simulation results for the work conducted in Chapter [6]

1.3 Motivating Examples

1.3.1 Framingham Heart Study

The Framingham Heart Study is a large cohort study, which investigates the development
of coronary heart disease (CHD) [44]. In the measurement error context, systolic blood
pressure (SBP) is typically treated as an error-prone variable, and interest concerns the
impact of the long-term average systolic blood pressure on the development of CHD [T7].

The subset of the data that we will analyze follows 2876 individuals, aged 32—69, across
three separate examinations. We take the patients’ sex, age, and smoking status to be
error-free, and assume that the serum cholesterol levels and systolic blood pressure are
prone to error. These data are subject to incomplete replication. Of the 2876 total par-
ticipants, systolic blood pressure measurements were available for all patients at the first
visit, but missing for 153, and 390 patients at visits two, and three respectively. For choles-
terol, at visits one, two, and three, there are 26, 256, and 538 patients without replicate
measurements respectively.

Measurement error techniques are required to accurately analyze the FHS. This is be-
cause research interest is in the impact of long-term average SBP and serum cholesterol
on CHD. However, long-term averages are typically immeasurable quantities. The mea-
surements which are taken at clinical visits will be subject to measurement error. Blood
pressure, for instance, is known to have both daily, as well as seasonal variation, distorting
the measurements at any one clinic visit [7]. While previous analyses that we follow typi-
cally assume that each measurement of the underlying quantities corresponds to a repeated
measurement, subject to the same error process, these data demonstrate that this is not
the case. As a result, this study provides a comparatively simple example for motivating
the need for relaxations to the assumptions made in replicate-based measurement error
corrections. Specifically, we will use these data to motivate measurement error corrections
that function based on any set of proxy measurements of the truth, rather than relying on
these proxies to follow the same distributions.



1.3.2 Korean Longitudinal Study of Ageing

The Korean Longitudinal Study of Ageing is a longitudinal survey which was started
in 2006, and follows South Korean citizens who are aged 45 and older. The survey is
conducted by the Korea Employment Information Service, at two-year intervals, and seeks
to determine the health effects of aging. Complete details regarding the survey are available
on the study’s website: https://survey.keis.or.kr/eng/klosa/klosa01.jsp.

The sample of the KLoSA that we consider follows from the analysis of Xu, Kim, and
Li [99]. We consider a sample of 9842 individuals, with an interest in determining whether
body mass index (BMI)E] is predictive of hypertension in this population. However, within
the KLoSA most individuals self-report their body weight and height, which is then used
to compute their BMI. For a sub-sample of 505 individuals we have clinical measurements
of these quantities in addition to their self-reported values. From this we can see that,
not only is there substantial error present in self-reported information, but also that these
errors are far from normally distributed. Many commonly applied correction techniques
assume that errors are normally distributed; the KLoSA makes clear that this is not always
a defensible assumption.

As a result, in conducting this analysis, measurement error techniques which can use
validation data, and which do not assume normality of the errors are required. We use
this setting to motivate a nonparametric version of a commonly applied measurement error
correction technique, simulation extrapolation.

1.3.3 Sequenced Treatment Alternatives to Relieve Depression

The STAR*D study was a multistage randomized controlled trial, comparing different
treatment regimes for patients with major depressive disorder. [26], [76] The study was split
into four levels (with level two further subdivided into two sublevels) where, at each level,
different treatment options were available to patients based on preference and progression
through the study. At level 1, all patients were prescribed citalopram. The patients who
entered the second level had seven treatment options available, characterized by ‘switching’
from citalopram to one of four other treatments options, or ‘augmenting’ treatment by
receiving citalopram alongside one of three new treatments. The patients who continued
to progress into levels three and four were offered similar treatment options. This is
summarized in Figure [I.1}

2 An individual’s BMI is given by their weight (in kilograms) divided by their height (in metres), squared.
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Level 2 “Switch” treatments: BUP, CT, SER, or VEN
“Augment” treatments: CIT + (BUP, BUS, or CT) \
X
Level 2a If switched to CT in Level 2: BUP or VEN > Follow-up
,| Level 3 “Switch” treatments: MIRT or NTP
“Augment” treatments: previous treatment + (Li or THY)

L‘l’

Level 4 Switch to TCP or MIRT + VEN

Figure 1.1: A flowchart (from Chakraborty and Moodie [14]), demonstrating the possible
progress for a patient through the four phases of the STAR*D trial.

The severity of depression was measured through the Quick Inventory of Depressive
Symptomatology (QIDS) score, where assessment was conducted during each phase both
by the patient (denoted QIDS-S) and by a clinician (denoted QIDS-C). At the end of each
study phase, patients who had a clinician assessed QIDS score less than or equal to 5 were
considered to have entered remission, and were subsequently removed from the study. Only
those patients who had not entered remission were moved to further levels.

When analyzing the data, generally the focus is on levels 2 and 3 (for instance in
Chakraborty, Laber, and Zhao [I3]). The treatment options are simplified into those which
contain a selective serotonin reuptake inhibitor (SSRI) and those which do not. The goal
of the study is to determine the best treatment options to reduce a patient’s QIDS score,
where their treatment preferences and starting symptomatology are taken into account.
There are 283 patients in the sample who have all necessary measurements taken.

STAR*D motivates the need for measurement error techniques in the analysis of DTRs.
Truly assessing the severity of depression in a patient is a task which, intuitively, may be
subject to error. Since both the patient and the clinician take QIDS measurements, we can
(and do) see that there is a disparity between these measurements in general, meaning that
at a minimum, one of the two is error-prone. Despite this, errors have traditionally been
ignored in the analysis of these data, motivating the questions we are seeking to answer.



1.3.4 Multicenter AIDS Cohort Study

The MACS study was a longitudinal cohort study investigating the impact of the HIV-1
infection in gay and bisexual men, which ran from 1984 to 2019 [45]F] The study con-
tained information on over 7000 men, and collected biological and behavioural data from
participants every six months. The information collected ranged from demographic and
psychosocial characteristics, through to detailed lab reports on blood samples from the
individuals. While not specifically designed for the purpose of estimating a dynamic treat-
ment regime, these data can be viewed as an observational study for assessing treatment
options for patients with HIV /AIDS.

We consider an analysis of a subset of these data which are publicly accessible, and
which look at a particular antiretroviral treatment, Zidovudine (AZT). The subset we use
consists of information from 2929 patients, representing a total of 9316 visits. We consider
a two-stage DTR regarding the timing of AZT prescription. We want to assess whether
a particular patient should be started on an AZT regimen, at a given clinical visit, based
on relevant demographic characteristics, as well as on the results from their lab reports.
The primary outcome of interest is the CD4 cell count. CD4 cells are important cells for
measuring the severity of an HIV infection as the virus attacks and destroys the cells.
The fewer cells present in a patient’s blood, the more severe the infection has grown. Our
analysis primarily draws on that of Wallace, Moodie, and Stephens [96].

Starting in 1996, the MACS study began to collect information regarding patient ad-
herence to treatment. These data demonstrate that, for a subset of the patients in our
sample, we can see that adherence to prescribed AZT therapy is not perfect. As a result,
an analysis which uses the prescription of AZT as the relevant factor will be subject to bias
induced from the error in this variable (when used as a proxy for treatment itself). Non-
adherence like this is a common problem across many studies, particularly when they are
observational, and treatment is self-administered. Interestingly, the nonadherence present
in the study is minor, and so an analysis of the MACS study serves as an indication of the
importance of developing methods to account for the impacts of nonadherence.

3As of 2019, MACS and the Women’s Interagency HIV Study (WIHS) combined to form the MWCCS.
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Chapter 2

Methodological Background:
Measurement Error

In this chapter we formally introduce measurement error. We begin by discussing measure-
ment error models, which capture the set of assumptions we make about the mathematical
properties of error. We then introduce the data requirements for addressing measurement
error. We discuss in detail both regression calibration and SIMEX, and introduce tech-
niques for correcting for the impacts of measurement error based on unbiased estimating
equations. We then discuss misclassification, which generalizes the concept of measurement
error from a continuous setting to a discrete (or categorical) setting.

For the context of measurement error, we consider interest in a random variable X,
which is not directly observable. In place of X, we observe X*, which is called the surrogate
(or observed version) of X. We also describe X* as a proxy measurement. We say that X
is error-prone. When interest lies in a numeric outcome (such as is the case with regression
models), we take the outcome to be the random variable Y, and assume that it is measured
without error. All other variates of interest, which are not subject to error, are denoted
Z. We use U to represent the error process. That means that U is generally unobservable,
and we are only interested in U to the extent that it distorts our measures X* of X. For
ease of exposition, we use notation which implies scalar values for these quantities, though
most of the presented material is applicable to vector-valued variables.

When considering misclassification, we remain interested in a random quantity X which
takes on discrete or categorical values. Generally, X is unobservable and in place we observe
X*, where X* may not equal X. Because X and X* are assumed to be discrete, we do
not conceptualize the error process as U, but rather consider a probability distribution
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that dictates how the misclassification process occurs. Again, we are interested in the
misclassified measurements only to inform us of the true, underlying relationships. The
selected notation is (once again) scalar-valued, but can be readily expanded to vector-
valued random quantities as well.

2.1 Measurement Error Models

Typically the source of measurement error is considered irrelevant, except insofar as the
mechanism may inform what mathematical models are justifiable. We tend to focus on
classifying measurement error based on how it will be modelled, the so-called measurement
error model. Generally, a measurement error model refers to the collection of assumptions
that define how measurement error impacts our observations. While it is possible to con-
ceive of many such assumptions, in practice several measurement error models are typically
considered. These can be broken down based on structural and independence assumptions.
Briefly, we will make assumptions regarding;:

1. Whether we wish to treat the true values, X, as random quantities (called structural
modelling), or as fixed parameters or random quantities with unspecified distributions
(called functional modelling).

2. Whether we model the conditional distribution of X* given X (called classical error
models) or X given X* (called Berkson error models).

3. The structural relationship between X and X*. For instance, we could assume that
X* = X+U (an additive model), or we could take X* = XU (a multiplicative model).

4. Whether we assume that our error process and outcome are independent (called
non-differential error) or not (called differential error), given the true covariates.

5. The distributional and moment properties of U, for instance, we may assume that
E[U|X] = 0 (for an additive model), F[U|X] = 1 (for a multiplicative model), or
var(U) < co. Some methods may impose normality on U.

The set of assumptions that are made with respect to these properties will be referred
to, collectively, as a measurement error model. The literature tends to focus on non-
differential, classical, additive models, with or without distributional assumptions on U.

Before discussing the specifics of these assumptions, we need to differentiate between
two philosophies: structural and functional modelling. Our introduction lends itself to
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the structural approach, where the true values are simply seen as unobserved random
quantities. In the functional approach, all inference is conditional on X. In this sense we
can think of the unobserved true values as parameters instead of random variables. Certain
correction techniques require taking one approach or the other, and certain techniques
can be framed in both. Generally speaking, structural approaches have the drawback of
requiring (nearly) correct distributional modelling, but provide more efficient estimators
when this is possible. The functional approach is robust to these assumptions, but may be
less efficient [I0T]. We will take the structural approach for exposition. That is, we will
assume that the underlying, true quantity X is a random quantity, and we wish to make
inference regarding its distribution.

Given a structural framing, it is often natural to think of X* as a version of X that
has been perturbed by U. Consider the measurement of blood pressure, where it seems
likely that our measurement is the combination of the true blood pressure and the noise
process. In other settings, it may be more reasonable to assume that X is a version of X*,
perturbed by U. For instance, if we are concerned with the impact of herbicides on plant
growth, then we may expose plants to a known quantity of herbicide [75]. The dose of
herbicide that ends up on each plant will likely not be precisely what we intended, leading
to X being a perturbed version of X*. The former is classical error, and the latter Berkson
error. Our focus will remain entirely on classical error.

In terms of structural assumptions relating X and X*, we could conceive of any function,
say X* = ¢g(X,U). In practice, most of the measurement error literature assumes that X* =
g(X,U) = X + U. While presenting existing methods, we will make this assumption of
additive error. However, one key problem we will address in this thesis concerns broadening
the class of structural assumptions that common methods can accommodate.

When interest lies in an outcome Y, error correction techniques tend to require the
assumption of non-differential error (that is, Y and U are taken to be conditionally in-
dependent, given X). This may not be reasonable if, for instance, Y is measured prior
to X*, such as may be the case where X* is self-reported smoking behaviour and Y is a
lung cancer indicator |7]. This thesis will assume non-differential error. Additionally, we
often want our measurements to be unbiased in the sense that E[X*| = E[X], or that
E[X*|X] = X. This amounts to assuming that E[U|X] = 0 in the additive case, and that
E[U|X] =1 in the multiplicative case. We often strengthen this and assume that U and
X are independent, with E[U] = 0 (in the additive case). There may be situations where
taking a strict distributional assumption (typically U to be normal) is required.
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2.2 Data Requirements for Error Effects Correction

In order to correct for the effects of measurement error we require additional information
to determine the size and structure of the error [7]. It may be the case that there is existing
knowledge of the error distribution, such as having an estimate for var(U) based on past
research. However, we usually rely on the presence of additional data which we can exploit
to estimate the required parameters. There are four main types of auxiliary data:

1. Internal Validation data: For some subset of the sample we observe the complete
set of (Y, X, X*). This allows for us to model the relationship between X and X*
explicitly, and correct for the observations without a corresponding X value.

2. External Validation data: In addition to our sample observing (Y, X*), we have
an external sample where we have observations for (X, X*). This allows us to model
the relationship between X and X* explicitly in the external sample, and transport
this to the main sample.

3. Replicate data: For some subset of the sample we observe multiple values of X*.
This allows for us to use decomposition of variance techniques to determine the size
and structure of the error.

4. Instrumental data: For some subset of the sample we observe an additional co-
variate 7', which is related to both Y and X*, in an exploitable way (see below).

Validation data are ideal, but are relatively uncommon in practice. An external validation
sample is useful only when we are willing to make a transportability assumption, taking
the measurement error mechanisms to be the same in the main study and previous valida-
tion sample. Replicate data are more commonly found, and are particularly useful when
assuming classical error models.

A variable T is called an instrumental variable if (1) it is not independent of X, (2)
it is uncorrelated with the error U, and (3) it is uncorrelated with the residual error in Y
once accounting for X (that is, 7" and Y — E[Y'|X] are uncorrelated) [7]. In this case, T
is related to Y and X* only through X. This allows for modelling of T" given X*, which
can in turn be used to correct for the effects of error [7, 30, [86]. It is not always easy
to verify whether the assumptions of an instrument are met, and assuming a variable is
instrumental erroneously can cause significant issues in an analysis [7].

When auxiliary data are not available, and when there is no knowledge of the error
distributions, it may still be possible to estimate the impact of measurement error through
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sensitivity analyses [101]. In this case, we take a number of plausible measurement error
models and the parameters which specify them, and correct our analysis assuming that
they are the true measurement error models. From here we can see how sensitive the
results are to varying degrees of measurement error, allowing some quantification of the
uncertainty in our analysis. We will make different assumptions regarding the availability
of auxiliary data, depending on the specific correction we are discussing.

2.3 Correcting for the Effects of Measurement Error

It is common to categorize the many existing correction methods on the basis of under-
lying methodology. For instance Fuller [30] summarizes corrections for linear models, and
Carroll, Ruppert, Stefanski, and Crainiceanu [7] work with nonlinear models. For the pur-
pose of this thesis, a separate distinction will be of particular importance: whether the
correction aims to be consistent or approzimately consistent. Consistency is often achieved
in the measurement error literature through either complex calculations or strong assump-
tions. Particularly with our focus on precision medicine, there are circumstances where
easy to implement methods which provide some protection against the negative impacts
of measurement error are preferable to exact methods which are cumbersome to use. This
is especially the case when methods cannot be implemented in standard software. For this
thesis, much of our focus will centre on the approximately consistent methods of regres-
sion calibration [10], B1] and simulation extrapolation [16]. We will also consider exactly
consistent techniques based on unbiased estimating equations [61], 101 [7].

2.3.1 Regression Calibration

Regression calibration[J10, B1] functions by posing a model for X, given X*, and then
using this model to impute values of X, which can be used in a standard analysis. If
a validation sample were available, then this can be achieved through direct modelling.
Here, we would directly model X from X*, filling in the records which do not have an
observation. In this setting regression calibration can be viewed as an unsophisticated
imputation technique since X can be considered missing [7]. If instrumental data are
available, and the instruments are unbiased, then it may be the case that regressing T on

'In the measurement error literature, the phrase “regression calibration” has been used in a variety of
different ways, applying to methods which are more or less related. Our terminology is taken from more
recent monographs [7, [6l, [TOT].
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(X*,Z) is the same as regressing X on (X*, 7). This presents another direct modelling
problem.

When there is no validation sample taken, and when unbiased instruments are not
readily available, it may still be possible to model E[X|X* Z]. One common technique
for doing this, when replicate measurements are assumed to be available, is through the
use of the best linear unbiased prediction (BLUP). The BLUP approximates E[X|X*, Z]
as the unbiased, linear function which minimizes the mean squared error (MSE). If we
consider linear estimators of X, we take X = p+ BX*+~Z, and select (u, 3,7) such that
E[(X — X)? is minimized. Taking s to be E[A], and S 45 as the covariance between A
and B, the optimal parameters solve

px — p— Buxs — Yz
Yxx+ — BEx+x+ —y2zx+| =0.
Yxz —PBExz —7Xzz

If we assume classical, additive measurement error, such that
X"'=X+U, (2.3.1)

with F[U|X] = 0, then some of these terms can be simplified. In particular, px- = px,
Yxxr = 2xx, and Yzx+ = Xzx. The closed form estimator for X is then

-1
> Yxex+ XXz X* — pux
X =px + [Sxx Zxz] { S Zzz] { 7, } : (2.3.2)

This expression is referred to as the BLUP.

All required parameters in Equation can be consistently estimated in a replicate
sample. It is also worth noting that if X and U are both normally distributed, then X
is exactly E[X|X*, Z]. Otherwise, if the measurement error variance is sufficiently small,
this will provide a reasonable approximation to the mean of X given Z and X*[10)] E| We
can assess the accuracy of this model using standard regression diagnostics. Consider
two replicates available, denoted X7 and Xj. Assuming that E[X|X7] = p+ X} gives
E[X{|1X;] = E[X + Uy|X5] = p+ BX;. A symmetric argument applies to E[X;|X{]. A
linear conditional mean, E[X|X7], induces a linear mean in E[X7|X[].

If the mean is sufficiently linear so that X provides a reasonable estimate for the
conditional mean of X given {X*, Z}, then regression calibration proceeds by conducting

2In Chapter [3| we quantify how reasonable this approximation is when normality is not assumed.
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the desired analysis, replacing X with X. Thus, if we are interested in some parameter ©,
which indexes the distribution of Y given { X, Z}, expressible as a function © = O(Y, X, 7),
then the regression calibration estimator is computed as Orc = O(Y, X, 7).

Depending on the precise form of (:), and on the quality of the approximation of X
for E[X|X*, Z], there are some consistency guarantees that can be made. If we assume
that the BLUP consistently estimates the conditional mean, and that O is a consistent
estimator, then, if © is linear in X, Opc is unbiased and consistent for © [101], [7]. In a
log-linear GLM, under certain 1ndependence assumptions, the slope parameters will all be
consistently estimated but the intercept will not be [7]. In many logistic regression models,
the bias of the estimator will be substantially reduced. More importantly, if a logistic
regression model is fit with the intention of interpreting the probabilities, rather than
the regression coefficients themselves, then the regression calibration correction provides a
reasonable approximation. Defining expit(z) = (1 + exp(—z))!, then

. ) Bo + B E[X|X*, Z]| + 5,7
P(Y:1|X,Z)zexp1t{[ 0 X 2 7z

1+ 5By var (X| X*, Z) Bx]

assuming that P(Y = 1|X, Z) = expit (5 + B5x X + 5,72) [1].
g ) p X Z

If the effect size of X or the covariate variance is sufficiently small, then

1 /
— B var (X| X", Z
1. 72 BX ( | ) ) BXa
is near zero, and the denominator in the approximation tends to 1. If X = E[X|X*, Z] then
the estimated probability will be approximately correct. We refer to regression calibration
as approximately consistent, with these consistency claims in mind.

Assume that we have n individuals, each with k; replicate measurements denoted
X5, ..., X, for i =1,...,n, where each of these measurements are assumed to be inde-
pendent and identically distributed (iid), coming from a classical additive error model. We
also assume that {Y;, Z;} are measured for all individuals, and are error free. Then, we wish
to define X; as the best linear approximation to E[X;|X;, Z;], where X, = T Doy X s
the i-th individual sample mean. The following quantities are used as plug-in estimators

for Equation ({2 . Using these estimators, and Equatlon , the regression calibra-
tion technique computes these quantities, computes X for each 1= 1 ,n, and then uses
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2.3.2 Simulation Extrapolation

Simulation extrapolation (SIMEX) is a method that operates by simulating additional
measurement error, to determine the impact that this additional error has on the estima-
tors, and then extrapolating this to the case where there is no error at all. Assume that
the measurement error variance is known and constant. Our interest is in estimating O,
through a consistent estimator (:)(Y, X, Z). To begin, we generate a sequence of random
variables X7;(\) = X} 4+ vV Aoy, where vy, LN (0,1) independent of all other quantities,
and A\ is a given positive constant.

We compute @b()\) = @(Y, X; (M), Z), and repeat this process across b = 1,..., B, for
some sufficiently large B. We then define ©(\) = B~} P o(Y, Xy (X), Z). This serves
as a consistent estimator to E[O,(\)].
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This process is repeated over a set of A = {\1, Ao, ..., Ay}, generating pairs of observa-
tions {(A1, ©(\)), - .., (Aar, ©(Axr))}. We then posit a functional model for O(\) = G(\),
and call g the ea:tmpolant Taking the set of estimates, we fit G, giving G (A). Finally, we
compute Ospex = G(—1). This is sensible since var(X;;(M\)|X) = (1 + \)oZ, which takes
a value of 0 when A = —1. This procedure is known as the parametric SIMEX [16], 21].

In the event that o7 is unknown there are two common extensions. The first is to use
an estimate of o7, either computed through the use of replicate measurements (as was the
case for regression calibration), or from an external source. Alternatively, if there are iid
replicates available, there is a related but modified procedure, called the empirical SIMEX
[21]. The empirical SIMEX also has the advantage of accommodating heteroscedastic errors
across individual observations, a trait which is not shared by the parametric SIMEX.

The empirical SIMEX functions by taking random contrasts of the replicate measures
in such a way that these contrasts exhibit the same distributional properties as X;(A).
Consider a set of ¢,; = (¢p1, ..., Cpx, ), such that 2;21 cpi; = 0 and Z] ) cb” 1. It can

be shown that
sz X +~/ Zcbz,] INE

will exhibit the same moment properties as the previous definition of X};(A). As a result,
instead of generating random errors to add to X*, we could sample random values for c.

iid .
To do so, one can generate v, 1, ..., ~ N(0,1), and computing
o Vyij — vbﬂ'
Cojij =

\/Z] 1 ybrlv] Vbz)

fulfills the necessary properties [2I]. This method can be used in place of the previously
discussed method for generating X;;()), and otherwise SIMEX proceeds as described.

Generally, the reliability of either of the SIMEX procedures is determined by the quality
of the extrapolant used. One of three forms are typically applied for the extrapolant. All
three of these forms will be exact for certain models, assuming the underlying errors are
normal [16].

1. The linear extrapolant, taking G(\) = a + bJ;

2. The quadratic extrapolant, taking G(\) = a + b\ + c\?;
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3. The nonlinear extrapolan taking G(\) = a + cf;/\;
where a, b, and ¢ are the parameters. In many settings the exact form the extrapolant is
unknown. In these cases, for A > 0, the analyst can generate arbitrarily many data points
to test the fit of the curveﬁ The nonlinear extrapolant is approximately correct for a large
class of models, often working fairly well.

Like regression calibration, SIMEX is an “approximately consistent” correction tech-
nique. The SIMEX estimator, under certain assumptions, is consistent for a quantity
which will be approximately equal to the true estimator. If we assume that X and U are
jointly normal and independent, and that the estimator © is sufficiently smooth [87], then
the SIMEX estimator is a consistent estimator whenever G is correctly specified. If we
regard the estimator © as a functional over distributions, denoted T, then we have that
© =T (Fy.x.z), where Fy x z specifies the joint distribution of (Y, X, Z).

Taking * to denote the convolution operator, we get that
Fy xn,z = Fyx,z * Po 14202 05

where ®,; . denotes the distribution of a normal random variable with mean 0, and co-
variance matrix with (a, b, ¢) on the diagonal and zeros elsewhere. Assuming continuity at

—1 of G()\), we get that (:)SIMEX =G(-1) = limy_, @(/\) If the extrapolant is correctly
specified then G(A) = O(A) = T(Fy,x,z * Po,11)02.0), and we get

Ospx — Alim1 G(\) (by consistency of the extrapolant estimation)
%_

— /\liml T(Fy,x,z * Po14x02,0)  (by the correctness of the extrapolant)
_>_

=T (}\lim1 Fy x 7z * @0’(1“)02[]’0) (by smoothness or continuity of T)
_}_

=T (Fyxz) (by normality)
=0 (by definition of T).

These assumptions are fairly strict in the sense that:

3Note the phrasing “nonlinear extrapolant” is taken from Cook and Stefanski [I6] and Carroll, Kiichen-
hoff, Lombard, and Stefanski [8]. For clarity, we use the same phrasing. The quadratic extrapolant is of
course nonlinear in A, though the descriptor can instead be taken to referring to the parameters (as-in,
this extrapolant cannot be fit with ordinary least squares).

4This is limited in practice to the computational feasibility, but, it is an affordance not typically available
when fitting models to “real” data.
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1. normality is required for the distribution of X () to approach that of X as A — —1;

2. the estimators need to be sufficiently smooth so as to be able to interchange limits;
and

3. the extrapolant needs to be correctly specified.

The requirement of normality has been previously discussed; even with an otherwise
correct extrapolant, deviations from normality can render the SIMEX estimator unreliable
[102, 50]. We will explore the performance of SIMEX more thoroughly, and propose an
extension to it which relaxes the need for normally distributed errors, in Chapter [

2.3.3 Estimating Equation Approaches

Both regression calibration and simulation extrapolation are attractive owing to their broad
utility. These techniques are designed to be applicable to most analyses, and the effects
of measurement error are addressed separate from estimation itself[’] This is an attractive
property, particularly in applied settings where regression calibration has seen the largest
uptake of any measurement error correction technique [80]. However, as was previously
indicated, these methods are generally only approximately consistent. Being designed to
be broadly useful has the drawback of these correction strategies not making complete use
of all of the information in every problem domain.

Instead of focusing on techniques that work well for a wide variety of estimators, much
of the measurement error literature focuses on correcting for the effects of errors in specific
settings. These corrections typically require specific mathematical derivations, custom
software to fit, and are applicable only in a narrow set of models. This specificity, however,
is often associated with improved theoretical properties.

One common approach to developing such methods is through the use of unbiased
estimating equations (see Yi [101], Carroll, Ruppert, Stefanski, and Crainiceanu [7], and the
references therein for a very thorough discussion). Outside of measurement error, unbiased
estimating equations (or M-estimators) provide a framework for generalizing likelihood

5There is a parallel between these measurement error correction techniques, and imputation for missing
data. Imputation corrects for the effects of missing data separate from the estimation procedure, and while
it requires certain assumptions about the missingness (and may not always be appropriate), it is widely
applicable and correspondingly sees much application.
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based estimatorﬂ [32, 23], 85 B]. An M-estimator for a parameter, ©, is the solution, (:),
to the empirical equation

nty (00 Y X, Z) =0,
i=1

where E[U(00;Y,X,Z)] = 0 when Oy = © (the true value). Under regularity condi-

~

tions, such an estimator © is consistent and asymptotically normal (CAN) for ©. A more
thorough account of unbiased estimating equations is available in Appendix [A] where we
emphasize the results which our work leverages.

This brief introduction to classical estimation procedures serves to motivate a large
class of corrections in the measurement error literature. Unless otherwise specified, we will
assume that interest lies in characterizing the conditional distribution of Y given {X, Z},
parameterized by ©. We express this conditional density as f(y|z,z;0). We assume
that there exists a conditionally unbiased estimating function, ¥(-), for O, in the sense
that E[V(0;Y, X, Z)|X, Z] = 0, when this expectation is taken with respect to the true
conditional model. The idea of using estimating equation techniques for measurement error
correction is to modify this ¥(-) in such a way so that it is:

1. computable given the observed data; and

2. unbiased with respect to the (conditional) density that we are working with.

That is, we wish to construct a function ¥*, which takes as input {Y, X* 7}, and has
the property that, at the true value ©, E[U*(©;Y, X* Z)] = 0. Then, if we solve the
empirical estimating equation given by

1< N
n
i=1

for C:), under the same standard regularity conditions, © will be a CAN estimator. While
this general strategy can be used to derive estimators that are resilient to the effects of
measurement error, the details need to be worked through in any specific setting.

In Section 2.5 of Yi [101], several approaches to accomplishing this goal are described
in detail. Each of the different techniques is applicable in some settings, depending on the
available data, and the form of the estimating equation. While there are various trade-offs

6Tn addition to, for instance, least squares estimators; for our context, thinking of M-estimation as a
generalization of likelihood suffices.
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between these techniques, for this thesis it suffices to know that they all operate under the
same guiding principle. Ultimately, we wish to construct a new estimating function which
is computable based on the observed data, and which will be unbiased.

2.3.4 Moment Reconstruction

While the core focus of this thesis will make use of regression calibration, simulation ex-
trapolation, and estimating equation techniques, we also briefly consider moment recon-
struction. Moment reconstruction is a plug-in based technique, like regression calibration,
which provides consistency in a wider class of models [29]. This consistency, however, is
achieved through computation that is case dependent, and so it cannot be generally im-
plemented in standard software. Moment reconstruction is similar in spirit to regression
calibration, where analysis is conducted using XMR substituted for X. Here, XMR is an
estimated version of Xyg selected such that the joint distribution (Y, Xyg) ~ (Y, X). In
general it will be the case that finding Xyr such that these distributions match exactly is
a challenging problem. However, if instead of exactly matching the distribution we seek
to only approximately match the distribution, say, by having the first two joint moments
identical, then the problem is made tractable.

In their paper, Freedman et al. [29] prove that
Xur(X*,Y) = E[X*|Y](I - G) + X*G,
will match the joint distribution up to the second moment. In this expression,
G = {cov(X*|Y)} 2 cov(X|Y) V2,

where A'/? denotes the Cholesky decomposition of A. Then, @(Y) is computed based on
estimates of these quantities, which will generally depend on the assumed error model, in
addition to an estimate for E[X*|Y]. When these quantities are consistently estimated
then, asymptotically, ()A(MR, Y') will match the first two moments of (X, Y’), and intuitively
any procedure which relies on only the first two moments of a distribution will perform well
with this correction. In the event that the variables are distributed according to a mul-
tivariate normal then the joint distribution is entirely specified by the first two moments,
and the resultant correction will be consistent.
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2.4 Misclassification Models

The discussion throughout this chapter has assumed that the error-prone variable of inter-
est, X, is continuous. If we are instead concerned with a discrete or categorical random
quantity, then we will typically refer to this setting as misclassification. When a variable
of interest is misclassified, this simply means that the observed version, X*, does not equal
the underlying truth X. The same types of categorization relating to measurement error
(classical versus Berkson, and differential versus non-differential) can be made in the case
of misclassification.

Instead of the structure of error being defined in terms of the distribution of a noise
term, U, we instead focus directly on the probability that X is misclassified. Depending
on the specific scenario, there are two common ways of modelling the misclassification. We
can specify the misclassification probabilities, which are defined as

P(X* =z"|X = x). (2.4.1)
Alternatively, a model for the reclassification probabilities, given by
P(X =z|X* =z"), (2.4.2)

can be used [I0I]. The use of these models is analogous to the use of the classical error
assumption and the Berkson error assumption, respectively.

In order to decide which framing is more appropriate, it can be helpful to consider
the data generation mechanism. Suppose that the true value of X is generated first (say,
through the actions of a participant). Then, if X* is reported afterwards, informed by
the truth, using the misclassification probabilities, Equation , is natural since the
underlying model generates X*|X. If, on the other hand, the observed value X* is an
antecedent of X, then it is likely more fruitful to consider the reclassification probabili-
ties, Equation , instead. An example of the former scenario would be self-reported
smoking status. Here, the true value (X) is based on the patient’s underlying behaviour,
while the observed value (X*) is reported after the fact; it is more natural to think of
how someone’s smoking behaviour would impact their reported smoking behaviour than
the reverse. An example of the latter scenario would be related to medication adherence.
If a patient is prescribed a particular treatment, this prescription may be recorded as the
misclassified response (X*). Then, the true observation (X) would depend on whether
the individual fills their prescription, whether they follow the instructions associated with
taking it, and so on. In this case, it is more natural to think about how the prescription
(X™) impacts the adherence behaviour (X).
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While some problems lend themselves to one framing or the other, if it is possible to
access the marginal models then both framings can be used equivalently. That is because

P(X* =z*)
PX*=z"X=2)=PX=x|X"=0")—77——-
(X' =X =) = P(X = alX" =o") g,
so long as P(X = z) # 0. Whether the misclassification is thought of through misclassi-
fication or reclassification probabilities, we can also consider the relationship between the
outcome and the misclassified variable. We still refer to misclassification where Y 1L X*| X
as non-differential, and otherwise we call the misclassification differential.

A particularly important case for consideration is when X and X* are binary. In this
case we can specify the misclassification model completely using two values, the positive
predictive value (PPV) and the negative predictive value (NPV)[] The PPV and NPV are
respectively given by P(X* = 1|X = 1) and P(X* = 0|X = 0). Here it is equivalent to
consider E[X|X*| = P(X = 1]X*), as was common in the measurement error setting.

2.5 Correcting for the Effects of Misclassification

While several different correction techniques are relevant for this thesis with respect to
measurement error, for misclassification our focus is on estimating equation approaches.
The underlying idea for addressing misclassification via estimating equations is equivalent
to that with measurement error: an altered estimating equation U* is found such that
E[U*(Y, X*, Z)] = 0. Just as with measurement error, this is going to typically rely on the
specific problem and the underlying assumptions made with regards to the misclassification
mechanism.

While our focus will be on unbiased estimating equations, there exist several more
general techniques for adjusting for misclassification in a discrete variatef] Kiichenhoff,
Mwalili, and Lesaffre [51] present generalization for the SIMEX technique to account for
misclassified variables through a similar procedure: first additional misclassification is
simulated, and then the relationship is extrapolated back to the case of no misclassification.
Carroll, Ruppert, Stefanski, and Crainiceanu [7] discuss the use of likelihood and quasi-
likelihood techniques to account for misclassification in predictors. They also discuss the

"We can also use the commonly reported sensitivity and specificity to characterize the model.

8Kiichenhoff, Mwalili, and Lesaffre [51] observe that “While measurement error models have received
much attention in the literature there are only a few papers on misclassification in the context of regression
models. This is partly due to the fact that modelling misclassification is in general easier because it is
completely characterized by the misclassification matrix [...|”
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misclassification of responses, a topic which we do not address in this thesis. Yi [101]
demonstrates several examples across different domains (survival analysis, case-control
studies, multi-state models, and the misclassification of responses), with a wide variety of
techniques to address the issues that arise. The matrix [2] and inverse matrix [53] methods
are commonly used and are explored and expanded on by Morrissey and Spiegelman [57].

2.6 Measurement Error in the Example Datasets

While measurement error is a common issue across data from many domains, in this thesis
we begin by focusing on the analysis of the FHS and the KLoSA. While both of these
studies have previously been analyzed taking into account the error that is present, there
are features of the data that are overlooked by common techniques which our proposed
methods resolve.

In the FHS, as previously discussed, the primary interest is in the impact of SBP and
serum cholesterol on CHD. It has been common to assume that the SBP measurements in
the literature are replicate values, subject to a classical additive model. The assumption of
replication is violated, in practice, where Carroll, Ruppert, Stefanski, and Crainiceanu [7]
note that “... the large-sample test of equality of means has p-value < 0.0001. Thus in fact,
the measurement at Exam #2 is not exactly a replicate...”. Given that our interest is in the
long-term average SBP, it seems reasonable to suggest that each clinical measurement taken
is a surrogate measurement of the truth. We would like to allow for these measurements
to differ in terms of underlying distribution to accommodate this empirical observation.
Relaxing this assumption is the focus of Chapter [3

In the KLoSA, self-reported body weight is used to determine the impact of BMI on
an individual’s propensity towards being hypertensive. For a small validation sample, in
addition to the self-reported body weight measurements, a true clinical measurement was
taken. Looking at the distribution of errors it is clear that the errors in the distribution are
highly non-normal. Throughout Chapters |3| and |4 we discuss the ways in which common
correction techniques rely on the normality assumptions, and in Chapter [, we propose an
adaptation to the SIMEX methodology that relaxes this assumption.

These two datasets serve as illustrative examples for the measurement error problems
that we will address. The remainder of the work that follows in Part [[] presents methods for
reducing the impacts of measurement error, in a wide variety of scenarios, while accounting
for the types of data that are often observed empirically.
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Chapter 3

(Generalizations to Measurement Error
Models

3.1 Motivation for Error Model Generalizations

A recent survey of applied literature reviewed how researchers tend to address the con-
cerns of measurement error in their analyses [80]. The results of the survey suggest that
corrections for the effects of error were rarely applied, and when they were regression cali-
bration was the most widely used correction technique. The study concludes by discussing
the need for researchers to be more deliberate in their use of techniques to address the
impacts of measurement error, to better discuss the shortcomings of analyses which ignore
the impacts of errors, and to leverage the rich literature of methodological advances in
measurement, error. While these are important considerations from the vantage point of
applied researchers, it is also important to consider what is needed from a methodological
perspective to assist in the application of techniques which address issues associated with
measurement error.

The techniques which are available to correct for the impacts of measurement error are
driven largely by what additional data are available. Correction techniques are typically
defined with respect to a certain form of auxiliary data (validation samples, replicate mea-
surements, or instrumental data), and often make strong assumptions regarding the exact
error mechanism. When the assumptions regarding the auxiliary data or error processes
are violated, the application of these correction techniques can result in excess bias com-
pared to a naive analysis [7]. That is to say, it is not the case that “doing anything” is
always preferable to “doing nothing”. As a result, developing and presenting methods in
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a setting which is sufficiently general so as to encapsulate the data which are observed by
applied researchers is an important task for those developing methodologies.

It is instructive to note that regression calibration is the most widely used measurement
error correction technique observed in the literature. While regression calibration refers
to a broad class of techniques, there is a particular focus on the application of regression
calibration when replicate measurements are available. In this setting, the standard pre-
sentation uses the replicate measurements to estimate the mean and covariance structure
associated with the variables of interest, as described in Chapter 2| These estimates are
then used to construct the BLUP of the true underlying value. Central to the presentation
of the BLUP technique is the assumption that the measurement error terms are indepen-
dent and identically distributed. Oftentimes the available data would suggest that this
is not the case, where instead of the different measurements being identically distributed,
each measurement is an error-prone version of the truth.

By way of motivating example we consider the FHS [44]. As noted, the FHS has been
analyzed as though measurements of systolic blood pressure and serum cholesterol levels
from years prior serve as replicate measurements from today. However, empirically we
know that this is not the case. While these differences are small, they suggest that even
when the same instrument is being used to measure a quantity of interest, we may be
concerned with whether or not the errors are truly identically distributed. This problem
is amplified when the different measurements come from entirely different sources.

In nutritional epidemiology, for instance, a researcher may have access to multiple 24
hour recalls (24HRs), which may be analogous to the FHS blood pressure example. It is
also possible that, in addition to a 24HR the researchers have access to a food frequency
questionnaire (FFQ). In this case while both the 24HR and the FFQ may be seen as error-
prone measurements of the truth, it is unlikely that the data from these instruments can
be viewed as identically distributed replicate measurements. While regression calibration
has been presented using instrumental variables in place of replicate measurements [7],
the presentation of these methods is substantially more involved. The integration of both
FFQ and multiple 24HRs using regression calibration techniques has also been previously
studied [47]. Despite this, the uptake of these correction techniques has been minimal.

Instead of framing correction techniques around replicate measurements, or around
instrumental variables generally, we propose a middle ground that is potentially more ap-
plicable than replicate measurements and more accessible than instrumental variables. In
particular, we propose formulating the error models through the use of repeated measure-
ments. Repeated measurements capture any scenario where multiple measurements of the
truth are available which are subject to any error processes. This encapsulates the com-
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mon setting of independent and identically distributed replicate measurements, but it also
captures the setting in the FHS where the error variances shift overtime, or the joint use
of FFQs and 24HRs in nutritional epidemiology. The benefit to framing auxiliary data in
this way is that it becomes fairly easy for practitioners to assess whether available data
are repeated measurements, where it can be challenging to know whether observations are
truly replicates, and the conditions for general instruments are fairly opaque.

In addition to assumptions regarding the availability of data, there are typically strong
assumptions made regarding the structure of errors. It is common to assume that error-
prone measurements of the truth are unbiased, with errors independent of all other terms.
While these assumptions are often convenient mathematically, and can be good approxi-
mations of the truth, it is important to understand and clearly communicate how violations
of these assumptions impact the performance of the corrections.

In nutritional epidemiology, for instance, systematic biases in the errors are common
and need to be addressed for valid inference [47]. It will also commonly be the case, for
instance with self-reported body weight, that the errors are dependent on the true un-
derlying measurements [I00]. These considerations necessarily complicate the applicable
methods. Still, the prevalence with which they arise necessitates the development of ac-
cessible methods which more correctly account for this complexity, particularly if we wish
to see a strong uptake of measurement error corrections in applied literature.

With these considerations in mind, we present a generalized error model. This model
is framed around the use of repeated measurements, which may be systematically biased,
or exhibit dependency between the errors and underlying truth. Using this framing we
demonstrate that, under certain assumptions, common correction techniques (regression
calibration through the BLUP and simulation extrapolation) can accommodate a broader
range of available data than is typically illustrated in their presentation. Moreover, we
show that through simple extensions to these techniques, they can be applied to reduce
(or eliminate) bias associated with measurement error in a wide range of settings. Our
extensions of these techniques are designed to be accessible, particularly to those familiar
with regression calibration or simulation extrapolation. We demonstrate the theoretical
validity of the techniques, and illustrate how these ideas can be used for more complex
corrections as a means of making theoretically rigorous corrections more broadly applicable.

3.2 Summary of the Proposed Methods

In this chapter we propose a generalized measurement error model centred around the
idea of repeated measurements. Suppose that we wish to estimate a parameter ¢, which
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parameterizes the distribution of {Y;, X;, Z;}. In place of observing X;, we observe X
for j = 1,...,k; for each individual. Here, X7; correspond to a surrogate measurement
of the true X;, perturbed by error. To estimate # using the observed data, regression
calibration and simulation extrapolation are both appealing. Both of these methods assume
that X7 are identically distributed (meaning specifically that the errors for each surrogate
measurement follow the same distribution). If this is not the case then, supposing that x; is
not the same for all individuals, the standard implementation of these correction techniques

no longer consistently corrects the estimators, even when the other assumptions are valid.

Instead, we demonstrate that by allowing each error to be subject to its own distribu-
tion, the necessary parameters to perform regression calibration or simulation extrapolation
can still be computed. We take the standard estimators for the means, variances, and co-
variances between the observable quantities (X} and Z;). Then we use Equation (3.5.2)),
and Equation (3.5.3) if there are no Z terms and Equation otherwise, to estimate
the moment estimators involving X;. These can then be used in a standard application
of either regression calibration of simulation extrapolation. The application of these tech-
niques can apply to any individual proxy, to a weighted combination of the proxies, or to
each individual proxy before combining the resulting estimators.

If one is familiar with regression calibration, or simulation extrapolation, the only
necessary change to allow for the accommodation of non-replicated surrogate measurements
is by changing from the standard moment estimators for surrounding X;, Equations (2.3.3),
to the moment estimators outlined in this chapter. In addition to discussing the need for
these estimators, and their theoretical properties, we also show how they can accommodate
measurement error models with bias, or with multiplicative noise. We further demonstrate
how these same techniques are applicable outside of regression calibration and simulation
extrapolation.

3.3 Generalized Error Structure

The proposed generalized error structure assumes that, for each individual ¢ = 1,...,n,
we observe X[ for j =1,..., ;. Each observation is taken to be an error-prone, repeated
measurement. We begin by assuming an additive error structure, and show in Section
how multiplicative errors can be accommodated as well. For each X}, we suppose that

X5 = mnoj +m;Xi + Usj = noj + m Xi + (5jUij- (3.3.1)
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We assume that U;; is mean-zero, without loss of generality,lﬂ and that is has variance (532..

This renders UU to be a zero-mean, unit variance random quantity. The error processes
are assumed to be independent of one another (U;; L U;; for j # j'), and we assume that
Uj L {Y;, X;, Z;} for all j, where Y; is the outcome and Z; are any additional variates
measured without error. We also assumes that all quantities across individuals (for i # i’)
are independent of each other.

This proposed error model accommodates systematic bias through the 7y; terms. De-
spite the assumed independence between U;; and X;, the use of n;; allows for linear de-
pendence between the error and the truth. To see this note that Equation can be
re-written as no; + X; + [(m; — 1)X; + Uy;]. If we consider (nm1; — 1)X; + U;; as the error
term in an additive error model, then this error clearly has a linear dependence with X,
providing a slight relaxation to the assumption of error independence whenever 7;; # 1.
This error model also makes no assumptions regarding the underlying distribution of Ujj,
and allows for different variances across the repeated measurements.

While the notation used for the error models seems to imply scalar-valued variates,
multivariate random variables can be accommodated through the vectorization of each
component. The relevant means and covariance terms are denoted

E [Xﬂ = 1o; + M, o E[X];
cov (X7, X)) = n&?)zxxﬂﬁl) +1(j =1)My;
cov (X, X7) = EXX”%?)S )
cov (Z,X7) = szﬁg?

Additionally, we define E [X]* X] = noj + my o X and var (X]* X) = M;(X). Here, o
represents the Hadamard (element-wise) product, and ng) represents the diagonal matrix
with the elements of 7, along its diagonal. M; and M;(X) are matrices that will capture
the variance of the assumed error model, taking the form of M; = M;(X) = Xy,y, for the
additive structure that we have assumed. If we have a vector v = (v4,---,1,)’, then we
define the inverse vector v=' = (1/vy,---,1/1,)".

If U;; were not mean zero, it could be centred, and its mean could be absorbed into 7;.
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3.4 Multiplicative Measurement Error

Much of the existing literature on measurement error corrections assumes an additive
structure for the measurement error model. Eckert, Carroll, and Wang [24] convincingly
argue that, owing in part to the large existing literature, it is advisable to transform
measurements to a scale where the errors are additive. They go on to propose methods
of finding transformations which allow for the recovery of an additive structure. Their
methods allow for the estimation of a function h such that hA(X*) = h(X) + U, for a U
which is independent of X. Moreover, they derive these transformations without making
any distributional assumptions regarding X.

As a general rule, we recommend following the advice of these authors, and searching
for transformations to additivity whenever possible. This permits access to the rich liter-
ature of measurement error correction techniques. Moreover, their proposed methods can
find transformations which render the error distribution known. However, in the context
of repeated (rather than replicated) measurements, it is possible that one proxy measure-
ment has errors on an additive scale, and another which has errors that would require a
transformation. Moreover, it may not be known a priori whether a particular instrument
is likely to be additive or not.

The proposed error models are readily generalized to allow for a multiplicative error
structure. This framework accommodates

X35 = noj +m;XiVij = noj +m; Xa(1+ 8;Us). (3.4.1)

Here, n9;,m1,,9; and UU are as in Equation 1} This can be made multivariate using
Hadamard products in place of scalar multiplication. The presented mean and covariance
structure in Equations (3.3.2) apply in this model, where

M; =y (BIXX' o Sy, ) 15

and (d) (d)
d d
M;(X) =15 (XX 0 By,y;) 0y -

If it is suspected that many, or most, of the available repeated measurements follow a
non-additive structure, then use of transformations is advised. However, the generality of
the proposed measurement error model means that corrections within this general frame-
work can make use of variates that are measured with multiplicative error. Moreover, the
analyst need not specify whether a particular proxy is subject to additive or multiplicative
error within this framework.
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3.5 Parameter Identification

To motivate the necessary parameters in the model, we consider standard regression cali-
bration. Regression calibration through the use of the BLUP proceeds on the basis of an
assumed linear model for E[X|X* Z], where X* is a combination of replicate measure-
ments (typically, the sample mean). If we suppose that, for all individuals i, k; = k and we
define X = %2521 X5, then we can consider the relationship between X; and { X}, Z;}.
Specifically, we can make the standard BLUP argument, where we consider linear estima-
tors of X, and take X = i+ X" +~Z, such that E[(X — X)'(X — X)] is minimized. The

closed form estimator for X is given by

~ lzX*X* ZX*Z:| -1 |:X*_MX*:| (351>

X =pxt [ZXX* EXZ} Yizx«  Yzz Z =z

Suppose that, in addition to complete replication, all X;; are subject to additive noise.
Then we can view X/ as an error-prone measurement itself, given by

k k k
.1 1 1
X = m (Ezmj) x+lyu,
If we further assume that ny; = 0 for all j and that 7;; = 1 for all j, then this simplifies to
X =X+ U,

where U; = % Zle Ui; has mean zero and variance k% Z?:l (SJQ-. In this setting it is straight-

5:1 07, and as a re-
sult, 5 e xr = ) xx+ iUU /k will consistently estimate the variance of X . Taken together,
this renders the standard BLUP-based regression calibration a valid correction technique

in the general model, so long as every individual has k£ unbiased, repeated measurements.

forward to show that the standard estimator, EUU, is consistent for % >

Suppose that instead we observe partial replication, such that 1 < x; < k is not
constant across all individuals. In this case, defining X; = % >y X5 renders X[ to be
non-identically distributed across different individuals, even when all measurements remain
unbiased proxies. The concern is that



where r;; = 1 if X[ is observed, and is zero otherwise. As a result, the set of observed
proxies for each individual dictates the variance of X The estimator Xy will remain con-

sistent for & x Z i1 ], however, this quantity cannot be directly transformed into var(X};).
Thus, under the assumption of non-complete replication, with non-identically dlstrlbuted
repeated measurements, the standard regression calibration procedure fails to produce
meaningful estimates of the required correction parameters.

If some of the proxies are biased, either with ng; # 0 or 7;; # 1, then regardless of
whether there is complete replication or not, the standard regression calibration correction
will be invalid, since the simplifying assumption that px+ = px will not hold. Considering
Equation (3.5.1), taking X* to be a single error-prone proxy, we see that supposing this
model is linear, then we require an estimate for the means and covariances of {X, X 7 }.
This motivates the derivation of specific estimators for each of these moment quantities.
Like regression calibration, many existing measurement error correction techniques rely
on these types of moment estimators: any such correction is amenable to the proposed
generalized measurement error correction technique, through the following parameter esti-
mators.

While standard estimators exist for all of the observable components,

{MX;; EX;X;a Hz,%z727, ZX;Z}a

we specifically require the ability to identify px, Xx X and Xzx. In full generality, this
assumed model structure will lead to identifiability concerns. We must impose restrictions
on some model parameters in order to render the parameters estimable. We will assume
that, for some known set of 7, (1) no; = 0, (2) m; = 1, or (3) both ny; = 0 and n; = 1.
These assumptions will also capture the case where, for instance, 7y; = ¢ for any known
constant c. If ¢ is non-zero, we can take X7 — ¢, leaving us with a measurement satisfying
assumption (1). When ny; = 0 and 7;; = 1 for all j, our model reduces to that of having
r; unbiased measurements of X, from possibly different distributions.

For notational convenience, we define Jy, Ji, and Jy; to be the index sets for the
proxies corresponding to assumptions (1), (2), and (3) respectively. In this notation, Jo; =
Jo N Jy. We will assume that |Jo| > 1 and |J;| > 1. These assumptions will suffice for the
identification of the parameters, but are not strictly necessary. Under these assumptions,
we take

i | S X A 352

Jj€Jo1 j€Jo\Jo1
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If Z is not observable, then we can take

FARE) Py
. (3.5.3)

1 > Sk Sk
I#£5;1=1

Lxx: =

If Z is observable then |J;| = 1 is permissible and we take

jeN
’r]A(l) fry EXZZZX ZX%ZEZX*_‘ , (354)
J J J
1 & :
-l
Sxx; = D M Sxex;
1#4;1=1

Lemma 3.5.1 (Estimating Equations for Parameters). Take £ to be the vector of mo-
ment parameters for {X, X5,..., X}, Z}. Then, under regularity conditions, for g given as
Equation , the estimator E that solves n=' 31" 1 g(X[, Z;, &) = 0, is consistent and
asymptotically normal for the true &. As n — oo,

Vi (€-€) <5 N (0,47 BEO) AT,
where A(€) = E | 35g(X", 2,€)| and B(€) = E [9(X", Z,€)9(X", Z,€)').

Note that in order to consistently estimate these parameters when we have incomplete
replication, we have to assume that the set of replicates available for each individual are
independent of the measured variables. Under this assumption of ignorable missingness,
the j-th proxy’s parameters are computable consistently using only the observations which
have the j-th proxy available. The function that the M-estimators are based on, g(-), can
be simply modified to include observation indicators of X.

Lemma[3.5.1]is particularly useful when we consider measurement error correction tech-
niques that rely upon the moment estimators contained in & through the use of additional
M-estimators. Regression calibration and simulation extrapolation are both such tech-
niques. We can derive the asymptotic distribution for any correction technique which can
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be framed as an M-estimator involving the parameters in £.

Lemma 3.5.2 (Asymptotic Distribution of (:)) Assume that E solves the empirical esti-
mating equation from Lemma denoted gn(g) = 0, and that © is a solution to the
empirical estimating equation U, (O, E) =0, where E and © are estimating & and ©, respec-
tively. Then we have that

Vi (6-0) 5 N (0.30),

as n — 00, where Y1y = Q.A_l(@,f) B(6,6)A71(0,8)Q, for Q = [Ipxp Opxq}, A(6,¢)
is upper-triangular, and B(©, &) is symmetric. Here p is the dimension of ©, and q is the
dimension of &.

3.6 Generalization of Regression Calibration

Using the previous discussion, the BLUP based on each X7 can be computed, by taking
X* = X} in Equation (3.5.1), and applying Lemma Doing this separately across all
proxies is not likely to make efficient use of the observed data. Instead, one of two options
can be considered. The first is to define X* to be a weighted combination of X7. That is,

k *
Y Do Tig X
[ k )
> i1 Tij

where Zj?':l a; = 1. Taking this approach with o; = 1/k for all j = 1,..., k results in the
standard correction based on the mean, as discussed in the previous section. In the case of
non-identically distributed measurements, it is unlikely that this will be the most efficient
combination. Intuitively, the measures with lower measurement error variance ought to
contribute more to our proxy measure than those with higher measurement error variance.

Instead, the parameters a can be added to {u, 8,7}, and then determined during the
minimization of the BLUP. That is, we can find the parameters {u, 3,7, a} that minimize
E[(X; — X,)'(X; — X;)]. This provides the set of optimal weights in the same sense that
the BLUP provides the optimal choice of X. The downside to this technique is that it will
not be possible, in general, to derive a closed form expression for the set of weights.

Alternatively, we can view the problem of generating estimates of )?1 through an ex-
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pression given by
k
pt Y BXG 47
j=1

In the above methods we take 5, = 0 for all £ # j when we wish to use a single proxy,
and take 8; = «;f when using a weighted combination. This framing, while perhaps
less natural based on the standard regression calibration procedure, provides a more direct
method for estimating the BLUP for each individual. Working through the standard BLUP
calculations presents an estimator that is given by

-1

*
Yxrxy v Lxrxy  Uxiz XT — px;
X =px+ [EXXf e XXXy EXZ} .
XiXp v UXpXp NXLZ Xk — pxs
Yzxy v Yzxpz Xzz Z — iz

One advantage to this framing is that it immediately becomes clear how to handle
incomplete replication. The same argument can be applied to an individual with a subset
of the available observations, giving an equivalent form without the unobserved terms.
Then, for each individual the BLUP can be estimated as X;, and these imputed values can
then be used in place of X; in the analysis.

We refer to these two strategies as combining prozies or combining estimating equations,
respectively. It is our belief that for practitioners it will be more familiar to combine
proxies directly, as it more closely resembles extant methods. However, we note that
computing the optimal weights can be numerically unstable depending on the observed
data. This technique is implemented through the use of numerical optimization, and in
many situations the differences in estimator efficiency will be small. In practice, an analyst
wishing to use the proxy combination strategy can likely equally weight proxies for each
individual, supposing that they appear roughly in line with one another (as is frequently
the case). The combination of estimating equations, while perhaps less familiar, does not
exhibit the same concerns as working through the optimal weights (as it is available in a
closed form). Correspondingly, this technique, may be easier to implement in practice.

Any of these strategies can be used to compute the parameters necessary to estimate
the BLUP for each 1nd1v1dual Using this estimated BLUP, we can then take @Rc to the
be solution to U, (Y, X, Z; @Rc) = 0, where © is the parameter of interest. Conceptually,
this strategy is no different from the standard case. We model X = E[X|X*, Z] as a linear
function, and then use the estimated value in place of the truth. The core distinction
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between the standard implementation and ours is a recognition that, when X7 are not
identically distributed, when they are not universally observed, or when they may exhibit
systematic bias, an equal weighting combination ranges from inefficient to inconsistent. By
modelling each separately, sharing parameters only when appropriate, the same correction
strategy becomes applicable to a far wider range of problems.

When using the BLUP, the conditional expectation is consistently estimated only when
it is linear in the conditioning variables. In Appendix [B] Lemma is provided as a
generalization of Lemma A.1 from Carroll and Stefanski [I0]. It uses their notation for
matrix derivatives and the trace operator. Using this Lemma, we can characterize the
linearity of the BLUP.

Theorem 3.6.1 (General Form of Conditional Means). Under the generalized error models
presented, assuming that E[U|X] =0, and denoting cov(U|X = x) = Q(x) and the density
of X* as fx«(x), we have that

E[X|X*] =" {X* — 1o + 62 [Tr (%Q(x)) + Q(x)ﬁgng} + 0, (6%),

when X* =ng+mX + 0U and

EX|X*] =n" {1+ 6°[2- diag (z)) +

T o (Tr (3%?)) + Q(x)%ﬂzx*_m} (X" — 1) + Oy (59),

when X* =ny +mX (1 +U).

The term fi.(x)/fx-(x) is linear in z if and only if X* ~ N(u,o?) [10]. Since we
are conditioning on X*, we can exclude values of this ratio which are unobservable almost
surely. As a result, domain indicators can be dropped. Then, for the case of additive
errors, our conditional mean will be approximately linear if either (X*) is linear and
fi«(x)/fx-(z) is constant, or if Q(X*) is constant and f%.(z)/fx+(z) is linear. Linearity
in the multiplicative case is more restrictive. Here, due to the additional multiplicative X*
term, we need both diag(Q2(X™* —ng)) to be constant and

6&2(1:) . fies(x +mo) _
Tr (—813 ) + O )—fx* (@ % 10) 0. (3.6.1)

If Q(z) is constant, then the first term in Equation (3.6.1)) will be 0. In order for the second
term in this expression, to be 0 we would either require that cov(U|X) = 0 or that fx«(x)
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is constant. As a result, it is sufficient to have X* ~ Unif(-), and for 2(z) to be constant.
This illustrates the caveats with applying this method to multiplicative errors. In many
situations, the linear approximation for the additive case will be sufficiently good so as to
achieve the near consistent results that are often claimed. However, in the multiplicative
case, the expectation will be non-linear under most assumed models.

Direct calculations show that, in order for E[X|X] to be approximately linear, additive
models require E[U;]X ] to be linear, and multiplicative models require E[(1+6,U;) | X/]
to be constant. Consider two observations under the assumed models. Denoting an additive

(Ax) c Tieats (M)
surrogate measurement as X, and a multiplicative one as X;™ ", then

E |:X1(A*) X2(A*)' = o1 + 11 0 0 {XZ(A*) — oy — 6 -U2| XéA*)_ } :

L [XI(A*) X2(M*)_ = o1 + M1 © Npg © {X2(M*) - 7702} oF _(1 + 52U2)71| X2(M*)_ :
E [XQ(M ) Xl(A*)' = oz + M2 0 0 {Xl(A*) — oy — 61 F _Ul‘ XfA*)_ } :
> [XZ(M*) XM — o 4 s ot o {Xl(M*) _ 7701} oE|(1+ 507! x0]

When conditioning on X J(-A*), we see that if E[U;|X ](-A*)] is linear in X7 then these condi-
)

I

tional expectations simplify to a linear function. Similarly, when conditioning on XZ(M*
we see that if E[(1+ &U;) X l(M*)] is constant then these simplify to be linear. Checking
the goodness of fit of a linear model between any two proxies in turn checks the ability of
E[X|X] to be approximated by a linear model. This also highlights the relation between
our methodology and the standard instrumental variable approaches, which are based on
regressing a measurement of the truth on an instrument [7].

These results justify both the theoretical conditions under which a linear model is
warranted, and a mechanism for checking whether or not linearity holds approximately. If
linearity approximately holds then the modified regression calibration procedure may be
warranted, and the resultant estimators will be asymptotically normal.

Theorem 3.6.2 (Asymptotic Normality of Regression Calibration). Under reqularity con-

ditions, the estimator © gc is consistent for © ge, and is asymptotically normally distributed,
such that as n — oo,

~ d
Vit (Orc = One) =5 N (0, Znc),
where Ypo = Q At Bre A};}} Q', for matrices analogous to those in Lemma .

Importantly, this result shows asymptotic normality, not around the true values for
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the parameter O, but rather around Ogc, the solution to U(Y, Xrc, Z,0Orc) = 0. Here
Xge is the true BLUP, which may differ from the true conditional mean. Under regularity
conditions, O is the probability limit of Orc. The asymptotic performance is determined
by the difference between © and ©Orc. Consistency is achieved when © = Ogc.

In the standard setting, the BLUP based regression calibration estimators are consis-
tent only when both the true BLUP is E[X|X*], and a linear model for E[Y|X] is valid.
Results regarding consistency, and approximate consistency, of regression calibration meth-
ods generally will apply to the modified technique, under the caveat that these are derived
when X 25 E[X|X*], as n — oo.

3.7 Generalization of SIMEX

We rely on M; and M;(X) to motivate the modified versions of SIMEX. The strategy is
to match the first two moments of X and X ()), if A = —1. For fixed A > 0, take

Xi, () =m0 { X = moy + VAM, i b (3.7.1)

where v; is an appropriately sized standard normal pseudo-random variable, independent
of all covariates. Given X, we find that F[X;(\)|X] = 771_].1 o {noj +mjoX —mny}t = X.
Similarly, cov (X} X) = (1 + )\)ng)_le (X)ni?)_l. As a result, X;()\) agrees with X up
to the second moment, as A — —1.

As in the standard SIMEX, we do not typically have M; or n. available, and as a
result we will estimate them from the proxy observations. While in Section |3.9| we did not
explicitly write down estimators for 7y; or M;, both of these can be obtained as simple
transformations for quantities which are estimated in that estimating equation. We can
re-write X ;()) as

. - . d d
Xy, (A) =m0 {Xj — (uxs —myjopx) + \/X(EX;X; - n§j)EXX77§j))1/2Vbj} ~

As a result, we can still make use of Lemma in the context of simulation extrapolation.

This raises a question regarding how to best implement the method, taking into account
the proxies. In the standard case, if homoscedasticity is assumed, then SIMEX progresses
using X* and Y. As discussed with standard regression calibration, if x; = k, the stan-
dard SIMEX applies to non-iid data, with the same caveats: namely, if there is complete
replication and all of the proxies are unbiased.
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Just as with regression calibration, there are two natural ways of making use of all X7 in
the correction technique, combining proxies or combining estimating equations. To combine
the proxies we use Equation (3.7.1), where in place of X7 we take X* = 25:1 a; X7 for
some set of weights o. Unlike in the case of the BLUP where the weights could be selected
through the minimization of the MSE, a specific objective function would be required in
this setting. One sensible option is to use inverse variance weighting, providing X* which
has the minimal variance among all linear combinations. This is an appealing choice as

the weights are available in closed form, and have an analogue to the standard SIMEX.

Combining the estimating equations is less intuitive than in the regression calibration
setting. One technique for doing this would be to use each individual proxy to estimate the
parameter of interest, which gives us several different estimators for the true parameter,
say Ogsmvex,j for each j = 1,... k. Then, we can combine these k estimates directly. That

is, taking Ogvex = Z?Zl Cj@SIMEXJ. If k£ = 2, then the optimal weights would be

1 A1 A2 - QU oY
(= 3 + {4 cov (@(SI%WEX, @(SI%\/[EX>} [Var (@(SJI)MEX> —var (@éI)MEXﬂ :

These weights require estimates for the variance and covariance of the different estimators
which can be quite computationally intensive. In simulations, this strategy of combining
distinct estimators itself performed notably worse than the strategy of first combining
proxies, and as a result is not generally recommended at this pointE]

The modified SIMEX correction is approximately consistent in the same way as the
standard SIMEX. Viewing the extrapolant as a functional on distributions, Ognex will
be consistent for limy_,_; G(X;(\)), which we call Ogpyrx. The SIMEX estimators will
generally be asymptotically normal.

Theorem 3.7.1 (Asymptotic Normality of SIMEX). Under regularity conditions, the es-
timated parameters using the SIMEX correction, ©gsiyex are consistent for the parameters
Osivex, and are asymptotically normally distributed, such that

Vn (@SIMEX — @SIMEX> 4N (0, XsmmEx),

as n — 00, where Xsypx 15 estimable through sandwich estimation techniques.

2To apply this strategy in simulation, however, is a substantial computational burden; as a result, we
may see improved performance had better estimates of the relevant variance terms been used.

41



3.8 Simulation Studies

To investigate the behaviour of the proposed methods, we consider three simulated scenar-
ios. Our simulations compare our proposed estimators with the standard implementation
of these techniques, using the generalized error models, across a variety of settings for
which SIMEX and regression calibration are known to be effective.

3.8.1 Linear Regression Models

In the first simulation we consider a linear regression. We take X = [X 1 Xo X3}, with
X7 ~ N(0,1), Xy ~ N(3,2), and X3 ~ N(1,3) to be the true covariate vector, where all
components are assumed to be independent. The outcome is taken to be Y = 2 — X7 +
2X5+0.5X5+¢€, where e ~ N(0,1). We generate three proxies, X7 = X + [Un Uiy Ulg],

where Ulj Z"Z\-C'l N(O, 1), X; =X + [Ugl U22 U23] with Ugl ~ N(O, ]_), U22 ~ N(0,4) and
Ugg ~ N(O,B), and X; =X + [Ugl U32 Ugg] where U31 ~ N(O,Q), U32 ~ N(O,Q) and
Uss ~ N(0,5). We select 50% of X; and 20% of X} to be missing.

We estimate model parameters using (1) standard regression calibration, (2) standard
SIMEX, (3) empirical SIMEX, (4) generalized regression calibration using fixed weights,
(5) generalized regression calibration solving for optimal weights, (6) generalized SIMEX
where proxies are combined, and (7) generalized SIMEX where the estimates are combined.
These simulations were repeated 1000 times with a sample size of 5000. The results for all
scenarios are included in Table [3.1]

From the results in the table we see that the standard regression calibration and stan-
dard SIMEX estimators are outperformed (in bias and MSE) by the generalized versions
(both weighted and not). In this example, it is worth considering the performance of the
empirical SIMEX. This method tended to perform slightly better than the generalized re-
gression calibration throughout. This can be explained through the fact that all errors are
normally distributed and, as a result, combinations of the errors also remain normal, which
is the critical requirement for the implementation of the empirical SIMEX.

3.8.2 Log-Linear Regression Models

Next, we consider a log-linear model. We generate Z ~ Binom(0.3) and X ~ N(0.02Z7,0.5).
The outcome is a gamma random variable such that E[Y|X, Z] = exp (2 —3Z + 2X). We

generate three proxies, with X = XV where V; ~ Unif(0.7,1.3), and X3, X} YX o+
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Table 3.1: Results from a simulation of a linear regression model comparing the generalized
and standard techniques. The tables show the MSE, mean, and median bias for the
intercept and slope parameters, estimated in 1000 (n = 5000) replicated simulations.

Bias
Method MSE Mean Median
Intercept Standard Regression Calibration 0.334 0.562  0.555
Standard SIMEX 4.608 2.094  2.028
Empirical SIMEX 0.013 0.003 -0.0004
Generalized Regression Calibration 0.018 0.010  0.002
Weighted Regression Calibration 0.020 0.007  0.005
Generalized SIMEX 0.023 -0.047  -0.055
Generalized SIMEX (Combined Proxies) 0.019 0.005  0.001
X1 Standard Regression Calibration 0.003 0.025  0.025
Standard SIMEX 0.718 0.176  0.105
Empirical SIMEX 0.003 0.0001 -0.002
Generalized Regression Calibration 0.003 0.002  0.003
Weighted Regression Calibration 0.004 0.003  0.002
Generalized SIMEX 0.005 0.006  0.002
Generalized SIMEX (Combined Proxies) 0.004 0.003  0.003
X2 Standard Regression Calibration 0.032 -0.175 -0.173
Standard SIMEX 0.417 -0.630 -0.608
Empirical SIMEX 0.001 -0.001 -0.001
Generalized Regression Calibration 0.002 -0.003 -0.002
Weighted Regression Calibration 0.002 -0.002 -0.002
Generalized SIMEX 0.002 0.001 0.003
Generalized SIMEX (Combined Proxies) 0.002 -0.002 -0.0012
X3 Standard Regression Calibration 0.002 -0.037 -0.037
Standard SIMEX 0.169 -0.261 -0.206
Empirical SIMEX 0.001 -0.001 -0.001
Generalized Regression Calibration 0.001 -0.001 -0.001
Weighted Regression Calibration 0.001 -0.002 -0.003
Generalized SIMEX 0.001 -0.004 -0.003

Generalized SIMEX (Combined Proxies) 0.001 -0.002 -0.001
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N(0,1), where the errors are all independent. For Xj we selected 50% of the observations
to be missing.

In this setting we compare standard regression calibration, standard SIMEX, and the
empirical SIMEX, with the best performing generalized techniques from the previous sim-
ulation (generalized regression calibration with fixed weights, and generalized SIMEX with
combined proxies). We include results for both the generalized regression calibration where
Z was used as informative, and where this relationship was ignored in estimating the
correction parameters. The results regarding the MSE and bias of these estimators are
summarized in Table 3.2

Table 3.2: Results from a simulation of a gamma, log-linear regression model comparing the
generalized and standard techniques. The table show the MSE, mean bias, and median bias
for the intercept and slope parameters that were estimated in 1000 (n = 5000) replicated
simulations.

Bias
Method MSE Mean Median
Intercept Standard Regression Calibration 0.106 -0.325 -0.324
Standard SIMEX 0.004 0.047  0.047
Empirical SIMEX 0.026 0.152  0.146
Generalized Regression Calibration 0.105 -0.323 -0.323

Generalized Regression Calibration (no Z) 0.103 -0.319 -0.320
Generalized SIMEX (Combined Proxies) ~ 0.002 0.003  0.001

X Standard Regression Calibration 0.005 -0.055 -0.053
Standard SIMEX 0.013 -0.094 -0.093
Empirical SIMEX 0.614 -0.756 -0.726
Generalized Regression Calibration 0.002 -0.003 -0.001

Generalized Regression Calibration (no Z) 0.002 -0.002 -0.001
Generalized SIMEX (Combined Proxies)  0.004 -0.004 -0.004

Z Standard Regression Calibration 0.003 0.001  0.002
Standard SIMEX 0.286 0.023  0.004
Empirical SIMEX 3.95 0.038  0.006
Generalized Regression Calibration 0.004 0.001  -0.002

Generalized Regression Calibration (no Z) 0.003 -0.012 -0.013
Generalized SIMEX (Combined Proxies) 12.2 0.116  0.001

We note first that for the intercept the methods based on SIMEX perform substantially
better, which is to be expected based on the consistency theory. The generalized regression
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calibration procedures perform well for the slope parameters, and we see relatively similar
results between the estimators which use Z, and those which do not. In this setting we
see, on average, an improved MSE and bias with the generalized corrections over the
corresponding standard corrections.

It is also worth drawing attention to the fact that, in this setting, the empirical SIMEX
sees a dramatic reduction in its performance relative to the other techniques. This can be
explained through the lack of normally distributed errors, which the other techniques are
more resilient to. Finally, we draw attention to the MSE of the generalized SIMEX for
the Z slope parameter, particularly in comparison to the median bias. This large MSE
is being driven by several simulation runs which are extreme outliers, and which are not
particularly indicative of an actual application of this method. To explain this note that we
used the same extrapolant for each iteration of the simulation, without checking the fit (as
this would require 1000 different selections for these simulations). However, investigating
the outliers, it is clear in these simulation runs the extrapolant is over-fitting noise. An
analyst conducting such an analysis would be unlikely to see this degraded performance,
as they would be assessing the extrapolant fit directly.

3.8.3 Logistic Regression Models

Finally, we consider a logistic regression model. We take the true covariate X ~ N(3,1),
with ¥ ~ Binom(expit(0.5 — 0.5X)). We generate three proxies where X7, X; Yox o+
N(0,1), and X5 = 0.5+ 0.5X + Us where Us ~ Unif(—0.5,0.5). We select 80% of X to be
missing. In these simulations we compare the results of the generalized estimators, using
either all of (X7, X5, XJ) or only the iid replicates (X7, X;) for the corrections (labelled
“All” and “IID” respectively). Further, we continue to differentiate between the weighted
generalized regression calibration and the standard version, as well as the SIMEX estima-
tor that averages proxies (“Combined Proxies”) versus the one which averages estimates.
In Table we observe the MSE and the bias of both the parameter estimates and in
Figure we observe the estimated probabilities.

The results demonstrate the bias reduction and effective probability estimates of both
techniques in logistic regression. Moreover, these simulations demonstrate how biased
(using 79 and 7;) proxies can stabilize estimators. We note that for almost all estimators,
the estimators which used all of the proxies (despite the bias) resulted in a reduced MSE
compared to the corresponding correction relying on only the iid replicates. There does
appear to be evidence of trading off bias and variance within these estimators. The biased
replicates appear to introduce slightly larger bias in the estimators, on average, which is
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Table 3.3: The estimated parameter values for the intercept and the slope across the
different methods. The true values are indicated using a dotted line. Outliers are displayed
as filled in circles. Note that the X axes are different for each set of box plots.

Bias
Method MSE Mean Median
Intercept Generalized Regression Calibration (All) 0.018 0.005  0.010
Generalized Regression Calibration (IID) 0.025 0.004  0.009
Weighted Regression Calibration (All) 0.076 0.121  0.131
Weighted Regression Calibration (IID) 0.025 0.004  0.010
Generalized SIMEX (All) 0.032 -0.011  0.004
Generalized SIMEX (IID) 0.059 -0.025 -0.005
Generalized SIMEX (Combined Proxies, All) ~ 0.020 0.032  0.038

Generalized SIMEX (Combined Proxies, Reps) 0.033 -0.012  0.002

X Generalized Regression Calibration (All) 0.002 -0.007 -0.008
Generalized Regression Calibration (IID) 0.003 -0.010 -0.011
Weighted Regression Calibration (All) 0.009 -0.049 -0.053
Weighted Regression Calibration (IID) 0.003 -0.010 -0.011
Generalized SIMEX (All) 0.004 0.005 -0.001
Generalized SIMEX (IID) 0.007 0.011  0.003
Generalized SIMEX (Combined Proxies, All)  0.002 -0.011 -0.013
Generalized SIMEX (Combined Proxies, Reps) 0.004 0.005  0.001
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Figure 3.1: The estimated 95% prediction interval for the estimated probabilities (given
by the dotted lines) around the true probabilities (given by the solid line), across various
values for X. The shaded regions indicate the 95% central values for X, indicating the
most likely values for the covariate to take.

made-up for by the reduced variance. We see that the estimated probabilities tend to be
correct across any of the methods, with slightly reduced interval widths when making use
of the complete data, rather than only the replicated measurements.

3.9 Extensions to Other Methodologies

As introduced in Chapter [2 moment reconstruction is a plug-in technique, similar in spirit
to regression calibration, which requires case-specific derivations. We present the results
of moment reconstruction in a logistic regression, a case where the moment reconstruction
estimators are consistent and the regression calibration corrections are not. The primary
motivation for this presentation is demonstrating how the identification of parameters as
in Section (3.5, and the related results, can be extended to exact correction methods.

Assume that X|Y = y ~ N(u + yA,Xxx). Then, for each observation, moment
reconstruction forms

Run(X7,Y) = ni [(BLC I -G + X°GY)) —m. ).
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where é(Y) =m.GY), n = Z§:1 a;my; for 1 =1,2, and
G(Y) = cov(X*|Y) 12 cov(X|Y) V2,

This results in Xz having the same first two conditional moments (given Y') as X does.
This setup readily presents M-estimators, extending the quantities in Section [(3.5] By
assumption, ¥y x is both the conditional and unconditional variance of X, which means it
is estimated in £. Further, 7. contain only «; and parameters estimated in . This leaves
cov(X*|Y) and E[X*|Y] to be estimated.

To do so, we can form standard joint M-estimators. Take ©;, O3, O3, and O4 to be
given by E[X*|Y = 1], E[X*|Y = 0], cov(X*|Y = 1), and cov(X*|Y = 0), respectively.
Moreover, assume that the o; are ﬁxed.ﬂ Then we can take

n K
n~! Zyz ZOéjXZ} -0, =0;
i=1  j=1

K
nTt Y (L-wy) ) Xy — 0, =0;
j=1

i=1

n k 2
n! Yi <Z o X7 — @1> — 03 =0;
1 1

i= j=

k 2
n_l Z(]_ - yz) (Z OéjX;;- - @2) - @4 =0.
j=1

=1

3

Denoting the probability P(Y = 1|X = x) = expit(fy + fiz), the logistic regression
estimators for 5y and (8, are 5y and [y, with these estimators simultaneously solving

n! Z Y; — expit (B\o + 31%) =0,
i1

and
n

n! (y; — expit (30 + alxi>)xi =0.
i=1

3These can estimated in a similar way, if need be.
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The moment reconstruction procedure replaces x; in the above estimating equations with

TiMR
k 1/2
Yxx
1_— e
(Z aﬂh]) (yz‘@3 + (1 — yi)@4> ]

. -1
= (Z ajﬁlj) {[yi@l + (1= 4;)02]
Jj=1 j=1
k k > 12k
« XX
+ P " _ e >
(; O‘J%) (; O‘J"hj) <yi@3 T (- yi)@4> ;@1770]}

This expression can be inserted into the M-estimators for B., and stacked with the pre-
viously discussed M-estimators, allowing for the derivation of an asymptotic distribution.
Due to normality, the distributions (Xyr,Y) and (X,Y’) are equivalent, and so this esti-
mator will be consistent and asymptotically normal for the true parameter values. Further,
the solutions to the M-estimators regarding the parameters in g;(-) and the estimators for
©. are expressible in closed form, and are functionally independent of 5.. As a result, they
can be solved for first and used to compute Z; yr, before performing a logistic regression.

In order to implement this in practice, or compute closed form expressions for the
asymptotic standard errors, we need to make concrete assumptions regarding the repeated
measurements that are available and the values of {a;}. These data must conform to the
identifiability conditions making g¢;(-) computable. With a fixed data structure, we can
apply Lemma for the asymptotic distribution.

3.10 Data Analysis

We now apply the generalized methods to data from the Framingham Heart Study. Our
analysis is motivated by Carroll, Ruppert, Stefanski, and Crainiceanu [7], where the authors
use a logistic regression model to estimate the impact of, age, smoking status, serum
cholesterol, and long-term SBP on the likelihood of developing CHD. Our analysis follows
a different subset from the FHS, which is made available as a teaching dataset, by the
NHLBI [62]. Our subset is not restricted to male participants, and so we use sex as an
explanatory factor as well.

Our analysis follows 2876 individuals, aged 32—69, across three separate examinations.
We take the patients’ sex, age, and smoking status to be error-free, and assume that the
serum cholesterol levels and systolic blood pressure are prone to error. Following Corn-
field [I7] and Carroll et al. [9] we transform the blood pressure measurements to be in-
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cluded in the model as log (SBP — 50) and the cholesterol measurements to be included as
log (Cholesterol). These data are subject to incomplete replication. Of the 2876 total par-
ticipants, systolic blood pressure measurements were available for all patients at the first
visit, but missing for 153, and 390 patients at visits two, and three respectively. For choles-
terol, at visits one, two, and three, there are 26, 256, and 538 patients without repeated
measurements, respectively. Considering only those with the repeated measurements taken,
at the first visit the mean (transformed) SBP was 4.329 and the mean (transformed) choles-
terol was 5.437, with observed variances of 0.052 and 0.033, respectively. This is compared
to means (variances) of SBP and cholesterol at the second visit of 4.389 (0.054) and 5.503
(0.030), and at the third visit 4.440 (0.057) and 5.456 (0.033), respectively.

To assess the validity of the regression calibration methodology, we consider plots of
the various proxies against one another. For the SIMEX correction, we plot ©(\) versus
A to choose the extrapolants. These diagnostic plots are presented in Figures and [3.3]
respectively. We can see that there is an approximately linear relationship between the
various proxies which suggests the use of a linear calibration function is appropriate. This
is further emphasized in the discussion by Carroll, Ruppert, Stefanski, and Crainiceanu
[7], where it is noted that the transformed blood pressure covariates appear approximately
normal. In the SIMEX diagnostic plots, across all settings, there appears to be a quadratic
relationship between the estimated slope parameters and A.

We compare several analyses, all of which use the main effects model in a standard
logistic regression. We consider a naive analysis, which takes the mean response from
the visits for both cholesterol and blood pressure as the explanatory factors, a standard
regression calibration analysis which implicitly assumes that the repeated measurements
are iid, and several scenarios for the generalized procedures presented. We use different
assumptions for Jy, the proxies which have 7y; = 0, and J;, those with 7;; = 1. For
regression calibration we consider four scenarios, two with Jo = {1,2,3}, where J; =
{1,2,3} or J; = {1,2}, in addition to two with Jy = {2}, with J; = {1,3} or J; = {2,3}.
We conduct two SIMEX analyses, one with Jy = J; = {1, 2,3}, and one with J, = {2} and
J1 = {1,3}. The SIMEX procedures are restricted in their consideration due, in part, to
the concerns regarding the validity of M; as a variance matrix. Many plausible settings lead
to singular matrices as estimates for M;, which in turn rules out the use of the modified
SIMEX under those assumptions. The SIMEX procedures used a quadratic extrapolant
for both the SBP and the cholesterol terms.

The results of these analyses are displayed in Table [3.4] where the slope parameter
estimates for the transformed systolic blood pressure and the transformed cholesterol are
presented, along with 95% bootstrapped confidence intervals. The bootstrap confidence
intervals are derived from 1000 bootstrap replicates in each scenario. Across the various
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Figure 3.2: Plots showcasing the approximate linearity between the three proxy measure-
ments for cholesterol (top row) and the three proxy measurements for blood pressure (bot-

tom row). The apparent linearity in these plots gives evidence for the fact that F[X|X*]
is well approximated by a linear relationship.
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Figure 3.3: Plots of @()\) against A, over the fitted range of the data, for the slopes on
both the cholesterol and blood pressure coefficients. The top row contains the results
assuming Jo = J; = {1,3} while the bottom row contains those assuming .J, = 2 and
J1 = {1,3}. These plots illustrate the approximate extrapolant shape to be used in the
SIMEX procedure. The results suggest that a quadratic extrapolant may be effective.
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different sets of assumptions, we observe some variability in the point estimates for both
factors, with more substantial variability in the cholesterol measurements. While none of
the methods find the effect of cholesterol to be significant at a 95% confidence level, the
implied level of significance varies across the scenarios.

Table 3.4: Estimated slope parameter for the SBP and cholesterol terms, in the FHS,
comparing the generalized regression calibration and SIMEX methodologies to a naive
analysis and standard regression calibration. The point estimates and 95% confidence
interval are shown, where the intervals are based on a bias corrected bootstrap procedure
with 1000 bootstrap replicates.

Method Blood Pressure Cholesterol
Naive 2.250 (1.696, 2.837)  0.670 (-0.083, 1.575)
Standard Regression Calibration 2.811 (2.104, 3.591)  0.753 (-0.177, 1.866)
Generalized Regression Calibration

Jo=J1 ={1,2,3} 2.688 (2.005, 3.417)  0.723 (-0.171, 1.790)
Jo=11,2,3}; J1 ={1,2} 2.673 (1.992, 3.412)  0.935 (-0.138, 2.207)
Jo=2; J1 ={1,3} 2.635 (1.917, 3.415)  0.732 (-0.168, 1.808)
Jo=2; 1 ={2,3} 2.785 (2.097, 3.550)  0.347 (-0.200, 1.276)
Generalized Simulation Extrapolation

Jo=J1 ={1,2,3} 2.674 (1.626, 5.892) 1.000 (-0.476, 15.182)
Jo=2; 1 ={1,3} 2.096 (1.168, 6.406)  0.567 (-2.454, 3.764)
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Chapter 4

Simulation Extrapolation

4.1 Motivation for the Nonparametric SIMEX

A common assumption in the measurement error literature is that errors are normally
distributed. This assumption is analytically attractive and holds approximately in many
scenarios. However, it is often violated in practice. Bailey [I] investigated the distribu-
tions of measurement variability across several fields, including medicine, nuclear physics,
and toxicology, and found that differences between measurements of the same quantity are
consistent with heavy-tailed t-distributions more so than Gaussian distribution. Further
examples of nonnormal error distributions are readily available. McKenzie et al. [55] con-
sider the use of a bivariate Laplace distribution to model the location error present when
using GPS collars to study animal movement and habitat use. Bollinger [4] determine that
the assumption of normality is strongly violated when looking at the errors in reported
annual incomes within the Current Population Survey. Purdom and Holmes [65] use an
asymmetric Laplace distribution to model the error distribution in microarray data. Rajan
and Desai [66] argue that a t-distribution with two degrees of freedom is the best para-
metric fit to the error distribution for measurements of galactic rotation speed. Xu, Kim,
and Li [99] demonstrate that errors in reported BMI in the Korean Longitudinal Study of
Ageing are inconsistent with a normal distribution, exhibiting heavy-tailed behaviour. In
nutritional epidemiology, it is often suggested to transform reported intakes in such a way
so as to approximate normality of the errors, though often the suggested transformation
fails to achieve suitably normal errors |19} [64].

In their work on transformations of non-additive models, Eckert, Carroll, and Wang
[24] discuss how transformations can be used to induce an error structure with error terms
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that approximate a particular distribution. The argument for such a transformation is
that many existing techniques, in addition to assuming an additive error structure further
assume normality of the underlying errors. Owing to the fact that normality of errors has
been empirically shown to be violated across many domains, understanding the impact of
violations of normality on measurement error correction techniques is important. Moreover,
developing accessible techniques which can account for non-normal errors is required in
order to facilitate the use of valid measurement error corrections in the applied literature.

The understanding of the impact of distributional assumptions is particularly impor-
tant for techniques which are approximately consistent. This is because approximately
consistent techniques are often presented as being “better than nothing”. If distributional
assumptions are required for this to hold, then these assumptions should be clearly commu-
nicated and, ideally, easy to test. When these assumptions are required, an understanding
of how the methods breakdown when they are violated can lend additional confidence to
the application of an existing method. In Chapter[3|we discussed the distributional require-
ments for applying regression calibration to result in consistent estimators. For the BLUP
to be valid, we require the conditional mean of X given {X*, Z} to be linear. Conditional
normality suffices for this requirement to be met.

This same type of analysis has not previously been conducted for simulation extrap-
olation. The initial proposal of SIMEX required normally distributed errors [16]. If the
errors are not normally distributed, then the pseudo-random error terms will not be ab-
sorbed into a unified, normally distributed error term, and the presented simplifications do
not occur. The importance of normality was emphasized by Stefanski and Cook [87], and
then again by Koul and Song [50], when illustrating the conditions under which SIMEX
can produce consistent estimators. In simulations, Yi and He [102] further illustrate the
requirement of normality for SIMEX. These results are particularly concerning since the
SIMEX estimator not only became inconsistent, but actually performed worse than the
naive estimator. Taken together, these theoretical and simulated results seem to establish
the need for normality to apply SIMEX.

If it is the case that SIMEX, as it is commonly presented, requires normally distributed
errors to serve as a useful correction, it is worth quantifying this as best as we can. Would
it be possible to theoretically identify the types of scenarios presented by Yi and He [102],
where SIMEX amplified the bias? The work by Koul and Song [50] suggests that the
underlying concept behind SIMEX, when modified, can be used to accommodate errors
which are not normally distributed. Expanding their work beyond parametric assumptions
presents an opportunity for SIMEX to be applied in a wide variety of settings, without the
need to test distributional assumptions, or further adapt existing methods.
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4.2 Summary of the Proposed Methods

In this chapter we consider a nonparametric extension to the simulation extrapolation
method, which we call the NP-SIMEX. The NP-SIMEX functions via the familiar stages
also present in the standard parametric SIMEX, where we first simulate the impact of
additional measurement error on the estimator of interest, and then we extrapolate to the
setting where this error is removed. As the name suggests, the NP-SIMEX uses nonpara-
metric techniques in the simulation step, rendering it resilient to normality violations.

Where the standard SIMEX proceeds by drawing realizations from a standard normal
distribution, and then multiplying by A\'/20y for each value of A in a grid, the NP-SIMEX
makes this nonparametric. Specifically, A (for integer valued \) realizations are drawn from
the empirical error distribution, for each individual, and are added to the variate of interest.
This is taken to be the re-measured version of the surrogate, and we use this to compute
the estimator of interest. The remaining procedure is exactly the same: these re-measured
variates are used to estimate the parameter of interest across a grid of A, repeated several
times and averaged to reduce uncertainty, and then a parametric extrapolant is fit based
on A. The true estimate is computed by taking A = —1 in fitted parametric model.

The primary additional consideration required for the implementation of the NP-
SIMEX, as compared to the standard SIMEX is how we estimate the empirical error dis-
tribution. We demonstrate how this can be done with a validation sample (Section [1.5.3),
which makes use of the fact that within validation data we observe the errors directly, as
well as with replicate measurements (Section where we need to impose symmetry
assumptions on the distribution of errors. Before presenting the nonparametric SIMEX],
we first take a deep theoretical look at the need for normality within the standard SIMEX
procedure itself, which provides a means of motivating the development of the NP-SIMEX.

4.3 Reframing SIMEX with Characteristic Functions

The importance of normality for SIMEX theoretically, as emphasized by Stefanski and Cook
[87] and Koul and Song [50], can be summarized concisely with the following theorem.

Theorem 4.3.1 (Complex Moments are 0). If Uy and Uy are iid, symmetric, absolutely
continuous random variables with a finite moment generating function, then E[(U; +
V=1U)"] = 0 for all n = 1,2,... if and only if Uy and Uy are normally distributed
with mean 0. (Theorem 3.1 [50])
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The utility of this theorem is that, through the use of a Taylor expansion, it allows
for us to show the necessity of normality to render SIMEX operational. If we consider
© = f(X), for some “sufficiently smooth” function, f D, then we can consider the power
series representation of f(X + U +ice), where 02 = var(U), and € L {U, X}, with E[e] =0
and var(e) = 1. If we take the conditional expectation, given X, then the power series
representation (around X) gives

E[f(X+U+V-1oe)| X] = f(X)+§:WE [(U+V-1oe)| X]. (43.1)

Under correct extrapolant specification, the SIMEX estimator will consistently estimate
E[f(X +U++/—10¢)|X]. As a result, applying Theoremm tells us that, if e ~ N(0,1),
then the only way that this estimator is consistent for all such f is if U ~ N(0,0?). This
result applies to the class of “all sufficiently smooth f.” In practice, we need not worry
about the class of all functions f, simply because a small number of estimators are likely to
be the ones under consideration. While it may be the case that normality is required to be
able to consider arbitrary functional relationships between © and X, we are not typically
considering arbitrary functional relationships, and may not require normality.

In extending SIMEX for errors that follow a Laplace distribution, Koul and Song [50)]
show that, if the characteristic function of U + o€ (denoted ¢y i,c(t)) tends to 1 as some
distributional parameter of ¢ tends towards a constant, then SIMEX estimators will be
consistent. In the standard SIMEX, we would take € ~ N(0,\). We then look at ¢y q(t)
as A — —1. The authors use this argument to show that, by changing the distribution of
€, similar strategies can be derived based on an assumed error distribution for U.

If we denote X;f(\) = X* 4+ ey = X + U + ¢, where here A now specifies a (controllable)
parameter of €, then we can consider the characteristic function of Uy := U + €,, defined
as oy, (t). We are interested in considering this quantity when ey ~ N (0, A\o?), where
var(U) = o2, Denoting the joint distribution of {Y, X} as Fy x, then by viewing the
estimator as a functional on distributions, there exists some T such that © = T(Fy x).
Moreover, the SIMEX estimator consistently estimates Ogpnvpx = limy—,_1 T(Fy,x * Fo.r, ),
where * is the convolution operator.

If T(-) is such that limy,_y T(Fyx * Fop,) = T (limy—,—y Fy,x * Foy,), then our con-
sideration of the characteristic function of U, becomes entirely natural. A function over

'As discussed in Stefanski and Cook [87] the restrictions on f are stronger than normal regularity
conditions here. We can, for instance, take f to be analytic on the real line, and have a power series in
which expectation and summation can be interchanged.
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distributions can be represented as a function on the characteristic functions themselves.
The characteristic function of a convolution (assuming independence), is given by the prod-
uct of characteristic functions. This formulation then demonstrates why having ¢y, (t) — 1
is important for the consistency of SIMEX. This framework can be used to more deeply
explore the theoretical behaviour of SIMEX estimators broadly.

4.4 Asymptotic Analysis of the Standard SIMEX

4.4.1 Approximations of the Characteristic Function

In Table [4.1] we show the characteristic function of Uy and of U* = lim,_,_; Uy, based on
various distributions of U. Under the assumption of normality, the characteristic function
equals 1 exactly in the limit. In all other settings it does not. The limiting characteristic
functions are not generally valid characteristic functions, though many are close approxi-
mations to 1 around ¢ = 0. To see this concretely, we take Taylor approximations to these
functions, in a neighbourhood of ¢ = 0. The results are presented in Table [1.2]

Table 4.1: Limits of the characteristic function, as A — —1 for the convolution of the

errors and pseudo-errors, assuming a normally distributed pseudo-error with different error

distributions. Error distributions are parameterized such that E[U] = 0 and var(U) = o2

Distribution U, VU
Normal exp (—302t%(1 + ) 1
e (o) ou()(12%) ()
Uniform <exp(it\/§02it—;g(—it\/§a)> exp (_ MT%Q ) (eitﬁa_e(;:j;z;xp <J;~2t2
Discrete Unif. 3 (e 4 e ) exp <—’\UTQt2) : (€ 4 e7"7) exp ("2;2>

Exponential (1—ito) texp (& (=Moo —2i)) (1 —ito) " exp (2 (to — 2i))

These approximations show that, under many error distributions, the limiting charac-
teristic function approximates 1 fairly closely. If we consider the earlier Taylor expansion
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(Equation |4.3.1)) then, under most of the presented error models, we will see that

@ (X ot
PR pugix) ~ £(X) + F9(X)0"

Elf(X +U")|X] =~ f(X) +
where the approximation is due to the fact that E[U}|X] ~ co* for some constant ¢ (depen-
dent on the error distribution), and is valid to a term that is O(c'?). This approximation
will often be adequate, especially when 0% ~ 0.

Table 4.2: Approximations of the characteristic function for the convolution of the errors

and pseudo-errors, assuming a normally distributed pseudo-error with different error dis-

tributions. Error distributions are parameterized such that E[U] = 0 and var(U) = o2.

e . . Approximation
Distribution Approximation to ¢y, (t) to pu- (1)
Normal 1— 2B+ 1) + 25 (AN +1)2 + O(a%19) 1

Laplace 1- %(A +1)+ %54(5)\2 +10A 4 3) + O(c%°) 1+ go*t* + O (65t%)

Uniform — CENH 1)+ ZEN 20 +2) + 0(0%°) 1 — Lottt + O(a%9)

Discrete Unif. 1 — #(A +1)+ %(3)\2 +6A+ 1)+ 0(c%) 1 — o't + O(c5t%)

Exponential 1— %()\ +1)— @ + O(o't?) 1— 103 + O(oth)

An alternative method to assess the quality of this approximation is through the con-
sideration of moments of X + U,. To describe the dependence of this approximation on
the functional T, we focus on the class that T belongs to. Define a space of distributional
functions, .7,,, such that for every T € .7,,, only the first m moments of the distribu-
tion are relevant. These are quantities which can be consistently estimated using sample
moments of order 1 through m. The m-th moment of a random variable, if it exists, is
given by E[Z™] = v/—1 "¢J"”(0). From the Taylor series approximation for the limiting
characteristic functions of U*, it is clear that all moments m up to the second included
term (in Table are 0. Up to this term, we have

m S m m m—j m
P (0) =Y (].)90& H(0)i 7 (0) = o7(0),

j=0
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and as a result we will have F[(X + U*)™| ~ E[X™|. If we call the order of this second
included term M, then, any functions T € 7,;_1 should have no error in the limiting term.
For T € 7, the limiting term will be biased, since 4,0()??(]*(0) = ¢x(0) + co™ + o(cM).

4.4.2 Demonstration of Excess Bias

To motivate their Laplace modified SIMEX, Koul and Song [50] used an estimator of the
fourth momentE] They took iy = n~' Y7 | X;, and used normal pseudo-errors with an
underlying Laplace distribution. We can view this directly as f(X), where we note that
f®(X) =0 for all k > 4. As a result, the bias is going to be exactly the f®*(X) term, in
the Taylor expansion. Consulting Table [4.2] and following our previous argument, we get
that fW(X) = 24, E[U}|X] = 30*, so that the bias will be 30?. Instead, we can view this
as T € 7. Here we note that T is linear in the 4-th moment, and as a result the bias is
going to be given simply as the bias in the fourth moment. Table gives that this will be
30*. In motivating their modified method, the authors work through the algebra to arrive
at the conclusion that the exact bias of this estimator is 30*, as this theory predicts.

4.4.3 Decomposition of the Asymptotic Bias

Until now we have assumed that T is known and correctly specified. We cannot (in

general) compute T as a function of A in a closed form, and instead specify it according to
an assumed parametric form G. We fit @SIMEX = g (—1), where some model is posed that
extrapolates T(Fy, x * Iy, ) to a complete curve, allowing us to take A — —1. Determining
an exact extrapolant is unlikely to be a straightforward task for most settings. The fact
that an exact extrapolant may not be available introduces another source of possible bias.

There are thus two possible sources of asymptotic bias. The first is the bias derived
from taking limy_,_; T(Fy x * Foy,) as a proxy for T(Fy x). In the previous sections this
bias was shown to be 0 when the error was normal, and we discussed a mechanism for
approximating this when errors are non-normal. The second component of the bias comes
from using G(\) as an estimator for T(Fy, x * Fy, ). This will be a more traditional model
misspecification problem, where we are considering asymptotic bias from extrapolation.
We take ABias(Osvgx) to be,

G(~1) = T(Fyx) = [G(~1) = T(Fyx * Fop-)| +| T(Fyx  For) = T(Frx)|

2We consider this example in more detail in Section
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Note that this same decomposition can be used for any A. Since the naive estimator is
equal to the aforementioned estimator when A\ = 0, we get that

ABias(C:)Na-we) = @(0) — T(pr}( * FO,UO):| + |:T(FY,X * FO,UO) — T(Fyyx)] .

As a general rule if A > 0, the bias decomposition will have 0 for the first component since
we can actually fit the model T'(Fy x * Fyp, ) directly.

In the original proposal of SIMEX, Cook and Stefanski [16] derive the fact that the
asymptotic bias of @SIMEX is of order O(¢®), when using the quadratic or nonlinear extrap-
olants, and O(o?), when using a linear extrapolant. Since they assumed normality, this is
the order of the first term in the expression for asymptotic bias.

Viewed as a mechanism to reduce the bias present when measurement error is an issue,
SIMEX need not produce unbiased or consistent estimators in order to be useful. Any
situation where SIMEX produces a substantive decrease in bias compared to the naive
estimator, regardless of consistency claims, is a situation where it may be useful.

As an example, consider estimating the fourth moment of X, denoted u4, using the
fourth empirical moment. Then,

~ 1 <
E[O,(V)] =~ > E[X5(NY] =+ 620> (1+ X) + E(U*) + 60X + 30N,
=1

which depends on the distribution of U only in its fourth moment. The extrapolant in this
case is quadratic in A. We can also see from this expression the conditions under which
the estimator removes bias, asymptotically. If A = —1, then the expression simplifies
to py + E[UY — 30*. The bias will be 0 when E[U?] = 30, meaning that normality will
suffice, though it is not necessaryE] Since the true extrapolant is quadratic, we can consider
misspecifying it as a linear extrapolant. Re-writing the above model, we get

GA) =pa+ 6M2v+ E[U4l+§(a4j i2) A +3¢A2’

‘=ag ::b() =Cp

which we estimate lincarly as G(A) = @ + SA. We can fit this line using two observations,
A=0and A = A; > 0. The fitted values will be & = ag and 5 = by + coA;.

The choice of Ay will dictate the exact fit. Extrapolating to A = —1 gives the estimate

3U ~ Unif{i\/a2 +/02(3 —0?), i\/202 +1/02+ /023 — 02)} also will suffice.
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@(—1) =a— 3 = ag — by — cpA1. Comparing this to G(—1) = ag — by + ¢, the bias, in
general, will be —co(A\;+1) = —30%(\;+1). This bias is present due to the misspecification
of the extrapolant. The total bias of the estimator is

ABias(Ogex) = E[UY] — 30* (A + 1).

The naive estimator will consistently estimate py + 6pu20% + E[U?]. This will almost
surely be different from p4. The naive estimator will not have any model misspecification
bias, and as a result, our total bias is

ABiaS(@Naive) = 6#20’2 + E[Uﬂ

Comparing these results relies on a specification of the distribution of X and U. When
E[U"] = 30", then |ABias(Onaive)| < |ABias(Ogmugx)| so long as 0% > 5. The example
is somewhat contrived in that, fitting a linear model would be very unlikely for an analyst
considering the plots directly. However, the illustration is important insofar as the sources
of bias can be examined.

While it is the case that, generally, the SIMEX estimator will reduce the asymptotic
bias associated with approximating © by G(\), it may not be the case that an overall bias
reduction is attained. This example suggests a set of tools for considering the behaviour
of the SIMEX estimators in real applications. Yi and He [102], when using SIMEX in
a proportional odds model, note that “When the measurement error model induces more
misspecification, the performance of the SIMEX method can deteriorate more noticeably.
Its point estimate can incur a larger bias than that of the naive analysis |...].”

4.4.4 Considerations for A\

Initially, the justification for taking A = —1 in SIMEX was motivated by consideration of
the variance. This intuition is explicitly justified through a consideration of the character-
istic function of the error term, U,.

Lemma 4.4.1 (Best Second Order Approximation). Taking A = —1 provides the best
second-order approximation to py, (t) = 1 in a neighbourhood of t = 0.

This result is, in essence, a re-characterization of the intuitive variance explanation.

However, our previous discussion suggests that we ought to be concerned with the quality
of the approximation beyond second moments. One natural question is whether there is

62



a A that is preferable to —1, to extrapolate to. This result extends the idea of Lemma
[4.4.1] Here we say that, so long as U is symmetric around 0, there is a region around
0 where A = —1 gives the closest (in terms of squared distance) approximation to 1, for
characteristic functions taking the form of ¢y, (t).

Theorem 4.4.2 (SIMEX Approximation Uniformly Dominates). Assume that U has a
symmetric (about 0) distribution. Then, there exists some € > 0 such that uniformly on
t € (—e, €) we will have that (1 — @y_, (t))* < (1 — @y, (t))?, for all { # —1.

This result suggests that, at least as long as the underlying process of simulation ex-
trapolation is not altered, the intuitive selection of A = —1 cannot be improved upon (in
terms of the MSE). This result is not necessarily surprising, as taking A = —1 is natural
given the development of SIMEX generally. However, this is a useful result to know when
SIMEX is being used to reduce the bias in a naive estimator. As has been developed
throughout this chapter thus far, even under normality violations, it may often be the case
that SIMEX serves a useful tool for lessening the impact of error. With this result, an
analyst using SIMEX as to reduce bias need not consider alternative values for \.

4.4.5 Summary of Characteristic Function Framing

These results centre on the key idea that simulation extrapolation, in the case of normal
errors, functions predominantly by generating a sequence of (pseudo) random variables
with a characteristic function that tends to 1 as A tends to —1. By taking this property
as the defining relationship for SIMEX estimators, we are able to understand the sources
of asymptotic bias that arise when normality violations occur. Moreover, recognizing
that characteristic functions are directly tied to the moments of a distribution, we can
characterize when the standard SIMEX procedure is capable of eliminating all asymptotic
bias based on the underlying estimator. Any estimator which depends on the underlying
distribution only through the first m moments can be consistently estimated under any
error distribution with a Taylor series approximation of the characteristic function equal to
1+0O(o™T1). Estimators which require further moments of the distribution to be computed
will be more severely impacted by deviations from normality.

This formulation also allows for a decomposition of the asymptotic bias in the estima-
tors based on both the accuracy of the extrapolant and the convergence of the characteristic
function. This decomposition helps to demonstrate how it can be possible for the naive es-
timators to exhibit less bias asymptotically than the SIMEX corrected estimators. This can
be true even in settings where the SIMEX could be exactly consistent, had the extrapolant
been correctly specified.
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These considerations together help to describe when the SIMEX methodology can be
validly applied, and to give further justification to why it works. This formulation also gives
rise to a useful extension of SIMEX allowing for consistency of the underlying corrections,
under any error distribution. The key to this nonparametric SIMEX is realizing that, using
the observed empirical distribution, it is possible to have ¢y, (t) = 1 as A — —1.

4.5 Nonparametric Simulation Extrapolation

In order to ensure clarity, the standard SIMEX, which relies on parametric assumptions for
consistency, will be referred to as P-SIMEX (parametric SIMEX) during the remainder of
this chapter. This is predominantly to distinguish it from the NP-SIMEX (nonparametric
SIMEX), which is introduced as a generalization.

The P-SIMEX has been described as a remeasurement method [63], emphasizing its
similarities to bootstrap procedures. We can view the simulated, additional error as “re-
measuring” the error-prone proxy from a distribution with variance (1 + \)o?. To further
emphasize the analogy, the P-SIMEX is analogous to the parametric bootstrap, since this
procedure of remeasuring occurs on the basis of a parametric assumption. Just as how
bootstrap procedures can be made nonparametric by resampling from the empirical dis-
tribution, the P-SIMEX can be made nonparametric by remeasuring using the empirical
error distribution. This allows for the NP-SIMEX to accommodate a wide range of error
models, without making any specific distributional assumptions.

The proposed NP-SIMEX stands in contrast to the methods of Koul and Song [50], who
propose a parametric SIMEX based on non-normal distributions. Whether in the case of
normally distributed errors, or in the more generally proposed methods, the P-SIMEX can
be viewed as analogous to a resampling procedure from an estimated, parametric distribu-
tion. The distribution of U;; is assumed to be known, and characterized by a parameter,
say Uy ~ Fy2. Then, remeasurement proceeds by drawing independent realizations from
F32U , from which we construct the series of estimators.ﬂ Instead of specifying a parametric

form for F', we propose resampling from I , the empirical distribution for the errors.

Suppose that we were able to directly observe the errors in the variates of interest.
Of course, if we actually observed all errors directly, we would not require measurement
error corrections — this will be rectified through estimation shortly. Taking these errors
together we can form the set &. Sampling from U is then sampling from the empirical

4In the Laplacian SIMEX, the pseudo-errors are not drawn from the estimated error distribution, but
from a complementary distribution, the form of which is derived via the parametric assumption.
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distribution for the errors. As a result, sampling from this set, with replacement, allows
for us to conduct nonparametric remeasurement.

It will not be sufficient to take U* sampled from U, and use it to replace pﬂ from the
P-SIMEX procedure. However, from our previous discussions regarding the importance of
the characteristic function approximating 1, we can leverage U* in a different capacity. If
we suppose that the sampling of U* is independent of U, then the characteristic function
of U + U* converges to ¢y (t)?, as n — oco. Extending this, we can independently sample
Uy,Us, ..., U5 from U, where X is a positive integer. The characteristic function of U +

Z?Zl U; converges to oy ()1, as n — oo, which equals 1 when A\ = —1.

If we fix A to be a grid of M non-negative integers, say {0, 1, ..., M—1}, then for any A €
A we can sample X independent realizations from U. The previous logic suggests that doing
this over the grid of A, then extrapolating to A = —1 according to the same procedure as
the P-SIMEX will produce a valid, nonparametric measurement error correction technique.
The NP-SIMEX procedure proceeds according to the following 5 steps.

1. Form the set U.
2. Specify a fixed grid of non-negative integers, A.

3. Foreach A € A, b=1,..., B, and every i, form the variate
N A
ng‘O‘) - X; + Z U;i,j7
j=1

where the Uy, ; are sampled independently, with replacement, from ¢.

4. Using X;;(\), compute 0, (Y, X} (N),Z) for b=1,..., B. Then compute

0(Y, X*(\) Z (Y, X;(\), Z).

5. Fit a parametric regression model to {(\, 5(Y, X*(AN),Z)) : A € A} and then extrap-
olate to A = —1.

5Recall that v are the standard normal pseudo errors used in the remeasurement process.
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4.5.1 Example Application of the NP-SIMEX

Before justifying this procedure, theoretically, we first consider extending the example in
-4.2

Section [4.4.2L Our goal is to estimate the fourth moment of X using 6(X) = n™! S X

To apply the P-SIMEX here, we note that, as n — oo
O(X5 () = pa + 6pia(1+ Ap)ort + EI(U + 7)),
Here v* = )\;/QO'UV, with v ~ N(0,1), and u; = E[X’]. This can be further expanded to
f1s 4 6p2(1 4+ Ap)o? + 3N2ot + 6Apogs + E[UY],

and since E[U*] is functionally independent of Ap, we can take G(A) = a + b + cA? to be
the extrapolant. In this setting a = uy + 6ug0? + E[UY], b = 6usc? + 60, and ¢ = 30},
As a result, G(—1) = puy + E[U*] — 30%. This was the result stated in Section [4.4.2]

Under the assumption of normality, E[U%] = 302, and the P-SIMEX procedure results
in consistent estimation of py. If we instead considered U;; ~ t5ﬁ then E[ﬁ 4 = 25.
Combined with ¢ = 25/3, we can see that the P-SIMEX procedure leaves a residual
asymptotic bias of 50/3.

Applying the NP-SIMEX to the same problem, we wish to analyze the probability limit
of §<X + ﬁx), where Uy 2 Z?:o ﬁj. We find that, as n — oo,

§(X + (7}) Ly g+ 6 (1 + Mo + A+ DE[UY + 3(A + 1) Ao,

which once again can be fit exactly using a quadratic extrapolant. In this case this results
in G'(\) =d +VX\+ N, with a = py + 6pso? + E[UY, V = 6ugo? + E[UY] + 30y, and
¢ = 30¢;. This leads to the conclusion that G'(—1) = 4, regardless of the value of E[U*].

4.5.2 Theoretical Justification for the NP-SIMEX

This previous example motivates the theoretical justification for the NP-SIMEX. To justify
the procedure theoretically, we demonstrate that, under a set of regularity conditions,
corrections obtained through the NP-SIMEX procedure are consistent and asymptotically
normal. Note that, in general, as n — oo we know that empirical distribution functions

6Here we take 5 degrees of freedom to ensure that the fourth moment exists.
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(Z3 () =n"tY " I(X; <)) converge almost surely to the true, underlying distribution
function (that is, Fx(z) <> F(z)). As a result, we also have that Fp. = Fz =% F.

Note that in the above example we treated the NP-SIMEX technique as though the
estimator was computed based on random observations that are distributed as X —{—Z U
In practice, we will be computmg the estimator based on random quantities that are
distributed as in X + Uy + 2 U;, where the U are sampled from U. To justify this
substitution, we take a perspectwe of estimands as functionals over distributions. If our
interest is in #, which is a parameter of the distribution F', then we can view § = T(F),
where T is a functional mapping the space of distributions to the reals. Generally then it
can be informative to view estimators as functionals operating on an empirical distribution,
and consistency is achieved whenever T(F) - T(F).

In the case of the NP-SIMEX, we require that lim,,_,. T(ﬁ) = T(lim,, 0o ﬁ) As
a sufficient condition, we can take T to be weakly continuous]| While this assumption
suffices, it is not necessary; the results regarding Glivenko-Cantelli classes from van der
Vaart and Wellner [92] or van der Vaart [91] can be applied instead. Under these conditions
on T, the NP-SIMEX procedure produces consistent estimators of the truth.

Theorem 4.5.1 (NP-SIMEX Consistency Theorem). Suppose that the estimator g(X ) can
be expressed as a weakly continuous functional T(F). Moreover, assume that T(F)) is
captured by G(N\), which has a known parametric form with parameters that are computable

based on A > 0 for all A > —1. Under these assumptions, Oyp.sivex 1S consistent for 6.

In addition to consistency, under similar technical conditions on the functional T, the
limiting distribution for the NP-SIMEX estimators will be normal.

Theorem 4.5.2 (NP-SIMEX Asymptotic Normality). Suppose that the estimator §(X )
can be expressed as a functional, T(Fx), which is subject to regularity conditions such that
it admits a linear approximation. Then, as n — oo,

\/ﬁ(é\NP—SIMEX - 9) i> N(O’ ZNP—S’[MEX)-

The conditions required on the functional for these two theorems are non-trivial. Weak
continuity can be challenging to check, and while widely discussed, the condition that
the functional admits a linear approximation is fairly technical. For instance, if T were
Fréchet differentiable, with respect to a metric d* such that /nd*(Fy, F)) = 0p(1), where

F to be the distribution function of X; + Z Um, then this will suffice. Alternative

TA functional is weakly continuous if it is continuous with respect to the weak(-star) topology [41].
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characterizations are discussed in the literature. For a limited selection see Filippova
[28], Kallianpur [42], Kallianpur and Rao [43], Fernholz [27], and the references therein.

Like the P-SIMEX, the NP-SIMEX requires that the functional T'(F)) can be accurately
captured by a parametric form, G(A). This assumption is carried over from the standard
SIMEX procedure, where the exact same assumption is required (though, it is typically
not stated in functional language). For any specific analysis, proving the existence of such
a parametric form would require in depth derivations of the underlying estimators. In
practice, this assumption is less limiting than the technical regularity conditions. The
rationale for this is that the modelling procedure for estimating G(\) allows the analyst to
generate arbitrary realizations in order to test the model fit. As a result, while extrapolation
to A = —1 requires faith in the existence of G, this is the same faith required to perform
any extrapolation for any model ff

This procedure relies on being able to form the set &. The method for doing this
depends on the auxiliary data that are available. We present methods for forming the
set U when there is a validation sample (Section , and when there are replicate
measurements (Section . When relying on replicate measurements, we require that
the underlying error distributions are symmetric, but do not make specific distributional
assumptions. This assumption may be reasonable since, empirically, errors often appear
to follow heavy-tailed t-distributions [T, 66].

4.5.3 NP-SIMEX with a Validation Sample

Suppose that we observe an internal validation sample. That is, for some subset of in-
dividuals, say ¢ = 1,...,n; we have {Y;, X;, X, Z;}, and for the remaining individuals,
i=ny+1,...,n we observe only {Y;, X, Z;}. In this setting, under the assumption that
the validation sample is representative, then we can directly form U from the validation
sample. Note that for any individual within the validation sample, we have U; = X — Xj.
If the assumed measurement error model is correct then, regardless of the distribution of
U;, this will result in the formulation of the empirical error distribution set.

If in place of an internal validation sample we have an external validation sample where
we observe {X;, X/} for i = 1,...,ny and then {Y;, X/, Z;} for an independently sampled
set of = 1,...,n, then we can use the external set to form I/ in exactly the same manner.
Here, in addition to the assumption that the error model is correct, we must also assume

80ne might argue that it in fact requires less faith seeing as in many situations where extrapolation is
desired the analyst has a fixed quantity of data. Here new realizations can be generated limited only by
the analyst’s patience and computational capacity.
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the standard transportability assumption that is made for studies with external validation
data. If validation data are to be used, then the previously discussed convergence of the
characteristic function occurs as n; — 0o.

4.5.4 NP-SIMEX with Replicate Measurements

If instead of a validation sample we are relying on replicate measurements, we require
further restrictions on the error distribution. While we do not need to make a specific
distributional assumption, we do require that the distribution of U is symmetric around 0.
Suppose that for all i we observe {Y;, Xj,..., X}, Zi}, each X}, = X; + Uy, with Uy; being
independent (of each other, and all other quantities) and identically distributed according
to some symmetric distribution.

First, consider the case when k = 2. Define X7 = 27! (X7 + X}), which equals
X; 4271 (U;; + Uyp). This can be viewed as an error-prone measurement of X; itself. If we
define U; = 271 (X}, — X3) = 271 (Usy — Us), then by symmetry we have that U; will be
equal in distribution to 27! (Uj; + Uj2). Following from this, )?Z* < X, +U;. Asa result,
we can form U = {[71, e ﬁn}, which serves as the set to sample from for the empirical
error distribution when using the mean response.

This procedure can be modified when k # 2. If we take a k-dimensional contrast,
(ay,...,ax) with Z?Zl a; =0 and Zle laj| = 1. If we consider the sums given by

k k
* k
E a; X7 and E |a;| X7,
=1 j=1

then the first sum will simplify to 2521 U;, while the second one becomes X + Z;?:l la;|U;.

Owing to the symmetry of the U;, we know that |a;|U; L a;U;, and as a result we can take
~* k *
X = 23:1 |aj| X;

", and U, = 2521 a; X}, and apply the same argument as above.

In the case of k = 2, we have used the contrast (1/2, —1/2)’, which is naturally extended

(when k is even) to
/

Vk, ..., 1k, ~1/k,...,—1/k

Vv Vv
k/2 terms k/2 terms
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When £ is odd, we can use
/
1/(k+1),...,1/(k+1),-1/(k=1),...,—1/(k—1)

-~ -~

(k+1)/2 terms (k—1)/2 terms

When we use replicates we replace X with )?f . The assumption that U;; are symmet-
rically distributed makes the method more restricted than in the case when validation data
are available.

4.5.5 Variance Estimation

The primary drawback to the use of SIMEX procedures in general is the required com-
putation. While the NP-SIMEX does not add computational burden compared to the
P-SIMEX[| the process remains demanding. When considering variance estimation it is
thus worth seeking alternatives to bootstrap procedures. While bootstrap procedures are
valid in the context of the NP-SIMEX, the nested re-sampling adds overhead, particularly
when used in a simulation, where experiments must be repeated often. There were two ad-
ditional variance estimators proposed alongside the P-SIMEX, one which used a modified
Jackknife procedure [87], and one which relied on the asymptotic distribution [§].

Theorem allows for the use of sandwich estimation techniques to establish an esti-
mate of the variance. The complete details are the same as any M-estimator (for instance,
the complete derivation is given for the P-SIMEX by Carroll, Kiichenhoff, Lombard, and
Stefanski [8]). The key result is that, asymptotically, the variance of Oxp.spvex can be esti-
mated by an application of the Delta method to the estimation of the parameters of G(\).
To do this, in this context, we require an estimate for C;; = cov (Vg(A)), the covariance
of the stacked influence curves of the functional representation of our estimator.

While the asymptotic distribution provides a theoretically justified, large sample method
for quantifying uncertainty, the primary drawback for its use in this setting is that it relies
on the functional representation of the estimator. From this linearized, functional repre-
sentation, a specific application of the Delta method must be used to derive the specific
form for the sandwich variance estimators, which then must be programmed itself. This
will generally be an involved task, mathematically, and may serve to undermine the utility
of NP-SIMEX as a generally applicable measurement error correction technique.

9Drawing from the empirical distribution is fairly efficient, and quite similar computationally to drawing
from a normal distribution.
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If both bootstrap and the asymptotic distribution are not viable options, a third tech-
nique for variance estimation can be derived based on an extension of the Jackknife. To
motivate this procedure, consider a sample of size 1. Suppose that the estimator of in-
terest is expressible as a function f which is sufficiently smooth, in the sense of Stefanski
and Cook [87] (which is to say, it has a convergent power series representation). Sup-
pose that we were able to sample U, directly from F), and consider the quantity given by
f(X*+Us) = [(X + Uspa).

The smoothness assumption allows us to write
f(XT+UN) = f(X)+ Z(n!)_lf(n)(X)U§+1>
n=1
where f( () is the n-th derivative of f. Then, taking E[f(X* + U,)|X] we are left with

FX) +) () X E[UY).

Considering that, in the limit as A — —1, Uy, is distributed as a degenerate distribution
at 0, then all moments of the distribution are also 0. When we know the true extrapolant,
have a sufficiently good estimate of the empirical distribution, and are dealing with a
smooth function f, then our corrected estimator can be viewed as a conditionally unbiased
estimate of Oy = f(X). The notation O, refers to the estimator that would be
computed if X were observable. That is, under these conditions

E [é\NP-SIMEX | X] =~ Orvutn-

If this relationship is assumed to hold exactly, then we would be able to decompose the
variance of the NP-SIMEX correction as

VaI“(QNP-SIMEX) = Var(‘gTruth) + Var(QNP_SIMEX - 0Truth)-

The first component of this decomposition can be estimated using an extrapolation proce-
dure, much in the same way that SIMEX does. If, for every A, we compute the estimated

variance of @\()\), then extrapolating this sequence of estimators back to A = —1 presents an
estimate for var(f1y) under exactly the same conditions that SIMEX estimates 6. For the
second component of the variance, we can consider the terms Ay(A) = 6,(A) — 6(A), where

8(\) = E[6,(\)|X]. Note that var(Ay(\)) = var(8,(\)) — var((\)). If we let A — —1, then
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through a similar argument as above, this will simplify to Var(gquth) — Var(ng_SIMEX). As
a result, we can use var(A,(—1)) as a stand-in for the second term in this variance expres-
sion. This variance term can be estimated by computing the sample covariance of é\b()\),
which converges to its limit as B — co. That is, for our estimator we take

)

>

AN =B -1 (0, -

b=1

(A)-

This argument lends itself to a SIMEX-based approach for estimating the variance. For
every value of A\, we compute the average estimated variance for the underlying estima-
tor, supposing that our remeasured variables were truth. We can then fit an extrapolant
function to this sequence of estimates, and extrapolate to A = —1. Similarly, for each
value of A, we can compute S3(\), which can also be extrapolated to A = —1. These can
be combined into a single variance estimate. In practice, we will typically form a single
variance estimate for each A given by

V(A) = var(frrun) — Sa(V),

which itself can then be extrapolated to A = —1 to approximate var(aNp_SIMEX).

We leave the theoretical justification of this technique at this heuristic argument, which
is provided in substantially more detail in Stefanski and Cook [87]. In practice, by fitting a
secondary extrapolant to V()), we have a computationally efficient mechanism for approx-
imating the variance. We demonstrate the possible utility of this approach via simulation,
and would advise that confirmatory simulations are used prior to the application of this
technique to novel estimators. Where this technique provides unsatisfactory coverage, stan-
dard bootstrap theory or asymptotic normality can be applied, at the cost of additional
computation time and additional mathematical complexity, respectively.

4.6 Simulation Studies

4.6.1 Logistic Regression Analysis

In this section we present six simulation studies, investigating the behaviour of the estima-
tor in several scenarios. The first simulation contrasts the P-SIMEX and the NP-SIMEX
in a logistic regression. We take n = 5000, with B = 100 SIMEX replicates, and with
a A grid size of 10. We generate a true, unobserved covariate X according to a N(1,2)
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Table 4.3: The mean squared error (MSE) and coverage probability from 200 replicate
simulations, estimating the slope parameter in a logistic regression, where the variate has
t-distributed error, with varying degrees of freedom (DFs) presented. Coverage probability
is computed using a bias corrected bootstrap, with 500 bootstrap resamples.

P-SIMEX NP-SIMEX
DFs MSE Coverage MSE Coverage
3 0.011 0.490 0.002 0.920
4 0.014 0.215 0.002 0.915
5 0.014 0.160 0.002 0.925
10 0.015 0.125 0.001 0.935
30 0.016 0.095 0.001 0.945

distribution, and consider the outcome to be such that P(Y = 1|X) = H(1 — X), where
H(-) is taken to be the inverse-logit function. In place of X, we generate two replicated
responses for each individual, X; and X, which are given by X + U;, 7 = 1,2 where U;
follows a t distribution, independent of all other variables. We take the degrees of freedom
to be one of {3,4,5,10,30}. Both the P-SIMEX and NP-SIMEX are implemented using
the nonlinear extrapolant, and we compute 95% confidence intervals using a bias adjusted
bootstrap procedure with 500 bootstrap replicates. These simulations are repeated 200
times, due to the computational complexity of the simulations, and the results are shown
in Table where the columns under the heading MSE report the mean squared error
over the 200 repeated simulations, and the columns for the coverage probability report the
proportion of constructed 95% bootstrap confidence intervals which contain the true value.

We can see that, across all t distributions which were investigated, the NP-SIMEX
dramatically improves over the P-SIMEX in MSE. The computed coverage probabilities
are also substantially improved, though there is evidence of under coverage, particularly
for low degrees of freedom. While none of these differences are significant at a 95% level,
these anti-conservative results warrant caution and careful application of the bootstrap
procedure, specifically when the error distribution is likely to be particularly heavy-tailed.
Still, the results suggest that bootstrapping may be a feasible solution for quantifying the
uncertainty in the NP-SIMEX procedure, when the computation is not a problem, so long
as it has first been validated.
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Table 4.4: The relative MSE from 1000 replicated simulations, estimating the fourth mo-
ment of a contaminated random variable, over different sample sizes. Values are the MSE
divided by the MSE computed using the error-free covariate (truth), at the same sample
size. The MSE using the true values is given.

n  Naive P-SIMEX NP-SIMEX Truth

100 1.906 1.113 1.083 41160.536
500 3.975 1.264 1.087  8447.917
1000 8.275 1.759 1.339  3350.250
5000  34.404 3.561 1.451 664.606
10000  70.330 5.259 1.347 324.617
20000 133.467 8.622 1.458 170.587
50000 350.646 21.772 1.512 64.119
100000 683.371 39.205 1.490 32.579

4.6.2 Impact of Sample Size

The second simulation investigates the impact of sample size on the variability of the
estimation. We use the example from Section [4.3] which involves estimating the fourth
moment of X, which we take to be from a N(5,4) distribution. We take two error-prone
measurements, both subjected to additive error from a t5; distribution. The errors are
independent of each other, and of the X’s. We vary the sample size from 100 to 100000,
replicating each 1000 times. We take M = 10 and B = 500. The MSE over the 1000
replicates when the truth is available, and the relative MSEs (that is, the observed MSE
divided by the observed MSE for the true procedure) for the naive, P-SIMEX, and NP-
SIMEX corrections are shown in Table [4.4]

Predictably, the naive method performs entirely unsatisfactorily, and demonstrates the
utility of both the P-SIMEX and the NP-SIMEX in reducing the impacts of measurement
error. While the MSE is quite large for small n, no matter the method, this is also true
for the true estimator, seeing only an 8.3% and 11.3% increase in the relative MSE’s over
truth for the NP-SIMEX and P-SIMEX respectively (when n = 100). While the raw MSE
decreases for both correction procedures as n increases, the relative MSE increases for
both. However, the NP-SIMEX remains relatively comparable to the truth for all values
of n, while for larger values of n, the P-SIMEX performs substantially worse.
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Table 4.5: The MSE (multiplied by 100) from 1000 replicated simulations estimating the
slope parameter in a logistic regression, over different sample sizes (n), validation sample
size percentages (%), and ratios of standard deviations (oy/ox). The results compare the
naive estimators, those from the P-SIMEX (P), and those from the NP-SIMEX (NP). This
table contains results with a sufficiently large validation sample, relative to the measure-
ment error variance.

T —1)1 =05 =1 T

ox ox ox ox

% N P NP N P NP N P NP N P NP
n = 1000

5 1.1 1.1 1.1 225 114 124 - — — — - -

10 1.1 1.1 1.2 220 108 3.9 - - - - - -

50 1.2 1.2 1.3 221 108 24 726 264 8.6 - - -
n = 10000

5 02 02 01 219 103 09 726 259 7.1 - - -

10 0.2 0.2 0.1 220 103 0.7 726 257 4.8 — -

50 0.2 0.2 0.1 219 102 0.6 724 254 3.5 123.0 8.6 9.2
n = 100000

5 01 01 00 219 102 04 725 254 3.3 123.0 85.8 10.0

10 0.1 0.1 0.0 219 102 04 725 254 32 123.0 8.7 7.6

50 0.1 0.1 0.0 219 102 04 725 254 3.2 123.0 8.7 6.8

4.6.3 Corrections with Validation Data

The third simulation considers the use of validation data in place of replicate measure-
ments. We generate the true variate, X, to be Gamma with shape parameter 1 and scale
parameter 2, such that F[X] = 2 and var(X) = 4. We generate an additive error term,
U;, which is mean-zero and follows a Laplace distribution. We consider several values for
the measurement error variance, taking the ratio oy /ox to be one of 0.1, 0.5, 1, or 2. The
sample size is selected to be one of {1000, 10000, 100000}, and we assume that an internal
validation sample is available comprised of 5%, 10%, or 50% of the total sample. All re-
sults use the nonlinear extrapolant. The MSEs for the naive, P-SIMEX, and NP-SIMEX
estimators across all scenarios are presented in Tables and 4.6l The median squared
errors for the same estimators are presented in Table [4.7]

In Table we see that the NP-SIMEX seems to outperform both the P-SIMEX
procedure and naive estimation, particularly when the ratio of variances grows. For a
sufficiently small validation sample, with sufficiently small measurement error, we see that
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Table 4.6: The MSE (multiplied by 100) from 1000 replicated simulations estimating the
slope parameter in a logistic regression, over different sample sizes (n), validation sample
size percentages (%), and ratios of standard deviations (o /ox). The results compare
the naive estimators, those from the P-SIMEX (P), and those from the NP-SIMEX (NP).
This table contains results with an insufficiently large validation sample, relative to the
measurement error variance.

W — 1 W —9
ox oX
n (%) Naive P NP Naive P NP
1000 (5) 728.0 2945 991733.9 123.0 87.2 5292.5
1000 (10) 724 273 10055.5 122.8 86.0 19028.7
1000 (50) - - - 123.1 86.3 19066.0
10000 (5) - - - 123.0 85.9 12458.7
10000 (10) - - = 123.1 85.9 5811.8

the P-SIMEX procedure performs at the same level as the NP-SIMEX. However, as the
estimators stabilize, by increasing either n or the proportion of validation samples, the
NP-SIMEX correction substantially outperforms either of the other methods. This table
excludes results where the validation sample is particularly small, (50 or 100), with a ratio
of standard deviations equal to 1, and the results where the validation sample is up to size
1000 when the ratio of standard deviations was 2. The results of these omitted scenarios

are provided in Table [4.6]

These results demonstrate the instability of the nonparametric procedure at sufficiently
small sample sizes, when the error is sufficiently large. Note that, as would be expected, the
naive estimators are not impacted by the size of the validation sample, and the impact on
the P-SIMEX is fairly small. For the P-SIMEX the validation sample is used to estimate
the variance of U;, a process which is far more stable at small sample sizes than the
nonparametric procedure used by the NP-SIMEX. The results emphasize the importance
of considering the fact that, when using validation data, convergence of the correction
happens in n; rather than n, and illustrate that if the validation sample is too small,
or the estimated variation too large, nonparametric techniques may not be appropriate.
Fortunately, while these results demonstrate clear instability at small sample sizes, the
breakdown in performance is easy to see. We stress careful application of these techniques
in settings where sample sizes may lead to instability.

To demonstrate this point consider the results summarized in Table Here we con-
sider the median squared error across all scenarios. We see that the relative performance
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of the NP-SIMEX estimators improves dramatically across all scenarios, including those
where the MSE of the NP-SIMEX estimators was discernibly worse than the other tech-
niques. Similar improvements are seen using any truncated mean of the squared errors
over the simulation results. Simply removing the largest 20 outliers (in terms of the mag-
nitude of the MSE) for each method brings the worst performing scenario to have the MSE
of the NP-SIMEX 14.8 times that of the P-SIMEX, in contrast to a ratio of 33677 with
no outliers removed. These results emphasize the point that, while careful application of
these techniques are required when sample sizes are small, the degraded performance of
these estimators is overstated through aggregate simulation reporting since most of this
decreased performance would be evident to an analyst directly investigating the results.

Table 4.7: The median squared error (multiplied by 100) from 1000 replicated simulations
estimating the slope parameter in a logistic regression, over different sample sizes (n),
validation sample size percentages (%), and ratios of standard deviations (oy/ox). The
results compare the naive estimators, those from the P-SIMEX (P), and those from the
NP-SIMEX (NP).

0.1 =05

ox

% N P NP N P NP N P NP N P NP
n = 1000

5 0.5 0.5 04 219 106 3.0 725 284 21.2 1229 86.6 80.5

10 0.5 0.5 0.5 219 101 1.8 727 264 122 1229 &86.1 64.3

50 0.6 0.6 0.5 220 103 1.2 725 259 58 123.0 858 279
n = 10000

5 0.1 0.1 0.1 219 10.1 0.6 726 257 4.5 123.1 86.1 272

10 0.1 0.1 0.1 220 10.3 0.5 72.6 25.7 3.7 123.0 85.8 17.5

50 0.1 0.1 0.1 21.8 10.0 04 724 253 3.1 1229 8.7 74
n = 100000

5 01 0.1 <0.05 219 102 04 725 255 3.2 1230 8.8 74

10 0.1 0.1 <0.05 219 102 04 725 254 3.1 123.0 8.8 6.5

50 0.1 0.1 <005 219 102 04 725 254 3.1 123.0 858 6.5

SIS
I
—_

4.6.4 Corrections with Three Replicates

The next set of simulations extend the previous setting of estimating the fourth moment,
this time assuming that there are three replicated observations. The errors are taken to
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Table 4.8: The MSE and median based on three replicates, estimating the fourth moment
(true value 1273) of a contaminated random variable, with either contaminated normal or
normal errors. The results compare having two replicates available to the same estimators
having three replicates available for the correction.

Two Replicates Three Replicates
Error Distribution MSE  Median MSE  Median
Normal 279.076  1273.261  270.212 1272.946

Contaminated Normal (p = 0.5) 4074.825 1269.713 2011.741 1268.731

be contaminated normal distributions, with p = 0 and p = 0.5, and X remains distributed
as a N(5,4) random variable. The sample size is fixed at n = 15000, with B = 500, and
M = 10. These simulations are replicated 1000 times. These results are repeated with two
available replicates. The results are shown in Table[4.8] We can see a reduction in MSE for
both error distributions, with a far more substantial improvement coming when the errors
are drawn with p = 0.5. In this specific context the addition of a third replicate decreased
the MSE by more than increasing the sample size from n = 15000 to n = 30000 does (MSE
at n = 30000 of 2131.141). These results lend credibility to both the proposed method for
including larger numbers of replicates and demonstrate that the additional information is
useful for improving the quality of the correction.

4.6.5 Jackknife Variance Estimation

In the next experiments, we investigate the proposed variance estimation technique. Tak-
ing the same scenario as in simulation 2, with n to be one of 500, 5000, 15000, or 50000, we
consider using the Jackknife inspired variance estimation technique (Section , speci-
fying a quadratic extrapolant for the variance terms. This extrapolant was chosen based
on a visual inspection of the plots, rather than through derived theory. The simulations
are replicated 1000 times, and the results are summarized in Table [4.9]

From these results we can see that this procedure tends to approximate the nominal
coverage adequately, supposing that the sample size is sufficiently large. When n = 500
we see fairly poor coverage results, which tends to improve as n increases. It is worth
reiterating that these results assumed a quadratic extrapolant for both the variance esti-
mation and the point estimate. While this quadratic term is theoretically justified for the
point estimate, the same justification was not used for the variance terms. It has been
discussed that the quadratic extrapolant tended to be conservative in the standard setting
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Table 4.9: The actual coverage levels, from 1000 replicated simulations, over various nom-
inal coverage levels, with varying samples sizes using the Jackknife variance estimation
technique. The estimand is the fourth moment of a contaminated random variable.

Nominal Coverage n =500 n = 5000 n = 15000 n = 50000

0.900 0.857 0.898 0.893 0.903
0.950 0.909 0.954 0.935 0.946
0.990 0.969 0.995 0.990 0.990

Table 4.10: The MSE of the estimates of the logistic regression parameters, across 1000
replicated simulations, comparing a naive fit, the NP-SIMEX, and the standard P-SIMEX
procedure. The fit is based on a validation sample of size 5000, with asymmetric errors.

Naive P-SIMEX NP-SIMEX

Bo 0.763 0.287 0.046
B1 0.661 0.161 0.009
Ba  0.042 0.011 0.001

[16]. While this is generally advisable for a point estimate if in doubt, it is of course less
desirable when estimating the variance of an estimator. Higher order extrapolants with
less of a tendency to conservatively fit the data may be preferable for this purpose.

4.6.6 Non-Symmetric Error Distributions

The final set of simulations considers the use of validation data when the errors are non-
symmetric. We consider the true variate to be distributed according to a Gamma distri-
bution with shape parameter 2 and scale parameter 1. The assumed errors have shape
parameter 1 and scale parameter 1.5. This gives the measurement error a slightly higher
variance than the variate itself, a standard deviation ratio of % The sample size is taken
to be n = 100000, with a 5% validation sample. The true model for Y; is a simple logistic
regression, with logit link, with intercept 5y = 2.5, slope for X; as f; = —1.25, and the
inclusion of an independent, standard normal variate Z; with a slope of 85 = 1. We repeat
the simulation 1000 times, using B = 200, M = 10, and consider the nonlinear extrapolant
for all parameters. The results are contained in Table .10}

Just as before, we see a dramatic improvement over the naive analysis when using

either the P-SIMEX or the NP-SIMEX. The NP-SIMEX further improves over the P-
SIMEX substantially. Note that in this case the sample size of both the full population
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and of the validation sample are quite large (100,000 and 5000 respectively) which further
emphasizes that the nonparametric techniques perform quite well, supposing that there is
sufficient data to inform the estimation.

4.7 Further Relaxations to the Underlying Assumptions

In Chapter [3, we argued that methods which rely on replicate measurements should, wher-
ever possible, be made resilient to the assumptions that the repeated measurements are
truly, identically distributed. When the NP-SIMEX leverages validation data, these con-
cerns are irrelevant. However, it is worth discussing the impact of non-identically dis-
tributed repeated measurements for use in the procedure. While our derivations assumed
that the measurements were identically distributed for ease of exposition, this assump-
tion was never actually used to prove the validity of the technique. Suppose that U;; are
symmetric, and independent, but may come from different distributions (either different
families, or with different parameter values). It is still the case that, owing to the symmetry,

. d
for each j, a;U;; = |a;|U;;. As a result, when we form

k k k
d
* =
Y 0 X5 =Y aUy = as|U;,
=1 =1 =1

to form the set U, this will be the valid empirical error distribution for

k k
> lajl X5 =X+ > |ay|Us.
j=1 j=1

Despite this resilience to the identically distributed assumption, the NP-SIMEX, just as
with standard regression calibration and the P-SIMEX does rely on complete replication.

If we happened to know that the U;; are identically distributed, then it is possible to
form a set U which is larger by considering permutations of the contrast a;. Under the
assumption of identically distributed errors every permutation of a; will provide error dis-
tributions that are valid members of /. When the errors are not assumed to be identically
distributed, this same argument can be extended to the case of the given contrasts when
k is even, owing to the constant multiplicative term. In the event of an odd number of
replicates, where the error distributions are not identically distributed, the ordering of the
contrast a; will generally be important for determining which empirical error distribution
you are working with.
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Alongside considerations of whether the errors are identically distributed, we can con-
sider the importance of symmetric errors for the case of replicate data. The utility of
assuming that U;; is symmetric (about zero) is that, for any a;, we have a;U;; 2 la;|Ui;.
Now, it is of course true that if a; > 0, then a,;Uj; < la;|U;; trivially. As a result, sup-
posing that U;; does not follow a symmetric distribution, then so long as a; > 0 in the
given contrast, the argument still holds as written. This allows for a slight relaxation to
the assumption of symmetric error distributions. Namely, so long as at least one of the
repeated measurements has an error distribution which is symmetric, the NP-SIMEX can
proceed by defining a contrast which has positive values for each non-symmetric entry,
and still abides by Z§:1 a; = 0 and 2521 la;| = 1. For instance, if there are k — 1 re-
peated measurements which are subject to non-symmetric errors, with a single repeated
measurement that has a symmetric error distribution, then we can define

1 1 1 —1
a= (2(1%1) 2k—1) 7 2(-1) 7)7

where the entry corresponding to the symmetric distribution is the —% component.

One final consideration is that we have assumed that U;; L X, for all ¢, . While this is
a common assumption, it is often the case that errors may depend on the true, underlying
value. If this is the case then the presented argument for the NP-SIMEX is no longer valid.
The issue is that we use the fact that, when observations are independent, the characteristic
function of the sum of random quantities, is the product of their characteristic functions.

If U;; are dependent on Xj, it is no longer sensible to speak of the empirical error
distribution, as the errors associated with individual ¢ will be drawn from a different
distribution than those from individual i’ # i. Conceptually, this problem can be rectified.
In place of using the empirical distribution, we can instead use kernel density estimation
(KDE). There have been many proposed techniques for estimating a conditional density,
based on kernel methods [35]. With an estimated conditional KDE, it is possible to sample
directly from this conditional distribution (see for instance Section 14.7 of Shalizi [79]).

Consider these ideas as they relate to the conditional density of U;|X;. We can view
the sample, within the validation set, as observing {Y;, X;, U;, Z;} for each individual (or
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{Xi,U;} in the event of an external validation set). Then, we can take

o) = 1020,

fx(z)
—~ 1 = U — Uu; T — T
R K K ;
fox(u,) nihyhx ; v ( h ) . < hx > ’

U
Felr) = Sk (0
X _nthi:1 X hX )

where hy and hx are bandwidth parameters (selected based on the observed data), and
Ky(-) and Kx(-) are kernel functions (for instance, the Gaussian kernel). Estimation of
the bandwidth parameters was addressed by Hall, Racine, and Li [35], where they use
cross validation based on the integrated squared error. Once estimated, the bandwidth
parameters can be used to sample from the conditional distribution, given a particular
value of X = z. Specifically, to sample conditional on X = z, we select an individual

1t =1,...,ny from the validation set weighted proportional to K x ([w — xz]//ﬁx> We then

draw a realization from the K distribution, based on the kernel parameter EU, centred at
u;. When using Gaussian kernels, this will result in drawing a random realization from a
normal distribution with mean u; and variance h?; [T9]. The analysis conducted previously
can then proceed, conditional on X; = z;. The convergence of this modified procedure
will be in n; rather than ”E If necessary we can also consider conditioning on additional
factors (say Z;) if those are strongly informative. While this procedure conceptually works,
the difficulty is that we cannot directly condition on X; outside of the validation sample.

Instead, we need some method for drawing from the correct error distribution, given
only X7. A possible technique is to repeat this procedure, using the validation sample
to estimate fx‘ x+(z|x*), and then draw X; based on this KDE, for each individual in the
sample. This could then be used as the value of X; to condition on. There are at least three
challenges with this approach. First, there is substantial computational overhead with KDE
techniques, and the added step further adds to this burden. Second, the propagation of
noise throughout the estimation procedure may be a concern, particularly in small samples.
Finally, it is worth questioning why we would use this procedure if we have access to fx|x-,
in place of using this kernel technique to impute X directly.

The first issue can be overcome with suitable computational power, and is likely to
be a more substantial issue for simulations and method validation, rather than for actual

10Which was also the case when independence was assumed.
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application. The final concern is closely related to the problem of deconvolution, where
estimates of the density of fx are obtained through nonparametric techniques (see Chapter
12 of Carroll, Ruppert, Stefanski, and Crainiceanu [7]). Intuitively, a better estimate of the
conditional density of fx|x- would be required to directly impute X, rather than using it
to overcome dependence in the error distribution, as is required for this procedure. In the
event of an insufficient sample size, as we have seen, the estimators are unlikely to perform
well regardless, which is a particular shortcoming to this nonparametric technique.

An alternative approach, which is less theoretically grounded, but more computationally
feasible, is to instead draw error realizations directly from the distribution of fyx-(ulz*).
This procedure can proceed exactly as outlined above, and can be directly applied over the
complete sample. Despite the easier application, this procedure is only going to approxi-
mately correct for dependence in the errors, even in the limit, as generally conditioning on
X* induces dependence between X and U, even where none previously existed.

To demonstrate the viability of this strategy, we consider one further simulation exper-
iment. We consider a simulation with X ~ N(1,4), and U|X ~ N(p(X — 1),1), where
p is a parameter selected from {0,0.5,1,2}. We take the outcome to be binomial, with
P(Y =1|X) = expit(1l — X). The sample size is taken to be n = 1000 with a 20% valida-
tion sample, and the simulations are repeated 500 times. Within this context, we compare
four different estimation strategies:

1. A standard application of SIMEX, which we expect to work well when p = 0.

2. A version of the NP-SIMEX where we first sample X from X|X* and then from
UlX.

3. A version of the NP-SIMEX where we sample directly from U|X*.

4. Sampling directly X |X*, and averaging over many iterations of this.

The results of the MSE for the slope parameter estimate are contained in Table [4.11}

The results of these simulations reinforce the aforementioned discussion. For the given
analysis when there is independence between U and X, the standard SIMEX estimators
perform well, however, as this dependence strengthens, the corrections are less able to
address concerns due to measurement error. The NP-SIMEX which fits directly to U|X
sees relatively comparable performance across all of the scenarios tested, and is always
among the best techniques. Drawing from U|X* performs comparatively poorly when
there is independence, but with dependent errors it sees a marked improvement, performing
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Table 4.11: MSE of logistic regression slope parameter estimates from 500 simulation runs
where there is simulated dependence between the true variate (X) and the error term (U)
and the strength of this relationship is mediated by p.

p SIMEX NP-SIMEX (U[X) NP-SIMEX (U[X*) X[X*

0 0.012 0.014 0.053 0.183
0.5 0.067 0.010 0.012 0.070
1 0.115 0.013 0.009 0.034
2 0.222 0.018 0.009 0.011

better than any other technique. The averaging of samples directly from X |X* tends to
perform fairly well again with a strong enough dependence, though it seems unlikely to be
preferable to the NP-SIMEX using U|X* or U|X.

The discussion of using KDEs in the event that U; Y X; may also prompt consideration
of using KDEs under the assumption that U; L X;. Instead of forming ¢ directly, we can
estimate fy(u), and then sample from the this KDE. To do so, with equal probability we
sample an index i € {1,...,n;} and then draw from the distribution corresponding to Ky
with bandwidth parameter EU, centred at u;. This procedure is the smoothed bootstrap.
There has been much written regarding the smoothed bootstrap, though it depends on the
situation as to whether or not there is anything to be gained through it [20]. There is some
evidence, in certain settings, that smoothing can improve the performance of estimators
particularly with small sample sizes [25]. This smoothing could be applied, under the
independence assumption, with either validation or repeated measurements. When the
NP-SIMEX performs better through the use of this smoothing, and validation data are
available, it is also possible to use the conditional KDE outlined above, even if X; L U;.
Hall, Racine, and Li [35] demonstrate that, through their cross validation procedure, the
estimated bandwidth parameter for the conditioning variables will converge to oo if and
only if the variables are truly independent. Given a sufficiently large validation sample,
sampling from the conditional KDE is equivalent to sampling from the marginal KDE.

4.8 Data Analysis

We consider an analysis of the Korean Longitudinal Study of Aging (KLoSA), following that
conducted by Xu, Kim, and Li [99]. The KLoSA considers South Korean citizens, aged 45
and over, in a longitudinal study looking to determine health effects of aging. Our analysis
considers data on n = 9842 individuals, with an internal validation sample of n; = 505, and
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Figure 4.1: A normal Q-Q plot for the observed errors in the Korean Longitudinal Study
of Aging.

we are interested in estimating how an individual’s BMI impacts their propensity towards
being hypertensive. In the main study BMI is estimated through self-reported weight and
heights, and the validation sample includes true measurements alongside the self-reported
values. Alongside the self-reported BMI, we are also given each individual’s age, which we
consider to be error-free.

An analysis of the validation sample demonstrates that the errors are non-normal, as
is evidenced by the Q-Q plot in Figure 4.1, an excess kurtosis of 2.05, and negative skew.
This suggests that the standard P-SIMEX procedure may not be appropriate. We estimate
the ratio of Z—Z, using the 505 validation sample observations, as 0.898.

We analyze these data fitting a simple logistic regression model, with a logit link func-
tion, including the main effects of BMI and age. That is, we assume that

We generate bootstrap standard error estimates with 1000 replicates, and compare both
the NP-SIMEX and P-SIMEX. The nonlinear extrapolant was selected for both procedures.
We also consider an uncorrected analysis. The results are summarized in Table [£.12]
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Table 4.12: Point estimates and bootstrap standard error (SE) estimates for the logistic
regression parameters, estimating the propensity of hypertension with an intercept (5y),
self-reported BMI (1), and age (33). The estimates are based on 1000 bootstrap replicates,
comparing the naive method, P-SIMEX correction, and NP-SIMEX correction.

Bo B B2
Method Estimate SE  Estimate SE  Estimate SE
Naive -5.023  0.439 0.030 0.016 0.053 0.002

P-SIMEX -5.512  0.833 0.049 0.031 0.054 0.003
NP-SIMEX  -5.061  0.673 0.039 0.026 0.054 0.002

The three methods tend to agree on the estimate and standard error for ;. For
both By and S, we see that the NP-SIMEX method estimates values which are larger in
magnitude than the naive estimator but smaller than the P-SIMEX correction, both for
the point estimate and the standard error. All three techniques suggest a positive effect
of BMI on hypertension, though, the level of significance of this effect varies dramatically:
0.054, 0.117, and 0.133 for the naive, P-SIMEX, and NP-SIMEX estimators respectively.

One concern with this analysis of KLoSA is that there is strong evidence that the
observed errors are not independent of the true values. This is not all together surprising,
given past research findings[93]. In Figure we can see a plot of the error terms versus
the true values, illustrating the degree of dependence that is present in these data. This
relationship corresponds to a correlation of approximately —0.464. With this in mind, we
may question how applicable the originally provided estimators are within these data.

To supplement the previously considered analyses, we further consider conducting the
same analysis using the two proposed KDE NP-SIMEX estimation techniques, based on
both sampling first from X|X* and then U|X, and on sampling directly from U|X*. The
estimated coefficients and bootstrap standard errors are estimated using both of these
methods, and included in Table For each of the analyses we consider using both the
quadratic and the nonlinear extrapolant. The slope coefficient for age (f2) generally was
not estimable with the nonlinear extrapolant and so these results are not reported.

The resulting estimates for 5y and [y do not differ substantially from the non-conditional
results. The signs for these coefficients, and their approximate magnitudes are comparable
to the previously estimated values. The largest difference is in the estimates for £, and
in particular when the nonlinear extrapolant was used["| These results suggest that the

HUNote that from the theory of SIMEX we expect that generally the nonlinear extrapolant provides a
better, though less conservative fit, and so the larger magnitude is not all together surprising.
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Figure 4.2: Estimated errors (U) versus the true underlying BMI for individuals within
the KLoSA validation sample. The included line is a LOESS curve, included to clearly
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delineate the degree of dependence observed within these data.

Table 4.13: Point estimates and bootstrap standard error (SE) estimates for the logistic
regression parameters, estimating the propensity of hypertension with an intercept (5o),
self-reported BMI (), and age (33). The estimates are based on 500 bootstrap replicates,
comparing the conditional NP-SIMEX method using U|X, and the conditional NP-SIMEX

method using U|X™*, both with a quadratic and nonlinear extrapolant.

Bo B2
Method Extrapolant Estimate SE  Estimate SE  Estimate SE
UlX Quadratic -5.531 0472 0.049 0.017 0.054 0.002
Ul X Nonlinear -4.740  0.669 0.063 0.028
Ul X+ Quadratic -5.515 0473 0.049 0.017 0.054 0.002
Ul X Nonlinear -4.936  0.679 0.061 0.038
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magnitude of the effect size was previously underestimated, quite severely. If we compare
the use of the nonlinear extrapolant with either of the conditional distributions to that
of the previous analyses we find that the previous estimates had magnitudes which were
between 0.5 and 0.8 times the estimated magnitude using the conditional distribution. The
p-values for a test of significance using U|X and U|X* were respectively 0.022 and 0.105.

Given the clear dependence observed between the errors and the true BMI in these
data, and in past literature, we advise taking the conditional analyses as more reliable for
estimators of the truth than the unconditional analyses presented originally. Agreement
on the intercept and age coefficient gives confidence in these estimates.

38



Part 11

Dynamic Treatment Regimes
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Chapter 5

Methodological Background: Dynamic
Treatment Regimes

In this chapter we formally introduce dynamic treatment regimes (DTRs). We begin by
discussing potential outcomes, which serve as a way to formalize causal inference generally.
We then define a DTR in terms of the potential outcomes framework. Using this frame-
work, we further discuss what is meant by an optimal dynamic treatment regime, and we
introduce the necessary assumptions to identify an optimal DTR, with a causal interpre-
tation, from observational data. We then focus on how estimation of an optimal DTR
proceeds, introducing the methods of Q-learning, dynamic weighted ordinary least squares
(dWOLS), and G-estimation in detail. Finally, we discuss the impacts of measurement
error on the estimation of optimal dynamic treatment regimes.

5.1 Potential Outcomes for DTRs

A dynamic treatment regime is a set of decision rules that take in patient information and
map to treatment decisions. We start by considering a single treatment decision. We wish
to take in all information that is collected from the patient and, using this information,
produce a treatment decision. This will be codified through a function d: X — A, where
X represents the space containing all possible patient covariate realizations X, and A is the
set of possible treatment options. For instance, if A = {0, 1} and X = N represents patient
age, then one possible decision function is given by d(z) = I(x < 50), which would assign
treatment A = 1 if the patient were under 50 years old, and treatment A = 0 otherwise.
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DTRs are designed to accommodate longitudinal treatment pathways. Consider a pro-
cess for treating a disease where there are fixed times, tq,...,tx, at which treatment
decisions are required (for instance, the clinical visits in STAR*D). We allow the specific
times to differ by individual, so long as each decision point j is interchangeable between
individuals (in STAR*D, we do not need all follow-up visits to occur on the same day, just
that “visit 1”7 is comparable between all subjects). We assume that, for each individual
(indexed by i = 1,...,n) we observe (X1, A1, Xo, Ay, ..., Xk, Ak, Y), all without error and
misclassification. Moreover, we assume that A; € {0,1} forall j =1,..., K.

Then, at each decision point, 1,..., K, we can define a decision function. We take
{dy,...,dg} to map from the space of patient covariates to the set of possible treatment
options. As is the case in STAR*D, the treatment options can differ at each decision
point, giving spaces Aj,..., Ax. Also note that, after the first decision is made, we have
additional information available for the decision maker. At decision point j, we have the
treatments A;,..., A;_1, as well as the covariates X;,..., X, to inform our decision. In
order to use all possible information, we take d;: H; — A;, where H, defines the space of
patient histories h;. We take hy = (X3), and otherwise h; = (X3, 4y,..., 4,1, X;). We
use overline and underline notation to refer to the past and future of a variable respectively,
so that, for instance, X; = (X, X,..., X;) and A; = (A4, Ajir, .-, Ag). A K-stage DTR
is a set of functions, d = {dy, ..., dk}, taking in patient histories and outputting treatment
decisions at each stage. The space of all DTRs is denoted D.

In order to develop the theory of dynamic treatment regimes, we turn to the potential
outcomes framework [84] [71l, [74], 68, [69]. In precision medicine, a potential outcome is
a random variable that represents a patient’s outcome under a pre-specified treatment.
Concretely, we conceive of a random variable, Y4=¢ for every a € A, which represents a
randomly selected patient’s outcome, had they been assigned treatment a. In our binary
example, Y4=0 is the patient’s outcome if they are given the control, and Y4=! is the
patient’s outcome if they are assigned the experimental treatment.

We refer to these random variables as counterfactuals or potential outcomes, since they
represent the hypothetical outcomes that would occur if, contrary to fact, the patient
received the indicated treatment (without any other changes being made). As a result, it
is not generally possible to observe multiple potential outcomes for any one patient. These
random variables provide a useful mechanism for discussing causal effects in the population.
For instance, we may be interested in E[YA=! — Y49 called the average treatment effect,
which gives the expected causal impact of treatment (interpreted as the change in average
outcome if all individuals were given treatment A = 1 compared to the case when all
individuals were given treatment A = 0). For the purpose of DTRs, we need to extend the
concept of a potential outcome over multiple decision points. For a sequence of treatments
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Ay =ay,..., Ay = ai, we define an individual’s potential outcome, Y A1=014k=% a5 the
outcome that they would realize given that specific treatment sequence.

Now, consider a single patient selected at random from the population with history Hy,
and a single-stage treatment regime, d. We define Y¢ = >~ _ V4=4[{d(H;) = a}. That
is, the potential outcome under d, denoted Y?, is the potential outcome of the treatment
that would be assigned to the patient, based on their history, using d. If d has multiple
treatment decisions, the potential outcomes become more complex.

To understand the necessary complexity, consider a patient that has received treat-
ment a;, and who is now entering the second stage of the DTR. We use X, to inform
our choice of ay, however, X, may have been impacted by a; itself. That is, X5 is a
random quantity that may depend on a;. Just as with the outcome, Y, we are only able
to observe one version of this random quantity, and so we consider this to be an inter-
mediate potential outcome. We express this as X;F‘“. The same will go for X3, which
will now depend on both A; and Ay, and so we denote Xj'=*42=02 — xA2=a2  Tpjq

continues for the remaining stages. This results in the set of potential outcomes given by
{Xla X;lzal,X§42:62, o ’Xék—1=ak71, YAK:E;C}'

The intermediate potential outcome X3 can be extended to accommodate a dynamic
treatment regime in the same way that the single-stage Y can be. That is,

Xt =) XU {di (X)) = ar}

a1 €A1

From here, between decision points j — 1 and j, we take X j 7~ to represent the potential
information arising in the interval between j — 1 and 7, on account of following d to
determine the treatment from decision point 1 through to j — 1. This process can be
continued through all intermediate X, until the final potential outcome Y, denoted Y.

The sequence of potential outcomes starts by observing X; as a pre-treatment covari-
ate, and using d to inform each of the treatments from stage 1 through to the end of the
treatment procedure at stage K. Following the regime produces K — 1 intermediate out-
comes, determined only by information that came before it, and a final potential outcome,
Y4, that represents the outcome of interest in the treatment procedure

ITechnically, X is not a potential outcome, as it is observed prior to any treatment. I am including it
here as it is far more cumbersome to discuss “X; and the potential outcomes”.

2The potential outcome framework for DTRs is notationally involved. Many authors ignore the formal-
ization, implicitly using it instead. This will perfectly suffice for understanding this thesis. The potential
outcome of a DTR is simply the outcome that would be obtained if the regime d is followed start to finish.
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5.2 Optimal Dynamic Treatment Regimes

In order to estimate the optimal DTR, we must first discuss what is meant by optimality.
We define the value of a DTR to be given by V(d) = E[YY], and we typically select YV’
such that higher values are preferable. Then, one regime d is considered preferable to an
alternative regime d' if V(d) > V(d'). More generally, we define the optimal treatment
regime d°P' to be given by arg max, V(d).

Solving for the optimal treatment regime is a problem that has received considerable
attention. Methods typically pose either parametric models for the potential outcomes or
specify some restricted search space for d. These methods may broadly be broken down into
Q-learning, A-learning, value search, or classification based approaches [90]. For this thesis,
we will focus primarily on: Q-learning [98]| through parametric models, a method which
conducts sequential regression analyses, estimating the impact of each stage independently;
dWOLS [95] which extends Q-learning using a weighted regression technique; and on G-
estimation [70], a technique which relies on solving a set of sequential estimating equations.
These methods are examples of Q- and A-learning, and all broadly take place within a
regression framework. Prior to presenting the specific implementation for optimal DTR
estimation, we discuss the necessary assumptions to draw causal conclusions.

5.3 Causal Inference and Data Assumptions

In order to interpret a dynamic treatment regime causally, we will typically require three
assumptions:

1. The Stable Unit Treatment Value Assumption (SUTVA) [73].

2. The No Unmeasured Confounders (NUC) assumption [72], or the Sequential Ran-
domization Assumption (SRA) [68].

3. The positivity assumption.

SUTVA, informally, states that if an individual receives a treatment option a, then the
observed outcome for this individual, Y, is equivalent to the potential outcome Y 4=, If
A is a countable set, then for a patient receiving treatment a with observed outcome Y,
SUTVA allows us to write

Y=Y I(af =a)y ="

ateA
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SUTVA is violated if multiple versions of the same treatment exist, (for instance, a patient
who knowingly received a control has a different outcome than they would have if they
had unknowingly received the control), or if one patient’s treatment assignment impacts
another patient’s potential outcomes (for instance, herd immunity in vaccine trials).

SUTVA alone suffices for endowing a causal interpretation in randomized studies. In
observational studies we need to add the no unmeasured confounders or sequential ran-
domization assumptions (for the single stage or multistage case, respectively). The NUC
assumption states that all information that impacts both the treatment and the potential
outcomes is measured during the observational study. That is, if X contains all recorded
information prior to the treatment assignment that is measured in the study, then NUC
states that Y4 L A} X. In the multistage setting this assumption needs to be strengthened.
The SRA can be stated as

(X& . xS yay 1A, 1y,

for k = 1,..., K. The SRA states that, given the history up to time k (for all possible
times k), all potential outcomes (past, present, and future) are independent of treatment
assignment at the given timef

These assumptions would be violated if any piece of information that is used to inform
the treatment that is received also impacts the outcome, and is unrecorded. This assump-
tion is not explicitly required during a randomized study since the randomization gives
Y4 | A. Unfortunately, it is not possible, using the observed data, to test whether the
NUC/SRA holds. Thus, causal inference based on observational data needs to be informed
by subject-matter experts who are able to say whether or not it is likely to hold.

While not explicitly required to conduct causal inference generally, many methods re-
quire assuming positivity. The positivity assumption states that, for every possible treat-
ment a € A, we must have that 0 < P(A = a|X) < 1. Unlike SUTVA and NUC/SRA,
positivity can be verified from the data. For instance, if both X and A are binary vari-
ables, then positivity requires that we have some observations for all of (X = 0,4 = 0),
(X=1,A=0),(X=0,A=1),and (X =1,A=1). In a sense, positivity can be viewed
in light of extrapolation. We are only able to make conclusions regarding treatment se-
quences which could have been received, as we would require extrapolation beyond the
recorded data in order to violate positivity. Making these three assumptions will suffice
for this thesis. We now present the details of optimal DTR estimation.

3Tt is possible to weaken the SRA and maintain the identifiability of a DTR with causal interpretation.
We will make the SRA, noting that it is stronger than is strictly necessary.
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5.4 Optimal Dynamic Treatment Regime Estimation

In the following sections we present three separate estimation techniques, Q-Learning,
dWOLS, and G-estimation. We begin by introducing the concept of backwards induction,
a dynamic programming technique leveraged by each of these methods. We then present
the procedures in order of increasing complexity, using the simpler methods to introduce
concepts which will be leveraged in the others.

5.4.1 Backwards Induction

Backwards induction is a process for selecting the optimal decision rule by starting at
the final decision point, and iteratively working backwards. Intuitively, this process of
backwards induction first determines how to optimally act when all information is available,
except for the final decision. Once it is clear how to make the last decision, we are able to
then consider the penultimate decision. By assuming that we do act optimally after this
point we have effectively encoded all relevant information into the (K — 1)-st decision, and
we can decide what an optimal treatment looks like there. We continue in this fashion
until we have specified, starting with only the first piece of information, how we are to
optimally act. To illustrate this, and explain why it is useful, we consider a two-stage DTR.
Consider taking a randomly selected individual, with observed information (z1, a1, xs, as),
and imagine the process of determining the optimal treatment regime for them.

When they present initially, a; has to be decided on the basis of x1, as X5 = x5 has not
yet been observed. However, we know that a; is likely to influence the value of X5, and so
there is a fairly complex set of considerations to make. Imagine instead that we are at the
time of the second decision, where hy = (21, a1, x2) have all been observed. Here, in order
to select the optimal Ay, we need only consider its impact on the final outcome. We choose
as to maximize the expected outcome, given hy. This can be expressed in a function,

Q2(ha,az) = E[Y|Hy = hy, Ay = as),

called the (second) @Q-function. We can select the optimal as by maximizing Q5 (hs, as). In
particular, this gives dy*(hy) = argmax,, 4, Q2(hs, as). We further define

‘/Q(hg) = Imax {Qg(hg, 1), Qg(hg, 0)} .

This quantity extends the previously discussed concept of our value function. V5(hs) is
interpreted as the expected value for an individual who has observed history hy, who is
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then treated optimally. Note that if Ay # {0,1} then V5(hs) is defined as the maximum
value for Qo (hg, as) across all as € As. The binary notation simplifies this exposition.

Taking this quantity, we can now “step backwards”, and consider the first decision. In
considering the choice of A;, if the patient were assigned a treatment option aJ{, then
we know from the preceding discussion that their expected optimal outcome becomes
‘/2(.7}1,(111-,)(2). The only randomness in this is due to X5 being an as-yet unobserved
quantity. This suggests defining

Ql(hbal) = E[VQ(IBl,aszﬂfh =hy, A = a1]>

as the first Q-function. Now, we can choose the optimal value for a; by the same maximiza-
tion argument applied to the second () function, which also leads to an analogous definition
for Vi(H;) = max{Q1(h1,1),Q2(h1,0)}. If we define d°P* based on the maximization of
iterative Q-functions, it can be shown that E[Y?"'] = E[Vi(H;)] > E[Y% for all possible
treatment regimes d (see section 7.2.3 of Tsiatis, Davidian, Holloway, and Laber [90]).

If K > 2, this process extends as expected. We define the K-th Q-function as

QK(hK,aK) = E[Y|HK = hKaAK = CLK]7

the K-th optimal decision rule as d** = I(Qx(hx,1) > Qx(hk,0)), and the K-th value
function as

Vi (hik) = max{Qk (hk, 1), Qr (hk,0)} .

Then, starting from 7 = K — 1, and working backwards to j = 1, we define the correspond-
ing Q-function as

Qj(hy,a;) = E[Vjy1(hy, a5, Xj1) | Hy = hj, Ay = ay],

the optimal decision rule as d?pt = 1(Q;(hj,1) > Q,(h;,0)), and the corresponding value
function as

Vj(h;) = max {Q;(h;, 1), Q;(h;,0)}.

We next introduce how this process is leveraged in Q-learning to estimate an optimal DTR.
To unify notation, we will generally define Vi, = Y. The rationale for our interest in
these quantities derives primarily from the fact that the optimal DTR is characterized
through the optimization of the sequential @) functions [90].
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5.4.2 (Q-Learning

Q- (quality) learning is a technique which was introduced in the reinforcement learning
literature. Q-learning operates by specifying a model for each Q-function, and then recur-
sively fitting these models starting at stage K and stepping backwards. While it is possible
to posit any model for the Q-function, we will focus on linear ()-learning, where at each
stage a linear regression is specified. That is, we will assume that (whenever a; is binary),

Q;(hs, a5:0;) = Bk + aihy,

where 0; = (f;,1;) are specified regression parameters, and (hjﬁ ,h}p) are two (possibly
identical) subsets of the history vector. The process of Q-learning is then:

1. Compute the OLS estimate of 0 as é\K, by fitting Qx (+; 0k ) with Y as the outcome.
2. Specify c/l\%’t = [(QZKH}é > 0).

3. Define ‘7K<hk) = max {QK(hka 1; é\K), QKUlk,O, 5[()}

4. Repeat steps (1, 2, 3) for the previous stage, replacing the outcome with ‘7, working
iteratively back to stage 1.

So long as all models are specified correctly for the Q-functions, then
Jort — {d‘;m, o ,d‘}?t} ,

will be a consistent estimator for the true optimal regime. Due to the comparative simplic-
ity of Q-learning, it is a fairly popular technique. However, there are drawbacks that serve
as motivation for the more complex methods we will discuss. In any parametric imple-
mentation of Q-learning, all models need to be correctly specified, in full, in order to have
consistent estimation. This is particularly concerning for linear Q-learning. It will almost
never]] be the case that the Q-functions can be linear, and even less often the case that they
will be. The issue of non-linearity can of course be overcome by considering a more flexible
class of models, however, the problem of complete specification remains. Non-parametric
techniques can rectify these issues, at a far greater computational burden.

4A straightforward derivation shows that if treatment interacts with a continuous covariate, this will
tend to make the earlier stages nonlinear, due to the indicator function in computing Q..
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Since Q-learning fits a sequence of least squares estimators, it may seem reasonable that
the standard theory of M-estimation could be exploited to derive asymptotic standard er-
rors and distributional results. Unfortunately, that is not the case, and will generally not
be the case for any DTR estimation. The issue stems from the use of the maximization
operation, which is generally not differentiable. This makes the Q-learning estimator a
so-called non-regular estimator, in the sense that it does not conform to the regularity con-
ditions required for standard inference [70]. The central issue is that non-regular estimators
may not have a unique limiting distribution. In Appendix [C] we give a concrete example
of why this occurs. Owing to this non-regularity, standard bootstrap procedures are also
unlikely to be entirely theoretically justified. Despite this, the use of M-estimation as a
guiding framework remains effective. The consistency results do not rely on the regularity
of the estimators, and whenever optimal treatments are clearly defined (in the sense that
the counterfactual outcomes are substantially different between the different treatment
options, for all individuals), standard asymptotic theory can be leveraged.

Dynamic weighted ordinary least squares, presented next, extends Q-learning in such
a way to provide robustness to model misspecification.

5.4.3 Dynamic Weighted Ordinary Least Squares

In principle, dWOLS is a similar technique to Q-learning. In dAWOLS we once again fit a
series of regression models, using backwards induction. However, dWOLS modifies linear
Q-learning in that the regressions are weighted. This weighting results in a significantly
more robust methodology. To understand why, consider the linear model that was posited
for Q;, given by f3; hf + ajw;h;?’. The expression has been carefully constructed to indicate
that the assigned treatment is only relevant through the second term. We have divided
the model for (); into a component which captures the effect of treatment, and one which
is free of treatment effects. We refer to the latter as the treatment-free component.

Define v;(h;, aj; a') = Q;(hj,a;) — Q;(h;,af). Then ~;(h;,a;) represents the differ-

J YRR
ence in the expected (optimal) outcome for a patient with history h;, between receiving

treatment a; and a§ef. Plugging in previous definitions, we have

re:

- . _opt — £
fyj(hj7a/j> — E Yll]—l,a],gj+1 _ Yaj—17aj i1

This compares the expected outcome for two individuals who have identical history up
ref

to stage j, where one of the individuals receives treatment a; and the other receives aj”,
before they both go on to receive optimal (though, possibly not identical) treatment. We
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call this quantity the blip-to-reference function (or more succinctly, just the blip function).

A positive blip function means that a; is a preferable treatment to a™f

', given the history.
Since we consider A; € {0, 1} by assumption, we typically take a?ef = 0. Here the zero level
is defined as our reference category, for instance, as the control in a clinical trial. Then, we
would have that 7;(h;,0) = 0 for all j, and that v;(h;, 1) represents the impact of receiving
treatment A; = 1, if everything else remains optimal. The blips define the sequence of
optimal treatment rules. If v;(h;,1) > 0, then selecting a; = 1 is preferable to selecting

a; = 0. As a result, d*" = I(y;(h;,1) > 0).
We can also use the blips to re-write our models for the Q-functions, taking
Q;(hy; 0;) = BihS + (i 1by).

In Q-learning, any model misspecification will possibly lead to inconsistent results, whether
the misspecification is actually encoding the impact of treatment or not. The following
theorem illustrates that this is not true of dAWOLS (Wallace and Moodie [95] Theorem 1).

Theorem 5.4.1 (dAWOLS Consistency Result). Assume that

Quc(huc; arc) = [ (hig; B) + axctbichic,
for some function f (functionally independent of the treatment). Define
m(hk) = P(Ax = 1|Hg = hg),
and define w(ag, hg) to be a weight function such that
m(hg)w(l, hg) = (1 — 7(hg))w(0, hg). (5.4.1)

Under correct specification of hﬁ, a weighted ordinary least squares regression of the out-
come Y on {h5 axh®}, using weights given by w(ax, hy), will consistently estimate .

This theorem indicates that the simple process of weighting, with weights satisfying
Equation (5.4.1), makes the correct specification of the treatment-free component un-
necessary for consistent estimation. The identity that the weights need to specify does
lend some flexibility into the precise form, though it is advised that weights of the form
w(a, h;) = la—E[A;|H; = h;]| = |a—m(h;)| are used |95, 52]. This works via covariate bal-
ance, where in the weighted data set, the covariates and treatment behave as though they
are independent. Any weights satisfying the requirements will rely on the propensity of
treatment, m(Hf). In the event that these propensities are readily available (for instance,
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in the case of a randomized trial), we can then be certain that our blip parameters are
consistently estimated, so long as the form of the blip is correctly specified. If 7(-) are not
known, it may be the case that this is a quantity that can be modelled easily.

If weights satisfying Equation can be consistently estimated by fitting a para-
metric model to P(Ax = 1|Hi = hg;ag), then using estimated weights maintains the
result of Theorem [5.4.1] We refer to this additional parametric model as the treatment
model. The specification of a treatment model makes dWOLS a doubly-robust estimation
technique. Assuming the blips are correctly specified, if either the treatment model or the
treatment-free model are correctly specified, then the parameters 1 will be consistently
estimated. This weighted regression forms the basis of AWOLS. Until now, we have only
discussed the K-th stage parameter estimates. In order to estimate the blip parameters
for stages j = 1,..., K — 1, we need to introduce the concept of regrets [59].

We can frame the observed outcome Y as the outcome under the optimal treatment
regime, Y4 = Y°P* minus the impact of all suboptimal treatments that were received.
Regrets are the functions which quantify the impact of suboptimal treatment. Notationally
this is expressed as p;(h;,a;) = E [Y“J bagP gy di-nasaft ’ H; = hj] Just as with the
blip functions, the regrets can be used to determine the optimal treatment, as we know
that p;(h;,a;) > 0, with equality only at the optimal treatment. We can also write that

wi(hi, a;) =v,(a;,a Opt) v;(hj,a;). Re-writing Y using regrets can be done as
K
E [Yl HK = hK] =F [YOpt‘ HK = hK:| — Z[Lj(hj, CLj).

This motivates a type of pseudo outcome for AWOLS. The basic idea is that, at each
stage, we wish to estimate the outcome under the observed treatment up to the current
stage, assuming that the patient goes on to receive optimal treatments at all future stages.
At stage X —1 this is given by Y-I—MK(hK, ag). Generally, for any stage j = 1,..., K—1, we
take Y Y + Zz i1 pe(hey ap) = Y]+1 + pj+1. We can estimate these using the estimated
regrets in a backwards induction process. Taken together, dWOLS is summarized through
the following procedure:

1. Specify a parametric model, divided into the treatment-free (indexed by ;) and blip
(indexed by ;) components, for each stage (where we are modelling the expected
outcome assuming that the patient goes on to receive optimal treatment).

2. Specify a parametric model for the propensity of treatment (indexed by «;) for each
stage.
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3. Using the parametric treatment model, compute the weights for each individual,
given by w(a;, hj; a;), so that they conform to Equation (5.4.1)).

4. Starting at stage K and working backwards, compute the estimated pseudo outcome
D! P BN
Vi =Y + 3700 telhe, ag ibe).

5. With the computed pseudo outcome, fit the model to generate estimates for ¢;, and
then repeat the regression procedure.

With this procedure, so long as, at every stage, either the treatment-free or the treatment
model is correctly specified, along with all of the blip functions, the resultant estimators
are consistent. In certain circumstances, the treatment model will be known exactly. Even
when it is not, it is likely the case that these experts have a good sense of the factors that
are used to inform treatment decisions. This added robustness is an attractive feature
shared by G-estimation, which is presented next.

5.4.4 G-Estimation

Like both Q-learning and dWOLS, G-estimation [70] is a sequential, model fitting proce-
dureE] For the process of estimating d°P*, G-estimation begins with a consideration of the
@ and value functions introduced in Section [5.4.1] If we take A; € {0,1}, we can express
Q;(H;,A;) =v;(H;)+ A,;C;(H;), for some arbitrary functions v; and C;. Then, the value
function will take on the value of v;(H;), if C;(H;) < 0 and v;(H;) + C;(H;) otherwise.
Note that in the context of G-estimation we are using notation which differs slightly than
that discussed for dWOLS. In dWOLS we used 7;(+) to denote the term given by C;(-). The
reason for this difference is two-fold. First, G-estimation does not implicitly restrict C;(-)
to take a linear form, while dWOLS does restrict v;(-). Second, the notation C;(H;) has
been used in recent literature surrounding G-estimation (see Tsiatis, Davidian, Holloway,
and Laber [90]) while 7;(-) is common for dWOLS.

G-estimation belongs to a class of estimation techniques known as A-learning (A for
advantage). These methods use the insight exploited when introducing dWOLS that only
the contrast (or blip) needs to be estimated in order to define the optimal treatment.
The optimal treatment at each stage is determined solely by C;(H;). If C;(H;) > 0 then

®The discussion of G-estimation is taken not directly from Robins [70], but rather from Wallace and
Moodie [05] and Tsiatis, Davidian, Holloway, and Laber [90], owing to the clearer formulation. The
Robins/s paper is a sprawling account, which provides rigorous theoretical justification, but which is not
particularly informative for a first-time reader.
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A?pt =1, and A?pt = 0 otherwise. Combining this result with the fact that finding the
optimal DTR is equivalent to optimizing the ) functions, A-learning methods proceed by
estimating C;(H;) from the available data and taking d;(H;) = I(C;(H;) > 0) to assign
treatment. The term C;(H;) is exactly the blip function from dWOLS when the reference
level is taken to be the zero. As a result, we introduce the parameter v; to index these
functions, so that Q;(H;, A;) = v;(H;) + A;C;(Hj;1;). We will assume that each Cj is
correctly known up to the blip parameter indexing it. In this setting v; corresponds to the
treatment-free model from dWOLS.

Assuming that the treatment assignment probabilities, P(Ax = 1|Hg) = mx(Hg),
are known, Robins [70] demonstrated that every consistent and asymptotically normal
estimator for g will solve

Z M (Hi ) {Aixk — e (Hi ) }{Y: — Ai kCr (H; k5 ¢K) + 0k (H; )} = 0. (5.4.2)

i=1

Both Ak () and 0k(-) are taken to be arbitrary functions of the history, where Ag(-) is
constrained to be the same dimension as k. If we define Vi1 =Y, and for j =1,..., K,

Vi = Visr o+ (AT = 4))C5(Hj ), (5.4.3)

then E[‘Z+1|Hj, Ajl =Q;(H;, Aj) = vi(Hj) + A;C;(H,), almost surely. This holds almost
surely so long as 1@- is almost surely consistent for ;. Based on these pseudo outcomes,
we can extend the estimating equations in Equation to all stages, j =1,..., K by
replacing Y; with ‘Z,jﬂ. We take,

Ui(thy) = Y Aj(Hig) {Ai; — m(Hij)} {‘Z’,jﬂ — Ai;Ci(Hiji ) + ej(Hz',j)} . (5.4.4)
=1

Then, solving U; (QZJ) = ( renders z/ﬁ\j a consistent estimator for ;.

Just as with dWOLS, it will often be the case that we do not exactly know the treat-
ment assignment probabilities, m;(H;). If it is possible to specify a parametric model
for these treatment probabilities, indexed by «;, which can be framed as the solution
to a set of unbiased estimating equations, Uy (@) = 0, then we can simply “stack”
(Uit j (), U (¥4, 05)") together and jointly solve them. This will result in consistent esti-
mators when both models are correctly specified. We will often use logistic regression for
the purpose of estimating the treatment assignment probabilities when they are unknown.
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The functions \;(H;) and 6;(H,;) can both be arbitrarily selected, so long as the di-
mension of \;(-) matches that of ¢;. Typically, §,(H;) can be selected to add robustness
to the estimation procedure. If we are able to specify a parametric form for the nuisance
parameter v;(H;), indexed by f;, then by taking 0;(H;; ;) = —v;(H;; 5;) this estima-
tion procedure becomes doubly robust in exactly the same sense that dWOLS is doubly
robust. Just as with the treatment assignment probabilities, these treatment-free mod-
els are unlikely to be known directly. Instead, if the parameter can be estimated as the
solution to Uy ;(6;) = 0, then we can further “stack” (U ;(5;), Ut j(0y), Uj(¥;, o, B5)")
to jointly estimate (f},a’,7}). The estimators for 1; are consistent so long as the blip
model, C;(Hj,1;), is correctly specified, in addition to at least one of the treatment or
treatment-free models.

While the specification of 0;(H;) was selected to add robustness, the selection of \;(H,)
is typically made with efficiency in mind. Robins [70] provides the optimal form for A;(H;),
based on the asymptotic variance of the estimators, but the form is often complicated.
Instead, we typically define \;(H;) = %C’k(H ;31;), which seems to work well in practice
[14,[90]. With these functions specified, G-estimation then estimates the optimal treatment
regime, d°P* by recursively estimating the parameters ¢y for k = 1,..., K, and then taking
dP*(Hy) = I(Cy(Hyg; ¥y) > 0).

We once again start at decision point K, and then:

1. Specify a model for the treatment-free component, Ok (H; fx) = —vi (Hg; Bk ).
2. Specify a model for the treatment probabilities, 7y (Hg; ak).

3. Specify a model for the blip/contrast, Cx (H;¥k).

4. Jointly solve models (1)—(3), giving estimates for ¢k, using Equation (5.4.2)).

5. Compute the pseudo outcome, Vk according to Equation 1) and then repeat the
previous steps, solving according to Equation (5.4.4) for stages k =1,..., K — 1.

The optimal decision rules, just as with dAWOLS, can then be inferred from the estimated
blip parameters. The robustness of G-estimation, and the flexibility to accommodate non-
linear modelling strategies, makes it an attractive procedure for estimating optimal DTRs.
The main downside of the methodology stems from the complexity, making description
and implementation more cumbersome than the previously specified techniques.
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5.5 Measurement Error in DTRs

Prior to this dissertation, to the best of our knowledge, there has been only one substan-
tive attempt to assess, and correct for, the issues of measurement error in the context of
DTRs. This work was completed as my masters project. This established the impact of
measurement error on the estimation of optimal DTRs, illustrating the complexity of errors
in these models. Assume that, for a scalar-valued, continuous, tailoring covariate, we ob-
serve classical additive error, with normally distributed errors. To assess what impact this
error has on the estimation of an optimal DTR, we will use the dWOLS procedure. The
impact of errors in regressor variables has been thoroughly studied, and given the strong
ties of AWOLS to ordinary regression, we will expect similar issues to arise. The impact of
measurement error in a DTR is complicated by the fact that the treatment, treatment-free,
and blip models are all impacted by mismeasurement separately.

We assume that a biological process (or similar) relates the true covariate values X
to the outcome Y, whereas treatment decisions can only be made based on the observed
values X*. This structure is shown in Figure Because of the complicated structure, we
consider the impact in the treatment, treatment-free, and blip models separately. When
using dWOLS, correcting for error in covariates within the outcome model is the same as
correcting for the effects of error in a standard linear regression. In this setting, we can
use (for instance) regression calibration to consistently estimate all necessary parameters.

Figure 5.1: A directed acyclic graph (DAG) representing the assumed impact of measure-
ment error in the DTR setting. Here X is the error-free covariate, X* the observed proxy,
A is a binary treatment indicator, and Y is a numeric outcome of interest.

The treatment model is leveraged primarily as a means of endowing the dWOLS es-
timators with the property of double robustness. It is possible to think of this double
robustness as arising through the property of covariate balance [95]. In the error-prone
setting, if we employ regression calibration using X in our outcome models, we wish to
induce covariate balance not between X and A, but between X and A. Following the
justification of the choice of weights by Wallace and Moodie [95], we might speculate that
any weights which satisfy 7(X)w(1,X) = (1 —7(X))w(0, X) will induce covariate balance
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in X. During my masters project, I explored this line of reasoning and demonstrated that
a small-sample proxy for covariate balance, sample balance, arises through these weights.

Result 5.5.1. If P(A = 1|X = z) = H(a + ayz), where H(z) = (1 + exp(—z))~! is
the inverse-logit (expit) function, and X7 = X + U, for j = 1,...,k are iid replicate
measurements of X, then denoting the regression calibration estimates X and using the
weights w(A, X) = |A — n(X)|, where w(X) is the estimated probability P(A = 1|X) fit
using logistic regression guarantees sample covariate balance. That is,

S w(l, X) AKX, - i w(0, X)(1 - A)X,
Z?:lw(lvx)Ai Z?le(O,X)(l _Ai)

The quality of using sample balance as a small scale proxy was assessed using simu-
lations. This result provides a reasonable justification for using the regression calibration
correction in the treatment model.

The final component that needs to be considered to address the impacts of errors in
variables relates to the construction of pseudo outcomes. During the previous work, the
problem of constructing a valid pseudo outcome was put aside, relying instead on justifica-
tion via simulation. As a result, the existing literature on addressing measurement error in
DTRs primarily served as a mechanism for demonstrating that (as one would expect) errors
cause concerns for correctly estimating the optimal DTR and that these concerns are gen-
erally complex owing to the structure of a DTR. Some simulation evidence demonstrated
that regression calibration may be an effective tactic for restoring desirable properties of the
dWOLS estimators, but these results were explored primarily based on heuristics rather
than being thoroughly justified theoretically. Moreover, the project focused on a fairly
limited scope (considering only scalar-valued variables, with normal additive error). No
attention was given to uncertainty quantification, either through confidence intervals or
standard error estimates.

Starting from a position wherein these problems have been identified, in Chapter [0]
we expand on these ideas, giving theoretical justification for the application of regression
calibration to the correction of the effects of errors in DTRs. We demonstrate how, using
ideas from Chapter [3 the expanded regression calibration correction can be applied in
this setting. We propose the use of a modified bootstrap procedure to produce confidence
intervals. These results are justified theoretically, through simulation experiments, and
with an application to the analysis of STAR*D.
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5.6 Nonadherence in DTRs

While the effects of errors in tailoring variables on the estimation of optimal DTRs has been
briefly explored prior to this thesis, the impact of misclassification of treatment indicators,
known better as nonadherence, has not been. There is some literature which discusses
nonadherence in the context of dynamic treatment regimes. However, this research has
focused on the ability to adequately estimate the expected impact of a regime that might
not have been complied with, when that particular regime is of primary interest, and
compliance information is readily available [39, I8, 36]. The concern in this literature
is not predominantly estimating the optimal regime taking into account nonadherence,
but instead, on how to identify the wvalue of a particular regime of interest, when it may
not have been adhered to perfectly. Wallace [94] briefly explores nonadherence in binary
treatment indicators for simple dynamic treatment regimes. In this work it is shown that
nonadherence can have a sizable impact on the estimation of optimal dynamic treatment
regimes, even in simple examples. While the bias that nonadherence introduces is indicated
and justified, no corrections are proposed.

Beyond the specific context of DTRs, nonadherence occurs when a prescribed treatment
is not followed by an individual. This is a concern in the medical setting as health outcomes
can be severely impacted by nonadherence. Medical researchers have been concerned with
assessing the degree of nonadherence, the impacts of nonadherence on patient outcomes,
the factors that predict nonadherence, and ways to limit nonadherence [103], 22], [33] 37].
From a statistical perspective nonadherence is a concern as, when present in data, it can
bias parameter estimates or change the causal interpretation of parameters.

Any analysis which proceeds by ignoring nonadherence is referred to as an intention-
to-treat (ITT) analysis [54], [34]. When conducting an ITT the causal effect that is being
estimated is treatment prescription, rather than treatment itself. An ITT analysis can
be motivated by taking a policy perspective. If a policy is being considered which would
prescribe some recommended treatment for every patient with a particular illness, then
the causal effect of this policy can be decomposed into two components. First, such a
prescription likely has an impact on patient behaviour and their adherence to the prescribed
treatment. Second, the treatment that the individual ends up taking has some causal effect
on their outcome through relevant underlying processes.

In a clinical setting, intention-to-treat analyses are often framed in contrast to per-
protocol (PP) analyses [67]. In a PP analysis, only the patients who adhered to the assigned
treatment are included. A concern with a PP analysis is that bias will be introduced into
parameter estimates if nonadherence is not completely at random. For instance, if, as
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is likely the case, the patients who fail to adhere to their prescribed treatments are the
ones who were not improving under the treatment, then excluding these cases from an
analysis will overestimate the positive impact of treatment. An I'TT analysis circumvents
this source of bias by taking the act of prescription to be the intervention, rather than
the treatment itself. While the concerns with PP analyses are certainly valid, there are
several issues with I'TT analyses as well. Of primary concern, an I'T'T does not provide an
unbiased estimate of the effectiveness of treatment itself [81].

In Chapter [7] we provide the first procedure for estimating an optimal DTR using
data which is subject to nonadherence. In addition to providing a modified version of
G-estimation to account for the effects of nonadherence, we deeply explore the specific
impacts of nonadherence in this context, and draw attention to the complexities that
arise from this setting. We pay particular attention to the fact that, especially in the
context of precision medicine, the drawbacks of an ITT should not be overlooked. We
explore the ways in which nonadherence can undermine the causal interpretations that
are typically made when estimating an optimal DTR, and argue that in many settings the
proposed treatment-efficacy approach will be more appropriate. These results are presented
theoretically, explored via simulation studies, and demonstrated through an analysis of the
Multicenter AIDS Cohort Study (MACS).

5.7 Measurement Error and Nonadherence in STAR*D
and MACS

While we contend that measurement error and nonadherence are likely far-reaching prob-
lems in the realm of DTR estimation, we content ourselves with an exploration of these
ideas using STAR*D and MACS in this thesis.

STAR*D provides an interesting use case for the methods explored in Chapter [6] as it
has never been analyzed accounting for errors in measurement, previously. We are primarily
concerned with each patient’s QIDS score, and as noted in Chapter [I] this was assessed
at each visit both by the patient themselves and by the clinician. The self-reported QIDS
score tends to be ignored in analyses of the STAR*D data, under the implicit assumption
that QIDS-C is an error-free measurement of the true depressive symptomatology. If we are
willing to view both QIDS-C and QIDS-S as measurements of the truth, then the presence
of two separate measurements constitutes auxiliary data which can be used to correct for
the effects of measurement error. We will again assume a non-differential error mechanism,
modelled classically, using structural methods.
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MACS, on the other hand, exists in a domain which has more explicitly handled non-
adherence previously. Despite this, when analyzed as a DTR, MACS has never had this
information taken into account. Generally our analysis will be concerned with the timing
of AZT prescription, as it is mediated by several patient characteristics. It is well-known
that patients may be nonadherent to their AZT prescription, and as a result, in some waves
of the study, the researchers running MACS have collected adherence information. It is
our interest in considering what the impact of this estimated degree of nonadherence will
be on the assessment of treatment efficacy.
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Chapter 6

DTRs with Errors in Tailoring
Covariates

6.1 Motivation for Error Corrections in DTRs

The previous work conducted on errors in the tailoring variates of DTRs makes clear that
a ‘naive” analysis, one which ignores errors when they are present, predictably leads to
biased and inconsistent estimators for the true population parameters. This fact alone
is not necessarily sufficient to motivate the development of measurement error correction
techniques in this setting. The importance of developing methods to address the concerns
of measurement error depends largely on the goals of the underlying analysis. If it is of
primary interest to quantify the effect of treatment, or a treatment-covariate interaction,
then the existing results demonstrate that error correction techniques are necessary.

However, it may be the case that a DTR is estimated explicitly for the purpose of
future treatment assignment. In principle, the problem of assigning future treatments can
be framed as a prediction problem. In this case, the DTR models are fit in service of
generating optimal predictions, based on observed covariates, out of sample. Then, if it is
likely that future individuals will also have their relevant tailoring factors measured with
error, it may seem reasonable to ignore the errors all together. In this context we are
re-specifying the problem of interest to be “predict the optimal treatment based on the
surrogate measurement of the variable of interest”.

The use of surrogate measurements in prediction problems, ignoring the impacts of
measurement error, is a topic which has been explored in some detail. This strategy
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will sometimes lead to acceptable performance, but this is not always the case. Even in
comparatively simple models it is often the case that the effects of measurement error are
worth correcting when the primary goal is prediction. Schaalje and Butts [77] demonstrate
in the case of linear regression, where prediction is of primary interest, there are settings
where ignoring the error leads to undesirable results. Khudyakov, Gorfine, Zucker, and
Spiegelman [46] draw similar conclusions for risk prediction models, in a medical context,
where the models are fit using GLMs. Given the complexity of predictions within the DTR
setting, these issues are worth investigating further.

When approaching corrections for the impacts of measurement error, it is instructive
to consider how the different aspects of a dynamic treatment regime may be impacted.
As was introduced in Section [5.5 previous work on the effects of measurement error on
optimal DTR estimation has been framed through the different model components. The
complex and unique structure of this error (Figure lends itself to this type of piece-wise
analysis. For a dynamic treatment regime estimated through dWOLS, tailoring variables
play three distinct roles. First, the tailoring variables act as predictors, used for both the
treatment-free and blip components of the outcome model. Second, the tailoring variables
may act as predictors in the treatment model, which is commonly a logistic (or probit)
regression. Finally, the tailoring variables are used to construct the pseudo outcome,
allowing backwards induction to proceed.

With the outcome model the goal is to estimate the true, underlying relationship be-
tween the tailoring variable, free from error, and the outcome. As a result, any method
which corrects for the effects of measurement error in parameter estimation within linear
models can potentially be used to remedy the impacts of measurement error on the first
component. This would include all of the strategies previously discussed, among others.
Since dWOLS leverages linear outcome models, there are an abundance of correction tech-
niques that are suited to restoring the consistency of the estimators. We will focus on
regression calibration, though conceptually, simulation extrapolation would work as well.

There exist many methods for correcting for errors in predictors in a logisitc regression
model (see for instance the discussion of moment reconstruction in Chapter . The goal
of these corrections is to model the true relationship between the underlying, error-free
variable and the outcome. When we consider the treatment model, the goal is not to
model the true relationship between the tailoring covariate and the treatment indicator, but
instead to produce weights which endow the resultant estimators with double robustness.
As a result, when selecting a technique for addressing the errors in the treatment models,
our considerations are not around consistent estimation of the true parameters, but rather,
around the weights meeting the necessary conditions.
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In general, the pseudo outcome needs to be a quantity which represents the expected
outcome of the individual taking their history up to the present as fixed, and assuming
that in the future they are treated optimally. That is, in order for dAWOLS to be able to
estimate the optimal DTR, we need

EY,

j
Hj,Aj] = B[V Hj, Al = by, a;).
/=1

The process of estimating this quantity relies on the tailoring variate, as well as the esti-
mated parameter values.

The discussions regarding corrections in this chapter focus primarily on the application
of AWOLS. However, any of the regression-type estimation procedures for DTR estimation
will be subject to the same concerns when tailoring covariates are measured with error.
If instead DTR estimation proceeds through the use of value search or classification-type
techniques, the specific set of issues to overcome will differ.

6.2 Summary of the Proposed Methods

In this chapter we present methods for adjusting for the impacts of covariate measurement
error in the estimation of an optimal dynamic treatment regime. Our proposal amounts
to using regression calibration to estimate X;, for each individual, based on replicates or
a validation sample[l| Then, we advocate for conducting an analysis using dWOLS, where
X; is used in place of X; within the blip, treatment-free, and treatment models directly.
Doing this will produce doubly robust estimators for the blip parameters anytime that a
valid pseudo outcome is constructed.

To construct a valid pseudo outcome, there are four points to consider. If you are sim-
ply wanting to estimate the effectiveness of a particular treatment, and are as such directly
using the blip formulation, then replacing X; with X; within the construction will consis-
tently estimate the correct outcomes. If, instead, you are concerned with optimal DTRs
and you have access to a validation sample, then the pseudo outcome can be constructed
by directly modelling, in the validation sample, E[I(Hjy; > 0)Hj;|H5] for each j, and
using this in place of A;’ptH 1; in the pseudo outcome construction. If replicate data, or
other auxiliary information, is to be used in place of a validation sample, then distribu-

!The techniques from Chapter [3| are also appropriate.
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tional assumptions may render consistent estimation of the necessary pseudo outcomes (for
instance, as discussed in Theorem (6.4.3)).

One final option regarding pseudo outcomes is to simply use X; in place of X; and
follow the standard construction. This will generally not produce consistent estimates
of valid pseudo outcomes, however, we demonstrate through simulation that this simple
procedure works quite well as an approximation, and is likely to be suitable for many
situations, particularly where the stronger assumptions are not defensible. In practice this
means that performing dWOLS with regression calibration imputed variates will produce
estimators which are approximately consistent, and are doubly robust in the same way
that the error-free AWOLS estimators are.

6.3 Corrections Under Classical Additive Error

For the purpose of introducing the proposed corrections, first suppose that we are con-
sidering a K stage dynamic treatment regime. We will assume that some segment of the
tailoring variables are measured with additive error, and are not subject to systematic bias.
That is, we observe

X7 =X;+Uj, (6.3.1)

for j = 1,..., K. As before, we take A; to denote the stage j (binary) treatment, and
assume that all treatment indicators are observed without error. Moreover, we assume
that U; L X; and that the outcome Y is such that E[Y|X , Ag, X x| = E[Y|7K,XK].
For notation, we will take H; to be the history vector (at stage j) with the true covariates
measured and H to be the history vector (at stage j) with the surrogate measurements.
Note that, even if H contains components which are measured without errorﬂ we can still
take Hy = H; + U;. To do so, we simply set the relevant variance components of var (U;)
to be zero.

Suppose that we denote E[H;|H}] as H ; and assume that this quantity is known. Note

that H ; 18 a function of Hy. Suppose that the blip functions are all linear, so that we have

ElY|Hk,Ax| = fx(Hk) + Ax Hi Yk,

2This assumption is essentially non-differential error, as it is implied by Y 1 Ux|Xg, though any
situation where this independence does not hold but the simplification of the conditional expectation does
will suffice.

3For instance, the previous treatments, or some additional tailoring covariates.

4The ensuing argument will rely only it being consistently estimable, though it is simpler to consider
it a known quantity.
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for some function fx(Hy) which is functionally independent of Ax. We have assumed,
without loss of generality, that the blip relies on the full history vector. Any terms which
need not appear in the blip function can have their corresponding coefficient set to 0.

As was argued in Section [5.5 this setting seems particularly amenable to regression
calibration. At stage K, if the treatment-free and blip components are correctly specified,
replacing Hy with Hg will result in consistent parameter estimates for all of the regression
parameters. However, an appealing strength of using dWOLS is that the treatment model
grants the estimator double robustness. As a result, it is important to simultaneously
consider the role of Hj; in the treatment model. Theorem demonstrates how, for the
K-th stage of the DTR, double robustness can be restored through the use of regression
calibration.

Theorem 6.3.1 (Stage K Double Robustness). The dWOLS estimator for vk, obtained
by performing a weighted ordinary least squares regression of Y on {Hy, AxHg} with
weights, wi (Ax, Hr) that satisfy

~ ~

Tk (Hg)wg (1, Hg) = [1 — WK(ﬁK)] wK(O,ﬁK),

will be a consistent estimator so long as the blip model is correctly specified and either:

(A1) fx(Hk)= HyBx; or

(A2) T (Hy;dk) 5 P(Ax = 1|Hg), as n — oc.
That s to say, the estimator obtained by replacing Hy with [:TK 18 doubly robust.

There are two key points to note regarding this theorem. First, since we have supposed
that H & 1s known, and since it is a function of Hj;, the proof of this theorem can proceed
conditioning on Hy rather than H}. This explains the rationale of using P(Ax = 1|/H})
in the proof, which stems from conditioning on Hj,, in place of P(Ax = 1|ﬁK) in the
theorem statement. In practice, Hx will be estimated, as would 7k (). Past simulation
results suggest that using H Kk as the explanatory factor for m is preferable. However,
the presented argument suggests that either fitted model should result in a consistent
estimator, at stage K. Second, the required condition for this argument to hold was that

BY|Hj, Ax] = Elfx(Hy) | Hy] + Ax Hyt.
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This point is important as, if we suppose that we have a pseudo outcome V', such that
EV|H}, Aj] = E[f;(H))|H]] + AjHp;,

then this argument applies equally well on the weighted least squares regression of V' on
{H;, A;H;}. We summarize this observation in Corollary .

Corollary 6.3.2 (Stage j Double Robustness). Suppose that V; is such that
EV;|H;, Aj] = E[f;(H;)|H;] + AjH ;.

Then, the dWOLS estimator for 1;, obtained by performing a weighted ordinary least
squares regression of V; on {H;, A;H;} with weights, w;(A;, H;) that satisfy

mi(Hj)wi (1, Hj) = [1 - 7TJ<HJ'):| w;(0, Hy),
will be a consistent estimator so long as the blip model is correctly specified and either:
(A1") [f;(H;) = Hjp;; or

(A2’) m;(H;) 2 P(A; = 1|H;), as n — oc.
That is to say, the estimator obtained by replacing H; with ]le 15 doubly robust.

Corollary provides a theoretical justification for using regression calibration to
correct for the effects of measurement error in the estimation of the blip parameters.
The result holds so long as the conditional mean structure is valid, and H; is consistent
for E[H;|H7]. In the framing at the outset of this chapter, this result indicates how to
overcome issues with the first two uses of the tailoring variables. The statement of this
result indicates the necessity of deriving a process for estimating valid pseudo outcomes.
To apply Corollary we need to be able to consistently estimate a valid V.

6.4 Pseudo Outcome Estimation
In the error-free setting, we compute our pseudo outcomes as
Yi = Yjr1 + pip(hy),
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where y1;(+) is the j-th regret function. To estimate this quantity, we must estimate a?pt, as
well as the blip parameters, 1;,,. To use a concrete example, consider a two-stage DTR,
with a linear specification for the stage two blip,

Ya(2, az) = ag(1hao + Py 12).

Here a5?" = (199 + b 29 > 0). If we observe x5 then Ei?pt = I(thso + 25 > 0) rendering
U= Y g = g i

where //L\g = (agpt - a2)<¢20 + ¢é1$2). If 2/)20 = ¢20 and Q/J/Q\l = ¢21, then Zigpt = a;pt and
2 = po. This simplifies the estimated pseudo outcome to y; =Y — py, which is the same
as the theoretical quantity 7.

Even if &2 = 19, this simplification will not generally occur if z is measured with
error, for two reasons. First, the use of X5 in place of X5 will result in a residual term
between the blip functions. Second, the estimated optimal treatment agpt may differ from
the true optimal treatment. Despite this, there is a heuristic argument that suggests that
forming pseudo outcomes with the regression calibration corrected covariates, X, may be

a reasonable choice. Assuming that @/Z)\ =1, then we have

Ty — iy = (ﬁgm - A;pt) (%0 + @zm)?g) + (AP — Ay) gl (XQ _ )?2) . (6.4.1)

The second term in Equation has an impact dictated by X, — )A(Q. Among
unbiased linear estimators of X5, X5 minimizes the MSE of this quantity, justifying the
use of regression calibration with respect to this term. The first term relies on a difference
of indicator functions. If 7, is significantly larger than 0 in magnitude, such that there is
an unambiguous optimal treatment for the individual, then controlling |7, — 72| leads to
Xgpt — AP'. In this situation, 7, near v, will be true if X, is near X5, and so we can once
again rely on the justification that X, minimizes the MSE to motivate the selection of the
regression calibration correction.

If the optimal treatment is ambiguous (|y2| < € for a sufficiently small €), then it no
longer suffices to have 7, near 7, (as even small perturbations between these quantities
may lead to A" # ASPY). However, if 7 is near s, then we can also make the claim that
|72| is relatively small. The magnitude of the first term in Equation (6.4.1)) is given by |72/,
therefore, selecting an estimator to be near o will ensure that either (1) Xgpt is likely to
be optimal in the event that there is a large treatment effect, or (2) that the magnitude
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of the error produced will be small when /Tgpt is not optimal. This provides a heuristic
rationale to use the regression calibration correction to estimate the pseudo outcomes.

While this argument provides a reasonable intuition that this strategy may be effec-
tive, we can more specifically investigate the construction of pseudo outcomes through the
assumptions of Corollary [6.3.2l We want to be able to form a pseudo outcome, V;, which
is valid in the sense that the conditional expectation takes the form of the conditional
expectation of a treatment-free model, plus a linear blip term. The key requirement with
this assumption is that, in taking on this form, the treatment-free component dictates the
interpretation of the corresponding models. There are two primary interpretations for this
treatment free component: either as the outcome that would be received if the individual
goes on to receive treatment zero in the future (which allows for an assessment of the effect
estimation), or as the outcome that would be received if the individual is treated optimally
in the future (which allows for an assessment of the optimal DTR).

We consider each of these possibilities in turn, starting with an interest in effect es-
timation. Theorem demonstrates that, without any further assumptions, pseudo
outcomes can be constructed which allow for consistent estimation of the blip terms for
effect estimation.

Theorem 6.4.1 (Pseudo Outcomes for Effect Estimation). Suppose that V; is a valid
pseudo outcome for eﬁect estimation, as is described in Corollary[6.5.4 Then if ¥; and
H are known, taking V;_y = V; — A; H’w] produces a pseudo outcome whzch 15 also valid
for effect estimation.

This result (alongside Corollary demonstrates that, in the presence of measure-
ment error, the effect of a treatment regime can be estimated in the data through the use of
H; in place of H;. In practice this means that replacing the true tailoring covariates with
their estimated, regression calibration imputed values, and then conducting the standard
analysis for effect estimation provides a doubly robust procedure to estimate the blip pa-
rameters. Constructing pseudo outcomes which are valid for the purpose of optimal DTR
estimation is more challenging. The issue is related to the previous discussion surrounding
the bias in standard pseudo outcome construction. If we consider Equation (6.4.1] - then
in expectation E[X,|X;] = Xg, by definition, and as a result the residual bias stems from
the fact that AS' may not equal A

The difficulty of estimating this quantity stems from the fact that A%" = I(H}x > 0),
which is a non-differentiable function of two unobservable quantities. Establishing an
estimator, A??t which consistently estimates this is challenging since small perturbations

of the estimated blip term lead to \A\%’t — A%'| = 1. However, if we instead focus on
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correct estimation in expectation, then under certain assumptions the problem becomes
tractable. First, we present Theorem [6.4.2] which provides a quantity that is theoretically
computable based on observed quantities in general, before exploring how this result can
be applied depending on specific assumptions.

Theorem 6.4.2 (Pseudo Outcomes for Optimal DTR Estimation). Suppose that V; is a
valid pseudo outcome for DTR estimation, as is described in Corollary[6.3.2.  Then, if

.18 known, taking V,_y =V, — ( E[I(H; > 0)H'v;|H? — A H'p, produces a pseudo
J J J J7a JTIIETg 1737

outcome which s also valid for optimal DTR estimation.

In order to apply this result in practice, we need to devise a method to estimate
BI(Hjgrc > 0) Higtbre .

This is challenging to do in general, and will depend on the assumed error model and avail-
ability of auxiliary data. If a validation sample, where both Hx and Hj, are observable for
some representative subset of the population, then this quantity can be directly modelled.
If no validation sample is present, then it is also possible to estimate the necessary quantity
through the imposition of distributional assumptions.

Theorem 6.4.3 (Estimation under Normality of Covariates). Suppose that U; ~ N(0,%),
independently of H;. Consider a partition of H} into {H;’EP, HJ*EF} for the error-prone
and error-free components, respectively. Further, suppose that we have H J-EP ~ N(ux,Xx),
and that E(HPP|H?] = E[HPP|H""]. Then,

C 4 1 4O
s ;) = 0 {1 - (<S B b (LG,

O 0j

where C; = H}EFV@DJEF, = @/JJEFI,LLX + %EFIZ (X + EX)_l (H’.‘vEP — px), and

J
67 = w77 ST — PP B(E + Bx) TSy

Here, ¢(+) refers to the density function for a standard normal random variable, and ®(-)
the corresponding CDF.

It is worth noting that the assumptions for this result can be relaxed slightly. Error-
free components which violate the assumed conditional expectation condition outlined,
but which are normally distributed, can be absorbed into the error-prone component and
treated as error-prone with zero error-variance. Expressing the conditions in this way was
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simply more concise. The results of this theorem rely on strong assumptions regarding
the unobserved, underlying variates. However, when these assumptions are satisfied, all
of the necessary components can be estimated, consistently, via regression calibration.
In fact, the consistency of regression calibration for the components of the distribution
makes this same assumption. These results, taken in combination, provide a mechanism
for estimating optimal DTRs, in a doubly robust manner, when tailoring covariates are
subject to measurement error.

In light of the strength of the assumptions that are required in Theorem it is
sensible to consider the bias which is introduced by using AY" = I(Hj g > 0)Hi g in
place of E[I(Hy vk > 0)Hj i |Hj]. Considering the quantity

AR Hiepre — AR Hitbr,

it is clear that the residual bias in this term is driven by whether or not /Alﬁgt = AP If
both equal 0, then the bias is trivially 0. If both equal 1, then we can consider the expected
bias (conditional on {H}, Ax}), which works out as

E[(H;( - j—\[}{)wK|H;(7A??t = 17AK] = 07

since Hx = E[Hg|Hj]. If A%' £ AP we are left with residual bias (in expectation)
of the form +E[Hx|Hi, A, A®"]. This parallels exactly the discussion surrounding
Equation . If P(A®" # /AlﬁfﬂH}}) is sufficiently small then it may be the case that
the bias introduced through this process results in an outcome which differs negligibly from
the true, optimal outcome. In order to assess the impact of this strategy, we consider the
use of this approximate technique during the simulation studies.

6.5 Confidence Intervals

Regression calibration does not, in general, lend itself to the computation of closed-form
variance estimators for the parameters of interest. Bootstrapped confidence intervals tend
to be the preferred solution [7]. In the case of dWOLS, there has been little theoretical de-
velopment on closed-form variance estimators. They have been derived for the single-stage
setting, where the authors caution that “such variance estimates require careful calculation
and coding, and so will likely not be practical for the typical analyst.” and indicating that
bootstrap procedures seem to perform satisfactorily in their exploratory analyses [95]. A
modified bootstrap procedure, the m-out-of-n bootstrap, was proposed for use in Q-learning
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to handle non-regularity concerns in the estimation of DTRs [12]. The proposed adaptive
procedure for selecting m in Q-learning has been applied, with some success, to dWOLS
[82]. It seems that, where measurement error is a concern, a bootstrap procedure would
presently be most suited for estimating confidence intervals for DTR parameters.

We consider the m-out-of-n procedure, with an adaptive choice of m to construct our in-
tervals. We outline the fundamentals of the algorithm here, though these are explored in de-
tail by Chakraborty, Laber, and Zhao [12] and Simoneau, Moodie, Platt, and Chakraborty
[82]. The method performs a standard non-parametric bootstrap, where samples of size
m < n are drawn (with replacement), in place of the more conventional n. We take

1+¢(1—p)
m =n 1+¢

where both p and ( are hyperparameters, selected from the data. The parameter p is a
measure of the non-regularity for the model in question, taking values in [0,1]. When
p = 0, (where we have no regularity concerns), m = n and this method is equivalent to the
standard bootstrap. For a fixed value of n, m € [nl/(HC), n], and so ¢ can be viewed as a
parameter which controls the smallest acceptable re-sample size.

We use an adaptive approach which estimates both p and ( from our data. Con-
sider a two-stage setting. Non-regularity concerns stem from patients for whom small
perturbations in covariates lead to different optimal treatment decisions. As such, we take
P = P(7, = 0), which we estimate as the proportion of individuals who do not admit a
unique optimal treatment decision at the second stage. That is, we construct confidence
sets for the second stage blip, and count the proportion of individuals for whom the range of

blips computed over this set contains 0. To select (, we use a double-bootstrap procedure.

We start by setting ¢ to be a small value, and then draw B; samples of size n from
the initial data. Within each of these samples, we estimate p®) and the parameters of
interest, 1), We then conduct an m-out-of-n. bootstrap procedure with B, iterations,
using the current value of ¢ and p®) to compute m(®). We use these B, resamples to form
a confidence interval around the parameters of interest. This is repeated for each of the By
samples. We then check the nominal coverage probability, counting the proportion of the
B; intervals which contain _the initial estimate, and if this is at the desired level, we select
the present value of ( for (. Otherwise, we increment ¢ and run the procedure again. The
search space for ¢ can be selected as necessary for the application, for instance, restricting
the maximum considered value based on the smallest allowable re-sample size. Once { and
p are selected the bootstrap is performed with the estimated m.
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6.6 Alternative Measurement Error Models

The previous discussion was based on the classical, additive, error model, with normally
distributed error, as defined by Equation (6.3.1). However, this model was selected only
for the sake of clear exposition. In Theorem and Corollary the proof relies
solely upon the (approximately) non-differential nature of the error, and the ability to
estimate H ;- Theorem similarly relies upon an estimate of the conditional mean, and
consistent estimation of the previous parameters, as does Theorem[6.4.2] The distributional
assumptions made for the specifics of Theorem [6.4.3]are required for this result, specifically,
however, similar results can be derived under any assumed error distribution.

As a result, most of this discussion could have relied on the generalized error model
presented in Chapter We have intentionally left the estimation of H; as a procedure
which is independent of the DTR-specific corrections. This is generally the strategy taken
with regression calibration, where the error correction takes part independently of the
underlying modelling, and doing so means that these results all hold in any setting where
we are able to adequately estimate the conditional mean.

The presented correction techniques lend themselves particularly well to settings where
a validation sample is present. With validation data, models can be fit directly to the
E[H;|H}] and, once v; are estimated, to E[I(Hjy; > 0)Hj;|Hy], using standard regres-
sion techniques. While validation data may be rare in practice, the proposed corrections
allow for consistent estimation of the true blip parameter values using entirely standard
software. In the event that other auxiliary data are relied upon to facilitate these correc-
tions, particular attention will need to be paid to estimating valid pseudo outcomes.

6.7 Simulation Studies

We now demonstrate, via simulation, the potential impact of measurement error in the
context of DTRs. We emphasize the issues that are present when conducting a naive
analysis, and show the feasibility of regression calibration to largely correct for the errors.

6.7.1 Parameter Estimation

We begin by demonstrating the bias present in blip parameter estimates resulting from a
naive analysis, and the robustness of our proposed estimation procedures. We consider a
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simple one-stage setup, with X ~ N(0,1), and assume that we observe two proxy mea-
surements, given by X; ~ X + U; with U; ~ N(0,0.25), and X5 ~ X + U, with Uy ~ tg.
The treatment model is taken to be P(A = 1| X} = z) = expit(1 — 0.5z + 1.5exp(z — 1)),
and the outcome model is Y = X +exp(X) + A(1+ X) + € where € ~ N(0, 1), independent
of all other variables. We are interested in estimating ¢y = 1 and ¥; = 1.

We consider four analyses, repeated with and without regression calibration. We fit
models with (1) neither the treatment nor treatment-free models correctly specified, (2)
only the treatment model correctly specified (where the treatment-free is taken to be
linear), (3) only the treatment-free model correctly specified (where the treatment model
is taken to be linear on the logistic scale), and (4) where both are correctly specified. We
simulate 10000 data sets of size n = 1000. The results are summarized in Figure

When at least one model is correctly specified (analyses (2)-(4)), the naive estimators
of 1y perform well. In all four scenarios the naive results are biased for ;. Regression
calibration results in a clear improvement over the naive estimators across analyses (2)-(4),
where the bias is largely removed. There is a clear, though reduced, bias in analysis (2),
where the estimates rely on the correct specification of the treatment model alone.

We extend these analyses to a variety of two-stage DTR settings, with results summa-
rized in Appendix [D] in Tables [D.ID.5] We see that whether actual treatment decisions
are based on a single error-prone covariate, or on the mean of multiple proxies, the correc-
tion methods are generally applicable. The proposed corrections tend to improve estimates
compared to the naive analysis, and yield results which appear broadly consistent. The
corrections work well across a variety of error mechanisms. When the treatment model is
badly misspecified, we see degradation in the quality of the correction.

6.7.2 Coverage Probabilities

Next, we consider three scenarios to test the applicability of the proposed bootstrap pro-
cedure. We perform the double-bootstrap procedure once under each of the scenarios, and
then consider the m-out-of-n bootstrap for values of ¢ surrounding the selected one. In all
three scenarios we take X7, Xy ~ N(0, 1), and observe two error-prone proxies of each mea-
surement. A summary of the distributions of the error terms are contained in Table [6.1}
For all three scenarios, we take P(A; = 1|X7, = x) = expit(z). The outcomes for scenarios
1 and 2 are given by Y = X + Xo + A1 (1 + X1) + Ao (1 + X3) + € where € ~ N(0, 1) inde-
pendent of everything else. For scenario 3, we introduce an additional binary covariate, Zs,
with P(Zg = 1) = 0.5. We then take Y = Xl +X2—|—A1(1+X1) —|—A2(1—|—X2 —Zg—Zng)—{—E
where, again, € ~ N(0,1). Note that, if Zo = 1 then 75 = 0.
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Figure 6.1: Blip parameter estimates (true values 19 = ¢; = 1 indicated by dashed lines)
for 10000 simulated data sets (with n = 1000), comparing a regression calibration corrected
analysis to a naive analysis, when neither (Analysis 1), one of (Analyses 2 and 3), or both
(Analysis 4) of the treatment and treatment-free models are correctly specified.
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Table 6.1: Simulation study setup for the error distributions of covariates, corresponding to
the first and second replicate at stages one and two. The table summarizes the distribution
of the respective error terms and the type, whether additive (4) or multiplicative (x).

Distribution Type
Scenario Un Uiz U Uso Un Uiy Uy Uy
I NO1) NO1 N0  NOIL + + + +
2 N(O, 1) Unif(—l, 1) N(O, 1) Gamma(l, 1) + + + X
3 N(0,1) Gamma(1,1) N(0,0.25) Unif(-1,1) + x + +

In the first two scenarios we estimate Z: 0.05, while in the third scenario E = 0.075.
For all scenarios we form confidence intervals using (1) a traditional n-out-of-n bootstrap,
(2) an m-out-of-n bootstrap where ¢ = 0.05 is used in the adaptive procedure, and (3)
an m-out-of-n bootstrap where ¢ = 0.10 is used in the adaptive procedure. For the third
scenario, we also include an m-out-of-n bootstrap where ¢ = 0.075 is used. The coverage
probabilities are contained in Table 6.2l We see that the standard bootstrap procedure
attained the nominal coverage in all settings. Taking the selected ¢ met the nominal
coverage levels in the second scenario, and was slightly conservative for the first and third
scenarios, where taking ¢ = 0.10, we obtained mostly conservative intervals. In the third
scenario, all procedures tended to produce conservative results.

Table 6.2: Coverage proportion for 500 repeated simulations for bootstrap coverage (2000
replicates) comparing an n-out-of-n (nn) or an m-out-of-n bootstrap based on the adaptive
procedure with ¢ (mn¢). Bold values indicate those which deviate significantly from the
nominal coverage of 0.95.

Scenario One Scenario Two Scenario 3

nn 1mnps m1 1o nn 1mngps mn g nn 1mngrs 111 o5 mil 1o

Ay 094 096 0.97 095 096 0.97 0.97 098 0.98 0.98

A1 X, 096 0.97 0.98 095 096 0.96 0.98 0.99 0.99 0.99
A, 096 0.97 0.98 095 096 0.98 0.97 099 0.99 1.00

A Xy 094 096 0.97 095 096 0.96 096 0.99 0.98 0.99
Ay Zy - - - - 0.97 0.98 0.98 0.98

A XoZ, - - - - - 097 0.99 0.98 0.99
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6.8 Data Analysis

We now illustrate the proposed correction methods through application to STAR*D. Fol-
lowing Chakraborty, Laber, and Zhao [I3], we model QIDS-C as a continuous covariate
and consider three tailoring variables: QIDS-C measured at the start of each level (given
by @Q; for stage j), the change in QIDS-C divided by the elapsed time over the previ-
ous level (referred to as QIDS slope, denoted S; for stage j), and patient preference
(denoted P; for stage j), a binary indicator specifying whether the patient desired to
switch treatment regimes (P; = 1) or augment (P; = 0). The outcome was taken to be
Y = —1(QIDS-C, + QIDS-C,), where QIDS-C; is the clinician rated QIDS score at the
end of stage j.

Existing analyses of these data make the implicit assumption that clinician scores are
error-free measurements. Instead, we assume that there exists a true underlying symptom
score for every patient. Then both the self-assessed and the clinician scores are surrogate
measures for this truth, permitting the use of generalized regression calibration. Our
analysis continues to use QIDS-C as the outcome variable.

We fit the model using only the clinician ratings, only the self-reports, or using the
correction where they are considered to be error-prone proxies. Following previous analyses
of the data, we pose a first stage treatment model using only first stage preference (P;)
and a second stage treatment model using only second stage preference (P,). For the
first stage, the treatment-free and blip models are linear in preference (Py), slope (Si),
and initial QIDS score (Q1). At the second stage, the treatment-free model is linear in
preference (P,), slope (S2), starting value (Q2), as well as stage one treatment (A;). The
blip model used only slope (S3) and starting value (Q3). For each of the settings we
conducted an m-out-of-n bootstrap, choosing m using the outlined adaptive procedure.
Table contains the results for parameters estimates and 95% confidence intervals.

Previous analyses have found that the only significant treatment effect was the inter-
action between stage one treatment and preference (A, P;) [12], a result that is replicated
on our subset of the data when using only clinician scores. If instead we assume that the
self-reported scores represent the true values, we find a significant treatment effect at stage
two, with the interaction between treatment and slope (A3S;). However, if we perform
our correction, neither of these effects remains significant, and we lack evidence for any
significant treatment effects. This may be due to increased uncertainty from the error, but
it nevertheless suggests further consideration is required.
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Table 6.3: Results for two-stage blip coefficient estimates comparing an analysis with
the regression calibration correction to naive analyses, with confidence intervals computed

based on 2000 m-out-of-n adaptive bootstrap replicates. Bold values indicate treatment
effects which are significant at a 95% level.

Error Corrected

Clinician Score

Self-Reported

Estimate (95% CI)

Estimate (95% CI)

Estimate (95% CI)

Stage One

Ay -0.75 (-10.04, 7.93)

AP 272 (-0.19, 5.82)
A1Q,  0.06 (-0.57, 0.70)
A1S; -1.54 (-6.90, 2.26)
Stage Two

As -0.31 (-7.05, 6.95)
AyQy  0.09 (-0.48, 0.63)
AySy  1.82 (-2.79, 4.83)

-0.48 (-6.28, 5.45)
2.99 (0.90, 5.43)
0.07 (-0.35, 0.46)
-1.04 (-3.77, 1.08)

1.19 (-2.88, 5.52)
-0.02 (-0.37, 0.30)
0.94 (-0.82, 2.70)

1.35 (-3.78, 6.05)
2.76 (-0.20, 5.83)
-0.09 (-0.41, 0.25)
-0.55 (-2.31, 0.89)

-0.04 (-4.26, 4.08)
0.08 (-0.22, 0.38)
2.74 (0.30, 5.14)
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Chapter 7

DTRs with Nonadherence

7.1 Motivation for Nonadherence Correction

Chapter [5| introduced the estimation of optimal DTRs in the error-free setting. In Chapter
[6] we discussed measurement error in tailoring covariates. Until now, we have assumed that
all treatment exposures are correctly measured and recorded. If this is not the case, the data
are subject to nonadherence. Just as an analysis which ignored errors in tailoring covariates
predictably leads to biased estimates, it is similarly intuitive that misclassified treatment
indicators will result in biased estimates. However, this once again is not sufficient to
conclude that error corrections are necessary. As introduced in Section [5.6}, it is generally
the case that an analysis which ignores the impacts of nonadherence is called an intention
to treat analysis. Standard guidance advocates for the use of an ITT anytime there is
nonadherence, particularly in contrast to a per-protocol (or as-treated) analysis.

There is also the consideration that the primary intention of estimating an optimal
DTR may be for the assignment of future treatments. If it is likely to be the case that
future individuals being prescribed treatment will have similar adherence concerns, then it
may be argued that the causal effect of interest is prescription itself, rather than treatment.
The intersection of these two ideas has received attention in the standard causal inference
literature, though with dynamic treatment regimes, no such literature exists. The added
complexity of DTRs warrants further discussion of these ideas. In brief, a naive analysis
may be a sensible approach in certain scenarios where fairly restrictive assumptions are
met, discussed in more detail in Section [7.3] However, we argue that generally this will not
be the case. Moreover, there are settings where a naive analysis of a DTR will not produce a
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causal estimate at all, owing to violations to the causal identifiability assumptions. Because
of this, alternatives to intention to treat analyses are necessary.

Just as tailoring variates impacted DTRs through a variety of pathways, so too will
treatment indicators. The treatment indicators serve as interaction factors in the outcome
model, defining the contribution of the blip. For methods like dAWOLS and G-estimation,
these treatment indicators further serve as outcomes in the treatment models. We have not
previously discussed errors in outcomes in this thesis. Further, past treatment indicators
may serve as tailoring factors in future stages. As a result, all of the impacts discussed in
Chapter [6] potentially need to be overcome. This includes requiring further considerations
on the construction of pseudo outcomes. In this sense, the setting of nonadherence is
more complex than the setting of errors in variables. Despite this we find that, when we
can correct for the impacts of misclassification, the discrete nature of the problem renders
stronger theoretical guarantees without imposing strong assumptions as compared to the
errors in variables case.

We first approach nonadherence modelling based on a discussion of the likelihood,
before turning towards semiparametric procedures that are more naturally motivated by
the DTR setting. These corrections are presented after fully exploring the drawbacks,
causally and otherwise, of a naive analysis in this setting.

7.2 Summary of the Proposed Methods

In this chapter we present methods for adjusting for the impacts of treatment misclassifi-
cation in the estimation of an optimal dynamic treatment regime. The proposed method
is an estimating equation approach which modifies the standard G-estimation procedure.
We specify the same three models required for conducting G-estimation (the blip model,
the treatment-free model, and the treatment model), where the treatment model is spec-
ified explicitly based on treatment assignment, rather than on the treatment received. In
addition, we specify a model (which can be fit using validation data) which estimates the
probability of the true treatment being received, given the observed factors. A similar
set of estimating equations are solved as with standard G-estimation, where treatment
indicators are replaced by the estimated adherence models.

The resulting estimators will be doubly robust (in the same sense that the G-estimation
estimators are, with full adherence), and will be asymptotically normal under non-exceptional
laws, supposing that the pseudo outcomes can be consistently estimated. The only issue
with estimating pseudo outcomes stems from the situation where a previous stage’s treat-
ment is used as a tailoring variable within the blip. When this happens, adjustments (as in
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Section can be made without the need for strong assumptions to consistently estimate
valid pseudo outcomes. However, just as with errors in variables, we demonstrate that
these additional corrections are not completely necessary. Instead, we can follow the same
process of replacing treatment indicators with their expectations, and this construction
will typically suffice for valid estimation.

These proposed techniques, supposing that the models are correctly specified, can be ap-
plied whether the error-prone treatment indicator is a prescribed treatment (and therefore
causes the truth) or if it is a reported treatment (and is therefore caused by the truth).
This consideration is important as there is no causal interpretation for a naive analysis
which is conducted when using a reported treatment, in place of the truth, supposing that
the true treatment is unmeasured.

7.3 Concerns with Nonadherence

When tailoring covariates are mismeasured, a naive analysis can be justified under the idea
that the mismeasured covariate can itself be a tailoring variable. If we have nonadherence,
the causal effect we are estimating changes. As discussed in Sections [5.6] and [7.1], ignoring
nonadherence in an analysis estimates the intention-to-treat effect, which is the causal
effect of assigning someone treatment, rather than the effect of that treatment directly. In
Figure we show this graphically. We take A* to represent the observable treatment,
with A representing the treatment that the patient actually took. The causal effect we
are interested in is the one connecting A to Y. We can see that when A* = A, there is
only one causal effect. When A* # A, there is both a direct effect of A* on Y and an
indirect effect, through its impact on A. The combination of these effects constitutes the
intention-to-treat effect.

The direct effect of A* on Y may, for instance, be the result of behavioural change in
patients knowing the treatment that they have been assigned to. If there is no such direct
relationship we say that the exclusion restriction holds. Even if the exclusion restriction
holds, it may not be the case that the intention-to-treat effect equals the causal treatment
effect, if nonadherence is present.

In this discussion we have framed A* as a treatment indicator which is measured prior
to the true treatment. In the medical setting this may be a reasonable assumption if, for
instance, A* represents a prescribed treatment while A represents the true treatment that
the individual ends up taking. However, there is a third possible treatment indicator that is
worth considering: the reported treatment. If, instead of recording an individual’s assigned
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Figure 7.1: A DAG illustrating the possible change in causal interpretation when conduct-
ing an intention to treat analysis. Here, A* is the assigned observable treatment, A is the
actual treatment, Y is the outcome of interest, and H contains all possible confounders.

treatment at the time of prescription, it is reported by the individual after the fact, then
the causal structure of the problem changes slightly. Suppose we label a reported treatment
AT, then we have that A* is an antecedent of both A and Af, and A is an antecedent of
AT, This slightly more complex structure is shown in Figure

We will refer to any (possibly misclassified) version of treatment that is recorded after
actual treatment as a reported treatment, and any (possibly misclassified) version of treat-
ment which precedes actual treatment as a prescribed treatment. In certain scenarios we
may have both {A;», A;r} recorded for all individuals. Alternatively, and more likely, only
one or the other is recorded. While the scenarios are evidently related, the impact of each
misclassification mechanism on the causal validity of a naive analysis differ.

If only the reported treatment is observed, then an I'TT analysis cannot be conducted
with a valid causal interpretation. The concern is that, as is shown in Figure [7.2] A will
generally be a cause of both AT and Y. If we observe AT as the treatment (so that we
are looking at the “causal effect of reported treatment”), and Y as the outcome, then this
renders A as an unmeasured confounder, violating the causal identifiability assumptions.
As a result, an I'TT analysis cannot generally proceed on the basis of a reported treatment,
supposing that the underlying treatment has any direct causal effect on the outcome.

A similar concern may happen in trying to conduct a standard analysis where A is
observed directly, having the prescribed treatment A* act as an unmeasured confounder. In
order for this to be a concern, the prescribed treatment would need to have a direct effect on
Y, not mediated through A or H. Such scenarios could plausibly exist, where, for instance,
a prescribed treatment induces lifestyle changes in an individual. Even when complete
adherence information is available and randomization is used, nonadherence may represent
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Figure 7.2: A DAG illustrating the possible change in causal interpretation when con-
ducting an intention to treat analysis, where both treatment prescription and reported
treatment are included. Here, A* is the assigned observable treatment, A is the actual
treatment, Y is the outcome of interest, and H contains all possible confounders.

a violation of the SRA [36]. Suppose that an unobserved behavioural characteristic, W;, is
such that when present (W; = 1) an individual likely has a worse outcome, Y;, regardless
of treatment. If W; = 1 also increases the likelihood of nonadherence, then even if Y4 |
Afk|HZ*k for all k = 1,..., K, we will generally not have Y;¢ L A, ;|H;, because of W;.
Even when adherence information is recorded, an as-treated analysis may not be valid.

The same concerns are not present with an I'TT conducted on the basis of the effect
of A*. In this case it is possible to estimate the causal effect of treatment assignment,
though as the discussion in Chapter [o| alludes to, there are other possible drawbacks to
estimating the I'TT effect in place of directly considering intervention effectiveness. The
general argument which renders an I'TT useful is that, as a clinician, you do not have the
ability to intervene directly on the treatment that the individual takes, you only have the
ability to prescribe the treatment. As a result, the causal effect of interest is at the level of
prescription. Moreover, we know that in practice, some people are going to be nonadherent
outside of the confines of the study as well. By not adjusting for the adherence status we are
thus estimating a more correct effect of the influence of treatment prescription on patient
outcomes. While these considerations are not unreasonable, to be practically applicable
they make several strong assumptions.

First, they suppose that the rates of nonadherence within the study are likely to be
representative of rates of nonadherence outside of the study. While this may be the case
in some designs, it is likely that the factors that influence adherence during a study and

130



outside of one may be different. Similarly, this line of argumentation supposes that the
adherence rates are fixed and cannot themselves be influenced. If it is found that prescribing
a particular treatment has a beneficial effect for patients, and it is found that there are
policies which would increase adherence to this particular treatment, we cannot know from
the ITT whether these policies should be pursued. This may be relevant if, for instance, a
treatment that is found to be effective through an I'TT is to be administered in a monitored
clinical setting. The reverse is also true. It may be the case that an effective treatment
had particularly bad adherence[| but that it is an effective treatment itself. Even from a
policy perspective, there is value is disentangling the effect of prescription, and the effect
of the intervention itself.

Suppose then, by way of example, we consider a single stage DTR, with a linear blip
function. Further, suppose that the probability of misclassification depends only on the
prescribed treatment, and no other tailoring factors. That is, assume that A 1 X|A*.

Assume that there is no direct effect of A* on Y, such that Y L A*|{X, A} (called the
exclusion restriction). Suppose that the outcome is truly given by

E[Y|X, Al = X'8 + AX'Y,

for some parameter vectors {/3,1}. Straightforward calculations demonstrate that, if the
regression model is fit using {X, A*X} in place of {X, AX}, then we will have

Ly [P(A=1]A" =1) — P(A = 1]A* = 0)].

As a result, in this setting the ITT estimate of 1) will be attenuated (and as such biased)
by a factor of P(A = 1|A* = 1) — P(A = 1]4* = 0)] Because of this bias, it will not
generally be the case that the I'T'T, even under the exclusion restriction, can be interpreted
as the causal effect of treatment.

However, if we view the primary purpose of optimal DTR estimation as determining
the optimal regime, then so long as P(A = 1|A* = 1) > P(A = 1|A* = 0)[] then in this
setting the optimal treatment estimated by an I'T'T will exactly coincide with the optimal
treatment. That is because, if P(A = 1|A* =1) > P(A = 1|A* = 0) then

XY >0 <= X'Y[P(A=1]A"=1) - P(A=1]A*=0)] >0,

!Perhaps owing to something which could be changed.

2Note that |[P(A = 1|A* = 1) — P(A = 1]A* = 0)| < 1. In the event that there is no misclassification
this equals 1 and in the event that there is complete misclassification this equals —1.

3Which should be the case in most settings.
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and so both parameters result in the same treatment assignmentE] This result relies on the
fact that, when the nonadherence is independent of all tailoring variables, the attenuation
factor for every coefficient is exactly equal. Under these assumptions the I'TT can be
viewed as a valid method for estimating the optimal DTR.

The assumption that nonadherence is not related to any tailoring covariates presents a
best-case scenario for the applicability of an I'TT analysis. It is also an assumption that
will often be violated in practice. Under even straightforward violations of this assumption
it is no longer the case that an ITT will lead to the same optimal treatment rules for all
individuals. It will not generally be possible to know in advance whether the estimated
parameters will be attenuated or not.

There are also concerns relating to SUTVA and positivity. SUTVA requires that receiv-
ing a particular treatment results in the same potential outcome, regardless of how that
treatment is administered. In a placebo-controlled drug trial, for instance, where A; = 0
represents a placebo and A; = 1 represents the experimental treatment, a patient who is
nonadherent to A; = 1 is not likely taking the placebo. Instead, a third treatment option,
say A; = —1 is likely required to capture the effects of nonadherence to the regime. Even
when the control group is receives no treatment at all, it still may be the case that an
individual who stopped taking A; = 1 will have different potential outcomes as compared
to the situation where they were assigned to the control group from the start.

Positivity may be unknowingly violated if, despite an acceptable treatment assign-
ment, all individuals with a particular history are nonadherent to their assigned treat-
ment. Suppose that, for a particular history h,;, P(A;; = 1|A}; =1, H;; = h; ;) = 0 and
P(A;; =0[A}; =0, H;; = h;j) = 1, then it follows that P(A;; = 1|H;; = h; ;) = 0 which
is a positivity violation. In this setting, we would be unable to assess the efficacy of a
treatment regime assigning A;; = 1 to an individual with history H;; = h; ;, as it would
require extrapolation beyond the available data.

2,79

One final consideration for attempting to conduct an I'TT relates to the ability to cor-
rectly model the blip function. Suppose that a clinician, or other subject-matter expert,
has a sense of what is important for the “true blip”, perhaps through a scientific under-
standing of the biochemistry. There is nothing constraining the blip from an ITT to have
the same form as the blip based on the recorded truth. To make matters concrete, suppose
that

Y = f(X1, Xo) + Ar(1+ X1) + Ax(1 + Xo) + ¢,

4Note that we are not saying that the estimated optimal treatments will be equivalent for any given
sample.

132



such that the blips are given by A;(1 4+ X;) and Ay(1 + X3). If we try to determine what
the blip would be based on Aj instead, this becomes complicated to do. We know that,
because of the binary status of A} and A3, we can decompose this into some

Y = f*(Xl,XQ) + ATCl(Xl) -+ A;CQ<X17X2) + €,

but it is not necessarily clear what these functions will be. We know that Co(X7, X5) is
defined as E[Y|H;, A5 = 1] — E[Y|H;, A5 = 0]. Taking the form of Y based on the actual
treatments, we can compute this as:

E[A1(1+ X)) 4+ As(1 4+ Xo)|Hy, Ay = 1] — E[A (1 + X1) + Ay (1 + Xo)|Hy, AS = 0]
={P(A =145 =1,H;) — P(A, = 0]A; = 1, H3) } (1 + Xy)
+{P(Ay=1|A5=1,H)) — P(A, =0|A; =1, H;)} (1 + X3).

As a result, the blip function becomes a function of the reclassification probabilities. This
is potentially non-linear in X, which correspondingly requires different blip specifications
to capture these effects. In this setting, in order to effectively fit the I'TT, one must also
implicitly model the misclassification process. Because of this, to do an I'TT, you cannot
take the same model you would have fit had you observed the truth and fit it naively. This
will not produce estimates for the correct estimands.

7.4 Likelihood Based Corrections

When correcting for the effects of misclassification likelihood techniques can often be used
[7]. While it is possible to estimate an optimal DTR using likelihood methods [90), [14], it
is not typically done owing to the complexity of specifying the complete data generating
model. Despite this, we begin by demonstrating how likelihood techniques can be used to
correct for the impacts of nonadherence in DTRs. Doing this will also help to illuminate
the myriad ways which nonadherence impacts the estimation of an optimal DTR.

To begin discussing nonadherence correction techniques, we will assume that we have
a validation sample. We assume that either this sample is internal or that transportability
assumptions hold. Define M and V to be the index sets for the main-study (ignoring all
members of the validation sample), and the validation sample, respectively. We enumerate
these as 1,..., Nj; and 1,..., Ny. Denote the stage j propensity score of interest to be
P(A; = 1|H; = hj;a;) = n(hj; «;), where ultimately our interest is in «;. We model the
misclassification probabilities by P(A} = aj|A; = a;, H; = hj;n;) = ;.01 (hj375)-
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The setting of DTRs differs from the standard causal setting, which has been previously
studied [5], since the patient history contains treatment indicators. As a result, we cannot
condition on Hj = (X1, Ay,..., Xj), as, in the main sample, we only have access to H; =
(X1, A7, ..., Xj). This problem is circumvented entirely if we are in a setting where previous
treatment does not influence future treatment, except through other covariates. If we are
able to assume that A; 1 Ay| X;, for all k < j, then it is the case that

P(A; =1|H; = (X;,A;.1)) = P(A; = 1|X;) = P(A; = 1|H; = (X;, 4;_))).

This longitudinal treatment independence assumption (LTIA) is theoretically verifiable,
given a validation sample, since it equates to a hypothesis that some subset of the «;
parameters are simultaneously 0. If this assumption does not hold then we need to take
into account the covariate error during correction.

Similar considerations need to be given to the misclassification models. In order to
model 7Yq; a1 (hj;n;) we have assumed that the relevant functional form depends on H;. To
overcome this, we could make an assumption, either through independence or functional
form, that %]-,a;(hj;ﬁj) does not depend on A; ;. We could, for instance, take misclas-
sification probabilities to depend only on the assigned treatment at that time. That is,
misclassification probabilities at each stage are constant. This assumption could be relaxed,
allowing the misclassification probabilities to vary based on X ;. Alternatively, noting that
n; (and y(-) more generally) represent nuisance parameters in the model, we can introduce
additional nuisance parameters and model P(A; = aj[A; = a;, Hi;n}) = 7;‘j,a;(hj;77;)-
We will assume that we specify this model as well. If conditioning on Hj is equivalent to
conditioning on H; then n; = ;.

We now derive the full likelihood of the treatment parameters, with and without the
LTTA. After introducing an approach based on the complete likelihood, we discuss ways
that this may be pursued in a computationally feasible manner, before turning to correc-
tions applied to more common DTR estimation techniques.
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7.4.1 Full Likelihood Corrections

If we make the LTTA, then we can write the joint likelihood of (a;, 7, 7;), as

N
L<Oéj’nj777;) = {H ( (h;ky&])r)/la (hzjvn]) ( (h;kj’ ))Pyaai (hzyn])) }
=1
Ny
X H’Tf(hij; ;) (1= (hig; 05))' ™ Yay; az, (3 15)-

=1

The likelihood expresses the joint conditional density of (A;, A}) given H; over the valida-
tion sample. Braun et al. [5] model only the conditional density of A; given H;, making
the second term in this expression the product over m(h;;; ;). Doing this would mean that
we do not require estimation of 7;, though it ignores some of the recorded data. To get an
estimate for a; we can directly optimize this joint likelihood, or we could estimate 7} in
the validation sample and then use @ in the likelihood estimation.

In order to relax the LTIA, we will quickly find that using the main sample with a
likelihood approach is difficult. The reason is that we need to sum over the 2’ possible Zj
vectors, and attempting to further break down this expression will require us to condition
on future information. This is not a modelling setup which will be advantageous to pursue.
If we make the assumption that P(A; = 1]Hj,Z;1) = P(A; = 1|H;; o), that is that past
treatment assignment is conditionally independent of future actual treatments, given the
observed covariates, and we are willing to pose a direct model, specifying misclassification
probabilities, as P(A; 1]|X}, A 1), then we can write the full likelihood as

Ny
Lo, ) =S [T | D0 P(A; = a;[ X5, 451 = @5-15.05) P(A; 4| X5, A )
i=1 aj

XHPA2]| ZJ? ) ( |A%J7 1]7 )

There are plausible scenarios where this model could be used. For instance, when misclas-
sification depends only on the assigned treatment [

These techniques can all be used to derive estimates for ;. This gives us the capacity
to use weighting techniques based on propensity scoring, whether that is in the place of

5That is, A7 uniquely specifies the probability of misclassification at stage j.
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treatment models, as are required for dAWOLS or G-estimation, or for use in a weighting
or subclassification scheme used to correct for the error present in those models. These
parameter estimates will allow for an estimation of E[A;|A}, H;], which is a term relevant
for the outcome models in the regression based procedures.

In place of using these parameter estimates in these existing optimal DTR estimation
techniques, an alternative strategy would be to work through the likelihood of the complete
data trajectory. This requires the specification of a conditional model for X,;. We assume
that either P(Aj]Hj,z;l) = P(A;|H;; ), or that H; contains z;l, where assignment is
meaningful. For convenience, take Hy, Ay, Aj to all be constants. Then,

Ny K
:{HHf(Xij‘Hi,j—lvAi,j—l)P( l]‘ ijy & ) ( |A”, ZJ>77J)}

i=1j=1
Ny K

T, FXaI X a,a0, AL ) P(A; = a;|X 45,8515 05) P(AGIA; = a5, X5 my)

i=1j=1 a;

K Ny
H{HfXU|H] 17 1] — 1) ( 1]| Zja ) ( |A2]a ’Lj) )

Jj=1

Ny
x [ D0 F(X1 X1, Ay ) P(A; = 051X, @505 05) P(A A, = @5, X5 )
i=1 a;

(7.4.1)

This is related to the idea of the g-computation algorithm [68]. However, the likelihood of
the complete data trajectory will generally be computationally insurmountable.

7.4.2 Semiparametric Approach to the Likelihood

As a natural extension of this likelihood estimation procedure, we can use kernel density
estimation, to make the model semiparametric. If we drop the Yaz 03 (Hj;n;) term from the
above likelihood, and note that

fA A H*(ajuajuh;)
fAj,Hj (a]7hj) 7

Vagaz (h53705) =
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then, the two joint densities in the validation sample can be estimated with KDE. This
gives f(aj,a],h;) and f(aj, 7), which we can use to replace ;. a -(hj;imj) as 7, a (hF;m5).
Doing so then allows us to deﬁne

f(%)z{ﬂ((h;, ik, (i) + (1= (i3 7)) <h*,n]>)}
x | [ (higs ) (1 = m(hij; o)) =,

=1

which can be solved to estimate «;. When not making the LTTA, we can replace the models
for f(Xj|Hj_1,Z;_1) and P(Aj|A;, Hj;n;) with kernel density estimates. The expression
in this case can be simplified by limiting the contribution in the validation sample To see
this, consider that «; is only contained in the j-th product term in Equation (|7 , SO

L(ay, ) HfXZJ’HJ 1, A i )P (Aij | Higs )P(A:j‘Aiijijmj)
=1
Ny

< [T F(X4l X joa,@0, Ay ) P(A; = a5, 515 05) PAG Ay = @5, X5 mp)-

i=1 aj
In this formulation, it is far more evident that we may wish to use

Ny
L(aja ) = Hﬂhii; Cl/j)aij(l — W(hij; a/j))l_aij
=1
Ny o B B B B
X H Z (X Xij1, a5, Ai7j71)P(Aj = a;| X, aj-1; Oéj>P<A;(j|Aj =, Xijim;),

=1 aj

where we can once again replace the nuisance models with kernel density estimates. These
techniques could once again be applied to derive estimates of the nuisance parameters
for use in alternative DTR estimation techniques, or alternatively, through an application
of g-computation. These techniques for estimating the parameters of the true treatment
assignment model take inspiration from Braun et al. [5], and demonstrate the complexity
inherent to the setting of nonadherence. However, taking the likelihood framing explicitly
is not the most natural approach to DTR estimation.

In particular, dWOLS and G-estimation are both techniques that rely primarily on the

137



theory of M-estimation rather than on likelihood theory directly. As a result, corrections
for the impacts of nonadherence which are based in this semiparametric framework may be
more natural to explore. If a validation sample is present, then the actual misclassification
model can be estimated using standard modelling techniques, which may be likelihood or
quasi-likelihood based, but which are likely more familiar, and computationally simple, for
practitioners to leverage. Owing to this, we turn towards considering how corrections to
estimation techniques for optimal DTRs can be applied, directly.

7.5 Modified G-Estimation

We first present the complete modification to the process of G-estimation, under the as-
sumption of patient nonadherence, and then demonstrate the consistency of this estimator.
For j =1,..., K define

7T;'(<H;:j7 A;‘k,j)
V;(Hz‘*,j)

c; ()

P(A;; = 1 H;, A7)
Elvi(Hi )| H;, ALl
E[C;(Hi )| H};, Al

7]’

Then, take IN/Z-,KH =Y, and, for all 1 < j < K, define
Vig = Vigir + [A — w3 (H]))] CF(H])). (7.5.1)

With these quantities defined, we take U; to be given by the set of equations

Uj = Z)‘F(H;ﬂ {A;j — P(A; = ”Hifj)} {V;JH — i (Hyy, AL O (H iy 5) + Qj(Hi*,ﬂ} :
=1

(7.5.2)
These correspond to Equation for the standard G-estimation procedure (that is,
when there is complete adherence). Estimators for the parameters of interest can be derived
by solving U; = 0. In Theorem we demonstrate that this estimation procedure will
result in consistent estimators for the blip parameters.

Theorem 7.5.1. Suppose that for j = 1,...,K and i = 1,...,n, we know P(Aj,|H;;)
and 77 (H;;, A7 ;), and we correctly specify the form of C5(H; ;v;). Then the ng which
are estimated by solving U;"(@) = 0 are consistent for the true 1;, under the following
independence assumptions (I.A.):
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LA. (1): ElViy(H))|Hj, A;, A)) = E[Vi (H))|Hj, Ay forall j=1,... K.
LA. (3): Elv;(Hy)|H}, A} = E[v;(Hj)|H;] for all j=1,..., K.

In order to assess the viability of this strategy, it is worth considering how reasonable
the independence assumptions are. The first assumption requires that there is no predic-
tive information contained in the treatment assignment, supposing that we know the true
treatment and history, for each individual. This assumption can be viewed, in a sense, as
an extension of the SUTVA. If a patient receives A; = 1 we are claiming that it ought not
matter whether the person had originally been prescribed A} =1, so long as we have the
complete relevant history.

The second independence assumption is, at face value, stronger. It states that there
is no mean difference in the contrast between those who actually take the treatment at
time j (A; = 1) and those who do not (A; = 0), given the observed history and treatment
assignment. This will be violated in the event that, for instance, previous compliance is
related to current compliance. Fortunately, this assumption can be discarded entirely if
the analyst is instead willing to specify the model E[C;(Hj;¢;)|A; = 1, Hy, A5]. We would
simply replace C7(H7) with this definition, and the proof proceeds as written. This is a
more challenging quantity to model, generally, but it provides a mechanism for circum-
venting the need for this independence assumption. We proceed assuming that either this
assumption is reasonable, or else this model can be specified directly.

The final assumption requires that the treatment-free component of the stage j Q-
function, v;(H;), is not predicted by treatment assignment at stage j, given the history up
to stage j. This is a seemingly reasonable assumption to make. In the event of complete
adherence, v;(H;) is functionally independent of A; by definition, and so conceivably should
be independent of treatment assignment as well. This may not be the case if, for instance,
past adherence status is used to inform treatment in the present but is not recorded in the
available data. However, if there are factors being used to inform treatment assignment,
which are not being collected, there are likely violations to the SRA, which would mean
that no causal analysis can proceed.

Just as with G-estimation under complete adherence, it will not often be the case that
P(A},;|H};) or w7 (H};, Aj ;) are known. However, if we can model and estimate these from
data then by “stacking” estimating equations the same consistency result holds. Under
consistent estimation of these parameters, the results from Theorem [7.5. T will remain. This
leaves the need to specify \j(H;) and 7 (H;). In the case of complete adherence, 0;(H;)
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was used to endow G-estimation with the property of double robustness, and we can do the
same here. If we take 05(H;) = —v;(H5). Supposing that 7;(H}, A%) and C;(Hj; ;) are
correctly specified, then if either P(A} = 1|H) or 7(H;) were to be correctly specified,
the resulting estimating equations are unbiased. It is worth noting that the estimating
equations require 77 (H;, A7) and C7(H7) to be correctly specified. As a result, if there is
strong evidence regardmg the distribution P(A;|H}), then the specification of 77 (H>, AF)
implies the correct specification of the treatment model. Similar considerations may happen
with components of C5(H}), which may rely on treatment indicators from previous stages.

Finally, the specification of \;(H}), as with A\;(H;), can be arbitrary so long as it de-
pends solely on H; and is the same dimension as the parameter ;. If we consider the class
of estimating equations characterized by arbitrary Ai(-), and write U = Y71 | Xs(H;;)Uy,
then Morton [58] demonstrates that the optimal choice for A\j(H?) is given by

)\j(H;):E{aiN }{U2H*}1.

This choice for Aj(H) is analogous to that derived by Robins [70] when discussing locally
efﬁcient estimators under complete adherence. The first term in this expression simplifies

8 C*(H #:95), while the second is generally quite complex. In the event that all of
the models are correctly specified and Var(f;}-|H 1AL = var(\7j|H ¥), then this term will
simplify to Var(‘7j|H F)var(Aj|H;). Assuming that these terms are constant, they can be
dropped from the estimating function entirely, and we will have - 8 C*(H 1195) as the
optimal choice of \;(H}). We will take \i(H}) = C’*(H*,%) and note that in any
specific implementation, the optimal choice may be Worked out.

7.6 Modelling Nonadherence

We have made use of models which describe the propensity of a patient to have taken
treatment, conditional on the observed information. We have explicitly used these mod-
els as m; (H * A*), and have implicitly made use of them in the models for Cj(H}) =

E[C;(H )|H * A* = 1]. The ability to adequately correct for the effects of nonadher-
ence in this analy81s depends on the ability to model this process of nonadherence, reliably.
If these models are known explicitly, can be estimated from data, or can be reasonably
specified based on subject-matter expertise, then the modified G-estimation procedure can
proceed. The previous discussion on likelihood estimation provides one such mechanism for
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modelling these parameters. In practice, the use of logistic regression models (or similar)
is likely more accessible.

The estimation procedure is designed to allow for posited models on patient adherence
to be used in place of actual or estimated models. This allows for a sensitivity analysis
to be performed, based on the degree of nonadherence present in the data, whenever the
requisite auxiliary data or model estimates are unavailable. In the unlikely event that the
treatment probabilities are known precisely, these can be used exactly as described.

In the event that there is a validation sample such that, for every time j = 1, ..., K there
is some subset of individuals i = 1,...,n}; with both A7, and A; ; measured, then models
for the required components can be fit using standard estimation techniques. One possible
technique for doing so would be leveraging the likelihood results that were presented in
the previous sections. This provides an approach, motivated directly from common DTR
estimation techniques, that demonstrates the possible utility of the previous discussion.
Oftentimes, however, it may be more natural to use alternative modelling techniques (say
via generalized estimating equations, or generalized linear models more specifically). The
same general method can be applied when the validation data are from an external sample.
In this case, the summation will run from ¢ = 1,...,ny,n7 + 1,...,n7 + no where n; is
the size of the regular sample and ns is the size of the external validation sample. All of
these corresponding estimators are based on M-estimation theory, and the corresponding
estimating equations can be stacked onto the estimating equation U in the same manner
that the treatment assignment and treatment-free models are.

If, in place of a validation sample other auxiliary data are available, it is sometimes still
possible to consistently estimate the required misclassification probabilities. Buonaccorsi
[6], in Section 2.6, discusses how likelihood techniques can be exploited to estimate misclas-
sification rates, and the true marginal probability, based replicated measurements. These
results are summarized thoroughly by Walter [07]. As expressed they demonstrate that it
is often possible to estimate P(A; = 1) and P(A} = 1|A;) from data which has three or
more replicated values; the drawback to a direct application of these techniques is that we
would need misclassification to be independent of any tailoring variates, at which point the
need for a correction has been called into questionﬂ Still, it may be possible, depending
on the available data, to use a similar decomposition to approximate the necessary models.

6Such a technique may still be useful when using A;r- rather than A7, as an ITT is never valid based off
of Al
J
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Note that, for 7 (H}, A7), we can write

P(A; =1, A5|H;)  P(A3|A; =1, H;)P(A; = 1|H)

(HY A*) = P(A; =1|H*, A*) = =
Trj( 70 ]) (] | YR ]) P(AﬂH]*) P(AﬂH]*)

Considering a model for P(A} = a|H7), we can write

P(A? = o|H)
— P(AT = a|HI, A; = 1)P(A; = 1|{H?) + P(AS = a|HI, A; = 0)P(A; = O|H?).

Now, because A* is assumed to be observed, we can write down the model likelihood for
P(A% = 1|H}), broadly, as

L= l_J:P(A;f = 1|HZ],)A?,J' (1 — P(A = 1|Hi*7j))1—,4;’j ‘

Suppose that we are able to specify a parametric model for each of P(A} = 1|H}, A; = 1),
P(A* = 1\H* Aj =0), and P(A; = 1|H}). Suppose that these three models are given by

f1|1( 7’71|1) f1|0( 771|0) andf ( ,% )) respectively. By using the breakdown given
for P(A* = alH7), Wlth these three models on hand, we can write down the likelihood

expression for {’Y§‘1,71|0771 } as

3

*

Lot = TT{am ) 19 ) + sy (1= 100 )

{1 — flJ)<H* ) ( Iy ) — flj)(H* ) ( fj)(HZj))}l_A;j.

In this expression, to simplify notation, we have suppressed the dependence of f.(j ) on ..
In general there will be identifiability concerns with directly optimizing this model, and as
a result, more data or further assumptions will be required to estimate these parameters.
Suppose that for each individual, k; repeated measurements of A} are available. Further,
suppose that, given {A;, H}, these replicates are independent of one another. In this

setting, by expanding the notation so that fl(ljf) corresponds to P(A;‘ =1 H3 Aj = a),
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where A7, is the (-th replicate, then

7

n k; .
Lentt iy 1) =11 {fﬁ“ Hi) FOE) + 150 0) (1 - £0;) )

=1 4=1

X{l 1|1 ”)f( (H;;) — f1 ( 2])(1_f1 ( u))}

.
1-A47 e

Depending on the assumptions made, it may be the case that some parameters can be
shared between replicates, potentially simplifying the assumptions here. Still, given any
particular model form, a sufficient number of replicates (and sample size), and possibly
misclassification assumptions, this decomposition of the likelihood can be used to derive
estimates for the parameters required to compute 7;(H7, A}). Despite the mathematical
feasibility of such a possibility, it seems to us that the use of replication data for nonad-
herence specifically may be less fruitful than the use of replication data for correcting for
the impacts of errors in variables. This is because in order for these techniques to apply,
multiple, conditionally independent, potentially misclassified treatment indicators need to
be available. This strategy is certainly useful when, for instance, the binary indicator of
note is disease status which is the result of a (possibly faulty) test. In this setting it is pos-
sible to take several tests, each of which reports a possibly faulty result, but taken together
they can be viewed as replicate measures of the binary response. In the event that the
binary response represents a treatment prescription, however, most settings would appear
to not have an obvious analogue. We present this possibility for parameter estimation in
the event that a specific application of DTRs have data which correspond to this structure,
but do not otherwise pursue these estimators in depth.

If no auxiliary data are available, but model estimates are available from existing lit-
erature, then these can be used as though they were truth, adjusting the standard errors
based on the particular form. This can be viewed as a special case of the external valida-
tion sample, and will be subject to the same asymptotic variances. If there are no existing
estimates, and no auxiliary data, then we recommend using these estimators to conduct a
sensitivity analysis. Suppose that, despite a lack of auxiliary data, or pre-existing estimates
of the rates of misclassification, subject-matter experts are able to make educated guesses
at the magnitude of the impact different covariates have on the rates of nonadherence.
Perhaps these are informed through studies on similar treatment regimes, or anecdotally
from clinical practice. If a model for 7 (H;, A7) can be specified, then by filling in the
relevant parameters as though they were the truth the proposed method will provide con-
sistent estimates of the blip under these assumptions. A sensitivity analysis proceeds by
considering several possibilities for the true parameters, along a range of plausible values,
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and determining the impact on the estimated parameters.

Specifically, one may take

* * * : H*/ k
m;i (H}, A}) = expit <{Aj’f} ozj) .
j

Then, varying a; over a pre-specified grid leads to plausible misclassification models and
the modified G-estimation procedure can proceed assuming each is truth. In order for this
to be applied, as specified, and for the estimators to remain computationally feasible, H;
must not be too high-dimensional[| This approach leads to a set of estimated parameter
values for each 1;, which captures the impact of nonadherence on the parameter estimates.
Further, the estimated optimal treatment can be computed for each individual, which
allows the analyst to determine, for any specific person, what would need to be true for
A;pt to be 1 or 0. In this sense it is possible to show for which individuals the presence of
nonadherence is likely to alter the estimated optimal treatment assignment, and for which
the optimal assignment is fairly resilient to nonadherence.

7.7 Asymptotic Distribution and Inference

At stage K, if we parameterize 05 (-) with Bk, 75 (-) with ax, P(Ax = 1|H};) with g,
Hyc(+) (the history vector with treatment indicators replaced as described) with (., and
Cy(+) with ¢k, then if all models are selected such that these estimators can be framed
as the solution to unbiased estimating equations, the full estimation procedure depends on
the stacked version of these estimators. In general, we will have that

UTreatment Indicator (CK )
U Treatment Free (BK )
U}k( = UTreatment (aK)
UTreatment Assignment (FVK)
UG-Estimation(BKa K, VK, CKa wK)

Note that while some of these components will be independent by assumption, it is possible
for there to be a reliance between the treatment indicator and the treatment, treatment
assignment, or treatment free components of the estimating equations.

For each j < K, similar sets of estimating equations can be expressed. Note that

"Or else, certain values of a; must be restricted, to limit the size of the grid considered.
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for each j < K, in place of Y we use 17}-, which depends explicitly on 9,41, a1, and
Cj+1- Then, in addition to requiring the components at stage j, the estimators rely on the
parameters from previous stages. The same form of dependence will occur through the
use of the (; parameters, wherein they may be required as tailoring factors or predictors
in other estimating equations. Define U for j =1,..., K — 1 in a similar way. Then, the
complete stacked estimating equation is taken to be

e
Uk
Ur=| : (7.7.1)
U;

Uy

In this framing, whether we take the required parameters to be known, estimated from a
validation sample, or estimated from additional auxiliary data, the blip parameters will
exhibit joint asymptotic normality. This asymptotic normality requires regularity condi-
tions which are related to the previously discussed (Chapter @ exceptional laws. As a
reminder, exceptional laws were introduced by Robins [70], and are explored in depth in
Appendix E| In the presence of exceptional laws, several authors have considered tech-
niques for reducing bias and correcting inference [506], 11, [15]. Theorem m presents
results under the assumption of non-exceptional laws.

Theorem 7.7.1 (Asymptotic Normality of Modified G-Estimation). Suppose that for
j=1...,K and i = 1,...,n, we consistently estimate P(A};|H};) and 7} (H};, A};)
through corresponding unbiased estimating equations, and we correctly specify the form
of C5(H;;;105). Then the (11,...,¢x) which are estimated as components when solving
Ur =90 (Equation ) are asymptotically normal, under the independence assump-
tions from Theorem and the/\regula@;ty conditions set out by Robins [70] surrounding

exceptional laws. Denoting U = (1,...,0K), we get that, as n — o,
ﬁ(@-m) L N(0,5y).
Here Yy = I[gXoly, Iy is the diagonal matrix with 1°s on the diagonal entries correspond-

ing to the locations of the U parameters in ©, © is the solution to E[U*(0)] =0, and Xg
15 sandwich vartance matrixz based on U*.

8Briefly, exceptional laws correspond to those for which, with non-trivial probability, there is not a
uniquely best treatment assignment.
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The asymptotic normality, and as such asymptotic variance, follows directly from stan-
dard M-estimation theory, under the conditions outlined by Robins [70]. It is worth not-
ing that, even under exceptional laws, G-estimation remains y/n-consistent (as in The-
orem [7.5.1]), however, the limiting distribution depends on these laws. It is likely that
the modified G-estimation procedure will benefit from the same types of bias corrections
explored to account for exceptional laws. At present we ignore these considerations.

7.8 Prescribed, Actual, and Reported Treatments

The estimation procedure that has been outlined has assumed that we are making inference
regarding the actual treatment (A) using the prescribed treatment (A*). As introduced
in Section there are actually three treatments which may be available, though our
discussion has not directly considered Af. As mentioned, an ITT based on A* may have a
valid causal interpretation but a naive analysis conducted with A" in place of A does not.

The proposed correction functions equivalently whether a prescribed treatment, a re-
ported treatment, or both are available for modelling. The challenge with using reported
treatment in place of prescribed treatment is conceptual rather than mechanical. In order
to model the misclassification probabilities, we require

gt AT — — Tt
wl(HI, AT = P(A; = 1141, 1)),

While there are no statistical concerns to specify and fit these models, this is a quantity
which is harder to think about in terms of the actual subject matter. In these scenarios we
are directly modelling the reverse causal direction. Similarly, the technique with prescribed
treatments is aided by the ease with which P(A} = 1|H}) can be specified. Specifying a
model for P(A; = 1|H]T) is generally more challenging, owing to the less interpretable
meaning of these quantities. If a model is specified for P(Aj|H]T), and a model is specified
for P(A;|Aj, H]T), then these two quantities imply a model for P(A;. = 1|H]T). A similar
technique could make simultaneous use of both { A7, A;}

If it is possible to specify the correct model for quantities based on reported treatments,
and the relevant assumptions from Theorems |7.5.1| and |7.7.1| hold (with A} replaced by A;r-,
and similar substitutions), then the proposed correction procedure will exhibit the same
consistency and asymptotic normality guarantees. This is a particularly powerful result as,
to reiterate the point, a naive analysis replacing A; with A} has no causal interpretation

whenever A; has a true treatment effect, and A; impacts A}.
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7.9 Pseudo Outcomes and Optimal Treatments

In Theorem [7.5.1] the result depends on the construction of pseudo outcomes of the form

Vij = Viger + [A% — m(H))] C; (H).

In Chapter [6] we discussed at length the difficult with constructing pseudo outcomes, even
when the 1); parameters were consistently estimated. It is worth considering these pseudo
outcomes in order to determine whether the same concerns exist. Under the assumptions
of the theory that has been developed throughout this chapter, ;(H;;) and C}(H;;) are
both known (up to parameters which are consistently estimated). As a result, consistent
estimation relies entirely on whether or not A;’Et is consistently estimated, supposing that
1; is accurately estimated.

In the event that there are no treatment indicators in the blip function (which is to
say, past treatments are not used as tailoring factors), then the blip function is exactly
known when 1); is known, and AZ‘J’-t will be correctly specified. Otherwise, for any individual
the optimal treatment regime may be incorrectly estimated based on the available data.
This is because any of the A, contained as tailoring factors, with ¢ < j are replaced by
P(A,=1|H 7). Correspondingly, it is conceivable that the sign of C; changes when moving
from A; to E[A;|].

Unlike in the case of errors in covariates assessing this possibility empirically can be
done without much trouble. Suppose that we have 1); estimated correctly. As the only
terms which are possibly error-prone in the blip function are the past treatment indicators,
for any particular individual i, we can compute their optimal treatment assignment under
different histories. Suppose, for sake of exposition, that for the j-th blip, only A;_; is used
as a tailoring factor. In Table the possible combinations of optimal outcomes under the
true treatment, as well as the predicted value using the misclassification model, are given.
These results give a possible mechanism for empirically quantifying the degree to which
suboptimal assignment may occur owing to nonadherence.

In terms of the impact that this possibly mischaracterized optimal treatment has on
the consistency of the estimators we note that the key step of the proof is having

VZ+1(HI:+1) + AZIJ):101:+1(HI:+1) =F [Vk+1(Hk+1) + AZTlckH(HkH)‘ H1:+1a Z+1} :

. ~Jopt . . . .
Here we are using A}%, to represent the computed version of it, which was previously
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Table 7.1: Scenarios corresponding to the possibility of mischaracterizing an individual’s
optimal response. The other two scenarios are not possible to realize. These probabili-
ties can conceptually be computed for any particular individual, to determine for a given
dataset the degree to which optimal treatments may be violated.

AT i A =1 AT i A =0 AT PO A

1 1 1 0
1 0 11— (H)
1 0 0 w o (HY)

0 1 1 T (HY)

0 1 01— (H})
0 0 0 0

assumed to exactly equal AZE’:I. This means that whenever we add a term which equals

E [ A% Cea(Hin)| Hiyys Afya]

in place of AZTl o 1(Hiy1) in the pseudo outcome, Equation @, the resulting proof
will hold. This expectation is computed under the assumption that ;. is known exactly,
and that the form of Cy,1(Hjyy1) is also precisely known. As before, whenever Cj; does
not depend on previous treatment indicators, this can be expressed as is. Otherwise, we

can consider computing this conditional expectation based on the results of Table

Suppose, again for the sake of expositional clarityﬂ that for Cyyq, only A is involved
in the computation. Then, knowing the form of C%,; we can say that

L [AZTlckH(HkH)’ Hl;k+1> Z+1}
= P(Ak = 1|H,’;+1, Z+1)E [AZTlokH(HkH)’ H,’;H, Z+17Ak = 1}

+ (1 - P(Ak = 1‘HZ+17AZ+1>) E [AZiCkH(HkHH HZH?AZH’Ak = 0}
= WZ(HzH)I {CkH(HZH?Ak =1) > 0} Ok+1<HZ+1aAk =1)

+ [1 = m(Hy )] T {Char(Hypy, A, = 0) > 0} Chyr (Hpryy, A, = 0).

In the event that the optimal treatment does not depend on Ay, (either because Ay, is not
a term in the blip function, or because regardless of the value, the optimal treatment is the

same), this will simplify to exactly g?:fl v1(Hj ). Otherwise, this term is computable

given the modelling that has been supposed. In this sense, it is possible to derive a pseudo

91f this is not the case, then the same argument holds conditioning on the complete past.
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outcome which is valid regardless of whether or not previous treatment indicators are
included. We can take

Vi =Vin + 1 (H)I{Cy(H;, Ay = 1) > 0} Cj(H;, A; = 1)
+ [L =7 (H)] I{C;(H},A; =0) >0} C;(H;, A; = 0) — m} (H;;)Ci (Hy).

While this results in a consistent estimate of a valid pseudo outcome under the out-
lined assumptions, it is worth noting that in practice the blip parameters will be esti-
mated. Moreover, the misclassification probabilities are modelled, potentially based on
external validation samples or previous studies. Correspondingly, the large sample prop-
erties gained through this added complexity may be undermined in some analyses based
on the errors inherent to the estimation process. Fortunately, based on our previous dis-
cussions, it is possible to get a sense, empirically, of whether or not these pseudo outcomes
are likely to materially differ from the previously suggested form in Equation [7.5.1] For
the remainder of the Chapter, including for the simulation experiments, we will continue
using the approximate pseudo outcomes, to demonstrate the utility of these expressions.

7.10 Multiple Treatment Alternatives

In this thesis thus far, G-estimation has been presented under the assumption that treat-
ment is binary. The generalization of G-estimation to arbitrary categorical treatments is
conceptually straightforward, complicating mostly the notation used. In place of assuming
that

Q;(Hj, Aj) = v;(H;) + A;C5(Hj; ;)

the model instead is taken to be

Qi(Hj, Aj) = vi(Hy) + Y I(A; = Ap)Cin(Hys i)
Ajp€EA;

Here A; is the set of possible treatment options at stage j, and Cj; is the k-th (k =
1,...,]A;|) contrast function for stage j. We have

Ojk(Hj) = E[VjJrllvaAj = ajk] — E[‘A//}Jrl‘Hj,Aj = O]

In the event of nonadherence, these quantities all naturally extend in the same was dis-
cussed before, replacing the contrast functions with their expected values, and replacing
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the indicator function with the misclassification probabilities,

It is common for DTR estimation to be framed around binary treatments. However,
in the event of nonadherence, it is important to question this framing. The presented
theory above assumes that if an individual has been assigned treatment A} = 1, and is
nonadherent, then they are in the A; = 0 category. Often, however, A; = 1 will refer to a
experimental treatment and A; = 0 will refer to standard care. As a result, it may be the
case that an individual who is nonadherent will not in fact be a member of the alternative
treatment, but rather, an additional treatment category all together. If, in the scenario
with complete adherence, we consider A; = 1 to be an experimental treatment and A; = 0
to be standard care, then it may be necessary to define a third category corresponding
to no treatment. Then, if an individual does not adhere to A7 =1 or A7 = 0, they are
categorized in the third treatment category instead.

Consider the MACS analysis, for instance. In this case treatment refers to a decision
to start Zidovudine (AZT) therapy. In this setting we will take A; = 1 to refer to an
individual starting AZT therapy at j, and A; = 0 to mean that they have not taken AZT.
Once prescribed the individual remains on AZT, and so the analyses we are basing our
investigation on consider only timing of the therapy [96]. This setting is such that it is
unlikely that there would be nonadherence when A; = 0 is prescribedF_o-I On the other
hand, we know from the MACS data that adherence to A; = 1 is not perfect. However,
nonadherence to A7 = 1 is unlikely to result in A; = 0 in all situations. Instead, partial
adherence, wherein the treatment is taken but not according to all instructions, occurs more
frequently. In this case we may wish to introduce a third category of actual treatment which
corresponds to these partial compliers. Then we would observe either A7 = 0 or A} = 1.
If A7 = 0 then by assumption we take A; = 0, however, if A7 = 1, we may have 4; =1
(full adherence), A; = 0 (full nonadherence), or A; = —1 (partial adherence).

The precise categorizations for any setting will depend on the exact subject matter.
In certain settings nonadherence will correspond exactly to the switching of treatments;
in other situations, additional treatment options may need to be considered to more ade-
quately represent the true, underlying reality. While doing this represents a more complex
modelling setup, it is important to note that even if the true treatments were observable
for all individuals, the added complexity would be necessary for valid causal conclusions
to be drawn.

0AZT is a prescription drug, which is not likely to be readily accessed by those without a prescription.
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7.11 Simulation Studies

7.11.1 Misclassification Dependent on Tailoring Variates

In the first experiment, we simulate a two-stage DTR with two primary tailoring variates,
Xi ~ N(1,1) and Xy ~ N(1,4). At stage j treatment prescription depends only on X;
through a logistic model, with P(A} = 1|X;) = expit(X;). The true treatment depends
on a similar logistic model, with P(A; = 1|A}, X;) =~ expit(—4.6 — 0.83X; + 7.5A%). The
parameter values are taken to make the probability of misclassification fairly low, with
values on average of 0.01 and 0.05 for those prescribed A7 = 0 and A} = 1 respectively.
The blip model at stage one is given by 14+ X7, and at stage two it is given by 1+ X7 +19 A1,
where 19 € {—1,—-0.1,0,0.1,1}. The treatment free model is simply X7, and the outcome
has an error variance which is normally distributed with mean 0 and variance 2. We
assume that there is a validation sample of 30% to estimate misclassification probabilities,
and use a sample size of 1000. These simulations are repeated 1000 times. Box plots
of the estimates across the replications comparing naive estimation (corresponding to an
ITT), estimation using the true treatment (corresponding to an as-treated analysis), the
proposed correction assuming misclassification probabilities are known, and the proposed
correction assuming misclassification probabilities are estimated are shown in Figure [7.3]

The results indicate that the naive analysis produces clearly biased estimates of the
parameters, while both corrections and the estimates based on the truth perform similarly.
In some settings we see an improvement in the variability of the estimates for the corrected
estimators compared to those which rely on the true treatment assignment.

7.11.2 Validation Set Sizing

In the second experiment, we maintain the same experimental setup as in the first set of
analyses, however we fix 99 = 0. Instead, we vary the size of the replication set, based
on a sample size of n = 1000, considering 10%, 20%, 30%, and 50% replication. These
simulations were run with the same methods indicated above, though the estimates using
the naive analysis, true analysis, and analysis based on known probabilities are independent
of the size of the replication sample. As a result, in Figure[7.4] only box plots summarizing
the results of the parameter estimates over the different sample sizes for the corrected
estimator are shown.

While there is a trend towards decreasing variance, particularly moving from the 10%
validation sample to the 20% validation sample, we see that the method performs similarly
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Figure 7.3: Estimated parameter values for the two-stage dynamic treatment regime vary-
ing the dependence of the second-stage on the tailoring effects of the misclassified A;
variable. Each scenario compares the results of the correction (with known or estimated
probabilities), the naive (ITT) analysis, and the as-treated analysis.
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Figure 7.4: Estimated parameter values for the two-stage dynamic treatment regime vary-
ing the size of the validation sample. The dotted line indicates the true parameter values,
with a sample size of n = 1000, and parameter estimates generated through the modified
G-estimation procedure.
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across all sizes of the validation sets considered.

7.11.3 Asymptotic Coverage Probabilities

In the third experiment, we consider the coverage probabilities obtained through the use of
standard M-estimation theory. We simulate the same tailoring variables as in the previous
scenarios. Treatment prescription is changed such that P(A} = 1|X;) = expit(0.5 + X;)
while P(A} = 1| X5) = expit(—0.5+X>). The same misclassification probabilities are taken
as in the first experiment. The jth blip model takes the form 14 X;+1;2 A}, where )12 = 1
and 1099 = —1. Further, the treatment free model becomes X; + 0.5A47. We consider nine
total scenarios where we vary the sample size to be low (n = 200), medium (n = 1000),
or large (n = 5000) with the validation sample size being small (10%), medium (20%),
or large (50%). We repeat each of these scenarios 1000 times, and consider the estimated
standard errors for the blip terms that are based on approximate sandwich estimation
techniques. Instead of explicitly solving the gradient of the estimating equation, we simply
use numerical differentiation to approximate its value at the estimated parameter values.
In Table we include the number of simulations (out of 1000) which correctly covered
the true parameter value using 90%, 95%, and 99% confidence intervals. In Figures
and [7.6] we plot the nominal significance threshold versus the estimated significance across
all scenarios. These plots correspond to the empirical CDF (over the simulation replicates)
of the p-values associated with testing whether the estimated parameter equals the true
value, based on the estimated standard errors and a normal approximation. These plots
are shown for the full range of «, in addition to o € [0,0.1].

The results suggest that coverage is well calibrated, even in small samples with a low
validation percentage, though there is a notable improvement with increasing sample size
as would be expected. The parameter 9, tended to exhibit the worst coverage behaviour,
which is the blip parameter corresponding to X5, however, coverage still tended to approx-
imate the nominal levels well. It should be noted that the simulated scenario was not one
under an exceptional law, and as such, standard asymptotic theory is expected to apply.

7.11.4 Reported Treatment Correction

In this simulation we consider the use of a reported treatment (A") rather than a prescribed
treatment. We once again look at a two-stage DTR. In this setting we have X7, X5 both
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Figure 7.5: Plots of the empirical CDF of the p-values associated with testing whether the
estimated blip parameter equals the true value, based on estimated standard errors and a
normal approximation, for various sample sizes and validation proportions. The standard
errors are formed based on numeric differentiation, within the modified G-estimation pro-
cedure.

155



n = 5000, p = 0.5 n = 5000, p = 0.2 " n=5000, p =0.1

0.100
S
5 0.075
Q
T 0.050
£
B 0.025
w

0.000

Parameter
0.100

=]
- 0.075
2
® 0.050
£
® 0.025
w

0.000

0.100
=]
- 0.075
Q

©
g 0.050 )
#0025 [ L s
1] /it [ o
0.000 .#* i
0.000 0.025 0.050 0.075 0.1000.000 0.025 0.050 0.075 0.1000.000 0.025 0.050 0.075 0.100
Nominal a Nominal a Nominal a

Figure 7.6: Plots of the empirical CDF of the p-values associated with testing whether the
estimated blip parameter equals the true value, based on estimated standard errors and
a normal approximation, for various sample sizes and validation proportions. This is the
same results as in Figure zoomed into o € [0,0.1]. The standard errors are formed
based on numeric differentiation, within the modified G-estimation procedure.
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Table 7.2: Number of replications (out of 1000) which contained the true parameter value
for in confidence intervals based on estimated standard errors, at the 90%, 95%, and 99%
thresholds, for various sample sizes (n) and validation proportions (top rows 50%, middle
rows 20%, bottom rows 10%). The confidence intervals are formed based on numeric
differentiation, within the modified G-estimation procedure.

90% CI 95% CI 99% CI

Yo i Yoo Y Yo Yo in Yoo WY Por Yo Pu Yao a1 oo
n = 5000

899 894 912 901 909 948 948 958 951 954 990 989 990 990 988
908 900 913 912 910 957 948 956 954 952 995 987 990 991 986
894 886 913 903 916 944 950 962 948 958 987 992 993 987 989
n = 1000

896 891 879 897 893 947 942 935 946 938 987 980 987 987 989
909 903 918 897 906 952 946 958 937 951 991 989 993 984 993
901 914 888 899 896 955 956 947 949 949 984 989 986 977 986
n = 200

894 891 886 863 905 947 937 940 922 944 992 983 988 964 993
912 895 888 872 884 946 945 934 924 936 986 988 984 964 983
917 897 897 872 914 969 940 941 922 971 996 984 996 975 994

being discrete uniform on {—1,0,1}. Then, we define

02 X =-1;
P(A;=1|X;)={05 X =0;
08 X =1,

for j = 1,2. Then we take

(095 X, =—-1;4, =1;
09 X, =04, =1,
0.8 X;=14, =1,
001 X;=-1;A4,=0;
0.05 X; =04, =0;
01 X, =1;4,=0.

P(Al =1]|4;,X;) =

\
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At stage 1 the blip is taken to be 1+ X, and at stage two it is taken as 1+199 A7, where 199
is taken to vary across {—1,—0.1,0,0.1,1}. The sample size is taken to be n = 1000, with
30% validation sample. In this setting we compare fitting the proposed correction, a naive
(ITT) analysis, and an analysis which is based upon the true treatments. These simulations
are repeated 1000 times. The MSE (multiplied by 100) are contained in Table [7.3]

Table 7.3: 100 times the observed MSE, based on 1000 replicated simulations, for the
blip parameter estimates in a two-stage DTR, where reported treatments were used as a
misclassified version of the truth. The results are based on a sample size of n = 1000,
with a validation set of 30%, and they compare the corrected estimators, to those which
naively apply G-estimation without correction, to those that are obtained when the true
treatment status is reported.

Corrected Naive Truth

77b11 ¢12 ¢21 w22 ¢11 ¢12 ¢21 ¢22 ¢11 ¢12 ¢21 ¢22
Yp=-1 34 33 28 64 78 306 112 154 23 20 22 43
Y =-01 3.6 28 2.7 55 125 225 72 42 20 19 21 39
a2 =0 35 29 25 56 125 216 68 43 22 20 22 44
=01 34 32 26 59 130 212 67 48 21 21 23 48
P2 =1 3.7 28 25 64 155 137 39 157 24 19 22 48

From these results we can see that, while the true estimators predictably have the lowest
MSE across all of the presented scenarios, the corrected estimators perform comparably,
despite the additional modelling requirements. The naive estimators exhibit large bias
and greater variance, making them unreliable in general as a means of estimating the true
treatment effectiveness. It is worth emphasizing that, unlike in the other scenarios where
the ITT could (plausibly) be interpreted in a causal light, here not only are the naive
estimators highly variable, they are also not defensible through any causal interpretation.

7.12 Multicenter AIDS Cohort Study (MACS) Analysis

Next we demonstrate the utility of our proposed corrections with an analysis of the Mul-
ticenter AIDS Cohort Study [45]. Our analysis primarily follows Wallace, Moodie, and
Stephens [96] and Hernan, Brumback, and Robins [38]. MACS was a longitudinal study,
which saw individuals twice a year, and at each visit survey questions and medical exams
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were conducted. While the data are incredibly rich, our analysis focuses on a fairly sim-
ple question related to the treatment of HIV/AIDS. Our analysis seeks to estimate the
optimal timing of intervention with a particular antiretroviral drug, Zidovudine (AZT),
used to treat HIV/AIDS. AZT became available for the first time in March 1986, and so
our analysis is restricted to only those individuals who were HIV-positive and AIDS-free,
starting in March 1986. Because the primary purpose of this analysis is illustration of the
application of these techniques, we further restrict our sample to include only the first two
eligible visits, for any individual. Because patients were recruited in waves, the dates that
the first two eligible visits take will differ across individuals.

The outcome of interest for the study will be the CD4 count for the individual at
the visit following their second eligible visit. CD4 cells are white blood cells which are
crucial for immune responses, and are commonly used to assess the health and progression
of individual with HIV. In addition to using information regarding a patient’s CD4 cell
count, we will also take lab results regarding their CDS8 counts, their white-blood cell
(WBC) counts, their red blood cell (RBC) counts, their platelet counts, their blood pressure
(systolic and diastolic), their weight, as well as a symptomatic indicator (which indicates
whether the patients have had, at least one of the following symptoms, in their recent
medical history: fever, oral candidiasis, diarrhea, weight loss, oral hairy leukoplakia, or
herpes zoster). These variates were selected largely according to the analysis done by
Hernan, Brumback, and Robins [38].

In October 1998 a questionnaire which assessed adherence to prescribed medication was
added to the MACS [48]. This questionnaire assesses an individual’s adherence to their
prescribed regimen, over the previous four days. While it is generally the case that this
self-reported adherence status may itself be misclassified, or not representative of typical
behaviour from the patient in question, we ignore this in our analysis. That is, while this
reported data are representative of Af, we treat is as though it were A. It is also worth
acknowledging that, from the survey we can see that most patients who are not perfectly
adherent to their prescribed treatment remain partially adherent. This fact is related to
the discussion in Section regarding the possibility of multiple treatment alternatives.
A complete analysis of these data could make informed use of the levels of adherence that
the patients report, classified based on the expected similarity of different doses. We will
still make the common binary assumption.

Owing to the staggered entry into the study, the exclusion criteria previously discussed,
and the use of the subset of publicly available data, the subset of individuals with adherence
information forms a partially overlapping validation sample with the main survey. We will
treat this data as though it is derived from an external validation sample, despite the
fact that it is taken from the same study, and many individuals from the main study are
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present in the validation set. Because of this the transportability requirements for using a
validation sample are likely to be satisfied. One further note with regards to the adherence
data is that, because this information only started to be collected in 1998, 12 years after
eligibility into inclusion in our analysis, it is possible that adherence early in the study was
subject to different forces than later when we have the information. We content ourselves
with assuming that the adherence information is approximately representative of adherence
throughout the study, but caution that this analysis is primarily useful insofar as it serves
as an illustration of the proposed techniques.

By way of notation, we take A5 € {0,1} to represent whether AZT was started at
period j (A5 = 1) or not. We assume that once an individual has been prescribed AZT,
they remain prescribed AZT, which means that once A} = 1, there will be no change in
this prescription. The true treatment, A;, which is unobservable in general, corresponds to
whether or not the individual took AZT during the j-th stage of the treatment. In terms
of nonadherence we assume that if an individual has not been prescribed A} = 1, then
they will remain adherent. That is, P(4; = 0]A; = 0) = 1. The notation for each of the
other predictors is summarized in Table [7.4]

Table 7.4: Set of predictor variables used in the analysis of the MACS data, along with
their defined notation.

Variable Description

Birthdate Year of Birth for the Individual U
CD4 Count Count of the number of CD4 cells present at visit j C;
CD8 Count Count of the number of CDS cells present at visit j K;
RBC Count Count of the number of RBC cells present at visit j R;
WBC Count Count of the number of WBC cells present at visit 7~ W;
Platelet Count Count of the number of platelets present at visit j P;
Systolic Blood Pressure  Systolic blood pressure measurement at stage j T}
Diastolic Blood Pressure Diastolic blood pressure measurement at stage j D;
AIDS Status Binary indicator of AIDS diagnosis at stage j F;
Body Weight Individual’s body weight in pounds at stage j B;
Symptom Indicator Symptomatic status (as previously defined) at stage j 5

We begin by considering modelling the nonadherence directly on our (partially) external
validation data. We specify a standard logistic regression model, and consider performing
model selection through a combination of deviance tests and the BIC. The first question
of interest in the modelling is whether or not the pattern of adherence appears to change
over time. To do this we consider fitting the main effects model (with a logistic link) with
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a log transformation of all factors except for U, S;, and F};, where we include a factor for
each different visit present in the adherence dataset. The factors corresponding to the visit
numbers are highly non-significant (p ~ 0.99 with a deviance test), and so we proceed
assuming that a single nonadherence model can be used at each visit. From here, through
a combination of BIC and deviance testing, we reduce the model until we are left with

logit(P(A; = 1)) = ap + anU + aslog(D;) + aslog(T}) + aulog(C}).

Note that this model has conditioned (implicitly) on A} = 1, as we have assumed that
A7 = 0 implies that A; = 0. The resultant estimated coefficients are included in Table

Table 7.5: Parameter estimates (with standard errors, and Wald test statistics) from a
logistic regression conducted on the external validation sample, estimating the propensity
for those prescribed AZT to be (partially) nonadherent to their assigned treatment.

Estimate Standard Error z value Pr(>|z|)

(Intercept)  93.917 36.078 2.600  0.009
U -0.049 0.018 -2.640  0.008
log(D;) -4.073 1.494 2730 0.006
log(T}) 3.592 1.497 2400  0.016
log(C}) 0.585 0.207 2.820  0.005

Taking this model for adherence, we can now begin fitting the dynamic treatment
regime. Our analysis largely borrows from the findings of Wallace, Moodie, and Stephens
[96] to inform the functional forms that are being considered. In our analysis, we consider
only those individuals who have complete information (for the relevant factors), rather
than conducting imputation. Further, owing to the size of the available data and the lack
of subject-matter guidance, we consider the binary adherence mechanism previously out-
lined, rather than working through a model which adequately considers partial adherence.
Despite these limitations the following analyses show the importance of addressing con-
cerns with nonadherence, and can serve as a guide to a more thorough consideration of
these topicsE-] In total, our models are fit using information from 2850 patients, repre-
senting information from a total of 8550 visits. The adherence information is based on 766
questionnaire responses, with a total of 220 patients providing this information. Of these
220 patients, 141 of them are included in the main sample; the remaining 79 do not have
sufficient information from the required visits to be used in the main model fitting.

U That is to say, while the specific estimates from this analysis are subject to the aforementioned short-
comings, they do demonstrate the impact that nonadherence can have on optimal DTR estimation.
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We take the previously discussed adherence model for both stages. For stage one we
specify the outcome model as

Bro + B11C1 + Prz2log Cr + Ay x (Y11 + 12U + P131log Cy + 91451) -

For the second stage, we take the outcome model to be given by

Bao + B21C1 + Pazlog Cy + [a3Cs + Paglog Cy + Ay X (121 + V2oU + oz log Co + 102455) .

For j = 1,2 we specify the corresponding treatment prescription models as
logit(P(A] = 1[-)) = 71 + 7525 + Yis Kj + 7jaltj + 755 Wi + 756

It is worth noting that, while larger blip models and treatment-free models were both con-
sidered, the variation in the available data made stable estimation of these treatment rules
challenging. This was true whether conducting inference based on standard G-estimation
(assuming that there was no nonadherence) or with the modified procedures. Instead, we
use a simplified tailoring rule, more akin to that of Wallace, Moodie, and Stephens [96]. In
an attempt to standardize the magnitude of coefficients, we transform U in these models
to represent the patient’s age in 1986, rather than their birth year.

With these models, we conduct both a naive analysis and one based on our proposed
correction, with the specified nonadherence model. In order to assess the variability of
these estimators, we conduct a bootstrap, based on 1000 replicates. The resulting point
estimates and confidence intervals are displayed for both analyses in Table [7.6] From
these estimates there are several points to notice. First, most effects are quite variable in
both analyses: some of this would be remedied by standardizing the variables, which may
allow for an easier interpretation. We can see that, while the magnitude of the corrected
estimates tend to be larger, the point estimates seem to suggest the same directional effects
across most of the factors. Of note are the results from 5 and )94.

For both of these factors, corresponding to the tailoring effect of birth year and the
presence of symptoms, respectively, the two approaches report differing impact at a 95%
level of significance. Notably, the naive analysis would conclude that the impact of birth
year does not differ substantially from 0, at a 95% level of significance, but that the presence
of symptoms at stage two does. When correcting for adherence, these two points are
reversed: birth year becomes a significant tailoring factor, while the presence of symptoms
does not remain so. While it is interesting to note that there are differences in the tailoring
factors that are estimated to have a significant impact on optimal treatment assignment,
it is easier to see the influence that nonadherence has by considering optimal treatment
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Table 7.6: Estimated blip parameters (with 95% bootstrapped confidence intervals) based
on a naive analysis of MACS (assuming full adherence) compared with an analysis based
on modified G-estimation procedure which accounts for the impacts of nonadherence.

Naive Corrected
Lower Estimate Upper Lower Estimate Upper
Wy -4647.81 8254.73 20884.43 -25434.32 40623.92 100192.05
Y1y -10.13 -3.93 2.50 -48.20 -19.51 12.76

U3 -137.68 -49.61 29.90 -695.41  -182.41 171.44
1y -198.44 -82.76 46.39 -709.97  -193.30 284.67
91 -1065.59  5528.36 12594.28 3037.40 35922.73  66075.74

P99 -6.14 -2.66 0.64 -32.62 -17.53 -1.34
a3 -74.90 -34.41 8.85 -364.82 -120.10 174.50
oy -124.93 -70.34 -13.56 -545.72 -238.67 8.81

estimation. In Table [7.7] we present the results of estimating the optimal treatment across
the entire dataset, based on each bootstrap iteration.

Table 7.7: The proportions of optimal treatment at stages one and two based on the
1000 bootstrap replicates for the MACS analysis. Presented here are the proportions
(median across the replicates, as well as the minimum and maximum proportions) where
the estimated optimal treatment agrees between the two analysis strategies, as well as the
proportion of patients for whom treatment was recommended at each stage.

Median Minimum Maximum

Stage One Optimal Treatment Agreement  0.913 0.083 1.000
Stage Two Optimal Treatment Agreement  0.962 0.356 1.000
Naive A% =1 0.246 0.002 1.000
Naive ngpt =1 0.049 0.000 0.804
Corrected A" = 1 0.203 0.010 1.000
Corrected AP' = 1 0.085 0.000 0.828

In Table [7.7, we see that there tends to be a fairly high level of agreement between the
two techniques (0.962 at the second stage, and 0.913 at the first stage), but this agreement
is not perfect. It is worth pointing out that, within the adherence data we have access to,
approximately 90% of respondents, who are assigned AZT treatment, are fully adherent.
Moreover, in the data itself, roughly 2% and 5% of respondents were prescribed AZT at
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each stage. Remember that we have assumed that all of those who were not prescribed were
fully adherent. As a result, these 4% and 9% differences in optimal treatment assignment
derive from an approximately half percentage of nonadherent patients in the data. The
upper and lower bounds in the bootstrap replicates do make clear that these results are
potentially highly variable, and it is worth reiterating that the specifics of this analysis may
be subject to several shortcomings. Still, this analysis makes clear that even very small
deviations from perfect adherence (0.5% in MACS) can have out-sized impacts on the
ability to optimally treat patients. While it is unlikely that our specific effect estimates
are perfectly indicative of the underlying reality, they do show the issue with ignoring
adherence information in these contexts. It also demonstrates the caution required to
ignore these types of impacts.
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Chapter 8

Discussion

In this thesis, we explore concerns that arise, empirically, with common techniques used
to correct for the effects of measurement error. We emphasize the important role that
so-called approximately consistent error correction techniques play in reducing the bias of
estimators when their grounding assumptions are met. These assumptions, while some-
times reasonable, are often violated in practice. Part [I] of this thesis explores how these
assumptions can be relaxed without losing the attractive simplicity of the most commonly
applied error correction techniques. Specifically, we concern ourselves with the situations
where observed auxiliary data have error distributions that are evidently dissimilar, unit-
ing some of the literature on replicate measurements with the literature on instrumental
variable techniques. We also consider the impact of violations to normality on common
measurement error correction techniques, and provide a nonparametric alternative which
will be readily applied by analysts familiar with the existing techniques.

While the findings on these topics are presented as generally applicable to any anal-
yses subject to measurement error, the initial motivation for relaxing these assumptions
stemmed from observing data that are frequently used to estimate dynamic treatment
regimes. Prior to this thesis, almost no work had been done to address the impacts of mea-
surement error in DTR analyses — either within the tailoring covariates, or in the treatment
indicators themselves. The estimation of an optimal DTR is a regression-based procedure
and as such lends itself to some of the existing literature on errors in regression models.
However, the available data made clear that generalizations to these existing techniques
were necessary to have applicable methods on hand.

In addition to proposing generalizations to existing measurement error correction tech-
niques, we also consider the problem of correcting for the impacts of measurement error
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within dynamic treatment regimes. In Part |[I we argue that naive analyses are generally
not applicable, regardless of the framing of DTR estimation, and can lead to serious errors
in inference. Moreover, we present techniques for overcoming these errors, which in follow-
ing the theme of the thesis broadly, are designed to minimally impact an analyst’s existing
tools to apply. We address the issues that arise from errors in tailoring variables, adapt-
ing the work on the generalized methods presented in Part [[, and we thoroughly explore
issues that stem from nonadherence (or treatment misclassification). We demonstrate how
these issues can be overcome using slight modifications to commonly applied correction
techniques. Below, we summarize the key results contributed within this thesis.

Chapter

In Chapter [3]we focus predominantly on methods for relaxing the assumptions on the avail-
able auxiliary data that are used to perform measurement error corrections. We demon-
strate how the commonly assumed structure of replicate measurements, where multiple
proxies are assumed to be independent and identically distributed, will often be violated
in practice. Frequently, it is the case that multiple proxy measurements are available,
where each proxy may be subjected to a different error distribution. When this is the
case, commonly applied techniques that rely on repeated measurements being identically
distributed will range from inefficient to inconsistent. However, we also show that the
assumption of identically distributed errors is unnecessary to continue to apply several
common, approximately consistent error correction techniques.

We discuss how both regression calibration and simulation extrapolation can be ex-
panded to this framework of repeated (rather than replicated) measurements, without
otherwise changing the underlying process. The proposed estimators function in precisely
the same way as the existing, commonly discussed techniques, whenever the repeated val-
ues are truly replicates. However, they also have the capacity to more efficiently make use
of all of the observed data, and can lead to consistent corrections when these auxiliary
data assumptions are violated.

In this chapter we prove consistent identification of the necessary moment parameters
to perform a wide variety of corrections under this more general structure, and demonstrate
that these estimators are asymptotically normal. We then show how these results can be
combined by existing techniques — particularly regression calibration and SIMEX — to pro-
duce consistent and asymptotically normal corrections under a wider class of measurement
error models than is typically assumed.
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Chapter

Chapter [4] is primarily concerned with developing a deeper theoretical foundation for sim-
ulation extrapolation. Building on extensions to SIMEX, we explore the technique by
framing it through the lens of functionals over the space of characteristic functions. In this
way we are able to explore the asymptotic bias that arises from violations to the assump-
tion of normally distributed errors. This framing presents a nonparametric generalization
to the commonly discussed SIMEX, which we call the NP-SIMEX.

The NP-SIMEX exploits the empirical distribution to modify the simulation step of
the standard simulation extrapolation. We show that, supposing the underlying estimator
is sufficiently smooth, this procedure can be used regardless of the distribution of the
errors, whenever validation data are available. In the presence of replicate measurements
we need to assume that the errors follow a symmetric distribution, though, any symmetric
distribution will do. We further demonstrate how, by invoking literature regarding kernel
density estimation, the same procedure can be applied when errors are related to the
underlying true measurement.

We prove that the NP-SIMEX results in consistent and asymptotically normal correc-
tions, supposing some technical requirements on the estimators of interest. We demonstrate
its applicability in a wide range of scenarios, and we discuss the principal drawback to the
technique: namely, because it is nonparametric, it requires a substantial amount of data to
be applied. When taken in conjunction with the theory developed around the analysis of
the standard SIMEX, these results present a mechanism for assessing whether the errors
appear sufficiently non-normal to warrant the use of the otherwise less efficient estimator.

Chapter [6]

In Chapter [6] we consider dynamic treatment regimes, and begin to discuss the issues
that measurement errors in tailoring variables present within this context. We break down
the problem into the different roles that these tailoring variates play within the dynamic
treatment regime and argue that through an application of regression calibration, to the
dWOLS estimators, we can restore some of the desirable theoretical properties of the
estimators.

This work builds on previously established work (in my Masters thesis) where the
need for correction techniques was established. In this chapter, we further explore these
arguments, and contend that even when the primary interest is in predicting optimal future
treatment, it is worth considering corrections for the effects of errors.
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We demonstrate that, whenever valid pseudo outcomes can be estimated, the proposed
error correction techniques will result in doubly robust estimators for the true blip terms,
under the considered measurement error models. This double robustness is a desirable
property of dWOLS in the error-free setting. These estimators are shown to be asymp-
totically normal when we can make assumptions regarding the regularity of the law, as is
commonly required within the DTR literature. The primary concern with the theoretical
guarantees in this setting revolves around the need to generate valid pseudo outcomes. We
discuss techniques that can be used, in certain settings, to develop such outcomes, and
prove consistency of these estimators under restricted error models.

Chapter

In Chapter [7, we address the problem of nonadherence in dynamic treatment regimes.
We argue that nonadherence is a problem that ought to be addressed in this framework,
despite the frequent appeal to intention to treat analyses. We show how violations to the
causal structure of a DTR can arise through nonadherence, in addition to the bias that
is present when an ITT is used as a means of estimating the underlying truth. When
combined with standard critiques of ITTs, this provides an argument for the need for
intervention effectiveness methods for estimating optimal DTRs, even if they are to be
used in conjunction with an I'TT.

For the proposed correction we directly modify G-estimation, producing a doubly-
robust, and asymptotically normal estimator, under standard regularity conditions. In
this setting we explore different ways of modelling the nonadherence that may be present
in data, and illustrate how different sources of auxiliary data can be used to facilitate
the proposed correction. Moreover, we present the framework in such a way so as to
be amenable to sensitivity analyses. The proposed estimators are demonstrated to work
whether the proxy treatment indicator is an antecedent of the true treatment, or vice-
versa, and we discuss how this framework can be made to apply when multiple treatment
alternatives need to be considered.

The issue of pseudo outcomes, also discussed in Chapter [6] is further addressed within
the context of nonadherence, where we demonstrate that in principle valid pseudo outcomes
are estimable. This allows for, under fairly general assumptions, the consistent, doubly
robust estimation of the true blip terms relating to the underlying treatment’s efficacy.
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Concluding Remarks and Future Work

In this thesis we present generalizations which successfully overcome several of the short-
comings in existing techniques to correct for the effects of measurement error, and building
from here, propose the first substantive corrections for the effects of measurement error
within the context of dynamic treatment regimes. We ground the methodologies in as-
sumptions which are frequently observed in practice, justify their utility through theoretical
arguments, and demonstrate their effectiveness through comprehensive simulation exper-
iments. While these methods provide strong foundations for approaching the problems
addressed within the thesis, there remain areas which are promising for future investiga-
tion.

The utility of the generalized error model presented in Chapter |3| extends beyond the
demonstration of regression calibration and simulation extrapolation presented. While
these techniques are broadly used, and as such useful to generalize, it seems likely to be
the case that correction techniques which are catered to the specific setting of repeated
rather than replicated measurements may prove more efficient. The specific estimators
presented for regression calibration and simulation extrapolation are approximately con-
sistent and are sensible estimators given the standard presentation, but no attempt at
uncovering the optimal or most efficient estimators was made. Extending our discussion
with a focus on estimator efficiency, or computational stability, may provide mechanisms
for overcoming the primary shortcomings exhibited by the proposed methods. Our pro-
posal of the nonparametric SIMEX in Chapter 4] theoretically relies on formal conditions
that are difficult to check in practice; an attempt at re-characterizing the theory around
conditions which are easier to verify would improve the utility of the techniques. As is
common with nonparametric techniques, our results suggest that fairly large amounts of
data are required to make the correction feasible. Theoretical results, or a wider empirical
investigation, quantifying the exact impact of sample size on the efficiency of the technique
would provide useful context for when the techniques may be applicable. As a final possible
extension of the work on nonparametric simulation extrapolation, there appears to be a
close relationship between the proposed techniques and the empirical simulation extrapola-
tion. It may be worthwhile to investigate whether the similarities are more than aesthetic,
and if so, whether the connections provide useful insight into the proposed technique.

Our investigation of errors in dynamic treatment regimes can be viewed as a prelimi-
nary investigation into these issues. There are several promising extensions both directly
related to the proposed techniques, and moving beyond them. The results in Chapter [0]
leveraging regression calibration for dAWOLS estimators can likely be translated, with min-
imal modification, to estimators based on G-estimation; the same goes in reverse for the
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nonadherence results in Chapter [7] being translated to dWOLS. The results regarding er-
rors in variables are limited in two primary ways: first, only classical additive error was
directly considered, and second, the construction of pseudo outcomes limits the capacity
of the proposed estimators to achieve consistency. The first issue is likely able to be over-
come by working directly with estimating equation approaches, which as demonstrated in
Chapter [7], are particularly amenable to DTR estimation. The pseudo outcomes provide a
barrier for regression-based techniques with a resolution which is less clear. It may be pos-
sible to leverage QQ-learning, which uses a different formulation for the pseudo outcomes, to
overcome these issues. More likely, however, classification-based techniques would provide
a mechanism for overcoming these concerns more directly. It is worth noting, however,
that a different set of trade-offs must be accepted to use non-regression based estimators.
Chapters [6] and [7] also present the results as entirely separate; an investigation of tech-
niques which can overcome both issues simultaneously, and perhaps investigate errors in
the outcomes as well, would allow for more generally applicable techniques. The work
presented in this thesis demonstrates the impact of errors on optimal DTR estimation, and
just as a wide-ranging literature surrounding correction techniques for the effects of mea-
surement error exist in other estimation settings, so too is there room for such a literature
surrounding dynamic treatment regimes.
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Appendix A

M-Estimation Supplement

In this appendix chapter we provide an overview of the necessary results of M-estimators
that we make use of.

A.1 Background and Setup

When we have a general p x 1 parameter, ©, which is of interest related to the distribution
of a random variable Z, we are typically concerned with finding an estimator © that is a
function of an iid random sample, say 71, ..., Z,. Many such estimators can be expressed
as the solution to a set of estimating equations, represented as

~

Here, the notation U,(©) emphasizes the fact that ultimately this is a function of an
estimated parameter value, after we have fixed the random sample. Such estimators are
called M-estimators[l| The function W(Z;0) is called an unbiased estimating equation if
Eo[V(Z;0)] =0.

Formally, if p(Z; ©) is the density of Z with respect to v, when © is the relevant param-
eter, then Eg[¥(Z;0)] = [ ¥(z;0)p(Z;0)dv(z). We will typically suppress this notation
where it can be inferred without confusion. If ¥ is an unbiased estimating equation, then

!More broadly, M-estimators are the zeros of estimating functions, but we use this language inter-
changably.
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© will be endowed with certain desirable properties under sufficient regularity conditions.
Namely, it will be consistent and asymptotically normal (CAN). If © is the true value for

the parameter, then RN O, and /n (@ — @0) 4 N(0,%).
—1/
Y=< F )
6=0,

This is often denoted by ¥ = A(0y)~' B(0y) A(Oy)~", and referred to as the sandwich
formula. For any specifically chosen W, it is possible to compute both

The asymptotic covariance ¥ is given by

0
00’

0
00’

¥(Z;0) }_Emz;@o)wz;@o)@{ff ¥(2; 0)

0=09

/

U (Z;0) , and

8@’

0=0*

Z\p 50" (Z; 0.

Using the law of large numbers it is clear that A(©*) & A(©*), and that lg’(@*) 2 B(eY).
This gives the motivation for the sandwich estimator for the variance, given by S =
A(©)'B(©)A(©)~". Combining this with the asymptotic distribution, we get that the
approximate sampling distribution of Qis N (Oo, n_li), allowing for standard confidence
intervals to be computed.

This general theory provides the framework for the estimation procedures. There are
many sets of regularity conditions which will suffice for this theory to hold. In the following,
we illustrate what is generally required of ¥ in order for this to be the case.

A.2 Regularity Conditions

If E[V(Z;0y)] = 0 does not uniquely determine Oy, then in general there will be concerns
with the technique. If it does, however, then there exists a sequence of M-estimators, (:),
which are consistent for ©¢ [40, [78]. The remainder of the asymptotic derivations rely on
a Taylor series expansion of U,(0). As a result, we need ¥ to be sufficiently smooth to

allow for the Taylor expansion. Taking U, (©*) = 2 Un( )’e:@*’ then since © is a root
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of U,(-), we write
0 = Un(8) = Un(©0) + Un(©0)(6 — ) + R

Assuming that Un(@o) is non-singular, we can re-arrange to have
~ : -1 .
Vi (8-60) = vt [-U.(00)]  Un(@0) + ViR,

. -1
where R = [—Un(@o)} R,.

If A(©,) exists, then the weak law of large numbers will give —U,(0y) = — A(6y).
If B(©y) exists, then /nU,(6Oy) A N(0,B(0©yg)), by the central limit theorem. Now, so
long as R% = o0,(n~"/?), then \/nR} % 0. If this does in fact hold then a straightforward
application of Slutsky’s Theorem gives the necessary distributional results. In both Huber
[40] and Serfling [78], conditions for this are given, however, it will generally be the case
that if ¥ is smooth and © does not grow in dimension quickly as n — oo, it will be the
case. Summarizing, we have the following conditions

1. ©g is uniquely identified by the unbiased estimating equation. This gives consistency.
2. Un(@o) is non-singular, which should happen for sufficiently large n.
3. A(Oy) and B(Og) exist, so that the WLLN and CLT can be applied.

4. RY = 0,(n~"?). This will roughly hold when ¥ is smooth and © is a fixed dimension.

These regularity conditions will allow for the asymptotic theory presented previously to
hold.

While the regularity conditions are fairly mild, there are some important cases where
they will be violated. Of particular interest for this thesis, if ¥ contains an indicator func-
tion which depends on O, this will make ¥ sufficiently non-smooth so as to render standard
M-estimator theory invalid. This is fundamentally the issue with applying M-estimator the-
ory to DTR estimation directly, since the pseudo-outcomes are typically calculated using a
maximization function. This is not a problem if the indicator functions contained in ¥ do
not contain ©, as would be the case if, for instance, we use indicators regarding whether
or not X7, is observed.
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Appendix B

Theoretical Results

B.1 Chapter 3

Proof of Lemma[3.5.1, We will prove this result under the assumption of incomplete repli-
cation and with the measured covariate Z. First, we note that for any observed variable
A, we can get consistent estimates of the mean and variance of A (denoted p4 and ¥ ,4) by
solving the estimating equation

n

=2 (o S s).

i=1

If we take I(A;) to be the indicator that A; is actually observed in the sample, and if we
assume that the observation indicator is ignorable, then we can modify this to be

0= ; 1) ((Az- A 2A> '

As a result, we first note that for each mean, variance, and covariance associated with the
terms in {X7,..., X}, Z}, we can use these standard estimators. This will result in solving
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the following system of equations,

I(X3H) (X5 — NQXT)
[(Xi*l) [(Xi*l - MXI) - ZX{}

T(X5) (X3, — px;p)
I(X3) [(Xz*k NX*>2 - EX;]
I(Zi)(Z; — pz)
0= I(Z:)[(Zi — MZ) — Xy
= | 1(X5, X5) [(Xz*l MXI*)<Xz UX;) - EX{‘XS]

3

(X7, X3) [(XE - NX{‘)<X£Z - MX;;) - ZX;X;ﬂ
(X}, Z:) (X3 = px:)(Zi = pz) — Bx; 2]

(X5, Zi) [(Xg, = pxi )(Zs — pz) — Bxp7]

This leaves only the need to formulate the estimators surrounding the terms involving
X, which are expressed as closed form estimators in Equation and Equation
(when Z is observed), otherwise Equation . Note that none of these expressions
depend on 7, and are instead simply functions of the parameters listed above. As a result,
we can simply use this previous expression with plug-in estimators to get the necessary
results. If, however, we wish to jointly estimate these moment estimators as well, we can
simply modify the above estimating equations to also include the closed form estimators.

First, note that the previous expression estimates a total of (K +1)(2+K/2) terms. This
includes K + 1 terms for the mean, K + 1 terms for the variances, and then %(K + 1)K
covariance terms. Moreover, note that the closed form expressions of interest estimate
1 mean term, 1 covariance term (with Z), K terms for the multiplicative bias, and K
covariance terms (with X7), for a total of 2(K + 1) terms. Use the notation 0, to denote a
vector of zeros of size £. Then, all of the moment parameters can be estimated by taking

186



9:(§) to be given by

](X;1>(X:1 - NQXf)
I(X}) [(Xﬁ - MX;‘) - EXI]

: 024 K /2)(K+1)
. XfZ
T(X 5 ) (X — pxy) TR
](X:K) [(X:K - MX;})Q - EX}}} :
I(Zi)(Zi — pz) M — Zxg 2
N(Z:)[(Zs — pz)? — X7 UXT s

_ 1 ) 5
[(X;hXi*Z) [(Xi*l - NX;‘)<X¢*2 - NXQ‘) - EXfXS] * Hx |{0‘ ZJEJO "y ’
: Yxz — FA Zjejl EX;fZ
K Sxrxp

* * * * —_ ;
(X3, Xix) [(Xz‘l - NX;‘)(XZ‘K - NX;}> - EX;‘X;}} YiXX; T T 2t e -
(X, Zi) (X5 — px: )(Zi — pz) — Xx;7] :

S, L K1 EXEXG
XXpe 7K1 Zu=1 " gy

(X5, Zi) (X — pxs ) (Zi — pz) — Sx.2)
O2(k+1)

and then solving

0= @) (B.1.1)

Note that if we do not have Z observed then we simply remove the terms referencing 2
from the left component of g;, and replace the right component with the estimators based
on the other closed form expressions previously presented. This has assumed that we have
scalar values X; and Z;. If instead these are vector valued, the form of the expression is
exactly equivalent, however, for the variance and covariance terms we must vectorize the
resulting expression (stacking the matrix components into a vector), and correspondingly
update to the sizing of the zero vectors.

]

Proof of Lemma[3.5.3, Taking the definitions as stated in the Lemma, note that we have
the parameter vector ©, = (0, ¢’) solves the equation given by
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and as a result we have
Vn (@* - @*) ~5 N (0,A71(0,8) B(6,¢) A7(0,¢)) .

All that’s left is then to note that /n(6 — ©) = \/ﬁ(Q@* — (20,), and so a standard
application of the Delta Method gives the necessary result. Note that the specific forms
give

A411(6.6) = 5 UL(©,6); M12(.€) = 5 Un(8.8)
0 0

A21(0,8) = @gn(f) =0; A22(0,8) = 85’ 9n(8);

B11(6,§) = Un(©,§)Un(0,8)"; B12(0,§) = Un(0,8)gn(8)"

B21(0,€) = gn(§)Un(O, £)'; B22(0,€) = gn(€)9n(£)";

aeo-e{[yr Aol seo-p{[B 2}
[

Lemma B.1.1 (Conditional Means (extension of Lemma A.1 [10])). Assume that Vi, Vs,
and Vs are random wvectors, and that 6 > 0 is a constant scalar. Take E[V3|Va] = 0,

and denote cov(V3|Va = v) = Q(v). Assume that E[V3|Vi] and cov(V3|V}) are three-times
differentiable functions of §, a.s. Then

(a) If Vi = Vo + 0V3, then

EViIVi] = —5 [T {aimmvl)} O )thé H o). (m12)
and
cov(V3[Vh) = Q(V2) + O, (6). (B.1.3)

(b) If Vi = Vo(1 + 0V3), then

E[Vy|Vi] = 6 [diag{g(vl)} 40T {a%sz(vl)} 4o Q(Ul)fc’zlg ;] +0,(82),
" B4
and
cov(Va[Vi) = Q(Vi) + O,(6). (B.1.5)
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Proof for Lemma[B.1.1. While (a) was demonstrated in the proof for Lemma A.1 [10], we
include the full detail here as it is instructive for proving (b).

First note that, when § = 0 we get V; = V5 in both (a) and (b). As a result, for § ~ 0,
an arbitrary function of Vi, hy, (v) is such that hy, (v) = hy, (v) + O,(0), from a first-order

Taylor expansion. This gives the results for both covariance terms. It also gives the fact
that, in either scenario, we can write fi, (v)/fi,(v) = fi,(v)/fir (v) + Op(9). Then,

E[Vs|Vi] = /Usfvl,v;;(VhU?,)dU?,

1
fV1 (‘/1)

@ fV1%Vl) J s fvgve (vs|Va = Vi — bu3) fr, (Vi — dus)dus,

& oy J vs(L 4 00s) ™ fus (0s]Va = VA(1 + 6v5) ™) fi (Vi(1 + Gus) ™" )ds.

The remainder of the proof follows by considering Taylor expansions of the integrands
around 0 = 0, and noting that fi, (V1) = fi,(Vi) + Op(6). Taking first the expression for
(a), note that evaluating the expression at § = 0 gives vs fuy v, (v3|Va = Vi) fi,(V1), which
integrating gives E[V3|V, = V4| fy, (V1) = 0 by assumption. Differentiating the integrand,
and evaluating at 0 = 0 gives the expression

—0303 [, (V3] Vo = V1) iy (V1) — v frg v (vs|Va = V2) f, (V1)

where the prime on the conditional density represents the derivative with respect to the
conditioning term. Integrating these terms gives

- [t } v + 20 R

v1=V1
Combining this with the Taylor expansion in the denominator gives the desired result.

For (b) we follow a similar strategy. The integral evaluates to 0 when § = 0 (by
assumption), and the first derivative of the integrand with § = 0 is given by

—v3 0 U3 fra)v, (V3|Va = Vi) fr, (Vi) — v3vs fiy v, (Va[Va = Vi) — v3vg fug s (Vs Vo = V1) £, (V1).

Once again, we integrate giving

~ |diag (200)) fu(h) + T {aim)} Fua(V2) + Q(Vi) i (00)

v1=V1
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Then expanding the denominator as with (a) gives us the necessary result. O

Proof of Theorem[3.6.1 This theorem follows as a direct application of Lemma [B.1.1]
For the additive case, we consider V; = X*, Vo = ng +mX, and V3 = U. Then, it is

clear that E[U|ny + mX] = 0, by our outlined assumptions, and as a result, E[U|X*] =
—0 [Tr <8%_f:)> + Q(x)?ﬁ:—ggh . + 0,(8%). Now, since X = n;* (X* —ny — 0U), the re-
sults follows directly. The multiplicative case requires additional considerations, but is
otherwise similar.

First, taking V} = X* —ny, Vo = m X, and V3 = U, then we note that E[U|X* =
x] = E[V3|Vi = x — no] and cov(U|X* = x) = cov(V3|V} = & — 1n9). Additionally, fy,(v) =
fx+(v+mn). Then, in order to solve for F[X|X*], we make use of a Taylor expansion of
X = (1406U)"(X*—1nq), around § = 0, to handle the ratio. We consider the second order
expansion so as to maintain an error of order O,(6”) overall. That is, consider

(1+8U)"' =1—6U + §*diag (UU’) + O,(%)
— E[(1+0U)" X"]
=1 - 0E[U|X*] + ¢*diag (cov(U|X*) + E[U|X*|E[U|X*]") + 0,(5°)
=1 - §E[U|X*] + §*diag (cov(U|X*)) + O,(8),

where the last equality holds since 6*E[U|X*|E[U|X*] = O,(6*). Then, noting that

E[U|X* = 2]
= E[V3|Vi = 2 — o]

=6 [diag {Qv1)} + vy 0Tr {a%ﬁ(vl)} +v10 Q)

-5 ldiag {Qz —no)} + (x —mo) o {Tr (8555}0))

+ 0,(6%).

Ji, (v1)
fVl (Ul)

} + 0,(6%)
V1= —"N0

v=x—"n0 fX* (iL‘)

Combining these two quantities gives the desired result. O
Proof of Theorem[3.6.7. The proof will be presented, where convenient, using notation

that implies scalar X. This can be extended to the multivariate case by carefully vectorizing
the relevant M-estimators.
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First, note that Oge solves Un(Y, Z,)?, (:)Rc) = 0. Now, X = i+ B\Z?Zl apX*+~77
where the estimators (11, 3,7, {@;};) solve
px — i — B/HX* — iz
R Yxx+ — [ftx+ — @\ZX*X* — X zx+
h’(:uaﬁaf% {QJ}J> = ZXZ_[/Z,UZ_BZX*Z_:Y\ZZZ -
~ k
Tr {EXX; - BEX*X; - VEZX;}

o O O

{0}

J=1

Here, the reliance of the first three components on o is suppressed in X*. By Lemma[3.5.1]
each of these components are estimable using an M-estimator. The previous results frame
i, EX;XZ*; ZXX;, and Zx;z n place of X+, ZX*X*; EXX*, ZZX*, and ZX*X;‘ HOWGVGI‘,
the latter can be written as transformations of the former. Specifically,

k Eok k
fx = Z Qi Yixwxx = Z Z oy Xy Vxx» = Z XXXy
j=1 j=1

j=1 I=1

k k
Yixez = g oXxrz;  Uxex; = E o Xixyx-
=1

=1

Now, noting that h <ﬁ, 3,7, a) =0 < n'Y" h (ﬁ, 3,7, 62) = 0, this means that we
can stack g;(-) with h(-) which forms an estimating equation for the relevant parameters.
Then, this can be stacked with W(-), as the estimator of Ogc is given as solution to
n Y (Y, Zyn+ EXi* +~7Z;, @Rc) = 0. As a result, the asymptotic distribution of
(:)Rc can be derived through the standard theory, using the M-estimator

v (Y(Yi Zi, i+ BXG (@) + 7%, Ore)
nty h(@i, B,7,&, @) =0.
=1 9:(§)
For the first matrix in the asymptotic covariance, denoted Agc, defined as the expectation
of the 3 x 3 block matrix given by the derivatives of the previous estimating equation. We

note that this will be an upper triangular matrix since h is independent of ©, and g; is
independent of © and (u, 5,7, a). Of course the precise form of this matrix will rely on
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the estimating equation for ©, and on the data available defining g;. Generally,

A(ll) A(12) A(13
Arc=| 0 A(23 AE?g)

0 0o ARY

E[\IIG(@a/%Bv’%a 6 E[ 'ya)(@ yﬁﬁ 7, &, 5)] E[ (@aﬂvﬁaf}/vayg)]
= 0 E[ #ﬂ'ya) pB.va8)] Elhe(p, .7, 0,8)] |
0 Ege(6)]

with Wa(A) representing the derivative of W (-) with respect to A’. Similarly,

L) A2 pLd) L) pl2)  pLd)
i M e s o B A
— b b b — b b b —_— /
B = N Bl ] Rl SN
B&D p&» & B&D B&» B Elg¥] 0 Elgg]

where the zeros come from noting that, since F[¥] = E[g] = 0, and that h is constant (with
respect to the underlying random variables), we have that E[VA'] = E[gh'] = 0. Note that,
in fact, the structure of ¢ is such that many of the components in the top right (and by
symmetry bottom left) will also have this zero property, though, upon specification of g this
should become obvious. The standard theory of M-estimators then gives the asymptotic
covariance of the stacked estimator as Aﬁé Brc Agc- O

Proof of Theorem[3.7.1. The two proposed estimators for the SIMEX correction — whether
averaged before or after extrapolation — can have their asymptotic distribution derived
as an extension of [§] and Lemma Our primary interest lies in © = G(—1,T),
where T is the parameter vector that minimizes R(TYC'R(T). Here, C is a positive-
definite matrix, decided on by the analyst (for instance, C' = I for standard least squares),
R(T) = Op— G(A,T), and O, is the vector formed by stacking ((:),\1, o 7@)\1%)' O, is given
by B~1 Zszl @b,)\ for each A € A, and @b,)\ solves n™' >~ (Y}, Z;, X5 (N), ©,) = 0. Thus,
we work to derive the asymptotic distribution of \/ﬁ(f —I'), and then apply the Delta
method for the necessary results.

Note that, by definition we have ©y = G(I',A) and ©, = G(I', A). Define s(I') =
2 G(I',A). A Taylor expansion of G results in G(T,A) = G(I',A) + s(T)’ {f - F} +0,(1),
which re-arranging and multiplying by /ns(I')C~! (for invertibility), and defining Q(T") =
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s(I)C~1s(T) gives that
Jn (f . r) = QD) 's(D)C~" - v/ (éA - @A) +0,(1).

As a result, we can focus the proof on the asymptotic distribution of \/n (@A — @A>, and
then apply a straightforward transformation for the distribution of T

For the estimator computed as the average after extrapolation, we focus on @(S]I)MEX(/\),
which use Equation directly for error term j. Stacking each of these estimators over
the values of A € A, we get © ,f), and then consider the stacked version, stacking over
Jj =1,...,k, to be given by @A. This notation must be extended to the other relevant
parameters: I'; for the j-th extrapolant values, giving Q(I;) = s;(I';)C; 's;(I';)'. Then, the
transformations here apply for each j, and so Q(T'), s(T'), and C' are formed by taking the
block diagonal matrices over all 7. With these amendments, the following argument applies
directly. Once joint estimators are obtained for each G(—1,I';), the final distribution can

be taken by applying the relevant averaging transformation.

An asymptotic linearization of n=* Y% | ¥(V;, Z;, X5 (A), ©)) = 0 leads to
VI (2 = ©3) = ATDT )R DT (Y, Ziy Xii(N), 63) + 0y(1),
=1

where AV (\) = E [2:0(Y,Z, X;(A),0,)]. Then, averaging both sides over b, results

in /n (éA - @A) — AT N A, B SE (Y, Zi, X5 (M), ©5) +0,(1). This result
holds for all A € A, where A is taken to be the fixed grid of size R that we simulate at.

The computation of these estimators, however, rely on the components of ¢ identified
in Lemma , through the estimating equation n=' """ | ¢;(-) = 0, and on the weights
a. We specify an M-estimator for each «;, based on some optimality criteria, and include
the weights a; in . For both estimators under consideration, all parameters required for
correction are then contained in &, and we can write

Y (Vi 2 X(V),00) =0t Y 0 (Yu Ziynito |:Xz‘* — 1o+ \/XMime} 7@>\> ,
i=1 i=1

which we define tobe n™' >~ | (), where the necessary alterations are made to have this
wa,(A)} Ly

stacked over j as discussed above. Writing the joint M-estimator as n™" > " | [ g
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and applying the exact argument as above, we get that

(3] [2]) oz g [ e

b=1
where, again, the last equality is taken to be a notational definition. We have that

O

§

- Awﬁ; O] o),

A0 A(l,m] B e z.x;0.04)] E[ag,w(ysz( ),@A)}

AN = { 0 A22) 0 E [8_5’9(5)]

Define O, to be the vector stacking (0,,,0,,,...,0,,), with the corresponding defini-
tion for ©, W;(A) to be the vector stacking (¥; (A1), ..., Vi(Ag), g;), and Agmvpx (A) to be
the matrix with AT (A), ABY(Ny), ..., ABY(\R) on the diagonals first R diagonals, and
then an R + 1 column with (AP (1), ..., A5 (\g), A??), then zeros elsewhere. Note
that the A®? portion of the matrix is constant across all A, and so this matrix forms a
block upper triangular matrix, with (R+ 1) x (R+ 1) blocks; each row j takes the relevant
matrix from A();) in the j-th block, and takes the cross matrix in the R + 1 block. The
above result implies that

(] [2]) - onagam

Standard asymptotic theory then gives that this converges in distribution to a mean zero
normal distribution, with variance given by A~ (A)X A" (A), where & = F [@(A)‘I’(A)’} :

O\

§

To extract only the distribution of y/n (@ A—©O A), we multiply by

@ = [liimo,xdime, Odime,xdime]

, giving the same mean zero with covariance Q@ A~'(A)X A~ (A)'Q’. Combining this with
the previous discussion gives

ﬁ(f-r) N (0,5,
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where %, = Q" HD)s(IC'Q A H(A)Z A HA)YQC~Vs(T)Q YT

Finally, the SIMEX estimators are defined by taking the estimated f, and plugging
into G at A = —1. As a result, we apply the Delta method with G(—1,-) as the function,
and (assuming that it satisfies the requisite properties) we find that

Jn (g (f, —1) — g, —1)) 4 N(0,Gr(~1,1)%. Gr(—1,T).

If using the estimator which has been averaged prior to extrapolation, this gives us the
required distribution. Otherwise, this has resulted in a (kdim©) x 1 stacked estimator
G(—1,T"), and so Ogpex is given by multiplying through the matrix @Q* which is given by
[oclfdim@ e Oék]dime}, where Zle a; = 1. This results in a final asymptotic covariance
of Q" Gr(—1,1)%, Gr(—1,1)Q".

While the notational conventions were the same for either the averaging before, or
the averaging afterwards, we note that the matrix structures are fundamentally different
between the two. This is true even before the adjustment with Q*, since Q(T"), s(T'), C, @,
A and ¥ are all of different forms and shapes. O

B.2 Chapter 4

Proof of Lemma[4.4.1. Consider ¢y, (t) = @u(t)exp <—’\t2"2>. The second order Taylor

2
expansion of this is given by

t? 2
eus (8) & 1+ top)(0) + 5o (0) = 1= (14 Ao

Here, we've used the fact that F[U] = 0 and E[U?] = —gog)(O). Taking A = —1 is the
unique solution that makes the second order approximation exactly 1. O

Proof of Theorem[4.4.2 First note that since U is symmetric, with variance o2, then ¢ (t)
is a real-valued function, with @S)(O) =0 and gog)(()) = —o?. We wish to know when

(1 s (52)) < (1= s (7))

< 0 < pp(t)? (exp (—At?0?) — exp (°0%)) — 2p(2) (exp (—A?) — exp (g)) :
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For all A > —1, this condition becomes 0 > H(t, ) and for otherwise 0 < H(t, \), where
H(t, \) is given by @y () [@U(t) (e (- ) = ( >) 1].
2

Note that #(0,)\) = 0, and that #'(0,A) = 0. Further, H"(0,)\) = =252 For
A > —1, this will take negative values and will be positive otherwise. This means that
t = 0 will give a local maximum for H(¢,A) if A > —1 and a local minimum if A < —1.
Invoking continuity of H (¢, A), this must mean that there is a region around ¢ = 0 for which

0> H(t,\) when A > —1 and 0 < H(¢, \) otherwise. O

Proof of T heorem- Let F) represent the distribution function for our resampled co-
variates, X/ + Z U, and F) be the distribution function of X; + Z o Uij. If we take
x to represent the convolutlon operator, then for independent X and W we have that the
distribution function of X +W is given by Fx % Fy,. Similarly, for independent W7y, ..., W,
we can write the distribution function for Zé We as Fyy x Fyy * - -+ % Fyy, with n terms,

which we denote F “) With this notation, we have F,\ = Fxx Iy F((;/\) Fx x Fg* F\g/\),

and the distribution function Fy = Fx « FUOTD) The convolution of Fx and ﬁW converges
almost surely to the convolution between Fy and Fyy, since

P{MnAf&ﬁﬁﬁ%@—ﬂ—ﬁwu—ﬂyhzo}

n—o0

ZPngﬁﬂﬂ:FWW)VTemﬂ}:L
This follows through dominated convergence, bringing the limit through the integral, then
noting that the set of events where the difference in convolutions (left-hand side) is zero
is a superset of the set of events where the empirical distribution function equals the true
distribution function (right-hand side). The right-hand side is one since the empirical CDF
converges almost surely.

This result gives us almost sure convergence of F \ to F\. Moreover, the characteristic
function of F) is given by ¢y (t)¢p(t)**!, and so as A = —1 we have F) — Fy. Taking
the functional representation we have 8y = T(F y) — T(F\) = G(X\) by weak continuity,
which states that if F}, converges to F', then T(F},) converges almost surely to T(F’). Then,
since this is true for all A, and since when A = —1, F\ = F'x, the correct specification and
consistent estimation of G gives the result. O

Proof of Theorem[{.5.4 The regularity conditions on the functional T are such that a
linearization can be obtained. Specifically, we should find that, n'/?(T(F)) — T(F))) =
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nY23" e i + 0,(1), where 1, represents the influence curve of the functional at
F\. This representation is sufficient to continue to the proof from Carroll, Kiichenhoff,
Lombard, and Stefanski [§], verbatim, as it is equivalent to the M-estimator representation
that they derive for @. O

B.3 Chapter 6

Proof of Theorem[6.3.1]. First note that based on the (approximate) non-differential error,
and the linear form for the blip, we have

ElY|Hp, Ax] = E[E[Y |Hg, Hy, Ax]|Hy, Ak]
= Elfx(Hk)|Hj, Ak) + Ak E[Hg|Hp "
= B|fx(Hg)|Hy] + Ax Hr.

Moreover, note that taking (BK, YZK) to be the WLS estimators, then under standard reg-
ularity conditions (fk, ¥ k) will be consistent for (3}, 1};) which are the (unique) solution

to ElUk (B, ¥i)] = 0, where

UK(ﬁ;o @/)}k() = (AZ§K> wK(AK7 ﬁK) {Y - ﬁ}(ﬂf{ - AKﬁ}(¢;(} : (B-3~1)

We will show that, supposing (55, 1} ) are unique, then under either (A1) or (A2) we must
have Y} = k.

If (A1) holds then we have that E[Y|H%, Ax] = HlBx + AxHjbk. Then, from
Equation(B.3.1)) we see that

* * * ﬁ 77 77 * 17 *
B [Use(Bie, i) | Hig, Ax] = ( AK5K> wic(Ak Hie) { Hic 1B = Bl + AwcHi [ — i}
The uniqueness of the root demonstrates that at 85 = [ and ¢} = ¥k we have

ElUk|Hj;, Ak] = 0, which gives consistency of by for g, as needed.

If (A2) holds then, through the use of two-step M-estimation techniques we can replace
i (Hy) with P(Ax = 1|Hg) in the asymptotic analysis. Doing so (maintaining the
notation of mx(+)), we can consider the two sets of equations implied by Equation(B.3.1])
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separately.
E[UR (B, i) | Hi]
— B [ ArcHycwrc(Are, Hie) { B (N Hi ] = BBy + ArcHie o — v }| i

= P(Ax = 1[Hj) Hyewie(1, Hie) { Ef(Hi) ] = BBy + Hic [ — vic] b = Quc(H).

By assumption, we have that E[Qx(H} )] = 0. Now, considering the first set of equations
we get

B[UL (Bic, ¥ | H]
— B | Hycw(Ax, Hic) { ELF(Hi) | Hil) = Hieic + AscHie [ — il }| Hi|
— P(Ax = 1| Hjo) Hycwe (1, Hie) { BUF(Hi) ] = HieBic + Hie [ = 3] |
+ P(Aye = O|H}o) Hicwc (0, Hie) { B (Hio) |1} — Hic |
= Quc(H) + P(Axe = 0| i) Hycwse 0, Hie) { ELf (Hie)|H] — Hyefic
Now, since E[Ug)(ﬁ}}, )] = 0 we get that,
0 = Bk (H})] + B [P(Ax = 0[Hi0) Hwse(0, Hie) { BLf (Hio) i) — Hicic ]
= B [P(Ax = 0| Hi) Hicwie(0, Hio) { ELf (Hi)|Hi] — By}
= B [P(Ax = 1|Hj) Hiewre (1, Hio) { BLf (Hio) | H;] - BB} (B.3.2)
where the last equality follows from (A2). Consider that
Ouc(Hy) = P(Ax = 1 Hi) Brcwie(1, Bie) { BLF (i) ;) - By
+ P(Ax = 1H;o) Hwie (1, Hio) Hi [ — 03]

The first line of this expression has zero expectation owing to Equation(B.3.2)), which
means that

E [P(AK = 1| H%) Hwge (1, ?[K)ﬁ;(} W — ] =0,

which (under the stated regularity conditions) gives ¢} = ¥k, as required. O
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Proof of Theorem [6.4.1. In order to be valid for effect estimation, we view the outcome
Y as equal to a baseline, treatment-free component plus the “blips” received for each
treatment, across all stages. That is, we write

K
E[Y|Hk, Al = fi(X1) + > AjHp; = fx(H) + A Hitbxe,
Jj=1

supposing linear blip terms for each stage. Note that in this formation, fx(Hy) is such
that

Elfx(Hg)|Hx-1,Ax—1] = fx—1(Hx-1) + Ax1Hye 1K —1.

This continues though all other stages, j = 1,..., K — 2. Because of this, assuming the
approximately non-differential error mechanism that has been discussed, we would also be
able to write that,

Elfw(Hg)|Hye_y, A1) = Elfx 1 (Hg 1) He_y) + Ag 1 Hye_1hre—1.

Then, so long as E[Vk_1|Hj;_1, Ax-1]| = E|fx(Hk)|H};_,, Ax—1], the pseudo outcome can
be validly used for effect estimation. This is equivalent to the claim that

E [AKH;@/;K - AKE(;(Q/;K‘ Hi A | =0.

This is easy to show through the law of iterated expectation, conditioning further on
{H ;{ ’ AK } : u

Proof. Proof of Theorem Suppose that, as the theorem statement implies,
E[I(Hyyr > 0)Hir | Hi,

is known. In order to estimate the optimal DTR, we frame the observed outcome as the
optimal outcome, plus the regrets from all stages. That is, we write

K
E|Y|Hg, Ax] =Y + Z(A?pt — Aj)Hinp; = YP'(Hg) + (A?pt — Aj)Hieabj,
j=1

under the assumption of linear blip terms at each stage. Moreover, we can write down that

E[Yopt(HK”HK—la Ag_q] = YOpt(HK—l) + (A(;?il o AK—l)H}(—WK_l’
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which is the necessary requirement to apply Theorem [6.3.1] To demonstrate that Vi _; is
a valid pseudo outcome, notice that

Vi =Y = (BU(Hjbx > 0)Hyw Hig) = A it )
= Y (Hg) + (A" — Ag)Hibxe
— (Bl(Hyvx > 0) Hyeow| Hig) = Awc Hig )

E[VKA’H;OAH = E[YOpt(HK 1)\H}k<aA* ]
— E[(AR" — I(Hix > 0)) Hgb| Hye, Ak
= E[Y*"(Hg-1)|Hj, A%]
EVg_a|Hj_y, Aj_y] = EY°P' (Hx_1)|Hjc_y, Ajc_1],

as required. O

Proof of Theorem[6.4.3 Consider

E[AR Hi ok |Hje, Ax) = E[I(Hibx > 0)Hybi | Hy)
E[I(Zg + Ck > 0)(Zg + Crx)|H}]
P

(Zx > —Ci|HE) {C’K VB[ Zg|HE Zy > —CK]} .

Here we have defined Zx = HEP'YEY and Cx = HIE(F’Tle(F to be the error-prone and
error-free components of Hy1x. The assumptions on the error-prone covariates will allow
us to conclude that Z K]H}}’EP is normally distributed, and correspondingly, the conditional
expectation of Zy is given by the mean of a truncated normal variable. This follows
directly from the fact that both Zx and H™ are joint combinations of (HEY U’ )/, and
so standard results of the multivariate normal distribution give the joint, and conditional
distributions as being normal as well.

From the distributional assumption, U is normally distributed with mean 0 and variance
5. Note that here the dimension of ¥y and ¥ will be identical. Then, we get that Z|H ™"
is distributed as,

N (U5 x4 0B (5 )™ (™ — o) 0 SR — P S(E + £) 'Sl

We denote these to be jir and ¢%. Then, using results from truncated normal distributions
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we find that

oK

1—® <_["K'+CK>'

0K

© (_ L K.+CK )

E |2l B3 Zic > ~Cic| = jurc + o

From this argument we can also write that

P(Zx > —Cx|Hy) =1 - P(Zyg < —Cx|H}) =1— @ (—M) .

OK
Correspondingly, we find that

opt fy! . Ck + /i . g+ C
E[AI?tHK¢K|HK7AK] =Ck {1 - <—K—M>} + Uk +O0rp (—MK—K) .

OK OK

B.4 Chatper 7

Proof for Theorem |7.5.1. First, we show that

ElVin|Hj, Aj] = v (H}) + mj(Hj, A7)C7 (H7).
Then we show that E[U;(y;)] = 0. We begin using induction. First, for j = K + 1, we
have 17J =Y and so

EY|Hy, Akl

= B{E [V|H, Ax, Ay ] ’ Hi, Ay}

= E{E|Y|Hg, Ax]| H};, A%} LA. (1)
= E{Qk(Hg, Ax)| Hye, Ak }

= E{vk(Hk) + AxCr(Hg; V)| Hy, Ak}

= E{vk(Hk)| Hi, Ak} + E{ A Cr (Hi; V)| Hie, A}

=vi(Hy) + P(Ag = 1|Hy, A) E{Cx (Hg; ¥K)| Ak = 1, Hy, Ajc}

= vic(H) + T (Hy, Ak ) Cx (H) LA (2).
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Next, suppose take the inductive hypothesis (I.H.) to be that this expression holds for
j=K,...,k+2, and consider
E[Viy1|H, Aj)
= E[Viy2 + {AZTl — M1 (Hpy1s AZH)} Cr1 (Hy1) | Hy, Ay
=Lb { E [W+2|HZ+17 Aerl] + {AZI—):l — M1 (Hyps AZH)} Cr1(Hipn)
=L { Vi1 (Hi1) + T (Hyp1s Ap)) O (Higyh)
AN = Mo (i Afn) § o (Hign) | His Ay} LH
= E{vin(Hig) + AZ}J):ICIC-&-I(HI:-H)‘ oy, ALy
= E{ Blvgra(Hyr) + A% Orr (Hyn) | Hi o, Afa] | Hi, Ar )
= E{vip1(Hppr) + A% Crgr (Hepn) | Hy, Ay}
= E{ Vi1 (Hi)| Hy, A
—E { E {v,cﬂ(HkH)\Hk, Ak,z,’;}‘ H;, A’,;}

Hi, A7

= v (Hp) + P(Ay = 1[HE, A E{Cr(Hy)| A = 1, Hi, Ay}
= v (Hg) + m(Hy, A) Cr(Hy). LA (2)

Note that in addition to the independence assumptions and the inductive hypothesis, we
also used the fact that Cy(-) is correctly specified. In the event (as will be the case in
practice) that we are using the estimated versions instead, all of these equalities hold

almost surely (assuming that Jj are almost surely consistent for ¢;). With these expected
pseudo-outcome (E.P.O) results established, we can show that E[U7(y;)] = 0. First,
consider the expectation, conditional on {H, A}}

E (U5 () |H;. 45
= DN H) {4 = P(AT; = 11H,)}
=1
x { EWigsal Hij, A7) - <”~v>O%H*¢w+ﬂ%H&ﬁ

2,77

:ZA;(H;J.){A;J.—P = UH ) v () + 05 (H; ) } E.P.O.
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Taking this result, we can consider the expectation conditional on just H;, which gives

E [U; ()| H;]

= N(H; ) {E[A; | H; ) — P(A;; = U H; )} {v;(H ) + 05 (H ) } LA. (3)
i=1

= > N(H) {P(AL, = 11H;,) — P(AL, = 1H) ) {v) (7)) + 6 (H; )}
=1

= 0.

Note that this will hold so long as the residual term

E[‘/;J+1| 1]7A* ] (HZ*j?A’: )C*(H*jawj>+0;(H:])7
is independent of H;;. This is true under the assumptions laid out only at the true ¢;, in
general. As a result, U *(%) form unbiased estimating equations which are uniquely solved
at the true ¢;, and as a result produce consistent estimators for ;. O

Proof of Theorem |7.7.1. Under non-exceptional laws, and the standard regularity con-
ditions, then Theorem demonstrates that the U* is an unbiased estimating equa-
tion. Supposing that the other nuisance parameters are estimated via M-estimation tech-
niques, then a simple invocation of two-step M-estimation theory provides the necessary
results. O
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Appendix C

Non-regularity in DTRs

We mentioned that the asymptotic theory for DTR estimation is subject to non-regularity.
We present an illustrative example of this here. Consider a simple example of a non-regular
estimator (largely taken from Tsiatis, Davidian, Holloway, and Laber [90], though there
is a mistake in the published argument). Take H; to be scalar valued, with A; = {0, 1}.
Assume that @Q(h1,aq; 1) is correctly specified as (19 + S11h1 + Pi2a1. This gives the
optimal treatment rule, d** = I(B;, > 0), and leads to max,, Qi(hi,a1;51) = Py +
B11h1 + P2l (B2 > 0). We can derive the value of this to be given by V(d°P*) = (1o +
éllEEh] + 612](51%\> 0). The estimated value, based on the sample, will be given by

V = Bio+ BuH; + 512—7(312 > (). Then,

V=V =B+ BuHi + Bral (Bra > 0) — {Bro + Buu E[H1] + Bral (Br2 > 0)}
= Bio + BuH: + Bial (Biz > 0) — {Buo + Bu E[H] + prol (B2 > 0)}
+ B (E[Hy) — E[H))
= (310 - ﬁm) + <311 - 511> E[H] + (3121(312 > 0) = Pial (Br2 > 0))
+ By (Hy — E[HY)) .
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Adding and subtracting (1, (ﬁl — E[H 1]), and multiplying by /n, gives
Vn (9 - V) =vn (Blo - 510) +v/n (511 - 511) E[H,]
+vn (Bmf(gm > 0) — B2l (P12 > 0))
+Vn <B\11 - 511) (H, — E[H])
+v/nfi (ﬁ1 — E[Hl]) .

Standard M-estimator theory gives us that

@0 — Bio Z1
- Z
NS B N R DR
_512 — Brz Z3
H, — E[H|] Zy

The fact that H — E[H,] means that the term on the third line converges in probability
to 0, the top line will converge in distribution to Z; + F[H;]|Z,, and the final component to

f11Z4. This leaves only /n (3121(312 > 0) — B121(B12 > O)) g(u) is not differentiable at

u = 0, and so the Delta Method can only be applied if 515 # 0. Making this assumption,
this term will converge in distribution to Z121 (813 > 0), so that

Jn (17 . v) Y 7y + E[H)Zs + I(Br2 > 0)Z5 + B11 Zu.

If instead we have 15 = 0, then this term simplifies to \/53121(312 > 0), and since 12 =0
we have \/5512 A Zs3. Since the indicator [(312 > 0) = [(\/5312 > 0) we can apply the
continuous mapping theorem, resulting in \/53121(312 > 0) KN Z3I(Z3 > 0). As a result,

- Zy+ EH | Zy+ 1 >0)Z Z 0
ﬁ(V—V)i 1+ E[H1]Zy + 1(Br2 > 0)Z5 + B Zs 5127&' ’
Z1 + E[Hl]ZQ + ](Zg)Zg + 51124 otherwise

where in the first case the limiting distribution is normal and in the second case it is not.
While this is a specific realization of the problem of non-regularity in DTRs, these issues
ultimately stem from the violation of regularity conditions we previously discussed. In this
case, V is subject to standard asymptotic theory whenever ;; # 0, however, whenever
there is no treatment effect, non-regular theory will be necessary.
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Appendix D

Additional Simulation Results

When investigating the impact of measurement error in dynamic treatment regimes, in
Chapter [0, we simulated numerous additional scenarios to investigate the impact of var-
ious factors on our proposed corrections. The results of these simulations are provided
here. To investigate the procedure in the multistage scenario, we considered a variety of
related settings formed by varying different aspects of the model. We take X; ~ N(0, 1),
with X7, ~ ¢1(X;y) and X7, ~ ¢o(X3), for error models g1,¢92. The P(A; = 1|X] =
x}) = hi(x3; a9, 1), with a treatment model h; and parameters a;g, ;1. We then take
X2 ~ N(Al,l), with X;l = 91(X2) and XékQ = gg(Xg), and P(A2 = HX; = .T;) =
ho(x3; ang, a21). The outcome is then given by Y = f(X) 4+ (A% — A)) (1 + ¢ X)) +
(ASPY — Ay) (14 991 X5) + €, with € ~ N(0,1), where f(X;) is the treatment-free model.
The five considered scenarios depend on the alteration of the above parameters.

1. Considers 10 combinations of (ayg, aag), values taken from {—2,—1,0, 1,2}, holding
the treatment-free model as linear, both treatment models as linear, the error models
as classical additive with N(0,0.25) distribution, 113 = 19 = 1.

2. Considers 10 combinations of (411, %1), values taken from {—1,—0.1,0,0.1, 1}, hold-
ing a9 = agy = 0, the treatment-free model as linear, both treatment models as
linear, the error models as classical additive with N(0,0.25) distribution.

3. Considers 5 scenarios for various forms of the treatment-free model, taking f(X;) =
X (linear), f(X1) = X; + X? (quadratic), f(X;) = X1 + X2 — X? (cubic), f(X;) =
exp(X;) — X3 (exponential), or exp(X;)I(X; >= —0.5) (complex). We hold both
treatment models to be linear, a9 = agg = 0, Y11 = Y91 = 1, and the error models
as classical additive with N (0,0.25) distribution.
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4. Considers 10 scenarios where the treatment models are taken to be one of h;(x}) =
ajo + a1z (linear), hy(z}) = ajo+ e + (25)? (quadratic), hy(z}) = ajo + oy +
exp(z}) (exponential), and h;(x%) = ajo + a2} + (25)* + exp(z}) (mixed). We hold
the treatment-free model to be linear, a9 = agg = 0, Y11 = Y91 = 1, and the error
models as classical additive with N (0, 0.25) distribution.

5. Considers 10 scenarios for various error models, taking g;(X;) = X; + N(0,0.25)
(normal), ¢;(X;) = X; + t1o (approximately normal), ¢;(X;) = X; - Gamma(l, 1)
(gamma), or ¢;(X;) = X;-Unif(0.5, 1.5) (uniform). We hold the treatment-free model
to be linear, both treatment models to be linear, a9 = agg = 0, and 1, = ¥ = 1.

All analyses were conducted where (X7, XJ) is taken to be
(th X;1)7 (ﬁ? X_§)7 (Xiklv X_ék)v (X_ikv X;l)

(that is treatment depends on either the first naive proxy, or on the mean of the two
proxies). We take n = 10,000 and repeat each scenario 1000 times. The results for a
corrected analysis and a naive analysis are included in tables [D.1HD.5]

Table D.1: Median parameter estimates investigating the impact of treatment probabilities
in a multistage DTR, by varying (oo, e) as indicated. Blip parameter estimates are
compared for n = 10,000 individuals, using the corrected method compared to a naive
analysis. The top set of rows of the table use the first error-prone proxy at both stages, the
second set of rows use the mean of proxies at both stages, the third set of rows use the mean
at the first stage and the first error-prone proxy at the second, and the final set of rows
use the first error-prone proxy at the first stage and the mean at the second. Bold values
indicate parameters for which the 95% percentile-based interval across the 1000 simulation
replicates did not cover the true parameter value.

Regression Calibration Naive
(0410, 0420) Ay A Xy Ay As X, Ay A1 X, Ay Ay Xy
(—2, —2) 1.0101 0.9974 1.0035 0.9963 1.0098 0.8874 1.0163 0.902
(-1, -1) 1.0103 0.9983 1.0038 0.9961 1.0102 0.8879 1.0304 0.9064
(0, 0) 1.0106 0.9961 1.0003 0.9995 1.0108 0.8859 1.045 0.9101
(1, 1) 1.0086 0.996 0.998 0.9994 1.0086 0.8857 1.0622 0.909
(2, 2) 1.0082 0.9983 0.9975 1.0027 1.0083 0.8881 1.0789 0.9077
(—2, 0) 1.01 0.9973 1.0009 0.9987 1.01 0.8872 1.0157 0.8993
(-1, 1) 1.0109 0.9977 0.999 0.9986 1.0109 0.8868 1.0267 0.9044
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Regression Calibration Naive
( Ay A X, Ay As X5 Ay A X A X5
0 1.011  0.9963 0.9963 0.9987 1.0105 0.8859 0.9079
(1 1.0087 0.9971 1.0028 0.9993 1.0084 0.886 0.904
(2 1.0084 0.9997 1.0036 0.9975 1.0079 0.8886 0.8982
(-2 1.008 0.9992 1.0034 0.9965 1.0087 0.8887 0.902
(-1, - 1.0112 0.9988 1.0048 0.998 1.0107 0.8877 0.9068
(0, 0) 1.0111  0.997 1.0013 0.9967 1.0111 0.8872 0.9074
(1, 1) 1.0093 0.9963 0.9975 0.9985 1.009 0.8865 0.9083
(2, 2) 1.0101 0.9993 0.9977 1.0007 1.0104 0.8884 0.9054
(-2, 0) 1.0108 0.9994 1.0011 0.9985 1.0108 0.8884 0.8991
(-1, 1) 1.011  0.9982 0.9979 0.9988 1.0113 0.8875 0.9039
(0, 2) 1.0119 0.9972 0.9956 0.9972 1.0118 0.8865 0.9073
(1, -2) 1.0091 0.9973 1.0043 0.9976 1.009 0.8866 0.903
(2, -1) 1.01  1.0002 1.0014 0.998 1.0091 0.8894 0.8974
(-2, -2) 1.0083 1.0001 1.0038 0.9975 1.0082 0.8895 0.9018
(-1, -1) 1.0107 0.999 1.0039 0.9971 1.0106 0.8882 0.9064
(0, 0) 1.0116 0.9968 1.0005 0.9982 1.0118 0.8866 0.9097
(1, 1) 1.0096 0.9955 0.9981 0.9995 1.0095 0.8862 0.909
(2, 2) 1.0101 0.9994 0.9968 1.0011 1.0098 0.8889 0.9066
(-2, 0) 1.0107 0.9989 1.0008 0.9991 1.0113 0.8886 0.8998
(-1, 1) 1.0113 0.9983 0.9989 0.9995 1.011 0.8874 0.9055
(0, 2) 1.0116 0.9969 0.9967 0.9976 1.0115 0.8869 0.9081
(1,-2) 1.0093 0.9975 1.0043 0.999 1.0093 0.8869 0.9041
(2,-1) 1.0098 0.9996 1.0024 0.9975 1.0097 0.8891 0.8974
(-2, -2) 1.0096 0.9977 1.0034 0.9979 1.0095 0.8875 0.9027
(-1, -1) 1.0094 0.9978 1.0038 0.9976 1.0097 0.8872 0.9067
(0, 0) 1.0106 0.9963 1.0013 0.9974 1.0104 0.8859 0.9085
(1, 1) 1.0085 0.9965 0.9982 1.0001 1.0084 0.8857 0.9093
(2, 2) 1.0079 0.9983 0.9961 0.9983 1.0078 0.8879 0.9043
(-2, 0) 1.0099 0.9983 1.0007 0.9977 1.01 0.8872 0.8988
(-1, 1) 1.0112 0.9976 0.9983 0.9981 1.011 0.8866 0.9043
(0, 2) 1.0108 0.9962 0.9959 0.9957 1.0108 0.8863 0.906
(1, -2) 1.0078 0.9973 1.0034 0.998 1.0074 0.8864 0.9031
(2,-1) 1.0082 0.9996 1.0036 0.9969 1.0079 0.8887 0.8972
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Table D.2: Median parameter estimates investigating the impact of treatment thresholds
in a multistage DTR, by varying (11,%91) as indicated. Blip parameter estimates are
compared for n = 10,000 individuals, using the corrected method compared to a naive
analysis. The top set of rows of the table use the first error-prone proxy at both stages, the
second set of rows use the mean of proxies at both stages, the third set of rows use the mean
at the first stage and the first error-prone proxy at the second, and the final set of rows
use the first error-prone proxy at the first stage and the mean at the second. Bold values
indicate parameters for which the 95% percentile-based interval across the 1000 simulation
replicates did not cover the true parameter value. Scenarios take (111,190, 121) to be 1:
(-1,1,-1), 2: (-.1,1,-.1), 3: (0, 1,0), 4: (.1, 1,.1), 5: (1,1, 1), 6: (-1, 1,0), 7: (-.1, 1, .1),
8 (0,1,1),9: (.1, 1,-1), and 10: (1, 1, -.1).

Regression Calibration Naive

Ay A Xy Ay A Xy Ay A Xy Ay A Xy
0.9902 -1.001 1.0011 -1.002 0.9907 -0.8904 0.956 -0.9114
0.9999 -0.1017 1.0017 -0.1006 0.9998 -0.0904 0.9971 -0.0914

1 -0.0019 1.0014 -8e-04 1 -0.0017 1.0016  -9e-04
0.9998 0.0979 1.0016  0.099 0.9998 0.0872  1.006  0.0904
1.0106 0.9961 1.0003 0.9995 1.0108 0.8859 1.045 0.9101
1.0006 -1.0014 1.0017 -le-04 1.0005  -0.89 1.0017  2e-04
0.9998 -0.1018 1.0017 0.0994 0.9998 -0.0905 1.0059  0.0906
1.0106 -0.0029 1.0017 0.9986 1.0105 -0.0026 1.0461 0.9094
0.9918 0.0988 1.0019 -1.0028 0.9918 0.0877 0.9563 -0.9121

0 0.9998 0.9967 1.0002 -0.1017 1.0004 0.8867 0.9958 -0.0922
0.993 -1.0006 0.9997 -1.0023 0.9934 -0.8895 0.9548 -0.911
1.0001 -0.1017 0.9993 -0.1018 1.0001 -0.0903 0.9951 -0.0924
1.0006 -0.0017 0.9995 -0.0017 1.0006 -0.0015 0.9996 -0.0018
1.0007 0.0985 0.9999 0.0976 1.0007  0.0875 1.0046  0.0889
1.0111  0.997 1.0013 0.9967 1.0111 0.8872 1.0454 0.9074
1.0025 -1.0015 0.9996 -0.0015 1.0025 -0.8903 0.9994 -0.0012
1.0006 -0.1016 0.9993 0.0981 1.0006 -0.0903 1.004  0.0895
1.0117 -0.0015 1.0016 0.9968 1.0117 -0.0013 1.0459 0.9076
0.9924 0.0992 1.0005 -1.0034 0.9925 0.0881 0.9549 -0.9123

0 0.9997 0.9969 1.0006 -0.1023 1.0001 0.8871 0.9957 -0.0933
0.9926 -1.0004 1.0011 -1.0041 0.9927 -0.8893 0.9556 -0.913
1.0015 -0.1013 1 -0.1008 1.0015  -0.09  0.9959  -0.092
1.0015 -0.0017 1.0001 -T7e-04 1.0015 -0.0015 1 -8e-04

W N = O© OO0 Uik W = OO0 1O ULk Wi~
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Regression Calibration Naive

Ay A X, As A X, A X, As A Xy
4 1.0018 0.0984 1.0002 0.0991 1.0017  0.0875 1.0046  0.0902
5 1.0116 0.9968 1.0005 0.9982 1.0118 0.8866 1.0453 0.9097
6 1.0023 -1.0016 1.0008 -0.0011 1.0022 -0.8901 1.0008 -0.0015
7 1.0016 -0.1016 1.0006 0.0994 1.0016  -0.0903 1.0048 0.09
8 1.0121 -0.0014 1.0004 0.9982 1.0121 -0.0012 1.045 0.9097
9 0.9926 0.0996 0.9999 -1.0028 0.9927 0.0885 0.9549 -0.9121
10 1.001  0.9971 0.9998 -0.1007 1.0009 0.8872 0.9952 -0.0919
1 0.9893 -1.0008 1.0004 -1.0018 0.9893 -0.8897 0.9554 -0.9112
2 09992 -0.1017 1.0013 -0.1014 0.9992 -0.0906 0.9964 -0.0928
3 0.9994 -0.0019 1.0013 -0.0016 0.9993 -0.0017 1.001  -0.0018
4 0.9997 0.0979 1.0012 0.0982 0.9996 0.0873 1.0058  0.0893
5 1.0106 0.9963 1.0013 0.9974 1.0104 0.8859 1.0459 0.9085
6 1.0008 -1.0013 0.9997 -6e-04 1.0009 -0.8901 0.9996 -8e-04
7 09997 -0.1014 1.001  0.0987 0.9996 -0.0903 1.0056  0.0894
8 1.0102 -0.0023 1.0011 0.9986 1.0102  -0.002 1.0456 0.9091
9 09914 0.0986 1.0013 -1.0021 0.9914 0.0876 0.9563 -0.9119
10 0.9994 0.9966 1.0005 -0.1016 0.9995 0.8867 0.9958 -0.0925

Table D.3: Median parameter estimates investigating the impact of treatment probabili-
ties in a multistage DTR, by varying the true treatment-free model as indicated. Linear
treatment-free models are used in all settings. Blip parameter estimates are compared for
n = 10,000 individuals, using the corrected method compared to a naive analysis. The
top set of rows of the table use the first error-prone proxy at both stages, the second set of
rows use the mean of proxies at both stages, the third set of rows use the mean at the first
stage and the first error-prone proxy at the second, and the final set of rows use the first
error-prone proxy at the first stage and the mean at the second. Bold values indicate pa-
rameters for which the 95% percentile-based interval across the 1000 simulation replicates
did not cover the true parameter value.

Regression Calibration Naive
TF Model Al Ale AQ A2X2 Al Ale AQ A2X2
Linear 1.0106 0.9961 1.0003 0.9995 1.0108 0.8859 1.045 0.9101
Quadratic 1.0105 1.0043 1.0012 0.9982 1.0104 0.893 1.0457 0.9098
Cubic 1.0019 1.0108 1.0041 0.9993 1.0021 0.8986 1.0484 0.9099
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Regression Calibration Naive

TF Model Al A1X1 AQ AQXQ Al A1X1 AQ A2X2
Exponential 1.0042 1.0105 1.0035 0.9986 1.0041 0.8976 1.0476 0.9104
Complex 1.0125 1.0038 0.9994 1.0007 1.0127 0.8921 1.044 0.9116

Linear 1.0111  0.997 1.0013 0.9967 1.0111 0.8872 1.0454 0.9074
Quadratic 1.0106 1.0017 1.0033 0.9959 1.0107 0.8901 1.0483 0.9078
Cubic 1.0069 1.0043 1.0072 1.0012 1.0068 0.8938 1.0525 0.9129

Exponential 1.0089 1.0066 1.0054 1.0015 1.0091 0.8939 1.0503 0.9122
Complex 1.0113 1.0014 1.0035 0.9969 1.0116 0.8903 1.0467 0.9082

Linear 1.0116 0.9968 1.0005 0.9982 1.0118 0.8866 1.0453 0.9097
Quadratic 1.0116 1.001 1.0005 0.9985 1.0115 0.8897 1.044 0.9093
Cubic 1.0075 1.0034 1.0038 0.9967 1.0075 0.8937 1.0484 0.9095

Exponential 1.0091 1.0069 1.0033 0.9996 1.0087 0.8949 1.0477 0.9107
Complex 1.0119 1.0026 1 1.0012 1.0116 0.8904 1.0445 0.9108

Linear 1.0106 0.9963 1.0013 0.9974 1.0104 0.8859 1.0459 0.9085
Quadratic 1.01 1.004 1.003  0.997 1.0104 0.8927 1.0472 0.9078
Cubic 1.0017 1.0101 1.0044 0.9992 1.0021 0.8974 1.0504 0.9104

Exponential 1.0046 1.0097 1.0061 0.9996 1.0045 0.8975 1.0503 0.9104
Complex 1.0115 1.0039 1.0015 0.9985 1.0115 0.8926 1.0457 0.9091

Table D.4: Median parameter estimates investigating the impact of treatment probabilities
in a multistage DTR, by varying the treatment models as indicated. Linear treatment
models are used in all situations. Blip parameter estimates are compared for n = 10, 000
individuals, using the corrected method compared to a naive analysis. The top set of rows
of the table use the first error-prone proxy at both stages, the second set of rows use the
mean of proxies at both stages, the third set of rows use the mean at the first stage and
the first error-prone proxy at the second, and the final set of rows use the first error-prone
proxy at the first stage and the mean at the second. Bold values indicate parameters for
which the 95% percentile-based interval across the 1000 simulation replicates did not cover

the true parameter value. The treatment models are specified to be linear (L), quadratic
(Q), mixed (M), or exponential (E).

Regression Calibration Naive

A1 Ale A2 A2X2 Al Ale A2 A2X2
L/L 1.0106  0.9961 1.0003  0.9995 1.0108 0.8859 1.045 0.9101
L/Q 0.9992 0.9992 0.8902 1.1138 0.9991 0.8881 0.9407 1.014
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Regression Calibration Naive

Ay A1 X, Ag Ay Xy Ay A1 X, A Ay Xy
L/M  0.9925 1 0.9022 1.1187 0.9923 0.8893 0.9529 1.0174
L/E 1.0126 0.9989 0.9836  1.016 1.0124 0.8876 1.0291  0.9257
Q/Q 0.9047 1.1117 0.8929 1.1153 0.9044 0.9885 0.9611 1.0159
Q/M 0.8969 1.1119 0.9011 1.1188 0.897 09886 0.9707 1.0199
Q/E  0.918 1.1125 0.9846 1.0189 0.918 0.9899 1.0478  0.9289
M/M 0.9033 1.1052 0.9078 1.1216 0.9033 0.9824 0.9946 1.0192
M/E 0.9246 1.1096 0.9853 1.0153 0.9244 09872 1.0652 0.9223
E/E 09979 1.013 0.9853 1.0131 0.9983 0.9007 1.0479 0.9244
L/L 1.0111  0.997  1.0013 0.9967 1.0111 0.8872 1.0454 0.9074
L/Q 1.0013 0.9987 0.8847 1.1219 1.0012 0.8876 0.9353 1.0215
L/M 09915 0.9979 0.8915 1.1179 0.9916 0.8868 0.9413 1.0179
L/E  1.0128 0.999 0.9818 1.0194 1.013 0.8882 1.0271  0.9275
Q/Q 0.898 1.1245 0.8863 1.1239 0.8982 0.9994 0.9547 1.0234
Q/M 0.8889 1.1226 0.8943 1.1241 0.8887 0.9981 0.9629 1.0257
Q/E 0.9089 1.121 0.9809  1.021 0.9087 0.9965 1.0429  0.932
M/M 0.8941 1.1119 0.9053 1.1241 0.8938 0.9878 0.9923 1.0228
M/E 0.9142 1.1125 0.9834 1.0242 0.9141 0.9884 1.0622 0.9313
E/E  0.9945 1.0162 0.9831 1.0186 0.9948 0.9021 1.0474 0.9294
L/L 1.0116  0.9968  1.0005  0.9982 1.0118 0.8866 1.0453 0.9097
L/Q 1.0012 0.9979 0.8904 1.1137 1.0008 0.8876 0.9412 1.0139
L/M  0.9922 0.9985 0.8999 1.1146 0.9923 0.8881 0.9495 1.0143
L/E 1.011  0.9982 0.9823 1.0161 1.0112 0.8869 1.0281 0.9263
Q/Q 0.8978 1.1239 0.8921 1.1151 0.8982 0.9981 0.9598 1.0149
Q/M 0.8904 1.1216 0.9021 1.1175 0.8903 0.9979 09703 1.0182
Q/E 0.9086 1.1215 0.9848 1.0112 0.9083 0.9972 1.0464  0.923
M/M 0.8932 1.1145 0.9077 1.1196 0.8937 0.9898 0.9943 1.0184
M/E 0.9133 1.1123 0.9854 1.0169 0.9126 0.9888 1.0637 0.9247
E/E 0.996 1.0178 0.9844 1.0135 0.9955 0.905 1.0486 0.9253
L/L 1.0106  0.9963 1.0013 0.9974 1.0104 0.8859 1.0459 0.9085
L/Q 1.0003 0.9973 0.884 1.1229 0.9997 0.8868 0.9348 1.0231
L/M 09908 0.998 0.8919 1.1214 0.9904 0.8869 0.9419 1.0213
L/E  1.0111 0.9987 0.9803 1.0186 1.0113 0.888 1.0264 0.9292
Q/Q 0.9049 1.1118 0.8872 1.1245 0.9041 0.9884 0.9563 1.0241
Q/M 0.8951 1.1141 0.8978 1.1272 0.8956 0.9901 0.9677 1.0279
Q/E  0.9178 1.1119 0.9811 1.0225 0.9179 0.9884 1.0437 0.9333
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Regression Calibration Naive

Al A1X1 AZ A2X2 Al Ale AQ A2X2
M/M 0.9008 1.1039 0.9066 1.1307 0.901 0.9811 0.9946  1.0289
M/E 0.9248 1.1063 0.9843  1.023 0.9249 0.9835 1.0644 0.9311
E/E 09971 1.0136  0.984  1.0232 0.997 0.9008 1.0482 0.9345

Table D.5: Median parameter estimates investigating the impact of treatment probabilities
in a multistage DTR, by varying the error-models as indicated. Blip parameter estimates
are compared for n = 10, 000 individuals, using the corrected method compared to a naive
analysis. The top set of rows of the table use the first error-prone proxy at both stages, the
second set of rows use the mean of proxies at both stages, the third set of rows use the mean
at the first stage and the first error-prone proxy at the second, and the final set of rows
use the first error-prone proxy at the first stage and the mean at the second. Bold values
indicate parameters for which the 95% percentile-based interval across the 1000 simulation
replicates did not cover the true parameter value. The error models are specified to be
normal (N), approximately normal (A), gamma (G), or uniform (U).

Regression Calibration Naive

Ay A Xy A A X Ay A Xy As As Xy
N/N 1.0106 0.9961 1.0003 0.9995 1.0108 0.8859 1.045 0.9101
N/A 1.0175 0.9954 1.0007 0.9975 1.0174 0.8248 1.0705 0.8586
N/G 1.0109 1.0292 1.0036 1.0078 1.0103 0.8577 1.0749 0.8647
N/U 1.0062 1.034  1.0028 1.0226 1.0062  0.9729 1.0339 0.9616
A/A  1.0428 0.996 0.9989 0.9916 1.0414 0.6132 1.1612 0.6666

A/G 1.0187 1.1453 1.0069 1.0592 1.019 0.7388 1.1893 0.7095
A/U 1.0109 1.0405 1.0028 1.0318 1.0107  0.9659 1.0443  0.9495
G/G 1.0866 1.2838 0.919 1.202 1.086 0.857 1.1308 0.8097

G/U 1.0157 1.0608 0.9766 1.0494 1.0156  0.9842 1.0198 0.9638
U/U 1.0075 1.0367  0.991 1.043 1.0076  0.9957 1.0152  0.9957
N/N 1.0111  0.997 1.0013 0.9967 1.0111 0.8872 1.0454 0.9074
N/A 1.0173 0.9968 1.0002 0.9994 1.0165 0.8249 1.0706 0.8586
N/G 1.0247 1.0323 0.9832 1.0201 1.0248 0.8602 1.0552 0.877
N/U 1.0103 1.0358 0.995  1.0339 1.0098  0.9747 1.0269 0.9718
A/A  1.0393 1.008 0.9994 0.9984 1.0384 0.6209 1.163 0.6743
A/G 1.0537 1.1959 0.9615 1.1174 1.0534 0.7688 1.1499 0.7544
A/U 1.0104 1.0498 0.9957 1.0521 1.0101  0.9743 1.0383  0.9692
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Regression Calibration Naive

Ay A X, Ay Ay X5 Ay A Xy Ay A X
G/G 1.0951 1.4009 0.9042 1.3366 1.0947 0.9351 1.1268 0.952
G/U 1.0161 1.0605 0.9816 1.0662 1.0159  0.9859  1.025  0.9803
U/U 1.0079 1.033 0.9914 1.0418 1.0077  0.9923 1.0154  0.9942
N/N 1.0116 0.9968 1.0005 0.9982 1.0118 0.8866 1.0453 0.9097
N/A 1.0177 0.9966 1.0008 0.9977 1.0171 0.8257 1.0708 0.8578
N/G 1.0263 1.0326 1.0028 1.0074 1.0262 0.86 1.0744 0.8649
N/U 1.0112 1.036 1.0029  1.0235 1.0112 0.9746 1.0344 0.9619
A/A  1.0372 1.0098 0.9988  0.9909 1.037 0.6207 1.162 0.6673
A/G  1.0495 1.1943 1.007 1.058 1.0493 0.7689 1.1893 0.7076
A/U 1.0116 1.0498 1.0027 1.0313 1.0117  0.9742 1.0453  0.9487
G/G 1.072 1.4024 0.9193 1.2012 1.0719 0.9346 1.1294 0.809
G/U 1.0161 1.0601 0.9755 1.0494 1.016  0.9857 1.0197 0.9645
U/U 1.0078 1.0329 0.9916  1.0433 1.0078 0.9924 1.0156  0.9957
N/N 1.0106 0.9963 1.0013 0.9974 1.0104 0.8859 1.0459 0.9085
N/A  1.017  0.9955 1.0009 0.9985 1.0166 0.8249 1.0704 0.8581
N/G 1.0095 1.0288 0.9834 1.0218 1.0089 0.8568 1.0569 0.8763
N/U 1.0047 1.034 0.9952 1.0332 1.0048 0.9736  1.0266 0.9711
A/A  1.0441 0.997 0.9987  0.9996 1.0439 0.6129 1.1602 0.6746
A/G 1.0232 1.1462 0.9612 1.1165 1.023 0.7378 1.1498 0.7538
A/U 1.0101 1.0408 0.9958  1.0529 1.0102  0.9655 1.0377  0.969
G/G 1.1095 1.2825 0.904 1.337 1.1087 0.8556 1.1267 0.9509
G/U 1.016 1.0603 0.9816  1.0659 1.0159 0.9845 1.0256 0.9818
U/U 1.0074 1.0369 0.9916 1.0424 1.0074  0.9957  1.0157  0.9946
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