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Abstract

A projection mapping display system creates impressive 3D displays with light by map-
ping a 2D image from a calibrated projector onto a display surface. Projection mapping
systems require that geometric information must be known about the projector, its spatial
relationship to the display surface, and the surface itself. These relationships are con-
structed through observation of the projector and the display environment by a camera.
The calibration process can be burdensome on the user, and different strategies will rely
on prior information about the devices or upon enforcing display environment constraints.
High capital costs are associated with generating a prior knowledge of cameras. Display
environment constraints limit the range of possible display environments, in some cases
requiring a 2D display surface, preventing non-planar 3D display environments. A self-
calibration projector-camera(s) process that does not rely on known or fixed cameras, nor
calibration targets, is highly desirable to increase both the ease of use and the range of
possible environments for existing projection mapping systems.

This thesis develops a method for producing a geometric calibration estimate and 3D
display surface estimate for non-planar projection mapping display environments. This
approach assumes no prior information on the moving camera or fixed projector. Pixel
correspondences relate observations across the camera and projector views, and are used
to construct geometric relationships to produce a weak calibration estimate. Many appli-
cations of projection mapping technology involve artistic renderings that must be precisely
mapped from 2D image projection to a 3D non-planar surface. The drafting of these artis-
tic renderings often necessitates the existence of some prior virtual scene understanding.
Limited scene understanding provides the basis for constructing virtual calibration targets
to perform a geometric recovery of the weak calibration estimate recovery through bundle
adjustment.

Experimental results show that the geometric calibration estimate observed no error in
the estimated projector intrinsic parameters, and less than 2 degrees of average angular
error in the estimated projector and camera poses when considering 2500 pixel correspon-
dences with σ = 1 px additive Gaussian noise. The performance accuracy decreases with
increasing noise in the pixel coordinates.
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Chapter 1

Introduction

Projection mapping is a method that is used to turn common everyday objects into display
surfaces. This technology is found in applications including 3D surface reconstruction;
artistic displays used for education, entertainment, or cultural celebration; and augmented
reality. A projection mapping system creates impressive visual displays with light by
mapping a 2D image from a calibrated projector onto a display surface, Figure 1.1. These
display surfaces may be a flat surface such as a projector screen, or they might be complex
3D surfaces such as historic buildings, Figure 1.2.

To have a projection mapping system a projector, some projection image(s) and a
surface upon which to project are needed. Such displays are sensitive to the properties of
the projector, and the display will appear very differently depending on where the projector
is in relation to the scene. In order to produce highly accurate displays, the projector images
are rendered in a 2D representation of the 3D display that will fit the projected light to the
display surface. Generating this 2D rendering relies upon knowing the projection model of
the system, and requires that geometric information must be known about the projector,
its spatial relationship to the projection surface, and the surface itself.

Projection mapping methods require three primary components for geometric calibra-
tion: the projector(s) to be calibrated, the desired display environment including the
display surface, and some way of measuring the scene. Scene measurement is often ac-
complished with cameras. The degree of knowledge of the measuring camera and the
display surface can dictate the process of geometric calibration. Calibration methods may
rely upon highly accurate cameras of known calibration. These cameras can be quite
expensive, and raise the lifetime cost of implementing these projection mapping systems
significantly while only being needed during calibration. Some calibration methods require
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(𝑢, 𝑣)

(𝑥, 𝑦, 𝑧)

Figure 1.1: A visual display is generated from the projected light of a 2D rendering onto a
3D surface. A pixel coordinate (u, v) in the 2D projector image is mapped to a 3D world
coordinate on the display surface (x, y, z).

Figure 1.2: A miniaturized Parliament Building is projection mapped at Toronto’s “Little
Canada” attraction. Photo obtained from Christie Digital.
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scene constraints such as calibration targets. Targets might be challenging or disruptive
to put in place, limiting the calibration methods available to a user and could prohibit
certain display environments. This thesis aims to improve the accessibility and flexibility
of projection mapping by presenting a method of projector calibration and scene estima-
tion that eliminates reliance on both environment limiting parameters and on high-capital
requirements.

1.1 Motivation and Overview

Geometric calibration of a projection mapping system will rely on the same principles
of calibration and estimation whether it is a simple projector purchased for home use
or a set of many performative projectors working together for an entertainment industry
application. The camera and the scene associated with each specific projection mapping
system provide the bulk of the information from which we build a geometric understanding
of the system and, consequently, the projector. This thesis develops a method of “self-
calibration” for projection mapping applications, where self-calibration indicates little to
no input or manipulation required from a user to generate a geometric calibration. This
self-calibration will assume that a projection mapping system is also a projector-camera
system, in that there is scene measurement with some observing camera in a setup similar
to that seen in Figure 1.3.

The prior scene and camera knowledge required by a self-calibration method can estab-
lish limits on the range of environments for which the solving method can be used. The
assumptions regarding prior knowledge of the display environment are one of the funda-
mental starting points for calibration. The range of possible scene definitions begins with
the most constrained: a known planar calibration target [24, 45, 47] where explicitly known
planarity simplifies the calibration. The next level of prior knowledge is non-planar cali-
bration targets, where explicit 3D locations are known but planarity simplifications cannot
be used. There are unknown planar scenes where points are not explicitly known but
the planarity simplifications can be used. Finally, with the least provided knowledge are
unknown scenes where no information can be assumed. Unknown scenes also provide no
assurances regarding other scene challenges such as occlusions, or surface warping of struc-
tured light patterns. An unknown scene must also be estimated in the projector-camera
system calibration.

The camera is primarily a measurement tool, and to generate a scene understanding
the first step in this process must be to obtain the set of camera parameters through either
prior knowledge or estimation. These parameters include intrinsic values that describe the
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Figure 1.3: Diagram of a simple Projector-Camera System.

camera itself such as focal length and principle point, and extrinsic values that describe
the relative position of the camera within an environment. Single- and many-camera
strategies have been effective, [27, 38], and the prior knowledge of the camera calibration
serves as another limitation-describing characteristic of projector calibration strategies.
The most prior knowledge is provided by a pre-calibrated camera of known pose, where
no information needs to be estimated. A pre-calibrated camera of unknown pose provides
some prior knowledge but requries that the camera position must be estimated. Finally,
an unknown camera provides the least definition, where all camera parameters must be
estimated in addition to the unknown projector parameters.

When the projector calibration is required, the phase of a projection display project
has typically progressed to a place where the intended display artwork has already been
drafted for the final display. This process of creating these art pieces can necessitate the
existence of some prior virtual scene understanding. This method explores the challenge of
unknown scene by introducing a virtual sparse non-planar calibration target. This allows
some prior scene information to be introduced without incurring any scene limitations
typically associated with calibration targets.

Previous estimation strategies that rely on single-camera and projector pairs [41, 27]
treat the projector image plane as a camera image plane of measurement signals. However,
as this plane is projecting and not capturing image information, completing this step with
two camera image planes provides more measured information from which to construct

4



scene understanding. A moving camera formulation allows the benefit of multiple camera
views while minimizing the set of information that must be estimated by requiring only a
single set of camera parameters. Where a 3D estimation of the scene has been constructed
from the camera scene understanding, the projector calibration follows as an estimation of
parameters that must meet the geometric requirements established by the cameras. This
allows scene estimation more rooted in reality as constructed from two sets of measurements
rather than a set of measurements and a set of projections, and allows better constraints
on the final projector estimation.

The foundation of a moving camera allows the future incorporation of additional camera
perspectives, potentially overcoming common size and occlusion challenges faced in scene
observation by stationary cameras with augmented scene understanding. A moving camera
calibration also provides a framework for a handheld camera calibration that, assuming
common use of cell phones, has the potential to drastically reduce the cost of obtaining
the required cameras.

1.2 Problem Statement and Objectives

A self-calibration projector-camera process that does not rely on known or fixed cameras
nor calibration targets is highly desirable to improve the accessibility of projector-camera
systems, as well as to increase both the ease of use and the range of possible environments
for existing systems. In order to accomplish a moving-camera self-calibration a set of
objectives must be met:

• Estimation of the unknown geometric surface.

• Estimation of the camera intrinsic and extrinsic parameters.

• Estimation of the projector intrinsic and extrinsic parameters.

The developed method that accomplishes the above must meet the following constraints:

• Eliminate reliance on high-capital requirements such as fixed-pose and precalibrated
cameras

• Eliminate reliance on display environment-limiting parameters such as in-scene cali-
bration targets.

The problem will be further developed in Chapter 3.

5



1.3 Thesis Organization

This thesis consists of seven chapters, with the remaining chapters structured as follows.

Chapter 2 describes the relevant background material for projector and camera cali-
bration, including geometry of image projection, including the progression from 1-, 2- to
n- view calibration methods, prominent methods in obtaining point correspondences for
calibration, and some material on optimization and evaluation of projector calibration.

Chapter 3 details the problem upon which this thesis focuses.

Chapter 4 introduces variations on two prominent initialization methods for camera
and projector calibration, the Fundamental Matrix and the Trifocal Tensor.

Chapter 5 explores bundle adjustment as a recovery from weak camera calibration and
introduces a synthetic calibration target based on known information in display system
applications.

Chapter 6 describes the dataset, experiments and results of the discussed initialization
and bundle adjustment techniques.

Chapter 7 discusses the final results and future work, and concludes the thesis.
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Chapter 2

Background

It is an understatement to say that there is substantial background on the formulation
of camera calibration and scene reconstruction. This chapter focuses on introducing the
knowledge required to understand the proposed content in this work. First, Section 2.1
introduces the geometric relationships that define and constrain the system. Section 2.2
discusses the application of this geometry to camera projections in single and multi-view
environments. Section 2.3 discusses existing strategies for projector-camera system cali-
bration and describes the methods of relating observed 2D points across a set of image
planes and their real 3D coordinates. Finally, Section 2.3.2 describes the general uses for
optimization strategies within camera calibration and scene reconstruction, and details the
formulation of Bundle Adjustment for later use.

2.1 Geometry of Image Projection

Geometry, one of the oldest branches of mathematics, concerns itself with the properties of
space, and relations in distance, shape, size, and relative position [1]. It is important to first
establish the ‘geometry’ of our problem as the sets of governing rules that constrain these
relations. There are multiple geometries that might be encountered in image projection
and scene reconstruction. This section considers the 2D planar Euclidean geometry R2,
the 3D Euclidean geometry R3, the 2D projective geometry P2, and the 3D projective
geometry P3.

A captured or projected image plane follows the familiar rules of planar geometry that
describe the Euclidean representation of a 2D plane [23, 17, 14]. We define a 2D coordinate
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in an image plane by the pair of coordinates in R2:

x =

[
u
v

]
(2.1)

A line in this 2D plane can be represented by an equation such as Au + Bv + C = 0,
where changes of A,B and C will give rise to different lines. Not all of these lines will be
unique, as (kA)u+ (kB)v+ (kC) = 0 and Au+Bv+C = 0 will be the same for any non-
zero constant k. These lines and their representing vectors [A,B,C]T and [kA, kB, kC]⊤

are considered equivalent, or homogeneous vectors [23].

A point x lies on the line [A,B,C]⊤ if it satisfies Au+Bv+C = 0. By representing the
point as a 3×1 vector [u, v, 1]⊤, a point on the line may be written algebraically as a product
of vectors as [u, v, 1][A,B,C]⊤ = 0. This 2D coordinate [u, v]⊤ in R2 is represented as a 3×1
vector by adding this final coordinate of 1. It follows that [ku, kv, k]⊤ for varying values of
k is a set of homogeneous vectors that represent the same 2D point x, [6, 23, 14, 17]. Given
a coordinate triple [ku, kv, k], we can get the original coordinates back by dividing by k.
An intuitive geometric interpretation of homogeneous coordinates allows the embedding of
the 2D plane R2 into the 3D Euclidean space R3 [17]. The camera image plane x = [u, v]⊤

is considered the 2D plane in R3 where the u-axis and v-axis are parallel to the x-axis and
y-axis respectively, with x, y coordinate bounds defined by the camera resolution (U, V ),
and z = 1. This allows us to define the coordinate on the image plane:

x =

uv
1

 (2.2)

separately from the 3D world coordinate:

X =

xy
z

 (2.3)

within the same frame of reference.

Projective Geometry is used to describe how perspective and position within a co-
ordinate system will alter distance and space [14, 23]. Projective geometry preserves
straightness and we may define a projective transformation of a plane as any mapping
of points on the plane that preserves straight lines [23]. The set of homogeneous vectors
in {R3 − [0, 0, 0]⊤} forms the projective space P2 [23]. In other words, P2 represents a 2D
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coordinate [u, v]⊤ as the set of all equivalent [ku, kv, k]⊤ homogeneous vectors [23]. Just
as 2D coordinates in R2 correspond to 3D coordinates in P2, 3D coordinates in R3 are
represented in P3 projective geometry by the set of equivalence vectors {R4 − [0, 0, 0, 0]⊤}
[23, 14, 17]. Similarly, P3 represents a 3D coordinate [x, y, z]⊤ as the set of all equivalent
[kx, ky, kz, k]⊤ homogeneous vectors [23].

This projective representation is important because it is projective correlation that
provides the foundation for mapping a 3D world coordinate to a 2D image plane [23, 14, 17].
Given the projective space P2 and the projective space P3, a mapping H is an invertible
projective correlation that permits the mapping H : P2 −→ P3 [17]. This interpretation
allows us to imagine the camera image plane within the real world geometry, and the
projective correlation provides the method for the 2D observation of a 3D world coordinate
which represents perspective and position within a coordinate system strongly influence
the captured image. The specific formulation of this mapping will be motivated in relation
to our camera model in Section 2.2.

2.1.1 Reconstruction

In reconstructing a scene from images, we are attempting to bridge a knowledge gap be-
tween the projective geometry definition of camera projection and the Euclidean geometry
definition of the real world. This involves learning or estimating governing parameters in
the Euclidean geometry that are not well predicted by behaviour in the projective geom-
etry. In projective geometry none of angles, distance, or ratios of distance are preserved
[23, 14, 17] (see Table 2.1). When equipped with only image coordinates only a projec-
tive scene reconstruction is achievable, which does not allow for meaningful interpretation,
[23, 14].

In order to improve the reconstruction, some additional information about the world or
system of cameras must be known beyond just the image coordinates, [23, 14]. Information
about the projection model can allow for an affine reconstruction, and self-calibration
methods which estimate camera and world information can make a metric reconstruction
possible, where a metric reconstruction is equal to a Euclidean reconstruction up to a
scale factor [14]. Additional information may be provided through a scene definition or
calibration target where the projection surface is known, or may be provided by a known
camera, which contains the set of true camera parameters. The benefit of a calibration
target or known camera is that it means world and camera knowledge are not subject to
estimation errors and can resolve ambiguities.

9



Table 2.1: A comparison of geometries and their particular transformations and invariants;
where each geometry is a subset of the next. [x] indicates that this property exists, where
blank indicates that it does not exist for each particular geometry. [14, 23]

Geometries: Euclidean Metric Affine Projective

Degrees of Freedom 3 4 6 8

Transformations

Rotation x x x x
Translation x x x x
Isotropic Scaling x x x
Scaling Along Axis, Shear x x
Perspective Projections x

Invariants

Distance x
Angles x x
Ratio of Distances x x
Parallelism x x x
Centre of Mass x x x
Incidence, Cross Ratio x x x x

2.2 Camera Projection

We use the pinhole camera model [17, 14, 23] to describe both camera and projector
systems. This model follows from our 2D image plane in the 3D world representation
developed in Section 2.1. Figure 2.1 provides visualization to illustrate the camera model
from the 2D image coordinate to its 3D counterpart in a Euclidean coordinate system. The
homogeneous coordinate representation of projective geometry allows us to describe this
model as a linear mapping between the 2D homogenous coordinate x to 3D homogenous
coordinate X [14, 23]. Projection matrix P describes the transformation from 2D to 3D
and can be rewritten in a way that explicitly makes reference to the individual parameters
used to define spatial calibration:

uv
1

 = P


x
y
z
1

 = KR
[
I3 C

] 
x
y
z
1

 (2.4)

where K is the 3×3 intrinsic matrix, R is the 3×3 rotation matrix, C is the 1×3 position
of the camera centre I3 is the 3× 3 identity matrix. These parameters can be sorted into
either intrinsic or extrinsic values describing the camera or projector behaviour. Within
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Figure 2.1: The pinhole camera geometry model relates a 2D coordinate x in an image
plane to a 3D observed world coordinate X through projective transformations.

the projection matrix P , the intrinsic properties K are defined as:

K =

fx s px
0 fy py
0 0 1

 (2.5)

where intrinsic matrix K contains the principle point (pu, pv) which is the center of the
perspective projection of the image, focal length (fx, fy), and skew (s) which describes the
angle between x and y. This K matrix and its parameters describe the transformation
from the 2D camera pixel coordinate reference frame to the Euclidean world reference
frame. The extrinsic parameters are used to define the position of the camera centre (C)
and orientation of the camera (R) within the Euclidean world.

R
[
I3 −C

]
=

[
R | t

]
=

r1 r2 r3 t1
r4 r5 r6 t2
r7 r8 r9 t3

 (2.6)

Instead of explicitly using the camera centre, translation t can be used where t = −RC. A
direct solution for determining the projection matrix from image and scene points exists
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as the direct linear transformation. This requires that there be at least six pixel corre-
spondences matching observed points in an image to their 3D world coordinates and that
the surface be non-planar. For a set (xi, Xi) of corresponding 2D x and 3D X coordi-
nates where there are i = 1 : N points as related by Equation 2.4, we can find a direct
relationship: [

xi

1

]
=

p11 p12
p21 p22
p31 p32

p13 p14
p23 p24
p33 p34

[
Xi

1

]
(2.7)

For the 2D image point [ui, vi, 1]
⊤ and 3D coordinate [xi, yi, zi, 1]

⊤:

ui =
p11xi + p12yi + p13zi + p14
p31xi + p32yi + p33zi + p34

vi =
p21xi + p22yi + p23zi + p24
p31xi + p32yi + p33zi + p34

(2.8)

For each 2D to 3D correspondence there are two equations:

−X⊤
i [p11, p12, p13, p14] +uiX

⊤
i [p31, p32, p33, p34] = 0

−X⊤
i [p21, p22, p23, p24] +viX

⊤
i [p31, p32, p33, p34] = 0

(2.9)

This allows us to generate a system of equations over i = 1 : N , N ≥ 6 points that will
allow us to solve for the parameters pnm of the projection matrix P from only the relations
between one 2D image view and the 3D scene coordinates.

2.2.1 Two Views

This section discusses geometric relations between two views in a scene. We focus on
systems of distinct optical centres because our formulation assumes that every image plane
is captured from a new position, and there will always be at least two distinct optical
centres when calibrating a projector-camera system: one camera and one projector. We
neglect systems of single optical centres (pure rotation) and their methods because they
cannot be used to describe the projector-camera system.

Epipolar geometry provides the basis from which we can relate two viewpoints [14, 23].
Figure 2.2 describes this epipolar geometry. The line connecting the optical camera centres
Ca, Cb intersects with image planes at points ea and eb, respectively. The lines through
ea and eb that connect with their respective observed points x1

j , x
2
j , where j = a, b are the

epipolar lines. Each point x in the first image is viewed as a corresponding point somewhere
on the epipolar line in the second image. The 3 × 3 fundamental matrix F describes the
correspondence between a point and its epipolar line. A pair of views for which F is known
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Figure 2.2: Epipolar geometry relates 2D pixel coordinates xa in image a to the observed
3D coordinate X and the corresponding 2D pixel coordinate xb in a second image b.
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is said to be weakly calibrated. Epipolar line lb corresponding to the ith observed point in
image b can be defined with the fundamental matrix [23]:

lb ≊ Fxi
a (2.10)

Because lb contains point x
i
b by definition:

xi
b

⊤
Fxi

a = 0 (2.11)

We define [a]× as the skew-symmetric matrix representation of the 1× 3 vector a:

[a]× :=

 0 −a3 a2
a3 0 −a1
−a2 a1 0

 (2.12)

The fundamental matrix can be expressed as a function of the perspective projection matrix
of the first camera and any inverse perspective projection matrix of the second camera.
Defining ⟨ab⟩× as the cross product operator of two 3D vectors a and b, we can further
express the fundamental matrix as a function of the two perspective projection matrices
[23, 17, 14].

F = P−⊤
b ⟨CaCb⟩×P−1

a (2.13)

Relating the fundamental matrix and definition of the projection matrix P = K[R|t], we
can see the following decomposition:

F = K−⊤
a R−⊤

a ⟨CaCb⟩×R−1
a K−1

a (2.14)

We define the Essential Matrix as containing the pose relating camera view a to camera
view b and has the form:

E = [tab]×Rab (2.15)

for the rotation Rab and the translation tab between the two view planes. The fundamental
matrix can be transformed into the essential matrix by removing the intrinsic parameters
represented in the intrinisc matrix K:

E = K⊤
b FKa (2.16)

which allows us to consider the pose estimated from point correspondences where a camera’s
intrinics are known.
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Figure 2.3: Epipolar geometry relates 2D pixel coordinates xa in image a to the observed
3D coordinate X and the corresponding 2D pixel coordinates xb, xc in a second image b
and a third image c.

When using calibrated cameras the intrinsic parameters K are provided. When the
cameras are uncalibrated this matrix K must be estimated. Of particular note is Boug-
noux’s estimation [8] employing the fundamental matrix to estimate the focal length, which
is often used in projector camera systems [38, 17, 27, 21, 31]:

Î =

1 0 0
0 1 0
0 0 0

 f =

√
−p⊤b [eb]×ÎFpap⊤a F

⊤pb

p⊤b [eb]×ÎF ÎF⊤pb
(2.17)

for two image planes a and b related by F , each with a principle point p = [pu, pv]
⊤.

2.2.2 Three-View Geometry

The trifocal tensor is the natural progression into three views of the epipolar geometry
relationships defined in two views in the fundamental matrix formulation [23, 14, 17, 25, 2].
The trifocal tensor is a 3×3×3 tensor associated with three camera views which contains 27
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parameters. T = [T1, T2, T3], defined for three projective cameras P1 = [I3|0], P2 = [A|a4],
P3 = [B|b4] with each slice Tn the 3× 3 matrix:

Tn = anb
⊤
4 − a4b

⊤
n (2.18)

where ai, bi are the columns of A and B. Similar to the fundamental matrix, the trifocal
tensor can be derived from the relation between a 2D pixel correspondence relation between
the three images. The following equation for triplets of the i-th corresponding image point
across image planes a, b, c defines this relationship between pixel correspondences and the
trifocal tensor, for i, j, k = 1 : 3 as indices implied by the Einstein convention produce a
set of 9 equations [20, 23]:

xi
a(x

j
bx

k
cTi33 − xk

cTij3 − xj
bTi3k + Tijk) = 0 (2.19)

Given an estimate for the trifocal tensor [T1, T2, T3], we can retrieve the epipoles eab and
eac. The epipole eac can be computed as the common intersection of the lines represented
by the right null-vectors of T1, T2, and T3. Similarly, the epipole eab can be computed
as the common intersection of the lines represented by the left null-vectors of T1, T2, and
T3 [23, 14, 17, 25, 2]. With these epipoles we can retrieve an estimate for the essential
matrices:

Eba ≈ [eab]×
[
T⊤
1 eac T⊤

2 eac T⊤
3 eac

]
, Eca ≈ [eac]×

[
T⊤
1 eab T⊤

2 eab T⊤
3 eab

]
(2.20)

The application of Equation 2.16 allows the decomposition of these essential matrices into
pose parameters describing the rotation and translation between reference view a and both
views b and c.

2.3 Self-calibration

Self-calibration, sometimes referred to as autocalibration, of projector camera systems
refers to the ability of a system to be able to estimate the calibration parameters (pose
and intrinsic values) of the imaging devices without any form of user interaction [37].
Some self-calibration methods will also estimate the display scene [16, 27]. Many state-
of-the-art methods rely on calibration tools. It is common to see checkerboard planar
calibration target methods [24, 47, 12, 30], which are based on the initial work of Zhang [45].
Many state-of-the-art methods rely on either calibration tools such as these checkerboards,
additional scene information such as calibration objects [44] or require flat planar display
surfaces [12, 24, 26, 28, 30].
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Calibration relying on only geometric information provided by the Fundamental Matrix
[7, 15, 41, 27, 37, 32, 38] or the Trifocal Tensor is also common [16, 32, 2, 25]. These
geometric calibration methods will provide their own refinement or optimization strategy
meant to improve the initial estimate afforded by the weak calibration of the geometric
methods [37]. These optimization strategies may be through a unique cost function [37, 7,
16, 41, 27], or rely on existing refinement techniques such as bundle adjustment [24, 43, 32].

2.3.1 Structured Light

In order to estimate the fundamental matrix or trifocal tensor so that geometric calibration
can be done, it is necessary to obtain information relating pixel coordinates in the image
planes. A prominent component of geometric projector-camera self-calibration is the ex-
traction of information relating pixel coordinates in the image planes. Systems that focus
on scene understanding and calibration from images will also rely on some ability to relate
the real 3D world to the information extracted from the captured images. Geometric rela-
tionships themselves are only useful when provided with some data or information within
which to build relations. A significant advantage of a projector-camera system over general
camera-only systems is the ability to fully control a layer of information projected onto the
3D scene which will allow for very strong relationships to be generated. Systems employing
structured light use a projector to illuminate the scene with a particular pattern of images
which encode information that will be used to establish corresponding points within the
image plane of the projector and image planes of the observing camera(s) [19, 27, 24, 33].

There are many different models of structured light as demonstrated in Figure 2.4, ac-
commodating various scenarios, with two prominent categories of single-shot [39, 40, 33] or
multi-shot/continuous patterns [19, 27]. For our purposes, the differentiating characteristic
between these categories is that a single-shot method provides one pattern that must be
captured by a single camera, while a multi-shot method assumes that cameras are fixed
and stable throughout a series of projected patterns, or a continuous pattern that varies
over time, where the entire sequence of the pattern must be observed by the camera in
order to be decoded. A single-shot method better facilitates a system where one camera
moves through multiple poses and observes the unchanging pattern as it moves. Some
projector-camera methods relying upon physical calibration targets will project structured
light onto the calibration object to generate additional relations between the structured
light patterns and known information about the world [24, 47].

These structured light techniques aim to produce sets of pixel correspondences that
identify coordinate locations in each image plane that correspond to the same observed 3D
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feature in the display environment. All of the 2D points xi
j correspond to the same single

3D point X i.

xi
j =

[
ui
j

vij

]
(2.21)

where j describes to which image plane (projector view, camera view) the set of points
belongs, and [u, v]⊤ indicates the 2D pixel location of the ith 3D feature that is captured
in the image plane. From these sets of point correspondences, we can use the identified
geometric relationships to begin to construct an understanding of our scene. Establishing
pixel correspondences using structured light methods allows us the ability to relate the
projected pattern in the projector view to the captured camera images and treat the pro-
jector as a camera [33]. This enables the geometric camera calibration strategies discussed
to be applied to the projector calibration problem.

2.3.2 Refining A Geometric Estimate

Epipolar geometry formulations such as the fundamental matrix and the trifocal tensor
are said to provide a weak calibration for camera systems [23, 17, 14]. Many estimation
methods require a minimum number of pixel correspondences to get an exact solution,
but where long sequences of thousands of pixel correspondences are available from robust
structured light solutions, these estimation methods seek a minimal solution instead of an
exact solution. Such an optimization might be a uniquely proposed strategy [37, 7, 16, 41,
27], or might rely on tested strategies such as RANSAC estimation [23, 14, 17, 27, 5] or
Bundle Adjustment [36, 10, 24, 11, 18, 34, 9, 46].

We focus on the bundle adjustment refinement strategy. Through consideration of the
2D reprojection error, bundle adjustment aims to refine a visual reconstruction to produce
jointly optimal 3D scene and camera calibration estimates:

min
Θ,X

1

M

1

N

M∑
j=1

N∑
i=1

||xi
j − π(Θj, X

i)||2 (2.22)

over i = 1 : N image points, where π describes the 3D to 2D projection (Equation 2.4)
of 3D scene coordinate X by estimated parameters Θj = {Kj, Rj, tj}, for the jth image
plane in the set of M image planes. The following equation defines π as a mapping from
3D coordinate X to it’s 2D representation in the image plane characterized by camera
parameters K,R, t:

π(Θ, X) : X −→ x, x = K[R|t]X (2.23)
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Figure 2.4: Illustration of different structured light methods categorized by sequential
images versus single images projected and captured. Example images copied from [19].
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Figure 2.5: Illustration of bundle adjustment refinement. Image planes are estimated
based on known or approximate 3D display surface coordinates and camera or projector
calibration parameters. Estimated image planes (purple) are compared with the measured
image planes (black) and the parameters used to generate the estimated image planes are
adjusted to minimize the difference.
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Figure 2.5 describes this strategy. The estimation or known 3D coordinates X rep-
resenting the display surface are projected into an approximate 2D image plane by the
estimated camera parameters Θ. These approximate image planes (purple in Figure 2.5)
are compared with the measured image planes (black) and the objective of the minimization
is to reduce the residual r between them:

rij = xi
j − π(Θj, X

i) (2.24)

Bundle adjustment has a flexibility which allows it to adapt to various problem formula-
tions, such as fixed or varying intrinsic parameters, and fixed or varying 3D coordinates
[36, 23, 17]. Bundle adjustment must contend with being sensitive to the provided initial-
ization [23] and can be an extremely large minimization problem when large sets of pixel
correspondences are considered [23, 36]. The use of bundle adjustment will be further
formulated in Section 3.2 and Chapter 5.
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Chapter 3

Problem Formulation

As motivated in Chapter 1, this thesis aims to develop a process of geometric calibration
for projection mapping systems that improves accessibility and affordability of projection
mapping technology by reducing the prerequisites of calibration. This thesis aims to focus
on eliminating reliance on known cameras or real calibration targets.

As established in Section 2.3, geometric calibration relies on established pixel cor-
respondences between image view planes. This process will assume that some method
[19, 27, 24, 33] of obtaining sets of pixel correspondences between image planes and the
display environment already has been used to generate the information that will be used
as input.

In this thesis an initial estimate of the scene is generated by applying geometric con-
straints on these pixel correspondence sets. As mentioned in Section 2.2, these methods
produce a projective geometric calibration for the scene, which has been found insufficient
for complex geometric displays. A bundle adjustment optimization (Section 2.3.2) uses
this geometric estimate as an initial point and minimizes reprojection error to recover the
scene information.

Discussed in Section 2.3, while the projector is modelled as an inverse camera, it tends
to have parameter behaviour that does not follow the same patterns as a camera. This
problem formulation establishes a scene understanding from the camera information before
integrating the projector, which allows the projector to be estimated separate from any
assumptions about patterns within the parameters.

This chapter formulates the methods that take us from an initial set of pixel correspon-
dences across three camera images and a projector image plane to the full set of scene and
parameter estimates, as described by Figure 3.1.
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Figure 3.1: Method information flow diagram from pixel correspondences to final scene
and parameter estimates

23



Table 3.1: Competing characteristics comparison of geometry- and calibration target-based
approaches.

Approach Competing Characteristics

Calibration target
based

Higher accuracy
Address depth,
scale ambiguity

Scene contraints

Geometry based Lower accuracy
Does not address
depth, scale

Flexibility
(no scene constraints)

3.1 Geometric Calibration Estimate

There are two prominent pathways of calibration approaches: calibration target based
approaches, and geometric-based approaches. The main properties of these different ap-
proaches are compared in Table 3.1. While calibration target based approaches provide
more accuracy and scene definition they require the limitations on display environment
that we are trying to overcome. Subsequently, we focus on geometry-based approaches for
the scene flexibility they afford.

3.1.1 Moving Camera

Having decided upon a geometric based approach, and equipped with the point correspon-
dences as measured information, we are at this point able to construct sets of relations
between the projector image plane and the camera image planes that will ultimately result
in the final calibration. As described in Section 2.1, the following constraints define the
considered geometric approaches for the Fundamental Matrix F relating a 2D coordinate
x in two images a and b:

xb
⊤Fxa = 0 (2.11 revisited)

and for the Trifocal Tensor T3×3×3, relating 2D coordinate x across three images a, b and
c in a set of 9 equations indexed by i, j, k = 1 : 3:

xi
a(x

j
bx

k
cTi33 − xk

cTij3 − xj
bTi3k + Tijk) = 0 (2.19 revisited)

In order to proceed, the image planes that correspond to views a, b, and c must now
be determined. Previous estimation strategies that rely on single-camera and projector
pairs [41, 27, 24] treat the projector image plane the same as a captured camera image
plane of measurement signals, while other methods use a set of cameras to establish scene
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understanding without the projector image planes [38, 39], integrating the projector views
into a defined scene.

We consider the information that must be found. To use a camera image plane and a
projector image plane for geometric calibration, we have the minimum set of parameters
for which to solve. However, these methods rely on decomposition of the estimated Fun-
damental Matrix (see Section 2.2.1) or Trifocal Tensor (see Section 2.2.2) into the intrinsic
and extrinsic components of the different view planes. The decomposition is facilitated by
the simplifying assumptions made about the camera intrinsic parameter structure. Com-
mon camera assumptions are principle point within the centre of the image, and equal
focal length in the x and y directions. These assumptions are not necessarily true for the
projector, but are integral to the decomposition with uncalibrated cameras. This makes
geometric calibration with the projector image plane challenging.

Each camera or projector is characterized by a set of 11 parameters. From Equation 2.4
the set of camera parameters that define a camera model are:

KR
[
I3 C

]
(2.4 revisited)

This intrinsic matrixK contains 5 parameters, focal length fx, fy, principle point px, py, and
skew s. The extrinsic parameters include the rotation matrix R has 3 degrees of freedom,
which is fully defined by 3 parameters, and the camera centre position C, described by 3
coordinates. Each subsequent imaging device provides an additional 11 parameters that
must be found. To avoid this, we formulate with a moving camera which allows us to
assume a minimum set of parameters by holding the 5 intrinsic parameters constant across
image views. The additional parameters that must be found are reduced to 6 parameters,
the 3 for rotation and the 3 for camera centre position, for each additional camera view. A
single moving camera allows the benefit of multiple camera views in geometric calibration
while reducing the overall set of parameters that must be found. Consequently, we set
the image views a, b, c for our Fundamental Matrix and Trifocal Tensor strategies as our
moving camera image planes c1, c2, c3, to develop a scene understanding with our camera
views for later projector integration:

a = c1, b = c2, c = c3 (3.1)

3.1.2 Camera Estimation

We aim to eliminate reliance on precalibrated and fixed pose camera limitations as mo-
tivated in Chapter 1, which means that we assume all of the camera intrinsic and pose
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parameters are initally unknown and must be estimated. We make a set of assumptions for
the case of a camera-camera calibration problem with a moving camera of equal intrinsic
parameters. These assumptions are used throughout the geometric estimation strategies
used (Fundamental Matrix and Trifocal Tensor estimation), but as they are themselves ap-
proximate assumptions about regular behaviour and not absolutes, they are also adjusted
in the later refinement strategies. The following four assumptions are made:

1. Kc1 = Kc2 = Kc3 same intrinsic matrix for all camera views.

2. pc1 = pc2 = pc3 same principle point for all camera views.

3. pc1 = 1
2
[UV ] principle point for the camera is the centre of the camera image plane

for a camera resolution [U, V ].

4. Assume zero skew (s = 0) and unit aspect ratio (fx = fy).

Points 1 and 2 follow from using the same camera to capture all the images, where the only
difference is position within the scene. Points 3 and 4 are made based on common camera
behaviour of square pixels and centre-image principle point axis. From these assumptions,
estimation strategies such as Bougnoux’s [23, 14] provide an initial estimate for the focal
length f . While points 1,2, and 4 will remain true throughout the calibration process, point
3 and the Bougnoux’s focal length method are both used to provide an initial estimate and
both initial focal length and principle point will be allowed to adjust in the later refinement.
Having obtained reasonable estimations for all the camera intrinsic parameters, the initial
single intrinsic matrix for the camera views is constructed from Equation 2.5:

Kc1 = Kc2 = Kc2 −→ Kc =

f 0 1
2
U

0 f 1
2
V

0 0 1

 (3.2)

defining intrinsic matrix K, focal length f = fx = fy, principle point px, py found from
the camera resolution [U, V ], and skew s = 0. The effort of calibrating the camera is
significantly reduced, as these assumptions about typical camera parameter behaviour
allow for the intrinsic parameters to be estimated without relying on any prior information
other than the image plane (estimating the principle point). This allows us to move to
estimating pose quite rapidly, where we aim to later recover any loss of accuracy from the
generalization of camera behaviour.

We aim to estimate the position of our cameras within the display environment. We use
structured light strategies to provide pixel correspondences between the display surface, the
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projector image plane, and all the camera image planes. Figure 3.2 describes the system
environment.For each coordinate in the set of i = 1 : N observed image points we employ
Equation 2.4:

xi
j = PjX

i
R, j = p, c1, c2, c3 (3.3)

The set of real world 3D coordinates XR are related by a projection matrix Pj to a set
of pixel coordinates in the image view xj. These relations are made in by the projection
matrix Pp to a set of pixel coordinates in the projector view xp. Corresponding relations
are also made by a different projection matrix Pc1 , Pc2 , Pc3 to sets of pixel coordinates in
the camera views xc1 , xc2 , xc3 as the camera described with intrinsic parameters Kc moves
through the different image perspectives denoted by c1, c2, c3.

For pose estimation, and employing the definition of camera pose from Equation 2.6 we
position the world coordinate system such that the camera centre for view one aligns with
the origin. Then, each subsequent view is measured with respect to the camera centre at
the origin. Rij, tij describes a rotation and translation from the i-th camera view to the
j-th camera view:

Pc1 =
[
Kc 0

]
, Pc2 = Kc

[
R12|t12

]
, Pc2 = Kc

[
R13|t13

]
(3.4)

Provided this assumption and having obtained an estimate of the Fundamental Matrix
relating the camera views, we use Equation 2.16 to extract the Essential Matrix Eji which
describes the pose relating the j-th camera view to the i-th camera view for which the
calibration Kc is known:

E ≈ K⊤
c FKc (3.5)

where this Fundamental Matrix estimation and decomposition to the Essential matrix
would be completed once for each additional image view after the first image pair. Alter-
natively, provided an estimate of the Trifocal Tensor, the essential matrix between views
might be computed from the epipoles retrieved from the Trifocal Tensor:

E21 ≈ [e12]×
[
T1 T2 T3

]
e13, E31 ≈ [e13]×

[
T1 T2 T3

]
e12 (2.20 revisited)

where [a]× is the skew-symmetric matrix representation of vector a from Equation 2.12.
From Equation 2.15, we know the essential matrix has the form:

Ej1 ≈ [t1j]×R1j, j = 2, 3 (3.6)

This provides us the information needed to complete the initial estimate of calibration for
the camera views.
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Figure 3.2: Scene diagram illustrates the environment for geometric calibration of the
projector-camera system. A single camera (green) moves through a set of camera poses,
observing the display surface. The projector (red) is projecting upon the display surface,
and remains stationary.
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3.1.3 Scene Triangulation and Projector Incorporation

Without a calibration target or real world 3D coordinates, we do not know the set of real
world 3D coordinates XR. Part of the geometric calibration of the display environment is
estimating the 3D surface. The calibration estimate of the camera can be estimated from
only 2D pixel coordinate relationships between image planes. This calibration estimate
can then be used to construct a 3D scene estimate XE. XE is an estimate of the set of real
world 3D coordinates XR:

XE ≈ XR + ϵ (3.7)

for some unknown estimation error ϵ.

Provided a set of adjusted camera intrinsic parameters and pose estimates a triangula-
tion method τ [42, 22, 17] uses the set of captured pixel correspondences {xc1 , xc2 , xc3} to
construct the 3D scene estimate XE:

XE = τ(Θc1 ,Θc2 ,Θc3 , xc1 , xc2 , xc3), (3.8)

where Θj = {Kj, Rj, tj}, for the jth image plane.

These estimated coordinates are then used to estimate the calibration of the projec-
tor through the direct linear transformation estimation described by Equation 2.8. As
our projector has provided the location encoding pattern for obtaining our camera point
correspondences, the locations of corresponding points between xp and XE are known.
This strategy allows projector calibration to be constrained by incorporating the projector
calibration into a known scene. This will be further detailed in Chapter 4.

3.2 Bundle Adjustment

A Fundamental Matrix or Trifocal Tensor estimate for a camera scene is said to weakly
calibrate the system [23, 14]. As discussed in Section 2.3.2, calibration methods often
employ some optimization strategy to produce a more accurate system estimate. Bundle
Adjustment [14, 17, 23, 36] is a flexible and reliable method for adjusting the found cali-
bration of the cameras as well as the points within the scene estimate. We consider two
formulations of bundle adjustment, one where the 3D coordinates X are the estimated
coordinates XE, and one where the 3D coordinates X are the virtual model coordinates
described in Section 3.2.1. Through consideration of the 2D reprojection error, bundle
adjustment aims to refine a visual reconstruction to produce jointly optimal 3D scene and
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camera calibration estimates:

min
Θ,X

1

M

1

N

M∑
j=1

N∑
i=1

||xi
j − π(Θj, X

i)||2 (2.22 revisited)

over i = 1 : N image points, where
π : X −→ x (2.23 revisited)

describes the 3D to 2D projection (Equation 2.4) of 3D scene coordinate X by estimated
parameters Θj = {Kj, Rj, tj}, for the jth image plane in the set of M image planes.

This refinement strategy flexibility allows a growing number of M image planes to be
used, providing an opportunity to incorporate further views that may aid in overcoming
unknown scene challenges such as occlusions. This formulation is also very adaptable to the
application, with methods that assume precalibrated cameras holding fixed the intrinsics
K over adjustment, or holding fixed the set of 3D scene coordinates X if they are provided
as known ground truth. An example of this would be the coordinates of known landmarks
in remote sensing images; these coordinates would not need to be adjusted as they are
known and are instead their fixed location can be used to improve the camera position
estimate.

3.2.1 Virtual Calibration Target

In the case of the projection mapping display system, an image or sequence of images
is projected onto a surface in a way that fits the surface. These images are part of an
intended artistic display. In order to generate the art to be displayed it is necessary that
some sort of virtual understanding of the projection surface is known. At some point in
advance of the final calibration and operation of the projection mapping system, some sort
of 3D understanding of the surface was needed by the graphic artist to produce the image
to be projected, especially in the case where the artist aims to fit the design to certain
3D features of the projection surface. This allows us to assume that some virtual model
knowledge exists.

We must also assume that the surface knowledge is approximate and may not be relied
upon completely. This is reflected in the optimization by relying only on a sparse set
of keypoints instead of any full virtual model that might be available. Many display
environments will experience some wear or weathering, or the virtual knowledge might be
an approximation of something that is difficult to measure accurately such as a complex
statue. We assume that a sparse set of 3D model coordinates X i

m = (xi, yi, zi) are known,
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and that we can find the closest point correspondences in the set xi
j = (ui, vi) for each

camera view j, as seen in Figure 3.3.

This short fixed keypoint bundle adjustment is completed with the virtual calibration
target Xm as our set of 3D coordinates. This is completed after the estimation of the
camera intrinsic parameters Kc and the pose parameters R12, t12, R13, t13, and used to
provide an adjusted set of these camera parameters in advance of using them to generate
the estimated coordinates XE.

Figure 3.3: Example of a virtual calibration target. Key points of the synthetic model (left)
are matched to their locations in the point correspondence sets of two moving camera views.
Lines added to visualize the correspondence relationships.

3.2.2 Triangulated Coordinates

As discussed in Section 3.2.1, a sparse set of model coordinates Xm are assumed to be
sufficiently sparse that the set is not enough to assure a complete surface understanding,
and even if accurate, such a set would not be able to reflect expected changes in a scene’s
surface, such as a building facade weathering over time. A sparse set of model coordinates
would also not be able to make use of the large amount of scene information that would
be captured by a structured light system. Following the short bundle adjustment the
adjusted camera parameters are used to generate a set of estimated 3D coordinates XE.
This estimation of XE is completed by triangulation τ as discussed in Section 3.1.3. This
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set of coordinates will be used to estimate the projector parameters, and a full bundle
adjustment will adjust the camera and projector parameters, and the estimated XE 3D
coordinates to generate the final scene understanding.

3.2.3 Parameter Adjustment Flexibility

The flexibility of bundle adjustment allows different formulations of bundle adjustment to
be used throughout a calibration method. A formulation may hold particular parameters
fixed throughout adjustment, versus allowing them to be adjusted throughout the method.
In the short bundle adjustment where the virtual key point set Xm is being used, the 3D
coordinates Xm are held fixed as they can be assumed to be a known ground truth. For
the set of estimated coordinates XE, these 3D coordinates XE are be adjusted with the
other parameters as they too are estimates influenced by error in the parameters.

Similarly, any parameters within the estimated camera and projector calibration might
be held fixed or otherwise linked. As the camera images are all from a single moving
camera, the intrinsic parameters Kc are adjusted jointly across the image planes to reflect
that the intrinsic parameters are consistent for the camera across the images. Chapter 5
will detail the different formulations of bundle adjustment employed in this thesis.
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Chapter 4

Geometric Camera Calibration

The geometric camera calibration aims to estimate the camera intrinsic and pose param-
eters which are used to estimate the projector intrinsic and pose parameters and the 3D
scene coordinates. As described in Section 3.2, this camera parameter estimate aims to
provide a sufficient initialization for a bundle adjustment recovery. As this thesis aims to
eliminate reliance on physical calibration targets and prior information describing the cam-
eras, the geometric camera calibration parameter estimate must rely only on information
provided by the image planes (captured by the camera or cast by the projector). The pa-
rameter estimation strategy was formulated in Section 3.1, and a detailed solution will be
proposed here. This chapter details the use of pixel correspondences xj to produce an esti-
mate of the camera intrinsic parameters Kc and the set of camera poses Rj, tj, j = c1, c2, c3
through two geometric estimation processes, the fundamental matrix estimation described
in Section 4.1, and the trifocal tensor estimation discussed in Section 4.2.

The captured images are known information, including the location encoding informa-
tion from structured light methods (Section 2.3.1 that provides the sets of pixel correspon-
dences x, as well as the resolution of the images. We can say that the resolution of the
camera or the projector, which is the size of the captured or projected image, can be easily
found if unknown. Methods exist [19, 27, 24, 33, 13] to produce these pixel correspondences
with structured light strategies, which are patterns projected on the scene surface which
encode location information in camera and projector image planes [28], as described in
Section 2.3. These methods allow us to construct our set of pixel correspondences:

xi
j =

[
ui
j

vij

]
(2.21 revisited)

for a set of i = 1 : N 2D pixel coordinates where these points are matched across the set
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of j = 1 : M observed camera image planes and the known pattern in the j = p projector
image plane. From these sets of pixel correspondences, we can begin to construct an
understanding of our scene. We use only the set of j = {c1, c2, c3} observed camera image
planes in order to construct our geometric camera calibration parameter estimate. The
projector image plane pixel correspondences will be later used to estimate the projector
parameters from the scene understanding constructed from the camera estimate.

Both the fundamental matrix and the trifocal tensor formulations detailed in Section 3.1
can be estimated with just pixel correspondences. Then, both the fundamental matrix and
the trifocal tensor rely upon an initial knowledge of the camera intrinsic parameters Kc to
extract the pose information. This set of intrinsic parameters includes the camera focal
length f(fx, fy) and principle point p = (px, py), both of which must be estimated. We
generate an estimate of the intrinsic parameters assuming that the principle point is at
the centre of the camera image, p = 1

2
[U, V ]⊤ for camera with resolution [U, V ]⊤. A focal

length can be estimated using the principle points and the Fundamental matrix F relating
two images a, b through Bougnoux’s method [8]:

Î =

1 0 0
0 1 0
0 0 0

 f =

√
−p⊤b [eb]×ÎFpap⊤a F

⊤pb

p⊤b [eb]×ÎF ÎF⊤pb
(2.17 revisited)

With this focal length estimate, the intrinsic matrix Kc can be assembled:

Kc =

fx 0 1
2
U

0 fy
1
2
V

0 0 1

 (3.2 revisited)

This estimate for the camera intrinsic parameters is then used to extract pose information
from the fundamental matrix or the trifocal tensor.

4.1 Fundamental Matrix

As described in Section 2.1, the fundamental matrix can be estimated from pixel corre-
spondences. The formulation for a three-view fundamental matrix estimation considers
two pairs of image planes; the pair {c1, c2} and the pair {c1, c3}. The world coordinate
system is positioned such that the camera centre for c1 aligns with the origin with zero
rotation. This allows both the other camera view poses Rc2 , tc2 , Rc3 , tc3 , to be measured
with respect to the first image. Revisiting Equation 2.11, two fundamental matrices are
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estimated applying the following constraint to matched point correspondences in images
1, 2, 3:

x2
⊤F21x1 = 0, x3

⊤F31x1 = 0 (4.1)

The estimated Kc intrinsic parameters are now used with these estimated fundamental
matrices F to extract the essential matrices E by Equation 2.15.

E21 ≈ K⊤
c F21Kc, E31 ≈ K⊤

c F31Kc (4.2)

Then, the pose information contained in the essential matrix is decomposed into rotation
and translation information. As the world coordinate system is positioned such that the
camera centre for c1 aligns with the origin, the rotation and translation captured in the
essential matrix is entirely in the other considered image plane. Equation 2.15 is used to
generate these pose estimates.

E21 ≈ [tc2 ]×Rc2 , E31 ≈ [tc3 ]×Rc3 (4.3)

where Rc1 is the 3 × 3 identity matrix and tc1 is a 3 × 1 zero vector. At this stage the
fundamental matrix has been used to generate an estimate for the camera parameters
Kc as well as the three camera view poses Rj, tj, j = {c1, c2, c3}. Next, a short bundle
adjustment refinement is performed as described in Section 5.1, followed by an estimation
of the projector parameters and display surface as described in Section 3.1.3.

4.2 Trifocal Tensor

Like the fundamental matrix, and as detailed in Section 2.1, the trifocal tensor can also be
estimated from pixel correspondences. The trifocal tensor approach is employed to explore
whether the additional image plane provides such additional geometric constraints as to
improve the camera parameter estimate. Where the fundamental matrix can only be used
to relate two images and must be found twice for a set of three images, the trifocal tensor
can establish relations between the set of three images directly. This approach considers
the set of image planes {c1, c2, c3}. The world coordinate system is still positioned such
that the camera centre for c1 aligns with the origin with zero rotation. This allows both
the other camera view poses Rc2 , tc2 , Rc3 , tc3 , to still be measured with respect to the first
image. Revisiting Equation 2.19, the 3× 3× 3 trifocal tensor [T1, T2, T2] is estimated.

xi
c1
(xj

c2
xk
c3
Ti33 − xk

c3
Tij3 − xj

c2
Ti3k + Tijk) = 0 (2.19 revisited)
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where the Trifocal Tensor T3×3×3, relates the 2D pixel correspondences xj across three
images a, b and c in a set of 9 equations indexed by i, j, k = 1 : 3.

To estimate the focal length with Equation 2.17 we need a fundamental matrix. The
trifocal tensor can provide an estimate for the fundamental matrix that we need:

F21 ≈ [e12]×
[
T1 T2 T3

]
e13, F31 ≈ [e13]×

[
T1 T2 T3

]
e12 (2.20 revisited)

using the epipoles e12 and e13. These epipoles are computed from the left and right null-
vectors respectively of [T1, T2, T2]. With this estimate of F21, F31, the intrinsic parameters
Kc can be assembled with a focal length and principle point estimate. The next steps in
this approach are the same as the fundamental matrix. Equations 4.2 use this Kc estimate
to extract the essential matrices E21, E31, then because the world coordinate system is
positioned such that the camera centre for c1 aligns with the origin, Equations 4.3 can be
used to provide an estimate for the pose information Rj, tj, j = {c1, c2, c3}. Provided this
set of generated camera intrinsic and pose parameters, the short bundle adjustment refine-
ment is performed as described in Section 5.1, followed by an estimation of the projector
parameters and display surface as described in Section 3.1.3.
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Chapter 5

Bundle Adjustment

The objective of this application of bundle adjustment [36, 10, 24, 11, 18, 34, 9, 46] is to
take the geometric calibration estimate of the image plane intrinsic and pose parameters
K,R, t as an initial estimate and produce a refined estimate for the geometric calibration of
the camera views, projector view, and the 3D scene estimate. Bundle adjustment methods
were formulated in Section 3.2, and a detailed solution will be proposed here.

Two different bundle adjustment refinement strategies are proposed, a short bundle
adjustment (Section 5.1) that focuses just on the camera views and the virtual calibration
target, and a full bundle adjustment (Section 5.2) that includes all the captured image
planes and the set of estimated 3D coordinates. These different formulations are meant
to focus on different objectives. Both these formulations consider bundle adjustment as
the minimization of 2D reprojection error of i = 1 : N 3D points {X i} observed in j =
1 : M image planes characterized by the image plane intrinsic and pose parameters Θj =
{Kj, Rj, tj} :

min
Θ,X

1

M

1

N

M∑
j=1

N∑
i=1

||xi
j − π(Θj, X

i)||2 (2.22 revisited)

The short bundle adjustment formulation considers a single camera with multiple view
planes, and does not adjust the 3D coordinates, assuming they are known and fixed, as
discussed in Section 3.2.1. The full bundle adjustment considers all of the camera views
and the projector view, and adjusts a set of estimated 3D coordinates, as detailed in
Section 3.2.2. These details are further elaborated on below. Briefly we will focus on the
similarities across the formulations for bundle adjustment employed in this thesis.

A key aspect of the single moving camera formulation (Section 3.1.1) was minimizing
the number of parameters that must be estimated. This moving camera allows us to assume

37



the set of intrinsic parameters Kc to be the same across all camera views. This assumption
remains consistent throughout bundle adjustment, where the camera intrinsic parameters
are adjusted jointly across the image views. The assumption is represented in the set of
camera parameters as the following, across the employed bundle adjustment methods:

Θ = {Θj = {Kc, Rcj , tcj}} for j = c1, c2, c3 (5.1)

We do not use this assumption for j = p, the projector parameters, as the projector will
have its own intrinsic parameters Kp. Both the short and full bundle adjustment methods
rely on a method of projecting the 3D coordinates to pixel correspondences based on the
estimated camera or projector parameters. This projection is defined consistently across
the bundle adjustment strategies:

π(Θj, X) : X −→ x̂, x̂i
j = Kj

[
Rj tj

] [X i

1

]
(2.23 revisited)

This results in a homogeneous 3D coordinate x̂ = [wu,wv, w]⊤, where the final pixel
coordinate is found by the following operation:

x =

[
u/w
v/w

]
(5.2)

where this pixel coordinate falls in the estimated camera plane corresponding to the set of
parameters used to project it from 3D to 2D.

Finally, both short and full bundle adjustment strategies share that they are formulated
as a nonlinear least squares optimization method [36]. Nonlinear least squares estimation
searches for the minimum of an objective function fitting N observations with a non-
linear model of k unknown parameters such that N ≥ k. Here, we apply non-linear
least squares estimation to Equation 2.22. Our observations are our pixel correspondences
and our parameters are the sets of estimated camera and projector parameters Θj and
estimated 3D scene coordinates X. Levenberg-Marquardt method [29, 36] is used to solve
this nonlinear least squares problem minimizing 2D reprojection error for both short and
full bundle adjustment.

5.1 Short Bundle Adjustment: Camera and Virtual

Calibration Target Coordinates

The first bundle adjustment strategy employed in the proposed method encountered af-
ter an estimated has been generated for the camera parameters. The virtual calibration
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model is used as a set of known and fixed 3D coordinates to adjust these estimated cam-
era parameters in advance of scene estimation and projector parameter estimation. This
fixed keypoint adjustment focuses on recovering the camera estimate with linked intrinsic
parameters across the camera views. This strategy assumes that there is a provided set of
3D virtual scene model coordinates Xm that represent the observed scene up to a scale,
discussed in Section 3.2.1. It also assumes that there has been some matching of the nearest
pixel correspondences in each image plane to the virtual representation of each observed
3D key point. For the purposes of this thesis this matching has been completed manually
across a small set of 10 key points. This keypoint bundle adjustment focuses on adjusting
the camera intrinsic and pose estimate generated from the camera geometric calibration
estimate, and we can rewrite Equation 2.22 as the following:

min
Θ

1

3

1

10

3∑
j=1

10∑
i=1

||xi
j − π(Θj, X

i
m)||2 (5.3)

over i = 1 : 10 3D scene model coordinates, and the set j = 1 : 3 of camera views is c1, c2, c3.
The complete set of parameters considered in this minimization are the following:

θc1 = {Kc, Rc1 , tc1}, θc2 = {Kc, Rc2 , tc2}, θc3 = {Kc, Rc3 , tc3} (5.4)

where the intrinsic parameters Kc are adjusted jointly across the views.

A key characteristic of this strategy is that it does not adjust the set of 3D coordinates,
instead holding them fixed. The objective of this formulation is to use the provided virtual
scene knowledge to provide an improved estimate of the camera position and intrinsic
parameters as this estimate of the camera is relied upon for the subsequent estimation
of the projector parameters and the display surface. Error in the camera estimate will
accumulate more inaccuracy in the later estimation. The 3D coordinates in the virtual
model are a scaled representation of the real observed 3D display surface. Holding these
points fixed allows the camera parameters to be bounded by the real relative distances
between 3D coordinates. A set of estimated 3D coordinates would have error themselves
if projected from an erroneous camera estimate, and would not provide quite as reliable of
an adjustment to the camera parameters.

5.2 Full Bundle Adjustment: All Views and Estimated

Scene Coordinates

The second bundle adjustment strategy in the proposed method is a full adjustment of all
the estimated camera parameters, projector parameters, and estimated 3D scene coordi-
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nates. As detailed in Section 3.1.3, this strategy assumes a large set of of estimated 3D
coordinates XE generated from triangulation of the adjusted camera parameters following
the first bundle adjustment. The upper and lower bounds for the total number of N scene
coordinates employed by the full bundle adjustment can be established based on the per-
formance accuracy of structured light methods. We have assumed a single moving camera
that observes a single frame from three positions, so we can consider the performance of
Single-Shot Structured Light (SSSL) methods [33, 13], compared in Table 5.1. We say that
1000 ≤ N ≤ 8000 for the approximate range of possible pixel coordinates shared across
the four image planes and we can rewrite Equation 2.22 as the following:

min
Θ,XE

1

4

1

N

4∑
j=1

N∑
i=1

||xi
j − π(Θj, X

i
E)||2, (5.5)

over i = 1 : N estimated 3D scene coordinates, where the intrinsic parameters Kc are
adjusted jointly across the camera views, Kp is used for the projector view, and the set
j = 1 : 4 of considered image views are c1, c2, c3, p. The complete set of parameters
considered in this minimization are the following:

θc1 , θc2 , θc3 , θp = {Kp, Rp, tp}, XE (5.6)

where θc1 , θc2 , θc3 are as defined previously in Equation 5.4.

A key characteristic of this strategy is that it does adjust the set of estimated 3D
coordinates, where the previous short bundle adjustment does not as it holds the keypoints
fixed. The set of estimated scene coordinates are generated from a camera estimate, and
will have some associated approximation error. The objective is to generate a final adjusted
scene estimate and set of camera and projector parameters. The benefit of this set of points
over the virtual model is that these points will fit the surface of the scene and any features
between the points in the sparse virtual model may be observed and represented in the
scene estimate. The optimization is then able to search for a minimum that accounts for
error in both the estimated scene and the image parameters.
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Table 5.1: Comparison between the number of pixel correspondences (N), RMSE between
the 3D reconstructed shape with the CAD model of the object and detection run time of
two SSSL methods [33, 13]. Table data provided by [33].

Shapes Methods N RMSE (pixels) Run time (seconds)

Curve
Method A [33] 4496 7.12 10.80 ×103

Method B [13] 1186 11.71 29.67

ZigZag
Method A [33] 8064 5.77 9.82 ×103

Method B [13] 2348 6.07 47.12
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Chapter 6

Experiments

The developed geometric calibration estimation methods for calibrating a projector-camera
system are implemented for both the fundamental matrix (Section 4.1) and trifocal tensor
(Section 4.2) formulations. These methods are used to estimate the camera intrinsic pa-
rameters and the three camera poses. This camera estimate is adjusted with a short bundle
adjustment (Section 5.1). The adjusted parameters are used to triangulate a display surface
estimate and generate a projector estimate (Section 3.1.3). Then the full set of estimated
information, which includes the camera intrinsic parameters, the three camera poses, the
projector intrinsic parameters, the projector pose, and the estimated 3D coordinates of the
display surface are all jointly adjusted with a full bundle adjustment (Section 5.2). This
chapter discusses the experiments conducted to explore the performance of the method
on synthetic data. Synthetic data permits the direct comparison of estimated values to
the ’ground truth’ of each parameter, which can be difficult with real data. Section 6.1
explores the performance metrics considered and the setup of the synthetic experiments.
Section 6.2 presents the results of these experiments, and Section 6.3 discusses these results
and their implications.

6.1 Experimental Procedure

This thesis considers several metrics for performance. The “look” of a resulting reconstruc-
tion is often used to measure performance, which makes a quantitative assessment difficult
[37]. A benefit of synthetically generated display environments is that error in the esti-
mated parameters corresponding to each image plane (K,R, t) can be directly compared
to the parameters used to generate synthetic data.
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Reprojection error is measured in pixels, and is found as a sum across all pixel corre-
spondences, where Q is the total number of pixel correspondences Q = M×N , the number
of pixel correspondences times the number of image planes. Average reprojection error ϵp
is measured in pixels and can be used easily for synthetic and real data tests because it
compares the set of estimated values to the known pixel correspondence sets. Each pixel
coordinate in each image plane is considered.

ϵP =

√∑Q
i (x

i − x̂i)2

Q
(6.1)

Parameter error can be measured for the synthetic data as a comparison between the ‘true’
synthetic parameter and the estimated parameter. We measure the angular error ϵR (in
degrees) between the true rotation Ra and the estimated rotation Rb:

ϵR = cos−1

(
tr(R⊤

a Rb)− 1

2

)
(6.2)

and we measure the angular error in translation ϵt using the cosine formula for dot products
between two vectors between the true translation ta and the estimated translation tb:

ϵt = cos−1

(
ta · tb

||ta|| · ||tb||

)
(6.3)

The intrinsic parameters are considered seperately as focal length f = (fx, fy) and principle
point p = (px, py) for the camera and projector. These parameters are evaluated based on
the percent error, measured as the difference between each estimated parameter b and the
true parameter value a over the true value:

ϵ% =
|ax − bx|+ |ay − by|

(ax + ay)
× 100 (6.4)

The standard display environment for our experiments is as described in Chapter 3 and
represented in Figure 3.2. Two display scenes are employed in the experiments, and both
are each composed of a set of 3D coordinates representing some non-planar display surface.
Display surfaces are provided by Christie Digital, and can be seen in Figure 6.1.

The synthetic data are generated through the projection of a provided set of 3D coor-
dinates representing a known model by a generated set of calibration parameters and pose
for each image view. Points are projected onto three camera views with consistent camera
intrinsic parameters Kc, and three different poses Rcj , tcj , j = c1, c2, c3. Points are also
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(a) “Wolfhead” Display Model (b) “ZigZag” Display Model

(c) “Wolfhead” Real Display Scene (d) “ZigZag” Real Display Scene

Figure 6.1: Non-planar display scene model used in synthetic data compared to their real
world counterparts. Models and images provided by Christie Digital Systems Inc.
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projection onto a projector view, with projector intrinsic parameters Kp and a fourth pose
Rp, tp. The intrinsic parameters of the camera were modeled from available information
describing cell phone cameras, and the projector was modeled from the real-world setup of
a Christie DWU670-E WUXGA (1920 x 1200) projector. These points are generated with
varying additive Gaussian pixel noise.

The intrinsic parameters of the camera are held constant in the synthetic data over
the set of three camera views generated. This is aligned with the formulation presented
in Section 3.1.1, where a minimum set of parameters is presented for a single moving
camera. Often some intrinsic parameters, such as focal length, may be re-adjusted by a
device equipped with automatic focusing. It is assumed that this is not the case, however
such automatic adjustment can be accommodated in the bundle adjustment formulation,
as mentioned later in Section 7.1.

6.2 Results

Two different experiments are conducted on the synthetic data. First, a large sample of
N = 2500 pixel correspondences are used to explore the performance of the trifocal tensor
(TFT) estimation versus the fundamental matrix (FMat) estimation. This first experiment
is conducted twice, once for the provided Zigzag model, and once for the Wolfhead model,
as seen in Figure 6.1. The objective of this test is to explore the performance of the
estimations strategy over a full set of pixel correspondences that might be obtained from
a single shot method as described in Table 5.1. Gaussian noise of σ = 1 px is added
to the generated point correspondences. The percent error in the estimated focal length
(fx, fy) and principle point (px, py) is compared in both the projector and camera image
planes. This error is presented in Table 6.1. The initial geometric estimate for the projector
parameters sees quite low error in the projector intrinsic parameters (highest of 8.5%), and
the final set of projector parameters are fully recovered (0% error). This is not true for
the estimated camera parameters after the final bundle adjustment, which see a high of
26.5% error in these tests. The angular error in the estimated rotations (Equation 6.2)
and translation directions (Equation 6.3) is presented in Table 6.2. The estimated display
surface and corresponding reprojection error is presented in Figure 6.2.

The second experiment considers a smaller sample of N = 100 pixel correspondences
under noise in the provided pixel correspondences. The results of the estimation of the
camera and projector parameters and the 3D scene coordinates are considered over 40
iterations for each noise level. The change in reprojection error, intrinsic percentage error,
and the angular error in the estimated rotations and translation directions is evaluated
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against varying additive Gaussian noise level 0 ≤ σ ≤ 3 px added to N = 100 pixel
correspondences over 40 trials. The zigzag model was used in these tests. The intrinsic
percentage error is shown in Figure 6.3. The behaviour of the parameters recovery is
very similar to that of the previous two tests over 2500 points, the intrinsic parameters
of the projector are well recovered, and the intrinsic parameters of the camera are not.
The average angular error across the estimated camera and projector poses is presented
in Figure 6.4. The poses of the camera and the projector are well recovered, below half
a degree in average angular error across all four views, even as noise increases. The final
reprojection error is presented in Figure 6.5.

Table 6.1: Percent error in estimated camera and projector intrinsic parameters for syn-
thetic data with σ = 1 Gaussian noise added to sets of 2500 the pixel correspondences.
Initial corresponds to the result after the geometric estimate (no refinement), and final
corresponds to the final result after refinement.

Shape Method
Percent Error ϵp, (%)

Camera
Focal Length

Camera
Principle Point

Projector
Focal Length

Projector
Principle Point

ZigZag

TFT Initial 3.5 0 8.5 2
TFT Final 2.8 24 0 0
FMat Initial 0.5 0 5 4.7
FMat Final 2.8 26.5 0 0

Wolfhead

TFT Initial 8.3 0 1.8 0.9
TFT Final 13.6 18.1 0 0
FMat Initial 1.3 0 1.4 4.2
FMat Final 9.4 15.3 0 0
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Table 6.2: Estimated camera and projector angular rotation and translation error for
synthetic data with σ = 1 Gaussian noise added to sets of 2500 the pixel correspondences.
This angular error is the average of the error calculated from Equations 6.2 and 6.3 across
the four sets of pose parameters Rj, tj, j = c1, c2, c3, p. Initial corresponds to the result
after the geometric estimate (no refinement), and final corresponds to the final result after
refinement.

Shape Method
Average Angular Error (o)
Rotation ϵR Translation ϵt

ZigZag

TFT Initial 0.76 1.02
TFT Final 0.11 0.12
FMat Initial 0.21 0.31
FMat Final 0.11 0.12

Wolfhead

TFT Initial 3.08 2.08
TFT Final 0.15 0.22
FMat Initial 0.23 0.67
FMat Final 0.15 0.22

6.3 Discussion

The estimation strategy was able to produce an estimate for the intrinsic and pose param-
eters for a set of three camera views and the projector view, and generate a 3D surface re-
construction, relying only upon the four sets of image pixel correspondences xc1 , xc2 , xc3 , xp

and a sparse virtual scene model Xm. This is accomplished without any prior information
about the devices (camera and projector), presenting an advantage above methods that
rely on prior parameter information [27]. This method allows the calibration and recon-
struction of a non-planar projection surface, presenting also an advantage above methods
which are limited to planar surfaces [24, 12, 30].

Two epipolar geometry based approaches are explored, the fundamental matrix relat-
ing two views, and the essential matrix relating three views. Across the in the N = 2500
experiment the trifocal formulation sees a consistent 2 − 4% higher percent error (and
therefore poorer performance) in the intrinsic and extrinsic parameter estimation in both
camera and projector estimation. This suggests that the trifocal tensor estimation does
not provide any significant estimation advantages despite providing direct relations across
three views instead of just two. This is consistent with comparison of fundamental matrix
and trifocal tensor estimation performance in other vision applications [25]. The trifocal
tensor estimation provides the highest reprojection error observed (16.079 px), compared
to the fundamental matrix which provides a reprojection error of 2.195 px under the same
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Table 6.3: Comparison of this method’s best performance to existing projector-camera
calibration strategies. The comparable strategies rely on provided information such as
parameter priors and calibration targets. *value not provided by the referenced publication.

Method
Camera

Focal Length Error
Projector

Focal Length Error
Reprojection

Error
Our Method Best 2.8% 0% 0.5 px

Planar Calibration Target [24] <2% <2% <0.22 px
Parameter Prior [27] <0.78% 0.99% *

conditions. Conversely, the fundamental matrix estimation sees poorer resilience to noise
over the N = 100 experiments, but this poor performance is consistent across both fun-
damental matrix and trifocal tensor, and may be better attributed to a need for a greater
number of pixel correspondences for the bundle adjustment refinement.

The refined estimate for the intrinsic values of the camera and projector across both
epipolar geometry approaches observed no error in the estimated projector intrinsic pa-
rameters, and up to 27% error in the camera intrinsic parameters when considering 2500
pixel correspondences with σ = 1 px additive Gaussian noise. The projector parameters
were equally well recovered when there were only 100 pixel correspondences and varying
additive Gaussian noise. For many projection mapping applications, this is sufficient as the
cameras are only used for calibrating the projector, and afterwards discarded. For other
projector-camera systems where the devices need to operate together continuously, this
poorer camera calibration may not be sufficient. Our method is compared to two esiting
strategies for projector-camera calibration, with the results illustrated in Table 6.3. The
camera parameter estimation in this method is worse than an existing method that relies
on parameter prior information [27] an existing method that relies on planar calibration
targets [24]. However, the observed very low error in projector parameter estimation (0%)
in this method outperforms both. This indicates a similar method performance without
the same scene and environment limitations.

The extrinsic parameter estimates show significant improvement after refinement. The
average error in pose estimate drops from 4 degrees to 0.45 degrees at the highest level
of pixel noise in the 100 pixel correspondence experiment. Across the 2500 pixel corre-
spondence experiment, the average error in pose estimate is highest at 0.22 degrees across
the set of image planes. This consistently good performance suggests that this estimation
strategy performs well for extrinsic parameter estimation.
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(a) “ZigZag” Estimated display surface, estimated from
FMat method.
Average Reprojection Error = 0.5706 px

(b) “ZigZag” Estimated display surface, estimated from
TFT method.
Average Reprojection Error = 0.7079 px
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(c) “Wolfhead” Estimated display surface, estimated from
FMat method.
Average Reprojection Error = 2.195 px

(d) “Wolfhead” Estimated display surface, estimated from
TFT method.
Average Reprojection Error = 16.079 px

Figure 6.2: Non-planar display surface estimates and average reprojection error from syn-
thetic data with σ = 1 Gaussian noise added to sets of 2500 the pixel correspondences.
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(a) Initial Estimate of Camera and Projector Focal Length

(b) Final Estimate of Camera and Projector Focal Length
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(c) Initial Estimate of Camera and Projector Principle Point

(d) Final Estimate of Camera and Projector Principle Point

Figure 6.3: Percent error in estimated camera and projector intrinsic parameters for syn-
thetic data with varying additive Gaussian noise level 0 ≤ σ ≤ 3 px added to N = 100
pixel correspondences, averaged over 40 iterations.
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(a) Pose Parameters Before Refinement

(b) Average Degree Error in Final Estimated Pose Parameters

Figure 6.4: Average angular error in estimated camera and projector pose parameters for
synthetic data with varying additive Gaussian noise level 0 ≤ σ ≤ 3 px added to N = 100
pixel correspondences, averaged over 40 iterations.
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Figure 6.5: Reprojection error in estimated camera and projector parameters and display
surface estimate for synthetic data with varying additive Gaussian noise level 0 ≤ σ ≤ 3
px added to N = 100 pixel correspondences, averaged over 40 iterations.
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Chapter 7

Conclusion

This thesis proposes an approach that employs a single moving camera, gaining the scene
understanding advantages of multiple camera perspectives, the environmental flexibility
and adaptability of an unknown camera initialization, and the simplification of requiring
only one set of camera intrinsic parameters. A refined estimation for the camera intrinsic
and extrinsic parameters is used to generate a set of 3D coordinates representing the
display surface reconstruction. The projector calibration is estimated by incorporation of
the projector into the display environment estimate described by the surface and camera
parameter estimates. The objective of this thesis was to develop a method that was able to
calibrate a projector-camera system with unknown cameras and an unknown non-planar
display surface. Demonstrated by the comparison in Table 6.3, this is done with similar
estimation accuracy as current methods that rely on environment limiting knowledge such
as parameter priors or (planar) calibration targets.

Two epipolar geometry based approaches are explored, the fundamental matrix relat-
ing two views, and the essential matrix relating three views. The fundamental matrix
estimation strategy performed generally better than the trifocal tensor estimation strat-
egy. This result is suggesting that it is sufficient to proceed with the fundamental matrix
formulation to generate relations between image pairs, and that no advantage is lost by
neglecting the explicit relations available in triplets of images. This result is consistent with
results in other vision applications [25]. Both epipolar geometry formulations observed no
error in the estimated projector intrinsic parameters. These projector intrinsic parame-
ters had consistently the best estimation performance. The camera intrinsic parameters
experienced between 2%− 27/% error with additive Gaussian noise. The camera intrinsic
parameters had the worst performance. The average angular error across all estimated
poses is less than 0.5o at the end of the refinement. The performance of this approach is
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evaluated over varying additive Gaussian noise in the pixel correspondences, and varying
length of pixel correspondences. As noise increases, the accuracy in the estimated scene
parameters decreases. Accuracy in the estimated scene parameters is higher with more
pixel correspondences.

This moving camera calibration strategy forms the foundation of future handheld cam-
era calibration for non-planar scene estimates and projector calibration. There is also po-
tential for incorporating strategies to rapidly assess scene knowledge and overcome scene
occlusions, scene size challenges, or similar camera view challenges.

7.1 Future Directions

There are a number of key places where this method would benefit from future development.

The method relies upon a focal length estimation strategy proposed by Bougnoux [8].
While sufficient in this implementation, this method has been found quite sensitive to
noise, and has been unreliable [16, 31]. The method would be improved by replacing this
focal length estimation with another way of defining or estimating the focal length.

Parameters within the estimated camera and projector calibration might be held fixed
or otherwise linked throughout the bundle adjustment refinement. As the camera images
are all from a single moving camera, Kc is adjusted jointly across the image planes to reflect
that the intrinsic parameters are consistent for the camera across the images. Alternatively,
Kc1 might be adjusted separately fromKc2 andKc3 , to reflect how a camera moving through
a scene might have a varying focal length throughout, or to permit the incorporation of
different cameras with different intrinsic parameters.

For the display surface estimate XE, the 3D coordinates are triangulated once from the
current camera parameters. They are then adjusted with the set of camera parameters
in a bundle adjustment refinement. Given that the parameters used to estimate XE are
being adjusted themselves, XE might be reprojected at every iteration rather than held
as a separate set of parameters to be adjusted. This might be explored to see if it may
produce a better or faster display surface estimate. This method also relies upon simple
point triangulation methods, and might benefit from more robust geometric reconstruction
strategies [17].

Finally, this method assumes that there has been some matching of the nearest pixel
correspondences in each image plane to the virtual representation of each observed 3D key
point for the virtual calibration model Xm employed in short bundle adjustment. For the
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purposes of this thesis this matching has been completed manually across a small set of 10
key points. A fully automatic calibration process would need some feature extraction and
matching to produce these relations.
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