
Improving the Reliability of Deep
Learning Software Systems

by

Viet Hung Pham

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Computer Science

Waterloo, Ontario, Canada, 2022

© Viet Hung Pham 2022

Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the
Examining Committee is by majority vote.

External Examiner: Baishakhi Ray
Professor, Dept. of Computer Science,
Columbia University

Supervisor(s): Lin Tan
Professor, Electrical & Computer Engineering,
University of Waterloo

Yaoliang Yu
Professor, David R. Cheriton School of Computer Science,
University of Waterloo

Internal Member: Jimmy Lin
Professor, David R. Cheriton School of Computer Science,
University of Waterloo

Chengnian Sun
Professor, David R. Cheriton School of Computer Science,
University of Waterloo

Internal-External Member: Patrick Lam
Professor, Electrical & Computer Engineering,
University of Waterloo

ii

Author’s Declaration

This thesis consists of material all of which I authored or co-authored: see Statement
of Contributions included in the thesis. This is a true copy of the thesis, including any
required final revisions, as accepted by my examiners. I understand that my thesis may
be made electronically available to the public.

iii

Statement of Contributions

As the lead author of all the contributions of this thesis I was responsible for (1)
creating the study concepts, (2) developing, implementing, and evaluating prototypes, (3)
performing data collection and analysis, (4) drafting and submitting manuscripts, and (5)
presenting the work at conferences. My coauthors provided feedback at each step of the
research process and on manuscript drafts.

Research presented in Chapter 3: Dr. Thibaud Lutellier helped revising the manuscripts
and double-checking related work, Weizhen Qi helped verifying the detected bugs. Carmen
Kwan helped collecting evaluation models from GitHub, and Yitong Li helped reproducing
and validating the experimental results. Dr. Lin Tan provided feedback and supervision
in all parts of the research.

Research presented in Chapter 4: Shangshu Qian helped designing, performing, and
analyzing the developers and researchers survey. Jiannan Wang helped producing some
figures for the manuscripts. Dr. Thibaud Lutellier helped designing and organizing the
paper survey. Jonathan Rosenthal helped double-checking related work. Shangshu Qian,
Jiannan Wang, Dr. Thibaud Lutellier, Jonathan Rosenthal, and Yitong Li helped exam-
ining research paper for the paper survey. Dr. Eric Horvitz, Dr. Benjamin Zorn, and Dr.
Madan Musuvathi provided feedback on the manuscript. Dr. Mijung Kim helped code the
tool DEVIATE. Dr. Lin Tan, Dr. Yaoliang Yu and Dr. Nachiappan Nagappan provided
feedback and supervision in all parts of the research.

Research presented in Chapter 5: Dr. Todd Mytkowicz helped debugging the experi-
mental code to run on the cluster. Dr. Ece Kamar, Dr. Emre Kiciman, Dr. Lin Tan, and
Dr. Benjamin Zorn provided feedback and supervision in all parts of the research.

Citations:

• Hung Viet Pham, Thibaud Lutellier, Weizhen Qi, Lin Tan, CRADLE: Cross-Backend
Validation to Detect and Localize Bugs in Deep Learning Libraries, Proceeding of The
41st ACM/IEEE International Conference on Software Engineering, 2019 [182].

• Hung Viet Pham, Shangshu Qian, Jiannan Wang, Thibaud Lutellier, Jonathan Rosen-
thal, Lin Tan, Yaoliang Yu, Nachiappan Nagappan, Problems and opportunities in
training deep learning software systems: an analysis of variance, Proceeding of The
35th IEEE/ACM International Conference on Automated Software Engineering, 2020
(ACM SIGSOFT Distinguished Paper Award) [183].

iv

• Hung Viet Pham, Mijung Kim, Lin Tan, Yaoliang Yu, and Nachiappan Nagappan,
DEVIATE: A Deep Learning Variance Testing Framework, Proceeding of The 36th
IEEE/ACM International Conference on Automated Software Engineering, 2021 [181].

v

Abstract

For the last decade, deep learning (DL) has emerged as a new effective machine learning
approach that is capable of solving difficult challenges. Due to their increasing effectiveness,
DL approaches have been applied widely in commercial products such as social media
platforms and self-driving cars. Such widespread application in critical areas means that
mistakes caused by bugs in such DL systems would lead to serious consequences. Our
research focuses on improving the reliability of such DL systems.

At a high level, the DL systems development process starts with labeled data. This
data is then used to train the DL model with some training methods. Once the model is
trained, it can be used to create predictions for some unlabeled data in the inference stage.
In this thesis, we present testing and analysis techniques that help improve the DL system
reliability for all stages.

In the first work, CRADLE, we improve the reliability of the DL system inference by
applying differential testing to find bugs in DL libraries. One key challenge of testing
DL libraries is the difficulty of knowing the expected output of DL libraries given an input
instance. We leverage equivalent DL libraries to overcome this challenge. CRADLE focuses
on finding and localizing bugs in DL software libraries by performing cross-implementation
inconsistency checking to detect bugs, and leveraging anomaly propagation tracking and
analysis to localize faulty functions that cause the bugs. CRADLE detects 12 bugs in
three libraries (TensorFlow, CNTK, and Theano), and highlights functions relevant to the
causes of inconsistencies for all 104 unique inconsistencies.

Our second work is the first to study the variance of DL systems training and the
awareness of this variance among researchers and practitioners. Our experiments show
large overall accuracy differences among identical training runs. Even after excluding
weak models, the accuracy difference is 10.8%. In addition, implementation-level factors
alone cause the accuracy difference across identical training runs to be up to 2.9%. Our
researcher and practitioner survey shows that 83.8% of the 901 participants are unaware
of or unsure about any implementation-level variance. This work raises awareness of DL
training variance and directs SE researchers to challenging tasks such as creating deter-
ministic DL implementations to facilitate debugging and improving the reproducibility of
DL software and results.

DL systems perform well on static test sets coming from the same distribution as train-
ing sets but may not be robust in real-world deployments because of the fundamental
assumption that the training data represents the real- world data well. In cases where
the training data misses samples from the real-world distribution, it is said to contain

vi

blindspots. In practice, it is more likely a training dataset contains weakspots (i.e., a
weaker form of blindspots, where the training data contains some samples that represent
the real world but it does not contain enough). In the third work, we propose a new pro-
cedure to detect weakspots in training data and to improve the DL system with minimum
labeling effort. This procedure leverages the variance of the DL training process to de-
tect highly varying data samples that could indicate the weakspots. Metrics that measure
such variance can also be used to rank new samples to prioritize the labeling of additional
training data that can improve the DL system accuracy when applied to the real world.
Our evaluation shows that, in scenarios where the weakspots are severe, our procedure
improves the model accuracy on weakspot samples by 25.2% requiring 2% of additional
training data. This is an improvement of 4.5 percentage points compared to the traditional
single model metric with the same amount of additional training data.

vii

Acknowledgements

I would like to particularly thank my supervisor, Dr. Lin Tan:“Thank you for accepting
me into your group, helping and supporting me during my Ph.D study. I learned and grew
so much under your supervision and mentorship.” I also would like to thank my other
supervisor, Dr Yaoliang Yu:“Thank you for giving me advice and supporting me during
my Ph.D study!” I could not have wished for better supervisors!

I would like to thank my examination committee members: Dr. Baishakhi Ray, Dr.
Jimmy Lin, Dr. Chengnian Sun, Dr. Patrick Lam, and Dr. Meiyappan Nagappan—for
their support, insightful discussion and valuable feedback on my research.

Thanks to all the students in our research group at the University of Waterloo who
made going to the lab every day a pleasure: Dr. Song Wang, Dr. Edmund Wong, Dr.
Thibaud Lutellier, Yuan Xi, Moshi Wei, Yitong Li, and Tejvinder Toor—thank you very
much for the support, friendship, and joy.

I also want to thank the research team at Purdue University. While I have not met any-
one in person, we had great online conversations and I learned a lot from them: Shangshu
Qian, Danning Xie, Jiannan Wang, Dr. Mijung Kim, and Jonathan Rosenthal.

I want to thank all my other collaborators during my Ph.D. study: Dr. Nachiappan
Nagappan, Dr. Benjamin Zorn, Dr. Ece Kamar, Dr. Emre Kiciman, Dr. Todd Mytkowicz,
Dr. Jiahao Chen, Dr. Sameena Shah, Dr. Xiangyu Zhang, Dr. Michael W. Godfrey, Dr.
Tung Nguyen, Dr. Tam The Nguyen, Dr. Yanghee Kim, Dr. Sherry Marx, Zeou Hu,
Jungwon Kim, Weizhen Qi, and Phong Minh Vu. I really enjoyed working with them, and
have learned a lot from them.

viii

Dedication

This is dedicated to my parents, my wife and my children. Thank you all for always
being there for me, through thick and thin!

ix

Table of Contents

List of Figures xiv

List of Tables xvi

1 Introduction 1

1.1 Differential Testing at the Inference Stage 2

1.2 An Analysis of Variance of Deep Learning Software Systems Training . . . 3

1.3 Mitigating Blindspot in Deep Learning Training Data 5

1.4 Publications . 6

2 Related Work 8

2.1 Machine Learning and Deep Learning System Testing and Debugging . . . 8

2.1.1 Testing Machine Learning (ML) Libraries 8

2.1.2 Benchmarking DL Libraries . 9

2.1.3 Adversarial Testing of DL Models 9

2.1.4 Differential Testing and Inconsistency Detection 9

2.1.5 Debugging and Fault Localization 9

2.2 Variance of Deep Learning Training Process 10

2.2.1 Variance Study of Reinforcement Learning (RL) 10

2.2.2 Awareness of The Impact of Nondeterminism 10

2.2.3 Anecdotal Evidence of NI-factors 10

x

2.2.4 Nondeterminism in Stochastic Gradient Descent (SGD) 11

2.2.5 Impact of Weight Initialization . 11

2.2.6 Controlling Implementation-Level Nondeterminism 11

2.2.7 Deep Learning System Benchmarking 11

2.3 Blindspots in Machine Learning Training Data 11

2.3.1 Blindspots of Machine Learning Systems 11

2.3.2 Out-of-distribution detection . 12

2.3.3 Active Learning . 12

3 CRADLE: Cross-Backend Validation to Detect and Localize Bugs in
Deep Learning Libraries 14

3.1 Motivation . 14

3.2 Background . 18

3.3 Approach . 19

3.3.1 Overview and Challenges . 19

3.3.2 Detection Phase . 21

3.3.3 Localization Phase: . 25

3.4 Datasets and experimental settings . 27

3.5 Results . 28

3.5.1 RQ1: Can CRADLE Detect Bugs and Inconsistencies in Deep Learn-
ing Backends? . 28

3.5.2 RQ2: Can CRADLE Localize The Source of Inconsistencies? 32

3.5.3 RQ3: What Is CRADLE’s Detection and Localization Time? 34

3.6 Limitations and Threats to Validity . 34

3.7 Summary . 35

xi

4 Problems and Opportunities in Training Deep Learning Software Sys-
tems: An Analysis of Variance 36

4.1 Motivation . 36

4.2 Nondeterminism-Introducing (NI)-Factors 40

4.2.1 Definitions . 40

4.2.2 Algorithmic NI-factors . 41

4.2.3 Implementation-Level NI-factors . 42

4.2.4 Controlling NI-factors for Determinism 43

4.3 Experimental Method . 44

4.3.1 Experimental Sets of Identical Training Runs 45

4.3.2 Nondeterminism-Level Settings . 46

4.3.3 Metrics and Measurements . 46

4.3.4 Statistical Tests . 47

4.4 Experimental Settings . 47

4.5 Results and Findings . 49

4.5.1 RQ1: How Much Accuracy Variance Do NI-factors Introduce? . . . 49

4.5.2 RQ2: How Much Accuracy Variance Do Implementation-Level NI-
factors Cause? . 51

4.5.3 RQ3: How Much Training-Time Variance Do NI-factors Introduce? 54

4.6 Researcher and Practitioner Survey . 55

4.6.1 Survey Design and Deployment . 56

4.6.2 Survey Results and Findings . 56

4.7 DL-Training Paper Survey . 59

4.8 Implications, Suggestions, and Future Work 60

4.9 Threats to Validity . 61

4.10 DEVIATE: A Deep Learning Variance Testing Framework 62

4.11 Summary . 63

xii

5 Mitigating Blindspots in Deep Learning Training Data: The N-model
Approach 65

5.1 Motivation . 65

5.2 Approach . 69

5.2.1 Ranking Unlabeled Samples . 69

5.2.2 Investigating Interesting Unlabeled Samples 70

5.2.3 Retraining to Improve DL Model 71

5.3 Experimental Settings . 72

5.4 Results and Findings . 73

5.4.1 RQ0: Are All Holdout Scenarios Blindspot Scenarios? 74

5.4.2 RQ1: Can Input Sample Scores with N Models Better Indicate a
Dataset Blindspot Sample than Traditional Single Model Scores? . 75

5.4.3 RQ2: Can Incorporating Multiple Model Analysis in The Develop-
ment Process Improve The DL Model with Retraining? 78

5.4.4 The “ray” Fish: A Use-Case of Leveraging Analysis of Samples with
High Variance . 80

5.5 Summary . 83

6 Future Work 84

6.1 Deep Learning Software Systems Testing and Debugging 84

6.2 Deep Learning Systems Automatic Repair 85

6.3 Variance Aware Deep Learning Hyperparameter Optimization 85

7 Conclusion 87

References 88

xiii

List of Figures

1.1 The overview of the three stages (labeled data, training, and inference) of
deep learning development and the contributions of the thesis on all three
of these stages. 2

3.1 Overview of DL libraries. 15

3.2 A bug found by CRADLE in the CNTK backend, which has been fixed after
we reported it. 16

3.3 Overview of CRADLE. Red boxes indicate CRADLE outputs. 19

3.4 Batch normalization bug’s localization map for InceptionResNetV2 between
TensorFlow and CNTK with Keras 2.2.0. 26

3.5 Inconsistency-triggering inputs for the pooling bug (left column), the padding
bug (middle column), and the batch normalization bug (right column). Cor-
rect backends are bold. 30

3.6 Pooling scheme bug fix in pool2d in Theano backend. 31

3.7 Pooling scheme bug’s localization map for model InceptionV3 between Ten-
sorFlow and Theano with Keras 2.1.4 on the “groom” input image in Fig-
ure 3.5. 33

4.1 Overview of the experimental method . 44

4.2 Boxplots of the overall accuracy for default identical runs with the largest
overall accuracy difference . 50

4.3 Boxplots of the overall accuracy for fixed-seed identical runs with the largest
overall accuracy difference . 52

4.4 Boxplots of the overall accuracy of fixed-seed identical training runs with
different core libraries . 53

xiv

4.5 Boxplots of the overall accuracy difference of fixed-seed identical training
runs with 11 low-level library version combinations for each network . . . 54

4.6 Distribution of responses to Question 20 (Default identical runs) and Ques-
tion 26 (Fixed-seed identical runs) . 57

4.7 Estimation of overall and per-class accuracy difference across default and
fixed-seed identical training runs . 58

4.8 The overview of DEVIATE. 62

5.1 A demonstration on how N models can provide more information to select
useful additional sample when compare to a single model. Each square
shows the highest confidence level of the corresponding model’s prediction
for corresponding input. 66

5.2 The retraining process to improve a DL system with additional training data 71

5.3 The clustering of 50 sub-classes based on the holdout accuracy drop and
original holdout accuracy when they are used as 100% holdout sub-classes. 74

5.4 Box plot of AUC when using N models metrics to detect blindspot samples 76

5.5 Average AUC across all holdout classes in cluster C0 when using different
metrics . 77

5.6 The holdout test accuracy gain after retraining using SDev-Conf ranking
with different amounts of additional data in scenario with 100% holdout ratio 80

5.7 The non-holdout test accuracy gain after retraining using SDev-Conf ranking
with different amounts of additional data with 100% holdout ratio 81

5.8 The holdout test accuracy drop as the holdout ratio is increased 81

5.9 Original input images of a “ray” fish and the average and maximum differ-
ence GradCAM for 0% and 100% holdout ratio. 82

xv

List of Tables

3.1 Example of inconsistencies found using the Class-based metric. TF is Ten-
sorFlow and CN is CNTK. 24

3.2 Number of inconsistencies found by CRADLE. The numbers outside and
(inside) brackets are the unique and (total) number of inconsistencies re-
spectively. TF is TensorFlow, TH is Theano, and CN is CNTK. 29

3.3 Bugs found by CRADLE. ‘# Inc. bugs’ indicates the number of inconsis-
tency bugs per root inconsistency. 30

4.1 Datasets, networks, and training settings 47

4.2 Maximum differences of overall and per-class accuracy among default and
fixed-seed identical training runs . 49

4.3 Running time to convergence differences among default and fixed seed iden-
tical training runs . 55

5.1 Coarse-classes and corresponding sub-classes 72

5.2 Average holdout accuracy increase after retraining with 2% additional data
for scenarios with 100% holdout ratio . 78

xvi

Chapter 1

Introduction

For the last decade, Deep learning (DL) has emerged as a new effective machine learn-
ing approach that is capable of solving difficult challenges such as image processing [55],
speech recognition [105], and natural language processing [98,222]. Due to their increasing
effectiveness, DL approaches have been applied widely in many domains, including aircraft
collision avoidance systems [117], Alzheimer’s disease diagnosis [149], diabetic blood glu-
cose prediction [160], autonomous driving cars [43], romance storytelling [121, 122], and
software engineering [39, 44, 45, 102, 131, 189, 250, 255, 257] Bugs in such systems can cause
disastrous consequences, e.g., a software bug in Uber’s self-driving car DL system has
resulted in the death of a pedestrian [73].

Thesis statement: The work in this thesis aim to improve the reliability of
deep learning software systems implementations and applications for all stages of
development from the software engineering perspective.

Figure 1.1 shows the high-level view of DL system development which starts with
labeled data . This data is then used to train the DL model with some training methods.
Once the DL model is trained, it can be used to create predictions for some unlabeled
data in the inference stage. In this thesis, we present testing and analysis techniques
that help improve the DL system reliability for all stages: detecting bugs in the inference
stage, analyzing the variance of DL training, and detecting and mitigating weakspots in DL
training data.

In the first work, CRADLE, we improve the reliability of the DL system during inference
by applying differential testing to find bugs in DL libraries (Chapter 3). In an effort to apply
differential testing to the training process, our baseline analysis reveal a large variance in
the training process. This led to our second work, which is the first to study the variance of

1

Differential testing

Labeled data Training DL Model Inference Prediction

≠

Training variance

Diff

Run
Rerun

Fixed seed

Data blindspots

Figure 1.1: The overview of the three stages (labeled data, training, and inference) of deep
learning development and the contributions of the thesis on all three of these stages.

DL systems training and the awareness of this variance among researchers and practitioners
(Chapter 4). The insight from the variance analysis inspire our third work, in which we
propose a new procedure to detect weakspots in training data and to improve the DL
system with minimum labeling effort (Chapter 5).

The work in this thesis detects 12 bugs in popular DL libraries (TensorFlow, CNTK, and
Theano), raises awareness of large DL training variance caused by software implementation
alone, and improves model trained with data containing weakspots by up to 25.2% with
only 2% of additional data.

1.1 Differential Testing at the Inference Stage

In this work, we apply differential testing to find bugs in the inference code of DL libraries.
One key challenge of testing DL system is the difficulty to know the expected output given
an input instance. The multiple DL library implementations of the same functionality
provide us with a unique opportunity to apply differential testing to detect inconsistencies
and then find bugs in DL libraries.

To automatically detect and localize such inconsistencies across DL backends, we pro-
pose and implement a novel approach—CRADLE. Given a DL model and its input data,
CRADLE (1) uses two distance metrics to compare the output of a model on different
backends to detect inconsistent output, and (2) identifies the location of the inconsistency
by tracking the anomaly propagation through the execution graph. By identifying the
spike in the magnitude of the difference between two backends, CRADLE points out the

2

inconsistent functions in the backend that introduces the inconsistency, which should be
very useful for developers understand the bug and debug it.

Our results show that CRADLE detects 12 bugs (9 have been fixed by developers) in
DL software that cause inconsistencies for 28 out of 30 models, 3 of which are previously
unknown bugs, 2 of which have already been confirmed by developers. CRADLE highlights
functions relevant to the causes of inconsistencies for all 104 unique inconsistencies. CRA-
DLE’s median end-to-end running time is less than 5 minutes, suggesting that CRADLE
is practical.

Summary: This work supports the thesis by proposing a new differential testing
approach to detect and localize bugs in DL libraries. This technique detects 12
bugs in DL software that cause inconsistencies for 28 out of 30 models and highlights
functions relevant to the causes of inconsistencies for all 104 unique inconsistencies.

1.2 An Analysis of Variance of Deep Learning Soft-

ware Systems Training

In an attempt to apply differential testing to the training process of DL systems, we first
measure the variance of such a process as a baseline. The variance is much larger than
expected and our developer survey shows a lack of awareness of such variance among the
communities. Thus, this work performs an analysis of the training variance of DL systems
to raise awareness in the communities.

Specifically, DL training algorithms utilize nondeterminism to improve training effi-
ciency and model accuracy. These nondeterminism-introducing (NI)-factors cause multiple
identical training runs, i.e., training runs with the same settings (e.g., identical training
data, identical algorithm, and identical network), to produce different DL models with
significantly different accuracies and training times [120, 195, 221, 229]. One can eliminate
the variance introduced by algorithmic NI-factors using fixed random seeds.

However, in addition to these algorithmic NI-factors, DL libraries (e.g., TensorFlow [26]
and cuDNN [48]) introduce additional variance. For example, core DL libraries, by default,
leverage autotune to automatically benchmark several modes of operation (i.e., underlying
algorithms for computations such as addition) for each primitive cuDNN function (e.g.,
pooling and normalization) in its first call. The fastest mode of operation is then used for
that cuDNN function in subsequent calls. Different identical runs sometimes use different
modes of operation (due to different benchmark results), introducing variance. These

3

implementation-level NI-factors alone can cause an overall accuracy difference of up to
2.9%.

These implementation-level NI-factors and differences are often consequences of the DL
software implementations. DL researchers have paid little attention to implementation-
level NI-factors. Their focus is on theoretical analyses of DL training [51, 52, 68, 123, 142,
198].

To see whether such differences are known, we conduct a survey, which surprisingly
shows that 83.8% of the 901 responding researchers and practitioners with DL experience
are unaware of (63.4%) or unsure about (20.4%) any implementation-level variance! Of
the 901 respondents, only 10.4% expect 2% or more accuracy difference across fixed-seed
identical training runs. We also perform a literature survey of 454 papers randomly sampled
from recent top SE, AI, and systems conferences to understand the awareness and practices
of handling DL system variance in research papers. Of 225 papers that train and evaluate
DL systems, only 19% use multiple identical training runs to quantify the variance of their
DL approaches.

The analysis and surveys raise awareness of DL training variance to improve the repro-
ducibility of DL software and results. However, we also contribute by developing a tool
DEVIATE that (1) consistently measures variance with minimal user efforts, and (2) pro-
vides appropriate statistical tests. DEVIATE replicates multiple training runs with little
to no input from the users. DEVIATE automatically analyzes the DL system source code,
extracts important metrics (such as accuracy, loss...) that are monitored by the authors,
and stores those metrics in a consistent format. DEVIATE performs popular statistical
tests (such as confidence interval of standard deviation, MannWhitney U-test, and Cohen’s
d effect size) and provides users with a report of how well the proposed technique performs
in comparison to the selected baselines.

Summary: This work supports the thesis by performing the first study of the
variance of DL systems training caused by the implementation and the
awareness of this variance among researchers and practitioners. This study
shows that the implementation-level factors alone cause the accuracy difference across
identical training runs to be up to 2.9% and the survey shows that 83.8% of the 901
participants are unaware of or unsure about any implementation-level variance. The
publication of the study and surveys raises awareness of DL training variance while
the tool improves the reproducibility of DL software and results.

4

1.3 Mitigating Blindspot in Deep Learning Training

Data

Since DL is data-driven, it suffers similar problems to other data-driven machine learning
techniques. One such problem is that the training dataset is not representative of the real-
world application. In cases where the training data misses samples from the real world
distribution, it is said to contain blindspots. In practice, it is more likely a training dataset
contains weakspots (i.e., a weaker form of blindspots, where the training data contains
some samples that represent the real world but, not enough).

We propose a new procedure to detect weakspots in training data and improve the DL
system with minimum labeling effort. This procedure leverages the variance of the DL
training process to detect highly varying data samples that could indicate weakspots. This
procedure is not reliant on strategic dropout layers or specific neural network architecture
(e.g., convolutional neural network, recurrent neural network, reinforcement learning) [81],
and thus can be applied to any deep learning model as a black box method. Metrics that
measure such variance can also be used to rank new samples to prioritize the labeling of
additional training data that can improve the DL system accuracy when applied to the
real world. Our evaluation shows that, in scenarios where the weakspots are severe, our
procedure improves the model accuracy on weakspot samples by 25.2% requiring 2% of
additional training data. This is an improvement of 4.5 percentage points compared to
the traditional single model metric with the same amount of additional training data. Our
qualitative analysis shows that by inspecting the unseen samples with high uncertainty
across multiple models with the help of attention visualization methods such as Grad-
CAM [201], the developers could gather insights into why the model fails to generalize,
and how to improve the model.

Summary: This work supports the thesis by proposing a new procedure to detect
and mitigate blindspots in deep learning training data. This new procedure
improves the holdout test accuracy by up to 25.2% with only 2% added training
data. Our qualitative analysis shows that inspecting the unseen samples with high
uncertainty across multiple models could help developers to gather insights into why
the model fails to generalize and how to improve the model.

5

1.4 Publications

Earlier versions of the work presented in this thesis have been published in the following
papers (listed in chronological order). In these studies, I proposed novel ideas, collected
data, conducted experiments, analysed the results, and completed the manuscript.

• Hung Viet Pham, Thibaud Lutellier, Weizhen Qi, Lin Tan, CRADLE: Cross-Backend
Validation to Detect and Localize Bugs in Deep Learning Libraries, Proceeding of The
41st ACM/IEEE International Conference on Software Engineering, 2019 [182].

• Hung Viet Pham, Shangshu Qian, Jiannan Wang, Thibaud Lutellier, Jonathan Rosen-
thal, Lin Tan, Yaoliang Yu, Nachiappan Nagappan, Problems and opportunities in
training deep learning software systems: an analysis of variance, Proceeding of The
35th IEEE/ACM International Conference on Automated Software Engineering, 2020
(ACM SIGSOFT Distinguished Paper Award) [183].

• Hung Viet Pham, Mijung Kim, Lin Tan, Yaoliang Yu, and Nachiappan Nagappan,
DEVIATE: A Deep Learning Variance Testing Framework, Proceeding of The 36th
IEEE/ACM International Conference on Automated Software Engineering, 2021 [181].

The following papers (listed in chronological order) were published as the follow up work
to the above mentioned publications. These studies explore other software engineering
approach or aspect to improve the reliability of DL software systems. As a coauthor I gave
feedback at each step of the research process and helped implementing the experiments
and revising the manuscripts.

• Jiannan Wang, Thibaud Lutellier, Shangshu Qian, Hung Viet Pham, and Lin Tan,
EAGLE: Creating Equivalent Graphs to Test Deep Learning Libraries, Proceeding of
The 44th ACM/IEEE International Conference on Software Engineering, 2022 [236].

• Shangshu Qian, Hung Viet Pham, Thibaud Lutellier, Zeou Hu, Jungwon Kim,
Lin Tan, Yaoliang Yu, Jiahao Chen, and Sameena Shah, Are My Deep Learning
Systems Fair? An Empirical Study of Fixed-Seed Training, Proceeding of The 35th
Conference on Neural Information Processing Systems, 2021 [186].

The following papers (listed in chronological order) were published in parallel to the
above mentioned publications. These studies are not directly related to this thesis, but
explore the usages of machine learning to improve the reliability of DL and general software.

6

• Danning Xie, Yitong Li, Mijung Kim, Hung Viet Pham, Lin Tan, Xiangyu Zhang,
Michael W. Godfrey, DocTer: Documentation-Guided Fuzzing for Testing Deep Learn-
ing API Functions, Proceeding of The ACM SIGSOFT International Symposium on
Software Testing and Analysis, 2022 [240].

• Thibaud Lutellier, Hung Viet Pham, Lawrence Pang, Yitong Li, Moshi Wei, and
Lin Tan, CoCoNuT: Combining Context-Aware Neural Translation Models Using En-
semble for Program Repair, Proceeding of The ACM SIGSOFT International Sym-
posium on Software Testing and Analysis, 2020 [150].

7

Chapter 2

Related Work

2.1 Machine Learning and Deep Learning System Test-

ing and Debugging

2.1.1 Testing Machine Learning (ML) Libraries

Recently, automatic testing of ML libraries is an active area of research [70, 72, 218].
Srisakaokul et al. [218] detect inconsistencies between multiple implementations of com-
mon ML algorithms (i.e., kNN or Naive Bayes (NB)). This approach uses majority votes
to estimate the expected output. However, it requires many implementations of the same
algorithm (19 kNNs and 7 NBs used) with the assumption that most of them are correctly
implemented. In contrast, CRADLE performs pairwise comparisons, which as shown by
our experiments, detects inconsistencies without knowing the expected output and works
with a minimum of two implementations. Another major difference is that Srisakaokul et
al. define deviation based on the inconsistency of top-1 classifications without comparing
them to the ground truth. CRADLE, on the other hand, define inconsistency as deviations
in predicted ranks of the ground-truth label because we want to focus on inconsistent im-
plementations that affect the performance of DL models on real world validation dataset.
Dwarakanath et al. [72] test ML libraries by applying transformations on the training and
testing data to detect inconsistencies. However, they were only able to identify artificially
injected bugs. Dutta et al. [70] used fuzzing to test probabilistic programming systems.
None of these techniques performs error localization.

8

2.1.2 Benchmarking DL Libraries

Liu et al. [147] observe that the same DL algorithm with identical configurations, such as
training set and learning rate, produce different execution time and accuracy when trained
with different low-level DL libraries. However, that work aims to benchmark DL libraries,
not to detect or localize inconsistency bugs, as it does not compare the exact same model on
different backends. Since each model is re-trained on each backend and the training process
contains non-determinism (e.g., the seed for the optimization function), small accuracy
differences are expected. DL libraries have been compared in the literature [58, 71, 207,
208, 211]. However, the prior work focuses on performance comparison only and does not
detect or localize non-performance bugs in DL libraries.

2.1.3 Adversarial Testing of DL Models

Much recent work focuses on testing DL models [84,109,118,129,151,167,168,174,179,225,
231, 239]. Many techniques generate adversarial examples [129, 167, 168, 174, 225]. Some
work [109, 118, 239] verifies DL software. DeepXplore [179] introduces neuron coverage to
measure testing coverage in CNN models. These approaches are orthogonal to our work as
they test the correctness of DL models, while we test the correctness of the implementations
of models in the DL software libraries.

2.1.4 Differential Testing and Inconsistency Detection

Differential testing [158] consists of testing whether different compilers produce the same
results. Much work uses differential testing to find bugs in compilers by comparing the
output of multiple compilers [210, 244, 245] or different compiler optimization levels [134,
244]. Inconsistency detection has been used in other domains such as cross-platform [77,
115], web browsers [53,190–192] or document readers [128]. Our work is a new application
of differential testing and inconsistency detection for DL software, which has its unique
challenges such as identifying bug-triggering inconsistencies (Section 3.3.1). In addition,
we localize the inconsistencies to the faulty functions.

2.1.5 Debugging and Fault Localization

We are not aware of prior work that localizes inconsistency bugs in DL libraries, despite the
large volume of debugging and fault localization work for general software bugs [107, 114,

9

161, 162, 166, 173, 178, 248]. While these approaches could be used to debug DL networks,
applying such techniques to localize faulty functions in DL networks may have unique
challenges such as scalability, and hence may remain as future work.

2.2 Variance of Deep Learning Training Process

2.2.1 Variance Study of Reinforcement Learning (RL)

Closest to our study of DL training variance is the study [165] that measures the impact
of some implementation-level NI-factors on RL experiments. We study the general DL
variance, while they focus on RL variance only. In addition, we measure the awareness by
conducting a survey and a literature review. Furthermore, while they focus on one network
for one task (i.e., playing the Atari game Breakout) and one version of one core library
(PyTorch), we study the impact of nondeterminism-introducing factors(NI-factors) using 6
networks trained on 3 datasets and multiple versions of three core libraries. Papers [57,103]
that investigates the impact of random seeds on RL are different from ours, since they only
consider the impact of random seeds (i.e., algorithmic NI-factors), while we also study the
variance caused by implementation-level NI-factors.

2.2.2 Awareness of The Impact of Nondeterminism

A recent literature survey [171] on 30 papers on the topic of text mining confirms the
results of our literature survey. None of the 30 investigated papers report using different
random seeds. Our literature survey investigates DL training in general (not just text
mining papers) and examines 225 papers. Furthermore, our overall contribution is different
since we also quantify the differences in training accuracy and time across identical training
runs. Another paper [164] states that small changes in the experimental setup can generate
measurement bias. It focuses on standard CPU computation benchmark [59] and does not
study the nonderterminism of DL systems.

2.2.3 Anecdotal Evidence of NI-factors

Some studies [124,155,159,234] quantify the variance in their results caused by NI-factors.
However, these only provide anecdotal evidence and none attempt to systematically study
the variance introduced by algorithmic and implementation-level NI-factors. In addition,
our surveys show that awareness is still very low in the research community.

10

2.2.4 Nondeterminism in Stochastic Gradient Descent (SGD)

Much work investigates variance caused by SGD [51, 61, 68, 123, 142]. While these papers
quantify nondeterminism caused by SGD, they ignore all other sources of nondeterminism
described in Section 4.2.

2.2.5 Impact of Weight Initialization

Prior work [120, 195, 221, 229] measures the impact of different initial weights on models’
training time. While such an issue is known, implementation-level NI-factors have not
been studied and our surveys show that they are often not considered when evaluating DL
systems.

2.2.6 Controlling Implementation-Level Nondeterminism

Jooybar et al. [116] propose a hardware mechanism to introduce determinism in GPU-
based algorithms. In our work, we do not focus on the hardware itself and measure the
variance caused by NI-factors using popular GPUs without special hardware modifications.

2.2.7 Deep Learning System Benchmarking

Much work focuses on benchmarking DL systems. However, their target is finding the best
networks [58,185,259], hardware [207,259], hyper-parameters [147], and framework [96,125,
147, 208, 212, 259]. Such approaches do not consider the impact of NI-factors on multiple
identical training runs.

2.3 Blindspots in Machine Learning Training Data

2.3.1 Blindspots of Machine Learning Systems

Machine learning systems’ blindspots are caused by the dataset shift [112,187]. Approaches
have been proposed to discover dataset shift, including using guided exploration with
feedback from an oracle [132], or harnessing human input [33]. However, these approaches
all work with a single model which have the problem of unreliable uncertainty measure.

11

There has been other approaches that address the dataset shift, including weighting
of training instances [213], online learning of prediction models [41], and learning models
robust to adversarial actions [62, 94, 228]. These approaches either assume some access to
the model, availability of original data, or the model can be adaptively retrained.

2.3.2 Out-of-distribution detection

Out-of-distribution (OOD) detection is an active area of research that focuses on exploring
techniques that can detect OOD test samples that were not seen during training. Specifi-
cally, there are two distribution shift settings that OOD literature focuses on the covariate
shift and semantic shift [242].

At a high level, our N-model metrics are designed to detect OOD samples affected by
covariate shifts. Prior work in the sensory anomaly detection category [29, 32, 36, 54, 67,
113, 170, 176, 184, 238, 243] is designed to detect covariate shifts. However, since our N-
model metrics target the specific subpopulation shift, it differs from prior sensory anomaly
detection work which detects perturbations and small defects in adversarial defense [196],
forgery recognition of biometrics and artworks [170,176,184,238], image forensics [67,113,
243], and industrial inspection [32,36,54].

Outlier detection [28,35,106] can also detect covariate shifts. But, in contrast with our
N-model work—whose in-distribution is defined using the training data, outlier detection
requires all observations and defines “in-distribution”as the majority of those observations.
This requirement cannot be met in our open world setting where it is not possible to obtain
all observations.

Much prior work such as semantic anomaly detection [64, 110, 143], novelty detec-
tion [156, 157, 172, 193], open set recognition [63, 76, 148, 199, 217, 241], and OOD detec-
tion [85,104,108] focuses on semantic shift detection, where the OOD datasets (i.e., OOD
test samples) in their benchmark do not have label overlapping with the ID dataset (i.e.,
training samples). This problem setting differs from our subpopulation shift setting where
the test data contains the same set of labels as the training data.

2.3.3 Active Learning

Active learning research has proposed various approaches for selectively learning about
known unknowns during training (e.g., uncertainty sampling [141,204], query by commit-
tee [206], expected model change [205], expected error reduction [261], expected variance

12

reduction [253]) However, traditional active learning approaches depend on using a single
model uncertainty measurement which could be unreliable.

Recently Deep Active Learning has been proposed to select known unknowns during
training. However they are also leverage a single model approach [31,101,169,188]. Gal et
al [81] propose an estimation approach using dropout layers and Monte Carlo sampling to
estimate the uncertainty information of Bayesian convolutional neural networks (Bayesian
CNN). However this technique is limited to the use of dropout layers placed at strategic
locations, which could reduce test accuracy when applied to some network architectures.

13

Chapter 3

CRADLE: Cross-Backend Validation
to Detect and Localize Bugs in Deep
Learning Libraries

3.1 Motivation

Deep learning (DL) is widely used in many domains, including aircraft collision avoidance
systems [117], Alzheimer’s disease diagnosis [149], autonomous driving cars [43], and ro-
mance storytelling [121, 122]. Bugs in such systems can cause disastrous consequences,
e.g., a software bug in Uber’s self-driving car DL system has resulted in the death of a
pedestrian [73].

Users of DL systems have a diverse range of background, including people with little
technical backgrounds, e.g., singers/songwriters have used DL to compose music [8]. The
pervasive use of DL systems requires them to be highly reliable.

Unfortunately, DL algorithms are complex to understand and use. Average users do not
know all the details of DL algorithms. High-level DL Application Programming Interfaces
(APIs) have been developed to enable users to build DL systems without knowledge of the
inner working of neural networks. These high-level APIs rely on lower-level libraries that
implement DL algorithms.

Figure 3.1 presents the structure of typical DL libraries. Developers write code using
high-level library APIs (e.g., Keras [49] API). These APIs invoke low-level libraries that
implement specific DL algorithms. Low-level libraries such as TensorFlow (Google) [26],

14

High-level
Libraries

Hardware

Low-level
Libraries TensorFlow Theano CNTK

CPU GPU

Keras

User code

Interface

Backend ...

Figure 3.1: Overview of DL libraries.

Theano [37], and CNTK (Microsoft) [200], implement the same algorithms, e.g., convo-
lutional neural network (CNN) and recurrent neural network (RNN). Low-level libraries
use different input formats and provide different APIs, while a high-level library allows
users to seamlessly switch among different low-level libraries. The components that invoke
low-level libraries are referred to as the interfaces between the high-level libraries and the
low-level libraries. Each interface and low-level library, referred to as a backend, provides
an implementation of DL algorithms. The backend trains and tests DL models. A DL
model contains a DL network and parameters (also known as weights).

Keras [49] is the most popular high-level library for deep learning [10]. Keras has
been used to implement neural networks in critical domains, including aircraft collision
avoidance systems [117], inflammatory bowel disease diagnosis [79], chemical reaction pre-
dictions [130], medical imaging [42, 230], air quality control [80] and computer network
security [65].

Like any software, DL backends and high-level libraries contain bugs, which are par-
ticularly challenging to find and fix [147, 179]. One key challenge is that it is difficult for
developers to know the expected output given an input instance. DL backends implement
DL models that use complex networks and mathematical formula. Thus, it is hard for hu-
mans to produce the expected output of a DL backend given an arbitrary input instance, if
possible at all. For example, given an input image of digit ‘1’ (ground truth ‘1’), and a digit
classification model, the expected output of that model on that image is not necessarily
‘1’, as it is common for a model to misclassify due to its limitations (100% classification
accuracy is rarely achieved). Existing DL testing work [129,167,168,174,179,225] focuses
on generating input instances that make the ground truth and the model output disagree
so that DL users and builders can improve the model.

Models must be implemented by backend libraries. If the backend libraries fail to faith-

15

(a) Input image “Petri dish”

steel drum
plate rack
spotlight

face powder
petri dish

Backend: TensorFlow

0.0 confidence 0.6
steel drum
wall clock

barometer
spotlight

analog clock
Backend: CNTK

(b) Top-5 InceptionResNetV2

- return (x-mean)/(C.sqrt(var)+epsilon)*

gamma+beta

+ return (x-mean)/ C.sqrt(var +epsilon)*

gamma+beta

(c) Bug fix in batch normalization in the CNTK backend.

Figure 3.2: A bug found by CRADLE in the CNTK backend, which has been fixed after
we reported it.

fully implement a model (e.g., due to a bug in the backend), the output from the backend
can be wrong even if the model is correct, and vice versa. An incorrectly-implemented
DL backend may cause the aforementioned digit classification model to output ‘9’ for the
same image of ‘1’, even if the expected output of the DL model is ‘7’. Alternatively, the
DL backend may output ‘1’ accidentally matching the ground truth. The wrong outputs
could mislead DL users and builders in their debugging and fixing process. The output
masks the implementation bug, which makes it challenging to be detected.

There has been little attention to testing the correctness of the models’ implementations.
Instead many techniques [129, 167, 168, 174, 179, 225] test the correctness of the models
assuming that the backend implementation is correct. Both the model and the backend
implementation need to be correct for DL algorithms to produce a correct output. The
critically important task of testing DL backend implementation is challenging since the
expected output of the backend is hard to obtain.

The multiple implementations (i.e., the DL backends) of the same functionality (i.e.,
the same DL algorithm) provide us a unique opportunity to detect inconsistencies among
these implementations to find bugs in DL backend libraries. For example, if the same CNN
model—which is the same CNN network with identical weights—behaves differently when
running on the two CNN implementations (e.g., TensorFlow and CNTK), one of the CNN
implementations is likely to be incorrect, without knowing the expected output.

Figure 3.2 shows a bug that causes two backends to be inconsistent. The input image
(Figure 3.2a) is manually labeled as a petri dish (the ground truth) in ImageNet (a popular
dataset of manually labeled images) [194]. Figure 3.2b shows the classification results of this
image by the pre-trained model, InceptionResNetV2 [223], on Keras 2.2.0 with TensorFlow
and CNTK backends respectively. While the model with TensorFlow backend classifies the

16

image as a petri dish correctly as its first choice, the same model with CNTK classifies the
image as an analog clock, with petri dish not in the top-5.

Once an inconsistency is detected, a big challenge is to identify the faulty functions
among the many functions in the DL backend libraries. For example, one run that ex-
poses the inconsistency bug in Figure 3.2 contains 781 invocations of backend functions.
Following the complex invocation path of the InceptionResNetV2 model, it is difficult for
developers to tease out that the batch normalization function is faulty.

To automatically detect and localize such inconsistencies across DL backends, we pro-
pose and implement a novel approach—CRADLE. Given a DL model and its input data,
CRADLE (1) uses two distance metrics to compare the output of a model on different
backends to detect inconsistent output, and (2) identifies the location of the inconsistency
by tracking the anomaly propagation through the execution graph. By identifying the
spike in the magnitude of the difference between two backends, CRADLE points out the
inconsistent functions in the backend that introduce the inconsistency, which should be
very useful for developers to debug and understand the bug.

Including the example in Figure 3.2, CRADLE identifies 580 images (out of a 5,000 ran-
dom sample from ImageNet) that trigger inconsistent classifications for InceptionResNetV2
model. CRADLE then successfully localizes the faulty function (batch normalization).
After we reported this bug in the interface, developers have fixed the bug since Keras
2.2.1. Figure 3.2c shows the fix. The batch normalization formula was implemented incor-
rectly in CNTK backend’s function batch normalization: it should take the square root
of (var + epsilon) instead of the square root of var.

To evaluate the effectiveness of CRADLE, we answer the following research questions:

• RQ1: Can CRADLE detect bugs and inconsistencies in deep learning backends?

• RQ2: Can CRADLE localize the source of inconsistencies?

• RQ3: What is CRADLE’s detection and localization time?

In this chapter work, we make the following contributions:

• A new approach to test DL software by cross-checking multiple implementations of the
same model to detect inconsistencies and bugs;

• The first approach to localize the faulty function of a cross-model inconsistency, using
anomaly propagation tracking and analysis; and

• An evaluation of the testing and localization technique on 30 DL models, 11 datasets
(including ImageNet, MNIST, Udacity challenge 2, and KGS Go game), and 15 Keras
versions (including the latest version).

17

Our results show that CRADLE detects 12 bugs (9 have been fixed by developers) in
DL software that cause inconsistencies for 28 out of 30 models, 3 of which are previously
unknown bugs, 2 of which have already been confirmed by developers (RQ1). CRADLE
highlights functions relevant to the causes of inconsistencies for all 104 unique inconsisten-
cies (RQ2). CRADLE’s median end-to-end running time is less than 5 minutes, suggesting
that CRADLE is practical (RQ3).

3.2 Background

A DL network is a structure (i.e., a graph) that contains nodes or layers that are stacked to
perform a specific task (e.g., regression or classification). Each layer represents a specific
low-level transformation (e.g., convolution, pooling, etc.) of the input data with specific
parameters (e.g., weights).

Each layer maps to a function invocation that converts weight and the input data
to output. While multiple layers in a network can have the same type, the operation
performed is generally different because the parameters of these layers are different. In
a traditional program, this is analogous to the same methods/functions, defined in one
specific place in the source code, are called many times with different input parameters.
Similarly, in a DL network, the same layer type can be called several times (i.e., in multiple
layers) with different input parameters (i.e., weights). Given one input instance, a model
maps to an execution graph of those low-level functions (i.e., layers).

As a DL network generally consists of more than two layers, there are many intermediate
layers. Each intermediate layer produces an internal state that is fed to the next layers.
We call such states hidden states because they are internal: normal users have no access
to them.

To obtain the correct weights for each layer, the network needs to be trained on a
training set. We call this phase the training phase. Once the training phase is over, the
weights (or parameters) of each layer are fixed and do not change, and the model can be
used in the inference phase. A validation set is a set of input, different from the training
set, that is used to tune a model. In this work, we use it as input to the models because
we know the ground-truth labels of such input.

A pre-trained model is a network that had been trained (and saved) in prior work. Its
network structure and weights are fixed and do not change. In the context of this work,
a trained model also refers to a pre-trained model. While the training phase is often non-
deterministic (e.g., the weights of the network can be initialized randomly), a pre-trained

18

Localization phase
Detection phase

Output extractor

Crashes

Bugs

Model output
Backend pairs
Inconsistent

models

Trained models
Validation data

Hidden states
extractor

Hidden states

Inconsistency
localizer

Localization
maps

Output
comparator

Figure 3.3: Overview of CRADLE. Red boxes indicate CRADLE outputs.

model is expected to behave deterministically in the inference phase because the weights
of each layer do not change.

3.3 Approach

In this section, we describe how CRADLE detects and localizes inconsistencies among mul-
tiple backends. Recall that a backend consists of low-level libraries and the interface to
high-level libraries (e.g., Keras). For example, the TensorFlow backend contains the Ten-
sorFlow library, the interface between Keras and TensorFlow, and the GPU computation
library Nvidia CUDA invoked by TensorFlow.

3.3.1 Overview and Challenges

Figure 3.3 shows the two phases of CRADLE: the detection phase and the localization
phase. The detection phase takes pre-trained DL models and their corresponding validation
data as input. We focus only on the inference stage because of the non-deterministic nature
of DL training.

CRADLE runs a pre-trained model using multiple DL backends. Specifically, the Out-
put extractor feeds the validation set to the trained model as input and extracts the sets
of output from the model on multiple backends. In general, we represent the output as
a matrix of numbers. If a DL backend crashes during this extraction stage, the failure
is recorded and later reviewed and reported. Otherwise, the Output comparator performs
pairwise comparisons of the output for each model evaluated on different backends to detect
inconsistencies.

Once an inconsistency is detected, CRADLE performs the localization phase. Specif-
ically, the Hidden states extractor records hidden states of each inconsistent model on

19

different backends. These hidden states are fed to the Inconsistency localizer, which pro-
duces localization maps where significant spikes in deviations propagating between hidden
states on different backends are highlighted, indicating faulty locations.

To detect and localize cross-backend inconsistencies and bugs effectively, we need to
address two main challenges:

1. How to determine if a model’s outputs with two backends are inconsistent?
Since different backends optimize the computational process differently, the results of the
same calculation are almost always slightly different [88]. A naive approach that expects the
output to be identical will detect inconsistencies for practically all models on all backends,
which will not be useful for identifying bugs in DL systems. As shown by our experiment,
Theano and CNTK backends always output slightly different values (the differences vary
from 10−5 to less than 10−10).

It is difficult to know how big of a difference indicates a bug-revealing inconsistency,
due to the diversity of models, DL tasks, and datasets. It is not possible to have a single
threshold to distinguish between bug-revealing inconsistencies and uninteresting inconsis-
tencies for all models and datasets. For example, LeNet1, a model performing a simple
image classification task has an average top-1 confidence level of 95%. This means that for
this model, a small variation (e.g., a change in confidence level from 95% to 80%) is unlikely
to make the label change. On the other hand, Betago is a model performing a complex
task (i.e., playing Go). For this model, the average top-1 confidence level is only 60%. In
this case, the same output variation (from 60% to 45%) might change the predicted label.
Therefore, different models need different thresholds. Determining the correct threshold is
a challenging problem as it depends on many parameters (e.g., dataset, model structure,
training, etc.).

To address this challenge of identifying bug-revealing inconsistencies without the need
for complex hard-coded heuristics, we use two distance metrics (refer to later sections
for details) that emphasize the deviation between the output of both backends and the
ground truth. These metrics effectively differentiate bug-revealing inconsistent runs from
consistent runs and uninteresting inconsistent runs.

For these metrics, we compare the differences of outputs against the ground-truth
instead of comparing individual outputs directly to the expected output. Recall that it
is difficult to obtain the expected output as explained in the Introduction. We cannot
directly compare the output of one backend to the ground truth to detect bugs because
when one backend produces a wrong label it does not necessarily indicate a bug in the
backend, as it is common for DL models to produce incorrect labels for some inputs (e.g.,
due to the limitation of the algorithm/model, not a bug in the implementation).

20

2. How to precisely localize the source of an inconsistency? After an inconsis-
tency is detected, the internal source of the inconsistency is often challenging to localize,
due to the complexity of DL backends. For example, one run that exposes the inconsis-
tency bug in Figure 3.2 contains 781 invocations of backend functions that have complex
mathematical connections. We propose a novel localization and visualization method that
localizes faulty functions in the backend library which introduces inconsistencies by ana-
lyzing internal input and output of these backend functions and localizing the error spikes
that propagate through the execution graph.

3.3.2 Detection Phase

In the detection phase, CRADLE identifies pairs of backends that are inconsistent for a
specific model.

Output extractor takes as input a pre-trained model and its corresponding validation
instances. It loads the provided weights (no training required) and performs classification or
regression tasks using the loaded models. It produces the model output using all backends
under test for each input instance. For example, comparing 5,000 validation instances
and one associated model on 3 different backends will generate 15,000 output vectors.
During this phase, CRADLE detects crashes on specific backends and we report them to
developers.

Output comparator loads previously stored output matrices and performs pair-wise
comparisons for each given validation instance to detect inconsistencies. These pair-wise
comparisons are between a specific pair of backends using a particular model, its associated
validation data, and a particular Keras version. The Output comparator then groups incon-
sistencies into unique inconsistencies. We use two metrics to compare a pair of backends—
the Class-based distance for classification and the MAD-based distance for regression.

A straightforward metric to use is top-k accuracy on the entire validation set. Top-k
accuracy calculates the portion of correct instances—an instance’s ground-truth label is
within the top-k predicted labels—among the total number of instances classified. Top-k
accuracy could fail to identify certain inconsistencies. For example, the Dog species classi-
fication model, affected by the presented Batch Normalization bug, induces inconsistency
between Tensorflow and CNTK. However, when run on those backends, the model has
identical top-1 (29.9%) and top-5 (64.4%) accuracies.

To overcome this problem, we calculate the proportion of inconsistent input instances
over the validation set. Because of the way inconsistent input instances are detected, we will

21

not aggregate inconsistencies in the same way as top-k accuracy metric. In the following
sections, we introduce Class-based and MAD-based distances as the ways to measure the
severity of inconsistent instances. Once we have the severities of all validation instances
between a pair of backends, we can apply two thresholds to see if that pair of backends is
inconsistent.

Class-based distance is specific to classification models. It calculates the distance
between two classifications based on the relative distances of the ground-truth label ranks
in the output matrices. Here, we leverage the mapping between the syntax of the model
output (the output vector) and its semantic meaning (the classification). Without this
mapping, it would be difficult to come up with a universal metric and threshold that could
work across different model configurations (e.g., the output vector size of a classifier can
vary from 1000 for ImageNet models to 1 for binary classifiers).

A classification model with N classes outputs a vector of size N containing confidence
level pi corresponding to class Ci, where 0 < i ≤ N . Confidence level pi shows how
confident the model is in predicting class Ci as the correct label for that input instance.
Given an output vector of a classification model as Y and the ground-truth label C of the
input, we calculate the score of classification σC,Y as:

σC,Y =

{
2k−rankC,Y if rankC,Y ≤ k

0 otherwise
(3.1)

rankC,Y is the rank of the ground-truth label C in the classification Y . For example
rankC,Y = 1 if C is predicted as top-1 in classification Y . The score σC,Y emphasizes
on classifications that predict ground-truth label with higher rank. We consider rankC,Y

larger than k(i.e., ground-truth label C not in top-k) not interesting and give it zero score.

Given the confidence level output of the same model on a different backend as Y ′, the
Class-based distance D CLASSC,Y,Y ′ is calculated as the absolute difference between two
scores σC,Y and σC,Y ′ :

D CLASSC,Y,Y ′ = |σC,Y − σC,Y ′| (3.2)

We define our Class-based metric based on the top-k rankings with k = 5. For example,
in Figure 3.2, σpetridish,YTF

= 25−1 = 16 as the rank of petri dish label by the TensorFlow
backend rankpetridish,YTF

is 1. Similarly, σpetridish,YCN
= 0 because petri dish is not in

CNTK’s top-5 for that image. Then the Class-based distance D CLASSpetridish,YTF ,YCN
is

16. If another backend generates the ground-truth label in rank 3, then its σpetridish,Y is
4, and D CLASSpetridish,YTF ,Y is 12. The maximum value of D CLASSC,Y,Y ′ is 16, and the
minimum is 0 with k = 5.

22

Mean absolute deviation (MAD)-based distance is a metric that could be used
for both classification and regression models. However, the main purpose of the MAD-based
distance is detecting inconsistencies in regression models where our Class-based distance
would not work.

Given two predicted vectors Y and Y ′ of size N for a pair of backends using a model
and an input instance, we first calculate the Mean Absolute Distance (MAD), δO,Y and
δO,Y ′ , between the two output vectors and the ground-truth vector O. δO,Y is calculated
as followed:

δO,Y =
1

N

∑N

i=1
|Yi −Oi| (3.3)

The MAD-based distance D MADO,Y,Y ′ is calculated as:

D MADO,Y,Y ′ =
|δO,Y − δO,Y ′ |
δO,Y + δO,Y ′

(3.4)

MAD is used here (instead of the more common Euclidean distance) because it does not
inflate due to outliers.

For example, Dave-2 [47] is a model that outputs the steering angle (measured in radian)
of a car given a dashboard camera image as input. For a given input image I, the recorded
(ground-truth) steering angle is O = 0.0. Using the same image as input, Dave-2 outputs
Y = 0.4 and Y ′ = −0.1 using two different backends. We have δOY, = |0.4− 0.0| = 0.4 and
δO,Y = |− 0.1− 0.0| = 0.1. We can then calculate D MADO,Y,Y ′ as |0.4− 0.1|/(0.4 + 0.1) =
0.6. The MAD-based metric produces values between 0 and 1.

Before we can use this metric with classification models, we first need to convert the
ground-truth labels to one-hot vectors. In multi-class classification, a one-hot vector is
a vector of all zero except the value at the ground-truth label index is 1. This vector
indicates a perfect classification with 100% confidence in the ground-truth label.

Identifying Inconsistencies: Given a model (and its validation set), two backends,
and one version of Keras, we consider this pair of backends inconsistent if at least p% of
validation input instances cause the distance between those two sets of output to be larger
than a given threshold T (TC denotes the threshold for the Class-based metric and TM for
MAD-based metric). We call such input instances inconsistency-triggering.

For Class-based metric with k = 5, using threshold TC = 16 is the most strict. This
means that an input instance is considered inconsistency-triggering if one backend ranks
the ground-truth label top-1, while the other ranks it outside of the top-5. Using threshold
TC = 1 means that an input instance is inconsistency-triggering if there is any difference

23

Table 3.1: Example of inconsistencies found using the Class-based metric. TF is Tensor-
Flow and CN is CNTK.

Inconsistency pattern

Id Keras Backends Model 16 15-8 7-4 3-2 1 0

1 2.2.2 TF-CN Xception 10 202 147 100 85 4456
2 2.2.2 TF-CN NASNetLarge 5 132 86 77 65 4635
3 2.2.1 TF-CN Xception 10 202 147 100 85 4456
4 2.2.1 TF-CN NASNetLarge 5 132 86 77 65 4635

in the top-5 labels of the two backends and the ground-truth label is in the top-5 of at
least one backend (e.g., if one backend ranks the ground truth label in the top-5, while
the other backend ranks it outside of the top-5). In Figure 3.2, the petri dish image is an
inconsistency-triggering input instance.

Similarly, for MAD-based metric, using TM = 1 is the most strict. For example, with
the Dave-2 model, an input image is inconsistency-triggering with TM = 1 if it causes one
backend to predict an angle matching the recorded angle exactly, while causing the other
to predict a different angle. On the other hand, using TM = 0 means that we consider any
input image inconsistency-triggering.

The stricter the thresholds are the fewer inconsistencies wil be detected. However, the
detected inconsistencies will be more severe (higher TC or TM means each inconsistency-
triggering instance is more severe, while higher p means more output instances are incon-
sistent). If covering all inconsistencies is the priority, lower and more relaxed thresholds
should be used (e.g., the recommended thresholds in Section 3.4). However, if finding
severe bugs that significantly affect models’ accuracies is the priority, then stricter settings
would ensure that those severe bugs will be found given less inspection effort.

Identifying Unique Inconsistencies: Table 3.1 shows four examples of inconsis-
tencies. These inconsistencies are identified using the Class-based metric. Column ‘7–4’ is
the number of validation input instances that cause the two backends to have Class-based
distances of 7, 6, 5, or 4. Inconsistency in row one (inconsistency 1) indicates that the
model Xception is inconsistent between TensorFlow and CNTK (Keras 2.2.2) on its asso-
ciated ImageNet validation set where 10 input instances trigger a Class-based distance of
16, 202 instances trigger distances in the range of 15–8, etc.

The same inconsistencies may exist in different Keras versions (different interface ver-
sions in the backend). To avoid finding duplicate inconsistencies, the output comparator
also automatically groups certain inconsistencies together into unique inconsistencies based
on inconsistency patterns.

24

An inconsistency pattern is the distribution of the distances over the entire validation
data. It expresses the characteristics of the inconsistencies. Table 3.1 shows two unique
inconsistency patterns: pattern 1 (for inconsistencies 1 and 3) and pattern 2 (for inconsis-
tencies 2 and 4).

Since the range of MAD-based metric is between 0 and 1, we choose 5 equal sized bins
between 0 and 1 to calculate the inconsistency patterns. Similar to Class-based metric,
the number in bin 0.6-0.8 is the number of input instances that trigger the MAD-based
distance 0.6 ≤ D MAD < 0.8 for each pairwise comparison.

3.3.3 Localization Phase:

Given each unique inconsistency, the Hidden states extractor and the Inconsistency localizer
produce a localization map. A localization map is an execution deviation graph of two
implementations (backends), which highlights inconsistent executions (hidden states) of a
function (layer type), pointing to potential faulty functions in one of the backends.

Recall that an execution of a model produces one execution graph (Section 3.2). Each
execution graph contains connected layers, where the output of one layer is the input of
subsequent layers. Given a model and an input instance, there is one execution graph for
each implementation of libraries. An execution deviation graph is a graph that represents
the differences between two execution graphs of the same model. Since both execution
graphs are from executions of the same model, they have the same structure i.e., the
network structure. Thus, the execution deviation graph also has that same structure
but contains the deviation between each pair of layer type executions. We describe the
deviation calculation below.

For each unique inconsistency, we only perform localization on the most inconsistent
input instance. The most inconsistent input instance triggers the largest Class-based dis-
tance (classification tasks) or MAD-based distance (regression tasks) between the output
of two backends.

Hidden states extractor produces execution graphs in a similar way to the Output
extractor described previously. Both execute the model on validation input instances to
extract output. However, the latter also retrieves the intermediate function output (hidden
state) of each hidden layer (internal execution) in the model. Hidden states are presented
as vectors of floating point numbers.

Inconsistency localizer produces a localization map for each unique inconsistency by first
extracting the execution deviation graphs. It does this by calculating the mean absolute

25

BatchNorm
ქ = 0.0002
R = 2048.6

Conv2D
ქ = 0.0
R = 0.0

Activation
ქ < 0.0001
R =-0.5497

Conv2D
ქ = 0.0003
R = 2.3009

GloAvgPool
ქ = 0.0860
R =-0.4191

772
layers
omitted

Activation
ქ = 0.1480
R =-0.5173

Dense
ქ = 0.0004
R =-0.9950

TensorFlow: jean
CNTK: mailbag

Input: jean

Conv2D
ქ = 0.0138
R = 0.5530

BatchNorm
ქ = 0.3067
R = 21.186

Figure 3.4: Batch normalization bug’s localization map for InceptionResNetV2 between
TensorFlow and CNTK with Keras 2.2.0.

deviation (MAD) between each pair of corresponding hidden state from two executions
of the same layer type on two different backends. It is important not to confuse the
usages of MAD here to the MAD-based metrics mentioned previously. Here, MAD is used
to calculate the distances between corresponding intermediate outputs of hidden layers to
represent the internal deviations of two execution graphs. Given the intermediate states SL

and S ′L of layer L executed on two backends, the deviation is calculated using Equation 3.3
as δSL,S′

L
.

Due to the sequential nature of a model, a noticeable MAD deviation at a particular
layer does not indicate inconsistency at that layer as deviation can propagate through the
execution graph and get amplified along the way. Ideally, we want to localize the source
of the inconsistency. To do this, the Inconsistency localizer calculates the rate of change
in deviation between consecutive function executions. Finally, it generates the localization
maps by highlighting functions in the execution deviation graph that have inconsistent
executions.

To calculate the rate of change, we first need to calculate the MAD deviation for
all executions (layers output) in the set pre(L) as δSl,S′

l
with l ∈ pre(L) (pre(L) is the

set of inbound layers which hidden states are the input to layer L). We calculate the
representative deviation of inbound executions, δpre, simply as the maximum deviation:

δpre = max
l∈pre(L)

(δSl,S′
l
) (3.5)

The rate of change in deviations at layer L is:

RL =
δSL,S′

L
− δpre

δpre + ε
(3.6)

We use a smoothing constant ε = 10−7 to prevent RL =∞ in the case where δpre = 0 (e.g.,
L is the first layer).

26

We call RL the inconsistency introduction rate of a layer L, i.e., how much diversion
layer L (executions of a pair of function implementations) introduces due to inconsistent
implementations. RL values of all layers provide an overall picture of how the inconsistency
is introduced through the model so that we can localize the function that is the source of
the inconsistency. To generate the localization map, we overlay the MAD and RL values for
each layer on the model structure graph (e.g., maps in Figure 3.4). A node, representing
a layer L, shows the layer type (i.e., low-level transformation function), the MAD value δ,
and the inconsistency introduction rate RL. We select the third quantile of RL distribution
of all nodes in each map as the highlighting threshold. We highlight a node red if its RL

is higher than this threshold.

3.4 Datasets and experimental settings

Trained Models and Datasets: To evaluate CRADLE, we collect 11 public datasets
and 30 DL models that are pre-trained from these datasets. Table 3.2 lists the datasets.

We collected the models by looking for pre-trained models compatible with Keras from
prior work and GitHub. To avoid low-quality models (e.g., class projects and simple
demos), we only examine repositories with at least two stars. Overall, we collected 13 Im-
ageNet [194] models (Xception, VGG16-19, ResNet50, InceptionV3, InceptionResNetV2,
MobileNetV1-V2, DenseNet121-169-201, NASNetLarge-Mobile [49]), 3 self-driving models
used in previous work (DaveOrig-Norminit-Dropout [47,179]), 3 MNIST models (LeNet1-4-
5 [137]), and various models trained for other tasks (Thai number detector – ThaiMnist [9],
Go game player – Betago [3], anime faces recognition – AnimeFaces [2], cat and dog clas-
sifiers – CatDog(Basic, Augmented) [1,4], dog species classifier – Dog [6], gender detection
– Gender [5], Pokemon classifier – Pokedex [7], and GTSRB traffic sign recognition – Traf-
ficSigns(1, 2, 3) [11–13]). We use provided validation dataset for each model to run our
experiment. For ImageNet, we use a random sample of 5,000 images from over 80,000
provided cropped validation images.

Experimental settings: We run CRADLE on 15 versions of Keras (2.0.5–2.2.2). For
the low-level libraries, we use the latest versions of CNTK (2.5.1), Theano (1.0.1), and
TensorFlow (1.7.0). For regression models, i.e., Dave variants, we only use the MAD-based
metric because the Class-based metric does not apply. For the classification models, we use
both Class and MAD-based metrics. Some models are not supported with older versions of
Keras and result in crashes. Since the crash is the expected behavior, we do not consider
them as bugs and exclude those runs from our experiment.

27

We vary the thresholds (TC , TM , and p) and found the optimal setting (covering the
most inconsistency without false positives and false negatives) for Class-based metric are
TC = 8 and p = 0% and for MAD-based metric are TM = 0.2 and p = 0%. We use
cross-validation with 80-20% of models to confirm that the thresholds consistently perform
across all 5 folds. These are the thresholds we use in RQ1 and RQ2.

Hardware and Infrastructure: We utilize multiple Anaconda environments to switch
between multiple versions of Keras and different backends. We run all experiments on an
Intel Xeon E5-2695 machine with 128 GB of RAM and two Nvidia Titan XP GPUs. For
the performance analysis, we run the output extraction step utilizing a single GPU.

3.5 Results

3.5.1 RQ1: Can CRADLE Detect Bugs and Inconsistencies in
Deep Learning Backends?

CRADLE detects 12 bugs in DL software for 28 out of 30 models that cause 104 unique
inconsistencies. The 12 bugs (9 have been fixed) consist of 7 inconsistency bugs (3
previously unknown, 2 out of 3 have already been confirmed by developers, e.g., the bug
in Figure 3.2 has been fixed by developers after we reported it), and 5 crash bugs that
crash either Keras or one of the backend libraries. None of the 12 bugs is detected by
the test cases that come with Keras (including the interface), which does simple unit
and integration testing. The results demonstrate that cross-backend inconsistencies are
frequent and CRADLE is effective in detecting them.

Our approach does not report false inconsistencies as it is a dynamic approach: for each
inconsistency, we have inputs that trigger two backends to disagree. Theoretically speaking,
some true inconsistencies may indicate a false bug, as our approach may identify uninter-
esting inconsistencies (e.g., natural computation difference explained in Section 3.3.1). In
our experiment, all 12 bugs are real (i.e., no false bugs detected).

Inconsistencies and inconsistency-triggering input: Using the Class-based metric on
classification tasks and the MAD-based metric on regression tasks, CRADLE detected a
total of 361 inconsistencies. Based on the inconsistency patterns, CRADLE automatically
groups the inconsistencies into 104 unique inconsistencies (Section 3.3.2).

Table 3.2 shows the number of inconsistencies found by CRADLE for each dataset
and pair of backends. For example, CRADLE detects ‘21(54)’ inconsistencies between the

28

Table 3.2: Number of inconsistencies found by CRADLE. The numbers outside and (in-
side) brackets are the unique and (total) number of inconsistencies respectively. TF is
TensorFlow, TH is Theano, and CN is CNTK.

Dataset Instances
of Inconsistencies

TH-TF TF-CN CN-TH

ImageNet 5,000 10(34) 21(54) 18(46)
Driving 5,614 3(9) 3(12)
MNIST 10,000 3(9) 3(12)
Thai MNIST 1,665 1(3) 1(4)
KGS Go game 12,288 2(14) 3(12) 3(15)
Anime Faces 14,490 1(5) 1(6)
Dogs VS Cats 832 2(6) 2(8)
Dog species 835 3(8) 3(9)
Faces 466 2(14) 3(8) 6(15)
Pokedex 1,300 1(14) 1(3) 2(15)
GTSRB sign 12,630 2(14) 2(5) 2(7)

Total
18(95) 42(117) 44(149)

104(361)

two backends TensorFlow and CNTK triggered by 13 ImageNet models. Here ‘21(54)’
indicates that CRADLE detects 54 inconsistencies which map to 21 unique inconsistencies
corresponding to 21 unique inconsistency patterns. Table 3.1 shows two such patterns (the
first and second rows).

On average, these inconsistencies are triggered by 21.9% of input instances in a dataset
(22.2% for classification tasks and 13.9% for regression tasks). Figure 3.5 provides exam-
ples of inconsistency-triggering inputs. The image of a groom was identified correctly by
TensorFlow but incorrectly as an Indian elephant by the faulty Theano. In some extreme
cases, the faulty TensorFlow backend accidentally labels an image of bananas “correctly”
while CNTK identifies it as tennis balls.

Inconsistency bugs: We use CRADLE to localize the source function of all 104 detected
unique inconsistencies (detailed localization results are in Section 3.5.2). We find that they
are caused by 7 bugs in the backend libraries (Table 3.3). Some bugs have the same root
inconsistency because they are either different bugs in the same function or affect several
backends which required multiple fixes to multiple backends. For example, in addition
to the batch normalization bug we presented earlier, we found another bug in the batch
normalization function affecting an older version of Keras.

We manually check the fault localization maps for each cluster of inconsistencies and

29

TensorFlow: groom
Theano: Indian elephant

TensorFlow: banana
CNTK: tennis ball

TensorFlow: hen
CNTK: Arabian camel

Figure 3.5: Inconsistency-triggering inputs for the pooling bug (left column), the padding
bug (middle column), and the batch normalization bug (right column). Correct backends
are bold.

Table 3.3: Bugs found by CRADLE. ‘# Inc. bugs’ indicates the number of inconsistency
bugs per root inconsistency.

Root inconsistency
Localized layers

Affected backends
Affected # Inc.

(functions) models bugs

Batch normalization BatchNomalization CNTK 11 2
Padding scheme Conv2D, DepthwiseConv2D, TensorFlow, Theano 15 2

SeparatableConv2D
Pooling scheme AveragePooling2D Theano 3 1
Parameter organization Trainable convolution CNTK, Theano 18 2

confirm whether it indicates a bug. If we find a corresponding bug fixing commit in a more
recent version, we consider the bug has been fixed by developers. If not, we consider it
previously unknown. Once two authors agree that it is a bug, we report it to developers.

If the same invocation of functions is identified for multiple bugs that are triggered by
the same model in the same pair of backends across successive Keras versions (which affect
the interface code between Keras and low-level libraries), we consider them one unique
bug. However, if the bugs are in nonconsecutive versions, and the inconsistency pattern
changes for some versions of Keras, this indicates that the issue was partially fixed (or a
new bug introduced) in some Keras versions, then we consider them different bugs (e.g.,
the new inconsistency is likely to be a regression bug).

In addition to the batch normalization bug in Figure 3.2, we detail two additional
confirmed bugs that CRADLE found.

Padding scheme bugs: Padding artificially increases the size of an input image so
that a kernel function can be applied to all the pixels of the original image and produces an

30

- if padding == ’same ’:

- th_avg_pool_mode = ’average_inc_pad ’

- elif padding == ’valid ’:

- th_avg_pool_mode = ’average_exc_pad ’

...

- mode=th_avg_pool_mode)

+ mode=’average_exc_pad ’)

Figure 3.6: Pooling scheme bug fix in pool2d in Theano backend.

output of the same shape as the input. The SAME padding scheme behaves inconsistently
across backends when applied on different combination of odd or even sizes of input and
kernel. This creates a shift in the input that propagates through the model and caused
the model to sometimes completely miss some of the shapes it was trained to recognize.
Eventually, it results in inconsistencies between Theano or TensorFlow (depends on the
different combination of input and kernel sizes) and the other two backends. The middle
column of Figure 3.5 shows an example of input images revealing this bug. Although it
has not been fixed yet in the interface source code, this bug has been confirmed to be
a significant problem because various models (i.e., ResNet50, MobileNet, NASNetsLarge-
Mobile, and MobileNetV2) have been updated by their developers to include workarounds
that makes their models consistent across backends.

Pooling scheme bug: This bug in Theano backend causes Gender, InceptionRes-
NetV2, and InceptionV3 models to misbehave. In Keras 2.1.4 and earlier, the 2D pooling
layer in Theano interface determined the average pooling scheme based on the padding
scheme. If the padding is SAME, it used the pooling average inc pad scheme which includes
padding in the average calculation. However, if there is no padding, then they use the
average exc pad scheme. This creates inconsistencies for models that use the Average-
Pooling layer with SAME padding. Figure 3.6 presents the fix where average exc pad is used
regardless of the padding scheme.

Crashes bugs: Excluding crashes caused by unsupported models, we encounter 86 crashes
out of 1173 possible runs. We identified 3 Keras bugs (happened with all backends) and
2 specific backend bugs. In total, 4 of the crash bugs have already been fixed and a
workaround has been added to the crashing model to address the last issue. They are
often caused by incorrect shapes (e.g., incorrect weight or convolution kernel shapes).

Comparison between Class-based metric and top-k accuracy: One alternative
to our Class-based metric is top-k accuracy. To measure its effectiveness in detecting
inconsistencies, we integrate it into CRADLE by calculating the top-k accuracy differences

31

between pairs of backends. A pair is considered inconsistent if the accuracy difference is
larger than a threshold TAC . We vary k (1 to 5) and accuracy threshold TAC (between 0%
and 50%).

Using TAC = 0% and k = 1, the accuracy metric detects the most number of incon-
sistencies (305) but still misses 35 inconsistencies found by our Class-based metric. These
are 35 valuable test cases that developers could use to test, localize, and fix detected bugs.
In addition, our Class-based metric enables the generation of inconsistency patterns which
help remove duplicates to reduce 340 detected inconsistencies to 98 unique inconsistencies.
This reduction is not possible with top-k accuracy. The results show that our Class-based
metric is more effective than top-k accuracy.

MAD-based metric usage for classification models: To demonstrate the usefulness
of our Class-based metric, we compare the ability of both metrics to detect unique incon-
sistencies for classification models.

Using the MAD-based metric for classification tasks, CRADLE can only find 10 unique
inconsistencies, 4 of which are inconsistent in confidence level but do not trigger inconsis-
tent classifications. On the other hand, with the Class-based metrics, CRADLE correctly
identifies 98 unique inconsistencies in classification models, including all inconsistencies
correctly found using the MAD-based metric. These results show that Class-based metric
help CRADLE find more inconsistencies with no false positives.

3.5.2 RQ2: Can CRADLE Localize The Source of Inconsisten-
cies?

For each of the 104 unique inconsistencies, CRADLE generates a localization map for the
most inconsistent input instance (Section 3.3.3). By focusing on the first localized incon-
sistent execution and executions with high inconsistency introduction rates in each map,
we manually cluster the 104 unique inconsistencies into 7 bugs. CRADLE’s localization
maps enable us to do this clustering. This manual process takes 1–2 hours per bug. A tech-
nique to automatically cluster unique inconsistencies based on the first localized function
executions or similarity between localization maps remains as future work.

Overall, CRADLE highlights executions that are relevant to the causes of inconsisten-
cies for all 104 unique inconsistencies. For 4 of the bugs, the first localized inconsistent
executions are exactly the executions of faulty functions that were fixed by developers.
This suggests that the localization technique is effective in pinpointing the faulty func-
tions, which should help developers to understand and fix the bugs. For example, the

32

Conv2D
𝛿 < 0.0001
R = 0.0972

MaxPool
𝛿 < 0.0001
R = 0.3840

Conv2D
𝛿 < 0.0001
R = 0.0306

AvgPool
𝛿 = 0.05897
R = 64065.7

289 layers omitted

17 layers omitted

Conv2D
𝛿 < 0.0001
R = 0.3616

BatchNorm
𝛿 < 0.0001
R = 0.1220

Figure 3.7: Pooling scheme bug’s localization map for model InceptionV3 between Tensor-
Flow and Theano with Keras 2.1.4 on the “groom” input image in Figure 3.5.

reduction is 13 to 1 in one case, meaning that the developers only need to examine one
function instead of 13 functions with complicated formulae and interactions to understand
and fix the bug. When we consider all (instead of only the first) localized inconsistent
executions, the faulty methods are invoked in one of the localized inconsistent executions
for 5 of the bugs. For the fifth bug, this represents a reduction of 22–44% in the number
of functions to examine. For the remaining 2 bugs, the localized inconsistent executions
are related to the bug fixes. In fact, the localized executions helped us tremendously in
understanding the bugs so that we were able to write good bug reports.

Figure 3.4 shows a part of a localization map for the batch normalization bug (for
the unique inconsistency involving InceptionResNetV2, TensorFlow and CNTK backends,
and Keras 2.2.0). The input image shown is the most inconsistent input instance for
this unique inconsistency. The Dense box shows the output: “jean” from TensorFlow, and
“mailbag” from CNTK, while the ground truth is “jean”. The map includes 781 invocations
of backend functions. For presentation purposes, we omit 772 invocations. Each box
represents an invocation of a neural network function. The arrows indicate the flow of
data. Function names are indicated in each box, while δ is the MAD distance between
the hidden states (defined in Equation 3.3), and R is the inconsistency introduction rate
(defined in Equation 3.6). In this example, executions of function batch normalization are
localized as faulty (shown in red). The white boxes indicate executions with low or negative
R (i.e., they are unlikely the source of inconsistency). This map correctly highlights the
earliest invocation of the function batch normalization as the source of inconsistency. We
examine localization maps for the other affected models (e.g., InceptionV3, DenseNets
(121, 169, 201)) and notice that they all point to the batch normalization function. We
reported this bug to developers and it has been fixed in Keras 2.2.1.

33

Figure 3.7 shows a section of the localization map highlighting the faulty executions for
pooling scheme bug with model InceptionV3 between TensorFlow and Theano on Keras
2.1.4. The first highlighted execution indicates correctly the source of this inconsistency
as the function average pooling. We look at the source code of average pooling which
points to the faulty pool2d function in the Theano backend. Figure 3.6 shows the fix (for
Keras 2.1.5) in the Theano backend source code where the average pooling scheme is set
to average exc pad regardless of the padding scheme.

3.5.3 RQ3: What Is CRADLE’s Detection and Localization Time?

We measure the execution time of CRADLE on the latest version of Keras (2.2.2) using all
30 models. Overall, CRADLE’s detection and localization time is quite reasonable with a
typical end-to-end execution time lower than 5 minutes.

The running times of Output extractor and Hidden states extractor dominate the model
execution times, which depend on the model complexity, validation dataset size, and per-
formance of the backend. The extractor is slow in rare cases, e.g., nearly 10 hours with
the large NASNetLarge model containing over 1,000 layers. However, the typical running
time is within minutes with the median of less than 2 minutes.

The Output comparator and Inconsistency localizer are much faster with median run-
ning time less than 20 seconds and maximum less than 5 minutes. The running time is
independent of the backend implementation; it depends on the dataset size and the model
complexity respectively.

3.6 Limitations and Threats to Validity

Since we focus on detecting bug-revealing inconsistencies, CRADLE may miss inconsisten-
cies that cause internal errors but not failures (i.e., incorrect external behaviors). This is
our design choice to avoid detecting too many false alarms.

We assume that the same algorithms are implemented with similar specifications in all
backends due to the interchangeability of DL backends. In theory, it is possible for our
technique to find false positive inconsistencies because of this assumption. However, our
results show that the inconsistencies found by our approach almost always indicate real
bugs because 11 of them have already been confirmed or fixed by developers.

Our approach might not be generalizable to other models or DL libraries. To miti-
gate this threat, we use 30 models extracted from different GitHub projects and evaluate

34

our approach on Keras, the most popular high-level DL library [10], and three popular
backends. Our approach of detecting and localizing inconsistencies should be applicable to
other models and libraries with little work.

It is possible that some complex DL systems contain non-deterministic layers so that,
given the same input, the output might be slightly different. To mitigate this issue, we
make sure none of the layers contains intentional sources of randomness and we apply two
metrics that are designed to be robust even in the existence of small inconsistencies.

Our approach uses pre-trained models. We made this our design choice as we believe
that those pre-trained models that are used by real users are likely to cause bugs that
developers care. Alternatively, we could use dummy models or mutated models to test
backends in order to find more bugs, which remains as future work.

3.7 Summary

We propose CRADLE, a new approach to find and localize bugs in the implementations of
DL models by cross-checking multiple backends. We evaluate CRADLE on three backends
and 30 pre-trained models and find 12 bugs and 104 unique inconsistencies in the backends
for 28 models. This work calls for attention for testing DL implementations and not just
DL models. In the future, we plan to design approaches to identify bugs even if they do
not cause observable differences in backends. It is also conceivable to expand the set of
trained models with mutants for CRADLE to find more bugs.

35

Chapter 4

Problems and Opportunities in
Training Deep Learning Software
Systems: An Analysis of Variance

4.1 Motivation

Deep learning is widely used in many fields including autonomous driving cars [43], diabetic
blood glucose prediction [160], and software engineering [39, 44, 45, 102, 131, 189, 250, 255,
257]. DL training algorithms utilize nondeterminism to improve training efficiency and
model accuracy, e.g., using shuffled batch ordering of training data to prevent overfitting
and speed up training [97].

These nondeterminism-introducing (NI)-factors can cause multiple identical training
runs, i.e., training runs with the same settings (e.g., identical training data, identical
algorithm, and identical network) to produce different DL models with different accuracies
and training times [120,195,221,229].

For example, our experiments show that for 16 identical training runs of a popular DL
network, LeNet5 [138], the accuracy of the resulting 16 models ranges from 8.6% to 99.0%
—a large accuracy difference of 90.4%. Four of these identical training runs resulted in weak
models (accuracy below 20%). Even if we exclude such models, the accuracy difference
is still up to 10.8% with LeNet1 between the most accurate run (98.6%) and the least
accurate run (87.8%).

One can eliminate the variance introduced by algorithmic NI-factors (e.g., shuffled

36

batch ordering) using fixed random seeds. For example, with a fixed seed for batch ordering,
multiple identical training runs will have the same batch ordering. We refer to these runs
as fixed-seed identical training runs.

In addition to these algorithmic NI-factors, DL libraries (e.g., TensorFlow [26] and
cuDNN [48]) introduce additional variance. For example, by default, core DL libraries
(e.g., TensorFlow or PyTorch [175]) perform data preprocessing in parallel for speed, which
changes the order of training data, even if algorithmically the batch order is fixed. Fur-
thermore, core DL libraries, by default, leverage autotuning to automatically benchmark
several modes of operation (i.e., underlying algorithms for computations such as addi-
tion) for each primitive cuDNN function (e.g., pooling and normalization) in its first call.
The fastest mode of operation is then used for that cuDNN function in subsequent calls.
Different identical runs sometimes use different modes of operation, introducing variance.

Our experiments (Section 4.5.2) show that these implementation-level NI-factors alone
cause an overall accuracy difference of up to 2.9%. Specifically, we train the popular
WideResNet-28-10 [247] (or WRN-28-10 for short) DL network for image classification 16
times using the same default training configuration (e.g., same CIFAR100 [126] training
data, batch size, optimizer, and learning rate schedule), identical model selection criteria
(i.e., selecting models with the lowest loss on a validation set), the same DL libraries (i.e.,
Keras 2.2.2, TensorFlow 1.14.0, CUDA 10.0, and cuDNN 7.6), and identical hardware
(i.e., the same NVIDIA RTX 2080Ti GPU), while disabling all algorithmic NI-factors
(i.e., using fixed random seeds to ensure identical initial weights, identical batch ordering,
deterministic dropout layers, and deterministic data augmentation). This process generates
16 models. Since all algorithmic NI-factors are disabled, one may expect little variance
across the 16 runs. However, we found that the accuracies of these 16 models vary between
77.3% and 80.2% (a 2.9% difference).

These implementation-level NI-factors and differences are often characteristics and con-
sequences of the DL software implementations, which create unique challenges for SE
researchers and practitioners (Section 4.8). Meanwhile, DL researchers have paid little
attention to implementation-level NI-factors (the focus is on theoretical analyses of DL
training [51,52,68,123,142,198]).

To see whether such differences are known, we conduct a survey (Section 4.6), which
surprisingly shows that 83.8% of the 901 responded researchers and practitioners with
DL experience are unaware of (63.4%) or unsure about (20.4%) any implementation-level
variance! Of the 901 respondents, only 10.4% expect 2% or more accuracy difference across
fixed-seed identical training runs.

We also perform a literature survey of 454 papers randomly sampled from recent top

37

SE, AI, and systems conferences to understand the awareness and practices of handling
DL system variance in research papers. Of 225 papers that train and evaluate DL systems,
only 19.5±3% use multiple identical training runs to quantify the variance of their DL
approaches.

The per-class accuracy exhibits a much larger difference among the 16 fixed-seed iden-
tical training runs. For example, in the previously described WRN-28-10 runs, for the
“camel” class (all images with the ground-truth label of “camel”), the models’ accuracy
varies from 38.1% to 90.5% (a 52.4% difference).

In addition, there are large differences in convergence time. For example, the time
to convergence of the 16 fixed-seed identical training runs of another popular network,
ResNet56 [100], ranges from 2,986 to 7,324 seconds (a one hour and 12 minutes difference)—
a 145.3% relative time difference. We also observe a discrepancy between the empirical
per-class accuracy and convergence time and the corresponding estimates from the surveyed
researchers and practitioners.

Thus, it is important to study and quantify the variance of DL systems, especially the
implementation-level variance. On the one hand, some practitioners, whose primary goal
is to obtain the best model, may be able to take advantage of the variance by running
multiple identical runs to achieve their goal.

On the other hand, SE, AI, and systems researchers who propose new DL architectures
and models that outperform existing ones may need to execute multiple identical runs to
ensure the validity of their experiments.

For example, a recent research paper [133] proposed a new approach with a reported
0.8% accuracy improvement over the standard WRN-28-10. Our experiments show that
this network’s accuracy can vary by up to 2.9%. Therefore, the reported accuracy improve-
ment may not be statistically significant when considering the aforementioned NI-factors
in the training algorithm and the implementation. In other words, if one runs the two ap-
proaches again, the resulting mode of [133] may not outperform the WRN-28-10 model. At
best, the comparison results still hold, but the current experiments fail to provide evidence
to demonstrate the improvement given the possible variance.

There are existing theoretical analyses of DL training [51,52,68,123,142,198] that study
how well optimizers find good local optima given algorithmic NI-factors. Such work fails
to study the nondeterminism in the underlying DL implementation.

To fill this gap, first, we systematically study and quantify the accuracy and time
variance of DL systems across identical runs using 6 widely-used networks and 3 datasets.
Second, we conduct a survey to ascertain whether DL variance and their implications are

38

known to researchers and practitioners with DL experience. Third, we conduct a literature
review of the most recent editions of top SE, AI, and systems conferences to understand
the awareness and practices of coping with DL variance in research papers.

In this chapter, we make the following contributions:

� Finding 0: A list of implementation-level NI-factors (parallel processing, auto-selection
of primitive operations, and scheduling and floating-point precision) and algorithmic NI-
factors (nondeterministic DL layers, weight initialization approach, data augmentation
approach, and batch ordering), and techniques that control these NI-factors to remove
or reduce variance (Section 4.2).

� A DL variance study of 4,838 hours (over 6.5 months) of GPU time on 3 widely-used
datasets (MNIST, CIFAR10, CIFAR100) with 6 popular models (LeNet1, LetNet4, Let-
Net5, ResNet38, ResNet56, and WideResNet-28-10) on three core DL libraries (Tensor-
Flow, CNTK, and Theano):

• Finding 1: The accuracy of models from 16 identical training runs varies by as
much as 10.8%, even after removing weak models.

• Finding 2: With algorithmic NI-factors disabled, DL model accuracy varies by
as much as 2.9%—an accuracy difference caused solely by implementation-level
nondeterminism.

• Finding 3: Implementation-level NI-factors cause a per-class accuracy difference
up to 52.4%, while the per-class difference is up to 100% with default settings (i.e.,
with algorithmic and implementation-level nondeterminism).

• Finding 4: Training time varies by as much as 145.3% (1 hour and 12 minutes)
among fixed-seed identical training runs, while the training time difference is up to
4,014.8% with default settings.

� A researcher and practitioner survey, with 901 valid replies, reveals that:

• Finding 5: A large percentage of respondents are unaware of (31.9%) or unsure
about (21.8%) any variance of DL systems; there is no correlation between DL
experience and awareness of DL variance.

• Finding 6: Even more researchers and practitioners (83.8%) are unaware or un-
certain of implementation-level nondeterminism in DL systems.

• Finding 7: Only 10.4% of respondents expect 2% or more accuracy difference
across fixed-seed identical training runs.

• Finding 8: Most (77.7%) participants estimate the convergence time differences
to be less than 10% across identical training runs, and the majority of respondents

39

(84.5%) estimates a similar 10% or less convergence time difference among fixed-seed
identical training runs.

� Finding 9: A literature survey of a random sample of 454 papers from the most re-
cent editions of top SE (ICSE [20], FSE [17], and ASE [14]), AI (NeurIPS/NIPS [22],
ICLR [24], ICML [19], CVPR [16], and ICCV [18]), and systems (ASPLOS [15], SOSP [23],
and MLSys [21]) conferences, shows that 225 papers train and evaluate DL systems, only
19.5±3% of which use multiple identical training runs to evaluate their approaches.

� Implications and suggestions for researchers and practitioners, and raising awareness
of DL variance (Section 4.8).

Code and data are available in a GitHub repository1.

4.2 Nondeterminism-Introducing (NI)-Factors

Many factors affect DL systems’ results and training time. The first set of factors is
the input to a system. Such input includes the training data and hyper-parameters (e.g.,
number of layers, dropout rate, optimizer, learning rate, batch size, and data augmentation
method and settings). It is expected that models with different inputs perform differently,
and there is a flurry o f work on how to select the best input (e.g., hyper-parameter
tuning) [38,111,246].

However, several factors (e.g., shuffled batch ordering) independent of the system’s
input affect the training and accuracy of the final models. We call these factors NI-
factors. We divide NI-factors into two categories: (1) algorithmic NI-factors, which are
introduced to improve the effectiveness of the training algorithm, and (2) implementation-
level NI-factors, which are the byproduct of optimizations to improve DL implementations’
efficiency.

4.2.1 Definitions

In this study, we define a DL system as the composition of a DL algorithm and a DL
implementation. DL algorithm is the theory portion of DL and consists of model definition,
hyper-parameters, and theoretical training process. DL implementation consists of high-
level DL libraries (e.g., Keras), core DL libraries (e.g., TensorFlow and PyTorch), low-level

1https://github.com/lin-tan/dl-variance

40

https://github.com/lin-tan/dl-variance

computation libraries (e.g., cuDNN and CUDA), and hardware (e.g., GPU, CPU, and
TPU). The DL training process spans across the DL algorithm and DL implementation.

4.2.2 Algorithmic NI-factors

The most common algorithmic NI-factors include nondeterministic DL layers (e.g., dropout
layer), weight initialization, data augmentation, and batch ordering.

Nondeterministic DL Layers: DL architectures can contain nondeterministic layers.
For example, dropout layers [219] are commonly used to prevent overfitting. They ran-
domly set parts of the input tensor to zero during training and guide each neuron to be
trained with different portions of the training data. Dropout tensors are chosen randomly
on-the-fly during training, which means two identical runs could produce two different
models with different accuracies and different training times.

Weight Initialization: Weight initialization [87,99,139,198] is an important step in DL
training [221,229]. Random weight initialization samples the initial DL model weights from
a predefined distribution. Goodfellow et al. [91] state that random initialization “breaks the
symmetry” across all the weight tensors. This process helps similarly structured neurons
learn different functions instead of repeating each other. Thus, they learn different aspects
of the training data and help to increase the model’s generalization. However, different
initial weights may result in convergence to different local minima [69,83,140]. Therefore,
random initialization can lead to variance in model accuracy across identical runs.

Data Augmentation: DL training algorithms also utilize the randomness in data aug-
mentation to improve their effectiveness (i.e., produce more accurate models). Data aug-
mentation [214] is an inexpensive method that randomly transforms the input to increase
the input’s diversity. It has been shown to improve the generalization of the final trained
model. Randomly transforming the training data will result in nondeterministic identical
training runs.

Batch Ordering: Random batch ordering also improves the generalization of DL models.
It breaks up the order of the training data to prevent the model from quickly overfitting
to a particular label [139]. Reordering training batches at each epoch results in nondeter-
ministic identical training runs.

41

4.2.3 Implementation-Level NI-factors

Implementation-level NI-factors are caused by libraries (e.g., TensorFlow, CUDA, and
cuDNN). The most common implementation-level NI-factors are parallel computation,
nondeterministic primitive operations, and rounding errors due to scheduling.

Parallel processes: Core DL libraries (e.g., TensorFlow and Pytorch) provide options
to use multiple processes to improve the efficiency of DL systems. For example, the core
libraries, by default, run the data preprocessing task in parallel to prepare the training
data faster. However, due to the random completion order of parallel tasks, the order
of training data may change and impact the optimization path of the training process,
resulting in variance even if data preprocessing itself is deterministic.

Auto-selection of primitive operations: Core DL libraries implement DL algorithms
by leveraging the GPU-optimized DL primitives provided by low-level libraries (e.g., cuDNN
and CUDA). When used with NVIDIA GPUs, cuDNN provides hardware-accelerated prim-
itives for common DL operations such as forward and backward convolution, pooling,
normalization, and activation layers. cuDNN provides several modes of operation (i.e.,
different computational algorithms) for primitive functions.

By default, core DL libraries enable autotune, which automatically benchmarks several
modes of operation for each primitive cuDNN function in its first call. The fastest mode
of operation is then used for that cuDNN function in subsequent calls. The exact mode of
operation for each primitive used in each run changes depending on the dynamic benchmark
result. Different identical runs sometimes use different modes of operation, introducing
variance. Furthermore, some modes of operation are nondeterministic due to rounding
errors introduced by scheduling (see below).

Scheduling and floating-point precision: GPU programming uses warp as a unit of
computation. A warp consists of 32 parallel threads with concurrent memory access. Due
to the limited precision (32-bits) of DL models, rounding errors are introduced at every step
of floating-point calculation. In the GPU model, concurrent accesses to a single memory
address must be serialized to prevent race conditions with no guaranteed order of access.
Therefore, the rounding error introduced in each warp may vary across fixed-seed identical
training runs due to the different access orders.

For example, matrix reduction operations such as atomicAdd (used in depthwise con-
volution layers) are affected by serialization order. Since floating-point operations are not
associative due to rounding errors [89], varying orders of additions may produce nondeter-
ministic output (A+B + C 6= B + C + A).

42

4.2.4 Controlling NI-factors for Determinism

Removing algorithmic NI-factors enables us to study the nondeterminism introduced by
implementation-level NI-factors. In addition, deterministic training may be desirable for
debugging and other purposes. Thus, we identify techniques that control algorithmic and
implementation-level NI-factors to remove or reduce variance.

Controlling algorithmic NI-factors: All algorithmic NI-factors are controlled by pseudo-
random number generators. Thus, we can control these NI-factors by fixing the random
seeds at the beginning of each run to achieve algorithmic determinism across identical runs
while still maintaining the pseudo-random characteristic within a single run. We defined
this as fixed-seed identical training runs.

Controlling implementation-level NI-factors: To control these NI-factors, we need
to take several steps. First, the DL system should not use multiple processes that cannot
guarantee data order. For example, using more than one worker in the data generator to
feed training data would shuffle the batch ordering even with fixed random seeds.

Second, the autotune mechanism should choose deterministic implementations of primi-
tive operations only. For example, in TensorFlow 1.14.0, if the environment flag TF CUDNN DE

TERMINISTIC is set to 1, the autotune mechanism will not consider the nondeterministic
modes for cuDNN primitive functions.

Third, since some operations (e.g., atomicAdd) are nondeterministic when used on a
GPU due to nondeterministic serialization, the input of these operations should be serial-
ized after all parallel executions (i.e., to ensure a deterministic ordering of input). Then,
the operations should be executed on a single CPU thread.

Finally, one solution to achieve complete deterministic training is forcing the DL system
to run completely in a serial manner (i.e., running on a single CPU thread). However, this
option prevents DL systems to utilize the hardware efficiently and may be unrealistic, as
many models would take months or years to train on a single CPU thread. As future
work, deterministic multithreading [60] may be promising for more realistic deterministic
DL systems.

A major goal of this work is to quantify the variance introduced by implementation-level
NI-factors.

43

Figure 4.1: Overview of the experimental method

4.3 Experimental Method

First, we extract the default input (i.e., training data, hyper-parameters, and optimizers)
of a DL system from existing work (Section 4.4). Figure 4.1 shows an overview of our
experimental method. We generate different environments that combine different versions
of DL libraries (e.g., high-level libraries, core libraries, and low-level libraries). For all
environments, the hardware is the same (details in Section 4.4). For example, one such
environment includes Keras 2.2.2, TensorFlow 1.14.0, cuDNN 7.6, and CUDA 10.0. Each
network is coupled with its default input. For example, the CIFAR 100 dataset (including
training, validation, and test data) is used to train the WRN-28-10 network with stochastic
gradient descent (SGD) optimizer in 50 epochs. Table 4.1 shows the corresponding default
input for each network. Each network (including its default input) combined with one
nondeterminism setting (details below) is defined as a set of setting. For example, one
set of settings that we use is training the WRN-28-10 network with all algorithmic NI-
factors disabled (i.e., fixed-seed nondeterminism setting). For each environment and setting
combination, we perform an experimental set and measure the accuracy and time variance
across n identical training runs.

To ensure a valid study, we address one main challenge: to measure realistic variance,
the experiments need to reflect the real usage of DL systems. We pick training from-scratch
as our scenario for the training phase because it is a common and fundamental training
scenario [27,100,209,216,226,247,260], i.e., we train a new DL model from the beginning,
starting from randomly initialized weights.

In addition, we focus on studying the variance of models’ overall accuracy, per-class
accuracy, and training time, as these are common metrics that DL researchers and prac-
titioners use, and there have been many techniques [27, 46, 75, 91, 226, 256] proposed to
improve on these metrics.

44

Further, to make sure the accuracy and time that we observe are valid, we check that
our results are equivalent to the ones reported in the original papers. Training inputs (e.g.,
training data, prepossessing methods, and optimizer) are chosen to match, as closely as
possible, those reported or used in the authors’ code. While a complete reproduction is
often impossible, we reproduce previous work as faithfully as possible by using reported
settings and ensuring at least one of our runs can reach almost identical accuracy to that
of the original work.

Finally, we perform two statistical tests (Levene’s test for variance and Mann Whitney
U-test for mean) to ensure that we draw statistically significant conclusions.

4.3.1 Experimental Sets of Identical Training Runs

The training phase is an iterative process and after each iteration (i.e., epoch) a checkpoint
of the model is stored. After the training finishes, the best checkpoint is selected based on
a final model selection criterion. We focus on two common (77.5% of the respondents in
our survey use one of these criteria) model selection criteria:

• Best-loss selection criterion: The final model is the checkpoint with the best (i.e.,
lowest) validation loss.

• Best-accuracy selection criterion: The final model is the checkpoint with the best
(i.e., highest) validation accuracy.

Validation loss and accuracy are calculated on the validation set (i.e., unseen data, different
from the training data, and used to tune the model). We report the test accuracy of the
selected best model which is calculated on the test data (i.e., unseen data, different from
the training and validation data).

In practice, the training runs would end if the selection metric (i.e., validation loss or
accuracy) did not improve after a set number of epochs (i.e., patience). In this study,
we instead run the training to a maximum number of epochs while storing the model
checkpoints. Once the training is done, we select the model based on the selection criterion
and then compute the training time as if the training had stopped at the best checkpoint.
This is an estimation of training time without running a separate set of experiments for
each criterion.

We define identical training runs as training runs executed with the same environment
(i.e., hardware and DL libraries), the same network architecture, and the same inputs (i.e.,
training data, hyper-parameters, and optimizers). Each identical training run is followed
by an inference run on the test data to compute the model accuracy.

45

An experimental set is a group of identical training runs. We make sure to avoid mea-
surement bias [164] as much as we could by using the same machine along with Docker en-
vironments that are built from the same base image. The only changes across experimental
sets are the DL library combinations and the set of settings (i.e., the nondeterminism-level,
the network, and its default input). In each experimental set, we perform n = 16 runs.

4.3.2 Nondeterminism-Level Settings

We perform two categories of experiments with different nondeterminism-levels: the default
and fixed-seed settings.

Default identical training runs are experiments that do not enforce determinism (i.e.,
none of the NI-factors are controlled). These are identical training runs with the default
input (training data and hyper-parameters).

Fixed-seed identical training runs are experiments for which algorithmic NI-factors are
disabled, i.e., we use the same random generator and the same seed. For example, with
the TensorFlow core library, we set the global Python random seed, Python hash seed,
Numpy random seed, and the TensorFlow random seed to be identical. Initializing all
random number generators with identical seed disables all known algorithmic NI-factors
(i.e., dropout layers, initial weights, data augmentation, and batch ordering).

4.3.3 Metrics and Measurements

To measure the variance across identical training runs, we measure a model’s overall and
per-class accuracy on the test set. The overall accuracy measures the portion of correct
classifications that a model makes on test samples. The per-class accuracy splits the overall
accuracy into separate classes based on the ground-truth class labels (i.e., the accuracy of
the model for each class). For example, the MNIST dataset has 10 classes, so an MNIST
model would have 10 per-class accuracy values (one for each digit). For all identical training
runs, we measure the total training time as well as the number of epochs until convergence
(i.e., until the checkpoints specified by the selection criterion). For each experimental set,
the maximum difference shows the most extreme gap of model accuracy and training time
between the best and the worst runs.

46

Table 4.1: Datasets, networks, and training settings

Dataset
#samples Network Settings

Train Val Test Name #parameters #epochs Optimizer

MNIST 60,000 7,500 2,500
LeNet1 7,206

50 SGDLeNet4 69,362
LeNet5 107,786

CIFAR10 50,000 7,500 2,500
ResNet38 565,386

200 Adam
ResNet56 857,706

CIFAR100 50,000 7,500 2,500 WRN-28-10 36,536,884 200 SGD

4.3.4 Statistical Tests

Levene’s test is a statistical test to assess the equality of variance of two samples. Specif-
ically, when testing accuracy variance, the null hypothesis is that the accuracy variance of
set A is equal to the accuracy variance of set B. If we find that p-value < 0.05 then we can
confirm with 95% confidence the accuracy variance of set A is different from set B. And,
if the accuracy variance of set A is smaller, then runs in set A are more stable than in B.

Mann Whitney U-test is a statistical test to assess the similarity of sample distributions.
We run the U-test instead of the T-test because the U-test does not assume normality
while the T-test does. For example, when comparing two sets of runs (A and B), the
null hypothesis is that the accuracies of set A are similar to set B. If we find that p-value
< 0.05, then we can confirm with 95% confidence that our alternative hypothesis is true
which means set A has statistically different accuracies than set B. We compute the effect
size as the Cohen’s d [56] to check if the difference has a meaningful effect (d = 0: no effect
and d = 2: huge effect [197]).

4.4 Experimental Settings

Datasets and models: We perform our experiments using three popular datasets:
MNIST [138], CIFAR10 [126], and CIFAR100 [126]. We choose image classification ar-
chitectures as they are often used as test subjects in recent SE papers that test [86, 146,
151,182,220,231,232,235,251,258], verify [93,177], and improve [82,119,152,237,249,254]
DL models and libraries. Table 4.1 shows each dataset with the corresponding numbers of
instances in each subset (training, validation, and test). The training set is used to train

47

the model. Following common practice [27, 50,91,100,127,215,224], we use the validation
set to select the best model. The test set is used to evaluate the final model.

We choose to experiment on LeNet [138], ResNet [100], and WideResNet [247] architec-
tures as they are popular networks for image classification. In our literature review, of the
225 relevant papers, 64% of papers use or compare to one of these architectures. Table 4.1
also shows the number of trainable parameters for each network. Our networks are diverse
in size, from 7,206 (LeNet1) to 36,536,884 parameters (WRN-28-10).

We reproduce previous work as faithfully as possible by using networks and settings
recorded by previous work and ensuring some of our runs have a similar (within 1%) accu-
racy as that in the original work. We also use (when available) the original implementation
of the approach from the author and the Keras implementation (if available) to reduce the
risk of introducing new bugs.

We list the training configurations used in table 4.1. To ensure that the model will
converge (i.e., training loss stops improving) within the maximum number of epochs (Ta-
ble 4.1), we empirically choose a maximum number of epochs larger than the number of
epochs to convergence using both selection criteria.

We cannot use networks from prior work [180, 182, 231] since they only provide pre-
trained models and do not provide enough details for us to reproduce the training runs.

DL libraries: We use Keras version 2.2.2 [49] as our high-level library since it provides us
with the ability to transparently switch between three DL core libraries (TensorFlow [26],
CNTK [37], and Theano [200]). This ensures that the comparison across core libraries
is fair and the least affected by our code. We perform our experiments with the official
TensorFlow versions (including the latest) (1.10, 1.12, and 1.14), CNTK version (2.7),
and Theano version (1.0.4). We pair each version of the core libraries with the officially
supported low-level cuDNN and CUDA versions. For example, TensorFlow 1.12 supports
cuDNN 7.3 to 7.6 coupled with CUDA 9.0, while TensorFlow 1.14 supports only cuDNN
7.4 to 7.6 coupled with CUDA 10.0. Since it is not practical to perform experiments on
all library combinations, we use 11 library combinations for TensorFlow, one combination
each for CNTK and Theano.

Infrastructure: We carry out all experiments on a machine with 56 cores, 384GB of
RAM, and RTX 2080Ti graphic cards each with 11GB memory. To accommodate multiple
combinations of libraries, we use Anaconda (4.4.10) with Python (3.6) and Docker (19.03).

48

Table 4.2: Maximum differences of overall and per-class accuracy among default and fixed-
seed identical training runs

Setting Network
Overall(%) Per-class(%)

Diff SDev (SDevCI) Diff SDev (SDevCI)

D
e
f
a
u
l
t

LeNet1 10.8 2.6 (2.0-3.8) 99.6 24.5 (19.0-35.2)

LeNet4 10.6 2.6 (2.0-3.7) 100.0 24.7 (19.1-35.5)

LeNet5 90.4 38.7 (30.0-55.6)* 100.0 44.5 (34.4-63.9)

ResNet38 1.9 0.5 (0.4-0.7) 11.7 2.8 (2.2-4.1)

ResNet56 2.1 0.6 (0.4-0.8) 11.9 2.8 (2.2-4.0)

WRN-28-10 2.8 0.8 (0.6-1.1) 50.0 13.3 (10.3-19.1)

F
i
x
e
d
-
s
e
e
d

LeNet1 0.1 <0.1 (<0.1) 0.8 0.3 (0.2-0.4)

LeNet4 0.5 0.1 (0.1-0.2) 1.9 0.6 (0.5-0.9)

LeNet5 1.2 0.3 (0.2-0.4) 4.8 1.3 (1.0-1.9)

ResNet38 2.7 0.6 (0.5-0.8) 12.2 3.3 (2.6-4.8)

ResNet56 1.9 0.5 (0.4-0.7) 10.6 2.3 (1.8-3.3)

WRN-28-10 2.9 0.7 (0.6-1.0) 52.4 16.3 (12.6-23.4)

* 4/16 runs produce weak models that have lower than 20% accuracy

4.5 Results and Findings

We perform 2,304 identical training runs (144 experimental sets with 16 runs each) of six
networks on three datasets, with two levels of nondeterminism, using three core libraries
(TensorFlow, CNTK, and Theano) which is 4,838 hours (over 6.5 months) of GPU time.

4.5.1 RQ1: How Much Accuracy Variance Do NI-factors Intro-
duce?

To investigate the variance caused by NI-factors, we run 16 default identical training runs
for each of the 66 experimental sets (i.e., combinations of 6 networks and 11 environments).
Recall that default identical training runs are defined as training runs with the same default
inputs where no NI-factors are disabled (Section 4.3.1).

To estimate the extreme case, we compute the maximum difference of accuracy (overall
and per-class) between the least accurate and the most accurate default identical training
runs of an experimental set while the standard deviation estimates the average case.

Table 4.2 (Default) shows results for RQ1. Columns Diff show the maximum differences
of accuracy while columns SDev and (SDevCI) shows the standard deviation of accuracy

49

LeNet1 LeNet4 LeNet5

20.0%

40.0%

60.0%

80.0%

100.0%

ResNet38 ResNet56
90.0%

91.0%

92.0%

93.0%

WRN-28-10

79.0%

80.0%

81.0%

Figure 4.2: Boxplots of the overall accuracy for default identical runs with the largest
overall accuracy difference

among 16 identical training runs and corresponding confidence interval (i.e., with 90%
confidence, the confidence interval would contain the population standard deviation). We
only show the larger accuracy differences when using either selection criterion (best-loss or
best-accuracy) as the results are similar between the criteria. Figure 4.2 shows the boxplots
of the overall accuracy of each network. The triangles represent the mean accuracy and
the orange line is the median. Dots outside of the whiskers are outliers.

Across default identical training runs, the accuracy difference is as big as 10.8%, even
after removing weak models. (Finding 1).

Specifically, in the LeNet5 default training experimental set (with TensorFlow 1.14.0,
CUDA 10.0, cuDNN 7.5, and loss selection criterion), the most and least accurate runs
have an overall accuracy of 99.0% and 8.6% respectively (a 90.4% difference). The worst
model’s accuracy is lower than random guesses (i.e., 10% because the MNIST dataset has
10 classes). This large accuracy difference is caused by the random initialization of the
weights [221, 229]. Particularly, four runs do not improve much after training—with the
final models’ accuracies being 8.6%, 9.9%, 10.6%, and 19.7% (the outliers shown as circles
in Figure 4.2). While the four runs produce weak models, they are faithful reproductions of
training with widely-used networks and algorithms using realistic data and settings. The
fact that 4 out of 16 runs fail to improve significantly, shows the importance of reporting
the variance between multiple identical training runs so that the DL approaches can be
evaluated on not just their best accuracy, but also on how stable the training process is.

If we exclude networks with such weak models, we still see an accuracy difference up to
10.8% with LeNet1 (the difference between 87.8% and 98.6%). For WRN-28-10, the largest
difference is 2.8% (between 78.2% and 81.0%) respectively. Although these differences may
seem small, researchers [133] report improvements of 0.8% when comparing against WRN-
28-10 without accounting for NI-factors. At best, the comparison conclusions still hold,
but the papers fail to provide evidence for that.

50

The per-class accuracy differences are even larger compared to the overall accuracy
differences (Table 4.2, column Default: Overall versus column Default: Per-Class). On
the least accurate run of LeNet5, the trained model fails completely on a single class (i.e.,
the prediction accuracy for the class digit “0” is 0%), while, for other runs, the highest
prediction accuracy for the same class is 100%. Digit “0” has 261 test images (all classes
have similar numbers) so such single-class failures are not due to insufficient instances
or bias distribution of that class. A similar single-class failure happens for LeNet1 and
LeNet4 training runs. The standard deviation is smaller for these networks (24.5% and
24.7% comparing to 44.5%) because only one run completely fails.

As another example, WRN-28-10 default identical training runs (using library com-
bination TensorFlow 1.12.0, CUDA 9.0, cuDNN 7.6, and best-accuracy selection criteria)
incur a maximum overall accuracy difference of 2.8%. With the same settings, the per-class
accuracy difference is 50.0% (dropping from 72.7% to 22.7%) for the class “bee” (with 22
test samples). Per-class accuracy variance can be problematic for applications where the
accuracy of specific classes is critical. For example, the accuracy variance of the pedestrian
class of a self-driving car’s object classification system could affect pedestrian prediction
reliability. This, in turn, could endanger pedestrians, even if the overall variance of the
model is small.

NI-factors cause a complete single-class failure, where the biggest per-class accuracy
difference is 100% with a standard deviation of 44.5% (Finding 3(a)).

4.5.2 RQ2: How Much Accuracy Variance Do Implementation-
Level NI-factors Cause?

Accuracy variance: We analyze nondeterminism introduced by implementation-level
NI-factors by performing 66 experimental sets (i.e., combinations of 6 networks with 11
environments) of fixed-seed identical training runs (each with 16 runs). Recall that fixed-
seed identical training runs are default identical training runs with algorithmic NI-factors
disabled using fixed random seed initialization (Section 4.3.2).

Table 4.2 (Fixed-seed) shows the largest accuracy differences of the overall and per-class
accuracy of all models (for any library combinations and selection criteria) with disabled
algorithmic NI-factors (i.e., among fixed-seed identical training runs).

Implementation-level NI-factors cause accuracy differences as large as 2.9% (Finding
2), while per-class accuracy differences are up to 52.4% (Finding 3 (b)).

51

LeNet1 LeNet4 LeNet5

98.0%

98.5%

99.0%

ResNet38 ResNet56

89.0%

90.0%

91.0%

92.0%

WRN-28-10

78.0%

79.0%

80.0%

Figure 4.3: Boxplots of the overall accuracy for fixed-seed identical runs with the largest
overall accuracy difference

Among the fixed-seed identical training runs of WRN-28-10 (with TensorFlow 1.14.0,
CUDA 10, cuDNN 7.6, and loss selection criterion), the most and the least accurate runs
have an overall accuracy of 80.2% and 77.3% respectively. In the same experimental set,
the implementation-level NI-factors cause a per-class accuracy difference of 52.4% (the
“camel” class—with 21 test samples—has 90.5% and 38.1% accuracy in the most and least
accurate runs). All other classes have similar numbers of test samples so the large per-class
accuracy difference is not due to insufficient instances or bias distribution of classes.

The lack of complete failure caused by the random weight initialization (an algorithmic
NI-factors) in LeNet training (Figure 4.3) indicates that training is more stable without
algorithmic NI-factors.

When comparing the results of setting Default and Fixed-seed in Table 4.2, LeNet and
ResNet56 have smaller overall and per-class accuracy differences among default identical
training runs. While for ResNet38 and WRN-28-10, the accuracy differences among fixed-
seed identical training runs are smaller. Levene’s test cannot statistically confirm the
significance (p-value > 0.05) of these differences in variance for all networks except for
LeNet5 (where there are complete failures in identical training runs with default setting).

Table 4.2 (Fixed-seed) shows that except for ResNet38, the more complex a network is
(i.e., more trainable parameters), the larger the accuracy (overall and per-class) variance
will be across fixed-seed identical training runs. For more complex networks, the error
introduced by nondeterminism might propagate further.

To demonstrate the importance of performing identical training runs when comparing
different DL approaches, we consider a scenario where ResNet56 is a baseline approach
to the CIFAR10 image classification problem and ResNet38 is the proposed improvement.
Among 16 fixed-seed identical training runs, ResNet56 averages 91.2% in test accuracy
while ResNet38 averages 90.3%. The U-test confirms (with p-value < 0.01) that ResNet56
has 0.9% higher test accuracy than ResNet38 with an effect size (Cohen’s d) of 1.7 (very

52

LeNet1 LeNet4 LeNet598.0%

98.2%

98.4%

98.6%

98.8%

ResNet38 ResNet56

90.0%

91.0%

92.0%

WRN-28-10
72.0%

74.0%

76.0%

78.0%

80.0%
TensorFlow CNTK Theano

Figure 4.4: Boxplots of the overall accuracy of fixed-seed identical training runs with
different core libraries

large effect). Hence, there is no improvement from the proposed technique (ResNet38) over
the baseline (ResNet56). However, if each approach only runs once, in the most extreme
case, ResNet56 accuracy is reported with its worst run (90.4%) and ResNet38 with its best
run (91.4%), the researchers might have come to an invalid conclusion that ResNet38 has
1% higher accuracy than ResNet56. Researchers and practitioners should be aware of DL
system variance, even with only implementation-level NI-factors, so they must perform
multiple identical training runs when comparing approaches.

Different core libraries: We investigate if switching core libraries leads to different
accuracy variance among fixed-seed identical training runs. Since it is prohibitively expen-
sive to run all combinations of core and low-level library versions (our experiments’ GPU
time are already over 6.5 months), we compare the latest versions of core and low-level
libraries at the time of the experiment (i.e., in addition, we run 12 more experiment sets –
combinations of 6 models with 2 environments).

Figure 4.4 shows the boxplots of the overall accuracy of fixed-seed identical training
runs for the experimental set of each network with the best-loss selection criterion across
three different core libraries. The accuracy variance is similar across different core li-
braries. For example, for ResNet56 the accuracy difference with CNTK is 1.5% (between
91.8% and 90.3%) and 1.9% with TensorFlow. All core libraries are affected similarly by
implementation-level NI-factors: Levene’s test cannot reject the null hypothesis that each
core library has a different accuracy variance (p-value > 0.1).

Different low-level libraries versions: We analyze the overall accuracy differences
of the 11 low-level library combinations (cuDNN and CUDA) with TensorFlow to see if
there is still variance when switching versions of the low-level libraries. Figure 4.5 shows
the boxplots of the overall accuracy differences of fixed-seed identical training runs when
training each network with each of the 11 library combinations. All training runs are
affected by implementation-level NI-factors, independently from the low-level libraries used.

53

LeNet1 LeNet4 LeNet5
0.0%

0.5%

1.0%

ResNet38 ResNet56

1.5%

2.0%

2.5%

WRN-28-10

2.0%

2.5%

Figure 4.5: Boxplots of the overall accuracy difference of fixed-seed identical training runs
with 11 low-level library version combinations for each network

For example, with WRN-28-10, the largest overall accuracy difference is 2.9% (reported
in Table 4.2). On average, across 11 experimental sets, the accuracy difference for this
network is over 2% while the smallest accuracy difference is 1.6%.

4.5.3 RQ3: How Much Training-Time Variance Do NI-factors
Introduce?

We study the variance in overall training time to convergence of default identical train-
ing runs and fixed-seed identical training runs, which is often the primary variance that
researchers and practitioners care about. We measure training time to convergence with
respect to best-loss and best-accuracy selection criteria.

Table 4.3 shows the analysis of the running time to convergence for default identical
training runs and fixed-seed identical training runs. TimeLoss and TimeAcc denote the
training time using two popular model selection criteria—best-loss and best-accuracy, re-
spectively. For each selection criterion, the table shows the time difference between the
slowest and the fastest runs (columns Diff). Since the running time is very different across
networks, we compute the relative time difference (columns RelDiff)—the ratio of the time
difference over the running time of the fastest. To give some indication of an average case,
columns RelSDev show the relative standard deviation (i.e., coefficient of variation [74]) of
the 16 runs.

Among default identical training runs, LeNet5 has the largest relative training time
difference of 4,014.9% using the best-accuracy selection criterion. As discussed in RQ1,
three runs fail to improve after the first epoch (3.9 seconds for the fastest), creating such
a large time difference. However, since only three runs got stuck at the first epoch, the
relative standard deviation is 55.1%.

54

Table 4.3: Running time to convergence differences among default and fixed seed identical
training runs

Setting Network
TimeLoss (seconds) TimeAcc (seconds)

Diff RelDiff RelSDev Diff RelDiff RelSDev

D
e
f
a
u
l
t

LeNet1 27 24.5% 6.5% 41 47.2% 8.5%

LeNet4 22 17.4% 4.7% 25 19.9% 4.0%

LeNet5 155 3,940.7%* 54.2% 158 4,014.8%* 55.1%

ResNet38 434 21.4% 5.3% 2,953 133.2% 18.7%

ResNet56 699 23.9% 6.0% 3,813 116.5% 17.7%

WRN-28-10 2,333 12.9% 3.2% 6,316 46.0% 8.8%

F
i
x
e
d
-
s
e
e
d

LeNet1 17 14.3% 3.8% 18 14.4% 3.8%

LeNet4 17 13.3% 3.6% 25 20.1% 6.2%

LeNet5 31 25.8% 5.6% 37 30.0% 6.0%

ResNet38 415 20.4% 4.4% 2,782 115.5% 15.9%

ResNet56 467 16.4% 3.6% 4,338 145.3% 22.5%

WRN-28-10 2,197 12.2% 2.9% 5,625 38.3% 10.1%

* 3/16 runs stuck at the first epoch

The largest training time difference among default identical training runs is 6,316 sec-
onds (1 hour and 40 minutes) for the WRN-28-10 network with the best-accuracy selection
criterion (relative training time difference of 46.0%). Given how expensive DL training can
be, 46.0% of training time difference could mean days or longer.

Among fixed-seed identical training runs, ResNet56 incurs the largest relative training
time difference (145.3%) when using the best-accuracy selection criterion. This means
that the deviation caused by random computation errors can lead to significantly different
optimization paths, hence different convergence time.

Finding 4: Training time varies by as much as 145.3% (1 hour and 12 minutes) among
fixed-seed identical training runs, while the training time difference is up to 4,014.8%
with default identical training runs.

4.6 Researcher and Practitioner Survey

We conduct a survey to (1) understand if researchers and practitioners are aware of NI-
factors and (2) if they correctly estimate how much impact NI-factors have on DL experi-
ments.

55

4.6.1 Survey Design and Deployment

We conduct an anonymous online survey over a period of two weeks in February 2020. We
target GitHub users who committed code to popular public DL projects under the topics
TensorFlow, PyTorch, CNTK, Theano, deeplearning, and neural-network. We send 19,333
emails using Qualtrics services and receive 1,051 responses (5.4% response rate), 901 of
which are valid. Many of the email addresses are from industry (364 from Microsoft, 833
from Google, and 80 from NVidia), and from academia (797 from U.S. universities).

We take the following steps to ensure our survey of 29 questions is valid and not biased.
First, we conduct three rounds of in-person pilot studies with ten graduate students who
have worked on DL projects, and use their feedback to remove ambiguity and biases in our
initial design. The pilot studies’ participants do not participate in the actual survey.

Second, to ensure participants’ understanding, we define important terms (e.g., deep
learning, determinism, identical training runs, and fixed-seed identical training runs) in
the context of our survey before the questions. For example, we give a clear definition of
a deterministic DL system before survey questions: “We define a system as deterministic
if the system has identical accuracy or similar running time between multiple identical
runs. In the case of a DL system, identical training runs have the same training dataset,
data preprocessing method (e.g., same transformation operations), weight initializer (i.e.,
drawn from the same random distribution), network structure, loss function, optimizer,
lower libraries, and hardware.”

All questions and definitions are included in the GitHub repository whose link is pro-
vided in Section 4.1.

4.6.2 Survey Results and Findings

Participant Experience and Statistics: Of the 901 responses, 472 work in industry
and 342 work in academia. Participants have an average work experience of 6.3 years and
a maximum of 47 years. The average DL experience is 3.0 years. Over 68.6% learn AI
formally (e.g., undergraduate and graduate school) and 32 are involved with 5 or more AI
projects.

Awareness of NI-factors in DL systems: We ask Question 20: “In your opinion, are
DL systems deterministic?” to gauge the awareness that participants have of the NI-factors
(results in Figure 4.6).

56

0% 20% 40% 60% 80% 100%

Fixed-seed identical runs

Default identical runs
63.4%

31.9%

20.4%

21.8%

16.2%

46.4%
Yes Maybe No

Figure 4.6: Distribution of responses to Question 20 (Default identical runs) and Question
26 (Fixed-seed identical runs)

Finding 5: Many respondents are unaware (31.9%) or uncertain (21.8%) of any vari-
ance of DL systems; and there is no correlation between DL experience and awareness
of DL variance.

To measure the correlation between different factors, we use the Pearson correlation
coefficient (r), a statistical indicator of linear correlation between two variables (|r|=0
means no correlation, while |r|=1 suggests a strong correlation). There is no correlation
between awareness of DL variance and DL experience (r=0.03), DL educational background
(r=0.04), or job position (r=0.02). These results suggest limited awareness of variance in
DL systems regardless of experience and educational background.

Awareness of implementation-level NI-factors in DL systems: We design Ques-
tions 26: “Do you expect fixed-seed identical DL training runs to be deterministic?” to
study how aware respondents are with implementation-level NI-factors (results in Fig-
ure 4.6).

Finding 6: Most (83.8%, 755 out of 901) of our surveyed researchers and practitioners
are unaware of or unsure about implementation-level NI-factors.

There is no correlation between awareness of implementation-level NI-factors and DL
experience (r=0.03), DL educational background (r=-0.01), or job position (r=0.06).

Estimate of accuracy difference: We ask participants who answered “Yes” or “Maybe”
to Question 20 to answer Question 21: “From your experience, in the worst case, by how
much would you expect the final overall accuracy (e.g., in classification task) to vary in
terms of absolute value between identical training runs?”. Also, after Question 26, we
ask participants a similar Question 27 regarding fixed-seed identical training runs. For
those who answer “Maybe” (i.e., unsure about DL system variance), we still ask them to
estimate the magnitude of the variance. “Other” is an option to specify an explanation if
no estimate is given.

Figure 4.7 shows participants’ estimations of the overall and per-class accuracy differ-

57

0% 20% 40% 60% 80% 100%

Fixed-seed Per-Class

Fixed-seed Overall

Default Per-Class

Default Overall

63.4%

63.4%

31.9%

31.9%

12.7%

13.5%

9.3%

11.0%

9.7%

9.9%

15.4%

15.9%

7.2%

7.2%

21.1%

22.1%

No variance
(0%, 1%]

(1%, 2%]
(2%, 5%]

(5%, 10%]
(10%, 20%]

Over 20%
Others

Figure 4.7: Estimation of overall and per-class accuracy difference across default and
fixed-seed identical training runs

ences across default identical training runs (Default Overall and Default Per-Class) and
fixed-seed identical training runs (Fixed-seed Overall and Fixed-seed Per-Class). No vari-
ance indicates participants that are unaware of the nondeterminism of DL systems. Some
participants choose “Other” and state that the accuracy difference depends on the task
and network architecture.

Researchers and practitioners underestimate the magnitude of accuracy differences.
Most (80.7%) responses estimate an accuracy difference across default identical training
runs to be less than 5%.

Finding 7: Finding 2 indicates that the accuracy difference is up to 2.9% with
implementation-level NI-factors alone. However, only 10.4% of respondents expect
2% or more accuracy difference across fixed-seed identical training runs, and they
estimate similarly for per-class accuracy differences.

Estimate of training time difference: We ask participants to estimate how much the
running time to convergence varies across default and fixed-seed identical training runs
to see if their estimation matches the results from RQ3 (recall that the convergence time
differences are up to 4,014.8% among default identical training runs and up to 145.3%
among fixed-seed identical training runs).

Finding 8: Most (77.7%) participants estimate the convergence time differences to
be less than 10% across default identical training runs, and the majority of (84.5%)
respondents estimate a similar 10% or less convergence time difference among fixed-
seed identical training runs.

58

4.7 DL-Training Paper Survey

We conduct a literature survey to study the awareness of and the practice of handling DL
variance in research papers.

Paper selection criteria and study approach: We extract research articles from the
most recent top SE (ICSE’19, FSE’19, ASE’19), machine learning (NeurIPS/NIPS’19,
ICLR’20, and ICML’19), computer vision (CVPR’19 and ICCV’19), and systems (SOSP’19,
ASPLOS’19, MLSys’19) conferences. We focus on articles that were accepted for oral pre-
sentations (i.e., we exclude posters and spotlight articles), to keep the amount of manual
examination realistic, considering that over 1,000 papers are accepted per year for confer-
ences such as NeurIPS/NIPS. In total, 1,152 articles meet the above criterion. We split
conferences into SE-systems-focused (SE and systems) and AI-focused (machine learning
and computer vision) conferences to investigate whether AI papers are more likely to con-
sider this variance in their evaluation.

Two authors independently check each of the 454 randomly sampled papers to see if it
is relevant, i.e., papers that train DL models (89.3% of agreement). With 95% confidence,
28 out of 202 papers from SE-systems conferences (13.9±3%), versus 197 out of 252 papers
from AI conferences (78.1±4%) are relevant.

Paper survey results: We present the survey result as follows.

Finding 9: Of the 225 relevant papers, only 19.5±3% use multiple identical training
runs to evaluate their approaches: 25.0±4% for SE-systems conferences and 18.7±3%
for AI conferences.

These results corroborate our online survey findings, indicating that researchers rarely
consider (or have no clear solutions to measure) the impact of NI-factors. In addition,
33 papers in our sample use the same models we evaluated and report an accuracy im-
provement lower than the variance that we observed across multiple fixed-seed identical
training runs (2.9%). Most (23) of these studies do not report validation using multiple
identical training runs. Thus, the conclusions of these 23 studies are likely affected by the
variance in multiple identical training runs. This is a conservative estimate as we use the
implementation-level only variance (2.9%) instead of the overall variance (10.8%) as the
criterion.

59

4.8 Implications, Suggestions, and Future Work

Improving the stability of training implementations: Practitioners may need to
control NI-factors or replay DL training deterministically to facilitate debugging, which
are challenging tasks. As discussed in Section 4.2.4, algorithmic NI-factors are generally
straightforward to control as they are introduced explicitly using pseudo-random number
generators which can be seeded before each run. Practitioners may benefit from new
methods (e.g., deterministic GPU [116]) to control implementation-level NI-factors, which
are much harder to control because they are often byproducts of optimization.

Research reproducibility and validity: Variance introduced by NI-factors reduces the
reproducibility of DL-related experiments. Researchers should check if multiple identical
training runs are needed to ensure the validity of their experiments and comparison.

It is nontrivial to determine the number of identical runs needed, this depends on the
approaches and the baselines. One solution is iteratively performing more replication runs
when comparing to a selected baseline. The replication process can stop when statistical
tests (e.g., U-test) confirm the significance (e.g., p-value < 0.05) of the difference between
the new approach and the baseline. If after a large number of replication runs (e.g., more
than 30 runs [30]) the improvement is not statistically significant, then the variance might
be large enough such that a statistically significant conclusion about the difference between
the two techniques might not be possible. We propose such a technique (Section 4.10) to
help researchers and practitioners with this process, to reduce the manual effort to conduct
valid experiments and replicate experiments.

Approaches to improve reproducibility suggested by the SE community [90, 154, 233]
need to also consider training variance. New approaches such as efficient checkpointing
may be desirable.

Transparency is important in making sure that research is reproducible and valid.
Recently, the DL research community promoted sharing artifacts and results transpar-
ently [25, 66]. Since DL systems are nondeterministic, it is important to share the data
from the replication runs as well. One solution is maintaining a centralized trusted database
that stores these replication runs and provides authors of new approaches with baseline
results that they can directly compare to without rerunning the baseline approaches. We
are developing a tool that helps users to measure the variance of their approaches and
facilitates the comparison across approaches. Users can upload their replication packages
and results to a database, that is provided by our tool, to be curated for comparison.

Producing better models: When a DL model is the contribution (e.g., defect predic-
tion [145] or program repair [144]), practitioners could leverage variance to obtain a more

60

accurate model.

Less expensive training and variance estimation: Since DL training is expensive,
an important research direction could be less-expensive variance estimation and training
approaches such as software support for incremental training [95].

4.9 Threats to Validity

External validity: Observed results might be different for other networks. We use 6
very popular networks with diverse complexity (from 7,206 to 36,536,884 parameters) to
mitigate this issue. We encourage others (and we will strive) to replicate and enrich our
studies with different DL networks, DL training approaches, and DL libraries to build an
empirical body of knowledge about variance in DL systems. We are building a replication
tool to help the research community to share and replicate research experiments and results.

New algorithmic NI-factors can be added (e.g., new nondeterministic layers) so our list
of algorithmic NI-factors could become incomplete in the future. For fixed-seed identical
training runs, we ensure that all algorithmic NI-factors of the DL networks we evaluate
are disabled.

Internal validity: Our implementation or the libraries we used might have bugs. This
should be alleviated by that (1) all our code is reviewed by most authors of the paper [183],
(2) our results show that variance exists for all versions of all libraries we evaluate, thus
is unlikely to be caused by library bugs, (3) we focus on official releases of DL libraries,
so our runs should still be representative of real DL usage, and (4) we analyze all results,
especially outliers to ensure there were no implementation bugs.

Multiple identical training runs might produce different models (i.e., models with dif-
ferent weights) with identical accuracy and running time. Our study focuses on accuracy
and time variance, since these are the end results that users care about.

Construct validity: We ensure to target relevant participants in our survey by specifically
inviting code contributors to DL projects and asking them to confirm that they work with
DL. Respondents might not have wanted to show any perceived ignorance which could have
biased their responses. However, the strength of the responses, 83.8% being unaware or
uncertain about implementation-level nondeterminism in DL systems helps alleviate this
issue.

61

User

Variance &
comparison report

Statistical
analysis

Experiment
replication

Project code Code analyzer Important metrics Code modifier

</>

Provide Check/Modify

+

Modified project
+Select baselineView

Figure 4.8: The overview of DEVIATE.

4.10 DEVIATE: A Deep Learning Variance Testing
Framework

As suggested, DL researchers and practitioners must perform their DL training experiments
multiple times with identical settings to measure the variance of their proposed approaches
and then compute the statistical test when comparing to the baseline approaches. With
the tested results, DL practitioners can make informed choices of techniques when applying
DL properly and effectively in their applications.

While replicating identical DL experiments and measuring their variance may appear
to be straightforward, this task has many research and engineering challenges. First, it
requires extra effort to automatically monitor important metrics (e.g., epoch, accuracy,
and loss) in training source code and record them in an organized manner among iden-
tical experiment runs. Since different users tend to use different coding styles in writing
source code (e.g., a simple for loop or a dedicated method), automatically identifying the
code location that monitors training metrics is challenging. Second, once the results from
multiple experiment runs for both the proposed approach and baselines are ready, it is
nontrivial to know which statistical tests to use for analyzing the variance among multiple
runs of individual approaches and evaluating the improvements over baseline approaches
with the variance taken into account.

We introduce the DEVIATE framework 2 which addresses these challenges. Figure 4.8
shows the overview of DEVIATE. The code analyzer automatically processes the training
source code and extracts the variables where important metrics such as epoch, accuracy,

2https://https://github.com/lin-tan/DEVIATE

62

https://https://github.com/lin-tan/DEVIATE

and loss, are assigned. DEVIATE supports an option for users to double-check the ex-
tracted metrics and select only the relevant metrics if necessary. The code modifier then
injects the logging code into the original source code to record these metrics. DEVIATE
then systematically replicates the experiments multiple times with the most identical set-
ting possible. Once the experiments are completed, DEVIATE performs statistical tests
to analyze the variance of the user’s proposed approach as well as the comparison of the
proposed approaches with baselines. Hence, DEVIATE enables the reproducibility of the
proposed approach and ensures the validity of comparison results.

DEVIATE automatically analyzes the DL system source code, extracts important met-
rics (such as accuracy, loss...) that are monitored by the authors, and stores those metrics
in a consistent format. DEVIATE performs popular statistical tests (such as confidence
interval of standard deviation, MannWhitney U-test, and Cohen’s d effect size) and pro-
vides users with a report of how well the proposed technique performs in comparison to
the selected baselines.

To demonstrate the effectiveness of DEVIATE, we perform a case study with adver-
sarial training [153]. We found that apart from the standard training approaches, other
training approaches can also have large variance. For example, with the standard training
procedure, our analysis (Section 4.5) reports a difference up to 1.9% in accuracy among
16 identical training runs of ResNet56 network with fixed random seeds. However, with
a more complex adversarial training process [153] that uses Fast Gradient Signed Method
(FGSM) [92], DEVIATE measures a difference of robustness (accuracy on adversarial sam-
ples) and effectiveness (accuracy on natural samples) up to 5.1% and 2.0% in accuracy,
respectively, among only 8 identical training runs with fixed random seeds.

4.11 Summary

This work studies the variance introduced by nondeterminism in DL systems and the
awareness of this variance among researchers and practitioners. We perform experiments on
three datasets with six popular networks and find differences of up to 10.8% accuracy among
identical training runs, when excluding weak models. Even with fixed seeds, the accuracy
differences are as large as 2.9%. Our surveys show that 83.8% of surveyed researchers
and practitioners are unaware of or unsure about implementation-level variance and only
19.5±3% of papers in recent relevant top conferences use multiple identical training runs
to quantify the variance of their DL approaches. Thus, we aim to raise the awareness
of DL variance, for better research validity and reproducibility, more accurate models,

63

deterministic debugging, new research on training stability, efficient training, and fast
variance estimation.

64

Chapter 5

Mitigating Blindspots in Deep
Learning Training Data: The
N-model Approach

5.1 Motivation

Deep learning (DL) has been used in many practical tasks such as image processing [55],
speech recognition [105], and natural language processing [222]. One reason for DL’s
popularity in recent years is its ability to learn from a large amount of data and perform
tasks such as image classification even better than humans [99].

However, DL still suffers from the same problems as any other data-driven machine
learning algorithm. One such problem is that the training dataset is not representative of
the real-world application. For example, the training data for a gesture detection model
may include samples of normal hand without tattoos, but does not contain a single sample
of hands with a tattoo. Such a training dataset problem (i.e., blindspots in training dataset)
can cause the trained model to be less robust when applied to the real world [227]. The
robustness issues may lead to disproportionate error rates for different demographic groups
causing fairness concerns [40], risks in safety-critical applications and unreliable behavior
that may break user trust.

One possible way to detect such a blindspot problem is by looking at how uncertain
the trained model is when predicting an unseen sample. Specifically, there are two kinds
of test errors that a predictive model would make, the known unknowns and unknown

65

Input 1

Input 4

Input 5

Input 6

M
od

el
 1

M
od

el
 2

M
od

el
 3

M
od

el
 4

M
od

el
 5

M
od

el
 6

Input 2

Input 3

Knownspot

Weakspot

Low confidence

High confidence

Undetermined

Figure 5.1: A demonstration on how N models can provide more information to select
useful additional sample when compare to a single model. Each square shows the highest
confidence level of the corresponding model’s prediction for corresponding input.

unknowns [34]. A known unknown is an input that the model is uncertain about (i.e.,
low-confidence prediction). Figure 5.1 shows examples of such known unknown errors.
Specifically, with respect to Model 1, a test Input 1 is a known unknown if Model 1 is
uncertain about its prediction (i.e., low-confidence prediction which is presented with the
orange color box). This means, a low-confidence prediction (i.e., known unknown) would
indicate a blindspot sample (i.e., a sample that cannot be generalized from the training
data). We call such samples knownspots. An unknown unknown, on the other hand, is
an input that the model makes an unknowingly incorrect prediction with high confidence.
Figure 5.1 shows examples of some high-confidence prediction. Specifically, with respect to
Model 1, Inputs 3 to 6 have high confidence (presented with blue color boxes). However, a

66

high-confidence prediction might also indicate that the unseen sample can be generalized
from the training data. We call samples with high-confidence predictions undetermined
since, without ground truth labels, it is not possible to know if high-confidence samples
can be helpful in improving the model. In general, based on predictions from the Model
1 (a single model), Input 1 and 2 from Figure 5.1 are considered useful additional data to
improve such a model.

In general, it is not possible to detect or address the “strong” blindspots (e.g., gesture
detection training data does not contain a single sample of hands with a tattoo) by just
analyzing the trained model, since the model only has access to the same flawed training
data. However, if the blindspots are “weak”, the predicted confidence can sometimes
indicate weakspot samples as known unknowns. Here, we consider a blindspot as weak (or
weakspot) when there are weak signals that can help the model to learn. For example, these
weak signals could be a few samples of the weakspot subcategories in the training data (e.g.,
gesture detection training data contains only a few samples of hands with tattoo) or similar
features within a class that a model can learn when a subcategory is missing completely
(e.g., ray fish samples have the similar water background as some other fish samples).
However, due to the stochastic nature of the optimization process, if we only analyze a
single trained model, depending on the optimization path, such weakspot samples might
still be considered as undetermined (e.g., Input 3 in Figure 5.1 is considered undetermined
if we only analyse Model 1 on its own). Instead, we should analyze across multiple training
runs. Then the variance of the confidence when predicting an unseen samples can indicate
weakspot samples. For example, Input 3 in Figure 5.1 would represent a weakspot since it
is considered as known unknown for Model 2, 3, and 5 while it is not considered as known
unknown for Model 1, 4, and 6.

Intuitively, for each training run, the optimizer would select a different local optimum.
From our observation, there are test samples that are correctly predicted consistently across
multiple models (i.e., with a low variance of confidence level across multiple models) which
are well generalized from the training data. This observation is consistent with recent
research of the core set [203]. However, some samples are predicted with large variance
in confidence (inconsistent samples). These samples could belong to the underrepresented
subcategories (e.g., the “ray” fish in the example above) and each local optimum has
to make compromises to focus on a few of those samples. Such samples could indicate
weakspots (i.e., missing subcategories) in the training dataset. This is consistent with
prior work which shows that training DL models with different random seeds produce
different models that perform differently [183].

Building on this result, we propose a more general approach that is not reliant on
strategic dropout layers or specific neural network architecture (e.g., convolutional neural

67

network, recurrent neural network, reinforcement learning) [81], and thus can be applied to
any deep learning model as a black box method. Our N model approach uses the stochastic
process of training to estimate the uncertainty of the prediction by computing the variance
of the confidence across the sample of multiple models (i.e., trained with different seeds)
instead of measuring the uncertainty using only one model. Our approach can detect
weakspots because of the stochastic nature of the DL optimizer (i.e., stochastic gradient
descent) and the nonconvex nature of the optimization problem (e.g., image classification)
leading to weakspot samples to be unknown unknown on one training run but known
unknown on another.

To evaluate the proposed N model approach, we follow prior work [196] and first create
candidate holdout training datasets that could contain weakspots of different severity by
removing (i.e., holding-out) all or a portion of data samples of specific subcategories (e.g.,
“ray” samples from “fish” category). We then further analyze those candidate holdout
datasets to measure the severity of the introduced weakspots. We found that removing
certain subcategories such as “maple tree” from the “tree” category does not affect the
generalization of the trained model when classifying “maple tree” test samples (accuracy
drop of only 4.6%). However, when removing “mushroom” samples from the “fruit and
veggie” category, the trained model can not predict well the “mushroom” sample (accuracy
drop of 70.1%). Such analysis indicates that the holdout dataset of “mushroom” containts
a more severe weakspot when compared to the holdout dataset of “maple tree” (Finding
0).

We then perform experiments to answer the following research questions:

• Can an input-sample score with N models better indicate a dataset weakspot sample
than a traditional score?

• Can incorporating the multiple models analysis in the development process improve the
DL model with retraining?

• Can analysis of samples with high variance reveal the characteristic of the blindspots?

The experiments show that our N model approach is able to detect weakspot samples
better than a single model approach (Finding 1). By applying retraining, our N model
approach improves the holdout test accuracy by up to 25.2% with only 2% added training
data (Finding 2). In our qualitative analysis, we find that by inspecting the unseen sam-
ples with high uncertainty across multiple models with the help of attention visualization
methods such as Grad-CAM [201], the developers could gather some insight into why the
model fails to generalize and how to improve the model.

In this chapter, we make the following contributions:

68

• A new procedure that leverages the variance of training N models to detect and mitigate
the weakspots in training data

• A set of training datasets with artificially induced weakspots along with the analysis of
their characteristics (Finding 0)

• An evaluation of the N model ranking metrics that shows:

• Finding 1.a: N model metrics are effective at predicting weakspot samples in
scenarios where the weakspots in the training data are severe.

• Finding 1.b: N model metrics are better indicators of blindspot samples comparing
to the single model metric on average and in the worst case.

• An evaluation of the N model retraining procedure that shows:

• Finding 2.a: The ranking based on the variance of predictive confidence enables
retraining to gain the most holdout accuracy in scenarios where the original training
data have a significant weakspot (up to 25.2% with just 2% of additional data).

• Finding 2.b: The ranking based on the variance of predictive confidence does not
affect the test accuracy in other classes after retraining.

• A qualitative analysis of the “ray” weakspot scenario that shows the benefit of investi-
gating high variance input samples to reveal insights that help DL developers improve
their training dataset and model.

5.2 Approach

Our N model approach leverages multiple models to rank and select the most useful un-
labeled samples that can provide useful information for DL deverlopers to improve their
training dataset. Additionally, these samples can be added to the original training data to
improve the original models with additional training. Our approach applies both uncer-
tainty based and consistency based ranking to select the least amount of additional data
(reducing the labeling cost) while improving the original model the most.

5.2.1 Ranking Unlabeled Samples

During the DL model development, one way that the developers could improve their model
is to examine validation samples that perform badly (e.g., incorrectly classified with very

69

low model confidence on the ground-truth label). By analyzing such input samples, the
developers would have some ideas on how to improve the model. For example, one might
realise that the badly performing input samples might be important use cases that are
under-represented in the training data. By collecting more inputs of such use cases, the
model might perform better after retraining. Since the manual effort of examining the badly
performing samples is costly, the higher problematic samples are ranked in the examination
priority list, the less manual effort would be needed.

Single model confidence score: One traditional ranking metric is the confidence level
of the predicted label. A low confidence level might indicate that the model has difficulty
recognizing similar samples. However, low confidence levels could be due to many reasons,
including limitations of the model. If we aim to detect samples that indicate a training
data problem, a single score of a single model might not be the best metric.

Average of N models confidence score: As mentioned previously, DL model training
is not deterministic. Different training runs of different random seeds will produce different
models with different predictions. This is because the optimizer selects different optima
each run due to different starting conditions. Hence, a more consistent metric to indicate
a problematic sample is the average confidentce level across N models from the N different
training runs.

Variance of N models confidence score: From our observation, there are a set of
samples that is correctly predicted consistently across multiple models (consistent samples).
This observation is consistent with recent research on core sets [203]. However, there are
samples that are predicted correctly by only a few models (inconsistent samples). These
samples could be “harder samples” to predict and each local optimum makes compromises
to focus on a few of those samples. A metric that measures the variance of confidence
levels across N models could be a good metric to indicate such “harder samples”.

5.2.2 Investigating Interesting Unlabeled Samples

One way to benefit from ranking scores is to manually investigate highly ranked samples
to find useful insights on how to improve the training dataset (e.g., those examples might
indicate an under-represented population data that is missing from the training dataset).
In this work, we evaluate such a usecase of the ranking scores by computing the predictive
power of the holdout sample (i.e., how well they detect the weakspots that are artificially
introduced.)

70

Rank

Train ...

Retrain

Retrain

...

additional data

ranked unlabeled
data

unlabeled
data

training
data

...

N models N improved
models

training
data

+
additional

data

Figure 5.2: The retraining process to improve a DL system with additional training data

5.2.3 Retraining to Improve DL Model

Another less labor intensive way to benefit from the ranking scores is to apply them, as
acquisition functions, to a retraining process that is similar to the traditional active learning
procedure. Figure 5.2 shows the overview or our retraining process. The original training
data (green box) is used to train the initial models. The ranking of a separate unlabeled
data (yellow box) is computed based on the trained models. In the case of the average
confidence score acquisition function, the lower the score (i.e., average confidence levels),
the higher rank the sample will be, thus would be likely to be selected in the retraining
step. In the case of the confidence score standard deviation acquisition function, the
higher the score (i.e., the variance), the higher rank the sample will be. For the N model
procedure, these rankings are shared across all original models, however, for the single
model procedure, the ranking is specific to each individual model. Once the unlabeled
data is ranked, a portion of the top ranked unlabeled (blue box) samples are selected to be
labeled and added to the original training data. This new extended training data is then
used to train the original models with additional iterations to obtain the final models.

In both processes (single model and N model ranking), the retraining process will create
multiple models. In the case of the single model ranking, these models represent multiple
identical runs of the same retraining algorithm. We evaluate these using their average to
show the performance on average of the single model ranking metric. In the case of the N
model ranking, one of the models can be selected as the improved production system or
they can be used in an ensemble. In this work, we calculate the average accuracy across
the models to show the improvement of the new dataset with added data.

71

Table 5.1: Coarse-classes and corresponding sub-classes

Coarse-class Sub-classes

aquatic mammal beaver dolphin otter seal whale

fish aquarium fish flatfish ray shark trout

flower orchid poppy rose sunflower tulip

fruit and veggie apple mushroom orange pear sweet pepper

insect bee beetle butterfly caterpillar cockroach

medium mammal fox porcupine possum raccoon skunk

people baby boy girl man woman

reptile crocodile dinosaur lizard snake turtle

small mammal hamster mouse rabbit shrew squirrel

tree maple tree oak tree palm tree pine tree willow tree

5.3 Experimental Settings

Data set and blindspot scenarios construction To evaluate our approach of improving
DL system when there exist weakspots in the training data, we first need to create artificial
scenarios where such weakspots are injected into the training data. We first select an
original dataset that represent the complete real-world. To create a training set with an
induced weakspot, following prior work [196], we artificially remove samples of a specific
holdout subclass (e.g., ray fish images) which belong to a coarse class (e.g., fish images)
from the original training dataset. The test set simulates the real-world application and is
the same across all scenarios. This way we can evaluate and compare the effect of various
training data issues on the same test set.

Holding out a subset of the training data does not guarantee the creation of weakspots
since the remaining samples could provide enough information for the model to generalize.
For example, a DL model could learn features from adult faces and generalize well with
faces of boys and girls. So, to validate that each holdout dataset indeed contains weakspots,
we train a DL model on each holdout dataset and measure the performance of the model
on the holdout test set. For example, we would remove a portion of the training images of
the ray fish to create a holdout dataset of the ray fish. We then evaluate the trained model
on a holdout test set containing only test images of the ray fish. If the amount of removed
ray images from the training data correlate with the drop in the model accuracy on the
test holdout set, we successfully inject weakspots in the holdout scenarios of ray fish.

Since it is difficult to get a perfect dataset that represents a real-world distribution, we
use an existing dataset as an alternative to a real-world distribution. In this case, we select
CIFAR100 [126] dataset for its popularity and manageable size as well as its hierarchical

72

label structure, which facilitates the creation of realistic weakspots in the training datasets.
ImageNet is another popular dataset with hierarchical labels, but since it is much more
expensive to train ImageNet models, using such a larger dataset would reduce the number of
scenarios that we could explore. CIFAR100 has 60,000 images, but with 20 coarse-classes,
each has 5 sub-classes for a total of 100 sub-classes. Of the 20 coarse-classes, we select
10 coarse-classes that visually represent their sub-classes. For example, we remove the
coarse-class “large man made outdoor things” which contains “bridge”, “castle”, “house”,
“road”, “skyscraper” because these sub-classes are not visually similar. Table 5.1 shows
the 10 selected coarse-classes and their sub-classes.

Training and retraining settings For each scenario, we train 25 models with the same
training data but with different random seeds. We then evaluate the 25 models using the
test sets.

We use a popular ResNet18 network as our experimental DL architecture because of its
faster training time without too much accuracy compromise. While we believe the results
should generalize, extending the approach to other DL architectures remains as future
work.

The ResNet18 models are trained initially with 150 iterations, and later in the retraining
step, are trained with additional 50 iterations. The optimizer is started at the correct
training iteration, so that the correct learning rate according to the scheduler is selected
to prevent the optimization process from updating the parameters too aggressively, which
can create sub optimal retrained models.

Hardware and software The experiments are run on a cluster with Tesla V100 GPUs.
We use Python 3.6 with Pytorch 1.4 to train and retrain the models. Overall, it took over
a week on the 32 GPU cluster to run all experiments.

5.4 Results and Findings

First, we perform experiments to analyze the characteristic of the artificial weakspot sce-
narios RQ0). Second, we investigate if input-sample scores with N models better indicate
a dataset weakspot sample than a traditional score. Third, we perform retraining using
those ranking scores to see which scores provide the best improvement given the same
resources. Finally, we discuss an usecase of analyzing the samples with high variance to
reveal insight that can help developers improve their training data.

73

C5

C2

C7
C6C0

C9

C3

C4
C8

C1

-70%

-60%

-50%

-40%

-30%

-20%

-10%

0%

60% 70% 80% 90% 100%

Figure 5.3: The clustering of 50 sub-classes based on the holdout accuracy drop and original
holdout accuracy when they are used as 100% holdout sub-classes.

5.4.1 RQ0: Are All Holdout Scenarios Blindspot Scenarios?

To evaluate our approach of improving DL systems that suffered from blindspots in the
training data, we first create holdout scenarios by removing training samples of sub-classes
in the CIFAR-100 dataset. Specifically, we create 11 holdout scenarios (varying in the

74

holdout portion from 0% to 100% with interval of 10%) for each of the selected 50 sub-
classes, for a total of 550 scenarios.

For each holdout scenario, we train 25 ResNet18 models to predict the ten coarse labels.
We then calculate the average accuracy of these trained models on the holdout test set.

Figure 5.3 shows the clustering of the 50 sub-classes with respect to their holdout test
accuracy. The x-axis represents the original holdout test accuracy (i.e., holdout portion
of 0%) and the y-axis represents how much the original accuracy drops in the complete
holdout scenario (i.e., holdout portion of 100%). We notice that the removal of some
sub-classes does not affect the holdout test accuracy as much as some other sub-classes.
For example, sub-classes of cluster 1 have a small drop in holdout accuracy of less than
10%. This result makes sense since human faces are quite general across age groups and
genders, hence, the DL model generalizes well with the remaining sub-classes. That means
removing all training images of girl from the people coarse-class does not greatly reduce
the trained model holdout test accuracy, as they are generalized well enough to recognize
a girl as a person even if they have only been trained on images of boy, man, woman, and
baby. These holdout scenarios do not represent a blindspot scenario in our study, as the
missing samples do not induce much loss in the models’ performance.

On the other hand, cluster 5 has a very large drop in accuracy: around 70%. Sub-
classes such as mushroom are quite different from other sub-classes such as apple, orange,
pear, sweet pepper in the fruit and vegetable coarse class. That means removing training
samples of the mushroom reduces the model’s ability to recognize the images of mushroom
as fruit and vegetable. These kinds of holdout scenarios represent blindspot scenarios where
the missing samples have a significant impact on the model accuracy and these would be
scenarios where we want to focus our effort on improving.

Finding 0: Different holdout scenarios with different holdout classes have different
blindspot severity. Removing all sample of subclasses in cluster C1 induces at most a
10% accuracy drop. However, removing all samples of subclasses(such as mushroom)
in cluster C5 induces a large accuracy drop of up to 70%.

5.4.2 RQ1: Can Input Sample Scores with N Models Better In-
dicate a Dataset Blindspot Sample than Traditional Single
Model Scores?

We hypothesise that the ranking scores could be used to rank the unseen samples so that
the more related samples to the weakspots appear higher than the unrelated ones. To test

75

Figure 5.4: Box plot of AUC when using N models metrics to detect blindspot samples

this hypothesis, we apply the ranking scores to our artificially generated weakspot scenarios
where we know the holdout samples are the injected weakspots. We then measure how
well the ranking scores can detect such holdout samples (i.e., assigning higher ranking to
holdout samples when compare to other sub-classes) by computing the Area Under the
Receiver Operator Characteristic Curve (AUC).

Specifically, in this RQ, we investigate if N model metrics such as the variance and the
average of predicted confidence levels across N models can indicate a weakspot samples
and if they are better than the single model metric. Figure 5.4 shows the box plot of the
AUC for each cluster of holdout classes when using the N model metrics—the variance
(SDev-Conf) and the average (Avg-Conf) of predicted confidence levels across N models.
The clusters are sorted with increasing effectiveness (i.e., AUC) of the metrics.

For clusters C9 and C0, the N model metrics are quite effective in detecting blindspot
samples (with median AUC of more than 70%). This is a good indication that N model
metrics can be used to indicate if a test sample represents a blindspot or not, as C9 and
C0 are two clusters of holdout classes where there exists a blindspot in the training data
(i.e., we see a large drop of 40-50% in accuracy when those samples are removed from the
training data—refer to RQ0 for details).

76

Figure 5.5: Average AUC across all holdout classes in cluster C0 when using different
metrics

On the other hand, for clusters C1 and C8, the metrics are not effective in predicting
the blindspot samples. This is consistent with the fact that for scenarios in clusters C1 and
C8, the accuracy drops are small (less than 10%), indicating that the blindspot does not
exist in the training data. Without a blindspot in the training data, it is understandable
that the metrics would not be able to indicate the holdout samples.

One main observation that we have is the effectiveness of our N model metrics in
predicting holdout samples seems to correlate to the original accuracy of the holdout sub-
classes. This is shown by the matching of the clusters order in Figure 5.4 and the x-axis
order of the clusters in Figure 5.3. We hypothesize that if the model is less accurate
on a sub-class (e.g., in cluster C0), the N model training process is more likely making
compromises and enables our N model based metrics to perform better. For more accurate
sub-classes (e.g., in cluster 1), the variance is more likely smaller, which makes our N model
metrics less effective. In this case, cluster C5 has the largest accuracy drop in Figure 5.3.
However the N model ranking on scenarios in this cluster is average, which is correlated
with their average holdout sub-classes’ original accuracy.

Finding 1.a: N model metrics are effective at predicting blindspot samples in sce-
narios where the blindspots in the training data are severe (e.g., in clusters C0 and
C9). On the other hand, they are less effective in scenarios where the severity of the
blindspot are very low (e.g., in clusters C1 and C8).

To see if the N model metrics are better in predicting the blindspot samples, we compare

77

Table 5.2: Average holdout accuracy increase after retraining with 2% additional data for
scenarios with 100% holdout ratio

Cluster Random
1-model N-models

Conf Avg-Conf SDev-Conf

C1 0.4% 1.2% 0.9% 1.1%
C8 2.6% 5.9% 6.1% 5.2%
C3 3.1% 6.3% 7.0% 5.9%
C6 10.7% 20.0% 22.7% 20.7%
C5 7.6% 20.7% 24.7% 25.2%
C7 3.7% 9.7% 11.3% 10.9%
C2 9.0% 18.5% 20.4% 21.2%
C4 1.4% 3.7% 3.8% 3.4%
C9 2.0% 5.2% 6.3% 5.4%
C0 3.5% 6.7% 7.2% 6.6%

the AUC of N model metrics with the AUC of single model metric. Figure 5.5 shows the
average AUC across all holdout classes of cluster C0 with different holdout ratio for both
N model metrics (Avg-Conf and SDev-Conf) and single model metric. Because there are
25 models, we show the average case (Median-Conf) and worst case (Worst-Conf) of the
single model metric. The N model metrics have on average 5% better AUC than the
average single model metric and over 10% better AUC than the worse single model metric.
One could say that our method could be less effective than the best single model, however
in practice it is not possible to know which is the best model without knowing the ground
truth. So in this case, our N model metrics out perform the single model in most cases.
The figure also shows that the more severe the blindspot (i.e., higher holdout ratio), the
better the metrics at predicting blindspot samples.

Finding 1.b: N model metrics are better indicators of blindspot samples compared
to the single model metric on average and in the worst case.

5.4.3 RQ2: Can Incorporating Multiple Model Analysis in The
Development Process Improve The DL Model with Re-
training?

One way to improve a DL system is to add additional training data. However, labeling
training samples is an expensive process. Instead, we can use the metrics we evaluate
in RQ2 to rank and prioritize examples to be labeled, so that we can improve the DL

78

model with retraining with additional data using minimum labeling effort (more details in
section 5.2.3)

For this RQ we use random selection as the baseline acquisition function (i.e., we rank
the unseen samples to add with random scores). For the single model, each of the N models
has its own acquisition function based on its predicted confidence of the unseen samples
(Col. Conf). Finally, the two acquisition functions based on N models are the average
predicted confidence (Col. Avg-Conf) and the standard deviation of predicted confidence
(Col. SDev-Conf) across N models. Table 5.2 shows the average improvement from before
retraining (over the N = 25 models) to after retraining with just additional 2% of data
in the scenario where all of the samples of the holdout sub-class are excluded from the
original training data. The improvement is shown as the average absolute holdout sample
test accuracy gain after retraining across holdout classes in each cluster.

Overall, cluster C5, C6, C2, and C7 gain the most (between 11.3% and 25.2%) after
retraining since they suffer the most when the holdout classes are removed (between 40%
and 70%). For all clusters except one (i.e., C1), N models acquisition functions out per-
form random and single model functions. Especially for C5, the variance of the predicted
confidence acquisition function improve the models on average almost 5% better than the
single model one.

For cluster C1, where the training data does not have a significant weakspot (i.e., the
holdout accuracy drop is the smallest among all clusters), the N model ranking metric can
still improve the model with performance similar to the performance of the single model
acquisition function. This indicates that the original training data, even though missing
samples from an entire sub-class, does not contain significant weakspots: the models were
able to be generalized from the samples of the remaining sub-class.

Figure 5.6 shows the holdout test accuracy gain after retraining with different portions
of additional training data when using the standard deviation of the predicted confidence
for sample ranking. The portion of additional data is in relation to the size of the original
training data, however, in total, the available additional data is 10% of the original training
data. This means that the maximum gain the retraining can achieve is with 10% of
additional data (i.e., 100% of the available additional data). The gain trend shows that
with only 20% of available additional data (i.e., 2% of additional data), the retraining
with the N model ranking metric can achieve nearly the maximum potential of the whole
available additional data.

Finding 2.a: The ranking based on the variance of predictive confidence enables
retraining to gain the most holdout accuracy in scenarios where the original training
data have a significant weakspot (up to 25.2% with just 2% of additional data).

79

Figure 5.6: The holdout test accuracy gain after retraining using SDev-Conf ranking with
different amounts of additional data in scenario with 100% holdout ratio

Figure 5.7 shows the non-holdout test accuracy gain after retraining with different
portions of additional training data when using the standard deviation of the predicted
confidence for sample ranking. This result shows that the N model variance metric improves
the holdout accuracy significantly with just 2% additional training data, furthermore it
does not affect the accuracy of non-holdout classes. At 5% of additional data, there is
some small negative effect of at most 0.4% decrease in non-holdout classes’ accuracy for
some clusters (e.g., C6 and C4)

Finding 2.b: The ranking based on the variance of predictive confidence does not
affect the test accuracy in other classes after retraining.

5.4.4 The “ray” Fish: A Use-Case of Leveraging Analysis of
Samples with High Variance

To understand whether detailed analysis of the sample with high variance can give some
insight on the nature of the weakspots, we apply a state of the art visualization tool Grad-
CAM [202] to visualize the variance across multiple training runs. Specifically, Grad-CAM
leverages the gradient information in the hidden layer to create a heat map that highlights
important features which contribute to the decision made by the DL models.

80

Figure 5.7: The non-holdout test accuracy gain after retraining using SDev-Conf ranking
with different amounts of additional data with 100% holdout ratio

Figure 5.8: The holdout test accuracy drop as the holdout ratio is increased

In our experiments, one of the most interesting holdout sub-classes is the “ray” in the
“fish” class. Comparing to other types of fish such as “aquarium fish”, “flatfish”, “shark”,
or “trout”, the “ray” fish has very different shape and looks distinctively different. Thus,

81

(a) Input image

(b) Avg (0%) (c) Avg (100%)

(d) Max-diff(0%) (e) Max-diff(100%)

Figure 5.9: Original input images of a “ray” fish and the average and maximum difference
GradCAM for 0% and 100% holdout ratio.

when we perform the holdout experiment, we expect the accuracy to drop as we remove
more and more examples of “ray” images from the training data. However, as shown
in figure 5.8, the “ray” holdout test accuracy drops initially similar to the holdout class
“mushroom”, but at 50% holdout ratio, unlike “mushroom”, the “ray” accuracy stops
reducing and only drops to 43%, even when the ratio reaches 100% (i.e., there is no “ray”
images in the training data). This finding leads us to suspect that the models may have
used a non-“ray” related feature to classify the “ray” images as “fish”.

To investigate whether our suspicion is correct, we apply Grad-CAM to extract the
feature heat map of “ray” fish in the test set for each trained model. We then compute the
average and maximum difference heat map for those “ray” images. Figure 5.9 show the
heat maps for the same image in figure 5.9a for models that have access to the full training
dataset and models that were trained on training dataset with “ray” images completely
removed. In the Grad-CAM images (figures 5.9b, 5.9c,5.9d,5.9e), the purple color indicates
high values (i.e., high feature focus or high variance of feature focus) and the cyan color
indicate the low values (i.e., low feature focus or low variance of feature focus).

Figure 5.9b shows the average Grad-CAM heat map across multiple models trained with
a full dataset (i.e., 0% holdout ratio). In this heat map, the purple area is on top of the ray
fish, indicating that the models are focusing on the actual fish to make the classification.

82

However, Figure 5.9c shows that the models focus more on the water surrounding the fish
(i.e., indicating by the purple area around the fish) when there is no “ray” images in the
training data (i.e., 100% holdout ratio). This explains the higher-than-expected accuracy
(over 40%) even though no “ray” images are used in training, because the model learns to
use the water to predict a “ray” image as a fish.

Figure 5.9d shows the maximum difference between Grad-CAM heat maps across mul-
tiple models trained with a full dataset. The whole image is covered in similar colors
indicating that the differences between focus of different models are small. However, fig-
ure 5.9e shows that, when no “ray” images are used to train the model, the models are in
more conflict on whether to use the fish to predict the label (indicated by the more distinct
purple ring around the “ray” fish).

This is a use case where these detailed analysis of average and maximum difference
between model focuses gives us more information and potentially can help DL model
developers detect and pinpoint a weakspot problem with their training dataset.

5.5 Summary

DL systems can work well in the real world. However, they can suffer from the data
blindspot problem where the training data misses samples from the real world distribution.
It is difficult to detect such blindspots since the model may consider these samples unknown
unknowns (i.e., it unknowingly classifies such samples incorrectly with high confidence).
However, in practice, a weaker form of blindspot can also be a problem (i.e., the training
data contains some samples that represents the real world but it does not contain enough).
Our N models procedure leverages the variance of the DL training process to detect such
data weakspots and help with the selection of additional training instances to improve
the DL system with minimum labeling effort. Our evaluation shows that, in scenarios
where the weakspots are severe, our procedure improves the model accuracy on weakspot
samples by 25.2% requiring 2% of additional training data. This is an improvement of 4.5
percentage points compared to the traditional single model metric with the same amount
of additional training data.

83

Chapter 6

Future Work

The projects in this thesis could be further supported and expanded with the following
future work. Section 6.1 details future work on DL software systems debugging, Section 6.2
lists some possible exploration of DL systems automatic repair. Finally, Section 6.3 pro-
poses potential directions to perform variance aware hyperparameter optimization.

6.1 Deep Learning Software Systems Testing and De-

bugging

CRADLE can detect real bugs in DL libraries by applying differential testing, however, it
makes several compromises. Specifically, it requires more than one equivalent DL library
to work. One direction that can remove such limitation is to utilize other equivalent
concepts such as equivalent model/network, equivalent optimizations, or equivalent data
formats to expand the differential testing that CRADLE can do. For example, in compiler
testing, differential testing was able to detect bugs in optimization code by introducing dead
branches to create equivalent programs [135, 136, 252]. One can apply similar concepts to
add “dead branches” to DL models (i.e., the portion of the models that does not impact the
final outcome but does interact with optimization code such as pruning or compression).

Another CRADLE’s drawback is that it only tests inference code due to nondetermin-
istic training [183], which makes differential testing challenging, because one can not tell if
the detected inconsistency is caused by the variance induced by the software implementa-
tion or a software bug. One obvious solution is to enable deterministic training. However,

84

deterministic training does not support some networks and configurations. Another poten-
tial solution to this challenge is to test partial training steps (e,g., only backpropagation—
gradient computation—is enabled but no weight updating).

CRADLE can detect real DL libraries bugs that affect real models with real inputs,
however, this limits the number of bugs CRADLE can detect. Our other work [240] is able
to detect many critical DL libraries bugs by fuzzing DL libraries Application Programming
Interface (API) inputs that conform or violate the extracted constraint from the API
documents. However, such bug-triggering inputs are only for one internal API that might
not trigger a bug in a real DL system even if such systems contain the buggy API. One
possible improvement is to generate bug-triggering inputs to a whole DL system given
the specific API bug-triggering input to a particular buggy API. This could be done by
applying optimization [163] to the model input such that the input to the buggy API is as
close to the API bug-triggering input as possible.

6.2 Deep Learning Systems Automatic Repair

Bugs detected by CRADLE require the attention of a developer to investigate and fix.
An automatically generated quick fix would be beneficial to keep the DL functional until
a proper fix is developed. Since DL systems are networks of mathematical formulas, one
can create a quick fix by modifying the network (e.g., adding a dense layer after the buggy
layer) and applying some fine-tuning so that the different libraries would produce matching
outputs. For example, for the batch normalization bug that CRADLE found, one could
add additional dense layers after the faulty CNTK’s batch normalization layers. Once these
additional layers are fine-tuned with the output of TensorFlow’s model as the optimization
goal, the additional layers would act as a temporary patch until a fix can be added to the
source code of the faulty library.

6.3 Variance Aware Deep Learning Hyperparameter

Optimization

Recently, the rise of complex and computationally expensive DL models with many hy-
perparameters has resulted in a resurgence of research on hyperparameter optimization
(HPO). It is widely acknowledged that optimized hyperparameters often provide better
models than the default settings [78]. Such HPO and the recent AutoML approaches often

85

base their selection on the evaluations of the candidate settings. Given the cost of training
DL models, such approaches usually perform a single evaluation run for each candidate
setting. However, the variance caused by DL libraries [183, 186] could potentially cause
the selection to be suboptimal and in turn, reduce the effectiveness of the optimization
methods. The research community could benefit from a study that quantifies how much
variance would the implementation introduce to approaches such as HPO or AutoML. If
the variance is significant, developing variance-aware HPO or AutoML approaches could
be the next step. One could integrate the observed variance into an optimization approach
such as Bayesian optimization. One could optimize this further by developing estimation
methods to approximate the variance and mitigate the cost of having to run multiple
expensive training runs.

86

Chapter 7

Conclusion

This thesis proposes techniques that help improving the DL system reliability for all stages
of the development process: detecting bugs in the inference stage, analyzing the variance
of DL training, and detecting and mitigating blindspots in DL training data.

In Chapter 3, we propose CRADLE, which that improves the reliability of the DL sys-
tem inference by applying differential testing to find bugs in DL libraries. CRADLE focuses
on finding and localizing bugs in DL software libraries by performing cross-implementation
inconsistency checking to detect bugs, and leveraging anomaly propagation tracking and
analysis to localize faulty functions that cause the bugs. CRADLE detects 12 bugs in three
DL libraries, and highlights functions relevant to the causes of inconsistencies for all 104
unique inconsistencies

In Chapter 4, we present the first study of the variance of DL systems training and
the awareness of this variance among researchers and practitioners. The study shows
implementation-level factors alone cause the accuracy difference across identical training
runs to be up to 2.9%. The survey shows that 83.8% of the 901 participants are unaware
of or unsure about any implementation-level variance. The study and surveys aim to
raise awareness of DL training variance while the tool improves the reproducibility of DL
software and results.

In Chapter 5, we evaluate a new procedure to detect weakspots in training data and to
improve the DL system with minimum labeling effort. The result shows that this procedure
improves the model accuracy on weakspot samples by 25.2% while requiring the same 2%
of additional training data.

Collectively, these projects contribute to improve the reliability of deep learning soft-
ware systems.

87

References

[1] Cat vs. Dog Models. https://github.com/rajshah4/image_keras, 2017.

[2] Anime Face Dataset. http://www.nurs.or.jp/~nagadomi/

animeface-character-dataset, 2018.

[3] BetaGo: AlphaGo for the Masses. https://github.com/maxpumperla/deep_

learning_and_the_game_of_go, 2018.

[4] Dog Model. https://github.com/humayun/dl-dataday-workshop, 2018.

[5] Gender Model. https://github.com/oarriaga/face_classification/, 2018.

[6] Model Weights File of Dog Project. https://github.com/humayun/

dl-dataday-workshop/blob/master/code/dog_project/saved_models/

weights.best.from_scratch.hdf5, 2018.

[7] Pokedex. https://github.com/Robert-Alonso/Keras-React-Native-Pokedex,
2018.

[8] Taryn Southern’s new album is produced entirely
by AI. https://www.digitaltrends.com/music/

artificial-intelligence-taryn-southern-album-interview/, 2018.

[9] Thai Handwriting Number. https://kittinan.github.io/

thai-handwriting-number/, 2018.

[10] The Data Incubator. https://github.com/thedataincubator/

data-science-blogs/blob/master/output/DL_libraries_final_Rankings.csv,
2018.

88

https://github.com/rajshah4/image_keras
http://www.nurs.or.jp/~nagadomi/animeface-character-dataset
http://www.nurs.or.jp/~nagadomi/animeface-character-dataset
https://github.com/maxpumperla/deep_learning_and_the_game_of_go
https://github.com/maxpumperla/deep_learning_and_the_game_of_go
https://github.com/humayun/dl-dataday-workshop
https://github.com/oarriaga/face_classification/
https://github.com/humayun/dl-dataday-workshop/blob/master/code/dog_project/saved_models/weights.best.from_scratch.hdf5
https://github.com/humayun/dl-dataday-workshop/blob/master/code/dog_project/saved_models/weights.best.from_scratch.hdf5
https://github.com/humayun/dl-dataday-workshop/blob/master/code/dog_project/saved_models/weights.best.from_scratch.hdf5
https://github.com/Robert-Alonso/Keras-React-Native-Pokedex
https://www.digitaltrends.com/music/artificial-intelligence-taryn-southern-album-interview/
https://www.digitaltrends.com/music/artificial-intelligence-taryn-southern-album-interview/
https://kittinan.github.io/thai-handwriting-number/
https://kittinan.github.io/thai-handwriting-number/
https://github.com/thedataincubator/data-science-blogs/blob/master/output/DL_libraries_final_Rankings.csv
https://github.com/thedataincubator/data-science-blogs/blob/master/output/DL_libraries_final_Rankings.csv

[11] TrafficSigns1 Model. https://github.com/jaeoh2/

CoreML-Traffic-Sign-Classifier, 2018.

[12] TrafficSigns2 Model. https://github.com/inspire-group/advml-traffic-sign,
2018.

[13] TrafficSigns3 Model. https://github.com/MidnightPolaris/gtsdb_cnn, 2018.

[14] ASE ’19: Proceedings of the 34th ACM/IEEE International Conference on Auto-
mated Software Engineering, 2019.

[15] ASPLOS ’19: Proceedings of the Twenty-Fourth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems, 2019.

[16] CVPR’19: Proceedings of The IEEE Conference on Computer Vision and Pattern
Recognition, 2019.

[17] ESEC/FSE ’19: Proceedings of the 27th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering,
2019.

[18] ICCV’19: Proceedings of The IEEE International Conference on Computer Vision.
IEEE Press, 2019.

[19] ICML’19: Proceedings of The International Conference on Machine Learning, 2019.

[20] ICSE ’19: Proceedings of the 41st International Conference on Software Engineering.
IEEE Press, 2019.

[21] MLSys’19: Proceedings of Machine Learning and Systems, 2019.

[22] NIPS’19: Proceedings of the 33rd Conference on Neural Information Processing Sys-
tems, 2019.

[23] SOSP ’19: Proceedings of the 27th ACM Symposium on Operating Systems Princi-
ples, 2019.

[24] ICLR’20: Proceedings of The International Conference on Learning Representations,
2020.

[25] Reproducibility challenge at neurips 2019, 2020.

89

https://github.com/jaeoh2/CoreML-Traffic-Sign-Classifier
https://github.com/jaeoh2/CoreML-Traffic-Sign-Classifier
https://github.com/inspire-group/advml-traffic-sign
https://github.com/MidnightPolaris/gtsdb_cnn

[26] Mart́ın Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey
Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al.
TensorFlow: a System for Large-Scale Machine Learning. In OSDI, volume 16,
pages 265–283, 2016.

[27] Charu C Aggarwal. Neural networks and deep learning. In Springer, 2018.

[28] Charu C. Aggarwal and Philip S. Yu. Outlier detection for high dimensional data.
In Proceedings of the 2001 ACM SIGMOD International Conference on Manage-
ment of Data, SIGMOD ’01, page 3746, New York, NY, USA, 2001. Association for
Computing Machinery.

[29] Naveed Akhtar and Ajmal S. Mian. Threat of adversarial attacks on deep learning
in computer vision: A survey. IEEE Access, 6:14410–14430, 2018.

[30] Andrea Arcuri and Lionel Briand. A practical guide for using statistical tests to
assess randomized algorithms in software engineering. In ICSE, 2011.

[31] Nabiha Asghar, Pascal Poupart, Xin Jiang, and Hang Li. Deep active learning
for dialogue generation. In Proceedings of the 6th Joint Conference on Lexical and
Computational Semantics (*SEM 2017), pages 78–83, Vancouver, Canada, August
2017. Association for Computational Linguistics.

[32] Deegan J. Atha and Mohammad Reza Jahanshahi. Evaluation of deep learning
approaches based on convolutional neural networks for corrosion detection. Structural
Health Monitoring, 17:1110 – 1128, 2018.

[33] Joshua Attenberg, Panos Ipeirotis, and Foster Provost. Beat the machine: Challeng-
ing humans to find a predictive model’s unknown unknowns. J. Data and Information
Quality, 6(1), 2015.

[34] Joshua Attenberg, Panos Ipeirotis, and Foster Provost. Beat the machine: Challeng-
ing humans to find a predictive model’s unknown unknowns. J. Data and Information
Quality, 6(1), March 2015.

[35] Irad Ben-Gal. Outlier Detection, pages 131–146. Springer US, Boston, MA, 2005.

[36] Paul Bergmann, Kilian Batzner, Michael Fauser, David Sattlegger, and Carsten Ste-
ger. The mvtec anomaly detection dataset: A comprehensive real-world dataset for
unsupervised anomaly detection. Int. J. Comput. Vision, 129(4):10381059, apr 2021.

90

[37] James Bergstra, Frédéric Bastien, Olivier Breuleux, Pascal Lamblin, Razvan Pas-
canu, Olivier Delalleau, Guillaume Desjardins, David Warde-Farley, Ian Goodfellow,
Arnaud Bergeron, et al. Theano: Deep learning on GPUs with Python. In NIPS
2011, BigLearning Workshop, Granada, Spain, volume 3, pages 1–48. Citeseer, 2011.

[38] James Bergstra and Yoshua Bengio. Random search for hyper-parameter optimiza-
tion. In JMLR, 2012.

[39] Nghi D. Q. Bui, Yijun Yu, and Lingxiao Jiang. Autofocus: Interpreting attention-
based neural networks by code perturbation. In ASE, 2019.

[40] Joy Buolamwini and Timnit Gebru. Gender shades: Intersectional accuracy dispari-
ties in commercial gender classification. In Sorelle A. Friedler and Christo Wilson, edi-
tors, Proceedings of the 1st Conference on Fairness, Accountability and Transparency,
volume 81 of Proceedings of Machine Learning Research, pages 77–91. PMLR, 2018.

[41] Nicol Cesa-Bianchi and Gbor Lugosi. Prediction, learning, and games. Cambridge
University Press, 2006.

[42] Ken Chang, Niranjan Balachandar, Carson Lam, Darvin Yi, James Brown, Andrew
Beers, Bruce Rosen, Daniel L Rubin, and Jayashree Kalpathy-Cramer. Distributed
Deep Learning Networks Among Institutions for Medical Imaging. Journal of the
American Medical Informatics Association, 2018.

[43] Chenyi Chen, Ari Seff, Alain Kornhauser, and Jianxiong Xiao. Deepdriving: Learning
Affordance for Direct Perception in Autonomous Driving. In Proceedings of the IEEE
International Conference on Computer Vision, pages 2722–2730, 2015.

[44] Jieshan Chen, Chunyang Chen, Zhenchang Xing, Xiwei Xu, Liming Zhu, Guoqiang
Li, and Jinshui Wang. Unblind your apps: Predicting natural-language labels for
mobile gui components by deep learning. In ICSE, 2020.

[45] Jinyin Chen, Keke Hu, Yue Yu, Zhuangzhi Chen, Qi Xuan, Yi Liu, and Vladimir
Filkov. Software visualization and deep transfer learning for effective software defect
prediction. In ICSE, 2020.

[46] Liang-Chieh Chen, Maxwell Collins, Yukun Zhu, George Papandreou, Barret Zoph,
Florian Schroff, Hartwig Adam, and Jon Shlens. Searching for efficient multi-scale
architectures for dense image prediction. In NIPS, 2018.

91

[47] Z. Chen and X. Huang. End-to-End Learning for Lane Keeping of Self-Driving Cars.
In 2017 IEEE Intelligent Vehicles Symposium (IV), pages 1856–1860, June 2017.

[48] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen, John Tran,
Bryan Catanzaro, and Evan Shelhamer. cudnn: Efficient primitives for deep learning,
2014.

[49] François Chollet et al. Keras. https://keras.io, 2015.

[50] François Chollet. Xception: Deep learning with depthwise separable convolutions.
In CVPR, 2017.

[51] Anna Choromanska, Mikael Henaff, Michael Mathieu, Gérard Ben Arous, and Yann
LeCun. The loss surfaces of multilayer networks. In AISTATS, 2015.

[52] Anna Choromanska, Yann LeCun, and Grard Ben Arous. Open problem: The land-
scape of the loss surfaces of multilayer networks. In COLR, 2015.

[53] Shauvik Roy Choudhary. Detecting Cross-browser Issues in Web Applications. In
Proceedings of the 33rd International Conference on Software Engineering, ICSE ’11,
pages 1146–1148, New York, NY, USA, 2011. ACM.

[54] Wen-Hsuan Chu. Neural batch sampling with reinforcement learning for semi-
supervised anomaly detection. Master’s thesis, Carnegie Mellon University, Pitts-
burgh, PA, May 2020.

[55] Dan Ciresan, Ueli Meier, and Jrgen Schmidhuber. Multi-column deep neural net-
works for image classification. In CVPR, 2012.

[56] J. Cohen. Statistical Power Analysis for the Behavioral Sciences. 1988.

[57] Cédric Colas, Olivier Sigaud, and Pierre-Yves Oudeyer. How many random seeds?
statistical power analysis in deep reinforcement learning experiments. In CoRR, 2018.

[58] Cody Coleman, Deepak Narayanan, Daniel Kang, Tian Zhao, Jian Zhang, Luigi
Nardi, Peter Bailis, Kunle Olukotun, Chris Ré, and Matei Zaharia. DAWNBench:
An End-to-End Deep Learning Benchmark and Competition. Training, 100(101):102,
2017.

[59] Standard Performance Evaluation Corporation. SPEC CPU2006 benchmarks. http:
//www.spec.org/cpu2006/, 2006.

92

https://keras.io
http://www.spec.org/cpu2006/
http://www.spec.org/cpu2006/

[60] Heming Cui, Jiri Simsa, Yi-Hong Lin, Hao Li, Ben Blum, Xinan Xu, Junfeng Yang,
Garth A. Gibson, and Randal E. Bryant. Parrot: a practical runtime for determin-
istic, stable, and reliable threads. In SOSP, 2013.

[61] Yann N Dauphin, Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho, Surya Gan-
guli, and Yoshua Bengio. Identifying and attacking the saddle point problem in
high-dimensional non-convex optimization. In NIPS, 2014.

[62] Dennis Decoste and Bernhard Schölkopf. Training invariant support vector machines.
Machine learning, 46(1-3):161–190, 2002.

[63] Akshay Raj Dhamija, Manuel Günther, and Terrance Boult. Reducing network ag-
nostophobia. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,
and R. Garnett, editors, Advances in Neural Information Processing Systems, vol-
ume 31. Curran Associates, Inc., 2018.

[64] Christopher P. Diehl and John B. Hampshire Ii. Real-time object classification and
novelty detection for collaborative video surveillance. In In Proceedings of the Inter-
national Joint Conference on Neural Networks, pages 2620–2625, 2002.

[65] Nguyen Ngoc Diep. Intrusion Detection Using Deep Neural Network. Southeast
Asian Journal of Sciences, 5(2):111–125, 2017.

[66] Jesse Dodge, Suchin Gururangan, Dallas Card, Roy Schwartz, and Noah A. Smith.
Show your work: Improved reporting of experimental results. In EMNLP-IJCNLP,
2019.

[67] Brian Dolhansky, Russ Howes, Ben Pflaum, Nicole Baram, and Cristian Canton
Ferrer. The deepfake detection challenge (dfdc) preview dataset, 2019.

[68] Felix Draxler, Kambis Veschgini, Manfred Salmhofer, and Fred Hamprecht. Essen-
tially no barriers in neural network energy landscape. In ICML, 2018.

[69] Simon S Du, Jason D Lee, Yuandong Tian, Barnabas Poczos, and Aarti Singh. Gra-
dient descent learns one-hidden-layer cnn: Don’t be afraid of spurious local minima.
In arXiv preprint arXiv:1712.00779, 2017.

[70] Saikat Dutta, Owolabi Legunsen, Zixin Huang, and Sasa Misailovic. Testing prob-
abilistic programming systems. In Proceedings of the 2018 ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering, ESEC/SIGSOFT FSE 2018, 2018, pages 574–586, 2018.

93

[71] Suvajit Dutta, BCS Manideep, Shalva Rai, and V Vijayarajan. A Comparative Study
of Deep Learning Models for Medical Image Classification. In IOP Conference Series:
Materials Science and Engineering, volume 263, page 042097. IOP Publishing, 2017.

[72] Anurag Dwarakanath, Manish Ahuja, Samarth Sikand, Raghotham M. Rao, R. P.
Jagadeesh Chandra Bose, Neville Dubash, and Sanjay Podder. Identifying implemen-
tation bugs in machine learning based image classifiers using metamorphic testing. In
Proceedings of the 27th ACM SIGSOFT International Symposium on Software Test-
ing and Analysis, ISSTA 2018, pages 118–128, New York, NY, USA, 2018. ACM.

[73] Amir Efrati. Uber Finds Deadly Accident Likely Caused by Software Set to Ignore
Objects on Road. The information, 2018.

[74] Brian Everitt. The Cambridge dictionary of statistics. 2002.

[75] Hao-Shu Fang, Guansong Lu, Xiaolin Fang, Jianwen Xie, Yu-Wing Tai, and Cewu
Lu. Weakly and semi supervised human body part parsing via pose-guided knowledge
transfer. In CVPR, 2018.

[76] Zhen Fang, Jie Lu, Anjin Liu, Feng Liu, and Guangquan Zhang. Learning bounds
for open-set learning, 06 2021.

[77] Mattia Fazzini and Alessandro Orso. Automated Cross-platform Inconsistency De-
tection for Mobile Apps. In Proceedings of the 32Nd IEEE/ACM International Con-
ference on Automated Software Engineering, ASE 2017, pages 308–318, Piscataway,
NJ, USA, 2017. IEEE Press.

[78] Matthias Feurer and Frank Hutter. Hyperparameter Optimization. 2019.

[79] Diego Fioravanti, Ylenia Giarratano, Valerio Maggio, Claudio Agostinelli, Marco
Chierici, Giuseppe Jurman, and Cesare Furlanello. Phylogenetic Convolutional Neu-
ral Networks in Metagenomics. BMC bioinformatics, 19(2):49, 2018.

[80] Brian S Freeman, Graham Taylor, Bahram Gharabaghi, and Jesse Thé. Forecasting
Air Quality Time Series Using Deep Learning. Journal of the Air & Waste Manage-
ment Association, pages 1–21, 2018.

[81] Yarin Gal and Zoubin Ghahramani. Bayesian convolutional neural networks with
bernoulli approximate variational inference, 2016.

94

[82] Xiang Gao, Ripon Saha, Mukul Prasad, and Abhik Roychoudhury. Fuzz testing
based data augmentation to improve robustness of deep neural networks. In ICSE,
2020.

[83] Rong Ge, Furong Huang, Chi Jin, and Yang Yuan. Escaping from saddle pointsonline
stochastic gradient for tensor decomposition. In COLT, 2015.

[84] Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov, Swarat
Chaudhuri, and Martin Vechev. AI 2: Safety and Robustness Certification of Neural
Networks with Abstract Interpretation. In Security and Privacy (SP), 2018 IEEE
Symposium on, 2018.

[85] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for autonomous
driving? the kitti vision benchmark suite. In 2012 IEEE Conference on Computer
Vision and Pattern Recognition, pages 3354–3361, 2012.

[86] Simos Gerasimou, Hasan Ferit-Eniser, Alper Sen, and Alper akan. Importance-driven
deep learning system testing. In ICSE, 2020.

[87] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep
feedforward neural networks. In AISTATS, 2010.

[88] David Goldberg. What every computer scientist should know about floating-point
arithmetic. ACM Comput. Surv., 23(1):5–48, March 1991.

[89] David Goldberg. What every computer scientist should know about floating-point
arithmetic. ACM Comput. Surv., 1991.

[90] Jesús M González-Barahona and Gregorio Robles. On the reproducibility of empirical
software engineering studies based on data retrieved from development repositories.
In ESE, 2012.

[91] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press,
2016.

[92] Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing
adversarial examples. In ICLR, 2015.

[93] Divya Gopinath, Hayes Converse, Corina S. Păsăreanu, and Ankur Taly. Property
inference for deep neural networks. In ASE, 2019.

95

[94] Thore Graepel and Ralf Herbrich. Invariant pattern recognition by semi-definite
programming machines. In S. Thrun, L. Saul, and B. Schölkopf, editors, Advances
in Neural Information Processing Systems, volume 16. MIT Press, 2004.

[95] Hui Guan, Xipeng Shen, and Seung-Hwan Lim. Wootz: A compiler-based framework
for fast cnn pruning via composability. In PLDI, 2019.

[96] Qianyu Guo, Sen Chen, Xiaofei Xie, Lei Ma, Qiang Hu, Hongtao Liu, Yang Liu,
Jianjun Zhao, and Xiaohong Li. An empirical study towards characterizing deep
learning development and deployment across different frameworks and platforms. In
ASE, 2019.

[97] Jeff Haochen and Suvrit Sra. Random shuffling beats SGD after finite epochs. In
ICML, 2019.

[98] Hua He, Kevin Gimpel, and Jimmy Lin. Multi-perspective sentence similarity mod-
eling with convolutional neural networks. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing, pages 1576–1586, Lisbon, Por-
tugal, September 2015. Association for Computational Linguistics.

[99] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rec-
tifiers: Surpassing human-level performance on imagenet classification. In ICCV,
2015.

[100] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In CVPR, 2016.

[101] Tao He, Xiaoming Jin, Guiguang Ding, Lan Yi, and C. Yan. Towards better uncer-
tainty sampling: Active learning with multiple views for deep convolutional neural
network. 2019 IEEE International Conference on Multimedia and Expo (ICME),
pages 1360–1365, 2019.

[102] Vincent J. Hellendoorn, Christian Bird, Earl T. Barr, and Miltiadis Allamanis. Deep
learning type inference. In ESEC/FSE, 2018.

[103] Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and
David Meger. Deep reinforcement learning that matters. In AAAI, 2018.

[104] Dan Hendrycks and Kevin Gimpel. A baseline for detecting misclassified and out-
of-distribution examples in neural networks. In 5th International Conference on
Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Confer-
ence Track Proceedings. OpenReview.net, 2017.

96

[105] Geoffrey Hinton, Li Deng, Dong Yu, George Dahl, Abdel rahman Mohamed, Navdeep
Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara Sainath, and Brian
Kingsbury. Deep neural networks for acoustic modeling in speech recognition. Signal
Processing Magazine, 2012.

[106] Victoria Hodge and Jim Austin. A survey of outlier detection methodologies. Artif.
Intell. Rev., 22(2):85126, oct 2004.

[107] Renáta Hodován and Ákos Kiss. Modernizing Hierarchical Delta Debugging. In
Proceedings of the 7th International Workshop on Automating Test Case Design,
Selection, and Evaluation, pages 31–37. ACM, 2016.

[108] Xiaowei Huang, Daniel Kroening, Wenjie Ruan, James Sharp, Youcheng Sun, Emese
Thamo, Min Wu, and Xinping Yi. A survey of safety and trustworthiness of deep
neural networks: Verification, testing, adversarial attack and defence, and inter-
pretability, 2020.

[109] Xiaowei Huang, Marta Kwiatkowska, Sen Wang, and Min Wu. Safety Verification of
Deep Neural Networks. In International Conference on Computer Aided Verification,
pages 3–29. Springer, 2017.

[110] Haroon Idrees, Mubarak Shah, and Ray Surette. Enhancing camera surveillance
using computer vision: a research note, 2018.

[111] Ilija Ilievski, Taimoor Akhtar, Jiashi Feng, and Christine Annette Shoemaker. Effi-
cient hyperparameter optimization for deep learning algorithms using deterministic
rbf surrogates. In AAAI, 2017.

[112] Jing Jiang and ChengXiang Zhai. A two-stage approach to domain adaptation for
statistical classifiers. In CIKM, 2007.

[113] Liming Jiang, Zhengkui Guo, Wayne Wu, Zhaoyang Liu, Ziwei Liu, Chen Change
Loy, Shuo Yang, Yuanjun Xiong, Wei Xia, Baoying Chen, Peiyu Zhuang, Sili Li, Shen
Chen, Taiping Yao, Shouhong Ding, Jilin Li, Feiyue Huang, Liujuan Cao, Rongrong
Ji, Changlei Lu, and Ganchao Tan. Deeperforensics challenge 2020 on real-world face
forgery detection: Methods and results, 2021.

[114] James A Jones and Mary Jean Harrold. Empirical Evaluation of the Tarantula
Automatic Fault-Localization Technique. In Proceedings of the 20th IEEE/ACM
international Conference on Automated software engineering, pages 273–282. ACM,
2005.

97

[115] M. E. Joorabchi, M. Ali, and A. Mesbah. Detecting Inconsistencies in Multi-platform
Mobile Apps. In 2015 IEEE 26th International Symposium on Software Reliability
Engineering (ISSRE), pages 450–460, Nov 2015.

[116] Hadi Jooybar, Wilson WL Fung, Mike O’Connor, Joseph Devietti, and Tor M
Aamodt. Gpudet: a deterministic gpu architecture. In ASPLOS, 2013.

[117] Kyle D Julian, Jessica Lopez, Jeffrey S Brush, Michael P Owen, and Mykel J Kochen-
derfer. Policy Compression for Aircraft Collision Avoidance Systems. In Digital
Avionics Systems Conference (DASC), 2016 IEEE/AIAA 35th, pages 1–10. IEEE,
2016.

[118] Guy Katz, Clark Barrett, David L Dill, Kyle Julian, and Mykel J Kochenderfer. Relu-
plex: An Efficient SMT Solver for Verifying Deep Neural Networks. In International
Conference on Computer Aided Verification, pages 97–117. Springer, 2017.

[119] Jinhan Kim, Robert Feldt, and Shin Yoo. Guiding deep learning system testing using
surprise adequacy. In ICSE, 2019.

[120] YK Kim and JB Ra. Weight value initialization for improving training speed in the
backpropagation network. In IJCNN, 1991.

[121] Jamie Ryan Kiros. Recurrent Neural Network that Generates Little Stories About
Images. https://github.com/ryankiros/neural-storyteller, 2018.

[122] Ryan Kiros, Yukun Zhu, Ruslan Salakhutdinov, Richard S Zemel, Antonio Tor-
ralba, Raquel Urtasun, and Sanja Fidler. Skip-Thought Vectors. arXiv preprint
arXiv:1506.06726, 2015.

[123] Bobby Kleinberg, Yuanzhi Li, and Yang Yuan. An alternative view: When does SGD
escape local minima? In ICML, 2018.

[124] Yuriy Kochura, Sergii Stirenko, Oleg Alienin, Michail Novotarskiy, and Yuri Gordi-
enko. Performance analysis of open source machine learning frameworks for various
parameters in single-threaded and multi-threaded modes. In CSIT, 2018.

[125] Vassili Kovalev, Alexander Kalinovsky, and Sergey Kovalev. Deep learning with
theano, torch, caffe, tensorflow, and deeplearning4j: Which one is the best in speed
and accuracy? 2016.

[126] Alex Krizhevsky. Learning multiple layers of features from tiny images. 2009.

98

[127] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet Classification with
Deep Convolutional Neural Networks. In Advances in neural information processing
systems, pages 1097–1105, 2012.

[128] Tomasz Kuchta, Thibaud Lutellier, Edmund Wong, Lin Tan, and Cristian Cadar.
On the Correctness of Electronic Documents: Studying, Finding, and Localizing
Inconsistency Bugs in PDF Readers and Files. Empirical Software Engineering,
pages 1–34, 2018.

[129] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial Examples in the
Physical World. arXiv preprint arXiv:1607.02533, 2016.

[130] Sunyoung Kwon and Sungroh Yoon. DeepCCI: End-to-End Deep Learning for
Chemical-Chemical Interaction Prediction. In Proceedings of the 8th ACM Inter-
national Conference on Bioinformatics, Computational Biology, and Health Infor-
matics, pages 203–212. ACM, 2017.

[131] Jeremy Lacomis, Pengcheng Yin, Edward J. Schwartz, Miltiadis Allamanis, Claire Le
Goues, Graham Neubig, and Bogdan Vasilescu. Dire: A neural approach to decom-
piled identifier naming. In ASE, 2019.

[132] Himabindu Lakkaraju, Ece Kamar, Rich Caruana, and Eric Horvitz. Discovering
blind spots of predictive models: Representations and policies for guided exploration.
ArXiv, abs/1610.09064, 2016.

[133] Alex Lamb, Jonathan Binas, Anirudh Goyal, Sandeep Subramanian, Ioannis
Mitliagkas, Denis Kazakov, Yoshua Bengio, and Michael C. Mozer. State-reification
networks: Improving generalization by modeling the distribution of hidden represen-
tations. In ICML, 2019.

[134] Vu Le, Mehrdad Afshari, and Zhendong Su. Compiler Validation via Equivalence
Modulo Inputs. In ACM SIGPLAN Notices, volume 49, pages 216–226. ACM, 2014.

[135] Vu Le, Mehrdad Afshari, and Zhendong Su. Compiler validation via equivalence
modulo inputs. In PLDI, 2014.

[136] Vu Le, Chengnian Sun, and Zhendong Su. Finding deep compiler bugs via guided
stochastic program mutation. In OOPSLA, 2015.

[137] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-Based Learning Applied
to Document Recognition. Proceedings of the IEEE, 86(11):2278–2324, Nov 1998.

99

[138] Yann LeCun, Léon Bottou, Yoshua Bengio, Patrick Haffner, et al. Gradient-based
learning applied to document recognition. In Proceedings of the IEEE, 1998.

[139] Yann A LeCun, Léon Bottou, Genevieve B Orr, and Klaus-Robert Müller. Efficient
backprop. In Neural networks: Tricks of the trade, 2012.

[140] Jason D Lee, Max Simchowitz, Michael I Jordan, and Benjamin Recht. Gradient
descent converges to minimizers. In arXiv preprint arXiv:1602.04915, 2016.

[141] David D. Lewis and William A. Gale. A sequential algorithm for training text clas-
sifiers, 1994. active learning roots.

[142] Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing
the loss landscape of neural nets. In NIPS, 2018.

[143] Li-Jia Li, Gang Wang, and Li Fei-Fei. Optimol: automatic online picture collection
via incremental model learning. In 2007 IEEE Conference on Computer Vision and
Pattern Recognition, pages 1–8, 2007.

[144] Yi Li, Wang Shaohua, and Tien N. Nguyen. DLfix: Context-based code transforma-
tion learning for automated program repair. In ICSE, 2020.

[145] Yi Li, Shaohua Wang, Tien N Nguyen, and Son Van Nguyen. Improving bug detection
via context-based code representation learning and attention-based neural networks.
In PACMPL, 2019.

[146] Zenan Li, Xiaoxing Ma, Chang Xu, Chun Cao, Jingwei Xu, and Jian Lü. Boosting
operational dnn testing efficiency through conditioning. In ESEC/FSE, 2019.

[147] Ling Liu, Yanzhao Wu, Wenqi Wei, Wenqi Cao, Semih Sahin, and Qi Zhang. Bench-
marking Deep Learning Frameworks: Design Considerations, Metrics and Beyond.
In 2018 IEEE 38th International Conference on Distributed Computing Systems
(ICDCS). IEEE, 2018.

[148] Si Liu, Risheek Garrepalli, Thomas G. Dietterich, Alan Fern, and Dan Hendrycks.
Open category detection with PAC guarantees. CoRR, abs/1808.00529, 2018.

[149] Siqi Liu, Sidong Liu, Weidong Cai, Sonia Pujol, Ron Kikinis, and Dagan Feng. Early
Diagnosis of Alzheimer’s Disease with Deep Learning. In Biomedical Imaging (ISBI),
2014 IEEE 11th International Symposium on, pages 1015–1018. IEEE, 2014.

100

[150] Thibaud Lutellier, Hung Viet Pham, Lawrence Pang, Yitong Li, Moshi Wei, and Lin
Tan. Coconut: Combining context-aware neural translation models using ensemble
for program repair. In ISSTA, 2020.

[151] Lei Ma, Felix Juefei-Xu, Fuyuan Zhang, Jiyuan Sun, Minhui Xue, Bo Li, Chunyang
Chen, Ting Su, Li Li, Yang Liu, Jianjun Zhao, and Yadong Wang. Deepgauge:
Multi-granularity testing criteria for deep learning systems. In Proceedings of the
33rd ACM/IEEE International Conference on Automated Software Engineering, ASE
2018, pages 120–131, New York, NY, USA, 2018. ACM.

[152] Shiqing Ma, Yingqi Liu, Wen-Chuan Lee, Xiangyu Zhang, and Ananth Grama. Mode:
Automated neural network model debugging via state differential analysis and input
selection. In ESEC/FSE, 2018.

[153] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and
Adrian Vladu. Towards deep learning models resistant to adversarial attacks. In
ICLR, 2018.

[154] Zaheed Mahmood, David Bowes, Tracy Hall, Peter CR Lane, and Jean Petrić. Re-
producibility and replicability of software defect prediction studies. ISE, 2018.

[155] Andrii Maksai and Pascal Fua. Eliminating exposure bias and metric mismatch in
multiple object tracking. In CVPR, 2019.

[156] Markos Markou and Sameer Singh. Novelty detection: a reviewpart 1: statistical
approaches. Signal Processing, 83(12):2481–2497, 2003.

[157] Markos Markou and Sameer Singh. Novelty detection: A reviewpart 2: Neural
network based approaches. Signal Process., 83(12):24992521, dec 2003.

[158] William M McKeeman. Differential Testing for Software. Digital Technical Journal,
10(1):100–107, 1998.

[159] Luke Metz, Niru Maheswaranathan, Jeremy Nixon, C Daniel Freeman, and Jascha
Sohl-Dickstein. Understanding and correcting pathologies in the training of learned
optimizers. In ICML, 2019.

[160] Hrushikesh N. Mhaskar, Sergei V. Pereverzyev, and Maria D. van der Walt. A deep
learning approach to diabetic blood glucose prediction. In Front. Appl. Math. Stat.,
2017.

101

[161] Ghassan Misherghi and Zhendong Su. HDD: Hierarchical Delta Debugging. In
Proceedings of the 28th international conference on Software engineering, pages 142–
151. ACM, 2006.

[162] Seokhyeon Moon, Yunho Kim, Moonzoo Kim, and Shin Yoo. Ask the Mutants: Mu-
tating Faulty Programs for Fault Localization. In 2014 IEEE Seventh International
Conference on Software Testing, Verification and Validation (ICST), pages 153–162.
IEEE, 2014.

[163] A. Mordvintsev, Christopher Olah, and Mike Tyka. Inceptionism: Going deeper into
neural networks. 2015.

[164] Todd Mytkowicz, Amer Diwan, Matthias Hauswirth, and Peter Sweeney. Producing
wrong data without doing anything obviously wrong! In ACM SIGARCH Computer
Architecture News, 2009.

[165] Prabhat Nagarajan, Garrett Warnell, and Peter Stone. Deterministic implemen-
tations for reproducibility in deep reinforcement learning. In AAAI Workshop on
Reproducible AI, 2019.

[166] Lee Naish, Hua Jie Lee, and Kotagiri Ramamohanarao. A Model for Spectra-based
Software Diagnosis. ACM Transactions on software engineering and methodology
(TOSEM), 20(3):11, 2011.

[167] Nina Narodytska and Shiva Prasad Kasiviswanathan. Simple Black-Box Adversarial
Attacks on Deep Neural Networks. In CVPR Workshops, pages 1310–1318, 2017.

[168] Anh Nguyen, Jason Yosinski, and Jeff Clune. Deep Neural Networks are Easily
Fooled: High Confidence Predictions for Unrecognizable Images. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pages 427–436,
2015.

[169] Hieu T. Nguyen and Arnold Smeulders. Active learning using pre-clustering. In Pro-
ceedings of the Twenty-First International Conference on Machine Learning, ICML
’04, page 79, New York, NY, USA, 2004. Association for Computing Machinery.

[170] Kristin Nixon, Valerio Aimale, and Robert Rowe. Spoof Detection Schemes, pages
403–423. 10 2007.

[171] Babatunde K Olorisade, Pearl Brereton, and Peter Andras. Reproducibility in ma-
chine learning-based studies: An example of text mining. In Reproducibility in Ma-
chine Learning Workshop, ICML, 2017.

102

[172] Guansong Pang, Chunhua Shen, Longbing Cao, and Anton Van Den Hengel. Deep
learning for anomaly detection: A review. ACM Comput. Surv., 54(2), mar 2021.

[173] Mike Papadakis and Yves Le Traon. Metallaxis-FL: Mutation-based Fault Localiza-
tion. Software Testing, Verification and Reliability, 25(5-7):605–628, 2015.

[174] Nicolas Papernot, Patrick McDaniel, Ananthram Swami, and Richard Harang. Craft-
ing Adversarial Input Sequences for Recurrent Neural Networks. In Military Com-
munications Conference, MILCOM 2016-2016 IEEE, pages 49–54. IEEE, 2016.

[175] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-
gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban
Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith
Chintala. Pytorch: An imperative style, high-performance deep learning library. In
NIPS, 2019.

[176] Keyurkumar Patel, Hu Han, and Anil K. Jain. Secure face unlock: Spoof detec-
tion on smartphones. IEEE Transactions on Information Forensics and Security,
11(10):2268–2283, 2016.

[177] Brandon Paulsen, Jingbo Wang, and Chao Wang. Reludiff: Differential verification
of deep neural networks. In ICSE, 2020.

[178] Spencer Pearson, José Campos, René Just, Gordon Fraser, Rui Abreu, Michael D
Ernst, Deric Pang, and Benjamin Keller. Evaluating and Improving Fault Localiza-
tion. In Proceedings of the 39th International Conference on Software Engineering,
pages 609–620. IEEE Press, 2017.

[179] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. Deepxplore: Automated
Whitebox Testing of Deep Learning Systems. In Proceedings of the 26th Symposium
on Operating Systems Principles, pages 1–18. ACM, 2017.

[180] Kexin Pei, Yinzhi Cao, Junfeng Yang, and Suman Jana. Deepxplore: Automated
whitebox testing of deep learning systems. In Commun. ACM, 2019.

[181] Hung Viet Pham, Mijung Kim, Lin Tan, Yaoliang Yu, and Nachiappan Nagappan.
Deviate: A deep learning variance testing framework. In ASE, 2020.

[182] Hung Viet Pham, Thibaud Lutellier, Weizhen Qi, and Lin Tan. Cradle: Cross-
backend validation to detect and localize bugs in deep learning libraries. In ICSE,
2019.

103

[183] Hung Viet Pham, Shangshu Qian, Jiannan Wang, Thibaud Lutellier, Jonathan
Rosenthal, Lin Tan, Yaoliang Yu, and Nachiappan Nagappan. Problems and op-
portunities in training deep learning software systems: An analysis of variance. In
35th International Conference on Automated Software Engineering, ASE ’20, pages
771–783, New York, 2020. IEEE/ACM.

[184] Gngr Polatkan, Sina Jafarpour, Andrei Brasoveanu, Shannon Hughes, and Ingrid
Daubechies. Detection of forgery in paintings using supervised learning. In 2009
16th IEEE International Conference on Image Processing (ICIP), pages 2921–2924,
2009.

[185] Sanjay Purushotham, Chuizheng Meng, Zhengping Che, and Yan Liu. Benchmarking
deep learning models on large healthcare datasets. In J. Biomed. Inform., 2018.

[186] Shangshu Qian, Hung Viet Pham, Thibaud Lutellier, Zeou Hu, Jungwon Kim, Lin
Tan, Yaoliang Yu, Jiahao Chen, and Sameena Shah. Are my deep learning systems
fair? an empirical study of fixed-seed training. In NeurIPS, 2021.

[187] Joaquin Quionero-Candela, Masashi Sugiyama, Anton Schwaighofer, and Neil D.
Lawrence. Dataset Shift in Machine Learning. The MIT Press, 2009.

[188] Hiranmayi Ranganathan, Hemanth Venkateswara, Shayok Chakraborty, and Sethu-
raman Panchanathan. Deep active learning for image classification. In 2017 IEEE
International Conference on Image Processing (ICIP), pages 3934–3938, 2017.

[189] Subhajit Roy, Awanish Pandey, Brendan Dolan-Gavitt, and Yu Hu. Bug synthesis:
Challenging bug-finding tools with deep faults. In ESEC/FSE, 2018.

[190] Shauvik Roy Choudhary, Mukul R Prasad, and Alessandro Orso. X-PERT: a Web
Application Testing Tool for Cross-Browser Inconsistency Detection. In Proceedings
of the 2014 International Symposium on Software Testing and Analysis, pages 417–
420. ACM, 2014.

[191] Shauvik Roy Choudhary, Mukul R. Prasad, and Alessandro Orso. CrossCheck: Com-
bining Crawling and Differencing to Better Detect Cross-browser Incompatibilities in
Web Applications. In Proceedings - IEEE 5th International Conference on Software
Testing, Verification and Validation, ICST 2012, pages 171–180, 04 2012.

[192] Shauvik Roy Choudhary, Husayn Versee, and Alessandro Orso. WEBDIFF: Auto-
mated Identification of Cross-browser Issues in Web Applications. In Proceedings of

104

the 2010 IEEE International Conference on Software Maintenance, ICSM ’10, pages
1–10, Washington, DC, USA, 2010. IEEE Computer Society.

[193] Lukas Ruff, Jacob Kauffmann, Robert Vandermeulen, Gregoire Montavon, Wojciech
Samek, Marius Kloft, Thomas Dietterich, and Klaus-Robert Mller. A unifying review
of deep and shallow anomaly detection. Proceedings of the IEEE, PP:1–40, 02 2021.

[194] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,
Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C.
Berg, and Li Fei-Fei. ImageNet Large Scale Visual Recognition Challenge. Interna-
tional Journal of Computer Vision (IJCV), 115(3):211–252, 2015.

[195] Tim Salimans and Durk P Kingma. Weight normalization: A simple reparameteri-
zation to accelerate training of deep neural networks. In NIPS, 2016.

[196] Shibani Santurkar, Dimitris Tsipras, and Aleksander Madry. BREEDS: benchmarks
for subpopulation shift. In 9th International Conference on Learning Representations,
ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021.

[197] Shlomo Sawilowsky, Jack Sawilowsky, and Robert J. Grissom. Effect Size. 2011.

[198] Andrew M. Saxe, James L. Mcclelland, and Surya Ganguli. Exact solutions to the
nonlinear dynamics of learning in deep linear neural network. In ICLR, 2014.

[199] Walter J. Scheirer, Anderson de Rezende Rocha, Archana Sapkota, and Terrance E.
Boult. Toward open set recognition. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 35(7):1757–1772, 2013.

[200] Frank Seide and Amit Agarwal. CNTK: Microsoft’s Open-Source Deep-Learning
Toolkit. In Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 2135–2135. ACM, 2016.

[201] Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedan-
tam, Devi Parikh, and Dhruv Batra. Grad-cam: Visual explanations from deep
networks via gradient-based localization. In ICCV, pages 618–626. IEEE Computer
Society, 2017.

[202] Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedan-
tam, Devi Parikh, and Dhruv Batra. Grad-cam: Visual explanations from deep
networks via gradient-based localization. In ICCV, pages 618–626. IEEE Computer
Society, 2017.

105

[203] Ozan Sener and Silvio Savarese. Active learning for convolutional neural networks:
A core-set approach. In 6th International Conference on Learning Representations,
ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track
Proceedings. OpenReview.net, 2018.

[204] Burr Settles. Active learning literature survey. Computer Sciences Technical Report
1648, University of Wisconsin–Madison, 2009.

[205] Burr Settles, Mark Craven, and Soumya Ray. Multiple-instance active learning. In
J. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural Information
Processing Systems, volume 20. Curran Associates, Inc., 2008.

[206] H. S. Seung, M. Opper, and H. Sompolinsky. Query by committee. In Proceedings
of the Fifth Annual Workshop on Computational Learning Theory, COLT ’92, page
287294, New York, NY, USA, 1992. Association for Computing Machinery.

[207] Shayan Shams, Richard Platania, Kisung Lee, and Seung-Jong Park. Evaluation of
deep learning frameworks over different hpc architectures. In ICDCS, 2017.

[208] Ali Shatnawi, Ghadeer Al-Bdour, Raffi Al-Qurran, and Mahmoud Al-Ayyoub. A
Comparative Study of Open Source Deep Learning Frameworks. In Information
and Communication Systems (ICICS), 2018 9th International Conference on, pages
72–77. IEEE, 2018.

[209] Zhiqiang Shen, Zhuang Liu, Jianguo Li, Yu-Gang Jiang, Yurong Chen, and Xi-
angyang Xue. Dsod: Learning deeply supervised object detectors from scratch. In
ICCV, 2017.

[210] Flash Sheridan. Practical Testing of a C99 Compiler Using Output Comparison.
Software: Practice and Experience, 37(14):1475–1488, 2007.

[211] S. Shi, Q. Wang, P. Xu, and X. Chu. Benchmarking State-of-the-Art Deep Learning
Software Tools. In 2016 7th International Conference on Cloud Computing and Big
Data (CCBD), pages 99–104, Nov 2016.

[212] Shaohuai Shi, Qiang Wang, Pengfei Xu, and Xiaowen Chu. Benchmarking state-of-
the-art deep learning software tools. In CCBD, 2016.

[213] Hidetoshi Shimodaira. Improving predictive inference under covariate shift by
weighting the log-likelihood function. Journal of Statistical Planning and Inference,
90(2):227–244, October 2000.

106

[214] Connor Shorten and Taghi M. Khoshgoftaar. A survey on image data augmentation
for deep learning. In Journal of Big Data, 2019.

[215] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-
scale image recognition. In arXiv preprint arXiv:1409.1556, 2014.

[216] Xinhang Song, Luis Herranz, and Shuqiang Jiang. Depth cnns for rgb-d scene recog-
nition: Learning from scratch better than transferring from rgb-cnns. In AAAI,
2017.

[217] Enrico Sorio, Alberto Bartoli, Giorgio Davanzo, and Eric Medvet. Open world classi-
fication of printed invoices. In Proceedings of the 10th ACM Symposium on Document
Engineering, DocEng ’10, page 187190, New York, NY, USA, 2010. Association for
Computing Machinery.

[218] Siwakorn Srisakaokul, Zhengkai Wu, Angello Astorga, Oreoluwa Alebiosu, and Tao
Xie. Multiple-implementation testing of supervised learning software. In Proc.
AAAI-18 Workshop on Engineering Dependable and Secure Machine Learning Sys-
tems (EDSMLS), 2018.

[219] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting.
In JMLR, 2014.

[220] Youcheng Sun, Min Wu, Wenjie Ruan, Xiaowei Huang, Marta Kwiatkowska, and
Daniel Kroening. Concolic testing for deep neural networks. In ASE, 2018.

[221] Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the impor-
tance of initialization and momentum in deep learning. In ICML, 2013.

[222] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence learning with
neural networks. In NIPS, 2014.

[223] Christian Szegedy, Sergey Ioffe, and Vincent Vanhoucke. Inception-v4, Inception-
ResNet and the Impact of Residual Connections on Learning. In AAAI Conference
on Artificial Intelligence, 02 2016.

[224] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wo-
jna. Rethinking the inception architecture for computer vision. In CVPR, 2016.

107

[225] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,
Ian Goodfellow, and Rob Fergus. Intriguing Properties of Neural Networks. arXiv
preprint arXiv:1312.6199, 2013.

[226] Nima Tajbakhsh, Jae Y Shin, Suryakanth R Gurudu, R Todd Hurst, Christopher B
Kendall, Michael B Gotway, and Jianming Liang. Convolutional neural networks for
medical image analysis: Full training or fine tuning? In IEEE Trans. Med. Imag.,
2016.

[227] Rohan Taori, Achal Dave, Vaishaal Shankar, Nicholas Carlini, Benjamin Recht, and
Ludwig Schmidt. Measuring robustness to natural distribution shifts in image clas-
sification. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina
Balcan, and Hsuan-Tien Lin, editors, Advances in Neural Information Processing
Systems 33: Annual Conference on Neural Information Processing Systems 2020,
NeurIPS 2020, December 6-12, 2020, virtual, 2020.

[228] Choon Teo, Amir Globerson, Sam Roweis, and Alex Smola. Convex learning with
invariances. In J. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances in
Neural Information Processing Systems, volume 20. Curran Associates, Inc., 2008.

[229] Kok Keong Teo, Lipo Wang, and Zhiping Lin. Wavelet packet multi-layer perceptron
for chaotic time series prediction: effects of weight initialization. In ICCS, 2001.

[230] Kim-Han Thung, Pew-Thian Yap, and Dinggang Shen. Multi-Stage Diagnosis of
Alzheimers Disease with Incomplete Multimodal Data via Multi-Task Deep Learning.
In Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical
Decision Support, pages 160–168. Springer, 2017.

[231] Yuchi Tian, Kexin Pei, Suman Jana, and Baishakhi Ray. Deeptest: Automated
testing of deep-neural-network-driven autonomous cars. In ICSE, 2018.

[232] Yuchi Tian, Ziyuan Zhong, Vicente Ordonez, Gail Kaiser, and Baishakhi Ray. Testing
dnn image classifier for confusion & bias errors. In ICSE, 2020.

[233] Fabian Trautsch, Steffen Herbold, Philip Makedonski, and Jens Grabowski. Address-
ing problems with replicability and validity of repository mining studies through a
smart data platform. In ESE, 2018.

[234] Nam Vo, Lu Jiang, Chen Sun, Kevin Murphy, Li-Jia Li, Li Fei-Fei, and James Hays.
Composing text and image for image retrieval-an empirical odyssey. In CVPR, 2019.

108

[235] Huiyan Wang, Jingweiu Xu, Chang Xu, Xiaoxing Ma, and Jian Lu. Dissector: Input
validation for deep learning applications by crossing-layer dissection. In ICSE, 2020.

[236] Jiannan Wang, Thibaud Lutellier, Shangshu Qian, Hung Viet Pham, and Lin Tan.
Cradle: Cross-backend validation to detect and localize bugs in deep learning li-
braries. In ICSE, 2022.

[237] Jingyi Wang, Guoliang Dong, Jun Sun, Xinyu Wang, and Peixin Zhang. Adversarial
sample detection for deep neural network through model mutation testing. In ICSE,
2019.

[238] Di Wen, Hu Han, and Anil K. Jain. Face spoof detection with image distortion
analysis. IEEE Transactions on Information Forensics and Security, 10(4):746–761,
2015.

[239] Matthew Wicker, Xiaowei Huang, and Marta Kwiatkowska. Feature-Guided Black-
Box Safety Testing of Deep Neural Networks. In International Conference on
Tools and Algorithms for the Construction and Analysis of Systems, pages 408–426.
Springer, 2018.

[240] Danning Xie, Yitong Li, Mijung Kim, Hung Viet Pham, Lin Tan, Xiangyu Zhang,
and Michael W. Godfrey. Docter: Documentation-guided fuzzing for testing deep
learning api functions. In ISSTA, 2022.

[241] Hu Xu, Bing Liu, Lei Shu, and P. Yu. Open-world learning and application to
product classification. In The World Wide Web Conference on - WWW '19. ACM
Press, 2019.

[242] Jingkang Yang, Kaiyang Zhou, Yixuan Li, and Ziwei Liu. Generalized out-of-
distribution detection: A survey, 2021.

[243] Pengpeng Yang, Daniele Baracchi, Rongrong Ni, Yao Zhao, Fabrizio Argenti, and
Alessandro Piva. A survey of deep learning-based source image forensics. Journal of
Imaging, 6(3), 2020.

[244] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. Finding and Understanding
Bugs in C Compilers. In ACM SIGPLAN Notices, volume 46, pages 283–294. ACM,
2011.

[245] Takahide Yoshikawa, Kouya Shimura, and Toshihiro Ozawa. Random Program Gen-
erator for Java JIT Compiler Test System. In Quality Software, 2003. Proceedings.
Third International Conference on, pages 20–23. IEEE, 2003.

109

[246] Steven R Young, Derek C Rose, Thomas P Karnowski, Seung-Hwan Lim, and
Robert M Patton. Optimizing deep learning hyper-parameters through an evolu-
tionary algorithm. In MLHPC, 2015.

[247] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In BMVC, 2016.

[248] Andreas Zeller and Ralf Hildebrandt. Simplifying and Isolating Failure-Inducing
Input. IEEE Transactions on Software Engineering, 28(2):183–200, 2002.

[249] Hao Zhang and W. K. Chan. Apricot: A weight-adaptation approach to fixing deep
learning models. In ASE, 2019.

[250] Jian Zhang, Xu Wang, Hongyu Zhang, Hailong Sun, and Xudong Liu. Retrieval-
based neural source code summarization. In ICSE, 2020.

[251] Mengshi Zhang, Yuqun Zhang, Lingming Zhang, Cong Liu, and Sarfraz Khurshid.
Deeproad: Gan-based metamorphic testing and input validation framework for au-
tonomous driving systems. In ASE, 2018.

[252] Qirun Zhang, Chengnian Sun, and Zhendong Su. Skeletal program enumeration for
rigorous compiler testing. In PLDI, 2017.

[253] Tong Zhang. The value of unlabeled data for classification problems. In Proceedings
of the Seventeenth International Conference on Machine Learning, pages 1191–1198.
Morgan Kaufmann, 2000.

[254] Xiyue Zhang, Xiaofei Xie, Lei Ma, Xiaoning Du, Qiang Hu, Yang Liu, Jianjun Zhao,
and Meng Sun. Towards characterizing adversarial defects of deep learning software
from the lens of uncertainty. In ICSE, 2020.

[255] Gang Zhao and Jeff Huang. Deepsim: Deep learning code functional similarity. In
ESEC/FSE, 2018.

[256] Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang Wang, and Jiaya Jia. Pyra-
mid scene parsing network. In CVPR, 2017.

[257] Yan Zheng, Xiaofei Xie, Ting Su, Lei Ma, Jianye Hao, Zhaopeng Meng, Yang Liu,
Ruimin Shen, Yingfeng Chen, and Changjie Fan. Wuji: Automatic online combat
game testing using evolutionary deep reinforcement learning. In ASE, 2019.

110

[258] Husheng Zhou, Wei Li, Zelun Kong, Junfeng Guo, Yuqun Zhang, Lingming Zhang,
Bei Yu, and Cong Liu. Deepbillboard: Systematic physical-world testing of au-
tonomous driving systems. In ICSE, 2020.

[259] H. Zhu, M. Akrout, B. Zheng, A. Pelegris, A. Jayarajan, A. Phanishayee,
B. Schroeder, and G. Pekhimenko. Benchmarking and analyzing deep neural network
training. In IISWC, 2018.

[260] Rui Zhu, Shifeng Zhang, Xiaobo Wang, Longyin Wen, Hailin Shi, Liefeng Bo, and
Tao Mei. Scratchdet: Training single-shot object detectors from scratch. In CVPR,
2019.

[261] Xiaojin Zhu, John Lafferty, and Zoubin Ghahramani. Combining active learning and
semi-supervised learning using gaussian fields and harmonic functions. In ICML 2003
workshop on The Continuum from Labeled to Unlabeled Data in Machine Learning
and Data Mining, pages 58–65, 2003.

111

	List of Figures
	List of Tables
	Introduction
	Differential Testing at the Inference Stage
	An Analysis of Variance of Deep Learning Software Systems Training
	Mitigating Blindspot in Deep Learning Training Data
	Publications

	Related Work
	Machine Learning and Deep Learning System Testing and Debugging
	Testing Machine Learning (ML) Libraries
	Benchmarking DL Libraries
	Adversarial Testing of DL Models
	Differential Testing and Inconsistency Detection
	Debugging and Fault Localization

	Variance of Deep Learning Training Process
	Variance Study of Reinforcement Learning (RL)
	Awareness of The Impact of Nondeterminism
	Anecdotal Evidence of NI-factors
	Nondeterminism in Stochastic Gradient Descent (SGD)
	Impact of Weight Initialization
	Controlling Implementation-Level Nondeterminism
	Deep Learning System Benchmarking

	Blindspots in Machine Learning Training Data
	Blindspots of Machine Learning Systems
	Out-of-distribution detection
	Active Learning

	CRADLE: Cross-Backend Validation to Detect and Localize Bugs in Deep Learning Libraries
	Motivation
	Background
	Approach
	Overview and Challenges
	Detection Phase
	Localization Phase:

	Datasets and experimental settings
	Results
	RQ1: Can CRADLE Detect Bugs and Inconsistencies in Deep Learning Backends?
	RQ2: Can CRADLE Localize The Source of Inconsistencies?
	RQ3: What Is CRADLE's Detection and Localization Time?

	Limitations and Threats to Validity
	Summary

	Problems and Opportunities in Training Deep Learning Software Systems: An Analysis of Variance
	Motivation
	Nondeterminism-Introducing (NI)-Factors
	Definitions
	Algorithmic NI-factors
	Implementation-Level NI-factors
	Controlling NI-factors for Determinism

	Experimental Method
	Experimental Sets of Identical Training Runs
	Nondeterminism-Level Settings
	Metrics and Measurements
	Statistical Tests

	Experimental Settings
	Results and Findings
	RQ1: How Much Accuracy Variance Do NI-factors Introduce?
	RQ2: How Much Accuracy Variance Do Implementation-Level NI-factors Cause?
	RQ3: How Much Training-Time Variance Do NI-factors Introduce?

	Researcher and Practitioner Survey
	Survey Design and Deployment
	Survey Results and Findings

	DL-Training Paper Survey
	Implications, Suggestions, and Future Work
	Threats to Validity
	DEVIATE: A Deep Learning Variance Testing Framework
	Summary

	Mitigating Blindspots in Deep Learning Training Data: The N-model Approach
	Motivation
	Approach
	Ranking Unlabeled Samples
	Investigating Interesting Unlabeled Samples
	Retraining to Improve DL Model

	Experimental Settings
	Results and Findings
	RQ0: Are All Holdout Scenarios Blindspot Scenarios?
	RQ1: Can Input Sample Scores with N Models Better Indicate a Dataset Blindspot Sample than Traditional Single Model Scores?
	RQ2: Can Incorporating Multiple Model Analysis in The Development Process Improve The DL Model with Retraining?
	The ``ray'' Fish: A Use-Case of Leveraging Analysis of Samples with High Variance

	Summary

	Future Work
	Deep Learning Software Systems Testing and Debugging
	Deep Learning Systems Automatic Repair
	Variance Aware Deep Learning Hyperparameter Optimization

	Conclusion
	References

