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Abstract

Modern convolutional neural network (CNN) architectures, despite their superiority in
solving various problems, are generally too large to be deployed on resource constrained
edge devices. In practice, this limits many real-world applications by requiring them to
off-load computations to cloud-based systems. Such a limitation introduces concerns re-
lated to privacy as well as bandwidth capabilities. The design of efficient models as well
as automated compression methodologies such as quantization, pruning, knowledge distil-
lation and tensor decomposition have been proposed to allow models to operate in such
resource-constrained environments. In particular, tensor decomposition approaches have
gained interest in recent years as they can achieve a wide variety of compression rates while
maintaining efficient memory access patterns. However, they typically cause significant re-
duction in model performance on classification tasks after compression.

To address this challenge, a new method that improves performance of decomposition-
based model compression has been designed and tested on a variety of classification tasks.
Specifically, we compress convolutional layers by generalizing the Kronecker product de-
composition to apply to multidimensional tensors, leading to the Generalized Kronecker
Product Decomposition (GKPD). Our approach yields a plug-and-play module that can
be used as a drop-in replacement for any convolutional layer to simultaneously reduce its
memory usage and number of floating-point-operations. Experimental results for image
classification on CIFAR-10 and ImageNet datasets using ResNet, MobileNetv2 and SeNet
architectures as well as action recognition on HMDB-51 using I3D-ResNet50 substantiate
the effectiveness of our proposed approach. We find that GKPD outperforms state-of-
the-art decomposition methods including Tensor-Train and Tensor-Ring as well as other
relevant compression methods such as pruning and knowledge distillation.

The proposed GKPD method serves as a means of deploying state-of-the-art CNN
models without sacrificing significant accuracy degradation. Furthermore, the capability
of utilizing GKPD as a drop-in replacement for convolutional layers allows its use for CNN
model compression with minimal development time, in contrast to approaches such as
efficient architecture design.
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Chapter 1

Introduction

Convolutional neural networks (CNNs) have achieved state-of-the-art performance on a
wide range of computer vision tasks such as image classification [1, 2, 3], action recognition
[4, 5, 6] and object detection [7, &]. Despite achieving remarkably low generalization
errors, modern CNN architectures are typically over-parameterized, consisting of millions of
parameters. As the size of state-of-the-art CNN architectures continues to grow, deploying
these models on resource constrained edge devices becomes more challenging. Motivated
by studies demonstrating that there is significant redundancy in CNN parameters [9],
model compression techniques such as pruning, quantization, tensor decomposition and
knowledge distillation have emerged to address this problem.

Decomposition methods have gained more attention in recent years as they can achieve
higher compression rates in comparison to other approaches, when compressing DNN pa-
rameters. Namely, Tucker [10], CP [I1], Tensor-Train [12, 13], and Tensor-Ring [14] de-
compositions have been widely studied for DNNs. However, these methods still suffer
significant accuracy loss for computer vision tasks.

Kronecker product decomposition (KPD) is another decomposition method that has
recently shown to be very effective when applied to RNNs [15]. KPD leads to model
compression via replacing a large matrix with two smaller Kronecker factor matrices that
best approximate the original matrix.

In this work, we generalize KPD to tensors, yielding the Generalized Kronecker Product
Decomposition (GKPD), and use it to decompose convolution tensors. GKPD involves find-
ing the summation of Kronecker products between factor tensors that best approximates
the original tensor. We provide a solution to this problem called the Multidimensional
Nearest Kronecker Product Problem. By formulating the convolution operation directly



in terms of the Kronecker factors, we show that we can avoid reconstruction at runtime
and thus obtain a significant reduction in memory footprints and floating-point operations
(FLOPs). Once all convolution tensors in a pre-trained CNN have been replaced by their
compressed counterparts, we retrain the network. If a pretrained network is not available,
we show that we are still able to train our compressed network from a random initialization.

Applying GKPD to an arbitrary tensor leads to multiple possible decompositions, one
for each configuration of Kronecker factors. In Figure 1.1, we plot reconstruction errors
using different configurations, of the tensor in the first layer of a ResNet18 model [1], pre-
trained on ImageNet [16]. As shown in this figure, we find that for any given compression
factor, choosing a decomposition that consists of a larger summation of smaller Kronecker
factors (as opposed to a smaller summation of larger Kronecker factors) leads to a lower
reconstruction error as well as improved model accuracy.

To summarize, the following are the main contributions of this thesis.

e Providing a solution to the multidimensional nearest Kronecker product problem
and providing a solution using SVD, leading to the Generalized Kronecker Product
Decomposition (GKPD).

e Improving the state-of-the art for compression of image classification models on
CIFAR-10 and ImageNet using compressed ResNet [1], MobileNetv2 [17] and SeNet
[18] architectures as well as action recognition on HMDB-51 using I3D-ResNet50 [0].



Original Tensor Reconstructed Tensor Reconstruction Error

) SVD (Tucker)

) GKPD - 1

) GKPD - 8
Figure 1.1: A compression rate of 2x achleved for an arbitrary tensor from the first layer
of ResNet18 using SVD (Tucker) in (a), and the proposed GKPD in (b) and (c). A larger
summation, GKPD-8 achieves a lower reconstruction error in comparison with both a
smaller summation, GKPD-1, as well as SVD (Tucker) decomposition.




Chapter 2

Background

The past few years have seen an increasing trend in the computational burden presented by
DNN models. Thus, inspiring the development of a variety of efficient architecture designs

such as MobileNetv2 [17], ShuffleNet [19] and Xception [20] as well as efficient models
found by means of architecture search such as in EfficientNet [21], MobileNetv3 [22] and
ProxylessNAS [23]. While approaches such as Xception [20] and EfficientNet [21] find

suitable models based on design criteria (such as model size, depth and width), approaches
that find models suitable for particular hardware have also been proposed [24, 23, 25].

On the other hand, there have been a variety of approaches proposed to compress
existent models, including quantization, pruning, knowledge distillation and tensor de-
composition. Below, we provide a summary of some notable methods falling under these
categories.

Quantization methods involve reducing the precision of parameters and activations into
lower-bit representations, such as in [26] which quantizes 32-bit parameters to 8-bit repre-
sentations. Some works have pushed this further by quantizing model parameters to binary
[27, 28, 29, 30] and ternary [31, 32] representations. An important success of quantization
methods is their ability to lead to speedups in DNN training [30]. However, it has been
shown to be challenging to go below half-precision while maintaining a similar level of
performance [33].

Pruning methods can be further categorized into unstructured [34, 26, 35] and structured
[36, 37, 38]. The former has the potential to lead to a large number of pruned parameters
with minimal loss in generalization performance. However, in practice structured methods
are preferred as unstructured methods do not lead to expected model acceleration. This



is due to the irregularity of the imposed sparsity constraints, leading to sparse matrix
operations that are challenging to accelerate [39].

Knowledge distillation approaches commonly compress a large (teacher) network by
using it to train a smaller (student) network [10]. These approachess are inspired by
the observation that large models tend to better extract structure from large redundant
datasets, whereas once this structure is extracted it can be more efficiently represented
using a smaller model [11]. This concept has been further extended in approaches such as
the one proposed by Mirzadeh et al [12] which uses intermediate teacher assistant networks,
and Heo et al [13] which favours the transfer of decision boundary information.

Low-rank approximations rely on representing large matrices or tensors using a set
of factors. This approach typically results in a reduced number of parameters and com-
putations. One of the first works in this area began by applying truncated singular value
decomposition (SVD) to convolution tensors reshaped to matrices [14]. This inspired others
to apply tensor decomposition approaches to DNN model compression, such as Canonical
Polyadic (CP) [11], Tucker [10] Tensor-Train (TT) [12] and Tensor Ring (TR) [I1]. On
the other hand, there has been a closely related line of work focusing on representing con-
volution filters using low-rank bases [15] and initializing these bases to minimize either
the filter reconstruction error or projection error. This approach was extended in [16] to
allow for a varying bases size and to further improve compression results. In a similar vein,
sharing filter weights across spatial locations was proposed by FSNet [17]. Representing
matrices and tensors using a Kronecker factorization was also explored by Zhou et al [15],
but was limited to rank-1 approximations that were randomly initialized. As shown in
Figure 1.1 and in the next sections of this thesis, using a larger summation of Kronecker
products can significantly improve the representation power of a network and thus leads
to a performance increase.

Kronecker factorizations have also been used to approximate the Fisher information
matrix (FIM) when training DNN models using second-order optimization methods [19,
|. Specifically, approximations for models using fully-connected layers [19] as well as
convolutional layers [50] have been derived. This line of work targets accelerated training,
by leveraging curvature information to provide better model parameter updates. The more
informed parameter updates will often lead to a reduction in the number of steps required
for convergence. Such approximations have been further improved in [51] by recognizing
the low-rank nature of the Kronecker factors that emerges when using mini-batches to
approximate true statistics, leading to less time spent inverting the FIM approximation.



Chapter 3

Generalized Kronecker Product
Decomposition

In this chapter, we introduce the proposed Generalized Kronecker Product Decomposition
(GKPD). We start by providing background on the Kronecker Product Decomposition in
Section 3.1, then present its generalization to multi-way tensors in Section 3.2. Further-
more we derive an algorithm for performing convolution operations using GKPD factorized
tensors in Section 3.3.

3.1 Preliminaries

Given matrices A € IR™ " and B € IR™**™, their Kronecker product is the mimsy X n1ns
matrix

allB Ce alnlB
A® B2 : . : : (3.1)
amnB ... amn B
As shown by Loan et al [52], any matrix W € IR™™2*™"2 can be decomposed into a
sum of Kronecker products as
R
W =) A,®B, (3.2)
r=1



where
R = min(myny, many) (3.3)

is the rank of a reshaped version of matrix W. We call this R the Kronecker rank of W.

Note that the Kronecker rank is not unique, and is dependent on the dimensions of factors
A and B.

To compress a given matrix W, we can represent it using a small number R < R of
Kronecker products that best approximate the original tensor. The best factors are found
by solving the Nearest Kronecker Product problem [53]

~ 2

R

min W — A, ®B,|l . 3.4

{AT‘}ﬂ{B'I‘} ; ( )
F

where ||||r denotes the Frobenius norm. As this approximation replaces a large matrix with
a sequence of two smaller ones, memory consumption is reduced by a factor of

m1maring

(3.5)

}/_E(mlnl + mgng) .

Furthermore, if a matrix W is decomposed into its Kronecker factors then the projection
Wx can be performed without explicit reconstruction of W. Instead, the factors can be
used directly to perform the computation as a result of the following equivalency relation-
ship:

y=(A®B)x=Y =BXAT, (3.6)

where vec(X) = x, vec(Y) = y and vec(:) vectorizes matrices X € IR"*™ and Y €
IR™>*™ by stacking their columns.

3.2 Generalized Kronecker Product Decomposition

We now turn to generalizing the Kronecker product to operate on tensors. Let A €
R®* eV and B € IR be two given tensors. Intuitively, tensor (A ® B) €
[Re1br>xanbyig constructed by moving around tensor B in a non-overlapping fashion,
and at each position scaling it by a corresponding element of A as shown in Figure 3.1.
Formally, the multidimensional Kronecker product [15] is defined as follows

(‘A ® B)lllN = ‘Ajl-"jNBkl-"kN7 (37)



\4%

Figure 3.1: Illustration of Kronecker decomposition of a single convolution filter (with
spatial dimensions equal to one for simplicity).

where

Jn = LZ)—”J and k, = i, modb, (3.8)

represent the integer quotient and the remainder term of ¢, with respect to divisor b,,
respectively.

As with matrices, any multidimensional tensor W € IR***"*“~ can be decomposed
into a sum of Kronecker products

R
W=> A®B, (3.9)
r=1
where
R = min(alag s an, blbg tee bN) (310)

denotes the Kronecker rank of tensor WW. Thus, we can approximate VW using GKPD by
solving the Multidimensional Nearest Kronecker Product problem

~ 2

R
min [|W — A, ®@B.| |, 3.11
[Ar (B} ; (3.1
F
where R < R. For the case of matrices (2D tensors), [73] solved this problem using SVD.

We extend their approach to the multidimensional setting. Our strategy will be to define
reshaping operators

RW . IRd1><"'><dN N ]RNPXd/I"'d/N (3.12)
r, : RICxAN y Ry (3.13)
r, : ROxdy _y Ry (3.14)



and solve

R
i Ry (W) = ra(A)ry(B,)" (3.15)

-1
" F

instead. By carefully defining the reshaping operators, the sum of squares in (3.15) is
kept identical to that in (3.11). The former corresponds to finding the best low-rank
approximation, which has a well known solution using SVD. We define the reshaping
operators as follows:

Ry (W) = MaT(UnroLD(W, d®))) (3.16)
r,(A) = UNFOLD(A, d%) (3.17)
ry(B) = VEC(B) (3.18)
where
UNFOLD : IR xdn _y [RNpxdpxxdy (3.19)
takes as input a tensor WV and sub-patch shape vector d’ = (d}, - - - ,d)y), then extracts N,

non-overlapping patches of shape d’ from tensor W. Thus tensor W dimensions must be
divisible by d’). The operation

VEC : RO 5 RN (3.20)
flattens its input into a vector, and
MAT : IRH**xdn _y Rhxdardy (3.21)

reshapes a tensor to a matrix. Tensor Z 4 has the same number of dimensions as A with
each dimension equal to unity and d® is a vector describing the shape of tensor B. While
the ordering of patch extraction in (3.19) and flattening (3.20) is not important, it must
remain consistent across the reshaping operators (see Lemma 1).

Finally, upon conversion of the problem in (3.11) to the low-rank matrix approximation
problem (3.15), we can use SVD to select optimal approximating vectors then reshape
them back to tensors by applying the inverse of (3.13) and (3.14). We demonstrate the
optimality of our approach through the following lemma and theorem, which make use of
index mappings defined below.

Definition 1. (Index mapping)

. (@) s @) G a® L
A function g : IR9 X798 — IR9 "IN satisfying

N N
[T - IT4¢
n=1 n=1

9



is called a reshaping operation and induces an index mapping I, such that

9(x)sm =X, 1P = I,(i®),
for any i € Nt xxgle)

Lemma 1. (Sum of squares preserving reshapings)

Let W € RWY XN - A € RN gnd B € RPN Then,

~ 2 ~
R

{Ar}{Br} {Ar}{Br}

F r=1

where,

VEC : IRd1><...><dN N IRdl.A.dN
MAT : R vy R drdn
UNFOLD : IR > xdn _y [RNpxd)xxdy
RW . Rdlx...de N IR,Ndell"'d,N

r, . ]Rdlx"'XdN N IRd1--.dN

rb : Rd1X~~~XdN - ]R,dlmdN
are reshaping operations with d;, d; € N and index mappings
[P(u)c}p(i<a)7d<«4>,d<s>)
i mod d“V

Fyso(i@, d¥) £ [PYe] ) g g2,

i\

i@ qW, d(B))

>

I UNFOLD (

[I>

IMAT<i(a) ’ d(A))

)

Iype(is?, d5Y)

10

R
min W= A, @B, = min |RyW) =Y ro(A)ry(B,)
r=1

(3.22)

T (3.23)

F

3.20 revisted)
3.21 revisted)
3.19 revisted)
3.12 revisted)
3.13 revisted)
3.14 revisted)

(
(
(
(
(
(
(3.24)
(3.25)
(3.26)

(3.27)



where P and P®) denote permutation matrices, vector ¢ contains an integer enumera-
. ‘ . (4 ‘
tion starting at one and ending at ], [%} , mod denotes an element-wise modulo oper-
2

ation, and

.(a i@ 1
p(l( )7 d(-A)’ d(8)> = sum \‘W X QA (328)
L[S ]

with the multiplication, division and floor operations being element-wise.

Theorem 1. (Optimality of GKPD)
Any tensor W € RN can be represented exactly as

W=> AeB (3.29)

r=1

where A, € RN B e R gnd Re N

3.3 GKPD Factorized Convolutions

An N-dimensional convolution operation in CNNs between a weight tensor W e IRF*¢*Prx:

and an input X € RE*55V ig a multilinear map that can be described in scalar form as
Y pdyedy = Z W fesyon X cydi+61, dn+n - (3'30)
¢,61, 0N

Assuming W can be decomposed to KPD factors

(@) w (@) 5 (D) 5 ... 5 g(D) () 5 e® 5 d'® ... 5 g®
AERf Xl xdy ™ XX d and BG]Rf x ) xdy X Xd (331>

we can rewrite (3.30) as

Vidydy = > (A @ B) fedy-dy X ey 461, dn+n - (3.32)
@) o) §(a) 50)

Due to the structure of tensor A ® B, we do not need to explicitly reconstruct it to
carry out the summation in (3.32). Instead, we can carry out the summation by directly
using elements of tensors A4 and B as shown in Lemma 2. This key insight leads to a
large reduction in both memory and FLOPs. Effectively, this allows us to replace a large
convolutional layer (i.e. a convolution with a large weight tensor) with two smaller ones,
as we demonstrate in the rest of this section.

11
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Lemma 2. (Linear Projections with Kronecker factorized tensors) Given tensor W €
RV >N gnd its GKPD factors A € R®* XN B ¢ RPN gyeh that W = A @ B.
Then, the multilinear map involving VW can be written directly in terms of its factors as
follows:

Wil...iNXil.A.iN = 'Ajl“'jNBkl'“kNXg(jl,/ﬂ)"-g(jN,kN)? (333)
where X € RN s an input tensor,
9 kn) = Jnbn + kn, (3.34)

is a re-indezing function; and jn, k, are as defined in (3.8). The equality also holds for any
valid offsets to the input’s indices. That is,

Wi1---iNXil+01,“-,iN+0N = Ajl"'jNBkl"'kNXg(jhkl)‘f‘oh"'7g(jN»kN)+0N7 (335)
where o; € N.

Applying Lemma 2 to the summation in (3.32) yields

Y far-dy = > A p@16@5(0)..50B 100150 50X g(102), 960 50 by 962 60
re(@) c(b) §(a) §(b)

(3.36)

where indices i1, ji,c; enumerate over elements in tensor A and is, ja, co enumerate over
elements in tensor B. Finally, we can separate the convolution operation into two steps by
exchanging the order of summation as follows:

Vitiay = ) A porcors .5 > B 1005060 X g(er 20,906 504 9(60 50y
T‘,C(a>,5(a‘) C(b),5<b>

(3.37)

Overall, (3.37) can be carried out efficiently in tensor form using Algorithm 1. Ef-
fectively, the input is collapsed in two stages instead of one as in a standard multidi-
mensional convolution operation, and can be carried out efficiently using two consectuive
N-dimensional convolution operations with intermediate reshapings.

12



Algorithm 1: KroneckerConvNd

Input:
Rx f(0) x (@) 5 gl ... d(@) R f® xe® xdt® x...xd®
A € RS ! N, BeR™ 1 N

X € RB*CxDix-xDy
Output: X € RB*I*DixxDn
X < RESHAPE(X) // IRBxe"xDixDy
X « CONND(B, X) // IRBxIxDux-Dy
X < RESHAPE(X) // IRB/xe®xDix-Dy
X + CoNVND(A, X, groups = R) // RBS® * @ xDyx--Dyy
(

X < RESHAPE(X) // [RBXF*DixxDy
return X

More specifically, convolving a multi-channel input with a single filter in W yields a
scalar value at each output spatial location. This is done by first scaling all elements in the
corresponding multidimensional patch, then collapsing it by means of summation. Since
tensor W is comprised of multidimensional patches B scaled by elements in A, we can
equivalently collapse each sub-patch in the input using tensor B followed by a subsequent
collapsing using tensor 4 to obtain the same scalar value.

3.4 Complexity of GKPD Factorized Convolutions

The GKPD decompostion of a tensor is not unique. Different choices of Kronecker fac-
tor dimensions will lead to different reductions in memory and number of operations.
Specifically, for an N-dimensional convolution performed using a tensor represented with
R Kronecker products of factors A € RS xe@xdixxd) g B e RICxe®xd < xdy)

the memory reduction is

a) .(a N (a) 5(b)
fl@)ela) £0) () [T, dn’dy

CR, — — 9
R ( F@c@ T, d¥ + OO L, dﬁf’))

(3.38)

whereas the reduction in FLOPs is

13



a) .(a a b
PR fl@)la) £(0) o) Hi:/:l d\@q®

= — T T (3.39)
R < fO . f@c@ T dn” +c@ - fOcO [T, dn )

__ For the special case of a 2-dimensional convolution using separable 3 x 3 filters, and
R =1 the reduction in FLOPs becomes

3 (@)

fl@) 4 O (3.40)

14



x p -
S Convolution
.

* @ =

(b) KroneckerConv2d

Figure 3.2: Illustration of KroneckerConvNd algorithm (for the 2-Dimensional setting,
using a Kronecker rank of one). Although (a) and (b) result in identical outputs, the latter
is more efficient in terms of memory and FLOPs.
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Chapter 4

Applying GKPD to DNN models

In this chapter, we highlight two approaches to selecting the shapes of the Kronecker
decomposition of convolution tensors when applying GKPD to DNN models.

Modern deep learning architectures in the computer vision domain often contain many
convolution tensors of varying shapes. As the GKPD decomposition is not unique, some
thought must be given to configuration selection in applying GKPD to model compression.
For clarity, we define what is meant by a configuration below.

Definition 2. (Configuration) Given a tensor W € R and its approzimation using
R Kronecker factors

Ae R gpd B e R, (4.1)

such that a; - b; = w; obtained from the sglution to the Multidimensional Nearest Kronecker
Product problem (3.11); the collection (R,d 4,dg) is referred to as a configuration.

In our work we experimented with two configuration selection methods. The first method
selected configurations that minimized a reconstruction error. The second was developed
out of practical considerations and made selections from a smaller subset of configurations
that the lowest runtime latency. In the coming sections, we describe these methods in
mode detail.

16



4.1 Minimum Reconstruction Error Configuration

Given a tensor W € IR¥"*"*™ from a pre-trained network, we find the optimal configu-
ration by solving

~ 2

R
«41?,1311,/\ W — ;AT ® B,

dy.dg,R F

s.t. ﬁal---adbl---bdgc.

(4.2)

In other words, we select the configuration by minimizing over the Kronecker factors’” values
as well as their dimensions and the choice of rank. Though its discrete nature complicates
this problem, in practice it is easy to find its solution. Specifically, (4.2) can be solved by
performing the minimization in two stages

~ 2

R
min min W—ZAT(@BT ,
r=1

d4,dps _AT,BT,E (43)

F
s.t. }Afal---adbl---bdgc.

In other words, (4.2) is solved in two stages by enumerating through all possible configura-
tions that satisfy the constraint and solving the inner minimization at each iteration. As
the objective function is a non-increasing function of R (i.e., using a larger rank leads to
better reconstruction in (3.15)), it suffices to select the largest value for R that does not
violate the constraint at each iteration.

4.2 Minimum Latency Configuration

Though the GKPD factorization of a convolution layer’s weight tensor reduces its number of
FLOPs, in practice it can increase its runtime. Therefore, we also explored configurations
that were of no detriment to latency. Specifically, for a given desired compression rate
CR € (0,1) we select the optimal configuration by solving

min_ ||Ray - aghy - - ba — poric CR|,
dsds,R (4.4)

st. lexpp <loricgiNarL,

17



where porra is the number of parameters prior to compression and lgxpp, loriaINaL are
the runtime latencies of the compressed layer and the original layer respectively.

The solution to (4.4) is obtained by generating the runtimes for all configurations for
a given tensor, and selecting a configuration that best matches the desired compression
rate from a the subset of configurations that do not increase runtime beyond that of the
original uncompressed layer.

18



Chapter 5

Experimental Results

This section presents our experimental results for the application of GKPD to various
computer vision domains, such as image classification and action recognition. Here we focus
on comparing GKPD to state-of-the-art decomposition methods on the aforementioned
tasks, though comparisons to other compression approaches such as knowledge distillation
and pruning are also reported.

5.1 Image Classification

In this section, we provide model compression experimental results for image classification
tasks using a variety of popular CNN architectures such as ResNet [1] and SEResNet
which benefits from the squeeze-and-excitation blocks [18]. We also choose to apply our
compression method on MobileNetV2 [17] as a model that is optimized for efficient inference
on embedded vision applications through depthwise separable convolutions and inverted
residual blocks. We provide implementation details in Appendix B.

Table 5.1 shows the top-1 accuracy on the CIFAR-10 [51] dataset using compressed
ResNet18 and SEResNet50. For each architecture, the compressed models obtained using
the proposed GKPD are named with the “Kronecker” prefix added to the original model’s
name. The configuration of each compressed model is selected such that the number of
parameters is similar to MobileNetV2. We observe that for ResNet18 and SEResNet50,
the number of parameters and FLOPs can be highly lowered at the expense of a small
decrease in accuracy. Specifically, KroneckerResNet18 achieves a compression of 5x and
a 4.7x reduction in FLOPs with only 0.08% drop in accuracy. KroneckerSEResNet50
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Model Params (M) FLOPs (M) Top-1 (%)

MobileNetV2 (Baseline) 2.30 96 94.18
ResNet18 (Baseline) 11.17 557 95.05
KroneckerResNet18 2.2 117 94.97
SEResNet50 (Baseline) 21.40 1163 95.15
KroneckerSeResNet50 2.30 120 94.45

Table 5.1: Top-1 accuracy measured on CIFAR-10 for the baseline models MobileNetV2,
ResNet18 and SEResNet as well their compressed versions using GKPD. The number of
parameters in compressed models are approximately matched with that of MobileNetV2.

obtains a compression rate of 9.3x and a 9.7x reduction in FLOPs with only 0.7% drop
in accuracy.

Moreover, we see that applying the proposed GKPD method on higher-capacity archi-
tectures such as ResNet18 and SEResNet50 can lead to higher accuracy than a hand-crafted
efficient network such as MobileNetV2. Specifically, with the same number of parameters
as that of MobileNetV2, we achieve a compressed ResNet18 (KroneckerResNet18) and a
compressed SEResNet50 (KroneckerSEResNet50) with 0.80% and 0.27% higher accuracy
than MobileNetV2.

Table 5.2 shows the performance of GKPD when used to achieve extreme compression
rates. The same baseline architectures are compressed using different configurations. We
also use GKPD to compress the already efficient MobileNetV2. When targeting very small

Model Params (M) CR  Top-1 (%)
KroneckerResNet18 0.48 23.27 % 92.62
0.93 23.01x 93.66
KroneckerSeResNet50 0.29 73 70 01 .85
0.73 3.15x% 93.80
KroneckerMobileNetV2 0.29 7.90 % 93.01
0.18 12.78 x 91.48

Table 5.2: Top-1 accuracy measured on CIFAR-10 highly compressed ResNet18 [1], Mo-
bileNetV2 [17] and SEResNet [15].
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128 x

Figure 5.1: Image reconstruction results when using GKPD (top) and TT (bottom) for
image compression. GKPD leads to a lower reconstruction error due to its ability to exploit
local redundancy in multiple dimensions simultaneously.

models (e.g., 0.29M parameters) compressing MobileNetV2 with a compression factor of
7.9x outperforms extreme compression of SEResNet50 with a compression factor of 73.79x.

In the following subsections, we present comparative assessments using different model
compression methods.

5.1.1 Comparison with Decomposition-Based Methods

In this section, we compare GKPD to other tensor decomposition compression methods.
We use a classification model pretrained on CIFAR-10 and apply model compression meth-
ods based on Tucker [10], Tensor-Train [13], and Tensor-Ring [11], along with our proposed
GKPD method. We choose ResNet32 architecture in this set of experiments since it has
been reported to be effectively compressed using Tensor-Ring in [11].

The model compression results obtained using different decomposition methods aim-
ing for a 5x compression rate are shown in Table 5.3. As this table suggests, GKPD
outperforms all other decomposition methods for a similar compression factor.

We attribute the performance of GKPD to its higher representation power. This is
reflected in its capacity to exploit local redundancy in multiple dimensions simultaneously,
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Figure 5.2: Reconstruction error between convolution tensors in a ResNet18 model pre-
trained on ImageNet and compressed representations at a 4x compression rate, for each
layer in the network (x-axis denotes layer number). GKPD always yields a lower recon-
struction error than Tucker decomposition

as shown in Figure 5.1, as well as its ability to better reconstruct weight tensors in a
pretrained network, as illustrated in Figure 5.2.

5.1.2 Comparison with Other Compression Methods

We compare our proposed model compression method with two state-of-the-art KD-based
compression methods [12, 13]. These methods are known to be very effective on rela-
tively smaller networks, such as ResNet26. Thus, we perform our compression method
on ResNet26 architecture in these experiments. Table 5.4 presents the top-1 accuracy ob-
tained for different compressed models with two different compression rates. As this table
suggests, the proposed method results in greater than 2% and 3.7% improvements in top-1
accuracy once we aim for compression rates of ~2x and ~5x, respectively, compared to
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Model Params (M) CR  Top-1 (%)

Resnet32 0.46 1x 92.55
TuckerResNet32 0.09 Hx 87.7
TensorTrainResNet32 0.096 4.8% 88.3
TensorRingResNet32 0.09 DX 90.6
KroneckerResNet32 0.09 Hx 91.52

Table 5.3: Top-1 Accuracy on CIFAR-10 of compressed ResNet32 using various decompo-
sition approaches.

using the KD-based model compression methods.

5.1.3 Model Compression with Random Initialization

To study the effect of replacing weight tensors in neural networks with a summation of
Kronecker products, we conduct experiments using randomly initialized Kronecker factors
as opposed to performing GKPD on a pretrained network. By replacing all weight tensors
in a predefined network architecture with a randomly initialized summation of Kronecker
products, we obtain a compressed model. To this end, we run assessments on a higher

capacity architecture i.e, ResNet50 on a larger scale dataset i.e, ImageNet [16]. Table 5.5
Model Params (M) Compr. Top-1 (%)
ResNet26 0.37 1x 92.94
TA [12] 0.17 2.13x 91.23
DB [13] 0.17 2.13x 90.34
KroneckerResNet26 0.14 2.69 x 93.16
TA [12] 0.075 4.88x% 88.0
DB [13] 0.075 4.88% 87.32
KroneckerResNet26 0.069 5.29% 91.28

Table 5.4: Top-1 accuracy measured on CIFAR-10 for the baseline model ResNet26 and
its compressed versions obtained using the KD-based methods; [12], [13], and the proposed
GKPD method.
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Model Params (M) Compr. Top-1 (%)

ResNetbH0 25.6 1x 75.99
FSNet 13.9 2.0x 73.11
ThiNet 12.38 2.0x 71.01
KroneckerResNet50 12.0 2.13x 73.95

Table 5.5: Top-1 accuracy measured on ImageNet for the baseline model ResNet50 and
its compressed versions obtained using ThiNet [55], FSNet [17], and the proposed GKPD
method.

lists the top-1 accuracy for ResNet50 baseline and its compressed variation. We achieve a
compression rate of 2.13x with a 2% accuracy drop compared to the baseline model.

We also perform model compression using two state-of-the-art model compression meth-
ods; ThiNet [55] and FSNet [17]. ThiNet and FSNet are based on pruning and filter sharing
techniques, respectively. They both reportedly, lead to a good accuracy on large datasets.
Table 5.5 also lists the top-1 accuracy for ResNet50 compressed using these two methods.
As the table shows, our proposed method outperforms the other two techniques for a ~2x
compression rate. Note that the performance obtained using our method is based on a ran-
dom initialization, while the compression achieved with ThiNet benefits from a pretrained
model. These results indicate that the proposed GKPD can lead to a high performance
even if a pretrained model is not available.

Model R Params (M) FLOPs (M) Top-1 (%)
ResNet18 - 11.17 0.58 95.05

4 1.41 0.17 92.96

8 1.42 0.16 93.74
KroneckerResNet18 16 144 0.96 94 30

32 1.51 0.32 94.58

Table 5.6: Top-1 image classification accuracy of compressed ResNetl8 on CIFAR-10,
where R denotes the number of Kronecker products used in the GKPD of each layer.
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5.1.4 Experimental Analysis of Kronecker Rank

Using a higher Kronecker rank R can increase the representation power of a network. This
is reflected by the ability of GKPD to better reconstruct weight tensors using a larger
number of Kronecker products in (3.11). In Table 5.6 we study the effect of using a larger
R in Kronecker networks while keeping the overall number of parameters and FLOPs
constant. We find that using a larger R does indeed improve performance.

5.2 Action Recognition

In this section we compare the proposed GKPD to other decomposition methods on com-
pression of an I3D-ResNet50, an action recognition model, on the HMDB-51 dataset. As
HMDB-51 is a relatively small dataset, it is common practice to pretrain on a large scale
datset prior to finetuning on the HMDB-51 dataset for optimal results. Therefore, in our
compression experiments we first pretrain I3D-ResNetb0 on the Kinetics-400 dataset, then
fine-tune on the HMDB-51 dataset. Finally, we compress the model by decomposing its
convolution tensors and perform another stage of fine-tuning.

In this set of experiments, we opt to use the configuration selection strategy detailed
in Section 4.2. This leads to compressed action recognition models that do not sacrifice
latency, as reported in Table 5.7. Most notably, GKPD with the latency-focused configura-
tion strategy leads to efficient model compression with a runtime of 48 ms in comparison to
decomposition methods such as Tucker (246 ms) and TT (194 ms), on a single CPU. How-
ever, TT outperforms the other decomposition methods, including our proposed GKPD in
classification accuracy.

Model Params (M) CR CPU (ms) Top-1 Top-5
I3D-ResNet50 (baseline) 46.27 1.00 45 63.73  88.63
Tucker-I3D-ResNet50 39.30 1.18 246 50.00 81.31
TT-I3D-ResNet50 29.14 1.59 194 61.18 86.27
Kronecker-I3D-ResNet50 30.34 1.52 48 59.15  84.90

Table 5.7: Action classification accuracy of compressed 13d-ResNet50 on HMDB-51.
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5.3 Conclusion & Future Work

In this thesis, we propose GKPD, a generalization of Kronecker Product Decomposition
to multidimensional tensors for compression of deep CNNs. In the proposed GKPD, we
extend the nearest Kronecker product problem to the multidimensional setting and use
it for optimal initialization from a baseline model. We show that for a fixed number
of parameters, using a summation of Kronecker products can significantly increase the
representation power in comparison to a single Kronecker product. We use our approach
to compress a variety of CNN architectures and show the superiority of GKPD to some
state-of-the-art compression methods. GKPD can be combined with other compression
methods like quantization and knowledge distillation to further improve the compression-
accuracy trade-off. Designing new architectures that can benefit from a Kronecker product
representation is an area for future work.
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Appendix A

Theorem Proofs

Lemma 1. (Sum of squares preserving reshapings)

Let W € RV XN - A € R XW gnd B € RPN Then,

~ 2

R A
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(3.13 revisted)
(3.14 revisted)



are reshaping operations with d;, d; € N and index mappings

(u)
]UNFOLD(i(a)y d(.A)7 d(B)) A [P C}p(i(a)7d(A)7d(B)) ’ (324)
i@ mod d
IVEC(i(a)7 d(A)) é [P(v)c}p(i("‘>,d(A>,d(I‘A))7 (325)
i
D (i@, dW) £ : (3.26)

IVEC (ig;l) ) dg“:“))
(3.27)

where P and P™) denote permutation matrices, vector ¢ contains an integer enumera-

. . . (A) .
tion starting at one and ending at ], [%} , mod denotes an element-wise modulo oper-
7

ation, and
(@) q(A) q(B) i 1
p(i'”, d", d*®)) = sum @ | * 4@ (3.28)
L{Swr ],

with the multiplication, division and floor operations being element-wise.

Proof. Let W' = UnroLD(W, d®)), W = Mar(W’), A" = UNroLD(A, dZ4)) a =
ro(A’) and b = 1,(A’) such that

!/
Wi(b) = W 10 == W~(a) 5 a.j(b) - Aj(a), bk(b) = Bk(a). (Al)

1

with index mappings

[P(U)c}p(i(u)7d(w>7d(s)) (A2)

i(b/) = IUNFOLD(i(a)a d(W)a d(B)) =
i@ mod d®

(u)
i® = Iy (i®dO), d®) = P 0, a0m,a) (A.3)
[P(”)C]pmw mod d®) d(®) a"8))
, Pe (o (T 4)
i = Iwrorn (5@, ¥, @)y = [ ]p(J< ), a4 (A.4)
j(a) mod d(I.A)
.(b) (v ' u
.](b = IVEC(.](b)a d(A)) = [P( )C}p(j(a>,d<A>7d(IA)) (A5)
) a u
k® = Iyeo(k@, d®) = [P! >c]p(k<a)’d(6)7d<zg>). (A.6)
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It suffices to show that

j(b)
i) = o) (A7)
Consider the first element
j(b) - [P(u)c]p(j(a),d(f‘),d(IA)) (A.8)
with index
(V) 1
S (Y ' T a J
p(G®), A d%4a)) = sum L(I“") X £ 1.4t (A.9)
[W]Q
+(b) 1
=sum | j*/ x A (A.10)
Ld2:
— [P 5w atn aa) X ! (A.11)
sum . z A )
i mod dZ4) Lds
= [P(u)c}p(j(@,d(A),d<IA)) (A12)

where (A.12) holds as j mod dZ4) is a zero vector. The first element in i(®)

{P(u)c]p(im),d(W’),d(m) (A.13)
is equivalent to (A.12) as
(@ g q® i !
p(i'”, d"", d'®’) = sum 4o | = 4 (A.14)
Lger],
1
= sum | j@ x (A.15)
Ldg"
=p(', dW, d"). (A.16)

Similarly, the second element in i®)
[P(v)c}p(i(‘” modd(B),d(B>,d<IB)) (Al?)
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is equivalent to

[P(U)C] p(k<a),d(6),d(IA)) <A18)
because
i@ mod d® 1
p(i' mod AW, d®, d¥8)) = sum e I (S 5 (A.19)
d@s) L[ a®) }
d(IB> 2
. B 1
= sum [ i mod d® x 5 (A.20)
Ldy
1
= sum | k@ x 5 (A.21)
Ldy
:p(k(“), d®, d(IA)> (A.22)
O
Theorem 1. (Optimality of GKPD)
Any tensor W € RV XN can be represented exactly as
R
W=> AeB (3.29)

r=1

where A, € RN B e R gnd Re N

Proof. Using reshaping operations in eqs. (3.12)—(3.14), , we can re-write the reconstruction
error

R
eA,B) = W= A B, , (A.23)
as - 9
e(A, B) = [[Rw(W) =) ra(A)ry(B,)" (A.24)

F
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due to the sum-of-squares preserving propert of these reshaping operations. Minimization
of the reconstruction error in (A.24)is equivalent to solving a low-rank matrix approxima-
tion problem which has a well-known SVD-based solution. Therefore,

g('A? B) - RW(W> - Zra(Ar>rb(Br>T <A25>
< > oH(Rw(W) (A.26)

where R and o, denote is the rank and 7" largest singular value of matrix Ry (W respec-
tively. Choosing R = R results in a zero reconstruction error. O]

Lemma 2. (Linear Projections with Kronecker factorized tensors) Given tensor VW €
RY >N gnd its GKPD factors A € R®* X B ¢ RPN gych that W = A @ B.
Then, the multilinear map involving VW can be written directly in terms of its factors as
follows:

Wil'"izth"'iN = Ajl"'jNBkl"'kNXg(jl,kl)“‘g(]'Nyk’N)7 (333)
where X € RN s an input tensor,
9(Gns kn) = Jnbn + ko, (3.34)

is a re-indezing function; and j,, k, are as defined in (3.8). The equality also holds for any
valid offsets to the input’s indices. That is,

Wi1"'iNXi1+01y"' yiNton — ’Ajl"'jNBkl'“k?NXg(jlzk1)+olz <, 9N kN)+ons (335)
where 0; € N.
Proof. By definition the terms in tensor W are given by

Wil"'iN = Ajl"'jNBkl"'kN <A27)

where
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Jn = u—nJ , k, =i,modb,.

Since j, and k, decompose i, into an integer quotient and a remainder term (with respect
to divisor b,,), it follows that

g(jna kn) = ]nbn + kn - in (A28)

Therefore,
Xi1+01,'“ JiN+on T Xg(jl,kl)JrOL ~,9(nkN)+on - (A29)
Combining (A.27) and (A.29) completes the proof. O
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Appendix B

Implementation Detalils

CIFAR-10 experiments were conducted using a two NVIDIA V100 GPUs with the
following training parameters:

Epochs set to 200
Batch size set to 128

Learning rate initially set to 0.1 and reduced by a factor of 10x at iterations 100 and
150

Optimization was done using Stochastic Gradient Descent with a weight decay of
0.0001 and momentum of 0.9

Data augmentation was done by randomly flipping images horizontally throughout
training

Input images standardized using dataset mean and standard deviation values

ImageNet experiments were conducted using a four NVIDIA V100 GPUs with the
following training parameters:

Epochs set to 100
Batch size set to 256

Learning rate initially set to 0.1 and reduced by a factor of 10x at iterations 30, 60
and 90
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e Optimization was done using Stochastic Gradient Descent with a weight decay of
0.0001 and momentum of 0.9

e Data augmentation was done by randomly cropping 224 x 224 patches from 256 x 256
input images followed by randomly flipping them horizontally throughout training

e Input images were standardized using dataset mean and standard deviation values
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