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Abstract

Internal gravity waves are thought to be a predominant source of mixing
in the Earth’s oceans. Here, we explore the interplay between two phenomena
experienced by internal gravity waves - parametric subharmonic instability
(PSI) and the changing of their inertial frequency by the effects of rotation
(or the effective Coriolis frequency). PSI occurs when three waves satisfy a
group of “resonant triad conditions”, and we have a higher-frequency wave
transferring energy to two waves of approximately half of the original wave’s
frequency. We get an effective Coriolis frequency in systems where the effects
of vorticity are present. Waves experiencing the vorticity “feel” a changed
Coriolis parameter, which has the potential to raise or lower the lower bound
(or inertial frequency) on allowable frequencies of internal waves. Combined,
these factors allow for the occurrence of PSI in regions wherein internal waves
would not be able to achieve half the tidal frequency, due to the lowering of
the inertial frequency by the effects of vorticity. We apply a 2D second-order
finite-volume projection-based model to construct simulations of internal tides
travelling over a ridge with the aim of creating such a situation. A variety
of different stratifications are introduced into this model to create different
background current structures and explore the visibility of the effective Coriolis
frequency and the effects of PSI within. Simulations are consistently compared
to controls to confirm desired effects and avoid undesirable inertial instabilities.
Ultimately, using a carefully managed stratification created via a difference of
hyperbolic tangents, the effects of PSI in a region enabled via a lowered inertial
frequency are observed, and are confirmed via spectral density analysis to
be seen within two orders of magnitude, one order of magnitude, and even
eclipsing the amplitude of the primary tidal frequency. This work can help
aid in the understanding of global mixing and circulation, and of the types of
regions in which effects that may drive them occur.
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Chapter 1

Introduction

1.1 Overview

Oceanic mixing and turbulence has been a topic of great interest for the past
several decades. From problems in fluid dynamics, to Earth sciences and
even ecology (among so many others), understanding how waves interact, mix,
overturn, and transfer energy plays an important role in developing our un-
derstanding of multiple dynamical systems across numerous fields of study.

Internal gravity waves in particular are thought to be a key source of mixing
in the ocean. As a barotropic current flows over seafloor topography, or wind
drives surface currents and disturbs the mixed layer in the upper ocean, these
waves are produced, and they are ubiquitous in the planet’s oceans (Ferrari and
Wunsch, 2004 [1]). Internal waves are thought to transfer energy to the ocean’s
interior, and they are capable of moving energy over great distances. As, by
some mechanism, they break and become turbulent, they produce significant
mixing, which itself creates lateral density gradients capable of driving both
local oceanic currents as well as those on the scale of global thermohaline
circulation [2].

This mixing is a key driver of many processes. For example, it plays a
key role in the redistribution of nutrients in the oceans, which affects the lives
of many oceanic creatures (e.g. Boyd, 2007 [3]). Another relevant example,
and one that we will focus on in particular, is this mixing’s role in global
oceanic circulation. The interaction of internal waves with seafloor topography
(such as tidal currents traveling over seamounts/ridges, for example) drives the
downward mixing of heat by allowing cool, dense water at the bottom of the



ocean to return to the surface. These tide-topography interactions are thought
to be a source of around half of the 2 TW needed to maintain global overturning
and circulation, not to mention a sink of a third of the world’s barotropic tidal
energy. It thus follows that understanding internal waves, their interactions,
how much energy they produce, and where it ultimately ends up is a problem
of great interest across many studies [2], [4], [5], [0]-

This study in particular will focus on the interaction of internal tides with
seafloor topography in the presence of a baroclinic background current and
a particular path to turbulence down which this may lead. We will return
to this, however, after we take a moment to examine important contextual
elements for our study in greater detail.

1.2 On Internal Waves

Internal waves are a type of gravity wave which occur within the interior of
a fluid. Common in the Earth’s atmosphere and oceans, they occur within
stratified fluids and are generated by a variety of different mechanisms. In
our study, we will be considering internal waves created by fluid flow over
topography triggering a propagating disturbance in the fluid.

Internal waves act as one of the major sources of mixing within the world’s
oceans, driving oceanic circulation and energy transfer (e.g. Ferrari and Wun-
sch, 2004 [!], Ferrari and Wunsch, 2009 [7]). They also play a key role in
driving nutrient upwelling (Schaftstall et al., 2010 [3]), and are even thought
to be a major factor in the shaping of continental shelves (e.g. Klymak et al.,
2012 [2]). Internal waves are generated by many different means, and of these,
one of the most important mechanisms for their generation is the interaction
of the tides with seafloor topography. When baroclinic tides oscillate over the
bathymetry, energy is transferred from the tides into baroclinic internal waves
which are predominantly (though not exclusively) of the tidal frequency - so-
called “internal tides”. These internal tides then proceed to radiate outwards.
Such a phenomenon has been observed in many studies; an in-depth study
by Garrett and Kunze (2007) [9], for example, gives theoretical and numerical
considerations to the generation of internal tides via tide-topography interac-
tion. The produced internal tides have the potential to travel for tremendous
distances, upwards of thousands of kilometres from the point of their gener-
ation (e.g. Zhao et al., 2012 [10]). Consequentially, these internal tides are
destined towards interacting repeatedly with currents and mesoscale eddies
(though we will not focus on that particular aspect of internal waves here) [5].
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The interaction of tides and seafloor topography is a topic of significant
interest (and one we will focus on at great length), particularly as it acts as
a major source of the generation of internal wave energy within the planet’s
oceans. It is estimated that this process accounts for around 50% of the global
internal wave energy, roughly equal to that of wind-driven forcing. Tide-
topography interactions are capable of moving energy from barotropic tidal
currents to internal tides at about 1 TW and are responsible for somewhere
between 25-30% of the dissipation of barotropic tidal energy (e.g. Nikurashin
and Ferrari, 2013 [11]). While energy generated by this process can be partly
dissipated near the seafloor above rough topography (e.g. Ferrari et al., 2016
[12]), as previously mentioned, the energy produced can travel great distances
from the site of its generation, particularly if the waves are generated primarily
by isolated features in the bathymetry (Falahat et al., 2014 [13]). Geostrophic
currents are also capable of interacting with the bathymetry to create lee
waves, which injects an additional 0.2-0.4 TW into the internal wave field
(Nikurashin and Ferrari, 2013 [11]). This process is particularly prevalent in
the Southern Ocean, where the Antarctic Circumpolar Current produces a
significant amount of internal waves by means of tide-topography interactions

[0]-

To be a bit more specific, as the surface tide propagates over density-
stratified fluid, it forces the fluid over the seafloor topography. As the fluid is
forced to move vertically over this topography, it is subject to a gravitational
restoring force which generates internal waves. A result of this is the creation
of internal pressure gradients that drive the production of the internal tides.
Assuming our ocean is bounded, as the waves move away from the bathymetry,
they do so in vertical modes. The lowest-order mode is the longest vertical
wavelength capable of fitting between the seafloor and the ocean’s surface;
has the strongest velocities at these points and has zero horizontal velocity in
the centre of the wave column (assuming a constant buoyancy frequency; in
general, this may not always be true), and it has a horizontal phase speed that
is higher than that of the other nodes. Higher-order modes generally travel
slower and will have more zero crossings that zeroth-order modes. Higher-
order modes are also often capable of breaking into turbulence via nonlinear
processes transferring energy from lower-mode waves. This occurs at/near the
point of their generation (Klymak et al., 2012 [2]) as they encounter remote
topographical features (Nash et al., 2004 [11]), or as they interact with other
waves in the interior (e.g. Mackinnon and Winters, 2005 [15]). Lower-order
modes are prone to reflection and interference with one another, and scattering
into higher-order modes, though the prevalence of each of these features at any



point is not well understood [2].

A factor of particular importance when considering the interactions of to-
pography and internal waves is the steepness of the topography itself (Garrett
and Kunze, 2007 [9]). As they leave the topography, internal waves travel in
beam-like structures, along which energy propagates at an angle dependent
on the waves’ frequency and the given density stratification (more on this in
Section 2). Topography steeper than that of the internal wave beams is said
to be supercritical, while if it is shallower than the wave beams, it is called
subcritical. Real topography often has regions of both classes, and they both
play important roles in understanding and simulating internal tide generation.
For more on subcritical topographies, see Bell, 1975 [16] and Balmforth et al.,
2002 [17]; for supercritical, see, for example, Llewellyn Smith and Young, 2003
[18], St. Laurent et al., 2003 [19], and Klymak et al., 2012 [2].

1.3 On Instability and PSI

Internal waves experience intrinsic instabilities [20]. While linear theories sug-
gest that all harmonics with frequencies less than the buoyancy frequency,
N, are produced in internal wave generation (e.g. [10]), as a result of these

instabilities they experience, their set of allowable frequencies is not strictly
limited to harmonics. Indeed, interharmonic frequencies occur and have been
studied as well [21]. Weakly non-linear interactions between internal waves
have been proposed to be a mechanism of energy transfer between waves of
different wavenumbers and frequencies (e.g. McComas and Miiller, 1981 [22]).
In weakly nonlinear theory, we often think about this in terms of so-called
resonant triads - groups of three waves which interact such that the sums of
their frequencies and wavevectors add to zero (more on this in Section 2.3),
resulting in a transfer of energy back and forth between waves in the triad. In
particular, if we have a given internal wave with wavevector /;0 and frequency
wp and subject it to a perturbation, a type of instability known as parametric
subharmonic instability (PSI) may occur. This instability involves the initial
(lower-mode/large vertical wavelength) wave decaying into two smaller-scale
(higher-mode/smaller vertical wavelength) waves each of about half the fre-
quency of the original wave, with these new waves having opposite vertical
wavenumber signs [21], [23].

It has been suggested that PSI may serve as a potentially significant source
of energy loss in low-mode internal tides, particularly near critical latitudes
(the smallest possible latitudes at which the subharmonic frequency - one
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cycle per 24.8 hours - exceeds the local inertial/Coriolis frequency, f) [15].
In general, PSI may occur in any region wherein the frequencies of all three
waves of the triad lie within the permissible band of internal wave frequencies,
f < w < N, though it is often at its strongest when the daughter waves are
produced at frequencies near that of the local inertial frequency [23].

Resonant triad interactions, including PSI, are too slow to be the dominant
source of energy transfer in any incoherent isotropic wave field, such as that in
the deep ocean (Olbers and Pomphrey, 1981 [24], Eden and Olbers, 2014 [25]).
It has not, however, been ruled out that PSI could be more significant for
coherent, low-mode internal tides, often produced by the motions of internal
waves over tall, steep bathymetries. Indeed, studies such as Mackinnon and
Winters, 2005 [15] and Hazewinkel and Winters, 2011 [26] suggest that PSI
could be an important factor for energy transfer in situations like these, and
results from studies including Alford et al., 2007 [27] and Mackinnon et al.,
2013 [28] suggest that PSI is an active phenomenon within the ocean. The
latter pair of studies also proposes that while in situ energy transfer rates are
not exceptionally high, as the critical latitude near the equator is approached
and crossed, the transfer of energy from near-inertial waves increases. These
types of resonant nonlinear interactions (as well as nonresonant ones, as a
matter of fact) are omnipresent within internal wave fields throughout Earth’s
oceans (Lvov et al., 2012 [29]), and they serve as a means of consistent, steady
energy transfer towards wave motion occurring near or at local inertial fre-
quencies [23]. Therefore, PSI (along with other similar resonant interactions)
may indeed provide a possible pathway for the development of inertial and
near-inertial waves as well as the transfer of energy from the deep ocean into
oceanic mixing.

To remark, in addition to coherence, increased nonlinearity can also in-
crease the energy transfer rate of PSI. Like with the case of coherence, this
occurs at the point at which the waves are generated. While understanding
the transition from linearity to nonlinearity has faced much difficulty in the
past (e.g. Staquet and Sommeria, 2002 [30]), it is well understood that as
this transition occurs and as nonlinearity becomes stronger, the time scales
of PSI shorten (e.g. Mackinnon and Winters, 2007 [31]), thus amplifying its
effects. Regions in which this may occur include regions of reflection of an
internal wave beam from a boundary (Javam, Imberger, and Armfield, 1999
[32]), regions of intersecting internal wave beams (e.g. Javam, Imberger, and
Armfield, 2000 [33]), and, as we have mentioned previously, regions of strong
coherence among waves undergoing interactions (see the numerical simulations
of Mackinnon and Winters, 2003 [34], Lamb, 2004 [35], and Gerkema et al.,



2006 [36]) [21]. Our goal will be to study near-inertial waves and PSI, so it
will be these regions of coherence that we want to focus on, and we will turn
our attention accordingly.

1.4 On Near-Inertial Waves

Near-inertial internal waves, or internal waves propagating with frequency
close to that of the local Coriolis parameter, are a well-known and oft-studied
phenomenon. Near the inertial frequency, the frequency spectrum of internal
waves is thought to be similar to that of a continuum spectra on the order of
frequency w2, with a large, highly-variable, and event-like inertial peak (Fu,
1981 [37]). This type of peak acts in sharp contrast to the universal peak of
the continuum spectrum of higher-frequency internal waves (e.g. Garrett and
Munk, 1972 [38], Garrett and Munk, 1975 [39], Munk, 1981 [10]). Hence, the
intermittency of near-inertial internal waves is an object of great interest.

In particular, the importance of the intermittency of near-inertial waves
arises as a result of the near-inertial peak containing almost half of the total
energy in the internal waveband [10], and providing a major contribution to
the total vertical shear. Inertial waves created by winds and forced downward
provide a significant source of energy in the ocean leading to turbulence and
mixing. The interaction of these waves with their environment determines the
location of this mixing, whether it will be in the interior or at the boundaries

[41].

Kunze, in his 1985 paper [11], proposed a cause for this intermittency -
the interaction of internal wave beams with geostophic shears. When such an
interaction occurs, as explored in Mooers, 1975 [12], among other sources, in
the interaction between the mean-flow and geostrophic shears, the effects of
vorticity of the background flow ¢ (we largely focus on its vertical component
here) shift the lower limit of the frequency of the internal waveband from the
local planetary Coriolis frequency, f, to a new value, dubbed the effective Cori-
olis frequency. This frequency takes the form ff s =~ f(f + (), meaning that
the minimum frequency of the waveband could be raised or lowered depending
on if cyclonic or anticyclonic currents are encountered.

The importance of such a shift, as proposed by Kunze, is that it can change
the propagation behaviour of near-inertial waves. Most notably, in regions of
anticyclone vorticity wherein the lower bound on internal wave frequencies is
dropped, trapping and amplification can occur. To give an example, if we have



a spatially varying effective Coriolis frequency, the propagation behaviour of
waves at frequencies near its value can change. Waves just above the effective
Coriolis frequency may encounter strong inhomogeneities as they travel. If
their wavevectors have a component approaching zero, they encounter turning
points, while if a wavevector component approaches infinity, they hit critical
layers. At these zones, these waves will reflect if they hit a turning point
in the horizontal and will stall if they reach a critical layer in the vertical.
Supposing the latter is the case, the waves’ vertical wavelength would begin to
decrease, resulting in a corresponding increase in amplitude by conservation
of action-flux and a group velocity that is being lowered. The hard lower limit
at ferr, however, drives energy toward inertial frequencies. Hence, in these
types of regions, instead of continuum enhancement (as our internal waves are
prone to intermittence), we would expect to observe wave packets undergoing
trapping and amplification [11]. This result was later explored in Kunze's
1986 paper [13], wherein mean and near-inertial velocity fields in warm core
rings (large cyclonic mesoscale eddies circulating warm water; Kunze’'s warm
core ring was located in the Gulf Stream) were studied and it was found that
significant energy trapping and critical-layer amplification were occurring in
regions of anticyclone vorticity, consistent with the ideas discussed previously.
This trapping was further observed in Arctic measurements taken by Halle,
2003 [11]. Lateral shears may also have the effect of modulating f.ss, as has
been observed in the Kuroshio by Rainville and Pinkel, 2004 [15], but this will
not be our focus here.

As a consequence of this near-inertial wave trapping, a phenomenon known
as inertial chimneys can occur, where as a result of the group velocity increas-
ing with frequency above f.;s, waves are able to penetrate much deeper than
expected [23]. These effects have been seen in numerical simulations by Zhai
et al., 2005 [16], 2007 [17], as well as appearing in the aforementioned Kunze
1986 paper. As eddies are stronger at the ocean’s surface, if near-inertial waves
are trapped while propagating downward, they have the capability to reach
depths where they encounter critical layers at points where the group velocity
vanishes as background vorticity increases (assuming we are in the Northern
Hemisphere; effects will be opposite in the Southern Hemisphere). That said,
direct observations of this phenomenon are quite rare [23].

More generally, near-inertial waves appear commonly in studies involving
wind-driven mixing. Indeed, wind supplies a significant amount of energy to
near-inertial motions near the ocean’s surface (Alford et al., 2016 [23]). Near-
inertial waves appear in the deep ocean (Alford and Whitmont, 2007 [18]), on
the continental shelf (Shearman, 2005 [19]), and even in the Laurentian Great



Lakes (e.g. Choi et al., 2012 [50]). As different currents converge, they are
capable of driving motion into the surface of the ocean and the mixed layer’s
base, resulting in the production of near-inertial waves. This pumping can
be brought about as a result of storms (e.g. Price, 1983 [71]), the variation
of inertial frequency with latitude (the so-called g effect; e.g. D’Asaro et al,,
1995 [52]), the interaction of waves with mesoscale features (e.g. Weller, 1982
[53]), and coastlines (e.g. Pettigrew, 1980 [51], Kelly, 2019 [55]). While it is
unknown to what extent each process contributes to energy generation and
mixing, it is nonetheless true that all of them play a vital role in developing
our understanding of internal currents and wind-driven mixing [23] [55].

1.5 Outline

Given what we have seen up to this point, our goal is to combine these many
facets in a study observing if parametric subharmonic instability can be ob-
served in regions where it would not otherwise be possible, observable as a
result of vorticity’s effects creating a suitable effective Coriolis frequency for
the occurrence of resonant effects. Such a system will be created by simulations
of internal tides sloshing over a ridge.

To this end, the rest of this thesis is outlined as follows. In Chapter 2, we
will examine the theory behind the topics we have explored in this chapter
from a mathematical standpoint. Chapter 3 will be a discussion of the code
employed, derived from this theory, to create internal wave simulations. It will
also include a brief discussion of conditions used to analyze the stability of our
simulations and a process used to iterate on successive prospective tests. The
results of these tests are included in Chapter 4, organized by the type(s) of
current employed in the simulation. This will include a discussion of these
results and their implications. Finally, we summarize all that we will see in a
conclusion in Chapter 5.



Chapter 2

Theory

We will begin by introducing the fundamental equations with which we will
be working, before examining the concepts of the effective Coriolis frequency
and Parametric Subharmonic Instability, the two key components of our in-
vestigation.

2.1 Governing Equations

We commence by outlining the equations that will form the framework of our
investigation. We will follow the same outline as in [57]. Assume that we have
an incompressible fluid with negligible viscosity and diffusion on a rotating
Earth. We will take the plane of motion to be the vertical xz-plane. Let U=
(u, w) be the velocity vector of the fluid in this plane, v be its velocity in the y-
direction, p; the fluid’s density, and F; its pressure. Define f to be the Coriolis
parameter and g to be acceleration due to Earth’s gravity. We will also make
the traditional f-plane approximation (neglecting the horizontal component of
Earth’s rotation vector), wherein we assume the Coriolis parameter is constant
(as opposed to changing with latitude). Such an approximation is valid here
as the length scales of the flows we will observe are not large enough to cause
meaningful changes in the value of the Coriolis parameter. Assuming, then,
that we are to solve the resulting equations of motion in 2D (i.e. we allow all
relevant quantities to be functions of only = and z), then these equations are



given as follows:

where V = (6%, %) and ¢ represents time. Now, we can perform the so-called

Boussinesq Approximation. This approximation assumes that for the fluid in
question, the overall density varies slightly about a mean value. We can safely
make this approximation since this assumption largely holds true for water,
whose density behaves in this manner (with the small fluctuations coming
from differences in temperature, salinity, etc.). Note that our assumption of
no diffusion reduces our time scale to be much smaller than the diffusive time
scale, but in the ocean, the diffusive time scale is quite large due to small
temperature and salinity gradients.

To perform the approximation, define:

ps = po(l+p) (2.5)

where we choose py to be a reference density and define p to be a non-
dimensional quantity.

We can break the pressure down into a component in hydrostatic balance
with py and a deviation term (which we will denote with P) [55]:

Py = po(P — g2) (2.6)
With these, we can re-write our initial equations as:
(1+p) (U, +U - VU — fvi) = =VP — pgk
vt+(7-ﬁv~l—fu:0
Pt + (j : ﬁp =0

— —

V-U=0
Finally, in the ocean, the parameter p < 1 and so in our case, (1 + p) ~ 1.

With this in mind, at last, we arrive at the final form of our equations. These
equations are formally referred to as the “Stratified Euler Equations under the
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Boussinesq Approximation”, but we will abbreviate this henceforth as simply
“the Boussinesq Equations”.

U,+U-VU — fvi=—-VP — pgk (2.7)
w+U-Vo+ fu=0 (2.8)
p+U-Vp=0 (2.9)
V-U=0 (2.10)

It is these equations that we will use in our modelling and experimentation.

2.2 Internal Waves

Given the equations we have derived in the previous section, we are capable
of modeling many of the properties of internal waves. We will carefully follow
the approach of [59] and look at a few cases and key characteristics of internal
gravity waves.

2.2.1 Understanding Internal Waves

To begin, assume that our domain is unbounded, not rotating, and experiences
uniform stratification (as opposed to layered). Let us define the buoyancy (or
Brunt-Viisila) frequency of a fluid, N, such that:

2 g dp

N=(z) = oo dz (2.11)
Note here that the p in this equation is the proper density of the fluid, and
not to be confused with the dimensionless quantity we just finished using
previously. Assume now that we take N? to be constant across the body of
fluid (which corresponds to the assumption that stratification varies linearly
in the vertical). Such an assumption allows us to get an exact solution to the
(linearized) Boussinesq equations. This solution takes the form of a wave:

exp(i(kz + ly + mz — wt))

The resulting substitution of a solution of this form into the Boussinesq equa-
tions leads to an equation for the wave frequency, w, or equivalently, a disper-
sion relation for internal gravity waves:

) , KX+ 02

N T E e (2.12)
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One important property we see from this is that the frequency of the internal
waves will never exceed the value of the buoyancy frequency. Another impor-
tant note is that the frequency is completely independent of the magnitude of
the wavenumber. Indeed, through simple substitution in spherical coordinates
(where we take the radial coordinate to be the magnitude of the wavenumber,
0 its angle with respect to the horizontal, and ¢ its projection to the x-axis),

it is easy to show that
w = N cos(f), (2.13)

so we find that the frequency depends exclusively on the angle of the wavenum-
ber relative to the horizontal and the buoyancy frequency’s magnitude. Note
that we allow 0 to be positive or negative, meaning that the waves can travel
upwards or downwards along the direction of the wavenumber vector.

Suppose, for a moment, that we rotate our coordinate system so that the
wavevector aligns perfectly with the xz-plane, and there is no motion whatso-
ever along the y-axis. In such a case, we can solve for the remaining parameters
exactly to obtain:

gwm

u=—A Nk sin(kx + mz — wt) (2.14)

w = A% sin(kz + mz — wt) (2.15)
pogm .

P = —Am sin(kx +mz — wt) (2.16)

p = Apo cos(kx + mz — wt) (2.17)

Such a wave will have its phase travel at the speed:
w

VI m?

This phase speed is the speed of propagation of the crests/troughs of the waves,
and this propagation will occur in the direction of the wave vector. The waves
will transfer energy at the group velocity ¢; = Viw = (¢4, ¢4.), Where:

B Oow B wm?
e = 9k T k(R +m2)
Oow wm
Cq =

Som - RErm

Note that while the phase travels in the direction of the wave vector, the waves
themselves will propagate in a direction perpendicular to the wavenumber
vector. This means that energy is transferred perpendicular to the wave vector.
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Note that as we can have a positive or negative value of the frequency, w,
the phase speed can accept positive or negative values. Additionally, the
phase velocity (if we consider the waves travelling in the direction of the wave
vector) could have differing signs in the vertical direction, depending on the
orientation of the wave vector. Consequently, internal waves could see the
upward or downward transference of energy, depending on the vertical phase
speed’s sign. When we have downward propagation of energy, while we see that
the crests and troughs seem to rise, energy actually sinks, and vice-versa for
the opposite (which follows naturally if one considers that *w,, < 0). Figure
2.1 gives a schematic of internal plane waves for visual reference, reproduced
from [62] with permission from the original author.

2.2.2 Vertical Modes and Rotation

It is important to note that to this point, our approach is only valid should we
assume that our domain is unbounded, not rotating, and uniformly stratified.
We would like to proceed by relaxing these restrictions now. Let us take our
body of fluid to be of uniform depth with a rigid lid. We introduce rotation
by applying an f-plane approximation. Suppose we also let the buoyancy
frequency be a function of z, and, as is usually the case in nature, we assume
that N%(z) > f? everywhere.

Applying our Boussinesq equations once again, let us apply the separation
of variables to look for a solution of the form:

u = F(2)U(z,y) exp(—iwt) (2.18)
v = F(2)V(z,y) exp(—iwt) (2.19)
P = poF(2)P(z,y) exp(—iwt) (2.20)
w = iwW (2)P(z,y) exp(—iwt) (2.21)
PR L7 (2) Pl y) exp(—i) (2.22)

If we were to substitute this solution form into the Boussinesq equations, we
would find that the density equation is satisfied exactly, leaving us with four
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Figure 2.1: A schematic of an internal wave for f = 0. The sloping lines (both
solid and dashed) indicate lines of constant phase, while the arrows along these
lines show the current. When we have a positive frequency (w > 0), the lines
of constant phase propagate in the direction of the wavevector, k , which makes
an angle of ¢ with the vertical. The group velocity vector ¢; lies perpendicular
to the wavevector, and has a vertical component with the opposite sign of .
The vector for gravity is denoted by g. [62]
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remaining equations:

—iwl = fV — o (2.23)
—iwV = —fU — g_]; (2.24)

. dF

2 2 — _
(W? = NHYW e (2.25)

1. 0U oV 1w dW

P(Oa: + 8y) [ dz (2.26)
We make a few notes. The first two equations are independent of the z-
coordinate, the third equation is independent of the x and y coordinates, and
the left-hand side of the fourth equation is purely in terms of  and y, while
the right-hand side is purely in terms of z. For this last point to be the case,
it must follow that both sides of the fourth equation are constant, and this
constant is defined as ﬁ? where h9) is called the equivalent depth (it has a
dimension of depth and it takes the same role as the standard depth in the
shallow water equations).

If we plug this constant into our third equation, the result yields:

EW N2 —w? .
dz? + ghl9)

=0 (2.27)

which is an equation that gives us vertical modes for W. A similar completion
exists in the horizontal: ~ ~
ou oV iw -
Ox + dy  ghl)
We observe that this structure is exactly the same as that of shallow water
equations [59]), but with the surface height replaced by % and the depth

(2.28)

replaced by h\9). Consequentially, we recover the solutions for shallow-water
theory in the horizontal, yielding a periodic solution of the type:

(u,v, P) = (U,V, P)exp(i(kz + ly)) (2.29)

with constant (U V. P) These internal waves will also obey the dispersion
relation for Poincaré waves in the horizontal:

w? = 2+ ghV (K2 + 1?) (2.30)
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where it is assumed that (k, 1) is a given pair. We can substitute this horizontal
dispersion relation into our vertical mode equation to get:

dPW
dz?

%W =0 (2.31)

+ (K +1%)

with boundary conditions W (0) = W (H) = 0. One important thing to note
is the fraction in the second term of this equation - it is exactly the slope of
an internal wave beam of frequency w [21] (we will readdress this in the next
section). Hence, we notice immediately that our internal waves will want to
travel in beams of this given slope (more on internal wave beams in the Section
2.2.3). We note that to get solutions to our vertical mode equation, we require
special values of w such that we can have non-trivial solutions for . Such
w are called eigenvalues, while the resulting W are eigenfunctions (or vertical
modes).

To conclude our discussion, we consider the case of uniform stratification
(i.e. constant N?) in a rotating bounded domain. More complicated scenar-
ios including those with non-constant N? as well as nonlinear effects can be
considered through various means (e.g. through numerical decomposition),
though this falls outside the scope of our study.

For this situation, the vertical-mode eigenvalue problem has an exact so-
lution:

W(z) = sin(mz), m = % i=1,2,3, ... (2.32)
The resulting dispersion relation is:

s (B +P)N?* +m?f? 5
Y Ty P (2.33)

We observe from this an infinite set of eigenfunctions produced from discrete
eigenvalues m. We can also see that permissible frequencies lie in the range of
f? < w? < N? (more on this later). If we were to perform this same analysis on
an unbounded domain, we would get similar results, though our wavelengths
here must satisfy the boundary conditions.

This process also restricts the value of the free constant we have been using:
(j)7w2_f27 N2—f2

ho) = - .
g K+ K42t ()

(2.34)

As this term acts analogously to the radius of deformation in a shallow water
system, we can similarly define a radius of determination for our system here
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as well:

R; = —ngh(j) (2.35)

This radius of deformation determines to what extent waves are affected by
gravity versus rotational effects. Waves with a shorter wavelength than this ra-
dius will experience primarily stratification’s effects, while longer wavelengths
with experience primarily rotational ones.

As a final remark, though we will omit the derivation, for near-inertial
waves (as a special case in the ocean’s interior taking the hydrostatic limit),
one can repeat this process to get a dispersion relation and approximate group

locity:
velocity 2 2 eer N2 )
wymw = f7+ N 2 Coaniw T ma f (2.36)

where the subscript NIW (for “near-inertial waves”) is introduced to avoid
confusion with our earlier discussion. While we ignore this derivation to focus
on examining more general properties of internal waves applicable to our study,
for more detail, consult Alford et al., 2016 [23].

2.2.3 Internal Wave Beams

As a final note on internal waves, we address what an internal wave beam
actually is. We get an internal wave beam when we have an internal wave
of finite cross-section. In an unbounded domain, an internal wave beam is a
linear superposition of internal plane waves with parallel wave vectors. Note
that a plane wave is an exact nonlinear solution of our governing equations
(Phillips, 1966 [60]), as is any linear combination of plane waves with parallel
wave vectors (e.g. Tabaei and Akylas, 2003 [01]). As an internal wave beam
is a linear combination of individual plane-wave solutions to the Boussinesq
equations with parallel wave vectors, it follows that the beam itself also exactly
satisfies the nonlinear wave equations.

To construct an internal wave beam, we can employ the method of [62].
Let us assume we have a vertical profile of our wave at x = 0,¢ = 0, and let us
choose our profile to be periodic with a period of twice the fluid depth (2H).
This choice allows us to apply this method to construct reflecting beams in a
fluid of depth H. We will take the first M terms of the Fourier series of our
profile. We can then employ it to build of linear combination of waves.
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We begin by setting:
M
w(x=0,2z,t=0)= f(z) = ap+ Z ay, cos(myz) + by, sin(my, z) (2.37)
n=1
where z € [-H, H] and m,, = %7. In particular, f(z) is chosen so that it is
approximately zero at z = £ H (this later allows us to have define the velocity
at the seafloor to be zero). It then follows that (introducing the subscript u
for “up”; more on this when we add reflections):
M

wy(x, 2,t) = ag + Z ay, cos(k,x —myz — ot) — by, sin(k,x — my,z —ot) (2.38)

n=1
| 02 — f2

This gives us our desired linear combination of internal waves. Each wave
has a wave vector of (k,, —m,) and they are chosen to be in parallel with
one another. Note that our choice of sign has the waves transporting energy
in the positive horizontal and vertical directions (up and right). The sign of
m, can be swapped to point the waves downwards, and the sign of ¢ can
likewise be swapped to give another valid solution. Swapping the signs of o
and k,, together still generally provides a solution that satisfies the dispersion
relation, though due to its combination of waves travelling in the four cardi-
nal directions, it follows that the wave vectors of the solution may not lie in
parallel.

with

With this in mind, we can now consider a bounded domain. Suppose we
have a rigid boundary at the surface, z = 0 (we make the rigid-lid approxima-
tion, so such a choice is not invalid). In such a case, the reflected wave will
take the form (where we introduce the subscript d for “down”, following up
on our earlier convention):

M
wy(x, z,t) = —ag— Z ay, cos(kpx +my,z —ot) — by, sin(k,z +m,z—ot) (2.40)
n=1
The combination of the incident (upward-travelling) and reflected (downard
travelling) waves is therefore:
w(z, z,t) = w, + wy
M
= Z an[cos(kpx — mpz — ot) — cos(ky,x + myz — ot)] (2.41)
n=1

— by[sin(k,x — m,z — ot) + sin(k,x + m,z — ot)].
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An important thing to note here is that we have two sets of plane waves in
this sum - one travelling upwards with wave vectors parallel to (k;, —m;), and
the other travelling downwards with wave vectors parallel to (ki,m;). These
two sets of wave vectors are not parallel to each other. It follows that this
linear combination does not work as a nonlinear solution to our Boussinesq
equations.

We can rewrite our sum into a more compact form:

M
w = 2a,, sin(k,x — ot) + 2b,, cos(k,x — ot)|sin(m,,z 2.42
> ( ) ( )] sin(m,z) (2.42)

n=1
M

= Z Ay sin(kn, — ot + ¢,,) sin(m,,2) (2.43)

n=1

We note that this form is that of a linear combination of horizontally propa-
gating plane waves. Additionally, observe that w(z, —H,t) = 0 = w(z,0,1),
so we have a wave that vanishes at our top and bottom boundaries. Hence,
we have a solution to our Boussinesq equations in an ocean of finite depth H
that vanishes at the surface (z = 0) and the bottom (2 = —H). Note that
such a solution would also be a solution if we were to extend the depth of our
ocean by integer multiples of H.

An important point to note is that the nonlinear terms in our solution only
occur wherever we have crossing upward and downward propagating beams,
i.e. at the points of reflection at the boundary. When we have the nonlinear
interaction of wave beams each with tidal frequency o, a wave beam of tidal
frequency 20 is formed. Should this new beam now cross paths with the wave
beams of tidal frequency o, another interaction can can occur, resulting in
wave beams of either frequency o or frequency 3. In short, in this way,
energy is transferred to increasingly higher frequencies.

One last remark here is that the linear combination wave beam solution
we have developed is horizontally periodic. We have also set no bounds on our
horizontal domain. Consequentially, these internal wave beams could transfer
wave energy infinitely far in the horizontal, which is not physically possible
in reality. Unlike in our idealized model here, interference, instabilities, and
other factors act to prevent the infinite spread of energy by these beams. While
internal wave beams are indeed capable of transferring energy over immense
horizontal distances, it is still important to recognize this caveat.
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2.3 Parametric Subharmonic Instability (PSI)

Before looking at parametric subharmonic instability, we briefly want to dis-
cuss the slope of an internal wave beam. Suppose we have a body oscillating
in a linearly stratified fluid on a rotating Earth. Let the fluid have buoyancy
frequency N, and set the Coriolis frequency to f, both of which will be taken
to be constant. It follows then that the slope, r, of the resulting internal wave
beam of frequency w can be obtained from [21]:
) w2 _ f2

re = m (2.44)
and these waves will be of the form of the well-known St. Andrew’s cross
pattern. This slope value will be useful to us, both in defining the necessary
components of PSI; and in observing it later on (see sections 4, 5). A change
in this slope value, given our assumption of constant parameters, will suggest
a changing frequency, something we expect to see in PSI.

To understand PSI, we must first define a resonant triad. Suppose we have
three freely-propagating waves, each with different wave vectors and frequen-
cies, (k_;, w;), 1 =0, 1,2, each of which satisfies the dispersion relation £r = %
(where ky, is the horizontal wavenumber and m the vertical, r as described pre-
viously). If these three waves obey the following two conditions (the so-called
“triad resonance conditions”), then they are said to be a resonant triad [21],
[4]:

ko + k14 ky =0, wotwi+ws=0 (2.45)

Should the second of these two conditions fail to be satisfied, then the result
will be harmonically generated waves of frequency wgy + w; + wo, which will not
have cumulative effects on wave amplitudes.

Where does such a set of conditions come from? Before we continue, let us
take a moment to ponder this question. More generally, a resonant triad is a
set of three waves in which a nonlinear interaction between two of them causes
the third to undergo resonant forcing. They arise from quadratic nonlinearities
in a system, wherein a wave with phase 6, interacts with a wave of phase 6,
producing terms with the phase #, = 6y + #;. Should this combination of
phases result in a freely propagating wave, then the aforementioned resonant
forcing will occur. Consequentially, the sum/difference of the wave vectors and
frequencies must be capable of satisfying the dispersion relation for a resonant
triad to occur. It is this requirement that births the resonant triad conditions

(03]
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In the systems we will observe, we will want waves that both satisfy these
conditions and the Boussinesq equations we derived in the previous section.
One possible solution to the Boussinesq equation, among others, is a propa-
gating internal wave solution. If we have a triad of waves with wavenumbers
and frequencies (wp, k?]), (wi, k_i), (wa, k;), then the resulting vertical velocity
we get from the Boussinesq equations is:

w = Xj_91.24;sin(m;(z + h)) exp(i(k_;- T —iwjt)) + c.c. (2.46)

where k_; = k;z + {;y + m;z and A; are the complex amplitudes of the three
waves. To follow the triad resonance condition, these complex amplitudes of
the waves must abide by a specific form. The derivation for this is rather
intensive, so we will omit the lengthy algebraic steps and focus on the core
ideas of the process.

To derive the amplitudes of the waves, we can apply the method of multiple
scales and introduce slow-moving space and time scales to thereby introduce
slowly evolving amplitudes into our problem. By doing as such, we are capable
of eliminating resonant forcing terms in the resulting second-order problem. As
we perform the perturbation expansion (and we do so in terms of streamfunc-
tions for simplicity), the zeroth-order problem we get is the linear internal wave
problem. At first order, we can get a solution to the zeroth-order term of the
streamfunction of the form () = Aexp(if), where A =

(k2 4m?)(r2 N5 )
so long as 0 does not take the form of a freely propagating internal gravity wave
(i.e k,m, o happen to satisfy the dispersion relation, making a zero denomina-
tor). So long as this is not the case, we get a bounded solution oscillating in
time. Should this occur, however, an unbounded resonant forcing term instead
acts as the particular solution, and this term takes the form 1(*) = At exp(if).

Recall that 0; = kjz + {jy + m;z — ojt.

To deal with the first order term in the streamfunction in our problem, it
is important to consider our definition of a resonant triad once again. We have
a resonant triad when we have three waves such that:

Oy + 01 + 0, =0 (2.47)

Hence, we have that exp(—i(fy + 61)) = exp(i6,) is a resonant forcing term. If
exp(i6) acts as a resonant forcing term, it follows immediately that exp(—if)
does so as well, and hence exp(=£i(6y+61)), exp(Fi(61 +62)), and exp(£i(b +
0p)) are as well. Therefore, when we have a satisfied resonant triad condition,
all six of these terms are resonant forcing terms. Note that, for simplicity, we
assume that in our resonant triad condition, two waves have a frequency of
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one sign, and the third the other (though such an assumption is not strictly
necessary ).

Turning back to the first-order solution for the streamfunction, we can ar-
rive at a solution by eliminating terms of the form exp(4i(6y—6,)), exp(£i(6;—
05)), and exp(=£i(f2 — b)), as our resonant forcing terms are only proportional
to the values discussed in the previous paragraph and their complex conju-
gates. To do this, we apply a multiple-scale expansion with a slow time scale
(a slow spatial scale can also be introduced for considering the problem of
horizontally-propagating internal modes, though that is a separate problem).
Through manipulation and the application of conservation of wave energy
across the triad, at last, the form of our wave amplitudes can be expressed
analytically as follows [4], [63]:

dA
-0 = 80&)014?14; (248>
dt
dA . i
d—tl = 81W1A0A2 (249)
dA
d—; = Sowy AL AT (2.50)
. k1m2 — k,’gml ]{?1 k’Q k‘o kl k’g
R Ty A i) G COM o

where the s; are coefficients of interaction, and s; and sy can be determined
by swapping the relevant indices throughout the equation with the zeroes in
So-

To consider the development of these waves over time, we could consider
the example where the amplitude of the primary wave is constant. For this,
we let the subscript 0 denote our primary wave, and assuming Ag is constant
(which, of course, would only truly hold in the first moment of the interaction).
In this case, we would have two equations for the other two wave amplitudes:

dA x Ak

d_tl = 51w1A0A2 (252)
dA

d_t2 = SQCUQAE;AI (253)

Supposing the initial amplitudes for the other waves in the triad were o; and
i, respectively, then the solution for A;(¢) would be given by:

1

Al(t):§< :

+ a1> exp(ot) — 5(

A* * A* *
11 40Q3 51w f0% 041) exp(—at) (2.54)

o o
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where o = /s185|Ag|. Note that Ay(t) could be similarly found by simply
swapping the indices 1 and 2 in the previous equation. Consequently, we see
exponential growth in the perturbation waves, controlled by the parameter o

301, 14

As for other parameters, the energy density of each wave in the triad can
be given by F; = A;Aj. Each wave has a wave action of A; = f—;7 and
respective pseudo-momentum vector p; = AjEj. The energy of the system
Ey + E1 + E; must be conserved (so we cannot have indefinite growth of the
daughter waves), and the pseudo-momentum py + pj + ps is also conserved.
Note that the total wave action is not generally conserved across the triad. In
general, energy is periodically transferred between the members of the triad
subject to the conditions we have heretofore established [30].

To conclude, we discuss the meaning of the term PSI. In systems like these,
the first, larger-frequency wave is said to be unstable to the other two, trans-
ferring its energy to them via the instability. Though initially infinitesimally
small, as we have seen, the amplitude of these disturbance waves has the ca-
pability to grow even beyond the amplitude of the primary wave; hence, these
waves are called resonant. As this resonance appears to derive solely from the
parameters of our system (as opposed to an external force), this resonance
is called parametric. For internal gravity waves, the resonated waves expe-
rience their maximum amplitude when they are generated at around half of

the frequency of the primary wave (%); this occurs in the limit of the high

wavenumber regime, |k ~ |ks| > |ko| (Staquet and Sommeria, 2002 [30]).
These subharmonic waves generated via parametric resonance are what give
us parametric subharmonic instability (PSI) [30], [1], [21], [20].

2.4 Effective Coriolis Frequency

Next, we want to turn our attention to a phenomenon known as the effec-
tive Coriolis frequency. Traditionally, we see the Coriolis frequency appear in
systems wherein we consider a body of fluid on a rotating Earth, and, for a
phenomenon in a sufficiently small domain, we usually consider this parame-
ter to be a constant, determined by latitude. It is possible, however, for this
constant to experience adjustments due to fluid vorticity, and this is where the
effective Coriolis frequency appears.

To derive an expression for the effective Coriolis frequency, we can take
our Boussinesq equations and include an additional equation for buoyancy.
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A dispersion relation can be obtained from this set of equations by seeking
a plane wave solution, which leads to a determinant to solve for the intrinsic
frequency. This procedure is covered in detail in [11]. The key result we obtain
from this procedure is an expression for the effective Coriolis frequency as one
of the terms in the determinant. In its most exact form, it is expressed as:

P AR (L B (2.55)

or 0Oy
If we add an additional constraint on the geostrophic flow, we can simplify
this further. We can assume that the transverse horizontal shears are signifi-
cantly smaller than the Coriolis frequency, i.e. |‘g—3], |%] < f, or equivalently,

|g—1yL|, |22 ~ 6 f, where 0y < 1. This is equivalent to a small Rossby number
approximation, and is valid in most of the ocean as it is a condition for stable
quasi-geostrophic flow. Moreover, the horizontal strain terms g—zg—z are much
smaller in magnitude than the horizontal shear terms for geostrophic time
scales much larger than a single inertial period. Finally, vorticities in many
flow structures (e.g. open-ocean fronts, rings, and western boundary currents)

typically assume values less than 0.2f [11].

Combined, these assumptions allow us to simplify our expression for f.s;.
We can start by eliminating the third term:

v  Ou
2 2
~ _—— 2.56
eff f + f(ax ay) ( )
If we introduce the horizontal vorticity parameter as ¢ = % — g—Z, we can then
substitute this into our equation to yield [64]:

ffff%f(f+C) (2.57)

Given our assumptions, we can also further approximate the square root
(though we will not employ this specific form ourselves):

¢

feff%f+§

With this, we have our final working forms of fff pand fery.

The important thing to note about the effective Coriolis frequency is that it
provides us with a new lower bound for the minimum propagation frequency
of internal waves. To elaborate, if we recall the equation for the slope of
internal wave beams, two conditions are placed upon the value of the beam
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frequency w: it must be no smaller than f (to get a real slope) and must be
smaller than the buoyancy frequency (or the slope becomes undefined). That
is, we have f < w < N,. Now, however, if the waves experience an effective
Coriolis frequency of ferr ~ f + %, then the lower bound of its propagation
frequency is changed based on the background vorticity. For any cyclonic
vorticity, as the vorticity increases, the allowable band of frequencies narrows.
If the vorticity were negative, the band of frequencies would widen as the
vorticity increased in magnitude. In this way, we have vorticity changing our
permissible frequency spectrum, thus allowing us to consider wave effects in
regions normally disallowed by traditional approximations (e.g [50]).

Keeping in mind what we discussed about PSI in the previous section, it
is then possible to consider constructing near-inertial waves (or rather, waves
near a lowered inertial frequency) that might allow for the frequency to take
values required to achieve PSI in regions in which it would not otherwise be
capable of doing so. This is our goal for this study, and we will use the next
section to go into further detail about our means of doing so.
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Chapter 3

Methodology

3.1 Code

To create the data needed to look at various internal wave setups and examine
them for possible PSI, the numerical model outlined in [57] was used. While we
will not go particularly deep into detail about the code here, a brief summary
will be provided.

Based upon the numerical methods created by Bell, Colella and Glaz, 1989
[65]; Bell, Solomon, and Szymeczak, 1989 [66]; and Bell and Marcus, 1992 [67],
the code uses a second-order finite-volume projection-based method to solve
the Boussinesq equations outlined in section 2.1.

The projection method operates as follows, noting that we perform this
projection to enforce incompressibility. We want to eliminate the pressure
terms from the Boussinesq equations from section 2.1. We can do so by noting
that for any given vector ¥, we can break it down into the sum of a divergence-
free vector and a multiple of a strictly-positive scalar field function and a
gradient, i.e.

7=0" +a(x,2)Ve (3.1)
~D

where v is a divergence-free vector. Such a decomposition can be unique,
so long as adequate boundary conditions are imposed. For our case, we will
choose the Dirichlet boundary conditions, such that #” -7 is specified on three
sides of the domain of our problem, excluding the right-hand side boundary
(more on this in the following section),

We can define a projection operator P, to map the vector ¢ onto its
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divergence-free component, 77:
P,(7) = o° (3.2)

Note that the projection operator itself will depend on the function a = a(z, 2)
chosen and on the specifications of the boundary conditions.

Let us return to the first of our wave motion equations from Chapter 2.1
(though let us do so before fully completing the Boussinesq approximation,
thus leaving 1 + p present in the equation). We can re-write the equation as
follows:

— 1 — — — — ~ p ~
——VP=-U- — ——gk :
Ut+1+pv U-VU+ fu 1_{_pg (3.3)

The left-hand side of this equation has exactly a divergence-free vector ([jt)
plus a strictly-positive scalar field multiplied by a gradient. Hence, we can
apply our previous definition of a projection to create the operator P, so that:

U, = P,(~U - VU + fvi — ﬁgk) (3.4)
With this method, we can eliminate the pressure from our original equations
(though the pressure gradient, which can be obtained once our projection
equation is solved, will still be used). This operator is time-dependent, as the
density is time-dependent and the boundary conditions have the potential to
depend on time as well. Note that when we make the Boussinesq approxi-
mation, we can eliminate the density dependence from our projection. The
dependence on the boundary conditions can also be eliminated by discretizing
the projection operator. The procedure for doing so is complicated, however,
and so we will leave its discussion to [57].

With this projection operator defined, the numerical problem we then seek
to solve is: assuming we have a vector ¥ and are given a density p, we wish to
solve the following equation for Uy

(1+p)U, +VP =7 (3.5)
This amounts to constructing a basis of divergence-free vectors \17” such that:
[jt = Es,tas,t‘f’s,t (3-6)

We then want to solve for the corresponding «; ;. Firstly, we want to construct
the basis. As a part of doing so, we should consider how coordinates will work
in our system.
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The simulations to be used will apply terrain-following (o) coordinates. A
quadrilateral grid with I grid points in the horizontal and J grid points in the
vertical is used for computation. The code operates by mapping the physical
coordinates of our system (z, z) to coordinates inside the computational grid,
(&, ), such that:

(&, Q) = (&(x, 2),((x, 2)) (3.7)

We restrict our transformation such that & = 0 at the left boundary, £ = 1
at the right boundary, ¢ = 0 along the bottom bathymetry, and ( = J at the
surface of the fluid (z = 0). Note that if we were to use a free surface, this
transformation would be dependent on time. Our Boussinesq equations then
transform to be in terms of these new coordinates, though we will omit this
derivation for brevity.

Returning to our projection, with the coordinates we have defined, let us
consider the corners of each cell as defining a scalar grid. This scalar grid,
(&,¢), has coordinates (£,() = (i,j) such that ¢ = 0,1,....,1, j = 0,1,....J
. There are then I + 1 scalar grid points in the horizontal and J 4 1 in the
vertical direction.

We define the vector grid to be composed of two components: interior
vector grid points and boundary vector grid points. Interior grid points sit in
the centre of the vector grid cells (7, j) with coordinates (i — 0.5, 7 — 0.5), 7 =
1,..,1, 7 =1,....,J on our computational grid. Boundary vector grid points
lie in the middle of the cell edges along the boundary of our domain. They have
coordinates in the computational domain of (0,5 —0.5),(/,7—0.5) j=1,....J
and (1 —0.5,0),(: — 0.5, J) i = 1,..., J, along their respective components of
the boundary.

Values of U , U, ﬁP, p are then given along the vector grid points, while we
use the scalar grid points to create the desired basis of divergence-free vectors
from a set of scalar fields.

As a final remark about discretization, we need to define discretized gradi-
ent and divergence operators. We need the gradient operator to be such that
it takes a scalar field with values at the scalar grid points and maps it to a
vector field with values at the vector grid points. In particular, we want to
define the two operators so that they satisfy the discretized version of Gauss’

theorem:
/ qﬁﬁ.adxdz:—//ﬁa;.m]f(w-ﬁds (3.8)

where ¢ is an arbitrary scalar from our scalar grid and ¢ is an arbitrary vector
from our vector grid.
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The basis of divergence-free vectors can then be constructed, and once
done so, we discretize the projection by taking the dot product of the problem
we want to solve with the system of basis vectors, then integrating over our
domain, yielding:

257,50457,5 //(1 + p)\I_}i,j : 11757td$d2 + \%Pji,j ‘= //?7 \I_;i,j (39)

It is from this equation that our code discretizes the projection operator, thus
leading to the numerical method needed to solve our equations and create our
simulations. The exact details of how this works beyond this point become
extremely technical and well-warranted of a discussion all their own. Hence,
having covered the fundamentals, we leave our discussion here. Consult [57]
and its references for the discussion in full.

To conclude, we think about how we advance time in our code. Variable
time-stepping is used in our simulation, with U and p being calculated simul-
taneously at each time step. We impose a CFL condition to ensure that fluid
parcels do not travel further than half a grid cell per time step. We need a
second restriction as well (preferably related to the speed of propagation of our
waves), so we also choose to specify a maximum allowable time step. Then,
given the values of U , v, p at time step t,, the goal is then to compute their
values at time ¢, 1 = t + d0t,,. This procedure and its particulars are described
in detail by [57], and we will not repeat their derivation here.

3.2 Model

We use a 2D-model with a fixed length, L, in the horizontal (z) direction.
The rigid lid approximation is used at the surface boundary, i.e. we assume
that the ocean we are modelling has a fixed and immobile surface. Such
an approximation is used since we are interested in internal motions in our
study, and any vertical displacements of the surface would be minuscule in
comparison to vertical displacements in the interior of the fluid body. Not
only does such an assumption simplify our model, but it also enables us to
eliminate fast-moving surface gravity waves, allowing us to employ larger time
steps.

With this in mind, in the vertical (z) direction, we set the surface to be
along the line z = 0. As for the bottom, we employ a seafloor bathymetry
z = —H + h(z), where h(x) is a function which we will discuss in more detail
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later in this section. Note that for convenience we generally choose the h(z)
such that it has a minimum at —H, where H is the maximum water depth.
Bathymetries chosen are subject to the condition h(z) < H, i.e. the seafloor
does not breach the ocean surface. Hence, in conclusion, we solve the model
on the domain [57]:

R={(z,2)|lt; <z <z, =L—2x, h(x)<z<O0} (3.10)

Finally, we note that the model employs a variable grid, such that we are
capable of controlling the size of the grid cells in both the horizontal and
vertical directions. Additionally, in the horizontal, we are capable of stretching
the left and right boundaries, such that we have a central region with regularly
spaced grid cells, and to the left and right of that, regions of stretched grid
cells. The size of the cells in the central region, d,, takes the form:

B L
CI-1 -1
where L is the length of the horizontal domain, I is the number of grid points
in the central region, and [, I, are the number of grid points in the stretched
left /right regions, respectively. If I;, = 0, the grid is uniformly spaced in
the horizontal. To create stretching, when stretching needs be employed, this
parameter d, is scaled on either side of the uniform grid (in our case, by a
factor of 15). The centre of this increase occurs a set number of grid points
out (in our case, 400), and it occurs over a set number of grid points (we use
600). Note that these parameters could vary within the code, but we choose
to keep them fixed across all runs with stretching for uniformity’s sake. No
such stretching is employed in the vertical domain.

dy (3.11)

With this out of the way, we now take a moment to discuss the basic
setup. Our model simulates tidal flow over an isolated ridge in the presence
of a steady along-ridge background current. Simulations are initiated at the
maximum flood tide via setting the initial fields as:

Q Q' ()
) Y - —7 O? T T 1.7 \\o )
(u,0,w) (H “h(z) D (H—h(x)?2”

p=p(2) (3.13)

where Q = U, H is the peak volume flux, U,,,, is the barotropic tidal ampli-

tude in deep water far from the ridge, and p is an arbitrary prescribed density.

Both boundaries in the horizontal direction are open, and forcing occurs at
the left boundary subject to the condition:

ou

ot

(3.12)

= —wrUpaz sin(wrt) (3.14)
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where wr is the tidal frequency (in our case this will be the K tidal frequency).
The code integrates the given density field along the lines of the thermal wind
relation (integrating starting from the seafloor up to any given point in z,
setting the velocity at the seafloor to be zero) to solve for the initial background
current, V(). The initial tidal phase is set to 7 radians [65].

To define a density for use in our initialization, we employ the following
definition:

plx,z) = —N?E(x, 2) (3.15)
Z(z,2z) = 2+ ((2)hvar(z) (3.16)
F = F(x,x0,\s) (3.17)

G =G(z,20,\) (3.18)

((2) = Cnaa " (3.19)
hvar(x) = hvar .. G (3.20)

where F, G are arbitrarily chosen functions of z and x, Gnaz, hvar,,.. are the
maximum values of the perturbations in z and x, zg, zg control the location
of the perturbations, and ., A\, their respective widths. N and g are the
buoyancy frequency and acceleration due to gravity, set at N2 =1 x 1076571
and g = 9.81m/s?, respectively. Note that this value of N is set for the region
sufficiently far outside of the background current where z ~ z. Inside the
background current, the buoyancy frequency would dynamically change with
the stratification. However, hvar and ¢ will generally be chosen to have forms
such that far from xy and Z; (to the left/right, above/below), respectively,
their respective rates of change would be approximately zero, and it is in such
regions of minimal change in stratification that we will employ the constant
N? value we mentioned here.

Test cases were be created by varying in particular the parameters of ¢
and hvar. Specifics about and results from these test cases will be discussed
in Chapter 4. Broadly speaking, however, test cases will be organized into
families based on the chosen structure of hvar, further broken down into indi-
vidual cases based on the magnitude of A, (the reason for this to be discussed
in section 3.4). Note that individual cases with similar A, values may have
some differing parameters, such as location of the perturbation z(, length of
run, and so on.

Two specific bathymetries, h, were chosen for our waves to propagate over.
The first used was fourth-order Gaussian of the form:

h= Aexp(~(2)")
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Gaussian Bathymetry
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Figure 3.1: The fourth-order Gaussian bathymetry. The x and 2 axes represent
distance in the horizontal and vertical directions, in kilometers and meters,

respectively.

where A is an amplitude factor and w is a width parameter. For our cases, un-
less otherwise listed, for this bathymetry we fix (across all simulations, unless

otherwise noted) A = 1000m, w = 4000m.
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See Figure 3.1 for a visual reference for the fourth-order Gaussian bathymetry
used. Such a bathymetry is commonly used in similar studies, though it
is sometimes desirable to further control the steepness of the bathymetry’s
slopes/edges. For example, having shallower slopes could help leave a broader
area for breaking, a desirable trait to help minimize inertial instabilities. To
that end, a second bathymetry was also used. In this bathymetry, the seafloor
ridge is broken up into three specific regions, each with its own defined length,
steepness, and curvature. This kind of bathymetry allows for smooth, control-
lable transitions between its parts, and for more precise shaping of the ridge,
at the cost of simplicity.

Mathematically, this bathymetry is defined as follows:

r — T r — X9

))dz]
))da]}

h(z) = 0.5{51[/(1 + tanh (-

— (83— 32)[/(1 + tamh(flj ;ng

))dz] — (52 — 81)[/(1 + tanh( .

))dz] + (s4 — 33)[/(1 + tanh(Z ;4””"4

(3.21)

where once again, x is the horizontal distance parameter. As for the new
parameters, the x;, « = 1,2,3,4, are the points at which the slope changes,
the s; are the value of the slopes in each region, and the d; determine the
roundedness of each transitory region. So, for example, the slope begins at
zero, then smoothly increases to s; at x1, with a curvature defined by d;. It
then does the same for the second transition region, and so on until at last it
transitions to the fourth slope, then back down to zero. Note that the factor
of 0.5 in front of the bathymetry is due to the derivative of the integral of
1+ tanh(x) having a maximum of 2, and we want to normalize this to 1. Note
that we can choose the length of the flat top region (Li,,) in-between x5 and
xr3 as we see fit, and we can introduce an amplitude parameter A like we did
with the Gaussian as well.
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The values for each of our chosen parameters are as follows:

d; = dy = 10000
dy = d3z = 2000
s1 = 0.04 = —s5
Sog=584=0
Ly, = 10000
23 = 0.5L10, = 5000 = —x
x4:x3+£:x3+%:30000:—x1

In general, parameters were chosen to allow for smooth, slow transitions be-
tween different of different slopes, reducing the likelihood that waves might
overturn on sharp transitory regions. With the exception of top length (where
explicitly stated, particularly in Chapter 4.3.2), assume that these parame-
ters remained constant across across all simulations employing this type of
bathymetry. For a visual reference, consult Figure 3.2.
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Piecewise Bathymetry
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Figure 3.2: The second bathymetry used. Note the shallowness of its sides
compared to the relative steepness of the Gaussian bathymetry. The four
regions as mentioned previously can be seen here - a concave region on the
far left, a convex region left of centre, and their mirror images on the right
(though in general, these four regions do not need to have pairwise symmetry).
Each of these regions can be individually shaped. The z and z axes denote
spatial distance in kilometers and metres, respectively.
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3.3 Inertial Instability

Inertial instability, called such due to acceleration being the key driver of
particle displacement in systems experiencing it, occurs in a stratified rotating
fluid when a fluid particle is displaced from its point of origin and continues to
move away from it. Such instability can be catastrophic in nature - should one
particle experience this, there is no reason others should not as well. The end
result of this can be overturning, mixing, and chaos entering the fluid system.

[59]

With our model established, we want to establish a means of checking
for inertial instabilities in our background state. We want to ensure that
these are not observed in our data - not only are they not the instability
we are looking for, but they can also introduce breaking and chaos into our
simulations, neither of which are desirable. In ensuring we do not have initial
instabilities, we are also capable of developing a natural means of iterating on
parameters for the test cases we will develop in the subsequent sections.

3.3.1 Instability Criterion

Using [59] once again as our reference, we will develop a criterion for checking
for inertial instability.

Let us assume we have an inviscid fluid undergoing steady flow, with all
variation occurring across the 2D zz-plane. Let the flow be in thermal wind
balance, with shear velocity v = v(z, z) in an equilibrium with slanted strat-
ification p = p(x,z) (note that this stratification is used for our derivation
here, and is the physical, dimensional density; it is not quite the same scaled
stratification as in our Boussinesq equations). For such a flow to exist, it must
satisfy the conditions of hydrostatic balance and geostrophy:

1 0P
1 0P

We can combine these two equations to eliminate pressure terms and get a
single equation for thermal wind balance:

v g Op
- _Z=F 24
0z po Ox (3:24)
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From the characteristics of the flow we have defined above, we are capable of
defining the following three quantities. Each will take the form and units of a
frequency squared, and we will use them again momentarily.

2 D U ——
N = (3.25)
Ov 1 9P
9 _ 2 1
Fo=f(f+ _ax) fo+ p0_8x2 (3.26)

ov__gdp_ 1P

fM=f

dz  podr  po0xdz (3:27)

We note that N? is of the form of the square of the familiar buoyancy (Brunt-
Viisila) frequency and that F? takes the form of the square of the effective
Coriolis frequency we explored in section 2.3.

To examine changes in our system, let us perturb our base flow with the
introduction of time dependence and velocity components v and w (in the z
and z directions, respectively). We continue to assume no variations in the y
direction, non-hydrostaticity, and we will approximate motion to the f-plane.

Du 1 0P

_ - 2
Dt Jv po Ox (3:28)
Dv
- = 2
D1 + fu=0 (3.29)

Dw 10P g
- = _Z 3.30
Dt po 0z po ( )

where D% denotes a material derivative. Suppose we now choose to observe a
single particle in our flow. It has coordinates that change in time as it moves
with the flow, [x(t), z(¢)]. Its horizontal and vertical velocity are given by:

_das

= — 3.31

u=— (3.31)
dz

= — 3.32

W= (3.32)

With these, we can transform the second of our perturbed equations to yield:
dv dx

7 + 7 0 (3.33)

Given that we assume a constant Coriolis frequency, it follows via an integra-
tion in time that v+ fz is a constant in our system. Hence, should the particle
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undergo a change in position Az, it experiences a change in transverse velocity
Awv so that:
Av+ fAx =0 (3.34)

As we did with the second perturbation equation, we can eliminate u and w
from our first and third equations to get:

d*x 1 0P
_ =__ 3.35
dt? Jo po Ox (3:35)
d*z 10P g

- -7 (3.36)

Note that here the pressure function P is an arbitrary function of  and z and
could be complicated.

Now, we would like to linearize these equations. Suppose that we perturb
the fluid particles from their initial positions by a small amount (dependent
on time), i.e. z(t) = xo + Ax(t), 2(t) = 20 + Az(t). We will neglect effects in
y, as they do not contribute to the dynamic balance. We must also make a
few assumptions. Assuming incompressibility, a change in a particle’s position
causes no corresponding change in a particle’s density. As the particle moves, it
leaves equilibrium, experiencing the force of buoyancy in the vertical direction
and having its geostrophy broken in the horizontal. Such forces would appear
as changes in the local pressure gradient, and we can express these small
perturbations via a Taylor expansion:

JoP 8 82 02

oP 8P @2 (92
gl(x—l—Az,z—FAz) - Oz |(w 2) + Ap—+ 010~ ’ (z,2) + Az—— 5.2 | (338)

We can subtract off the base state to yield equations for the perturbed quan-
tities:

d*Ax Az 0*°P.  Az,6 O°P
— fAy=—(—) — — 3.39
dt JAv 00 (8352 po 0xdz (3:39)
d*Az Az, 0*°P Az 0*°P
=S - S (3.40)
dt po 0x0z po 0z
where we have used Av = — fAx in the first equation. In the first equation, we

see a force imbalance due to Coriolis effects and changing pressure gradients in
the horizontal, producing a horizontal acceleration. We see something similar
with a vertical acceleration due to changing pressure gradients in the vertical
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(which effects new buoyancy forces upon our particle). Both of these equations
are linear, so we may now look for solutions for them, which will be of the
form:

Ax = Aexp(iwt) (3.41)
Az = Bexp(iwt) (3.42)

A real value of w would produce stable sinusoidal oscillations about an equi-
librium point. It therefore follows that if we are looking for instability, we
want to characterize under what conditions a complex w occurs, and partic-
ularly, when w is complex with a negative imaginary part. Such an w would
be conducive to exponential growth, thereby causing our particle to leave its
position and never return.

If we substitute our solutions into the 2nd-order equations we have derived

for Az and At, we get a 2x2 system for the values of our amplitudes A and
B:

(F? — W) Az + fMAz =0 (3.43)
fMAz + (N? —w*)Az =0 (3.44)

To get a non-zero solution, we require:
(F? —wh)(N? — w?) = f2M? (3.45)

which we can solve a quadratic in w? with roots:

e F? + N2 £ \/(F? — N2)2 + 4f2)M>
2

(3.46)

From this equation, we are capable of deriving our criteria for instability to
occur.

Firstly, consider the case of no rotation, i.e. F? = f2M? = 0, and assume
that N? is non-zero. Then,

, N2+ N?

w 2

N2,0 (3.47)

So long as N? > 0, it follows that w is universally real (this corresponds
to density increasing in a downward direction; the alternative is gravitational
instability).
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Secondly, consider the case of a pure shear flow (horizontally sheared flow
V(x)),i.e. N> = f2M? =0, and assume non-zero F'>. Then,

, F2+F?

v 2

F2.0 (3.48)
So long as F'? > 0, we have a universally real w. Such values of F'* correspond
to f(f + %) > 0, which means f takes the same sign as the term in brackets
(or, as we have observed, a non-negative effective Coriolis frequency). The
alternative would be pure inertial instability.

Finally, consider the general case. Given what we have seen so far, we
observe that the transition from stability to instability occurs at w? = 0,
meaning that for instability not to occur, we require:

F2N?* — f2M* > 0. (3.49)

Putting this together with our previous conditions, we conclude that in order
to have no inertial instability, we require:

F2>0 (3.50)
N*>0 (3.51)
F?N? — f2M* >0 (3.52)

Note that we also need to enforce N? > 0 to avoid any gravitational instabil-
ities. It is this trio of conditions that we will use to monitor for instabilities
in our model. To remark on the physical interpretation of this last condition,
it refers to lines of constant geostrophic momentum (v 4+ fx) needing to be
steeper than lines of constant density in our system in order to maintain stabil-
ity. [59] presents a further discussion of this interpretation, including diagrams
modeling lines of stability.

As a final remark, we could explore inertial instability again through the
lens of potential vorticity. A detailed discussion of this can be found in [69].
Instead of going through their whole derivation, though, we will just quote the
key result. Note that this formulation is in terms of y and z instead of our x
and z.

If we define the Ertel potential vorticity as:
Qp=—[20+a]- LVp (3.53)

Po
ou ou .,

Qe = (f = GV =27+ o)l = £+ 5o (354)
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where §} is Earth’s rotation vector, w is the vorticity, v is the horizontal Coriolis
parameter (we neglect this in our model, but it is included for completeness)
and p,u are the basic, unperturbed density/velocity of the fluid system. Then
for no inertial instability in our system, we require:

fQr <0 (3.55)

Through some manipulation (that we omit for brevity), this condition can
be brought into a similar form of the one we developed previously (with a
sign difference altering the inequality). Hence, we see multiple approaches are
capable of bringing us to this same condition for stability.

3.3.2 Varying Parameters

Now that we have a criterion by which we can determine if our flow is unsta-
ble, it is easy to explore how changes in the parameters we use to define it
may affect its stability. In turn, we can use this to explore how to optimally
change our parameters to maximally increase the permissible regions of PSI
with a changing effective Coriolis frequency while still maintaining no inertial
instability.

To demonstrate this, we will use our established stability criteria to explore
how our system might vary with the thickness of the changing stratification
regions in « and z. In particular, we will examine the condition F2N?— f2M? >
0 using inputs of the form we established in section 3.2.

For the sake of demonstration, suppose we set:

Z— 20

¢(z) = A(1 + tanh(

) ) (3.56)

Ty (3.57)

)] (3.58)

hvar = B(tanh?(

2

plx,z) = —%[z + AB(1 + tanh( ~ ))(tanh?( "

T

Z — 20 T — X

where we use N, to distinguish between the constant we might use in our
model versus the N? we used in section 3.3, and A and B are constant-valued
parameters for amplitude. Note that while these values of { and hvar might
not be exactly the same as the ones we will use, they are close enough to
show the same behaviour as our to-be-chosen setups, while simple enough to
demonstrate the dependencies without excessive computation.
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Given that we will be working with density in the code, we want to convert
all of the values in our condition into a form expressed purely in terms of
density:

g Op

2 = ——
N? = 55 (3.59)
_ g 9%
M =[5 = B2 (3.60)
0 792
F=f(f+5) = 10— | 5o (3.61)

Plugging in our given form of p, let us consider how each of these terms
behaves. We will omit the differentiated /integrated functions by use of ellipses,
as the terms we want to analyze are outside of those functions.

N2 AB

~ S )
PPN 4AB

P A2

Ni AB().)
PR v O

T

N2

f2M2 ~

FQNf2+

F2N2 Z f2M2

With our inequality here as a reminder, from these results, we can make a few
notes.

1. The LHS (F?N?) will be highly dependent on A, for small )., and will
roughly balance with the RHS (f?M?). However, for large )., terms
with it in the denominator on the LHS will become significantly smaller,
thus the LHS to have its largest contribution in magnitude come from
terms on the order of f2. The term with f? on the RHS has A2 on the
bottom, so in the large A\, regime, it could not see the same magnitude
as the LHS term that does not the A2 denominator. We would thus
see a larger LHS in such a regime (larger being a relative term - values
involved in this instability criterion are ultimately extremely small; more
on this throughout Chapter 4). Hence, one key parameter we will focus
on is A\, - ensuring that it is large enough for the LHS to be greater than
the RHS, satisfying the inequality.

2. We notice that A, has the ability to impact the magnitude of terms on
the LHS as well (particularly when it multiplies terms on the order of f?
but not A2), so this parameter can also be used to ensure stability.
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3. We see the amplitudes for hvar and (, A and B, appearing on both
sides, but the LHS will have their squares in one of its terms. Hence,
these amplitudes also mark a key point for varying parameters, and we
will ensure that they are chosen large enough to ensure stability while
also maintaining their relevancy to actual oceanic simulations.

To recap, our key parameters for modulation are the horizontal and ver-
tical distances over which the disturbances occur, A, and ., along with the
magnitude of the disturbances in the horizontal and vertical, A and B. By
looking at our stability condition, we see that these values have the potential
to yield the largest possible impacts upon the potential stability of our sim-
ulated waves, and hence, they will serve as the key parameters we modulate
to create different test cases. Note that while we only looked at one type of
stratification in our example, this type of analysis indeed works out to yield
the same result for all of these stratifications we intend to employ (see Section
4 for all of these), and the varying of parameters remains universal across all
of our test cases.
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Chapter 4

Results and Discussion

Note that for all cases, we set the Coriolis frequency to 2 = 1.6 x 1079 g2
(corresponding to a latitude of 15.92°N) and N? = 1.0 x 107% s72. Recall that
the critical value of ffff in order for parametric subharmonic instability to
occur is the square of half of the K tidal frequency, or esz|c7‘it = 1.32987x107?
s~2. Equivalently, for simplicity, we can say that the critical value occurs when
% = %, where o is the K tidal frequency. Note that all instability criterion
plots in this chapter will plot the value of the left-hand side of the inequality in
Eq. 3.52 for the relevant case. For a table of all relevant cases in this chapter,
consult Table A.1 in Appendix A.

4.1 Controls

Before examining relevant simulations, we illustrate a few controls used in our
experiments.

4.1.1 No Current

The simplest test case that we can use as a control is one without any back-
ground current present.

For our “no current” case, we set the horizontal background current to zero,
so that p(z, z) = p(z), and run the simulation as we would in the presence of
a background current. This control case was run on the piecewise-defined
bathymetry (see Figure 3.2 for reference) for 10 K; tidal periods. The simu-
lation has 100 gridpoints in the vertical direction and I = 12000, [; = I, = 0,
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with an initial timestep of 14.95625 s. The value of this timestep is derived as
follows. The code saves 48 times per K tidal period, or once every 1794.5 sec-
onds. Such a timestep therefore gives 120 time intervals between save points.
Note that timesteps generally remain constant throughout simulations, unless
prompted to change by events in the simulation (e.g. by the simulation failing
in inertially unstable cases causing the timestep to rapidly increase in value).
To avoid any possible confusion on this matter, we will give the timestep here
as it was initially set in the code. We will adopt the abbreviation “NC”, for
“no current”, in figures regarding this case.

In Figure 4.1, we have presented a series of plots depicting the x-component
of the baroclinic tidal current (i.e., with the vertically averaged velocity re-
moved). Note that in this thesis, we will not show the initial baroclinic tidal
current, as it is always zero everywhere. As we can see from the plots, over
the passing of tidal periods, while internal wave beams do form, they remain
relatively straight over time. This lack of bending is what is to be expected
from a case with no horizontal background current and a linear stratification.
Without such a current, there is no means of shifting the effective Coriolis
frequency the waves experience, nor is there any change in the the buoyancy
frequency experienced by the waves. Indeed, the lack of such a current serves
to keep fery and N constant. Hence, the beams remain straight, as expected.
The importance of seeing this control is that we can confirm that our code
can indeed render the most simple of simulations, and that no “phantom”
currents/effects are being introduced at any point in the process. With this,
we can be confident in the application of our code to more complex current
structures.

4.1.2 Inertially Unstable Cases

Moving beyond the simplest case, another type of control we have is the family
of cases where a current is present, but the inertial instability criterion is not
met. It is important to understand what happens in cases such as these, in
particular to see the contrast with cases where we do indeed meet the inertial
instability criterion we established previously. Hence, we will take the time to
present here a couple of cases with different background currents that failed
to meet the required stability criterion.

We will illustrate a few examples of failed instability criterion runs from
two different families of simulations. Note that the plots we will present here
were taken at the end of each of these respective simulations. While intense
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Figure 4.1: Plots of the x-component of the baroclinic current U for our NC
case. Note that U here is shown as a function of z and z (both in km), while
the colourbar shows its value (in m/s). Respectively, these plots show U at
2,4, 8, and 10 tidal periods.



waveforms and visible chaos will be visible on one, the other will appear mun-
dane, almost normal. Some simulations, when subject to inertial instability,
quickly undergo strong turbulence, amplifying in nature until it dominates the
waveforms. Others, however, have not yet had this occur (it may do so in the
future, or it may be currently too small to notice). Either way, it is important
to observe both of these cases, as indeed, inertial instabilities start small and
have the potential to grow to large amplitudes. Even the smallest instabil-
ity, while seemingly unimportant, can indeed magnify into full turbulence and
chaos.

With this discussion out of the way, we at last look at a few slices of
unstable runs. Note that with each unstable run, we will present a value of
the instability criterion. This value is equivalent to F2N? — f2M?, or the left-
hand side of our inequality if we moved everything onto one side. For a case
to pass the criterion, this value would need to be greater than zero. For these
cases, obviously, this will not be as such.

The first case we will look at is a simple one, but deceptively important
nonetheless. For this test case, the following parameters are set:

C(2) = 10[1 + tanh(%)] (4.1)
30000
hvar(z) = 0.25[1 + tamh(xl_ow)]2 (4.2)

This case was run for 4 K; tidal periods, with 100 gridpoints in the vertical,
I = 12000 and no stretching, an initial timestep of 14.95625 s, and the Gaus-
sian bathymetry. The value of the inertial instability criterion’s minimum for
this case is —8.47 x 107% s=*. We will adopt the abbreviation “U1PT”, for
“unstable 1 plus tanh”, in figures regarding this case.

We first consider the plots presented in Figure 4.2. Recall for the density
plots here and hereafter that we are plotting the dimensionless density used
in our Boussinesq approximation, not the dimensional density proper. The
instability criterion plot shows a large unstable region extending from almost
x = —30 km to almost £ = 10 km along the horizontal with the region reaching
down about 600 m over-top of and to the left of the ridge, while shallowing out
to the right of the ridge. This corresponds with the regions in which we see
the most rapid/steepest density change on the initial density plot. The initial
velocity plot also aligns with this, as we see regions of rapid change of density
along the points where the background current at the surface has the steepest
slopes. This is likewise the region we have the largest initial magnitude of the
fluid velocity, V' (z, z). Looking further at Figure 4.3, we see instability quickly
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seeping in over the top of the ridge on the left-hand side, in the same region
we previously identified as unstable on the instability criterion plot. Taking
these figures together, we see that even in a region that is majority stable, a
pocket of instability is able to grow, and has the potential to begin propagating
through the simulation, even with only a few tidal periods passing.

The next case we will look at is slightly less subtle, and will serve to
demonstrate a bit of contrast with what we discussed previously. For this test
case, the following parameters are set:

zZ+ 400)] (4.3)

100
B x + 30000 x — 30000,
hvar(xz) = 1600{0.5[1 + tanh( 50000 )] — 0.5[1 + tanh( 50000 )]i4 i

¢(z) = 0.5[1 + tanh(

The case was run for just over 7 K; tidal periods before it collapsed due to
turbulence. It has with 200 gridpoints in the vertical, I = 16000, [, = I, =
2000; an initial timestep of 3.7390625 s; and the simulation was performed on
the Gaussian bathymetry with half its usual amplitude (i.e. 500 m instead of
the usual 1000 m). The value of the inertial instability criterion’s minimum
for this case is —1.31 x 107 s~4. We will adopt the abbreviation “UDT”, for
“unstable difference (of) tanh (functions)”, in figures regarding this case.

Note that this time, looking at the first plot in Figure 4.4 we see a different-
looking region wherein the instability criterion is not met. It is centered over
the ridge, extending to around x = + 25km in the horizontal, with two deeper
parts in the vertical on the outsides of the ridge (extending to around z = —0.6
km) and a shallow component (approximately 0.1km deep) in between them.
Once again, we see spikes in instability where the density seems to change
the most rapidly, looking at the centre and left/right edges of the instability
criterion plot in comparison with the initial density. As the density starts
changing more rapidly around 20 km, we see larger regions of instability,
compared to the flatter region near the hill’s centre. This correlates with the
straight central region of the initial background current at the surface plot,
and starts getting unstable right as the slope would be beginning to change
(albeit still minutely at that point). We see a similar correlation with the
regions wherein the initial vertical baroclinic current is at its largest.

Looking at Figure 4.5, however, we see the growing effects of an instability
creeping into the top region at around 6 tidal periods, noting how the region
into which they extend blends into the region of widening instability in the
instability criterion plot in Figure 4.4. By just before 7.5 tidal periods, the
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Figure 4.2: Top: A plot of the absolute value of the instability criterion for
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function of x and z, with the colourbar showing its value (units of s=*). The
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Bottom-right: A plot of the initial background current V for this case. Note
that V' here is shown as a function of z and z (both in km), while the colourbar
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waves have broken down. While there is some semblance of the internal wave
beam structure to the right of the ridge, in that region, and more noticeably,
in the left, the effects of instability have grown such in magnitude that the
range of the magnitude of our current colourbar fails to capture it. Indeed,
this unstable effect, despite originating from a slim region, comes to dominate
the waveforms extremely quickly, and has led to dramatic consequences.

Across a variety of cases consisting of different current structures and pa-
rameters, we can see the instability manifesting itself in many ways, all stem-
ming from different failures to meet the stability criterion we have previously
established. Indeed, while we have only seen a couple of examples of it here,
there are many more ways for inertial instability to enter simulations and bring
the effects of chaos along with it. It should be therefore thoroughly noted that
satisfying the inertial instability criterion is essential for any successful simu-
lation, and we have seen the ramifications of the contrary.

4.2 Summary of Test Cases

With our control cases examined, we can now observe successful test cases. In
this section, we will present the results for a variety of background currents
and bathymetries. Broadly speaking, we will organize results into families of
different horizontal background current structures, and the differences among
members of the same family will be discussed as they arise.

Note that the discussion presented here will be fairly general - the data
included here is largely for illustrative purposes. One particularly successful
case was chosen for in-depth study and analysis over all the rest, and we will
go in-depth in its discussion in the next section.

4.2.1 Horizontal Background Density Field of the Form
1+tanh

We will begin by looking at the results of a successful case from a family of
simulations using a 1 + tanh structure in the horizontal background density
field. For this run, the parameters are set as follows:

z+ 750
=1 h 4.
((z) = 1+ tanh( 100 ) (4.5)
x + 30000
h = 400[1 + tanh(————)? 4.
var(z) = 400[1 + tanh( 20000 )] (4.6)
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This case was run for 20 K; tidal periods, with 200 gridpoints in the verti-
cal; I = 16000, I; = I, = 2000; an initial timestep of 3.7390625 s; and the
simulation was performed on the Gaussian bathymetry with half its normal
amplitude (i.e. 500m ). We will adopt the abbreviation “1PT”, for “1 plus
tanh”, in figures regarding this case.

For this test case, we have fZ flmin = 4.75 x 107" 572 and f2 e =
2.55 x 1079 572, This gives L4mn ~ 0,209 and fme & 0,692,

In Figure 4.6, we have plots of the instability criterion, square of the effec-
tive Coriolis frequency, initial density profile, and initial background current.
Of first note, our instability criterion in universally positive. This is essential
for avoiding inertial instability, so it is important to confirm this. Looking
at the effective Coriolis frequency (squared) plot, we see a region in the top
250 m of the water extending from atop the ridge to about 5 km on the left
and over 20 km on the right wherein the effective Coriolis frequency’s square
drops below the critical value. Such a region corresponds with regions of rapid
density change or changing slope in the initial velocity (visible in the initial
background current plots), though we note the change is more controlled in
simulations like this one (thus avoiding instability).

To remark on this run, looking at the current profiles in Figure 4.7 though
universally stable with well-defined internal waves, we see minimal activity
that might resemble PSI. We would be looking to see such activity originate
in the region wherein the effective Coriolis frequency dips below the critical
value, and this would be visible by internal wave beams with slopes much
closer to the horizontal. That said, neither of these are visible here by the
passing of 20 tidal periods. There are a combination of factors that might lead
to this. The horizontal structure of the current produced the smallest possible
effective Coriolis frequency in a small region near the surface of the water.
The effects of PSI in such a region would be minimal, if any, and would be
hard to see elsewhere. Additionally, the horizontal background current, set at
a maximum of 0.01 m/s, may not be sufficiently strong to produce the effects
we are looking for in this case. Finally, it could be possible that the effects
would require further time to develop. Such facets could be explored in further
experiments with this current structure; for our case study later, we will look
at a structure in which more immediate results were present.

As an aside, looking at Figure 4.7, particularly in the 20 tidal periods we
see the bending of internal wave beams throughout the figure, particularly
between x = +20 km and from z = —1000 m to z = —500 m. Not to be
confused with PSI, this bending of the internal wave beams is caused by our
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waves moving through a region of varying stratification, as induced by our
background current. As the waves travel through this region, the presence of
the background current alters the buoyancy frequency and effective Coriolis
frequency that these waves experience. Though they remain at tidal frequency,
if we recall our discussion of the slope of internal wave beams in Sections 2.2
and 2.3, the change of these other two parameters results in the slope of these
beams changing, creating the effect of bending the wave beams as visible in
Figure 4.7.
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4.2.2 Horizontal Background Density Field of the Form
sech

Another background structure examined over the course of our experimenta-
tion was that of a hyperbolic secant function for the horizontal background
density field. Several runs of this type were performed, and we include one
here for illustrative purposes.

For this test case, the following parameters are set:

¢(z) = 1 + tanh(> To‘éoo) (47)

x + 10000
_— 4.
40000 ) (48)

hvar(z) = 400sech?(

This case was run for 20 K; tidal periods, with 200 gridpoints in the vertical;
1 = 16000, I; = I, = 2000; an initial timestep of 3.7390625 s; and the simula-
tion was performed on the Gaussian bathymetry with one-quarter its normal
amplitude (i.e. 250 m). We will adopt the abbreviation “S”, for “sech”, in
figures regarding this case.

For this test case, we have f€2ff|min = 1.20 x 1072 s72 and ffff|ma$ =
1.73 x 1079 572, This gives 2mn ~ 0,476 and f£mer ~ 0,571,

Observing Figure 4.8, we again have plots of the instability criterion, square
of the effective Coriolis frequency, initial density profile, and initial background
current at the surface. Once again, we have a totally positive instability crite-
rion. The effective Coriolis frequency squared plot shows us this time that we
have a region about 125 m wide (vertically) at the top of the water extending
from above the left side of the ridge to just over z = —20 km wherein the
effective Coriolis frequency dips below the critical value. This aligns well with
the region of most rapid density change and the fastest changing slope in the
initial background current at the surface/steepest change(s) in gradient in the
background current.

When we look at the current profiles in Figure 4.9 as was the case with
the 1 4 tanh structure, we have stability and proper internal wave beams,
and indeed, while it is not impossible for PSI’s effects to be occurring (as we
do have a region in which the effective Coriolis frequency drops low enough
for it to occur), if present, the results of this are very faint, and it would
be difficult to confirm if they were indeed attributable to PSI in the first
place. As for the reasoning behind why we fail to see conclusive PSI here, we
face largely the same issues we observed in the previous case. Moreover, a
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particular point of challenge with this structure was in achieving stability - in
testing, this current required careful management of the amplitude of the ridge
to achieve stability (the density plot’s large dark-blue region of rapid change
helps reflect this). By changing the size of the ridge, the regions in which we
see gradients in velocity induced by sloshing over the ridge are are likewise
changed, as are the magnitudes of gradient changes themselves. As the ridge’s
shape changes, the regions at which the internal waves are formed (and from
whence they initially travel upward into the background current) are changed,
and likewise the background current’s relative location to the hill are altered.
This is what leads to changes in the velocity gradients (as we have changing
locations where we establish our bottom boundary condition of V' = 0), and it
affects the particularities of how the waves travel through (and thus, how they
may experience) the background current. Thus, when we have instabilities, it
can be helpful to reduce the size of the ridge to affect the absolute value of
the instability criterion. Consequentially, a particularly small ridge was used
in this case’s experimentation, leading to stable, if not particularly dramatic
or illuminating results. Indeed, the hill is so small here, the fluid leaving
the ridge does not experience the background current for a significant vertical
distance, and misses the region wherein the effective Coriolis frequency drops
below the critical value in many places. While a smaller ridge can help to
achieve stability, the size of a ridge and its ability to allow the fluid to enter
the region wherein the effective Coriolis frequency is dropped below half of its
critical value serves as a limiting factor for the development of PSI in such fluid
systems. Nonetheless, runs such as this one help serve as good context and
contrast for our later deep dive, so we still present it here for completeness.
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m/s).
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4.2.3 Horizontal Background Density Field of the Form
of a Difference of Tanh Functions

Finally, the last type of background density structure we examined was the
difference of two hyperbolic tangents in the horizontal. Such a structure was
particularly beneficial - it is particularly easy with this structure to place
the region of steepest change directly over the ridge, leading to the region
of lowered effective Coriolis being in the centre of our regime. We also have
two large regions of changing slope given the shape of a difference of tanh
functions current, and these changes can be easily manipulated to take place
over broad regions via the adjustment of this pair of functions. While, with
further experimentation, the other current types may indeed have had the
ability to achieve the PSI we are searching for, of all the examined current
structures, this was the most naturally conducive to the generation of near-
inertial waves and the examination of their effects (and possible PSI). Hence,
a great many tests of this type were performed on this current structure, and
we will focus upon it for the remainder of our discussion. For the time being,
we will limit ourselves to one example here for a brief demonstration, as we
did with the others. The case study following this will closely examine a run
of this type in much greater detail, however.

For this test case, the following parameters are set:

z + 400
50

hvar(x) = 1600(0.5(1 + tanh(

((#z) = 1 + tanh( ) (4.9)

2 + 30000 = — 30000
LN — 0.5(1 + tanh( )2
20000 (1+ tanh(—005=)))
(4.10)

This case was run for 60K tidal periods, using the piecewise bathymetry. This
case had 200 gridpoints in the vertical; I = 13000, I, = I, = 3000; and an
initial timestep of 14.95625 s. The maximum tidal current strength for this
case was set to 0.02 m/s. We will adopt the abbreviation “DT”, for “difference
(of) tanh (functions)”, in figures regarding this case.

For this test case, we have fgff|mm = 8.34665204 x1071° s72 and ffff|max =
1.94981162 x 1079 572, This gives L£0min ~ 0.396 and L£4mee ~ (0,605,

An inertial instability criterion mapping, along with initial profiles for the
square of the effective Coriolis frequency, density, and background current

can be seen in Figure 4.10. We note that we have a stable case, and that
the region wherein the effective Coriolis frequency’s square dips below the
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critical value is a bowl-shaped region at the top of the ocean about 250 m in
vertical width stretching out from the centre of the ridge to 420 km in either
direction. As always, such a region corresponds with where we see the greatest
change in density and change in slope of the initial background current at the
surface/gradient of the background current.

This test case was one of a great many members of its family, and indeed,
the case study we will examine later was actually derived from this case. We
can observe the current profiles in Figure 4.11. One key point of note from
this case is the effects visible at around z = £20 km between z = 0 m and
z = —250 m, particularly starting at around 40 tidal periods (though very
faintly visible at 30; much more visible at 60). While initially faint, we notice
regions of the internal wave beams that appear almost flat, in a stripe-like
pattern. For example, comparing the profiles at 10 tidal periods versus at 60
in this region, whereas we have the relatively standard internal wave beam
structure we have seen so far at 10 tidal periods, at 60 tidal periods, we
have a pattern of beams with near-horizontal slopes. As we know that our
case is inertially stable, it falls to reason then that inertial instability is not
the primary cause of such patterns developing. It falls to reason, then, that
another factor must be possible for this phenomenon. The patterns visible
here take a long time to form, however, and are not particularly strong. To
remedy this, if we were to make the initial tidal current strength greater and
lengthen the runtime of this simulation, we could hasten the development of
and magnify the effects visible here. With this as inspiration, this case had
its parameters adjusted accordingly, and was probed in much greater depth
to look for more conclusive results. Such probing warrants its own discussion,
and so, having seen some simpler results from test cases as motivation, we
turn now to the detailed exploration of this particularly interesting case.
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4.3 Case Study

4.3.1 Presentation of Core Results

To conclude the presentation of our results, we will take some time to look at a
particular case of note. After careful experimentation with all three families of
the horizontal current structures seen so far, it was deemed that the difference
of hyperbolic tangents seemed most naturally conducive to generating the PSI
we are searching for. Hence, a great deal of time was spent examining this
particular family in detail.

While using the same general framework as the difference of tanh case we
saw previously, this one has the following modifications:

e The maximum current strength was increased to U = 0.03 m/s (chosen
after careful experimentation for its ability to yield prominently visible,
yet stable results).
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e The simulation was allowed to run for a full 80 tidal periods.

e The centering in z was moved to —750 m as opposed to —400 m, to
enlarge the region capable of experiencing an effective Coriolis frequency
below the critical value.

e The piecewise bathymetry was used again, and multiple different values
of the length of its top were explored (7.5 km, 10 km, and 15 km, respec-
tively). Of these, we will focus on the 10 km top, though results from
the other two cases will be presented for contrast.

With all this in mind, we begin by looking at the preliminary results for
this special case, as we have with all of the other cases so far. The parameters
set for this case are as follows:
z 4750

50

hvar(xz) = 1600{0.5[1 + tanh(

((z) = 1 + tanh( ) (4.11)

= + 30000 = — 30000
LN — 0.51 + tanh(—— )2
20000 [+ tanh(— 0=l
(4.12)

This case was run for 80K tidal periods, using the piecewise bathymetry.
This case had 200 gridpoints in the vertical; I = 14000, I; = I, = 4000;
and an initial timestep of 14.95625 s. For this test case, we have ffff\mm =

1.61 x 1070 572 and f%;|mas = 2.26 x 107% s72. This gives 0™ ~ 0,174

and feffgﬂ ~ 0.652. We will adopt the abbreviation “CS”, for “case study”,
in figures regarding this case.

As we have done before, we commence by looking at the usual plots of in-
stability criterion, square of the effective Coriolis frequency, initial density, and
initial background current. These are presented in Figure 4.12. While these
are quite similar to the case we looked at in Section 4.2.3, the most important
changes are visible in the density and effective Coriolis frequency plots. The
area wherein the effective Coriolis frequency dips below the critical value is
significantly larger here, spreading out approximately the same distance hori-
zontally (between +20 km), but now extending below a depth of 500 m in the
vertical. This corresponds to the large dark-blue region on the density plot,
wherein we see the lines of constant density undergoing rapid change in slope.
What this tells us is that we have a large central region, extending deep from
the surface and well over top of the ridge’s sloping sides, in which we have the
possibility of the development of PSI.
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For a closer look at the results in this case, now, we break the usual current
profiles (U) into two separate figures. Figure 4.13 shows the current profiles
at each consecutive passing of 10 tidal periods up to 60 tidal periods. Figure
4.14 continues this set of velocity profiles, but now at an interval of 5 periods,
up to the complete 80 tidal periods of the simulation.

Looking at the first couple of plots in Figure 4.13, things seem to proceed
in a similar manner as the previous observed cases, with the development
of internal wave beams. At around 20 tidal periods, however, things begin
to change. We see an instability beginning to grow at around 420km near
the surface, which takes the form of a faint pattern of lines. This instability
grows stronger over time (extending downward as it does), and its growth is
observable throughout the rest of the plots in Figures 4.13 and 4.14. By 80
tidal periods, the structure is well-defined and has grown quite strong.

We note that our case is not inertially unstable anywhere, so this instability
must have another cause. The region of this instability’s inception is within
the region where the effective Coriolis frequency is below the critical value
(with the exception of just over the ridge; more on this in Chapter 4.3.3),
so it is possible for this observed instability to be caused by PSI. To further
add credibility to our search, if we recall back to Section 2.2, given what we
know about the slope of internal wave beams, observe the wave beams in
the region of the growing instability. For example, comparing the internal
wave beams in the plot for 10 tidal periods versus the ones in the plot for 30
tidal periods in Figure 4.13, we see that while at 10 tidal periods, we had our
standard fairly straight internal wave beams, in the “blurring” regions, we have
internal wave beams that are almost horizontal. Indeed, as we progress further
into the simulation, we see more of these near-horizontal beams appearing,
until, by 80 tidal periods, they are extremely visible and have spread across a
wide swath of the area around the ridge. The development of near-horizontal
wave beams (thus, significantly closer to zero in slope than beams of waves
at tidal frequency; i.e. more likely to have waves of half the tidal frequency),
particularly beginning from a region wherein the effective Coriolis frequency
was lowered below its critical value, is promising for the analysis of PSI effects
in this simulation. While this does not guarantee that PSI is indeed the driving
factor behind the patterns we see here, it gives us further motivation to pursue
the identity of this instability.

As a final remark before we explore this further, we consider a couple of
curious phenomena observed in this case. To begin, we would expect that as
the waves of tidal frequency travel upward and outward from the ridge, they
would be continually moving into regions of lower f.;s. Should PSI occur in
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these regions, we would expect the generation of waves with lower frequency
than the parent waves, and thus would expect to see flatter slopes on said
waves. Why, then, do we see regions of increasing slope in 4.13 and 4.14,
particularly between the surface and z = —750 m beyond x = £+20 km? In
tandem with this, one other issue of note is that we find the patterns observed
initially in the region of lowered effective Coriolis frequency creeping down well
below where they should be capable of developing. What, then, is going on
in these regions? To answer the first question, the waves we see with positive
slopes would be travelling through the region with the background current
present. As these beams move into regions of greater f.;; and changing NV, it
is reasonable to assume that their slopes would change accordingly, as we have
seen in the some of the cases observed in Chapter 4.2 (e.g. see the plot Figure
4.9 at 20 tidal periods). Thus, even if these waves started from a different
frequency than that of the tidal frequency waves, this change in slope, even
towards the positive, agrees with what we would expect. As for what generates
these waves, or from whence they originate, the clearest way to answer our
second question will be to more thoroughly analyze the patterns we are seeing
in these peculiar regions, and we will turn to this in Section 4.3.3.
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4.3.2 Comparative Simulations

Before we commence with analysis of our waveforms, for a few points of com-
parison, we present slight variations on the base results of our case study. The
first sets of plots we look at are in Figures 4.15 and 4.16, wherein we see our
results contrasted with simulations run with differing lengths of the tabletop in
our bathymetry (7.5km and 15km, respectively for each Figure). Note that in
this comparison, we omit the auxiliary plots (e.g. effective Coriolis frequency,
background current, etc.) as changing the top length of the ridge has no effect
on the initial current. In figures referencing these cases, we will adopt the
abbreviations “CS7.5kmT” and “CS15kmT” for “case study 7.5 km top” and
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“case study 15 km top”, respectively. The second point of comparison we will
observe uses the original 10km tabletop, but slightly modifies the base pa-
rameters of the horizontal current in our simulation. Specifically, we take the
horizontal amplitude factor (hvar,.;) and the distance over which the hori-
zontal density perturbation occur (A;) and raise/lower them by 5% each. In
figures referencing these cases, we will adopt the abbreviations “CSP5%” and
“CSMb5%”, for “case study plus 5 percent” and “case study minus 5 percent”,
respectively.

Figures 4.15 and 4.16 show the current profiles for a simulation identical to
the base case for our case study, but with the top lengths of the bathymetry
changed to 7.5 km and 15 km, respectively. Figures 4.18 and 4.17 display,
analogously to Figure 4.13/4.14 and 4.12, the current profiles and instability
criterion, effective Coriolis frequency (squared) mapping, initial density, and
initial background current for the case where we keep the same top length as
our base, but increase horizontal amplitude scaling and horizontal perturbation
spread by 5% Figures 4.20 and 4.19 show this for the case where these values
are decreased by 5% instead.

For the most part, the plots we see in these figures are quite similar to
their respective counterparts in the case study. Hence, we will focus here on
what has changed in these variations:

e A change in the length of our tabletop changes both the relative strength
of our generated instability, and how early (in terms of tidal periods) it is
produced. A smaller top length causes an increase in relative magnitude
and a decrease in time required to develop, while the opposite is true
for a longer top length. This is particularly easy to see by comparing
plots of the same tidal period across all three cases. For example, in
Figure 4.13 at 30 tidal periods, the instability at * = £20 km is just
barely forming, while it is clearly formed in 4.15 and is only faintly
visible (if at all) on one side in 4.16. Both of these results stem from
the fact that changing the length of the tabletop alters the horizontal
location at which the internal wave beams are generated. This directly
impacts where the beams reach the surface in relation to the region
of lowered effective Coriolis frequency, as well as the points at which
reflected and incident wave beams intersect. For example, widening the
tabletop pushes these points outwards relative to the region of lowered
fers, while narrowing it does the opposite. Such is consistent with why
we see effects developing more quickly and in greater magnitude in the
smaller tabletop’s horizontal baroclinic current profiles compared to the
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larger one - the narrower tabletop better focuses the developed internal
wave beams into the region of lowered f.s¢, allowing for its effects to
begin developing sooner and continue developing for Inger.

In the simulation where we increased/decreased horizontal amplitude
scaling and horizontal perturbation spread parameters by 5%, we see
a slight decrease/increase in the magnitude of our generated instabil-
ity. For a simple comparison, look at the size of dark red/blue in the
plots at 60 tidal periods in Figures 4.14, 4.18, and 4.20. Thinking back
to our instability criterion and its dependent parameters, this result is
consistent with what we have discussed previously. Slightly further con-
centrating/spreading out the area over which the initial horizontal cur-
rent perturbation occurs by changing the heights pycnoclines are changed
(amplitude) and horizontal spread parameter should cause greater /lesser
resulting effects. For example, when we decrease the horizontal ampli-
tude scaling on our background current, we see a more gradual change
over the pycnocline, resulting in smaller gradients of fluid velocity. Con-
sequently, as feys is dependent on the velocity gradient, it follows, that
we get a lowered minimum value for f.;; in a case with this kind of reduc-
tion. The opposite would hold true for amplification. Obviously, these
simulations are very close to our original, and their departures from it
are small, but it is important to see this occur and verify it nonetheless.
Note that too large a deviation could betray our instability criterion or
drastically reduce our visible instability effects, neither of which would
be desirable.
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Figure 4.15: Plots of the x-component of the baroclinic current U for our
modified case study with the 7.5 km top length bathymetry (CS7.5kmT).
Note that U here is shown as a function of x and z (both in km), while the
colourbar shows its value (in m/s). Respectively, these plots show U at 10, 20,
30, 40, 50, 60, 70, and 80 tidal periods. Large white gaps are regions where
the magnitude of the current exceeds the limits of the colourbar.
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4.3.3 Analysis

To answer the question of whether PSI is indeed active in our chosen case of
study, we perform further analysis of the spectra of the waves observed in the
regions of largest instability.

To do so, we begin by isolating the horizontal baroclinic velocity U as a
function of z and t at a fixed horizontal location. In our case study, given
that we see large instabilities growing at © = 420 km, we perform our analysis
at = 20 km (one could equivalently perform the analysis on the other side
for similar results). Figure 4.21 shows this value plotted every four tidal peri-
ods, starting from when we see the instability first seriously begin its growth,
around 20 tidal periods, until about 60 tidal periods, when the instability is
large and visible.

Looking at the plots in Figure 4.21 of U at this horizontal location, it is
apparent that an instability is indeed growing. Over time, though the inter-
nal waves send energy upward, an instability begins creeping down the water
column from near the surface. That it appears to be generated between z = 0
m and z = —200 m coincides with the region of lowered effective Coriolis fre-
quency, as we can see in the third plot in Figure 4.12. We next seek to confirm
the frequency/frequencies present along this vertical slice, and in particular
want to do so at specific points in the horizontal. By taking spectra at specific
points (x, z) like this, we can confirm exactly which frequencies are passing
through that point over time.

To begin, as a control, we want to examine the power spectrum at a point
(x, z) of a stable simulation wherein PSI (or the possibility thereof) was seem-
ingly not observed. To create this control, we take the simulation presented
in our case study, but run it with one-third of the maximum tidal current
strength (0.01 m/s as opposed to 0.03 m/s). Recall from Section 2.2.1 that
the components of velocity for our internal waves are on the same order as
the amplitude of said waves, By decreasing the maximum tidal current am-
plitude, not only do we deal with smaller velocity gradients, but also, if we
consider that PSI waves must grow from daughter waves of the original tides,
we produce perturbation waves of smaller amplitudes, which will take a longer
time to grow. This helps reduce the chance of seeing it form (or at least delay
it sufficiently), while still maintaining the stability of the underlying back-
ground current. For the figure for this special example case, we will use the
abbreviation “CSNoPSI”, for “case study, no PSI”.

The resulting power spectrum density plot is presented in Figure 4.22,
along with a plot of the current profile at the tidal period at the end of the
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Figure 4.17: Top-left: A plot of the absolute value of the instability criterion
for our modified case study with the horizontal amplitude factor and horizontal
density perturbation length increased by 5% (CSP5%). The instability crite-
rion, or I1..;; on the plot, is shown as a function of x and z, with the colourbar
showing its value (units of s7). Note the lack of a dark line - there are no
zeroes, hence no instabilities. Top-right: A map of the value of the square of
effective Coriolis frequency, fZ;;. The colourbar shows its magnitude, in s~>.
The purple line denotes the critical value of fff - Middle: The initial density
profile for this case. The colourbar shows the magnitude of the density D,
which is dimensionless. Bottom-left: A plot of the initial background current
at the surface for this case. The red line shows the velocity at the surface, V,
in units of m/s. Bottom-right: A plot of the initial background current V' for
this case. Note that V here is shown as a function of z and z (both in km),
while the colourbar shows its value (in m/s).shows the velocity, V, in units of
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Figure 4.18: Plots of the x-component of the baroclinic current U for our mod-
ified case study with the horizontal amplitude factor and horizontal density
perturbation length increased by 5% (CSP5%). Note that U here is shown as
a function of z and z (both in km), while the colourbar shows its value (in
m/s). Respectively, these plots show U at 10, 20, 30, 40, 50, 60, 70, and 80
tidal periods. White gaps in the middle of coloured zones are regions where
the magnitude of the current exceeds the limits of the colourbar.
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Figure 4.19: Top-left: A plot of the absolute value of the instability criterion
for our modified case study with the horizontal amplitude factor and horizontal
density perturbation length decreased by 5% (CSM5%). The instability crite-
rion, or I1..;; on the plot, is shown as a function of x and z, with the colourbar
showing its value (units of s7). Note the lack of a dark line - there are no
zeroes, hence no instabilities. Top-right: A map of the value of the square of
effective Coriolis frequency, fZ;;. The colourbar shows its magnitude, in s~2.
The purple line denotes the critical value of fff - Middle: The initial density
profile for this case. The colourbar shows the magnitude of the density D,
which is dimensionless. Bottom-left: A plot of the initial background current
at the surface for this case. The red line shows the velocity at the surface, V,
in units of m/s. Bottom-right: A plot of the initial background current V' for
this case. Note that V here is shown as a function of z and z (both in km),
while the colourbar shows its value (in m/s).shows the velocity, V, in units of
m/s.
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Figure 4.20: Plots of the x-component of the baroclinic current U for our mod-
ified case study with the horizontal amplitude factor and horizontal density
perturbation length decreased by 5% (CSM5%). Note that U here is shown
as a function of x and z (both in km), while the colourbar shows its value (in
m/s). Respectively, these plots show U at 10, 20, 30, 40, 50, 60, 70, and 80
tidal periods. White gaps in the middle of coloured zones are regions where
the magnitude of the current exceeds the limits of the colourbar.
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spectral measurement (60 K;). Note that power spectral density plots were
created using periodogram in Python’s scipy module with no windowing and
a scaling by 27 to scale the spectra after transforms. Looking at the current
profile in Figure 4.22, especially in comparison with the 60 tidal period plot
in Figure 4.13, we see none of the effects that we could possibly attribute to
PSI in this case. There does not seem to be any shaping of the internal wave
beams by instability, particularly in the region wherein the effective Coriolis
frequency would be lowered (refer to 4.12; the regions wherein f. ;s dips below
the critical value are the same here). Looking at the power spectral density
plot, we see contributions at around one-third and two-thirds of the K; tidal
frequency, and what appear to be contributions at the (% + n)wg, harmonics
(1.5wk,, 2.5wk, , ...), but these contributions are over 5 orders of magnitude less
than the primary contribution at the tidal frequency at their highest. Even
compared to the peaks at 2wk, and 3wy, (which are present since internal
wave beams are generated at all harmonics by linear theory), these peaks are
still multiple orders of magnitude smaller. Such a result tells us that though
it would not be impossible for PSI to be present in this case, given that we
are already 60 tidal periods into the simulation, its contribution would be
overwhelmingly minuscule compared to the tidal frequency and its harmonics.
So, effectively, we can assume that we have a case without PSI here.

With the control out of the way and ready for comparison, we can now
look at power spectral density plots for our case study proper. To this end,
we present plots in two different capacities. The first plot we look at is Figure
4.23, wherein we have presented the power spectral density for the entirety of
the run time of our case study (80 K tidal periods). To more thoroughly study
the development of patterns within the spectra, in 4.24, we present the power
spectral density of our case study broken down into 20 K; tidal period-long
pieces.

As was the case with our “No PSI” case, we have strong contributions at
the tidal frequency and its harmonics, which is to be expected of internal waves
generated by internal tides flowing over a ridge. However, this time, we see a
marked contribution at 0.5K7, as well as the (34+n)wg, frequencies. Indeed, the
contribution at 0.5K; is within two orders of magnitude of the contribution
at the tidal frequency, the contribution at 1.5K; is within three orders of
magnitude of the primary contribution at the tidal frequency, and higher (% +
n)wg, frequencies provide larger contributions than the higher-order harmonics
of the tidal frequency. We also see a significantly larger contribution at the
zero frequency, around three-to-four orders of magnitude higher than in Figure
4.22 (though this is likely just a result of having a non-periodic time-series with
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Figure 4.21: Plots of the x-component of the baroclinic current U for our case
study (CS) as a function of z at the value x = 20 km. The green line marks
off a baseline of U = 0, while the red line shows the magnitude of U, in m/s.
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Figure 4.22: Top: A plot of the x-component of the baroclinic current U for
our modified case study created to have no visible effects of PSI (CSNoPSI).
This case was run over the Gaussian bathymetry with a maximum current
strength of 0.01 m/s, but is otherwise the same as the case study. Note that U
here is shown as a function of z and z (both in km), while the colourbar shows
its value (in m/s). This plot was taken after 60 tidal periods had elapsed.
Bottom: A power spectral density plot for our “no PSI” case. The power
spectral density is shown as the magnitude of the spectrum (in m?/s) at each
frequency by ratio with the K tidal frequency. This plot was taken from
extracting U as a time series at (z,z) = (20 km, —450 m) from 0 to 60 tidal
periods.
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a non-zero mean, and this being more visible with our more complex case).
More importantly, that we see contributions at the (% + n)wg, frequencies
likely indicates the changing effective Coriolis frequency and the induction of
PSI that we have been searching for. Indeed, as we discussed in Section 2,
PSI resonates most strongly at or around half of the tidal frequency and at
integer multiples thereof, so to see contributions of a relatively similar order of
magnitude (or sufficiently close) as the tidal frequency contributions strongly
implies that we are seeing a prominent contribution from the effects of PSI in
our waveforms. This time series was taken at the point x = 20 km, z = —400
m, which is in our region of lowered effective Coriolis frequency. Moreover, if
we look at the plot for 10 tidal periods in Figure 4.13, originally, we would
have had internal wave beams of tidal frequency passing through this point,
which would have only given rise to contributions from the tidal frequency and
its harmonics in the power spectral density plot. Hence, given that we have
achieved the (3 +n)wg, frequencies here, it seems likely that the effects of PSI
as induced by a lowered effective Coriolis frequency are indeed being observed
in this case.

What remains to consider is the progression of the development of these
PSI effects and to consider the noise present in Figure 4.23. To that end,
we turn our attention to Figure 4.24. Looking at the first two plots, or the
power spectral density plots for 0-20 and 10-30 tidal periods, respectively, we
see a waveform initially dominated by frequencies in integer multiples of the
tidal frequency. By 30 tidal periods, there may be small contributions at the
half-integer frequencies visible, but these are at least 5 orders of magnitude
lower than the central peak. Considering the 30 tidal period plot on Figure
4.13, wherein we saw the faint vestiges of a pattern emerging, this seems to
correlate with what we would expect. Moving onward, looking at the plots
for 20-40, 30-50, 40-60, and 50-70 tidal periods, we see the steady growth of
contributions at the (5 + n)wg, frequencies, until the point where the power
spectral density of the frequency 0.5K; is within an order of magnitude of the
tidal frequency by 70 tidal periods elapsed. One interesting point of note is the
growth of the contributions at the higher harmonics. For example, in the 20-40
plot, the contributions at the frequencies 2.5K; and 3.5K; measure at around
107! m?/s and 1072 m?/s, respectively, while by 70 tidal periods, these have
increased by an order of magnitude. What we seem to therefore be observing
is the steady growth of disturbance waves at both the 0.5wg, frequency and
the (% +n)wg, frequencies, which is what we would expect, given our previous
discussion of PSI. What remains to discuss is the seeming shrinking of some
of these large contributions in the 60-80 plot. This could be for a variety of
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Figure 4.23: A power spectral density plot for our case study (CS). The power
spectral density is shown as the magnitude of the spectrum at each frequency
by ratio with the K; tidal frequency. This plot was taken from extracting U
as a time series at (z, z) = (20 km, —450 m) from 0 to 80 tidal periods.

reasons - waves of these frequencies could be in the process of travelling away
from the ridge, reducing contributions at the point at which we took the time
series, energy could be dissipating with the breaking of waves over time, or
indeed, other factors could be at play. Regardless, this does not change what
we have seen - the subharmonic peaks are indeed visible throughout these
pieces, and we see the clear development of a subharmonic resonance at the
(3 + n)wk, frequencies.
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As one final point of discussion, in Section 4.3.1, we considered the strange
phenomenon of the effects we attribute to PSI creeping beyond the region in
which the effective Coriolis frequency is lowered. Using our spectral analysis
as before, we are equipped to more deeply consider the nature of these odd
patterns. We will consider two examples for observation. Firstly, let us con-
sider the elongated beam that develops between approximately x = 25 km to
x =45 km and z = —750 m to z = —300 m in the plots for 50 tidal periods
and onward in our case study (see Figures 4.13 and 4.14). We present a se-
ries of spectra across various (z, z)-points along this beam in Figures 4.25 and
4.26, with points starting at (z, z) = (25 km, —650 m) and increasing by bkm
intervals in the horizontal while decreasing by 50m intervals in the vertical
between each row of plots. We see that the 0 to 40 tidal period plots differ to
some extent across all of the various points, which is what would be expected,
as these points would be in different regions of where the initial internal wave
beams would be travelling. More interestingly, however, we see that for all
of the 40 to 80 tidal period plots (and by extension, the 0 to 80 tidal period
plot), we have predominant effects visible at half the tidal frequency and its
harmonics. In particular, in the 40 to 80 tidal period plot at (40 km,—500
m) in Figure 4.26, the contribution at around (or just slightly above) half the
tidal frequency is just over an order of magnitude lower than the contribution
at the tidal frequency. This would suggest PSI’s occurrence in this beam-like
structure we have been studying, yet we are outside the range wherein the
inertial frequency would have been lowered enough for this to happen.

To further examine this curious case, we zoom in on a single plot at (30
km, —600 m) between Owg, and wg, and provide lines to mark off every tenth
of the tidal frequency. This is visible in Figure 4.27. Note that at this point,
the square of the effecive Coriolis frequency is 1.657 x 1072 s72, or equivalently,
% ~ 0.558. In this Figure, we see a split peak approximately equally spaced
on either side of 0.5wg,. As previously mentioned in Sections 1.3 and 2.3, PSI
is not limited to occurring strictly at exactly half of the tidal frequency; it can
occur at or near it, so long as the two waves produced add up to the initial
frequency in the end. This seems to be what is observed in 4.27 - we have two
frequencies near half the tidal frequency that approximately add together to
total the tidal frequency in value.

Let us consider the situation occurring around the peak of the ridge as well.
Figure 4.28 shows power spectral density plots at the point (5 km, —900 m),
just above and to the right of the ridge. As before, we seem to see spikes at the
(%—f—n)w K, frequencies, in this case even exceeding the contributions at the tidal
frequency and its harmonics at each respective half interval (0.5wg,, 1.5w,,
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Figure 4.24: Plots of power spectral density for our case study (CS), broken
down into 20 tidal period long intervals. The power spectral density is shown
as the magnitude of the spectrum at each frequency (in m?/s) by ratio with
the K, tidal frequency. These plot were created by extracting U as a time
series at (z,2) = (20 km, —450 m) from 0 to 20, 10 to 30, 20 to 40, 30 to 50,
40 to 60, 50 to 70, and 60 to 80 tidal periods, respectively.
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...). However, before this is attributed to PSI, we should look more closely
at what is happening over the ridge. To this end, density plots are presented
in Figure 4.29, starting at 10 tidal periods and extending to 80 tidal periods.
Over top of the ridge, we see the initially relatively flat density contours begin
twisting and breaking, until they have been consumed by turbulent motions
by 80 tidal periods. At our point in question in the spectra plots, we would be
seeing significant breaking occurring over time, which means that the weakly
nonlinear theory of PSI does not apply here. While it is not impossible for
PSI to be occurring here (more on that in the next paragraph), the theory we
have established thus far could not be properly used to analyze it, nor does it
rule out other factors that could be causing the generation of waves of these
non-integer frequencies instead.

Taken together, these plots suggest we have PSI occurring in regions where
we are beyond the critical value for its development. Why then might this be
occurring? One option is that these are not freely propagating waves. In such
a case, we are seeing trapped waves generated by PSI in the region of lowered
fers moving outwards. Such a theory would be corroborated by the relative
consistency of the 40 to 80 tidal period plots and the 0 to 80 tidal period
plots as we move along the examined beam. The waves would simply grow in
amplitude and slowly spread outward over time as move waves generated in
the region of lowered f,s; were sent to join them. Another alternative possible
here is that our estimated critical value for the effective Coriolis frequency
does not accurately reflect its actual value in the simulations. In this thesis, we
have used the approximation by Kunze in his 1985 paper to define the effective
Coriolis frequency. It is this definition that we have applied to our calculations
thus far. However, such an approximation is not the complete effective Coriolis
frequency, as is explained in the appendices of Kunze’s paper [11]. Should we
be neglecting terms in the full expansion of the effective Coriolis frequency
that may not be negligible in our cases (or perhaps other terms in the equation
Kunze uses for its derivation), it could be possible that we are over- or under-
estimating the critical value of the effective Coriolis frequency, and thus the
region in which its alteration allows for PSI may be more expansive than we
think. Such a situation could allow for the generation of PSI along this beam or
above the ridge (though again, wave breaking makes it unlikely that traditional
PSI theory could apply in above the ridge’s case) as it would be in the basin-
like region in the fff 7 blot in Figure 4.12. In such a case, nothing strange would
be occurring here at all. Given that our selected spot over the ridge and the
area along our beam seem to have approximately the same magnitude of ezf s
in the relevant plot in Figure 4.12, and given that their respective spectra
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are of similar orders of magnitude, should PSI indeed somehow be possible in
these regions, the results would seem to properly match expectations. Either
way, examination of these and other strange regions like them could help shed
light into the reason for their occurrence and possibly help explain more about
wave phenomena like these in these types of simulations.
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Figure 4.25: Plots of power spectral density in our case study (CS) along our
studied beam between x = 20 km to z = 45 km and z = —750 m to z = —300
m. Specifically, the top row is spectra taken at (z,z) = (25 km, —650 m),
the middle is at (30 km, —600 m), and the bottom row is at (35 km, —550 m)
The power spectral density is shown as the magnitude of the spectrum at each
frequency (in m?/s) by ratio with the K tidal frequency. From left to right in
each row, these spectral density plots were taken from 0 to 40 tidal periods,
40 to 80 tidal periods, and 0 to 80 tidal periods.
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Figure 4.26: Plots of power spectral density in our case study (CS) along our
studied beam between x = 20 km to z = 45 km and z = —750 m to z = —300
m. Specifically, the top row is spectra taken at (x,z) = (40 km, —500 m) and
the middle is at (45 km, —450 m). The power spectral density is shown as the
magnitude of the spectrum at each frequency (in m?/s) by ratio with the K
tidal frequency. From left to right in each row, these spectral density plots
were taken from 0 to 40 tidal periods, 40 to 80 tidal periods, and 0 to 80 tidal
periods.
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Figure 4.27: A plot of power spectral density in our case study (CS) along our
studied beam between x = 20 km to x = 45 km and z = —750 m to z = —300
m. This plot is a zoomed-in version of the plot for (z,z) = (30 km, —600 m)
between 40 and 80 tidal periods, with lines added to show every tenth of the
tidal frequency between Owg, and wg,. The power spectral density is shown
as the magnitude of the spectrum at each frequency (in m?/s) by ratio with
the K tidal frequency.
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Figure 4.28: Plots of power spectral density in our case study (CS) near the
top of our ridge. Specifically, these spectra were taken at (z, z) = (5 km, —900
m). The power spectral density is shown as the magnitude of the spectrum at
each frequency (in m?/s) by ratio with the K; tidal frequency. From left to
right, these spectral density plots were taken from 0 to 40 tidal periods, 40 to
80 tidal periods, and 0 to 80 tidal periods.
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Figure 4.29: A collection of density profiles for our case study (CS), zoomed in
on the top of the ridge. The colourbar shows the magnitude of the density D,
which is dimensionless. From left-to-right, top-to-bottom, these plots show the
density profiles at 10, 20, 30, 40, 50, 60, 70, and 80 tidal periods, respectively.
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Chapter 5

Conclusion

In this thesis, we have worked to create a simulation in which the effects of
parametric subharmonic instability could be observed in regions wherein the
effective Coriolis frequency had been lowered, thus allowing for the develop-
ment of resonant effects in locations where their generation would otherwise
not be possible. After exploring the theory behind internal waves, PSI, and
near-inertial waves and the effective Coriolis frequency, using a second-order,
finite projection method-based model in 2D (with f-plane approximation), we
simulated tidal flow over an isolated ridge with a steady along-ridge back-
ground current. Criteria were then developed for testing stability and iterating
on parameters in the creation of test currents. Multiple different currents were
created and examined, through the generation of different background velocity
fields via the integration of density-field inputs via the thermal wind relation.
Of these, one density structure in particular - a difference of hyperbolic tan-
gent functions - was examined in greater depth. Through careful management
of the shaping of the bathymetry, parameters of the current, and the tidal
strength, a simulation was created wherein effects that could reasonably be
attributed to PSI and the (% + n)wg, harmonics where observed to occur in
magnitudes between two orders of magnitude below to even exceeding that of
the primary tidal frequency and its harmonics.

Understanding the transfer of energy in Earth’s oceans is a vital compo-
nent in solving a great variety of problems in a broad spectrum of disciplines,
from mapping oceanic mixing, studying oceanic heating/cooling, modeling the
shaping of continental shelves, and visualizing the distribution of nutrients es-
sential for marine life, among many others. Internal wave interactions with
seafloor topography make up almost half of the energy required for global over-
turning and circulation. PSI accounts for a significant portion of energy loss in
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low-mode internal tides, particularly at critical latitudes. The intermittency of
near-inertial internal waves makes up almost half of the internal waveband’s
energy. These factors all individually play vital roles in shaping the profile
of energy and its transference in Earth’s oceans - even more so when their
interplay is considered. Indeed, as the effects of background vorticity shift
the allowable regions for PSI, for example, we are capable of seeing energy
transfer in regions where it would be otherwise considered impossible (or, sim-
ilarly, with opposite vorticity, the exclusion of PSI in regions where it would
otherwise be able to occur). That we are capable of viewing the effects of
PSI in regions like these allows us to further develop our understanding of the
movement of energy through these regions, and the consequences in which this
may or may not result. By creating a simulation in which this phenomenon is
visible, we aim to clearly illustrate its possibility while providing a point from
which further examination of the interplay between these facets of internal
waves may be continued, both within the framework of fluid dynamics and
beyond.

Possible extensions of this work could include further examination of other
current types, different shaping of ridges or other seafloor topographies, ex-
ploring further lengthened simulations for the observation of longer- and wider-
scale effects, and transitioning the work into 3D, allowing for the observation of
turbulence and its effects around the ridge. Further investigation with obser-
vational data could also be used to explore, refine, and verify the simulations
presented here. Near-inertial internal waves and the instabilities they expe-
rience, such as PSI, play significant roles in the global oceanic mixing and
circulation. Should the effects of a lowered inertial frequency cause the devel-
opment of PSI in regions otherwise not possible, the areas in which PSI and
its effects - and the resulting transfer of energy - are visible expand. Such phe-
nomena could explain the movement of energy and circulation of ocean waters
in capacities that the two phenomena alone are incapable of completely captur-
ing. Therefore, the development and expansion of simulations like these could
play an integral role in helping to develop our understanding of the transfer
of energy in Earth’s oceans, and understanding near-inertial wave phenomena
on a larger scale.
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90T

Case Name

No Current (NC)

Unstable 1 + tanh (U1PT)

Unstable Difference of Tanh Functions (UDT)
1+ tanh (1PT)

sech (S)

Difference of Tanh Functions (DT)

Case Study (CS)

Case Study 7.5 km Top Length (CS7.5kmTop)
Case Study 15 km Top Length (CS15kmTop)
Case Study 5% Parameter Increase (CSP5%)
Case Study 5% Parameter Decrease (CSM5%)
Case Study with No Visible PSI (CSNoPSI)

Section Background Density Structure —3%p(z, 2)

4.1.1
4.1.2
4.1.2
4.2.1
4.2.2
4.2.3
4.3.1
4.3.2
4.3.2
4.3.2
4.3.2
4.3.3

z

A[1 + tanh(Z29)][1 + tanh(253%00))2

400[1 + tanh (=, 0)]{[tanh(””'5§’é)§30) — tanh(*555°)1}*
400[1 + tanh(ZE50)][1 + tanh(TTH)]?

400[1 + tanh( =400 yjgocn? (210000

800[1 + tanh(=£20)] [tanh (££25900) — tanh(2730000))2
800[1 + tanh(=£2%)][tanh(£E2500) — tanh(2730000))2
800[1 + tanh(=5%)] [tanh (=5375" ) — tanh(*7350" )]
800[1 + tanh(=£2%)][tanh (££2500) — tanh(£730000))2
840.51 + tanh(=£50)] [tanh (£E0500) — tanh (£:20000)]2
760.5[1 + tanh(=520)] [tanh (Z52000) — tanh(Z530000)]

SO0[1 + tanh(22759)[tanh (=520 a2y

Table A.1: A list of all the simulations present in Chapter 4, organized by the name and abbreviation of the test
case, the relevant section in the text in which it appears, and the background density structure (simplified for
brevity). Cases are presented in the order in which they appear in the text. Note that some cases have identical
background structures, and will differ by parameters laid out in their titles and described in the relevant text

sections.
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