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Abstract 

High-strength steel cables are one of the principal components of cable-stayed bridges. In these 

structures, the cables transfer the gravitational loads at the deck to the bridge tower structures or 

“pylons”. Reliable anchoring of the cables is a primary design consideration for cable-stayed 

bridges. Traditionally, the cables were directly anchored to the bridge deck and the pylons. A 

newer approach, employing so-called saddle systems, has become more popular in recent decades. 

With this approach, the cables are anchored to the bridge deck on one side of the pylon, go over a 

radial surface at the pylon, and are finally anchored to the bridge deck on the other side of the 

pylon. Material and anchoring costs of saddle systems are lower than the traditional approach, as 

smaller pylons are required for saddle systems and the cables do not require anchoring at the 

pylons. A primary design consideration of saddle systems is fretting fatigue failure of the cables 

at the saddle supports. Despite this fact, very limited previous research can be found in the 

literature on this topic. Also, the existing standards for saddle systems are rather simplistic. These 

standards require large-scale fatigue tests to evaluate the saddle systems and do not offer a 

calculation-based design procedure. With this in mind, the main objectives of the current thesis 

are: to undertake initial efforts to develop a calculation-based framework to evaluate the fretting 

fatigue behaviour of cables at saddle supports, to explore a possible framework for probabilistic 

analysis of this problem, and to design a more economical small-scale fretting fatigue test setup 

and use it to evaluate the fretting fatigue behaviour of typical bridge cable wires. 

Several parameters affect the fretting fatigue behaviour of cables (e.g., the relative displacement 

between the cable and saddle, and the contact force between the cable and saddle). In this thesis, 

closed-form equations for evaluating these critical parameters are first discussed. Then, an FE 

model is developed to evaluate the accuracy of these equations. The developed FE model is then 

used to evaluate the effect of wear on these critical parameters. Overall, the results of the FE model 

are shown to be close to the results obtained by calculation. However, a higher difference is seen 

between the results at the points where the cable first meets the saddle. Following the determination 

of the critical parameters, a multiaxial stress approach based on the Smith-Watson-Topper (SWT) 

parameter is used to evaluate the fretting fatigue life of the cable wires. A set of large-scale tests 

previously performed at TU Berlin is used as an example. The predictions based on the SWT 
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parameter are shown to be in good agreement (i.e., fatigue lives and overall trends are estimated 

with reasonable accuracy) with the tests performed at TU Berlin. 

In order to extend this approach to a probabilistic framework, several practical approaches aimed 

at limiting the need to perform time-consuming FE analyses are then explored. These approaches 

include the use of Monte Carlo simulation (MCS) with fretting maps or employing the 

multiplicative dimensional reduction method (M-DRM). The results of these approaches are then 

compared, and the challenges and benefits of each approach are presented. The results obtained 

using both methods are reasonably close to each other. Finally, an analysis is performed to evaluate 

the sensitivity of the prediction results to the main model parameters. It is shown that the 

uncertainties in the contact force and fatigue strength coefficients have the highest sensitivity 

factors. 

Following the completion of these analytical studies, a small-scale fretting fatigue test setup was 

designed to evaluate the fretting fatigue behaviour of bridge stay cable wires. Two different bridge 

cable types, namely: galvanized and bare, were used for these tests. In these tests, the critical 

parameters affecting fretting fatigue life were varied. It was found that the bare wires have a better 

fretting fatigue performance in comparison with the galvanized wires. Following the completion 

of the fretting fatigue tests, plain fatigue tests were performed to evaluate the fatigue performance 

of the wire material. After the experimental work, a microstructure analysis was performed to 

evaluate the microhardness of the wires and observe defects at the surface and core of the wires 

using SEM photography. Irregular microstructures were found at the surface of the galvanized 

wire. However, the bare wire had a uniform microstructure at the surface.   

Following the experimental work, the SWT parameter-based approaches were applied to the tests 

performed at the University of Waterloo. However, these approaches have limitations in that they 

do not account for wire defects and their influence on the fatigue life predictions. Given the 

presence of significant defects in the wires, a linear elastic fracture mechanic (LEFM) approach is 

lastly employed to study possible effects of these defects on the fretting fatigue life of the wires. 

The LEFM results are shown to be in good agreement with the test results. 
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1.1 Fretting fatigue 

Fretting fatigue occurs “when two contacting components experience a small amplitude relative 

motion” (Ding et al. 2011). Figure 1-1 shows a schematic view of a fretting fatigue problem. As 

shown in Figure 1-2, three different regimes can be defined for two contacting components 

(Vingsbo and Soderberg 1988): a stick regime at very small relative displacements (0-2 µm) with 

a low volume of wear and a relatively high fatigue life, a stick-slip regime at higher relative 

displacements (2-20 µm) with a stick regime at the center of the contact area and a slip regime at 

the border of the contact area corresponding with a lower fatigue life, and finally a gross sliding 

regime at higher relative displacements with a high degree of wear over the entire contact surface 

typically resulting in a higher fatigue life than that associated with the stick-slip regime. Fatigue 

life is greater in the gross sliding regime because a high degree of wear can remove small cracks 

propagating at the surface of the components. 

 

Figure 1-1 Schematic view of a fretting fatigue problem. 
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Figure 1-2  Fretting maps by (Vingsbo and Soderberg 1988). 

Based on the definition of fretting fatigue in the previous paragraph, fretting fatigue failure can be 

a serious issue for connections and machines where two parts are in contact, and one part is 

cyclically loaded. Examples of applications that can be prone to fretting fatigue are bolted and 

riveted connections, dovetail connections, bridge cables, and bearing shafts. 

1.2 Fretting fatigue problem in cable-stayed bridges 

In cable-stayed bridges, high-strength steel cables transfer the gravitational loads at the bridge 

deck to the bridge tower structures, called pylons. Reliable anchoring of the cables is a primary 

design consideration for cable-stayed bridges. Traditionally, the cables were directly anchored to 

the bridge deck and the pylons. A newer approach with lower material and anchoring cost, 

employing so-called saddle systems, has become more popular in recent decades. With these 

systems, the cables are anchored to the bridge deck on one side of the pylon, go over a radial 

surface (saddle) at the pylon, and are finally anchored to the bridge deck on the other side. Figure 

1-3 (a) shows a cable-stayed bridge employing saddles to support the cables at the pylons. A 

schematic view of a cable over a saddle is shown in Figure 1-3 (b). 

As already discussed, fretting fatigue occurs when there is a small relative displacement between 

two contacting components. As the trucks cross the bridge, the cables can slightly move along the 

saddle. The high contact forces at the contact points between the cable wires and the saddle, in 
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addition to the small relative displacements between the cables and the saddle, make the cables 

prone to fretting fatigue failure, which is, therefore, an important design consideration. 

 

 

Figure 1-3 Example of a cable-stayed bridge (a) from Schlaich et al. (2012), schematic view of a 

cable over a saddle (b). 
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1.3 Motivation 

While fretting fatigue failure is a major design consideration for saddle systems, there is limited 

work on this topic in the literature. The current design provisions (fib 2005, PTI 2012) do not 

include calculation-based procedures and require companies to do large-scale tests of saddle 

systems to evaluate the fretting fatigue performance of cables in these systems. The current 

provisions are very simplistic. Specifically, the following issues were found: 

• Very little can be found in these standards regarding the reliability of the saddle systems. These 

standards require a limited number of tests to evaluate these systems and do not require tests 

to failure. Therefore, they do not offer a reliability level consistent with the conventional design 

codes for other structural elements on a bridge. 

• The current standards specify the same proof testing procedure for all anchoring systems. They 

do not include specific details needed for the design of different systems, and they do not 

discuss the parameters that affect the fretting fatigue life of saddle systems. 

• The current provisions are based on constant amplitude loading and do not include any 

information on variable amplitude loading or discuss its effect on fretting fatigue performance. 

In real bridges, the cables are under variable amplitude loading conditions.  

 

1.4 Objectives 

Against this background, the main objectives of this project are as follows: 

• To determine the critical parameters that affect the fretting fatigue life of cables (e.g., contact 

force, slip displacement): There are several critical parameters that affect the fretting fatigue 

behaviour of cables at saddle supports. There are a few closed-form equations and methods 

presented in previous works to calculate suitable values for these parameters. These equations 

were developed with simplifying assumptions and have not been proven to be accurate for the 

problem of a cable over a saddle. Therefore, the first objective of the project is to review the 

methods available to calculate the critical parameters and compare their outputs with the results 

obtained by finite element (FE) analysis. 

• To predict the fretting fatigue life of steel stay cables using a calculation-based method: As 

discussed before, there is a limited number of works on this topic in the literature and a 
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calculation-based design procedure cannot be found in the provisions and standards for saddle 

systems. The second objective of the current study is therefore to predict the fretting fatigue 

life of the cables using a numerical analysis or a calculation-based method. 

• To determine the effect of wear on critical parameters between the cable and saddle: Given 

that the cable is harder than the saddle, a high amount of wear, typically, can be seen on the 

saddle part. Due to this wear, the contact forces might change at the contact points between the 

cables and the saddle. Determining possible effects of wear on critical parameters and then the 

fretting fatigue life is therefore another objective of the current study. 

• To develop and apply probabilistic frameworks for fretting fatigue analysis of bridge stay 

cables at saddle supports: No work can be found on probabilistic analysis of this problem. 

Therefore, evaluating different possible frameworks for probabilistic analysis of this problem 

is another objective of this project. Based on estimations of the uncertainties associated with 

the various model parameters, a probabilistic analysis should be performed to obtain the fatigue 

life statistical distribution. Such distributions would allow risk-based design criteria to be 

established, thus enabling the design of saddle supports using an approach philosophically 

consistent with the current structural design standards. 

• To design a small-scale fretting fatigue test setup: A few works can be found in the literature 

on large- or full-scale tests of saddle systems. However, no small-scale setup can be found in 

the literature to evaluate the fretting fatigue behaviour of cables at saddle supports. Small-scale 

tests are more economical, typically quicker, and more efficient. Therefore, designing a small-

scale test for this problem is another objective of this thesis. 

• To determine the effects of varying the critical parameters on the fretting fatigue behaviour of 

cable wires: Once the small-scale test is designed, the next step will be to assess the fretting 

fatigue performance of bridge cable wires using this small-scale fretting fatigue setup. In this 

way, the effects of varying critical parameters on the fretting fatigue behaviour of cable wires 

will be studied experimentally. 

• To evaluate the material properties of the bridge cables and establish the input parameters for 

the deterministic and probabilistic analysis frameworks: Evaluating the material properties of 

the cables including microhardness, tensile and fatigue properties (Coffin-Manson parameters) 
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is the last objective of this thesis. A goal of this work will be to establish the input parameters 

for the developed calculation-based and probabilistic analysis methods. 

1.5 Overview of the thesis 

This thesis starts with a literature review, which discusses previous studies on fretting fatigue 

problems. Different methods for predicting the fretting fatigue life of structural components are 

discussed. Following that, the previous works on bridge cables are discussed. In the end, some of 

the previous small-scale fretting fatigue tests for other applications are presented. 

Chapter 3 starts by comparing the results of the methods developed previously in the literature for 

evaluating the critical parameters at the contact points along the length of a bridge cable with 

results obtained using a 2D FE model developed in the current thesis. Following this, a 3D FE 

model of a single contact point is used to make fretting fatigue life predictions. A multiaxial stress 

approach with the Smith-Watson-Topper (SWT) parameter is used for this analysis. Previous 

works on wear modelling have focused on wear effects at single contact points in mechanical 

connections. The current problem is somewhat unique in that it involves multiple contact points, 

and one effect of the wear is that it can result in a redistribution of the forces at each contact point. 

With this in mind, in the last part of this chapter, the effect of wear on the critical parameters at 

the contact points and the fretting fatigue life of the cables is evaluated using the 2D FE model. 

Chapter 4 first reviews Monte Carlo Simulation (MCS) and the Multiplicative dimensional 

reduction method (M-DRM) for probabilistic analysis of structural performance. A probabilistic 

framework for assessing fretting fatigue survival probability based on MCS is then discussed. 

However, given the high computational time due to the nonlinear 3D FE analysis required for each 

MCS trial, this framework is not practical. Therefore, possible alternatives using MCS along with 

fretting maps and M-DRM are subsequently investigated in the current study. Lastly, a sensitivity 

analysis is performed to determine the critical variables of the problem. 

Chapter 5 first presents the small-scale fretting fatigue setup designed for the current project at the 

University of Waterloo, then goes over the fretting fatigue test results in detail and compares the 

results for two different wire types: bare and galvanized. Following this, the properties of both 

wire types including microhardness, tensile, and fatigue (specifically Coffin-Manson parameters) 
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are determined using hourglass (machined) wire samples. Lastly, wire defects at the surface and 

the core are detected using scanning electron microscope (SEM) photography. 

Chapter 6 applies the methods developed in Chapters 3 and 4 to the tests performed at the 

University of Waterloo. It first evaluates the results based on a deterministic analysis and discusses 

possible challenges of using the SWT parameter for comparing the fretting fatigue life of wires 

given the fact that defects were found in both wires. Following that, probabilistic frameworks 

based on the MCS and MDRM were used to determine survival probabilities for tests performed 

at the University of Waterloo. 

Based on the fretting fatigue test observations and SEM photos in Chapter 5, it is concluded the 

defects at the surface/core of the wires can significantly affect the fatigue life of the wires. In 

Chapter 7, linear elastic fracture mechanics is therefore used to predict the fretting fatigue life of 

the wires, allowing the defect size to be considered as one of the analysis inputs. In this analysis, 

weight functions are used to determine stress intensity factor ranges. Following this, the Paris-

Erdogan law is used to determine the fretting fatigue life of the wires. 

Chapter 8 presents the main results and contributions of the research presented in the current thesis. 

It then discusses possible areas of future work on this topic. 
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2.1 Fretting fatigue 

Fretting fatigue occurs “when two contacting components experience a small amplitude relative 

motion” (Ding et al. 2011). The primary reason fretting fatigue occurs, is because the contact 

causes a stress concentration and the cyclic loading causes the stress concentration to move, which 

means if one tracks the stress at a single point near the stress concentration, they will see that it 

fluctuates. A fluctuating stress is necessary for all varieties of metal fatigue according to the basic 

definition of “fatigue”. A schematic view of a typical fretting fatigue test setup is shown in Figure 

2-1. Hills et al. (1988) and Nowell et al. (2006) presented the basic principles of the fretting fatigue 

problem and discussed the main parameters that affect the fretting fatigue life of components. The 

elements at the surface of the contacting components are critical locations for crack initiation and 

propagation due to the stress concentration in these elements. Different fretting fatigue setups have 

been developed to study fretting fatigue problems. These setups typically consist of one or two 

contacting pads and a flat specimen. The contacting pads apply the contact force to the specimen, 

and the specimen is cyclically loaded between maximum and minimum stress levels. Fretting 

fatigue tests at different stress ranges, contact forces, and slip displacements show that the 

specimens typically fail at the edge of the contact area. 

 

Figure 2-1 Schematic view of fretting fatigue tests (Hills et al. 1988). 

Vingsbo and Soderberg (1988) first presented the concept of “fretting maps” for fretting fatigue 

problems. In these maps, the effects of varying different parameters on the fretting fatigue life of 

a component are evaluated. In this study, three different regimes were identified for a fretting 

fatigue problem (see Figure 2-2): a stick regime at very small relative displacements (0-2 µm) with 
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a low volume of wear and a relatively high fatigue life; a stick-slip regime at higher relative 

displacements (2-20 µm) with a stick regime at the center of the contact area and a slip regime at 

the border of the contact area corresponding with a lower fatigue life; and finally a gross sliding 

regime at higher relative displacements. There is a high degree of wear over the entire contact area 

in the gross sliding regime. The fatigue life typically increases in this regime with increasing the 

slip displacement. This can be explained by the fact that a high degree of wear can actually remove 

small cracks and stop them from propagating, thus increasing fatigue life. 

 

Figure 2-2 Fretting map example from Vingsbo and Soderberg (1988). 

Nowell et al. (2006) reviewed the previous studies on this topic up to 2006. They discuss fretting 

fatigue prediction methods based on multiaxial stress analysis. This study also discusses the 

reasons for higher fatigue life at higher slip displacements (typically greater than 50 µm). Two 

possible explanations are presented for this trend. First, the wear debris between the two contacting 

components can act as a lubricant and decrease the coefficient of friction and consequently the 

stress range for the elements at the surface. The second explanation, which has received more 

attention, is a high degree of wear can remove the small cracks propagating at the surface of the 

specimens. Furthermore, it is discussed that the multiaxial stress approach should be used over a 

volume (i.e., the average of the SWT parameter should be determined using the SWT parameter 

values at several points inside the volume). This volume should be determined so as to achieve a 

good prediction of the test results. Following this, another approach based on relating the stress 
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field of the fretting fatigue problem to the stress field of a notched plate are discussed. Lastly, the 

short crack arrest problem is discussed and the Kitagawa-Takahashi diagram is used for crack 

arrest analysis. 

2.2 Critical parameters affecting the fretting fatigue life of components 

There are a number of parameters that can affect the fretting fatigue life of components. It has been 

reported that up to fifty variables can affect the fretting fatigue behaviour of components 

(Dobromirski 1992). The effect of some of them, however, is not significant. The most important 

ones are slip displacement, stress range, contact force, and coefficient of friction. In this section, 

the effects of these parameters on fretting fatigue life are discussed. 

2.2.1 Slip displacement 

As discussed earlier, Vingsbo and Soderberg (1988) presented three different regimes based on 

the slip displacement: stick, stick-slip (or partial slip), and gross sliding. Based on this work and 

others (e.g., Gao et al. 1991, Jin and Mall 2004), the fretting fatigue life is typically high in the 

stick regime at very small relative displacement. Then the fretting fatigue life decreases by 

increasing the relative displacement at the stick-slip regime. Finally, the fretting fatigue life 

increases in the gross sliding regime as the high amount of wear can remove the micro-cracks 

propagating at the surface of the components. This trend can be seen in Figure 2-2 and Figure 2-3. 

 

Figure 2-3 The effect of slip displacement on fretting fatigue life (Jin and Mall 2004). 
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2.2.2 Contact force 

Contact force or contact pressure is another parameter that affects the fretting fatigue life of 

contacting components. Looking at Figure 2-4, three different regimes can be seen by varying the 

contact pressure or contact force (Vingsbo and Söderberg 1988). At low contact forces, a gross 

sliding regime with a high volume of wear can be seen as the components can easily move along 

each other. With increasing the contact force, a stick-slip regime can be seen with a stick regime 

at the center and a slip regime at the border. With further increasing the contact force, a stick 

regime can be observed with a limited amount of wear. Similar to the trend discussed previously 

for the effect of slip displacement on fretting fatigue life, the minimum fretting fatigue life occurs 

in the stick-slip regime and higher fatigue life can be seen in stick and gross sliding regimes. 

 

Figure 2-4 The effect of contact force on fretting fatigue life (Vingsbo and Söderberg 1988). 

2.2.3 Stress range 

Stress range is a primary parameter that affects the fatigue life of components. In general, the 

fatigue life of components decreases with an increase in the stress range. A similar trend has been 

seen for fretting fatigue tests as well (Iyer and Mall 2001, Perier et al. 2009, Wang et al. 2011). 

Higher stress range is associated with a shorter fretting fatigue life. The reason is also the same as 

for fatigue under direct loading – if the global or “nominal” (far-field) stress range is higher, then 

so will be the cyclic stress concentration causing the local fatigue damage. 
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2.2.4 Coefficient of friction 

The coefficient of friction, COF, is another primary parameter affecting the fretting fatigue life of 

components. This parameter typically increases during fretting fatigue tests as the COF of the worn 

surfaces is higher than the COF of the initial smooth surfaces. Figure 2-5 shows the increase in the 

COF during the first few cycles of fretting fatigue tests presented in Hills et al. (1988). 

 

Figure 2-5 The increase in COF during fretting fatigue tests (Hills et al. 1988). 

The measurement of an accurate COF in fretting fatigue tests is very challenging. Given the 

different amounts of wear at the different points at the contact surface (especially, in the stick-slip 

regime), only an average COF can be practically measured during the tests, and even measuring 

the average COF can be very challenging for tests in the stick-slip regime. 

Figure 2-6 shows a block over a flat surface, and the forces acting on this block. In the gross sliding 

condition, the applied force is higher than the frictional force (or COF times the contact force (𝜇 ∙

𝑁)). Therefore, there is slip displacement all over the contact surface and an average COF can be 

calculated using the measured frictional force as follows: 

𝐶𝑂𝐹𝑎𝑣𝑒 =
𝐹𝑟𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑙𝑓𝑜𝑟𝑐𝑒 (𝐹𝑓)

𝐶𝑜𝑛𝑡𝑎𝑐𝑡 𝑓𝑜𝑟𝑐𝑒 (𝑁)
 2-1 

In stick and stick-slip regimes, however, measuring the COF during the tests is very challenging. 

In these regimes, the frictional force is lower than the maximum capacity of the frictional force at 

the surface (𝜇 ∙ 𝑁). Therefore, dividing the frictional force by the contact force is only a normalized 

frictional force or quasi-COF as described in Jin and Mall (2004). It should be noted that an 
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increase in COF has also been seen in tests in stick-slip (not only in gross slip), as there is wear at 

the border of the contact area in this regime, which also impacts COF. 

𝑞𝑢𝑎𝑠𝑖 − 𝐶𝑂𝐹 =
𝐹𝑟𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑙𝑓𝑜𝑟𝑐𝑒 (𝐹𝑓)

𝐶𝑜𝑛𝑡𝑎𝑐𝑡 𝐹𝑜𝑟𝑐𝑒 (𝑁)
 2-2 

 

 

Figure 2-6 Schematic view of a block over a plate. 

Murthy et al. (2006) presented a test procedure for measuring the COF in the stick-slip regime. 

This COF test can be done after a few thousand cycles of a fretting fatigue test. In this test, the 

stress range keeps increasing until the specimen moves along the contacting component. They 

propose that this point is associated with a sharp sound, and the force required for moving from 

the stick-slip regime to the gross sliding regime can thus be recorded and used for COF calculation. 

One issue with this method is it essentially consumes a specimen, which cannot be used 

subsequently to obtain a fatigue test result, as once gross slip occurs, it will coincide with wear, 

which will influence the result of the original stick-slip test. Of course, a friction test at the end of 

the fatigue test is not possible, as at this point the loaded component has fractured. 

2.3 Fretting fatigue analysis using multiaxial stress-based approaches 

Araújo and Nowell (2002) present a well-known study on the multiaxial stress-based analysis of 

fretting fatigue problems. In this paper, the Smith-Watson-Topper (SWT) and Fatemi-Socie (FS) 

parameters are employed. Titanium and aluminum samples are analyzed. In this study, the average 

SWT and FS parameter values over a critical length, dc, are used for determining the fretting 

fatigue life (see Figure 2-7). Trends in the results based on the two studied parameters (SWT and 
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FS) were similar. The main reason for using an average SWT over a length or volume is to account 

for the high stress gradient at the surface and possible short crack arrest in fretting fatigue 

problems. One of the challenges in fretting fatigue life prediction based on this averaging method 

is determining the length that is required for the calculation. In this study, several lengths were 

used for calculating the average of the parameters; the length that best fits the test results can be 

assumed to be the appropriate length for further analysis (see Figure 2-8). 

 

Figure 2-7 Averaging method for SWT and FS parameters (Araújo and Nowell 2002). 
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Figure 2-8 Sample results based on SWT and FS parameters versus the test results with different 

lengths, dc, assumed for calculating the average parameters (Araújo and Nowell 2002). 

Bernardo et al. (2006) proposed an alternative approach to consider the size effect and the effect 

of high stress gradient in this problem. Based on their approach, the element size (i.e., process 

zone) can be directly used instead of averaging volume. This method is computationally efficient 

as coarser elements can be used in the contact area. Similar to the averaging method, the challenge 

in using this approach is determining the appropriate element size. The proposed method is 

determining the element size in a way that the test results can be predicted reasonably well based 

on the output of the FE analysis. 
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The theory of critical distance also was used in several papers in the field to account for the stress 

gradient. This theory was first developed for notches (e.g., Taylor 2004, Zhu et al. 2020); however, 

given the similarity of the stress gradients at the edge of the contact area of fretting fatigue 

problems with notches, this method was used as another approach for considering the effect of 

stress gradients in fretting fatigue problems. This method can be applied using the line or point 

method. In the line method, the average of the damage parameter should be calculated over a 

critical length, L. In the point method, the damage parameter should be calculated at a point with 

a depth of L/2 from the hot spot (edge of the contact in fretting fatigue problems). L can be 

calculated using the following equation: 

𝐿 =
1

𝜋
(
∆𝑘𝑡ℎ
∆𝜎0

)
2

 2-3 

where ∆𝑘𝑡ℎ is the threshold stress intensity factor and ∆𝜎0 is the fatigue limit of the component in 

fully reversed fatigue tests. This method seems to be a good approach to capture the effect of high 

stress gradients. 

Recently, a new approach has been developed for notch problems to handle mesh refinement issues 

in computationally expensive 3D models, called the theory of critical distance with mesh control 

(Vargiu et al. 2017). In this approach, first, a coarse mesh will be used for the analysis of the 

problem. Following that, instead of measuring the damage parameter at a depth of L/2, the damage 

parameter at the hot spot will be calculated and used for the analysis. Based on the analysis in this 

paper, an element size of 2.87L should be used for the coarse FE model. Following this work, 

Zabala et al. (2020) and Infante-Garcia et al. (2022) applied this method to the fretting fatigue 

problems and determined the optimal element size to be between 1.6L to 2.6L. The relative errors 

are reported for different element sizes. All in all, this method seems to be similar to the one 

previously discussed by Bernardo et al. (2006); however, it uses a clearer definition for the element 

size. 

Sum et al. (2005) discussed how the SWT parameter can be used for determining the fretting 

fatigue life of the components in 2D and 3D problems. This study summarised the required 

stress/strain transformation required for determining stress and strain ranges in any plane of a 2D 

or 3D element. Based on this work, stresses and strains in 2D for a given angle, 𝜃𝑖, can be 

calculated as follows: 
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In 3D, the equations are as follows: 

2 2 2

11 22 33 12 23 132 2 2x y z x y y z x zn n n n n n n n n      =  +  +  +    +    +     2-6 

2 2 2

11 22 33 12 23 13x y z x y y z x zn n n n n n n n n      =  +  +  +   +   +    2-7 

where: ( ) ( )sin sinx v hn  = −  , ( )cosy hn = , ( ) ( )sin cosz h vn  = −   

where θh and θv are shown in Figure 2-9. These angles can be varied in 5° increments to determine 

the critical plane with the maximum value of the SWT parameter. 

 

Figure 2-9 θh and θv for 3D stress/strain transformations (Sum et al. 2005). 

Wear can remove small cracks and increase the fretting fatigue life. Also, it can reduce the stress 

concentration and thus be shown to be beneficial in fretting fatigue analysis evaluation using a 

multiaxial stress approach. With modelling the wear, the contact area between the components 

increases, and consequently, the contact pressure decreases. Lower contact pressure means lower 

stress concentration at the critical points in the contact area. Modelling wear can be done using an 
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iterative approach in which a first FE analysis is done and then based on the results, a portion of 

the elements at the contact surface can be removed and a new model generated. This process can 

repeat several times based on a step size (number of cycles for each iteration). Madge et al. (2007a) 

and Madge et al. (2007b) employed the Archard equation to model wear in a FE analysis. The test 

results of Jin and Mall (2004) were used in this work to evaluate the accuracy of the developed 

method. The wear was modelled using a numerical version of the Archard equation as follows: 

( ) ( ) ( )1, , ,h x N k p x x    =      2-8 

in this equation, ∆ℎ is the wear depth, ∆𝑁 is the number of cycles in each increment, 𝑘1 is the wear 

coefficient, 𝑝 is the contact pressure at the point of interest, and 𝛿 is the slip displacement at the 

point of interest. Based on this work, modelling the wear increases the fatigue life, especially in 

the gross sliding regime. 

Modelling the wear using the Archard equation and the frameworks discussed in Madge et al. 

(2007a) and Madge et al. (2007b) is complex and time-consuming. Based on the number of cycles 

in each step, multiple FE analyses are required for only one fatigue life prediction. Ding et al. 

(2011) presented a simpler approach to consider the beneficial effect of wear. In this work, a 

correction parameter (called 𝐷𝑓𝑟𝑒𝑡2) was multiplied by the SWT parameter to consider the effect 

of wear. This parameter is defined as follows: 

( )
( )2 1 1

n

fret

th

D C
 

 
 


= +    −


 2-9 

where τ·δ is the frictional work during one cycle, C and ( )
th

   are material properties, which can 

be determined by fretting fatigue tests and then fitting the model predictions to the test results. In 

this work, the SWT parameter is multiplied by Dfret2, and the number of cycles to failure, Nf, is 

calculated as: 

( )
( ) ( )

2

2

max 2 2 2
b b cf

a fret f f f fD N N
E


   

 +
   =   +     for ( )

th
       2-10 

The unmodified SWT should be used when ( )
th

      . In this study, an averaging method, 

similar to the ones explained in Araújo and Nowell (2002) was employed. 
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2.4 Fretting fatigue analysis using fracture mechanics and mixed approaches 

A short crack fretting fatigue analysis was presented in Araújo and Nowell (1999). According to 

this study, cracks initiate quickly at the surface due to high stress gradients in fretting fatigue 

problems. However, they may arrest if the far-field stresses are small. A Kitagawa-Takahashi 

diagram as shown in Figure 2-10 was employed in this study. Based on this work, the threshold 

stress range below which crack propagation does not occur starts from zero for very small cracks 

and increases to a constant value. It should be noted, however, that the stress range should be more 

than the fatigue limit for the cracks to grow (see Figure 2-10 (b)). Based on this work, the threshold 

stress intensity factor range for long cracks can be calculated as: 

0 01.12 flK b  =     2-11 

where σfl is the constant amplitude fatigue threshold and b0 is the critical crack length that defines 

the boundary between a short and a long crack. 

 

Figure 2-10 K-T diagram (Araújo and Nowell 1999). 

The methods discussed so far were based on crack initiation or propagation. Considering the effect 

of both phases in fretting fatigue life prediction was discussed in (Navarro et al. 2008). This study 

first compares results using the previously developed methods based on multiaxial stress analysis. 

Following this, it considers the effect of crack propagation as well and argues that considering 

both phases is required for fretting fatigue life prediction. This paper presents a new method for 

considering both phases. In this work, the rate of crack initiation and propagation is compared at 

different crack lengths (see Figure 2-11). The critical crack length at which crack propagation 

governs is then determined and the rest of the analysis is done with that crack length and the crack 



22 

 

propagation model. Linear elastic fracture mechanics and the Paris-Erdogan law are used for crack 

propagation calculation in this study. For crack initiation, SWT and FS parameters are used. It is 

found that the results based on all of the multiaxial stress parameters are relatively close. 

 

Figure 2-11 Variable crack initiation length concept (Navarro et al. 2008). 

Fouvry and Kubiak (2009) employed mixed crack initiation and short crack arrest to predict if a 

fretting failure occurs. Based on their work, three different regions can be defined (see Figure 

2-12): a region in which no crack initiation occurs, another region in which cracks initiate but do 

not propagate, and another region where cracks initiate and propagate and failure occurs. In this 

work, multiaxial stress parameters were employed for crack initiation, and the well-known 

Kitagawa-Takahashi method was employed for short crack arrest evaluation. 
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Figure 2-12 Crack nucleation – arrest fretting map (Fouvry and Kubiak 2009). 

Asai (2014) identified two stages of crack growth in fretting fatigue problems. Based on this work, 

cracks initiate at some angle 𝜃1 to the axis perpendicular to the contact surface (see Figure 2-13). 

Then a mixed mode regime was seen at a steeper angle. Finally, the cracks continue to propagate 

in Mode I, perpendicular to the contact surface. Several tests are reported. Most of the crack arrests 

were seen in Stage 2 shown in Figure 2-13. 
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Figure 2-13 Stages of fretting fatigue crack growth (Asai 2014). 

2.5 Calculation of critical parameters at the contact points between a cable and a saddle 

The critical parameters at the contact points between a cable and a saddle are the contact force, the 

slip displacement, and the normal stress range. Several studies were performed on this topic by 

researchers at TU Berlin (Mohareb et al. 2016, Mohareb et al. 2017, Mohareb 2020). The following 

paragraphs summarize the work performed in these studies. 

2.5.1 The axial force of the cable 

Due to the frictional loss between a cable and a saddle, the load applied to the cable end is not 

equal to the axial force of the cable along the saddle. During the loading phase of the cable, the 

axial force of a cable over a saddle at the central angle 𝜃 (defined in Figure 2-14) can be determined 

based on the (Eytelwein 1808) principle as follows (Mohareb et al. 2017): 

𝑆𝐿(𝜃) = 𝑆𝑚𝑎𝑥 ∙ 𝑒
−𝜇∙𝜃 2-12 

where 𝑆𝑚𝑎𝑥 is the applied axial load to the cable during the loading, 𝜇 is the COF, and 𝑆𝐿(𝜃) is 

the axial force of the cable at the central angle 𝜃 during the loading phase. 

During the unloading phase, due to the frictional force, the axial force of the cable is higher along 

the saddle in comparison with at the end of the cable. In this phase, the axial force can be 

determined as follows (Mohareb et al. 2017): 

𝑆𝑈(𝜃) = 𝑆𝑚𝑖𝑛 ∙ 𝑒
𝜇∙𝜃 2-13 
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in which 𝑆𝑚𝑖𝑛 is the axial force at the cable end and 𝑆𝑈(𝜃) is the axial force of the cable at the 

central angle 𝜃 during the unloading phase. It should be noted that the load in the unloading phase 

cannot be higher than the load in the loading phase. Active and idle zones can be defined for a 

cable bent over a saddle. There is slip displacement and therefore a stress range in the active region 

(see Figure 2-14). The border of the two zones, as defined by the angle 𝜃𝑎𝑐𝑡𝑖𝑣𝑒, can be determined 

by setting Equation 2-12 equal to Equation 2-13. The simplified equation for calculating 𝜃𝑎𝑐𝑡𝑖𝑣𝑒 is 

as follows (Mohareb et al. 2017): 

𝜃𝑎𝑐𝑡𝑖𝑣𝑒 =

ln (√
𝑆𝑚𝑎𝑥
𝑆𝑚𝑖𝑛

 )

𝜇
 

2-14 

 

 

 

(Note: θ in thesis text = ϑ in this figure.) 

Figure 2-14 Active and idle zones for a cable bent over a saddle (Mohareb et al. 2018) 

2.5.2 Slip displacement 

Mohareb (2020) derived the following equation for the relative displacement between a cable 

cyclically loaded over a saddle at the central angle 𝜃 (See Figure 2-14) in the active region: 
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∆(𝜃) =
𝑅

𝐸 ∙ 𝜇 ∙ 𝐴
∙ (𝑆𝑚𝑎𝑥 ∙ (𝑒

−𝜇∙𝜃 −√
𝑆𝑚𝑖𝑛
𝑆𝑚𝑎𝑥

) + 𝑆𝑚𝑖𝑛 ∙ (𝑒
𝜇∙𝜃 −√

𝑆𝑚𝑎𝑥
𝑆𝑚𝑖𝑛

)) 2-15 

where R is the radius of the saddle, E is the elastic modulus of the cable, A is the cross-section area 

of the cable, 𝜇 is the coefficient of friction between the cable and the saddle, 𝑆𝑚𝑎𝑥 is the maximum 

axial force, and 𝑆𝑚𝑖𝑛 is the minimum axial force. Looking at this equation, it can be seen that the 

maximum slip displacement occurs at 𝜃 = 0 and can be calculated as follows: 

∆=
𝑅

𝐸 ∙ 𝜇 ∙ 𝐴
∙ (𝑆𝑚𝑎𝑥 ∙ (1 − √

𝑆𝑚𝑖𝑛
𝑆𝑚𝑎𝑥

) + 𝑆𝑚𝑖𝑛 ∙ (1 − √
𝑆𝑚𝑎𝑥
𝑆𝑚𝑖𝑛

)) 2-16 

2.5.3 Contact force 

The Barlow equation is the main equation used for calculating the contact force in this problem. 

According to this equation, the contact pressure between a rope over a saddle can be calculated as 

follows (Mohareb et al. 2017): 

𝑞 =
𝑆

𝑅
 2-17 

Where q is the contact pressure (Pa), S is the axial force (N) of the rope and R is the radius (m) of 

the saddle. For a cable bent over a saddle, due to the twisting angle of the outer wires, the cable is 

in contact with the saddle at discrete points. The force at each contact point can be calculated using 

the following equation (Mohareb et al. 2017): 

𝐹𝑝 =
𝑆

𝑅
∙
𝑙

𝑛𝑜𝑢𝑡
 2-18 

where 𝑙 is the lay length of the cable, and 𝑛𝑜𝑢𝑡 is the number of outer wires in a cable. The lay 

angle is the length required for an outer wire to completely rotate around the central wire (see 

Figure 2-15). 
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Figure 2-15 Geometric parameters of a cable. 

One issue with using these equations is they assume there is uniform contact pressure between the 

cable and saddle over the entire contact surface. However, several studies show there is a non-

uniform region at the point where the cable first meets the saddle, and the results of these equations 

are not accurate at the first few contact points (Molkow 1982, Wiek 1982, Feyrer 2007). 

2.5.4 Stress range 

Another parameter that affects the fretting fatigue life of the cable is the remote or normal stress 

range of the wire. This stress range consists of the normal stress due to the axial force of the cable 

and the stress caused by bending the cable over the saddle. The normal stress due to the axial force 

of the cable can be calculated using the following equation (Mohareb 2020): 

𝜎𝑇𝑖 =

𝐸𝑖𝑐𝑜𝑠
2(𝛼𝑖)

1 + 𝜈 ∙ sin2(𝛼𝑖)

∑
𝐸𝑗𝐴𝑗 cos

3(𝛼𝑗) 

1 + 𝜈 ∙ sin2(𝛼𝑖)
𝑛
𝑗=1

𝑆 2-19 

where 𝐸𝑗 and 𝐴𝑗 are the elastic modulus and area of each wire, 𝜈 is the Poisson’s ratio, 𝛼𝑗 is the 

lay angle of each wire, and S is the axial load applied to the cable. 

The bending stress due to the bending of the cable over the saddle can be calculated using the 

difference between the curvature of the outer wire before and after bending the cable over the 

saddle. The curvature of the wire before bending can be calculated using the following equation 

(Feyrer 2007, Mohareb et al. 2020): 



28 

 

1

𝜌
=
sin2(𝛼)

𝑟𝑤
 2-20 

where 𝑟𝑤 is the helix radius of the cable shown in Figure 2-15 and 𝛼 is the lay angle of the cable. 

Figure 2-16 shows the geometry parameters of an outer wire of a cable bent over a saddle. The 

curvature after twisting can be calculated using the following equation (Feyrer 2007): 

1

𝜌
=
(𝑥′2 + 𝑦′2 + 𝑧′2) ∙ (𝑥"2 + 𝑦"2 + 𝑧"2) − (𝑥′ ∙ 𝑥" + 𝑦′ ∙ 𝑦" + 𝑧′ ∙ 𝑧")

(𝑥′2 + 𝑦′2 + 𝑧′2)3
 2-21 

The parametric equation of the outer wire is required to determine the parameters required in 

Equation 2-21. The parametric equation of a cable outer wire bent over a saddle can be written as 

follows (Feyrer 2007): 

𝑥 = −𝑟𝑤 ∙  sin (𝜑) 2-22 

𝑦 =
𝐷

2
∙ cos(𝜃) + 𝑟𝑤 ∙ cos (𝜑) ∙ cos (𝜃) 2-23 

𝑧 =
𝐷

2
∙ sin(𝜃) + 𝑟𝑤 ∙ cos (𝜑) ∙ sin (𝜃) 2-24 
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Figure 2-16 Geometric parameters for the outer wire of a cable bent over a saddle (based on 

Schiffner (1986)). 

A simpler equation for determining the curvature is presented in (Wiek 1976, Hobbs and Nabijou 

1995). Based on these studies, the curvature of an outer wire of a bent cable can be determined 

using the following equation: 

1

𝜌
=
(𝐺 − 𝐻)

1
2

𝑄
 2-25 

where: 

𝐺 = 1 + 𝑐 ∙ cot2(𝛼){4𝑐 + 2𝑐𝑜𝑠(𝜑) − 2𝑐 ∙ cos2(𝜑) + 𝑐 ∙ cot2(𝛼)(1 + 𝑐 ∙ cos(𝜑))2 2-26 

𝐻 =
𝑐2 ∙ cot4(𝛼) ∙ sin2(𝜑)(1 + 𝑐 ∙ cos(𝜑))2

1 + cot2(𝛼)(1 + 𝑐 ∙ cos(𝜑))2
 

2-27 

𝑄 = 𝑟{1 + cot2(𝛼)(1 + 𝑐 ∙ cos(𝜑))2} 2-28 
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where 𝑟 is the helix radius of the wire in the strand and c is equal to the ratio of helix radius to the 

saddle radius (𝑟/𝑅). 

The bending stress of the outer wire can be calculated using the following equation: 

𝜎𝑏 = 𝑟 ∙ 𝐸 ∙ (
1

𝜌1
−

1

𝜌𝑜
) 

where 
1

𝜌1
 is the curvature of the outer wire after bending the cable over the saddle, and 

1

𝜌𝑜
 is the 

curvature of the outer wire when the cable is over a straight surface. 

2.6 Fretting fatigue tests of high-strength steel cables in air and corrosive environments 

This section summarizes several studies on fretting fatigue tests of bridge cables. It should be noted 

that these works study the “interwire” fretting fatigue performance of the cables, and not fretting 

fatigue between a cable and a saddle system. 

Perier et al. (2009) evaluated the interwire fretting fatigue behaviour of bridge cables considering 

the effect of corrosion. In this study, wire specimens were in contact with other wires in a solution 

of NaCl. Figure 2-17 (a and b) shows the test setup. Steel wires with an ultimate tensile strength 

of 1860 MPa were used in this study. Several tests were done to evaluate the effect of lubrication 

and galvanization on the fretting fatigue life of the wires. The fretting fatigue tests were done at a 

mean stress of 600 MPa. Based on the results of this study, the fretting fatigue endurance limit was 

found to be 250 MPa for lubricated, 170 MPa for galvanized wires, and 100 MPa for bright wires. 

Figure 2-17 (c) shows the fretting fatigue test results of this study. Figure 2-17 (d and e) shows the 

fracture surface for tests performed in air and in NaCl solution respectively. 
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Figure 2-17 Interwire fretting fatigue tests presented in Perier et al. (2009), schematic view of 

test setup (a), test setup (b), fretting fatigue test results (c), failed wire in air (d) and corrosive 

environment (e). 

Winkler et al. (2015) evaluated the fretting fatigue behaviour of high-strength steel strands under 

bending loading. Several tests were performed and the interwire relative displacement was 

measured using the DIC technique. Interwire movements ranging from 30 to 55 µm were recorded. 

The maximum fretting fatigue life was at a relative displacement of 30 µm (~ 3 million cycles), 

and the minimum fatigue life was at 55 µm (~ 70 thousand cycles). 
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Guo et al. (2020) evaluated the interwire fretting fatigue behaviour of bridge cables. A schematic 

view of the test concept and setup is shown in Figure 2-18 (a, b, and c).  In this study, fretting 

fatigue tests were performed using three displacement ranges of 0.44, 0.66, and 0.88 mm and two 

contact forces of 60 and 120 N. Based on the results of these tests, the fretting fatigue life decreases 

with an increase in contact force and displacement range (see Figure 2-18 (d)). However, it should 

be noted that the higher displacement range is associated with a higher stress range. Therefore, it 

is not certain that the decrease in fatigue life is only due to the increase in slip displacement. In 

this paper, wear scars on the wires were measured during the tests using a white light 

interferometer. 

 

Figure 2-18 Interwire fretting fatigue tests presented in Guo et al. (2020). 

Liu et al. (2020) employed NaCl solution and an accelerated corrosion assembly to evaluate the 

interwire fretting fatigue behaviour of bridge stay cables in corrosive environments. It seems that 
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the setup previously used in Guo et al. (2020) was adapted to include an accelerated corrosion 

assembly. Several current intensities were employed to evaluate the effect of corrosion on fretting 

fatigue life. It was shown that the fretting fatigue life decreases with an increase in the current 

intensity or in other words the corrosion severity. 

2.7 Studies on saddle systems at TU Berlin 

A series of fretting fatigue tests of saddle systems was undertaken at TU Berlin. First, a full-scale 

saddle system as shown in Figure 2-19 was tested to evaluate the fretting fatigue performance of 

cables (Schlaich et al. 2010). Fifty-five strands were used in these tests. The tests were performed 

according to the recommendation of (fib 2005). According to these standards, the cables were 

cycled at maximum stress of 45% GUTS, guaranteed ultimate tensile strength, with a stress range 

of 200 MPa. Following the fatigue tests, the strands were loaded statically to failure. The first 

strand failed at 96.7% GUTS, and the average tensile capacity of the strands was 99% GUTS. 

According to (fib 2005), the tensile capacity should be at least 95% GUTS after the fatigue tests. 

Therefore, the system passed the requirements of (fib 2005). 

 

Figure 2-19 Full-scale fretting fatigue tests of saddle systems at TU Berlin (Schlaich et al. 2010). 

The full-scale tests were found to be costly and time-consuming. Therefore, a reduced-scale test 

setup with smaller dimensions was designed and used for further studies on this topic. Figure 2-20 

shows this test setup to evaluate the fretting fatigue behaviour of cables in saddle systems. This 
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setup consisted of a steel saddle, which enabled tests to be done at three saddle radii of 500, 1000, 

and 1500 mm. Three strands can be tested at each radius simultaneously. The load is applied using 

a single actuator at the center and is monitored at the ends of the cables. 

  

Figure 2-20 Reduced-scale fretting fatigue test at TU Berlin (Schlaich et al. 2012). 

In this study, two tests at saddle radius of 1000 mm, and one test each at radii of 500 and 1500 mm 

were done. These tests were again performed according to the recommendation of (fib 2005). The 

cables were cycled at a maximum stress range of 45% GUTS with a stress range of 200 MPa. The 

results of these tests are summarized in Figure 2-21. Interestingly, the shortest fatigue life occurred 

at the 1000 mm radius. The fretting fatigue life was higher at the saddle radius of 500 mm, and no 

failure was observed at the saddle radius of 1500 mm up to 2 million cycles. It should be noted 

that different critical parameters, specifically contact force and slip displacement, work against 

each other when the saddle radius increases. A smaller saddle radius is associated with a higher 

contact force and a smaller slip displacement. 
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Figure 2-21 Fretting fatigue test results at TU Berlin (Schlaich et al. 2016). 

Following this experimental work, a fretting fatigue analysis of this system was performed and 

presented at the IABSE conference (Mohareb et al. 2017). In this study, the critical parameters at 

the contact points were determined based on the methods previously discussed in Section 2.5 and 

were used as input parameters for an interface model of a cable over a saddle (see Figure 2-22). 

This study employed multiaxial stress analysis based on the SWT parameter to determine the 

fretting fatigue life of the cables. It also discusses the possibility of using the approach proposed 

by Ding et al. (2010) to consider the effect of wear. However, given that wear constants for the 

method presented in Ding et al. (2010) cannot be easily found in the literature, a trial-and-error 

approach was used to show how this parameter can improve fretting fatigue life predictions. 
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Figure 2-22 Interface model of a cable over a saddle (Walbridge et al. 2017). 
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2.8 Fretting fatigue test setups 

Several fretting fatigue test setups varying in scale have been employed in different engineering 

fields to evaluate the fretting fatigue behaviour of components. In this part, three different test 

setups employed at different universities are described and discussed. 

2.8.1 Fretting fatigue test setup at Ghent University 

Figure 2-23 shows a schematic view of a fretting fatigue test setup developed by researchers at 

Ghent University in Belgium (Hojjati-Talemi 2014). In this setup, a 100 kN hydraulic cylinder is 

used to apply cyclic loads to dog bone specimens. A fretting fatigue fixture is used to hold the pads 

and apply the contact force to the specimens. The pads are fixed to two elastic frames. These 

frames are designed to be horizontally flexible. A 10 kN servo-hydraulic actuator installed on a C-

beam is used to apply the lateral contact force. The C-beam is installed on low friction material, 

allowing it to move freely in the horizontal direction to ensure that the normal forces are equal and 

there is no bending in the specimens. 

 

 

Figure 2-23 Fretting fatigue test setup developed at Ghent University (Hojjati-Talemi 2014). 
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2.8.2 Fretting fatigue test setup at Purdue University 

Figure 2-24 shows a schematic view of a test setup developed at Purdue University (Gean 2008, 

Srinivasan et al. 2009). The cyclic load is applied by a hydraulic cylinder to dog bone specimens. 

The cyclic load is applied at the bottom cross-head and the top cross-head is fixed. There are two 

load cells at the bottom and at the top crosshead to measure the difference between the cyclic load 

at the top and bottom of the specimens. The pads are held with a fretting fatigue fixture that is 

shown in Figure 2-24. The contact force is applied by two hydraulic actuators on the left and right 

sides of the pad holders. Washer load cells have been used on the through-rods to measure the 

applied contact force. As with the Ghent setup, the stiffness of the fretting fatigue chassis is low 

in the horizontal direction but high in the vertical direction to transfer the high tangential loads 

because of friction in the contact area. The normal load transfer rate is measured to be greater than 

95%. 

  

Figure 2-24 Fretting fatigue test setup developed at Purdue University (Srinivasan et al. 2009). 
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2.8.3 Fretting fatigue test setup at University of Brasilia 

Figure 2-25 shows a newer fretting fatigue test setup developed recently at the University of 

Brasilia (Matos et al. 2020, Araújo et al. 2020). It employs similar concepts to the two setups 

described in the previous sections. It is noteworthy for having been developed specifically to study 

the problem of inter-wire fretting in cables. 

 

Figure 2-25 Fretting fatigue test setup developed at the University of Brasilia (Araújo et al. 

2020). 
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2.9 Summary 

This chapter first went over the fretting fatigue phenomenon and the effective parameters that 

affect the fretting fatigue behaviour of contacting components. Based on the literature, the most 

important parameters are contact force, slip displacement, normal stress, and surface material 

properties including coefficient of friction between the contacting components, surface hardness, 

etc. Corrosion also was found to be another factor that can play a role in fretting fatigue failures 

and needs to be considered when the components are used in corrosive environments. This chapter 

then went over different crack initiation and crack propagation approaches to determine the fretting 

fatigue life of components. High stress gradients seem to be a major challenge when initiation 

criteria are being used. Short crack arrest and size effects add another level of complexity to the 

fretting fatigue problems. Different approaches including averaging over a volume/surface/line 

have been employed to overcome these issues. Theory of critical distance with and without mesh 

control and considering a coarse mesh size are other approaches to consider the effect of high 

stress gradients in fretting fatigue problems. It seems that some sort of calibration is required with 

all of these methods and the efforts to relate the parameters of these methods to material properties 

or microstructure (e.g., grain size) have not yet been completely successful. Crack propagation 

approaches using linear elastic fracture mechanics also have been employed in several studies to 

evaluate the fretting fatigue problems. These approaches have been used with and without crack 

initiation criteria. When it comes to fretting fatigue analysis of cable wires, very little can be found 

in the literature on their behaviour in contact with saddles. However, several works can be found 

on interwire fretting fatigue of mine ropes and bridge cables. The works on fretting fatigue analysis 

of cables at saddle supports are limited to full-scale or large-scale tests which are time-consuming 

and costly. Given the fact that the fretting fatigue failures of bridge cables are a major design 

consideration for saddle systems, a number of studies are required on this topic to evaluate the 

fretting fatigue performance of cables at saddle supports both numerically and experimentally. 
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3. Fretting Fatigue Analysis of Bridge Stay Cables 

at Saddle Supports 



42 

 

As discussed in the previous chapter, several methods can be used to determine the fretting fatigue 

life of components. As the radius of the cable wires is typically small, most of the fatigue life can 

be attributed to the crack initiation phase. Therefore, employing a crack initiation criterion was 

found to be a reasonable assumption. In this work, a multiaxial stress analysis approach employing 

the SWT parameter is employed. This chapter starts with presenting the framework used to 

determine the fretting fatigue life of bridge stay cables at saddle supports. Each part of the 

framework is then discussed in more detail. To show how this approach works, the parameters and 

geometry of the fretting fatigue tests at TU Berlin (Schlaich et al. 2016) are used as an example. 

3.1 Deterministic framework for evaluating fretting fatigue life 

The procedure used herein to evaluate the fretting fatigue life of bridge stay cables is as follows: 

1. Calculate critical parameters (slip displacements, contact forces, and normal stresses) in 

the contact area, given the saddle geometry and the load. 

2. Determine Coffin-Manson material parameters (σ'f, ε'f, b, c) through fatigue tests on the 

wire material or using an empirical model from the literature. 

3. Use FE analysis and the critical planes method to find the SWT parameter. 

4. Determine fatigue life using the peak value of the SWT parameter obtained in Step 3 and 

Coffin-Manson material parameters from Step 2. 

This procedure is shown graphically in Figure 3-1, and more details concerning each part of this 

framework are presented in the following sections. 

 

Figure 3-1 Deterministic framework for evaluating fretting fatigue life. 
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3.2 The geometry of the saddle and cable 

Figure 3-2 shows a schematic view of a cable over a saddle. Discrete contact points between the 

cable and the saddle can be seen in this figure. The saddle radius is the main geometric parameter 

of the saddle. The cable is made of a central wire and six wires twisting around the central wire. 

One of the main properties of a cable is the lay length, which is equal to the length required for an 

outer wire to completely rotate around the central wire (see Figure 3-3). This property of the cable 

can also be reported in terms of an angle, called lay angle, determined as follows: 

𝛼 =
2𝜋𝑟

ℎ
 

3-1 

 

 

Figure 3-2 Schematic view of a cable over a saddle. 

 

Figure 3-3 Lay angle and lay length of a cable. 
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3.3 Determination of critical parameters at contact points 

The critical parameters at the contact points, required to determine the fretting fatigue life of the 

bridge stay cables, are contact force, normal stress, and slip displacement. These critical 

parameters are the inputs for the FE model of a single contact point between the cable and the 

saddle. Details on calculating these parameters can be found in Mohareb et al. (2016) and Mohareb 

et al. (2017). These studies are summarized in Chapter 2. In these studies, closed-form equations 

are established for each parameter, considering the mechanics of the problem of a strand with non-

zero flexural stiffness draped over a cable and subjected to a tensile force. The flexural stiffness 

of the strand is taken into consideration in this analysis, as well as the effects of friction between 

the saddle and the cable. The critical parameters are functions of the loading, material properties, 

coefficient of friction (COF), and geometry of the cable and the saddle. There are two possible 

issues with the closed-form equations. First, these equations are based on the Barlow equation and 

assume a continuous contact between the saddle and the cable. However, the cable and the saddle 

are in contact at discrete points (as shown in Figure 3-2). Second, several works have shown that 

there is a nonuniform region for the contact pressure at the region where the cable first meets the 

saddle (Wiek 1982, Molkow 1983, Feyrer 2007). The effect of this nonuniform region on the 

critical parameters cannot be simply considered with the closed-form equations. Therefore, it is 

required to evaluate the accuracy of the closed-form equations in the nonuniform region at the first 

contact points. Mohareb et al. (2020) employed a 2D FE model to evaluate the accuracy of the 

closed-form equations for the contact force. In this FE model, the cable was modelled as a band 

and the saddle was modelled as rigid arches. The band had the same bending stiffness as the 

bending stiffness of the cable. This model was used for contact force evaluation at the contact 

points. The area of the band, however, was not equal to the area of the cable. The area of the cable 

is one of the parameters that affect the slip displacement at the contact points. Therefore, this same 

model could not be used for slip displacement evaluation. 

For the current study, all the methods based on the closed-form equations were implemented in an 

Excel spreadsheet. Also, a new 2D FE model with a band with a similar area and bending stiffness 

of the cable was used to evaluate contact forces and slip displacements. The main difference 

between this model and the model previously developed in Mohareb et al. (2020) is that the band 

has the same area as the area of the cable in this model. Therefore, this model could be used for 
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slip displacement evaluation. In the following sections, first, the 2D FE model is discussed. Then 

the results of the 2D FE model are compared with closed-form equations in the literature. 

3.3.1 2D FE model of a cable over the saddle 

The FE program ABAQUS was used to formulate this problem. Figure 3-4 shows the 2D FE model 

of the cable over the saddle. The cable was modelled as a band with a cross-section that has the 

same area and bending stiffness as the cable. To get discrete contact points instead of continuous 

contact, the saddle was modelled as a series of rigid arches. The radius of these arches was equal 

to the curvature of the outer wire of the cable when the cable is on a straight surface (R = 230.4 

mm). Three different saddle radii of 500, 1000, 1500 mm were modelled, similar to the saddle 

radii of the tests at TU Berlin. The length of the band was three times the radius of the saddle. The 

band was fixed at one end above the center of the saddle and the load was applied to the band at 

the other end. Four node plane stress quadrilateral (CPS4R) elements with an approximate size of 

1 × 1 mm were used for meshing the band. Hard contact along with a penalty method was used to 

model the normal contact behaviour. Different coefficients of friction, COFs, namely: 0.2, 0.4, 0.6, 

and 0.8 were used to evaluate the effect of the COF on the results. The friction was imposed with 

the penalty algorithm in ABAQUS. Based on the design stress specified in (fib 2005), the cable 

was cycled between a maximum load of 126 kN (837 MPa) and a minimum load of 96 kN (637 

MPa). This load was applied to the band in two steps and was distributed between the nodes at the 

end of the band. Given the changes in the geometry and the COF, a Python script was written to 

make the FE models, run them and save the results. 
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Figure 3-4 2D FE model of a cable bent over a saddle. 

3.3.2 Slip displacements 

Slip displacement at the central angle 𝜃 can be calculated as follows (Mohareb 2020): 

∆(𝜃) =
𝑅

𝐸 ∙ 𝜇 ∙ 𝐴
∙ (𝑆𝑚𝑎𝑥 ∙ (𝑒

−𝜇∙𝜃 −√
𝑆𝑚𝑖𝑛
𝑆𝑚𝑎𝑥

) + 𝑆𝑚𝑖𝑛 ∙ (𝑒
𝜇∙𝜃 −√

𝑆𝑚𝑎𝑥
𝑆𝑚𝑖𝑛

)) 3-2 

where 𝑅 is the radius of the saddle, 𝜇 is the COF between the cable and the saddle, 𝐸 is the elastic 

modulus of the cable, 𝐴 is the area of the cable. 𝑆𝑚𝑎𝑥 is the maximum cable axial force, 126 kN, 

and 𝑆𝑚𝑖𝑛 is the minimum cable axial force, 96 kN. It should be noted that the saddle can be divided 

into two parts: an active region and a non-active region where there is no displacement. 𝜃𝑎𝑐𝑡𝑖𝑣𝑒 

can be determined as follows (Mohareb 2020): 
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𝜃𝑎𝑐𝑡𝑖𝑣𝑒 =

ln (√
𝑆𝑚𝑎𝑥
𝑆𝑚𝑖𝑛

 )

𝜇
 

3-3 

The results of Equation 3-2 are compared with the FE model results for three different saddle radii 

of 500, 1000, 1500 mm and COFs of 0.2, 0.4, 0.6, 0.8 in Figure 3-5 to Figure 3-8. First, it can be 

seen that the number of points in the active region, where slip occurs, increases with an increase 

in the saddle radius or a decrease in the COF as the frictional force decreases in these cases. The 

results of the FE model are close to the results of Equation 3-2, especially for the cases with high 

saddle radius and low COF. However, the difference gets higher for the cases with higher COF 

and lower saddle radii. The maximum difference in slip displacement results was 0.02 mm. 

Typically, the saddle radius of real bridges is greater than 500 mm. The results of the analytical 

equations and the FE model were closer for saddle radii in this range. All in all, this comparison 

shows that employing Equation 3-2 is conservative (in the sense that it slightly overestimates slip) 

for the first contact points, where fretting fatigue failure occurs. 

 

Figure 3-5 Slip displacement results for a COF of 0.2. 
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Figure 3-6 Slip displacement results for a COF of 0.4. 

 

Figure 3-7 Slip displacement results for a COF of 0.6. 
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Figure 3-8 Slip displacement results for a COF of 0.8. 

3.3.3 Contact force evaluation 

The closed-form equation developed for the contact force is as follows (Mohareb et al. 2017): 

𝐹 =
𝑆 ∙ 𝑙

𝑅 ∙ 𝑛
 3-4 

where 𝑆 is the cable axial load, 𝑙 is the lay length of the wire, R is the saddle radius, and 𝑛 is the 

number of outer wires. 𝑙 and 𝑛 for the studied cable are 216 mm and 6 respectively. During the 

loading, 𝑆 at the central angel 𝜃 can be determined based on the loading and the COF as follows: 

𝑆𝐿(𝜃) = 𝑆𝑚𝑎𝑥 ∙ 𝑒
−𝜇∙𝜃 3-5 

where 𝑆𝑚𝑎𝑥 is the maximum axial load, and 𝜇 is the COF. 

The results of these equations and the FE model for three different saddle radii of 500, 1000, and 

1500 mm and COFs of 0.2, 0.4, 0.6, and 0.8 are shown in Figure 3-9 to Figure 3-12. It should be 

noted that only the point in the active region, where slip occurs, and stress range exists are shown 

in these figures. The actual number of contact points is a function of saddle radii and the lay angle 

of the cables and is not a function of COF. First, it can be seen that the contact force constantly 
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decreases along the saddle in the uniform region as the axial force of the cable decreases (see 

Equations 3-4 and 3-5). Comparing the results for different saddle radii shows the contact force 

increases with a decrease in saddle radius, looking at Equation 3-4, the contact force is seen to be 

proportionate to the inverse of the saddle radius. Comparing the results of the FE model with the 

closed-form equation shows the results in the nonuniform region, where the cable first meets the 

saddle, are fluctuating around the results of the analytical equations. However, in the uniform 

region, the results are very close. The second contact force was found to be critical based on the 

FE analysis. In the nonuniform region, at the first contact points, the difference between the contact 

forces from the FE model and the analytical solution was lower than 12% in all cases. The 

maximum difference was 7%, 9%, and 12% for saddle radii of 500, 1000, and 1500 mm 

respectively. In the uniform region, the difference was lower than 1% in all cases.  

 

Figure 3-9 Contact force distribution for a COF of 0.2. 
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Figure 3-10 Contact force distribution for a COF of 0.4. 

 

Figure 3-11 Contact force distribution for a COF of 0.6. 



52 

 

 

Figure 3-12 Contact force distribution for a COF of 0.8. 

3.4 Fatigue parameters estimation 

The Coffin-Manson parameters required for fatigue life determination can be determined using 

two methods: first, based on fatigue results of fully reversed tests (R = -1) with smooth specimens; 

second, using empirical equations in the literature, which are based on ultimate tensile strength, 

hardness or other more easily obtained properties of the material. 

3.4.1 Estimating Coffin-Manson parameters based on fatigue tests 

Coffin-Manson parameters required for fatigue life determination can be determined as follows 

(Roessle and Khosrovaneh 1999, Yu et al. 1991, Dowling 1998): The fatigue strength coefficient 

(𝜎𝑓
′) and fatigue strength exponent (b) are the intercept and slope of the best-fit line of the stress 

amplitude (
∆𝜎

2
) versus the number of reversals (2·Nf) data when plotted in a log-log scale: 

𝛥𝜎

2
= 𝜎𝑓

′ ∙ (2 ∙ 𝑁𝑓)
𝑏
 

3-6 
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Dividing both sides by elastic modulus, E, results in an elastic strain range (
∆𝜀𝑒

2
) versus the number 

of reversals (2·Nf ) relationship: 

𝛥𝜀𝑒
2
=
𝜎𝑓
′

𝐸
∙ (2 ∙ 𝑁𝑓 )

𝑏
 

3-7 

The fatigue ductility coefficient (𝜀𝑓
′ ) and fatigue ductility exponent (c) are the intercept and slope 

of the best-fit line of the plastic strain amplitude (
∆𝜀𝑝

2
) versus the number of reversals (2·Nf) data 

when plotted in log-log scale: 

𝛥𝜀𝑝
2
= 𝜀𝑓

′ ∙ (2 ∙ 𝑁𝑓)
𝑐
 

3-8 

3.4.2 Closed-form equations in the literature 

If the stress-life data of a particular material is not available, then the Coffin-Manson constants 

may be estimated using one of the several empirical equations available in the literature relating 

these parameters to more easily obtained information such as the material ultimate tensile strength 

(𝜎u), hardness (HB), and fracture strain (𝜀𝑓) (see Table 3-1). 

Table 3-1 Empirical equations for Coffin-Manson parameters of steel. 

Method/ 

Parameter 
𝜎′𝑓(𝑀𝑃𝑎) b ε'f c 

(Manson 1965) 1.9 ∙ 𝜎𝑢 -0.12 0.76 ∙ [LN (
1

1 − 𝑅𝐴
)]
0.6

 -0.6 

(Mitchell et al. 

1977) 
𝜎𝑈 + 345 

1

6
∙ LOG (

0.5 ∙ 𝜎𝑈
𝜎𝑈 + 345

) 𝜀𝑓  
-0.6 for ductile and  

-0.5 for strong steel 

(Rossele and 

Fatemi 2000) 

4.25 ∙ 𝐻𝐵
+ 225 

−0.09 
[0.32 ∙ 𝐻𝐵2 − 487 ∙ 𝐻𝐵 + 191000]

/𝐸 
−0.56 

(Meggiolaro and 

Castro 2002) 
1.5 ∙ 𝜎𝑈 −0.09 0.45 −0.59 

 

3.4.3 Estimated Coffin-Manson parameters 

In this study, fatigue tests have been done to determine the Coffin-Manson parameters. The tests 

have been done using two bridge stay cable types, one without coating and another one with 

galvanization. However, for the fatigue tests, hourglass samples of the wires were used. Therefore, 
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the galvanization layer was removed for these tests. More detail about these tests can be found in 

Chapter 5. The results of these tests are shown in Figure 3-13. The Coffin-Manson parameters 

were determined by fitting a straight line to elastic strain/reversals data and plastic strain/reversals 

data using Equations 3-7 and 3-8. The results are summarized in Table 3-2. 

 

Figure 3-13 Stress vs. the number of reversals to failure data for the studied wires. 

Table 3-2 Coffin-Manson parameters of the studied wires. 

Specimen Galvanized Bare 

Fatigue strength coefficient, 𝜎′𝑓 (MPa) 2183 2675 

Fatigue strength exponent, b -0.0657 -0.0859 

Fatigue ductility coefficient, 𝜀𝑓
′  1.99 0.2067 

Fatigue ductility exponent, c -0.8092 -0.5047 
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3.5 Fatigue life estimation method 

Fretting fatigue analysis employing multiaxial stress approaches are reviewed in several references 

(e.g. Ding et al. 2011, Araujo et al. 2002, Sum et al. 2005). (Sum et al. 2005) presented a detailed 

explanation of how the critical plane methods can be implemented using the SWT parameter, 

σmax·Δεa, where: 

SWT = ( ) ( ) ( )
2 2

max 2 2
b b c

a f f f f fN E N    
 +

    =   +     3-9 

In this expression, σmax is the maximum normal stress on the plane of interest, and Δεa is the normal 

strain amplitude (i.e. half of the strain range) on the same plane. In the critical plane analysis, 

different planes are checked, and the one with the maximum value of σmax·Δεa is taken as critical. 

For the 3-D case, the following transformations can be used: 

2 2 2

11 22 33 12 23 132 2 2x y z x y y z x zn n n n n n n n n      =  +  +  +    +    +     3-10 

2 2 2

11 22 33 12 23 13x y z x y y z x zn n n n n n n n n      =  +  +  +   +   +    3-11 

where: ( ) ( )sin sinx v hn  = −  , ( )cosy hn = , ( ) ( )sin cosz h vn  = −   

𝜃ℎ and 𝜃𝑣 are varied in 5° increments and 𝜎𝑚𝑎𝑥 · 𝛥𝜀𝑎 is calculated for each plane. Equation 3-9 is 

then solved for 𝑁𝑓 . Basically, 1296 unique planes (36×36) were evaluated to find the critical plane 

for each point. 

3.6 Finite element (FE) analysis 

3.6.1 2D FE analysis of a typical fretting fatigue problem 

To gain experience with the fretting fatigue contact problems, prior to applying these methods to 

stay cable strands draped over saddles, a first attempt was made to implement them by analyzing 

a typical fretting fatigue experiment of a cylindrical pad in contact with a flat specimen. Hills and 

Nowell (1994) presented analytical solutions for contact pressure and shear stresses at the contact 

surface of this problem and these solutions were used for comparison with the FE results. Figure 

3-14 shows the FE model used for this evaluation. 
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Figure 3-14 2D FE model of a cylindrical pad over a flat specimen. 

The 2-D mesh used in this study consisted of four node plane strain quadrilateral (CPE4R) 

elements. In the contact area, regions with fine rectangular elements were defined. The element 

width was 10 µm, and the height varied from 10 µm at the surface to 80 µm at the inside edge of 

the fine mesh region. Outside of the fine mesh regions, irregular quadrilateral elements were used. 

Friction was imposed using the Lagrangian multiplier option, with a friction coefficient of 0.8 and 

default normal behaviour. An elastic material model with an elastic modulus of 126 GPa and a 

Poisson’s ratio of 0.34 was used. The applied contact force and normal stress were 208 N and 50 

MPa respectively. 

The values of the maximum contact pressure from the FE analysis, 307 MPa, and the Hertzian 

contact pressure, 305 MPa, are close to each other. The shear stress distribution results from the 

FE analysis and analytical solution are compared in Figure 3-15. In this figure, a is the contact 

zone semi-width, x is the distance from the centre of this zone, q is the shear stress at the surface, 

and fp is the peak contact pressure. 
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Figure 3-15 Shear stress based on the analytical solution in Hills and Nowell (1994) versus FE 

model result. 

3.6.2 3D FE model of the contact point between a cable and a saddle 

An interface model for a contact point between a cable and a saddle was first presented in Mohareb 

et al. (2017). Elastic material properties were used in this model for both wire and saddle. Chehrazi 

et al. (2020) employed a similar model with plastic material properties for the saddle to consider 

the effect of plastic deformation on the saddle part. The model employed in Chehrazi et al. (2020) 

was used in the current thesis. Details of this model were as follows: the ABAQUS FE program 

was used to formulate this problem. Contact force, slip displacement, and normal stress are the 

inputs of this model. 

The FE model and the boundary conditions are shown in Figure 3-16 (a). To reduce the analysis 

time, a plane of symmetry was assumed, and to reduce the height of the saddle, a 0.5 mm thick 

stiffened layer was added at the bottom of the saddle part. This stiffened region prevents excessive 

bending of the saddle as well. The wire part is curved to model a discrete contact point, the 

curvature of the wire part is equal to the curvature of an outer wire in a cable on a straight surface. 

The curvature on the saddle part was assumed to be high enough to be ignored in the modelling. 

Tangential contact surface behaviour was controlled by the penalty method. Assuming hard 

contact in the interface, the normal contact method was imposed using the penalty method. Eight 

node linear brick elements (C3D8R) with an approximate size of 25 µm ×25 µm were used in the 
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contact surfaces of both parts. For the high-strength steel cable, a linear material model of steel 

with an elastic modulus of 200 GPa and a Poisson ratio of 0.3 was assumed. A nonlinear material 

model, elastic-perfectly plastic, of S235 steel with an elastic modulus of 200 GPa, a Poisson’s ratio 

of 0.3 and a yield stress of 500 MPa was assumed for the saddle material.  

The loading was applied in three steps. First, a small amount of contact force was applied to ensure 

the contact (specifically, a contact pressure at the bottom of the saddle part equal to 1 MPa). Then, 

the maximum contact force, axial stress range, and slip displacement associated with the loading 

phase are applied. The axial load was applied to the end of the wire and the slip displacement was 

applied by moving S1 and S3 surfaces. In the last step, the critical parameters reduce to their values 

for the unloading phase. In this step, S1 and S3 surfaces return to their original position. These 

loading steps are shown in Figure 3-16 (b). Also, it was seen that restrains on W4 and S4 surfaces 

do not significantly affect the analysis and change the results. The W3 surface was fixed in 𝑥′  and 

𝑦′ directions and it only can be moved in the 𝑧′ direction at the top. The initial increment size in 

all steps was set to 0.001. The maximum step size was set to 0.1. the number of increments varies 

based on the convergence in increments. The direct equation solver with the full newton solution 

technique implemented in ABAQUS was used for the analysis. 

The loading and unloading stages were applied in two different steps to enable the recording of 

the stress/strains at the end of each stage. The results at the end of the second (loading) and third 

(unloading) steps were used to determine the SWT parameter. Figure 3-17 shows sample results 

for the SWT parameter along the wire. The maximum value of the SWT parameter was used to 

determine the fatigue life based on Equation 3-9.  
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Figure 3-16 3D finite element model of the contact point (a), and loading steps (b) (Walbridge et 

al. 2017). 
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Figure 3-17 SWT parameter along the wire at the contact point for the first point of the saddle 

with R = 1000 mm. 

3.7 Fatigue life prediction 

The discussed framework was used to evaluate the fretting fatigue life of the cables in the tests at 

TU Berlin for different saddle radii. The analysis was done based on a COF equal to 0.7, which 

was an upper limit in the tests at TU Berlin (Mohareb 2020). The analysis was done based on the 

closed-form equations for evaluating the critical parameters. Also, Coffin-Manson parameters 

from the two-wire types tested at the University of Waterloo were employed. The fretting fatigue 

life predictions made using the 3D FE model are summarized in Figure 3-18. Looking at this figure, 

general trends are predicted reasonably using the suggested modelling framework. It can be seen 

that lower fatigue life for the saddle radius of (R = 1500 mm) is predicted. One possible explanation 

for lower prediction at this saddle radius is not considering the beneficial effect of wear. Wear was 

not modelled in the current study. An iterative process can be used to remove the elements at the 

contact surface and model the wear over time. Modelling the wear can decrease the stress 

concentration and consequently the SWT parameter. Also, wear can remove the small cracks and 

increase the fatigue life for the tests in air (Vingsbo and Soderberg 1988). The amount of slip 



61 

 

displacement and wear is higher for the tests at R = 1500. Apart from modelling the wear, it is 

believed that further refinements could lead to improved predictions, such as: using material 

properties based on tests of the actual wire material used in the fatigue tests at TU Berlin, 

evaluating the possible defect of the wires, and considering the possible effects of the thin 

galvanizing layer on the outer surface of the wire. 

 

Figure 3-18 Pilot fatigue test results versus predictions based on the analytical equations for 

determining the critical parameters. 

3.8 Fretting maps 

The current analysis procedure is complicated and very time-consuming. Each analysis takes 

around 6 to 12 hours. Therefore, it would not be practical for routine design purposes, and a simpler 

approach is required. To investigate the feasibility of using the presented framework to develop 

generalized design tools, several analyses were performed to generate fretting maps, which can be 

used for design. In fretting maps, the fatigue life or a damage parameter, e.g. SWT, is plotted 

against other critical parameters, such as the slip displacement, the normal stress or the contact 

force. Interpolation can be used with these maps to find the fatigue life for a set of new parameters. 
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To generate fretting maps in the current work for the fretting fatigue problem of a cable over a 

saddle, analyses were done for a range of contact forces and slip displacements for the first point 

of tests at TU Berlin with the saddle radius of 1000 mm. The normal stress was the same for all 

analyses (100-300 MPa). Given the uncertainties in the COF, the maps were generated for four 

different COFs of 0.2, 0.4, 0.6, and 0.8. SWT results are plotted for a range of slip displacements 

and contact forces in Figure 3-19. With these maps, the fatigue design only requires the evaluation 

of the critical parameters (e.g., contact force, slip displacement), which is much simpler for design 

purposes. With the critical parameters, the SWT parameter can be determined from the fretting 

maps. Then, the fatigue life can be determined using Equation 3-9, thus avoiding the need for a 

new FE analysis. 

These maps show a possible simplified tool for design purposes. However, these maps are only 

applicable to a single stress range (200 MPa) and mean stress. While the stress range is typically 

200 MPa for the design of saddle systems, the mean stress changes for each saddle radius. 

Therefore, more maps that cover a wide range of mean stress are required for a generalized design 

tool. Effects of coating and material properties are other parameters that require further 

investigation in order to make the fretting maps useful as a generic design tool. 

Looking at the fretting maps, it is seen that the SWT parameter increases with an increase in COF, 

slip displacement, and contact force. However, it should be noted that these parameters depend on 

each other and typically a higher COF is associated with a lower slip displacement. 
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Figure 3-19 Fretting maps. 

3.9 Wear modelling 

Large-scale fretting fatigue tests at TU Berlin showed that the volume of wear is typically higher 

at the first contact points. It was argued that wear at these points can affect the contact forces or 

slip displacements. Therefore, it was decided to use the 2D model to evaluate the possible effect 

of wear on these parameters and consequently the fretting fatigue life of the cables. 

Archard’s equation has been used in different engineering fields to determine the wear volume in 

the contact area between two contacting components. In this paper, the numerical approach of 

Archard’s equation developed by McColl et al. (2004) was used to model the wear at the contact 

points of saddle systems. Based on Archard’s equation, the wear volume can be determined using 

the following equation (Archand 1953): 



64 

 

 
𝑉

𝑆
= 𝐾 ∙

𝑃

𝐻
 3-12 

where V is the wear volume, S is the sliding distance, K is the wear coefficient, P is the contact 

force, and H is the hardness of the material. For a local point at the contact region, Archard’s law 

can be expressed by the following equation (McColl et al. 2004): 

 
𝑑ℎ

𝑑𝑠
= 𝑘1 ∙ 𝑝(𝑥) 3-13 

where 𝑘1 is the local wear coefficient, and 𝑝(𝑥) is the local contact pressure. (McColl et al. (2004) 

presented a numerical method for determining the wear depth at a point in the contact surface 

between two components. At a given point, the increment of the wear depth, ∆ℎ𝑖 , can be 

determined using the following equation: 

∆ℎ𝑖 = ∆𝑁 ∙ 𝑘1 ∙ 𝑝𝑖 ∙ 𝛿𝑖 3-14 

where 𝑝𝑖 and 𝛿𝑖 are the pressure and the slip displacement per cycle at Point i, and ∆𝑁 is the 

increment in the number of cycles. 

In this section, the 2D discrete FE model (shown in Figure 3-4) was used to evaluate the effect of 

wear on the contact force distribution between the contact points. The wear at each contact point 

was modelled by displacing the center of each arch in the 2D FE model. Equation 3-14 was used 

for wear modelling. The exact evaluation of the local wear coefficient, 𝑘1 requires wear tests that 

have not been done in this work. However, looking at Equation 3-14, ∆𝑁 ∙ 𝑘1 is similar for all the 

contact points. Thus, the contact pressure and the slip displacement are the effective parameters of 

this equation. These parameters can be employed to determine relative wear depths at the contact 

points. Therefore, instead of evaluating wear depth for each contact point independently, a relative 

wear depth, 𝑝𝑖 ∙ 𝛿𝑖, was calculated for each point. In each iteration, the wear increment was 

assigned to the point with the maximum value of 𝑝𝑖 ∙ 𝛿𝑖 and the wear depths of the other points 

were calculated based on their relative wear depth. 

A Python script was used to automate the iterative process required for this modelling procedure. 

The analysis started with a model without wear. Following each analysis, the contact forces and 

the slip displacements were stored. Then, a new FE model was created based on the results from 

the previous model. Based on the slip displacements and the contact pressures at the contact points, 

the rigid arches on the saddle part were displaced to model the wear. For each contact point, the 
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incremental wear depth was based on the relative wear and the wear increment for each iteration. 

Using this approach, the distribution of the contact forces can be determined based on the 

maximum final wear depth at the contact points (see Figure 3-20). For this approach, a wear 

increment of 0.02 mm was used and the analysis was performed until maximum wear of 0.4 mm 

at the first contact point was achieved. 

 

Figure 3-20 Wear modelling procedure. 

Evaluating the contact pressure and slip displacement at each contact point is the main task in the 

wear modelling process. The slip displacement results from the 2D FE model were used. Although 

the 2D FE model results can be used for calculating the contact forces, determining the contact 

pressure at a contact point requires a more detailed FE model. So, the interface model shown in 

Figure 3-16 was employed to determine the contact pressure for each contact force. 

Despite the higher accuracy of the 3D model, running the 3D model multiple times after each 

analysis of the 2D model is time-consuming. To overcome this issue, the contact pressure at the 

center of the contact point was determined for a few contact forces, and interpolation was used to 

find the values in between. Figure 3-21 shows the contact force vs. contact pressure results. Note 

that this is not a simple relationship due to the complex geometry (doubly-curved contact surface) 

and nonlinearity (plastic deformation of saddle material) associated with this problem. 
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Figure 3-21 Contact force versus contact pressure. 

Figure 3-22 and Figure 3-23 show the effect of wear on contact forces and the slip displacements 

for a saddle radius of 1000 mm and a COF of 0.7. (Results for COFs of 0.2, 0.4, 0.6, 0.8 and saddle 

radii of 1000 and 1500 mm are shown in Appendix A.) As can be seen, the effect of wear on slip 

displacement is not significant. However, the contact force results in the nonuniform region can 

considerably change by modelling the wear. The contact force at the first point decreases, while 

the contact force at the other points increases, especially at the second contact point. 

Contact force is a critical parameter in determining the fretting fatigue failure. The fretting fatigue 

test results at TU Berlin show that the cable usually fails at the second contact point. The contact 

force results presented in Figure 3-22 offer a possible explanation for the failure of the cables at 

the second contact point. The results of critical parameters were used with the 3D FE model of the 

contact point to determine the SWT parameter and the fretting fatigue life. SWT and fatigue life 

results based on each method are summarized in Figure 3-24 and Figure 3-25 for the saddle radii 

of 1000 mm and the COF of 0.7. As can be seen in these figures, the critical point is the second 

point when the wear is modelled. 
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Figure 3-22 Contact force results for R=1000 mm and COF=0.7. 

  

Figure 3-23 Slip displacement results for R=1000 mm and COF=0.7. 
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Figure 3-24 SWT results for R=1000 mm and COF=0.7. 

 

Figure 3-25 Fretting fatigue life results for R=1000 mm and COF=0.7. 
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4. Probabilistic Fretting Fatigue Analysis of Bridge 

Stay Cables at Saddle Supports 
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This chapter starts by presenting methods used in the current study for probabilistic fatigue 

analysis of bridge stay cables at saddle supports, namely: the Multiplicative Dimensional 

Reduction Method (M-DRM), and Monte Carlo simulation (MCS). The problem is then defined, 

and the model parameters and their statistics are discussed. Following this, different approaches 

for probabilistic analysis of the problem are discussed. Finally, the results are presented, and a 

sensitivity analysis is performed to determine the critical model parameters. 

4.1 Methods 

4.1.1 Monte Carlo simulation 

Details of MCS can be found in a number of references (e.g., Ang and Tang 1984, Melchers 1999). 

MCS is a numerical method that can be used to find the probability of failure, a histogram of a 

response, or the cumulative density function (CDF) of a response by evaluating the response 

function of interest numerous times. In each trial, a random vector is generated for the input 

variables. The response function is then evaluated with trial values for the inputs, and the 

output/result is stored. Finally, the stored results can be used to determine the probability of failure 

or other parameters of interest. A conceptual explanation of MCS is shown in Figure 4-1. In this 

figure, F(S) and F(R) are CDFs of load (solicitation) and resistance in a simple structural problem, 

and u is random number uniformly distributed between zero and one, used to generate trial values 

of S and R (solicitation and resistance) for each MCS “trial”. 

 

Figure 4-1 Conceptual explanation of MCS (Walbridge 2005). 
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The accuracy of the results from MCS increases with the number of trials. More trials are required 

when MCS is used to determine the probabilities of failure associated with rare events. For 

example, 200 trials can be reasonable when the objective is evaluating an event with a probability 

of 0.5 but it is not acceptable for evaluating an event with a probability of 0.01. In other words, 

with a low number of trials, the tails of the PDF/CDF or histogram of the output are not reliable. 

The required number of trials can be calculated as follows: 

N ≈
1

𝑃𝑓  ∙  COV
2
 4-1 

where 𝑃𝑓 is the probability of failure and COV is the coefficient of variation. As can be seen in 

Equation 4-1, the main disadvantage of MCS is the large number of trials needed for high accuracy. 

This can be very problematic when the analysis time for each trial is high (e.g., if an FE analysis 

is required in each trial). 

4.1.2 Multiplicative dimensional reduction method (M-DRM) 

There are many problems in mechanics where similar difficulties have been faced in performing 

probabilistic analysis using MCS where the complexity of the problem requires that a new FE 

analysis be performed for each trial. To address such problems, a variety of techniques have been 

developed to estimate the properties of the probabilistic distribution of interest using a much 

smaller number of trials (e.g., MCS with importance sampling). The multiplicative dimensional 

reduction method (M-DRM) is a recently developed statistical method (Zhang and Pandey 2013); 

this method has been implemented for several engineering problems (e.g., Balomenos et al. 2015, 

Raimbault et al. 2015, Balomenos and Pandey 2016). With this method, based on the analysis of 

the results of a limited number of trials, not only are statistical properties, such as mean and 

standard deviation, calculated but primary and total sensitivity analysis can also be performed 

(Zhang and Pandey 2014). Also, the PDF of the response can be determined. The main benefit of 

this method is a reduction in the number of trials required. M-DRM uses Gaussian quadratures, 

the type of which varies depending on the distribution type. These quadratures are based on the 

approximation of integrations evaluated at known Gauss points. M-DRM steps are described 

briefly in the following paragraphs. 
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In probabilistic analysis, the response function is generally a function of several input variables. 

The following equation shows the general form of a structural response based on input variables. 

𝑌 = ℎ(𝐱) 4-2 

in which Y is the structure response or analysis output (e.g., fatigue life or the SWT parameter in 

fatigue design), and x is a vector of input variables (e.g., live load, dead load, coefficient of 

friction). The probability of failure can be calculated with the following equation: 

𝑝𝑓 = ∫ 𝑓𝐱(𝐱) 𝑑𝐱

{𝑔(𝐱)≤0}

 4-3 

in which 𝑔(𝐱) is the limit state function and 𝑓𝐱(𝐱) is the joint PDF of the input variables. As 

described in the previous section, calculating 𝑝𝑓 using MCS is a time-consuming task if each trial 

is time-consuming (e.g., if FE analysis is required in each trial). In M-DRM, the response function 

is approximated using the multiplication of cut functions: 

𝑌 = ℎ(𝐱) ≈ ℎ0
1−𝑛 ∙∏ℎ𝑖(𝑥𝑖)

𝑛

𝑖=1

 
4-4 

where ℎ𝑖(𝑥𝑖), the ith cut function, is the response when all the input variables except the ith variable 

are fixed at their mean values: 

ℎ𝑖(𝑥𝑖) = ℎ(𝑐1, … , 𝑐𝑖−1, 𝑥𝑖 , 𝑐𝑖+1, … , 𝑐𝑛) 4-5 

and  ℎ0 is the response when the input variables are fixed at their mean values: 

ℎ0 = ℎ(𝑐1, 𝑐2, … , 𝑐𝑛) 4-6 

where 𝑐1, 𝑐2, … , 𝑐𝑛 are the mean values of the random variables. Based on M-DRM, the kth moment 

of the response function can be approximated as follows: 

𝐸[𝑌𝑘] = 𝐸{[ℎ(𝐱)]𝑘}  ≈ 𝐸 {[ℎ0
(1−𝑛) ∙∏ℎ𝑖(𝑥𝑖)

𝑛

𝑖=1

]

𝑘

} 4-7 

in which 𝐸[𝑌𝑘] is the kth statistical moment. If all the input variables are independent, the 

simplified version of Equation 4-7 is as follows: 
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𝐸[𝑌𝑘] ≈ ℎ0
𝑘(1−𝑛) ∙  ∏𝐸 [(ℎ𝑖(𝑥𝑖))

𝑘
]

𝑛

𝑖=1

 4-8 

Based on Equation 4-7, determining the kth moment of the response requires calculating the kth 

moment of all cut functions. The kth moment of a cut function can be calculated as follows: 

𝐸 [(ℎ𝑖(𝑥𝑖))
𝑘
] = ∫[ℎ(𝑥𝑖)]

𝑘 ∙  𝑓𝑖(𝑥𝑖)𝑑𝑥𝑖
𝑋𝑖

 4-9 

Gauss quadrature formulas can be used to simplify the numerical integration and reduce the 

analysis time: 

𝐸 [(ℎ𝑖(𝑥𝑖))
𝑘
] ≈∑𝑤𝑗 ∙ [ℎ𝑖(𝑥𝑗)]

𝑘
𝐿

𝑗=1

 4-10 

in which 𝑥𝑗 and 𝑤𝑗 are the quadrature points and the weights. 

The main objective of this method is to calculate the PDF (or CDF) of the response, which can 

then be used to perform a probabilistic analysis. The Maximum Entropy principle using fractional 

moments is used to find the most unbiased probability distribution of the response. Based on 

(Zhang and Pandey 2013), the estimated PDF of the response function is obtained as: 

𝑓𝑌̂(𝑦) = 𝑒𝑥𝑝 (−∑𝜆𝑖 ∙ 𝑦
𝛼𝑖

𝑚

𝑖=0

) 
4-11 

in which 𝛼𝑖 and 𝜆𝑖 can be found by the following optimization: 

{
 
 

 
 

𝐹𝑖𝑛𝑑 ∶  {𝛼𝑖}𝑖=1
𝑚       {𝜆𝑖}𝑖=1

𝑚

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒: 𝐼(𝝀, 𝜶) = ln

[
 
 
 
∫𝑒𝑥𝑝 (−∑𝜆𝑖 ∙ 𝑦

𝛼𝑖

𝑚

𝑖=1

)𝑑𝑦

𝑦 ]
 
 
 
+∑𝜆𝑖 ∙ 𝑀𝑌

𝛼𝑖

𝑚

𝑖=1

 

4-12 

This optimization can be done in MATLAB using a simplex search method. 

4.1.3 Verification example 

A verification example has been done to make sure that the MATLAB script for M-DRM written 

for this study works properly. This example is from Zhang and Pandey (2013). In this study, the 

bending capacity of a reinforced beam is modelled as a function of six variables. 
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𝑀𝑈(𝑿) = 𝑋1 ∙ 𝑋2 ∙ 𝑋3 −
𝑋1
2 ∙ 𝑋2

2 ∙ 𝑋4
𝑋5 ∙ 𝑋6

 
4-13 

Distributions of the random variables are listed in Table 4-1. 

Table 4-1 Statistics of the variables. 

Variable Description Distribution Units Mean COV 

𝑋1 Area of reinforcement Lognormal mm2 1260 0.2 

𝑋2 Yield stress of reinforcement Lognormal N/mm2 300 0.2 

𝑋3 Effective depth of reinforcement Lognormal mm2 770 0.2 

𝑋4 Stress–strain factor of concrete Lognormal – 0.35 0.1 

𝑋5 Compressive strength of concrete Weibull N/mm2 25 0.2 

𝑋6 Width of beam Normal mm 200 0.2 

 

Figure 4-2 compares the PDF of the bending capacity resulting from the code implemented in 

MATLAB with the results in Zhang and Pandey (2013). As can be seen, they are very close; the 

reported entropy in Zhang and Pandey (2013) is 5.9147, and in our work, is 5.9073. 
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Figure 4-2 Comparing the results of the M-DRM code implemented in MATLAB with the 

results reported in Zhang and Pandey (2013). 

4.2 Problem definition 

This work aims to evaluate the CDF of the fretting fatigue life, 𝑁𝑓, of bridge stay cables at saddle 

supports and determine the sensitivity of the fretting fatigue life to the variable parameters in the 

problem. It should be noted that the analytical/closed-form equations were used to calculate the 

critical parameters including contact force/slip displacement. Therefore, based on the previous 

chapter, the first contact point is the critical point. Figure 4-3 shows a schematic view of a cable 

over a saddle. Details of the framework used for fretting fatigue analysis of a cable over a saddle 

are discussed in Chapter 3. Here, a summary of those methods is discussed.  

As mentioned previously, a series of large-scale fretting fatigue tests were done at TU Berlin to 

evaluate the fretting fatigue life of cables at saddle supports. In this analysis, the test parameter, 
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geometry, loading, and material properties of those tests were employed and finally, the results are 

compared with the results of the tests at TU Berlin. 

Equation 4-14 was used to determine the fretting fatigue life, 𝑁𝑓 of the cables. Based on this 

equation, the fretting fatigue life of the cable can be determined based on a damage parameter, 

called SWT, and the material properties of the cable. 

𝑆𝑊𝑇 = (𝜎𝑓
′)
2
∙ (2 ∙ 𝑁𝑓)

2∙𝑏
/𝐸 + 𝜎𝑓

′ ∙ 𝜀𝑓
′ ∙ (2 ∙ 𝑁𝑓)

𝑏+𝑐
 4-14 

The output of this equation is the number of cycles to failure, 𝑁𝑓. The other parameters and their 

statistics are discussed in the following paragraphs. 

 

Figure 4-3 Schematic view of a cable over a saddle. 

4.3 Analysis parameters and their statistics 

4.3.1 SWT parameter 

The SWT parameter is a damage parameter, which is based on the stresses and strains at the contact 

area of the cable and saddle. As the analysis time of a FE model of a full cable over a saddle is 

very long, only the contact point between the cable and the saddle is modelled. Figure 4-4 shows 

the 3D FE model of the contact point. The SWT parameter is determined based on the stresses and 

strains on the contact surface between the wire and saddle in this model. 
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Figure 4-4 3D contact point model (Walbridge et al. 2017). 

Slip displacement (relative displacement between the cable and the saddle) and contact force are 

two inputs of this FE model. These parameters can be calculated using the following equations: 

∆=
𝑅

𝐸 ∙ 𝜇 ∙ 𝐴
∙ (𝑆𝑚𝑎𝑥 ∙ (1 − √

𝑆𝑚𝑖𝑛
𝑆𝑚𝑎𝑥

) + 𝑆𝑚𝑖𝑛 ∙ (1 − √
𝑆𝑚𝑎𝑥
𝑆𝑚𝑖𝑛

)) 4-15 

𝐹 =
𝑆 ∙ 𝑙

𝑅 ∙ 𝑛
 4-16 

 

where ∆ is the slip displacement and F is the contact force. R is the saddle radii, A is the area of 

the cable, μ is the coefficient of friction, E is the elastic modulus of the cable, n is the number of 

outer wires of the cable, 𝑆𝑚𝑎𝑥 is the maximum axial load of the cable, 𝑆𝑚𝑖𝑛 is the minimum axial 

load of the cable, and 𝑙 is the lay length of the cable. The geometry of the cable is shown in Figure 

4-5. The equations developed for slip displacement and contact force (Equations 4-15 and 4-16) 

have not been proven to work perfectly. Also, the FE analysis in Chapter 3 shows that there are 

differences between the actual parameters and the results of these equations. One of the options in 
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this situation is using bias factors to consider the uncertainty in these equations. A bias factor can 

be determined by comparing the experimental results and the results of an equation or analysis. 

However, a detailed large-scale experiment to measure these parameters could not be found in the 

literature. Therefore, based on the differences between the FE model and the discussed equations 

results, two bias factors were assumed: one for contact force, 𝑏1, and another one for the slip 

displacement, 𝑏2. A normal distribution with an average of 1 was assumed for both factors. A COV 

of 0.15 and 0.1 was assumed for 𝑏1, and 𝑏2 respectively as higher difference was seen between the 

results of contact force. 

 

Figure 4-5 Geometric parameters of a cable. 

The coefficient of friction is another input parameter of this FE model. Based on the tests done for 

the current study at the University of Waterloo, the COF ranges from 0.7 to 0.8. However, the 

results of tests done at TU Berlin show that the COF ranges from 0.6 to 0.7 (Mohareb 2020). 

Therefore, a uniform distribution between 0.6 to 0.8 was used for the current work. 

4.3.2 Uncertainty in material properties 

Elastic modulus is one of the parameters in this equation, which commonly is assumed to be 

constant. A constant value of 200 GPa was assumed in the current analysis. 

Fatigue strength coefficient, 𝜎𝑓
′, fatigue strength exponent, 𝑏, fatigue ductility coefficient, 𝜀𝑓

′ , and 

fatigue ductility exponent, 𝑐, are material properties related to the fatigue performance of materials. 

Based on (Zhu et al. 2017), 𝑏 and 𝑐 were assumed to be deterministic and a lognormal distribution 

with a COV of 0.05 and 0.16 was assumed for 𝜎𝑓
′ and 𝜀𝑓

′  respectively. The average values of the 

parameters were determined based on the fatigue tests in the current study using two different 
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bridge cable types: galvanized and bare. It should be noted that the small COV that was assumed 

in this study for the fatigue strength coefficient might not be appropriate when the uncertainty in 

the material properties is very high. Therefore, considering a higher COV for these parameters 

might be of interest for design purposes. However, they will result in over-conservative results.  

4.3.3 Summary of the parameters 

The parameters of the current study are summarized in Table 4-2. The analysis was done based on 

two different wire types: galvanized and bare wire. Therefore, different values for the wires are 

listed in this table for material properties related to fatigue performance. 

Table 4-2 Statistics of the parameters. 

Parameter Wire Type Distribution Average COV 

Number of outer wires, 𝑛 Bare/Galvanized - 6 - 

Radius of the saddle, R (𝑚𝑚) Bare/Galvanized - 1000 - 

Lay length of the cable, 𝑙 (𝑚𝑚) Bare/Galvanized - 216 - 

The area of the cable, (𝑚𝑚2) Bare/Galvanized - 150 - 

Maximum axial load, 𝑆𝑚𝑎𝑥 (𝑘𝑁) Bare/Galvanized - 126 - 

Minimum axial load, 𝑆𝑚𝑖𝑛 (𝑘𝑁) Bare/Galvanized - 96 - 

Coefficient of friction, µ Bare/Galvanized 
Uniform 

[0.6-0.8] 
0.7 0.082 

Bias factor for contact force, 𝑏1 Bare/Galvanized Normal 1 0.15 

Bias factor for slip displacement, 𝑏2 Bare/Galvanized Normal 1 0.10 

Fatigue strength coefficient, 𝜎𝑓
′ (MPa) Bare Lognormal 2675 0.05 

Fatigue strength exponent, b Bare - -0.0859 - 

Fatigue ductility coefficient, 𝜀𝑓
′  Bare Lognormal 0.2067 0.16 

Fatigue ductility exponent, c Bare - -0.5047 - 

Fatigue strength coefficient, 𝜎𝑓
′ (MPa) Galvanized Lognormal 2183 0.05 

Fatigue strength exponent, b Galvanized - -0.0657 - 

Fatigue ductility coefficient, 𝜀𝑓
′  Galvanized Lognormal 1.99 0.16 

Fatigue ductility exponent, c Galvanized - -0.8092 - 

 



80 

 

4.4 Probabilistic analysis frameworks 

This section describes different MCS and M-DRM-based approaches or “frameworks” that can be 

applied to the fretting fatigue analysis of bridge stay cables, with their challenges and results. The 

simplest framework, completely based on MCS, would be as follows (see Figure 4-6): 

• Step 1. Generate random values for bias factors and coefficient of friction from their 

distributions. 

• Step 2. Determine contact force and slip displacement using Equations 4-15 and 4-16 and 

the trial values for bias factors and coefficient of friction. 

• Step 3. Use FE analysis to determine the SWT parameter for the trial values of the contact 

parameters calculated in Step 2. 

• Step 4. Generate random values for the material properties related to the fatigue 

performance of the wire (σ'f, ε'f). 

• Step 5. Calculate the number of cycles to failure, Nf, using the SWT value obtained in Step 

3 and material parameter trial values obtained in Step 4, by solving Equation 4-14. 

• Step 6. Repeat Steps 1-5 until an accurate probability density function is obtained. 
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Figure 4-6 Probabilistic framework based on MCS. 

This framework, however, is very inefficient. An FE analysis needs to be done for each trial, which 

lasts a few hours due to the small element size in the contact zone and the need to model the 

possible yielding of the saddle material. Therefore, it is not practical with current resources and 

analysis time. With this in mind, two alternative frameworks were developed to decrease the 

computational time related to the FE analysis step. These frameworks and their results are 

presented in detail in the following sections. 

4.4.1 Probabilistic analysis using fretting maps 

The first suggested framework, which avoids the FE analysis step for each trial, is based on 

interpolation and making use of the fretting maps generated in the previous chapter of this study. 

In fretting maps, the parameters that affect the FE analysis output, i.e. the peak value of the SWT 

parameter, are varied and the results are recorded. The effective parameters are coefficient of 

friction (COF), contact force, and slip displacement. Still, a number of FE analyses are required to 

generate the fretting maps. However, once these maps are established, probabilistic analyses can 

be performed with them for any problem where the contact point parameters are encompassed by 



82 

 

the parameter ranges of the fretting maps. Afterwards, in the MCS, linear interpolation is used to 

find the desired trial value based on the inputs. The fretting maps employed for the current analysis 

are shown in Figure 4-7. These were generated in the previous chapter. 

 

Figure 4-7 Fretting maps employed for the probabilistic analysis for COFs of 0.6 (a) and 0.8 (b). 

The steps of an approach or framework for probabilistic analysis based on fretting maps and MCS 

are as follows and are shown in Figure 4-8: 

• Step 1. Generate random values for bias factors and coefficient of friction from their 

distributions. 

• Step 2. Determine contact force and slip displacement using Equations 4-15 and 4-16 and 

the trial values for bias factors and coefficient of friction. 

• Step 3. Use the fretting maps shown in Figure 4-7, and interpolation (e.g., linear) to find 

the SWT parameter for trial values of the contact parameters calculated in Step 2. 

• Step 4. Generate random values for the material properties related to the fatigue 

performance of the wire (σ'f, ε'f). 

• Step 5. Calculate the number of cycles to failure, Nf, using the SWT value obtained in Step 

3 and material parameter trial values obtained in Step 4, by solving Equation 4-14. 

• Step 6. Repeat Steps 1-5 until an accurate probability density function is obtained. 
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Figure 4-8 Probabilistic framework based on the fretting maps and MCS. 

4.4.2 Probabilistic analysis using M-DRM 

As mentioned earlier, while fretting maps can be used to enable probabilistic fatigue analysis at a 

contact point without an FE analysis required for each trial, similar fretting maps would have to 

be produced for a much wider range of conditions for this approach to be useful as a tool for 

general application to a broad range of design problems. 

Another framework that could be used for this problem is based on M-DRM. In this framework, 

based on the input parameters, only a few FE analyses are required. For each analysis, one million 

trials were used to reach an acceptable level of accuracy at the tails of the CDFs. The steps of this 

framework are as follows and are shown in Figure 4-9: 

• Step 1. Determine the input grid for the M-DRM based on the distribution of the variables. 

• Step 2. Use FE analysis to determine the SWT parameter for the M-DRM trial values for 

the coefficient of friction, contact force, and slip displacement (based on X1, X2, X3 

respectively in Table 4-3). 
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• Step 3. Determine the fatigue life, Nf , based on the SWT parameter and trial values for 

material properties: σ'f, ε'f  (or X4 and X5 in Table 4-3) and Equation 4-14. 

• Step 4. Use the M-DRM to determine the PDF of the fatigue life using the fatigue life of 

the trials in the input grid of M-DRM. 

 

Figure 4-9 Probabilistic framework based on M-DRM. 

The distributions of the random variables are the same as the ones used for MCS and are listed in 

Table 4-2. The analysis using M-DRM was done for both bare and galvanized cables. The input 

grid for these analyses is shown in Table 4-3 and Table 4-4. As can be seen in these tables, trial 

values for X1, X2, and X3 are the same in both tables as the material properties of the wire do not 

affect these parameters. It should be noted that the SWT parameter is also the same as it is the 

output of the FE analysis, which is a function of the first three variables (X1, X2, X3). However, 

the last two variables (X4 and X5) change based on the cable type. 
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Table 4-3 Input grid for M-DRM analysis based on the galvanized wire material properties. 

Variable 

/Trial 

X1 

(COF) 

X2 

(b1) 

X3 

(b2) 
X4 (𝝈𝒇

′ ) X5 (𝜺𝒇
′ )  SWT 𝑵𝒇 𝑳𝒐𝒈(𝑵𝒇) 

1 0.6094 1 1 2183 1.99  3.449 1252562 6.098 

2 0.6462 1 1 2183 1.99  3.485 1159118 6.064 

3 0.7000 1 1 2183 1.99  3.465 1208293 6.082 

4 0.7538 1 1 2183 1.99  3.366 1501633 6.177 

5 0.7906 1 1 2183 1.99  3.440 1277632 6.106 

6 0.7 0.5715 1 2183 1.99  2.304 26360717 7.421 

7 0.7 0.7967 1 2183 1.99  2.981 3749936 6.574 

8 0.7 1.0000 1 2183 1.99  3.465 1208293 6.082 

9 0.7 1.2033 1 2183 1.99  4.137 326735 5.514 

10 0.7 1.4285 1 2183 1.99  4.714 129110 5.111 

11 0.7 1 0.7143 2183 1.99  3.215 2118132 6.326 

12 0.7 1 0.8644 2183 1.99  3.324 1652011 6.218 

13 0.7 1 1.0000 2183 1.99  3.465 1208293 6.082 

14 0.7 1 1.1356 2183 1.99  3.625 863722 5.936 

15 0.7 1 1.2857 2183 1.99  3.847 555918 5.745 

16 0.7 1 1 1890.218 1.99  3.465 150555 5.178 

17 0.7 1 1 2037.477 1.99  3.465 436480 5.640 

18 0.7 1 1 2180.276 1.99  3.465 1185998 6.074 

19 0.7 1 1 2333.084 1.99  3.465 3278757 6.516 

20 0.7 1 1 2514.844 1.99  3.465 10202787 7.009 

21 0.7 1 1 2183 1.24766  3.465 1197275 6.078 

22 0.7 1 1 2183 1.58402  3.465 1202275 6.080 

23 0.7 1 1 2183 1.96501  3.465 1207923 6.082 

24 0.7 1 1 2183 2.43763  3.465 1214907 6.085 

25 0.7 1 1 2183 3.09481  3.465 1224579 6.088 
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Table 4-4 Input grid for M-DRM analysis based on the bare wire material properties. 

Variable 

/Trial 
X1 (COF) X2 (b1) X3 (b2) X4 (𝝈𝒇

′ ) X5 (𝜺𝒇
′ )  SWT 𝑵𝒇 𝑳𝒐𝒈(𝑵𝒇) 

1 0.6094 1 1 2675 0.2067  3.449 533063 5.727 

2 0.6462 1 1 2675 0.2067  3.485 504804 5.703 

3 0.7000 1 1 2675 0.2067  3.465 519753 5.716 

4 0.7538 1 1 2675 0.2067  3.366 605643 5.782 

5 0.7906 1 1 2675 0.2067  3.440 540541 5.733 

6 0.7 0.5715 1 2675 0.2067  2.304 4765054 6.678 

7 0.7 0.7967 1 2675 0.2067  2.981 1159561 6.064 

8 0.7 1.0000 1 2675 0.2067  3.465 519753 5.716 

9 0.7 1.2033 1 2675 0.2067  4.137 208816 5.320 

10 0.7 1.4285 1 2675 0.2067  4.714 109544 5.040 

11 0.7 1 0.7143 2675 0.2067  3.215 772281 5.888 

12 0.7 1 0.8644 2675 0.2067  3.324 647814 5.811 

13 0.7 1 1.0000 2675 0.2067  3.465 519753 5.716 

14 0.7 1 1.1356 2675 0.2067  3.625 410770 5.614 

15 0.7 1 1.2857 2675 0.2067  3.847 302065 5.480 

16 0.7 1 1 2316.232 0.2067  3.465 127785 5.106 

17 0.7 1 1 2496.68 0.2067  3.465 260147 5.415 

18 0.7 1 1 2671.663 0.2067  3.465 513137 5.710 

19 0.7 1 1 2858.909 0.2067  3.465 1041888 6.018 

20 0.7 1 1 3081.635 0.2067  3.465 2343391 6.370 

21 0.7 1 1 2675 0.129593  3.465 474436 5.676 

22 0.7 1 1 2675 0.16453  3.465 494949 5.695 

23 0.7 1 1 2675 0.204104  3.465 518224 5.715 

24 0.7 1 1 2675 0.253195  3.465 547167 5.738 

25 0.7 1 1 2675 0.321456  3.465 587562 5.769 
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As discussed before, the general form of the PDF of the response using the M-DRM is: 

𝑓𝑌̂(𝑦) = 𝑒𝑥𝑝 (−∑𝜆𝑖 ∙ 𝑦
𝛼𝑖

𝑚

𝑖=0

) 
4-17 

One of the parameters in this equation is m, or the number of terms in the equations. To find the 

optimal number of terms, the analysis can start with 𝑚 = 1 and continue until the entropy does 

not decrease with increasing 𝑚. The output of the optimization in the M-DRM method is m factors 

(𝜆𝑖) and m corresponding exponent (𝛼𝑖) and 𝜆0 (Based on Equations 4-11 and 4-12 earlier 

discussed in this chapter). The results for different numbers of 𝑚 are summarized in Table 4-5 and 

Table 4-6 for galvanized and bare wires respectively. The analysis started with 𝑚 = 1 and 

continued until the entropy converged. Looking at the entropies, it can be seen that three terms 

(𝑚 = 3) is adequate for both galvanized and bare wires. PDF and CDF results using different 

numbers of terms are compared in Figure 4-10 and Figure 4-11 for galvanized and bare wires 

respectively. A very small difference can be seen between the results with two to four terms. 

However, the results are significantly different when one term is used. The CDF results based on 

MCS and MDRM are compared in Figure 4-12 for the first contact point of saddle radius of 1000. 

The results are very close even for small CDF values on a logarithmic axis. It should be noted that 

apart from the interpolation error in the fretting maps, the maps were generated assuming the 

contact force does not change during the cyclic loading. However, M-DRM uses the exact solution 

and does not consider this simplifying assumption. Even with this assumption and interpolation 

errors, the results based on both methods are very close. All in all, M-DRM results can be 

considered to be more reliable as they are based on the exact solution of the FE model. 
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Table 4-5 M-DRM parameters for different numbers of terms (m) for galvanized wire. 

Moments Entropy i 0 1 2 3 4 

m=1 2.0823 
λi 2.00136 1.9014E-12       

αi   13.2266       

m=2 0.7569 
λi 268.4933 -197.4727 21.8353     

αi   0.4432 1.1411     

m=3 0.7501 
λi 422.2582 77.9362 -289.1207 -115.5559   

αi   1.0180 0.1707 0.8312   

m=4 0.7434 
λi 566.8728 -37.7001 49.7233 -472.9805 2.7504 

αi   1.4708 1.3807 0.2117 1.7235 

 

Table 4-6 M-DRM parameters for different numbers of terms (m) for bare wire. 

Moments Entropy i 0 1 2 3 4 

m=1 2.0010 
λi 1.920922 5.5372E-12       

αi   13.2240       

m=2 0.3943 
λi 371.9726 -245.1105 15.5693     

αi   0.4710 1.4198     

m=3 0.3864 
λi 541.3486 86.3015 -341.7077 -134.6118   

αi   1.1418 0.2344 0.9110   

m=4 0.3840 
λi 650.4716 2.7375 -330.4307 -37.4831 -208.5339 

αi   2.1179 -0.0268 1.0363 0.0223 
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Figure 4-10 Comparing M-DRM results with different numbers of terms for galvanized wires. 
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Figure 4-11 Comparing M-DRM results with different numbers of terms for bare wires. 
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Figure 4-12   Comparing CDF results determined using the M-DRM and MCS-fretting maps on 

the logarithmic axis for galvanized (a) and bare (b) wires. 
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4.4.3 Sensitivity analysis using M-DRM 

A sensitivity analysis was done using the M-DRM framework, to establish the relative importance 

of the input parameters. Based on Zhang and Pandey (2014), primary and total sensitivity index 

can be determined using Equations 4-18 and 4-19 respectively. 

𝑆𝑖 ≈
(𝜃𝑖/𝜌𝑖

2) − 1

(∏ 𝜃𝑖/𝜌𝑖
2𝑛

𝑖=1 ) − 1
 

4-18 

𝑆𝑇𝑖 ≈
1 − (𝜌𝑖

2/𝜃𝑖)

1 − (∏ 𝜌𝑖
2/𝜃𝑖

𝑛
𝑖=1 )

 
4-19 

where 𝜌𝑖 is the mean of each cut function, 𝜃𝑖 is the mean square of each cut function, 𝑆𝑖 is the 

primary sensitivity factor, and 𝑆𝑇𝑖 is the total sensitivity factor. The results of the sensitivity 

analysis are summarized in Table 4-7 and Table 4-8 for galvanized and bare wires, respectively. It 

can be seen that the difference between the primary and the total index is very small. Looking at 

the results, it can be seen that the bias factor of contact force (𝑏1) and the fatigue strength 

coefficient are the most important parameters. The sensitivity of the results to the bias factor for 

slip displacement (𝑏2), coefficient of friction, and fatigue ductility factor is limited. These 

sensitivity factors can be explained by looking at the fretting maps and Equation 4-14, which were 

used for calculating the fatigue life. First, looking at fretting maps shown in Figure 4-7, it can be 

seen that slight changes in slip displacement do not considerably change the SWT parameter as 

the SWT curves have small slopes at a fixed contact force, especially around the calculated values 

for contact force and slip displacement before applying the bias factor (which are around 4500 N 

and 0.096 mm respectively). But changes in contact force can considerably change the SWT 

parameter. Therefore, a higher sensitivity factor is expected for the contact force. Comparing the 

results for COFs of 0.6 and 0.8 does not show a considerable difference. Therefore, a small 

sensitivity factor is also expected for COF. Fatigue strength coefficient and fatigue ductility factor 

are two parameters in Equation 4-14 used for calculating the fatigue life. It should be noted that, 

in the long-life domain, the effect of the fatigue ductility factor is very limited, and the effect of 

the fatigue strength coefficient is significant. The fatigue life predictions in the current study are 

in the long-life region (typically more than 100,000 cycles). Therefore, high sensitivity of the 

results to the fatigue strength coefficient is expected. 
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Table 4-7 Sensitivity index results based on the galvanized wire material properties. 

Variable Parameter 𝑆𝑖 𝑆𝑇𝑖 𝑆𝑇𝑖 − 𝑆𝑖 

X1 COF-Coefficient of friction 0.0058 0.0058 0.0000 

X2 𝑏1-Bias factor for contact force 0.5722 0.5740 0.0018 

X3 𝑏2-Bias factor for slip displacement 0.0393 0.0396 0.0003 

X4 𝜎𝑓
′-Fatigue strength coefficient 0.3808 0.3825 0.0017 

X5 𝜀𝑓
′ -Fatigue ductility factor 0.0000 0.0000 0.0000 

Sum  0.9981 1.0019 
 

 

Table 4-8 Sensitivity index results based on the bare wire material properties. 

Variable Parameter 𝑆𝑖 𝑆𝑇𝑖 𝑆𝑇𝑖 − 𝑆𝑖 

X1 COF-Coefficient of friction 0.0053 0.0054 0.0000 

X2 𝑏1-Bias factor for contact force 0.5815 0.5825 0.0010 

X3 𝑏2 -Bias factor for slip displacement 0.0398 0.0400 0.0002 

X4 𝜎𝑓
′-Fatigue strength coefficient 0.3703 0.3713 0.0010 

X5 𝜀𝑓
′ -Fatigue ductility factor 0.0020 0.0020 0.0000 

Sum  0.9989 1.0011 
 

 

4.4.4 Analysis of all saddle radii using MDRM 

Using this M-DRM approach to obtain the fretting fatigue life distribution, analyses were also 

performed for the first contact point of saddle radii of 500 and 1500 mm. The outcome is presented 

in Figure 4-13, where TU-Berlin test results are superimposed on M-DRM-derived curves 

associated with different survival probabilities (s.p.) based on the material properties of galvanized 

wires. Looking at this figure, it can be seen that the general trends are predicted reasonably well 

by the M-DRM model. In particular, it can be seen that the probabilistic model predicts the higher 

fatigue lives for the R = 500 and 1500 mm saddles. The 95% survival probability curve, which 

would be typically used in fatigue design for other structure types, such as welded structures, 

essentially represents a lower bound of the test data. Details on the MDRM analyses of saddle radii 
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of 500 and 1500 mm including input grid tables, PDF and CDF results, and sensitivity analysis 

results are listed in Appendix B. 

 

 

Figure 4-13   M-DRM analysis of pilot tests at TU Berlin. 
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5. Fretting Fatigue Tests of Bridge Stay Cable 

Wires  
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5.1 Background 

Researchers have employed several full-scale and small-scale fretting fatigue test setups to 

evaluate the fretting fatigue behaviour of components. Full-scale tests of some components can be 

very time-consuming and costly. However, alternative small-scale tests, while requiring care to be 

taken in the treatment and simplification of certain aspects such as the boundary conditions, are 

often found to be much more efficient and economical. Therefore, alternative small-scale tests are 

very popular in different engineering fields. In small-scale fretting tests, typically the specimen is 

fixed at one end and cycled between maximum and minimum stresses at the other end. A fretting 

setup is required to apply the contact force to the specimen. One traditional method uses floating 

bridge-type pads (see Figure 5-1) and a ring to transfer the contact force to the specimen (Majzoobi 

et al. 2007, Majzoobi et al. 2009). However, controlling the test parameters is challenging with 

these setups. To overcome the issues with floating pads, an alternative approach with fixed pads 

has been adopted in many studies. In these setups, several methods can be used to apply the contact 

force: employing hydraulic actuators, tightening threaded rods, and using weights (Szolwinski et 

al. 1998, Murthy et al. 2006, Hojjati-Talemi et al. 2014, Guo et al. 2020). 

 

Figure 5-1 Fretting fatigue test setup using a ring (a), floating bridge-type pads (b) (Majzoobi et 

al. 2009). 

5.2 Fretting fatigue test setup 

Figure 5-2 shows the test setup designed for the current thesis for use with an MTS testing frame. 

Two plates with four round bars were used to elevate the fretting setup and put it over the bottom 

grip of the MTS machine. The wire specimen is fixed at the top grip and cycled between the 
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maximum and minimum stress with the bottom grip. Load cells at the top and bottom grips monitor 

the axial load of the wire at the top and the bottom. The recorded load cell readings were used to 

determine the frictional force and slip displacement at the contact point. 

 

Figure 5-2 Fretting fatigue test setup designed for the current study. 

Details of the fretting apparatus are shown in Figure 5-3. This setup is based on fixed pads and the 

idea of employing threaded rods to apply the contact force to the specimens. The contacting pads 
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are clamped to the holding boxes using four bolts; the contacting pads get replaced after each 

fretting fatigue test. The contact force is applied to the wire by tightening two threaded rods that 

go through the boxes. The contact force is measured using two washer load cells, one on each 

threaded rod. One spring is used on each threaded rod to increase the accuracy of loading and 

decrease the loss of the contact force during the tests. Two flexible plates are used to hold each 

box. These plates should be sufficiently stiff in the vertical direction but flexible in the horizontal 

direction to ensure they do not attract a significant portion of the applied lateral force with a small 

amount of wear or plastic deformation of the contact pads during the tests. 

 

Figure 5-3 Details of the fretting apparatus. 

Typically, dog bone specimens are used in fretting fatigue or fatigue tests to avoid failures at the 

grips. In this work, however, the whole wire without any machining was employed so that effects 

of the wire surface treatment could be studied. With this decision, two points were found to be 
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critical for fatigue failure: the contact point and the bottom grip where the cyclic load is applied. 

The upper grip was not critical as the load range at the top was much lower than the load range at 

the bottom grip, due to the frictional force at the contact point. To decrease the possibility of failure 

at the bottom grip, custom inserts with a notch having the same radius as the wires were designed, 

fabricated, and used for the fretting fatigue tests (Figure 5-4). 

 

Figure 5-4 Custom inserts for the wire specimens. 

5.3 Fretting fatigue tests parameters 

5.3.1 Test materials 

Two steel cable wire types – one with and one without surface galvanization – were studied in the 

current work (see Figure 5-5 (a)). The factory reported guaranteed ultimate tensile strength, GUTS, 

of the wires was 1860 MPa. Two contacting pads were used for each test. The pad contact surface 

has a curvature equal to the curvature of the outer wire of the cable due to it being twisted about 

the central wire. The geometry of the pads is shown in Figure 5-5. The pads were machined from 

mild steel 0.75×2 inch rectangle bars with a hardness of 89 HRB. Curved contact surfaces were 

machined at both ends of the pad so that each pad could be used for two tests. 
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Figure 5-5 Studied wires (a), contacting pad (b), the geometry of the pad (c). 

5.3.2 Loading 

Based on the criteria specified in fib (2005), the cable wires should be cycled between the 

maximum stress of 45% GUTS (837 MPa) and minimum stress (637 MPa) to result in a stress 

range of 200 MPa (an R ratio of 637/837 = 0.76). Apart from this design stress range, a few tests 

were done at a stress range of 300 MPa to investigate the effect of stress range on fretting fatigue 

performance (an R ratio of 537/837 = 0.64). Several contact forces ranging from 750 to 6000 N 

were employed in this work. The wires were first loaded to the minimum stress, then the contact 

force was applied to the wire and, finally, the wire was cycled between the maximum and minimum 

stresses at a frequency of 15 Hz. A real bridge cable is subjected to variable amplitude loading, 

and there is a lower frequency for high stress ranges in bridge structures. In this work, however, 

given the time limits of the project, a higher frequency was employed. During the tests, no 

temperature raise was observed on the wires in stick-slip regimes as a result of high frequency 

since the cables do not completely move over the pads. 

5.4 Fretting fatigue test results 

Figure 5-6 shows two contact surfaces after testing for two typical fretting regimes in fretting 

fatigue tests: Gross sliding and stick-slip regimes. The gross sliding regime was seen at low contact 

forces of 750 and 1100 N. The amount of wear was significant in this regime; however, no wire 

failed in this fretting condition. The stick-slip regime was observed at higher contact forces with a 

limited amount of wear. All of the observed failures were at the stick-slip regime. 
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Figure 5-6 Typical wear on pads (a) and wires (b) and crack initiation location at the edge of the 

contact area (c). 

Figure 5-7 shows the fretting fatigue test results for the galvanized wires. Looking at the results 

for the stress range of 200 MPa, it can be seen that the fretting fatigue life first decreases with an 

increase in the contact force, then at a critical contact force, 3000 N, the fretting fatigue life starts 

to increase. The same trend was seen for the results at 300 MPa with a critical contact force at 

4500 N; however, the difference between the results at 300 MPa was relatively small. Comparing 

the results for the two studied stress ranges shows the significant effect of the stress range on the 

fretting fatigue life of the cables. The decrease in fatigue life with an increase in the stress range 

is a typical trend in fretting fatigue tests and fatigue tests in general. 

Surprisingly, no failure was observed when the bare wires were used in the tests with the same 

parameters (see Figure 5-8). First, the bare wires were tested at the design stress range, 200 MPa, 

and contact forces of 1500 and 3000 N which were the critical contact forces for the galvanized 

wire at this stress range. No bare wire failed with these sets of parameters while all the galvanized 

wires failed with these sets of parameters. Then, two tests were done at the higher stress range of 

300 MPa and contact forces of 4500 and 6000 N. The bare wires in these tests failed at the bottom 

grip instead of the fretting point. However, all six galvanized wire specimens failed at the fretting 

point below 200,000 cycles with these test parameters. Further efforts to vary the loading 

parameters to cause fretting fatigue failures in the bare wires were hampered by failures at the 
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grips, suggesting a different way of gripping the specimens would be required to create conditions 

for fretting failure. 

Based on (fib 2005, PTI 2012) a run-out limit of 2 million cycles should be used. In this work, 

however, failures between 2 and 5 million cycles were observed. Therefore, a run-out limit of 5 

million cycles was employed. 

 

Figure 5-7 Fretting fatigue life of the galvanized wire. 
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Figure 5-8 Fretting fatigue life of the bare wire. 

This significant difference between the performance of these two wires raised questions regarding 

possible differences in material properties or the microstructure of the wires. The material 

properties and microstructure of the wires are compared later in this chapter in an attempt to answer 

these questions. Details of these tests are summarized in Table 5 1. Details on the calculation of 

slip displacement and COF are discussed in the following paragraphs. 
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Table 5-1 Summary of fretting fatigue test results (+ indicates “runout”). 

Test # Wire Type 
Stress Range 

(MPa) 

Maximum 

Stress (MPa) 

Minimum 

Stress (MPa) 

Contact 

Force (N) 

Quasi-

COF 

Slip 

Displacement 

(mm) 

Fretting 

Fatigue Life 

(𝑁𝑓) 

1 Galvanized 200 837 637 750 - 0.3555 +5000000 

2 Galvanized 200 837 637 1100 - 0.2504 +5000000 

3 Galvanized 200 837 637 1100 - 0.2391 +5000000 

4 Galvanized 200 837 637 1500 0.6757 0.0408 2011238 

5 Galvanized 200 837 637 1500 0.6639 0.0410 367221 

6 Galvanized 200 837 637 1500 0.6689 0.0390 1254930 

7 Galvanized 200 837 637 3000 0.3383 0.0392 381503 

8 Galvanized 200 837 637 3000 0.3363 0.0392 351020 

9 Galvanized 200 837 637 3000 0.3415 0.0381 627301 

10 Galvanized 200 837 637 4500 0.2277 0.0381 711992 

11 Galvanized 200 837 637 4500 0.2290 0.0382 2078948 

12 Galvanized 200 837 637 4500 0.2293 0.0368 5072193 

13 Galvanized 300 837 537 3000 0.5090 0.0587 958406 

14 Galvanized 300 837 537 3000 0.5288 0.0571 186643 

15 Galvanized 300 837 537 3000 0.5128 0.0575 167805 

16 Galvanized 300 837 537 4500 0.3473 0.0551 158661 

17 Galvanized 300 837 537 4500 0.3445 0.0557 170981 

18 Galvanized 300 837 537 4500 0.3434 0.0568 135249 

19 Galvanized 300 837 537 6000 0.2616 0.0547 184444 

20 Galvanized 300 837 537 6000 0.2608 0.0548 149746 

21 Galvanized 300 837 537 6000 0.2612 0.0552 152615 

22 Bare 200 837 637 1500 0.6330 0.0413 +5000000 

23 Bare 200 837 637 1500 0.6380 0.0414 +5000000 

24 Bare 200 837 637 3000 0.3230 0.0355 +5000000 

25 Bare 200 837 637 3000 0.3260 0.0359 +5000000 

26 Bare 300 837 537 4500 0.3259 0.0519 +424916 

27 Bare 300 837 537 6000 0.2470 0.0512 +4513843 

 

5.5 Coefficient of friction 

The coefficient of friction, COF, is a key parameter in fretting fatigue problems. Determining this 

parameter in fretting fatigue tests has always been a challenging issue. Several works have shown 

that the COF typically increases during the fretting fatigue tests due to surface modification and 

wear (Hills et al. 1988, McColl et al. 2004, Jin and Mall 2004). 
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In the gross sliding regime, sliding occurs all over the contact surface, and average COF can be 

defined as the ratio of frictional force to the contact force (Q/P). 

𝐶𝑂𝐹𝑎𝑣𝑒 𝑔𝑟𝑜𝑠𝑠 𝑠𝑙𝑖𝑑𝑖𝑛𝑔 =
𝑄

𝑃
 

5-1 

However, in the stick-slip regime, this ratio (Q/P) is only the normalized frictional force or a quasi-

COF, as defined in McColl et al. (2004). In this regime, the center of the contact has a stick regime 

with a low volume of wear and the borders of the contact are slipping and have a higher amount 

of wear. Therefore, each point can have a different COF. The average COF in this regime falls 

between quasi-COF (Q/P) and the COF of the gross sliding regime. The average value for the COF 

can only be determined if the wire completely moves over the pad, which does not happen during 

the tests in this regime. 

𝑄

𝑃
< 𝐶𝑂𝐹𝑎𝑣𝑒 𝑠𝑡𝑖𝑐𝑘−𝑠𝑙𝑖𝑝 < 𝐶𝑂𝐹𝑎𝑣𝑒 𝐺𝑟𝑜𝑠𝑠 𝑆𝑙𝑖𝑑𝑖𝑛𝑔 

5-2 

Figure 5-9 shows quasi-COF (Q/P) results for the tests in the stick-slip regime (contact forces ≥ 

1500 N). It can be seen in this figure that this parameter decreases with an increase in the contact 

force or a decrease in stress range. This trend has been seen in other studies in the literature 

(McColl et al. 2004, Jin and Mall 2004). 
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Figure 5-9 Quasi-COF results for the tests in the stick-slip regime. 

To evaluate the COF in the gross sliding regime, two fretting fatigue tests with completely similar 

conditions were carried out using a bare and a galvanized wire. An axial load range of 4.3 kN and 

a contact force of 1 kN was employed for these tests. Figure 5-10 shows the wear on the wires 

after the friction tests. Figure 5-11 compares the COF measurements versus the number of cycles 

for the studied wires. As can be seen in the figure, the COF increases during the first cycles and 

then stabilized around a maximum value of ~0.75.  
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Figure 5-10 Wear on the bare and the galvanized wire after friction tests in the gross sliding 

regime. 

 

Figure 5-11 Comparing COF in the gross sliding regime for bare and galvanized wires. 

5.6 Frictional force 

The frictional force during the fretting fatigue tests was determined based on the difference 

between the load cell measurement at the top and the load cell measurement at the bottom. Figure 

5-12 shows the frictional force versus the number of cycles in fretting fatigue tests in the stick-slip 
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regime. Looking at the results, it can be seen that the frictional force is stable during the tests and 

no significant change can be seen in the amount of frictional force during the tests. Also, it can be 

seen that the frictional force significantly changes with a change in the load range (or remote stress 

range). However, a considerable difference cannot be seen between the results for different contact 

forces. This can be explained by the fact that, in the stick-slip regime, the axial force is lower than 

the threshold load that is required to completely move the wire along the pad. Therefore, increasing 

the contact force doesn’t affect the frictional force. However, increasing the axial load (or remote 

stress range) does increase the calculated frictional force as 𝐹𝑎𝑥𝑖𝑎𝑙 is increasing. 

 

Figure 5-12 Frictional force measurements in the stick-slip regime, galvanized wires. 

A different trend was observed for the tests in the gross sliding regime, the axial force is over the 

threshold load and the sliding occurs over the entire contact surface. Therefore, the frictional force 

increases with an increase in the contact force (𝐹𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛𝑎𝑙 = 𝐶𝑂𝐹 × 𝑃 < 𝐹𝑎𝑥𝑖𝑎𝑙). Looking at 

Figure 5-13, it can be seen that the frictional force increases with an increase in the contact force. 

Another observation in the tests in the gross sliding regime is that the frictional force decreases 

during the test. With a very high volume of wear in the tests in this regime, a considerable portion 

of the contact force transfers to the flexible side plates (shown in Figure 5-3), and as the wear 

increases, the contact forces decrease, and consequently, the frictional force decreases. This 
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decrease in contact force has been previously seen in other fretting fatigue tests in the gross sliding 

regime (McColl et al. 2004). 

 

Figure 5-13 Frictional force for tests in the gross sliding regime, galvanized wire. 

To exactly evaluate the flexibility of the side plates and the amount of force they carried during 

the tests, a dial gauge was used to determine the horizontal displacement of the side plates versus 

the applied load with no wire in the test frame. The load was recorded using the washer load cells 

on the threaded rods and a dial gauge was mounted to measure the horizontal displacement of the 

pads (see Figure 5-14 (a)). Also, a simple SAP 2000 frame model of the fretting apparatus, shown 

in Figure 5-14 (b), was used to evaluate the load vs. displacement curve. The flexible side plates 

and the holding box were modelled in the SAP 2000 frame model. The exact dimension of all test 

setup parts can be seen in Appendix B. Figure 5-15 shows the force vs. displacement graphs. It 

can be seen that the results of the frame mode are very close to the measured values using a dial 

gauge. Measurements were done from both sides of the test setup every couple of months during 

the testing period and no difference was seen between the results. The dial gauge was later used 

for the tests in the stick-slip regime. It was observed that the deformation of the plates due to plastic 

deformation and wear during the tests was very small (typically lower than 0.04 mm). Looking at 

Figure 5-15, it can be seen that the plates carry around 20-40 N of the contact force with this 
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amount of deformation. This amount of force was less than 2.5% of the total contact force and it 

was considered in all of the tests at this regime during loading. 

 

Figure 5-14 Dial gauge measurements of the horizontal deflection of fretting setup (a), SAP 2000 

frame model of the setup. 
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Figure 5-15 Horizontal flexibility of the test setup. 

5.7 Slip displacement 

Slip displacement is a critical parameter affecting the fretting fatigue life of the contacting 

components. This parameter has been used by Vingsbo and Söderberg (1988) to classify different 

fretting fatigue regimes. Also, it can be used in the numerical analysis of fretting fatigue problems. 

Therefore, this parameter is typically measured and reported with test results. In this work, the 

strain of the top part of the wire and the vertical flexibility of the setup was used to determine the 

slip displacement at the contact point (see Figure 5-16). The slip displacement can be determined 

as follows: 

𝑆𝑙𝑖𝑝 𝐷𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 =
∆𝐹𝑡𝑜𝑝 ∙ 𝐿

𝐸𝐴
− ∆(𝐹𝑓) 

5-3 

where ∆𝐹𝑡𝑜𝑝 is the load range of the top part of the wire, E is the elastic modulus, A is the cross-

section area of the wire, L is the length of the top part of the wire, and ∆(𝐹𝑓) is the displacement 

of the pads due to the flexibility of the setup and can be measured based on the frictional force 

and the vertical flexibility of the setup. The force vs. displacement curve in the vertical direction 
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of the test setup is shown in Figure 5-17. This curve was determined based on the SAP 2000 

frame model shown in Figure 5-14 (b). 

Figure 5-16 Schematic view of the wire in fretting fatigue tests. 

 

Figure 5-17 Force vs vertical displacement of the test setup using SAP 2000 frame model. 

Similar to frictional force results, slip displacements were very consistent during the tests in the 

stick-slip regime. Figure 5-18 shows the slip displacement results for the tests in the stick-slip 
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regime. Looking at these results, it can be seen that the slip displacement does not considerably 

change with the change in contact force. But it greatly depends on the remote stress range. As 

discussed in the frictional force section, in the stick-slip regime, changing the contact force does 

not considerably change the frictional force. Therefore, at the same stress range, all the effective 

parameters are very close to each other. However, increasing the remote stress range increases the 

tress range at the top part of the wire and consequently increases the slip displacement. Figure 5-19 

shows the results for the gross sliding regime. As discussed before, because of the high volume of 

wear, the contact force and consequently the frictional force constantly decreases during these 

tests. Therefore, the load range at the top part of the wire increases and consequently the slip 

displacement increases during the tests. 

 

Figure 5-18 Slip displacement results in the stick-slip regime. 
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Figure 5-19 Slip displacement versus the number of cycles in the gross sliding regime, 

galvanized wires. 

5.8 Material properties 

As discussed in the previous section, there is a considerable difference between the fretting fatigue 

performance of the studied wires. One possible explanation was that the material properties of the 

wires may be different. Therefore, small hourglass samples from the central wire of cables were 

used to perform tensile/plain fatigue tests and check whether the cores of the wires have the same 

properties. Figure 5-20 shows the dimensions of hourglass samples of bare and galvanized wire. 
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Figure 5-20 Drawing of hourglass samples of galvanized (a) and bare (b) wires. 

The samples were first machined. However, the machined surfaces were not smooth. Roughness 

and small cracks can significantly affect the fatigue life of these specimens. To remove the machine 

marks, first, the samples were polished with #200 and #400 sandpaper. Then to get a mirror-like 

surface and remove small cracks, the samples were polished using a longitudinal polisher. Finally, 

all the samples were checked under a microscope to make sure that the surfaces of the samples 

were smooth (see Figure 5-21) 

 

Figure 5-21 Hourglass sample preparation. 

First, tensile tests were done on both wires. Figure 5-22 shows the tensile stress-strain curve of the 

bare and galvanized wire, respectively. The yield strength of both wires is very close. However, 
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the galvanized wire is more ductile and has a higher fracture strain. The tensile material properties 

of the wires are listed in Table 5-2. 

 

Figure 5-22 Tensile stress-strain curve of bare (a) and galvanized (b) wires. 
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Table 5-2 Material properties of bare and galvanized wires. 

Specimen Bare Galvanized 

Elastic modulus (MPa) 207044 195351 

0.2% offset yield strength, 𝑆𝑦 (MPa) 1756 1721 

Ultimate tensile strength, 𝑆𝑢 (MPa) 2147 2096 

True fracture Strain,  𝜀𝑓 0.128 0.395 

Final engineering stress (MPa) 1997 1604 

Fracture stress (MPa) 2214 2284 

Reduction in Area (%) 9.71 29.29 

 

Figure 5-23 shows the fatigue life data for both wire types. First, no considerable difference can 

be seen between the performance of the wire in the short-life region. However, interestingly, the 

fatigue limit of the galvanized wire is slightly higher than the bare wire. While the bare wire had 

a better performance in fretting fatigue tests, the material of the core of the galvanized wire has a 

higher fatigue limit. Table 5-3 summarizes the Coffin-Manson parameters of the wires. Figure 

5-24 shows the typical failure surface of bare and galvanized wires. In the long-life region, the 

bare wires typically failed with crack initiation from the inside (fish-eye failure), however, the 

cracks typically initiated at the surface of galvanized samples. 
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Figure 5-23 Stress life data for bare and galvanized wires. 

Table 5-3 Coffin-Manson parameters for bare and galvanized wires. 

Specimen Bare Galvanized 

Fatigue strength coefficient, 𝜎𝑓
′ (Mpa) 2675 2183 

Fatigue strength exponent, b -0.0859 -0.0657 

Fatigue ductility coefficient, 𝜀𝑓
′  0.2067 1.99 

Fatigue ductility exponent, c -0.5047 -0.8092 
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Figure 5-24 Typical fracture surface in galvanized (a) and bare (b) wires in the long-life region. 

While the studies with hourglass samples provided valuable information about the tensile and 

fatigue properties of the wires, they still cannot explain the significant difference between the 

fretting fatigue performance of the wires. Therefore, it can only hypothesized there might be 

irregularities/defects at the surface of the galvanized wires that cause this difference. 

5.9 Microstructure analysis 

As discussed in the previous section, the study with hourglass samples did not explain the 

difference between the fretting fatigue performance of wires. Therefore, an evaluation of the 

surface structure of both wires was performed. In several previous works in the literature, it has 

been shown that galvanization can have a negative effect on fatigue performance of steel, specialty 

high-strength steel. It was explained mainly by the possible defects caused during the galvanization 

including brittle cracks in the galvanization layers or zinc penetration into the grain boundaries of 

steel (Bergengren and Melander 1992, Vogt et al. 2001, Sirin 2019). Given these defects, the cracks 

can propagate more easily at the surface of galvanized high-strength steel components. It should 

be noted that these studies evaluated the performance of high-strength steel components in air. In 

corrosive environments, however, galvanization has been proven to be a very effective protective 

layer. In this section, different tools and techniques were used to detect possible defects or 

differences at the surface of the studied wires. 
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5.9.1 Microhardness of the wire 

Microhardness tests were performed to evaluate possible differences between the hardness of the 

studied wires. The microhardness tests were done using a 500 g load and 10 s dwell time. Figure 

5-25 shows the microhardness test results of both wires. The tests were performed for a series of 

points with different distances to the surface. The average microhardness of bare and galvanized 

wires was 578 and 557 HV respectively. Microhardness results show that the bare wire is slightly 

harder than the galvanized wire. This difference in the microhardness of the wires can partially 

explain the difference between the fretting fatigue performance of the wires. The bare wire is 

harder. Therefore, crack initiation life is longer for the bare wire. With this difference in 

microhardness results, microscopic imaging was undertaken to get a better understanding of the 

surface microstructure of the two wire types. 

 

Figure 5-25 Microhardness tests results of bare and galvanized wires. 

5.9.2 Surface profiles of the wires 

Figure 5-26 shows surface profiles of the wires. Several studies showed that fatigue life decreases 

with an increase in surface roughness. Looking at these figures, it can be seen that the galvanized 

wire has a relatively rougher surface in comparison with the bare wire. This can be another 

explanation for the lower fatigue life of the galvanized wire, as there is a well-known direct 

relationship between higher surface roughness and shorter fatigue life. 
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Figure 5-26 Comparing surface roughness of bare and galvanized wires. 

5.9.3 SEM photos of the microstructure of the wires 

Looking at the surface of the wires under a microscope was the next step in the microstructure 

analysis. SEM, scanning electron microscopy, photos of the surface of both wires can be seen in 

Figure 5-27. The bare wire has a uniform strong pearlite structure. However, looking at the surface 

of the galvanized wire, it can be seen that the pearlite structure is broken. Carbide and soft layers 

of ferrite can be seen in the photos. These soft layers of ferrite and broken carbide structure can be 

a suitable location for crack initiation. Given the high-stress concentration at the surface of wire 

in the fretting fatigue tests, the cracks can initiate much easier in these irregular structures in 

comparison with the uniform pearlite structure of bare wire. Also, in the fretting fatigue problem, 

there is a competition between crack propagation and wear. In galvanized wires, the cracks can 

freely grow in these irregular structures, while the wear is only affecting the coating. While, in the 
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bare wire, the wear can remove small cracks that are initiating at the surface of the wire. However, 

in the stick-slip regime, the wear amount was very limited and considering the beneficial effect of 

wear requires detailed numerical analysis that includes modelling of wear. All in all, the SEM 

photos showed significant differences between the surface microstructure of both wires; the 

defects and irregularities at the surface of the galvanized wire can explain the considerable 

difference between the fretting fatigue performance of both wires. 

 

Figure 5-27 SEM photos of the bare and galvanized wires. 

Another interesting observation in SEM photos was the pores in the bare wire. Looking at Figure 

5-28, some pores can be seen in the bare wire. Plain fatigue results showed that the cracks typically 

initiate from inside of the bare wire rather than their surface. Also, the plain fatigue results showed 

that the bare wire has a slightly lower fatigue limit in comparison with the galvanized wire. These 

pores can be a good explanation for the lower fatigue limit of the bare wire. 
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Figure 5-28 Defects in bare and galvanized wires. 

All in all, the microstructure analysis showed several differences between the galvanized and bare 

wires. First, it was seen that the hardness of the galvanized wire was slightly lower than the bare 

wire Second, the galvanized wire had a relatively rougher surface in comparison with the bare 

wire. Third, the bare wire had a uniform pearlite structure at the surface. However, broken carbide 

structures and soft layers of ferrite were seen at the surface of galvanized wire. These differences 

can be a good explanation for a better performance of bare wire in fretting fatigue tests. Looking 

at the SEM photos, it also was seen that the bare wire has several pores inside them. These pores 

can explain the lower fatigue limit of the bare wire in comparison with the galvanized wire. 
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6. Analysis of Fretting Fatigue Tests Based on 

SWT Parameter  
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In this Chapter, the deterministic and probabilistic methods previously discussed in Chapters 3 and 

4 were customized and applied to the fretting fatigue tests performed at the University of Waterloo 

using the small-scale fretting fatigue apparatus developed for the current thesis. 

6.1 Deterministic fretting fatigue analysis of tests results 

6.1.1 Fretting fatigue life determination based on SWT parameter 

The analysis in this part is very similar to the one performed in Chapter 2 for saddle systems. Here, 

however, those methods are used to analyze the fretting fatigue tests performed at the University 

of Waterloo. A summary of the main parts is presented in the following paragraphs. 

The SWT parameter was used to predict the fretting fatigue life of the tests presented in Chapter 

5. The following equation was used to determine the fretting fatigue life based on the SWT 

parameter: 

SWT = ( ) ( ) ( )
2 2

max 2 2
b b c

a f f f f fN E N    
 +

    =   +     6-1 

The following 3D stress/strain transformations were used to determine the critical plane (sum et 

al. 2005): 

2 2 2

11 22 33 12 23 132 2 2x y z x y y z x zn n n n n n n n n      =  +  +  +    +    +     6-2 

2 2 2

11 22 33 12 23 13x y z x y y z x zn n n n n n n n n      =  +  +  +   +   +    6-3 

𝜃ℎ and 𝜃𝑣 are varied in 5° increments and 𝜎𝑚𝑎𝑥 · 𝛥𝜀𝑎 is calculated for each plane. The maximum 

value is identified and Equation 6-1 is then solved for 𝑁𝑓 . 

6.1.2 Finite element model 

The FE program ABAQUS was employed to model the fretting fatigue tests. Figure 6-1 shows the 

model that was used in this study. One plane of symmetry was used to reduce the analysis time. 

The saddle/pad is curved to model a discrete contact point, the curvature of the pad type is equal 

to the curvature of an outer wire in a cable on a straight surface. Hard contact with the penalty 

algorithm was used for the normal contact behaviour. The tangential contact behaviour was 

controlled with the penalty method. Eight node linear brick elements (C3D8R) with an 

approximate size of 25 µm ×25 µm were used at the contact surface. An elastic material model 
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with an elastic modulus of 195 Gpa and a possion’s ratio of 0.3 was assumed for the galvanized 

wire. For bare wire analysis, an elastic material model with an elastic modulus of 207 Gpa and a 

possion’s ratio of 0.3 was used. An elastic-fully plastic material model with an elastic modulus of 

200 Gpa and yield stress of 500 MPa was used for the saddle/contacting pad. The inputs/boundary 

conditions of the model are slip displacement, contact force, remote stress, and coefficient of 

friction. These parameters were directly measured during the test and were used as the inputs for 

the studies in this part (see Table 6-1) 

The loading was applied in four steps. According to the tests performed at the University of 

Waterloo, in the first step, the minimum normal stress is applied (537 or 637 MPa based on the 

test). However, to ensure contact and avoid convergence issues, a small amount of contact force is 

also applied in the first step. Then, the actual value of the contact force is applied in the second 

step. Following that, in the third step, the maximum normal stress (837 MPa) and the slip 

displacement were applied. The slip displacement was applied by moving S1 and S3 surfaces. In 

the last step, the normal stress reduces to its minimum value. Also, S1 and S3 surfaces return to 

their original position. The W3 surface was fixed in 𝑦  and 𝑧 directions and it only can be moved 

in the 𝑥 direction at the top. The initial increment size in all steps was set to 0.001. The maximum 

step size was set to 0.1. the number of increments varies based on the convergence in increments. 

The direct equation solver with the full newton solution technique implemented in ABAQUS was 

used for the analysis. The loading and unloading stages were applied in two different steps to 

enable the recording of the stress/strains at the end of each stage. The results at the end of the third 

(loading) and fourth (unloading) steps were used to determine the SWT parameter.  
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Figure 6-1 FE model of the contact point in fretting fatigue tests. 

6.1.3 Coffin-Manson parameters 

Coffin-Manson parameters for bare/galvanized wires were based on the materials tests presented 

in Chapter 5 and are listed in Table 6-1. 

Table 6-1 Coffin-Manson properties of bare and galvanized wires. 

Specimen Galvanized Bare 

Fatigue strength coefficient, 𝜎𝑓
′ (MPa) 2183 2675 

Fatigue strength exponent, b -0.0657 -0.0859 

Fatigue ductility coefficient, 𝜀𝑓
′  1.99 0.2067 

Fatigue ductility exponent, c -0.8092 -0.5047 

 

6.1.4 Coefficient of friction 

As the COF in stick-slip is not determined, the analysis was performed with two COFs for each 

test: the gross sliding COF which is 0.75, and the quasi-COF, which is the ratio of the frictional 

force over the contact force. The actual average COF is somewhere between these two values, and 

these two COF are upper/lower bounds for the actual average COF.  
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6.1.5 Fretting fatigue life predictions based on the SWT parameter 

Figure 6-2 shows the fretting fatigue life predictions based on the SWT parameter versus test 

results for the galvanized and bare wires. First, looking at the results for the galvanized wire, it can 

be seen that the predictions based on the SWT parameter and the COF of 0.75 are conservative 

and are a lower bound for the test results. Also, it can be seen that the results based on the quasi-

COF are an upper bound for most of the tests. Looking at the results for the bare wire, similarly, it 

can be seen that the results based on the quasi-COF are higher than the results based on the COF 

of 0.75. However, they predict a finite fatigue life in the long-life domain for the bare wires, while 

the actual wires did not fail in these fretting fatigue tests. 

 

Figure 6-2 Fretting fatigue life predictions based on the SWT parameter for galvanized (a, b) and 

bare (c, d) wires. 
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As discussed before, the bare wire includes pores, which decrease their plain fatigue life. However, 

cracks initiate from the surface in fretting fatigue problems. Therefore, employing the SWT 

parameter based on the Coffin-Manson parameters obtained on tests of the wire core material does 

not lead to accurate results. This issue becomes more apparent when we compare the results for 

both wires. Figure 6-3 compares SWT vs. fretting fatigue life curves of bare/galvanized wires. It 

can be seen that at the same SWT in long-life domain, the fretting fatigue life predictions for the 

bare wire are lower than those for the galvanized wire. All in all, the following issues were found 

related to using the SWT parameter obtained from the core material for fretting fatigue life 

predictions of the tested wires in this study: 

• The SWT parameter does not account for the presence of defects/cracks at the surface of 

the wire specimens. In this work, it was observed that the galvanized wire has defects at 

the surface, while the bare wire was uniform. 

• Coffin-Manson parameters based on fatigue tests of hourglass shaped wire samples can be 

affected by internal pores/defects, while the fretting fatigue is more related to the properties 

at the surface of the wire. In this work, the bare wire had internal pores but a uniform 

structure at the surface. 

 

Figure 6-3 Sensitivity of fretting fatigue life to Coffin-Manson parameters based on 

bare/galvanized properties. 



130 

 

One possible approach to overcome the issue with the Coffin-Manson parameters based on the 

inside pores could be using the hardness/UTS of the wires to determine the Coffin-Manson 

properties based on the empirical equations in the literature. Empirical equations in the literature 

offer a way to approximate the Coffin-Manson parameters based on hardness. However, using this 

approach eliminates the issues related to the inside pores affecting the bare wire.  

Given the issues found in determining Coffin-Manson parameters based on plain fatigue tests, it 

was decided to try the empirical equations suggested in the literature for determining the Coffin-

Manson parameters based on the hardness, ultimate tensile strength, etc. These empirical equations 

were previously listed in Table 3-1. To compare these equations, it was decided to plot strain 

amplitude vs. the number of reversals based on different models and compare them with the fitted 

curves to the test results. In other words, the following equation was plotted using different sets of 

Coffin-Manson parameters based on empirical equations. 

𝛥𝜀

2
=
𝜎𝑓
′

𝐸
∙ (2 ∙ 𝑁𝑓 )

𝑏
+ 𝜀𝑓

′ ∙ (2 ∙ 𝑁𝑓)
𝑐
 6-4 

The results are shown in Figure 6-4. It is expected that the results based on the empirical models 

will be close to the galvanized wire fitted curve. Looking at these curves, it seems the curve based 

on the parameters suggested by Meggiolaro and Castro (2004) is the closest, especially in the long-

life region, which is of more interest in this study. To further evaluate these models, it was decided 

to plot the SWT parameter vs. the number of reversals. In other words, Equation 6-1 was plotted 

using the different sets of Coffin-Manson parameters.  

Looking at the results in Figure 6-5, the same trend can be seen in the results – a good match 

between the curves presented by Meggiolaro and Castro (2004) and the fitted curve. Another 

observation from these figures is that all the models predict close results for bare and galvanized 

wires, especially in the long-life domain. Therefore, it can be argued that galvanized wire 

properties also can be a good approximation for the bare wire. 



131 

 

 

Figure 6-4 Strain vs. number of reversals based on different empirical models. 
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Figure 6-5 SWT vs. the number of reversals based on different empirical models. 

Given the comparisons in Figure 6-4 and Figure 6-5, the analysis for the bare wire was repeated 

based on the SWT curve suggested by Meggiolaro and Castro (2004) and the SWT curve based on 

the galvanized wire properties. The results are summarized in Figure 6-6. It can be seen that higher 

fretting fatigue life is predicted based on the modified Coffin-Manson properties. It should be 

noted that these properties are still only approximations. The bare wire without pores might have 

a better performance. All in all, it seems that the issues with relating the Coffin-Manson properties 

of wires with defects to the fretting fatigue life prediction based on the SWT parameter can 
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partially explain the lower fretting fatigue life predictions for the bare wire in comparison with 

tests. However, no bare wire failed; it seems that the main reason for the different performance of 

the galvanized and bare wires is due to the effect of surface properties. Also, all the fretting fatigue 

life predictions and test results of the galvanized and bare wires are in the long-life domain. In this 

domain, small differences between the wire properties (e.g., surface defects, differences in surface 

hardness, etc.) can easily shift the fatigue life of a specimen between a long life and a run-out. 

 

Figure 6-6 Fretting fatigue life predictions for bare wire based on different SWT-life curves. 

6.2 Probabilistic analysis of the fretting fatigue tests 

Following the deterministic evaluation of the problem, given the uncertainties in the material 

properties, coefficient of friction, and the scatter that was seen in the results of the test, it was 

decided to perform the same analysis, but using the probabilistic framework presented earlier to 

consider the uncertainty in the material properties and the COF. The analysis in this section is 

similar to the one presented in Chapter 4, however, given the fact that the contact force and slip 

displacement were measured during the tests, no bias factor was assumed for these two parameters. 

Similar to Chapter 4, the analysis was performed using MCS and MDRM. 

6.2.1 Problem definition and objective 

The main objective of this analysis was to determine the PDF and the CDF of fretting fatigue life, 

and then the survival probabilities associated with different applied load levels, for the fretting 
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fatigue tests performed at the University of Waterloo. The fretting fatigue life, 𝑁𝑓 was determined 

based on the SWT parameter using the following equation: 

SWT = ( ) ( ) ( )
2 2

max 2 2
b b c

a f f f f fN E N    
 +

    =   +     6-5 

Looking at this equation, on the left side, the SWT is a parameter that is based on stresses and 

strains obtained from finite element analysis of the problem. On the right-hand side, 𝑁𝑓 is the 

fretting fatigue life, E is the elastic modulus, and the rest of the variables are the Coffin-Manson 

parameters which are defined and discussed in the following paragraphs. 

6.2.2 Analysis parameters 

6.2.2.1 SWT parameter 

The SWT parameter was determined based on the stress/strains from finite element analysis of the 

fretting fatigue tests. The finite element model used is discussed in detail in Section 6.1.2. The 

input parameters of this finite element model are based on the fretting fatigue tests and were 

measured during the tests. The main uncertainty was found to be in the COF. An upper and lower 

bound value of COF could be found based on the fatigue tests (i.e. the gross slip COF and the 

“quasi-COF” in the stick-slip domain). With no basis available to characterize the COF distribution 

more precisely, a uniform distribution was used for this parameter. 

6.2.2.2 Variables related to material properties 

Fatigue strength coefficient, 𝜎𝑓
′, fatigue strength exponent, 𝑏, fatigue ductility coefficient, 𝜀𝑓

′ , and 

fatigue ductility exponent, 𝑐, are material properties related to the fatigue performance of materials. 

Based on Zhu et al. (2017), 𝑏 and 𝑐 were assumed to be deterministic and a lognormal distribution 

with a COV of 0.05 and 0.16 was assumed for 𝜎𝑓
′ and 𝜀𝑓

′  respectively. The average of the 

parameters was determined based on the fatigue tests in the current study using the two different 

bridge cable types: galvanized and bare. 

The parameters of the problem are listed in Table 6-2. 
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Table 6-2 Statistics of parameters for probabilistic analysis. 

Parameter Wire Type Distribution Average COV 

Coefficient of friction, µ 
Bare/ 

Galvanized 

Uniform 

[𝐶𝑂𝐹𝑞𝑢𝑎𝑠𝑖 -0.75] 
- - 

Fatigue strength coefficient, 𝜎𝑓
′ 

(MPa) 
Bare Lognormal 2675 0.05 

Fatigue strength exponent, b Bare - -0.0859 - 

Fatigue ductility coefficient, 𝜀𝑓
′  Bare Lognormal 0.2067 0.16 

Fatigue ductility exponent, c Bare - -0.5047 - 

Fatigue strength coefficient, 𝜎𝑓
′ 

(MPa) 
Galvanized Lognormal 2183 0.05 

Fatigue strength exponent, b Galvanized - -0.0657 - 

Fatigue ductility coefficient, 𝜀𝑓
′  Galvanized Lognormal 1.99 0.16 

Fatigue ductility exponent, c Galvanized - -0.8092 - 

 

6.2.3 Analysis frameworks 

Given the fact that each FE analysis takes a few hours to run, crude MCS is not practical. 

Therefore, a framework based on MDRM was employed in this study. Figure 6-7 shows how each 

variable plays a role in determining the fretting fatigue life of wire for tests performed at the 

University of Waterloo. It should be noted that this figure only shows the variable parameters. The 

deterministic parameters were measured during the tests and applied in the FE model. Also, other 

material properties including elastic modulus, fatigue strength exponent, and fatigue ductility 

exponent were assumed to be constant. Given that only one variable affected the FE model and 

SWT determination, only five FE analyses were required for each test. However, a total of 15 

points, five for each variable, were used in the analysis for each test. 
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Figure 6-7 The effect of variables in fatigue life estimation of cables. 

Similarly to what was done with the fretting maps developed in Chapter 4, it was decided to find 

a function/map between the coefficient of friction and the SWT parameter. To save analysis time, 

the quadrature points for COF that were analyzed for the MDRM approach and the results for the 

upper bound-lower bound COF that were presented in the deterministic part were used to find a 

function/map between the COF and the SWT parameter. Therefore, an alternative approach based 

on MCS and a “fretting map” relating the COF and SWT parameter was used. A schematic view 

of this framework is shown in Figure 6-8. 
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Figure 6-8 MCS along with fretting map framework 

6.2.4 Probabilistic analysis results 

In the following paragraphs sample of the results are discussed for Test 7 with a contact force of 

3 kN and a stress range of 200 MPa; this was the critical point for the tests at 200 MPa. The same 

analysis was performed for all tests for galvanized and bare wires (see Appendix E).  

First, the input grid of the MDRM is shown in Table 6-3. The MDRM results based on different 

numbers of terms are listed in Table 6-4 and shown in Figure 6-9. It can be seen that the results 

for m > 2 are very close. Another analysis was performed using MCS along with the COF vs. SWT 

map. It can be seen that the PDF of the fatigue life is transitioning to a bimodal PDF when MCS 

is used. However, it is not very considerable for this case. Bi-modal PDFs were observed in the 

analysis for some of the tests (see Appendix E). This behaviour can be explained by looking at the 

SWT versus COF maps for each test. For some of the tests, the SWT has an almost linear 

relationship with COF up to a point and then a horizontal line or second line with a smaller slope 

can be observed. This typically happens when there is a higher uncertainty in the COF. All in all, 

comparing the CDFs and 95th percent survival probability for all tests based on MDRM and MCS 

shows very little difference (less than 2% for 95th percent S.P. in most cases, and 5% in the most 
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critical one with high uncertainty in COF). A higher difference was seen when the lower values of 

CDF were compared in cases with bimodal PDFs. 

Table 6-3 Input gird for MDRM analysis of Test #7. 

Variable 
COF 𝜎𝑓

′ 𝜀𝑓
′  

SWT Nf Log(Nf) 
(X1) (X2) (X3) 

1 0.3592 2183 1.99 3.324 1994574 6.300 

2 0.4346 2183 1.99 3.997 505279 5.704 

3 0.5450 2183 1.99 4.672 163512 5.214 

4 0.6554 2183 1.99 4.893 118433 5.073 

5 0.7308 2183 1.99 4.799 135607 5.132 

6 0.5450 1890 1.99 4.672 26237 4.419 

7 0.5450 2037 1.99 4.672 64498 4.810 

8 0.5450 2180 1.99 4.672 160679 5.206 

9 0.5450 2333 1.99 4.672 424755 5.628 

10 0.5450 2515 1.99 4.672 1292231 6.111 

11 0.5450 2183 1.2477 4.672 157459 5.197 

12 0.5450 2183 1.5840 4.672 160218 5.205 

13 0.5450 2183 1.9650 4.672 163310 5.213 

14 0.5450 2183 2.4376 4.672 167103 5.223 

15 0.5450 2183 3.0948 4.672 172299 5.236 

 

Table 6-4 MDRM analysis results for Test #7 

Moments Entropy i 0 1 2 3 4 

m=1 1.9805 
λi 1.894416 6.5868E-12       

αi   13.3172       

m=2 0.7242 
λi 240.1839 -193.3622 27.2879     

αi   0.4426 1.0775     

m=3 0.7269 
λi 1.74E+02 23.9058 24.0061 -133.3021   

αi   -2.8276 1.1449 0.5548   

m=4 0.7101 
λi 497.6401 -243.0761 -407.1558 225.7778 74.8736 

αi   0.4329 0.2657 0.6180 -1.7160 
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Figure 6-9 Probabilistic analysis for Test #7: PDFs (a) and CDFs (b) based on different terms in 

MDRM analysis; SWT-COF map (c); Comparison of MDRM and MCS resulted PDFs (d) and 

CDFs (e), and comparing MDRM and MCS results for CDF on a logarithmic scale (f). 

Figure 6-10 shows the results of probabilistic analysis over the test results for galvanized and bare 

wire. Looking at the results for galvanized wire, it can be seen that the tests were predicted 

reasonably well and all of them lie above the 95th percent survival probability. Looking at the 

results for the bare wire, it can be seen that the results are highly conservative in comparison with 
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the test results. As discussed previously, this is due to the challenges in finding the material 

properties to use in the analysis due to defects inside the bare wire. 

 

Figure 6-10 Different survival probabilities versus test results. 

It is argued that the current analysis was performed based on the knowledge of the upper/lower 

bound for COF from the tests. However, a designer/researcher might not have access to these 

numbers. In this case, perhaps a more acceptable approach might be using a conservative 

assumption for COF and fixing it at the upper bound or considering a uniform distribution for the 

COF close to the upper bound. Here, it was decided to repeat the analysis using a fixed value for 

COF at the upper bound and only consider the effect of material variability. Figure 6-11 shows the 

results based on this analysis. As expected, by making a conservative assumption like the one 

made here, the survival probabilities decrease. However, the change in the 95% survival 

probability is limited. It should be noted that this is perhaps a good assumption for real applications 
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since the ratio of frictional force to contact force is typically high in critical points and COF equal 

to the upper bound can be a good assumption. 

 

Figure 6-11 Different survival probabilities versus test results assuming a constant COF of 0.75. 
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7. Analysis of Fretting Fatigue Tests Based on 

Fracture Mechanics  
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The approach employed in this thesis until this point to evaluate the fretting fatigue life of cables 

was based on multiaxial stress analysis along with the SWT parameter. However, the fretting 

fatigue tests performed in Chapter 5 showed that the fretting fatigue life can significantly depend 

on the possible defects at the surface of the wires, as evidenced by the lower fatigue life observed 

for the galvanized wire. The Coffin-Manson parameters do not consider the effects of defects at 

the surface on fatigue performance. The study in Chapter 5 showed that the bare wire has some 

internal pores. However, it is very hard at the surface. On the other hand, the galvanized wire has 

surface defects due to the galvanizing process, which may be impacting fretting fatigue life. With 

this in mind, while the previously presented multiaxial stress analysis has been shown to lead to 

good fatigue life predictions, it appears that this approach may be limited by its inability to reveal 

trends in the test results due to differences in the surface qualities of the different wire types. For 

this reason, it was decided to evaluate the fretting fatigue life of the wires using an alternative 

linear elastic fracture mechanics (LEFM)-based approach, wherein surface defect size can be 

explicitly considered. In this approach, the fatigue life is determined based on the propagation life 

from an initial small crack. Fretting fatigue analyses based on LEFM and SBFM have been recently 

discussed in Antunes et al. (2017) and do Rêgo et al. (2018) respectively. 

7.1 Methodology 

Linear elastic fracture mechanics (LEFM) has been widely used in different engineering fields. As 

summarized in Chapter 2, several researchers have employed LEFM in fretting fatigue problems. 

In the current study, the Paris-Erdogan crack growth law is used to evaluate the fretting fatigue 

life of wires: 

𝑑𝑎

𝑑𝑁
= 𝐶 ∙ (∆𝐾)𝑚 

7-1 

where 𝑎 is the crack length, N is the number of cycles, C and m are Paris law constants, and ∆𝐾 is 

the stress intensity factor (SIF) range, The SIF range can be calculated as follows: 

∆𝐾 = 𝐾𝑚𝑎𝑥 − 𝐾𝑚𝑖𝑛 7-2 

where 𝐾𝑚𝑎𝑥 and 𝐾𝑚𝑖𝑛 are the maximum and minimum stress intensity factors (SIFs). For simple 

problems, stress intensity factors can be determined using the following equation: 

𝐾 = 𝑆 ∙ √𝜋 ∙ 𝑎 ∙ 𝑌 7-3 
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where S is the remote stress, 𝑎 is the crack length, and Y is the product of a series of geometry 

correction factors. Y factors are usually known for simple geometries and typical loading cases 

(e.g., tension and bending). However, for more complicated problems other methods are needed. 

For this reason, the current work employs weight functions to determine stress intensity factors. 

The stress intensity factors can be determined using weight functions as follows: 

𝐾 = ∫𝜎(𝑥)𝑚(𝑥, 𝑎)𝑑𝑥

𝑎

0

 

7-4 

where 𝜎(𝑥) is the stress distribution along the crack face, which can be determined using FE 

analysis of the problem, and 𝑚(𝑥, 𝑎) is the weight function for the points along the crack face. 

Based on Bueckner (1970) and Rice (1972), given a reference intensity factor, 𝐾𝑟 , for a reference 

stress system, crack opening displacement field of the reference system, 𝑢𝑟, and the generalized 

elastic modulus, 𝜅, the weight function can be determined as follows: 

𝑚(𝑥, 𝑎) =
𝜅

𝐾𝑟
∙
𝜕𝑢𝑟
𝜕𝑎

 7-5 

While stress intensity factors can be found in the literature for different loading systems. The crack 

opening displacement fields are typically not reported. Therefore, a generalized form of the weight 

function is employed, and the unknowns of the weight function are determined using reference 

stress intensity factors, reference loading, and Equation 7-4. The following two general forms of 

weight functions have been widely used in the literature (Niu and Glinka 1987, Niu and Glinka 

1990, Fett et al. 1987, Sha and Yang 1986, Glinka and Shen 1991): 

𝑚𝐹1(𝑥, 𝑎) =
2

√2𝜋(𝑎 − 𝑥)
∑ [1 +𝑀𝑖 (1 −

𝑥

𝑎
)

𝑖
2
]

𝑖
 7-6 

𝑚𝐹2(𝑥, 𝑎) =
2

√2𝜋(𝑎 − 𝑥)
∑ [1 +𝑀𝑖 (1 −

𝑥

𝑎
)
𝑖

]
𝑖

 7-7 

It should be noted that only one of the general forms of weight functions should be used in the 

calculations. However, for comparison purposes, both are first evaluated. In these equations, the 

only unknows are the 𝑀𝑖𝑠. These unknowns can be determined using reference stress intensity 

factors for specific loading cases from the literature and Equation 7-4. With more reference stress 

intensity factors, the number of terms in these equations increases. 
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Cracks start to grow when the stress intensity range is over a threshold. Also, due to crack closure, 

a portion of the ∆𝐾 is effective in crack propagation. Therefore, a modified version of the Paris-

Erdogan crack growth law equation was used as follows: 

𝑑𝑎

𝑑𝑁
= 𝐶(∆𝐾𝑒𝑓𝑓

𝑚 − ∆𝐾𝑡ℎ
𝑚) 

7-8 

where ∆𝐾𝑒𝑓𝑓 is the effective stress intensity factor range and ∆𝐾𝑡ℎ is the threshold SIF range. The 

effective SIF range can be calculated as follows (Kurishara et al. 1986): 

∆𝐾𝑒𝑓𝑓 = 𝑈∆𝐾 7-9 

𝑈 =
1

1.5 − 𝑅
 

7-10 

where 𝑈 is the effective stress intensity ratio and R is the stress ratio or the ratio of the minimum 

stress intensity factor to the maximum stress intensity factor. 

7.2 Weight functions 

7.2.1 Determining the unknowns of the weight functions 

Stress distribution and weight function are required for stress intensity factor calculation as evident 

in Equation 7-4. Stress distribution can be determined using an FE model. To determine the 

unknowns of the weight function, reference stress intensity factors from the literature and their 

corresponding loading systems are required. Geometry factors presented by (Mahmoud 2007) for 

tension and bending loading have been widely used for the analysis of high-strength steel wires. 

Here, these factors are used as references for determining the unknowns of weight functions. These 

geometric factors for tension, 𝑌𝑡 , and bending, 𝑌𝑏, cases are as follows (Mahmoud 2007): 

𝛾1 (
𝑎

𝐷
) = 0.7282 − 2.1425 (

𝑎

𝐷
) + 18.082 (

𝑎

𝐷
)
2

− 49.385 (
𝑎

𝐷
)
3

+ 66.114 (
𝑎

𝐷
)
4

  (𝑇𝑒𝑛𝑠𝑖𝑜𝑛) 

7-11 

𝛾2 (
𝑎

𝐷
) = 0.6218 − 0.4014 (

𝑎

𝐷
) + 0.1127 (

𝑎

𝐷
)
2

+ 4.9954 (
𝑎

𝐷
)
3

  (𝑏𝑒𝑛𝑑𝑖𝑛𝑔) 
7-12 
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As two reference SIFs are available, the general weight functions with three terms were used: 

𝑚𝐹1(𝑥, 𝑎) =
2

√2𝜋(𝑎 − 𝑥)
[1 + 𝑀1 (1 −

𝑥

𝑎
)

1
2
+𝑀2 (1 −

𝑥

𝑎
)] 7-13 

𝑚𝐹2(𝑥, 𝑎) =
2

√2𝜋(𝑎 − 𝑥)
[1 + 𝑀1 (1 −

𝑥

𝑎
)
1

+𝑀2 (1 −
𝑥

𝑎
)
2

] 7-14 

Two equations can be written for each general weight function and the unknown can be found: 

𝐾1 = ∫𝜎1(𝑥)𝑚(𝑥, 𝑎)𝑑𝑥

𝑎

0

 7-15 

𝐾2 = ∫𝜎2(𝑥)𝑚(𝑥, 𝑎)𝑑𝑥

𝑎

0

 7-16 

where 𝐾1 and 𝐾2 are the SIFs, 𝜎1(𝑥) and 𝜎2(𝑥) are the corresponding stress distributions. These 

equations can be written as follows for the first general form of the weight functions, 𝑚𝐹1: 

𝜎√𝜋𝑎𝛾1 = ∫
2𝜎

√2𝜋(𝑎 − 𝑥)
[1 + 𝑀1 (1 −

𝑥

𝑎
)

1
2
+𝑀2 (1 −

𝑥

𝑎
)] 𝑑𝑥

𝑎

0

 7-17 

𝜎√𝜋𝑎𝛾2 = ∫
2𝜎 (1 −

𝑥
𝑟
)

√2𝜋(𝑎 − 𝑥)
[1 + 𝑀1 (1 −

𝑥

𝑎
)

1
2
+𝑀2 (1 −

𝑥

𝑎
)] 𝑑𝑥

𝑎

0

 7-18 

where r is the radius of the wire, x is the distance from the surface of the wire, and a is the crack 

length. The equations can be written for the second general form of the weight functions, 𝑚𝐹2: 

𝜎√𝜋𝑎𝛾1 = ∫
2𝜎

√2𝜋(𝑎 − 𝑥)
[1 + 𝑀1 (1 −

𝑥

𝑎
)
1

+𝑀2 (1 −
𝑥

𝑎
)
2

] 𝑑𝑥

𝑎

0

 7-19 

𝜎√𝜋𝑎𝛾2 = ∫
2𝜎 (1 −

𝑥
𝑟
)

√2𝜋(𝑎 − 𝑥)
[1 + 𝑀1 (1 −

𝑥

𝑎
)
1

+𝑀2 (1 −
𝑥

𝑎
)
2

] 𝑑𝑥

𝑎

0

 7-20 

Unknowns for 𝑚𝑓1 and 𝑚𝑓2 can be determined by solving Equations 7-17 and 7-18 and Equations 

7-19 and 7-20 respectively. The steps of determining the unknown are shown in Appendix D. The 

final results for the unknowns of  𝑚𝑓1 and 𝑚𝑓2  are as follows: 
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For 𝑚𝑓1: 

𝑀1 =
𝛾1𝜋

√2
−
2

3
𝑀2 − 2 7-21 

𝑀2 =
15𝛾2𝜋𝑟

√2𝑎
+ (

15

2
−
15𝑟

𝑎
) (
𝛾1𝜋

√2
) + 5 

7-22 

For 𝑚𝑓2: 

𝑀1 = (
3

2
) (
𝛾1𝜋

√2
−
2

5
𝑀2 − 2) 7-23 

𝑀2 =
175𝛾2𝜋𝑟

8√2𝑎
+ (

35

4
−
175𝑟

8𝑎
) (
𝛾1𝜋

√2
) +

35

3
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7.2.2 Numerical integration using weight functions 

Given the stress field, 𝜎(𝑥), and the shape function, 𝑚(𝑥, 𝑎), the stress intensity factor can be 

numerically determined using the following equation. Different numbers of points can be used for 

numerical integration. Here the crack length was divided into 1000 points. 

𝐾 = ∫𝜎(𝑥)𝑚(𝑥, 𝑎)𝑑𝑥

𝑎

0

=
𝑎

1000
[
1

2
𝜎(0)𝑚(0, 𝑎) +

1

2
𝜎(0.9999𝑎)𝑚(0.9999𝑎, 𝑎)

+∑𝜎 (
𝑖𝑎

1000
)𝑚 (

𝑖𝑎

1000
, 𝑎)

999

1

] 

7-25 

It should be noted that different numbers of points were used to evaluate the accuracy of the 

integration. It was found that numerical integration with one thousand points is accurate enough. 

Also, at the last point, instead of a, 0.9999·a was used as 𝑚(𝑥, 𝑎) = ∞ 𝑓𝑜𝑟 𝑥 = 𝑎, and ∞ should 

not be used for the whole portion of 𝑎/1000 at the crack tip, as the change in 𝑚(𝑥, 𝑎) is great at 

𝑥 = 𝑎. This numerical integration could be done with fewer points in the region where the shape 

function is more uniform (form x = 0 to 0.95·a) and more points closer to x = a. However, the 

computational time was not significant at this stage and a uniform version as shown in Equation 

7-25 was used for the whole crack length. 
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7.2.3 Evaluating determined weight functions and numerical integration 

The weight functions are determined based on tension and bending loading and their corresponding 

stress intensity factors. So, with perfect integration, the results of the integral using the shape 

functions should be exactly the same as the results from the stress intensity factors based on 

Mahmoud (2007). In other words, it was decided to compare the following two equations and 

check if the determined unknowns for weight functions and the numerical integration were 

working properly. 

𝐾 = ∫𝜎(𝑥)𝑚(𝑥, 𝑎)𝑑𝑥

𝑎

0

 7-26 

𝐾 = 𝑆 ∙ √𝜋 ∙ 𝑎 ∙ 𝑌 7-27 

Figure 7-1 and Figure 7-2 compare stress intensity factor results based on Mahmoud (2008) and 

those calculated using the weight functions. The relative error was lower than 0.2% in all cases for 

both tension and bending. These figures show that the unknowns were determined correctly. Also, 

the numerical integration approach is acceptable. 

 

Figure 7-1 SIFs based on weight function results and (Mahmoud 2007) for tension. 
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Figure 7-2 SIFs based on weight function results and (Mahmoud 2007) for bending. 

7.2.4 Comparison of the weight functions 

It was decided to use one of the weight functions for the rest of the current study. The error in the 

results of the weight functions was minimal for bending and tension. However, to evaluate the 

possible differences between the weight function results when other types of stress 

distribution/loading are used, the analysis was done for quadratic and cubic stress distributions as 

shown in Figure 7-3 and Figure 7-4. The results of both weight functions are close. The difference 

was lower than 2% and 5% for quadratic and cubic stress distributions. Also, this difference was 

seen at longer crack sizes which cannot significantly affect the total life. The difference for short 

cracks (shorter than 1 mm) was lower than 1% in all cases. Stress intensity factors for these loading 

cases were not found in the literature and the results are not compared with the exact stress intensity 

factors. However, this analysis showed that the difference between the results based on the studied 

weight functions is limited. To be consistent in the rest of the study, the first form of the weight 

function, 𝑚𝐹1, was used for stress intensity determination. This form of the weight function has 

been widely used in the literature (Glinka and Shen 1991). 
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Figure 7-3 Comparing SIFs based on weight functions for quadratic stress distribution. 

 

Figure 7-4 Comparing SIFs based on the weight functions for cubic stress distribution. 

 

7.3 Finite element model 

To determine the stress intensity factors, stress distribution along the crack length should be 

determined. To find the stress distribution, an FE model, similar to the one previously presented 
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in Figure 6-1, of the fretting fatigue tests was used. The FE program ABAQUS was employed to 

model the fretting fatigue tests. In this model, however, elastic material properties with an elastic 

modulus of 200 GPa and a possion ratio of 0.3 were initially assumed for the saddle/pad (note: the 

effect of this assumption is studied later). The normal stress distribution was recorded for all points 

along the contact surface up to the center of the wire. As the exact critical location is not known, 

the crack propagation analysis was done for all possible vertical cracks. 

7.4 Fatigue life prediction 

Given the stress distribution from the finite element model and the weight functions determined in 

the previous sections, the stress intensity factor range was calculated. Given the stress intensity 

factor range, a numerical version of Paris-Erdogan law was used as follows: 

∆𝑎

∆𝑁
= 𝐶(∆𝐾𝑒𝑓𝑓

𝑚 − ∆𝐾𝑡ℎ
𝑚) 

7-28 

Looking at this equation, a critical crack size should be assumed, above which the wire is assumed 

to fail. In this work, it is assumed that the length of the crack at failure is equal to the radius of the 

wire. Another parameter that is required is the initial crack size. This parameter cannot be 

determined exactly, therefor a parametric study was done for different initial crack sizes from 8 to 

14 micrometres. This range is based on the ferrite layers and broken carbide structures at the 

surface of the galvanized wire reported in Chapter 5. Material properties required for crack 

propagation analysis were found in the literature. 𝐶, 𝑚, and ∆𝐾𝑡ℎ were considered to be 0.7×10-12, 

3.3, 4.24 MPa.m1/2 respectively (Zheng et al. 2019, Llorca et al. 1987, Toribio et al. 2009, 

Lambrighs et al. 2011). As the exact location of the critical point is not known, the analysis was 

done for all possible vertical cracks along the length of the wire (see Figure 7-5). 
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Figure 7-5 Example of evaluated locations for crack propagation. 

Sample crack growth paths are shown in Figure 7-5. It should be noted that the analysis was done 

for vertical cracks every 25 micrometres along the X-axis at the contact surface (Around 560 

possible vertical cracks for each test). A python code was used to run the ABQAS for all tests and 

save the required results. Following that, a MATLAB code was used for fatigue life estimation. 

Figure 7-6 shows the typical results of the analysis. This figure specifically shows the results for 

the conditions of Tests # 13-15 in Table 5-1. It should be noted that it was assumed if the number 

of cycles exceeded 5 million cycles, the code stopped counting and started evaluating the next 

possible crack. Therefore, at many points, a fatigue life of 5 million is reported. However, the exact 

fatigue life of these points is higher. This decision was made as the run-out limit in the tests was 5 
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million cycles and evaluating the points that are not critical is not necessary. As can be seen in 

Figure 7-6, the points close to the edge of the contact area are critical. This is consistent with the 

location of failure in the fretting fatigue tests done for this thesis in Chapter 5. All the specimens 

failed at the points close to the edge of the contact surface. Failure at the edge of the contact is 

very common in most fretting fatigue problems. It should be noted that at this stage, it was assumed 

that the stress field is one-dimensional, and only varies along the crack propagation path (i.e, 

vertical lines shown in Figure 7-5). However, a two-dimensional stress field occurs in reality. 

Looking at the stress field, it was seen that the stresses are higher along the shown vertical 

propagation paths in Figure 7-5. Therefore, working with a one-dimensional stress field is a 

conservative assumption in this case. Additionally, it was seen that the stress variation in the 

direction normal to the crack growth path was limited, especially at small crack lengths which are 

associated with most of the fatigue life of the wire.  

 

 

Figure 7-6 Fatigue life based on crack propagation at different locations along the wire for an 

initial crack length of 16 μm and the conditions of Tests # 13-15 in Table 5-1. 
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Figure 7-7 compares the results for three different initial crack lengths. Looking at this figure, it 

can be seen that the location of the critical point is at the edge of the contact area for all cases. As 

expected, the fatigue life decreases with an increase in the initial crack length. Also, it can be seen 

that the number of critical points increases with an increase in the crack length, as longer cracks 

can propagate more easily in comparison with shorter cracks. Failure at the edge of the contact 

was seen in all fatigue tests, which also was predicted using the SWT parameter. 

 

 

Figure 7-7 The effect of initial crack length on fatigue life along the wire for the conditions of 

Tests # 13-15 in Table 5-1. 

Figure 7-8 shows the fatigue life versus initial crack length for a range of crack lengths from 6 to 

100 μm. The analysis was stopped when the fatigue life was over 5 million cycles or when the SIF 

range was lower than the threshold range. The results rapidly change around an initial crack length 

of 9.5 μm. After this, the change in the fatigue life is relatively smooth. 
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Figure 7-8 The effect of initial crack length on fatigue life for the conditions of Tests # 13-15 in 

Table 5-1. 

7.5 Evaluating the fretting fatigue tests 

The analysis was performed for the fretting fatigue tests presented in Chapter 5. The measured slip 

displacement and contact force and stress range were directly used in the 3D FE model of the 

contact point. However, as discussed in Chapter 5, the COF cannot be exactly measured and 

modelled in a stick-slip regime. Therefore, two values representing upper and lower bounds were 

used for the COF: the gross sliding regime COF, which is equal to 0.75 based on the COF tests 

presented in Chapter 5, and a quasi-COF, which is the ratio of the frictional force to the contact 

force. Another parameter that has a high uncertainty is the initial crack length. The affected length 

at the surface of the galvanized wire by the ferrite layers or broken carbide structures was typically 

between around 5-15 μm. To cover a range of crack lengths, the analysis was done for four 

different initial crack lengths of 8, 10, 12, and 14 μm. 
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Figure 7-9 to Figure 7-12 compares the test results of galvanized wire with the analysis results. 

First, it can be seen that the results based on quasi-COF are not conservative. They show an upper 

bound for the fretting fatigue test results. On the other hand, the results based on the gross sliding 

COF (0.75) are a lower bound of the test results. It can be seen the difference between the 

predictions based on different COFs gets higher at higher contact forces. This can be explained by 

the lower difference between the quasi-COF and gross sliding COF at lower contact forces. The 

exact COF should fall between these two values. Measuring the COF in the stick-slip regime more 

accurately and using a parameter that considers the effect of both COFs are interesting possible 

topics to explore in future work. A possible way to consider the effect of both gross sliding COF 

and quasi-COF might be employing an effective COF as follows: 

𝐶𝑂𝐹𝑒𝑓𝑓 = (1 − 𝜆) ∙ 𝐶𝑂𝐹𝑔𝑟𝑜𝑠𝑠 𝑠𝑙𝑖𝑑𝑖𝑛𝑔 + 𝜆 ∙ 𝐶𝑂𝐹𝑞𝑢𝑎𝑠𝑖 7-29 

where 𝜆 varies between 0 and 1. Looking at the results in Figures 7-9 to 7-12, it can be seen that 

the test results are closer to predictions based on the gross sliding COF. Therefore, probably the 𝜆 

factor should be somewhere between 0.1 to 0.3. More analysis and tests focused on the COF are 

required to further investigate this possible expression for COF and 𝜆 factor. 

 

 

Figure 7-9 Fatigue life prediction of galvanized wires with an initial crack length of 8 μm. 
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Figure 7-10 Fatigue life prediction of galvanized wires with an initial crack length of 10 μm. 

 

Figure 7-11 Fatigue life prediction of galvanized wires with an initial crack length of 12 μm. 
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Figure 7-12 Fatigue life prediction of galvanized wires with an initial crack length of 14 μm. 

The analysis was primarily performed using elastic material properties for the contacting pads. 

However, under high contact forces, the elements at the surface of the pads can yield. Considering 

elastic material properties for the pad is typically a conservative assumption as stresses are higher 

in an elastic analysis. However, to evaluate the possible effect of considering elastic-plastic 

properties for the pad on the results, the analysis was repeated by considering an elastic-perfectly 

plastic material model with an elastic modulus of 200 GPa and yield stress of 500 Mpa for the 

contacting pads. The results of this analysis are compared with the analysis based on the elastic 

material model for initial crack lengths of 12 and 14 micrometres in Figure 7-13 and Figure 7-14 

respectively. As expected, the fretting fatigue life predictions based on the elastic material model 

are conservative in comparison with the elastic-plastic material model. 
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Figure 7-13 Fatigue life prediction of galvanized wires with an initial crack length of 12 μm 

considering an elastic-plastic material model for pads. 

 

Figure 7-14 Fatigue life prediction of galvanized wires with an initial crack length of 14 μm 

considering an elastic-plastic material model for pads. 

It should be noted that this chapter presents results for galvanized wire only. As discussed in the 

previous chapter, no failure was observed in fretting fatigue tests of bare wires. Also, no obvious 

defect was detected at the surface of the bare wires to be considered as an initial crack. The fretting 

fatigue tests were done at stress ranges of 200 and 300 MPa. The bridge cables should be designed 

for a stress range of 200 MPa. It seems that further increasing the stress range is required to get 
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fretting fatigue failure with bare wires. However, increasing the stress range to 400 or 500 MPa 

can cause failure at the grips. Also, tests at those stress ranges are not relevant for bridge structures. 

They, however, can be performed to better understand the fretting fatigue performance of the bare 

wires. Even at those stress ranges, the crack propagation framework might not be suitable as very 

small cracks cannot grow. The best approach to evaluate the fretting fatigue life of bare wires 

without obvious defects at the surface may be using a mixed crack initiation-propagation approach 

similar to the one in Navarro et al. (2008) or a small crack fracture mechanics approach, such as 

strain-based fracture mechanics (SBFM) (Walbridge 2008, Ghahremani and Walbridge 2011, 

Yekta et al. 2013). It should be noted that the tests and analysis in the current study were for fretting 

fatigue tests in air. Considering the effect of corrosion is another topic to explore. Corrosion effects 

might considerably decrease the fretting fatigue life of bare wires in comparison with galvanized 

wires by causing surface roughness and material loss over time. All in all, it seems that while crack 

initiation methods are relatively simpler to implement, they cannot properly account for the effect 

of surface defects. The LEFM framework presented in this chapter provides the possibility of 

considering the initial defect size as a parameter in the analysis and can be helpful when significant 

defects can be observed at the surface of components.  
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8. Conclusions and Future Work 
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This chapter presents (in Section 8.1) the main results and contributions of the research presented 

in the current thesis. It concludes with a discussion (in Section 8.2) of possible areas of future work 

on the topic of fretting fatigue testing and analysis for stay cable saddle systems. 

8.1 Conclusions 

The main conclusions and contributions of this thesis can be summarized as follows: 

• Comparing the analytical solutions in the literature with the results of the 2D FE analysis 

of a cable over a saddle for the critical parameters at the contact points (contact forces and 

slip displacements) shows some differences, especially at the points where the cable first 

meets the saddle. However, the results are very close in the uniform region. Therefore, for 

the non-uniform region (i.e. the first contact points) either a more complex/advanced 

approach, such as the 2D FE analysis presented in the current study, should be used or a 

safety factor should be applied to the analytical solution results. 

• Through modifications to the 2D FE analysis, it was shown the effect of wear is higher at 

the first contact points. Looking at the fretting fatigue life predictions in Chapter 3, it can 

be seen that the critical point is the first contact point when the wear is not modelled. 

However, the second contact point becomes more critical when the wear is modelled. This 

lower fatigue life at the second contact point can be explained by the higher contact force 

at this point in comparison with the first contact point when the effect of wear is considered, 

as the wear results in a redistribution of the forces at these contact points. The model with 

wear effects considered appears to capture more realistically the observed failure mode in 

large-scale saddle system fatigue tests conducted previously by others. 

• Crude MCS was found not to be a practical way to conduct a probabilistic analysis of this 

problem, as each trial requires a time-consuming nonlinear 3D FE analysis. Therefore, it 

was shown how more efficient approaches including MCS along with fretting maps and 

M-DRM, can be used for the current problem both of which require a much smaller number 

of FE analyses and consequently much lower computational times. The determined CDFs 

of the fretting fatigue life based on the two presented frameworks were very close to each 

other. 
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• It was shown that the concept of fretting maps can be used to develop a practical design 

tool for stay cable saddle systems, although, because of the high computational time of the 

FE analysis, generating these maps is time-consuming. Further investigation is therefore 

recommended to determine the best approach for establishing fretting maps covering a 

broad enough range of parameters to serve as a generalized design tool. 

• A probabilistic sensitivity analysis was done using M-DRM where it was found that the 

most important parameters affecting the prediction of fretting fatigue life are the bias 

factors for the contact force and the fatigue strength coefficient of wires. This was the same 

for both galvanized and bare wires. 

• A small-scale fretting fatigue setup was designed, fabricated, and used for fretting fatigue 

tests on single cable wires. Small-scale test setups are generally more economical and 

efficient compared to large-scale ones. Details of the design, drawings, challenges, 

measurements, and effective parameters have been presented. 

• The fretting fatigue performance of two cable types, namely bare and galvanized, was 

evaluated using a small-scale test setup. It was shown how stress range and contact force 

affect the fretting fatigue life of the wires. Also, other parameters including slip 

displacement, frictional force, and COF were measured and reported. Similar to plain 

fatigue tests, fretting fatigue life considerably decreased with an increase in the stress 

range. The fretting fatigue tests showed that increasing the contact force initially decreases 

the fretting fatigue life. However, fretting fatigue life can increase at higher contact forces. 

This was most obvious in the fretting fatigue test results at the 200 MPa stress range. 

However, a smaller difference was still observable between the test results at the 300 MPa 

stress range. 

• Microhardness, tensile and plain fatigue tests were performed and the properties of both 

the bare and galvanized wires including microhardness, elastic modulus, yield stress, 

tensile strength, fracture strain, and Coffin-Manson parameters are reported. It was found 

that the yield stress of both wires was relatively close. The core material of the galvanized 

wire had a higher fatigue limit than that of the bare wire. However, the microhardness tests 

showed that the bare wire was harder in comparison with the galvanized wire. 
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• Microstructure analysis was done to detect defects in the bare and galvanized wires and 

allow their possible effect on the fretting fatigue and plain fatigue performance of the wires 

to be considered. It was found that the bare wires have internal pores. These pores reduced 

the fatigue limit of the bare wire in comparison with the galvanized wire. On the other 

hand, the galvanized wires had defects at the surface, while the bare wire had a uniform 

pearlite structure at the surface. It is believed the defects at the surface of the galvanized 

wire reduced their fretting fatigue life in comparison with the bare wire. 

• Given the defects at the surface of the galvanized wires, another approach based on linear 

elastic fracture mechanics was used to predict the fretting fatigue life of the wires. Different 

initial crack lengths from 8 to 14 μm were used to evaluate the effect of initial defect size 

on the test results. The predictions were relatively close to the test results, especially when 

the gross sliding COF was used in the analysis. 

• The unknowns for two different general weight functions were determined for wires. It was 

shown that stress intensity factors obtained using these weight functions are very close to 

each other for quadratic and cubic stress systems. These weight functions can be employed 

in different linear elastic fracture mechanics (LEFM) analyses of wires subjected to a one-

dimensional stress field. 

8.2 Future work 

The following is a list of possible areas of future work stemming from the presented research 

on the fretting fatigue testing and analysis for stay cable saddle systems: 

• Large-scale tests of saddle systems to evaluate the critical parameters at the contact points: 

More large-scale fatigue tests are needed to evaluate the results obtained using the closed-form 

equations and the 2D FE analysis. These tests should be done to evaluate the accuracy of these 

methods and establish bias factors to consider the associated model uncertainties. 

• Fretting fatigue tests focused on the coefficient of friction: Fretting fatigue tests should be done 

to evaluate the COF in the stick-slip regime more accurately. The COF can be determined 

when the wire completely moves along the pads. Fretting fatigue tests cannot be stopped to 

measure COF under such conditions, as they can cause a high degree of wear and thus alter the 

fatigue test result. Therefore, several tests focused on COF measurements can be another area 
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of future work. DIC and stepwise increase of axial load are possible approaches to explore for 

this possible future work. 

• Saddle material effect tests: In the current study, steel pads were used for the fretting fatigue 

tests. Other materials (e.g., aluminum and high-performance concrete) can be used for the pads 

to evaluate the effect of saddle material on the fatigue life of these systems. 

• Implementing other fatigue life prediction approaches: In this work, a multiaxial stress-based 

approach based on the SWT parameter, and a linear elastic fracture mechanic approach have 

been used to evaluate the fretting fatigue life of the cables. Other approaches (e.g., X-FEM, 

strain-based fracture mechanics) can alternatively be used to study this problem and may lead 

to better fatigue life predictions, given the capabilities they would enable. 

• Modelling the wear in the 3D FE model: The Archard equation can be used to model wear in 

the 3D FE model. The stress and strains of the FE model can be recorded. Then, based on the 

Archard Equation, elements can be removed after a few thousand cycles and a new model can 

be created. With this approach, the beneficial effect of wear can be modelled. 

• Crack propagation calculation considering the effect of wear: There is a competition between 

crack propagation and wear in fretting fatigue problems. An interesting topic is considering 

the wear depth in the crack propagation framework. As discussed previously, the fretting 

fatigue life typically increases with a high degree of wear as wear can remove the small cracks 

that are propagating at the surface of the wires, thus increasing fatigue life. 

• Variable amplitude loading tests: Fretting behaviour under variable amplitude loading can be 

an important issue in the case of saddle supports in bridges. How a saddle performs under 

loading histories containing a combination of large cycles that cause wear and small cycles 

that cause fretting fatigue damage is another interesting topic to explore. Recent studies 

showed that the gross vehicle weight histogram of the trucks in real traffic can significantly 

affect the fatigue life of elements with short to long influence lines (Chehrazi et al. 2022a, 

Chehrazi et al. 2022b). Therefore, evaluating the performance of these systems subjected to 

different real traffic databases can be an interesting future project. Apart from that, 

simultaneous truck crossings, when trucks follow each other closely or cross the bridge side 

by side, can significantly increase the stress ranges and decrease the fatigue life of components 
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(Walbridge et al. 2011, Chehrazi et al. 2022c). Evaluating the possible effect of simultaneous 

truck crossings on the fretting fatigue performance of cables is another interesting project.  

• Analysis of cable-stayed bridges: Exploring how a designer might establish the dead/live loads 

for the design of a cable-stayed bridge would make it possible to ensure the developed fretting 

fatigue analysis methods and design frameworks can be practically implemented. 

• Advanced M-DRM approach: An advanced version of M-DRM called MDR-PCE has been 

developed recently (Zhang et al. 2021). This method is capable of capturing the bi-modal 

behaviour of a function/structural response. Therefore, employing this method can increase the 

accuracy of determined PDF/CDFs and can be an interesting future project. 
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Appendix A 

The results of contact forces and slip displacements at the contact points for saddle radii of 1000, 

1500 mm are shown in this appendix. 

 

Figure A-1 Contact force results for R = 1500 mm, and COF = 0.2. 

 

Figure A-2 Slip displacement results for R = 1500 mm, and COF = 0.2. 
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Figure A-3 Contact force results for R = 1000 mm, and COF = 0.2. 

 

Figure A-4 Slip displacement results for R = 1000 mm, and COF = 0.2. 
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Figure A-5 Contact force results for R = 1500 mm, and COF = 0.4. 

 

Figure A-6 Slip displacement results for R = 1500 mm, and COF = 0.4. 
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Figure A-7 Contact force results for R = 1000 mm, and COF = 0.4. 

 

Figure A-8 Slip displacement results for R = 1000 mm, and COF = 0.4. 
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Figure A-9 Contact force results for R = 1500 mm, and COF = 0.6. 

 

Figure A-10 Slip displacement results for R = 1500 mm, and COF = 0.6. 
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Figure A-11 Contact force results for R = 1000 mm, and COF = 0.6. 

 

Figure A-12 Slip displacement results for R = 1000 mm, and COF = 0.6. 
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Figure A-13 Contact force results for R = 1500 mm, and COF = 0.8. 

 

Figure A-14 Slip displacement results for R = 1500 mm, and COF = 0.8. 
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Figure A-15 Contact force results for R = 1000 mm, and COF = 0.8. 

 

Figure A-16 Slip displacement results for R = 1000 mm, and COF = 0.8. 
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Appendix B 

Table B-1 Input grid for M-DRM analysis for bare wire, R = 500 mm. 

Variable 

/TRIAL 

X1 

(COF) 

X2 

(B1) 

X3 

(B2) 

X4 

(𝝈𝒇
′ ) 

X5 

(𝜺𝒇
′ )  SWT 𝑵𝒇 𝑳𝒐𝒈(𝑵𝒇) 

1 0.6094 1 1 2675 0.2067  2.887 1378707 6.139 

2 0.6462 1 1 2675 0.2067  2.851 1474049 6.169 

3 0.7 1 1 2675 0.2067  2.828 1542159 6.188 

4 0.7538 1 1 2675 0.2067  2.671 2107833 6.324 

5 0.7906 1 1 2675 0.2067  2.811 1594121 6.203 

6 0.7 0.5715 1.0000 2675 0.2067  1.710 25652661 7.409 

7 0.7 0.7967 1.0000 2675 0.2067  2.367 4101374 6.613 

8 0.7 1.0000 1.0000 2675 0.2067  2.828 1542159 6.188 

9 0.7 1.2033 1.0000 2675 0.2067  3.314 658108 5.818 

10 0.7 1.4285 1.0000 2675 0.2067  3.929 271279 5.433 

11 0.7 1.0000 0.7143 2675 0.2067  2.636 2262180 6.355 

12 0.7 1.0000 0.8644 2675 0.2067  2.557 2673876 6.427 

13 0.7 1.0000 1.0000 2675 0.2067  2.828 1542159 6.188 

14 0.7 1.0000 1.1356 2675 0.2067  2.929 1273375 6.105 

15 0.7 1.0000 1.2857 2675 0.2067  3.079 973667 5.988 

16 0.7 1 1 2316 0.2067  2.828 348715 5.542 

17 0.7 1 1 2497 0.2067  2.828 744854 5.872 

18 0.7 1 1 2672 0.2067  2.828 1521659 6.182 

19 0.7 1 1 2859 0.2067  2.828 3175169 6.502 

20 0.7 1 1 3082 0.2067  2.828 7302548 6.863 

21 0.7 1 1 2675 0.1296  2.828 1452244 6.162 

22 0.7 1 1 2675 0.1645  2.828 1492970 6.174 

23 0.7 1 1 2675 0.2041  2.828 1539129 6.187 

24 0.7 1 1 2675 0.2532  2.828 1596447 6.203 

25 0.7 1 1 2675 0.3215  2.828 1676273 6.224 
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Table B-2 Input grid for M-DRM analysis for galvanized wire, R = 500 mm. 

Variable 

/Trial 

X1 

(COF) 

X2 

(b1) 

X3 

(b2) 

X4 

(𝝈𝒇
′ ) 

X5 

(𝜺𝒇
′ )  SWT 𝑵𝒇 𝑳𝒐𝒈(𝑵𝒇) 

1 0.6094 1 1 2183 1.99  2.887 4775521 6.679 

2 0.6462 1 1 2183 1.99  2.851 5241761 6.719 

3 0.7000 1 1 2183 1.99  2.828 5581802 6.747 

4 0.7538 1 1 2183 1.99  2.671 8608559 6.935 

5 0.7906 1 1 2183 1.99  2.811 5845011 6.767 

6 0.7 0.5715 1 2183 1.99  1.710 254886219 8.406 

7 0.7 0.7967 1 2183 1.99  2.367 21482747 7.332 

8 0.7 1.0000 1 2183 1.99  2.828 5581802 6.747 

9 0.7 1.2033 1 2183 1.99  3.314 1689323 6.228 

10 0.7 1.4285 1 2183 1.99  3.929 476311 5.678 

11 0.7 1 0.7143 2183 1.99  2.636 9491241 6.977 

12 0.7 1 0.8644 2183 1.99  2.557 11950823 7.077 

13 0.7 1 1.0000 2183 1.99  2.828 5581802 6.747 

14 0.7 1 1.1356 2183 1.99  2.929 4274277 6.631 

15 0.7 1 1.2857 2183 1.99  3.079 2935267 6.468 

16 0.7 1 1 1890 1.99  2.828 647422 5.811 

17 0.7 1 1 2037 1.99  2.828 1973874 6.295 

18 0.7 1 1 2180 1.99  2.828 5477414 6.739 

19 0.7 1 1 2333 1.99  2.828 15288474 7.184 

20 0.7 1 1 2515 1.99  2.828 47790698 7.679 

21 0.7 1 1 2183 1.2477  2.828 5565279 6.745 

22 0.7 1 1 2183 1.5840  2.828 5572769 6.746 

23 0.7 1 1 2183 1.9650  2.828 5581246 6.747 

24 0.7 1 1 2183 2.4376  2.828 5591751 6.748 

25 0.7 1 1 2183 3.0948  2.828 5606337 6.749 
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Table B-3 M-DRM parameters for bare wire, R = 500 mm. 

Moment Entropy i 0 1 2 3 4 

m = 1 2.1003 
λi 2.023944 4.9213E-12    

αi  12.6106    

m = 2 0.5084 
λi 361.1723 -268.3655 60.6507   

αi  0.6005 1.0880   

m = 3 0.5018 
λi 503.1862 80.2356 -280.7974 -140.3209  

αi  1.0577 0.2949 0.7730  

m = 4 0.5007 
λi 583.6532 3.0958 -234.7744 -63.8870 -168.5974 

αi  1.8647 -0.0010 0.6399 0.1864 

 

Table B-4 M-DRM parameters for galvanized wire, R = 500 mm. 

Moment Entropy i 0 1 2 3 4 

m = 1 2.2168 
λi 2.121183 1.3942E-11       

αi   11.5442       

m = 2 0.8436 
λi 318.3254 -229.3842 21.2960     

αi   0.4055 1.1167     

m = 3 0.8346 
λi 510.5722 86.1741 -363.5205 -110.3246   

αi   0.9169 0.2213 0.7384   

m = 4 0.8344 
λi 542.3963 -29.5924 64.1795 -440.3457 31.3320 

αi   1.3812 -8.7018 0.1604 1.4179 
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Table B-5 Sensitivity index results for bare wire, R = 500 mm. 

Variable Parameter 𝑆𝑖 𝑆𝑇𝑖 𝑆𝑇𝑖 − 𝑆𝑖 

X1 COF-Coefficient of friction 0.0245 0.0247 0.0002 

X2 𝑏1-Bias factor for contact force 0.5560 0.5577 0.0017 

X3 𝑏2-Bias factor for slip displacement 0.0816 0.0821 0.0005 

X4 𝜎𝑓
′-Fatigue strength coefficient 0.3359 0.3375 0.0016 

X5 𝜀𝑓
′ -Fatigue ductility factor 0.0000 0.0000 0.0000 

Sum  0.9980 1.0020 
 

 

Table B-6 Sensitivity index results for galvanized wire, R = 500 mm. 

Variable Parameter 𝑆𝑖 𝑆𝑇𝑖 𝑆𝑇𝑖 − 𝑆𝑖 

X1 COF-Coefficient of friction 0.0244 0.0245 0.0001 

X2 𝑏1-Bias factor for contact force 0.5634 0.5645 0.0011 

X3 𝑏2 -Bias factor for slip displacement 0.0829 0.0832 0.0003 

X4 𝜎𝑓
′-Fatigue strength coefficient 0.3273 0.3283 0.0009 

X5 𝜀𝑓
′ -Fatigue ductility factor 0.0007 0.0007 0.0000 

Sum  0.9988 1.0012 
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Figure B-1  Comparing M-DRM results with different numbers of terms for galvanized wires, 

R = 500 mm. 
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Figure B-2  Comparing M-DRM results with different numbers of terms for bare wires, 

R = 500 mm. 
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Figure B-3 PDF and CDF results using M-DRM for bare and galvanized wires, R = 500 mm.  
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Table B-7 Input grid for M-DRM analysis for bare wire, R = 1500 mm. 

Variable 

/Trial 

X1 

(COF) 

X2 

(b1) 
X3 (b2) X4 (𝝈𝒇

′ ) 
X5 

(𝜺𝒇
′ )  SWT 𝑵𝒇 𝑳𝒐𝒈(𝑵𝒇) 

1 0.6094 1 1 2675 0.2067  3.2229 762650 5.8823 

2 0.6462 1 1 2675 0.2067  3.1796 819706 5.9137 

3 0.7000 1 1 2675 0.2067  3.4130 563000 5.7505 

4 0.7538 1 1 2675 0.2067  3.3687 603174 5.7804 

5 0.7906 1 1 2675 0.2067  3.4296 548816 5.7394 

6 0.7 0.5715 1 2675 0.2067  2.7944 1645292 6.2162 

7 0.7 0.7967 1 2675 0.2067  2.8025 1619655 6.2094 

8 0.7 1.0000 1 2675 0.2067  3.4130 563000 5.7505 

9 0.7 1.2033 1 2675 0.2067  3.9068 279244 5.4460 

10 0.7 1.4285 1 2675 0.2067  4.4763 141036 5.1493 

11 0.7 1 0.714303 2675 0.2067  3.0636 1000244 6.0001 

12 0.7 1 0.864437 2675 0.2067  3.2465 733617 5.8655 

13 0.7 1 1 2675 0.2067  3.4130 563000 5.7505 

14 0.7 1 1.135563 2675 0.2067  3.5710 444117 5.6475 

15 0.7 1 1.285697 2675 0.2067  3.7365 351047 5.5454 

16 0.7 1 1 2316.2319 0.2067  3.4130 137458 5.1382 

17 0.7 1 1 2496.6800 0.2067  3.4130 280945 5.4486 

18 0.7 1 1 2671.6627 0.2067  3.4130 555807 5.7449 

19 0.7 1 1 2858.9093 0.2067  3.4130 1131203 6.0535 

20 0.7 1 1 3081.6351 0.2067  3.4130 2549302 6.4064 

21 0.7 1 1 2675 0.1296  3.4130 515307 5.7121 

22 0.7 1 1 2675 0.1645  3.4130 536897 5.7299 

23 0.7 1 1 2675 0.2041  3.4130 561392 5.7493 

24 0.7 1 1 2675 0.2532  3.4130 591847 5.7722 

25 0.7 1 1 2675 0.3215  3.4130 634344 5.8023 
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Table B-8 Input grid for M-DRM analysis for galvanized wire, R = 1500 mm. 

Variable 

/Trial 

X1 

(COF) 

X2 

(b1) 

X3 

(b2) 
X4 (𝝈𝒇

′ ) 
X5 

(𝜺𝒇
′ )  SWT 𝑵𝒇 𝑳𝒐𝒈(𝑵𝒇) 

1 0.6094 1 1 2183 1.99  3.2229 2080937 6.3183 

2 0.6462 1 1 2183 1.99  3.1796 2303902 6.3625 

3 0.7000 1 1 2183 1.99  3.4130 1353753 6.1315 

4 0.7538 1 1 2183 1.99  3.3687 1492955 6.1740 

5 0.7906 1 1 2183 1.99  3.4296 1305531 6.1158 

6 0.7 0.5715 1 2183 1.99  2.7944 6107323 6.7859 

7 0.7 0.7967 1 2183 1.99  2.8025 5975521 6.7764 

8 0.7 1.0000 1 2183 1.99  3.4130 1353753 6.1315 

9 0.7 1.2033 1 2183 1.99  3.9068 496555 5.6960 

10 0.7 1.4285 1 2183 1.99  4.4763 185594 5.2686 

11 0.7 1 0.7143 2183 1.99  3.0636 3048380 6.4841 

12 0.7 1 0.8644 2183 1.99  3.2465 1969924 6.2944 

13 0.7 1 1.0000 2183 1.99  3.4130 1353753 6.1315 

14 0.7 1 1.1356 2183 1.99  3.5710 965622 5.9848 

15 0.7 1 1.2857 2183 1.99  3.7365 689734 5.8387 

16 0.7 1 1 1890.2184 1.99  3.4130 167329 5.2236 

17 0.7 1 1 2037.4774 1.99  3.4130 487818 5.6883 

18 0.7 1 1 2180.2764 1.99  3.4130 1328735 6.1234 

19 0.7 1 1 2333.0836 1.99  3.4130 3677537 6.5656 

20 0.7 1 1 2514.8444 1.99  3.4130 11449918 7.0588 

21 0.7 1 1 2183 1.2477  3.4130 1342393 6.1279 

22 0.7 1 1 2183 1.5840  3.4130 1347548 6.1295 

23 0.7 1 1 2183 1.9650  3.4130 1353372 6.1314 

24 0.7 1 1 2183 2.4376  3.4130 1360576 6.1337 

25 0.7 1 1 2183 3.0948  3.4130 1370556 6.1369 
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Table B-9 M-DRM parameters for bare wire, R = 1500 mm. 

Moments Entropy i 0 1 2 3 4 

m=1 2.0321 
λi 1.954423 2.1414E-11       

αi   12.3075       

m=2 0.4080 
λi 387.4132 -255.4907 15.8790     

αi   0.4620 1.4062     

m=3 0.4016 
λi 515.5412 80.1315 -271.6791 -151.3373   

αi   1.0216 0.4183 0.5962   

m=4 0.3976 
λi 692.9105 2.4973 -367.9469 -30.6709 -213.3714 

αi   2.1327 0.0109 1.0785 0.0167 

 

Table B-10 M-DRM parameters for galvanized wire, R = 1500 mm. 

Moments Entropy i 0 1 2 3 4 

m=1 2.1203 
λi 2.047372 9.4191E-12    

αi  12.1503    

m=2 0.7669 
λi 362.7021 -275.3934 15.3736   

αi  0.3237 1.1896   

m=3 0.7659 
λi 386.5421 61.8517 -234.8427 -111.9732  

αi  1.0038 0.2054 0.7385  

m=4 0.7620 
λi 571.6363 1.7702 -299.1975 -29.4097 -194.6583 

αi  1.9807 -0.0117 0.8977 -0.0051 
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Table B-11 Sensitivity index results for bare wire, R = 1500 mm. 

Variable Parameter 𝑆𝑖 𝑆𝑇𝑖 𝑆𝑇𝑖 − 𝑆𝑖 

X1 COF-Coefficient of friction 0.035462 0.035599 0.000138 

X2 𝑏1-Bias factor for contact force 0.539976 0.540975 0.000999 

X3 𝑏2-Bias factor for slip displacement 0.048384 0.048569 0.000186 

X4 𝜎𝑓
′-Fatigue strength coefficient 0.373193 0.374135 0.000942 

X5 𝜀𝑓
′ -Fatigue ductility factor 0.00185 0.001858 7.44E-06 

Sum  0.998864 1.001136 
 

 

Table B-12 Sensitivity index results for galvanized wire, R = 1500 mm. 

Variable Parameter 𝑆𝑖 𝑆𝑇𝑖 𝑆𝑇𝑖 − 𝑆𝑖 

X1 COF-Coefficient of friction 0.035183612 0.035429 0.000245 

X2 𝑏1-Bias factor for contact force 0.52931437 0.531106 0.001792 

X3 𝑏2 -Bias factor for slip displacement 0.047912311 0.048242 0.000329 

X4 𝜎𝑓
′-Fatigue strength coefficient 0.385545583 0.387251 0.001705 

X5 𝜀𝑓
′ -Fatigue ductility factor 8.93367E-06 9E-06 6.45E-08 

Sum  0.99796481 1.002036 
 

 

 



265 

 

 

Figure B-4  Comparing M-DRM results with different numbers of terms for galvanized wires, 

R = 1500 mm. 
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Figure B-5  Comparing M-DRM results with different numbers of terms for bare wires, 

R = 1500 mm. 
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Figure B-6  PDF and CDF results using M-DRM for bare and galvanized wires, R = 1500 mm. 

 

 



268 

 

Appendix C 

In this appendix, drawings of the fretting fatigue test setup designed for the current project are 

attached. The parts are marked with letters A to G in the following figure. 

 

 

Figure C-1 Fretting fatigue test setup. 
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Figure C-2 Schematic front view of the test setup. 
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Figure C-3 Schematic side view of the test setup. 
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Figure C-4 Schematic top view of the test setup. 
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Figure C-5 Drawing of Part A. 
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Figure C-6 Drawing of Part B. 

 



274 

 

 

Figure C-7 Drawing of Part C. 
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Figure C-8 Drawing of Part D. 
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Figure C-9 Drawing of Part E. 
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Figure C-10 Drawing of Part F. 
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Figure C-11 Drawing of Part G. 
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Figure C-12 3D views of Part G. 
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Appendix D 

Unknowns of the first general form of the weight function, 𝒎𝟏 

The stress intensity factor can be determined using the weight function method as follows: 

𝐾 = ∫ 𝜎(𝑥)𝑚(𝑥, 𝑎)𝑑𝑥
𝑎

0

 

where 𝜎(𝑥) is the stress distribution and 𝑚(𝑥, 𝑎) is the weight function. The first evaluated form 

for the general equation of the weight function with three terms is as follows: 

𝑚1(𝑥, 𝑎) =
2

√2𝜋(𝑎 − 𝑥)
[1 + 𝑀1 (1 −

𝑥

𝑎
)

1
2
 + 𝑀2 (1 −

𝑥

𝑎
)] 

In this equation, 𝑀1 and  𝑀2 should be determined. Two reference stress intensity factors for 

tension and bending loading are used to write two equations and determine the unknowns. The 

reference stress intensity factors and corresponding loadings are as follows: 

𝐾𝑟1 = 𝜎0√𝜋𝑎 𝛾1   𝑓𝑜𝑟 𝑡𝑒𝑛𝑠𝑖𝑜𝑛 𝜎(𝑥) = 𝜎0 

𝐾𝑟2 = 𝜎0√𝜋𝑎 𝛾2   𝑓𝑜𝑟 𝑏𝑒𝑛𝑑𝑖𝑛𝑔 𝜎(𝑥) = 𝜎0(1 −
𝑥

𝑟
) 

Two equations can be written as follows: 

𝜎0√𝜋𝑎𝛾1 = ∫ 𝜎0
2

√2𝜋(𝑎−𝑥)
[1 + 𝑀1 (1 −

𝑥

𝑎
)

1

2
 + 𝑀2 (1 −

𝑥

𝑎
)] 𝑑𝑥

𝑎

0
   (I) 

𝜎0√𝜋𝑎𝛾2 = ∫ 𝜎0(1 −
𝑥

𝑟
)

2

√2𝜋(𝑎−𝑥)
[1 + 𝑀1 (1 −

𝑥

𝑎
)

1

2
 + 𝑀2 (1 −

𝑥

𝑎
)] 𝑑𝑥

𝑎

0
  (II) 

Simplifying the first equation (I): 

𝜎0√𝜋𝑎𝛾1 = ∫ 𝜎0
2

√2𝜋(𝑎 − 𝑥)
[1 + 𝑀1 (1 −

𝑥

𝑎
)

1
2
 + 𝑀2 (1 −

𝑥

𝑎
)] 𝑑𝑥

𝑎

0

 

𝜎0√𝜋𝑎𝛾1 = ∫ 𝜎0
2

√2𝜋𝑎 (1 −
𝑥
𝑎
)

[1 + 𝑀1 (1 −
𝑥

𝑎
)

1
2
 + 𝑀2 (1 −

𝑥

𝑎
)] 𝑑𝑥

𝑎

0
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𝜎0√𝜋𝑎𝛾1 = ∫ 𝜎0
2

√2𝜋𝑎
[(1 −

𝑥

𝑎
)
−
1
2
+𝑀1  + 𝑀2 (1 −

𝑥

𝑎
)

1
2
] 𝑑𝑥

𝑎

0

 

𝜎0√𝜋𝑎𝛾1 = 𝜎0
2

√2𝜋𝑎
[(

1

1 −
1
2

) (−𝑎) (1 −
𝑥

𝑎
)

1
2
+𝑀1𝑥 + (

1

1 +
1
2

) (−𝑎)𝑀2 (1 −
𝑥

𝑎
)

3
2
] |0
𝑎 

𝜋𝑎𝛾1

√2
= [(2)(−𝑎) (1 −

𝑥

𝑎
)

1
2
+𝑀1𝑥 + (

2

3
) (−𝑎)𝑀2 (1 −

𝑥

𝑎
)

3
2
] |0
𝑎 

𝜋𝑎𝛾1

√2
= [(2)(−𝑎) (1 −

𝑎

𝑎
)

1
2
+𝑀1(𝑎)  + (

2

3
) (−𝑎)𝑀2 (1 −

𝑎

𝑎
)

3
2
]

− [(2)(−𝑎) (1 −
0

𝑎
)

1
2
+𝑀1(0)  + (

2

3
) (−𝑎)𝑀2 (1 −

0

𝑎
)

3
2
] 

𝜋𝑎𝛾1

√2
= [𝑀1(𝑎) ] − [(2)(−𝑎)(1)

1
2  + (

2

3
) (−𝑎)𝑀2(1)

3
2] 

𝜋𝑎𝛾1

√2
= [𝑀1(𝑎) ] − [(2)(−𝑎)  + (

2

3
) (−𝑎)𝑀2] 

𝜋𝑎𝛾1

√2
= [𝑀1(𝑎 )] − [(2)(−𝑎)  + (

2

3
) (−𝑎)𝑀2] 

𝜋𝛾1

√2
= 𝑀1 +

2

3
𝑀2 + 2  (III) 

Simplifying the second equation (II): 

𝜎0√𝜋𝑎𝛾2 = ∫ 𝜎0(1 −
𝑥

𝑟
)

2

√2𝜋(𝑎 − 𝑥)
[1 +𝑀1 (1 −

𝑥

𝑎
)

1
2
 + 𝑀2 (1 −

𝑥

𝑎
)] 𝑑𝑥

𝑎

0

 

𝜋𝑎𝛾2

√2
= ∫ (1 −

𝑥

𝑟
) [(1 −

𝑥

𝑎
)
−
1
2
+𝑀1 +𝑀2 (1 −

𝑥

𝑎
)

1
2
] 𝑑𝑥

𝑎

0

 

𝑢 = 1 −
𝑥

𝑎
                  𝑥 = 𝑎 − 𝑎𝑢        𝑑𝑥 = −𝑎𝑑𝑢 

𝑥 = 0   𝑢 = 1 

𝑥 = 𝑎     𝑢 = 0 
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𝜋𝑎𝛾2

√2
= −∫ (1 −

(𝑎 − 𝑎𝑢)

𝑟
) [𝑢−

1
2 +𝑀1 +𝑀2𝑢

1
2] (−𝑎)𝑑𝑢

1

0

 

𝜋𝑎𝛾2

√2
= (𝑎)∫ (1 −

𝑎

𝑟
+ (

𝑎

𝑟
) 𝑢) [𝑢−

1
2 +𝑀1 +𝑀2𝑢

1
2] 𝑑𝑢

1

0

 

 

(𝑎)∫ (1 −
𝑎

𝑟
+ (

𝑎

𝑟
) 𝑢) [𝑢−

1
2 +𝑀1 +𝑀2𝑢

1
2] 𝑑𝑢

1

0

= (𝑎) (1 −
𝑎

𝑟
)∫ [𝑢−

1
2 +𝑀1 +𝑀2𝑢

1
2] 𝑑𝑢

1

0

+ (𝑎) (
𝑎

𝑟
)∫ [𝑢

1
2 +𝑀1𝑢 +𝑀2𝑢

3
2] 𝑑𝑢

1

0

 

= 𝑎 (1 −
𝑎

𝑟
) [

1

1 −
1
2

𝑢
1
2 +𝑀1𝑢 +

1

1 +
1
2

𝑀2𝑢
3
2 ] |0

1

+ (𝑎) (
𝑎

𝑟
) [

1

1 +
1
2

𝑢
3
2 +

1

1 + 1
𝑀1𝑢

2 +
1

1 +
3
2

𝑀2𝑢
5
2] |0

1 

 

= 𝑎 (1 −
𝑎

𝑟
) [(2)(1) + 𝑀1(1) + (

2

3
) (1)𝑀2] + (𝑎) (

𝑎

𝑟
) [(

2

3
) (1) + (

1

2
)𝑀1(1) + (

2

5
)𝑀2] 

= 𝑎 (1 −
𝑎

𝑟
) [2 + 𝑀1 +

2

3
𝑀2] + (𝑎) (

𝑎

𝑟
) [
2

3
+
1

2
𝑀1 +

2

5
𝑀2] 

= (𝑎 −
𝑎2

𝑟
) [2 +𝑀1 +

2

3
𝑀2] + (

𝑎2

𝑟
) [
2

3
+
1

2
𝑀1 +

2

5
𝑀2] 

= (
𝑎2

2𝑟
+ 𝑎 −

𝑎2

𝑟
)𝑀1 + (

2

3
𝑎 −

2𝑎2

3𝑟
+
2𝑎2

5𝑟
)𝑀2 + (2𝑎 −

2𝑎2

𝑟
+
2𝑎2

3𝑟
) 

𝜋𝑎𝛾2

√2
= (−

𝑎2

2𝑟
+ 𝑎)𝑀1 + (−

4𝑎2

15𝑟
+
2𝑎

3
)𝑀2 + (−

4𝑎2

3𝑟
+ 2𝑎) 

 

𝜋𝛾2

√2
= (−

𝑎

2𝑟
+ 1)𝑀1 + (−

4𝑎

15𝑟
+
2

3
)𝑀2 + (−

4𝑎

3𝑟
+ 2)  (IV) 
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The simplified equations (III and IV) can be now used to determine the unknowns. From equation 

(III), 𝑀1can be written as follows: 

𝑀1 = 
𝜋𝛾1

√2
−
2

3
𝑀2 − 2 (V) 

Using Equation (V) for 𝑀1, Equation (IV) can be written as follows: 

𝜋𝛾2

√2
= (−

𝑎

2𝑟
+ 1) (

𝜋𝛾1

√2
−
2

3
𝑀2 − 2) + (−

4𝑎

15𝑟
+
2

3
)𝑀2 + (−

4𝑎

3𝑟
+ 2) (VI) 

𝑀2 can be determined by simplifying Equation (VI): 

𝜋𝛾2

√2
= (−

𝑎

2𝑟
+ 1) (

𝜋𝛾1

√2
) + (−

𝑎

2𝑟
+ 1) (−

2

3
𝑀2) + (−

𝑎

2𝑟
+ 1) (−2)  + (−

4𝑎

15𝑟
+
2

3
)𝑀2

+ (−
4𝑎

3𝑟
+ 2) 

𝜋𝛾2

√2
= (−

𝑎

2𝑟
+ 1) (

𝜋𝛾1

√2
) + (

𝑎

3𝑟
−
2

3
−
4𝑎

15𝑟
+
2

3
)𝑀2 + (−

4𝑎

3𝑟
+ 2 +

𝑎

𝑟
− 2) 

𝜋𝛾2

√2
= (−

𝑎

2𝑟
+ 1) (

𝜋𝛾1

√2
) + (

𝑎

15𝑟
)𝑀2 + (−

𝑎

3𝑟
) 

𝜋𝛾2

√2
− (−

𝑎

2𝑟
+ 1) (

𝜋𝛾1

√2
) +

𝑎

3𝑟
= (

𝑎

15𝑟
)𝑀2 

𝑀2 = (
15𝑟

𝑎
)
𝜋𝛾2

√2
+ (

15

2
−
15𝑟

𝑎
) (
𝜋𝛾1

√2
) + 5 

Therefore, the unknowns of the first form of the general weight function can be determined as 

follows: 

𝑀2 = (
15𝑟

𝑎
)
𝜋𝛾2

√2
+ (

15

2
−
15𝑟

𝑎
) (
𝜋𝛾1

√2
) + 5 

𝑀1 = 
𝜋𝛾1

√2
−
2

3
𝑀2 − 2 

  



284 

 

Unknowns of the second general form of the weight function, 𝒎𝟐 

The stress intensity factor can be determined using the weight function method as follows: 

𝐾 = ∫ 𝜎(𝑥)𝑚(𝑥, 𝑎)𝑑𝑥
𝑎

0

 

where 𝜎(𝑥) is the stress distribution and 𝑚(𝑥, 𝑎) is the weight function. The second evaluated 

form for the general equation of the weight function with three terms is as follows: 

𝑚1(𝑥, 𝑎) =
2

√2𝜋(𝑎 − 𝑥)
[1 + 𝑀1 (1 −

𝑥

𝑎
)
1

 + 𝑀2 (1 −
𝑥

𝑎
)
2

] 

In this equation, 𝑀1 and  𝑀2 should be determined. Two reference stress intensity factors for 

tension and bending loading are used to write two equations and determine the unknowns. The 

reference stress intensity factors and corresponding loadings are as follows: 

𝐾𝑟1 = 𝜎0√𝜋𝑎 𝛾1   𝑓𝑜𝑟 𝑡𝑒𝑛𝑠𝑖𝑜𝑛 𝜎(𝑥) = 𝜎0 

𝐾𝑟2 = 𝜎0√𝜋𝑎 𝛾2   𝑓𝑜𝑟 𝑏𝑒𝑛𝑑𝑖𝑛𝑔 𝜎(𝑥) = 𝜎0(1 −
𝑥

𝑟
) 

Two equations can be written as follows: 

𝜎0√𝜋𝑎𝛾1 = ∫ 𝜎0
2

√2𝜋(𝑎−𝑥)
[1 + 𝑀1 (1 −

𝑥

𝑎
)
1
 + 𝑀2 (1 −

𝑥

𝑎
)
2
] 𝑑𝑥

𝑎

0
   (I) 

𝜎0√𝜋𝑎𝛾2 = ∫ 𝜎0(1 −
𝑥

𝑟
)

2

√2𝜋(𝑎−𝑥)
[1 + 𝑀1 (1 −

𝑥

𝑎
)
1
 + 𝑀2 (1 −

𝑥

𝑎
)
2
] 𝑑𝑥

𝑎

0
   (II) 

Simplifying the first equation (I): 

𝜎0√𝜋𝑎𝛾1 = ∫ 𝜎0
2

√2𝜋(𝑎 − 𝑥)
[1 + 𝑀1 (1 −

𝑥

𝑎
)
1

 + 𝑀2 (1 −
𝑥

𝑎
)
2

] 𝑑𝑥
𝑎

0

 

𝜎0√𝜋𝑎𝛾1 = ∫ 𝜎0
2

√2𝜋𝑎 (1 −
𝑥
𝑎
)

[1 + 𝑀1 (1 −
𝑥

𝑎
)
1

 + 𝑀2 (1 −
𝑥

𝑎
)
2

] 𝑑𝑥
𝑎

0

 

𝜎0√𝜋𝑎𝛾1 = ∫ 𝜎0
2

√2𝜋𝑎
[(1 −

𝑥

𝑎
)
−
1
2
+𝑀1 (1 −

𝑥

𝑎
)

1
2
 + 𝑀2 (1 −

𝑥

𝑎
)

3
2
] 𝑑𝑥

𝑎

0
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𝜋𝑎𝛾1

√2
= [(

1

1 −
1
2

) (−𝑎) (1 −
𝑥

𝑎
)

1
2
+𝑀1 (

1

1 +
1
2

) (−𝑎) (1 −
𝑥

𝑎
)

3
2
 

+ (
1

1 +
3
2

) (−𝑎)𝑀2 (1 −
𝑥

𝑎
)

5
2
] |0
𝑎 

𝜋𝑎𝛾1

√2
= [(2)(−𝑎) (1 −

𝑥

𝑎
)

1
2
+ (

2

3
) (−𝑎)𝑀1 (1 −

𝑥

𝑎
)

3
2
+ (

2

5
) (−𝑎)𝑀2 (1 −

𝑥

𝑎
)

5
2
] |0
𝑎 

𝜋𝑎𝛾1

√2
= [2𝑎 +

2

3
𝑀1𝑎 +

2

5
𝑀2𝑎] 

𝜋𝛾1

√2
= [2 +

2

3
𝑀1 +

2

5
𝑀2] (III) 

Simplifying the second equation (II): 

𝜎0√𝜋𝑎𝛾2 = ∫ 𝜎0(1 −
𝑥

𝑟
)

2

√2𝜋(𝑎 − 𝑥)
[1 + 𝑀1 (1 −

𝑥

𝑎
)
1

 + 𝑀2 (1 −
𝑥

𝑎
)
2

] 𝑑𝑥
𝑎

0

 

𝜋𝑎𝛾2

√2
= ∫ (1 −

𝑥

𝑟
) [1 + 𝑀1 (1 −

𝑥

𝑎
)
1

 + 𝑀2 (1 −
𝑥

𝑎
)
2

] 𝑑𝑥
𝑎

0

 

𝑢 = 1 −
𝑥

𝑎
                  𝑥 = 𝑎 − 𝑎𝑢        𝑑𝑥 = −𝑎𝑑𝑢 

𝑥 = 0   𝑢 = 1 

𝑥 = 𝑎     𝑢 = 0 

𝜋𝑎𝛾2

√2
= −∫ (1 −

(𝑎 − 𝑎𝑢)

𝑟
) [𝑢−

1
2 +𝑀1𝑢

1
2  + 𝑀2𝑢

3
2] (−𝑎)𝑑𝑢

1

0

 

𝜋𝛾2

√2
= ∫ (1 −

𝑎

𝑟
+ (

𝑎

𝑟
) 𝑢) [𝑢−

1
2 +𝑀1𝑢

1
2  + 𝑀2𝑢

3
2] 𝑑𝑢

1

0

 

 

∫ (1 −
𝑎

𝑟
+ (

𝑎

𝑟
) 𝑢) [𝑢−

1
2 +𝑀1𝑢

1
2  + 𝑀2𝑢

3
2] 𝑑𝑢

1

0

= (1 −
𝑎

𝑟
)∫ [𝑢−

1
2 +𝑀1𝑢

1
2  + 𝑀2𝑢

3
2] 𝑑𝑢

1

0

+ (
𝑎

𝑟
)∫ [𝑢

1
2 +𝑀1𝑢

3
2  + 𝑀2𝑢

5
2] 𝑑𝑢

1

0
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= (1 −
𝑎

𝑟
) [

1

1 −
1
2

𝑢
1
2
 +

1

1 +
1
2

𝑀1𝑢
3
2 +

1

1 +
3
2

𝑀2𝑢
5
2
 ] |0

1

+ (
𝑎

𝑟
) [

1

1 +
1
2

𝑢
3
2
 +

1

1 +
3
2

𝑀1𝑢
5
2 +

1

1 +
5
2

𝑀2𝑢
7
2
 ] |0

1 

 

= (1 −
𝑎

𝑟
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2

5
)𝑀1(1) + (

2

7
)𝑀2] 

= (1 −
𝑎

𝑟
) [2 +

2

3
𝑀1 +

2

5
𝑀2] + (

𝑎

𝑟
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2
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𝑟
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2
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2

5
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4𝑎

35𝑟
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4𝑎

3𝑟
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𝜋𝛾2

√2
= (

2

3
−
4𝑎

15𝑟
)𝑀1 + (

2

5
−
4𝑎

35𝑟
)𝑀2 + (2 −

4𝑎
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𝜋𝛾2

√2
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2

3
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2

5
−

4𝑎

35𝑟
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4𝑎

3𝑟
) (IV) 

 

The simplified equations (III and IV) can now be used to determine the unknowns. From equation 

(III), 𝑀1can be written as follows: 

𝑀1 = (
3

2
) (

𝜋𝛾1

√2
−
2

5
𝑀2 − 2) (V) 

Using this Equation (V) for 𝑀1, Equation (IV) can be written as follows: 
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𝜋𝛾2

√2
= (

2

3
−
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15𝑟
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3

2
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−
2

5
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2

5
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) (VI) 

𝑀2 can be determined by simplifying Equation (VI): 
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√2
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3
) 

Therefore, the unknowns of the second form of the general weight function can be determined as 

follows: 

𝑀2 =
175𝑟𝜋𝛾2

8𝑎√2
− (

175𝑟

8𝑎
−
35

4
) (
𝜋𝛾1
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35

3
) 

𝑀1 = (
3

2
) (
𝜋𝛾1

√2
−
2

5
𝑀2 − 2) 
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Appendix E 

In this appendix, MDRM tables and graphs related to analysis of tests at the University of Waterloo 

are listed. The MDRM analysis of tests results is presented in Chapter 6. 

Table E-1 Input gird for MDRM analysis of Test #1. 

Variable 
COF 𝜎𝑓

′ 𝜀𝑓
′  

SWT Nf Log(Nf) 
(X1) (X2) (X3) 

1 0.3688 2183 1.99 2.310 31401331 7.497 

2 0.4423 2183 1.99 2.946 4964485 6.696 

3 0.5500 2183 1.99 3.924 578252 5.762 

4 0.6577 2183 1.99 4.538 201159 5.304 

5 0.7312 2183 1.99 4.890 118926 5.075 

6 0.5500 1890 1.99 3.924 76772 4.885 

7 0.5500 2037 1.99 3.924 213154 5.329 

8 0.5500 2180 1.99 3.924 567724 5.754 

9 0.5500 2333 1.99 3.924 1554601 6.192 

10 0.5500 2515 1.99 3.924 4815299 6.683 

11 0.5500 2183 1.2477 3.924 569473 5.755 

12 0.5500 2183 1.5840 3.924 573461 5.759 

13 0.5500 2183 1.9650 3.924 577958 5.762 

14 0.5500 2183 2.4376 3.924 583508 5.766 

15 0.5500 2183 3.0948 3.924 591174 5.772 

 

Table E-2 MDRM analysis results for Test #1. 

Moments Entropy i 0 1 2 3 4 

m=1 2.1440 
λi 2.059984 1.7508E-11       

αi   11.7759       

m=2 1.2278 
λi 291.8176 -257.5104 7.5369     

αi   0.1597 1.0754     

m=3 1.1909 
λi 7.06E+02 281.6782 275.1126 -765.2224   

αi   -2.1467 -2.2652 -0.0368   

m=4 1.2041 
λi 56.10768 54.5335 2214.4578 -389.7796 -161.6226 

αi   -0.2316 -3.2993 -3.2815 -0.2893 
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Figure E-1 Probabilistic analysis for Test #1: PDFs (a) and CDFs (b) based on different terms in 

MDRM analysis; SWT-COF map (c); Comparing MDRM and MCS resulted PDFs (d) and CDFs 

(e), and comparing MDRM and MCS results for CDF on logarithmic scale(f). 
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Table E-3 Input gird for MDRM analysis of Tests 2-3. 

Variable 
COF 𝜎𝑓

′ 𝜀𝑓
′  

SWT Nf Log(Nf) 
(X1) (X2) (X3) 

1 0.5117 2183 1.99 3.883 624797 5.796 

2 0.5577 2183 1.99 4.107 413672 5.617 

3 0.6250 2183 1.99 4.551 196981 5.294 

4 0.6923 2183 1.99 4.701 156671 5.195 

5 0.7383 2183 1.99 4.742 147436 5.169 

6 0.6250 1890 1.99 4.551 30525 4.485 

7 0.6250 2037 1.99 4.551 76676 4.885 

8 0.6250 2180 1.99 4.551 193532 5.287 

9 0.6250 2333 1.99 4.551 515359 5.712 

10 0.6250 2515 1.99 4.551 1573923 6.197 

11 0.6250 2183 1.2477 4.551 190568 5.280 

12 0.6250 2183 1.5840 4.551 193489 5.287 

13 0.6250 2183 1.9650 4.551 196767 5.294 

14 0.6250 2183 2.4376 4.551 200792 5.303 

15 0.6250 2183 3.0948 4.551 206315 5.315 

 

Table E-4 MDRM analysis results for Tests #2-3. 

Moments Entropy i 0 1 2 3 4 

m=1 1.9431 
λi 1.87619 4.0662E-12       

αi   13.7028       

m=2 0.4436 
λi 328.448 -228.2888 12.4192     

αi   0.4257 1.4344     

m=3 0.4484 
λi 4.21E+01 88.9927 -133.6726 325.8238   

αi   1.0916 0.9161 -1.5558   

m=4 0.4334 
λi 681.4341 -284.2440 -527.1800 277.3256 20.0713 

αi   0.7169 0.2788 0.8247 -9.7058 
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Figure E-2 Probabilistic analysis for Tests #2-3: PDFs (a) and CDFs (b) based on different terms 

in MDRM analysis; SWT-COF map (c); Comparing MDRM and MCS resulted PDFs (d) and 

CDFs (e), and comparing MDRM and MCS results for CDF on logarithmic scale(f). 
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Table E-5 Input gird for MDRM analysis of Tests 4-6. 

Variable 
COF 𝜎𝑓

′ 𝜀𝑓
′  

SWT Nf Log(Nf) 
(X1) (X2) (X3) 

1 0.6738 2183 1.99 4.805 134403 5.128 

2 0.6885 2183 1.99 4.753 145077 5.162 

3 0.7100 2183 1.99 4.729 150205 5.177 

4 0.7315 2183 1.99 4.840 127817 5.107 

5 0.7462 2183 1.99 4.875 121457 5.084 

6 0.7100 1890 1.99 4.729 24508 4.389 

7 0.7100 2037 1.99 4.729 59634 4.775 

8 0.7100 2180 1.99 4.729 147615 5.169 

9 0.7100 2333 1.99 4.729 388801 5.590 

10 0.7100 2515 1.99 4.729 1180545 6.072 

11 0.7100 2183 1.2477 4.729 144312 5.159 

12 0.7100 2183 1.5840 4.729 146999 5.167 

13 0.7100 2183 1.9650 4.729 150009 5.176 

14 0.7100 2183 2.4376 4.729 153698 5.187 

15 0.7100 2183 3.0948 4.729 158749 5.201 

 

Table E-6 MDRM analysis results for Tests #4-6. 

Moments Entropy i 0 1 2 3 4 

m=1 1.8774 
λi 1.818851 1.9144E-12    

αi  14.5472    

m=2 0.2018 
λi 388.2069 -254.6107 14.6905   

αi  0.4947 1.5433   

m=3 0.2084 
λi 1.20E+02 -157.5919 270.2571 1.0512  

αi  0.2352 -0.8811 2.3312  

m=4 0.1959 
λi 610.5378 -159.3546 -363.5875 264.9740 -166.4605 

αi  0.5346 0.4536 1.0884 1.1183 
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Figure E-3 Probabilistic analysis for Tests #4-6: PDFs (a) and CDFs (b) based on different terms 

in MDRM analysis; SWT-COF map (c); Comparing MDRM and MCS resulted PDFs (d) and 

CDFs (e), and comparing MDRM and MCS results for CDF on logarithmic scale(f). 
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Table E-7 Input gird for MDRM analysis of Tests 7-9. 

Variable 
COF 𝜎𝑓

′ 𝜀𝑓
′  

SWT Nf Log(Nf) 
(X1) (X2) (X3) 

1 0.3592 2183 1.99 3.324 1994574 6.300 

2 0.4346 2183 1.99 3.997 505279 5.704 

3 0.5450 2183 1.99 4.672 163512 5.214 

4 0.6554 2183 1.99 4.893 118433 5.073 

5 0.7308 2183 1.99 4.799 135607 5.132 

6 0.5450 1890 1.99 4.672 26237 4.419 

7 0.5450 2037 1.99 4.672 64498 4.810 

8 0.5450 2180 1.99 4.672 160679 5.206 

9 0.5450 2333 1.99 4.672 424755 5.628 

10 0.5450 2515 1.99 4.672 1292231 6.111 

11 0.5450 2183 1.2477 4.672 157459 5.197 

12 0.5450 2183 1.5840 4.672 160218 5.205 

13 0.5450 2183 1.9650 4.672 163310 5.213 

14 0.5450 2183 2.4376 4.672 167103 5.223 

15 0.5450 2183 3.0948 4.672 172299 5.236 

 

Table E-8 MDRM analysis results for Tests #7-9. 

Moments Entropy i 0 1 2 3 4 

m=1 1.9805 
λi 1.894416 6.5868E-12       

αi   13.3172       

m=2 0.7242 
λi 240.1839 -193.3622 27.2879     

αi   0.4426 1.0775     

m=3 0.7269 
λi 1.74E+02 23.9058 24.0061 -133.3021   

αi   -2.8276 1.1449 0.5548   

m=4 0.7101 
λi 497.6401 -243.0761 -407.1558 225.7778 74.8736 

αi   0.4329 0.2657 0.6180 -1.7160 
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Figure E-4 Probabilistic analysis for Tests #7-9: PDFs (a) and CDFs (b) based on different terms 

in MDRM analysis; SWT-COF map (c); Comparing MDRM and MCS resulted PDFs (d) and 

CDFs (e), and comparing MDRM and MCS results for CDF on logarithmic scale (f). 
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Table E-9 Input gird for MDRM analysis of Tests 10-12. 

Variable 
COF 𝜎𝑓

′ 𝜀𝑓
′  

SWT Nf Log(Nf) 
(X1) (X2) (X3) 

1 0.2544 2183 1.99 2.710 9333366 6.970 

2 0.3500 2183 1.99 3.440 1541323 6.188 

3 0.4900 2183 1.99 4.675 162811 5.212 

4 0.6300 2183 1.99 5.124 86401 4.937 

5 0.7256 2183 1.99 5.335 65959 4.819 

6 0.4900 1890 1.99 4.675 26146 4.417 

7 0.4900 2037 1.99 4.675 64242 4.808 

8 0.4900 2180 1.99 4.675 159990 5.204 

9 0.4900 2333 1.99 4.675 422859 5.626 

10 0.4900 2515 1.99 4.675 1286337 6.109 

11 0.4900 2183 1.2477 4.675 156765 5.195 

12 0.4900 2183 1.5840 4.675 159521 5.203 

13 0.4900 2183 1.9650 4.675 162609 5.211 

14 0.4900 2183 2.4376 4.675 166396 5.221 

15 0.4900 2183 3.0948 4.675 171585 5.234 

 

Table E-10 MDRM analysis results for Tests #10-12. 

Moments Entropy i 0 1 2 3 4 

m=1 2.0708 
λi 1.987338 4.6706E-11       

αi   11.7128       

m=2 1.1480 
λi 339.4438 -306.8349 5.9744     

αi   0.1277 1.1531     

m=3 1.1015 
λi 7.06E+02 83.7336 416.3637 -836.8818   

αi   0.1754 -2.1725 -0.0056   

m=4 1.1169 
λi 45.42932 30.1902 558.5988 -39.9269 -104.7215 

αi   0.3781 -2.5649 -2.7349 0.0233 
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Figure E-5 Probabilistic analysis for Tests #10-12: PDFs (a) and CDFs (b) based on different 

terms in MDRM analysis; SWT-COF map (c); Comparing MDRM and MCS resulted PDFs (d) 

and CDFs (e), and comparing MDRM and MCS results for CDF on logarithmic scale (f). 
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Table E-11 Input gird for MDRM analysis of Tests #13-15. 

Variable 
COF 𝜎𝑓

′ 𝜀𝑓
′  

SWT Nf Log(Nf) 
(X1) (X2) (X3) 

1 0.5308 2183 1.99 5.116 87286 4.941 

2 0.5731 2183 1.99 5.348 64929 4.812 

3 0.6350 2183 1.99 5.576 49472 4.694 

4 0.6969 2183 1.99 5.764 40136 4.604 

5 0.7392 2183 1.99 5.610 47601 4.678 

6 0.6350 1890 1.99 5.576 10508 4.022 

7 0.6350 2037 1.99 5.576 21974 4.342 

8 0.6350 2180 1.99 5.576 48701 4.688 

9 0.6350 2333 1.99 5.576 119398 5.077 

10 0.6350 2515 1.99 5.576 347723 5.541 

11 0.6350 2183 1.2477 5.576 45466 4.658 

12 0.6350 2183 1.5840 5.576 47302 4.675 

13 0.6350 2183 1.9650 5.576 49340 4.693 

14 0.6350 2183 2.4376 5.576 51813 4.714 

15 0.6350 2183 3.0948 5.576 55165 4.742 

 

Table E-12 MDRM analysis results for Tests #13-15. 

Moments Entropy i 0 1 2 3 4 

m=1 1.7915 
λi 1.714323 1.7393E-12       

αi   15.4882       

m=2 0.1806 
λi 362.4911 -252.4419 15.2188     

αi   0.4720 1.5255     

m=3 0.1863 
λi 1.98E+02 65.0113 2.1031 -112.3781   

αi   -2.8969 2.2322 0.5567   

m=4 0.1725 
λi 705.505 115.9069 529.9024 213.5912 ######### 

αi   0.6097 -0.5858 -1.1041 0.0108 
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Figure E-6 Probabilistic analysis for Tests #13-15: PDFs (a) and CDFs (b) based on different 

terms in MDRM analysis; SWT-COF map (c); Comparing MDRM and MCS resulted PDFs (d) 

and CDFs (e), and comparing MDRM and MCS results for CDF on logarithmic scale (f). 
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Table E-13 Input gird for MDRM analysis of Tests #16-18. 

Variable 
COF 𝜎𝑓

′ 𝜀𝑓
′  

SWT Nf Log(Nf) 
(X1) (X2) (X3) 

1 0.3688 2183 1.99 4.034 471641 5.674 

2 0.4423 2183 1.99 4.774 140666 5.148 

3 0.5500 2183 1.99 5.555 50671 4.705 

4 0.6577 2183 1.99 5.699 43087 4.634 

5 0.7312 2183 1.99 5.868 35903 4.555 

6 0.5500 1890 1.99 5.555 10693 4.029 

7 0.5500 2037 1.99 5.555 22439 4.351 

8 0.5500 2180 1.99 5.555 49878 4.698 

9 0.5500 2333 1.99 5.555 122544 5.088 

10 0.5500 2515 1.99 5.555 357358 5.553 

11 0.5500 2183 1.2477 5.555 46627 4.669 

12 0.5500 2183 1.5840 5.555 48480 4.686 

13 0.5500 2183 1.9650 5.555 50537 4.704 

14 0.5500 2183 2.4376 5.555 53034 4.725 

15 0.5500 2183 3.0948 5.555 56418 4.751 

 

Table E-14 MDRM analysis results for Tests #16-18. 

Moments Entropy i 0 1 2 3 4 

m=1 1.8749 
λi 1.792692 9.6606E-12       

αi   13.8580       

m=2 0.6128 
λi 231.8744 -194.3566 31.2920     

αi   0.4654 1.0848     

m=3 0.6087 
λi 3.12E+01 194.6314 -97.8701 63.7359   

αi   -1.7042 0.8213 1.0094   

m=4 0.6006 
λi 526.688 49.2274 35.7343 -535.4082 23.9883 

αi   0.8354 0.6762 0.2685 -1.2209 
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Figure E-7 Probabilistic analysis for Tests #16-18: PDFs (a) and CDFs (b) based on different 

terms in MDRM analysis; SWT-COF map (c); Comparing MDRM and MCS resulted PDFs (d) 

and CDFs (e), and comparing MDRM and MCS results for CDF on logarithmic scale (f). 
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Table E-15 Input gird for MDRM analysis of Tests #19-21. 

Variable 
COF 𝜎𝑓

′ 𝜀𝑓
′  

SWT Nf Log(Nf) 
(X1) (X2) (X3) 

1 0.2830 2183 1.99 3.433 1565548 6.195 

2 0.3731 2183 1.99 4.434 237531 5.376 

3 0.5050 2183 1.99 5.648 45610 4.659 

4 0.6369 2183 1.99 5.980 31999 4.505 

5 0.7270 2183 1.99 6.066 29344 4.468 

6 0.5050 1890 1.99 5.648 1565548 6.195 

7 0.5050 2037 1.99 5.648 237531 5.376 

8 0.5050 2180 1.99 5.648 45610 4.659 

9 0.5050 2333 1.99 5.648 31999 4.505 

10 0.5050 2515 1.99 5.648 29344 4.468 

11 0.5050 2183 1.2477 5.648 41728 4.620 

12 0.5050 2183 1.5840 5.648 43508 4.639 

13 0.5050 2183 1.9650 5.648 45482 4.658 

14 0.5050 2183 2.4376 5.648 47875 4.680 

15 0.5050 2183 3.0948 5.648 51117 4.709 

 

Table E-16 MDRM analysis results for Tests #19-21. 

Moments Entropy i 0 1 2 3 4 

m=1 1.9453 
λi 1.869174 4.6094E-11       

αi   12.4583       

m=2 0.9362 
λi 187.5239 -169.3400 23.3232     

αi   0.3462 0.9555     

m=3 0.8794 
λi 7.06E+02 382.9117 -862.9374 74.3352   

αi   -1.8740 -0.0492 -0.0148   

m=4 0.8853 
λi 76.49429 994.1446 -499.7818 424.0000 -411.6519 

αi   -2.1243 -0.4905 -0.6098 -1.4397 
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Figure E-8 Probabilistic analysis for Tests #19-21: PDFs (a) and CDFs (b) based on different 

terms in MDRM analysis; SWT-COF map (c); Comparing MDRM and MCS resulted PDFs (d) 

and CDFs (e), and comparing MDRM and MCS results for CDF on logarithmic scale (f). 
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Table E-17 Input gird for MDRM analysis of Tests #22-23. 

Variable 
COF 𝜎𝑓

′ 𝜀𝑓
′  

SWT Nf Log(Nf) 
(X1) (X2) (X3) 

1 0.6356 2675 0.2067 4.369 135959 5.133 

2 0.6577 2675 0.2067 4.311 145091 5.162 

3 0.6900 2675 0.2067 4.472 121325 5.084 

4 0.7223 2675 0.2067 4.560 110407 5.043 

5 0.7444 2675 0.2067 4.480 120355 5.080 

6 0.6900 2316.23 0.2067 4.472 34964 4.544 

7 0.6900 2496.68 0.2067 4.472 65207 4.814 

8 0.6900 2671.66 0.2067 4.472 119923 5.079 

9 0.6900 2858.91 0.2067 4.472 229566 5.361 

10 0.6900 3081.64 0.2067 4.472 490402 5.691 

11 0.6900 2675 0.1296 4.472 103503 5.015 

12 0.6900 2675 0.1645 4.472 111552 5.047 

13 0.6900 2675 0.2041 4.472 120721 5.082 

14 0.6900 2675 0.2532 4.472 132183 5.121 

15 0.6900 2675 0.3215 4.472 148289 5.171 

 

Table E-18 MDRM analysis results for Tests #22-23. 

Moments Entropy i 0 1 2 3 4 

m=1 1.8564 
λi 1.795579 2.2349E-12       

αi   14.6493       

m=2 -0.1623 
λi 543.9588 -303.2745 15.0621     

αi   0.6168 1.8022     

m=3 -0.1488 
λi 1.19E+02 1.0594 0.2890 -19.7372   

αi   -0.2159 3.4803 1.4334   

m=4 -0.1506 
λi 153.7723 -33.6849 0.7461 9.4019 -1.6392 

αi   1.2621 3.0576 -2.3124 -2.1264 
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Figure E-9 Probabilistic analysis for Tests #22-23: PDFs (a) and CDFs (b) based on different 

terms in MDRM analysis; SWT-COF map (c); Comparing MDRM and MCS resulted PDFs (d) 

and CDFs (e), and comparing MDRM and MCS results for CDF on logarithmic scale (f). 
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Table E-19 Input gird for MDRM analysis of Tests #24-25. 

Variable 
COF 𝜎𝑓

′ 𝜀𝑓
′  

SWT Nf Log(Nf) 
(X1) (X2) (X3) 

1 0.3402 2675 0.2067 2.847 1240877 6.094 

2 0.4192 2675 0.2067 3.560 380784 5.581 

3 0.5350 2675 0.2067 4.217 161766 5.209 

4 0.6508 2675 0.2067 4.439 125776 5.100 

5 0.7298 2675 0.2067 4.474 121029 5.083 

6 0.5350 2316.23 0.2067 4.217 45096 4.654 

7 0.5350 2496.68 0.2067 4.217 85628 4.933 

8 0.5350 2671.66 0.2067 4.217 159856 5.204 

9 0.5350 2858.91 0.2067 4.217 310039 5.491 

10 0.5350 3081.64 0.2067 4.217 670210 5.826 

11 0.5350 2675 0.1296 4.217 140100 5.146 

12 0.5350 2675 0.1645 4.217 149891 5.176 

13 0.5350 2675 0.2041 4.217 161033 5.207 

14 0.5350 2675 0.2532 4.217 174940 5.243 

15 0.5350 2675 0.3215 4.217 194450 5.289 

 

Table E-20 MDRM analysis results for Tests #24-25. 

Moments Entropy i 0 1 2 3 4 

m=1 1.9484 
λi 1.874457 1.2792E-11       

αi   13.1054       

m=2 0.4605 
λi 335.6259 -240.6697 15.6567     

αi   0.4205 1.3534     

m=3 0.4532 
λi 4.94E+02 63.7823 -287.6048 -138.8152   

αi   0.9871 0.3595 0.4641   

m=4 0.4578 
λi 88.39245 25.2820 -98.0799 31.1974 437.0195 

αi   1.2103 0.6771 -0.3850 -2.3819 
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Figure E-10 Probabilistic analysis for Tests #24-25: PDFs (a) and CDFs (b) based on different 

terms in MDRM analysis; SWT-COF map (c); Comparing MDRM and MCS resulted PDFs (d) 

and CDFs (e), and comparing MDRM and MCS results for CDF on logarithmic scale (f). 
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Table E-21 Input gird for MDRM analysis of Test #26. 

Variable 
COF 𝜎𝑓

′ 𝜀𝑓
′  

SWT Nf Log(Nf) 
(X1) (X2) (X3) 

1 0.3402 2675 0.2067 3.484 426095 5.630 

2 0.4192 2675 0.2067 4.201 164777 5.217 

3 0.5350 2675 0.2067 5.065 67101 4.827 

4 0.6508 2675 0.2067 5.397 50064 4.700 

5 0.7298 2675 0.2067 5.486 46488 4.667 

6 0.5350 2316.23 0.2067 5.065 20794 4.318 

7 0.5350 2496.68 0.2067 5.065 37309 4.572 

8 0.5350 2671.66 0.2067 5.065 66365 4.822 

9 0.5350 2858.91 0.2067 5.065 123274 5.091 

10 0.5350 3081.64 0.2067 5.065 256027 5.408 

11 0.5350 2675 0.1296 5.065 55286 4.743 

12 0.5350 2675 0.1645 5.065 60613 4.783 

13 0.5350 2675 0.2041 5.065 66700 4.824 

14 0.5350 2675 0.2532 5.065 74334 4.871 

15 0.5350 2675 0.3215 5.065 85112 4.930 

 

Table E-22 MDRM analysis results for Test #26. 

Moments Entropy i 0 1 2 3 4 

m=1 1.8590 
λi 1.795038 1.4806E-12       

αi   14.8826       

m=2 0.4194 
λi 286.262 -222.2800 34.3741     

αi   0.5248 1.1837     

m=3 0.4147 
λi 4.16E+02 33.8210 -211.8186 -128.6257   

αi   1.1369 0.3616 0.4064   

m=4 0.4048 
λi 705.555 -266.7742 -466.7660 153.8642 130.3989 

αi   0.3924 0.2779 0.7639 -11.2035 
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Figure E-11 Probabilistic analysis for Tests #26: PDFs (a) and CDFs (b) based on different terms 

in MDRM analysis; SWT-COF map (c); Comparing MDRM and MCS resulted PDFs (d) and 

CDFs (e), and comparing MDRM and MCS results for CDF on logarithmic scale (f). 
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Table E-23 Input gird for MDRM analysis of Test #27. 

Variable 
COF 𝜎𝑓

′ 𝜀𝑓
′  

SWT Nf Log(Nf) 
(X1) (X2) (X3) 

1 0.2639 2675 0.2067 3.019 906483 5.957 

2 0.3577 2675 0.2067 3.838 259061 5.413 

3 0.4950 2675 0.2067 5.213 58720 4.769 

4 0.6323 2675 0.2067 5.777 36886 4.567 

5 0.7261 2675 0.2067 5.766 37178 4.570 

6 0.4950 2316.23 0.2067 5.213 18510 4.267 

7 0.4950 2496.68 0.2067 5.213 32914 4.517 

8 0.4950 2671.66 0.2067 5.213 58084 4.764 

9 0.4950 2858.91 0.2067 5.213 107100 5.030 

10 0.4950 3081.64 0.2067 5.213 220868 5.344 

11 0.4950 2675 0.1296 5.213 47970 4.681 

12 0.4950 2675 0.1645 5.213 52814 4.723 

13 0.4950 2675 0.2041 5.213 58354 4.766 

14 0.4950 2675 0.2532 5.213 65310 4.815 

15 0.4950 2675 0.3215 5.213 75141 4.876 

 

Table E-24 MDRM analysis results for Test #27. 

Moments Entropy i 0 1 2 3 4 

m=1 1.9064 
λi 1.83135 9.491E-12       

αi   13.5758       

m=2 0.7434 
λi 221.5865 -185.5604 22.1133     

αi   0.3895 1.0811     

m=3 0.6892 
λi 6.44E+02 1233.2783 -1904.5363 2171.5240   

αi   -0.2392 -0.1527 -3.6127   

m=4 0.7095 
λi 117.7668 -8.0449 773.9425 302.1131 -635.7065 

αi   -0.7401 -1.8366 -0.3337 -0.4037 
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Figure E-12 Probabilistic analysis for Test #27: PDFs (a) and CDFs (b) based on different terms 

in MDRM analysis; SWT-COF map (c); Comparing MDRM and MCS resulted PDFs (d) and 

CDFs (e), and comparing MDRM and MCS results for CDF on logarithmic scale (f). 

 


