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Abstract

Coral reefs represent simultaneously one of the most beloved and one of the most
endangered ecosystems in the world. Millions of people visit coral reefs every year for
tourism purposes, and millions of people living in areas adjacent to reefs have reef fish as
a key part of their diet, but both of these important services provided by reefs are under
threat by anthropogenic stressors. These include overfishing, which is known to cause
regime shifts to an equilibrium dominated by macroalgae instead of coral; nutrient loading,
which facilitates greater nutrient uptake by macroalgae, allowing them to overgrow coral;
sedimentation, in which coral and algae alike become smothered by particulate matter,
leading to food web disruption; and many others such as ocean warming and acidification
due to climate change. Outbreaks of crown-of-thorns starfish (CoTS), a fast-acting coral
predator, are also projected to become more serious in the future, as more CoTS larvae
survive at elevated nutrient concentrations. Due to the large number of reef organisms
(including many coral species, macroalgae, and CoTS) that reproduce by dispersing their
larvae into the ocean, the fact that sedimentation can be caused by soil erosion many miles
inland, and the spatial variation in fishing pressure and nutrient input that arises from
different human land use patterns, these reef stressors are explicitly spatial in nature. As
the large spatial scales that coral reef dynamics take place on make comprehensive field
studies expensive in money, time, and labour, determining optimal strategies for managing
these stressors cannot rest on field work alone. In this thesis, we build and parametrize three
spatially explicit mathematical coral reef models of intermediate complexity, and use these
to produce ecological predictions and conservation recommendations for reefs with high
levels of anthropogenic stress. We show that coral and herbivorous fish populations respond
to fragmented habitats induced by overfishing in opposite ways, and that spillover from
marine protected areas can sustain herbivorous fish populations even in heavily overfished
areas. We demonstrate that local economic transitions from fishing to tourism can facilitate
larger-scale recovery first of fish and subsequently of coral within approximately 30 years.
We show that on reefs experiencing CoTS outbreaks, slight increases in fishing and nutrient
loading rates could cause sharp transitions to states with less coral and continuous CoTS
presence. We predict how future CoTS outbreaks would affect coral cover on reefs adjacent
to two growing cities (Cebu City, Philippines and Jeddah, Saudi Arabia), and evaluate four
strategies for CoTS management in these cities. We evaluate the resilience of reef fish in
four different functional groups to sedimentation caused by deforestation, as well as the
robustness of reef fisheries to decline in fish stock stemming from deforestation, and show
that flexible harvesting strategies can mitigate this decline. Our work joins novel ecological
theory with concrete recommendations for reef ecosystem management, and represents a
substantial step forward for understanding marine spatial dynamics.
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Chapter 1

Introduction

The coral reef is one of the most iconic ecosystems existing anywhere on Earth. People
collectively spend billions of dollars every year on tropical vacations during which they
can see coral firsthand, and return with their waterproof cameras full of pictures of coral
reefs and their animal inhabitants. However, coral reefs are also highly important from
an ecological perspective, as they constitute one of the highest-biodiversity ecosystems
in the world [23, , 25]. In addition to the various coral species themselves, reefs are
home to many kinds of fish (as anyone who has been to a reef will tell you), which form
a large and intricate food web. This food web is similar to those found on land in some
respects, featuring herbivorous, omnivorous, and carnivorous species; fish that eat other
fish are properly referred to as “piscivores”. The herbivores in this food web mainly feed
on photosynthetic algae that inhabit, and compete with coral for space on, the seabed.
This includes fast-growing macroalgae, an umbrella term for large algae (such as seaweeds)
that resemble underwater shrubs, as well as even faster-growing turf algae, which bears
similarity to grass. Also present are predators of coral, such as the crown-of-thorns starfish
(CoTS). CoTS are voracious coral predators with a fast life cycle, and can thus quickly
reduce healthy reefs to rubble. Finally, of vital importance are the fluxes of nutrients such
as nitrogen and phosphorus, which primary producers on the reef such as algae need to
uptake to grow and survive.



Figure 1.1: Coral often builds incredibly complex structures. (Photo: wewe yang, Pexels)

1.1 Mathematical modelling of spatial processes in
ecology

Using mathematical models to express the dynamics of interacting species is a concept
with a long and rich history. We are nearing the centenary of the textbook in which Alfred
Lotka first applied equations describing oscillatory chemical reactions to a predator-prey
system [152], as well as that of the work of Vito Volterra on fluctuations in Adriatic Sea fish
catch [255]. The Lotka-Volterra predator-prey model based on their results, probably the
simplest and easiest to understand mathematical representation of an ecological system, is
reproduced below:

¥ —aN - NP (1.1)

& =48NP — P '
Here, the population of a prey species is denoted by N, while that of a predator species
is denoted by P. Within the model, prey are born at a rate a. They are eaten by predators
at a rate 3; the term for this is dependent on both N and P, as it represents an interaction
between the two species. Predators use the energy they obtain from consuming prey to
reproduce, with a constant v representing the efficiency at which eaten prey are converted
into predators, and die at a rate §. Variations on the Lotka-Volterra model have since been



produced. Among the most notable of these is the Rosenzweig-MacArthur model [209],
which features an explicit carrying capacity (K) for the prey, and represents predation as
a saturation function in N (with half-saturation constant s). This latter assumption is
based on the fact that predators cannot spend all of their time hunting for prey, so the
rate of predation is therefore taken to scale sublinearly with prey abundance. This model
is reproduced below:

G =aN(1-%) :g}lzst (1.2)

However, both the Lotka-Volterra and Rosenzweig-MacArthur models (without any
further modification) represent dynamics within a population that is spatially uniform. In
other words, neither takes into account how the population levels of these two interacting
species may vary at different locations. However, real-life ecological populations are often
far from well-mixed, and the wealth of biotic and abiotic interactions in an ecosystem
can create rich spatial and spatiotemporal patterns [164]. These range from the large-
scale migration of birds at specific points in the year [127] to the patchwork of different
plant communities that establish themselves following forest fires [246], to invasive species
spreading into new habitats [132]. Aquatic ecology in particular features highly connected
habitats and organisms capable of dispersing tremendous distances (see Section 1.4). As
a result, a variety of different mathematical frameworks have been constructed that treat
their included species and abiotic factors as varying over space as well as time. One way of
doing this is by modelling the local dynamics of each species involved at multiple locations
using the ordinary differential equation approach detailed above, and introducing coupling
between equations for the same species in different locations to represent population migra-
tion. This approach separates space into discrete habitats, which are known as “patches”.
A simple implementation of a two-patch model, in which a predator and a prey species can
move between two separate areas, is as follows:

W=, (1= 3) = 8P +m N, = m N,

G = WP (5P+m P, —mP P, L3
%—az\f(l——) B,P +mNN—mNN '
dP.

e — 1,8, QSfN —0,P, +mP P, —m",P,
Here, m" ., represents the migration rate from patch j into patch ¢ for prey, and m

the same for predators. Due to the wide ranges of many species, this framework can easﬂy
be extended to cover more than two patches (see e.g. [172]), up to a finite but arbitrarily
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large number. The resulting network of interconnected patches, including the species that
inhabit them, is referred to as a “metacommunity”; see Figure 1.2 for a schematic of a
3-patch predator-prey metacommunity. Any increase in number of patches beyond that
has the effect of turning space into a continuous variable, changing the system into a
reaction-diffusion PDE model (see e.g. [238]).

Figure 1.2: Schematic of a model of a predator species and a prey species that are each
spread across three patches. Black connectors represent predation; in these connectors,
pointed heads denote positive effects (increasing predator abundance due to eating prey)
and rectangular heads denote the corresponding negative effects (loss of prey due to pre-
dation). Red arrows represent migration between patches.

Note also that environmental conditions may differ from patch to patch, with one of
the two patches represented in the model potentially being better suited for prey growth,
predator survival, hunting, et cetera. This is reflected in the fact that parameters in a
spatial model may vary across patches. For instance, «, in the above model denotes the
intrinsic prey growth rate in patch 1, while a,, denotes that rate in patch 2, which need not
be identical to «,. This heterogeneity in environmental conditions can lead to significant
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differences in local dynamics if the patches within the model are fairly isolated, although
spatially distinct populations can become synchronized if between-patch dispersal is high
enough [186]. Within a metacommunity, “source” habitats for a given species are those
in which conditions for that species’s growth are good enough that the species population
can grow to its theoretical maximum and offload surplus members to other patches, while
“sink” habitats are less favourable ones in which the species in question would go locally
extinct if not for immigration from neighbouring patches [99]. Ultimately, the spatial
layout of sources and sinks determines whether a species’s habitat is closer to being one
contiguous area or many mostly disjoint components (a fragmented habitat). When viewed
independently of habitat loss, habitat fragmentation can potentially have both positive and

negative effects on biodiversity and species abundances [30, 81, |, indicating that it is
a complex phenomenon with nontrivial consequences. Of course, habitat fragmentation
can be carried out by human activities such as urban development [151, | and logging

[239]. Because of the anthropogenic origin and complex effects of habitat fragmentation,
studying it is critical for understanding how ecosystems will evolve under human influence.

1.2 Anthropogenic effects in ecological models

We currently inhabit the Anthropocene, a time when many environmental changes are
inextricably linked to human activity. This means that important insights can be gained
from including a human aspect in ecological models, whether explicitly or implicitly. A
simple example of this is how some ecological quantities, such as the amount of demand
for fish to eat, can scale with population size [219]. Consider the following Lotka-Volterra-
style predator-prey model featuring two fish species N and P, which are harvested at the
respective rates h, and h, in addition to deaths due to predation or natural causes:

N — 4N — NP — hyN

48 — yBNP — 6P — h,P

(1.4)

Although considering h, and h, as constants does make the mathematical analysis of
the model easier, greater realism can be achieved by treating them as a function of human
population size. (A great deal of ecological systems are far from equilibrium [176, 17],
so more complicated models will have additional parameters that also depend on human-
related forcing functions.) To illustrate this, let X be the human population of an area
adjacent to a reef. Suppose we assume that harvesting rates have a linear dependence on
population size, or in other words that the number of fish harvested (and eaten) per person



does not change with the population. Then, we can arrive at the following formulations
for the two harvesting rates, for h, and h, their baseline values and % a scaling coefficient:

hy =h, X@ﬁo); h, = hP% (1.5)

Here, ¢ = 0 designates the start of the simulation. In this way, ecological models
can be calibrated based on past population data from censuses, e.g [195], and run using
future population data from predictions, e.g. [247]. (Relatedly, large-scale interactions
between economic strength and ecosystem health themselves have been modelled using
Lotka and Volterra’s predator-prey model [177], as well as another model of competing
species attributed to them [259], indicating that this framework need not be restricted to
modelling individual species.)

However, human activity can also affect the health of coral reef ecosystems in much
more complex ways. An example is the fact that actions taken by humans involving the
sea and its life, such as fishing or marine conservation, are done because human priorities
dictate that they must be. If these priorities change, then so will human interactions with
the environment, and hence so will the populations of the marine species that humans
interact with. Which course of action humans take ultimately rests with a concept called
“utility”, which is simply the amount of benefit gained by pursuing a given economic
or behavioural strategy. Consider the following illustrative example, where a resource-
extraction community has two resources available to it, namely ore O and forest F'. Hence,
two economic strategies dominate in this community, namely mining and logging. Let z be
the percentage of economic activity in the community that consists of mining (rather than
logging). We can then express the amount of ore available for extraction by describing its
decrease using a differential equation:

d
d_? = —0,20 (1.6)
Here, ., is a constant representing how quickly ore is extracted. Note that if all
economic activity in the community is composed of logging, then no additional ore will
be mined, causing % to equal zero. We can also do the same thing for the amount of
forest that is available for use. Ore only regenerates on geological timescales, but forests
can regrow (albeit slowly), so the formulation is slightly different. Let F' represent the
percentage forest cover in the community, on a scale from 0 to 1, and suppose that the
managed forest is allowed to spread into previously clear-cut areas. (This may occur due
to restrictions preventing logging in such areas in order to avoid overexploitation.) The
spread of the forest in this manner can be viewed as an interaction between forested and



unforested land, and therefore the rate of forest expansion depends on both F' and 1 — F.
If we denote 9, as the rate that forest is removed during logging operations, and 7 as the
rate that it naturally regrows, then we get the following:

dF
=0, (1=2) F+rF(1-F) (1.7)

What about z7 Clearly, if mining is more profitable than forestry, then most economic
agents in the community would want to engage in mining, and vice versa. We can express
these preferences as utility functions. If e, denotes the utility gained from mining and e,
denotes the utility gained from logging, then it would be natural to take e, = k,0O and
e, = k,F, for k, and k, scaling constants representing how profitable the two strategies
are. This approach has been used in prior studies such as one that modelled transitions
between grasslands and forests that arise because of human economic preferences for agri-
culture or silviculture [111], and another that used a model of two different fishing strategies
(focused on sustainability or individual profit) to generate early warning signals for fish
stock collapse [205]. (Note that a community switching economic strategies due to differ-
ences in utility is ultimately based on individual-level switches [16], when these switches
are viewed in aggregate.) This paradigm of utility tradeoffs has also been used in studies
of how the relative priority placed on economic and conservation goals can affect outcomes
such as the spread of forest pests [20] and the preservation of both forest and grassland
biomes [125].

Since the aforementioned utility functions will necessarily change over time as the avail-
abilities of the two resources do, we could also derive a differential equation to model
changes in z, where such changes represent shifts in the percentages of economic activity
in the community that mining and logging make up. This will be proportional to the dif-
ference between e, and e,. We can additionally assume that if economic agents see their
neighbours using and making money from a particular strategy, they will be more likely
to engage in it themselves. This effect can be modelled using techniques from evolution-
ary game theory [ 15], namely by scaling the difference between e, and e, by a factor of
2 (1 — 2) to represent the fact that switching strategies becomes harder if the community
is dominated by one or the other. (On a macroeconomic scale, this also corresponds to the
fact that the success of a new mining or logging operation may depend on the presence of
supporting infrastructure and workers with the right skills, neither of which may be present
in a community which is heavily invested in a different economic strategy.) Therefore, our
differential equation for z is as follows, for x a scaling constant governing how quickly
economic agents switch strategies:



dz

o = m (1= 2) (k0 = k. F) (18)

Here, we can see that if mining is substantially more profitable than logging, then z will
approach 1 (i.e. all economic activity in the community consists of mining), and likewise
if logging is more profitable, then z will approach 0.

1.3 Spatial dynamics in marine ecosystems

Spatial dynamics are important to consider when modelling terrestrial ecosystems, but they
are downright vital when modelling marine ones. There are many reasons for this, but per-
haps the simplest and most intuitive is the nature of ocean currents and the way that they
are used by marine organisms. Phytoplankton and zooplankton, the foundations of nearly
all marine food webs, drift with the currents for their entire lives (the word “plankton”
itself is derived from an Ancient Greek word meaning “wanderer”). Additionally, many
species that are immobile as adults spend the early stages of their development in a stage in
which they have the same characteristics as plankton. This includes macroalgae [190, ],
which is a large form of algae that is rooted to the seabed and hence resembles underwater
grass or shrubbery, as well as coral itself [204, , 57]. The amount of time that these
species spend being carried about on the currents before they settle and begin the mature
phase of their lives is referred to as their “pelagic larval duration”, or PLD. Because of
the strength of ocean currents, larvae of a species with a PLD of a couple weeks can travel
dozens of miles down the coast [251]. This means that the local population dynamics of
species such as coral that are commonly thought of as not moving can instead depend on
processes occurring in comparatively distant locations.

Outbreaks of crown-of-thorns starfish (CoTS) are an example of a coral reef stressor
that is inherently spatially explicit. CoTS larvae, like the larvae of many marine organisms,
have the potential to disperse to areas great distances away from where they were originally
produced [244]. This means that a typical CoTS outbreak can involve reef areas far apart
from one another. For instance, genetic studies on CoTS collected at different locations
on the Great Barrier Reef during the most recent outbreak there showed no appreciable
genetic differences between CoTS in these areas [107], pointing to significant gene flow
among CoTS populations within an area 1000 miles long. Similarly, CoTS populations in
areas spread across the Pacific Ocean such as the Great Barrier Reef, Japan, Tahiti and
Hawaii have been found to cluster together genetically [273], suggesting that connectivity
via larval dispersal is possible between these disparate populations. As CoTS outbreaks



are a regional-scale phenomenon rather than a local-scale one, implementing methods for
controlling these outbreaks is a regional-scale task. During an outbreak on the Great
Barrier Reef, CoTS are typically not removed from every location where they appear, due
to the great time and labour costs of doing so [137]. Instead, a smaller number of locations
are focused on, chosen based on criteria such as the potential for CoTS in one area to spread
further across the reef and the capability of local coral to recover if CoTS are removed.
This means that deciding which parts of a very long reef to actively manage during a CoTS
outbreak is effectively an optimization problem.

Figure 1.3: Coral reefs host a wide variety of fish. (Photo: Francesco Ungaro, Pexels)

The larvae of benthic organisms are not the only things on a coral reef that can travel
long distances. Reef fish are also highly mobile: telemetry data has shown that reef species
can disperse over a kilometer or more of coastline [169]. This has implications both for
conservation of coral ecosystems and for the maintenance of reef fisheries, which provide
food for many of the human inhabitants of reef-adjacent areas. Marine protected areas
(MPAs), which often have strict restrictions on how much fishing, if any, is allowed within
their boundaries, have been set up around the world in order to protect the populations
of reef fish and other marine species [155]. Depending on the dispersal ability of reef fish
and how they are affected by habitat fragmentation, it may be just as useful to maintain a
network of small but interconnected MPAs as it is to maintain a large but comparatively



isolated one [228]. Additionally, improved yield in reef fisheries that are outside of but
adjacent to an MPA has been observed [213]. This is an example of source and sink
populations in the real world: areas that could be overfished under normal circumstances
instead can have relatively stable fish populations (and therefore stable fish catch levels)
due to receiving fish that disperse out of nearby MPAs, which is known as the “spillover
effect” (see e.g. [13, 69]).

The dynamics of coral ecosystems can also be driven by processes outside of the ocean
entirely. Much of the sediment that is deposited onto reefs originates from soil that is
eroded during rainfall events and carried by rivers to the sea [21]. A certain degree of
sedimentation is natural, and turbid waters do occur near the mouths of rivers whose
catchments have little human disturbance [11]. However, sedimentation can be exacerbated
by forest clearance: removing trees from an area means that the soil in that area is no
longer held firmly in place by the trees’ roots, an effect that is magnified on mountain
slopes and other areas with steep gradients [108, ]. The result of this is that important
reef processes such as algal photosynthesis and herbivorous fish feeding can be affected by
human activities many miles inland.

1.4 Mathematical coral reef models

Due to the necessity of devising strategies for protecting coral reefs against the numerous
threats that they face, as well as the difficulty of conducting field experiments on very
large spatial scales, mathematical models of coral reefs have recently been developed to
provide additional insights on their dynamics. For instance, many coral reefs throughout
the world have seen shifts towards algae rather than coral dominating most available space
[168]. Ecologists have debated whether this was the result of the reefs in question passing
a tipping point between two basins of attraction (one representing coral dominance and
the other representing algal dominance) or instead being a simpler state shift without
bistability, with evidence from the field on both sides [72, , |. A mathematical
approach was first utilized in a 2007 seminal paper by Mumby et al., which demonstrated
the possibility of bistability in a model of a coral reef under biologically realistic parameter
regimes [131]. The Mumby model is a low-dimensional dynamical system that tracks the
proportions of a seabed area that are covered by coral (C'), macroalgae (M), and turf algae
(T'), and is reproduced below:

% =aMC — Mg[]fT—i—fyMT

& = rTC - dC — aMC (1.9)
T=1-M-C

10



In this model, macroalgae overgrow coral at a rate a and algal turf at a rate v, while coral
overgrow algal turf at a rate r. Coral die at a rate d, and algal turf is assumed to colonize
the newly available area due to its rapid population dynamics. Grazers such as herbivorous
fish and sea urchins eat both macroalgae and algal turf at a rate g. When macroalgae is
consumed in this way, the empty space is colonized by algal turf, expressed as the term
J\z—]fT because grazers are assumed to consume both kinds of algae in the proportions that
they are available. (The equivalent term for the grazing of algal turf, Mg—fT, is omitted
in this model because turf is assumed to instantly regrow into areas where it has been
grazed.) Due to its nonlinearity, this grazing term proved to be the key to finding bistability,
leading to the conclusion that reduction in herbivorous fish populations (potentially due
to overfishing) can induce a dramatic shift to a seabed covered by macroalgae. Later
mathematical modelling work continued to shed light on if and when bistability in coral
reef ecosystems was possible. In 2011, Fung et al. developed an expanded state-transition
model similar to the one above, but with algal turf represented as its own compartment
and explicit mechanistic terms for the reproduction and spatial expansion of coral and
algae [89]. Using this model, they performed a search of the model’s parameter space
for values that produced multiple stable states. They found that discontinuous phase
shifts between bistable equilibria could happen, particularly for reefs under significant
anthropogenic stress, but also that parameter regimes featuring alternative stable states
were more common near the extremes of the parameters’ empirical ranges. Follow-up work
by Arias-Gonzalez et al. using the same model demonstated the possibility of phase shifts
from coral to algal dominance through nutrient input or sedimentation instead of fishing
pressure increases [17], underlining the complexity present on coral reefs.

The state-transition models described above represent local dynamics: the one used
by Fung et al. is accurate for lengths of coastline on the order of 10! to 10® metres [39].
However, fundamental reef processes such as fish migration, coral larval dispersal, and the
cycling of nutrients such as nitrogen and phosphorus take place over larger scales still.
In 2016, Spiecker et al. built a integro-differential reef model to examine how trophic
cascades (i.e. fluctuations in the population level of one species due to fluctuations in its
predators or prey) are affected by these long-range reef processes [228]. Within this model,
the reproduction of coral and macroalgae is governed by explicitly nonlocal functions.
Specifically, in any given location x on the coastline, the growth rate of coral or macroalgae
in x is equal to the integral over all locations y of the number of coral larvae or macroalgae
propagules produced at point y times the probability that a larva or propagule created at
y will eventually settle onto the seabed at z. The findings by Spiecker et al. include that
a network of small but interconnected MPAs (with a substantial spillover effect) causes
trophic cascades inside and outside MPAs to become more similar to each other, showing
how the large degree of connectivity that is possible in marine ecosystems can lead to the
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convergence of dynamics in ostensibly heterogeneous local areas.

With time, the importance of mathematical models as tools for coral reef conservation
and planning has grown significantly, as evidenced by the number of different problems fac-
ing coral reefs that they have been applied to. For example, a recent review of the literature
on CoTS has called on mathematical modellers to perform simulations of CoTS dynam-
ics over large spatial scales [196]. Additionally, the paradigm of models of intermediate
complexity for ecosystem assessments (MICE) has gained traction recently [100, |, as a
way to create testable theory in the domain of marine ecology and coral reef management.
This approach avoids the issues with overfitting that come with larger models, and hence
MICE can produce results that can be applied to broad ecological scenarios. In addition to
the greater focus on modelling, mathematical concepts such as the aforementioned bista-
bility and regime shifts, as well as transient versus asymptotic ecosystem behaviour [47]
and optimization approaches to conservation [228, 87] and fisheries management [136, ]
have become widespread in the literature, which opens the door for further analysis of
problems faced by coral reefs using mathematical tools. In this thesis, three such problems
are addressed by building models within the MICE framework and using their results both
to inform theory and to provide concrete recommendations for ecosystem management.

1.5 Thesis outline

The remainder of this thesis is organized as follows. In Chapter 2, we use a coupled
social-ecological metacommunity model to examine the transient effects on coral of eco-
nomic transitions in reefside communities from fishing to tourism, as well as how coral
and herbivorous fish populations respond to habitat fragmentation driven by overfishing.
This work represents the first time that the timeframe and spatial scope of coral recovery
induced by economic shifts has been modelled, and we believe that the results contained
therein will also prove useful for the design of marine protected areas. This chapter has
been published in the Bulletin of Mathematical Biology [171].

In Chapter 3, we use a similar spatially explicit reef model, featuring crown-of-thorns
starfish (CoTS), to model CoTS outbreaks off the coasts of two large, growing cities with
offshore coral reefs within the range of CoTS. We also determine levels of fishing pressure
and nutrient loading that are likely to cause qualitative changes on reefs with CoTS out-
breaks. Additionally, we devise four different strategies for local CoTS removal to address
outbreaks, and determine the effectiveness of each of these strategies in our focus cities.
This represents the first time that future CoTS outbreaks have been simulated in, and
CoTS management strategies have been tailored to, areas outside the Great Barrier Reef.
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This chapter will be submitted to Ecological Modelling.

In Chapter 4, we construct a model that couples seabed interactions between coral and
algae, trophic interactions between fish, and sedimentation driven by deforestation. We
use this model to determine how quickly deforestation can cause different fish functional
groups to decline, simulating over a wide range of possible local terrain and hydrodynamic
characteristics. We also evaluate the extent to which flexible harvesting strategies can
stabilize these declining fish populations, as well as how robust reef fisheries yield is to
deforestation-related stress. Within this chapter, we have built the first dynamical system
model linking forest and reef processes, and hence performed the first explicitly time-
dependent analysis of how deforestation will affect reef fish populations and the harvesting
thereof. This paper is being prepared for submission.

Finally, in Chapter 5, we summarize our results and discuss the broader themes evident
in our work. We also suggest further avenues of research that utilize spatial models to
answer questions in marine ecology.
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Chapter 2

Local overfishing patterns have
regional effects on health of coral,
and economic transitions can
promote its recovery

This chapter is based on the paper: RA Milne, CT Bauch, M Anand. 2022. Local overfishing patterns
have regional effects on health of coral, and economic transitions can promote its recovery. Bulletin of
Mathematical Biology, 84: 46. DOI: 10.1007/s11538-022-01000-y
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2.1 Abstract

Overfishing has the potential to severely disrupt coral reef ecosystems worldwide, while
harvesting at more sustainable levels instead can boost fish yield without damaging reefs.
The dispersal abilities of reef species mean that coral reefs form highly connected environ-
ments, and the viability of reef fish populations depends on spatially explicit processes such
as the spillover effect and unauthorized harvesting inside marine protected areas. However,
much of the literature on coral conservation and management has only examined overfish-
ing on a local scale, without considering how different spatial patterns of fishing levels
can affect reef health both locally and regionally. Here, we simulate a coupled human-
environment model to determine how coral and herbivorous reef fish respond to overfishing
across multiple spatial scales. We find that coral and reef fish react in opposite ways to
habitat fragmentation driven by overfishing, and that a potential spillover effect from ma-
rine protected areas into overfished patches helps coral populations far less than it does
reef fish. We also show that ongoing economic transitions from fishing to tourism have the
potential to revive fish and coral populations over a relatively short timescale, and that
large-scale reef recovery is possible even if these transitions only occur locally. Our results
show the importance of considering spatial dynamics in marine conservation efforts, and
demonstrate the ability of economic factors to cause regime shifts in human-environment
systems.

2.2 Code availability

The code for simulating the model is available on Zenodo (DOI: 10.5281 /zenodo.5534958).

2.3 Introduction

Coral reefs are home to very high levels of biodiversity [23, , 25], and provide vital
services to humans such as harvesting of reef fish and ecotourism [59]. Overfishing has
long been known to be a major stressor of reefs [207, , |, due to its ability to shift
areas from a coral-dominated to a macroalgae-dominated state [107, 27]. Such shifts,

when considered on a regional scale, can disrupt connectivity on a reef and give rise to
fragmented rather than connected habitats. This has been shown to alter the composition
of species present [15, 30], although the overall effects of fragmentation are ambiguous
[272]. Additionally, as the economies of reefside communities transition from being based
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on fishing to tourism, areas that were previously overfished may see a regime shift in the
opposite direction, back to coral dominance. However, the speed of such a shift, as well
as whether one can happen regionally due to local-scale economic transitions, is yet to be
seen. Here, we use a spatially explicit coral reef model using a coupled human-environment
framework to investigate these multi-scale processes, and to determine their implications
for the future viability of both coral reefs and the communities that depend on them.

Overfishing of reef fish has been cited as one of the most prominent threats to the
livelihood of coral reefs (e.g. [207, 167, 162]). This is due to the fact that many commer-
cially valuable species of reef fish, and especially parrotfish, are predators of macroalgae
[157, 83], which can overgrow coral and outcompete it for available space. Fishing pressure
on heavily-harvested coral reefs in the Pacific has been estimated at or above 50 percent
of organisms from many different commercially viable species per year [184, |. Many of
the species surveyed were being fished above levels predicted to be sustainable, including
half of all parrotfish species in Hawaii [181], and harvesting rates in general were often far
above the rates associated with a shift to a macroalgae-dominated state according to past
modelling results [27, 28]. Further complicating matters is the fact that other coral reef
stressors, such as nutrient loading, have interacting effects with overfishing that increase
the propensity of an overfished system for a regime shift even further [274, 17].

While overfishing is known to have deleterious effects on coral reefs, including causing
regime shifts, fishing can safely be performed at lower rates without these risks. Har-
vesting rates associated with small-scale subsistence fishing, which have previously been
estimated at one tenth of commercial rates [03], have been found to be between one seventh
and one third of the estimated upper limits for sustainability of coral populations [1412].
Many communities situated adjacent to coral reefs are in the process of transitioning from
economies based around commercial fishing to those more heavily based around tourism,
including those in the Pacific [20, 78] and the Caribbean [20, (8]. After this transition,
fishing operations would typically be on a smaller scale; the wide gap between commercial
and subsistence fishing rates suggests the possibility that these economic transitions could
drive regime shifts. In particular, this raises the question of how quickly a reef that has
previously been under very high fishing pressure can recover following such an economic
transition. In addition to this, as commercial fishing is an important industry both in
terms of how much revenue it generates [59, 97, | and how many people depend on it
for food [167, 97], it is necessary to balance the needs of the fishing and tourism industries
as well as the coral reef itself. Ideally, a reefside community should have a healthy reef
as well as sustainable fishing and tourism industries; therefore, finding conditions for the
coexistence of these is imperative.

In addition to featuring a wide array of trophic interactions such as the linkages that
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cause coral to be harmed by overfishing, coral reef ecosystems are also very complex spa-
tially. Part of this is due to their sheer size. The Great Barrier Reef is the largest marine
protected area in the world [165], and the Caribbean Sea similarly features a large network
of reefs offshore of various islands. Reefs within a given region are also incredibly het-
erogeneous in their internal composition, with sites dominated by coral, macroalgae, and
algal turf all being present [279]. Similarly, different reefs, and different areas of a reef, are
highly connected due to the dispersal of coral larvae [233, 243], fish [3, 15, 24] and nutrients,
and these dispersal processes themselves have different effects across different spatial scales
[243]. Therefore, damaging one part of a reef also should have farther-reaching effects on
areas that it is connected to. However, most modelling of overfishing and other coral reef
stressors has been done strictly at local scales (see review in [29]). Because of this, an
increased focus on multi-scale effects of overfishing has the potential to uncover many new
insights.

Owing to coral reefs’ size and complexity, concepts pertaining to nonlocal processes
are often seen in field and theoretical literature related to reefs. For instance, previous
models considering connectivity between coral reef habitats implicitly [75] and explicitly
[228] have emphasized the importance of the spillover effect, where dispersal of coral larvae
or fish from relatively undisturbed reefs into adjacent fished areas can help counteract
the degradation caused by overfishing. A potential counteracting effect is large-scale and
commercial harvesting in areas that are nominally protected, as seen with many species

associated with coral reefs [10, , |. Fishing boats routinely travel sizable distances
away from their home ports [77, 441], and outside fishers often employ overly damaging
fishing techniques against marine protected area (MPA) regulations [1(]. Hence, an MPA

without enforced boundaries is liable to have substantial fishing pressure from adjacent
areas outside it. In light of this, it is important to understand how processes such as
nonlocal fishing pressure and the spillover effect can interact to affect reef health over
broader spatial scales.

Echoing the spatial heterogeneity present in coral reef ecosystems, the debate over the
best conservation strategy for coral is also spatial in nature. Habitat connectivity has
been cited as important for the design of marine protected areas (MPAs) on coral reefs
[14, 34, 233], as it also has with other types of marine ecosystems [116], and its prominence
in the literature has been steadily increasing over time [19]. However, the debate over the
importance of connectivity is not closed, as it rests on the distances that the species being
protected can disperse. This is also related to the spillover effect. Reef species that are
capable of long-range dispersal will have stronger spillover effects, so populations in MPAs
that are geographically far apart will be able to reinforce one another. In contrast, the
spillover effect will be weaker when considering species with less capability to disperse, so
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MPA connectivity is a more important consideration for the conservation of these species.
One recent paper concluded that the dispersal abilities of Caribbean reef fish are insufficient
to traverse the gaps between current MPAs [21], whereas other work has found that marine
species disperse over such great distances that the importance of connectivity in designing
MPAs is minimal [60]. Because of these discrepancies in the literature, and given the
importance of establishing sound conservation strategies for coral reefs, more research on
the optimal configuration of MPAs is needed.

Analogous to the debate over connectivity of MPAs is that over the relative threats
posed by habitat loss and habitat fragmentation. Again, this is underpinned by the dis-
persal abilities of the species that would be protected. Although habitat fragmentation
is a great concern in terrestrial ecosystems, marine species generally have greater disper-
sal ability and are therefore affected less by it. Fragmentation has been shown to have
highly variable effects on the functioning of coral reefs and other marine ecosystems [272],
including on abundance and biodiversity of reef fish [30], and the effects of habitat frag-
mentation via degradation due to overfishing may also be countered by mechanisms such
as the spillover effect. Recent calls have been made for more research on the variety of
responses that marine communities have to fragmentation, especially research that inte-
grates dynamics over both local and regional scales [272]. Hence, it is necessary to build
a robust, multi-scale theory around how important connectivity and fragmentation are for
the viability of the many species that inhabit coral reefs.

In this paper, we use a coupled human-environment model to determine the effects of
overfishing on coral reefs across both local and regional scales, and provide policy solutions
for managing overfished reefs. We identify how economic transitions can lead to regime
shifts from macroalgae to coral dominance, and show that these transitions, when occur-
ring locally, can promote both healthy reefs and a sustainable economy with fishing and
tourism both being viable. We test the ability of coastal communities to stop coral decline
via temporarily subsidizing the tourism industry, and find that such short-term subsidies
can drive long-term coral recovery. We contrast the spatial effects of fish and coral dis-
persal with those of nonlocal harvesting inside MPAs, and show the importance of strict
enforcement of MPA boundaries. We also determine that coral and herbivorous fish have
very different responses to habitat fragmentation, with the implication that MPA design
needs to take into account divergent needs of multiple species.
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2.4 Methods

2.4.1 Model formulation

To simulate the dynamics of a coral reef, we adapted a model of Spiecker et al. [228]
featuring herbivorous fish, coral, macroalgae, nutrients and detritus. We chose this model
because it is mechanistic and based around recruitment and mortality rates (as opposed
to state transition models, e.g. [181]), which is important as the regional-scale dynamics
we investigate strongly involve processes like the production and dispersal of coral larvae.
In [228], an integro-differential system is used to capture the dynamics in many different
areas of a reef habitat, with nonlocal processes such as organismal dispersal being spatially
continuous. Since our aim was to capture the effects of overfishing within specified areas
rather than at individual points, we converted this system into a metacommunity version by
simulating a linear network of patches along a coastline, interconnected via dispersal of the
model’s components. We kept the assumption made in [228] that dispersal from one patch
to another would follow a Gaussian pattern, declining with increasing distance between
the two patches in question. In order to perform an in-depth examination of overfishing,
especially as it relates to economic transitions between fishing-based and tourism-based
economies, we added a novel differential equation to the model representing the proportion
of economic activity in each patch related to tourism (rather than fishing), with change
over time driven by the relative economic utility gained from these strategies. We also
introduced a dynamic fish harvesting rate that depends on economic strategies in each
patch and incorporates harvesting by fishing boats outside their local patch. The biological
components of our human-environment model are below, for ¢ the index of a given patch:
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Within the model, there are five biological components. Each one represents a certain
functional group or abiotic factor rather than focusing on individual species, an approach
also used in e.g. [181, 18]. These are herbivorous fish H, coral C, macroalgae M, detritus
D and nutrients N. Coral and macroalgae compete for space offshore, and therefore their
total abundance is restricted in the model, i.e. M + C < 1. Any space not colonized by
coral or macroalgae is assumed to be covered by algal turf or bare rock. The herbivorous
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fish population has been normalized to be on the same scale as coral and macroalgae, and
hence is expressed in terms of its density over an arbitrary area. (Scaling constants with
units of area™! are therefore omitted due to being equal to 1).

In the model, herbivorous fish are assumed to eat macroalgae using a Holling Type II
functional response, represented as a mathematically equivalent Hill function with maxi-
mum growth rate rg, half-saturation constant kg, and Hill coefficient 1. The fish repro-
duce at the rate at which they eat macroalgae, die of natural causes at a rate mpy, and
are harvested at a variable rate (detailed below). Coral and macroalgae reproduce via the
dispersal of larvae and propagules [75], so their growth rate is nonlocal; these dynamics
are explained below. Coral die of natural causes at a rate m¢, while macroalgae die of
natural causes at a rate mj; and are eaten by fish as detailed above. Detritus is formed by
organisms that die of natural causes at one-to-one rates, and decays into nutrients at a rate
~. Nutrients are formed from detritus at the same rate, scaled by a conversion constant f,
and are uptaken by macroalgae as mentioned above. Nutrients also enter the system via
inorganic processes (e.g. river outflows) at a rate ¢ and leave it (e.g. by ocean currents)
according to the linear term e x N. These processes can be seen in a schematic of the local
dynamics of the model (Fig. 2.1).

Fishing boats

Macro-
algae

Detritus

!

Figure 2.1: Schematic showing local interactions between model components. Red lines
represent economic interactions, blue ones represent trophic and competitive ones, and
black ones represent cycling of materials. Solid lines denote positive feedback, while dashed
lines denote negative feedback.

Nutrients

The functions in the model representing dispersal between patches are below. For coral
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and macroalgae, these are part of their growth rates, whereas for the other components
these are mathematically equivalent to passive dispersal.

g, (1) = X (it ) s, Mg, ()
ge, (t) = Xore,Cible, (i) (2.2)
g1 (t) = ~L () + L0y, (i), I € {H,D,N}

Coral larvae are created in each patch at a rate ro. This is constant in [228], but
we took it to vary temporally, since coral reproduction events happen at specific times
during the year [235] and to allow for a mechanism for macroalgae to overgrow coral

during the majority of the year. Macroalgae propagules are created in each patch at a
rate depending on the available nutrients, which is governed by a saturation function with
maximum growth rate ry; and half-saturation constant k,;. At each time step, the new
coral larvae and macroalgae propagules are distributed among patches according to their
distances from whichever patch the larvae and propagules originated in. Dispersal of new
larvae and propagules out of each patch is governed by a Gaussian dispersal kernel centred
on that patch that has been discretized (see e.g. [150]), and the intrinsic growth rate for
coral or macroalgae in one patch is the sum of the larvae or propagules created anywhere
that disperse into that patch. This rate is scaled down by the factor (1 — M — C') for both,
to represent their shared carrying capacity.

In addition to their local dynamics, fish, detritus and nutrients are assumed to undergo
passive dispersal between patches. The dispersal rates for these are governed by Gaussian
dispersal kernels in the same way as coral and macroalgae reproduction are. Adult coral
and macroalgae are assumed not to move. The standard deviations of these dispersal
kernels biologically represent the ability of fish, coral larvae and macroalgae propagules to
disperse outside of their home patches, with smaller values meaning more local retention.
We chose baseline values of the standard deviations of each kernel to be 1, indicating
relatively large dispersal ability. The standard deviations for detritus and nutrients are the
same as those for fish, coral larvae and macroalgae propagules since dispersal by the latter
groups is dependent on physical factors such as tides and ocean currents, which also drive
dispersal by the former groups.

We complemented the biological components of the model by adding a state variable
z encompassing local economic strategies, in a format similar to that used previously for
quantifying support for conservation [212]. The differential equation governing z is below,
for ¢ the patch index:
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When formulating z, we considered two economic strategies, namely fishing and eco-
tourism, and let z; be the proportion of economic agents in patch ¢ engaging in ecotourism.
In our model, z changes according to the relative utility of both strategies. z increases
when a large amount of coral is present (and hence ecotourism is more profitable), and
it decreases when large quantities of fish are available to be harvested (measured by the
quantity hy, H;, where hy, is the commercial fishing rate in patch i). We use the param-
eters kr and kp to scale how strongly support levels for tourism and fishing, respectively,
depend on the underlying biological conditions, and we define c, as the degree to which one
strategy is more profitable than the other due to external factors. Additionally, z changes
due to social pressure using the replicator dynamics found in [242], under the assumption
that economic agents in a patch will be more likely to use a particular strategy if their
neighbours are also using (and profiting from) it. We take s to be the base rate at which
economic agents can switch their strategies.

z is coupled back into the model via the dynamic fishing rate, as only economic agents
engaging in fishing are assumed to fish at the higher commercial rate. This can be seen
in the local schematic (Fig. 2.1). This dynamic fishing rate is as follows, for ¢ the patch
index:

& (1) =3 (ha, (1= 2) 0, (3) + by 205, (1)) (2.4)

J

In each patch, the dynamic fishing rate is set to be the weighted average of two different
rates: hy, the commercial rate, and fLH, a background subsistence rate. This is due to
the assumption that any economic agents engaging in fishing (i.e. 1 — z) would harvest
according to the commercial rate, and that the dynamic fishing rate in any given patch
would approach the subsistence rate if economic activity in that patch approached 100
percent tourism. A Gaussian dispersal kernel is used to quantify the amount of time that
fishing boats from any given patch spend in each patch in the system (including their own),
and hence the nonlocal fishing pressure in each patch; this is denoted op.

2.4.2 Model parametrization

To obtain the kinetic rates for herbivorous fish growth, we surveyed the doubling times of
all parrotfish species in FishBase [38], the same method as that used in previous modelling
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papers (e.g. [28, ). We took rg = 0.7 yr~! and kg = 0.5, since the majority of
species were categorized as having doubling times less than 15 months and nearly all of
the rest were in the category of having doubling times of 1.4 to 4.4 years. Our values
produce a reproduction rate similar to the linear rates used in previous work [28, ]
when macroalgae cover is at its maximum of M = 1. Coral reproduction rate for different
species has been estimated at annual doubling [2], an average of 5.7 larvae per colony per
year [210], and ten eggs per polyp in a yearly spawning session [113]. We took r¢ = 5
yr~!, a value in the middle of this range. Macroalgae are known to grow very quickly,
and tenfold yearly growth under optimal conditions has been reported [211]. Spiecker et
al. deemed a value of 15 yr~! for macroalgae growth rate to be biologically plausible,
and their sensitivity analysis found most state variables to be minimally responsive to
changes in it, so we took rj; to be the slightly lesser value of 12 yr—!. We kept the value
of meg = 0.44 yr~! from previous studies [212], and used the low natural mortality rate of
0.1 yr~! for herbivorous fish and macroalgae.

When considering nutrient dynamics on coral reefs, we looked specifically at nitrogen.
This was done because macroalgae and other primary producers on pristine coral reefs have
shown N-limitation, but those closer to developed areas are often saturated with nitrogen
due to anthropogenic input and therefore are P-limited instead [114, 806, |. Coral reefs
have high rates of nutrient exchange with the surrounding oceanic water [153] and short
residence times [135], so we took e to be a high rate of 0.6 yr~'. Nutrient input into coral
reefs and other marine ecosystems has been estimated as on the order of 100 to 1000 kg N
km ™2 yr~! in most areas [254, 165], with higher values for areas of dense human settlement,
or equivalently between 0.3 and 10 kmol N km™2 yr~! per capita depending on the flow
rates of local rivers [225]. Nitrogen concentration of water entering wetlands adjacent to
the Great Barrier Reef has been measured at 200 ug N L~! under flood conditions [6]. We
therefore considered values of ¢ ranging from 20 to 120 kmol N yr—!, representing the total
amount of nitrogen exported into a patch of approximately 1 km? with low to intermediate
population density (i.e. areas most likely to contain pristine reefs). We took v to be 1 yr—!
under the assumption that all detritus would decompose within a year [76, 51], and used
a value of 20 kmol N for f as nutrient input from detritus decomposition was expected
to be an order of magnitude less than input from external loading [256]. We used a half-
saturation constant for nutrient uptake by macroalgae (kys) of 80 kmol N yr—!, close to the
median of the values reported in previous studies [194, | after adjusting units to make
kar on the same scale as N. This choice also meant that nitrogen availability was close to
saturation at the upper ranges of ¢ that we tested, as expected.

We used a baseline of 0.5 yr=! for the commercial fishing rate hy; this value has been
used in prior human-environment modelling work on coral reefs [2412] and is consistent with

23



available data for reef fish harvesting [187, ]. We took the subsistence fishing rate hy
to be 0.05 yr~!, one tenth of the baseline commercial rate [63]. Unless we were simulating
economic transitions or the effects of tourism subsidies (see below), we took ¢, to be zero,
indicating no external economic pressure in favour of fishing or tourism. We fit the other
social parameters (k, kr, kr) by simulating the system for different orders of magnitude of
these parameters, and choosing values for which z converged to equilibrium at 0 or 1 after
a plausible length of time following a shock. We ultimately took x = kr = krp = 1.

2.4.3 Numerical methods

To perform the simulations mentioned below, we integrated our model using MATLAB’s
ODE45 function. This was done as our system is nonstiff, as the maximal rate of change
within the system is less than that in the model of Spiecker et al. [228], which was integrated
using ODEA45.

In order to investigate local dynamics and check when regime shifts are expected to take
place, we simulated a one-patch version of the model while varying harvesting rate (hy)
and nutrient loading rate (¢g). This allowed us to determine how the ability of overfishing
to push coral reefs into a macroalgae-dominant regime is mediated by nutrient loading.
For each run of the model, i.e. for each deterministic pair of values (hy, q), we determined
the post-transient average values of coral and macroalgae cover, as well as herbivorous fish
abundance. We defined different regimes as discrete regions of parameter space (harvesting
rate vs. nutrient loading rate) with qualitatively similar dynamics. We did not encounter
bistability for any parameter values within the ranges specified above, similarly to how
bistability was found to be rare in another coral model with comparable complexity [39].
We tested this by simulating the model from initial conditions between 0 to 1 (aside from
the two boundary cases) for coral, macroalgae and economic strategy, and ranging from
just above 0 to double the highest observed values in our initial simulations (i.e. those in
Figure 2.2) for the other variables. Therefore, each regime corresponds to one specific set
of long-term model behaviour.

To evaluate whether overfishing-driven habitat loss or fragmentation is more detrimen-
tal to coral and herbivorous fish, we simulated a network of 25 patches in which a fixed
number of patches were heavily overfished (hy = 0.8) and the rest were fished at subsis-
tence levels (hy = 0.05). We varied both the number of overfished patches (to test the
effects of habitat loss) and their configuration (to test the effects of habitat fragmentation).
Configurations that we used included one where all overfished patches formed a contiguous
area in the middle of the simulated landscape, with large contiguous areas of non-overfished
patches on either side, and several where overfished and non-overfished patches alternated
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’ Parameter \ Value \ Units \ Description ‘
Ty 0.7 yr! Herbivorous fish maximum intrinsic
growth rate
kg 0.5 unitless Half-saturation constant for herbivorous
fish growth
mg 0.1 yr! Mortality rate for herbivorous fish from
natural causes (i.e. non-harvesting)
hy 0.05—-0.5-0.8 yr! Commercial fish harvesting rate
hy 0.05 yr! Subsistence fish harvesting rate
ro 5 yrt Coral intrinsic growth rate
me 0.44 yr—! Coral mortality rate
rM 12 yrt Macroalgae intrinsic growth rate
ks 80 kmol N Half-saturation constant for macroalgae
growth
myr 0.1 yrt Macroalgae mortality rate
y 1 yr! Detritus decomposition rate
q 20 — 60 — 120 | kmol N yr~! | Nitrogen loading rate
e 0.6 yr! Nitrogen flushing rate
f 20 kmol N Scaling constant for conversion of detritus
into nutrients
K 1 yrt Rate at which economic agents can switch
strategies
Cs 0-0-5 unitless Economic utility for tourism (as com-
pared to fishing) from external sources
kp 1 unitless Scaling constant for how strongly tourism
utility varies due to coral cover
kg 1 yr Scaling constant for how strongly fishing
utility varies due to fish catch

Table 2.1: Parameters, their units, and their associated values in Chapter 2
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in a repeating pattern. Each of these patterns involved taking specifying a certain number
of patches to be overfished and taking the rest to be non-overfished, and spacing groups
of overfished patches evenly throughout the system (where each group consisted of a fixed
number of patches). For each run of the model, we took the average post-transient values
of coral cover and herbivorous fish abundance across the landscape as a whole, in over-
fished patches and in non-overfished patches. This allowed us to easily separate the local
and regional effects in each scenario. We also took different values of o to control for the
effects of nonlocal harvesting, using values of 0.25 (for a system in which fishing is almost
entirely done locally) and 1 (for a system in which substantial amounts of harvesting takes
place outside of fishing boats’ local patches).

To determine the relative effects of the spillover effect and fishing across MPA bound-
aries, we determined the long-term average values (at equilibrium or over one periodic
orbit) of herbivorous fish and coral in a 25-patch system while varying their dispersal abil-
ities (o and o¢) and the amount of time fishing boats spend locally (represented by the
mean value of the discretized Gaussian distribution generated by op). In the simulated
system, approximately half of the patches (13 of 25) were overfished (hy = 0.5) and the
rest were fished at subsistence rates. The overfished patches were either located in a con-
tiguous stretch in the middle of the simulated area (the ”contiguous case”) or alternating
one-to-one with non-overfished patches (the ”fragmented case”).

To determine the long-term effects of economic transitions between a fishing-based
economy and a tourism-based one, as well as check conditions for the coexistence of fishing
and tourism, we ran simulations that treated c, as a time-dependent function, rather
than its static baseline value of zero. We ran different simulations to represent long-
term economic trends and temporary subsidization of the tourism industry. For long-term
trends, we made c, increase linearly from 0 to a maximum value of 5 over a span of five
years. For short-term subsidization, ¢, was initialized at a positive constant value (taken
to be integer values from 1 to 5), held there until a time ¢ (taken to be integer values from
1 to 15), and then reset to 0. As above, we used a 25-patch system. In the long-term trend
scenario, we altered ¢, in a varying number of connected patches (1 to 25) in the middle
of the simulated area to test the effects of both local and regional economic shifts.

In both long-term and short-term scenarios, we initialized the system using initial
conditions representative of the macroalgae-only regime, and determined the amount of
time taken before the overfished patches shifted back to a coral-dominated state (defined
as over 50 percent coral cover) and healthy fish population levels (fish density of 1). These
values were chosen to represent typical average coral and fish levels in the coral-dominated
regime (see Results section), and to be high enough that the systemwide average attaining
these levels would indicate a regional-scale recovery. We also checked the long-term average
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coral cover in these systems, to test whether recovery was temporary or permanent. The
initial conditions that we used in overfished patches were 90-99 percent macroalgae cover
with the rest of the seabed covered by coral, fish density equal to the amount of coral
cover, fishing being 99 percent of the economic activity, and detritus and nutrients being
at their average steady-state levels reached under these conditions. We also took hy as
the constant value of 0.5 in each patch to preclude the possibility of natural recovery.

2.5 Results

2.5.1 Local dynamics and regime shifts

We found three distinct regimes that the system’s local dynamics can take (Fig. 2.2).
The first of these featured cyclical dynamics, with coral dominant most of the time and
macroalgae always present. In this regime, tourism eventually composed all economic
activity (Fig. 2.3), as z rose and fell depending on the relative abundances of coral and
fish but was always higher at the end of a cycle than at its beginning. Due to the lack
of fishing pressure, the herbivorous fish and macroalgae populations followed oscillatory
boom-bust patterns similar to those found in the Rosenzweig-MacArthur model. The
second regime featured stable, nonzero levels of coral, macroalgae and herbivorous fish.
Here, macroalgae was dominant over coral, with coral cover of the seabed typically above
10 percent but below 30 percent. Economic activity converged to a state where only fishing
was viable, although very long transients were possible depending on the social parameters
(Fig. 2.3). However, fish populations were higher in this regime than they were in the
cyclical coral-dominant regime. The third regime was characterized by local extinction
of both coral and herbivorous fish, with macroalgae taking up all available space on the
seabed. Economic activity tended towards the all-fishing equilibrium while there were
still fish available to catch. However, after a certain point in time, changes in economic
behaviour became minimal as coral and fish populations were both roughly zero and no
economic utility could be gained from either of them.

The boundaries between the different regimes are sharp, and transitions between the
regimes can be driven by both overfishing and excessive nutrient loading (Fig. 2.2). Both
the macroalgae-dominant and macroalgae-only regimes occur when economic activity con-
verges to the fishing-only equilibrium, while the coral-dominant regime is coterminous
with the area of parameter space in which economic activity converges to the tourism-only
equilibrium. This indicates that in the macroalgae-dominant regime, some coral survived
despite the fact that coral-related ecotourism was not economically viable.
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Figure 2.2: Levels of coral cover (Fig. 2.2a) and herbivorous fish density (Fig. 2.2b) in
one patch as a function of harvesting rate and nutrient loading rate, showing three distinct
regimes. Values taken are the equilibrium value or the average over one limit cycle.

2.5.2 Spatial effects of local overfishing

We found that herbivorous fish and coral responded in opposite ways to the two patterns of
local overfishing that we tested (Fig. 2.4). Herbivorous fish abundance was lower on average
when overfished patches were contiguous (i.e. they were harmed more by habitat loss than
fragmentation). In fact, the case where overfished patches alternated with non-overfished
ones saw no decrease in average herbivorous fish abundance compared to the baseline.
In contrast, coral had greater declines in the alternating-patch scenario, corresponding
to habitat fragmentation as a result of overfishing. There, coral cover was uniformly low
across the system, whereas in the contiguous-patch scenario large amounts of coral survived
in the patches away from the stressed area.

Increasing the proportion of patches that were overfished resulted in the expected linear
decline in systemwide coral cover, as patches shifted one by one from being in the coral-
dominant regime to the macroalgae-only regime. However, this masked nonlinear effects
on coral in the overfished and non-overfished patches (Fig. 2.5). In the scenario where
overfished patches were contiguous, coral cover fell off sharply in them but remained almost
constant in the non-overfished ones. When overfished and non-overfished patches formed
an alternating pattern, the decline in coral cover was steeper and was linear in both kinds
of patches, and coral was completely extirpated at a ratio of two overfished patches for
every one non-overfished one.
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Figure 2.3: Time series showing coral cover, fish density and percentage of economic agents
engaging in tourism for different values of x and hy, within a single patch. The top two
graphs show dynamics in the cyclic coral-dominant regime, while the bottom two show
transient dynamics in the high-fish regime.

As with habitat fragmentation, we found that the combination of nonlocal harvesting
and the spillover effect had very different impacts on coral and herbivorous fish (Fig. 2.6).
For the case with contiguous strings of overfished and non-overfished patches, increasing
fish dispersal ability (and hence the strength of any potential spillover effect) caused an
increase of average fish density across the system by over 20 percent (Fig. 2.6b). This held
regardless of how much time fishers spent locally. In the case where overfished and non-
overfished patches alternated, and therefore any overfished patch could receive some spatial
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Figure 2.4: Coral cover (Fig. 2.4a) and fish density (Fig. 2.4b) in each of 25 patches, on a
scale from red (low) to green (high), showing variation between contiguous and fragmented
reefs. Here, 12 of 25 patches are overfished (arranged in groups of 1, 2, 3 and 4), and
op = 0.25. Averages of coral cover and fish density for the entire system are also provided
for each configuration.

subsidies from an adjacent MPA, average fish density was higher than in the contiguous
case (Fig. 2.4, Fig. 2.6b) with little dependence on fish dispersal ability in most cases.
Coral larval dispersal ability had almost no effect on the abundance of fish or coral, with
the exception of when both coral and fishing boats were almost entirely confined to their
local patches. In contrast, we found that unauthorized fishing across MPA boundaries
could lower coral cover by significant amounts, especially in the fragmented case (Fig.
2.6a) where we found losses of over thirty percent.

2.5.3 Economic transitions

When we simulated systemwide transitions from a fishing-based to a tourism-based econ-
omy, we found that herbivorous fish returned to healthy levels after about 15 to 20 years,
with the system returning to a coral-dominated state after an additional 10 years (Fig. 2.7).
This was dependent on the degree to which coral was previously extirpated, as expected.
Local economic transitions resulted in systemwide fish recovery when they occurred in as
little as 12 percent of patches (Fig. 2.7b), and systemwide coral recovery happened when
at least 56 percent of patches transitioned (Fig. 2.7a). (This meant that under some
conditions, herbivorous fish were predicted to recover but coral was not.) The recovery
times for fish and coral following these local transitions were typically longer by a few years
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Figure 2.5: Average coral cover (Fig. 2.5a) and fish density (Fig. 2.5b) across a 25-patch
system as a function of percentage of patches overfished, showing cases where overfished
patches are contiguous and dispersed throughout the system. Values are shown for the
system as a whole as well as for both overfished and non-overfished patches. Here, op = 1.

than they were when the entire system transitioned, although the recovery times increased
nonlinearly as the number of patches decreased towards the minimum number for which a
recovery would take place, indicating the possibility of a bifurcation.

In our simulations involving short-term subsidization of the tourism sector in a heavily
overfished system, we found that depending on how much tourism was subsidized and
for how long, four different outcomes were possible (Fig. 2.8). In increasing order of
subsidy length or amount, these were the status quo (macroalgae dominance), a temporary
recovery of the herbivorous fish population, a temporary recovery of both fish and coral,
and a permanent shift to a tourism-based economy with healthy fish and coral populations.
When fish and/or coral recovered, temporarily or permanently, this happened after the
tourism subsidies had finished, indicating that tourism subsidies set off a positive feedback
loop in terms of fish and coral populations.

2.6 Discussion

We found that habitat fragmentation (via overfishing and subsequent shift to conditions
more favourable to macroalgae) strongly affected both coral and herbivorous fish. However,
the effects of habitat fragmentation on these two functional groups were opposite to one
another. When holding constant the percentage of patches that were overfished, coral
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Figure 2.6: Average coral cover (Fig. 2.6a) and fish density (Fig. 2.6b) in a 25-patch
system for different values of oy, o¢ and og. Here, 13 of the 25 patches were overfished.
Note the differences in scale on the vertical axes.

cover was higher when long strings of non-overfished patches were adjacent to each other.
In contrast, herbivorous fish populations were highest when overfished patches alternated
with non-overfished ones, This is consistent with the results of Bonin et al. [30], who found
that habitat fragmentation had only a temporary negative effect on reef fish, and when
disentangled from habitat loss its long-term effects were neutral or even positive.

In a similar vein, we found that dispersal ability of herbivorous fish had much different
effects on their abundance in contiguous and fragmented habitats. We found that the
abundance of herbivorous fish was strongly dependent on their dispersal ability in sce-
narios where there were long stretches of overfished patches that could potentially receive
spillover, although this saturates when MPAs and overfished patches alternate with each
other and form a fragmented pattern. In these areas, herbivorous fish always exhibited a
strong spillover effect, elevating the fish population size and hence the potential fish catch
regardless of their dispersal ability (as there was always a place outside of any MPA for
them to disperse into).

Our results suggest that a strategy of placing MPAs in the middle of overfished areas
[13] would be effective in maximizing both fishing yield and standing fish populations,
potentially by even more than the 20 percent increase predicted by Cabral et al. Our
results also recommend the enforcement of MPA boundaries by requiring fishing operations
to harvest mostly locally (above 75 percent in their home patches), as doing so is predicted
to greatly boost coral populations while maintaining increased fish yield from the spillover
effect. Although it has recently been shown that more mobile species show increased
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Figure 2.7: Time taken for average coral cover in a 25-patch system to return from a
degraded state to 50 percent (Fig. 2.7a) and average fish density to return to 1 (Fig. 2.7b),
following long-term economic transitions from fishing to tourism. Black boxes indicate that
coral or fish was not observed to recover to the stated thresholds within 200 years.

spillover tendencies and that some spillover is present regardless of whether habitats are
fragmented or not [09], we believe that our study is the first to look at the interaction
between these two factors.

The differing responses of coral and herbivorous fish to habitat fragmentation and
dispersal ability can be explained by their different life history traits. When coral larvae
disperse into an adjacent patch, if that patch is completely occupied by macroalgae, the
coral larvae will be much less able to establish themselves. This can be seen in Fig.
2.6, where we found that coral larval dispersal ability has minimal effect on system coral
cover. Our results here are in accordance with field results showing that the presence
of macroalgae can inhibit both coral larval settlement and coral recruit survival after
settlement [111, 260]. Hence, overfishing can cause coral to decline not just by removing
predation pressure on faster-growing algae, but also by preventing colonization by coral
larvae. (This latter mechanism is implicitly implemented in the model, since the faster
intrinsic growth rates of macroalgae mean that existing macroalgae within a given patch
that is dominated by it tends to outcompete coral larvae dispersed in from other patches,
meaning that perturbation away from a macroalgae-dominant state via coral larval influx
is generally not feasible.) This feedback loop can drive a shift to the macroalgae-dominant
regime, and its presence explains why we found sharp regime boundaries (Fig. 2.2).
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Figure 2.8: State reached by an overfished, macroalgae-dominated system after temporary
subsidies to ecotourism. The four states shown differ in their transient and steady-state
behaviour.

In the case when overfishing took place in a contiguous area, coral reacted very differ-
ently to an increase in the proportion of overfished patches depending on the local fishing
rate. The average coral cover in overfished patches saw a steep dropoff after only a small
number of patches became overfished, due to the breakdown of spatial subsidies. However,
coral cover in the non-overfished patches (representing MPAs or areas fished at small-
scale subsistence rates) remained at reasonably high levels, even when most patches were
overfished and nonlocal harvesting was prevalent. This indicates the possibility of a con-
servation trap, in which a conservation-dependent species (in this case coral) is maintained
via costly human intervention even though shifting the system to a more sustainable state
would require less money and effort [19].

Given the predicted high discrepancy between coral health in overfished and non-
overfished patches (or outside and inside MPAs) in the contiguous case, a manager could
reasonably believe that only by implementing strict conservation measures can the coral
be protected. However, we found two alternatives that may be considered if maintaining
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an MPA is not financially feasible. Firstly, the regime we found with high fish populations
and stable coral cover (Fig. 2.2) features z converging to the fishing-only equilibrium,
indicating that the coral population is not conservation-dependent. This is achievable for
harvesting rates between 20 and 30 percent per year, similar to what has been seen in a
previous model [212]. Secondly, we found that promoting ecotourism can shift a system
back to a coral-dominated state over an appreciable timeframe, even if such promotion is
temporary (Fig. 2.8) or spatially limited in scope (Fig. 2.7). These additional options
allow coral reef managers more choice in the strategies they have for reef protection.

We found that following a large-scale economic transition that reduced fishing pressure
on previously degraded reefs, fish could be expected to return to healthy levels after 14 to
20 years, with coral following about 10 years afterward. This is comparable to measured
recovery times of reef ecosystems following other disturbances. For example, a recent
long-term study on resilience of Caribbean coral and parrotfish populations found that
percentage coral cover had risen from 36 to 47 percent, in line with pre-disturbance levels,
seven years after a 2010 coral bleaching event [231]. Extending this rate of recovery of
slightly less than two percent cover per year to the scenarios that we tested, which had
much lower initial conditions for coral, yields recovery times very similar to what we found
(Fig. 2.7). The same study found that parrotfish recovery after the disturbance, when
assisted by a law enacted the same year that banned their harvesting, happened at a
greater magnitude than coral recovery, echoing our findings that herbivorous fish recovery
during an economic transition serves as a leading indicator for coral recovery.

Another long-term study found no significant increase in coral cover from low starting
points (about 10 and 20 percent cover) in the six years following a period of disturbances
[119], in accordance with our result that recovery from such levels should not be expected
within that timeframe. Shifts to macroalgae-dominated regimes taking 14 years, about
half the length we found for a shift in the other direction, have been observed in the
field [17]; the difference can be explained by factors such as macroalgae’s ability to inhibit
coral larval settlement (Fig. 2.6) and its higher intrinsic growth rate. Additionally, prior
modelling results suggest that coral is able to recover after major hurricanes that happen
once every 20 years, provided other environmental conditions are favourable [181, ],
which is also comparable to our results. This correspondence between our socially-driven
transitions and the biologically-driven ones seen in previous field and modelling work helps
validate the social component of our model, and indicates that coupled social-environmental
interactions will be a useful addition to coral research going forward.

In addition to the spatial dynamics of coral and herbivorous fish, our results also show
that different economic strategies (fishing and tourism) can coexist at a regional level.
Specifically, we found that economic transitions from fishing to tourism along some parts
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of a reef can result in herbivorous fish populations rebounding across the system, enough so
that fishing remains viable where the economic transitions did not take place. Our findings
are supported by recent modelling results showing that fishing and tourism can coexist in
the same area [32], as well as field observations that different economic strategies in marine
communities have complex, overlapping distributions [212]. Similarly, our results suggest
that reef health and fish catch can be effectively balanced by using strategies that we
identified, such as selecting local areas in which tourism would be temporarily subsidized
or annual harvesting rates would be limited to intermediate levels. As economic models of
fishing that both take into account marine protected areas and are spatially explicit have
only been put forward recently [208, 2], we believe that spatial modelling of economic
strategies on coral reefs is an area ripe for future research.

When determining the strength of the spillover effect and the differing responses of
fish and coral to habitat fragmentation, we took ¢, = 0, which assumes that the relative
profitability of fishing and tourism depends solely on environmental conditions. Although
this eliminated a potential confounding factor in these analyses, it also represents a sim-
plification compared to real-life systems, and our results on reef recovery via economic
transitions indicate that variation in ¢, can have a significant environmental impact. This
opens the door for future research on how changing economic conditions could lead to
more or less fragmented reefs (and hence alter species composition). Based on our results
(see for instance Figs. 2.2 and 2.8), we predict that positive values for ¢, would boost
coral growth, while negative values could increase fish populations or lead to macroalgae
dominance, depending on the underlying biological conditions. (Hence, having a variety of
local-scale values for ¢, could provide another way to generate a fragmented system.) Since
the ecosystem shifts we found when ¢, was temporarily increased occurred a few years after
the changes were made, we also predict that periodically varying c, could result in complex
patterns of coral and macroalgae dominance, and potentially a decoupling between coral
cover and the preferences of economic actors.

In our simulations regarding fishing-to-tourism transitions, we started all patches at the
same low values for coral cover and fish density, and assumed that hgy had the systemwide
value of 0.5. As indicated by our results, the spatial configuration of overfished areas and
MPAs makes a big difference in the abundance of each reef species, and hence considering
how heterogeneous initial conditions affect the transition to a healthy reef would be useful.
We especially believe that determining the extent to which habitat connectivity can aid a
coral reef’s recovery following an economic shift is an interesting avenue for future research.
Additionally, due to the large ranges of many aquatic species, we believe that simulating
economic changes in coral reef models larger than 25 patches could produce great insights
as to which areas will be most hospitable for reef species going forward.
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Chapter 3

Preparing for and managing
crown-of-thorns starfish outbreaks
under heavily stressed conditions

This chapter is based on the paper: RA Milne, CT Bauch, M Anand. 2022. Preparing for and manag-
ing crown-of-thorns starfish outbreaks under heavily stressed conditions. To be submitted to Ecological
Modelling.

37



3.1 Abstract

Crown-of-thorns starfish (CoTS) outbreaks rank among the greatest threats to coral through-
out the Indo-Pacific. In the future, reefs already stressed by CoTS will be further burdened
by overfishing and nutrient loading. How much these two factors will exacerbate CoTS
outbreak severity is still uncertain. Furthermore, the CoTS management literature has
focused on the Great Barrier Reef, whereas outbreak damage is rising across the Indo-
Pacific. Here, we use a metacommunity model to simulate CoTS outbreaks in areas with
high anthropogenic stress. We model outbreaks on reefs adjacent to two cities within the
range of CoTS that have less prior literature coverage: Cebu City, Philippines, and Jeddah,
Saudi Arabia. We observe that urban growth can drive complex patterns of multi-stressor
interaction. We find that CoTS removal on intermediate spatial scales significantly im-
proves regional-scale coral health, and provide guidelines under which each of four CoTS
management strategies is optimal for conservation. We find that coral decline due to over-
fishing can be sharper on reefs with CoTS, and that nutrification can induce a shift from
discrete outbreak waves to continuous CoTS presence. Our work shows the importance of
long-term planning for reef management, and highlights how reef stressors can interact in
potentially unforeseen ways.

3.2 Code availability

The code for simulating the model is available on Zenodo (DOI: 10.5281/zenodo.6516167).

3.3 Introduction

Crown-of-thorns starfish (Acanthaster planci; CoTS) are a voracious predator of coral,
having been cited as the primary cause of short-term decline in coral cover across the
Indo-Pacific region [10, 66]. Rapid increases of CoTS populations, deemed “outbreaks”,
can devastate a coral reef in a very short period of time [196]. In recent years, outbreaks
of CoTS have become more frequent across its entire range [120]. Field studies have
linked this with increased nutrient input into coastal waters [39, 18], which is concerning
as nutrient loading rates are projected to rise well above current values over the next
few decades [220, ]. In addition to CoTS outbreaks and nutrient loading, overfishing
represents another rising source of stress for coral populations [208], but whether the effects
on coral of overfishing interact with those of CoTS outbreaks in an additive, synergistic
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or antagonistic manner is still an open question [74]. Most CoTS modelling efforts have
been done on the Great Barrier Reef, meaning that the development of management best
practices in other areas under threat by CoTS is still ongoing. Here, we use a model of
intermediate complexity, specifically a dynamical system metacommunity model of a coral
reef, to evaluate the potential future threats posed by CoTS and how they can be addressed.
We specifically focus on how future increases in fishing rates and nutrient loading can alter
the effects of a CoTS outbreak, with case studies drawn from reef areas throughout the
range of CoTS.

The presence of multiple interacting stressors on coral reefs has long been known [121],
and many of these stressors have high predicted future impact on coral as well. Nutrient
loading [101, 226, 100], overfishing [265, 208], CoTS outbreaks [131], sedimentation [101],
bleaching due to increased ocean temperatures [13, 193], and ocean acidification [193, 131]
have all been cited as future points of concern. Hence, much research has been done re-
cently on the interacting effects of multiple coral reef stressors (e.g. [28, 93, 274, 257]).
These interactions have often been nonlinear, with both positive and negative feedback
[85], indicating that different stressors can have unforeseen effects on each other and are
potentially more dangerous together than when considered individually. However, despite
the possibility for complex interactions to emerge, few studies have examined how other
stressors can exacerbate or inhibit the frequency and severity of CoTS outbreaks [71]. Pre-
vious work using qualitative models to examine the effects of fishing and nutrient loading
on CoTS populations predicted varying patterns of interaction with a high degree of un-
certainty [1%], suggesting that complex relationships between these stressors are possible.

CoTS larvae can disperse over long distances [244], and hence CoTS outbreaks happen
over wide spatial scales [107]. Hence, spatially explicit modelling of coral reefs under threat
by CoTS has attracted research attention in recent years [251, ]. However, long-term
ecological data that could be used to fit large-scale models is scarce [119], and hence the
metacommunity and regional-scale CoTS models in existence have mostly been fit for con-
ditions on the Great Barrier Reef, owing to the larger availability of data there. CoTS have
been found across the entire Indian and Pacific Oceans, from the Red Sea [273] to South-
east Asia [271] and Polynesia [271, 245], and the number of recorded outbreaks (including
those in regions outside the Great Barrier Reef such as these) has significantly increased
since 1990 [120]. Because of this, it is important to develop strategies for their management
that are robust to conditions in many different regions. Models of intermediate complexity
(e.g. [175]) are especially important in this regard, as more complex models may produce
predictions with greater uncertainty [106, 18]. A corollary of this is that significant gaps in
the literature can be filled by using a model of intermediate complexity, especially in the
context of generating ecological predictions and management recommendations for a wide
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variety of different regions.

Nutrient loading is a major source of concern for coral reefs, both now [274, 17] and
in the future [101, , ]. In the coming decades, urban areas are predicted to expand
both in land area [118, 53] and population [217]. Because of this, anthropogenic nutrient
input to adjacent coastal areas is expected to go up by significant amounts, in some cases
doubling or tripling by 2050 (e.g. [220, 8]). This increase in nutrients can make reefs
more vulnerable to CoTS, as it may cause blooms of phytoplankton. Phytoplankton are
the primary food for CoTS larvae [196], with relationships having been observed between
CoTS larval survival and phytoplankton concentration [79] and therefore nutrient input
[39], leading to the conclusion that increased nutrient availability is itself a potential cause
of outbreaks [15].

Another reef stressor projected to become more of a concern in the future is overfishing
[265, |. Similarly to nutrient loading, relationships between human population and

offshore fishing pressure has been established [232], including in coral-dense regions such
as the Philippines [219]. The ability of increases in fishing rate to cause phase shifts on
coral reefs is well-documented in both modelling [28, 89, 38] and field literature [72]. As

CoTS is a primary predator of coral, a CoTS outbreak could cause a coral-algal phase shift
induced by overfishing to happen earlier or with greater speed. Additionally, field research
has found a correlation between fishing rate and CoTS density on reefs [73], as well as a
link between the presence of large, commercially valuable fish on a reef and its recovery
following a disturbance partially caused by CoTS [119]. This suggests that even when a
phase shift does not happen, strong interaction effects between overfishing and CoTS could
still cause significant damage to reefs.

Since CoT'S is responsible for much of the degradation in reefs throughout the Indo-
Pacific region [185], many strategies for its management have been proposed. Historically,
the most widely used of these was manual removal and subsequent disposal on land, which
is costly and labour-intensive [198]. Hence, other options for CoTS management have
been recently explored. CoTSBot, an autonomous underwater vehicle designed for CoTS
eradication, has been developed for use on the Great Barrier Reef [1], and cheap and widely
available chemicals such as citric acid powder and vinegar have been shown to be effective
for controlling CoTS [269, 33, 41]. The government of Australia introduced the Crown-of-
thorns Starfish Control Program in 2012 on the Great Barrier Reef, two years after the start
of the current outbreak there. Removal of CoTS from all locations on the Great Barrier
Reef is impractical due to the scale of the potential effort involved, so management instead
strategically focuses on high-priority locations [137]. Given the limited resources available,
optimization of CoTS management strategies (especially prior to severe outbreaks) can
help protect areas under threat by CoTS to the maximum extent possible.
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In this paper, we use a dynamical system model to determine the characteristics of
CoTS outbreaks in different parts of their range, how these will change with increased
anthropogenic stress, and how they can be best managed. We find that the intensity of
CoTS outbreaks depends nonlinearly on both fishing and nutrient loading rates, whose
relative importance on a reef with CoTS presence can hence change as urban development
increases. We use growth projections for two major cities with adjacent coral reefs (Cebu
City, Philippines, and Jeddah, Saudi Arabia) to predict the potential severity of future
CoTS outbreaks there. We simulate application of different CoTS management strategies
to reefs off the coast of Cebu and Jeddah to evaluate their effectiveness in advance of
future outbreaks. We find that each of four different methods of prioritizing local patches
for active CoTS removal may be the most effective, depending on the conservation objective
sought, and that CoTS removal on intermediate spatial scales (e.g. 20 km of coastline) can
promote coral health across larger regions. We also determine that establishing a marine
protected area at a strategically-located site near Cebu City can insulate coral there against
serious CoTS outbreaks.

3.4 Methods

3.4.1 Model

In order to model the population dynamics of coral, crown-of-thorns starfish (CoTS), and
other functional groups present on a reef that interact with them, we adapted a spa-
tially explicit, mechanistic model first used by Spiecker et al. [228]. This model was
chosen as CoTS outbreaks occur over large spatial scales, necessitating the use of a spatial
model, and because it contained explicit terms for fishing and nutrient loading rates, which
we intended to vary to match future predictions. That model was composed of integro-
differential equations, but we intended to represent a patchy landscape with a resolution
of 1 km (see Numerical Methods subsection and Appendix A), so we converted it into a
metacommunity model of ordinary differential equations. The components of the original
model are herbivorous fish H, coral C, macroalgae M, detritus D and nutrients N. We
retained that model’s terms, and added a component for CoTS, which we denote S. Our
modified equations for the model components in [228] are below, where the subscript i
denotes local dynamics in patch i:
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A detailed schematic of the model is presented in Figure 3.1. In the model, herbivorous
fish consume macroalgae according to a saturation function with maximum rate ry and
half-saturation constant kg. (This is equivalent to a Holling Type II functional response.)
Herbivorous fish die of natural causes at a rate my, and are fished out at a rate £. Coral
and macroalgae reproduce by dispersing their larvae and propagules, respectively, so the
model functions representing their population growth are part of their dispersal functions
gc and gy (see Equation 3.2). Coral and macroalgae also compete for space on the seabed,
so it is assumed that they have a shared carrying capacity, which is normalized to 1. Coral
and macroalgae die of natural causes at rates m¢ and mj;, macroalgae is eaten by fish
in the manner described above, and coral is destroyed by CoTS at a rate lg. All dead
organisms (including CoTS) become detritus, which in turn decays at a rate 7. Nutrients
are measured in kilomoles of nitrogen, on the scale expected to be found in an offshore patch
of 1 km? surface area [254, 225]. We chose nitrogen because it is the most common limiting
nutrient in pristine reef systems [143], and because nitrogen addition has been especially
cited in existing literature as being damaging for coral [270]. Nutrients are generated by
decomposing detritus, subject to a scaling constant f; they also are assumed to be fed into
the system at a rate ¢ and washed out of it at a rate e. Nutrients are also uptaken by
macroalgae, with the dynamics of this being explained below. The model parameters are
further described in Tables A.1 and A.2.

Since this model encompasses both local-scale and regional-scale dynamics (using a
patchy landscape), we modelled the dispersal of the model components with functions
describing the transfer of material from each patch to each other patch, denoted gx for
each corresponding state variable X. The dispersal functions for all model components
other than CoTS are shown below:

(1) = 5 (i) ras Mg, )
ga() >_re; Cibc, (i) (3.2)
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Figure 3.1: Diagram representing interactions in the model. All connections within the
box marked “One Patch” are local. Black connectors denote trophic and competitive
interactions; for these, pointed heads denote positive effects and rectangular heads denote
negative effects. Red connectors represent materials cycling. Teal arrows represent gains
and losses of organisms due to larval dispersal, whereas green arrows represent all other
forms of dispersal.

Since coral and macroalgae reproduce via dispersal, but adults of those functional
groups do not move, gc and gy, include those functional groups’ intrinsic growth rates.
CoTS were also handled in this manner (see Equation 3.5). For each patch i, the growth
rates for coral and macroalgae in i are expressed as the sum over all patches j of the
number of larvae or propagules produced in patch j that eventually settle in patch i. The
intrinsic growth rates of coral and macroalgae are ro and rj;, respectively. Macroalgae
growth is additionally assumed to depend on the availability of nutrients, modelled with
a saturation function with half-saturation constant k;;. We also took r¢ to be a periodic
function, to represent the annual reproduction cycle of coral [235]. (This took the form of
a repeated Gaussian function, with its peak at mid-year. The value of r¢ at the beginning
of each year was very small, about 107!, so we assumed that the tails of the distribution
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could be safely ignored.) Herbivorous fish, detritus, and nutrients were instead assumed
to follow passive dispersal; their dispersal functions are written above in a similar way to
gc and gy to highlight the differences in the latter.

The harvesting rate in each patch &; was also assumed to be nonlocal, as fishing boats
were assumed to be non-stationary. This was done in order to test the effectiveness of
marine protected areas (MPAs) as tools for protecting coral against CoTS, since illegal
harvesting inside MPAs by fishing boats based outside them has been identified as a prob-
lem [16, ]. For a baseline harvesting rate hy, and a discretized probability distribution
0p, that were both defined for each patch ¢, this was as follows:

& (1) = Zthij (i) (3.3)

Each probability distribution related to dispersal (fx,, for X € {H,C, M, D, N, B} and
for each patch i) was taken to be a discretized Gaussian. 0p, for each patch ¢ contained the
amounts of time that fishing boats originating in ¢« would spend in each patch in the system,
with mean ¢ and standard deviation 1 to represent a wide range. 6¢, and 0, for each patch
i were used to model larval dispersal for broadcast-spawning functional groups (C' and M).
The means of 0, and 6y, for each patch ¢ were taken to be ¢+ kprp x kcureksc, Where kprp x
is the average pelagic larval duration of functional group X in days, ke is an index of
current strength scaled so that 1 represents conditions on the Great Barrier Reef, and k.
is a scaling constant that was fit to qualitatively replicate dynamics on the Great Barrier
Reef (with units of day ™). The parameters governing the shapes of the @ distributions
for macroalgae and coral were determined and validated based on observed variation in
pelagic larval duration for each functional group, as well as conditions on the Great Barrier
Reef; k.. was varied based on conditions in the specific area being simulated. Further
information on the distributions used in the model is contained in Table A.3.

To model the population dynamics of CoTS, we implemented a novel differential equa-
tion describing their vital processes. This DE is as follows:

dsS;
L= gg. —mg. S, 3.4
eqp = 9si s (3.4)
CoTS reproduce by dispersing larvae into the ocean [203, ], and hence most move-
ment by CoTS over the spatial scale that we consider is done by larvae [196]. Therefore, we

assumed that CoTS movement would be done by larvae, and combined their reproduction
and dispersal into a single term, as was done with coral and macroalgae. This nonlocal
growth term is as follows:
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CoTS and coral were assumed to follow predator-prey dynamics with respect to each
other. As coral is represented as a percentage cover of the seabed and CoT'S is represented
as a population size, we assumed that coral is destroyed by CoTS at a rate lg, and that
CoTS reproduces at a rate rglg. We took the CoTS-coral predation terms to be linear
in each. Since CoTS is known to experience boom-bust population cycles, and hence can
sustain very high reproduction rates while coral prey is available, we decided against taking
its predation rate to be a saturation function; we also did not expect any loss in CoTS
predation efficiency at low coral density, due to adult coral being sessile and therefore easy
for CoTS to locate. CoTS larvae originating in a given patch i are sent to each patch in the
system according to a probability distribution function fs, with a mean of i+ kprp skcurrFsc
and a standard deviation of g, which is similar to coral and macroalgae reproduction. We
assumed that CoTS larval survival depends on the availability of phytoplankton, and hence
on nutrient concentration [39]. Previous modelling work has described the relationship be-
tween phytoplankton concentration and CoTS larval survival using a logarithmic function
[160]. We used a saturation function of N in our equation for CoTS§ larval production
and distribution gg, with half-saturation constant kg, which is similarly concave down as
well as being zero when no nutrients are present (thus making it unnecessary to translate
the function to achieve this property). We assumed that CoTS dies of natural causes at
a rate mg. Additionally, as CoTS outbreaks are known to happen very rapidly [219], we
assumed that CoTS-related dynamics happen over a faster timescale than the dynamics of
the other model components. Hence, we took e to represent the difference in timescales, as
has been done in previous ecological models featuring fast-slow dynamics [58]. Full model
parametrization details are available in Appendix A.

3.4.2 Numerical methods

In order to determine how different conditions on a reef can affect the characteristics
and outcomes of a CoTS outbreak, we ran simulations of the model in which parameters
representing reef conditions were varied and looked for trends in CoTS density and coral
cover. To specifically examine how the presence of CoTS affects the relationship between
fishing rate and coral cover, we ran the model for varying values of hy, with and without
the presence of CoTS. This was done for different values of ¢ and k.., representing typical
conditions in three specific reef areas. In the case with CoTS, we set the initial condition
S; (t =10) to be 0.5 for i = 1 (the furthest upstream patch) and 0 for all other values of i,
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to capture the initial spread of CoTS at the start of an outbreak and all further dynamics.
For each simulation, we took the average coral cover in all patches over a window from
the start of the initial outbreak to 50 years after. This was compared to a baseline value,
namely the average coral cover in each simulated reef area with hy = 0 and CoTS absent.

Similarly, to determine how different levels of nutrient loading can affect specific features
of a CoTS outbreak, we looked at different metrics representing the characteristics of an
outbreak for different values of ¢ and k... The specific metrics that we used were average
CoTS density in the system after time ¢t = 15 years (representing whether CoT'S remained in
the system, or became locally extinct or was washed out on the currents), maximum length
of time that average CoTS density was above 1 systemwide (indicating whether outbreaks
were discrete events or CoTS had a continuous presence), and number of discrete peaks in
CoTS density over the 50-year simulated timespan (representing the period of an outbreak
cycle, or the length of time between outbreaks). In these simulations, we took ¢ ranging
from 0 to 80, covering nutrient loading values associated with rural and low- to mid-density
urban areas, and key, ranging from 0 to 2 (i.e. from no current at all to a current with
double the strength of those on the Great Barrier Reef).

In order to determine the extent to which future increases in fishing and nutrient loading
driven by urbanization will exacerbate CoTS outbreaks, we ran numerical simulations with
varying rates of nutrient input level (¢) and fishing rate (hy). We ran the model with
100 patches, with the values of ¢ in each patch chosen to represent specific urban areas
in 2020 and 2050 (see Appendix A). The two cities chosen were Cebu City, Philippines
and Jeddah, Saudi Arabia; both of these have offshore coral reefs [112 , ] and
are within the range of CoTS [31, ]. For each city, we tracked coral cover and CoTS
density over 30 years (2020 to 2050) where ¢ and hy continually increased according to
predictions. We also performed these simulations for static ¢ and hpy, starting both in
2020 (to provide a baseline for comparison) and in 2050 (using predicted values for ¢ and
hy, to test short-term coral response to an outbreak starting in that year). For Cebu
City, we also simulated cases in which an MPA was established on parts of Mactan and
Cordova Islands and urban development there was limited, to examine the efficacy of this
conservation strategy. We controlled for the effects of nutrient availability on CoTS larval
survival [79, 267] by taking ks = 30 (the baseline value) and 3. Additional details on the
model fitting and parametrization for these scenarios are available in Appendix A.

To evaluate the effectiveness of different CoT'S management strategies, both in general
and for our two focus cities, we ran a variation of our model in which local-scale active
management of CoTS was simulated. This was done by periodically evaluating different
management criteria for each patch, selecting a fixed number of patches p to prioritize
for management based on these criteria, and scaling up CoTS mortality rate by some

46



constant w in the selected patches until the next update of the management criteria. We
considered three different management criteria, based on removing CoTS from patches
with the highest CoTS density, the greatest ability for coral to recover, and the greatest
potential for CoTS to spread to other patches, as well as an additional criterion equal to
the average of these three. The methods for selecting patches according to this criteria are
detailed in Appendix A, where they are referred to as ®cors, Prec, Ppr, and Payg.

For each management criterion, patches with negligible CoTS densities (S < 0.01) were
not considered in order to avoid spending resources on removing CoTS from areas where
their presence was minimal. During runs of the model, the management criterion that was
being applied was evaluated either at the start of each month (i.e. at t = {5 for n € N) or
at the start of each week (i.e. at t = & for n € N). Upon evaluation of the management
criterion for each patch 7, the p patches with the highest criterion values were selected to
be actively managed (i.e. their death term for CoTS was changed from —mgS to —wmg.S)
until the end of the current month or week when the criterion would be recalculated.

In order to check the performance of each different management strategy at removing
CoTS, we ran our model using each criterion with parameter values representing rural
areas of the Great Barrier Reef, where the real-life versions of these criteria were developed
for. (Here, we took p = 20 and w = 2.) We then calculated the average CoTS density
in the system as an index of overall performance, and looked at CoTS densities in each
specific patch to determine how each management strategy affected local CoTS dynamics.
(The average in question was taken of CoTS densities in all patches, creating a single time
series. )

To evaluate the effectiveness of active CoTS management at preserving coral in Cebu
City and Jeddah, we ran the the model with management, taking parameter values repre-
senting each city. This included nutrient loading ¢ and fish harvesting rate hy increasing
over time, as detailed above. Since resources for conservation are limited, and not all local
areas can be actively managed, we considered values of p (the number of patches that
CoTS is actively removed from) ranging from 0 to 50 (out of 100 patches total). We took
w, the change in CoTS mortality rate due to active removal, to be integer values from 1
to 6, where w = 1 represents the baseline case where no additional CoTS mortality due
to management is observed. For each run of the model, we evaluated local and regional
levels of coral cover and CoTS density over the 30 years (2020 to 2050) that the model was
run for. (To produce a single systemwide value for coral cover, we took a spatiotemporal
average, namely the average coral cover at all points in time in all 100 patches within the
model.) In Cebu, we also simulated a combination of active CoTS removal and establish-
ment of the MPA at Mactan (see above) to check whether these two conservation strategies
provided additional benefit when used together.
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3.5 Results

3.5.1 Future prediction case studies indicate more frequent CoTS
outbreaks with longer coral recovery times

In our case studies for both Cebu City and Jeddah, we found that projected increases in
nutrient loading (¢) and fishing rate (hy) will have substantial effects on the frequency
and severity of crown-of-thorns starfish outbreaks (Figure 3.2). We found that coral would
recover from simulated outbreaks under conditions representative of 2020 in both cities after
15 to 20 years, but under conditions based on forecasts for 2050, coral took longer than 30
years to recover in both cities (Figures B.2a and B.2c¢). In Cebu, our additional simulations
of 2050 conditions featuring a marine protected area along the coast of Mactan and Cordova
Islands with limits on urban development there showed much greater reef health than the
baseline 2050 case (Figure B.2a), despite fishing pressure and nutrient loading rates taking
the elevated 2050 values everywhere else along the coastline. Our findings on coral recovery
time were robust to potential uncertainty in the dependence of CoTS larval survival on
nutrient concentration (kg), although the level that coral populations reached at the most
severe point in a CoTS outbreak was affected by kg, particularly in Jeddah (Figures B.2b
and B.2d).

We also found that continual increases in nutrient loading and fishing rate caused
the frequency of CoTS outbreaks to increase (Figure 3.2), and in particular caused the
predicted second outbreak wave to occur sooner after the first by approximately 5 years.
In both cities, increasing nutrient loading and fishing pressure led to coral populations
becoming more variable compared to the case with ¢ and hy constant (Figures 3.2a, 3.2c,
B.2a and B.2c). CoTS also had a much greater maximum density in Cebu under the
scenario with increasing stress (Figure 3.2b), and Jeddah shifted from outbreaks being
mostly discrete events to CoTS having a continuous presence throughout the system even
in between waves (Figure 3.2d).

3.5.2 Overfishing and nutrient loading both drive strong nonlin-
ear effects in potential CoTS damage to coral

We found that adding CoTS to a reef altered how fishing rate increases on that reef affect
coral health, creating a threshold effect capable of producing “ecological surprises” at
intermediate levels of fishing pressure (Figure 3.3). When CoTS are not present, we found
increases in fishing rate to correspond to steady, usually linear declines in average coral
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Figure 3.2: Case studies for Cebu, Philippines and Jeddah, Saudi Arabia. Figures 3.2a
and 3.2b show simulated dynamics for Cebu, while figures 3.2c and 3.2d represent Jeddah.
Figures 3.2a and 3.2c¢ show coral cover and CoTS density in each city for continually
increasing values of ¢ and hy (up to £10% from baseline predictions) starting in 2020.
Figures 3.2b and 3.2d show the density of CoTS in individual patches offshore from each
city starting in 2020. There, CoTS densities are plotted for both static and continually
increasing values of ¢ and hy. Time is measured in years in this and all other graphs in
this section; outbreaks are identifiable as the slow waves rather than the fast (yearly) ones.

cover. Increasing nutrient loading rate caused this decline to be steeper, as seen in the
differing responses of coral in each of the three tested scenarios in Figure 3.3. Introducing
CoTS resulted in this relationship instead becoming mostly flat: for each tested scenario
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(the Great Barrier Reef, the Red Sea, and the internal waters of the Philippines), average
coral cover was approximately the same when there was no fishing as when 20 to 25
percent of fish were harvested annually. However, in systems with CoTS, a threshold effect
occurred for fishing rates at or slightly above 30 percent annually, where average coral
cover dropped significantly. The addition of CoTS decreased average coral cover in all
three tested scenarios, as expected. This effect was stronger for higher rates of nutrient
loading (which also strengthened the threshold effect), as well as when currents were slower
and more CoTS were locally retained.
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Figure 3.3: Plot showing average coral cover over a 50-year window for different levels of
harvesting rate hy, with and without crown-of-thorns starfish presence. Graphs are shown
for simulations of reefs adjacent to rural areas in three different regions (interior waters of
the Philippines, the Red Sea, and the Great Barrier Reef), which differ from each other in
terms of ocean current strength and amount of nutrient loading.

We also found that nutrient loading increases affected many different qualitative aspects
of a CoTS outbreak: they had significant impacts on outbreak length, frequency and
severity (Figure 3.4). In particular, we found that increasing nutrient input could cause
an abrupt shift from discrete CoTS outbreaks of a few years each to continuous presence
of CoTS on a reef (Figure 3.4b). Greater nutrient input also resulted in higher CoTS
populations overall, particularly in areas with slow currents (Figure 3.4a), although this
relationship tended to plateau at intermediate values of ¢q. Furthermore, the threshold
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of nutrient input that was necessary for CoTS survival was very low (Figure 3.4c), even
though the survival of CoTS larvae was assumed to have significant dependence on nutrient
availability (ks = 30). We additionally found a boundary between regimes where CoTS
larvae would be retained locally and where they would mostly be swept out of the system
on the currents, which occurred when local currents were about 1.5 times the strength of
those on the Great Barrier Reef (Figure 3.4). In terms of general trends, we found that at
low rates of both fishing and nutrient loading, the primary determinant of CoTS outbreak
severity was nutrient loading rate, while when both rates were high, fishing rate became
the more important one (Figures 3.3 and 3.4).

3.5.3 Four different CoTS management strategies can effectively
protect coral, even on highly stressed reefs

For simulations of the Great Barrier Reef, we found that each of the four CoTS man-
agement criteria (i.e. Pave, Pcors, Prec and Pgp,) was effective as a way to prioritize
patches for CoTS removal. The four criteria did about equally well in this regard, and
CoTS densities in the simulations where 20 out of 100 patches were actively managed were
significantly lower than in simulations without management, particularly after the first
outbreak wave (Figures 3.5 and B.1a). However, local CoTS densities were different over
the course of an outbreak depending on which strategy was used. Prioritization based on
promoting coral recovery or minimizing CoTS spread resulted in outbreaks in which most
patches had minimal or no CoTS presence, aside from a small number that were “triaged”
and had relatively abundant CoTS populations (Figures 3.5¢ and 3.5d). In contrast, pri-
oritization based on CoTS density caused more patches to have some CoTS presence, but
the maximum local CoTS density at any given time to be lower (Figure 3.5b).

In our simulations that applied the CoTS management strategies used on the Great
Barrier Reef to Cebu City and Jeddah, we found that active removal of CoTS over inter-
mediate spatial scales (5 to 50 km?® of offshore reef areas) can substantially increase coral
cover (Figures 3.6a and 3.6¢). The incremental benefit for coral tended to saturate as the
number of managed patches increased, an effect that was stronger in Jeddah; the relation-
ship in Cebu City between coral cover and number of patches managed was more linear.
We also found little additional benefit when the list of patches to be actively managed was
updated weekly rather than monthly, indicating that removing CoTS over a greater area
is a more efficient use of resources than surveying managed reefs more frequently.

When evaluating which of the four CoTS management strategies did the best at main-
taining coral cover, we found a clear pattern in Cebu City. There, prioritizing patches
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Figure 3.4: Graphs showing model behaviour for different values of ¢ and k¢y,. Figure
3.4a shows the average density of CoTS throughout the system after time ¢ = 15 years, the
approximate end of the first simulated outbreak. Figure 3.4b shows the maximum length
of an outbreak in years, defined as when the systemwide average CoTS density is above
1. (High values suggest continuous presence of CoTS in most areas of the system.) Figure
3.4c shows the number of discrete peaks in CoTS density over 50 years after the start of
the initial outbreak, i.e. the number of outbreaks within that timespan.

based on preventing CoTS spread resulted in the most coral when the number of man-
aged patches was low, but prioritization based on promoting coral recovery became the
best strategy when an intermediate number of patches could be actively managed, and
increasing the number of managed patches further caused the averaged strategy to become
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Figure 3.5: Effectiveness of different management strategies at controlling CoTS popu-
lations on the Great Barrier Reef. Figure 3.5a shows average CoTS density across 100
patches when each of the four different management strategies is applied (i.e. management
using Pavg, Pcors, Prec, and Pgp,). Figures 3.5b, 3.5¢ and 3.5d show CoTS densities in
individual patches for the averaged strategy and each of the three others, demonstrating

their different local-scale effects.

optimal (Figure 3.6b). However, this pattern did not emerge in Jeddah, where the strat-
egy producing the most coral cover was usually to focus on the patches with the greatest
capability to spread a CoTS outbreak, and occasionally to focus on patches with a high
probability for coral to recover (Figure 3.6d). Focusing on patches with the highest CoTS
densities did not maximize coral cover in any of our simulations.
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Figure 3.6: Average coral cover when applying the averaged CoTS management strategy
in Cebu and Jeddah, as well as which of the four management strategies (averaged, CoTS
focus, recovery focus, and spread focus) results in the most coral cover. Results are shown
for different numbers of patches in which CoTS are actively removed (p), as well as different
values for how effective active management is at boosting CoT'S mortality (w). Cases where
p =0 and w = 0 are included for comparison.

In Cebu City, we found that active removal of CoTS in 20 percent of patches, as
chosen by the averaged management criterion, resulted in decreases in systemwide CoT'S
density that were often substantially more than 20 percent (Figure 3.7a). We also found
that introducing a marine protected area in Mactan and restricting growth there had a
substantial effect on reducing CoT'S presence, as it did with increasing coral cover, and that
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active CoTS removal had a significant additive effect when applied to a system with this
MPA. Combining these two conservation strategies (instituting an MPA with development
limits as well as actively removing CoTS) led to maximum local CoTS densities in Cebu
City that were comparable to those in the case with no population growth and hence no
growth in ¢ and hy (Figure 3.7b).

In Jeddah, we found that active CoTS removal in patches corresponding to 10 to 30
percent of the simulated coastline significantly decreased local CoTS densities between
outbreak peaks (Figures 3.7c and 3.7d), and hence mitigated the potential problem of
continuous CoTS presence. Another effect of management was to delay the peak of the
initial outbreak following CoTS establishing itself in the system. However, we also found
that increasing the number of actively managed patches in Jeddah sped up CoT'S outbreaks,
causing them to have a higher frequency (Figure 3.7c).

3.6 Discussion

Our model is, to the best of our knowledge, the first attempt to simulate crown-of-thorns
starfish outbreaks in specific areas outside the Great Barrier Reef. We build on previous
local-scale [175, 18] and regional-scale [251, 160] CoTS models by obtaining results for
regions that feature less in the literature, but where CoTS outbreaks are nonetheless on
the rise. This improves prospects for predicting the characteristics of outbreaks across the
entire range of CoTS, as well as evaluating strategies for managing them.

3.6.1 Policy and management recommendations

Our model predicted that CoTS removal programs on an intermediate spatial scale, be-
tween 5 and 50 km? of offshore waters, could lead to improvements in coral health over
larger areas (Figure 3.6). These figures are within the range of areas covered by previous
CoTS control efforts [198]. While the spatial scale that we suggest for management is near
the high end of this range, we note that recent improvements in CoTS removal (e.g. [33, 1])
likely indicate that CoTS removal has become more efficient in terms of time and money
than it has been previously. Additionally, it has been observed that CoTS management
projects over smaller spatial scales have met with little success in controlling CoTS pop-
ulations over wider regions [198], echoing our recommendations for an intermediate-scale
approach.

When testing the effectiveness of the four different CoTS management criteria intro-
duced above, we found a clear pattern in Cebu as to which strategy was best at preserving
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Figure 3.7: Effects of active management in Cebu and Jeddah on CoTS density. Figure
3.7a shows average CoTS densities in Cebu when 20 patches are actively managed and/or
an MPA and growth restrictions are established in Mactan, compared to a baseline without
conservation efforts. Figure 3.7b shows local CoTS densities in Cebu with both active CoTS
management and an MPA, compared to a case where ¢ and hy remain at 2020 levels. Figure
3.7c shows the temporal effects of increasing the number of managed patches in Jeddah
(using the averaged strategy). Figure 3.7d shows local dynamics in Jeddah for the cases
with 0 and 20 actively managed patches. w = 2 in all subfigures.

coral. There, focusing on patches with high propensity to spread CoTS resulted in the most
coral when resources were very limited, but when more patches were able to be managed,
focusing on patches where the coral had the best prospects for recovery was better (Figure
3.6b). This has an intuitive explanation. If CoTS can only be actively removed from a
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small number of patches, then preventing its spread into patches that cannot be managed
protects the coral in those patches; this is similar to targeted spread prevention strategies
in epidemiology (e.g. [264, 5]). However, if resources are available to remove CoTS in more
patches, then CoTS from a patch being actively managed has a higher likelihood to dis-
perse its larvae into another managed patch. In that case, preventing the spread of CoTS
becomes less pressing, and expending resources protecting areas with conditions favourable
to coral regrowth becomes a better strategy. This same pattern did not occur in Jeddah
(Figure 3.6d), which was also due to patch connectivity. In the Red Sea, currents are much
slower than in the Philippines, so dispersal ability of CoTS larvae is generally lower; this
means that it is more important to focus on the few patches that do have significant ability
to send CoTS larvae to other areas of a reef.

Although the strategy of removing CoTS in patches with the highest CoTS densities
(i.e. prioritizing patches using ®c,1s) did not maximize coral cover in any of our simula-
tions (Figures 3.6b and 3.6d), it did produce dynamics that were significantly qualitatively
different than the strategies focusing on promoting coral recovery (i.e. using ®re.) and
preventing CoT'S spread (i.e. using ®g,,). Specifically, removing CoTS from the patches in
which their density was the highest prevented any patches from reaching very high levels
of CoTS presence (as some did under the recovery and spread strategies), while keeping
the systemwide average CoTS density close to those produced by the other management
strategies (Figure 3.5). This indicates that the management strategy focusing on CoTS
density is useful for avoiding the risk of any area of a reef having dangerously high CoT'S
levels. We also found that the averaged strategy (i.e. prioritizing patches using ®ayg)
did well in promoting coral cover (Figures 3.6a and 3.6¢), showing that it is also a viable
option. We therefore conclude that all four of the tested strategies can be useful under
certain circumstances. In particular, we recommend prioritizing patches for CoTS removal
based on promoting coral recovery if substantial resources are available for conservation,
based on preventing CoTS spread if resources are limited or if connectivity between parts
of a reef is low, based on limiting local CoTS density if preventing severe outbreaks is the
most important objective, and using an average of those three if a more holistic strategy
is desired.

In addition to active removal of CoTS from vulnerable areas of a reef, we also rec-
ommend another strategy for protecting coral from the harmful effects of CoTS. In our
simulations, we found that restricting urban development along the east coasts of Mactan
and Cordova, near Cebu City, and establishing an MPA there resulted in greater recov-
ery potential for coral and lower CoTS densities (Figures 3.7a, 3.7b, and B.2a). This is
supported by previous findings on how MPAs on the Great Barrier Reef can reduce the
susceptibility of coral to CoTS outbreaks by strengthening trophic cascades favourable to
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coral [234, |. Furthermore, establishing an MPA and restricting urbanization at this
particular location would allow for a stretch of coastline in a relatively natural state, form-
ing a gap in between heavily built-up areas on either side. This could preserve connectivity
between marine habitats outside the Cebu City area, and therefore enhance the stability
of reefs outside our study area (see e.g. [233]). This includes the coral reefs of the nearby
Olango island group. As some areas in these islands, such as the waters around the islands
of Caohagan, Nalusuan, and Gilutongan, are already protected [12], establishing a large
MPA along the coasts of Mactan and Cordova could increase the ability of species in these
smaller, already existing MPAs to reinforce each other by way of the spillover effect (see

e.g. [13, 69]).

We note that our results on the effectiveness of this proposed MPA were obtained when
the spatial distribution of fishing boats p, for each patch ¢ had a large standard devia-
tion of 1, indicating high amounts of nonlocal fishing (and therefore lax MPA boundary
enforcement). This means that if the boundaries of this MPA were rigidly enforced, its
benefits for coral would likely be even stronger. We also note that in a recent survey of
Philippine reefs, reefs in the two MPAs in the survey that were closest to Cebu City were
not overfished, whereas a clear majority of reefs in the survey (inside and outside MPAs)
were overfished. This was reflected in our initial conditions; if we took a higher initial value
of hyg in our simulations of coral around Cebu City, pressure from population growth would
have likely led to values of hy that would cause a collapse in fish and coral populations
before 2050 (Figure 3.3). This further increases the importance of protecting large offshore
areas near Cebu City, as the margin for error regarding future reef ecosystem collapse is
likely to be small.

3.6.2 Multi-stressor interaction and ecological shifts

Our results suggest specific ways in which both fishing and nutrient loading can alter the
characteristics of CoTS outbreaks (Figures 3.3 and 3.4). Previous work has outlined the
trophic cascades that can occur upon fishing of predators of CoTS [15]; we build on this by
showing that harvesting of fish species with no direct trophic connection to CoTS can have
profound effects on CoTS and coral populations. We found that a relatively steep dropoff
in coral cover occurred in systems with CoTS at fishing rates of approximately 30 percent,
compared to more gradual declines in systems without CoTS (Figure 3.3). Similar fishing
rates resulted in state transitions in other models that were formulated differently and did
not feature CoTS [28, ], suggesting a level of herbivorous fish abundance below which
coral reef ecosystem functioning is significantly diminished. We also found that increases
in nutrient loading can shift a reef from a state where outbreaks are periodic to one in
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which CoTS are continuously present in at least some local areas. Local observations in
the Philippines have noted that CoTS outbreaks have recently become an ongoing problem
there [65], in line with these predictions.

Another significant pattern that emerged in our results was the fact that when harvest-
ing and nutrient loading rates were both low, nutrient loading was the primary driver of
CoTS outbreak severity, but when both rates were high, harvesting rate was more impor-
tant (see Figures 3.3 and 3.4). As a region urbanizes, fish harvesting and nutrient input
both go up (e.g. [226, ). Our results therefore predict that the relative impacts of
overfishing and nutrient loading on the severity of a CoTS outbreak can shift during the
urbanization process. We therefore recommend that dynamic strategies should be used
to manage CoTS, as future processes such as urban growth may change which factors are
most important to mitigate for the prevention of large-scale CoTS outbreaks.

We found that continually increasing both the fishing rate Ay and the nutrient loading
rate ¢ in systems with CoTS present leads to significant shifts in reef dynamics (Figure
3.2), due to the changing interaction between these two processes over time. As nutrient
loading is projected to increase more quickly than fishing rate in Cebu and Jeddah, the
initial effect of rises in nutrient loading is to produce surplus macroalgae that will be
eaten by herbivorous fish rather than overgrow coral. This is consistent with field data
showing that herbivorous reef fish have a diet preference for macroalgae rich in nitrogen
and phosphorus [0, |. Hence, our model predicted that the short-term dynamics in our
study areas (a small increase in hy and a larger one in ¢) would lead to higher herbivorous
fish populations, less overgrowth of coral by macroalgae, and hence faster coral recovery
after crown-of-thorns starfish outbreaks. Previous field studies have found that the presence
of large, commercially valuable fish is correlated with increased coral resilience to CoTS
outbreaks [73, ], and our model demonstrates a case where this relationship can arise.

However, the model also predicted that this coral recovery would be short-lived. This
was because the increases in ¢ also meant greater CoTS larval survival, leading to more
rapid outbreak onsets and greater long-term presence of CoTS. Additionally, further in-
creases in fishing rate caused the herbivorous fish population to decline via fishing faster
than it could grow due to increases in food availability (see Figure 3.3). This meant that
macroalgae became the main beneficiary of additional nutrients at high fishing rates, and
hence caused coral populations to increase in variability, as coral was overgrown more
quickly during periods of the year when it was not spawning. This result demonstrates the
possibility of complex, temporally-varying interactions between multiple reef stressors. It
is also in line with our general finding that as urbanization increases, fishing rate becomes
more important as a determinant of coral health and CoTS outbreak severity. Significant
interaction effects between overfishing and nutrient loading have been observed before in
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the field [93, |, and a recent study has shown that overfishing and nutrient loading can
switch between having synergistic and antagonistic interaction effects depending on the
level of sedimentation (a third stressor) in the system [385]. Our work demonstrates that
CoTS may act on other stressors in a similar way, and hence that areas where both nutri-
ent loading and fishing rates are expected to increase may experience significant ecological
shifts due to changing patterns of multi-stressor interaction.

3.6.3 Study limitations and future work

When simulating future dynamics in our focus cities, we fit some aspects of the model based
on observed regional data, owing to the lack of availability of finer-grained measurements.
As our model has the capability of specifying local parameters at a resolution of 1 km, we
believe that if remote sensing data on features such as coral cover and current strength
is available, parametrizing the model using such data would further enhance prediction
accuracy. Likewise, remote sensing data on phytoplankton blooms could be used to fit
local nutrient availability; see [237] for a good example of how nutrient-phytoplankton
interactions can be mathematically modelled. However, many of the trends captured by
our study, such as the shift to continuous CoTS presence on reefs with increased nutrient
input, the sharp dropoff in coral cover on reefs with CoTS at intermediate fishing rates, and
the effectiveness of controlling the spread of CoTS larvae, occurred regardless of regionally-
varying inputs. Thus, we believe that our conservation and management predictions can
be generalized to reefs throughout the Indo-Pacific region, albeit with variation due to
present local conditions.

While studying multi-stressor interaction as it pertains to CoTS, we chose to focus on
overfishing and nutrient loading due to their large potential impact on CoTS outbreaks.
However, there exist other anthropogenic coral reef stressors that we did not examine in this
paper. Some of these, such as coral bleaching, ocean acidification, and increased hurricane
frequency, are linked to greenhouse gas emissions and climate change [193, 36]. Future
work will determine how these additional stressors will affect CoTS outbreaks and coral’s
resilience to them, both for each stressor individually (to isolate its effects on CoTS) and
for the aforementioned stressors together (in order to evaluate the multifaceted changes
brought on by ocean temperature increases).
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Chapter 4

Reef fish functional groups show
variable declines due to
deforestation-driven sedimentation,
while flexible harvesting mitigates
this damage

This chapter is based on the paper: RA Milne, CT Bauch, M Anand. 2022. Deforestation-driven sedi-
mentation causes variable abundance declines across reef fish functional groups, which are mitigated by
flexible harvesting. In preparation.
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4.1 Abstract

Sedimentation is a major coral reef stressor, with immediate effects that include degrada-
tion of algal turf into a less productive form that suppresses herbivory. This puts pressure
on reef fish populations, as well as the fisheries that harvest them. Deforestation causes
much sedimentation on reefs, and is an ongoing concern in Pacific island states. Although
ecosystem processes such as deforestation and fish population dynamics are usually far
from equilibrium, analyses of reef fish vulnerability to deforestation that explicitly con-
sider time-dependent effects are rare. Additionally, optimization methods for fisheries on
heavily sedimented reefs are generally unexplored. Here, we construct a model coupling
four reef fish functional groups with seabed dynamics and deforestation, fit using data for
the Solomon Islands. We show that with predicted human population increases, highland
deforestation could cause herbivorous and omnivorous fish abundances to halve within 15
to 30 years, and many fish taxa to collapse within 50 years, but that piscivorous fish and top
predators are resilient to lowland deforestation. We demonstrate that flexible approaches
to fishing could lead to high and temporally stable populations of herbivorous fish and top
predators, offsetting stress caused by sedimentation and deforestation. We additionally
show that if future human population growth causes both deforestation and increased fish-
ing demand, future reef fish stock sizes will be unlikely to satisfy fishing demand, with local
extirpation possible in the medium-term. Our results provide sustainability guidelines for
reef fisheries, and demonstrate nonlinear interactions between overfishing and deforestation
that may result in unforeseen ecological surprises.

4.2 Code availability

The code for simulating the model is available on Zenodo (DOI: 10.5281/zenodo.7036364).

4.3 Introduction

Sedimentation is projected to be a serious cause of coral reef degradation in the future
[79, , 95], with a large number of reef-associated species being affected, including many

reef fish taxa [262]. Much of the sediment exported onto reefs is produced either directly
or indirectly by deforestation [150], and deforestation itself has been mentioned as a threat
to reef fish [103]. Hence, overexploitation of local forest resources could lead to substantial

declines in fish populations on adjacent reefs. However, different fish functional groups are
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likely to experience different amounts of pressure. In particular, the timing of when differ-
ent functional groups can be expected to decline following deforestation is still relatively
unexplored. Because of the dependence of many coastal communities on reef fisheries for
food [221], the effects of deforestation could additionally include a collapse in fish catch
and subsequent food shortages. Therefore, optimization of fishing strategies on reefs with
heavy sedimentation is a pressing concern. Here, we construct a land-sea model of inter-
mediate complexity linking four fish functional groups, seabed dynamics, and forest cover,
specifically parametrized to represent the Solomon Islands. We use this model to predict
which functional groups will be most and least threatened by deforestation and its accom-
panying sedimentation, when these fish populations will be expected to decline to critical
levels, and how fishing strategies on reefs under stress due to deforestation can be improved
to ensure sustainable catches. Our results can aid in establishing which fish taxa should be
paid the closest attention to in areas where deforestation is anticipated, as well as setting
guidelines for safe fishing and logging levels that would minimally jeopardize reef fish.

Sediment washed onto reefs comes in large part from soil erosion [21], and cleared land
tends to have significantly higher rates of erosion compared to forests [187, |. Hence,
deforestation has been identified as a major cause of reef sedimentation [156]. When

algal turf on the seabed becomes laden with sediment, it undergoes a qualitative shift
to a form that is less productive and less palatable to herbivorous fish, known as “long
sediment-laden algal turf” (LSAT) or a “turf algal sediment mat” [95, 240]. This results
in suppression of herbivory on the algal turf, which is due to different mechanisms that
vary across types of herbivorous fish based on their dental morphologies. (For instance,
those with scraping teeth avoid LSAT because they would have to ingest sediment with low
nutritional value when they scrape algae off the seabed.) This can lower herbivorous fish
numbers [210], as herbivorous reef fish are particularly susceptible to bottom-up control
[214]. This means that through land-sea linkages, deforestation has the potential to severely
impact reef fish populations. Because of the potential magnitude of these long-range effects
of deforestation, “ridge-to-reef” models have recently begun to be developed, in order to
predict how forest clearance and other terrestrial drivers will affect future health of coral
reefs (see e.g. [07, 263]).

Many existing ridge-to-reef models are static, offering a snapshot in time of what con-
ditions on reefs may be like under different deforestation and management scenarios. How-
ever, linking deforestation to the health of coral and fish communities involves considering
many interwoven processes, which may happen on different timescales [32, | and will
often not be at equilibrium. For instance, deforestation does not necessarily happen at a
constant rate [91], as the demand for cleared land or forest products that underpins it may
vary. Another example of this is the differing life history strategies of fish species. Marine
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fish taxa can be categorized based on factors such as lifespan and reproductive rates [139],
with the implication that the population growth rates of reef fish can substantially vary
due to these traits. These life history differences bear with them different levels of suscep-
tibility to different stressors: slow-growing, long-lived species are particularly susceptible
to rapid depletion due to overharvesting (see e.g. [158]), while declines in species with
more rapid life history traits were seen in an Atlantic fish community following increases
in ocean temperature [166]. As a result, in addition to anticipating future reef conditions,
management plans must understand how quickly and in which order the events that lead
to them take place. The importance of using insights from static models to inform dynamic
biophysical ones has been highlighted [(7], as ecosystem management benefits most from
using a combination of these tools.

Deforestation has been identified as a significant environmental concern in the West
Pacific and Southeast Asia in the past decades [91, 250]. The trend of deforestation within
this region has manifested itself in the Solomon Islands: logging there has been estimated
at seven times the sustainable yield [92]. Hence, concerns have been raised about forest loss
on several of that country’s constituent islands, such as Guadalcanal [10], Kolombangara
[133, |, and Rennell [123]. Of particular concern is logging on steep slopes and in
highland areas, such as those found in the interior of Kolombangara [261], which has been
described as a pervasive problem in the Solomon Islands [90, 102]. This is because erosion
(and therefore sediment generation) can happen at a greater magnitude on such terrain
[210, ], particularly in areas where logging or other human disturbances take place
[108, 278]. However, past deforestation on the Solomon Islands has been spatially uneven,
and many areas still have close to complete forest cover [92, 124]. Therefore, it is important
to establish expectations for how large-scale deforestation in these areas could affect local
reef fish populations before it happens.

It is well-known that reef fish assemblages can be significantly negatively impacted
by human activity [37]. Clear-cutting of mangroves can alter fish assemblages [222], in
particular by harming the fish species that use mangroves as nurseries. In a similar example
in riparian habitats, deforestation along the banks of streams reduces niche diversity among
stream fish by homogenizing the landscape [275]; this has been accompanied by shifts
to more sediment-tolerant species [130, ]. Additionally, sedimentation from offshore
construction has been shown to change community composition on a coral reef over a
long timescale [230]. Recent studies have begun to examine how sedimentation due to
inland deforestation affects the populations of different reef fish taxa [67, |, although
this work has mostly covered different groupings of herbivorous fish rather than the fish
elsewhere in a coral reef food web. Therefore, ridge-to-reef models could be further used
to predict population changes of many different reef fish functional groups, to provide a
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holistic evaluation of fish assemblage changes.

Coral reef fisheries represent one of the main food sources in tropical island states
[2241]. However, many of these countries, among them the Solomon Islands, are projected
to experience substantial human population growth in the next few decades [2418]. This
can be expected to put pressure on local fish populations. The intuitive result that more
population means greater demand for fish has been observed as both increasing fishing
effort over time in growing areas [219] and a correlation between population density and
fishing effort [232]. These fishing rate increases will likely come in tandem with additional
deforestation: empirical relationships between the population of an area and its forest
cover have been obtained from observations in many different parts of the world (see e.g.
(2306, 253, 138]). Previous studies on multiple coral reef stressors have found that overfishing
and sedimentation can have significant interaction effects [85, 74]. This suggests that
through its effects on sedimentation, deforestation could have sizable long-term impacts
on fisheries yield. In other words, overharvesting of one resource (forest) can potentially
also lead to shortages in another one (reef fish). Hence, the maintenance of fisheries after
shifts to heavily sedimented conditions has been mentioned as a priority for research [2410].

4.4 Methods

4.4.1 Model building

Seabed state transitions

To model how deforestation and the sediment buildup associated with it could affect reef
fish populations and the viability of harvesting them, we adapted a model of Fung et al.
[89]. We chose this particular coral reef model because it includes a compartment for turf
algae, which we make use of in our investigation of fishing potential on algal turf-dominated
reefs, and because the authors included estimations of how sedimentation could affect the
model parameters as part of their original derivations. This model features state transitions
between coral C, turf algae T', macroalgae M, and open space () on a seabed; as the total
seabed area is constant, space is defined as ) = 1 —C —T — M. The original equations in
[39], which we retained, are below:
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Here, turf algae can overgrow open space, coral can overgrow space and turf, and
macroalgae can overgrow all other components. Coral larvae are produced by local brood-
ing corals at a rate lg, and by exogenous spawning corals (outside the spatial scope of the
model) at a rate [?.. These larvae can settle on open space or algal turf, with £, being the
relative rate at which coral larvae settle on turf relative to open space. Coral can also take
up more space by undergoing lateral expansion, which happens at a baseline rate r,. As
with larval recruitment, coral can laterally expand into open space or turf, with « being
the relative rate at which coral expands into algal turf compared to open space (analogous
to €,). Additionally, coral lateral expansion is suppressed by the presence of macroalgae
according to a factor 3,,. Coral dies at a rate d_, at which point the space it takes up
reverts to being empty. Algal turf expands over space at a rate (., which is scaled down
according to a unitless quantity € between 0 and 1 representing grazing pressure; existing
algal turf is also cleared by grazing at a rate g,.0, where g, is the maximum rate at which
turf is grazed (for scaling). Macroalgae has an intrinsic rate of growth r,,, and is grazed
at a rate g,,0 analogous to the rate for algal turf (i.e. g,, is the maximum yearly rate that
macroalgae is removed due to grazing). Macroalgae can expand over coral and turf. It
does so according to the relative rates v,,. and 7,,,, respectively, which are normalized
according to its rate of expansion into open space (as with ¢, and «_). Because we ex-
panded this model to explicitly include the processes of herbivory and sedimentation, we
took 0, ., 1%, 15, and d_ to vary rather than being constant (see below). All other model

cr Yo Yoo
features were kept identical to those in [39].

Fish trophic interactions

To this model, we added four different fish functional groups: herbivores (e.g. Scarus
dimidiatus), omnivores (e.g. Acanthurus triostegus), piscivores (e.g. Epinephelus merra),
and top predators (e.g. Sphyraena forsteri). All functional groups were assumed to follow
logistic growth, with intrinsic growth rates of r,,, r,, r,,, and r,, respectively, and carrying
capacities of 1. Each functional group’s growth rate was further scaled according to food
availability, representing predator-prey interactions. Fish were assumed to be harvested
at rates h,, h,, h,, and h,, and all fish functional groups aside from top predators were
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assumed to die due to predation at rates m,,, m,, and m,. (Death of top predators due to
natural causes is contained in the logistic growth function.) As with the growth rates, the
death rates for each functional group were scaled according to the abundance of predators
of that functional group.

Since turf algae and macroalgae were assumed to be grazed at rates g, and g, <
g,, respectively, it can be further assumed that the relative proportions of turf algae
and macroalgae consumed by grazers (such as herbivorous fish) can be represented with
the ratio ggﬂ < 1. Hence, we took T + gM M < 1 as the scaling term for herbivorous

fish growth As rates of herbivory are negatlvely impacted by accumulation of algal turf
sediment [94, |, we introduced another quantity p(t) representing this decrease, which
depends on sediment quantities on the seabed (see below). We assumed that herbivorous
fish would be eaten by piscivorous fish and top predators, with J, denoting the percentage
of the diet of piscivores made up by herbivores and (55 denoting this percentage for top

predators. This meant that our scaling constant for herbivorous fish predation was taken
6pFp 8l F,
L e

represented the differential equation for herbivorous fish as follows:

< 1. Therefore, after also accounting for the harvesting term —h, F, , we

dF, T, g
Sn_ Tnp - p)(T+20) —h,F
= p, (- ) (T4 2 ) -y

r 0, F,+0"F,

—m,F, 5, 1 on

(4.2)

H

The diet of omnivorous fish typically consists partly of primary producers (e.g. algae)
and partly of other food sources such as zooplankton and small invertebrates [33]. We
defined o, as the percentage of an omnivorous fish’s diet consisting of algae, and assumed
that omnivorous fish would consume turf algae and macroalgae at the same relative rates
as herbivorous fish. This was scaled down by g in the same way as in the dynamics for
herbivorous fish. This implies that (1 —J,) percent of an onmivorous fish’s diet consists of
other food sources, the availability of which we modelled using a function ¢(t) (see below).
As with herbivorous fish, we assumed that omnivorous fish were eaten by piscivorous fish
(composing (1 — d,) percent of their diet) and top predators (composing (52 percent of
their diet), and harvested at a constant rate. Therefore, the dynamics of omnivorous fish
are represented as follows:

dF 5 9y (1_5P)FP+5ZOFZ
3 = Tofo (1= Fy) <ﬁ (T + ZM> +(1-4,) ¢> ~hoFo=moFo——— 8, + 09
(4.3)
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As detailed above, piscivorous fish were assumed to eat both herbivorous and om-
nivorous fish, in proportions ¢, and (1 — 9, ), respectively. They are, in turn, eaten by
top predators and harvested. Note that the proportion of top predator diet that pisciv-
orous fish make up is 1 — 55 — 62. As the total predation pressure on piscivorous fish
is therefore F, (1 — 6 —49), but scaling this to values between 0 and 1 involves divid-
ing by 1 — 55 — 52, this constant is normalized out of the differential equation governing
piscivorous fish dynamics. The differential equation in question is as follows:

dF
dtP = TPFP (1 - FP) (5PFH + (1 - 5P)FO) - hPFP _mPFPFZ (44)

Top predators consume fish from all other functional groups, according to the propor-
tions mentioned above. As they lack predators by definition, the sources of their mortality
are assumed to be harvesting and natural causes. This yields the following differential
equation for top predators:

ﬁ%:wﬁgﬂ—ﬁgﬁgﬂf+ﬁﬂf+@—65—%ﬁﬂ)—h#@ (4.5)

Fung et al. did not explicitly include grazer populations in their model, and hence
represented grazing pressure as a constant . We instead use a baseline rate 6 scaled
by the population levels of herbivorous and omnivorous fish relative to their theoretical
maxima, with the contribution of omnivorous fish to grazing being the proportion of their
diet consisting of algae. The grazing rate also decreases as sediment levels increase, so
we additionally divide by 1+ p (as in the grazing terms of F,, and F,)) to represent this.
Specifically, we take 6 to be the following:

0(F, +9,F,)
(14 p) (146,)

o(t) = (4.6)

Deforestation and sediment dynamics

To specifically investigate the effects of deforestation and sedimentation on reef fish pop-
ulations, we added three more model components representing forest cover in land areas
adjacent to the reef being modelled, concentration of suspended sediment within the water
column on the reef, and concentration of sediment that has accumulated on the seabed.
We represented these using the variables X (measured as a percentage), S, (measured in
mg cm?), and S, (“B” for “benthic”; measured as a dimensionless constant), respectively.
A schematic of the full model can be seen in Figure 4.1.
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Figure 4.1: Diagram containing interactions in the model. Trophic interactions involving
reef fish are shown in black, patterns of overgrowth on the benthos are shown in blue, and
processes related to deforestation and sediment transport are shown in red. Pointed heads
denote positive effects, while rectangular heads denote negative effects.
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Changes in forest cover were modelled in a variety of different ways, to represent un-
managed deforestation and managed logging. For our baseline scenario, we assumed a
steady loss of forest cover scaling with population increases. Here, we drew on the work
of Tanaka and Nishii [230] which modelled the percentage change in forest cover per unit
change in area population; we defined r, as the linear rate of deforestation referred to as
r in [236]. We used United Nations population growth estimates for the Solomon Islands
[248] to obtain values for population N and population change dd—];’. We also assumed a
background rate of forest regrowth, governed by the rate a,. We took the forest regrowth
term to be logistic, as the rate of forest expansion into cleared land should decrease as

the amount of available cleared land does; we assumed a carrying capacity of 1, or 100%

forest cover. Therefore, the differential equation for forest cover, %, was taken to be the
following;:
dX dXdN dN
— == 1—X)=— " 1— 4,
T IN @ +a,X(1-X) r NX & +a,X(1-X) (4.7)

Sediment export onto reefs was assumed to change due to deforestation, and specifically
increase due to increased erosion when forest cover was low. The amount of sediment being
deposited onto reefs due to soil erosion typically increases linearly as forest cover is reduced
[187, 261]. We took ¢, to be the baseline river sediment concentration at 100 percent forest
cover, and ¢, to represent the additional amount of sediment in rivers when all land has
been cleared; both of these have units of mg cm™>. We also took A (measured in yr—')
as the rate at which sediment in these rivers is exported into the water column. Once
sediment is suspended in the water column above a reef, it can be washed out further into
the ocean or settle on the seabed. We took e to be the rate at which sediment is washed
out of a reef ecosystem, and assumed that the amount of sediment on the seabed would be
in equilibrium with the amount suspended in the water column. The differential equation
for S|, is therefore as follows:

ds,,

=g, + (- X)g)A—eS, (4.8)

Here, the term eS,,, covers both initial export of sediment by rivers to areas beyond a reef
(which first must physically pass through the reef area) and later off-shelf export of sediment
in the water above a reef. This was done since both of these processes are significant
[258, 81] and data that could be used to separate the two was not readily available. Because
suspended sediment and sediment on the seabed are measured in different units (mass per
unit volume and per unit area, respectively), and converting between these may be difficult,
we opted to express sediment on the seabed as a ratio between the level at any given
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time and levels corresponding to pristine conditions. A corollary of our assumption that
accumulated seabed sediment is in equilibrium with suspended sediment concentration is
that the growth in these two variables is proportional to each other, and expressing S, as
a ratio (i.e. indexing a value of S, =1 to pristine conditions) rather than as a differential
equation eliminates the need for a growth rate constant. We therefore took S, to be the
following;:

Sy (¢)
Sy (t=0)

~~

S, (1) = (4.9)

Fung et al. identified sedimentation as affecting four processes in their model, namely
lateral coral growth (described using r_), larval recruitment of both local brooding and
exogenous spawning corals (lg and [?, respectively), and coral death (d). The existing
literature describes changes in these processes as functions of sedimentation rates, rather
than the total amount of sediment either in the water column or on the seabed (see e.g. [3Y]
Appendix B). We therefore assumed that these processes could be described as baseline

rates 7, Zl;, ZZ, and gic scaled up or down according to the sedimentation rate. Much of
the redistribution of sediment on reefs is performed by parrotfish [117, |, which bite
into sediment while feeding and therefore reduce sediment buildup on reefs, lowering the
effective sedimentation rate, although other herbivorous fish with different feeding methods
also may have effects on sediment accumulation [115]. In a recent experiment in which
areas of seabed were caged off to simulate a herbivorous fish density of zero, Akita et
al. found that the caged areas had on average double the accumulated sediment levels
compared to uncaged control sites [7]. All of the control sites in [7] were fished, and
herbivorous fish landings in the area were reported as being half of what was caught in
the 1990s, suggesting that herbivorous fish density there would be at most half of its
theoretical maximum. Since the sedimentation rates (mass per unit area per unit time)
observed by [7] were similar to pristine values observed elsewhere (see below), we therefore
assumed that the sedimentation rate would begin linearly increasing when the herbivorous
fish population declined below a value of 0.5, and would double when no herbivorous fish
were present. Hence, we defined the sedimentation rate as follows:

ro., =max[l+ (1 —2H), 1]k, S

ep ~ W

(4.10)

This formulation uses a constant k,  to represent the baseline rate of sediment de-
position, as well as incorporating dependence on the population of herbivorous fish. (We
took k,_ to have units of 100 x cm yr~—'. This is done so that the rate of sedimentation
is expressed over an area rather than a volume, and hence can be calibrated to observed
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field values that are measured in mg cm™2 time™!. The scaling down of k., by a factor of
100 was done because the field data on sedimentation rates that we fit our model to had
time units of days, while time in our model is expressed in years, and we intended to keep
our sedimentation rate on the same order of magnitude as the raw numbers seen in the
field.) Because the three coral growth processes were negatively affected by sedimentation,
we modelled them as follows:

Zb 'l~.s

re(t) = oy L) = ot B = o5 (4.11)

Here, k., k,, and k, are constants that determine at which sedimentation rate the cor-
responding coral growth rate is halved. Coral death instead increases when sedimentation
rate is high. This means that the sedimentation-dependent coral death rate can be taken
as the following, with , a scaling constant:

r

—) (4.12)

d.(t) =d, (1 -
K;d

In addition to sedimentation’s effects on coral, the buildup of algal turf sediment (i.e.
sediment on the seabed contained under and within areas dominated by algal turf) is
known to inhibit herbivory of algae [94, ]. As mentioned above, we modelled this by
using a factor u to divide the rates of grazing and herbivory in the model. We assume here
that sediment is evenly distributed on the seabed, so the amount of sediment accumulated
there is a good proxy for algal turf sediment, and hence the extent to which local algal turf
is closer to being SPAT (short, productive algal turf, the kind preferred by herbivorous
fish) or LSAT. This can be done because the correlation between seabed sediment load and
algal turf length is roughly linear [211]. Tebbett et al. found that approximately doubling
seabed sediment concentration from pristine values led to herbivorous fish bites on algae
approximately halving, and a quadrupling of sediment concentration led to a 78% reduction
in herbivorous fish bites compared to the pristine baseline (i.e. approximately another
halving from the value with doubled sediment levels) [211]. Similarly, it has been found
that removal of large amounts of sediment from reef flats (where seabed sediment buildup
is greater) had similar effects on encouraging herbivory as removing much smaller amounts
of sediment from reef areas with less sediment buildup [94], indicating the sensitivity of
herbivorous fish to algal turf sediment levels. Because of this, we assumed that p would
increase logarithmically with the amount of sediment on the seabed, with a logarithm base
of 2 due to the repeated halvings mentioned above. This means that our formulation for
1 is as follows:
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p = maxllog,(S,) , 0] (4.13)

Much of the diet of omnivorous fish consists of zooplankton [38]. The phytoplankton
that zooplankton eat can have their population growth limited by low light availability,
such as in turbid waters, making planktonic food webs vulnerable to suspended sediment in-
creases [109]. As zooplankton population dynamics (and hence zooplankton-phytoplankton
trophic interactions) happen over a faster timescale than the rest of the model processes
[70], we assumed a direct dependence of ¢(t) on suspended sediment concentration. This
involved scaling ¢ with light availability according to the Lambert-Beer law [ 10], which is
the following function relating underwater light intensity I to intensity of the light source
I, depth d, and light attenuation constant k_,,:

I = I,e Faued (4.14)

We took the light attenuation constant k,,, to vary based on suspended sediment con-
centration. A linear relationship has been found between these two quantities in estuarine
waters [50], which has a slope of 60 when suspended sediments are measured in mg cm 3.
Furthermore, we assumed that ¢ = 1 in pristine conditions (to bound the growth rate of
omnivorous fish above by 1), and that water depth was constant. These constraints meant

that we took the following form for ¢:

- exp<—&)sw) . =60 (4.15)

Algae on the seabed also undergoes photosynthesis, and coral obtains much of its energy
from dinoflagellate symbionts, which in turn get their energy from photosynthesis. How-
ever, the reduction in coral growth and reproduction rates due to sedimentation (including
from photosynthesis reduction) is already included in the model via processes detailed by
Fung et al. (see above). Additionally, Fung et al. considered reduction in algal photosyn-
thesis due to sedimentation, but did not include it in their model due to lack of data. We
also opted not to include this. Turf algae spread very rapidly, and have been found to dom-
inate the benthos under conditions featuring high turbidity [191] or sedimentation rates
[22, | due to their ability to trap sediment. Therefore, we assumed that although light
attenuation due to turbidity may affect the growth of turf algae, it would not appreciably
affect their spread if a reasonable amount of light still reached the seabed. Conversely, the
steady-state macroalgae levels reached with our baseline parameter values were low enough
that any difference due to decreasing photosynthesis would be minimal.
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4.4.2 Model parametrization

All parameters relating to transitions on the seabed between coral, macroalgae, turf algae
and space that were used by Fung et al. were kept at the values specified in [89]. This

includes the baseline values 0, Te, Zi, ZSC, and gZC for rates affected by features that we
added to the model.

Growth and harvesting rates for each fish functional group, as well as diet composition
ratios for omnivorous and piscivorous fish, were taken from FishBase [¢5]. This involved
first dividing all reef-associated fish species observed in our study region (the Solomon
Islands) for which data on both doubling time and use by fisheries was available into
functional groups depending on their trophic level. Fish with a listed trophic level of 2.0
were assumed to be herbivorous, those with tropic level greater than 2.0 but less than
3.0 were assumed to be omnivorous (with a diet consisting partially of algae and partially
of alternative sources such as invertebrates), those with trophic level at least 3.0 but less
than 4.0 were assumed piscivorous due to being a full trophic level above herbivorous fish,
and those with trophic level at least 4.0 were designated top-level predators. (The fish
in the latter two categories could include some predators of benthic crustaceans as well
as predators of fish. Hence, during our calculations below, we assumed that growth and
harvesting rates would be similar between those groups.)

The omnivorous fish species for which growth and harvesting data was available had an
average trophic level of 2.62, while that of the piscivorous species (other than top predators)
was 3.49. Therefore, we took d, = 0.38 and 0, = 0.21 under the assumptions that the diet
of omnivorous fish would be 38% algae and 62% organisms that eat algae, and that the
diet of piscivorous fish would consist of organisms with an average trophic level of 2.49,
such as 21% herbivorous fish (trophic level 2) and 79% omnivorous fish (trophic level 2.62).
We took the values of the top predator diet parameters to be 55 = 0.1 and 5(; = 0.3. This
was based on the assumption that top predators would eat more fish in higher trophic
levels, as well as the fact that summing the trophic levels of herbivorous, omnivorous and
piscivorous fish with these weights results in a trophic level of 3.08, close to the trophic
level of the prey of top predators in the Solomon Islands (3.18).

The intrinsic growth rate for each functional group was set to be the average of those
for each species within the functional group, while the growth rate for each species was
derived from its reported doubling time using the formula r = % As the doubling time
of each species was defined using an estimated range, numerical values for each species
were obtained by taking the median of this range; if the doubling time for a species was
defined as being very long, without an upper bound, this numerical value was taken to

be 15 years. These intrinsic growth rates were assumed to hold for pristine reefs, which
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typically have about 50 percent coral cover [227] that is not edible by herbivorous fish.
Therefore, we multiplied each growth rate by 2, so that herbivorous fish growth would
scale based on the amount of algae present compared to its observed maximum values on
pristine reefs, and the timescale of the other fish functional groups’ dynamics (compared
to those of herbivorous fish) would not be affected. From this, we obtained r, = 1.51,
r, = 1.36, r, = 1.45, and r, = 0.69.

The harvesting rate for each functional group was defined in the same way, based an
average of harvesting rates for each species in the group. A species was assumed to have
a harvesting rate of 0.5 if its use by fisheries was listed as “highly commercial”, as many
highly-fished species have harvesting rates at or above 50 percent annually [181]. Species
whose fisheries usage was listed as “commercial” were assumed to have harvesting rates of
0.3, a value that previous modelling studies have determined to be close to the maximum
rate at which fish populations can maintain themselves [28, |, and “minor commercial”
species were assumed to have harvesting rates half of that (0.15). The harvesting rate for
species that were listed as being the targets of subsistence fishing (rather than commercial
fishing) was taken to be 0.05, an order of magnitude lower than the highest commercial
rates [03], and species of no commercial interest had a harvesting rate of 0. This process
gave us h, = 0.2, h, =0.11, h, = 0.15, and h, = 0.22.

Sediment export onto reefs due to erosion is low in heavily forested areas, and increases
with the proportion of cleared land [I187, ]. A recent survey on Isabel Island in the
Solomon Islands found that over a catchment covered almost entirely by forest, sediment
concentrations at the mouth of a local river (the Jejevo) had a geometric mean of 20 mg
L™ or 0.02 mg ecm™® [124]. Since the waters at the mouth of the Jejevo have been found
to be on average 15 times more turbid than those by adjacent rivers [11], we took g, to
have a high value of 0.02 mg cm~2 and a low value of 0.0013 mg cm 3. In the wet tropics of
northern Queensland, Australia, Neil et al. found a linear relationship between percentage
of land cleared and suspended sediment concentration in local rivers during the wet seasons
of specific years [187], thus controlling for temporal variation due to any ongoing changes
in land use. Plugging 100 percent land clearance into the formulas in [187] yielded values
of 72 and 14 mg L' for very wet and fairly wet conditions, respectively. Wenger et al.
performed a similar analysis on Kolombangara Island in the Solomon Islands, based on
future predictions of yearly erosion with varying percentages of cleared land [261]. That
study found average suspended sediment concentration in streams to be 124 mg L™t at 40
percent cleared land with no management, as well as a linear rate of increase for sediments,
implying a concentration of 310 mg L~ when land is fully cleared. The concentration at
100 percent forest cover found by Wenger et al. was similar to that found by Neil et al.; the
difference in slope of the two relationships can be attributed to the fact that Wenger et al.
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considered deforestation on steeper terrain. We therefore took ¢, to be 0.31 mg cm ™2 when
simulating deforestation on steep terrain, and 0.043 mg cm 3 (the average of the two values
found by Neil et al.) for gentler terrain. This represents the increase in sedimentation due
to erosion that an entirely cleared environment has compared to an entirely forested one.

Rates of sediment export from coastal into off-shelf areas have a great deal of spatial
variation (see [258] for an example of this in New Guinea, with both very high and very
low amounts of off-shelf export observed). Therefore, we took e to vary over a wide range,
namely from 0.1 to 0.9, with the median value 0.5 used as a baseline. We assumed A to be
1 yr=! in order to simulate conditions on reefs near river mouths. Reefs further away can
receive substantially less sediment from river discharges [21]; this process was folded into
e in order to simplify the model analysis (see above), as e and A perform similar functions
(limiting sediment on reefs due to local hydrodynamics).

To find a value of k;,  suitable for the Solomon Islands, we related suspended sediment
concentrations to rates of sedimentation in a dataset covering Isabel Island [11], using the
formula ry , &~ k, S, in the absence of data on parrotfish abundance. We used the average
reported turbidity in nephelometric turbidity units (NTUs) at the Jihro inshore reef site
in that dataset, which was similar to those on other inshore reefs globally [11] such as on
the Great Barrier Reef [115], to estimate suspended sediment concentration. A value in
mg L~! was obtained from this using a linear method used in [215], taking the average
slope of 18 linear functions linking NTUs to sediment density, and this was further scaled
to units of mg cm™. We then divided the observed sedimentation rates on inshore reefs
in this dataset by the obtained average sediment concentration. This gave us an average
value of 4400 for k,, , after disregarding an outlier, which had a sedimentation rate over
20 times higher than the other sites and was therefore deemed non-representative.

While parametrizing their model, Fung et al. estimated from field data that a sedimen-
tation rate of 100 mg cm~2 d~!, or 365 x 102 mg cm™2 yr~!, causes coral lateral growth
rate to decline by half (see [$9] Appendix B). Hence, we took x, = 365. Similar estimates
by Fung et al. included that a sedimentation rate of 12 cm™2 d~! causes larval recruitment
of both brooding and spawning corals to decrease by 60%, and one of 13 cm~2 d~! causes
coral death rate to double. After converting units, this leads to a value of % for k, and
k,, and a value of 47.5 for k.

We determined values for r, by isolating it within the differential equation proposed

by Tanaka et al. [230], i.e. dd—ﬁ = —r F'N. To do this, we used data on deforestation in
the Indonesian part of the island of Borneo (i.e. Kalimantan) from 1973 to 2000 and from
2000 to 2010 [91], and population growth data in Kalimantan over the same years [229].

For each of these time periods, we took F' to be the percentage forest cover in Kalimantan
at the end of the period and N to be the population of Kalimantan at the end of the period
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relative to its population at the beginning of the period, and estimated g—f] by dividing the
change in forest cover by the relative change in population during the period. (2000 and
2010 were census years in Indonesia, and we estimated the 1973 population by assuming a
linear rate of growth between the 1971 and 1980 censuses.) We used relative rates rather
than absolute population numbers (as was done by Tanaka et al.) in order to control for
population density and hence maximize applicability to different locations. From these
calculations, we obtained a value of 0.18 for r, from 1973 to 2000, and a value of 0.23 from
2000 to 2010. We therefore took 0.23 as a baseline for 7, , although we allowed it to vary
in order to simulate a variety of deforestation speeds.

A long-term study (from 1990 to 2020) on changes in forest cover in the tropics found
that out of the undisturbed forest in insular Southeast Asia in 1990, 16.4 percent had been
deforested, and 3.7 percent had been deforested and subsequently regrew [250]. This gives
an estimate that the speed of reforestation was 0.18 times the speed of deforestation in
this time period. Hence, we assumed our background rate of forest regrowth a, to be 0.18
times the baseline value for r of 0.23, or in other words a, ~ 0.04.

4.4.3 Numerical methods

In order to determine how fish assemblages in the Solomon Islands changed with deforesta-
tion, we simulated the population dynamics of each fish functional group (F,,, F,, F, and
F,) while increasing the population of the Solomon Islands based on United Nations pre-
dictions starting in 2022 [218], for varying values of the forest loss constant r,.. We did this
for three values of the sediment flushing rate (e = 0.1, 0.5, and 0.9) to control for variation
due to local conditions. For each run of the model, initial conditions for each state variable
were set to the steady state reached by that variable in the case where X (f = 0) = 1 and
r, = 0 (i.e. without deforestation), to simulate effects in a part of the Solomon Islands
that currently has close to full forest cover (see e.g. [92, 121]). We took fish populations
in each functional group at ¢ = 20 years and t = 50 years, (representing medium-term and
long-term effects of deforestation, respectively). We subsequently normalized each popu-
lation value by the corresponding population at t = 20 or ¢ = 50 without deforestation,
in order to isolate the decline in fish populations that could be directly attributable to
deforestation.

To determine how the changes brought about by deforestation depend on local con-
ditions, we ran simulations of highland deforestation with ¢, (the baseline sediment con-
centration in local rivers) and e (the rate at which sediment is flushed out of the system)
varying within their entire ranges. Here, we took 7, = 0.23. Initial conditions for fish were
taken to be their theoretical population maxima (i.e. 1 for each functional group); all other
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Param \ Value \ Units \ Description

T, 1.51 yr! Intrinsic growth rate for herbivorous fish

To 1.36 yr! Intrinsic growth rate for omnivorous fish

T 1.45 yrt Intrinsic growth rate for piscivorous fish

T, 0.69 yr—! Intrinsic growth rate for top predator fish

h, 0.2 yr~1 | Harvesting rate for herbivorous fish

h 0.11 yrt Harvesting rate for omnivorous fish

h, 0.15 yr! Harvesting rate for piscivorous fish

h, 0.22 yr! Harvesting rate for top predator fish

m, 0.1 yr! Mortality due to predation for herbivorous fish

m, 0.1 yr—! Mortality due to predation for omnivorous fish

m, 0.1 yr—! Mortality due to predation for piscivorous fish

d, 0.38 | Unitless | Percentage of omnivorous fish diet consisting of algae

o, 0.21 | Unitless | Percentage of piscivorous fish diet consisting of herbivorous
fish

(55 0.1 | Unitless | Percentage of top predator fish diet consisting of herbivorous
fish

(52 0.3 | Unitless | Percentage of top predator fish diet consisting of omnivorous
fish

k, 0 -1 | Unitless | Relative importance of local fish availability on harvesting
rates

v 0 -1 | Unitless | Dependence of harvesting on population growth

Table 4.1: Parameters related to fish vital processes used in Chapter 4. Mortality rates
are assumed based on [28], k, and v are allowed to vary over broad potential ranges, and
all other parameters are calculated based on FishBase data [38].

78



Param ‘

Value

|

Units

Description

‘ Reference ‘

9

0.0013 - 0.2

mg cm-

Baseline sediment concen-
tration in rivers due to ero-
sion

[124]

0.043, 0.31

mg cm-

Additional river sediment
concentration when land is
100% cleared

yr

Rate at which sediment in
rivers is exported to reefs

Assumed

0.1-05-0.9

yro

Rate at which suspended
sediment on reefs leaves the
system

4400

100 x cm yr—1

Constant governing sedi-
ment deposition from water
column to seabed

365

100 x mg cm ™2 yr~

1

Sedimentation rate at
which coral lateral growth
is halved

29.2

100 x mg cm ™2 yr~

1

at
coral

Sedimentation  rate
which  brooding
recruitment is halved

29.2

100 x mg cm =2 yr—*

at
coral

Sedimentation  rate
which  spawning
recruitment is halved

47.5

100 x mg cm ™2 yr—!

at
is

rate

death

Sedimentation
which  coral

doubled

60

Constant relating non-algal
food availability for om-
nivorous fish and sediment
concentration

0-0.23-0.25

Deforestation rate

0.18 x 0.23

Forest regrowth rate

Table 4.2: Parameters related to sedimentation used in Chapter 4
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initial conditions were taken to be their steady-state values when no deforestation takes
place and all parameters are at their baseline values. This was done in order to isolate the
transient dynamics produced by different local conditions for the same amount of defor-
estation pressure. In each simulation, we obtained the population of each fish functional
group at t = 20.

To examine how fisheries might respond to changes in fish availability due to sedimen-
tation, we simulated both the populations of each functional group and the amount of
fish harvested, for static and dynamic harvesting rates. (For each functional group, the
amount of harvested fish was obtained by integrating that functional group’s population
times its harvesting rate.) For a static baseline, we used the harvesting rates obtained
from FishBase (see above). We then assumed a harvesting rate that would change for
each functional group based on local availability of fish in that functional group, while
the percentage of the total fish population being harvested would remain constant. We
first estimated the rate for all functional groups combined by taking a weighted average of
the rates h,,, h,, h, and h,, where the weights were set equal to the relative abundances
of each functional group in the initial conditions we specified above. In other words, we
defined the aggregate harvesting rate as follows:

_ By (0) + h Fy (0) + b F(0) + b, F, (0)

o = T (0) + By (0) 1 F,(0) + F (0)

(4.16)

We then defined a harvesting rate for each functional group based solely on the relative
availability of fish in that functional group as follows:

ha, (£) = #ﬁ [ e€{H,0,P 7} (4.17)

Since some fish species with high abundance (e.g. wrasses) are not expected to be

of any commercial interest [161], we did not assume that the actual harvesting rates for

each functional group would be solely based on relative fish abundances. Instead, we

formulated harvesting rates h,, h,, h,, and h, for each functional group that would

partly depend on the fishing rates parametrized from FishBase (i.e. the intrinsic demand

for each functional group) and partially due to local fish availability. In other words, for

a constant k, representing the how important current local conditions are in determining
demand for each functional group, we defined each h as follows:

- _ hytky,h

hy(t) = "R € {H,0, P, 72} (4.18)
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Following the construction of these time-dependent harvesting rates, we then generated
time series of fish populations and fisheries yield (as above) for different values of k, , namely
k, = 0 (the baseline with static fishing rates), k, = 0.1, k, = 0.3, and k, = 1 (50 percent
dependence on local fish availability). In these simulations, all parameters were assumed to
be at their baseline values, e.g. e = 0.5 and r, = 0.23, and we furthermore took ¢, = 0.043
to represent lowland deforestation.

To test how robust reef fisheries’ yield is to deforestation-driven sedimentation, as well
as the persistence ability of reef fish, we simulated fish populations in a scenario where the
amount of fish harvested was always constant, such as in a system with specified fishing
quotas. (This contrasts with taking the number of harvested fish to be a percentage of
the overall fish population.) Specifically, we assumed that over a unit of time, the total
number of fish harvested during that time would always be equal to a value p x &, where
¢ is the number harvested at time ¢ = 0 and p is a scaling constant. ¢ is defined below:

gz hHFH(O)+hOFO(O)+h’PFP<O)+hZFZ(O> (4'19)

We further assumed that the different fish functional groups were harvested according
to their proportions of the population. This means that, for w a factor to ensure that
the total fish harvested remains constant, the number of fish harvested in each functional
group [ is as follows:

F
! wF, (4.20)
F,+F, +F, +F,

In order to obtain w, we first noted that the number of fish harvested at each time step
always being equal to p x £ implies the following:

FI
wk, = 4.21
ZI:(FH+FO+FP+FZ) e 42
By factoring out and isolating w, we get the following:
F.+F +F,+F
w_pg( i g+ng22> (4.22)
F°+F*+F~°+F,

The harvesting rate for each functional group [ is the number of fish harvested in
that functional group divided by its total population. If we denote the harvesting rate as
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by, ., with the a denoting that the amount harvested is what remains constant, we get the
following:

B wk, _ pEF;
Var,I FH+FO+FP+FZ FH2+FOQ+FP2+FZ2

(4.23)

We then used a modified version of Equation 4.18, substituting h{  in place of h,,_ ,
and taking k, = 1, to obtain variable harvesting rates for each functional group that always
summed to a constant value:

h(t) = st [ e {H,0,P,7) (4.24)

Anticipating that constant harvesting amounts could cause the fish to go extinct, we
additionally imposed the constraint while running the model that if the population of a
functional group was below 1079, it would be treated as 0. This constraint further implied
that the amount of fish harvested in such cases would also be zero. Using these rates, we
ran simulations for different values of p and r, , for both lowland and highland deforestation
scenarios. For each simulation, we obtained the amount of fish present at time ¢ = 50.
If this amount was zero, we additionally obtained the time at which the fish population
first dropped below 1076, This calculation of fish extinction time was specifically done for
herbivorous fish; since fish functional groups were harvested in this case according to their
proportions of the total fish population, all functional groups that went extinct did so at
the same time. (This put the threshold for local extinction of all fish functional groups
combined at 4 x 1075.)

Furthermore, a relationship has been found between population and harvesting rate;
intuitively, the demand for fish rises as population increases [219]. This can be expressed as
the harvesting rate h,(t) for a given functional group I being multiplied by 1+ v N, where
the human population N is expressed as a proportion of the present-day value, and v is
a constant governing the population growth-harvesting relationship. In light of this, we
evaluated the interaction effects between deforestation and increased fishing rates on both
fish population size and fishing yield. This was done by running simulations for varying
values of v and r, and taking the population of all functional groups at time ¢ = 50 years
and the total number of fish harvested during the simulation. This was done for both
lowland and highland deforestation scenarios.
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4.5 Results

4.5.1 Fish resilience to deforestation-induced sedimentation de-
pends on trophic level and local hydrological conditions

We found that deforestation had significant time-dependent effects on reef fish community
composition, with different functional groups bearing the brunt of the burden caused by
sedimentation in the medium-term and long-term (Figure 4.2). Generally, fish at lower
trophic levels saw sharper declines first, while those at higher trophic levels were often
harmed more in the long run. After 20 years of lowland deforestation, herbivorous fish
populations usually showed the largest decreases (Figure 4.2a). The decline in herbivorous
fish was more pronounced when off-shelf sediment export was higher; this was reversed
for the other functional groups, with omnivorous fish becoming the hardest-hit functional
group under conditions where most sediment was locally retained (e = 0.1). After 50 years
of lowland deforestation, herbivorous fish populations decreased significantly (usually to 60-
70 percent of their expected levels without deforestation), with these declines unaffected by
off-shelf sediment export rates (Figure 4.2b). On the other hand, the declines of the other
three functional groups were heavily dependent on local sediment dynamics in this scenario.
Under moderate to high deforestation, omnivorous fish populations ranged anywhere from
20 to 90 percent of what they would be with full forest cover, depending on e. Piscivorous
fish and top predators were able to maintain their numbers very well when sediment was
mostly deposited away from reefs, but in the case where e = 0.1, both of these functional
groups suffered comparable declines to herbivorous fish.

Deforestation on steep slopes caused the declines in fish populations to be much greater.
After 20 years, populations of herbivorous and omnivorous fish had halved in the median
scenario (Figure 4.2¢), with the same dependence on e as that seen with lowland deforesta-
tion. Following 50 years, all fish functional groups had experienced large and sometimes
catastrophic declines (Figure 4.2d). If the rate at which deforestation scales with popula-
tion growth and the level of local sediment retention were sufficiently high, populations of
omnivorous fish and top predators could reach critically low levels, with local extinction
probable soon after. For high r and low e, herbivorous fish showed the most resilience,
due to the total shift to algal turf dominance providing them with a steady food source.
However, since this algal turf was unpalatable LSAT, herbivorous fish populations were far
below what they would be without deforestation, and too low to support any species at
higher trophic levels.

We also found that the effects of baseline local conditions on resilience of reef fish to
deforestation-driven sedimentation was heterogeneous across functional groups. Taking the
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Figure 4.2: Abundances of fish functional groups after 20 years (Figure 4.2a) and 50 years
(Figure 4.2b) of lowland deforestation, and 20 years (Figure 4.2c) and 50 years (Figure
4.2d) of deforestation on steep slopes, relative to the baseline case without deforestation.
Note the difference in vertical axis scales.

population levels of each fish functional group following 20 years of heavy deforestation
on steep slopes (r, = 0.23, ¢. = 0.31) revealed the expected patterns of fish resilience
being greater for higher values of e and lower values of ¢,. As was the case when we
examined changes in fish populations as a function of deforestation rate (Figure 4.2), we
found that more turbid starting conditions (low e, high ¢,) affected fish at higher trophic
levels less than it did those at lower ones, both in absolute terms and relative to their
populations in more favourable conditions (Figure 4.3). Under the most turbid conditions,
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the herbivorous fish population was about 30 percent of what it was under the least turbid
ones (Figure 4.3a), and for omnivorous fish, this figure was about 25 percent (Figure
4.3b). This contrasts with piscivorous fish (40 percent; see Figure 4.3c) and top predators
(45 percent; see Figure 4.3d). This suggests that under a wide range of potential local
conditions, the initial effects of deforestation-driven sedimentation are to harm fish species
at lower trophic levels. We additionally found that the dependence of fish populations
following deforestation on baseline river sediment concentration g, was sigmoidal, with
large changes in fish population levels around 1 x 1072 mg cm ™ for most functional groups,
and at somewhat greater concentrations for herbivorous fish.

4.5.2 Flexible harvesting strategies can stabilize fish populations
on reefs with heavy sedimentation

Within our simulations, varying which fish were harvested depending on their availability
while keeping the same overall harvesting rate caused very large population increases in
two of the model’s four functional groups (Figure 4.4). Herbivorous fish and top preda-
tors, which had the highest baseline harvesting pressures, had about 60% and 50% higher
populations after 50 years of lowland deforestation when k, = 1 (indicating a harvesting
strategy 50% based on fish availability) compared to the baseline scenario without harvest-
ing flexibility (k, = 0). The populations of omnivorous and piscivorous fish also increased
with k, , although these increases were of a lesser magnitude. Importantly, flexible harvest-
ing also stabilized the populations of herbivorous fish and top predators: for k, = 1, the
populations of these two functional groups were nearly constant after ¢ = 20, at levels sig-
nificantly above their initial values (Figures 4.4a and 4.4d). It also attenuated the decline
of piscivorous fish, which had a population at ¢t = 50 approximately equal to its initial
value in the case where k, = 1, albeit with a decreasing trend (Figure 4.4c). In contrast,
omnivorous fish saw relatively minor benefits from this strategy (Figure 4.4b), due to their
high steady-state population without deforestation and low baseline harvesting rate.

Harvesting flexibility was also determined to provide substantial protection for most fish
functional groups against the heavy sedimentation stress induced by highland deforestation
(Figure 4.5). In the baseline highland deforestation scenario, where the harvesting rates for
each functional group were kept at their observed values, all fish populations at least halved
during our 50-year simulation window (Figure 4.5a). The halving time for herbivorous fish
during highland deforestation could be as low as 10 years, depending on local conditions,
and the populations of ordinarily robust functional groups of piscivorous fish and top
predators typically halved in 30 to 40 years. However, assuming a flexible harvesting
program (with k, = 1) meant that halving did not occur for herbivorous fish or top
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Figure 4.3: Population levels of herbivorous fish (Figure 4.3a), omnivorous fish (Figure
4.3b), piscivorous fish (Figure 4.3c), and top predator fish (Figure 4.3d) after 20 years
of highland logging, showing dependence on baseline sediment levels from erosion ¢, and
off-shelf sediment export rate e. Initial conditions for fish functional groups were taken to
be that functional group’s theoretical maximum population (i.e. 1) in all cases.

predators within 50 years, regardless of local hydrodynamic conditions, and it only occurred
for piscivorous fish when deforestation was especially severe, i.e. 7, Z 0.17 (Figure 4.5b).
For these three functional groups, flexible harvesting mitigated the worst of the damage
caused by highland deforestation, reducing its effects to a magnitude similar to what may
be expected under deforestation on flatter lowland terrain. Omnivorous fish only saw mild
benefits, with flexible harvesting delaying their halving by a few years.
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Figure 4.4: Populations of herbivorous fish (Figure 4.4a), omnivorous fish (Figure 4.4b),
piscivorous fish (Figure 4.4c), and top predator fish (Figure 4.4d) for different values of the
fishing flexibility constant k,. Here, e = 0.5, r, = 0.23, and ¢, = 0.043.

4.5.3 Deforestation harms fisheries yield, and highland defor-
estation can cause it to collapse

We found that if harvesting rates start at their observed baseline values and increase with
population growth, fish populations decline but total fish catch does not necessarily increase
(Figure 4.6). Specifically, we found that increasing the rate v at which demand for fish rises
with population growth usually did not lead to greater numbers of fish harvested (Figures
4.6¢ and 4.6d), due to fish becoming more depleted under the lowland deforestation scenario
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Figure 4.5: Time taken by fish functional groups to halve from their initial population
sizes during highland deforestation, for different values of the forest loss constant r, and
the off-shelf sediment export rate e. Shown are the case where harvesting of all functional
groups occurs at their baseline values (Figure 4.5a), and the case when harvesting partially
depends on functional group availability with k, =1 (Figure 4.5b).

(Figure 4.6a) and being locally extirpated under the highland deforestation scenario (Figure
4.6b). We additionally found that if population growth leads to increased demand for fish,
50 years of highland deforestation would result in fish populations going to zero even if
relatively little forest is removed (Figure 4.6b).

Our results similarly show that if fish harvesting is done according to fixed quotas,
harvesting levels that would be sustainable without deforestation can instead lead to local
fish extirpation when deforestation is severe enough (Figure 4.7). This effect was especially
prominent in highland deforestation scenarios. We found that if the raw number of fish
harvested in the Solomon Islands did not deviate from current levels (i.e. p = 1), which
were evaluated as being sustainable under present conditions, the increases in sedimentation
brought on by highland deforestation would reduce local fish populations to zero by t =
50 under all but the most optimistic scenarios (Figures 4.7b and 4.7d). This occurred
in as few as 25 years when deforestation happened at the same rate as was observed
in Borneo in previous decades (Figure 4.7d). Less extreme effects were observed under
lowland deforestation. Fish population declines were still evident in that scenario, and
local extirpation was still possible for the highest values of r,. However, under lowland
deforestation, maintaining harvesting quotas at 80% of estimated current levels resulted in
reasonably healthy fish populations at ¢ = 50 even under the highest values of r, tested.
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Figure 4.6: Fish populations from all functional groups after 50 years of deforestation
(Figures 4.6a and 4.6b), as well as total fish harvested during that time (Figures 4.6¢
and 4.6d), when demand for fish increases with population growth. (Baseline harvesting
rates are the constants shown in Table 1, i.e. k, = 0.) Figures 4.6a and 4.6¢ show the
case with lowland deforestation, while Figures 4.6b and 4.6d show the case with highland
deforestation.

4.6 Discussion

In this paper, we use a dynamical system ridge-to-reef model of intermediate complexity to
forecast the temporally-dependent effects of sedimentation due to deforestation on different
reef fish functional groups in the Solomon Islands. We show that deforestation-driven
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Figure 4.7: Robustness of reef fish and fisheries to changes caused by deforestation, as-
suming constant fishing quotas (specified by p, on the vertical axis). Figures 4.7a (lowland
deforestation scenario) and 4.7b (highland deforestation scenario) show the amount of fish
in all functional groups combined at ¢ = 50, with diagonal hashing indicating that all fish
populations were zero at this time. Figures 4.7c¢ (lowland) and 4.7d (highland) show the
time at which herbivorous fish became locally extinct in these cases, with diagonal hashing
indicating that they did not go extinct.

sedimentation causes declines first in coral, then in herbivorous and omnivorous fish, and
finally in fish at higher trophic levels, and we project herbivorous fish to be the hardest-hit
fish functional group in the short-term but the most resilient one in the long-term. We
evaluate the risk related to deforestation for four different functional groups (herbivorous,
omnivorous, piscivorous, and top predator fish) based on local river turbidity and off-shelf
sediment export rate, and find that the effects of deforestation can be magnified up to four
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times in naturally turbid waters. We show that a fishing strategy featuring a constant total
harvesting rate but flexible harvesting of different functional groups based on availability
leads to substantially higher populations of herbivorous fish and top predators, with greater
stability over time for these populations even with heavy sedimentation brought on by
deforestation. We show that if population increases cause both greater deforestation and
greater demand for fish, these increases in demand may not translate into greater fish catch
due to local fish depletion. We show that harvesting at levels that would be sustainable
under current conditions would instead lead to fish population collapses under highland
deforestation, but that small to medium-scale lowland logging operations can be carried
out without jeopardizing fish survival.

4.6.1 Temporal effects of deforestation on community composi-
tion, including trophic cascades

Our results show that after 20 years of deforestation and its associated sedimentation,
herbivorous fish were more abundant in areas with less off-shelf sediment export (Figure
4.2). We also found that herbivorous fish populations showed a pronounced bump during
the first 5-10 years of our deforestation simulations, peaking above their estimated pristine
levels (Figure 4.4a). Both of these results point to coral being less resilient to high sediment
levels than herbivorous fish, leading to coral being put under pressure first. This result
has parallels in previous field work done in the Solomon Islands, in which coral appeared
to decline in health over a 5-year period following the onset of heavy sedimentation (at or
before the beginning of the study), but effects on fish abundance were less evident [102].
Similarly, field observations at a site in Hawaii in 1976 and 1996 that had been under
intense sedimentation pressure due to offshore development showed a catastrophic decline
in coral cover, but a mixture of decreasing and stable populations in reef fish [230]. These
results support our findings that twenty years of heavy sedimentation is enough time for
some fish taxa to collapse, depending on fishing pressure, but that coral would be more
immediately susceptible to sedimentation’s effects.

In our model, when large volumes of sediment are exported onto a reef and retained
there, most coral dies and is replaced with algal turf, providing herbivorous fish with a
short-term increase in food availability. However, this turf is typically LSAT, which is as-
sociated with low rates of herbivory. This means that under these conditions, herbivorous
fish populations are significantly lower then their theoretical maxima, even in the most
extreme cases when their predators are at or near extinction and the seabed is dominated
by algal turf (Figure 4.2d). Another consequence of this is that after 50 years of deforesta-
tion and sediment buildup, the herbivorous fish population in the case with low off-shelf
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sediment export (e = 0.1) is essentially the same as the other cases, as herbivorous fish
cannot take advantage of the LSAT that predominates in that scenario (Figures 4.2b and
4.2d).

Piscivorous fish and top predators were in many cases quite resistant to the effects
of deforestation, although this was complicated by the possibility of bottom-up trophic
cascades. Whenever herbivorous fish populations crashed to very low levels, this was
followed by similar declines in piscivorous fish and top predators about 20 years later, but
this effect was not seen when herbivorous fish populations were only reduced by moderate
amounts (Figures 4.2 and 4.5a). Additionally, in simulated areas where almost all sediment
discharged from rivers is locally retained, we observed large declines in piscivorous fish and
top predator populations approximately 15 years following declines in omnivorous fish, even
though herbivorous fish were able to subsist on the massive amounts of low-quality algal
turf (Figure 4.5a). This reduced the predation pressure on herbivorous fish, attenuating
their decline even further due to this trophic feedback. It is known that herbivorous reef
fish are sensitive to bottom-up control [211], whereas our results show that this sensitivity
may be lessened for fish at higher trophic levels.

We can therefore identify three different regimes of fish population decline due to
deforestation-driven sedimentation, with population reductions in the functional groups
that we modelled happening at different speeds and in different orders in each regime. In
areas with naturally high turbidity, we expect omnivorous fish to collapse first, followed
by species at higher trophic levels, with herbivorous fish showing milder declines. When
deforestation either happens on highland terrain or at a fast rate, we expect herbivorous
fish to be the first to drop to critical levels, followed by omnivorous fish 10 to 20 years
later, then fish at higher trophic levels. When deforestation happens relatively slowly and
on flat lowland terrain, we expect herbivorous fish to exhibit moderate declines, followed
by omnivorous fish soon after, but piscivorous fish and top predators should maintain rel-
atively high abundance. Under these conditions, if deforestation is contained in relatively
small areas (e.g. r, ~ 0.05, about one fourth of the deforestation rate seen in Borneo in
the past few decades) and local waters are not naturally turbid, losses in fish abundance
should be minimal.

Our findings on the resistance to deforestation-driven sedimentation shown by fish at
high trophic levels, as compared with herbivorous and omnivorous fish (Figures 4.2 and
4.3), are in concordance with a recent study on reefs in Western Australia by Moustaka et
al. [178]. This study showed that abundances of herbivorous scrapers and planktivorous
omnivores had significant negative correlations with water turbidity, but generalist carni-
vores were substantially less affected by it. Our model provides a mechanistic framework
for explaining these results, and can be used for testing their robustness in other locations
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due to the comprehensiveness of FishBase trophic, harvesting, and resilience data [35].

4.6.2 Interactions between deforestation and overfishing, and im-
pact of flexible harvesting on sedimented reefs

Our simulations with fishing pressure on different reef fish functional groups defined both in
terms of variable rates increasing with human population (Figure 4.6) and constant quota
levels (Figure 4.7) show how interaction effects between overfishing and deforestation-driven
sedimentation on reef fish abundance can change given local conditions. It has previously
been experimentally shown that when nutrient levels are low, overfishing (simulated with
herbivore exclusion cages) and sedimentation can have nonlinear masking effects on algal
turf length, a proxy for turf quality due to its association with LSAT and SPAT, but
for high nutrient levels this interaction becomes linear [$5]. We similarly considered how
varying levels of overfishing and deforestation (an upstream cause of sedimentation) can
alter measures related to fish such as long-term population sizes, time to local extinction,
and total catch over 50 years. For lowland deforestation, the interaction effects with fishing
pressure were close to being linear (Figures 4.6a, 4.7a, and 4.7c), although nonlinearities
were seen in the combined effects of lowland deforestation and growth in fish demand on
fisheries yield (Figure 4.6¢). However, exposure to both highland deforestation and high
fishing rates led to compounding effects on fish local extinction risk (Figures 4.6b, 4.7b,
and 4.7d). This shows the potential for “ecological surprises” under such scenarios, where
small increases in rates of deforestation or fish harvesting could have outsize impacts on
the ability of reef fish to persist.

We found flexible harvesting strategies to work very well in stabilizing fish populations,
particularly those of herbivorous fish and top predators, both of which currently have
high demand in the Solomon Islands. These strategies allowed both of these functional
groups to persist at reasonable levels even in the face of severe sedimentation pressure
caused by highland deforestation (Figure 4.5b). Flexible harvesting strategies such as
the ones we recommend can be implemented in a variety of ways. For instance, reef
fisheries target different species by using different gear, such as beach seines, spearguns,
fish traps, nets, and hand lines [1 14], although some overlaps do exist. Fishing restrictions
based on gear can therefore be used to redistribute, rather than reduce, a fishery’s efforts
[115], ideal for carrying out a strategy that keeps total fishing rate constant but varies
which fish are targeted. Fishers have been more receptive to gear restrictions compared
to the establishment of no-take areas [163], which is important as presenting management
strategies acceptable to local fishers is far from trivial [199]. Such restrictions can also be
dynamically updated based on field observations of which species need greater protection,
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which would go a long way towards reducing risk from deforestation (see Figures 4.4 and

4.5).

The preferences of fishers have been previously noted to change as conditions on a reef
do. The results of Rassweiler et al. suggest that the taxa preferred by fishers operating
are different on healthy reefs and on degraded, macroalgae-dominated reefs, and imply
that shifts towards macroalgae dominance could be accompanied by greater harvesting of
rabbitfish [202]. Fishers in the Solomon Islands have also successfully responded in the past
to the evolution of conditions in local fishing areas, by a combination of altering which gear
and methods they used, which species they targeted, and which locations they visited [9].
Given this, it is likely that the implementation of flexible harvesting practices in response
to greater sedimentation on reefs can be informed by existing local knowledge of which
species to target under turbid conditions.
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Chapter 5

Conclusion

5.1 Summary of findings

Our work in this thesis used three different mathematical models of coral reefs to inves-
tigate the impact of reef stressors over multiple spatial scales, and evaluate conservation
prospects both now and in the future. This spatial focus was previously rare in both the
mathematical and field literature on coral reefs, and hence explicitly considering spatial
dynamics led to valuable insights for reef conservation. For instance, we found that coral
populations are maximized when long, contiguous stretches of coastline are set aside as
marine protected areas (MPAs), whereas herbivorous fish did better when MPAs were
smaller and dispersed throughout unprotected areas (Figure 2.4). Ecologists have debated
whether having large MPAs or smaller but interconnected MPAs results in optimal conser-
vation outcomes [$1]; we show here that the answer to that question can be different for
two taxa that inhabit the same places and may be considered jointly in conservation ef-
forts. We also found that managing crown-of-thorns starfish (CoTS) outbreaks with spatial
dynamics in mind yields higher regional-level coral cover than if management of individual
patches is done in a vacuum, consistent with past studies that have shown strictly local-
scale CoTS management to have little effectiveness in preventing regional-scale outbreaks
[198]. In reef areas with slow currents, or if only small areas of coastline can be managed,
removing CoTS from areas where they have the highest likelihood of dispersing into other
areas with high coral cover outperforms purely local strategies (Figure 3.6). Additionally,
if resources exist for a wider area to be managed during a CoTS outbreak, removing CoTS
from parts of a reef in which coral is most likely to recover becomes the better strategy.
This is because under these conditions, CoTS in an area under management would be
more likely to disperse into another area that is also being actively managed, so focusing
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on preventing CoTS spread becomes less of an issue. Hence, the consideration of which
strategy to use for CoTS removal still depends on spatial factors, even if the particular
strategy that is eventually applied is a local one. Furthermore, our work on the effects of
deforestation on reef fish shows that ecological processes that occur far away from reefs,; in
a completely different biome, can still nonetheless impact reef species greatly. An example
of this is the difference in severity between lowland and highland deforestation on reef fish
populations: when substantial deforestation pressure is present, persistence or extirpation
of reef fish could depend on the topography of local river catchments (see [67] for another
example of terrestrial topography being considered as a driver of coral reef health). These
results highlight how interconnected different areas of a coral reef are, as well as how
interconnected reefs as a whole are with the ecosystems that surround them.

One major theme present throughout this thesis is the fact that outcomes beneficial
for both conservation and economic growth can be achieved. For instance, we found that
transitions from a fishing-based economy to a tourism-based one in certain subsections of a
reef can result in recovery first of herbivorous fish and subsequently of coral throughout the
entire reef (Figure 2.7). Similarly, we found that temporary subsidies to reef-based tourism
lasting a few years could, via feedback loops in our model, lead to substantial boosts or even
long-term stability for herbivorous fish and coral populations (Figure 2.8). These results,
coupled with our finding of a strong spillover effect for herbivorous fish (Figure 2.6), mean
that reef fisheries in communities nearby an area undergoing an economic shift to tourism
would substantially benefit from this shift as well. Hence, our results show that healthy
reefs and profitable fishing and tourism industries can all coexist with each other, and that
growing fish and coral populations can be accompanied by a growing economy. It has been
shown that under certain conditions, fishing and tourism can coexist as economic strategies
on reefs [32], as well as that a balance between those two economic strategies (roughly 50
percent preference for each) generates the most profit overall [268]. We provide evidence
that such an arrangement would also ensure a reasonably healthy reef, with sustainable
populations of both coral and reef fish. We additionally found that flexibility in harvesting
different functional groups of reef fish, while maintaining the same overall fishing rates,
can facilitate high and relatively stable populations of several fish functional groups in the
Solomon Islands without sacrificing fisheries yield (Figure 4.4). Similarly, we found that
if logging operations are restricted to lowland areas and the total amount of land cleared
in these operations is not too high, reef fish can persist at levels close to those seen in
pristine ecosystems (Figure 4.2). As with fishing and tourism, this means that the logging
industry can coexist with a relatively healthy reef, although the margin for error in this
case is comparatively smaller. Previous work has shown that striking a balance between
logging and fishery output in another sensitive ecosystem (i.e. mangroves) is possible
[98], and that forestry best practices can lessen the damage to reef fish stocks caused by
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deforestation so long as local forests are still relatively intact [263]. Our work builds on this
by demonstrating that if both forests and reef fisheries are managed effectively, development
of both industries can be achieved while maintaining reasonably abundant fish populations.
Since incompatibilities are common when considering the needs of many different economic
and ecological stakeholders [12, 259], discovering paths to mutually beneficial outcomes (as
was done in this thesis) is vital for balancing environmental protection with future economic
development.

In a world that is constantly changing, the most effective conservation strategies will
be ones that are flexible [71, 62]. We have shown this in our work, by highlighting the
effectiveness of flexible methods of coral and reef fish conservation in the face of three
very different problems faced by reefs. For instance, if overfishing has led to state shifts
to macroalgae dominance on a large, contiguous reef area, but adjacent areas have been
protected effectively and thus have healthy coral (see Figure 2.5), an ecosystem manager
could come to the conclusion that establishing MPAs is the only way to preserve coral
(see e.g. [19]). However, we present an alternative in the form of subsidies to tourism,
which need not last for longer than a few years to set fish and coral recovery in motion
(Figure 2.8); this strategy and MPA establishment can serve as complementary approaches
within a manager’s toolbox. In Barbados, policy planning areas for developing a sustain-
able tourism industry and increasing resilience to climate change overlap with each other
[183], demonstrating a real-world example of how promoting tourism in reefside areas can
assist with conservation. Additionally, our results show that reef fish, especially those
that are herbivorous or occupy the upper reaches of the local food web, can become much
more resilient to the sedimentation caused by deforestation if reef fisheries follow flexible
harvesting guidelines (Figures 4.4 and 4.5). Although flexible harvesting is not a conser-
vation strategy per se, our results dealing with it show how using an adaptable method
can produce beneficial outcomes in domains other than the one that it is used for. Indeed,
introducing flexibility in reef fishers’ behaviour has been previously cited as a way to en-
hance reef resilience (within the context of ocean acidification), with funding to assist reef
fishers in obtaining employment in ecotourism being explicitly mentioned [116]. Similarly,
networks of both static and dynamic MPAs have recently been postulated as a way to
enhance reef conservation under changing environmental conditions: some areas would be
permanently set aside as MPAs, while the locations of other MPAs would be periodically
adjusted based on local needs [62]. This strategy of temporal flexibility in MPA location
could directly address the issues caused by habitat fragmentation that were brought up
in this thesis. Additionally, we have demonstrated that each of four different strategies
for removing CoTS from a reef being degraded by them can be optimal, depending on
local and regional conservation priorities. As mentioned above, whether removing CoTS
from areas based on their ability to spread or coral’s ability to recover is the best strategy
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depends on the amount of resources available for management (Figure 3.6). However, if
authorities want to “play it safe” and ensure CoTS do not reach a critical mass on any
one part of a reef, removing CoTS from the areas where they have the highest density is
optimal (Figure 3.5), and using an average of these three strategies can also lead to appre-
ciable gains in coral cover if a more holistic approach is desired (Figure 3.6). As neglecting
CoTS management could lead to outbreaks, and hence coral devastation, over very large
spatial scales (see e.g. [251, 107]), we have therefore demonstrated that flexible ecosystem
management can make a huge difference in keeping coral reefs alive.

In a similar vein, we found that the interactions between several different coral reef
stressors can change drastically over time, and we project that different stressors will in-
crease and decrease in importance as areas adjacent to reefs develop and human influence
on reefs becomes stronger. For instance, we predict that reefs under threat by CoTS out-
breaks that are fairly pristine will be most affected by incremental gains in nutrient loading,
whereas reefs adjacent to more heavily-populated areas will instead be more affected by
incremental gains in fishing pressure (Figures 3.3 and 3.4). This meant that as fish harvest-
ing rates increased in our simulations, the beneficiary of concurrent increases in nutrient
loading rates changed from being herbivorous fish (that eat macroalgae) to the macroalgae
themselves. We also found significant spatial differences in how reef stressors interact with
each other. Specifically, on reefs with a relatively low burden of sedimentation, the damage
to reef fish abundance caused by deforestation and that caused by overfishing were addi-
tive in nature, but on reefs adjacent to a watershed experiencing highland deforestation,
the effects of deforestation-driven sedimentation and overfishing instead compounded on
each other nonlinearly (Figures 4.6 and 4.7). Our results here are in agreement with the
broad observations that complex, nonlinear interactions are common on reefs [85] and in
ecological systems more generally [(4], and reinforce our message on the importance of
flexibility and adaptability in conservation measures. They also indicate that anticipating
which stressors will impact reefs in the future, and at which magnitudes, is key for ensur-
ing optimal conservation outcomes, stressing the importance of long-range mathematical
modelling to find potential interactions that would be difficult to uncover by other means.

5.2 Future work

The work that makes up this thesis includes significant insights into how multiple stressors
of coral reefs interact with each other, both now and in the future. Specifically, we covered
how coral responds to pressure from overfishing, nutrient loading, CoTS outbreaks, and
sedimentation in different combinations. These and other stressors such as ocean acidifi-
cation [193, 131] and ocean warming [18, 193] will no doubt continue to exert influence on
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coral reefs, and nonlinear (synergistic or antagonistic) interactions are common in marine
systems [61, 64]. Therefore, studies on multi-stressor interaction are highly important for
determining conservation priorities and establishing expectations for likely and worst-case
scenarios. Despite this, studies that examine the interaction effects of four or more reef
stressors are virtually nonexistent in the literature [74]. This can be attributed to the chal-
lenges in disentangling these effects when a large number of them are present, as well as the
difficulty in setting up conditions to test these effects in the field for certain stressors (such
as CoTS outbreaks or severe storms). However, these concerns apply less to mathematical
coral reef models, and hence modelling can provide significant research contributions in
determining how many different reef stressors interact with each other. Future work will
fill this knowledge gap by using reef models to predict the interaction effects, both pairwise
and in aggregate, that can be expected on coral reefs under threat from many sources.

In addition to the Solomon Islands, deforestation has been cited as a concern in other
areas with offshore coral reefs, for example Vanuatu [50] and Madagascar [150]. In many
such locations (especially volcanic high islands), future deforestation could be on elevated
or steep terrain and thus result in large-scale sediment production. However, the fish
community composition is often very different from island group to island group. This
means that there also exists significant spatial variation in the growth and harvesting rates
of fish at different trophic levels when viewed in the aggregate [38]. Similarly, we also
found that different outcomes in the timing and order of the declines of fish functional
groups were possible depending on local conditions (Figures 4.2 and 4.5). Because of these
factors, our future work will include an island-by-island (and, for large islands, watershed-
by-watershed) evaluation of which fish functional groups are the most vulnerable to the
sedimentation caused by deforestation, as well as how to best protect them while main-
taining adequate fisheries yield.

In our work on controlling CoTS outbreaks, we determined the best strategies for
minimizing damage done to coral during potential outbreaks in Jeddah, Saudi Arabia and
in Cebu City, Philippines, two cities with offshore coral that are within the existing range
of CoTS. Since CoTS is a fast-spreading organism, and has established itself over a very
wide range of locations in the Indo-Pacific region [107, |, it would be able to devastate
coral in a very large area if it were to further expand into areas where it is not native
(e.g. the Caribbean). Therefore, in the future, we will use available local data to model
the beginning of CoTS outbreaks on reefs outside the Indo-Pacific, and determine how
much control would be needed to prevent CoTS from successfully invading these areas.
We will similarly identify which local areas a hypothetical CoTS invasion would do the
most damage in. Furthermore, the current range of CoTS includes reef areas that are very
heterogeneous in terms of their environmental conditions; points of variation include ocean
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current strength, nutrient runoff, future population growth, current coral cover, and fishing
pressure. In order to provide comprehensive management recommendations for CoTS
outbreaks throughout the Indo-Pacific, we will simulate such outbreaks and management
strategies thereof in all possible areas for which a CoTS outbreak has been recorded in
the literature. This will provide conservation managers valuable tools to protect coral in
locations where CoTS management programs have not yet been established.

Along with increasing the total amount of nutrients exported into reef ecosystems,
human population increases can also change the relative proportions in which common
nutrients such as nitrogen and phosphorus are available [36]. Our studies on increases
in nutrient loading looked specifically at nitrogen, since pristine reefs are commonly N-
limited. We found that as nitrogen input onto reefs increased, further incremental gains
in nitrogen input resulted in slower changes in system dynamics (Figures 2.2 and 3.4),
corresponding to a shift to P-limitation. Changes in stoichiometry in aquatic ecosystems
are capable of causing phenomena such as algal blooms [1 10] that happen over very short
timescales, as well as affecting long-term evolutionary trajectories [277], and the ability of
nutrient loading in general to cause regime shifts on coral reefs is well-known [17]. Hence,
anthropogenic development, and the nutrient increases and stoichiometric changes that
accompany it, could lead to abrupt tipping of coral reefs into algae-dominant alternative
stable states. However, which areas are most at risk will depend on factors such as local
currents and existing relative nutrient abundances. We can therefore use hydrodynamic
modelling, population projections, and available local data to determine the sensitivity of
different local reef areas to regime shifts based on altered stoichiometry.

As this thesis includes what is (to our knowledge) the first work that quantifies when
and where coral can be expected to recover after economic transitions from a fishing-based
economy to a tourism-based one, there exists a significant opening for future research
on how economic factors can affect coral reef health. For instance, when evaluating the
different responses to habitat fragmentation by coral and herbivorous fish (Figures 2.4,
2.5, and 2.6), we took local economic preferences for tourism and fishing to be equal
across the system. However, it is possible that spatial variation in these preferences could
itself cause habitat fragmentation. Therefore, in the future, we will determine whether
reef degradation due to overfishing is more likely the result of high local fishing intensity
(measured using harvesting rates) or local economic preferences starkly favouring fishing,
by simulating fragmentation caused by each of those factors. This understanding of the
root cause of overfishing-driven reef damage will allow policymakers to devise optimal
strategies to preserve reef habitats without unnecessarily jeopardizing local reef fisheries.
Additionally, while our results show the strength of the spillover effect for herbivorous
reef fish, we did not consider fish in other functional groups in our study. Quantifying
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the spillover effect for many different functional groups, and by extension determining
the best possible MPA placement to optimize regional-scale fish populations across many
different species of commercial and ecological interest, would be a boon to fisheries and
conservationists alike.

5.3 Concluding comments

This thesis has used spatially explicit mathematical models of intermediate complexity
to address three different problems that coral reefs face now and will continue to face,
with greater intensity, going forward. This yielded results which linked robust theory with
concrete conservation recommendations, which frameworks without a spatial component
would miss. In recent years, the study of coral reefs has increasingly utilized mathematical
analysis to produce novel insights and testable predictions, many of which have encourag-
ingly been verified in the field. The work contained in this thesis greatly adds to this, by
tackling problems that would be difficult to solve using field studies alone due to their spa-
tial complexity. Future work will continue with this paradigm, using mathematical tools
to promote healthy reefs and reefside communities in order to ensure a sustainable future
for such an iconic part of Earth’s oceans.
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Crown-of-thorns starfish model
parametrization and explanation of
management strategies
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A.1 Parametrization of local processes in the model

The lifespan of a crown-of-thorns starfish has been observed as being between 5 and 8
years [154, ], while reef-forming corals typically live for approximately ten times that
length [173], so we took ¢ to be 0.1. (Macroalgae lifespan is on the same order as that
of corals [173], so we did not use a separate timescale for macroalgae despite their high
growth rates.) Coral mortality has been estimated at a rate of 44 percent per year [28],
with 30 percent of that coming from predation [35], so we took lg to be 0.3 and m¢ to be
0.14. We took mg to be the low rate of 0.1, as field studies on juvenile CoTS have shown
that their mortality decreases sharply after the first few months of life [135], suggesting
that adult CoTS mortality is also low (approximately in line with coral mortality). We
took a baseline value of 30 for kg under the assumptions that kg would be on the same
order of magnitude as ¢ and that the resulting curve would resemble that found in [160]
for nutrient concentrations characteristic of our study areas (the Red Sea [200] and the
Philippines [220]; see Appendix B). We also tested the cases where kg = 10 and kg = 3,
representing cases where CoTS larval survival is less dependent on nutrient density.

Parameters not related to CoTS were similarly obtained using field data. The growth
rate of herbivorous fish ry was taken to be 0.7, and the half-saturation constant for her-
bivorous fish growth ky was taken to be 0.5. kg was chosen to be the midpoint of the
theoretical range of algal cover, i.e. [0, 1]; 7y was chosen so that at maximum algal cover,
the intrinsic growth rate of herbivorous fish would match that of Blackwood et al. [23],
which ultimately comes from data on fish doubling times curated by FishBase [33]. This
step was necessary because Blackwood et al. took the carrying capacity of herbivorous fish
(rather than their growth rate) to depend on the amount of algae present, and our model is
therefore mechanistically different. Macroalgae are known to have high growth rates: rates

of increase of 10x and upwards have been observed in the field [211], and a growth rate
as high as 15x has been deemed biologically plausible [228]. Therefore, we used a value of
12 for rj;. We took kj; to be the median value observed from two studies that modelled
macroalgae nitrogen uptake kinetics using experimental data [194, |, which was 80 kmol
N after converting units. Natural mortality rates for macroalgae and herbivorous fish were
taken to be my = my; = 0.1, corresponding to the values in [228]. We took v = 1 under
the assumption that all detritus would decay in a year (see e.g. [70, 54]), and f = 20

kmol N under the assumption that the amount of nutrients entering the water above a reef
from detritus decomposition would be an order of magnitude less than the amount gained
from terrestrial runoff [256], which was estimated at a~ 200 kmol N over a 1 km? offshore
area with moderately high population density. We took the nitrogen flushing rate e to be
the relatively high value of 0.6 (see e.g. [I138, | for examples of high rates of nutrient
exchange between waters above reefs and those further offshore); lateral movement of nu-
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trients along the coastline by currents is covered by probability distributions 6y, for each

patch 7 (see below). All local parameters are further described in Tables A.1 and A.2.

’ Param \ Value \ Units \ Description \ Reference ‘
rH 0.7 yrt Herbivorous fish maximum intrinsic [88, 28]
growth rate
ki 0.5 unitless Half-saturation constant for herbivo- [88, 28]
rous fish growth
my 0.1 yrt Mortality rate for herbivorous fish from [228]
causes other than harvesting
hg | 0-04 yr! Fish harvesting rate , 184,
re 5 yrt Coral intrinsic growth rate [216]
me 0.14 yrt Coral natural mortality rate [35, 28]
M 12 yr! Macroalgae maximum intrinsic growth [211]
rate
knr 80 kmol N Half-saturation constant for growth of | [194, 159]
macroalgae
My 0.1 yrot Macroalgae natural mortality rate [228]
v 1 yr1 Detritus decomposition rate [76, 54]
q 0 - 245 | kmol N yr=! | Nitrogen loading rate [254, 225]
e 0.6 yr! Nitrogen flushing rate [188, 153]
f 20 kmol N Scaling constant for conversion of de- [256]
tritus into nutrients

Table A.1: Parameters associated with local interactions not involving crown-of-thorns
starfish in the model in Chapter 3

A.2 Parametrization of dispersal distributions

Most macroalgae propagules are retained locally, with pelagic duration on the order of 0.1
day [110] and average dispersal distances being in the tens or hundreds of meters [190, ].
Therefore, we took kprpar = 0.1, and oy = 0.75 to represent a narrow distribution. Coral
pelagic larval duration is typically less than two weeks, with much variation in observations
[204, , O7], so we took kpppc = 7 and o = 1.5. 0p,, Op, and Oy, for each patch
1 represented passive dispersal kernels for herbivorous fish, detritus and nutrients. The
means of fp, and Oy, were taken to be i + keykse as detritus and nutrients were assumed
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] Param \ Value \ Units \ Description \ Reference
ls 0.3 yr~ b | Rate at which CoTS consumes coral [35]
rg 4 unitless | Scalar for converting eaten coral into Fitted
CoTS larvae
ks 3-30-30 | kmol N | Half-saturation constant for CoTS [160]
larval survival
ms 0.1 yr=t | CoTS natural mortality rate [135]
€ 0.1 unitless | Timescale separation constant , ,
kprp.c 7 unitless | Offset of - means, based on coral , ,
pelagic larval duration
kprp,m 0.1 unitless | Offset of 63, means, based on [190, ]
macroalgae pelagic larval duration
kpLp.s 14 unitless | Offset of 6 means, based on CoTS , ,
pelagic larval duration
kcurr 0-2 unitless | Offset of most dispersal kernel , , B5,
means, based on current strength
ke 0.5 unitless | Scaling constant used in replicating Fitted
conditions on the Great Barrier Reef

Table A.2: Parameters associated with crown-of-thorns starfish, as well as organismal
dispersal, in the model in Chapter 3
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to be carried by the currents, while the mean of 0y, was taken to be 7 as herbivorous fish
were assumed to swim freely. The standard deviation of the three passive dispersal kernels
was assumed to be 1 in all cases. (For herbivorous fish, this is in line with telemetry
observations suggesting adult dispersal capabilities of up to 1.6 km of coastline, with rare
occurrences of dispersal beyond that [169].) We varied key; depending on the area being
simulated, taking keu, = 2 for fast currents (e.g. the east coast of the Philippines [270, 52]),
Eewrr = 1 for moderate currents (e.g. the Great Barrier Reef [203] and most areas of the
Philippines [52]), and kcyr = 0.5 for slow currents (e.g. the Red Sea [50]). We fit k.
following the incorporation of CoTS into the model (see below).

CoTS pelagic larval duration has been observed in the range of 10 to 40 days [260],
with mean settlement time reported as two weeks [192] or 17 to 22 days [197]. We took
kpip,s = 14, and og = 1.5 for a wide distribution. Finally, taking values of r¢ = 4 and
k. = 0.5 yielded results that accurately described many of the phenomena observed for
Great Barrier Reef CoTS outbreaks. This included an invasion front that appeared to
progress at a rate of 80-90 km per year [203, |, a time lag of 2 years between initial
larval settlement and CoTS population sizes reaching outbreak levels [192 ], and a
second outbreak approximately 15 years after the first one [190], as well as an annual
reproduction cycle for CoTS [31]; see Figure B.la. The value chosen for rg also reduces
the stiffness of the system. When evaluated on the timescale as the rest of the model, the
maximal growth rate for CoTS is rg - lg - % = 12. This is equal to our maximal growth
rate for macroalgae, and less than the maximal growth rate for macroalgae considered in
[228], in which a model similar to ours was successfully integrated using a nonstiff solver.
Information on the distributions used in the model is additionally contained in Table A.3.

A.3 Choice of study cities

In order to simulate the effects of future increases of fishing pressure and nutrient loading
rate on crown-of-thorns starfish (CoTS) outbreaks, we chose two cities for case studies.
These were Cebu City in the Philippines, and Jeddah in Saudi Arabia. Both Cebu City

[119, 219] and Jeddah [112, 227] are adjacent to large coral reefs, and CoTS outbreaks
have been recently observed in both the Philippines [31, 65] and the Red Sea [273, 101]
where the cities are located. The two cities are both large and expected to experience
substantial further growth [217], providing an appropriate opportunity to test how urban

growth will affect CoTS outbreaks. Additionally, the marine areas adjacent to Cebu City
and Jeddah have very different characteristics, allowing us to evaluate the robustness of
our predictions. The Red Sea is oligotrophic [71], due to low population density in the
deserts surrounding it, as well as slow currents [55] that limit exchange of water with the
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’ Distribution \ Mean \ Std. Dev. \ Description ‘

Ou, i 1 Passive dispersal kernel for herbivorous
fish in patch @

¢, t + kpLp,ckeurrFsc 1.5 Dispersal kernel for coral larvae produced
in patch i (including population growth
function)

O, t + kpLp arkeurrFsc 0.75 Dispersal kernel for macroalgae propag-

ules produced in patch i (including pop-
ulation growth function)

Op, 1+ Ekeurkse 1 Passive dispersal kernel for detritus in
patch ¢

On, 1+ Ekeurkse 1 Passive dispersal kernel for nutrients in
patch ¢

Op, i 1 Distribution governing how much time
fishing boats based in patch ¢ spend in
each patch in the system

O, © + kprp skecurrKsc 1.5 Dispersal kernel for CoTS larvae pro-

duced in patch i (including population
growth function)

Table A.3: Gaussian distributions used for dispersal of model components in Chapter 3
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neighbouring Indian Ocean. In contrast, the interior waters of the Philippines (such as
those off the coast of Cebu) have relatively faster currents, of about the same strength as
those on the Great Barrier Reef [52] (which our model was initially fit for). Rural areas
of the Philippines also have higher population density than the areas surrounding the Red
Sea [195, 247]; aside from the city of Mecca, much of the land in the vicinity of Jeddah is
sparsely populated desert. This indicates greater amounts of nutrient input in the areas
surrounding Cebu, as compared to Jeddah [225].

A.4 Spatial representation of the two study cities

For each of our two study cities, we used a 100-patch model to represent 100 km of coastline
centred on the city in question. Each of the 100 patches was designated as either urban
or non-urban: the number of urban patches was chosen to be equal to the length of the
coastline (in km) that was urbanized according to the baseline scenarios in prior studies
[148, 53]. In Jeddah, the simulated urbanized area was contiguous, while in Cebu City,
the simulations for 2021 broke up the urbanized area into two components separated by
outlying areas in Mactan and Cordova that were not considered urban.

Because of the fact that the coastline in Cebu City was broken up into two urbanized
areas that were asymmetrically divided by a non-urbanized area, it was necessary to specify
the current direction for use in the dispersal kernels 6. This was done in order to simulate
CoTS larvae (and other model components) dispersing in the direction of the current rather
than against it. Since currents offshore of Cebu City flow from southwest to northeast [1],
we assumed that CoTS larvae entering the Cebu City area would arrive from the southwest.
(In Jeddah, this specification was irrelevant, as the urban area formed a contiguous stretch
of coastline and was therefore symmetric.)

We simulated dynamics on reefs adjacent to our two cities over two different 30-year
time frames: from 2020 to 2050 and from 2050 to 2080. When simulating CoTS outbreaks
starting in 2050, we altered the number of urban patches to match the expansion of the two
cities’ urban footprints, using projections [1418, 53] based on the Intergovernmental Panel
on Climate Change’s Shared Socioeconomic Pathways and Special Report on Emissions
Scenarios. Likewise, when simulating continuous growth of our two study cities until 2050,
we assumed that ¢ would increase (see below) in all patches that were considered urban in
2050, to represent the urbanization process. Cebu City was predicted to be a contiguous
urban area in 2050, with the non-urban area in Mactan and Cordova being fully urbanized.
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A.5 Initial conditions for case study simulations

For both cities, the fishing rate hy was assumed to be 0.2 in 2020. This value is significantly
above rates associated with small-scale subsistence fishing [03], but not high enough to
cause the fish population to completely collapse [28, ]. We chose such a value for our
simulations of Jeddah because the abundance of herbivorous fish (the functional group
represented in our model) in the central Red Sea near Jeddah is about a third of the value
recorded on the less-populated Sudanese side of the Red Sea [137], and fishing pressure
there has been recorded as high but mostly sustainable [71]. A recent review of conditions
on Philippine coral reefs found that the marine protected areas closest to Cebu City were
not overfished, while non-protected areas near them were overfished but retained some fish
biomass [179]. Considering these conditions holistically, we decided on an initial fishing
rate of 0.2 for the waters directly adjacent to Cebu City, although we note that this may
be an underestimate.

With regards to nutrient availability, each type of patch (urban and non-urban) that we
simulated in our two cities had values of ¢ based on its population density using a formula
from [225]. This formula considered nutrient loading from basins with unspecified areas,
measured in square kilometers, and was implied to hold for local runoff. Since we used a
spatial resolution of 1 km, we therefore considered nutrient input into an offshore area of
1 km? from an adjacent terrestrial area of the same size. At the start of our simulations,
we took ¢ to be 90 in the urban agglomeration of Cebu City and 40 in the surrounding
non-urban areas, based on population numbers from the 2020 Philippine Census for munic-

ipalities in Metro Cebu and elsewhere in Cebu province [195]. For Jeddah, we used a value
of ¢ = 90 for urban areas based on previously reported population density numbers for the
city [105], and ¢ = 15 in non-urban areas. We kept ¢ constant within the built-up areas of

each city, and assumed that increases in ¢ in these areas would be spatially uniform (see
below), to eliminate potential confounding due to uneven increases in urban density.

In both simulated cities, patches outside the urbanized area started with 50 percent
coral cover and 10 percent macroalgae cover (C(t = 0) = 0.5, M(t = 0) = 0.1), in line
with recent field observations in the Philippines and the northern Red Sea [227]. In patches
offshore from urbanized areas, we took initial values for C' and M to instead be 0.3 and 0.7,
respectively, to represent a shift away from coral dominance due to better conditions for
macroalgae (e.g. higher nutrient input). To simulate the beginning of an outbreak, initial
values for CoTS were taken to be 0.5 in the patch furthest upstream and 0 everywhere else.
Initial herbivorous fish densities were assumed to be 0.5 across the system, representing
relatively healthy levels, and initial levels of nutrients and detritus were assumed to be
their long-term average values when the model reaches its steady state.
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A.6 Simulated fishing rate increases

Increases in hy were assumed to scale with projected increases in population, as this rela-
tionship is well-documented for commercial fishing [232]. Fishing effort in a reef ecosystem
adjacent to Cebu City increased by at minimum 150 percent from 1960 to 2010 [219], while
the municipalities making up Metro Cebu grew by about 350 percent over the same time-
frame. We assumed a similar relationship in Jeddah, and took the rate of increase of hy
to be % times the rate of population increase in both cities. To fit future values of hy, we
used population projections for Jeddah from [13] (with a linear extrapolation from 2040 to
2050 based on the 2030-2040 growth rate), and estimates for urban population growth in
the Philippines from the United Nations [217]. Harvesting rate was increased at the same
rate systemwide, in order to account for the fact that areas where fishing effort is high are
often some distance away from population centres and often change over time [219]. The
value of hy reached at the end of the simulation was additionally used as the value for hy
in our simulations with constant fishing pressure starting in 2050.

A.7 Simulated nutrient loading rate increases

We simulated increases in nutrient loading in two different ways, representing density in-
creases in urban areas and urbanization of previously rural or non-urbanized areas. For
the former, our simulations representing 2050 featured greater values of ¢ in urban patches
based on projected increases in nutrient loading by that year. In Cebu City, this was based
on the median projected increase in the Manila Bay region [220] elsewhere in the Philip-
pines (scaled to account for a start date of 2020 rather than 2010), under the assumption
that growth in Cebu City would be similar. In Jeddah, this was based on projections of
wastewater output until 2040 [13], which were then linearly extrapolated to 2050. This is
because wastewater is a large contributor to the elevated nitrogen and phosphorus levels
found off the coast of Jeddah, in comparison to open waters in the Red Sea [3]. Addition-
ally, we increased ¢ at the same rate in patches that were not considered urban at the start
of our simulations but were projected to be urbanized by 2050 [118, 53]. (This caused ¢ to
be lower in those patches throughout the simulation than ones that were already urbanized,
making this a relatively optimistic scenario.) As with hy, the final value reached by ¢ was
used as its (non-varying) value in our simulations starting in 2050.
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A.8 Criteria for prioritizing patches for CoTS removal

As part of our simulations of local CoTS removal, we devised three mathematical criteria
for CoTS management based on available data, plus a fourth defined as the average of the
first three. These were based on management priorities set out for CoTS on the Great
Barrier Reef. The first management criterion we used was the density of CoTS in each
patch i, relative to the systemwide average:

100

-1
. S| 2 ) S ., S;>0.01
CDCOTS(Z) = (100; J) (Al)
0, S; <0.01

The second criterion that we used was the ability of local coral to recover. We rep-
resented this by the proportion of the seabed covered either by coral or bare rock (i.e.
not macroalgae) compared to the systemwide average, as macroalgae overgrows coral and
inhibits coral larval settlement, but bare rock can be freely colonized by coral. We used
the following formulation for this criterion:

100 -1
4 1— M) |+ 1—M,; , S; >0.01
DPRec(i) = ( ) (100 ;( J)) (A.2)
0, Sl < 0.01

The third criterion that we used was the extent to which local CoTS could cause an
outbreak to spread. For this criterion, we evaluated how dangerous CoTS in each patch ¢
could be to other patches in the system, which we did by taking the sum over all patches
j of the coral cover in that patch (C;) multiplied by the probability that CoTS larvae
originating in patch ¢ would settle in patch j (0s,(j)). We then normalized this quantity
relative to its systemwide average. This resulted in the following formulation:

(I)Spr(i) = (; esi(j)cj) (ﬁ Z Zesk (J)CJ> , 95 >0.01 (A3)

k=1 j=1
0, Sz < 0.01

The averaged criterion was assumed to be an unweighted average of the three specific
criteria, i.e. Pavg(i) = 5 (Poors(i) + Prec(i) + Pepe(4)).

140



Appendix B

Crown-of-thorns starfish model
simulations with static fishing and
nutrient loading rates
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In order to fit model parameters (as detailed in the Methods section of the main
manuscript), we ran the model with parameter values characteristic of parts of the Great
Barrier Reef adjacent to rural areas (Figure B.1a). In these simulations, we took ¢ = 15
based on applying the formula in [225] to population density numbers in central and north-
ern Queensland, and k., = 1 by default. We assumed static values of ¢ and hy, in order
to eliminate any confoundation caused by future changes in conditions and hence best ap-
proximate CoTS population dynamics during the most recent Great Barrier Reef outbreak.
We also performed such simulations for the Red Sea off the coast of Jeddah (Figure B.1b)
and the interior waters of the Philippines, such as those near Cebu City (Figure B.1c).
This was done in order to generate baseline expectations for CoTS population dynamics in
those regions, which could be compared to our future projections there. Additional simu-
lations with static ¢ and hy were performed for the east coast of the Philippines (Figure
B.1d), as an example of an area with strong currents [270] where CoTS larvae would likely
be dispersed into other ocean areas instead of being retained locally.

As part of the baseline expectations we generated for our study cities of Cebu City
and Jeddah, we simulated average coral cover in each patch offshore from those cities over
30-year intervals (2020 to 2050, and 2050 to 2080) with ¢ and hy constant. This allowed
us to compare the resilience of coral to hypothetical outbreaks starting in 2020 and 2050;
maintaining constant values for ¢ and hy was necessary in this case as data projecting
land use, nutrient input, and population growth was unavailable post-2050 on the spatial
scales that we performed our analysis on. The results of these simulations for Cebu City
are shown in Figure B.2a, including one case starting in 2050 where a marine protected
area was set up in parts of Mactan and Cordova Islands and development was restricted
there, and one case in which these conservation strategies were not implemented. The
simulation results for Jeddah can be seen in Figure B.2c. Additionally, to test how robust
our predictions are to potential uncertainty in how dependent CoT'S larvae are on available
phytoplankton (and hence nutrients), we repeated the above simulations with kg taking a
value of 3 (an order of magnitude lower than our baseline value of 30), representing the
hypothesis that CoTS larvae can survive in relatively large quantities regardless of nutrient
levels. The results of these simulations are shown in Figures B.2b and B.2d.
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Figure B.1: Time series showing simulated CoTS population in conditions similar to those
on the Great Barrier Reef, Red Sea, Philippines interior waters, and Philippines east coast.
Simulations were initialized with S; (t = 0) = 0.5 for i = 1 and 0 otherwise, representing the
start of an invasion of CoTS into previously uncolonized areas. Time series for individual
patches are coloured on a scale from blue (close to outbreak starting point) to magenta

(far away from outbreak starting point).
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Figure B.2: Case studies for Cebu City, Philippines and Jeddah, Saudi Arabia, in which

nutrient loading rate ¢ and harvesting rate hy remained constant over time.

Figures

B.2a and B.2b show coral dynamics in Cebu, while figures B.2c and B.2d show dynamics
in Jeddah. Figures B.2a and B.2c show average coral cover during and after a simulated
crown-of-thorns starfish outbreak in 2020 and 2050; figure B.2a (these simulations in Cebu)
includes another case in 2050 where an MPA is established and development is restricted

in some areas of Mactan and Cordova Islands.

Figures B.2b and B.2d show potential

variation in CoTS outbreak severity from dependence of CoTS larval survival on nutrient

availability (kg).
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