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Abstract

This thesis studies two separate topics in connection to operator systems theory:
the dynamics of locally compact groups, and noncommutative convex geometry.

In Chapter 1 we study exactness of locally compact groups as it relates to C*-
exactness, i.e., the exactness of the reduced C*-algebra. It is known that these two
properties coincide for discrete groups. The problem of whether this equivalence
holds for general locally compact groups has recently been reduced by Cave and
Zacharias to the case of totally disconnected unimodular groups. We prove that
the equivalence does hold for the class of locally compact groups whose reduced
Cr-algebra admits a tracial state.

In Chapter 2 we establish the dual equivalence of the category of generalized
(i.e. potentially non-unital) operator systems and the category of pointed compact
noncommutative (nc) convex sets, extending a result of Davidson and Kennedy. We
then apply this dual equivalence to establish a number of results about generalized
operator systems, some of which are new even in the unital setting.

We develop a theory of quotients of generalized operator systems that extends
the theory of quotients of unital operator systems. In addition, we extend results
of Kennedy and Shamovich relating to nc Choquet simplices. We show that a
generalized operator system is a C*-algebra if and only if its nc quasistate space
is an nc Bauer simplex with zero as an extreme point, and we show that a second
countable locally compact group has Kazhdan’s property (T) if and only if for every
action of the group on a C*-algebra, the set of invariant quasistates is the quasistate
space of a C*-algebra.

In Chapter 3 we expand on recent work of C.K. Ng about duals of operator
systems. Call a nonunital operator system S dualizable if its dual S* embeds into
B(H) via a complete order embedding and complete norm equivalence. Through
the categorical duality of nonunital operator systems to pointed noncommutative
convex sets discussed in Chapter 3, we characterize dualizability of S using geometric
conditions on the nc quasistate space K in two ways. Firstly, in terms of an nc
affine embedding of K into the nc unit ball of a Hilbert space satisfying a bounded
positive extension property for nc affine functions. Secondly, we show that Ng’s
characterization is dual to a normality condition between K and the nc cone R, K.
As applications, we obtain some permanence properties for dualizability and duality
of mapping cones in quantum information, and give a new nc convex-geometric proof
of Choi’s Theorem.
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Chapter 1

Exactness vs C*-exactness for certain
non-discrete groups

1.1 Introduction

The property of exactness for locally compact groups has received much attention
since it was first introduced and studied by Kirchberg and Wassermann in [33, 35,
36]. In the setting of discrete groups, the theory of exactness is very well developed
and connections to dynamics and coarse geometry have long been known |2, 42].
It is also known for a discrete group G that Kirchberg and Wassermann’s original
definition is equivalent to the apparently weaker condition (here called C*-exactness)
that the reduced C*-algebra C;(G) is exact [35, Theorem 5.2]. It was later shown
by Anantharaman-Delaroche |2, Theorem 7.3] that the equivalence also holds for
inner amenable groups.

More recently, dynamical |2, 7] and coarse geometric [7] characterizations of
exactness have been found for locally compact groups. However, it remains a major
open problem to determine whether the equivalence of exactness and C*-exactness
holds in general, and the problem has recently been reduced to the case of totally
disconnected locally compact (tdlc) unimodular groups [9]. In other words, if there
is an example of a non-exact locally compact group GG with exact reduced C*-algebra
C;(G), then there is necessarily a tdle unimodular such group.

In this chapter we establish some tools to show that exactness and C*-exactness
are equivalent for certain classes of groups. In section 1.3 we prove our most general
result. In section 2.4 we study examples, and in particular apply our tools to classes
of tdlc unimodular groups. In subsection 1.4.1 we study a class of groups first
considered by Suzuki [48], where they constructed examples of non-discrete C*-
simple groups in this class. In subsection 1.4.2 we study tdlc groups which admit
a conjugation invariant neighbourhood of the identity. These are precisely those
tdlc groups whose reduced C*-algebras have non-zero center [37, Corollary 1.2]. In
subsection 4.3 we show how to produce locally compact groups which are not inner
amenable, but to which the methods in this chapter apply. In subsection 4.4 we
study a class of non-examples.



1.2 Preliminaries

Recall [35] that a locally compact group G is called ezact if for every short exact
sequence 0 > [ - A - B — 0 of G-C*-algebras, the corresponding sequence of
reduced crossed products is also exact. That is to say,

0->1I%xG—->Ax.G—->Bx,G-0

is an exact sequence of C*-algebras. Recall also that a C*-algebra C'is called exact if
for every short exact sequence 0 - I - A - B — 0 of C*-algebras, the corresponding
sequence of spatial tensor products

0-19C—>AC->Be(C -0

is also exact. In the case where I, A and B are all equipped with the trivial action
of GG, the sequence of crossed products becomes

0-10C(G)»A®C(G) > BeC.(G) 0.

Hence, exact groups necessarily have exact reduced C*-algebra. We will say G is
C*-exact if C(Q) is an exact C*-algebra.

A priori, exactness appears to be strictly stronger than C*-exactness: there is no
reason to expect the trivial action to capture all information about the exactness of
G. Somewhat surprisingly, the two notions coincide for discrete groups [35, Theorem
5.2].

Theorem 1.2.1. If G is a C*-exact discrete group, then it is exact.

1.3 Groups with open amenable radical

In the following sections, we show that the equivalence of exactness and C*-exactness
holds for classes of locally compact groups which properly contain all discrete groups.
The following observation, while simple, is the key to bootstrapping Theorem 1.2.1
to the classes of groups considered in this chapter.

Proposition 1.3.1. Let G be a locally compact group with an open normal amenable
subgroup. If G is C*-exact then it is exact.

Proof. Suppose G is C*-exact, and let N 4 G be open and amenable. Since N is
amenable, the left quasi-regular representation G ~ ¢2(G/N) is weakly contained
in the left regular representation. To see this, recall that the trivial representation
1y is weakly contained in the left regular representation Ay since N is amenable,
and then apply continuity of induction of representations to get the desired weak
containment (e.g. [4, Theorem F.3.5]).

Hence there is a surjective *-homomorphism C;(G) - C;(G/N), and exactness
of C*-algebras passes to quotients [50, Corallary 9.3], so G/N is also C*-exact. But N
is assumed to be open, meaning the quotient G/N is a discrete group. Theorem 1.2.1
then implies that G/N is an exact group, and we already know that N is exact as
it is amenable. Since exactness is preserved by extensions [36, Theorem 5.1], we
conclude that G is also exact. O]



Remark 1.3.2. Proposition 1.3.1 can be strengthened so that N is not necessarily
open, but has the property that G/N is exact if and only if it is C*-exact. Calling
a group admissible if it satisfies the equivalence, the statement can be strengthened
as follows: extensions of amenable groups by admissible groups are admissible.

Locally compact groups admitting a tracial state on the reduced C*-algebra have
received recent attention in [20, 31, 39]. The following corollary relates the existence
of a trace to the exactness of G, and is in analogy with the implication (2) = (1)
in Ng’s characterization of amenability [39, Theorem 8§|.

Corollary 1.3.3. If C;(G) admits a tracial state and is exact, then G is ezact.

Proof. The main theorem of [31] by Kennedy-Raum states that C;(G) admitting a
tracial state is equivalent to the existence of an open normal amenable subgroup in
(. The result then follows from Proposition 1.3.1. O

Example 1.3.4. Exact groups do not necessarily admit a trace on their reduced C*-
algebra. In particular, the converse of this corollary does not hold. Take for example
any non-amenable connected group, say G = SLy(R). Then C;(G) is nuclear as G
is connected, but it cannot also have a trace since G is non-amenable [39, Theorem
8]. However, we know by [36, Theorem 6.8] that connected groups are always exact.

The following theorem allows us to extend the class of groups to which our results
apply.

Theorem 1.3.5. Let G be a locally compact group, and (H;)i; a family of open
subgroups with the following conditions.

e For every i, there is a tracial state on C,(H;).
o The union Uy H; is equal to G.
If G is C*-exact, then it is exact.

Since exactness is fundamentally a property of the ideal structure in reduced
crossed products, we require the following technical fact about ideals in C*-algebras
[5, 11.8.2.4].

Lemma 1.3.6. Let A be a C*-algebra, and (A;)ir a family of C*-subalgebras such
that User A; is dense in A. If J is any closed ideal in A, then Jn U A; is dense in
J.

We also note that if 0 > I > A > B - 0 is an exact sequence of G-C*-algebras,
then it is easy to see I x,. G € ker q¢. Indeed, take an arbitrary compactly supported
function f from the norm dense subset C.(G,I) € I x, G and notice qg(f)(x) =
q(f(z)) =0 for all x € G since f(x) € I = kerq. The inclusion I x, G ¢ ker g5 then
follows by continuity of g;. We now give the proof of Theorem 1.3.5.

Proof of Theorem 1.3.5. Let G and (H;);; be as in the theorem statement. Since
each H; is an open subgroup we have the inclusion C;(H;) ¢ C;(G), hence if G is
C*-exact then so is each H;. But each H; admits a trace, so Corollary 1.3.3 tells us
that each H; is also exact. We show how exactness lifts up to G.



Let 0 > I - A5 B - 0 be an exact sequence of G-Cr-algebras. Restricting
each G-action to H;, this is also exact as a sequence of H;-C*-algebras. Since H; is
an exact group, then

0 Ix, Hy— Ax, H; % Bx, H; >0
is short exact. Using this fact, we will show that the corresponding sequence
0>1%G—>Ax G5 Bx, G0

of G-crossed products is short exact, i.e., that I x,. G = kerqg.

Since U;e; H; = G, we have a norm dense inclusion U;.; A%, H; € Ax,.G. We may
then apply Lemma 1.3.6 to ker qg to get U, ker ¢; = ker g¢. But the H; were shown
to be exact, hence each I x,. H; = ker ¢;, which gives us the inclusion kerqgs € I %, G
as each I x, H; € I x,. G. The opposite inclusion I x,. G € ker g5 was discussed before
the proof. O

1.4 Examples and non-examples

In subsections 1.4.1 and 1.4.2 we show, without using inner amenability, that C*-
exactness implies exactness for certain inner amenable groups. In subsection 1.4.3
we describe a class of non-inner amenable groups to which our results apply. In sub-
section 1.4.4 we show that certain automorphism groups of trees are non-examples.

1.4.1 Exactness for Suzuki groups

The following result shows C*-exactness implies exactness for a class of tdlc groups
considered by Suzuki in the context of C*-simplicity [48].

Proposition 1.4.1. Let G be a locally compact group with a decreasing neighbour-
hood base (K,), of compact open subgroups, and an increasing sequence (L),
of open subgroups with the following additional properties.

e Fach K, is a normal subgroup of L,.
o The union Uy, L, is equal to G.
If G is C*-exact, then it is exact.

Example 1.4.2. Suzuki describes a general construction in [48]. For each n € N, let
[, be a discrete group and let F}, be a finite group acting on I[',, by automorphisms.

We view the direct sum @,>,[', as a discrete group, and the direct prod-
uct [T, F,, as a compact group with the product topology. Defining the action
[, B ~ @22, T, component-wise, the semidirect product G := (@52, T',)x[12, F,
satisfies the conditions of Proposition 1.4.1. To see this, for each n € N set K,, :=
[0 Fr and L, = (@7, Ta) * TT5 Fi

Proof of Proposition 1.4.1. Since each L, has a compact (hence amenable) open
normal subgroup K, it has a trace by [31]. Hence if G is C*-exact then it is exact
by Theorem 1.3.5. O



The groups of Proposition 1.4.1 are inner amenable. Indeed, for each n there is a
conjugation invariant mean on L*(Ly,) given by ¢, (f) = [ f since K, is normal in
L,. Extending the ¢, to L>((G) and picking a weak™ cluster point of the sequence
(¢n)n>1 produces a conjugation invariant mean on L*(G).

Since exactness of groups is preserved by closed subgroups and by extensions,
and since exactness of C*-algebras is preserved by quotients, we have G is exact if
and only if each L, /K, is exact. By Proposition 1.4.1, we know this corresponds
also to C;(G) being exact. In the language of Example 1.4.2, this means G is exact
if and only if each I',, is exact.

1.4.2 Exactness for IN groups

We now study exactness for tdlc groups with an additional topological property: we
say a locally compact group G is an IN group (invariant neighbourhood group) if
there is a compact neighbourhood U of the identity which is invariant under conju-
gation, i.e., for every g € G we have gUg™' = U. A closely related property is when G
admits a neighbourhood base at the identity consisting of conjugation invariant sets.
In this case we say that G is a SIN group (small invariant neighbourhood group).

Remark 1.4.3. It is easy to show that an IN group (resp. SIN group) G is nec-
essarily unimodular: letting m denote the Haar measure on G, and setting U to
be an invariant compact neighbourhood of the identity, we have gU = Ug for all
g € G. Hence A(g)m(U) =m(Ug) =m(gU) =m(U) for all g, implying the modular
function A is constantly equal to 1.

From this it is clear that IN groups, hence SIN groups, are inner amenable. To
see this, fix a conjugation invariant compact neighbourhood U ¢ G of the identity,
and define ¢ : L>=(G) - C by o(f) = ﬁf(]f

We will make use of the following structure theorem [43, 12.1.31], which strongly
relates IN groups to SIN groups. It was originally proved by Iwasawa in [26].

Theorem 1.4.4. Let G be an IN group. Then there is a compact normal subgroup
K 4G so that G/K is a SIN group with the quotient topology.

Remark 1.4.5. Theorem 1.4.4 tells us that IN groups are extensions of compact
groups by SIN groups. In fact, the converse holds as well. That is to say, if G has
a compact normal subgroup K < G so that G/K is a SIN group, then G is an IN
group.

To see this, note that the map ¢ : G - G/K is proper as the quotient is by a
compact subgroup. So we may fix any invariant compact neighbourhood U of the
identity in G/K, and the preimage ¢~'(U) is an invariant compact neighbourhood
of the identity in G.

Lemma 1.4.6. Let G be a tdlc SIN group. Then G admits a neighbourhood base at
the identity consisting of compact open normal subgroups.

Proof. We will show that every compact open subgroup contains a compact open
normal subgroup. Since the compact open subgroups form a neighbourhood this
will complete the proof.

Let Ky < G be a compact open subgroup. Then there is a conjugation invariant
neighbourhood U of e with U ¢ K;, and there is in turn a compact open sub-
group Ky € U. Since U is conjugation invariant, then we have the containment



Ugec 9K297! € U ¢ K, hence the open normal subgroup K generated by the conju-
gates Uy g/ 297" is also contained in K. As an open, hence closed, subgroup of a
compact group, this implies K € K is also compact. O

The following structural fact is probably well known, but we were unable to find
a reference.

Proposition 1.4.7. A topological group G is tdlc and SIN if and only if there is an
inverse system (L', 0ij)isjer of discrete groups so that |ker g;j| < oo for all i > j, and

Proof. 1f G is tdlc and SIN, there is a neighbourhood base of compact open normal
subgroups by Lemma 1.4.6. Ordering this normal neighbourhood base (K;);; by
reverse inclusion gives us an inverse family (G/K;);; of discrete groups, with con-
necting maps ¢;; : G/K; -» G/K; whenever ¢ > j. Since each K; is both compact
and open, the ¢;; all have finite kernel, i.e., | ker ¢;;| < co. It is routine to check that
G is isomorphic to the inverse limit lim. G/K; € [], G/ K; with the relative product
topology.

Suppose conversely that G is isomorphic to an inverse limit lim._ I'; with respect
to the relative product topology, as described in the proposition statement. Viewing
G as a subgroup of [],I';, the subsets

Kj,k = {(gz)zel € 11£I1F7 : gj € kergoj’k}

with j > k form a neighbourhood base of compact open normal subgroups. [

Recall that tdlc compact groups are precisely the profinite groups |46, Theorem
2.1.3|, hence Remark 1.4.5 and Proposition 1.4.7 taken together tell us that tdlc
IN groups are precisely extensions of profinite groups by inverse limits of discrete
groups whose connecting maps have finite kernel.

Example 1.4.8. Fix a finite group F' and a non-exact discrete group H (interesting
examples of non-exact groups may be found in [38, 41|). Then define G =[]y F'x H,
where H acts by left translation on the compact group []4 F. It is clear that G is
an extension of the profinite group [z F by the discrete (hence tdlc SIN) group H,
hence G is a tdlc IN group.

However, it is not SIN: take any basic neighbourhood U of the identity e in
[15 F, then some element of U may be left-translated outside of U. This means
that U is not invariant under conjugation by elements in H.

Moreover, G is non-exact as H is a non-exact closed subgroup [35, Theorem 4.1].
This gives a tdlc IN group which is not SIN and non-exact.

Proposition 1.3.1 together with Lemma 1.4.6 immediately gives us the equiva-
lence of exactness and C*-exactness for tdle SIN groups.

Corollary 1.4.9. Let G be a tdlc SIN group. If G is C*-exact then it is exact.

The main result of this section now follows quickly using structure theory of IN
groups.

Theorem 1.4.10. Let G be a tdlc IN group. If G is C*-exact then it is exact.



Proof. By Theorem 1.4.4, G has a compact normal subgroup H so that G/H is a
SIN group with the quotient topology. Since H is compact it is also amenable, so
we get a surjection C;(G) — C;(G/H) as in the proof of Proposition 1.3.1.

Since exactness passes to quotients |36, Theorem 5.1, G/H is also C*-exact. By
Corollary 1.4.9 this implies G/H is exact, hence G is exact as an extension of a
compact group H by an exact group G/H. O]

An application of [37, Corollary 1.2] makes the hypotheses purely C*-algebraic.

Corollary 1.4.11. Let G be tdlc. If C:(G) is exact and has non-zero center, then
G s ezact.

Although IN groups comprise a rich class of unimodular groups, there are natural
examples of tdlc unimodular groups which are not IN.

Example 1.4.12. Let G := SLy(Q,), where p is any prime and Q, denotes the set
of p-adic rationals. Then G is generated by its commutators, hence it is necessarily
unimodular. However, GG is not IN: it is routine to show that all points other than
I and —1I5 can be conjugated arbitrarily far from I,. Although this example is not
IN, it is a linear group hence exact [23].

1.4.3 Non-inner amenable groups

The result of this section was inspired by [20, Remark 2.6 (ii)]. We outline conditions
that allow us to construct a non-inner amenable group GG with an open amenable
normal subgroup. By Proposition 1.3.1 these groups are exact if and only if they are
C*-exact, but since they are not inner amenable we cannot conclude this equivalence
from Anantharaman-Delaroche’s [2, Theorem 7.3].

Proposition 1.4.13. Let N be an amenable locally compact group and H a discrete
group. If the only conjugation invariant mean on H is evaluation at the identity,
and if «: H - Aut(N) is an action such that there is no a(H)-invariant mean on
N, then the semi-direct product N x H is not inner amenable.

In the product topology on N x H, N is open, hence it is an open amenable
normal subgroup in N x H.

Proof. Suppose ¢ is a conjugation invariant mean on N x H. Since the only conju-
gation invariant mean on H is evaluation at the identity, then ¢ must concentrate
on N. Thus we may view ¢ as a mean on N which is invariant under the action of
H, a contradiction. O

Example 1.4.14. It was proved in [20, Remark 2.6 (ii)] that R? and Fi ¢ SLy(R)
satisfy the hypotheses above, and hence that R? x Fjs is not inner amenable.

To produce a non-exact example, simply let H be any non-exact discrete group
and let H act on R? trivially. Then the semi-direct product R?x( Fs* H) is non-exact,
and it is also not inner amenable since by [18, Theorem 1.1] the only conjugation
invariant mean on Fy * H is evaluation at the identity.



1.4.4 Automorphism groups of trees

For d > 3, we denote by T}, the infinite d-regular tree, e.g., T} is the Cayley graph of
the free group on two generators Fy. The automorphism group Aut(7,) becomes a
tdlc group when equipped with the topology of pointwise convergence on the set of
vertices V(1y). For every finite subset S ¢ V(1}), the fixator Fixayr,)(S) of S is
a compact open subgroup.

Fixing a vertex b € V(T;) and an integer n > 1, we denote by B,,(b) the ball cen-
tred at b of radius n in the path metric. The set of fixators K, = Fixaus(r,)(Bn(D))
forms a sequential neighbourhood base at the identity.

We will show that certain Burger-Mozes groups [8] in Aut(7}) are too geomet-
rically dense for our results of section 1.3 to apply. For a good introduction to
Burger-Mozes groups see |21, Section 4]. We will denote by U(F') < Aut(7,) the
Burger-Mozes group of F' < .S,.

Definition 1.4.15. We say a subgroup G < Aut(7Ty) is geometrically dense if it does
not fix any proper subtree, and does not fix any end in 07j.

Proposition 1.4.16. For any subgroup F < Sy, the amenable radical of U(F) is
trivial.

Proof. Let N be a non-trivial normal subgroup of U(F'). Since U({e}) is geometri-
cally dense so is U(F'), hence N is geometrically dense by [21, Lemma 2.10| as it is
non-trivial and normal in U(F'). Using [21, Lemma 2.9] and applying the ping pong
lemma, one can produce a closed copy of Fy in /N, proving it is non-amenable. []

In particular, the amenable radical is open if and only if U(F) is discrete. This
result implies that the only Burger-Mozes groups admitting a tracial state are the
discrete ones, which is precisely when the action F' ~ {1,...,d} is free [21, Proposi-
tion 4.6 (v)].

Corollary 1.4.17. Let F < Sy be a subgroup which does not act freely on {1,...,d},
then the reduced C*-algebra C:(U(F')) does not admit a tracial state.

Proof. By Proposition 1.4.16, the amenable radical of U(F) is trivial, and since
F ~{1,...,d} is not free then U(F') is non-discrete. Hence the amenable radical is
not open, and by [31] this implies there is no tracial state on C;(U(F)). O

This means that Corollary 1.3.3 cannot be applied to this class. We would then
like to determine whether we can write U(F') as a union UL, of open subgroups
with open amenable radical so that we may apply Theorem 1.3.5.

Notice that if one of the L, is geometrically dense, then by the proof of Propo-
sition 1.4.16 it has trivial amenable radical, hence does not have a trace if it is
non-discrete. So if we would like to show that the L,, cannot all have open amenable
radical, then it suffices to show that at least one is geometrically dense.

Remark 1.4.18. For any subgroup F' < Sy, the group U(F) is compactly generated.
Hence, if we write U(F) = UL, as an increasing union of open subgroups L, <
L1 then the sequence eventually terminates at some Ly. Since U(F) is itself
geometrically dense, this says that we can never write U(F') as an increasing union
of open subgroups which are not geometrically dense.



The condition on the action F' ~ {1,...,d} described in the following proposition
is a strong converse to freeness.

Proposition 1.4.19. Let F' < S; be a subgroup such that for every l € {1,...,d},
the action of the stabilizer subgroup Stp(l) ~{1,...,1-1,1+1,...,d} is transitive.
IfU(F) =UL, for some sequence (Ly)ns0 of open subgroups, then there is n so that
L, is geometrically dense.

We will need the following dynamical lemma.

Lemma 1.4.20. Let F' be as in Proposition 1.4.19, and fix a half-tree Y € Ty;. Then
the fizator Fixypy (Ty\Y') acts minimally on 0Y .

Proof. Let b denote the root of Y, i.e., the unique vertex with degree d—1 in Y. Fix
a legal labelling [21, Section 4] of Ty so that, without loss of generality, the deleted
edge at b has the label d. We define a map ¢ : Y = {(jn)ns1 € {1,...,d}N | j1 #
d, jn # jns1 for all n > 1} by sending x to the sequence ¢(z) = (jp)ns1, Where j,
denotes the label of the n'! edge along the geodesic ray [b, ) joining b to .

The map ¢ is a bijection, and it is a homeomorphism when the codomain is
equipped with the topology of point-wise convergence.

Now, given any two ends z,y € Y with ¢(x) = (jn)ns1 and ©(y) = (in)ns1, We
show how to produce a sequence (gn)ns1 in Fixyp) (T3 N Y') such that g, -y — .

Since Stp(d) ~ {1,...,d - 1} is transitive, there is hy € Fixyp)(Tq N Y) so
that the first entry of ¢(hy-y) is ji. Similarly, if e, is the n'" edge along [b,z),
and if p(x) and @((h,--h1) - y) agree on the first n entries, then by transitivity of
Str(Jn) ~{1,... . Jn =1, jn +1,...,d} there is hy,.1 € Fixpp) (T3 N Y) so that ¢(x)
and @((hny41h1) - y) agree on the first n + 1 entries.

Setting g, = hy+-hy € Fixypy(Tq N Y'), we then have convergence g, -y — . This
proves that the action is minimal. O

Proof of Proposition 1.4.19. Fix a vertex b. Then for each n > 1, the complement
Ta~ B,(b) is a disjoint union of finitely many (in fact d(d—1)""!) half-trees Y3,..., Y.
Note that 0Y7,...,0Y} form an open cover of 9T}.

Since the union U L, is equal to U(F"), then there is some N so that Ly contains
a hyperbolic element h, and since Ly is assumed to be open, then it must contain
the fixator Fixy gy (B, (b)) for some n > 1.

Let ay € 0Ty be the attracting point of h, and without loss of generality assume
it is in JY;. Let x € Y; be any other end, then by Lemma 1.4.20 we may assume z
is not the repelling point of A. Hence we may find m large enough that h™x € 9Y;
as dY] is open, and again by Lemma 1.4.20 we may send this end to ay,.

This proves the action of Ly is transitive on 0Ty, a similar argument shows that
the set of ends arising as attracting points of hyperbolic elements in Ly is all of 97}.
Since any Ly-invariant subtree must contain the axes of all hyperbolic elements,

then there are no proper Ly-invariant subtrees. This proves Ly is geometrically
dense. O

Example 1.4.21. For d > 4, the alternating subgroup A, < S, satisfies the hy-
potheses of the previous result. Indeed, fix [ € {1,...,d} and pick distinct 7,j €
{1,...,1-1,1+1,...,d}. Then, since d is at least 4, there is k # i,7,[ hence the
3-cycle (ijk) fixes [ and is in A;. Moreover, (ijk) sends ¢ to j, proving that the

point stabilizer of A, at [ is transitive.



Chapter 2

Nonunital operator systems and
noncommutative convexity

2.1 Introduction

Werner’s abstract notion of a generalized (i.e. potentially nonunital) operator system
is an axiomatic, representation-independent characterization of concrete generalized
operator systems, which are self-adjoint subspaces of bounded operators acting on a
Hilbert space. Werner [52] showed that every concrete generalized operator system
satisfies the axioms of an abstract generalized operator system, and conversely that
every abstract generalized operator system is isomorphic to a concrete generalized
operator system, thereby generalizing an important result of Choi and Effros [11]
for unital operator systems.

Recently, Davidson and Kennedy [15] introduced a theory of noncommutative
convex sets and noncommutative functions. A key starting point for the theory is the
dual equivalence between the category of compact noncommutative convex sets and
the category of closed unital operator systems. On the one hand, this equivalence
allows the rich theory of unital operator systems and unital C*-algebras to be applied
to problems in noncommutative convexity. On the other hand, recent results suggest
that that the perspective of noncommutative convexity can also provide new insight
on unital operator systems and C*-algebras (see e.g. [14, 16, 32|).

In this chapter we will establish a similar dual equivalence between the category
of generalized operator systems in the sense of Werner and a category of objects that
we call pointed noncommutative convex sets. These are certain pairs consisting of
a compact noncommutative convex set along with a distinguished point in the set.
We will then consider a number of applications of this equivalence.

Before stating our results, we will first briefly review some of the basic ideas from
the theory of noncommutative convexity.

A compact nc (noncommutative) convex set is a graded set K = UK, where each
graded component K, is an ordinary compact convex subset of the set M, (E) of
n x n matrices over an operator space E, and the graded components are related by
requiring that K is closed under direct sums and compressions. The union is taken
over all n < k for some sufficiently large infinite cardinal number s depending on K.
The fact that x is infinite is an essential part of the theory, being necessary for e.g.
the existence of extreme points. If F is separable, then it typically suffices to take
K = Rp.
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The conditions on K are equivalent to requiring that K is closed under nc convex
combinations, meaning that ) o z;q; € K,, for every bounded family of points {x; €
K,,} and every family of scalar matrices {; € M,,, ,, } satisfying Y afa; = 1,,.

The prototypical example of a compact nc convex set is the nc state space of a
unital operator system S defined by K = uK,, where K, = UCP(S, M,,) is the set
of unital completely positive maps from S into the space M,, of n xn matrices. The
dual equivalence in [15] implies that S is isomorphic to the unital operator system
A(K) of continuous affine nc functions on K, and that, on the other hand, if K is
a compact nc convex set, then K is affinely homeomorphic to the nc state space of
the unital operator system A(K). In particular, every compact nc convex set arises
as the nc state space of a unital operator system.

For a generalized operator system .S, it is necessary to instead consider the nc
quasistate space of S. This is the pair (K, z) consisting of the compact nc convex
set K = uK,, where K, = CCP(S, M,,) is the set of completely contractive and
completely positive maps from S into M,,, and z € K; is the zero map.

We are therefore led to consider pairs (K, z) consisting of a compact nc convex
set K and a distinguished point z € K. However, it turns out that not every pair
(K, z) arises as the nc quasistate space of a generalized operator system. This is an
important point that explains many of the difficulties that arise in the non-unital
setting. In order to obtain the desired dual equivalence between generalized operator
systems and pointed compact nc convex sets, it is necessary to impose an additional
constraint.

Specifically, we say that the pair (K, z) is a pointed compact nc convex set if
the generalized operator system A(K,z) € A(K) consisting of continuous affine nc
functions on K that vanish at z has nc quasistate space (K, z). Our results will imply
that this property is equivalent to ([, z) arising as the state space of a compact nc
convex set.

We consider pointed compact nc convex sets and functions on pointed compact
nc convex sets in Section 2.3 and Section 2.5 respectively. The following two results
establishing the above-mentioned dual equivalence are the main results in Section
2.4.

Theorem 2.1.1. A generalized operator system S with nc quasistate space (K, z) is
isomorphic to the generalized operator system A(K,z) € A(K) of continuous affine
ne functions on K that vanish at z. Hence (K, z) is a pointed compact nc convex set
if and only if it arises as the nc quasistate space of a generalized operator system.

Theorem 2.1.1 is the key ingredient in the dual equivalence between the category
of generalized operator systems and the category of pointed compact nc convex sets.

Theorem 2.1.2. The category GenOpSys of generalized operator systems is dually
equivalent to the category PoONCConv of pointed compact nc convex sets.

An important consequence of Theorem 2.1.1 is that essentially all of the results
from [15] about unital operator systems apply to generalized operator systems. For
example, in Section 2.6, we establish characterizations of the maximal and minimal
C*-covers of a generalized operator system in terms of the C*-algebra of continuous
nc functions on its nc quasistate space. As a corollary, we recover results about
the minimal C*-cover (i.e. the C*-envelope) recently obtained by Connes and van
Suijlekom [13].
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Theorem 2.1.3. Let (K, z) be a pointed compact nc conver set.

1. The C*-algebra C(K,z) of pointed continuous nc functions on (K,z) is the
mazximal C*-cover of A(K, z).

2. Let Iz denote the boundary ideal in the C*-algebra C(K) of continuous nc
functions on K relative to the unital operator system A(K), so that the C*-
algebra C(K) /I = C(OK) is the minimal unital C*-cover of A(K), and let
lor..y = Igg N C(K,z). Then the C*algebra C(K,2)/I gz .y is the minimal
C*-cover of A(K, z).

In Section 2.8, as another application of the dual equivalence between general-
ized operator systems and pointed compact nc convex sets, we develop a theory of
quotients of generalized operator systems that extends the theory of quotients of
unital operator systems developed by Kavruk, Paulsen, Todorov and Tomforde [29)].

Theorem 2.1.4. Let S be a generalized operator system and let J € S be the kernel
of a completely contractive and completely positive map on S. There is a unique
pair (S]J, @) consisting of a generalized operator system S|J and a morphism ¢ :
S — S/J with the property that whenever T is a generalized operator system and
VS = T is a completely contractive and completely positive map with J € ker,
then ¢ factors through ¢. In other words, there is a completely contractive and
completely positive map w:S|J =T such that ) =w o .

We also obtain some results that are new even for unital operator systems. In
Section 2.9, we establish a characterization of generalized operator systems that are
C*-simple, meaning that their minimal C*-cover is simple. We refer to Section 2.6
for the definition of the spectral topology.

Theorem 2.1.5. A generalized operator system S with nc quasistate space (K, z)
is C*-simple if and only if the closed nc convex hull of any nonzero point in the
spectral closure of OK contains OK \ {z}.

In Section 2.10, we establish a characterization of generalized operator systems
that are isomorphic to C*-algebras in terms of their nc quasistate spaces, extending
a result for unital operator systems from [32].

Theorem 2.1.6. Let S be a generalized operator system with nc quasistate space
(K,z). Then S is a C*-algebra if and only if K is an nc Bauer simplex and z is an
extreme point. The result also holds for unital operator systems with nc quasistate
spaces replaced by nc state spaces.

In Section 2.11, we make another connection to the recent work of Connes and
van Suijlekom [13]. They consider generalized operator systems S and T that are
stably equivalent in the sense that the minimal tensor product S ®,,;, K is isomorphic
to the minimal tensor product T ®,;, K, where K denotes the C*-algebra of compact
operators. The next result is a characterization of stable equivalence of generalized
operator systems in terms of their nc quasistate spaces.

Theorem 2.1.7. Let S and T be generalized operator systems with nc quasistate
spaces (K, z) and (L,w) respectively. Let Ox and idx denote the zero map and the
identity representation respectively of K. Then S and T are stably isomorphic if the
closed nc conver hulls of 0K ® {Ox,idx} and OL ® {Ox,idx} are pointedly affinely
homeomorphic with respect to the points z ® Ox and w ® Ok (see Section 2.11).
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Finally, in Section 2.12 we establish the following characterization of second
countable locally compact groups with property (T), extending a result from [32] for
discrete groups acting on unital C*-algebras, as well as a result of Glasner and Weiss
from [22| for second countable locally compact groups acting on unital commutative
C*-algebras.

Theorem 2.1.8. A second countable locally compact group G has Kazhdan’s prop-
erty (T) if and only if for every action of the group on a C*-algebra, the set of
invariant quasistates is the quasistate space of a C*-algebra. The result also holds
for unital C*-algebras with quasistate spaces replaced by state spaces.

2.2 Preliminaries

In this section we will recall the notion of a matrix ordered operator space and
introduce the notion of a generalized (i.e. potentially nonunital) operator system.
For a reference on operator spaces and unital operator systems, we refer the reader
to the books of Paulsen [44] and Pisier [45].

Let E be a self-adjoint operator space, i.e. such that £ = E*. Welet B} = {x e E:
x = x*} denote the set of self-adjoint elements in E. For n € N, we will write M,,(E)
for the operator space of n x n matrices over E, and we will write M,, for M,,(C).
A matriz cone over E is a family P = (P,),en of closed subsets P, ¢ M, (E);, such
that

1. P,n-P,=0for all neN and
2. AP,A* c P, for all AeM,,, and m,n eN.

Definition 2.2.1. A matriz ordered operator space is a pair (F, P) consisting of a
*_vector space F and a matrix cone P over E. For n € N, an element in M,,(F) is
positive if it belongs to P,.

Remark 2.2.2. When referring to a matrix ordered operator space, we will typically
omit the positive cone unless we need to refer to it explicitly. Note that if F is a
matrix ordered operator space, then for m € N, the space M,,,(F) is a matrix ordered
operator space in a canonical way. Specifically, letting P denote the matrix cone
for £, (M,,(E),Q) is a matrix ordered operator space, where @) = (Q,,)nen is the
matrix cone defined by identifying M,,(M,,(E)) with M,,,,(E£) in the obvious way
and setting @, = Pun-

Let E be a matrix ordered operator space. An element e € F is an archimedean
order unit for E if for every x € E}, there is a scalar o > 0 such that —ae <z < e,
and if z +ae >0 for all @ >0, then x > 0. It is an archimedean matriz order unit for
E if for every n €N, 1,, ® e is an archimedean order unit for M,,(E).

If F is a matrix ordered operator space, then an archimedean matrix order unit
e € I/ induces a norm || - |, on M,,(E) for each n € N, defined by

|x||e:inf{a>0:(0é1;*®e . )20} for xe M, (F).

al,®e

The next definition is equivalent to the definition of a unital operator system
given by Choi and Effros [11].
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Definition 2.2.3. A unital operator system S is a complete matrix ordered operator
space with an archimedean matrix order unit 1g that is distinguished in the sense
that for each n, the norm on M,,(S) coincides with the norm |- |;, from above.

Remark 2.2.4. Although not strictly necessary, it will be convenient for the pur-
poses of this chapter to assume that unital operator systems are complete. If S is a
unital operator system, then the distinguished archimedean order unit 1g is uniquely
determined by the property that for s € S with s >0, |s| <1 if and only if s < 1g.

Let (E, P) and (F,(Q) be matrix ordered operator spaces and let p : E - F be
a bounded map. We will write ¢, : M,,(E) - M, (F) for the linear map defined by

©n =1id,, ®.

Definition 2.2.5. Let (F,P) and (F,Q) be matrix ordered operator spaces. A
linear map ¢ : E — F' is contractive if || < 1, and completely contractive if ¢, is
contractive for all n € N. Tt is isometric if | p(x)| = |z| for all x € E, and completely
isometric if |@,(z)| = |«| for all n € N and all x € M,,(F). Similarly, it is positive
if p(P1) € @1, and completely positive if , is positive for each n € N. The map
@ is a complete order wsomorphism if it is completely positive and invertible with
a completely positive inverse. It is a complete order embedding if it is completely
positive and invertible on its range with a completely positive inverse.

Remark 2.2.6. For unital operator systems, these definitions agree with the usual
definitions. Furthermore, because the norm on a unital operator system is com-
pletely determined by the matrix order, a unital map between unital operator sys-
tems is completely isometric if and only if it is a complete order embedding. However,
this is not true for arbitrary matrix ordered operator spaces (see [52]).

We will write UnOpSys for the category of unital operator systems with unital
completely positive maps (equivalently, unital complete order homomorphisms) as
morphisms. We will refer to unital complete order isomorphisms as isomorphisms,
and to unital complete order embeddings as embeddings.

Choi and Effros [11, Theorem 4.4] showed that every unital operator system
is isomorphic to a concrete unital operator system, meaning that there is a unital
completely isometric map into some B(H), where B(H) denotes the C*-algebra of
bounded linear operators acting on a Hilbert space H. We will be interested in
matrix ordered operator spaces satisfying an appropriate analogue of this property.

Specifically, we are interested in matrix ordered operator spaces with a com-
pletely isometric complete order embedding into some B(H). It turns out that not
every matrix ordered operator space has this property. Following Connes and van
Suijlekom [13], we will make use of Werner’s [52]| characterization of matrix ordered
operator spaces with this property in terms of partial unitizations (see below), al-
though other characterizations are also known (see e.g. [47]).

The next definition is [52, Definition 4.1] (see also [13, Definition 2.11]).

Definition 2.2.7. Let E be a matrix ordered operator space. The partial unitization
of E is the matrix ordered operator space (E', P), where Ef = E'@® C and the
matrix cone P = (P,) is defined by specifying that for each n e N, P, ¢ M,,(E");, =
M, (E) & (My,), consists of all pairs (x,a) € M,,(E), ® (M,), satisfying

a >0 and o(ac?za’?) > -1 for all € > 0 and ¢ € CCP(E, M,,),
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where o, = a + €l,, and CCP(E, M,,) denotes the space of completely contractive
and completely positive maps from E to M,,. We will refer to the map £ — E':
x > (x,0) as the canonical inclusion map, and we will refer to the map Ef - C :
(z,) = « as the projection onto the scalar summand.

The next result is contained in |52, Section 4] (see also |13, Proposition 2.12] and
[13, Lemma 2.13]).

Theorem 2.2.8. Let E be a matriz ordered operator space.
1. The partial unitization EY is a unital operator system.

2. Let 1: E — EY denote the canonical inclusion map and let 7 : EY - C denote
the projection onto the scalar summand. Then v 1s completely contractive and
completely positive and T s unital and positive, and the following sequence is
split exact:

0 s F sy EFt — T s C > 0.

3. Let F be a matriz ordered operator space and let ¢ : E — F be a completely
contractive and completely positive map. Then the unitization ob : Ef — Ft
defined by p'((z,a)) = (¢(x),a) for (z,a) € EY is unital and completely posi-
tive. Furthermore, if © is a completely isometric complete order isomorphism
then ot is a unital complete order isomorphism.

Remark 2.2.9. Note that F # E!, even if F is already unital. For a C*-algebra
A, the partial unitization A! coincides with the usual C*-algebraic unitization of A,
and hence is a unital C*-algebra.

It follows from the representation theorem of Choi and Effros [11]| for unital
operator systems that if £ is a matrix ordered operator space with partial unitization
E' and the canonical inclusion map F — E' is completely isometric, then there is a
completely isometric complete order isomorphism of E onto a self-adjoint subspace
of bounded operators acting on a Hilbert space. Following [13], this motivates the
following definition.

Definition 2.2.10. We will say that a complete matrix ordered operator space S
is a generalized operator system if the canonical inclusion map S — St is completely
isometric, in which case we will refer to S* as the unitization of S.

Remark 2.2.11. As in the unital case, it is not strictly necessary to assume that
generalized operator systems are complete. For a generalized operator system .S, we
will identify .S with its image in S* under the canonical inclusion map. In particular,
if T"is a generalized operator system and ¢ : S - T is completely contractive and
completely positive, then we will view the unitization ot : St - Tt as an extension
of ¢.

Remark 2.2.12. If S is a unital operator system, then it follows from [52, Lemma
4.9] that the identity map on S factors through the canonical inclusion map St. In
particular, this implies that the canonical inclusion map is completely isometric, so
S is a generalized operator system in the sense of Definition 2.2.10.
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Remark 2.2.13. Let S and T be generalized operator systems and let ¢ : § - T
be a completely contractive completely positive map. If ¢ is a completely isomet-
ric complete order isomorphism, then Theorem 2.2.8 implies that the unitization
ot : St > Tt is a complete order isomorphism. However, if ¢ is merely a completely
isometric complete order embedding, then it is not necessarily true that the unitiza-
tion ¢! is a complete order embedding (see Example 2.2.14). We will need to take
this into account when we define embeddings between generalized operator systems
below.

In the following example, we construct generalized operator systems S and T
and a completely isometric complete order embedding ¢ : S — T such that the
unitization S* — Tt is not a complete order embedding. The fundamental issue is
that completely contractive completely positive maps on the image of S in 7" do not
necessarily extend to completely contractive completely positive maps on T (see [47,
Section 6]).

Example 2.2.14. Define a,b e M by

“:[(1) —01]’ b:[(lJ —3/2]'

Let S = span{a} and T = span{ly,b} = C2. Then S is a non-unital generalized
operator system and 7' is a unital C*-algebra. Define ¢ : S — T by ¢(«aa) = ab for
a € C. We claim that ¢ is a completely isometric complete order embedding, but
that the unitization ! : S* — Bt is not completely isometric.

Note that M,,(S) =span{a® a:a e M,}. Since

[p(a@a)| =laed] =|af = |aeal,

¢ is completely isometric. Also, a®a >0 if and only if a®b >0 if and only if a =0,
so « is a complete order embedding.

It is not difficult to see that for A € [-1,1] the map @) : S - C defined by
oa(aa) = Aa for a € C is a quasistate, i.e. is completely contractive and completely
positive. Furthermore, if ¢ : S - C is a quasistate, then ¢ = p, for some X € [-1,1].
Hence the set of quasistates on S can be identified with [-1,1].

We will see in Section 2.4.4 that this implies that the state space of the unitization
Stis [-1,1]. Since [-1,1] is a simplex, it follows from a classical result of Bauer
that St = span{ls,a} = C? (see e.g. [32]).

Note that T% =2 C3. We can identify T' = C? with the first two coordinates of C3.
Then @(als + fa) = als + Bb. In particular, p*(31+a) = 313 +b. Since 11, +a #0
but %13 +b >0, it follows that ! is not a complete order embedding.

We will write GenOpSys for the category of generalized operator systems with
completely contractive and completely positive maps as morphisms. We will refer
to completely isometric complete order isomorphisms as isomorphisms. Motivated
by Remark 2.2.13, for generalized operator systems S and 7', we will refer to a
completely isometric complete order embedding ¢ : S — T" as an embedding if the
unitization ¢f : St — T* is an embedding in the category of unital operator systems.

Werner was able to isolate the precise obstruction to a matrix ordered operator
space being a generalized operator system in the sense of Definition 2.2.10. The
next result is [52, Lemma 4.8].
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Theorem 2.2.15. Let E be a matriz ordered operator space with partial unitization
EY. For each n, let v, : M,,(E) - Ry denote the map defined by

0 =z
gDx’*()

where the supremum is taken over all maps ¢ € CCP(May,(E),C). Then v, is a
norm on M, (E). The inclusion E — EY is completely isometric if and only if for
each n, the norm on M, (E) coincides with v,

. Jor xe M, (F),

Vn(2) = sup
©

2.3 Pointed noncommutative convex sets

A key result from [15] is the dual equivalence between the category of unital operator
systems and the category of compact nc convex sets. In this section we will review
the definition of a compact nc convex set and introduce the definition of a pointed
compact nc convex set. In Section 2.4, we will show that the category of operator
systems is dual to the category of pointed compact nc convex sets.

2.3.1 Noncommutative convex sets

Let E be an operator space. For nonzero (potentially infinite) cardinals m and n,
let M, ,(E) denote the operator space of m x n matrices over X with the property
that the set of finite submatrices are uniformly bounded. For brevity, we will write
M, (E) for M, ,(E), M,,,, for M,,,,(C) and M,, for M, (C). Restricting to
matrices with uniformly bounded finite submatrices ensures that matrices over F
can be multiplied on the left and right by scalar matrices of the appropriate size.
We identify M,, with the C*-algebra of bounded operators acting on a Hilbert space
H,, of dimension n.

If F is a dual operator space with distinguished predual E,, then there is a
natural operator space isomorphism M, (E) z CB(E,, M,), where CB(E,, M,,)
denotes the space of completely bounded maps from E, to M,,. We equip M,,(E)
with the corresponding point-weak* topology.

Let M(FE) = u,M, (E), where the union is taken over all nonzero cardinal num-
bers n. Once again, for brevity, we will write M for M(C). Although M(FE) is
a proper class and not a set, we will only be interested in subsets, so this will not
present any set-theoretic difficulties. More generally, we will consider disjoint unions
over nonzero cardinal numbers n of subsets of M,,(E). For a subset X ¢ M(F) and
a cardinal number n, we will write X,, for the graded component X,, = X n M, (E).

Definition 2.3.1. Let £ be an operator space. An nc convexr set over E is a
graded subset K = u, K, with K, ¢ M, (F) that is closed under direct sums and
compressions, meaning that

1. Y oyxiaf € K, for every bounded family of points x; € K, and every family of
isometries a; € M,, ,,, satisfying ) oo = 1,,.

2. B*xf € K, for every z € K,,, and every isometry 3 € M,, .

If £ is a dual operator space, so that each M, (F) is equipped with the weak*
topology discussed above, then we will say that K is closed if each K, is closed.
Similarly, we will say that K is compact if each K, is compact.
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The most important examples of compact nc convex sets are noncommutative
state spaces of operator systems. The next definition is [15, Example 2.2.6].

Definition 2.3.2. Let S be a unital operator system. The nc state space of S is the
set K =1, K, defined by K, = UCP(S,M,,). Here, UCP(S, M,,) denotes the space
of unital completely positive maps from S to M,,. Elements in K are referred to as
nc states on S.

Remark 2.3.3. Note that the set K is nc convex and compact since each UCP (S, M,,)
is compact.

The following characterization of compact nc convex sets as sets that are closed
under nc convex combinations is often useful. In particular, it makes the analogy
between nc convex sets and ordinary convex sets more explicit. The next result is
[15, Proposition 2.2.8].

Proposition 2.3.4. Let E be a dual operator space and let K = u, K, for closed
subsets K,, € M, (E). Then K is nc convez if and only if it is closed under nc
convex combinations, meaning that ). o z;c; € K, for every bounded family of points
x; € Iy, and every family o; € M, ,, satisfying Y. of oy = 1,,.

One of the most important justifications for the utility of noncommutative con-
vexity is the fact that there is a robust notion of extreme point for which a noncom-
mutative analogue of the Krein-Milman theorem |15, Theorem 6.4.2| holds, meaning
that every compact nc convex set is generated by its extreme points.

Definition 2.3.5. Let K be a compact nc convex set. A point x € K,, is extreme if
whenever z is written as a finite nc convex combination z = Y afz;q; for {z; € K, }
and nonzero {a; € M,, .} satisfying Y aa; = 1,,, then each «; is a positive scalar
multiple of an isometry f3; € M, ,, satisfying 5/z;8; = x and each x; decomposes
with respect to the range of «; as a direct sum z; = y; ® z; for y;,z; € K with y;
unitarily equivalent to x. The set of all extreme points is 0K = U(0K),,.

The morphism between nc convex sets are the continuous affine noncommutative
maps. The next definition is [15, Definition 2.5.1].

Definition 2.3.6. Let K and L be compact nc convex sets. A map 0 : K — L is
an nc map if it is graded, respects direct sums and is unitarily equivariant, meaning
that

1. (K,) c L, for all n,

2. (X yziar) = Y ouf(x;)af for every bounded family {z; € K,,} and every
family of isometries {a; € M, ,,} satisfying ¥ afa; = 1,,,

3. O(a*za) = a*f(x)a for every x € K,,, and every unitary o € M,,.

An nc map 0 is affine if, in addition, it is equivariant with respect to isometries,
meaning that

3. O(a*za) = a*f(x)a for every x € K,,, and every isometry o € M, ,,.
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An affine nc map 6 is continuous if the restriction f|g, is continuous with respect
to the point-strong™® topology on K,, and L, for each n. It is bounded if 6] < oo,
where [0 denotes the uniform norm (0| = sup,.x |0(x)|. Finally, 6 is an (affine)
homeomorphism and K and L are (affinely) homeomorphic if 6 is continuous and
has a continuous (affine) nc inverse.

Remark 2.3.7. We will consider an appropriate notion of continuity for more gen-
eral nc maps in Section 2.5.

We will write NCConv for the category of compact nc convex sets with contin-
uous affine nc maps as morphisms. We will refer to affine nc homeomorphisms as
isomorphisms, and to injective continuous affine nc maps as embeddings.

The next definition is [15, Definition 3.2.1].

Definition 2.3.8. Let K be a compact nc convex set. We will write A(K) for the
unital operator system of all continuous affine nc functions from K to M.

Remark 2.3.9. The fact that A(K) is a unital operator system is discussed in [15,
Section 3.2].

For a point x € K,,, the corresponding evaluation map A(K) - M,, : a — a(x)
is an nc state on A(K). Moreover, by [15, Theorem 3.2.2], every nc state on A(K)
is given by evaluation at some point in K (we will say more about this in Section
2.4). Tt will be convenient to identify points in K with the corresponding nc state
on A(K).

Following [15, Section 3.2|, for each n we will identify the unital operator system
M, (A(K)) with the space of continuous affine nc maps from K to M, (M) in the
obvious way.

2.3.2 Pointed noncommutative convex sets

In this section we introduce the notion of a pointed compact nc convex set, of
which the most important examples will be nc quasistate spaces of operator systems.
Before introducing the definition of a pointed compact nc convex set, we require the
definition of a pointed continuous affine nc function.

Definition 2.3.10. Let (K, z) be a pair consisting of a compact nc convex set K
and a point z € K. We will say that a continuous affine nc function a € A(K) is
pointed if a(z) = 0. We let A(K, z) € A(K) denote the space of pointed continuous
affine nc functions on K.

Remark 2.3.11. The space A(K, z) is a matrix ordered operator space with matrix
cone P =UP, inherited from A(K'). Specifically, for n € N, the positive cone on P,
consists of the positive functions in M, (A(K,z)). Since A(K,z) is a closed self-
adjoint subspace of the unital operator system A(K), it follows that A(K,z) is a
generalized operator system.

The most important examples of pointed compact nc convex sets will be nc
quasistate spaces of generalized operator systems. The idea to utilize nc quasistate
spaces in this setting was inspired by the importance of the quasistate space of a
non-unital C*-algebra.
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Definition 2.3.12. Let S be a generalized operator system. The nc quasistate space
of S is the pair (K, z), where K =u, K, is defined by K,, = CCP(S,M,,) and z € K,
is the zero map. Here, CCP(S, M,,) denotes the space of completely contractive
and completely positive maps from S to M,,. We will refer to elements of K as nc
quaststates on S.

Remark 2.3.13. Note that the set K is nc convex and compact since each CCP (S, M,,)
is compact.

We are now ready to introduce the definition of a pointed compact nc convex
set.

Definition 2.3.14. Let (K, z) be a pair consisting of a compact nc convex set K
and a point z € K;. We will say that (K, z) is a pointed compact nc convez set if
every nc quasistate on the generalized operator system A(K, z) belongs to K, i.e. is
evaluation at a point in K.

Remark 2.3.15. Since K is the nc state space of the unital operator system A(K),
(K,z) is a pointed compact nc convex set if and only if every nc quasistate on
A(K, z) extends to an nc state on A(K).

By definition, a pointed compact nc convex set is the nc quasistate space of a
generalized operator system. In Section 2.4, we will show that the nc quasistate
space of every generalized operator system is a pointed compact nc convex set. The
proof of this fact is non-trivial. However, we are now able to give some examples.

Example 2.3.16. Define K = uK,, by
K,={aeM,)p:-1,<a<l,}, for neN.

Then K is a compact nc convex set (see [15, Example 2.2.4]). Let z = 0. We will
show that the pair (K z) is a pointed compact nc convex set.

The unital operator system A(K) is given by A(K) = span{lsk),a}, where
a € A(K,z) is the coordinate function a(a) = a for o € K. Hence A(K, z) = span{a}.
In fact, A(K, z) is isomorphic to the non-unital generalized operator system S from
Example 2.2.14.

If 0:A(K,z) - M, is an nc quasistate, then there is a self-adjoint 5 € M,, with
-1, < B <1, such that #(aa) = af for a € C. Conversely, it is easy to check that
every self-adjoint § € M,, with —1,, < 5 < 1,, gives rise to an nc quasistate on A(K, z)
of this form. Hence the nc quasistate space of A(K,z) is K. Therefore, (K, z) is a
pointed compact nc convex set.

Note that A(K, 2)! = A(K). In Corollary 2.4.7, we will show that this property
characterizes pointed compact nc convex sets.

The next example shows that not every pair (K, z) consisting of a compact nc
convex set and a point z € K is a pointed compact nc convex set.

Example 2.3.17. Define K = uK,, by
K,={ae(M,),:-11,<a<l,}, for nelN.

Then as in Example 2.3.16, K is a compact nc convex set. Let z = 0. We will show
that the pair (K, z) is not a pointed compact nc convex set.
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The unital operator system A(K) is given by A(K) = span{ls(k),b}, where
be A(K, z) is the coordinate function b(«) = « for a € K. Hence A(K, z) = span{b}.
In fact, A(K) is isomorphic to the C*-algebra B from Example 2.2.14.

Define 6 : A(K,z) - C by 6(ab) = —a. Since A(K,z) does not contain any
positive elements, the matrix cone of A(K,z) is zero, so it is easy to check that
f is an nc quasistate. However, 6 does not extend to an nc state on A(K) since
51acy +0 >0, while £ +60(b) = -5 # 0. Hence 6 does not belong to K and (K, z) is
not a pointed compact nc convex set.

We will now establish a geometric characterization of pointed compact nc convex
sets.

Proposition 2.3.18. Let (K, z) be a pair consisting of a compact nc conver set
K and a point z € Ky. Then (K, z) is pointed if and only if whenever self-adjoint
ae M, (A(K,z)) satisfies a(x) <1, ® 1,, for all x € K,,, then 0,,(a) <1,,®1, for
all nc quasistates 0: A(K, z) - M,,.

Proof. 1f (K, z) is pointed, then every nc quasistate on A(K,z) belongs to K, so
the condition trivially holds. Conversely, suppose that (K, z) is not pointed. Then
there is an nc quasistate 6 : A(K, z) - M,, such that 6 ¢ K. Identifying K with its
image in M(A(K, z)*) and viewing 6 as a point in M,,(A(K, z)*), the nc separation
theorem |15, Theorem 2.4.1] implies there is a self-adjoint element a € M,,(A(K, 2))
such that 6(a) £ 1, ® 1, but a(z) <1, ®1, for all z € K,,. O

Example 2.3.17 is a single instance of a general class of examples.

Corollary 2.3.19. Let (K, z) be a pair consisting of a compact nc convez set and
a point z € K1 such that the matriz cone for A(K, z) is zero. Then (K, z) is pointed
if and only if whenever x € K,, satisfies az(™ + (1 -a)x € K,, for 0 < a <1, then
az(®) —(1-a)z e K,. Here z2(" € K,, denotes the direct sum of n copies of z.

Proof. Suppose that (K, z) is pointed and x € K,, satisfies az(") + (1 - )z € K,, for
0 < a < 1. Then since the positive cone of A(K, z) is zero, the map 0 : A(K,z) - M,
defined by 0(a) = aa(z™) - (1 - a)a(z) = —(1 - a)a(x) for a € A(K,z) is an
nc quasistate. Hence 6 is given by evaluation at a point in K which must be
az(™ — (1-a)z. Hence az(™ - (1-a)z e K.

Conversely, suppose that whenever z € K, satisfies az(® + (1 - a)z € K, for
0 <a<l1, then az™ - (1 -a)r € K,. If self-adoint a € M,,(A(K, z)) satisfies
a(z) <1, ®1, for all x € K, then for 0 < a < 1,

(1-a)a(z) =alaz™ + (1-a)r) <1, ®1,

and
~(1-a)a(z) =a(az™ - (1-a)r) <1, ®1,.

Then taking a — 0 implies
-1,®1,<a(r) <1, ®1,.

Hence |a/. < 1. Tt follows that if 6 : A(K,z) - M,, is an nc quasistate on A(K),
then 0(a) < 1,, ® 1,,. Therefore, by Proposition 2.3.18, (K, z) is pointed. O
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Example 2.3.20. Let K denote the nc state space of My and let z = tr, where
tr € K denotes the normalized trace. Then identifying My with A(K),

A(K,z):{lj _B]:Q,B7VEC}.

«

The matrix cone of A(K,z) is clearly zero. Define 6 : My — C by

A e o [

Then %tr +%9 € K,. But %tr—%& ¢ K. Hence by Corollary 2.3.19, the pair (K, z2) is
not pointed.

We now define the category of pointed compact nc convex sets.

Definition 2.3.21. Let (K,z) and (L,w) be pointed nc convex sets. We will
say that an affine nc map 0 : K — L is pointed if 0(z) = w. We will say that
(K,z) and (L,w) are pointedly affinely homeomorphic if there is a pointed affine
homeomorphism from (K, z) to (L,w).

We will write PONCConv for the category of pointed compact nc convex sets
with pointed continuous affine nc maps as morphisms. We will refer to pointed
affine nc homeomorphisms as isomorphisms, and to pointed injective continuous
affine nc maps as embeddings.

2.4 Categorical duality

In this section we will prove the dual equivalence between the category GenOpSys
of generalized operator systems and the category PoONCConv of pointed compact nc
convex sets. We begin by reviewing the details of the dual equivalence between the
category UnOpSys of unital operator systems and the category NCConv of compact
nc convex sets from [15].

2.4.1 Categorical duality for unital operator systems

The dual equivalence between the category of unital operator systems and the cate-
gory of compact nc convex sets was developed in [15, Section 3]. It is closely related
to a similar dual equivalence established by Webster and Winkler [51].

The next result combines [15, Theorem 3.2.2] and [15, Theorem 3.2.3].

Theorem 2.4.1. Let K be a compact nc convex set. The nc state space of the unital
operator system A(K) is isomorphic to K. For a unital operator system S with nc
state space K, the map S — A(K) :s — § defined by

$(x)=x(s) for seS reK
s an isomorphism.

The dual equivalence between the category UnOpSys of unital operator systems
and the category NCConv of compact nc convex sets follows from Theorem 2.4.1.
The contravariant functor UnOpSys — NCConv is defined in the following way:
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1. A unital operator system S is mapped to its nc state space.

2. For unital operator systems S and T" with nc state spaces K and L respectively,
a morphism ¢ : .S — T is mapped to the morphism ¢¢: L - K defined by

¢?(y)(a) = p(a)(y), for yelLandaeA(K).

The inverse functor NCConv - UnOpSys is defined in the following way:

1. A compact nc convex set K is mapped to the unital operator system A(K).

2. If K and L are compact nc convex sets and ¢ : L - K is a morphism, then
the corresponding morphism ¢ : A(K) - A(L) is defined by

P4 (a)(y) = a(¥(y)), for aeA(K) and ye L.

The next result summarizes this discussion. It is [15, Theorem 3.2.5].

Theorem 2.4.2. The contravariant functors UnOpSys - NCConv and NCConv —
UnOpSys defined above are inverses. Hence the categories UnOpSys and NCConv
are dually equivalent.

We will make use of the following result in the next section.

Proposition 2.4.3. Let K and L be compact nc conver sets. Let p: A(K) - A(L)
be a unital completely positive map and let % : L - K denote the continuous affine
map obtained by applying Theorem 2.4.2 to ¢. Then ¢ is completely isometric if
and only if ©? is surjective.

Proof. 1f @ is surjective, then for a € M, (A(K)),

[o(a) ] = sup (a) (y) oo = sup [a(?(y)) e = sup [a(z)] = |a] .
yeL yeL reK

Hence ¢ is completely isometric.

Conversely, suppose that ¢ is completely isometric. Let S = ¢(A(K)). Then
S is a unital operator system. Let M denote the nc state space of S, so that
S is isomorphic to A(M). It follows from Arveson’s extension theorem that the
restriction map r : L — M is surjective. Let ¢ : M — K denote the continuous affine
nc map obtained by applying Theorem 2.4.2 to S. Then ¢? =1 or. Theorem 2.4.2
implies that 1 is an affine homeomorphism. Since r is surjective, it follows that ¢?
is surjective. O

2.4.2 Categorical duality for generalized operator systems

Let (K, z) be a pair consisting of a compact nc convex set K and a point z € K.
Observe that for a point x € K, viewed as a unital completely positive map on
A(K), the restriction z|a(k ) is an nc quasistate. For brevity, it will be convenient
to simultaneously view points in K as nc states on A(K) and nc quasistates on
A(K,z). We will take care to ensure that this does not cause any confusion.

If (K,z) is the nc quasistate space of a generalized operator system S, then it
follows as in |52, Lemma 4.9] that the extension z! : S* - M, defined by z#(s,a) =
x(s)+al, is unital and completely positive, and hence is an nc state on S*. Moreover,
it is the unique extension of x to an nc state on S* with range in M,,. Here we have
identified S* with S @ C as in Definition 2.2.7. Note that S = ker 2.
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Proposition 2.4.4. Let S be a generalized operator system with nc quasistate space
(K, z) and let L denote the nc state space of the unitization S*. For an nc quasistate
x € K, let xt € L be the nc state defined as above. Then the map K — L :x — ¥ is
an affine homeomorphism with inverse given by the restriction map L - K :y - yls.
Hence SY is isomorphic to A(K).

Proof. For © € K, we have already observed that z! € L. On the other hand,
for y € L, the restriction y|g is completely contractive and completely positive, so
y|s € K. Then by uniqueness, (y|s)! =y. It follows that the map K — L:z — z! is
a bijection with inverse given by the restriction map.

It is clear that the restriction map from L to K is continuous and affine. From
above, the restriction to each L, is a continuous bijection onto K,. Since L, is
compact, it follows that this restriction is a homeomorphism. Hence the restriction
map is a homeomorphism.

The fact that S* is isomorphic to A(K) now follows from Theorem 2.4.1. O

Theorem 2.4.5. Let S be a generalized operator system with nc quasistate space
(K,z). Then S is isomorphic to A(K, z).

Proof. By Proposition 2.4.4, we can identify the nc state space of the unitization
St with K. Let ! : St - A(K) denote the isomorphism from Theorem 2.4.1.
Then for s € St, pl(s) = 3, where §: K - M is the affine nc function defined by
5(x) = xM(s) for z € K. In particular, for s € S, ¢t(s)(z) = 5(z) = 2#(s) = 0, so
ot(S) € A(K, z). Hence restricting ¢! to S, we obtain a map ¢ : S - A(K, z). Since
ot is an isomorphism, ¢ is completely positive and completely isometric. It remains
to show that ¢ is a surjective complete order isomorphism.

To see that ¢ is surjective, choose a € A(K,z). By the surjectivity of ¢!, there
is s € St such that ¢t(s) = a. Then 0 = a(z) = 5(z) = z#(s). Hence s € S, and we
conclude that ¢ is surjective.

To see that ¢ is a complete order isomorphism, let P = uP, and @ = u@,
denote the matrix cones of S and A(K, z) respectively. If ¢ is not a complete order
isomorphism, then there is s € M,,(S) such that s ¢ P, but ¢(s) € Q,. Suppose that
this is the case. We will apply a separation argument to obtain a contradiction.

Identify S with its image under the canonical embedding into its bidual S** and
define M ¢ M(S**) by M = P = UP,,, where the closure is taken with respect to the
weak™ topology. Since P is nc convex, M is nc convex. Hence M is a weak™ closed
nc convex set. Furthermore, since P, is convex and uniformly closed, it is weakly
closed, implying s ¢ M. Therefore, by the nc separation theorem [15, Theorem 2.4.1]
there is a self-adjoint normal completely bounded linear map ¢ : S** - M,, such
that ¢(s) # -1, ® 1, but ¢(t) > -1, ® 1, for all t € M,

Since 1 is normal, it can be identified with the unique normal extension of a
map ¢ : S - M, satisfying ¢(s) ¥ -1, ® 1,, but ¢(t) > -1, ® 1, for all t € P,. Then
in particular, ¥(s) # 0. However, since P is closed under multiplication by positive
scalars, for t € P, and o > 0, ¢(t) > —a7'1, ® 1,,. Taking o — oo implies ¢(t) > 0.
Hence ¢ > 0. Multiplying ¢ by a sufficiently small positive scalar, we obtain a
quasistate x € K such that z(s) # 0. But then §(z) = 2(s) # 0, so p(s) =5 # 0,
contradicting the assumption that ¢(s) € Q. O

Corollary 2.4.6. Let S be a generalized operator system with nc quasistate space
(K,z). Then (K,z) is a pointed compact nc convez set.
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Proof. By Theorem 2.4.5, we can identify S with the generalized operator system
A(K, z), and by definition, every nc quasistate on A(K, z) belongs to K. O

Corollary 2.4.7. Let (K, z) be a pair consisting of a compact nc conver set K and
a point z € Ki. The following are equivalent:

1. The pair (K, z) is a pointed compact nc conver set.
2. The nc quasistate space of the generalized operator system A(K,z) is (K, z).
3. The generalized operator system A(K, z) satisfies A(K,z)t = A(K).

Proof. 1. = 2. If (K, z) is a pointed compact nc convex set then by definition every
nc quasistate on A(K, z) belongs to K. Since every point in K is an nc quasistate
on A(K,z), it follows that the nc quasistate space of A(K,z) is (K, z).

2. = 3. If the nc quasistate space of A(K, z) is (K,z), then Proposition 2.4.4
implies that the nc state space of A(K,z)!is K. It follows from Theorem 2.4.2 that
A(K,z)t = A(K).

3. = 1. If A(K,z) = A(K), then since every nc quasistate on A(K,z) extends
to an nc state on A(K, z)!, and since K is nc state space of A(K), it follows that
every nc quasistate of A(K, z) belongs to K. Hence (K, z) is a pointed compact nc
convex set. O

The next result follows immediately from Theorem 2.4.5 and Corollary 2.4.7. Tt
is an analogue of the representation theorem [15, Theorem 3.2.3].

Theorem 2.4.8. Let S be a generalized operator system with nc quasistate space
(K,z). The map S* - A(K) : s — § defined by

s(x)=2'(s) for zeK,

15 a unital complete order isomorphism that restricts to a completely isometric com-
plete order isomorphism from S to A(K, z). Hence S is isomorphic to A(K,z).

Theorem 2.4.5 and Corollary 2.4.7 imply the dual equivalence of the category
GenOpSys of generalized operator systems and the category PoONCConv of pointed
compact nc convex sets. The contravariant functor GenOpSys - PoNCConv is
defined in the following way:

1. A generalized operator system .S is mapped to its nc quasistate space.

2. For generalized operator systems S and T with nc quasistate spaces (K, z)
and (L,w) respectively, a morphism ¢ : S - T is mapped to the morphism
¢%: L - K defined by

0% (y)(a) = p(a)(y), for yeL and aeA(K,?2).

The inverse functor PONCConv — GenOpSys is defined in the following way:

1. A pointed compact nc convex set (K, z) is mapped to the generalized operator
system A(K, z).
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2. If (K, z) and (L, w) are compact nc convex sets and ¢ : L - K is a morphism,
then the corresponding morphism ¢ : A(K,z) - A(L,w) is defined by

v¥(a)(y) =a(d(y)), for aeA(K,z)andyeL.

The next result summarizes this discussion.

Theorem 2.4.9. The contravariant functors GenOpSys - PoNCConv and PONCConv —
GenOpSys defined above are inverses. Hence the categories GenOpSys and PoNCConv
are dually equivalent.

The next result characterizing isomorphic generalized operator systems is an
analogue of [15, Corollary 3.2.6]. It follows immediately from Theorem 2.4.9.

Corollary 2.4.10. Let (K, z) and (L,w) be compact pointed nc conver sets. Then
A(K,z) and A(L,w) are isomorphic if and only if (K,z) and (L,w) are pointedly
affinely homeomorphic. Hence two generalized operator systems are isomorphic if
and only if their nc quasistate spaces are pointedly affinely homeomorphic.

We saw in Example 2.2.14 that if S and T" are generalized operator systems and
p S = T is a completely contractive complete order embedding, then it is not
necessarily true that the unitization ! : St — T" is completely isometric. In other
words, ¢ is not necessarily an embedding. However, we can now state necessary and
sufficient conditions for ¢ to be an embedding.

The following result follows immediately from Theorem 2.4.2, Theorem 2.4.9 and
the discussion preceding the statements of these results.

Lemma 2.4.11. Let (K, z) and (L,w) be pointed compact nc conver sets and let o :
A(K,z) > A(L,w) be a completely contractive and completely positive map. Let o :
L — K denote the corresponding continuous affine map defined as in Theorem 2.4.9.
Then ©% coincides with the continuous affine map obtained by applying Theorem

2.4.2 to the unitization ot : A(K) - A(L).

Corollary 2.4.12. Let (K, z) and (L,w) be pointed compact nc convex sets. Let
v :A(K,z) > A(L,w) be a completely contractive and completely positive map and
let 0% : L - K denote the pointed continuous affine map given by applying Theorem
2.4.9 to ¢. Then @ is an embedding if and only if p? is surjective.

Proof. By Lemma 2.4.11, the map ¢? coincides with the map obtained by applying
Theorem 2.4.2 to the unitization ¢! : A(K) — A(L). By Proposition 2.4.3, ¢! is
completely isometric if and only if ¢ is surjective. m

2.5 Pointed noncommutative functions

2.5.1 Noncommutative functions

In order to define a more general notion of continuous nc function, it is necessary
to introduce the point-strong® topology on a compact nc convex set K. This is
the weakest topology on each K, making the maps = —» a(x)n and = - a(x)*¢
continuous for all a € A(K') and all vectors £, € H,.

The following definition is essentially [15, Definition 4.2.1].
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Definition 2.5.1. Let K be a compact nc convex set. An nc function on K is an
nc map f: K — M in the sense of Definition 2.3.6. An nc function f is continuous
if it is continuous with respect to the point-strong* topology on K from above. We
will write B(K') and C(K) for the unital C*-algebras of bounded and continuous nc
functions on K respectively.

Remark 2.5.2. It is clear that A(K) < C(K) ¢ B(K). The product on B(K) is the
pointwise product, meaning that for f,¢g € B(K) and z € K, (fg)(x) = f(z)g(x).
The adjoint is defined by f*(z) = f(x)* for f € B(K) and z € K. By [15, Theorem
4.4.3], C(K) = C*(A(K)), i.e. C(K) is the C*-algebra generated by A(K). We will
say more about C(K) in Section 2.6.

For x € K,,, we will write d, : B(K') - M,, for the point evaluation *-homomorphism
defined by 0,(f) = f(x) for f € B(K). This is a noncommutative analogue of an
evaluation functional, since for f € C(K), d,.(f) = f(x).

Elements in the enveloping von Neumann algebra C(K)** can naturally be iden-
tified with bounded nc functions on K. Specifically, for x € K,, it follows from
the universal property of C(K)** as the enveloping von Neumann algebra of C(K)
that the *-homomorphism ¢, : C(K) - M, has a unique extension to a normal
*_homomorphism §** : C(K)** - M,. For f € C(K)**, the function f: K - M
defined by f(z) = 62*(f) for z € K is a bounded nc function and hence belongs to
B(K). In fact, much more can be said.

The following result is contained in [15, Theorem 4.4.3] and [15, Corollary 4.4.4].

Theorem 2.5.3. Let K be a compact nc convex set. The map o : C(K)** - B(K)
defined as above is a normal *~isomorphism that restricts to a normal unital complete
order isomorphism from A(K)** onto the unital operator system Ay(K) of bounded
affine nc functions.

2.5.2 Pointed noncommutative functions

Definition 2.5.4. Let (K, z) be a pointed compact nc convex set. We will say that
an nc function f: K — M is pointed if f(z) =0. We let B(K,z) denote the space
of pointed bounded nc functions on K. Similarly, we let C(K,z) = C(K)nB(K,z2)
denote the space of pointed continuous nc functions on K.

Remark 2.5.5. It is clear that B(K 2) is a closed two-sided ideal of B(K') and that
C(K,z) is a closed two-sided ideal of C(K). In particular, B(K, z) and C(K, z) are
C*-algebras. Furthermore, it follows from the identification C(K)** = B(K) that

the representation ¢;* is normal on B(K'). Hence B(K, z) is a weak™*-closed ideal of
B(K).

Proposition 2.5.6. Let (K, 2) be a pointed compact nc convex set. Then C(K, 2)! =
C(K) and C(K,z) = C*(A(K,z2)).

Proof. By Corollary 2.4.7, A(K,z)" = A(K). Hence A(K) = A(K,z) + Cla).
Since C(K) = C*(A(K)), it follows that C(K) = C(K,z) + C. Hence C(K,z) =
C*'(A(K, 2)).

To see that C(K, z)t = C(K), it suffices to show that for any *-homomorphism 7 :
C(K,z) > M,, there is a unital *-homomorphism 7 : C(K) - M,, extending 7. The
restriction 7|a(x .y is an nc quasistate, so by the assumption that (K z) is pointed,
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it is given by evaluation at a point x € K,. Then the unital *-~homomorphism
0y 1 C(K) = M,, extends 7|s(k .. Since A(K,z) generates C(K, z), it follows that
5m|C(K,z) =T. ]

*

The next result follows from restricting the *-isomorphism in the statement of

Theorem 2.5.3.

Theorem 2.5.7. Let (K, z~) be a compact pointed nc conver set. Then the map
C(K,z)* > B(K,z): f—> [ defined by

f(z)=82*(f) for feC(K,z)* andzeK,

is a normal *-isomorphism of von Neumann algebras that restricts to a normal com-
pletely isometric complete order isomorphism from A(K,z)** onto the generalized
operator system Ay(K, z) of pointed bounded affine nc functions.

2.6 Minimal and maximal C*-covers

The deepest results in [15] arise from the interplay between unital operator systems
of continuous affine nc functions on compact nc convex sets and unital C*-covers of
nc functions on the sets. Connes and van Suijlekom [13] introduced an analogous
notion of C*-cover for operator systems. In this section we will review the notion
of a unital C*-cover of a unital operator system before considering the more general
notion of a C*-cover of a generalized operator system.

2.6.1 Minimal and maximal unital C*-covers

Let S be a unital operator system.

1. A pair (A,:) consisting of a unital C*-algebra A and an embedding ¢: S - A
is a unital C*-cover of S if A =C"(¢(S)).

2. If (A’,) is another unital C*-cover of S, then we will say that (A,:) and
(A, ) are equivalent if there is a unital *-isomorphism 7 : A - A’ such that
mor=1.

3. We will say that a unital C*-cover (A,¢) of S is mazimal if for any unital
C*-cover (B, ) of S, there is a surjective unital *-homomorphism o : A - B
such that p =0 o

S ety A=C(u(9))

T

B =C*(#(5))

4. We will say that a unital C*-cover (A,:) of S is minimal if for any unital
C*-cover (B, ) of S, there is a surjective unital *~homomorphism 7: B - A
such that mo =t

S —— A=C*(1(9))
r
2 :7(

B =C*(#(5))
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The existence and uniqueness of the maximal unital C*-cover of a unital operator
system was established by Kirchberg and Wassermann [34]|. The following result is
non-trivial. It is implied by [15, Theorem 4.4.3].

Theorem 2.6.1. Let K be a compact nc convex set. The maximal unital C*-cover
for the unital operator system A(K) is the C*-algebra C(K) of continuous nc func-
tions on K.

The existence and uniqueness of the minimal unital C*-cover of a unital oper-
ator system was established by Hamana [24]. The results in [15] and [32| imply a
description in terms of the nc state space of the unital operator system, which we
will now describe.

Let K be a compact nc convex set. It follows from Theorem 2.6.1 that there
is a surjective *-homomorphism 7 from C(K’) onto the minimal unital C*-cover of
A(K). A result of Dritschel and McCullough [17] implies that ker 7 is the boundary
ideal in C(K) relative to A(K), i.e. the unique largest ideal in C(K') with the prop-
erty that the restriction of the corresponding quotient *-homomorphism to A(K) is
completely isometric.

Let Iz = kerm and let C(OK) = C(K)/Izz. We will refer to C(OK) as the
minimal unital C*-cover of A(K). In order to explain this choice of notation and
give a description of C(0K) in terms of K, we require the spectral topology from
[32, Section 9.

Definition 2.6.2. Let K be a compact nc convex set. We will say that a point
x € K is reducible if x is unitarily equivalent to a direct sum x ~ y @ 2z for points
y,z € K. We will say that = is irreducible if it is not reducible, and we will write
Irr(K) for the set of irreducible points in K.

Remark 2.6.3. Note that a point x € K is irreducible if and only if the correspond-
ing *-homomorphism 4, is. In particular, K ¢ Irr(K), where 0K denotes the set
of all extreme points as in Definition 2.3.5.

Let K be a compact nc convex set. Let Spec(C(K)) denote the C*-algebraic
spectrum of C(K), i.e. the set of unitary equivalence classes of irreducible repre-
sentations of C(K) equipped with the hull-kernel topology. For a point x € Irr(K),
we have already observed that the *~homomorphism 0, is irreducible. Hence letting
[0.] denote the unitary equivalence class of d,, [d,] € Spec(C(K)). Note that the
map Irr(K) — Spec(C(K)) : © — [0,] is surjective.

Definition 2.6.4. The spectral topology on Irr(K) is the pullback of the hull-kernel
topology on Spec(C(K)). Specifically, the open subsets of Irr(K) are the preimages
of open subsets of Spec(C(K)) under the map Irr(K) - Spec(C(K)) : & - [d,].

The results in [32, Section 9| imply that
Liz={feC(K): f(z)=0for all z € 0K },

where 0K denotes the closure of K with respect to the spectral topology on Irr(K).

The minimal unital C*-cover C(0K) = C(K)/I5z can be viewed as a noncom-
mutative generalization of the classical Shilov boundary. For this reason, the ideal
ker 7 is sometimes referred to as the Shilov ideal (see e.g. [32]).
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2.6.2 Minimal and maximal C*-covers

Connes and van Suijlekom [13] introduced an analogue for generalized operator
systems of a unital C*-cover of a unital operator system from Section 2.6, which
they refer to as a Cl-cover. We will instead refer to C*-covers.

Definition 2.6.5. Let S be a generalized operator system.

1. We will say that a pair (A,¢) consisting of a C*-algebra A and an embedding
1:S = Aisa C*cover of Sif A=C"(«(5)).

2. If (A’,1') is another C*-cover of S, then we will say that (A,:) and (A,.') are
equivalent if there is a *-isomorphism 7: A — A’ such that mo. = (/.

3. We will say that a C*-cover (A,¢) of S is mazimal if for any C*-cover (B, ¢)
of S there is a surjective *-homomorphism o : A — B such that p = o.

S ety A=Cr(u(S))

T

B =C*(¢(5))

4. We will say that a C*-cover (A,¢) of S is minimal if for any C*-cover (B, ¢)
of S, there is a surjective *-homomorphism 7 : B — A such that mo ¢ = ..

S ety A=Cr(u(S))

T

B =C*(¢(5))

Remark 2.6.6. Let (K, z) be a pointed compact nc convex set. If (A4,:) is a C*-
cover for A(K, z), then since ¢ is an embedding, the unitization ! : A(K) > At is
an embedding. Hence (A# ) is a unital C*-cover of A(K).

The existence and uniqueness of the minimal C*-cover of a generalized operator
system was established in [13, Theorem 2.2.5] under the name C'-envelope. In this
section we will prove the existence and uniqueness of the maximal C*-cover, and we
will describe the maximal and minimal C*-covers of a generalized operator system
in terms of the maximal and minimal unital C*-covers of its unitization.

Proposition 2.6.7. Let S be a generalized operator system. If the maximal and
minimal C*-covers of S exist, then they are unique up to equivalence.

Proof. Let (A,:) and (A’,:") be maximal C*-covers for S. Then by definition there
are surjective homomorphisms 0 : A - A’ and ¢’ : A’ > A such that / = 0o and
t=0"0. Hence o7 = 0’, s0 ¢ is a *-isomorphism and hence (A, ) and (A,.) are
equivalent. The proof for the minimal C*-cover is similar. O]

Theorem 2.6.8. Let (K, z) be a compact pointed nc conver set.

1. The C*-algebra C(K, z) is a maximal C*-cover for A(K, z) with respect to the
canonical inclusion.
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2. Let Iz denote the boundary ideal in the C*-algebra C(K) of continuous nc
functions on K relative to A(K), so that the quotient C(K)/Iz5 is the minimal
unital C*-cover of A(K), and let I 5 ) = Iz N C(K, z). Then the C*-algebra
C(K,2)/1zx.. is the minimal C*-cover of A(K, z) with respect to the quotient
*homomorphism. In particular, the C*-algebra generated by the image of
A(K, z) under the canonical embedding of A(K) into C(OK) is isomorphic to
C(OK,=z).

Proof. 1. Let (B,¢) be a C*-cover for A(K,z). We can assume that B ¢ M,, for
some n, so that ¢ =z and B =J,(C(K, z)) for some x € K,,. It follows that C(K,2)
is a maximal C*-cover for A(K, z) with respect to the canonical inclusion.

2. Since C(K)/Iz is a unital C*-cover for A(K), C(K, 2)/ 55 .y is a C*-cover
for A(K,z). To see that it is minimal, it suffices to show that if (B,¢) is any
C*-cover for A(K,z), then kero ¢ [ 5 ).

By 1., there is a surjective unital *-homomorphism o : C(K,z) — B such that
0|a(k,2) = . The unitization ot : C(K) - B! is a unital *-homomorphism satisfying
o¥|aky = @b Since ¢ is an embedding, ¢! is completely isometric, so kerot ¢ Iz
Hence kero € I 55 . O

Definition 2.6.9. Let (K, z) be a pointed compact nc convex set. Let I(a—KJ) denote
the ideal in C(K,z) from Theorem 2.6.8 and let C(OK,z) = C(K,2)/1 75,y We

will refer to C(OK, z) as the minimal C*-cover of A(K,z), and we will refer to the
corresponding quotient *-homomorphism as the canonical embedding of A(K, z) into

C(OK,2).

Remark 2.6.10. The ideal I(sz) = ker7 is a pointed analogue of the boundary
ideal from Section 2.6.1. Tt is the largest ideal in C( K, z) such that the corresponding
quotient *-homomorphism restricts to an embedding of A(K, z).

Example 2.6.11. Define a,b e M, by

a:[(l) —01]’ b:[(l) —3/2]'

Let S = span{a} and T = span{b}. Then S and T are non-unital generalized op-
erator systems, and it is not difficult to verify that S and T are isomorphic to the
non-unital generalized operator systems considered in Example 2.3.16 and Example
2.3.17 respectively.

Let (K, z) denote the nc quasistate space of S. Note that this is the same (K, 2)
from Example 2.3.16. Since K; =[-1,1] is a simplex, the results in [32] imply that
0K = 0K, = {-1,1}. Hence identifying S with A(K,z), the minimal C*-cover of
St=A(K)is C(0K) = C({-1,1}) = C2,

Let ¢ : A(K) —» C(0K) denote the canonical embedding. Then ((A(K,z2)) =
{(~a,a) : a € C} = C. Hence C(0K,z) = C. Note that C(0K,z) is unital even
though A(K, z) is nonunital.

Define 0 : S - T defined by #(aa) = ab for a € C. Then arguing as in Example
2.3.17, 0 is an isomorphism. Hence the minimal C*-cover of T is also isomorphic to
C2.

Example 2.6.12. Let A be a C*-algebra with nc quasistate space (K, z). Then A
is clearly a C*-cover of itself with respect to the identity map. By definition, there
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is a surjective *-homomorphism 7 : A - C(9K, 2) that is completely isometric on
A. Therefore, 7 is a *-isomorphism, implying A = C(0K, z).

Let K be a compact nc convex set. A useful fact implied by [14, Theorem 3.4]
and [15, Proposition 5.2.4| is that the direct sum of the points in 0K extends to a
faithful representation of the minimal unital C*-cover C(0K). Specifically, define
y € K by y = ®@,corx. Then the *-homomorphism 6, satisfies kerd, = ker I5z. Hence
6,(C(K)) =2 C(OK). The following result is an analogue of this fact for the minimal
C*-cover of a generalized operator system.

Proposition 2.6.13. Let (K, z) be a pointed compact nc conver set. Define y € K
by y = ®zeor~(3x. Then the *-homomorphism 6, satisfies kero, = ](W’Z), where

I35,y s the ideal from Theorem 2.6.8. Hence 6,(C(K, z)) = C(0K,z).

Proof. From above, (3, ®6.)(C(K)) 2 C(OK). So considered as a *-representation
of C(K), ker(6,®9.) = Izz. By Theorem 2.6.8, ker(d, ®0.)nC(K, 2) = [ 5 ). Since
dy is zero on A(k, z) and so also on C(K, z), it follows that kerd, nC(K, 2) = I 57 ,)-
Hence by Theorem 2.6.8, 6,(C(K,z)) = C(9K, 2). O

We will say more about the minimal C*-cover in Section 2.7.

2.7 Characterization of unital operator systems

In this section we will apply the results from Section 2.6 to establish a characteri-
zation of unital generalized operator systems in terms of their nc quasistate space.
We note that a closely related problem, of characterizing operator spaces that are
unital operator systems, has been considered by Blecher and Neal [6].

Theorem 2.7.1. Let (K, z) be a pointed compact nc conver set. The following are
equivalent for a pointed continuous affine nc function e € A(K, z):

1. The function e is a distinguished archimedean matriz order unit for A(K, z).

2. The image of e under the canonical embedding of A(K, z) into C(OK, z) is the
wdentily.

3. For every n and every x € (OK ~ {z}),, e(x) = 1,.

Proof. (1) = (2) Suppose that e is a distinguished archimedean matrix order unit for
A(K,z). Then A(K,z) is a unital operator system, so it follows from [11, Theorem
4.4] that there is y € K, such that y is a unital complete isometry on A(K,z) with
e(y) = 1. Then kerd, is contained in the boundary ideal I3z , from Remark 2.6.10.

It follows that the canonical embedding of A(K,z) into C(9K,z) factors through
y, and hence maps e to the identity.

(2) = (3) Suppose that the image of e under the canonical embedding of A(K, z)
into C(OK,z) is the identity. Proposition 2.6.13 implies that the restriction to
A(K, 2) of every nc quasistate in 9K \ {z} factors through C(0K, z). It follows that
for x € (OK ~ {z})n, e(x) = 1.

(3) = (1) Suppose that for every n and every x € (OK ~{z})n, e(z) =1,. Then it
follows from Proposition 2.6.13 that the image of e under the canonical embedding of
A(K, 2) into C(JK, z) is the identity. It follows that e is a distinguished archimedean
matrix order unit for C(0K, z), and hence also for A(K, 2). O
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Corollary 2.7.2. Let S be a generalized operator system with nc quasistate space
(K,z). The following are equivalent:

1. The generalized operator system S is unital.
2. There is e € S such that for every n and every x € (0K \ {z})n, e(x) =1,
The next result is [13, Theorem 2.25 (ii)].

Corollary 2.7.3. Let S be a unital operator system. Then the minimal unital C*-
cover of S and the minimal C*-cover of S coincide.

Proof. Let (A,:) and (B, k) denote the minimal unital C*-cover of S and the min-
imal C*-cover of S respectively. It follows from Theorem 2.7.1 and Proposition
2.6.13 that B is unital. Hence by the universal property of A, there is a surjective
*_homomorphism 7 : A - B such that mo. = k. On the other hand, by the universal
property of B, there is a surjective *-homomorphism o : B - A such that c ok = ¢.
Hence A and B are isomorphic. O

2.8 Quotients of generalized operator systems

In this section we will utilize the dual equivalence between the category GenOpSys
of generalized operator systems and the category PoONCConv of pointed compact nc
convex sets to develop a theory of quotients for generalized operator systems. We
will show that the theory developed here extends the theory of quotients for unital
operator systems developed by Kavruk, Paulsen, Todorov and Tomforde [29]. We
note that the theory of quotients for unital operator systems can be developed in
a similar way using the dual equivalence between the category of unital operator
systems and the category of compact nc convex sets from [15, Section 3.

Definition 2.8.1. Let S be a generalized operator system and let (K, z) denote the
nc quasistate space of S. We will say that a subset J € .S is a kernel if there is an
nc quasistate x € K such that J = kerz.

Remark 2.8.2. For x € K,,, the closure of the image 2:(S) ¢ M,, is a generalized
operator system. Hence J is a kernel if and only if there is a generalized operator
system T" and a completely contractive and completely positive map ¢ :.S - T with
kerp = J.

Let S be a generalized operator system and let (K, z) denote the nc quasistate
space of S. For a subset @ ¢ S, the annihilator of Q is Q+ = {z € K : a(z) =
0 for all @ € @Q}. Note that Q' is a closed nc convex set. Similarly, for a subset
X ¢ K, the annihilator of X is Xt ={ae S:a(x) =0 for all z € X}.

The next result is a noncommutative analogue of [1, I1.5.3].

Lemma 2.8.3. Let K be a compact nec conver set and let X ¢ K be a subset. Then
X =Y nK, where Y € M(A(K)*) denotes the closed nc convex hull generated by
uspan X,,, where span X,, is taken in M, (A(K)*).
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Proof. Tt is clear that Y n K ¢ X*t. For the other inclusion, suppose for the sake of
contradiction there is z € (X*4), N (Y nK). Then z ¢ Y. Hence by the nc separation
theorem [15, 2.4.1], there is a self-adjoint element a € A(K') satisfying a(z) £ 1, ®1,
but a(y) <1, ® 1, for all y € Y,. Since each Y, is a subspace, this forces a(y) =0
for all y € Y,. Hence viewing a as an n x n matrix a = (a;;) over A(K), a;;(y) =0
for all y € Y. In particular, a;;(x) = 0 for all x € X. Hence a;; € X* for all i, ;.
Since z € X+, it follows that a;;(2) = 0 for all 4,j. Therefore, a(z) = 0, giving a
contradiction. O

Proposition 2.8.4. Let (K, z) be a pointed compact nc convex set. A subset J C
A(K,z) is a kernel if and only if J = J*. If J is a kernel and M = J*, then the
completely contractive completely positive restriction map A(K,z) - A(M,z) has
kernel J. Moreover, z € M and the pair (M, z) is a pointed compact nc conver set.

Proof. Suppose that J = J*. Let M = J*. Then J=M*'. Letr: A(K,z) > A(M, z)
denote the restriction map. Then r is completely contractive and completely positive
and kerr = M+ =J. Hence J is a kernel.

Conversely, suppose that J is a kernel. It is clear that J ¢ J'*. For the other
inclusion, choose x € K such that J = kerx. Let T denote the closure of the image
A(K,z)(x) € M,,. Then T is a generalized operator system. Letting (L, w) denote
the nc quasistate space of T', we can identify T" with A(L,w). Let ¢ : L > K denote
the continuous affine map obtained by applying Theorem 2.4.9 to . Then for a € J
and y € L, 0 = a(z)(y) = a(v(y)). Hence (L) c J*, so for a € J** and y € L,
0=a((y)) =a(x)(y), i.e. a(x) =0. Hence J*+ c J, so J = J+L.

If J is a kernel and M = J*, then clearly z € M. To see that (M,z) is a
pointed compact nc convex set, let 6 : A(M,z) - M, be an nc quasistate. Let
r:A(K,z) - A(M, z) denote the restriction map from above. Then the composition
0 or is an nc quasistate on A(K,z). Since (K, z) is a pointed compact nc convex
set, by definition there is x € K such that 8 or = x. Since x factors through r,
xeJt=M. ]

Definition 2.8.5. Let S be a generalized operator system and let (K, z) denote
the nc quasistate space of S. For a kernel J ¢ S, we let S/J denote the generalized
operator system A(M,z), where M = Jt. We will refer to S/J as the quotient of S
by J, and we will refer to the restriction map S — A(M, z) obtained by identifying
S with A(K, z) as the canonical quotient map.

Remark 2.8.6. Note that we have applied Theorem 2.4.8 to identify S with A( K, z).
It is clear that the canonical quotient map A(K,z) - A(M, z) is completely con-
tractive and completely positive.

The next result characterizes generalized operator system quotients in terms of
a natural universal property. It is an analogue of |29, Proposition 3.6]|.

Theorem 2.8.7. Let S be a generalized operator system and let J € S be a ker-
nel. The quotient S[J is the unique generalized operator system up to isomorphism
satisfying the following universal property: there is a completely contractive and
completely positive map ¢ : S - S|J, and whenever T is a generalized operator
system and 1 : S — T is a completely contractive and completely positive map with
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J c ker, then ¢ factors through . In other words, there is a completely contractive
and completely positive map w:S|J =T such that 1) =w o .

Je— S 2= S/J
N
T

Proof. To see that S/.J satisfies this universal property, first note that the canonical
quotient map ¢ : S - S/J is completely contractive and completely positive. Let
T be a generalized operator system and let ¢ : S — T be a completely contractive
and completely positive map with J ¢ kert. Letting (K, z) and (L,w) denote the
nc quasistate spaces of S and T respectively, we can assume that S = A(K,z) and
T = A(L,w). Let ¢¥?: L > K denote the continuous affine nc map obtained by
applying Theorem 2.4.8 to ).

Let M = J*. For a € J and y € L, the fact that J € ker implies that 0 =
¥(a)(y) = a(¥¥(y)). Hence (L) € J- = M. Restricting the codomain of ¢
to M and applying Theorem 2.4.8 to 1%, we obtain a completely contractive and
completely positive map w: A(M,z) - A(L,w) such that w o ¢ = 1.

To see that S/J is the unique generalized operator system with this universal
property, suppose that R is another generalized operator system that satisfies the
property from the statement of the theorem, then there are surjective completely
contractive and completely positive maps S/J - R and R — S/J such that the
composition is the identity map on S/J. It follows that each of the individual maps
must be a completely isometric complete order isomorphism. Hence R is isomorphic
to S/J. O

In order to relate our theory of quotients of generalized operator systems to the
theory of quotients of unital operator systems from [29], we require the following
result.

Lemma 2.8.8. Let (K, z) be a pointed compact nc convez set such that A(K,z) is
a unital operator system and let e € A(K, z) denote the distinguished archimedean
matriz order unit. Let J ¢ A(K,z) be a kernel and let M = J*. Then for x €
OM ~{z}, e(x) =1.

Proof. Let K° and K! denote the closed nc convex hulls of {z} and 0K \ {z}
respectively. By Theorem 2.7.1, e(z) = 1 for x € 90K ~ {z}. Hence by the continuity
of e, e(z) = 1forall z € K. Since e(z) = 0, in particular this implies that K°nK' = @.

For x € OK, either e(z) =1 or e(x) = 0. It follows from [14, Theorem 3.4] and
[15, Proposition 5.2.4] that the image of e under the canonical embedding of A(K)
into its minimal unital C*-cover C(0K) is a projection in the center of C(9K).

Choose x € K,, and let y € K,, be a maximal dilation of x. Then there is
an isometry o € M, ,, such that x = a*ya. By [15, Proposition 5.2.4|, the *-
homomorphism 9, factors through C((‘?_K) Hence from above, y decomposes as a
direct sum y = yo ® y1 for yo € K and y; € K} . This implies that x can be written
as an nc convex combination x = agyoy + ajyion for ag € My, and o € M, 1,
satisfying ajag + afaq = 1,,.

Suppose x € (OM),, and write x as an nc convex combination z = afyoao+ajy1aq
as above. Then for a € J,

0=a(x) =aja(yo)ao + afa(yr)ay.
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Since yo is a direct sum of copies of z, a(yy) = 0. Hence aja(y;)a; = 0.
From above, we can decompose y; with respect to the range of « as

_ ¥
B

for uy € My, and there is 5, € My, ,,, such that 57w 61 = ajyion and agag+ 65 1 = 1.

Now since yo,u; € M and z € (OM),,, it follows that either o = 0 or 3 = 0.
Hence either x € K9 or x € K!'. In the former case, x = z, while in the latter case,
e(x)=1. O

Proposition 2.8.9. Let S be a unital operator system. Then for every kernel J c S,
the quotient generalized operator system S|J is unital.

Proof. Letting (K, z) denote the nc quasistate space of S, we can assume that S =
A(K,z). Let M = J*, so that S/J = A(M,z), and let p: A(K, z) > A(M, z) denote
the canonical quotient map. Let e € A(K, z) denote the distinguished archimedean
matrix order unit. Then for x € M \ {z}, Corollary 2.8.8 implies that e(z) = 1.
Hence by Theorem 2.7.1, ¢(e) is an archimedean matrix order unit. [l

Remark 2.8.10. If S is a unital operator system and J is the kernel of a unital
completely positive map, then the quotient S/J from Definition 2.8.5 coincides with
the definition of quotient in [29]. Indeed, the quotient T" of S by J that they consider
in their paper is the unique unital operator system satisfying a universal property
analogous to the property in Theorem 2.8.7 for unital completely positive maps into
unital operator systems. By Proposition 2.8.9, S/J is a unital operator system, so
it follows from Theorem 2.8.7 that S/J =T.

Lemma 2.8.11. Let (K, z) be a pointed compact nc conver set and let J < A(K, 2)
be a kernel. Let M = J*+. Then the closed two-sided ideal I of C(K,z) generated by
Jis I ={feC(K,z): flu = 0}. Hence letting m : C(K,z) — C(M, z) denote the
restriction *~homomorphism, I = ker.
Proof. Let I' =kerm. Then I' = {f ¢ C(K,z2) : f|lay = 0}. By Proposition 2.8.4, the
restriction 7|k ) satisfies ker m|a(k ) = J, so it is clear that /¢ I".

For the other inclusion, first note that J = I’ n A(K, z). Hence by the definition
of I and the fact from above that I ¢ I,

JeInA(K,z)cI'nA(K,z) =J,

implying J = I nA(K,z). Let p: C(K,z) - C(K,z)/I denote the quotient *-
homomorphism. Since the restriction p|a(x ) has kernel J, Theorem 2.8.7 implies
that p|a(xk,.) factors through A(M, z). It follows that there is a completely contrac-
tive and completely positive map w : A(M, z) - C(K,2)/I such that wo m[sk,z) =

p|A(K,z)-
By the universal property of C(M,z), w extends to a *~homomorphism o :
C(M,z) > C(K,z)/I. Hence I’ ¢ I, and we conclude that I’ = I. O

Proposition 2.8.12. Let (K, z) be a pointed compact nc convez set. Let J € A(K, z)
be a subset and let I denote the closed two-sided ideal of C(K,z) generated by J.
Then J is a kernel if and only if InA(K,z) = J.

Proof. 1f J is a kernel, then letting M = J*, Proposition 2.8.4 and Lemma 2.8.11
imply that InA(K, z) = {a € A(K, z) :a|ly =0} = M* = J. Conversely, if InA(K, z) =
J, then letting 7 : C(K,z) - C(K,z)/I denote the quotient *-homomorphism,
J =kerm|a(k,z). Hence J is a kernel. O
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2.9 C*-simplicity

In this section we will establish a characterization of generalized operator systems
with the property that their minimal C*-cover (i.e. their C*-envelope) is simple.
The characterization will be in terms of the nc quasistate space of a generalized
operator system.

Definition 2.9.1. We will say that a generalized operator system S is C*-simple if
its minimal C*-cover C; . (S) is simple.

We will require the spectral topology on the irreducible points in a compact nc
convex set from Section 2.6.1), which was introduced in [32, Section 9|. Recall that
for a compact nc convex set K, the spectral topology on the set Irr(K) of irreducible
points in K is defined in terms of the hull-kernel topology on the spectrum of the
C*-algebra C(K).

By Proposition 2.6.13, letting y = ®,cox (-}, the kernel of the *-homomorphism
6, on C(K,z) is the boundary ideal I 3% ) from Theorem 2.6.8. In particular,
the quotient C(K,2)/I 5z ) is isomorphic to the minimal C*-cover C(0K,z) of
A(K,z). The proof of the following result now follows exactly as in the proof of [32,
Proposition 9.4].

Proposition 2.9.2. Let (K, z) be a pointed compact nc conver set. A poinl x €
Irr(K) belongs to the closure of OK \ {z} with respect to the spectral topology if
and only if the corresponding representation 0, : C(K, z) - M,, factors through the
minimal C*-cover C(0K, z) of A(K, z).

Theorem 2.9.3. Let (K, z) be a pointed compact nc conver set. The generalized
operator system A(K, z) is C*simple if and only if the closed nc conver hull of any
nonzero point in the spectral closure of OK contains OK \ {z}.

Proof. Suppose that A(K, z) is C*-simple, so that its minimal C*-cover C(9K, z) is
simple. Choose nonzero x € K,, in the spectral closure of 0K \ {z} and let M ¢ K
denote the closed nc convex hull of z. Suppose for the sake of contradiction there is
y € (0K ), ~{z} such that y ¢ M.

By Proposition 2.9.2, the corresponding representation d, : C(K, z) - M,, factors
through the minimal C*-cover C(0K,z) of A(K,z). Since C(0K, z) is simple, it
follows that the kernel of §, is the boundary ideal I ok, from Theorem 2.6.8, so
the range of ¢, is isomorphic to the minimal C*-cover C(K, 2)/1 5z ., & C(0K,z).
In particular, z is an embedding. Similarly, ¥ is an embedding.

By the nc separation theorem [15, Corollary 2.4.2|, there is self-adjoint a €
M, (A(K,z)) and self-adjoint v € M,, such that a(y) £ y® 1, but a(u) <y®1,
for u € M,. In particular, a(z) <y®1,, but a(y) £ v ® 1,,. However, from above z
and y are embeddings, meaning that they are complete order embeddings on A(K),
giving a contradiction.

Conversely, suppose that the closed nc convex hull of any nonzero point in the
spectral closure of 9K contains 0K \ {z}. Let I be a proper ideal in C(0K, z) and
choose nonzero irreducible y € K, such that the *-homomorphism §, on C(K, z)
factors through C(0K,z)/I. Then by Proposition 2.9.2, y is in the spectral closure
of OK. Hence by assumption the closed nc convex hull of y contains 0K \ {z}.

37



By |15, Theorem 6.4.3|, every point in 0K is a limit of compressions of y. Hence,
replacing y with a sufficiently large amplification, there are isometries a; € M, ,,
such that lim o ya; = @zear ()7 By passing to a subnet we can assume that there
is an nc state g on C(K') such that the *-homomorphism ¢, satisfies lim afd,0; = p1
in the nc state space of C(K). Then since jia(x) = ®zear~(-1@, and since extreme
points in K have unique extensions to nc states on C(K), u is the *-homomorphism
= Spearz}0z (see [15, Theorem 6.1.9]).

By Proposition 2.6.13, the image of C(K,z) under this *-homomorphism is iso-
morphic to C(9K, z). It follows that the canonical *-homomorphism from C(k, z)
onto C(JK, z) factors through 6,. Hence I = 0. Since I was arbitrary, we conclude
that C(OK, z) is simple. O

The following corollary applies when the set 0K of extreme points of K is closed
in the spectral topology. This is equivalent to the statement that every nonzero
irreducible representation of C(0K, z) restricts to an extreme point of K.

Corollary 2.9.4. Let (K, z) be a pointed nc convex set such that 0K 1is closed in
the spectral topology. Then A(K,z) is C*-simple if and only if for every nonzero
compact nc convexr subset M ¢ K, either MnOK =@ or M nOK =0K.

Proof. Suppose that A(K, z) is C*-simple. If M n 9K # @ then Theorem 2.9.3
implies that 0K ¢ M. Conversely, suppose that for every nonzero compact nc
convex subset M ¢ K, either M n0K =@ or M n 0K = 0K. By assumption, 0K is
spectrally closed, and for any point x € 0K, the closed nc convex hull M generated
by x trivially satisfies M n 0K # @. Hence by assumption 0K ¢ M, so Theorem
2.9.3 implies that A(K, z) is C*-simple. ]

2.10 Characterization of C*-algebras

A classical result of Bauer characterizes unital function systems that are unital
commutative C*-algebras in terms of their state space. Specifically, he showed that
if C' is a compact convex set, then the unital function system A(C) of continuous
affine functions on C'is a unital commutative C*-algebra if and only if C' is a Bauer
simplex (see e.g. [1, Theorem I1.4.3]).

Kennedy and Shamovich [32, Theorem 10.5] introduced a definition of noncom-
mutative simplex that generalizes the classical definition and established a general-
ization of Bauer’s result for unital operator systems. Specifically, they showed that
if K is a compact nc convex set, then the unital operator system A(K) of continu-
ous affine nc functions on K is a unital C*-algebra if and only if K is an nc Bauer
simplex.

In this section we will extend this result by showing that a generalized operator
system is a C*-algebra if and only if its nc quasistate space is a Bauer simplex with
zero as an extreme point. Before introducing the notion of a Bauer simplex, we need
to recall some preliminary definitions.

Let K be a compact nc convex set. For a point x € K, viewed as an nc state on
the unital operator system A(K), the *~homomorphism §, is an extension of z. We
will be interested in other nc states on C(K) that extend . Specifically, we will be
interested in nc states that are maximal in a certain precise sense. The following
definition is |15, Definition 4.5.1].
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Definition 2.10.1. Let K be a compact nc convex set and let p: C(K) - M,, be
an nc state on C(K). The barycenter of p is the restriction pfa(x) € K,. The nc
state u is said to be a representing map for its barycenter. We will say that a point
x € K has a unique representing map if the *-homomorphism 4, is the unique nc
state on C(K') with barycenter .

We will also require the notion of a convex nc function. The following definition
is [15, Definition 3.12].

Definition 2.10.2. Let K be a compact nc convex set. For a bounded self-adjoint
nc function f € M,,(B(K))s, the epigraph of f is the set Epi(f) c uK,, x M, (M,,)
defined by

Epi(f)m = {(z,a) € K,y x M,(M,,) 1z € K, and o > f(x)}.
The function f is convez if Epi(f) is an nc convex set.

Davidson and Kennedy introduced a notion of nc Choquet order on the set of
representing maps of a point in a compact nc convex set that plays a key role in
noncommutative Choquet theory. The following definition is [15, Definition 8.2.1].

Definition 2.10.3. Let K be a compact nc convex set and let pu, v : C(K) - M,, be
nc states. We say that p is dominated by v in the ne Choquet order and write p <, v
if u(f) <v(f) for every n and every continuous convex nc function f e M, (C(K)).
We will say that p is a mazimal representing map for its barycenter if it is maximal
in the nc Choquet order.

Remark 2.10.4. Several equivalent characterizations of the nc Choquet order were
established in [15]. These are among the deepest results in that paper.

We are finally ready to state the definition of an nc simplex. The following
definitions are |32, Definition 4.1] and [32, Definition 10.1] respectively.

Definition 2.10.5.

1. A compact nc convex set K is an nc simplex if every point in K has a unique
maximal representing map on C(K).

2. An nc simplex K is an nc Bauer simplex if the extreme boundary 0K is a
closed subset of the set Irr(K) of irreducible points in K with respect to the
spectral topology.

Remark 2.10.6. It was shown in [32] that these definitions generalize the classical
definitions. Specifically, if C' is a classical simplex then there is a unique nc simplex
K with Ky = C. Furthermore, if C' is a Bauer simplex then K is an nc Bauer
simplex.

It was shown in [32, Theorem 10.5| that if K is a compact nc convex set, then
the unital operator system A(K) is a C*-algebra if and only if K is an nc Bauer
simplex. The next example shows that the obvious generalization of this statement
for operator systems does not hold.
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Example 2.10.7. Let (K, z) be the pointed compact nc convex set from Example
2.3.16, so K = uK,, is defined by

K,={ae(M,)p:-1,<a<,}, for neN,

and z = 0. Since K; = [-1,1] is a Bauer simplex, it follows from the above discussion
that K is the unique compact nc convex set with this property and K is an nc
Bauer simplex. However, A(K, z) is not a C*-algebra. Note that z ¢ 0K, and hence
z ¢ 0K.

Lemma 2.10.8. Let S be a generalized operator system with nc quasistate space
(K,z). Then S is a C*-algebra if and only if its unitization S* is a C*-algebra and
ze0K.

Proof. If S is a C*-algebra, say A, then its unitization A! is the C*-algebraic uni-
tization A¥ of A, and hence is also a C*-algebra. Furthermore, A is an ideal in A#
and z is an irreducible *-representation of A' satisfying ker z = A. Hence by [15,
Example 6.1.8], z € 0K.

Conversely, suppose that S* is a C*-algebra, say B, and z € K. Then by
[15, Example 6.1.8], z is an irreducible representation of B. Since A(K,z) = ker z,
A(K,z) is an ideal in B, and in particular is a C*-algebra. O

The next result extends [32, Theorem 10.5].

Theorem 2.10.9. Let S be a generalized operator system with nc quasistate space
(K,z). Then S is a C*-algebra if and only if K is an nc Bauer simplex and z € OK.
The result also holds for unital operator systems with nc quasistate spaces replaced
by nc state spaces.

Proof. By Lemma 2.10.8, S is isomorphic to a C*-algebra if and only if S* is iso-
morphic to a C*-algebra and z € K. By [32, Theorem 10.5], the former property is
equivalent to K being a Bauer simplex. O

2.11 Stable equivalence

Connes and van Suijlekom [13, Section 2.6 considered stable equivalence for gener-
alized operator systems. Generalized operator systems S and T are said to be stably
equivalent if the generalized operator systems S ® i, K and T ®,;, K are isomorphic.
Here, I = K(Hy,) denotes the C*-algebra of compact operators on Hy, and the
minimal tensor products S ®uyi, K and T ®,i, K are defined as in [28], i.e. S ®uin K
is the closed generalized operator system generated by the algebraic tensor product
of S and K in Cfnin(S) ®min C;kmn(lC) = Cl*mn(S) ®min K and similarly for T ®,,;, K.

In this section we will describe the nc quasistate space of the stabilization of a
generalized operator system. This will yield a characterization of stable equivalence
in terms of nc quasistate spaces.

Let S be a generalized operator system and let (K, z) denote the nc quasistate
space of S. Let (L,w) denote the nc quasistate space of K. For x € K and u € L,
we obtain a completely contractive map x ® u on S ®,;, £ from the theory of tensor
products of operator spaces (see e.g. [45]). However, it is not immediately obvious
that x ® u is an nc quasistate. The next result implies that it is, and moreover, that
every nc quasistate on S ®y,;, K arises in this way.
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Theorem 2.11.1. Let S be a generalized operator system with nc quasistate space
(K,z) and let (L,w) denote the nc quasistate space of K. The nc quasistate space
of S®uin K is (K ® L,z® w), where K ® L denotes the closed nc convex hull of
{x®@u:x e K and ue L} and x®u is defined as in the above discussion. Furthermore,
letting (M, t) denote the nc quasistate space of S @uin K, OM € 0K ® OL.

Proof. We can identify S with A(K,z) and identify A(K,z) with its image under
the canonical embedding into its minimal C*-cover C(0K,z). By [13, Proposition
2.37], the minimal C*-cover of A(K,2)®K is C(OM,t) = C(OK,z)® K. Every point
z € K, extends to an nc quasistate 7 : C(0K,2) - M,, (see Section 2.6). Then
for u € L,, we obtain an nc quasistate # ® y : C(0K,2) @ K - M,, ® M,,. The
restriction T ® yla(k e = © ® y is therefore an nc quasistate on A(K, 2) ®pin K.
Hence K ® L € M. It is clear that z ® w is the zero map.

For the reverse inclusion, let r € 9M be an extreme point. Then by Proposition
2.6.13, the *-homomorphism 6, on C(M,t) factors through C(0K,z) ® K. Since
r is extreme, [15, Theorem 6.1.9] implies that 4, is irreducible. Hence there is an
irreducible representation 7 : C(0K,z) - M,, such that ¢, is unitarily equivalent
to ™ ® u, where u € L is either the identity representation of X or u = w. Letting
T =T|a(k,2) € Ky TIA(K 2) @i & = T @ u. In fact, it is easy to verify that since r € 0L,
x € OK. It follows from the nc Krein-Milman theorem |15, Theorem 6.4.2| that
McKe® L. ]

Corollary 2.11.2. Let S; and Sy be generalized operator systems with nc quasistate
spaces (K1,21) and (Ka, z3) respectively. Let Ox and idi denote the zero map and
the identity representation respectively of IC. Then S and T are stably isomorphic if
and only if the closed nc convex hulls of the sets 0K ® {Ox,idx} and OL ® {0, idx}
are pointedly affinely homeomorphic with respect to the points z; ® Ox and z3 ® Ok.

Proof. Let (L,0x) denote the nc quasistate space of K. Then it follows from The-
orem 2.11.1 and Corollary 2.4.10 that S and T are stably isomorphic if and only if
(K1® L,z ®0x) and (K3 ® L, 2o ® Oc) are pointedly affinely homeomorphic.

By Proposition 2.4.4, the unitization ! is a unital C*-algebra with nc state
space L. Since every irreducible *-representation of Kt is unitarily equivalent to Ox
or idg, [15, Example 6.1.8] implies that L is the closed nc convex hull of {Ox,idx}.
The result now follows from Theorem 2.11.1 and the nc Krein-Milman theorem [15,
Theorem 6.4.2]. O

2.12 Dynamics and Kazhdan’s property (T)

The fact that simplices arise as fixed point sets of affine actions of groups on spaces
of probability measures has a number of important applications in classical dynam-
ics. Glasner and Weiss showed that a second countable locally compact group has
Kazhdan’s property (T) if and only if the simplices that arise from this result are
always Bauer simplices [22].

Kennedy and Shamovich extended these results to actions of discrete groups on
nc state spaces of unital C*-algebras. Specifically, it was shown that nc simplices
arise as fixed point sets of affine actions of discrete groups on nc state spaces of
unital C*-algebras [32, Theorem 12.12]. Tt was further shown that a discrete group
has property (T) if and only if the nc simplices that arise from this result are always
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nc Bauer simplices [32, Theorem 14.2]. Consequently, a discrete group has property
(T) if and only if whenever it acts on a unital C*-algebra, the set of invariant states
is the state space of a unital C*-algebra |32, Corollary 14.3].

In this section we will extend these results to actions of locally compact groups
on (potentially nonunital) C*-algebras. In fact, we will see that the hard work was
already accomplished in earlier sections of this chapter. After introducing appropri-
ate definitions and applying the dual equivalence between the category GenOpSys
of generalized operator systems and the category PoONCConv of pointed compact nc
convex sets, the proofs in [32] will apply essentially verbatim.

The next definition is a slight generalization of [32, Definition 12.1] and [32,
Definition 12.2].

Definition 2.12.1.

1. An nc dynamical system is a triple (S, G, o) consisting of a generalized operator
system S, a locally compact group G and a group homomorphism o : G -
Aut(S) with the property that the orbit map G - S: g — 0,(s) is continuous
for all se S.

2. A affine nc dynamical system is a triple (K, G, k) consisting of a compact nc
convex set K, a locally compact group G and a group homomorphism «: G -
Aut(K) with the property that for each n, the orbit map G - K, : g - k,()
is continuous for all z € K,.

Remark 2.12.2. Unless we need to refer to o, we will write (S5,G) for (5,G,0)
and gs for o,(s). Similarly, unless we need to refer to x, we will write (K, G) for
(K,G,k) and gz for k,(x). If S is a C*-algebra, say A, then we will refer to (A, G)
as a C*dynamical system.

We will utilize the fact that if (K, z) is a pointed compact nc convex set and
(A(K,z),G) is an nc dynamical system, then the dual equivalence from Theorem
2.4.9 gives rise to an affine nc dynamical system (K, G), determined by

a(kg(z)) =041(a)(z), for aeA(K), geGand ze K.

It seems worth pointing out that an nc dynamical system over a generalized
operator system lifts to an nc dynamical system on its unitization.

Lemma 2.12.3. Let (S,G,0) be an nc dynamical system. Define ot : G — Aut(S5)
by ('), = (0,)F. Then (SY,G,o") is an nc dynamical system.

Proof. For g € G, (0,)!(s,a) = (04(s),a) for s € Sh. It follows immediately that
ol : G — Aut(S") is a group homomorphism and that the corresponding orbit maps
are continuous. O

Let G be a locally compact group. Recall that a continuous unitary representa-
tion of G on a Hilbert space H is a group homomorphism p: G - U(H) such that
the orbit map G — H : g — p(¢)¢ is continuous for every & € H. Here U(H) denotes
the set of unitary operators on H.

The next result follows immediately from [32, Theorem 12.12|, since we can view
the action of a non-discrete locally compact group as an action by its discretization.
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Theorem 2.12.4. Let (K, G) be an affine nc dynamical system such that K is an
nc simplex. Then the fixed point set

K¢={zxeK:gr=x for all ge G}
s an nc simplex.

Corollary 2.12.5. Let (A,G) be a C*-algebra and let (K, z) denote the nc quasis-
tate space of A. Then the fized point set K€ is an nc simplex.

Proof. By Theorem 2.10.9, K is an nc Bauer simplex, so the result follows immedi-
ately from Theorem 2.12.4. O]

Definition 2.12.6. Let GG be a second countable locally compact group.

1. A continuous unitary representation p : G — U(H) is said to have almost
invariant vectors if there is a net of unit vectors {§; € H} such that for every
compact subset C' ¢ G,

limsup |p(g)& - & = 0.
v geC

2. The group G is said to have Kazhdan’s property (T) if every unitary represen-
tation of G with almost invariant vectors has a nonzero invariant vector.

The next result is a generalization for (potentially nonunital) C*-algebras and
second countable locally compact groups of [32, Theorem 14.2].

Theorem 2.12.7. Let A be a C*-algebra with nc quasistate space (K, z) and let G
be a second countable locally compact group with Kazhdan’s property (T) such that
(A, G) is a C*dynamical system. The set K of invariant nc quasistates on A is
an nc Bauer simplex. If A is unital, then the result also holds for the nc state space
of A instead of its nc quasistate space.

Proof. The proof of [32, Theorem 14.2] works essentially verbatim here. If G is non-
discrete, then it is necessary to verify that the unitary representation constructed
in the proof of the dilation theorem for invariant nc states [32, Lemma 12.6] is
continuous. However, this is an easy consequence of the continuity of the orbit
maps. ]

The following corollary extends a result of Glasner and Weiss for commutative
C*-algebras (see [22, Theorem 1| and [22, Theorem 2]).

Corollary 2.12.8. Let G be a second countable locally compact group. Then G has
Kazhdan’s property (T) if and only if whenever A is a C*-algebra with nc quasistate
space (K, z) and (A, G) is a C*-dynamical system, then the set K¢ of invariant qua-
sistates is pointedly affinely homeomorphic to the quasistate space of a C*-algebra.
If A is unital, then the result also holds with the quasistate space of A replaced by
its state space.
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Proof. If G has Kazhdan’s property (T), then Theorem 2.12.7 implies that K¢
is an nc Bauer simplex. By Lemma 2.10.8, z € 0K. Hence by Theorem 2.10.9,
(K€%, z) is pointedly affinely homeomorphic to the nc quasistate space of a C*-
algebra. In particular, the set K& of invariant quasistates of A is pointedly affinely
homeomorphic to the quasistate space of a C*-algebra.

Conversely, if G does not have Kazhdan’s property (T), then it follows from
[22, Theorem 2| that there is a compact Hausdorff space X and a commutative C*-
dynamical system (C(X),G) such that the space Prob(X )% of invariant probability
measures on X is a Poulsen simplex. In particular, the set (Prob(X)%) of extreme
points of Prob(X)¢ is not closed.

We need to translate this to a statement about the quasistate space @ of C(X).
Since @ is a compact convex set, the set Q¢ of invariant quasistates is a sim-
plex (see e.g. [32, Corollary 12.13]|). Note that Prob(X) c (). In fact, @ is the
closed convex hull of Prob(X) u {z}, where z denotes the zero map on C(X).
For nonzero pu € 9(Q%), since u(X)'p € QF, it follows that p(X) = 1. Hence
p € O(Prob(X)%). On the other hand, it is clear that 9(Prob(X)%) < 9(Q%).
Hence 0(Q¢) € d(Prob(X)%)u{z}. Since O(Prob(X)%) is not closed and z is iso-
lated from Prob(X), it follows that 9(Q%) is not closed. Therefore, Q¢ is not a
Bauer simplex.

The result now follows from the fact that if the quasistate space of a C*-algebra
(equivalently, the state space of its unitization) is a simplex, then the C*-algebra is

commutative and its quasistate space is a Bauer simplex (see e.g. Theorem 2.10.9).
m
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Chapter 3

Operator system duals and
noncommutative convexity

3.1 Introduction

A unital operator system S is a *-closed unital subpsace of the bounded operators
B(H) on a Hilbert space H. In this chapter, we assume that all operator spaces
and operator systems are norm-complete. Choi and Effros [12] gave an abstract
characterization of unital operator systems as matrix ordered *-vector spaces which
contain an archimedean matrix order unit. Using this characterization, it is natural
to ask if the dual space S* is itself a unital operator system.

The dual S* is at least a complete operator space, and inherits a *-operation
and matrix ordering from S. One says that S* is a matriz ordered operator space.
However, S* typically fails to have an order unit in infinite dimensions. For instance,
it S =C(X) is a commutative C*-algebra, then the dual C'(X)* is the space of
Radon measures on the compact Hausdorff space X, which never has an order unit
if X is uncountable. So, one requires a theory of nonunital operator systems if
S* is to be an operator system. Werner [52] defined nonunital operator systems—
which we hereafter refer to as simply “operator systems”, as matrix ordered operator
spaces which embed completely isometrically and completely order isomorphically
into B(H). Werner gave an abstract characterization that extends the Choi-Effros
axioms in the unital setting. One would hope that S* is such an operator system,
but it turns out that this is too much to ask. For instance, we have the standard
duality M} = M, but this duality is not completely isometric. In fact, an embedding
M} - B(H) cannot be completely isometric and completely order isomorphic at the
same time. However, the isomorphism M} = M, is a complete isomorphism, inducing
completely equivalent matrix norms.

Call an operator system S dualizable if the dual matrix ordered operator space
S* embeds into B(H) via a map which is a complete order isomorphism and is
completely bounded below. That is, S* can be re-normed with completely equivalent
matrix norms in a way that makes it an operator system. Recently, C.K. Ng [40]
obtained an intrinsic characterization of dualizability. The operator system S is
dualizable if and only if it satisfies the following completely bounded positive de-
composition property: There is a constant C' > 0, such that for every n > 1 and
every selfadjoint x € M, (S5)%, there are positives y,z € M, (S)* with z =y — z and
ly| + |z < C|z|. Using the order unit, every unital operator system S is dualizable
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with C' = 1. Similarly, the continuous functional calculus implies that every (possi-
bly nonunital) C*-algebra is dualizable with C' = 1. So, the dualizable systems form
a large class. However, not every operator system is dualizable. For instance, the
operator systems

S={a:[-1,1] > R|a is affine and a(0) =0} c C([-1,1]) and
T = span{E1, Eo1} € Mj

contain no nonzero positive elements. So, the matrix cones in S* and T* are not
proper, and these cannot be re-normed into operator systems.

Chapter 2 showed that the study of nonunital operator systems is categorically
dual to studying pointed noncommutative compact convex sets. This is a nonunital,
quantized version of classical Kadison duality for function systems [27]. A noncom-
mutative (nc) convex set is graded into matrix levels

K=]][K.c][[M.(E)

n>1 n>1

over an operator space F/, which is closed under direct sums and compression by
scalar isometries [15]. Nc convex sets are essentially equivalent to the matriz convex
sets of Wittstock [53], with the distinction that an nc convex set contains infinite
matrix levels up to some infinite cardinal o depending on E. (In separable settings,
usually one takes o = ®.) While nc convex sets are determined by their finite levels,
one needs the infinite levels to find all nc extreme points. Here when n is an infinite
cardinal, we use the convention M, = B(H), where dim H = n. We say that K is
closed /compact if each level K, is closed /compact.
The canonical example of an nc convex set is the nc state space

S(S)=]J{¢:S = M, | ¢ is unital and completely positive}

n>1

of a unital operator system S. The unital noncommutative Kadison duality of
Webster-Winkler [51] and Davidson-Kennedy [15] asserts that S(.S) completely de-
termines S. If S is a nonunital operator system, the appropriate replacement for
the nc state space is the nc quasistate space

98(S) =[]{p: S5 = M,| ¢ is completely contractive and positive}.

n>1

If K is a compact nc convex set, and z € K7 is a prescribed basepoint, we form the
nonunital operator system A(K,z) of pointed nc affine functions

a:(K,z) > (M,0),

where M = [1,,5; M,,. The pair (K, z) is a pointed nc convex set if every nc quasistate
on A(K, z) is a point evaluation in K. In [30], it was shown that the functor

S (QS5(5),0)

is a contravariant equivalence of categories between the category of operator systems
and the category of pointed compact nc convex sets, with essential inverse (K, z) —
A(K, z).
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Via this equivalence, operator systems can be completely described by the nc
convex geometry of the nc quasistate space (K, z) = (QS(.5),0). Our main question
is: What geometric condition on (K,0) detects dualizability of S? We obtain two
geometric answers to this question. The first is extrinsic, and the second is intrinsic
to K.

Firstly, in Theorem 3.4.9, we show that S is dualizable if and only if there is a
Hilbert space H and a pointed embedding

(K,0) = (L,0)
into the positive nc unit ball

LI B (M. (B(H)))*

n>1
satisfying the following extension property: Every nc affine function on K extends to
an nc affine on L with a complete norm bound, and every positive nc affine function
a e M,(A(K,0))* extends to a positive nc affine on L. Equivalently, the restriction
map A(L,0) - A(K,0) is an operator space quotient map that maps the positives
onto the positives at all matrix levels.

Secondly, in Theorem 3.5.7, we show that Ng’s bounded positive decomposition

property for S is equivalent to a complete normality condition for S* in the sense
of [3, Section 2.1|. This is equivalent to the geometric condition

(K-R,K)nR,K cCK

in [1,,5; M,(S*), for some constant C' > 0. It is equivalent to simply require that the
set (K -R,K)nR,K is norm-bounded.

The structure of this chapter is as follows. After some preliminaries in Section
3.2, we discuss quotients of matrix ordered operator spaces in Section 3.3. In Section
3.4, given an inclusion 0 € K ¢ L of pointed compact nc convex sets, we discuss the
problem of extending nc affine functions from K to L with norm bounds or while pre-
serving positivity, which characterizes when the restriction map A(L,0) - A(K,0)
is a quotient. In Section 3.5, we prove our main results, characterizing dualizability
of S via geometric conditions on the nc quasistate space QS(.S). In Section 3.6, we
discuss positive generation for a nonunital system S, and show that-in contrast to
the classical case, a matrix ordered operator space may be positively generated but
not satisfy Ng’s condition of bounded positive generation. In Section 3.7, we give
some examples and applications. We obtain some permanence properties, showing
that quotients and pushouts of dualizable operator systems are again dualizable.
Using the nc quasistate space, we obtain a new proof of Choi’s Theorem.

3.2 Background

3.2.1 Nonunital operator systems

All vector spaces in this chapter are over C, unless stated otherwise. If V' is a vector
space and n € N, we let M, (V') be the vector space of n x n-matrices with entries in
V. Frequently we naturally identify M, (V') with M, ® V', and write for instance

z 0
12@1’—(0 .I)
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where x € V' and 15 € M, is the identity matrix. We will also use the notation

M(V) = ];IIM”(V)
to denote the matrix universe over V.
If V' is any normed vector space and r > 0, we will frequently use B,.(V") to denote
the closed ball in V' with radius r and center 0 € V.
Following Ng [40], we fix the following definitions. An operator space F is a
vector space equipped with a complete family of L°*°-matrix norms, which we will
denote either by ||, |- | &, or |- |, (&) as appropriate.

Definition 3.2.1. A semi-matrix ordered operator space (X, P) consists of
an operator space X equipped with a conjugate-linear completely isometric invo-
lution x = z*, and a distinguished selfadjoint matrix convex cone P =[], P, <
[, M,(X)* such that each P, is norm-closed in M,(X). Usually we omit the
symbol P and write M, (X)* := P,. If in addition each cone M, (X)* satisfies
M, (X)*n(-M,(X)*) = {0}, then we say X is a matrix ordered operator space.
If X is in addition a dual space X = (X,)*, we say X is a dual matrix ordered
operator space if the positive cones M, (X)* are weak-x closed.

Definition 3.2.2. A semi-matrix ordered operator space X is positively gener-
ated if
M, (X)* =M, (X)" - M,(X)*

for all n > 1.

Example 3.2.3. If X is a positively generated matrix ordered operator space, then
X* is naturally a dual matrix ordered operator space with the standard norm and
order structure that identifies

M,(X*) = CB(X,M,) isometrically, and
M, (X*)* = CP(X, M,).

Definition 3.2.4. Let X and Y be matrix ordered operator spaces, and let p: X —
Y be a linear map. For any n > 1, ¢ induces a linear map ¢,, : M,,(X) - M,,(Y). We
say that ¢ is completely bounded, contractive, bounded below, isometric, positive,
or a complete order isomorphism when each induced map ¢, satisfies the same
property uniformly in n. If ¢ is completely bounded below and positive, we say ¢ is
a complete embedding. If ¢ is completely isometric and positive, we say ¢ is a
completely isometric embedding. If ¢ is also a linear isomorphism, we call ¢ a
complete isomorphism or completely isometric isomorphism as appropriate.

The class of all matrix ordered operator spaces forms a category, where one
usually chooses the morphisms to be completely contractive and completely posi-
tive (ccp) maps, or completely bounded and completely positive (cbp) maps. In
the interest of readability, we hereafter adopt the convention that “completely
contractive and positive” always means “completely contractive and completely
positive”, and similarly for “completely bounded and positive”. That is, “completely”
modifies both the words “contractive” and “positive”. Since we have no need to con-
sider maps which are positive but not completely positive, there is hopefully no risk
of confusion.
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Example 3.2.5. Let S be a unital operator system, i.e. an *-matrix ordered space
with archimedian matrix order unit 1g. Then S is a matrix ordered operator space
with norm

: t(1, ®1y) x , -

This norm agrees with the induced norm from any unital complete order embedding
S ¢ B(H). In particular, for any Hilbert space H, the space B(H) is a unital
operator system.

Definition 3.2.6. Let S be a matrix ordered operator space. We say that S is
a quasi-operator system if there is a complete embedding S — B(H) for some
Hilbert space H, and that S is a operator space if there is a completely isometric
embedding S - B(H). If S is in addition a dual matrix ordered operator space,
then we say S is a dual (quasi-)operator system if there is a weak-* homeomorphic
(complete embedding) completely isometric embedding into some B(H).

That is, a quasi-operator system S is a matrix ordered operator space which
is completely isomorphic to an operator system. Put another way, one can choose
a completely equivalent system of norms on S, for which S embeds completely
isometrically and order isomorphically into B(H).

3.2.2 Pointed noncommutative convex sets

Suppose that £ = (E,)* is a dual operator space. Let
M(E) =[] M (E),

n>1

where the union is taken over all cardinals n > 1 up to some fixed cardinal a at
least as large as the density character of E. (In practice we suppress a.) When
n is infinite, we take the convention M, := B(H,), where H, is a Hilbert space of
dimension n. By naturally identifying

M, (E) = CB(E,, E),

we may equip each M, (F) with its corresponding point-weak-* topology. Note that
if £ = My, this is the just the usual weak-* topology on M, (My) = M.
Definition 3.2.7. We say that a graded subset

K=]]K,cM(E)

n>1

is an nc convex set if for every norm-bounded family (z;) € K,,, and every family
of matrices «; € M, , which satisfies

Zai*ai =1,, (3.1)

we have
Y afw € K, (3.2)

Here the sums (3.1) and (3.2) are required to converge in the point-weak-* topologies
on M, and M,(E), respectively. We say in addition that K is a compact nc
convex set if each matrix level K, is point-weak-* compact in M, (E).
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Usually we refer to the sum in (3.2) as an nc convex combination of the points
x;. Succinctly, an nc convex set is one that is closed under nc conver combinations.
It is equivalent to require only that K is closed under direct sums (3.1) in which the
«;’s are co-isometries with orthogonal domain projections, and compressions (3.2)
when there is only one «;, which must be an isometry.

Definition 3.2.8. Let K and L be nc convex sets. A function a: K — L is an nc
affine function if it is graded

a(K,)<c L,, foraln>1,

and respects nc convex combinations, i.e. whenever x; € K are bounded and «; are
scalar matrices of appropriate sizes such that Y ; o x;a;, then

a( > ai*x,-al-) = > afa(zi) .
5 5

We say a is continuous if each restriction alg, is point-weak-* continuous.

Classical Kadison duality [27] asserts that the category of function systems—
partially ordered Banach spaces with an archimedean order unit, is equivalent to
the category of compact convex sets with continuous affine functions as morphisms.
Noncommutative Kadison duality asserts a similar equivalence for unital operator
systems.

Theorem 3.2.9. [51, Proposition 3.5|[15, Theorem 3.2.5| The category of unital
operator systems with ucp maps as morphisms is contravariantly equivalent to the
category of compact nc convex sets with continuous nc affine functions as morphisms.
On objects, the essential inverse functors send an operator system S to its nc state
space

S(S)=]J{e:S > M, | ¢ is unital and completely positive},

n>1

and send a compact nc conver set K to the operator system
A(K)={a: K - M=M(C) | a continuous nc affine}.

The operator system structure and norm on A(K') is pointwise, i.e. one identifies
M, (A(K)) 2 A(K,M(M,)), and declares a matrix valued nc affine function if it
takes positive values at every point. The order unit is the “constant function" z €
K, — 1, € M,. Both essential inverse functors act on morphisms by precomposition.
That is, if 7: .S - T is a ucp map between operator systems, then the corresponding
map on state spaces sends p:T - M, to pr: S - M,. Likewise, if a : K - L is nc
affine, then f— foa:A(L) - A(K) is nc affine.

Chapter 2 settled the question of Kadison duality for nonunital operator systems.
The key challenge is that in the absence of order units, if S is a nonunital operator
system then one must remember the whole nc quasistate space

Q8(S)=][{¢: S = M, | ¢ is contractive and completely positive}

n>1

and consider pointed nc affine functions which fix the zero quasistates.
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Definition 3.2.10. Let K be a compact nc convex set and fix a distinguished point
z. We let
A(K, z) ={a e A(K) | a(z) = 0}

denote the operator system of nc affine functions which vanish at z. We say that
the pair (K, z) is a pointed nc convex set if the natural evaluation map

K - QS(A(K, z))

z = (a~a(r))
is surjective (and hence bijective).

The main subtlety in nonunital Kadison duality is that while the correspondence
S~ (95(5),0) is a full and faithful functor, it is only essentially surjective onto
the pointed compact nc convex sets.

Theorem 3.2.11. [30, Theorem 4.9] The category of operator systems with ccp
maps as morphisms is contravariantly equivalent to the category of pointed compact
nc convex sets with pointed continuous nc affine functions as morphism. On objects,
the essential inverse functors send an operator system S to is pointed nc quasistate
space (QS(S5),0), and send a pointed compact nc convex set K to the operator system
A(K, z) of pointed continuous nc affine functions on (K, z).

Again, on morphisms the essential inverse functors in Theorem 3.2.11 act in the
natural way by precomposition on either nc affine functions or on nc quasistates.

3.3 Quotients of matrix ordered spaces

3.3.1 Operator space quotients

Here, we recall the basic theory of quotients for operator spaces. If E is an operator
space, and F' € F is a closed subspace, then the quotient vector space E/F is an
operator space where the matrix norms isometrically identify M, (E/F) with the
standard Banach space quotient M,,(E)/M, (F).

Definition 3.3.1. Let ¢ : F - F be a completely bounded map between operator
spaces F and F. We will say that ¢ : E — F'is a operator space quotient map
with constant C >0 if any of the following equivalent conditions hold

(1) Biy(M,(F)) € on(Bc(M,(E))) = Con(Bi(M,(F))) for all neN.
(2) Bi(M,(F))<(C+e€) pn(Bi(M,(F))) for all n e N and every € > 0.
(3) The induced map @ : E/ker ¢ — F is an isomorphism and satisfies |¢~*|a, < C.

The equivalence of (1) and (2) follows from a standard series argument using
completeness of . We will simply say operator space quotient map if we have
no need to refer to C' explicitly.

The following fact is standard in operator space theory, but we provide a proof
for completeness.
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Proposition 3.3.2. Let ¢ : E — F be a completely bounded map between operator
spaces E and F. The map o is a quotient map with constant C' > 0 if and only if
the dual map p* : F* — E* is completely bounded below by 1/C. Moreover, in this
case, p* is weak-* homeomorphism onto its range.

Proof. Suppose that Cp,(B1(M,(F))) is dense in By (M, (F")) for every n. Given
feM,(F*)zCB(F,M,,), approximating unit vector y € By(M,(F)) with vectors
of the form ¢(z) for x € Bo(FE) shows that || f|le, < Clles (f)]eb-

Conversely, suppose that

LI Bi(M(F)) ¢ C T en(Bi(M,(E))).

n>1 n>1

By the Effros-Winkler nc Bipolar theorem [19], there are m,n > 1, an x € C By (M, (E)),
and an f e M,,(F~*) 2 CB(F, M,,), such that

Re fi(y) < 1, forall k> 1,y € By (My(F)),

and yet Re f,(z) £ 1n. It follows that | f|| < 1, but |z < C and | f.(on(x))] > 1,
so e, (> [ flen/C. This shows ¢* is not completely bounded below by 1/C.

Finally, if ¢ is an operator space quotient map, it is bounded and surjective, and
so its dual map ¢* is weak-* homeomorphic onto its range. ]

3.3.2 Matrix ordered operator space quotients

Definition 3.3.3. Let X be a matrix ordered operator space. We call a closed
subspace J ¢ X a kernel if it is the kernel of a ccp map ¢ : X - Y for some matrix
ordered operator space Y. In this case, we define an matrix ordered operator space
structure on the operator space X /J with involution

(z+J) =a+J

and matrix order

M (X[I) ={x+ M,(J)|zeM,(X)},
where the closure is taken in the quotient norm topology on M,,(X/J) = M, (X)/M,(J).

Proposition 3.3.4. If X is a matriz ordered operator space, and J = kery s a
kernel, then X /J is a malriz ordered operator space.

Proof. Since the involution on X is completely isometric and J is selfadjoint, it
follows that the involution on M, (X/J) is completely isometric. It is straightforward
to check that X/J is a matrix ordered operator space. To prove that it is a matrix
ordered operator space, suppose z + J € M, (X/J)* n(-M,(X/J)*). Then for any
€, there are y, z € M, (X)* with |z -y + M,(J)|, |z + z + M,(J)| < e. Hence

lon(z) = en(y)] < |z -y + M ()] <€

and similarly ||, (2) + @, (2)| < €. Since ¢ is cp, n(y), on(z) 0. As € is arbitrary
and Y is a matrix ordered operator space, this shows

on(w) € My (Y)* 0 (=M, (Y)*) = Mo (V)" 0 (-M,(Y)") = {0}.
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Therefore z € M, (ker ) = M,,(J), and so x + M, (J) = 0. This shows
M (X[J)" 0 (-Mn(X/J)7) = {0},
so X/J is a matrix ordered operator space. O

One can form a category of matrix ordered operator spaces with morphisms as
either completely contractive and positive (ccp) or completely bounded and positive
(cbp) maps. If V' is a normed vector space and r > 0, then we let B,.(V') denote the
closed ball in V' with radius r and center 0.

Definition 3.3.5. Let X and Y be matrix ordered operator spaces, and let p: X —
Y be a cbp map. We say that ¢ is a matrix ordered operator space quotient
map with constant C' > 0 if for all n € N we have both

(1) Bi(Mn(Y)) € Copn(B1(Mp(X))), and

(2) Mn(y)+ = ‘:On(]wn()())Jr

For brevity, we will usually simply refer to ¢ as a quotient map, whenever it is
clear that we are speaking only in the context of matrix ordered operator spaces.

That is, a matrix ordered operator space quotient map is just an operator space
quotient map that maps the positives (densely) onto the positives at each matrix
level. Comparing to Definition 3.3.1.(2), a quotient map is surjective. Each map
on My (X) - M,(Y) is therefore open and closed, and since the positive cones
M,(X)* and M,(Y)* are norm-closed, it follows that ¢, (M,(X)*) is closed and
On(Mp(X)*) = M, (Y)* for all n. That is, the closure in condition (2) is redundant.
The first thing to show is that such maps are in fact categorical quotients in the
category of matrix ordered operator spaces.

Proposition 3.3.6. Let ¢ : X - Y be a cbp map between matriz ordered operator
spaces. The following are equivalent.

(1) The map ¢ is a quotient map with constant C' > 0.

(2) The dual map p* :Y* - X* is completely bounded below and a complete order
mjection.

(3) With J =Xker, the induced map ¢ : X[J —Y such that

X —* 5y

1
s
lq s
7P

X/J
commutes is an isomorphism with cbp inverse satisfying |@~1| e < C.

(4) For every matriz ordered operator space Z and cbp map ¢ : X — Z with
ker ¢ € ker e, there is a unique cbp map ¢ Y — Z making the diagram

) N

commute, with Hl/;H b < CJY] b
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In this case, ©* is weak-* homeomorphic onto its range.

Proof. To prove (1) and (2) are equivalent, after invoking Proposition 3.3.2, it suf-
fices to show that ¢* is a complete order injection if and only if Condition (2) in
Definition 3.3.5 holds. Note that because ¢ is completely positive, so is ¢*. Suppose
©n (M, (X)*) is dense in M, (Y)* for every n > 0. Let f e M, (Y*) with ¢}, (f) > 0.
Given n > 1 and y € M,,(Y)*, approximating y with points of the form ¢, (x;) for
x; € M, (X)* shows that

Fa(y) =1im o, (pn(2:)) = im (e, (f))n(2:) 2 0.

This shows f > 0.
Conversely, suppose that ¢, (M, (X)*) is not dense in M, (Y)* for some n > 1.
By the Effros-Winkler nc Bipolar Theorem [19] applied to the closed nc convex sets

e (X)) 2 [IMe(Y)",

k>1 k>1

there is a selfadjoint matrix functional f € M,,(Y*)% such that fi(y) > —1,. for
every k and every y € Mp(Y)*, but

fn(z) i =L

for some z € o, (M, (X)*) ~ Mp(Y)*. A rescaling argument shows that f > 0 in
M,.(Y'). However, approximating x by points of the form ¢, (z), x € M, (X)* shows
that ¢ (f) cannot be positive. Hence, ¢* is not a complete order isomorphism.

If ¢ is a quotient map with constant C' > 0, then it follows immediately from
the definition of the matrix order and matrix norms on X/J that ¢: X/J > Y is a
complete order and norm isomorphism with |t < C. Conversely, note that by
definition the quotient map ¢ : X — X/J is a quotient map with constant 1. Hence,
if ¢ is a complete order isomorphism with |@~1|a, < C, it follows that p = goqis a
quotient map with constant C. This proves (1) and (3) are equivalent.

To show (3) and (4) are equivalent, it is enough to note that the quotient map
q: X - X/J satisfies the universal property (4) with constant C' = 1. In detail, if
(3) holds, composing the universal map from (4) applied to ¢ : X - X/J with ¢!
shows that (4) holds for ¢ with constant C. Conversely, if (4) holds, then it holds
for both ¢ and ¢, and there are induced maps ¢ : X/J - Y and ¢:Y — X/J with
Iql < |@llen and [g] < Clglc, = C. Comparing diagrams shows ¢ = ¢!, and @ is an
isomorphism. 0

Condition (4) in Proposition 3.3.6 shows that a matrix ordered operator space
quotient map is a categorical quotient in the category of matrix ordered operator
spaces with cbp maps as morphisms. Moreover, the norm bound shows that a
quotient map with constant C' = 1 is a categorical quotient in the subcategory of
matrix ordered operator spaces with ccp maps as morphisms.

Remark 3.3.7. Every unital operator system is a matrix ordered operator space,
and so if ¢ : § - T is a ucp map between operator systems with J = ker.S, we
may form the quotient matrix ordered operator space S/kerp, but there is no a
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priori guarantee that this quotient is again an operator system. The matrix ordered
operator space quotient is generally not isomorphic to the unital operator system
quotient defined by Kavruk, Paulsen, Todorov, and Tomforde [29]. For example,
they show in |29, Example 4.4] that the order norm on the unital operator system
quotient need not be completely equivalent to the quotient operator space norm.

3.4 Extension property for compact nc convex sets

If K =11, K, is a compact nc convex set, we will define

spang K := | [ spang K,, ¢ M(E).

n>1

The set spang K is also nc convex, but need not be closed in E.

Lemma 3.4.1. Let 0 € K € M(FE) be a compact nc convex set containing 0. Let
K — K denote the levelwise Minkowski difference of K with itself. Then we have

mnclusions
K-K

cncconv(K U (-K))c K - K.
Consequently, ncconv(K U (-K)) € spang K.

Proof. 1t is immediate that (K - K)/2 € ncconv(K u (-K)) ¢ ncconv(K u (-K)).
Given z € ncconv(K U (-K)),, we can write

z = Zaf%% - Zﬁ;yjﬁj
i J

for uniformly bounded families {z;},{y;} in K and matrix coefficients satisfying
Yoo+ Y 5;53‘ =1,. Since 0 € K and ;o <1, we have z = ), o, € K.
Similarly y := ¥; 8jy;8; € K, and so 2 =z -y is in (K - K),, = K,, - K,,. Therefore

ncconv(K U (-K)) < K - K,
and since the latter is compact, ncconv(K U (-K)) c K - K. O

When 0 € K, by extending the inclusion map K ¢ [, M,,(A(K,0)*) linearly at
each level, we will think of elements in (spang K'),, as nc functionals in

M, (A(K,0)") = CB(A(K,0), M,).

Proposition 3.4.2. Let 0 € K € M(FE) be a compact nc convex set in a dual operator
space E = (E,)*. For each n € N, the inclusion K - QS(A(K,0)) extends uniquely
to a well-defined nc affine isomorphism

n: | spang K, — [ | M, (A(K,0)7)™

n>1 n>1

which is levelwise linear. The norm unit ball in M, (A(K,0)*)% is
B, (M(A(K,0)°)) = CO(A(K. 0), M,) = mecome(n(K) 0 (—n(K)),

and for each n, 1 1s homeomorphic on K — K.
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Proof. Since K, is convex, we have spang K,, = {sz —ty | z,y € K,,s,t > 0}. Given
sx —ty € spang K,,, we define

n(sz —ty)(a) = sa(r) - ta(y)

for a € A(K,0). Since such functions a are affine and satisfy a(0) = 0, it follows
that 7|k, is well-defined and linear, and that n is nc affine. Since E,. contains a
separating family of functionals, which restrict to nc affine functions in A(K,0), the
map 7 is injective.

Next we will show the closed unit ball is

By (M, (A(K,0)")*) = neconv (n(K) u (=n(K)))n
for every n. That is, if L is the compact nc convex set

L=]]Ln=]]Bi(M.,(A(K,0)*)™),
n>1 n>1
we want to show L = ncconv(n(K)u(-n(K))). Since n( K) consists of nc quasistates
on A(K,0), it is clear that L 2 ncconv(n(K) u (-n(K))). To prove the reverse
inclusion, by the nc Bipolar theorem of Effros and Winkler [19], it suffices to suppose
that for some n € N and a € M,,(A(K,0))%* that we have

Qpn(a) <1y ® 1n = 1kn

for all k € N and all ¢ € ncconv(n(K)u(-n(K))), and then show that ¢, (a) < 1,®1,
for all k£ and all ¢ € L. Because ncconv(n(K ) u (-n(K))) contains both n(K') and
-n(K), we have

—1pn <a(z) < 1pp

for all k£ and all x € Kj. Hence |a|ar,(ack0)) < 1, and so ¥n(a) < |a|le, < 1k, for
every 1 € L. This proves L = ncconv(n(K)u (-n(K))), and consequently 7 is also
surjective. Since 7 is homeomorphic on K and K - K is (levelwise) compact, it is
easy to check that n is continuous on each K, — K,. Being a continuous injection
on a compact Hausdorff space, the map 7|k, -k, is automatically a homeomorphism
onto its range. O

Recall that the pair (K,0) in Proposition 3.4.2 is a pointed nc convex set
exactly when we have

[ Bi(M,(A(K,0)")*) = QS(A(K, 0)) = n(K).

n>1

In practice, we will often identify M, (A(K,0)*)%* with spang K,, and so omit the
symbol 1. Note that since 1 is homeomorphic on K- K 2 ncconv(Ku(-K)) (Lemma
3.4.1), we are free to identify

meeomv ((K) u (-n(K))) = n(ieeone(K u (-K))).

That is, when we identify M,,(A(K,0)*)%* = spany K, the unit ball of M,,(A(K,0)*)%
is ncconv(K U (-K)),,.

For a closed convex set X in a vector space V' containing 0, we use the usual
Minkowski functional

vx(v) =inf{t >0 |vetX}, veV.
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If0e K =U, K, is a compact nc convex set over a dual operator space E, we will
use the shorthand

V() = 7, ()
when x € M, (E).

Definition 3.4.3. [49] If X is a closed convex set in some vector space V, then for
d eV, we define the width of V' (with respect to d) or the d-width of V' as

| X|g:=sup{t>0|tde X - X}
1

" xx(d)
Definition 3.4.4. If K =[], K, € M(FE) is a closed nc convex set over a dual
operator space E, then for any n and any d € M,,(E) we define the width
Kla = Kola = ———
Y-k (d)

Lemma 3.4.5. If 0e K ¢ M(FE) is a compact nc convez set containing 0, then for
de M,(F), we have |K|q> 0 if and only if d € spang K. Moreover, for d € spang K,
we have

1 2
— < |n(d S
i, < I @Dlhcaccor < g

That is, d — 1/|K|q = 1/|K,|a defines a norm on spang K,, that is equivalent to the
norm induced by the isomorphism n : spang K,, - M, (A(K,0)*)%.

Proof. By Lemma 3.4.1, we have inclusions

K-K

cncconv(K U (-K))c K - K.
It follows that for d € spang K, we have

27—k (d) > Yaseoww(ku(-K)) (d) > Y-k (d).
By definition, yx_x = 1/|K|4. By Proposition 3.4.2, the norm unit ball of M, (A(K,0)*)%

is
ncconv(n(K) u (-n(K))) = n(ncconv(K u (-K))),
and hence Yaseonv(ku(-K)) (d) = Yaseonv(n(K)u(=n(k))) (1(d)) = [n(d)]. [

Given compact nc convex sets 0 € L ¢ K. The restriction map p : A(K,0) -
A(L,0) is always completely contractive and positive, and has dense range. When
is this map an operator space quotient map? Equivalently, this means there is a
constant C' > 0 so that any nc affine function g € M,,(A(L,0)) extends to an nc affine
function f on all of K with

fle=g and |fla.acc0) < Clglar. a0
Here is a noncommutative version of [19, Theorem 1].

Proposition 3.4.6. Let 0 ¢ L ¢ K € M(FE) be compact nc convex sets conlaining
0. The following are equivalent
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(1) The restriction map A(K) - A(L) is an operator space quotient map.
(2) The restriction map p: A(K,0) - A(L,0) is an operator space quotient map.
(3) The dual map p*: A(L,0)* - A(K,0)* is completely bounded below.

(4) There is a constant ¢ > 0 such that for alln > 1 and all d € M, (E) with |L|4 >0,
we have
|L|g > c|K|4.

(5) There is a constant C' >0 such that
(K -K)nspang L< C(L-L).

Proof. Clearly (1) implies (2). Suppose p: A(K,0) - A(L,0) is an operator space
quotient map with constant C' > 0. Given a € A(L), we have a—a(0)®14(z) € A(L,0).
Thus there is a b € A(K,0) with bl = a - a(0) ® 14y and [[b] < Cla - a(0) ®
Lacyll € 2C)af. Then, b+ a(0) ® 14k € A(K) restricts to a on L and satisfies
[b+a(0)®1ak)| < 0] +|a] < (2C+1)|a|. This proves A(K) - A(L) is an operator
space quotient map with constant 2C' + 1, so (2) implies (1).

The equivalence of (2) and (3) is Proposition 3.3.2. To prove (3) is equivalent to
(4), first note by taking real and imaginary parts that (3) occurs if and only if the
restrictions p};, : M,,(A(L,0)*)%* - M, (A(K,0)*)% are bounded below by a universal
constant. By Proposition 3.4.2, we may identify

spang L, = M, (A(L,0)*)** and spang K,, = M,,(A(K,0)*)%.

With this identification, p* is just the inclusion map spang L, — spanp K,,. By
Lemma 3.4.5, the induced norms on spang L and spang K are completely equivalent
to d — 1/|L|; and d — 1/|K|4. Thus the dual map p* is completely bounded below if
and only if for some constant ¢ > 0, we have
1 1
S —_
|Kla ™ |Lla

whenever d € spang L = {d e M(E) | |L|4 >0}, by Lemma 3.4.5.

p— |L|d > C|K|d

For d e M(FE), recall that |K|; = m and |L|4 = m. Hence condition (3)
holds if and only if

1
7L—L|SpanRL < E’VK—K|spanRL = 76(K—K)|spanRL-

Using only the definition of the Minkowski gauges yx_x and ~,_r, this holds if and
only if
¢(K-K)nspang L L - L.

Hence condition (4) holds with constant ¢ > 0 if and only if condition (5) holds with
constant C' = 1/c > 0. O

Note that for any general inclusion L ¢ K of compact nc convex sets, we can
freely translate to assume 0 € L and apply Proposition 3.4.6. Thus conditions (1),
(4), and (5) are equivalent in total generality. Note also that we do not require in
3.4.6 that (L,0) and (K,0) are pointed nc convex sets.
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Example 3.4.7. It is possible that the restriction map A(K,0) - A(L,0) in Propo-
sition 3.4.6 is surjective but not an operator space quotient. For instance, let E be an
infinite dimensional Banach space. Let max(FE) and min(F) denote E equipped with
its maximal and minimal operator space norms which restrict to the usual norm on
E 19, Section 3.3]. There are standard operator space dualities max(E)* = min(E*)
and min(E)* 2 max(£*). As E is infinite dimensional, the maximal and minimal
matrix norms on E are not completely equivalent [44, Theorem 14.3]. So, the iden-
tity map max(FE) - min(FE) is surjective and not an operator space quotient map.
Consider the minimal and maximal nc unit balls

K =] Bi(M,(min(E*))) and L =[] Bi(M,(max(E*)))

n>1 n>1
in M(E*). By the dualities max(£)* 2 min(£*) and min(£)* 2 max(E*), we have
A(K,0) xmax(F) and A(L,0)=min(FE)

completely isometrically. The restriction map A(K,0) - A(L,0) is just the identity
map max(F) — min(F), which is surjective, but not an operator space quotient
map.

Proposition 3.4.6 provides a guarantee that every matrix-valued nc affine function
on L lifts to an nc affine function on K with a complete norm bound. However, there
is no guarantee that we can lift a positive affine function to one that is positive. For
instance, the restriction map of function systems

A([_la 1]’ O) - A([()? 1]7 0)

is an operator space quotient map with constant ¢ = 1, but does not map the positives
onto the positives because A([-1,1],0)* = {0}.

Proposition 3.4.8. Let 0 ¢ L € K € M(E) be compact nc convex sets such that
(0,L) and (0, K) are pointed compact nc conver sets. Let p: A(K,0) - A(L,0) be
the restriction map. The following are equivalent

(1) For alln >1, p,(M,(A(K,0)*)) = M, (A(L,0))*.

(2) The dual map p* : A(L,0)* - A(K,0)* is a complete order embedding.
(8) Knspang LCR, L.

(4) Knuceonv(Lu (-L)) = L.

Proof. To prove (1) <= (2), consider the closed nc convex sets

P=]] Mu(A(L,0))* and Q=]]pa(M,.(A(K,0))*).

n>1 n>1

By the nc¢ Bipolar theorem of Effros and Winkler [19], we have @ = P if and only if
their nc polars Q™ and P™ are equal. But by scaling, we have

P ={pe M(A(L,0))|keNRe p,(b) <1 forall n>1,be P,}
={p e Mi(A(L,0)") | ke N,Re ¢ <0}
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and similarly

Q" ={pe M (A(L,0)*) | ke N,Re ¢,(pn(a)) <1, for all n >1,a € M,(A(K,0))*}
={p € My(A(L,0)") | ke N,Re p;(p) <0}.

Thus P = (@ if and only if p* is a complete order injection.

When we identify A(K,0)* = spang K; and A(L,0)* = spang L; as in Proposi-
tion 3.4.2, the dual map p* : spangy L — spang K is just the inclusion map. Since
(K,0) and (L,0) are pointed, the positive cones in M,,(A(K,0)*) = spang K,, and
M, (A(L,0)*) = spang L, are just R, K,, and R, L,,, respectively. Hence the inclusion
map is a complete order injection if and only if we have

R,K nspang L =R, L.
A rescaling argument shows that this is equivalent to
Knspang LC R, L,
and so (2) and (3) are equivalent.
If Knncconv(Lu (-L)) = L, then scaling gives
R, (K nspang L) =R, K nspang L =R, L,

which is again equivalent to (3), so (4) implies (3). Now suppose that K nspang L €
R,L. Clearly L ¢ K nncconv(L u (-L)). Conversely, if z € K nncconv(L u (-L)),
then by Lemma 3.4.1, we also have x € K nspang L = R, L. Hence

x encconv(Lu(-L))nR,L.
Because (L,0) is pointed, this implies x € L, proving that (3) implies (4). O
Combining Propositions 3.4.6 and 3.4.8 yields

Theorem 3.4.9. Let (L,0) and (K,0) be pointed compact nc convex sets with L €
K c M(E). The following are equivalent.

(1) The restriction map A(K,0) - A(L,0) is a matriz ordered operator space
quotient map.

(2) There is a constant C' >0 such that

(i) (K—-K)nspang L<C(L-L), and
(i1)) K nspang LR, L.
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3.5 Dualizability via nc quasistate spaces

Recall that the trace class operators T(H) = B(H). inherit a matrix ordered op-
erator space structure via the embedding 7(H) = B(H). < B(H)*, where B(H) 2
(B(H).)* completely isometrically and order isomorphically. By Ng’s [40] results,
since B(H) is a C*-algebra, B(H)* is an operator system, and so T(H) = B(H).
B(H)* is also an operator system. The nc quasistate space of 7 (H) is the compact
nc convex set

P(H) =] [ M. (B(H))7 = [[{z € Mu(B(H))|z 20, =] < 1}.

Applying Theorem 3.4.9 and Proposition 3.3.6 yields the following extrinsic geomet-
ric characterization of dualizability for an operator system.

Corollary 3.5.1. Let S be an operator system with pointed nc quasistate space
(K,0), and let H be a Hilbert space. The following are equivalent.

(1) There is a weak-* homeorphic complete embedding S* -~ B(H).

(2) There is a matriz ordered operator space quotient map T(H) — S.

(3) There is a pointed continuous nc affine injection ¢ : (K,0) - P(H) such that
(i) (P(H)-P(H))nspang p(K) € C(p(K)-¢(K)) for some constant C >0,

and
(i) P(H) nspang o(K) c R, o(K).

Definition 3.5.2. Let E be an ordered *-Banach space with closed positive cone
E+. We say F is a-generated for a constant « > 0 if for each x € E5*, we can write

rT=y-=z
for y, z € E* satisfying |y| + |z| < ||=[. Or, equivalently,
Bi(FE) =aconv(Bi(E*)u (-B1(E"))).

If X is a matrix ordered operator space, then we say X is completely a-generated
if each matrix level M,,(X) is a-generated.

In [40, Theorem 3.9|, Ng proved that an operator system S is dualizable if and
only if it is completely a-generated for some « > 0. The following definition is the
dual property of a-generation.

Definition 3.5.3. An ordered *-Banach space F is a-normal for some « > 0 if for
all x,y,z e £,
v<y<z = |y| < amax{|z], [y[}. (3.3)

If X is a matrix ordered operator space, then X is completely a-normal if each
matrix level M, (X) is a-normal.

The condition of a-normality can be viewed as a strict requirement about how
the norm and order structure on E interact. Normality means that “order bounds"
x <y < z should imply “norm bounds" |z| < amax{|y|,|z|}. If one does not care
about the exact value of «, it is enough to check the normality identity (3.3) on
positive elements in the special case x = 0.
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Proposition 3.5.4. If E is an ordered *-Banach space, then E is a-normal for
some >0 if and only if there is a constant >0 such that

O<z<y = |z|<Bly| (3.4)
for x,ye E*.

Proof. If E is a-normal, then (3.4) holds with § = a. Conversely, suppose (3.4)
holds, and let x <y <z in E%. Then 0<y-x <z-xz, and so |y —z| < Bz - z|.
Then, we get the bound

lyll <y =] + ]
<Blz-z|+ ||
< Bzl + ]) + ]
< (26 + ) max{|z], | =]},

proving E'is (2 + 1)-normal. O

Proposition 3.5.5. Let X be a matriz ordered operator space, with dual matriz
ordered operator space X*, and let o > 0. If X is completely a-generated, then
X* is completely 2a-normal. Conversely, if X* is completely a-normal, then X s
completely 2a-generated for all € > 0.

Proof. Suppose that X is completely a-generated. Let k£ € N and suppose z,y, 2 €
M, (X*)s2 satisfy x <y < z in the dual matrix ordering on X*. By definition of the
dual norm, we have

[9lan.xy = sup{[{a, 2p| [ 721, a € M (X)*},

where (-,-) denotes the usual matrix pairing between M(X) and M(X*). Given
neN and a € M,(X)%, we can write a = b—c where b, c € M, (X)* satisfy b+ |c| <
aflal. Then, we have the operator inequality

{a,y)

(0, 9) = (e y)
(b, 2) = (e, z)
[0+ el L

[z + 12D edal 1ok

IN

(
(

IN N

Symmetrically,

{a,y) > (b, z) - (¢, 2)
=l lol + 120l el Lnx

=(Jz] + 1z[)afa]1n-

v v

v

It follows that

[{a y)] < (el + z[Dafal.

Since a was arbitrary, this shows |y| < a(|z] + |z|) < 2amax{|z|, |z}, proving X*
is completely 2a-normal.

62



Now suppose X* is completely 2a-normal. Consider the closed matrix convex
subsets

K= LT B (X)) = By (M(X)™),
K* = ]| Bu(Mo (X)) = K n M(X)*,

n>1

L :=ncconv (K*u (-K™))

of M(X). We will show that K c aL.

To prove K ¢ 2aL, by the selfadjoint version of the nc separation Theorem of
Effros and Winkler [15, Theorem 2.4.1], it suffices to show that the selfadjoint nc
polars

KP:=][{z e M(y(X)® | {a,z) < Loy for all k> 1,2 € K}

n>1

and Lr (defined similarly) satisfy L* ¢ 2aK?. The relevant selfadjoint polars are

K* =] Bi(Mp(X")),
k>1
(K*)P = KP - M(X*)*
= [[{z € My(X*)*®* |z <y for some y e K}, and
k>1
Lr = (K*) n (-K*)"
= (K7 = M(X™)") n (K7 + M(X™)7)
= [[{y € Mi,(X*)™ |z <y < 2 for some z,z € K”}.
k>1

Hence, if y € L?, then y satisfies z <y < z for some =z, z € M,(X*)* with |z|, |z] < 1.
By complete a-normality, this implies |y| < «, so y € aK?. This proves L* ¢ a«K?,
so K ¢ alL.

Hence K ¢ aL =ncconv(K* u (-K*)). Using Lemma 3.4.1, we have

ficconv(K* U (-K*)) c K+ - K*.

Hence K ¢ a( K* - K*), and by rescaling every element x € M(X )% can be decom-
posed as z =y -z with y,2 >0 and |y|, |z]| < o[, and so |y|| + |z]| < 2c|z|. This
shows X is completely 2a-normal. O]

Remark 3.5.6. If H is a Hilbert space, then B(H) is completely 1-normal. Con-
sequently, if X is a matrix ordered operator space which is completely norm and
order isomorphic to a subspace of B(H) (a quasi-operator system), then X must be
a-normal for some a > 0.

Because complete a-normality is dual to complete a-generation, [40, Theorem
3.9] can be viewed as a partial converse to Remark 3.5.6. If X = S* is the dual
of an operator space, then if X is completely a-normal, it is a dual quasi-operator
system. Translating the normality condition into a condition on the nc quasistate
space gives the following intrinsic characterization of dualizability.

Theorem 3.5.7. Let (K,0) be a pointed compact nc convex sel, with associated
operator space S = A(K,0). The following are equivalent.
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(1) S* is a dual quasi-operator system.
(2) S is completely a-generated for some o > 0.
(8) S* is completely a-normal for some a > 0.
(4) There is a constant C' >0 such that
(K -R.K)nR,K c CK,
where K — R, K denotes the levelwise Minkowski difference.

(5) The closed nc convex set (K —R,K)nR, K is bounded.

Proof. The equivalence of (1) and (2) was proved by Ng in [40, Theorem 3.9]. Propo-
sition 3.5.5 shows that (2) and (3) are equivalent. To prove that (3) and (4) are
equivalent, we may use Proposition 3.4.2 to identify (S*)%* = spang K. After doing
S0, the positive elements in S* correspond to the closed nc convex set R, K, and for
d e R, K,, we have |d|,(s+) = 7k (d). Consequently,

(K-R,K)nR,K ={despany K | 0<d <z for some z € K}
={de [ M,(S*)*|0<d<z for some x>0 in K, with |z| <1}.

Thus (4) holds if and only if
O<z<yand |y <1 = |z| <C,
in M, (S57)% for all n e N. By rescaling, this is equivalent to asserting that
O<z<y = [z|<Cly|

in M, (S*)%. Then, Proposition 3.5.4 shows that if (3) holds, then (4) holds with C' =
a, and if (4) holds, then (3) holds with a = 2C'+1. Finally, because (K -R, K)nR, K
is a subset of R, K, on which the matrix norms from S* agree with the Minkowski
gauge vk, (4) holds if and only if (K -R,K)nR, K is bounded by C > 0, i.e. if and
only if (5) holds. O

Remark 3.5.8. The analogous version of Theorem 3.5.7 holds in the classical case:
If (K,0) is a pointed compact convex set, then the nonunital function system A(K,0)
is a-generated for some « > 0 if and only if (K -R,)nR, K is bounded.

Corollary 3.5.9. Let z € K € L be compact nc convex sets such that (K,z) and
(L, z) are pointed. If A(L,z) is dualizable, then so is A(K,z).

Proof. By translating, it suffices to consider this when z = 0. This follows by noting
that
(K-R,K)nR,Kc(L-R,L)nR, L,

and using condition (5) in Theorem 3.5.7. O

In 30, Section 8|, quotients of (nonunital) operator systems were defined. There,
a quotient of operator systems S — S/J corresponds dually to a restriction map
A(K,z) - A(M, z) between pointed compact nc convex sets, where M ¢ K is the
annihilator of the kernel J ¢ K. Applying Corollary 3.5.9 gives

Corollary 3.5.10. If S is a dualizable operator system, then every quotient of S is
dualizable.
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3.6 Positive generation versus completely bounded
positive generation

Classically, if an ordered Banach space E is positively generated in the sense
that E% = E* — E*, then E is in fact a-generated for some o > 0. This is a conse-
quence of the Baire category theorem |3, Theorem 2.1.2|. In the special case where
E = A(K,0) is the nonunital function system of continuous affine functions on a
pointed compact convex set K containing 0 which vanish at 0, the following classi-
cal analogue of Theorem 3.5.7 holds: The function system A(K,0) is a-generated
if and only if the classical convex set (K -R,K)nR,K ¢ A(K,0)* is bounded. If
A(K,0) is positively generated, it is a consequence of the Banach-Steinhaus Prin-
ciple of Uniform Boundedness that (K - R, K)nR, K is bounded, and so A(K,0)
automatically has bounded positive generation. This proof is essentially the dual
version of the proof of [3, Theorem 2.1.2].

In this section, we discuss the noncommutative situation. First, we show that
an operator system S has complete positive generation, meaning M, (5)% =
M, (S)* = M,(S)* for all n > 1, if and only if S is positively generated at the
first level. In contrast to the classical situation, complete positive generation need
not imply complete a-generation. In Example 3.6.6, we give an example of a matrix
ordered operator space which is positively generated but not completely a-generated
for any a > 0.

One might also consider the following weaker property. Call an ordered Banach
space F approximately positively generated if £ - E™* is dense in E. Note that
even though the postiive cone E* is closed, it need not be the case that £+ — E* is
closed, even when FE is an operator space, as the following example shows.

Example 3.6.1. Let S = C([0,1]), and define S* to be the closed cone of functions
which are both positive and convex. Then S*—S* is dense in S = C([0,1]), because
it contains all C? functions, but S*—S* # S, because the convex functions in S* are
automatically differentiable on the interior (0,1). So, S is an ordered Banach space
which is approximately positively generated, but not positively generated. In fact,
S is an operator system. Indeed, if we let

K ={peS"[|p] <1 and p(57) [0,00)}

be the classical quasistate space of K, then since every probability measure on [0, 1]
lies in K, the natural map

S - A(K)
into the continuous affine functions on K is isometric and order isomorphic. That is,
S is isometrically order isomorphic to a nonunital function system, and so inherits
an operator system structure.

There are many examples of the same kind as Example 3.6.1. It suffices to take
any function system S, and equip it with a new closed positive cone P ¢ S* for
which P — P is not closed. In a private correspondence, Ken Davidson suggested
another example in which S = C @ ¢ is equipped with the new positive cone

P= {(t, (2n)ns1) €Cdcy [t 20, (24)n>1 20, and Z Ty < t}.
n=1
Here, again P — P is dense and not closed in S.
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Proposition 3.6.2. Let S be an operator system with quasistate space K € S*.

Then S is approximately positively generated if and only if St separates points in
K.

Proof. 1If S is densely spanned by its positives, then the positives must separate
points in K. Conversely, suppose that S is not positively generated. Then there
exists an element x € S% \ (S* - S*). By the Hahn-Banach Separation Theorem,
there is a self-adjoint linear functional ¢ € S* so that for all y € S* —.S* we have

p(x) < e(y).

But since ST - S* is a real vector space, this implies that ¢ is identically zero on
St — S*. Moreover, by the Hahn-Jordan decomposition theorem there are positive
functionals p*, o~ € E¢ with ¢ = o™ — ™. Since p(z) <0, the functionals ¢* and ¢~
are necessarily distinct, but they are equal on S*—S5* and hence on S*. Normalizing
©* to obtain quasistates shows that S* does not separate quasistates. O

Remark 3.6.3. The Hahn-Jordan decomposition theorem ensures that, as an or-
dered vector space, the dual space S* is always positively generated.

By the following result, if S is positively generated then so are each of its matrix
levels M, (S). Again by [3, Chapter 2, Theorem 1.2|, each M,,(S) is a,-generated
for some «,. In order for S to be dualizable, we would need the sequence () to
be bounded.

Proposition 3.6.4. If S is positively generated, then so is M,(S) for each n.

Before proving this, we will need a technical lemma which proves a much stronger
statement in the finite dimensional setting.

Lemma 3.6.5. If S is a finite dimensional and positively generated operator system,
then it contains a matriz order unit.

Proof. Since S is positively generated, then it admits a basis B = {p1,...,pm} con-
sisting of positive elements. We claim that e := Y./, p; is an order unit. For any x
in S5 we can write x uniquely as a real linear combination

m
=) ap;,
=1

and we define A\, := max{1,|aq|,...,|an|}. Tt is clear that A\,e £z are positive in S,
so e is an order unit.

Next we let n > 0 and show that e, := e ® I,, is an order unit for M, (S5), so fix
an X = (z;)7,., € M, (S)*®. Since E is positively generated, for every i < j we can
decompose the corresponding entries of X as

ri; = Re xf; - Re o +i(Im xf; - Tm 7).

To find a large enough coefficient of e,, to dominate X, we let

>\X = >\d+)\Re +)\Im-
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Where )\d = max{)\x“'}?:p )\Re = Zi<j )\Re z;’j+Re z and )\Im = Zi<j >\Im m;’j+lm z
Note that it makes sense to write x}; since the z; must all be self-adjoint, as they
lie on the diagonal of X = X*.

Fix a concrete representation S — B(H) of S as a norm closed and =-closed
subspace of the bounded operators on a Hilbert space. We’ll show that Axe,+X >0
concretely using inner products. Take an arbitrary vector a = (a;)", € H" = @}, H,
and compute

((Axen + X)a,a) =Ax(e,a,a) +(Xa,a)
=Ax Z(eai, a;) + ) (zya;, a;) + Z(a:ijaj, a;) + (xjia;, a;)
i=1 i1 i<y

=A\x Z(eai,ai) + Y (xgaq,a;) + ZQRe (xijai,a;)
i=1

i=1 <j

=\ Zn:(eai, a;) + zn:(flﬁn'am ai))

i=1 i=1

i<J
n n

= )\dz eazuaz + Z xmawaz
=1 =1

+[ Age Z(eai,ai) +22Re (Re xijaj,ai))

i=1 i<j

+ A\im Z(eai,ai) - QZIm (Im xijaj,ai)).

i=1 i<y

For the remainder of the proof, we will show that each of the three terms above is
non-negative. Starting with the first term,

3

n n
Ad Z ea;, a; +Z T, A 22((/\de+93u)al,a,)
i=1 i=1

i=1

M= T

((/\z”@ + Ty)aq, a;)

<.
1l
—_

v
=)

where the last inequality follows from the first paragraph of the proof.
To prove that the second term is non-negative, note

n

ARe Z(eak,ak) + 2ZRe (Re x;;a;,a;)

k=1 i<j

—Z()\Rex +Re z )Z €ag, +22Re Re -szamaz)

1<j i<j

=2 (ARe a2 +Re a7, )Z eay, a) + 2Re (Re z45a;,a;).

i<j
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We now show that for each pair 7 < 7, the corresponding summand is non-negative:

()\Re m;’j+Re xl—J) kz:(eak, CLk> + 2Re (Re QJZ‘J'CLJ', CLZ'>
=1

=(ARe ot +Re :r;j) ’;(eak, ar) + 2Re ((Re 2j; - Re 2;;)a;, a;)

>(ARe 2t +Re xi—j)(eai, a;) + (Are ot +Re mi—j)(eaj, a;) +2Re ((Re zj; - Re 7;)a;, a;)
> ((Re zfa;, ;) + (Re 2fa;,a;) + 2Re (Re 2505, a;))

+ ((Re zj;a;, a;) + (Re zj;a;,a;) - 2Re (Re zj;a;,a;))

=(Re zj;(a; + a;), a; + a;)
+(Re 2;;(a; - a;), a; — a;)
0.

v

The last inequality follows since each Re z3; Is a positive operator. The proof that
the third term is non-negative is similar. [

We now prove Proposition 3.6.4

Proof of Proposition 3.6./. Toshow M, (S) is positively generated, fix X = (xij)zjzl €
M, (S)%a. Since S is positively generated, each z;; can be written as a linear com-
bination of four positives Re z7;, Re 27, Im z7;, and Im x7;. Let Sx denote the
linear span of these positives, as ¢ and j range from 1 to n. Since Sy is a finite
dimensional operator system, by the previous lemma there is a matrix order unit
ex € Sx and in particular there is a constant A > 0 so that both A1, ® ex + X > 0.
Since X = (A, ®ex + X)/2- (A1, ® ex — X)/2 and all entries are ultimately in S,

this shows M,,(.S) is positively generated. O

So, complete positive generation coincides with positive generation at the first
level. However, the following example shows that for matrix ordered operator spaces,
positive generation at all matrix levels does not imply complete a-generation for any
Q.

Example 3.6.6. Any Banach space E has a unique maximal and minimal system of
L*°-matrix norms which give F/ an operator space structure and restrict to the norm
on F at the first matrix level. We denote the resultant operator spaces by max(FE)
and min(FE), respectively. There are natural operator space dualities max(FE)* =
min(E*) and min(E)* = max(E)* [19, Section 3.3]|.

We will consider the Banach space ¢! and its dual ¢°°. Because £*° is a commu-
tative C*-algebra, we have ¢~ = min(£*) [19, Proposition 3.3.1]. The embedding
¢1 c (£>)* gives a matrix ordered operator space structure on ¢!, which coincides
with the max norm ¢! = max(¢'). Using the natural linear identifications

M, (¢2) = ¢=(N,M,) and M,(¢") = (X(N, M,),

the resultant positive cones in £ and ¢! consist of those sequences of matrices which
are positive in each entry.

We will consider the minimal operator space min(¢!) equipped with the same
matrix ordering as ¢! = max(¢'). Because the matrix cones M, (¢!)* = (1(N, M) are
closed in the topology of pointwise weak-* convergence, which is weaker than the
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topology induced by either the minimal or maximal norms on M, (¢'), the matrix
cones M, (¢')* are closed in the minimal norm topology. Thus min(¢!) has the
structure of a matrix ordered operator space. Because M, is 1-generated, it follows
that each M, (min(¢')) = ¢*(N, M,,) is positively generated, so min(¢!) is completely
positively generated.

However, we will show that min(¢') is not completely a-generated for any « > 0.
We will do so using Proposition 3.5.5, by proving the dual matrix ordered operator
space min(¢!)* = max(¢*°) (equipped with the usual matrix ordering on £*°) is not
completely a-normal for any a > 0. Since ¢* is infinite dimensional, the minimal
and maximal matrix norms on £* are not completely equivalent [44, Theorem 14.3].
Thus there is a sequence z, € M, (£>°) for which

|2k min €1 and |2 | max > k-
In the C*-algebras M, (¢>), we can write each xj as a linear combination
xr = (Rex)" = (Rexy) +i(Imag)" —i(Imay)”

of positive elements (Rexy)*, (Imxy)* of min-norm at most 1. Since |z |max > ¥,
by suitably choosing y, € {(Rex)*, (Imzy)*}, we can obtain a sequence of positive
elements yg € M, ({>°)* with

”kamin <1 and Hyk”max > k?/4

Since the minimal norm on M, (¢*) is just the usual C*-algebra norm, we have
0 <y < 1, (e~). Because the maximal norms satisfy the L*-matrix identity, we
have |15, (e=)[max = 1. Thus

0 <yr < Lag,, (<), Hank(f‘X’)”max <1, and |yk|max > k/4

for all k € N. So, ¢* is not completely k/4-normal, and taking k — oo shows that ¢*
cannot be completely a-normal for any a > 0.

Example 3.6.6 is a minimal example of this kind. One cannot restrict to the
finite dimensional spaces £} and (5 = (¢£})* because the maximal and minimal norms
on a finite dimensional Banach space are completely equivalent [44, Theorem 14.3],
and so max(¢}) 2 min(¢}) is a dualizable quasi-operator system.

3.7 Examples and applications

3.7.1 Nonunital operator system pushouts and coproducts

It K=11I,- K, and L =11, L, are compact nc convex sets, we denote by

KXL::L[KnXLn

n>1

their levelwise cartesian product. In 25|, it was shown that A(K x L) is the cate-
gorical coproduct of the unital operator systems A(K) and A(L) in the category of
unital operator systems with ucp maps as morphisms. The following result will let
us assert a similar result in the pointed context, for nonunital operator systems.
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Proposition 3.7.1. Let (K, z) and (L,w) be pointed compact nc conver sets. Then
(K x L,(z,w)) is pointed, and there is a vector space isomorphism

A(K x L, (z,w)) 2 A(K, z) @ A(L, w).

Proof. We will prove the result in the special case when z = 0 and w = 0 in the
ambient spaces containing K and L. The general case follows by translation. Define
a linear map A(K,z) ® A(L,w) - A(K x L,(z,w)) by (a,b) » a ®b, where (a ®
b)(z,y) :=a(x) +b(y) for x € K, y e L. Since a(z) =0 = b(w), it is easy to see that
this map is injective. Given ce A(K x L,(0,0)), let a(z) = ¢(x,0) and b(y) = ¢(0,y)
for z € K, y € L. Then since ¢(0,0) =0,

c(x,y) =2c (g, %)
o (20) 0)
= a(x) +b(y) = (a @ b)(z,y).

This proves that A(K,0) ® A(L,0) - A(K x L,(0,0)) is a linear isomorphism.
Now, it will follow from this isomorphism that (K x L, (z,w)) is pointed. Let
p:A(K x L,(z,w)) - M, be any nc quasistate. Then

p(a)=pla®0) and ¢(b) =p(0@b)

define nc quasistates on A(K,0) and A(L,0), respectively. Because (K,0) and
(L,0) are pointed, all nc quasistates are point evaluations, so we have ¢(a) = a(x)
and o(b) = b(y) for some (x,y) € (K x L), and all a € A(K,0), b e A(L,0). From
linearity, it follows that p is just point evaluation at (z,y), so (K x L), (0,0)) is
pointed. O

Definition 3.7.2. Let S and T be operator systems with respective nc quasistate
spaces (K,0) and (L,0). We define the operator system coproduct to be the
vector space S @ T equipped with the operator system structure such that

SeT=A(K,0)e A(L,0) 2 A(K x L,(0,0))
is a completely isometric complete order isomorphism.

Explicitly, the matrix norms on S @ T satisfy

|2, 9) | aru(sory = sup{llon(@) + u(y)| | p € K e L}

for (z,y) e Mp,(S®T) = M,(S) ® M,(T). The matrix cones just identify M, (S &
T)* = M,(S)* ® M, (T)".

Proposition 3.7.3. The bifunctor (S,T) » S @ T is the categorical coproduct in
the category of operator systems with ccp maps as morphisms. That is, given any
operator system R and ccp maps ¢S - R and ¢ : T - R, the linear map @ & :
SeT - R is cep.

Proof. This follows either by the explicit description of the matrix norms and order
on S@ T, or by showing that (K x L,(0,0)) is the categorical product of (K,0)
and (L,0) in the category of pointed compact nc convex sets, and using Theorem
3.2.11. O
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Remark 3.7.4. The operator space norm on S @7 is neither the usual /*-product
nor the ¢-product of the operator spaces S and T. For example, if

K=L=[[{zeM;|0<z<1,}

n>1
is the nc simplex generated by [0,1], and a € A(K,0) is the coordinate function
a(zx) =z, then
la®alak2,00 =2>[a®aleo and
la® (=a)| ax2,0,0)) =1<la®al;.

Proposition 3.7.5. Let S and T be operator systems. If S and T are dualizable,
then S @ T s dualizable.

Proof 1. We will use Theorem 3.5.7. Let the nc quasistate spaces of S and T be
(K,0) and (L,0), respectively. Then (K -R,K)nR,K and (L-R,L)nR,L are
norm bounded. Checking that

(KxL-R,(KxL)nRy(KxL)c((K-R,E)nR,K)x ((L-R,L)nR,L)

shows that (K x L-R, (K xL))nR,(K x L) is bounded, so S®&T = A(K x L, (0,0))
is dualizable. ]

It is also possible to give a proof of Proposition 3.7.5 using only Ng’s bounded
decomposition property, which appears in 3.5.7.(2).

More generally, we can form finite pushouts in the operator system category by
taking pullbacks in the category of pointed compact nc convex sets.

Definition 3.7.6. Let
R—*%5 5

%w

be a diagram of operator systems with ccp maps as morphisms. Let S, T, and R,
have respective quasistate spaces (K,0), (L,0), and (M,0). We define the pushout
S ®p,y T as the operator system

A(K XM % 1p* L’ (070))7

where
K sy L={(z,y) e Kx L * () =¢*(y)} € K x L,
equipped with the natural maps

LSIS%S@T—>5®R’%¢T and
LTZT%S@TQS@R,@MT

which make the diagram
R—*2 5§

a L (3.5)

T —)LT S @R#PJZJ T

comimute.
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When the morphisms ¢ and ¢ are understood, we will usually just write S @&gT
and K x,; L. Note that the coproduct S & T coincides with the pushout S &y T of
the diagram

0—59
o]
T

as expected, where 0 denotes the 0 operator system.
To verify that A(K xp; L, (0,0)) is an operator system, we need to show that:

Proposition 3.7.7. (K xj; L, (0,0)) is pointed.

Proof. Tet p : A(K x5 L,(0,0)) - M, be an nc quasistate. Pulling p back to
A(K x L,(0,0)) gives a point evaluation at some point (z,y) € K x L. It will suffice
to show that (z,y) € K x,; L, in which case p must be point evaluation at (x,y).

We must show that ¢*(z) = ¥*(y) in M. Given a € R ¥ A(M,0). Since the
diagram (3.5) commutes, upon pulling back to S @ T', we have

p(tsp(a)) = (p(a) ®0)(2,y) = (0@ P(a))(z,y) = p(ert(a)),

that is, ¢(a)(x) = a(p*(z)) = ¥(a)(y) = a(v*(y)). Since a € R = A(M,0) was
arbitrary, this proves p*(x) = ¥*(y), so (z,y) € K x,; L. O

Proposition 3.7.8. The diagram 5.5 is a pushout in the category of operator sys-
tems with ccp maps as morphisms.

Proof. 1t is easiest to verify that the diagram

(K xm L,(0,0)) —— (K,0)

! L

(L.0) —— (M,0)
is a pullback in the category of pointed compact nc convex sets with pointed con-
tinuous nc affine functions as morphisms, where the unlabeled maps are just the
coordinate projections. Checking this is fairly immediate, using the fact that the
point-weak-* topology on K x,; L € K x L coincides with the restriction of the

product topology. By the contravariant equivalence of categories Theorem 3.2.11, it
follows that (3.5) is a pushout. O

Proposition 3.7.9. If S and T are dualizable operator systems, then any pushout
S ®r, T is also dualizable.

Proof. This follows from Proposition 3.7.5 combined with Corollary 3.5.9 used with
the inclusion (0,0) ¢ K xp; L ¢ K x L. O

It follows by induction that any finite pushout of dualizable operator systems is
again dualizable.
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3.7.2 A new proof of Choi’s theorem

In [40], Ng showed that if S is a dualizable operator system, then there is a canonical
choice of completely equivalent matrix norm on the dual S* for which S¢ is an op-
erator system, embedding completely isometrically into some B(H). This canonical
dual matrix norm is

[fla =sup{[[fu(@)[ [ 21,2 € M, (S)", 2] <1}, m21,feMn(57)

where the key difference is that the supremum is taken only over positive elements
x. Ng denotes by S? the operator system S* renormed with the matrix norms | - | 4.

Theorem 3.7.10. The nc quasistate space (K, z) of M, is pointedly affinely home-
omorphic to (I Mx(M,)7,0), and its nc extreme points consist of unitary conju-
gates of the Choi matriz ;) Ei; ® Ejj together with the zero scalar.

Proof. Note that the canonical map ® : M,, - M given by ®(E;;) = d;; is a complete
order isomorphism, where 0;;(Ey;) = 1 when (4, ) = (k,1) and 0 otherwise.

In particular, we can write M¢ = A(K,z) and view K as lying in the ambient
space [Tpoy My (M2 = 1172, Mp(M,). The last equality follows from M,, being finite
dimensional. Under this identification, and with the matrix norms | - |4 on M2, it
is clear that the completely contractive and completely positive maps on M¢ are
precisely the elements of ([I;2; Mx(M,)7,0).

This proves that M, is isomorphic as an operator system to A(1I,2; Mx(M,)7,0).
To describe the boundary of the nc quasistate space we note that M, is a C*-algebra,
and so the boundary consists of its irreducible representations. These are precisely
the unitary conjugates of the identity map on M, together with the zero map.

Using the same notation as above, the identity map on M, can be written as
ZZj:I Ez'j ® 523 Indeed, if (SL’M) € M,, then

( i By ®5z‘j) (Tp) = i Eij ® 6i((wr))

ij=1 i.j=1

n
=) Eij®x;

ij=1
n
=) wi;Ey
ij=1

:(l'kl).

This shows that ®;!(idyy, ) = X721 Eij ® Eyj, where ®,, denotes the n'* amplification
of ®. Hence, as the unitary orbit of id;, together with the zero map are the
extreme boundary of K, the Choi matrix together with the zero scalar are the
extreme boundary of 72, My (M,)? under the identification []32; Mp(M,)7 = K
given above. [

As a corollary, we obtain a celebrated result of Choi [10].

Corollary 3.7.11. A map ® : M, — M, is completely positive if and only if
Yi i1 Bij ® ®(Eyj) is positive in M, (My).
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Proof. By identifying M, to its vector space dual, and applying the standard oper-
ation of uncurrying ®, we obtain a new map ® : My (M, ) - C defined by

&)(EU ® Ekl) = (®(Eij)7Ekl>7

where (-,-) denotes the Hilbert-Schmidt inner product on M. It is a well known
fact that ® is a positive functional if and only if ® is completely positive.
In this way, we may view ® as an element of the dual M (M,)4 = M, (M2). Using
the identification My (M2) = M (A(L .y M. (M,)7,0)), and the further identifica-
tion that My (A(_; Mpm(M,p)7,0)) = A((oy My (M,,)7,0), (Myg,0)), we obtain
that @ is a positive functional if and only if it takes positive values on the extreme
boundary of [I5_; M,,(M,); when viewed as an element of A((LI;_y M(M,)7,0), (My,0)).
By the previous result, this happens precisely when its evaluation at the Choi matrix
is positive. ]

Corollary 3.7.12. For any contractive positive matriz A € M, there are k matrices
Xi,.. o, Xi € M, 2 with Xa X{ +--+ X3 X[ =1, s0 that

A= chXl + e +XkOXk,

where C = 31, Eij ® E;j denotes the Choi matriz. Moreover, k is a polynomial in
n.
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