Dash+: Extending Alloy with
Replicated Processes for Modelling
Transition Systems

by

Tamjid Hossain

A thesis
presented to the University of Waterloo
in fulfillment of the
thesis requirement for the degree of
Master of Mathematics
in
Computer Science

Waterloo, Ontario, Canada, 2022

(© Tamjid Hossain 2022

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

11

Abstract

Modelling systems abstractly shows great promise to uncover bugs early in system de-
velopment. The formal language Alloy provides the means of writing constraints abstractly
but lacks explicit constructs for describing transition systems. Extensions to Alloy, such
as Electrum, DynAlloy, and Dash, provide such constructs. However, still missing are lan-
guage constructs to describe easily multiple processes with the same behavior (replicated
processes) running in parallel as is found in languages such as PlusCal and Promela.

We propose extensions to Dash for replicated processes. The result is Dash+: an Alloy
language extension for describing transition systems that include both concurrent and
hierarchical states and replicated concurrent processes. The processes can communicate
via buffers or exchange information through variables and events. The key contributions
of our novel approach are:

1) Replicated and non-replicated components can be nested arbitrarily at any level in
the state hierarchy

2) Replicated components can exchange information directly without resorting to global
variables as is the case in PlusCal and Promela

3) A modeller can abstractly model the topology of the processes (ring, list, etc.)
through constraints on the set indexing the processes

4) Buffers can be used to facilitate communication between replicated components

Dash+ stays consistent with the semantics of Dash and uses the notion of big steps
and small steps to describe changes in the system. The semantics are implemented in a
translation to Alloy in a way that accommodates the following model checking options:
traces-based model checking, transitive closure-based model checking (TCMC), and Elec-
trum.

Our implementation is fully integrated into the Alloy Analyzer. This thesis presents
case studies to demonstrate the features of Dash+ in modelling systems with concurrent
processes and the benefits that Dash+ offers over existing languages. We check for proper-
ties in each of the models in the case studies to demonstrate how different model checking
options can be used.

111

Acknowledgements

I would like to thank my supervisor, Prof. Nancy A. Day for her constant support
throughout my Master’s program. We completed this thesis throughout the pandemic,
and Prof. Nancy A. Day’s constant support, caring nature, and endless patience greatly
assisted in helping complete this thesis. I will forever be thankful and grateful to her for
her endless support.

I would also like to thank my second readers, Prof. Richard Trefler and Prof. Derek
Rayside for providing insightful comments in a short period of time.

I would also like to thank my colleagues Elias Eid, Amin Bandali, Aditya Shankar
Narayanan, and the original creator of Dash, Jose Serna with whom I have engaged in
fruitful conversations with.

Finally, I would like to thank my family for constantly supporting me throughout my
life and trying their best to help me achieve my dreams. None of this would be possible
had it not been for them rooting for me every step of the way.

v

Dedication

I would like to dedicate my work to my parents, my brother, and my close friends Asif,
Hadi, Rehan, etc. They mean the world to me, and their endless encouragement has kept
me going. My mom has sacrificed her entire career to raise me and my brother in her own
hands, and this work is a testament to her sacrifice. I hope I have made you proud, ammu.

Table of Contents

List of Figures
List of Tables

1 Introduction

ix

xii

1.1 Contributions
1.2 Validation L,
1.3 Thesis Outline s,

2 Background

2.1 Alloy
2.2 Dash
2.3 Summary

3 Dash+ Syntax and Semantics

3.1 Replicated AND-States
3.2 Dynamic Variables
3.3 Events
3.4 Buffers
3.5 Initial Constraints
3.6 Frame Problem
3.7 Well-Formedness
3.8 Summary . .o ...

vi

s W =

=

4 Translation to Alloy

4.1

4.2

4.3
4.4

Background: Translating Dash to Alloy
4.1.1 DashtoCoreDash
4.1.2 Core Dashto Alloy
Translating Replicated AND-States
4.2.1 Levels in a Dash+ Model
4.2.2 State Hierarchy oo
4.2.3 Weaving Parameterization into the Transition Predicates
Buffers
SUMMATY o o o e e

5 Model Checking in Dash+

5.1
5.2
2.3
5.4

Model Checking using the Traces method in Alloy
Transitive Closure Based Model Checking (TCMC)
Electrumo

SUMMATY o o o e e e e

6 Case Studies

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

Distributed Spanning Tree Algorithm
Leader Election Protocol o
The Bit Counter
Elevator
Carousel
Heating System

SUMMATY o o o o e e e e

vii

25
25
25
27
31
34
34
45
48
o1

52
53
25
57
29

7 Related Work 90

7.1 Languages with Constructs for Processes 90
7.2 Declarative Languages and Languages Based on Alloy 91
7.3 Languages with State Hierarchy 92
8 Conclusion 93
8.1 Future Work 94
References 95
APPENDICES 100
A Chord Model 101
B Distributed Spanning Tree Model 108

C Heating System Model 110

viil

List of Figures

2.1
2.2
2.3
24
2.5
2.6

3.1
3.2
3.3
3.4
3.5
3.6
3.7

4.1
4.2
4.3

4.4
4.5

Signatures in Alloy Lo 6
Fields in a Signature 7
Fact in Alloy 8
Predicates and Functions in Alloy 8
Example Dash Model 10
Example Initial Constraints in Dash 11
An Example of a Dash+ model 16
Graphical Hlustration of Figure 3.1 17
Mappings from an Identifier Element to Variables 19
A Parameterized Bit Counter 20
Declaring Buffers in Dash+ 21
An Initial Constraint 22
Changing a Variable in More than One Replicated Component 23
Translation from Dash to CoreDash 26
Example Snapshot Signature L. 28
Signatures for Representing State Hierarchy, Transitions and Events in Alloy

for Figure 4.1o 28
Overview of the Transition Predicates 29
Creating Identical Copies of an AND-state 31

X

4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16

5.1
2.2
2.3
0.4
2.5
2.6
2.7

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

Translating to CoreDash+ with Parameterization 32

Example Snapshot Signature for a Dash+ Model with a Replicated AND-state 33

Level of Control States 35
Replicated Component within a Replicated Component 38
Tuples for conf Relations, . 39
Visualization of the Dash+ model in Figure 4.9 40
Replicated AND-state within an OR state 42
Example taken Setso 43
Weaving in Parameterization 0oL 47
A Dash+ Model with Buffers 49
Translation of Buffers o0 50
Connecting a Dash+ model to the Ordering Module 54
Traces Properties 54
Connecting a Dash+ model to the CTL module 55
TCMC Properties 56
Snippet of a Dash+ model translated to Alloy (left) and Electrum (right) . 58
Creating a Trace in Electrum 58
Electrum Properties 59
An Ideal Chord Ring Structure [48] 61
Correct Version of Chord as Modelled in Alloy by Zave [48] 62
Chord in Dash+ 63
Properties of Chord in Alloy 64
Distributed Spanning Tree Algorithm in Dash+ 68
Sending a Message to a Sister Node 69
Checking for Cycles in the Distributed Spanning Tree 70
Leader Election Protocol in Dash+ 72

6.9 Leader Election Properties for the Traces method 73

6.10 Bit Counter model in Dash (left) and Dash+ (right) 75
6.11 Sending an Event to a Sister Component 76
6.12 Elevator in Dash+ 78
6.13 Sending a Call to an Elevator 79
6.14 A Basic Version of Carousel [106] 81
6.15 Carousel in Dash+ o 83
6.16 Heating System in Dash—+ 87

X1

List of Tables

6.1
6.2

6.3

6.4
6.5

6.6

6.7

Time Taken to Check Chord Properties (s = seconds)

Time Taken to Check Spanning Tree Properties (ms = milliseconds, n/a =
not applicable)

Time Taken to Check Leader Election Properties (ms = milliseconds, n/a
=mnot applicable)

Time Taken to Check Bit Counter Properties (ms = milliseconds)

Time Taken to Check Elevator Properties (ms = milliseconds, n/a = not
applicable)

Time Taken to Check Carousel Properties (ms = milliseconds, n/a = not
applicable, PL, = participant leader, Coord = coordinator)

Time Taken to Check Heating System Properties (ms = milliseconds, n/a
=mnot applicable)

xii

Chapter 1

Introduction

As the world becomes intertwined with technology, it is critical to have hardware and
software systems that are safe and reliable. This fact is of paramount importance with
safety-critical software systems where failure is not acceptable. One method of trying to
assure that a software system will function correctly is through the use of a validation tech-
nique called model checking [13]. Temporal logic model checking aims to use models that
describe a complex system and ensure that vulnerabilities and design flaws are discovered
early in the development process.

A model is an abstraction of a system that is comprised of its essential elements. It
describes the features that are critical in ensuring correct functionality while ignoring ir-
relevant details. A model can be defined to provide a human-understandable description
of a system or be presented in a form that can be mechanically analyzed. This step is
taken during the requirements phase of the software development cycle and assists soft-
ware architects in discovering costly design flaws that would have transitioned into the
implementation phase [32].

A model can be constructed using formal modelling languages such as Alloy [27] [20],
Promela [24], TLA+ [34], etc. Models can be divided into two sub-categories: structural
and behavioral. A structural model describes the relations between elements in a model,
and a behavioral model describes how a system changes over time.

Alloy is a declarative language for describing models. It uses sets, relations, functions,
predicates, and constraints between relations to describe abstract models. Given the ab-
stract nature of an Alloy model, it is useful for receiving feedback early in the development
process. The feedback is received through the Alloy Analyzer which translates Alloy con-
straints into Boolean constraints and solves them using SAT solvers. However, Alloy lacks

explicit constructs for defining behavioral models but this issue has been addressed using
the Dash declarative language.

Dash [11] is an extension of Alloy with explicit constructs for modelling transition sys-
tems and uses a control state hierarchy inspired by Statecharts [22]. Statecharts is a control-
oriented behavioral modelling language that can describe reactive systems. Control-oriented
models describe complex behaviors for changes in a system through transitions. A reactive
system is event-driven and reacts to internal or external stimuli. In Dash, modelers can
define explicitly named control states arranged in a hierarchy with control states being
related using transitions. The guards and actions of a transition are described using Alloy
expressions. This gives Dash the ability to create reactive systems while supporting rich
data types for more complex operations. Once a Dash model has been designed, the be-
havioral properties of the model can be checked using the Alloy Analyzer after it has been
converted to an Alloy model.

One feature that Dash lacks is process constructs and communication between repli-
cated processes. This feature is supported by languages such as PlusCal [35] and Promela.
PlusCal is an extension of the TLA+ [34] modelling language. PlusCal enables the creation
of multiple replicated processes that communicate with each other using buffers. Similarly,
Promela can be used to define models with replicated processes that communicate through
both synchronous and asynchronous buffers. Zave [18] compared the use of Alloy and
Promela for modelling the CHORD protocol. She noted that safety properties are easier
to write in Alloy (since CHORD properties are graph properties) and that the startup time
for Alloy is less than Promela (since a modeller will need to learn C to write properties in
Promela). Dash+ seeks to be a language that has features of both Alloy and Promela for
modelling protocols and distributed systems.

Our work aims to extend Dash with constructs for creating processes that can commu-
nicate with each other. We present Dash+, an extension to Dash that allows modellers
to model reactive systems with replicated processes that can communicate by accessing
variables in sister processes or using by using buffers. With the formal process construct in
Dash+, a modeller can describe behavior from one process’ point of view rather than taking
a global view of describing the behavior of all processes together as is done in modelling
CHORD in Alloy [17]. In Dash+, we can create an arbitrary nesting of replicated and
non-replicated processes that run concurrently. This feature is not currently supported by
any formal modelling languages with processes constructs to our knowledge.

The importance of modelling languages with process constructs can be seen in the
case studies for PlusCal and Promela (e.g [39] [30] [14]). They are essential in modelling
distributed systems, protocols, air-traffic control systems, etc. in which multiple actors

communicate with each other and run concurrently together. An example of a model with
multiple actors communicating is a client-receiver model with a set of clients and receivers
running concurrently (and communicating with each other). Such a model is a parameter-
ized model since it is parameterized by the number of copies of the process. In Dash+, the
notion of replicated processes is achieved through parameterizing concurrent states. The
modeller can decide on an upper bound for the number of copies each replicated concur-
rent state. This has a beneficial side effect of enabling a replicated process to communicate
with a sister process by referring to it by using a parameter and using constraints on the
parameter set to arrange the processes in various topologies (ring, list, etc.).

Communication between processes is made easier through the use of buffers. In Dash+,
the size of a buffer can be specified in a command. Each buffer in the model can have its
own unique size. Replicated processes can access the buffer of a sister process and add or
remove items in the buffer as defined by the modeler.

We have integrated Dash+ into the Alloy Analyzer (version 6). A modeller can define
a Dash+ model within the Alloy Analyzer, have it internally converted to an Alloy model,
and display any instances or counterexamples. Modellers may also choose from one of
three model checking options: traces-based model checking, transitive-closure-based model
checking (TCMC), or Electrum.

1.1 Contributions

The contribution of this thesis is:

e Dash+ has constructs for both replicated and non-replicated concurrent components.

e Replicated and non-replicated concurrent processes in Dash+ can be arbitrarily
nested.

e In Dash+, the arrangements of processes in a topology can be specified independently
of the process using constraints on the parameter of the process.

e Dash+ has constructs for concurrent processes to communicate asynchronously using
buffers. Sister components in Dash+ can directly communicate with each other by
accessing variables.

e Dash+ expands on the model checking options in Dash by providing three model
checking options: traces-based model checking, transitive-closure based model check-
ing (TCMC) and Electrum.

e Dash+ has been integrated with the Alloy Analyzer.

e We have conducted case studies to demonstrate the features in the Dash+.

The fundamentals of the syntax and semantics of Dash+ have been published in [25].

1.2 Validation

We evaluate Dash+ using case studies that exploit features of Dash+ to demonstrate its
ability to model transition systems with processes running concurrently. The case studies
demonstrate the following features in Dash—+:

e Replicated and non-replicated components running concurrently

e Direct communication between sister components in a replicated component using
variables and events

e Communication through the use of buffers

e Arbitrary nesting of replicated and non-replicated components

e Ease of writing graph properties in models that use a graph structure
e Arranging processes in different structures such as ring, tree, etc.

e Model checking each of the models with the model checking options available in
Dash+

1.3 Thesis Outline

Chapter 2 provides background on the Alloy language and the syntax and semantics of
Dash. Chapter 3 presents the syntax and semantics of Dash+ and how a model with
replicated AND-states can be created in Dash+. Chapter 4 describes the translation of a
Dash+ model to Alloy and focuses on the translation of the state hierarchy and buffers.
Chapter 5 presents how each temporal logic model checking method is connected to a
Dash+ model. Chapter 6 presents case studies that demonstrate the features of Dash+
and outlines how each case study demonstrates specific features in Dash+. Chapter 7

compares Dash+ with closely related modelling languages and the advantages that Dash-+
offers over them. Chapter 8 provides the conclusion and points to any future work for
improving Dash+.

Chapter 2

Background

This chapter presents a brief background on Alloy, and an extension to Alloy called Dash.
We will briefly discuss the syntax and semantics of Dash.

2.1 Alloy

Alloy is a modeling language based on relational logic that consists of sets, relations and
transitive closure [26]. All structures in Alloy are based on relations, and a set in Alloy
is considered a unary relation. Sets are declared using signatures and each set consists of
atoms (or elements) that are indivisible, immutable and uninterpreted. The sets can be
arranged in a hierarchical manner through subsets and subset extensions (mutually exclu-
sive subsets). We can additionally declare abstract signatures which only have elements
belonging to its extensions. Figure 2.1 shows an Alloy model with three signatures: A, B
and C.

1 sig A {} // set of atoms called A
2 sig B {}
3 sig C extends B {} // subset of B

Figure 2.1: Signatures in Alloy

A signature can be comprised of fields that declare relations. A relation is a structure
that relates atoms, and fields are declared with constraints that limit the multiplicity of the
relations. The multiplicity constraints that are available in Alloy are: lone, one, some
and set. A lone constraint means that a relation can map each domain element to one or
zero elements; a set constraint means that a relation can map each domain element to any
number of elements in a set; a one constraint means that a relation can map each domain
element to exactly one element; a some constraint means that a relation can map each
domain element to one or more elements. If a multiplicity constraint is not stated, then
a relation will be automatically specified as a singleton set (one multiplicity). In Figure
2.2, the signature D has two relations: £0 and f£1. The relation £0 is a mapping from an
element in the signature D to any number of elements in the signature A; the relation £1 is
a mapping from every element in the signature D to exactly one element in the signature
C.

1 sig D {

2 // Fields

3 fO0: set A

4 f1: one C

5 Ao

6 // Constraints
7}

Figure 2.2: Fields in a Signature

Constraints in Alloy are written as Alloy expressions and use constants and set operators
(union, intersection, etc.). These expressions either evaluate to a boolean value or result in
a relation. Constraints can be defined in an optional block within a signature declaration
or inside the body of a fact, predicate or function.

A fact consists of a collection of constraints that are always expected to hold (it should
always evaluate to true) and is declared using the fact keyword. A fact may have a unique
mnemonic name and any number of facts can be used in a model. Figure 2.3 shows a fact
named factOne declared in an Alloy model with a constraint specifying that the relation
f1 relates every element in set D in Figure 2.1 to one or more elements in the set C.

A predicate is a named set of constraints that takes in arguments. Since it is named,
we can reuse the constraints for different contexts. Predicates declared with arguments
must have instantiating expressions, and this gives it the versatility to be used in varying
contexts. A function provides a template for an expression that takes in arguments and a

1 // fact called factOne

2 fact factOne {

3 // Constraint

4 // For all elements in the set D, the relation f1 must have
one or more elements

5 all d: D | some d.f1

6 }

Figure 2.3: Fact in Alloy

declaration expression for the result. A function is declared using the fun keyword, and
a predicate is defined using the pred keyword. The predicate in Figure 2.4 takes in two
sets: a and b as arguments; the function in Figure 2.4 takes one argument and returns an
element from the set B (one B).

1 // predicate with two arguments ’a’ and ’b’

2 pred p [a: A, b: Bl {

3 // Constraints

4 }

5

6 // function with an argument ’a’

7 // The resulting expression is an element from the set B
8 fun f [a: Al : one B {

9 // Constraints

10 }

Figure 2.4: Predicates and Functions in Alloy

An Alloy model can be analyzed by checking an assertion or running a predicate. An
assertion is a constraint that is valid for all possible cases. A check command checks for
instances in which an assertion does not hold. If an assertion fails to hold for a particular
instance, then a counterexample is produced. The run command looks for instances that
satisfy the constraints in a predicate. It should be noted that the logic of Alloy is undecid-
able. We cannot state with complete certainty that an assertion is valid. Hence, the size
of instances considered is limited with a scope. The analyzer will check for every instance
that is only within the specified scope.

The Alloy language has various common packages of constraints called modules that
can be implemented into a model. For example, the commonly used ordering module can

be used on a signature in an Alloy model to arrange the elements in the signature in a
linear order.

2.2 Dash

Dash is an extension to Alloy for modelling transition systems [11]. It adds constructs
for transitions and named control states in a hierarchical and concurrent arrangement.
As in Statecharts [22], an AND state describes concurrent behaviour and an OR-state is
decomposed hierarchical behaviour. AND- and OR-states can be arbitrarily nested. An
AND-state is created using the conc state keyword. OR-states are created using the
state keyword. A default state is specified using the default keyword. AND- and
OR-states can include relations that change dynamically throughout the execution of the
model, which we call dynamic variables or just variables. Variables are declared as
relations with their respective multiplicity constraints. Events can be declared using the
event keyword within the body of an AND-state. They can be either an internal event
or an environmental event. Environmental events must be specified using the env event
keyword. Figure 2.5 has a Dash model with an AND-state C that has two variables (v0
and v1) and events (E0 and E1). C has a basic state S0 and an OR-state S1 with a nested
basic state S2.

A transition is created using the trans keyword. It can be named and has the following
construct:

1 trans <name> {

from <source_state>

on <trigger_event>

when <guard_condition>
goto <destination_state>
do <actions>

send <generated_event>

0 N O O WN

}

It includes the source (from) and destination (goto) states for the transition; events that
trigger a transition (on) and internal events generated by a transition (send); the guard
condition (when) and actions (do). The guard condition and actions are specified using
Alloy expressions. The Alloy expressions in a guard condition must be satisfied for a
transition to take place. Actions specify how the system (the variable values) will change
as a result of a transition. The value of a variable is referenced by adding a prime to

1 //AND-state named C
2 conc state C {
3 vO: lone A // variable

4 vl: one A

5

6 event EO // internal event

7 env event E1 // environmental event

8

9 default state SO { // default basic state for C
10 trans TO{ // transition

11 on E1

12 when one vO

13 do v1’ = vO

14 goto S1

15 send EO

16 }

17 }

18 state S1 { // OR-state

19 default state S2 {} // nested basic state
20 }

21 }

Figure 2.5: Example Dash Model

the variable’s name. Dash allows for some attributes of the transition to be omitted and
suitable defaults are chosen based on the transition’s textual location within the model
(i.e., when a transition is declared within a state, its default source control state is its
enclosing state).

Informally, the transition TO in Figure 2.5 can only take place when the system is the
state SO (on S0), the environment event E1 has been generated (on E1) and the variable
v0 is a mapping to a singleton set (when one VO0). These are the preconditions for the
transition. It is not necessary for us to specify the source state since this transition is
declared inside the state S0. Once the transition takes place, the value of the variable v1
is changed (do v1’ = v0). The AND-state C will transition to the state S1 (goto S1)
and will generate the internal event EO (send EO).

The initial constraints of the transition system can be described using the init key-
word. All the initial constraints are included in the body of an init statement using

10

Alloy expressions. Each AND-state can have initial constraints to describe the state of the
system upon initialization. The initial constraints in Figure 2.6 specify that the variable
v0 in the AND-state C should not contain any values; the variable v1 in the AND-state C
should contain exactly one value.

1 //AND-state named C

2 conc state C {

3 vO: lone A

4 vl: one A

5

6

7 init {

8 no vO0 // v0 should initially be an empty set
9 one vl // vl should initially be a singleton set
10 }

11}

Figure 2.6: Example Initial Constraints in Dash

The meaning of a Dash model is a next relation over snapshots. A snapshot includes
the set of current basic states called the active basic states, the set of transitions that have
been taken in a big step, the set of events that have been triggered and the current values
of variables. Dash has the notion of a big step that is composed of a series of small steps.
Dash has a notion of a big step such that multiple transitions can be taken in response to
environmental events. A small step in Dash consists of a transition being taken. Each
concurrent region takes at most one small step within a big step. A Dash model will take a
number of small steps until it is not possible to take any more small steps (or transitions)
in a big step. Once a system reaches the end of a big step, environmental events can be
generated and the system will enter a new big step. The environmental events persist
throughout the big step.

The semantics of Dash specify that every concurrent state can take at most one tran-
sition in a big step. Once a transition has been taken in a big step, the system can take
transitions that are orthogonal to the transitions that have been taken in a big. Two
transitions are orthogonal if they are declared in different concurrent regions. That is, an
AND-state cannot take a transition if it has already taken a transition in a big step or if
any nested AND-states have taken a transition in a big step.

A semantic choice in Dash dictates that any non-environmental variable retains its
value if it is not explicitly constrained in an action. This choice was made to mix the

11

common semantics of declarative languages with the common semantics of control-oriented
languages. In declarative languages such as Alloy, a variable that is not constrained in an
action is allowed to change its value non-deterministically; a variable in control-oriented
languages usually retains its values from the previous snapshot if it is unchanged in an
action.

We will discuss the semantics of Dash embodied in their translation to Alloy in Chapter
4 when we discuss the translation of Dash+ to Alloy.

Farheen [19] and Serna [11] proposed significance axioms to find “large enough” in-
stances of Alloy models of transition systems. The goal of significance axioms is to ensure
that it explores interesting portions of the snapshot! space and avoids spurious counterex-
amples during the process of model checking. There are three significance axioms that
have been used with Dash [11] models previously:

e Reachability Axiom: The reachability axiom ensures that every snapshot is reach-
able from the initial snapshot. As a result, an arbitrary snapshot that is not reachable
by a transition originating from the initial snapshot will not be in the instance.

e Operations Axioms: The operations axiom ensures that every transition is rep-
resented at least once during model checking. That is, we want to ensure that the
scope we use is large enough to cover every transition in a model.

e Complete Big Step Axiom: The complete big step axiom ensures all the big steps
of the transition system must be complete. We want to analyze instances that end
in a stable snapshot meaning that the instances we consider produce complete big
steps.

Dash performs well-formedness checks to help modellers avoid mistakes when writing
a Dash model. The well-formedness checks [3] in Dash are:

Every top-level state must be declared as conc.

If a model has a state hierarchy, then there must be one default child state defined

Transitions cannot cross AND-state boundaries

Either all children states at the same level of the hierarchy are concurrent or none at
all

'The commonly used term is state as in ‘state space’, but we use the term snapshot instead to
avoid confusion with the term control state.

12

e Only snapshot variable declarations can be primed
e Environmental events cannot be generated in a transition

e Environmental variables cannot be primed

2.3 Summary

Alloy is a language based on relational logic and set theory and consists of a set of relations
with constraints. Dash is a language that extends Alloy with concepts from Statecharts for
modeling transition systems with concurrent hierarchical states. The semantics of Dash
give it a notion of big steps and small steps to define transitions that can be taken by
reacting to changes in the system.

13

Chapter 3

Dash+ Syntax and Semantics

In this chapter, we introduce Dash+, which is an extension to Dash for modelling transition
systems with replicated AND-states running concurrently. This chapter presents a descrip-
tion of the syntax and informal semantics of Dash+ for creating replicated AND-states and
communication between replicated components using variables and buffers.

3.1 Replicated AND-States

Alloy lacks an explicit construct for describing transition systems. Dash extends Alloy to
describe transition systems with hierarchical concurrent states but lacks a construct for
creating replicated AND-states. Our goal with Dash+ is to create a construct for describing
replicated AND-states with a means of communication between replicated components
(similar to declaring a set of replicated processes in PlusCal or Promela). It should be
noted that every process in a PlusCal or Promela model must be declared at the top
level, but Dash+ provides the flexibility of describing systems with replicated components
arbitrarily nested in a state hierarchy. In this section, we focus on the design decisions
taken for creating replicated AND-states and the constructs for declaring them. We call
the states in a replicated AND-state as components and we call other components in the
replicated AND-state relative to one component as its sister components.

A replicated AND-state construct in Dash+ has the meaning of writing multiple iden-
tical copies of an AND-state in Dash with appropriate relabelling. Dash+ supports models
with replicated and non-replicated AND-states running concurrently with each other. As
a language design decision, we consider whether the replicated AND-states should be ex-
plicitly or implicitly parameterized.

14

Implicit parametrization means a replicated component would not have an explicit
parameter. The modeller would specify the number of copies of a replicated AND-state
in a command. Implicit parameterization has the advantage of avoiding the excessive
syntax of needing to include that parameter for every locally declared dynamic variable.
However, the use of implicit parameterization has its disadvantages. There would be no
means for sister components to communicate directly with each other since we cannot
refer to a specific sister component. The only means of communication would be through
broadcasting a message using a global variable.

A better solution is to explicitly parameterize replicated AND-states but any dynamic
variable within the component that is not parameterized refers to this (local) component’s
copy of the variable. We specify the signature that parameterizes an AND-state using
square braces when declaring the respective AND-state. By using operations on this sig-
nature, we can access variables in sister components directly.

An example of the syntax for describing a Dash+ model with a replicated AND-state
is shown in Figure 3.1. A replicated AND-state called R is declared with two sub-states
(A and B). Declaring a replicated AND-state is similar to declaring an AND-state in Dash
using the conc state keyword, but we append a parameter in square braces with a
signature.

In Figure 3.1, the AND-state R is parameterized with the Id signature on line 4. Pa-
rameterizing the replicated AND-state R means that each copy of the replicated component
will be associated with an element from the Id signature. We have taken inspiration from
Promela for the Dash+ syntax in declaring replicated AND-states. In Promela, we use a
parameter to specify the number of copies of a process to create; Dash+ specifies the set
of elements that refers to replicated components. The number of replicated components is
determined when the modeller sets the size of the Id signature for analysis. We will refer
to the signature parameterizing a replicated AND-state as the identifier signature for a
replicated component.

One more benefit of explicit parameterization is that we can easily model arrangements
of components in linear orders, rings, etc. Since a replicated AND-state is parameterized
by a set of elements, we can place Alloy constraints on this set and organize them as
needed.

In Figure 3.1, we have used the ordering module of Alloy to specify a linear ordering of
the Id set (line 1). Since the replicated AND-state R is parameterized by the Id set, the
copies for this AND-state will be arranged in a linear order. We see a graphical illustration
in Figure 3.2. In Figure 3.2, there are three elements in the identifier set: 1d0, Id1 and
Id2. The Id set is ordered using the ordering module which creates a linear ordering

15

© 00 N O O WN =

W W WWWwWWwWwWNDNDNNDNDNDNNNDMNNDNNDEEPRRPR R P B B P2 2 2
00 NO O WNEFE, O OWOOWNOO P WNEFE, O OWOWNO O WNE-O

open util/ordering[Id]
sig Value {}
conc state R [Id] {
// local variables
v: lone Value
p: one Id
// local events
event E {}
// the default state for each copy
default state A {
trans T_A {

do {
// change the local var v
one val: Value | v’ = val
}
goto B
send E
}
}
state B {
trans T_B {
on E
do {
// change the local var v
one val: Value | R[this]/v’ = val
}
}
trans T_C {
do {
// change the var v in copy identified by p
one val: Value | R[pl/v’ = val
}
}
}
init {
no v
}

Figure 3.1: An Example of a Dash+ model

16

[ld= {IdO, Id1,1d2}]

1d0 next ‘/I(ﬂ\

rg next > 1d2
Corresponding Component Corresponding Component Corresponding Component
R[0] R[1] R[2]

1>k @
— > «—@
— > «—@

TA TA TA
\ \ v
B B B

Figure 3.2: Graphical llustration of Figure 3.1

17

for elements in the set. The first element in this set is Id0 and the last element is Id2.
Therefore, the copies of the replicated AND-state R are organized according to the ordering
of the elements in the Id set. We may also specify for the replicated components to be
arranged in a tree, ring, etc. structure by adding specific constraints on the identifier set
for a replicated AND-state.

3.2 Dynamic Variables

We declare dynamic variables for a replicated AND-state in the same manner as we would
for a non-replicated AND-state. Variables declared within a replicated AND-state are local
to its copy of the replicated component. The meaning of each variable is a mapping from
an element in the identifier signature to the value of the variable. The variables v and p
in Figure 3.1 create mappings from each element in the Id signature to a value. Since a
variable in a replicated AND-state is a mapping from an identifier element to a value, we
can refer to a variable in a sister component by accessing the element that represents the
sister component. As a result, we open the door for communication between replicated
components, and between non-replicated and replicated components.

A replicated component can change the value of its local variable as seen in the transi-
tion T_A in Figure 3.1. In transition T_A, we change the value of the local variable v (line
15). Therefore, each copy of a replicated component for R will change their local variable v
upon taking the transition T_A. We can also use the keyword this to refer to a replicated
component taking a transition. Therefore, writing v’ in an action is equivalent to writing
R[this]/v’ as shown in transition T_B (line 26).

One of our goals in Dash+- is to enable direct communication between sister components.
Sister components in PlusCal and Promela can communicate with each other only by
sending a message using global channels (buffers) and/or variables. In Dash+, a replicated
component can communicate directly with a sister component without resorting to creating
global variables for the sole purpose of communication. By using a signature as a parameter,
replicated components can communicate directly with one or more sister component(s) and
access their variables.

An example of a replicated component changing the value of a variable in a sister com-
ponent is seen in transition T_C in Figure 3.1. In transition T_C, the replicated component
taking this transition accesses the variable v in a sister component and changes its vari-
able inside the action (do) statement (line 32). This sister component is the replicated
AND-state that is identified by the singleton element in the local variable p.

18

We can use Figure 3.3 to better understand the concept of referring to a sister com-
ponent to change the value of a variable in the sister component. The variables v and p
are tuples with two elements. The first element is the identifier element and the second
element is the variable value for the identifier element. Assume that the replicated com-
ponent identified by the element 140 is taking the transition T_C when the relations have
the values shown in Figure 3.3. The value of the local variable p is the singleton set Id1
as seen in the tuple (I1d0, Id1) in Figure 3.3 in I40.

[d = {I1d0, 1d1, 1d2}

Value = {Value0, Valuel, Value2}

v = {(Id0, Value0), (Idl, Valuel), (Id2, Value2)}
p = {(Id0, Id1), (Idl, Id0), (Id2, Id1)}

Figure 3.3: Mappings from an Identifier Element to Variables

The transition T_C changes the value of the variable v in the replicated component iden-
tified by the value of p in Id0, which is Id1 to Value?2 with the resulting relation values
shown below:

v = {(Id0, Value0), (Idl, Value2), (Id2, Value2)}

If we used a variable in place of p in transition T_C where the value of the variable consists
of more than one element such as Id1 and Id2, then our action statement in transition T_C
would change the value of the variable v for all components associated with the identifier
elements in the variable.

3.3 Events

An event in a replicated AND-state is declared without a parameter as in Dash. Events
declared within a replicated AND-state are local to their respective copy as with variables.
An environmental event of a replicated component can be triggered at the start of a big
step, or a replicated component may trigger an internal event during a transition.

In Dash+, events can be used for communication between sister components and a
replicated component can trigger an event in a sister component. We show the syntax for
triggering an event in a sister component using a snippet of a Bit Counter model in Figure
3.4'. The Bit Counter model consists of a set of ordered replicated components. Each

IThe full Bit Counter model is discussed in Chapter 6.

19

1 open util/ordering[Id]

2

3 conc state Bit [Id] {

4 event Tkl {}

5

6 default state Bitl {

7

8 X

9

10 state Bit2 {

11 trans T_B {

12 on Tk1

13 goto Done

14 // next[this] returns parameter value
15 // for the next bit in the ordering
16 send Tkl [next[this]]
17 b

18

19 X

20

21 state Done{}

22 }

Figure 3.4: A Parameterized Bit Counter

copy of the replicated AND-state Bit transitions from state Bit1 to Bit2 and triggers a
transition in the next component in the order. We see an example of triggering an event
in a sister component in transition T_B in the trigger (send) statement (line 16). The
event to send is specified and a parameter is added using square braces where the sister
component to trigger the event in is specified. In Figure 3.4, we trigger an event in the
component that is next to the component (in the ordering module) taking transition T_B.

3.4 Buffers

The modelling languages PlusCal and Promela are useful for modelling distributed systems
and protocols in which multiple actors communicate between themselves. A distributed
system can consist of a set of clients and servers which communicate with each other.

20

Under normal circumstances, a distributed system will have more clients than servers [5].
A number of clients can send messages to a single server, and these messages will need to be
queued such that the server can eventually respond to every request it receives. Therefore,
we need a data structure that has the ability to queue and pop messages. PlusCal and
Promela support sequences and buffered channels respectively that are declared either
globally or locally within processes for the purpose of queuing messages. We wanted to
provide Dash+ with constructs for defining a data structure that can store an ordered set
of elements. We will refer to this data structure as a buffer.

A buffer in Dash+ is declared using the buf keyword with a parameter to specify the
type of element that the buffer will store. We see an example of the process of declaring
buffers in a Dash+ model in Figure 3.5. In Figure 3.5, we describe a buffer called bufvar
that stores an ordered set of Value elements. We add an element to the back of the buffer
bufVar (line 9) in the action statement in transition T_A and we remove an element from
bufVar in the action statement in transition T_B (line 13). An upper bound for the size
of a buffer is specified in a check or run command (line 18).

1 sig Value {}

2 pred predicate {}

3

4 conc state R [Param] {
5 bufVar: buf[Value]

6

7 default state A {

8 trans T_A {

9 do one v: Value | bufVar.add[v]
10 }

11

12 trans T_B {

13 do bufVar.remove
14 }

15 }

16 }

17 // bufVar has a maximum size of 4
18 run predicate for 4 bufVar

Figure 3.5: Declaring Buffers in Dash+

21

3.5 Initial Constraints

The initial constraints in any state in a Dash+ model specify the initial values of variables.
An init statement within a replicated AND-state can specify the initial values of variables
in replicated components. In Figure 3.1, we specify that the local variable v should be
initially an empty set (line 37). Therefore, every copy of the replicated AND-state R will
have an empty set for the variable v.

In Dash+, we can declare an initial constraint that describes initial values for variables
in specific components. For example, we may want every replicated component for R except
the one identified by the first element in the ordered set Id to have a specific value in v

We can specify such a constraint in an initial constraint in the parent AND-state to
the replicated component as seen in Figure 3.6. The initial constraint specified in Figure
3.6 states that every copy of the replicated component R except the one identified by the
first element in the Id set should have an empty value in the variable v (line 11). We
additionally state that the replicated copy identified by the first element in the Id set
must have one or elements in the variable v (line 12).

1 open util/ordering [Id]

2

3 conc state C {

4 conc state R [Id]{

5

6 }

7

8 init {

9 // first returns the first identifier element
10 // in the ordering

11 all ie : Id - first | no R[pl/ v
12 some R[first]/v

13 +

14 }

15

Figure 3.6: An Initial Constraint

22

3.6 Frame Problem

One semantic issue with a design decision is the frame problem for Dash+. As discussed in
Chapter 2, a semantic choice in Dash dictates that any non-environmental variable retains
its value if it is not explicitly constrained in an action.

In Dash+, a variable for a replicated component is a mapping from each copy of the
replicated component to a value. Only one copy from a set of replicated components can
take a transition in a step and may change the value of a local variable or a variable in
a sister component. We want to stay consistent with the semantics of Dash such that a
variable in a copy of a replicated component retains its value if it is not explicitly mentioned
in an action.

There are limitations to the extent to which we can stay consistent with the semantics
of Dash in having an unchanged variable retain its value. If a transition in Dash+ only
changes a local variable in a copy of a replicated AND-state, we can specify that every
sister component should retain the value of the variable that was changed.

1 trans T3 {

2 do {

3 one p: Id, val: Value | {
4 Rlpl/v’> = wval

5 by

6 one q: Id, val: Value | {
7 R[ql/v’> = wval

8 }

9 1}

Figure 3.7: Changing a Variable in More than One Replicated Component

However, we can change the value of a variable in more than one copy of a replicated
component in a transition as seen in Figure 3.7. There are two quantified expressions
that each change the variable v in copies of a replicated component identified by the Id
signature. One copy is identified by the bound variable p; the other copy is identified by
the bound variable q. We want to ensure that every sister component retains its value for
the variable v except as specified in the transition actions. The bound variables p and q
are declared locally in their respective quantified expression meaning that we cannot access
them from outside the quantified expression. In order to have unchanged variables retain
their values in sister components, our semantics would need to specify the following:

23

1. Every copy of R except the copy identified by p retains its value in the variable v.

2. Every copy of R except the copy identified by q retains its value in the variable v.

which would result in an inconsistency if the copies of the replicated component identified
by p and q are not the same.

We do not wish to choose semantics that may introduce an inconsistency in the model.
Therefore, we choose a semantic in Dash+ in which unchanged variables in replicated com-
ponents retain their values only when a transition changes a local variable in a replicated
component. If there is a case in which a replicated component taking a transition changes
a variable in a sister component, we will then issue a warning. The modeller will have to
ensure that sister components retain the values in their variables.

3.7 Well-Formedness

Dash+ performs the same well-formedness checks as Dash. However, Dash+ also performs
additional well-formedness checks due to the introduction of replicated AND-states. The
additional well-formedness checks in Dash+ are as follows:

e The source/destination state for a transition in a copy of a replicated component
cannot be a state in a sister component.

e The source/destination state for a transition in a copy of a replicated component
cannot be a state in a non-replicated AND-state.

e The source/destination state for a transition in a non-replicated AND-state cannot
be a state in a replicated AND-state.

3.8 Summary

Dash+ has constructs for creating transition systems with replicated components and non-
replicated components that can be nested arbitrarily. Replicated and non-replicated com-
ponents can communicate with each other by accessing variables or by triggering events.
We introduce a syntax for declaring buffers in Dash+ to facilitate buffered communication
between replicated components or between replicated and non-replicated components.

24

Chapter 4

Translation to Alloy

In this chapter, we discuss the steps required to translate a Dash+ model to Alloy, how
parameterization is weaved into transitions, and the process of translating buffers in Dash+
to Alloy.

4.1 Background: Translating Dash to Alloy

This section will briefly focus on the translation of a Dash model to Alloy from Serna [11]
and facilitate a discussion in the next sections of translating replicated components and
buffers in Dash+ to Alloy. The translation to Alloy is decomposed into two steps:

o A translation of a Dash model to Core Dash

e A translation of a model in Core Dash to Alloy

4.1.1 Dash to Core Dash

A model in Dash is initially translated to Core Dash. Core Dash consists of the state hierar-
chy of a model, a set of transitions that have been completely elaborated with information,
initial constraints, and state invariants. The translation to Core Dash is a valuable step
because modellers in Dash can describe transitions using various shortcuts. For example,
a modeller writing a Dash model can describe a transition without explicitly specifying
a source (from) and destination state (goto). When a transition is described without a

25

source (from) state or destination (goto) state, the translation to Core Dash will use the
container state of the transition as the origin state and the destination state. Furthermore,
the names of states, transitions, variables, and events are replaced with their fully qualified
names. A fully qualified name is formed by following the state hierarchy of an element
and separating state names with ‘/” and then appending the name of the element. Figure
4.1 shows a Dash model on the left with its Core Dash translation on the right. There are
two transitions TO and T1 that are declared without any origin or destination states. The
translation to Core Dash in Figure 4.1 calculates the origin and destination states for the
transitions and completes the fully qualified names for the states, transitions, and variables
in the model.

1 sig Value {} 1 sig Value {}
2 conc state CO { 2 conc state CO {
3 vO: one Value 3 CO0/v0: one Value
4 vl: some Value 4 CO/v1l: some Value
5 event EO {} 5 event CO/EO0 {}
6 6
7 default state SO0 { 7 default state CO0/SO {}
8 trans TO {} 8 state CO0/S1 {}
9 } 9
10 10 trans CO0/S0/TO0 {
11 state S1 { 11 from CO/SO
12 trans T1 {} 12 goto CO/SO
13 } 13 }
14 14 trans CO0/S1/T1 {
15 from CO/S1
16 goto CO/S1
17 }
18 }

Figure 4.1: Translation from Dash to CoreDash

26

4.1.2 Core Dash to Alloy

A Dash model defines a next snapshot relation containing pairs. That is, the next relation
is a set of tuples (with two elements) where the first element is a snapshot element that
describes the current snapshot of the system; the second element in the tuple describes
the snapshot of the system after taking a small step (or transition). A Dash model takes
a sequence of small steps with cascading events until it reaches the end of a big step and
is able to initiate another big step. We consider a Dash model to be stable at the start
and end of a big step meaning that there are no more transitions that can be taken so new
environmental events can be input.

A snapshot signature declaration describes relations that contain the information
needed to describe the values of the system elements. That is, each atom in the snap-
shot signature maps to values at a point in the execution of a system. The translation of
a CoreDash model to Alloy will result in the declaration of a snapshot signature with at
least three relations:

e conf: the conf (or configurations) relation contains the set of active basic states
e taken: the taken relation contains the set of transitions taken in the big step so far

e stable: stable contains the value True if the snapshot is at the beginning/end of
a big step

In addition to the relations stated above, the snapshot signature can have an event
relation which is composed of a set of events that have been generated in a big step so far.
We include the event relation only if events are declared within a Dash model. There are
also relations in a snapshot signature for storing the values of variables declared within a
Dash model. Figure 4.2 shows an example of a snapshot signature.

We create a sub-signature tree in Alloy to express state hierarchy. An abstract signature
is used to represent a container state and a singleton signature refers to the basic control
states in a container state. Figure 4.3 shows the representation of the state hierarchy in
Figure 4.1 after the translation to Alloy. The container state CO is declared as an abstract
signature (we use fully qualified names in the translation to Alloy), and the basic control
states are declared as singleton signatures. In Figure 4.1, the basic state S0 is translated
to a singleton set called CO_S0 (one sig C0_SO extends CO {}); the basic state S1
is translated to a singleton set called C0_S1 and so on. At any point during the execution
of the model, the conf relation in the snapshot signature will map to a set of basic control
states. From these basic states, we can determine the state that a concurrent region is in

27

© 00 N O O WN -

R ol
> W NN -r O

sig Snapshot {
// set of active basic states
conf: set Statelabel
// set of events that have been triggered so far
events: set EventLabel
// set of transitions taken in a big step so far
taken: set TransitionLabel
// True at the beginning/end of a big step
stable: one Bool

// Variables
vO: one Value
vl: some Value

Figure 4.2: Example Snapshot Signature

// State Hierarchy

abstract sig StatelLabel {}

abstract sig CO extends StatelLabel {}
one sig CO0_SO extends CO {}

one sig CO_S1 extends CO {}

// Transitions

abstract sig TransitionLabel {}

one sig CO_SO_TO extends TransitionLabel {}
one sig CO_S1_T1 extends TransitionLabel <{}

//Events
abstract sig EventLabel {}
one sig CO_EO {}

Figure 4.3: Signatures for Representing State Hierarchy, Transitions and Events in Alloy
for Figure 4.1

at any level in the state hierarchy. The transitions and events that are declared within a
model are represented as singleton signatures in Alloy (using fully qualified names) as seen
in lines 8-14 in Figure 4.3.

28

Figure 4.4 shows the predicates that are created during the process of translating a
Dash model to Alloy. The top-level predicate is the small_step predicate and it is
a disjunction of predicates that we refer to as transition predicates. The small_step
predicate relates two snapshots that satisfy a transition predicate within the small_step
predicate. Every transition declared in a Core Dash model will be translated into one

transition predicate.

small_step[s, s_next]

disjuction of transition predicates

A

t[s, s_next]
Predicate to take a transition t.
A

Y
A

pos_t [s, s_next] semantics_t [s, s_next]

True if the transition t taken can in

pre_t [s] True if the postconditions for the
transition t is satisfied in snapshot s snapshot s
True if the preconditions for the
transition t is satisfied in snapshot s Updates the conf, events and variable Updates the taken set in
sets in snapshot s_next and invokes snapshot s_next to contain the
the testlfNextStable predicate transition t.
A

testifNextStable[s, s_next, events_gen, t]

If s_next is stable, update the
stable relation contain the value True. If not,
stable will contain the value False.

Figure 4.4: Overview of the Transition Predicates

A transition predicate is a conjunction of predicates. When all these predicates are
satisfied, it means that the transition represented by this transition predicate is taken.

These predicates are:

29

e precondition: The precondition predicate for a transition is satisfied if the source
state is present in the conf (or configuration) relation of the source snapshot, any
events needed to trigger the transition are in the events relation, and the current
values of the variables satisfy the guard condition.

e postcondition: The postcondition predicate specifies constraints that update the
conf (or configuration) relation of the destination snapshot with the destination state
of the transition; the events relation is updated with any events that are triggered
by the transition; the stable relation is updated to contain the value True if the
system is stable after taking the current transition or False otherwise; the value of
the variables are updated based on the Alloy constraints in the action statement. We
evaluate the postcondition predicate relative to the current snapshot, s and the next
snapshot, s_next.

e semantics: The semantics predicate enforces the Dash semantics of each concurrent
region taking at most one transition within a big step. It places constraints on the
taken relation and updates the taken relation based on the transition being taken.
The semantics predicate is also responsible for ensuring that the transition taken has
the highest priority amongst the enabled transitions.

One more important predicate that is declared during the translation to Alloy is the
testIfNextStable predicate. The testIfNextStable predicate has constraints that are
satisfied only if the system is stable after we take a transition. The postcondition predicate
invokes the testIfNextStable predicate and updates the value of the stable relation
to True if the testIfNextStable predicate is satisfied meaning that the system has
completed a big step once the current transition is taken.

30

4.2 'Translating Replicated AND-States

In this section, we discuss the major changes in translating replicated AND-states to
CoreDash and from CoreDash to Alloy. In the next sections, we discuss how parame-
terization is weaved into the transitions, and the process of translating buffers (in 4.3).

A replicated AND-state in Dash+ means that we have multiple copies of an AND-state
running concurrently. There were two approaches that we considered when determining the
process of translating a replicated AND-state to Alloy. The simpler approach is to create
multiple identical copies of the AND-state that we want to replicate (effectively translating
from Dash+ to Dash with appropriate relabelling). Figure 4.5 shows an example of a
CoreDash model (right) that is the result of creating identical copies of a replicated AND-
state R (left). There are three identical copies of the replicated AND-state R: RO, R1 and
R2 as specified by a modeller.

1 sig Value {} 1 sig Value {}
2 conc state R [Id] { 2 conc state RO {
3 p: some Value 3 RO/p: some Value
4 q: one Id 4 RO/q: one Id
5 5 default state RO/A{}
6 default state A { 6 state RO/B {}
7 trans T {...} 7 trans RO/A/T {...}
8 } 8 trans RO/B/T {...}
9 state B { 9 }
10 trans T {...} 10
11 } 11 conc state R1 {
12} 12 R1/p: some Value
13 R1/q: one Id
14 default state R1/A{}
15 state R1/B {}
16 trans R1/A/T {...}
17 trans R1/B/T {...}
18 }
19
20 conc state R2 {
21
22 }

Figure 4.5: Creating Identical Copies of an AND-state

31

The number of copies to produce is based on the scope of the identifier set in a com-
mand. Creating multiple identical copies means that we do not need to weave parameter-
ization into our translation. However, we cannot dynamically choose a sister component
to communicate with based on the current snapshot. Any communication between sis-
ter replicated components would require us to broadcast a message globally (using global
variables) that a sister component is able to access.

The alternate and better approach is to weave parameterization into our translation to
Alloy which means that the variables and state hierarchy in a replicated component are
parameterized. Figure 4.6 is a translation of a Dash+ model (left) to CoreDash+ (right)
using the parameterization approach. In the translation to CoreDash+ (right) in Figure
4.6, the variables p (R/p) and q (R/q) map from an identifier element to their respective
values.

1 sig Value {} 1 sig Value {}

2 conc state R [Id] { 2 conc state R [Id] {

3 p: some Value 3 R/p: Id -> some Value
4 q: one Id 4 R/q: Id -> one Id

5 5

6 default state A { 6 default state R/A {}
7 trans T {...} 7 state R/B {}

8 } 8

9 state B { 9 trans R/A/T {...}
10 trans T {...} 10 trans R/B/T {...}

11 } 11}

12}

Figure 4.6: Translating to CoreDash+ with Parameterization

32

Figure 4.7 shows how the snapshot signature is translated for a replicated AND-state
in R.

sig Snapshot {

/ Variables
Id -> some Value

1
2
3
4 /
5 R_p:

6 R_q: Id -> one Identifier
7

}

Figure 4.7: Example Snapshot Signature for a Dash+ Model with a Replicated AND-state

The variables are sets of tuples with three elements. The first element in the tuple
is the current snapshot of the system; the second element is an identifier element for the
replicated component in which the variable was declared; the third element is the value of
the variable for the respective identifier element.

Parameterizing variables allows the snapshot signature to store the value of every vari-
able in each copy of a replicated component. The value of a variable in a replicated
component can be accessed using a dot join operation on the variable. For example, the
dot join operation q. (s.p) returns the value of the variable p for the replicated compo-
nent identified by the value in the set q (the value of q in a replicated component is an
identifier element) in the snapshot s. Therefore, a replicated component can communicate
with a sister component by referring to the identifier element of the sister component and
accessing the value in any of its variables.

In the following subsections, we define the concept of a level (4.2.1) and discuss the
translation of replicated AND-states to Alloy (4.2.2).

33

4.2.1 Levels in a Dash+ Model

In Dash+, replicated and non-replicated AND-states can be arbitrarily nested. In translat-
ing a Dash+ model to Alloy, we need to consider the level at which every nested replicated
and non-replicated AND-state is declared. We define the term level as:

1) For a replicated AND-state: The level of a replicated AND-state is the number of
replicated AND-states above it in the state hierarchy plus one.

2) For a non-replicated AND-state: The level of a non-replicated AND-state is the
number of replicated AND-states above it in the state hierarchy.

We say that a basic state is at a level; if the basic state is declared inside a replicated
or non-replicated AND-state at level;; we say that a transition is at a level; if the source
state of the transition is declared inside a replicated or non-replicated AND-state at level;;
In a model with no replicated AND-states, every transition and basic state are at levely.

In Figure 4.8, the non-replicated AND-state C is at a level of one as it is nested within
one replicated AND-state R; the replicated AND-state Q is at a level of two as it is nested
within the replicated AND-state R, and Q is itself a replicated AND-state; the replicated
AND-state s is at a level of 3 since it is nested within Q (replicated AND-state) which is
nested within R (nested replicated AND-state), and S is itself a replicated AND-state.

4.2.2 State Hierarchy

The representation in Alloy of the state hierarchy is used for four key parts of the meaning
of the execution of a transition in Alloy. These are:

1) determining if the current snapshot contains the source state of a transition (as part
of the precondition predicate)

2) determining how the conf (or configurations) relation changes by exiting the source
state of a transition and entering its destination state (as part of the postcondition predi-
cate)

3) determining which transitions are orthogonal to this transition (as part of the se-
mantics predicate)

4) determining how the taken relation changes (as part of the semantics predicate)

In the Dash translation to Alloy, calculations are done within the translation process
so that information about a transition can be represented statically within the equivalent
Alloy model. The state hierarchy is represented through sub-signatures in Alloy with basic

34

1 //level 1
2 conc state R [IdR] {
3 //level 1

4 conc state C {

5 default state A {}

6

7 }

8

9 //level 2

10 conc state Q [IdQ] {
11 default state B {

12 // level 3

13 conc state S [IdS] {...}
14 // level 2

15 conc state P {...}
16 }

17 }

18 1}

Figure 4.8: Level of Control States

states being declared as singleton sets that are subsets of abstract signatures that represent
the container state for each basic state. Thus, item (1) is covered using a constraint of the
form:

src_state in s.conf

within the precondition meaning that we check whether the source state of the transition
is in the conf relation in snapshot s (conf is a mapping from a snapshot to a set of active
states).

Item (2) is handled for the Dash translation by the process of calculating the basic states
that are exited and the basic states that are entered by the transition and directly using
these in the Alloy model with a constraint of the form:

s_next.conf = s.conf - {basic_states_exited} +
{basic_states_entered}

within the postcondition. If a transition loops back to its basic source state, it will stay in
its basic source state.

35

Item (3) is handled for Dash by calculating which transitions are orthogonal to transition
t and a constraint is used in the Alloy model of the form:

no s.taken &
(union of transitions within t’s parent AND-state)

within the semantics predicate meaning that a transition cannot be taken if the AND-state
state taking a transition has already taken a transition, or if a nested AND-state has taken
a transition.

When the system is stable, item (4) is handled for Dash by updating the taken relation
with a constraint of the form:

s_next.taken = t

within the semantics predicate meaning the taken relation (in the next snapshot) should
only contain the transition t. We only need to store the transition t in the taken relation
as we are starting a new big step since the system is stable when the transition t is being
taken. When the system is not stable, item (4) is handled for Dash by updating the taken
relation with a constraint of the form:

s_next.taken = s.taken + t

within the semantics predicate meaning that we add the transition t the taken relation
(in the next snapshot, s_next).

Since we do not know the number of copies of each replicated process in Dash+, we
have to weave parametrization through the above parts of the Alloy model for every repli-
cated transition at any level in the state hierarchy. We considered two approaches to
weaving parameterization: static and dynamic. In the static one, we try to mimic the
Dash translation as closely as possible using static relations (ones not within the relations
of the snapshot) to store the mapping from identifier elements to basic states. The static
approach requires including copies of every basic state for each copy of a replicated AND-
state. Therefore, the cardinality of the basic state signatures should match the number
of copies of the replicated component in which the basic state was declared so that each
identifier element can map to a unique copy of a basic state. This approach increases the
number of atoms in the model and uses set cardinality which did not provide the level of
performance that we achieved using the dynamic approach.

36

The dynamic approach to representing the state hierarchy for replicated components
means retaining in the snapshot (the dynamic part of the model) information about the
mapping from identifier elements to their current basic state. As in Dash, a basic state in
a Dash+ model is translated to a singleton set while container states are represented as
abstract signatures in Alloy (see Figure 4.3).

In order to retain information about the active basic state for AND-states and replicated
AND-states that are arbitrarily nested, we require more than one conf relation. In the case
of a replicated AND-state within a replicated AND-state, the configuration is a mapping
from a parent identifier element to a child identifier element to a basic state. Therefore,
we need to consider each possible arrangement for a Dash+ model with AND-states and
replicated AND-states nested arbitrarily.

The number of conf relations in the snapshot depends on the number of different levels
of the basic states (the level at which a basic state is declared) and each conf relation
will have an arity equal to a level of the basic states. That is, we need conf relations to
track the active basic state declared within each replicated or non-replicated component at
every level. Therefore, the conf relations for a Dash+ model with nested replicated and
non-replicated AND-states will appear as:

confg: Statelabel
conf{: Identifiers - > StatelLabel
confo: Identifiers -> Identifiers - > Statelabel

where conf(stores the active basic state for non-replicated AND-states at levely; conf;
stores the active basic state for non-replicated and replicated AND-states at level;; confs
stores the active basic state for non-replicated and replicated AND-states at level, . That
is, we need a conf; relation for basic states declared inside an AND-state at level;.

Identifiers is an abstract signature and every identifier signature is a subset of
the Identifiers signature. Using the Identifiers signature as a parent signature
means that the conf relation can store a mapping from identifier elements to their current
active basic states for multiple replicated AND-states. Since conf stores a mapping from
identifier elements to their current basic state, we can use singleton signatures to represent
the basic states. An example of the set of tuples that conf; maps to for the dynamic
approach can look like:

{(Snapshotl, Id0, A), (Snapshotl, Idil, B)}

meaning that the AND-state identified by the element Id0 is currently in the basic state
A and the AND-state identified by Id1 is currently in the basic state B.

37

The Dash+ model in Figure 4.9 will require two conf relations:

conf{: Identifiers -> Statelabel
confo: Identifiers - > Identifiers -> Statelabel

where conf; stores the active basic state for the non-replicated AND-state C; confs
stores the active state for each copy of the replicated AND-state Q. The conf, relation
has an arity greater than that of conf; since the basic state C is at a level greater than
the basic state A. Thus, the relation conf; stores the active state for each copy of the
non-replicated AND-state C within R; the relation conf, stores the active state for each
copy of the replicated AND-state Q within each copy of R.

1 //level 1
2 conc state R [IdR] {
3 //level 1

4 conc state C {

5 default state A {}
6 state B {}

7 trans T_A {...}

8 trans T_B {...}

9 }

10

11 //level 2
12 conc state Q [IdQ] {

13 default state C {}
14 state D {}

15 trans T_C {...}

16 trans T_D {...}

17 }

18 %

Figure 4.9: Replicated Component within a Replicated Component

38

To better clarify how the conf1l and conf?2 relations store the active basic states,
Figure 4.10 shows an some example conf1 and conf2 tuples (and their meaning) for the
Dash+ model in Figure 4.9. Figure 4.11 provides a visualization of the Dash+ model in
Figure 4.9. The basic states in Figure 4.11 that are colored in green represent the active
basic states as seen in the tuples in Figure 4.10.

IdR= {(IdRg), (IdR{)}

IdQ = {(IdQe), (IdQy)}

confi: {(IdRg, A), // AND-state C nested within IdRg is in A
(IdRgp, B)}

confo: {(IdRg, IdQg, D), // IdQg nested within IdRg is dimn D
(IdRg, IdQy, D),
(IdR7, IdQg, C), // IdQg nested within IdR; is in C
(IdR;, IdQ;, D)}

Figure 4.10: Tuples for conf Relations

In Figure 4.10, IdRg and IdR; are identifier elements for the replicated AND-state R;
I1dQo and IdQ; are identifier elements for the replicated AND-state Q.

39

R [IdR_0] R [IdR_1]
c c
:
;
Q[IdQ_0] | Q[idQ_1] QIdQ_0] | Q[idQ_1]
:
D D @ D

Figure 4.11: Visualization of the Dash+ model in Figure 4.9

40

We need to be able to handle item (1), item (2), item (3) and item (4) for every possible
nesting of replicated and non-replicated components in a Dash+ model.

We handle item (1) (determining if the current snapshot contains the source state of a
transition) for the dynamic approach using the constraint:

for a transition t at level;, (src_state) in pi.p2...p;.(conf;)
where p; is a copy of a nested AND-state at level;. The join operation pi.ps...p;.(conf;)
returns the current basic state of the replicated AND-state (or a non-replicated AND-state
nested in a replicated AND-state) identified by the element p; nested at level;. If the

current basic state of the element in p; nested within the replicated AND-states (p1, pa,
.., Pi.1) is the source state of the transition, the precondition will be satisfied.

Item (2) (determining how the conf relation changes) will have the constraint:

for a transition t at level;

s_next.conf;, = s.conf;
+ (p1 -> p2 -> ... -> p; —-> basic_state_entered)
- (p1 -> p2 -> ... -> p; -> basic_state_exited)

where p; is a copy of an AND-state at level;. We update the conf; relation with the basic
destination state that p; has entered by taking transition t while removing the basic state
that p; has exited.

Similar to the conf relations, we require more than one taken relation to store the
transitions taken by each AND-state nested within replicated AND-states in a big step
(the role of the taken relation is to store the transitions taken so far in a big step). The
taken relations for a Dash+ model with nested replicated AND-states that each has basic
states will appear as:

takeng: TransitionLabel
taken;: Identifiers -> TransitionLabel
takeng: Identifiers -> Identifiers -> TransitionLabel

where takeng stores the transitions taken at levely in a big step; taken; stores transitions
taken in a big step by each copy of an AND-state at levely; takens stores transitions taken
in a big step by each copy of an AND-state at levely and so on.

41

As with Dash, each copy of a replicated AND-state can take at most one transition
in a big step. A copy of a replicated AND-state can take a transition only if that copy
has not yet taken a transition in a big step and if any nested replicated or non-replicated
AND-states have not yet taken a transition in a big step. Alternatively, a non-replicated
AND-state can take a transition only if it has not taken a transition in a big step and if
any nested replicated or non-replicated AND-states have not taken a transition in a big
step.

In Figure 4.12, it is permissible for a copy of Q to take the transition T_B only if it
has not yet taken T_B in the big step and if any copy of the nested replicated AND-state
S has not yet taken a transition in the big step. Similarly, the AND-state C can take the
transition T_C only if T_C has not been taken in the big step and if the nested replicated
AND-states R, Q and S do not have any copies that have taken a transition in the big step.

1 conc state C {

2 default state A {

3 conc state R [Id0] {
4 default state B {}
5 trans T_A {}

6 }

7

8 conc state Q [Id1] {
9 default state C {
10 conc state S [Id2] {...}
11 }

12 trans T_B {}

13 }

14 }

15

16 state D {

17 trans T_C {...}

18 }

19 7}

Figure 4.12: Replicated AND-state within an OR state

42

For a replicated AND-state identified by p; at level; taking a transition, item (3)
(determining which transitions are orthogonal to this transition) will have the constraints
for a transition declared within p;:

no (p;i <: p1-p2...pi-1-(taken;)) and
no (p; <: pi1.p2-...pi-1.(takenjsy)) and
no (p;i <: p1-p2...pi-1-(takenij+y)) and

meaning that p; cannot take a transition if it has already taken a transition or if a nested
AND-state has taken a transition in a big step (p1, p2,-..,pi.1 are identifier elements for any
parent AND-states that p; is nested within). We know that p; has taken a transition if the
domain of the set return by the dot join operation py.ps. . .pi1. (taken;) has the element
pi- The replicated component identified by p; also cannot take a transition if any nested
replicated or non-replicated AND-state has taken a transition. If a nested AND-state at
level;;; has taken a transition, the domain of the dot join operation p;.ps. . .pi1- (taken
ir1) will contain the element p; meaning that a nested AND-state within p; has taken a
transition.

To better clarify how orthogonality is decided, we use an example taken1 and taken?2
tuples in Figure 4.13.

IdR= {(IdRgp)}

IdQ = {(IdQg)} // identifier element nested within IdRg

IdS = {(IdPy)} // identifier element nested within IdRg

takeny;: {} // IdRy has not taken a transition

takens: {(IdRg, IdQg, T_B), //IdQg nested in IdRg has taken T_B
(IdRg, IdSg, T_C)} //IdSg nested in IdRg has taken T_C

Figure 4.13: Example taken Sets

In Figure 4.13, the identifier signatures 1dQ and IdS represent replicated AND-states (at
levels) nested within the replicated AND-state identified by IdR (at level;). Therefore,
the replicated AND-state identified by IdRg can take a transition only if it has not yet
taken a transition and if the nested replicated AND-states have not taken a transition so
far in the big step. We know that IdRy has not yet taken a transition since the taken;
set is empty (IdR; it is at a level;). Since the domain of the tuples in the takeny has
the element IdRg (meaning that a replicated AND-state nested within IdRq has taken a
transition), we can conclude that IdR, cannot take a transition in the big step.

43

For a non-replicated AND-state C nested within a replicated AND-state identified by
pi at level; taking a transition, item (3) (determining which transitions are orthogonal to
this transition) will have the constraints:

no ((p; <: p1.p2.-.pi-(taken;)) & (trans;)) and
and no (p; <: p1.p2.-..pi-1-(takeniy)) and
and no (p; <: p1.p2---pi-1.-(takenjsy)) and

where trans; is the union of the transitions in C (at level;) and any transitions in nested
non-replicated AND-states at 1level;; the join operation p;.ps...p;. (taken;) returns
the set of transitions taken at level;. Therefore, the constraints specify that ¢ cannot
take a transition if it (or a non-replicated nested AND-state at the same level) has already
taken a transition or if any nested AND-states at lower levels have taken a transition in
the big step.

We will now discuss the constraints needed for item (4) (determining how the taken set
changes). If a copy of a nested replicated or non-replicated AND-state takes a transition
while the system is stable, item (4) will have the constraint:

for a transition t at 1level;
s_next.taken; = (p; -> p2 -> ... -> p; -> t) and
V j in levels - i. no s_next.taken;

where p; is a copy of an AND-state at level; taking a transition. If the system is stable,
we specify that the taken; relation must only store the transition taken by p; nested at
a level;. Any other taken sets should be an empty set since the system is stable at the
moment transition t is taken meaning that this is the first step of a big step.

If a copy of a nested replicated AND-state takes a transition while the system is not stable,
item (4) will have the constraint:

for a transition t at level;
s_next.taken; = (p; -> p2 -> ... -> p; -> t) and
V j in levels - i. s_next.taken; = s.taken;

where p; is a copy of an AND-state at level; taking a transition. If the system is not stable,
we update the taken; set with the transition taken by p; nested at a level;. Any other
taken sets should retain their values since the system is not yet stable and we need to
keep a track of the transitions taken within the big step.

44

4.2.3 Weaving Parameterization into the Transition Predicates

We have seen the steps that are taken during the translation of Dash+ for parameterizing
the state hierarchy and variables in a replicated component. The final step is to weave
the parameterization into the transition predicates. We weave in the parameterization
into the transition predicates by appending parameters such that a transition predicate
is evaluated relative to the replicated component taking the transition. Since replicated
components can be nested within replicated components, we may need to append more
than one parameter to the transition predicates such that transitions are taken relative to a
replicated component nested within other replicated components. Therefore, the transition
predicate for the transition t within a nested replicated or non-replicated AND-state at
level; would be described as:

pred t [s, s_mext: Snapshot, pi: Idy, p2: Ido...p;: Id;] {...}
where p; is a copy of a nested replicated or non-replicated AND-state at level; taking a
transition t.

We similarly append the parameters to the precondition, postcondition and semantics
predicates such that the predicates are evaluated with respect to the replicated component
taking the transition as shown below:

pred pre_t [s: Snapshot, p;: Idy, pe: Ide...p;: Id;]

{...}

pred post_t [s, s_next: Snapshot, pj;: Id;, p2: Ids...p;: Id;]
{...}

pred semantics_t [s, s_next: Snapshot, p;: Id;, pa: Idy...p;: Id;]
{...}

where p; is a copy of a nested replicated or non-replicated AND-state at level; taking a
transition t.

45

The small_step predicate for a Dash+ model should be a disjunction over the transi-
tions. Since the transition predicates have added parameters based on the level of nesting
of AND-states, the small_step predicate can invoke a transition by passing in the identi-
fier element of the AND-state taking a transition as an argument. To achieve a disjunction
over all transitions of the model, we existentially quantify over the identifier sets as shown:

pred small_step [s, s_next: Snapshot] {
some pi: Idy, p2: Ido...p;: Id; | {
// for all t’s at level O
(V t[s, s_mext]) or
// for all t’s at level 1
(V t[s, s_next, pil]) or
// for all t’s at level 2
(V tls, s_next, pi, p2]) or
/7. ..

}

Figure 4.14 provides a visual illustration of the process of weaving in parameterization
to the transition predicates for a Dash+ model with replicated AND-states.

While we have not shown it in the definition of the small_step predicate above, the
small_step predicate can take a transition that retains the values of all the fields in the
next snapshot. Since we want to create infinite traces of a Dash+ model, a Dash+ model
takes a transition that retains the values of all the fields only if there are no transitions
in the model that are enabled (meaning that the model has reached a point in which it
cannot take any more transitions that were defined in the model).

We also use a fact that specifies two distinct snapshots cannot have fields with the same
values. In Alloy, a snapshot is not a record but rather a distinct set of atoms. Because
two snapshots with the same field values can be confusing to the user, we use a fact that
specifies that two distinct snapshots cannot have fields with the same values.

46

small_step[s, s_next]

disjunction of transition predicates at every
level

A

\ 4

t[s, s_next, p1, p2, ..., pil

Predicate to have a replicated component identified by p;

nested at level; take a transition t.

A

pre_t[s, p1, p2, ..., pil

True if the preconditions for the
transition t is satisfied by the
replicated component p; in snapshot
5

pos_t[s, s_next, p1, ..., pil

True if the postconditions for the
transition t is satisfied by the
replicated component p; in snapshot s

Updates the conf;, events; and variable
sets in snapshot s_next and invokes
the testlfNextStable predicate

semantics_t[s, s_next, p1, ..., pil

True if the transition t taken in the big
step by the
replicated component pj in
snapshot s

Updates the taken; set in

snapshot s_next
to contain the transition t.

A

testifNextStable[s, s_next, events_gen, t]

If s_next is stable, update the
stable relation contain the value True. If not,
stable will contain the value False.

Figure 4.14: Weaving in Parameterization

47

4.3 Buffers

This section will focus on the translation of buffers in a Dash+ model. The Dash+ model
in Figure 4.15 has a replicated AND-state with two buffers: bufA and bufB. An element
is added to bufA in the action statement in transition T_A; an element is removed from
bufB in the transition T_B. A buffer variable is a relation in the snapshot signature with
a mapping from an index signature to an element. We create an index signature for each
buffer that is declared within a Dash+ model. The index signature is responsible for
keeping a track of the location of each element in a buffer as each element in an index
signature maps to a value in a buffer. Since buffers can be declared in any AND-state at
any level of nesting, buffer variables in the snapshot signature will be declared as:

sig Snapshot {

bufp: Indexy -> elem
buf;: Identifiers -> Indexp -> elem
bufs: Identifiers -> Identifiers -> Indexg -> elem

}

where buf is a buffer declared at levely and using the Index 4 set for its indices; buf; is
a buffer declared at level; and using the Indexpg set for its indices and so on.

The translation to Alloy in Figure 4.16 creates two index signatures: BufIdxA and
BufIdxB. The elements in the Buf IdxA are used as indices for bufA; the elements in
BufIdxB are used as indices in bufB. The buffers bufA and bufB are included in the
snapshot relation in Alloy. An example of the set of tuples for the snapshot relation for
buffer bufA is:

{(Idy, BuflIdxAg, Valueg), (Idg, BufIdxA;, Valueqy),
(Idy, BuflIdxAy, Valueq)}

where the tuple (Idy, BufIdxAy, Valuey) means that the copy of R identified by Idg
has the element Valueq in the first index (BufIdxAg) in the buffer bufA; the tuple (
Idg, BufIdxA;, Value;) means that the copy of R identified by Idy has the element
Value; in the second index (BufIdxA) in the buffer bufA.

We introduce a buffer module parameterized by both the index and value set of the
buffer for performing operations on a buffer variable in Dash+. The buffer module de-
fines predicates for performing operations on a buf fer variable in Dash+. The predicates
that perform operations on a buffer accept at least two arguments in the form:

48

conc state R [Id] {
bufA: buf [Valuel
bufB: buf [Value]

trans T_A {
//add an element to bufO

1

2

3

4

5 default state S {
6

7

8 do one v: Value | bufA.add[v]
9

}
10 trans T_B {
11 // remove an element from bufl
12 do bufB.remove [v]
13 +
14 }
15 }

16 run pred for 4 bufA, 3 bufB

Figure 4.15: A Dash+ Model with Buffers

// Add the element e

add [Reyr: Index->elem, Rpext: Index->elem, e: elem] {...}
// Remove an element
remove [Reyr: Index->elem, Rpext: Index->elem] {...}

where Ry, is a buffer variable in the current snapshot and R, is a buffer variable in
the next snapshot. That is, the predicate places constraints on a buffer variable in the next
snapshot based on the operation we want to perform in a buffer variable in the current
snapshot.

To invoke a buffer predicate on a buffer buf; in a nested AND-state identified by p; at
level;, we use the following;:

// Add the element value to buf;

add [p;.p2...pi-(s.buf;), p1.p2...pi.(s_next.buf;)), value]
// Remove an element from buf;

remove [p;.p2...p;i-(s.buf;), p1.p2-..p;i-(s_next.buf;))]

where the join operation p;.ps...p;. (s.buf;) returns the buffer variable buf; for p; in
the current snapshot s which we pass to the predicate in the buffer module as an argument.

The scope of an index signature determines the maximum size of a buffer since we map

49

1 open util/buffer[Value,BufIdxA] as bufferO
2 open util/buffer [Value,BufIdxB] as bufferl
3

4 sig BufIdxA {}

5 sig BufIdxB {}

6

7 sig Snapshot {

8

9

10 // buffer relations

11 bufA: Id -> BuflIdxA -> Value,

12 bufB: Id -> BufIdxB -> Value,

13 }

14

15 pred pos_R_S_T_A[s,s_next: Snapshot,p0O: Id] {
16 // adding an element to bufA

17 (one v: one Value |

18 buffer0/add[p0. (s.bufA), pO. (s_next.bufA), v])
19 }

20

21 run predicate for 4 BufIdxA, 3 BufIdxB

Figure 4.16: Translation of Buffers

elements from the index signature to values. The modeler specifies a size for the buffers in
a run or check command. In Figure 4.15, we specify that bufA should have a maximum
size of 4 and bufB should have a maximum size of 3. During the translation to Alloy, we
modify the command so that bufA is translated to Buf IdxA (the index set for bufA) and
bufB is translated to Buf IdxB as shown in Figure 4.16.

We introduced the buffer module as it holds a few advantages over Alloy’s built-in
sequence module. There is only one index set in the sequence module meaning that
every buffer containing the same set of values must be of the same size. The buffer module
alleviates this issue by using a new index set per buffer. Furthermore, the sequence module
does not have constructs for removing an element or adding an element to the front of a
buffer. The buffer module adds constructs for removing an element, and adding an
element to the front of a buffer.

20

4.4 Summary

In translating Dash+ to Alloy, we consider all the possible ways in which replicated and
non-replicated AND-states can be nested and how the translation to Alloy handles each
possible nesting of replicated and non-replicated AND-states. The translation process also
handles the translation of buffers declared at any level in the hierarchy and connects each
buffer to the buffer module for performing the operations on buffers.

We have implemented our translation in the Alloy Analyzer (version 6)'. A user has
menu options to create a Dash+ model and translate it to Alloy or directly run a Dash+
model (which first translates a Dash+ model to Alloy and then runs it). Instances of the
Dash+ model are presented in the regular Alloy visualizer.

!The implementation of Dash+ into the Alloy Analyzer (version 6) is available at https://github.
com/WatForm/org.alloytools.alloy/tree/dashplus

ol

https://github.com/WatForm/org.alloytools.alloy/tree/dashplus
https://github.com/WatForm/org.alloytools.alloy/tree/dashplus

Chapter 5

Model Checking in Dash-+

Model checking is a method for checking temporal properties of a transition system. This
chapter will focus on the different methods that are available in Alloy for model checking
and how we make Dash+ compatible with different model checking methods. The seman-
tics of Dash creates a transition system defined by an init predicate and a small step
predicate, which do not introduce any relations themselves. In each section of this chapter,
we discuss how to link these predicates to the creation of the next state relations for three
different model checking methods in Alloy.

In model checking, we check for safety and liveness properties [2] of a trace. A safety
property specifies that “something bad will not happen” and a liveness property specifies
“that something good must eventually happen”.

As in Alloy, all Dash+ models have bounds for every signature in the model resulting
in the creation of a finite state space. Bounded model checking considers a finite prefix of
a path where the length of the path is bounded by an integer [6]. As a result, bounded
model checking (BMC) checks the part of the finite state space that is reachable by a path
of a fixed length. Unbounded model checks the entire finite state space as permitted by
available memory. In this thesis, we use methods for bounded model checking in Alloy (of
paths with loops) to check for properties of Dash+ models.

o2

5.1 Model Checking using the Traces method in Alloy

The traces-based method of bounded model checking is the classical method of performing
BMC in Alloy [26]. Typically, we constrain the state signature in an Alloy model using
Alloy’s built-in ordering module to perform bounded model checking in Alloy. The ordering
module defines two private variables: Next and First. The variable Next relates two
elements in the order and the variable First maps to the first element in the order. There
are two functions next and first that act as an interface to the private variables and we
use these functions to connect the semantics of Dash to the ordering module.

A consequence of using Alloy’s ordering module is that the traces cannot contain loops.
The snapshots we use to represent Dash semantics in Alloy are not a record structure but
are a set of elements with relations mapping to atoms which represents the state of the
system. The Dash semantics include constraints that specify that two snapshots cannot
map to the same set of values. As a result, the traces that are considered by the ordering
module must have only distinct snapshots meaning that we cannot have loops in a trace.
Since we are unable to loop to a previous snapshot, the use of the ordering module for
bounded model checking will only give us finite paths.

One solution to the issue of having only finite paths is to use the built-in traces
module[16]. The traces module extends the ordering module, but the next relation includes
a loop such that the last state can loop to the previous snapshot. This modification allows
BMC to consider traces of an infinite length. While the traces considered using the traces
module have an infinite path, the number of snapshots in the trace is bounded by an
integer. Therefore, the finite state space that we explore using the traces module is the
same as we would explore using the ordering module. The only difference in using the
traces module is that we loop back to a snapshot that we have previously visited.

Figure 5.1 shows how the next and first functions are used to connect a Dash model
to the traces module which defines the same variables and functions as the ordering module.
We use constraints to specify that the First relation (mapping to the first snapshot in
the trace) should satisfy the init (initial) predicate; the Next relation must satisfy the
small_step predicate meaning that system transitions from one snapshot to the next
snapshot in the snapshot trace. Therefore, we avoid adding any extra relations to the
model. Constraining the snapshot signature using the traces module means that a total
ordering is imposed on the snapshot signature by forcing pairs of consecutive snapshots to
be related using the relation Next.

Once we have connected a Dash+ model to the traces module, a trace can be created for
a model. We can check for safety or liveness properties in all traces of a model using Alloy

23

open util/traces [Snapshot] as snapshot

fact {
init [snapshot/first] and
(all s: one Snapshot - snapshot/last |
small_stepl[s, s. (snapshot/mnext)])

~N O O W N

Figure 5.1: Connecting a Dash+ model to the Ordering Module

expressions to describe the properties. Figure 5.2 shows an Alloy model with a liveness
(line 9) and safety property (line 14). The liveness property specifies that the variable
v0 should eventually have one or more values in some snapshot of the trace; the safety
property specifies that the variable v1 should always map to exactly one value throughout
the trace in all snapshots of the trace.

1 sig Snapshot {

2 vO0: set Int

3 vl: set Int

4

5 }

6 ...

7 // Liveness Property

8 assert liveness {

9 some s: Snapshot | (some s.v0)
10 }

11

12 // Safety Property

13 assert safety {

14 all s: Snapshot | (one s.vl)
15 %

Figure 5.2: Traces Properties

o4

5.2 Transitive Closure Based Model Checking (TCMC)

Transitive-closure-based model checking (TCMC) is a symbolic representation of the se-
mantics of computational tree logic with fairness constraints (CTLFC) in Alloy [20]. TCMC
is defined over transition systems. A counterexample to a property in TCMC returns a
transition system that satisfies the model but fails to satisfy an assertion as a counterex-
ample.

Kember et al. [31] extends TCMC to Path TCMC which requires that the counterex-
ample returned is a path of the model that does not satisfy the property. Using Path
TCMC makes it easier to understand a counterexample since we can directly extract the
path from a transition system with branching paths in which an assertion was violated. We
use the Path TCMC module for model checking using TCMC. The Path TCMC module
defines two private variables: SO and sigma. The variable SO maps to a set of initial states
and the variable sigma relates snapshots to each other. Similar to the ordering module,
there are two functions that are used to connect a model to the Path TCMC module: ksS0
and ksSigma. The function ksS0 acts as interface to the S0 variable and ksSigma acts
as an interface to the sigma variable.

Figure 5.3 shows the constraint that connects the semantics of Dash+ to the Path
TCMC module. We specify that ksS0 maps to the set of snapshots that satisfy an initial
constraint; ksSigma is the transition relation and is satisfied by the small_step predicate
meaning that two snapshots that are related by ksSigma must satisfy the small_step

predicate. Therefore, we avoid adding any extra relations to the model by using the
semantics of Dash+ to create a transition system.

1 fact tcmc {
//ksS0 satisfies init (initial) constraints
(all s: one Snapshot | { s in ctl/ks_sO } <=> init[s])
//ksSigma satisfies small_step predicate
(all s,s_next: one Snapshot |
({ s -> s_next } in ctl/ks_sigma) <=>
small_stepl[s, s_next])

00 N O O WN

Figure 5.3: Connecting a Dash+ model to the CTL module

Properties are defined using the temporal operators and path quantifiers of CTLFC.
Each CTLFC operator is a function that defines a set of snapshots that satisfies the formula

95

for the CTLFC formula. Atomic propositions are written using set comprehension for a
set of snapshots. Figure 5.4 shows an Alloy model with a liveness (line 10) and safety
property (line 17). The liveness property specifies that the variable v0 should eventually
have one or more values in all traces; the safety property specifies that the variable vi1
should always map to exactly one value throughout all traces.

When model checking, the number of snapshots in the command is the number of
snapshots in the transition system and not the length of the paths explored. Since the
transition system include branching paths, the branching paths can be quite short. TCMC
may consider a finite prefix of a path that does not satisfy a liveness property by itself but
it is possible that all extensions to the prefix satisfy the liveness property. For example, the
liveness property in Figure 5.4 (line 10) may return a transition system as a counterexample
in which the branching paths do not have the length to explore interesting behaviors of
the model and satisfy the liveness property. As a result, we have made the decision to not
check for liveness properties in our case studies in Chapter 6 when using TCMC for model
checking.

sig Snapshot {
vO: set Int
vl: set Int

1
2
3
4
5 %
6 ...
7 // Liveness Property

8 assert liveness {

9 // vO0 has on all paths, eventually one or more value
10 af [{s: Snapshot | (some s.v0)2}]

11 7

13 // Safety Property
14 assert safety {

15 // vl has on all paths, in every snapshot,
16 // exactly one value

17 ag[{s: Snapshot | (one s.v1l)}]

18 }

Figure 5.4: TCMC Properties

o6

5.3 Electrum

Electrum [7] is an extension of Alloy that adds Linear Temporal Logic (LTL) operators to
the relational logic in Alloy and has been implemented into the Alloy Analyzer (version
6). The Alloy Analyzer supports bounded and unbounded model checking of Electrum
specifications where bounded model checking is performed by encoding into SAT via kodkod
and unbounded model checking is performed by encoding into NuSMV [12]. Unbounded
model checking with encoding into NuSMV checks for traces with infinite length but with
finite state spaces. Electrum uses Linear Temporal Logic connectives such as eventually
and always to express properties of traces for a model.

In an Electrum model, signatures and fields declared using the var keyword means that
they are dynamic and their valuation may change over time. Within a fact, a signature
or field that is declared using the var keyword can be primed to specify its value in
the next step. Furthermore, Electrum specifications are interpreted over infinite length
paths meaning that an Electrum specification should not have a state with no outgoing
transition. An Electrum specification that is not able to loop back to a previous state will
be inconsistent.

We have added support to convert a Dash+ model to an Electrum specification. A
Dash+ model that has been converted to Electrum does not use the snapshot signature be-
cause dynamic variables can be declared in Electrum. Instead, the conf, taken, events,
buffers and variable relations (declared in the snapshot signature for non-Electrum models)
for non-replicated components at levely are translated to signatures declared using the
var keyword meaning that they change their value over time. The conf, taken, events
relations for AND-states not at levely are declared as var fields in the Identifiers
signatures (the parent signature for all identifiers of replicated processes). Variables and
buffers that are declared within replicated components are declared as var fields in their
respective Identifier signature.

Figure 5.5 compares the identifier signature and snapshot signatures in Dash+ mod-
els that have been translated to Alloy and Electrum. The Dash+ model that has been
translated in Figure 5.5 has one replicated AND-state R parameterized by the Id signature
with two variables v0 and v1. In the translation to Electrum, the conf1 and taken1
relations are declared inside the Identifiers signature as a var relation. The variables
R_v0 and R_v1 are declared as var relations within the Id signature as these variables
are declared inside a replicated AND-state parameterized by Id.

When used in an action, each of the dynamic vars is primed when we want to refer
to their value in the next snapshot. The conf and variable relations are primed in the

57

1 // Parent Signature for all 1 // Parent Signature for all
// Identifier Signatures 2 // Identifier Signatures

3 sig Identifiers extends univ 3 sig Identifiers extends univ {
{} 4 var confl: set StatelLabel,

4 sig Id extends Identifiers {} 5 var takenl: set

5 sig Snapshot extends univ { TransitionLabel

6 confl: Identifiers -> 6 }
StatelLabel, 7 var sig stable in Bool {}

7 takenl: Identifiers -> 8 sig Id extends Identifiers {
TransitionLabel, 9 var R_v0O: one Int,

8 stable: one boolean/Bool, 10 var R_v1l: some Int

9 R_v0:Id ->one Int, 11}

10 R_vl: Id ->some Int

11}

Figure 5.5: Snippet of a Dash+ model translated to Alloy (left) and Electrum (right)

postcondition predicates and the taken relations are primed in the semantics predicates
such that Dash+ models converted to Electrum can change their value over time.

As shown in Figure 5.6, the init and small_step predicates are invoked without any
parameters as a Dash+ model translated to Electrum does not use the snapshot signature.
Figure 5.6 shows the constraints needed to create traces for an Electrum model. We specify
an initial state using the initial conditions of the model and that the small step predicate
should be true between all the states in the trace.

1 fact traces {

2 init and

3 always small_step
4 %

Figure 5.6: Creating a Trace in Electrum

Properties for Dash+ models specified in Electrum are written using Linear Temporal
Logic connectives. We can specify whether a property holds eventually in a trace (liveness)
or will always have to hold throughout the trace (safety). Figure 5.7 shows an Electrum
model with a liveness (line 7) and a safety property (line 12). The liveness property specifies
that the var sig v0 should eventually have one or more values in some state in all traces;

o8

1 var sig vO0 in Int {}
2 var sig vl in Int {}
3

4 ...

5 // Liveness Property
6 assert liveness {

7 eventually (some vO)
8 %

9

10 // Safety Property
11 assert safety {

12 always (one v1)

13 }

Figure 5.7: Electrum Properties

the safety property specifies that the var sig v1 should always map to exactly one value
throughout all traces.

5.4 Summary

Dash+ offers three model checking options: traces-based model checking, transition-closure-
based model checking and Electrum. The traces-based model checking option defines a path
of an infinite length (with loops) but with a limited scope on the number of snapshots; the
TCMC model checking method defines a transition system with a limited number of snap-
shots; Electrum interprets specifications over an infinite sequence of states and considers
paths of an infinite length (by having loops in the trace). For model checking using the
traces-based or TCMC model-checking methods, we connect our model to the traces or
path TCMC module using functions and mitigating the need to add any extra relations to
the model. Alternately, a Dash+ model can be translated into an Electrum specification
for model checking using Electrum keywords.

29

Chapter 6

Case Studies

This chapter presents the case studies that we have developed to demonstrate the features
of Dash+. We use the model checking options in Dash+ to check for properties of each of
the models in this chapter and point out the Dash+ features that each model exploits.

For each of the case studies that we present, we use significance axioms (described
on pg.12) to choose a scope for checking properties to ensure that we explore interesting
behaviors of the model. The operations axiom is used to select a scope that is large enough
for every transition in a model to be taken; the complete big step axiom is used to ensure
that instances include complete big steps.

We analyzed the case studies on a computer with an Intel® Xeon@®) Processor E3 v5
processor running at 3.5 GHz. Each of our case studies can be found here.

6.1 Chord

Chord is a distributed hash table that was introduced in [11] and distinguished itself from
other peer-to-peer networks using its provable correctness and performance. A Chord
network consists of nodes that form a ring structure. Nodes that are a part of the ring
structure are called member nodes. Member nodes are referred to as live nodes and
non-member nodes as dead nodes. A dead node may become a member by joining the
ring structure through a join operation. Every node has a unique identifier with member
nodes having successor and predecessor pointers. Figure 6.1 is an illustration of a Chord
network with five member nodes that form an ordered ring structure through the successor
and predecessor pointers. A node that is colored green is a live node (it is a member of

60

https://github.com/WatForm/watform-models/tree/master/2022-tamjid-thesis

prdc / \ prdc

17 9
\ucc succ//
prdc \ prdc

13

Figure 6.1: An Ideal Chord Ring Structure [13]

the ring); a node that is colored red is a dead node. The ring structure in Figure 6.1 is in
an ideal state meaning that there is only one ring and the member nodes in the ring are
ordered.

In Chord, a member node can fail at any point and cause disruptions in the ring
structure. As a result, Chord has a ring-maintenance protocol that is responsible for
correcting gaps in the ring structure and returning it to an ideal state. It is claimed in
[14] that the ring-maintenance protocol is provably correct meaning that it will eventually
fix any disruptions in the ring structure. However, Zave [18] has shown that the ring-
maintenance protocol is not correct. Thus, Zave modelled a correct version of the ring
maintenance protocol of Chord in Promela and Alloy and its correctness has been proven
using invariants in the Alloy Analyzer and Spin Model Checker. The correct version of
Chord modelled in Alloy consists of the following operations:

stabilize, noti fy, reconcile, update, flush, join

that are responsible for repairing gaps in the ring. These operations are atomic and change
the state of a node. As shown in Figure 6.2, Zave’s version of Chord uses a NetState
signature that is used to define the global state of the system and a time variable is used
to model the passage of time for the system.

61

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

sig NetState {

time: Time,

members: set Node,

succ: members -> one Succs,

prdc: members -> one Node,

status: members -> lone Status,
saved: members -> lone Node,
bestSucc: members -> lone members,
principals: set members
status.Status = saved.Node

pred StabilizeFromSuccessor [s, s’: NetState, t:

-—- PRECONDITIONS
t in s.members
no t.(s.status)

-- POSTCONDITIONS
s’.time = next [s.timel
s’.members = s.members

s’.prdc = s.prdc
let succl = t.(s.succ).list[0] |

succl ! in s.members =>

((some u: Succs |

s’.succ = s.succ ++ (t -> u)

&% s’.status = s.status ++ (t -> Stabilizing)
&& s’.saved = s.saved ++ (t -> succl.(s.prdc))

Node] {

Figure 6.2: Correct Version of Chord as Modelled in Alloy by Zave [18]

62

© 0 N O O WN =

W W WWWWWwWNDNDNNDNDNNDNDNNDNNDNNDEERRPR PP P2 2 P2 22
NOoO OO WNFP, O OO NOO P WNEFE, O WO NO O WN - O

open util/ring[Nodel
conc state System {
members: Node
conc state N [Node]l {
frst: lone Node
scnd: lone Node
prdc: lone Node

default state Live {
trans StabilizeFromSucc {
when {
no status
}
do {
// The Successor is dead
frst !in members implies {
frst’
scnd’

scnd
nextNode [scnd]

// The successor is a member
} else {
frst’ frst
scnd’ N[frst]/frst
// The successor’s predecessor is better
(some N[frst]/prdc and ...) => {
status’ = Stabilizing

Figure 6.3: Chord in Dash+

63

We have modelled the correct version of the Chord protocol in Dash+! and a snippet
is shown in Figure 6.3. In the Dash+ model of Chord, we define a state hierarchy such
that member nodes are in a live state and non-member nodes are in a failed state. The
Chord operations are defined as transitions that a live node can take based on the status
of each node and the global state of the system. A node fails when it takes a fail transition
and transitions to the failed state. Failed nodes may join the ring structure through a
transition (to the live state) defined in the failed state. In the actual implementation of
Chord, nodes periodically check the status of their successor and predecessor nodes and
update the structure of the ring based on the state of the successor and predecessor nodes.
In Dash+, we imitate this behavior by having each node take a transition in a big step and
perform an operation to resolve any issues in the ring structure by checking the status of
sister nodes.

The property that we want to check of Chord in Dash+ is that the ring structure always
becomes ideal (there is only one ring and the member nodes in the ring are ordered). The
ideal property uses the predicates defined in Figure 6.4 to specify that the system is in an
ideal state. Figure 6.4 shows the predicates that we use to check if a Chord system has
reached an ideal state (using the traces-based model checking method).

1 // Returns the members that form a ring

2 fun ring [s: Snapshot] : some Node {

3 {m: s.System_members | m in m. (succl[s])}
4 }

5

6 // Members form at most one ring

7 pred atMostOneRing [s: Snapshot] {

8 (all m1, m2: ringl[s] | ml in m2."(succls]))
9 }

10

11 // Members are ordered

12 pred orderedRingl[s: Snapshot] {

13 all disj ml, m2, mb: ringl[s] |

14 m2 = ml. (succ[s]) implies not between[ml, mb, m2]
15 %

Figure 6.4: Properties of Chord in Alloy

IThe complete model can be found in Appendix A.

64

Chord
Property | Snapshot Scope | Node Scope | Traces (s) | Electrum (s)
Ideal 15 4 120 44
Ideal 15) 1361 147

Table 6.1: Time Taken to Check Chord Properties (s = seconds)

The time taken to analyze the properties for Chord is shown in Table 6.1. For model
checking of the Chord model in Dash+, Electrum performs better than the Traces method.
We also found it easier to write the property that we need to check the Chord model in
Electrum since we can use the LTL operators of Electrum to specify that the system should
eventually reach an ideal state if there are no more join or fail events. We do not use TCMC
since the traces do not have loops and we may not have a trace in which Chord reaches an
ideal state.

The Dash+ features that are highlighted using this case study are:

1) Locality of description: Dash+ gives us the opportunity to model Chord with respect
to a single node. We specify how a single node takes a transition based on the state of
its successor and predecessor nodes. In Zave’s model of Chord, each dynamic variable of
a Node is modelled as a function from the global state and node identifier to the value.
This extra parametrization is tedious and makes it difficult to understand the model from
the point of view of one node. Chord has also been modelled in Electrum [3] and similarly
describes a global state and global variables to specify how the ring structure changes over
time.

2) Communication between sister components: Each node in Chord directly communi-
cates with successor and predecessor nodes by accessing the values in their variables and
checking if the successor or predecessor pointer needs to be updated.

3) Arranging replicated components in a ring: We arrange the nodes in a ring structure
by constraining the Node signature using the ring module?. Additionally, the frst, scnd
and prdc variables in the replicated AND-state Node are defined as mappings from a node
to a node. Since the frst, scnd, and prdc variables store a node-node mapping for every
node, we will have arranged the nodes in a ring structure once the Chord system is ideal.

4) Use of named control states: The basic state of a node in the Dash+ model for
Chord determines whether it is a live node or a failed node. In Zave’s version of Chord,

2The ring module is an extension to the ordering module in which the last element in the order points
to the first element in the order.

65

we have to check whether a node in a member set to determine whether the node is a live
or failed node.

6.2 Distributed Spanning Tree Algorithm

The Distributed Spanning Tree Algorithm [12] consists of a set of nodes that form a network
topology starting from a distinguished root node. Each node has a level and is connected
to a neighboring node that is identified using a parent pointer. The presence of a parent
pointer connecting two neighboring nodes creates a network topology taking the form of a
connected undirected graph [37].

The algorithm that creates the connected network topology starts at the root node
which is selected prior to the algorithm being run. The root node assigns itself a level of
zero and sends a message to another node with its identifier and level. A node that receives
a message assigns its parent pointer to the node sending the message and assigns its level
to one plus the level of the node that sent the message. The process of sending messages
to nodes is repeated until every node has assigned itself a level and a parent

We have modelled the Distributed Spanning Tree Algorithm in Dash+? using a repli-
cated AND state N parameterized by the set Node where each copy of N represents an
individual node. The replicated AND-state N has a parent variable that maps to a node,
and a level variable mapping to an element from a Level set which is constrained by
Alloy’s ordering module. The Level set is constrained using the ordering module such
that we can describe a specific level for each node. Figure 6.5 shows a snippet of the
Distributed Spanning Tree algorithm in Dash+. A global variable root identifies the root
node. Every node is initially in an unassigned state. The root node takes the first step by
assigning the level variable to the first element in the Level set and transitioning to the
assigned state. Nodes that are in the assigned state can send a message to an arbitrary
unassigned node. In Figure 6.6, an assigned node sends a message to a sister node that
has not received a message. A message is a mapping from the identifier element of the
node sending the message to its level. A node that has received a message assigns itself
the next level in the order with respect to the level of the node that sent it the message
and assigns its parent pointer (a variable) to the node that sent the message. Once a
node has assigned its level and parent, it transitions to the assigned state and can send
messages to nodes that are unassigned. We repeat the process of sending messages and
assigning nodes until every node is in the assigned state.

3The complete model can be found in Appendix B.

66

Distributed Spanning Tree Algorithm
Property | Snapshot Scope | Node Scope | Traces (ms) | TCMC (ms) | Electrum (ms)
Safety 9 4 495 1125 1171
Safety 11) 479 2021 2591
Safety 13 6 1877 4855 11756
Liveness 9 4 130 n/a 606
Liveness 11 5 169 n/a 2673
Liveness 13 6 1504 n/a 7360

Table 6.2: Time Taken to Check Spanning Tree Properties (ms = milliseconds, n/a = not
applicable)

In one big step, the nodes that have been assigned a level will send a message to
unassigned nodes and unassigned nodes that have received a message will assign themselves
a level and a parent. We repeat the big steps until every node has been assigned a level
and a parent.

This model should satisfy some safety and liveness properties. The algorithm must
not introduce a cycle in the network topology (safety) and every node must eventually
be a part of the network topology (liveness). For the safety property, we check for cycles
using the transitive closure operator over the parent relation. The property is shown in
Figure 6.7 for the traces, TCMC, and Electrum model checking methods and specifies
that no node except the root node is reachable from itself in the parent relation. For the
liveness property, we check whether every node is in the assigned state at the end of the
execution of the algorithm to determine if every node eventually becomes a part of the
network topology. Table 6.2 shows the time taken to analyze each of the properties in the
Distributed Spanning Tree algorithm. As the scope of the nodes is increased, the number
of snapshots needed to compute the spanning tree is increased since we need to take more
steps to ensure that every node is eventually assigned. Model checking using the traces
method proved to provide the fastest analysis times.

The Dash+ features that are highlighted using this case study are:

1) Communication between arbitrary sister components: The Distributed Spanning
Tree model in Dash+ has each copy of the replicated AND-state N accessing the message
variable in a sister copy and adding a message to the message variable based on whether
the sister copy has received a message. If we were to model the Distributed Spanning
Tree algorithm in PlusCal or SPIN, we would need global channels (or global sequences
in PlusCal) to which an assigned node can send a message. An unassigned node would

67

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

conc state DistrubedTreeSpanning {

}

root:

one Node

conc state N [Node] {

leve

1l: lone Level

parent: lone Node

mess

acti

age: Node -> Level

on sendMessage [

1 {3

default state Unassigned {
trans RootAssign {

}

when {
this in root

}

do {
level’ = nodelLevel/first
parent’ = this

}

goto Assigned

trans NodeAssign {

}

stat

e Assigned {

trans sendMessage {

}

Figure 6.5: Distributed Spanning Tree Algorithm in Dash+

68

1 action sendMessage [

2 one n: Node - this | {

3 // The sister Node has not received a message

4 no N[nl]/message

5 // Send the sister Node a message with the

6 // local Node’s identifier and Level

7 N[n]/message’ = this -> level

8 all others: Node - n | N[others]/message’ = N[others]/
message

9 X

10 1 {3

Figure 6.6: Sending a Message to a Sister Node

read the global buffer and use the information in the buffer to assign a parent and a level
and remove the message from the buffer. Dash+ allows us to directly access variables in a
sister node without having to resort to global variables and thus simplifying the model.

2) Arranging replicated components in a tree structure: The parent variable in the
replicated AND-state N is defined as a mapping from a node to a parent node. Since the
parent variable will eventually store a parent-child mapping for every node, we will have
arranged the nodes in a tree structure. In this case, we do not constrain the identifier set
node to be a tree, but we check that the algorithm produces a tree structure using the
parent variable.

3) Ease of checking properties: We check for graph properties of the Distributed Span-
ning Tree model (such as whether a node is reachable itself) and checking for graph prop-
erties is easier in a relational language like Alloy.

69

© 0 N O O W N -

NNNMNNMNNMNEPE PR PP PR PR PP
O WNEFP, O O 0N Ok WwND e+~ O

//DistrubedTreeSpanning_root is the root Node
//DistrubedTreeSpanning_N_parent is the parent relation

// Using Traces
assert noCycles {
(all s: Snapshot |
no n: Node - s.DistrubedTreeSpanning_root |
// A Node is not reachable from
// itself in the parent relation
n in n.("("(s.DistrubedTreeSpanning_N_parent))))

// Using TCMC
assert ctl_noCycles {
ctl_mc[ag[{ s: Snapshot |
all n: Node - s.DistrubedTreeSpanning_root |
n !in n.((" (s.DistrubedTreeSpanning_N_parent)))}]]

// Using Electrum
assert noCycles {
always (one s: Snapshot |
all n: Node - s.DistrubedTreeSpanning_root |
n !in n.("("(s.DistrubedTreeSpanning N_parent))))

Figure 6.7: Checking for Cycles in the Distributed Spanning Tree

70

6.3 Leader Election Protocol

The Leader Election protocol [10] is used to select a leader in a network with processes
arranged in a ring where the leader is a process with the highest identifier. Each process
passes its identifier as a token in a specified direction around the ring. A process that
receives a token from a neighboring process can either consume it or pass the token to the
process next to it in the ring. A token is consumed by a process if the identifier in the
token is less than the identifier of the process; a token is passed if the identifier in the token
is greater than the identifier of the process. A process that receives a token with its own
identifier will set itself as the election leader since a process with the highest identifier will
only receive its token if it has been passed completely around the ring.

We have modelled the Leader Election protocol in Dash+ using a replicated AND-state
Process parameterized by the Identifier set. The Identifier set is constrained
using the ring module in order to arrange the processes in a ring. A snippet of the Leader
Election protocol in Dash+ is shown in Figure 6.8. The replicated AND-state Process
has a buffer variable that stores the tokens it receives. Every copy of Process is initially
in an electing state and can either consume a token in its buffer or add the token (pass
it along) to the buffer in the successor process. A token is consumed by removing it from
the buffer. Once a process notices its own identifier in the buffer, it will transition to the
elected state to indicate that it is the leader.

In one big step, every copy of Process may consume a token or pass it along. The
model will keep on taking big steps until a leader is elected since there are no more small
steps that can be taken once a leader is elected.

The Leader Election protocol was modelled by Jackson in Alloy [26] where each process
is given a pool of tokens that can be consumed by a process or passed to a successor process.
The token to pass or consume is selected arbitrarily from the pool of tokens. Jackson states
that the Leader Election protocol should ideally work with buffered tokens. Therefore, we
use the token buffer in our model that stores an ordered set of tokens such that each
process can attend to tokens it has received in a FIFO manner.

The properties that we need to check of the leader election protocol is that one leader
is eventually selected (liveness), and that the leader selected has the highest identifier
(safety). We can check the liveness property by specifying that a copy of Process will
always eventually be in the Elected variable. The safety property can be checked by
specifying that an elected leader is last in the ordered Identifier set. Figure 6.9 shows
the safety and liveness properties of the Leader Election Protocol for the Traces method.
The time taken to run each of the properties using a maximum buffer size of 3 is shown

71

1
2

© 00 N O O b

10

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

open util/ring [Identifier]
conc state System {

elected: set Identifier

conc state Process [Identifier] {
token: buf[Identifier]

default state Electing {
trans PassToken {
when { ... }
do {
// Pass the token
Process [next]/token.addFirst[token.firstElem]

trans ConsumeToken {
when {...}
do token.removeFirst // Consume the token

}
trans ElectLeader {
when token.firstElem = this
do elected’ = +this // Elect Leader

goto Elected
}
}
state Elected {}

init {
one token

// Initially have each process send a token to a successor
Process[next]/token.firstElem = this

Figure 6.8: Leader Election Protocol in Dash+

72

1 //Liveness Property

2 //System_elected is the "elected" variable

3 assert eventuallyleaderElected {

4 some s: Snapshot | one s.System_elected

5 %

6

7 // Safety Property

8 assert electedHasHighestIdentifier {

9 // If the elected variable has an Identifier element, then that
10 // element must be the last element in the Identifier ordering
11 (all s: one Snapshot |

12 one s.System_elected => (s.System_elected) in PO/last)

13 }

Figure 6.9: Leader Election Properties for the Traces method

in Table 6.3. The Traces method of model checking provided the best analysis times. The
analysis times using Electrum drastically increase as the number of steps is increased.

The Dash+ features that are highlighted using this case study are:

1) Locality of description: Dash+ gives us the opportunity to model the Distributed
Spanning Tree algorithm with respect to a single node. In the Leader Election model by
Jackson [20], each dynamic variable of a process is modelled as a function from the global
state and process identifier to the value which adds extra parameterization to the model.

2) Arranging replicated components in a ring: We use the ring module to constrain the
Identifier set such that the set of processes in the Leader Election model is arranged
in a ring.

3) Ease of checking for properties: Since the processes in the Leader Election algorithm
model in Dash+ are arranged in a ring structure, it is easier to check for graph properties
using Alloy.

4) Communication using buffers: Each copy of Process in the Leader Election Ring
model in Dash+ communicates with sister components by adding a token to the buffer in
the sister copy next to it in the ring. In SPIN or PlusCal, modelling the Leader Election
Protocol would require us to define global variables for each copy of a process since one
process is not able to access a local variable in another process. Otherwise, each process
would need to broadcast a message to a global variable that is then accessed by another
process. Either technique would increase the complexity of the model.

73

Leader Election Properties

Snapshot [Process
Property | Scope Scope | Traces (ms) | TCMC (ms) | Electrum (ms)
Safety 13 6 5726 5903 17561
Safety 15 7 94735 12336 138053
Liveness 13 6 5086 n/a 17115
Liveness 15 7 63950 n/a 75972

Table 6.3: Time Taken to Check Leader Election Properties (ms = milliseconds, n/a =
not applicable)

6.4 The Bit Counter

The Bit Counter [18] consists of an ordered set of bits where the first bit represents the least
significant bit and the last bit represents the most significant bit of a counter. During each
tick of a clock, the counter increments by one. An increment in the counter is represented
by a combination of bits toggling their state from 0 to 1. Once a bit has toggled its state
back to 0 from 1, the next bit in the order will toggle its state. A two-bit counter has
been modelled in Dash by Serna [11] where each bit is represented by a concurrent state.
The initial clock tick is represented by an environmental event with the effects represented
by internal events. Figure 6.10 shows a snippet of the bit counter in Dash (left). The
concurrent AND state Bit1 is the least significant bit and Bit2 is the most significant
bit.

In Dash+, we model an n-bit Counter using a replicated AND-state parameterized by
an identifier set (called Identifier) that is constrained by Alloy’s ordering module and
is shown in Figure 6.10 (right). The first element in the ordered identifier set represents
the least significant bit and the last element in the set represents the most significant bit.
Therefore, we specify an upper bound for the number of bits we want in our counter by
using the scope for the Identifier set. A variable called current is used to keep a
track of the current bit that is toggling its state and is initially set to the least significant
bit in the model. An environmental event toggles the state of the current bit which sends
an event to the next bit in the ordering as in the transition seen in Figure 6.11. Once the
next bit receives an event, it takes a transition to toggle its state and assigns itself as the
current bit. We keep iterating through each bit until the last bit has toggled its state and
sends an event Done to signify that every bit has toggled its state. In each big step, one
bit may only toggle its state, or a bit will toggle its state and send an event to the next
bit causing that bit to toggle its state within the same big step.

74

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

conc state Bitl { 1
env event TkO {} 2
event Tkl {} 3

4

default state Bitl1l { 5
trans T1 { 6
on TkO 7
goto Bit1l2 8

} 9

} 10
state Bit12 { 11
trans T2 { 12

on TkO 13
goto Bit1l1l 14
send Tkl 15

} 16

} 17
} 18
19

conc state Bit2 { 20
event Done {7} 21
default state Bit21 { 22

trans T3 { 23
on Bit1/Tk1 24
goto Bit22 25

} 26

} 27
state Bit22 { 28
trans T4 {...} 29

} 30

+ 31
32

33

34

35

conc state Counter {

¥

env event TkO {}
event Done {}
current:

one Identifier

conc state Bit [Identifier]{

event Tkl {7}

default state Bitl {
trans currentBitToBit2{

}
trans nextBitToBit2 {

}
state Bit2 {
trans currentBitToBitl {

send Tkl [next[this]]
}
trans nextBitToBitl {

do current’ =
next [current]
goto Bitl
}

trans lastBitDone {

send Done

Figure 6.10: Bit Counter model in Dash (left) and Dash+ (right)

75

trans currentBitToBitl {

// When the env event TkO is triggered

on TkO

// this bit is currently toggling

// Transition to the basic state Bitl

goto Bitl

// event Tkl triggered in the next bit in the ordering
// (next[this]) returns the next bit
10 send Tkil[next[this]]

11 3}

Figure 6.11: Sending an Event to a Sister Component

1
2
3
4
5 when this in current
6
7
8
9

Bit Counter Properties

Snapshot | Bit
Property Scope | Scope | Traces (ms) | TCMC (ms) | Electrum (ms)
Every Bit Toggled 12 3 286 1226 787
Every Bit Toggled 20 4 295 4457 546

Table 6.4: Time Taken to Check Bit Counter Properties (ms = milliseconds)

The property that we need to check of the bit counter is that every bit has toggled its
state once the next Done event has been sent. The time taken to analyze the properties
is shown in Table 6.4. The Traces and Electrum method of model checking provides the

best analysis times.

The Dash+ features that are highlighted using this case study are:

1) Easier scalability: The number of bits in the Bit Counter can be increased by
incrementing the scope of the identifier set. In Dash, we need to describe an AND-state
to represent each bit. Therefore, the Bit Counter model by Serna has two-bit and requires
two AND-states (Bit1 and Bit2) to represent each bit. If we were required to have three
bits in the Bit Counter, the Dash model would need another AND-state to represent the

third bit.

76

2) Linear ordering: The bits in the Bit Counter model in Dash+ are arranged in a
linear order by constraining the identifier set using Alloy’s ordering module. Therefore,
the first bit is represented by the first identifier element in the order, and the last bit is
represented by the last bit in the order.

3) Communication by sending events to a sister component: In Dash+, we trigger an
event in the next bit within the ordering to specify that the next bit should toggle its
state. The Bit Counter model in Dash requires us to trigger an event in the current bit
after toggling its state, and having the next bit respond to the event triggered in the current
bit.

6.5 Elevator

A model of an elevator system was designed by Serna [11] in Dash inspired by the elevator
model in [19] and [38]. The elevator can move in an up or down direction to respond to a
call from any floor and will stop once it reaches a floor from which a call is made. If there
are no more calls in the direction of travel, the elevator will change its direction to respond
to any calls in the opposite direction. Once the elevator has responded to every call that
has been made, it will move to the ground floor and wait for further calls.

We extend the elevator model in Dash+ to consist of a set of elevators running con-
currently and a controller that decides which elevator will get a call depending on their
current floor and direction. Figure 6.12 shows a snippet of the Elevator model in Dash+
where the set of elevators is declared using the replicated AND-state Elevator; the con-
troller is declared as a non-replicated AND-state. Each copy of the replicated AND-state
Elevator is initially in the idle state meaning that it has no calls to respond to. The
AND-state Controller initially has a set of calls with a specified floor and direction that
elevators need to eventually respond to. During each big step, the controller will send a
call to a copy of Elevator based on the direction of the elevator and its proximity to
the floor calling it. Figure 6.13 shows the specification of an action for the Controller
sending a request to an elevator to go to a floor above it. An elevator closest to the floor
that is requesting a call and is traveling in the same direction as that of the requested call
will receive the call. Since the Controller initially has a set of calls that it can send to
the elevators, the controller will eventually be exhausted of calls to send and the elevators
will have responded to every call that was sent.

The properties that we check of the elevator is that all the requests are eventually sent
(the Controller initially has an arbitrary set of calls that it sends out over time) by

7

© 00 ~NO O WN -

W W WWWWWNNNDNDNNNNNNDNNNDERERPRRPR PR PB B 22
DO P WO, OO0 NOO P WNEFE O OWwWNOOdd WN = O

conc state System {
conc state Controller {
callToSend: Floor -> Direction

// Send a request to an Elevator to move to a floor above it
action SendUpRequest [...] {}

// Send a request to an Elevator to move to a floor below it
action SendDownRequest [...] {}

default state Sending {
trans SendingUpRequest {

}

trans SendingDownRequest {

¥

conc state Elevator [Identifier] {
direction: one Direction
called: set Floor
current: one Floor

state MovingUp {...}
state MovingDown {...}

default state Idle {...}

}

init {
no called
current = min[Floor]
direction = Up

}

Figure 6.12: Elevator in Dash+

78

1 action SendUpRequest [

2 one e0: Identifier, f: callToSend.Up | {

3 // The direction of the Elevator is "Up"

4 Elevator[e0O]/direction = Up

5 // The elevator is below the floor that it needs to go to
6 lte[Elevator [e0]/current, f£f]

7 // Send the call to the elevator

8

9

Elevator[e0O]/called’ = Elevator[e0]/called + f
callToSend’ = callToSend - (f -> Up)
10 // Elevator getting the call is the closest
11 no el: Identifier - e0 | { Elevator[el]/direction = Up and
12 between[Elevator [e0O]/current, Elevator[el]/current, f] }
13 all others: Identifier - e0 | {
14 Elevator [others]/called’ = Elevator[others]/called }
15 }
16 1 {}

Figure 6.13: Sending a Call to an Elevator

the Controller (liveness) and that an elevator that is called is always the one closest in
proximity to the floor calling it (there are no more elevators that are traveling in the same
direction as the elevator that is called and is closer in proximity to the floor calling the
elevator). The time taken to analyze the properties is shown in Table 6.5.

The Dash+ features that are highlighted using this case study are:

1) Replicated and non-replicated components running concurrently: The Elevator model
in Dash+ has a non-replicated AND-state (Controller) and a replicated AND-state
(Elevator) that run concurrently together. The replicated AND-state Elevator changes
its state based on the calls sent by the Controller.

2) Communication between replicated and non-replicated components: The non-replicated
AND-state Controller is able to observe the state of each of the replicated AND-state
Elevator and send a message to a copy of Elevator (by accessing a variable) based on
the floor and direction of the elevator.

79

Elevator Properties
Snapshot | Elevator
Property | Scope Scope | Traces (ms) | TCMC (ms) | Electrum (ms)
Safety 17 3 627 13446 34017
Safety 17 4 878 16325 106855
Liveness 17 3 1393 n/a 9850
Liveness 17 4 1306 n/a 20537

Table 6.5: Time Taken to Check Elevator Properties (ms = milliseconds, n/a = not appli-
cable)

6.6 Carousel

Carousel [10] is a distributed system that aims to provide low-latency transaction process-
ing for multi-partition geo-distributed transactions. It uses a two-phase commit protocol
to ensure that transactions are committed atomically and a consensus protocol is used for
fault tolerance. A two-phase commit (2PC) protocol is an atomic commitment protocol
that coordinates processes taking part in a distributed atomic transaction to determine if a
transaction should be committed or aborted. The consensus protocol replicates updates
to a database to multiple data centers to ensure that a distributed system can tolerate
a specified maximum number of faults. Distributed systems such as Spanner and Cock-
roachDB use the 2PC and consensus protocol to commit transactions to data partitions,
but these protocols are carried out sequentially meaning the time to complete transactions
is significantly increased. Carousel parallelizes the 2PC and consensus protocol steps to
achieve reduced transaction completion time.

Carousel replicates data partitions and stores the data partitions across different data
centers for fault tolerance. Replicas of a partition form a consensus group. A client can
initiate a transaction to write read and/or write data to a participant partition and the
leader of a participant partition’s consensus group is called the participant leader. The
participant leader is responsible for writing data to a partition once a decision to commit
has been made and one participant leader will act as a coordinator to decide whether a
transaction will be committed or aborted. The steps taken to commit a transaction are
shown in Figure 6.14. A client sends a transaction request to a coordinator and partici-
pant leaders with key-value pairs that need to be updated in a partition. A coordinator
will receive the request, replicate the data and wait for a prepared message from all the

30

DC; DC,

Client Coord. Partition P, Partition P,
(Leader) (Leader)

txn begin

read and | - - o oo oo oo »

preapre @ >
© txn info to Coord. _|_ replicate
a i 1(&) teninfo
s o Firead | 1 prepare &
T g result r -,@ replicate
c‘é 5 P, read ! 1 prepare result
[g result ettt Sttty
gz (9)prepared 1
T= @ > \ ! prepare &
o . Sl 1.4+ replicate
@ cc:njtmg r?q. ! : : prepare result
_a (write data) rephca[e Vo @ prepared
_E wiitedata | ___________ [_ ’ _________
E commit
o @ committed decision
L txn <
e committed—~ R Sy e gty 4 :
2 replicate _|_ commit req. | ' @
i : commit | ' & write data - replicate - replicate -
< . decision ' 1 commitreq. . 4 commit req. -
S : 1" & write data & write data -
B update data -
£ & ACK update data
= P IR & ACK
o A A

Figure 6.14: A Basic Version of Carousel [10]

participant leaders meaning that a transaction can be committed by the partitions. Once
a coordinator receives a prepared request from every participant leader, the coordinator
will send commit messages to the client and the participant leaders to indicate that the
transaction can be committed. Participant leaders that receive the commit message will
update their data and complete a transaction.

We have modelled Carousel in Dash+ where clients, coordinators, and participant lead-
ers are described as replicated AND-states. Each copy of the Client AND-state can send
a transaction request to every copy of the replicated AND-state Participant Leader
and one copy of the replicated AND-state Coordinator. A transaction is defined as a
signature with a relation mapping to a key-value tuple. A participant leader that receives a
transaction from a client will store the transaction in a buffer until the transaction has either

81

been committed or aborted. A transaction is aborted if the key-value pair that needs to be
updated by a transaction conflicts with a pending transaction in a participant leader. The
pending transactions for a participant leader is stored in a buffer variable. Otherwise, the
participant leader will inform a copy of the replicated AND-state Coordinator managing
the transaction that the transaction has been prepared and can be committed. Once the
Coordinator receives a prepared response from every copy of Participant Leader,
the coordinator sends a commit message to the participant leaders and the client which
requested the transaction meaning that the transaction can be safely committed without
any conflicts. Participant leaders that receive the commit message from a coordinator will
update their data with the key-value pair in the transaction that has been committed. A
statecharts-like diagram of the Dash+ model of Carousel is shown in Figure 6.15.

The properties that we check of the Carousel model in Dash+ are:

1. Client receives acknowledgment: A client receives an acknowledgment of a commit if
all participant leaders commit a transaction

2. Transaction aborted: A transaction is always aborted if one or more participant
leaders abort a transaction

3. No comment if a participant leader aborts: A participant leader cannot commit a
transaction if sister participant leaders have aborted the transaction

4. Commit updates data: If a transaction is committed, every participant leader must
update their key-value pairs

The time taken to analyze the properties for Carousel are shown in Table 6.6. The
snapshot scope that we have chosen for the properties are sufficient enough for the model
to complete at least two transactions or at most three transactions depending on whether
transactions are committed or aborted. We have a higher snapshot scope for checking
properties with more participant leaders as it will take more time to complete a transaction
with more participant leaders. We also want to ensure that the snapshot scope is large
enough to satisfy the significance axiom such that every transition in the model can be
taken within the snapshot scope specified.

82

Client [ClientID]

Coordinator [CoordinatoriD]

°
!

Y

Commit
[Coordinatator
has commited]

Reading [€

Abort
[Coordinatator

ReadAndPrepare has aborted]

[Send a Transaction
request]

Waiting

o
v

\ 4

Replicating

Commit

[All Participant

Leaders have
Committed] [A Transaction has

been requested]

Replicate

Waiting

Abort
[A Participant
Leader has
aborted]

Participant Leader [PartLdrID]

o
y

Update Data

Waiting

Abort

[Transaction
Committed]

Commit

Prepare Commit
[Pending
Transaction has
no conflicts]

Prepare Abort
[Pending
Transaction has
a conflict]

[Coordinatator
has aborted]

Abort

Figure 6.15: Carousel in Dash+

83

Carousel Properties
Snapshot | Client | Coord | PL | Traces | TCMC | Electrum
Property Scope Scope | Scope | Scope | (ms) (ms) (ms)
Client
receives ack 23 2 2 2| 4153 n/a 3924
Client
receives ack 30 2 2 3 5897 n/a 4090
Transaction
aborted 23 2 2 2| 3707 n/a 3299
Transaction
aborted 30 2 2 3 5889 n/a 4082
No commit
if PL aborts 23 2 2 2 3793 25818 3294
No commit
if PL aborts 30 2 2 3 H8&K 51448 4079
Commit
updates data 23 2 2 2| 3710 n/a 3304
Commit
updates data 30 2 2 3| 5890 n/a 4082

Table 6.6: Time Taken to Check Carousel Properties (ms = milliseconds, n/a = not
applicable, PL, = participant leader, Coord = coordinator)

84

The Dash+ features that are highlighted using this case study are:

1) Multiple replicated components running concurrently: The Carousel model in Dash+
has multiple replicated AND-states running concurrently that change their state based on
the state of other replicated AND-states.

2) Communication between replicated components: A copy of the replicated AND-state
Client can add a transaction to the buffer in every copy of the replicated AND-state
Participant Leader. Each copy of Participant Leader can update a variable in
a copy of the replicated AND-state Coordinator which in turn can update a variable
in every copy of Participant Leader to signify whether a transaction is committed
or aborted. Therefore, Dash+ gives us the opportunity to have a copy of a replicated
component communicate with one or more copies of another replicated component and
update their variables or buffers.

6.7 Heating System

The Heating System [17] consists of a set of rooms, a controller, and a furnace that run
concurrently. Each room has a desired temperature, an actual temperature, and a valve
position. If the actual temperature of a room falls below the desired temperature, the
value position is adjusted and the room waits for a change in the actual temperature. If
the desired effect is not achieved within a period of time, the room will make a request to
the controller for heat. The controller is responsible for turning on the furnace once one
or more rooms request for heat, and turning off the furnace if no rooms are requesting for
heat. Faults can occur in the furnace at any time and the controller is informed of any
faults in the furnace which causes the system to transition to an Error state. The furnace
will be reset when the controller has been reset by a user.

We modelled the heating system in Dash+ using two top-level OR states called
Functioning and Error® The Functioning OR-state has two non-replicated AND-
states Controller and Furnace, and a replicated AND-state Room as seen in Figure
6.16. Each copy of the replicated AND-state Room has variables to keep track of the actual
temperature, desired temperature, and valve position. If the actual temperature is below
the desired temperature for a copy of Room, a boolean variable requestHeat is set to True
meaning that the room is requesting heat from the furnace. The AND-state Controller
checks on whether any copy of Room has requested heat and triggers an activate event
if one or more copies of Room has made a request for heat. Once the activate event has

4The complete model of the Heating System in Dash+ can be found in Appendix C.

85

been triggered, the AND-state Furnace will transition to the Furnace_Running state
meaning that the furnace has been activated and is now providing heat to the rooms. We
model a fault in the furnace using an environmental event furnaceFault which causes
the system to transition to the Error state from the Functioning state. Since every
concurrent state is declared within the Functioning OR-state, the transition to the
Error state will result in the concurrent states leaving their current active basic state.

Our model differs slightly from the model of the heating system in [17]. The model of the
heating system in [17] has an Error state declared within the AND-states Controller
and Furnace, but the Dash+ model instead transitions into an Error state to indicate
that the furnace has a fault. We have made the change to abstract the common transitions
in [17] since we can do so by nesting replicated AND-states and non-replicated AND-
states within an OR-state. The system transitions to the Functioning state on an
environmental event causing the AND-state states declared within the Functioning OR-
state to enter their default states.

We check a liveness and safety property of the heating system. The liveness property
specifies that the heater eventually turns on if a room requires heat; the safety property
specifies that rooms will always receive heat if the actual temperature of the room falls
below the desired temperature. The time taken to analyze the properties is shown in Table
6.7.

The Dash+ features that are highlighted using this case study are:

1) Multiple replicated components running concurrently: The Heating System model in
Dash+ has multiple AND-states (Controller and Furnace) running concurrently with
a replicated AND-state (Room).

2) Communication between replicated and non-replicated AND-states: In the Heating
System, the non-replicated component Controller observes the values of variables in
each copy of the replicated AND-state room to determine if a room needs heat. The AND-
states Controller and Furnace both communicate with each other and the error state
by triggering events declared globally.

3) Nesting of a replicated and non-replicated AND-state: The replicated AND-state
Room and the non-replicated AND-states Controller and Furnace is nested within an
OR-state Functioning which is nested inside a non-replicated AND-state. As a result,
exiting the OR-state Functioning means that any nested AND-states will exit their
active state.

86

© 0 N O O WN =

W W WWWWWwWNDNDNNDNDNNDNDNNDNNDNNDEERRPR PP P2 2 P2 22
NOoO OO WNFP, O OO NOO P WNEFE, O WO NO O WN - O

sig Temp {}
conc state HeatingSystem {

default state Functioning {
conc state Furnace {
default state Furnace_Normal {
default state Furnace_0ff {...}
state Furnace_Running {...}
}
}
conc state Controller {
condition heatRequested [...] {}
condition noHeatRequested [...] {}
default state O0ff {...}
state On {
default state Idle {...}
state Heater_Active {...}

b

conc state Room [Identifier] {
actualTemp: one Temp
desiredTemp: one Temp
valvePos: one ValvePos
requestHeat: one Bool

default state No_Heat_Request {
default state Idle_No_Heat {...}
state Wait_For_Heat {...}

+

state Heat_Requested {...}

init {...}

}
state Error {...}

Figure 6.16: Heating System in Dash+

87

Heating System Properties
Property | Snapshot Scope | Room Scope | Traces (ms) | TCMC (ms) | Electrum (ms)

Safety 25 2 2085 37131 4678
Safety 30 3 2710 71644 6091
Liveness 25 2 15798 n/a 22457
Liveness 30 3 491878 n/a 52932

Table 6.7: Time Taken to Check Heating System Properties (ms = milliseconds, n/a =
not applicable)

6.8 Summary

We evaluate Dash+ using case studies that exploit the features in Dash+. Each of the
case studies covers one or more specific features in Dash+ and we try to ensure that every
feature in Dash+ has been covered by the case studies. We also evaluate the performance
in analyzing Dash+ models using the model-checking options available in Dash+-.

In Dash+, we can arrange replicated components in a specific topology (such as a
ring or linear structure) using modules or constraints on the identifier signature. As a
result, modelling Chord or the Bit Counter is convenient as we can arrange the replicated
components in the required topology by using the built-in modules that are available to
the modeller. Furthermore, we are able to model processes with a local point of view but
we can use Alloy’s rich logic to specify graph properties for case studies such as Chord,
and the Distributed Spanning Tree. The control state hierarchy in Dash+ also means that
we can use the control state hierarchy to understand the state of a process. For example,
we can check whether a node is active or failed in Chord depending on its current basic
and not have to resort to extra variables.

In our case studies, we found that it is convenient to model distributed systems using
Dash+ as there are constructs for direct communication between sister components and
multiple replicated AND-states. Distributed systems such as Chord and Carousel have
replicated components running concurrently and communicating with each other. The
constructs in Dash+ for direct communication between replicated components make it
easier to model the distributed systems by not having to resort to global variables. As
we do not use any global variables for communication, the complexity of the model is
decreased.

38

In analyzing our case studies, the Traces method provided the best performance with
respect to analysis times in a majority of the cases. The performance of model checking
using Electrum can vary depending on the complexity of the model and the number of
copies of replicated components. Models that are more complex and use more copies of
replicated components will take a much longer time to check for properties using Electrum.
For model checking using TCMC, the performance drastically increases as the number of
snapshots is increased.

89

Chapter 7

Related Work

In this chapter, we make a comparison between Dash+ and several formal modelling lan-
guages. We point out the advantages that Dash+ offers over each of these languages.

7.1 Languages with Constructs for Processes

PlusCal [30] is a formal specification language used for writing algorithms with concurrent
processes. Processes in PlusCal communicate with each other by using variables and
sequences declared globally. A sequence is an ordered set of elements with constructs for
appending an element, accessing an element from the head or tail, and fetching the length
of the ordered set. PlusCal expressions are written in the TLA+ (the Temporal Logic of
Actions) [33] language and it is a high-level specification language based on first-order logic
and set theory. TLA+ is used for describing the behavior of concurrent and distributed
systems. PlusCal is translated to a TLA+ specification using the TLC model checker [35].

Promela (Process or Protocol Meta Language) [21] is a verification modeling language
used for designing and verifying asynchronous process systems used with the SPIN model
checker. It has an emphasis on creating abstractions of concurrent software systems and
verifying the behavior of clients and servers in networks of processors. A model written in
Promela is comprised of a set of processes. A process can be replicated by specifying the
number of copies to create in a parameter within the model. Each process can have its
own variables or channels (buffers) that can be locally accessed. Processes interact with
each other using globally declared variables and/or synchronous or asynchronous channels.

90

Dash+ offers an advantage over PlusCal and Promela with its state hierarchy. There is
no notion of state hierarchy in PlusCal and Promela and we cannot declare processes within
processes. Furthermore, processes in Dash+ can directly exchange information by accessing
variables in sister components. The only means for processes to communicate in PlusCal
and Promela is through the use of variables that are declared globally and increases the
complexity of PlusCal and Promela models that require processes to directly communicate
with other. In Promela and PlusCal, we can arrange processes in a topology by giving
a process an identifier using global variables/buffers and defining functions that specifies
how each process identifier relates to another process identifier (as seen in [18]). The buffer
structure in Dash+ also provides an advantage over the sequences in PlusCal as a buffer
in Dash+ has constructs for appending or removing an element to/from the head or tail.
There are no constructs for removing an element from a sequence or appending an element
to the head of a sequence in PlusCal. One advantage that Dash+ provides over Promela
is the ease of writing graph properties. The properties in Promela are written in C and
it can be difficult to write graph properties in C [47]. Promela also has limited datatypes
and data operations because it focuses on the communication and synchronization aspects
of a model. However, Promela does hold one advantage over Dash+ as processes can be
dynamically created during analysis which is a feature that Dash+ lacks.

7.2 Declarative Languages and Languages Based on
Alloy

Electrum [7] is an extension to Alloy for modelling transition systems that includes the
keyword “var” as syntax to denote the declaration of dynamic elements of a model. Dy-
nAlloy [21] is an extension of Alloy that enables users to define a system configuration (an
initial state of the system) and reconfigure the system (change its state) using an action.
The actions contain a precondition and postcondition to describe changes to the system af-
ter the action and are strongly influenced by programming language constructs [11]. Both
of these extensions lack state hierarchy, replicated concurrent states, and communication
using buffers, which Dash+ provides.

Declarative modelling languages such as B [1], TLA+ [15], VDM [28], and Z [13], are
based on first-order logic and/or set theory abstractions to formally describe systems with
complex structures. They describe changes to a system using primed expressions. However,
they lack the notion of a state hierarchy and replicated components that Dash+ is able to
provide.

91

7.3 Languages with State Hierarchy

UML [10] state machines support hierarchical and concurrent labelled control state hier-
archy. Through the use of object modelling, UML supports replicated concurrent compo-
nents. Using OCL [9], pre- and postconditions and invariants can be included in the UML
model. However, UML models lack the level of abstraction for data descriptions that a
declarative language such as Dash+ or Alloy can provide. By providing language constructs
that fully integrate abstract data descriptions with control state modelling paradigms in-
cluding replicated components, Dash+ can be used for data-oriented and control-oriented
modelling.

92

Chapter 8

Conclusion

This thesis presents Dash+, an extension to Dash for modelling transition systems with
replicated components. We provide Dash+ with language constructs for describing a model
with replicated concurrent components and allow communication among these components
and between these components. This communication can be global or directed based
on a particular topological arrangement of the components and may be buffered or not.
Dash+ does not extend the expressiveness of Alloy; it adds explicit language constructs
for convenience in describing transition systems.

Dash+ aims to be a flexible and abstract modelling language for transition systems
that combines abstract data, hierarchical control states, and replicated components. A
model in Dash+ can have multiple sets of replicated components in the model and these
replicated components can be at any level in the control state hierarchy, which is a novel
and powerful modelling feature. A key insight in Dash+ is that we can use a regular
Alloy set to describe the topology of the replicated components. This generality allows
users to arrange the replicated components in common (and uncommon) communication
structures (e.g., rings) using regular Alloy constraints. The elegance and abstractness of
separating the modelling of the behaviour of a replicated component and the specification
of the topology of the replicated components are unique to Dash+.

In addition, Dash+ provides an explicit construct for buffered communication to allow
buffers consisting of elements of the same set to have different sizes. Combining the locality
of replicated components with buffered communication and the simplicity of using an
existing Alloy set to define the topology provides important new features to Dash.

We have also provided Dash+ with three methods for model checking: traces-based
model checking, transitive-closure-based model checking, and Electrum. The modeller can

93

choose to use any of these model checking options for model checking Dash+ models.

8.1 Future Work

There are several avenues for improving Dash+ in the future:

Failure State: Dash+ might benefit from having explicit language constructs for
declaring a failure state. A construct for modelling the failure of a concurrent state would
simplify the design of models in which a concurrent system might fail at any time. In
the real-world scenario, it is expected that servers in distributed systems can fail at any
moment and distributed systems such as Carousel [16] account for an expected number of
server failures. One way to model a failure would be to use a state that an AND-state can
transition to in the event of a failure. Any AND-states that are in a failure state would
not be able to take transitions until they exit the failure state.

Optimizations for Analysis Time: It would help reduce the analysis time for Dash+
models by optimizing the translation process to exclude any unused parts of the Alloy model
for particular properties. Furthermore, it might be beneficial to consider whether having
processes specified locally can help facilitate symmetry breaking at the process level

Supporting Dynamic Process Creation: In Promela, it is possible to dynamically
create processes during the execution of a model. It would be interesting to consider such
a feature for Dash+ in which we can dynamically create processes during execution.

Visualization of Instances: The visualization of instances in Dash+ is unchanged
when compared to the visualization of instances in Dash. Since Dash+4 makes use of
multiple conf and taken sets, it can be difficult to understand the active states and
transitions taken in a big step so far. The modeller has to track the tuples in every
conf and taken relation and how each relation changes its tuples after each small step.
Simplifying the visualization (such as by making a change such that all the conf and
taken relations are condensed) would greatly assist in understanding the instances.

It would also be interesting to consider analyzing Dash+ models as parameterized
systems with unbounded values for the parameter as was done in the Leader Election
Protocol in [1].

94

References

1]

2]

3]

[4]

Jean-Raymond Abrial. The B-book - assigning programs to meanings. Cambridge
University Press, 1996.

Bowen Alpern and Fred Schneider. Recognizing safety and liveness. Distributed Com-
puting, 2:117-126, 09 1987.

Amin Bandali. A Comprehensive Study of Declarative Modelling Languages. MMath
thesis, University of Waterloo, David R. Cheriton School of Computer Science, 2020.

Rylo Ashmore, Arie Gurfinkel, and Richard J. Trefler. Local reasoning for parame-
terized first order protocols. In Julia M. Badger and Kristin Yvonne Rozier, editors,
NASA Formal Methods - 11th International Symposium, NFM 2019, Houston, TX,
USA, May 7-9, 2019, Proceedings, volume 11460 of Lecture Notes in Computer Sci-
ence, pages 36-53. Springer, 2019.

Mordechai Ben-Ari. Principles of the SPIN model checker. Springer, 2008.

Armin Biere, Alessandro Cimatti, Edmund Clarke, Ofer Strichman, and Yunshan Zhu.
Bounded model checking. Advances in Computers, 58:117 — 148, 12 2003.

Julien Brunel, David Chemouil, Alcino Cunha, and Nuno Macedo. The Electrum an-
alyzer: model checking relational first-order temporal specifications. In Marianne
Huchard, Christian Késtner, and Gordon Fraser, editors, Proceedings of the 33rd
ACM/IEEE International Conference on Automated Software Engineering, ASE 2018,
Montpellier, France, September 3-7, 2018, pages 834-887. ACM, 2018.

Julien Brunel, David Chemouil, and Jeanne Tawa. Analyzing the fundamental liveness
property of the chord protocol. In Nikolaj S. Bjorner and Arie Gurfinkel, editors,
2018 Formal Methods in Computer Aided Design, FMCAD 2018, Austin, TX, USA,
October 30 - November 2, 2018, pages 1-9. IEEE, 2018.

95

[9]

[12]

[13]

[14]

[16]

[17]

[18]

Jordi Cabot and Martin Gogolla. Object constraint language (OCL): A definitive
guide. In Marco Bernardo, Vittorio Cortellessa, and Alfonso Pierantonio, editors,
Formal Methods for Model-Driven Engineering - 12th International School on Formal
Methods for the Design of Computer, Communication, and Software Systems, SFM
2012, Bertinoro, Italy, June 18-23, 2012. Advanced Lectures, volume 7320 of Lecture
Notes in Computer Science, pages 58-90. Springer, 2012.

Ernest J. H. Chang and Rosemary Roberts. An improved algorithm for decentralized
extrema-finding in circular configurations of processes. Commun. ACM, 22(5):281—
283, 1979.

Ernest J. H. Chang and Rosemary Roberts. An improved algorithm for decentralized
extrema-finding in circular configurations of processes. Commun. ACM, 22(5):281—
283, 1979.

Alessandro Cimatti, Edmund M. Clarke, Fausto Giunchiglia, and Marco Roveri.
NUSMV: A new symbolic model checker. Int. J. Softw. Tools Technol. Transf.,
2(4):410-425, 2000.

Edmund M. Clarke, E. Allen Emerson, and Joseph Sifakis. Model checking: algorith-
mic verification and debugging. Commun. ACM, 52(11):74-84, 2009.

Renato Mascarenhas Costa. Compiling distributed system specifications into imple-
mentations. PhD thesis, University of British Columbia, 2019.

Denis Cousineau, Damien Doligez, Leslie Lamport, Stephan Merz, Daniel Ricketts,
and Hernan Vanzetto. TLA + proofs. In Dimitra Giannakopoulou and Dominique
Méry, editors, FM 2012: Formal Methods - 18th International Symposium, Paris,
France, August 27-31, 2012. Proceedings, volume 7436 of Lecture Notes in Computer
Science, pages 147-154. Springer, 2012.

Alcino Cunha. Bounded model checking of temporal formulas with Alloy. In Lecture
Notes in Computer Science, pages 303-308. Springer Berlin Heidelberg, 2014.

Nancy A. Day. A Framework for Multi-Notation, Model-Oriented Requirements Anal-
ysis. PhD thesis, University of British Columbia, Department of Computer Science,
October 1998.

Shahram Esmaeilsabzali. Perscriptive Semantics for Big-Step Modelling Languages.
PhD thesis, 2011.

96

[19]

[20]

[21]

22]

23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

Sabria Farheen. Improvements to Transitive-Closure-based Model Checking in Alloy.
MMath thesis, 2018.

Sabria Farheen, Nancy A. Day, Amirhossein Vakili, and Ali Abbassi. Transitive-

closure-based model checking in Alloy. Journal of Software and Systems Modelling,
19:721-740, 2020.

Marcelo Frias, Juan Pablo Galeotti, Carlos Lopez Pombo, and Nazareno Aguirre.
Dynalloy: Upgrading Alloy with actions. Proceedings - 27th International Conference
on Software Engineering, ICSE05, pages 442-451, 01 2005.

David Harel. Statecharts: a visual formalism for complex systems. Science of Com-
puter Programming, 8(3):231-274, 1987.

Gerard J. Holzmann. The model checker SPIN. IEEE Trans. Software Eng., 23(5):279—
295, 1997.

Gerard J. Holzmann. The SPIN Model Checker - primer and reference manual.
Addison-Wesley, 2004.

Tamjid Hossain and Nancy A. Day. Dash+: Extending alloy with hierarchical states
and replicated processes for modelling transition systems. In 2021 IEEE 29th In-
ternational Requirements Engineering Conference Workshops (REW), pages 21-29,
2021.

Daniel Jackson. Alloy: a lightweight object modelling notation. ACM Trans. Softw.
Eng. Methodol., 11(2):256-290, 2002.

Daniel Jackson. Software abstractions: Logic, language, and analysis. Journal of
Functional Programming, 19:253-254, 03 2009.

Clifford B. Jones. Systematic software development using VDM (2. ed.). Prentice Hall
International Series in Computer Science. Prentice Hall, 1991.

Magdalena Kacprzak, Alessio Lomuscio, and Wojciech Penczek. Bounded versus un-
bounded model checking for interpreted systems. 01 2004.

Raman Kazhamiakin, Marco Pistore, and Marco Roveri. Formal verification of re-
quirements using SPIN: A case study on web services. In 2nd International Conference
on Software Engineering and Formal Methods (SEFM 200/), 28-30 September 2004,
Beijing, China, pages 406-415. IEEE Computer Society, 2004.

97

[31]

Mitchell Kember, Lynn Tran, George Gao, and Nancy A. Day. Extracting coun-
terexamples from transitive-closure-based model checking. In Marsha Chechik, Daniel
Striiber, and Déniel Varro, editors, Proceedings of the 11th International Workshop
on Modelling in Software Engineerings, MiSEQICSE 2019, Montreal, QC, Canada,
May 26-27, 2019, pages 47-54. ACM, 2019.

D. Richard Kuhn, Ramaswamy Chandramouli, and R Butler. Cost effective use of

formal methods in verification and validation foundations. 02 V&V Workshop, Laurel,
MD, USA, 2002-10-01 00:10:00 2002.

Markus Alexander Kuppe, Leslie Lamport, and Daniel Ricketts. The TLA+ toolbox.
In Rosemary Monahan, Virgile Prevosto, and José Proenca, editors, Proceedings Fifth
Workshop on Formal Integrated Development Environment, F-IDEQFM 2019, Porto,
Portugal, 7th October 2019, volume 310 of EPTCS, pages 50-62, 2019.

Leslie Lamport. Specifying Systems, The TLA+ Language and Tools for Hardware
and Software Engineers. Addison-Wesley, 2002.

Leslie Lamport. The Pluscal algorithm language. In Martin Leucker and Carroll
Morgan, editors, Theoretical Aspects of Computing - ICTAC 2009, 6th International
Colloquium, Kuala Lumpur, Malaysia, August 16-20, 2009. Proceedings, volume 5684
of Lecture Notes in Computer Science, pages 36—60. Springer, 2009.

Leslie Lamport. A PlusCal User’s Manual (C-Syntaz), version 1.8 edition, August
2018.

Nuno Macedo, Julien Brunel, David Chemouil, Alcino Cunha, and Denis Kuperberg.
Lightweight specification and analysis of dynamic systems with rich configurations. In
Thomas Zimmermann, Jane Cleland-Huang, and Zhendong Su, editors, Proceedings
of the 24th ACM SIGSOFT International Symposium on Foundations of Software
Engineering, FSE 2016, Seattle, WA, USA, November 13-18, 2016, pages 373-383.
ACM, 2016.

Malte Plath and Mark Ryan. Feature integration using a feature construct. Science
of Computer Programming, 41(1):53-84, 2001.

Oscar R. Ribeiro, Joao M. Fernandes, and Luis F. Pinto. Model checking embedded
systems with PROMELA. In 12th IEEE International Conference on the Engineering
of Computer-Based Systems (ECBS 2005), 4-7 April 2005, Greenbelt, MD, USA, pages
378-385. IEEE Computer Society, 2005.

98

[40]

[41]

[42]

[43]

[44]

[45]

[46]

Bran Selic, Conrad Bock, Steve Cook, Pete Rivett, Tom Rutt, Ed Seidewitz, and
Doug Tolbert. OMG unified modeling language (version 2.5), 03 2015.

Jose Serna. Dash: Declarative Behavioural Modelling in Alloy. MMath thesis, Uni-
versity of Waterloo, David R. Cheriton School of Computer Science, 2019.

I[. Shlyakhter, M. Sridharan, and D. Jackson. Analyzing distributed systems with
first-order logic. 2002.

John Michael Spivey. The Z notation - a reference manual. Prentice Hall International
Series in Computer Science. Prentice Hall, 1989.

Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakrishnan.
Chord: A scalable peer-to-peer lookup service for internet applications. In Proceedings
of the 2001 Conference on Applications, Technologies, Architectures, and Protocols
for Computer Communications, SIGCOMM ’01, page 149-160, New York, NY, USA,
2001. Association for Computing Machinery.

Hillel Wayne. Practical TLA+: Planning Driven Development. Apress, 2018.

Xinan Yan, Linguan Yang, Hongbo Zhang, Xiayue Charles Lin, Bernard Wong, Ken-
neth Salem, and Tim Brecht. Carousel: Low-latency transaction processing for
globally-distributed data. In Gautam Das, Christopher M. Jermaine, and Philip A.
Bernstein, editors, Proceedings of the 2018 International Conference on Management
of Data, SIGMOD Conference 2018, Houston, TX, USA, June 10-15, 2018, pages
231-243. ACM, 2018.

Pamela Zave. Using lightweight modeling to understand chord. Comput. Commun.
Rev., 42(2):49-57, 2012.

Pamela Zave. A practical comparison of Alloy and SPIN. Formal Aspects Comput.,
27(2):239-253, 2015.

99

APPENDICES

100

Appendix A

Chord Model

© 00 N O O WN =

e
o

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

open util/ring[Node] as node

abstract sig Status {}

one sig Stabilizing,

pred between [nl, nb, n2: Nodel {
1t [n1,n2] => (1t[n1,nb] && 1t[nb,n2])
else (1t[nl,nb] || 1t[nb,n2]) }

// Returns the first node if current node is the last Node in

the ordering
fun nextNode [n: Node] : lone Node {

{m: Node
else m

| no node/next[n] implies m
= node/next [n]

Rectifying extends Status{}

node/first

// Returns the previous node in the ordering
fun prevNode [n: Node] : lone Node {

{m: Node
else m

conc state
members :

| no node/prev[n] implies m
= node/prev[n]

System {
Node

101

node/last

conc state N [Nodel {
frst: lone Node
scnd: lone Node
prdc: lone Node
status: Status
saved: lone Node

default state Live {
trans Fail {
when {

// We cannot fail if it would leave a

// member with no successors

all n: Node - this |
some (members - this) &
(Node[n]/frst + Nodel[n]/scnd)

}
do {
members’ = members - this
frst’ = {none}
scnd’ = {none}
prdc’ = {none}
status’ = {none}’}
}
goto Failed
}
trans StabilizeFromSucc {
when {
no status
}
do {

// The Sucessor is dead
frst !in members implies {

frst’ = scnd
scnd’ = nextNode[scnd]
all n: Node | N[n]/status’ = N[n]/status
all n: Node | N[n]/saved’ = N[n]/saved
// The sucessor is a member
} else {

102

66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105

frst
N[frst]/frst

frst’
scnd’

// The sucessor’s predecessor is better

(some N[frst]/prdc

and between[this, N[frst]/prdc, frst]
and (N[frst]l/prdc in members)) => {

status’ = Stabilizing
saved’ = N[frst]/prdc
all n: Node - this | N[n]/status’ = N[n]/status
all n: Node - this | N[n]/saved’ = N[n]/saved

} else (this !in N[frst]/prdc) => {
N[frst]/status’ = Rectifying
N[frst]/saved’ = this
all n: Node - frst | N[n]/status’ = N[n]/status
all n: Node - frst | N[n]l/saved’ = N[n]/saved

} else {

all n: Node | N[n]/status’
all n: Node | N[n]/saved’

trans StabilizeFromPrdc {
when {
this in members
status = Stabilizing
between[this, saved, frst]
}
do {
no status’
no saved’
// The Successor’s Predecessor
saved !in members implies {

frst’ = frst

scnd’ = scnd

all n: Node - this | {
N[n]/status’ = N[n]/status
N[n]/saved’ = N[n]/saved }

// The Successor’s Predecessor

103

= N[n]/status
N[n]/saved

is dead

is a member

106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145

} else {
frst’ = saved

scnd’ = N[saved]/frst

N[saved]/status’
N[saved]/saved’ =

all n: Node - sav

= R
th
ed

ectifying
is
- this | {

N[n]/status’ = N[n]/status }

trans Rectify {
when {
this in members
status = Rectifying
}
do {

(between [prdc, saved,
prdc !in members or no prdc) => {prdc’

else {
prdc’ = prdc
}

trans Flush {
when {
this in members
prdc !'in members

}
do {

prdc’ = {nonel}
}

state Failed {
trans Join {
when {
Node in members

104

this] or

savedl}

146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175

176
177
178
179
180
181
182
183

}

do {
members’ = members + this
}
goto Live
}
}
init {
no status
no saved
frst = nextNode[this]
scnd = nextNode[frst]
prdc = prevNode [this]
}
}
init {

// All Nodes are members initially

Node in members

fact alwaysThreeMembers {
#(System_members) >= 3

}

/** FUNCTIONS FOR CHECKING PROPERTIES *x*/

// Returns

a tuple (Node,

Node) where the second element is a

Live successor of the first element

fun succ
{ m1, m2:

ml.(System_N_frst)

Node -> Node {

Variables.System_members |

in Variables.System_members

=>

(m2 = ml.(System_N_frst)) else (m2 = ml.(System_N_scnd)) }

// Returns the members that form a ring

fun ring

succ)}-}

some Node { {m:

Variables.System_members

105

m in m."(

184

185 fun appendages: set Node { Variables.System_members - ring }
186

187 /** PROPERTIES *x/

188

189 // Members form atleast one ring

190 pred atLeastOneRing {

191 some ring

192 }

193

194 // Members form atmost one ring

195 pred atMostOneRing {

196 (all m1, m2: ringl| ml in m2. (succ))
197 }

198

199 // Members are ordered

200 pred orderedRing {

201 all disj ml, m2, mb: ring |

202 m2 = ml. (succ) implies not between[ml, mb, m2]
203 %

204

205 // Member successors are ordered

206 pred orderedSuccessors {

207 (all m: Variables.System_members |

208 between[m, m.(System_N_frst), m.(System_N_scnd)])
209 1}

210

211 pred connectedAppendages {

212 (all ml: appendages | some m2: ring | m2 in ml." (succ))
213 }

214

2156 pred valid {

216 atLeastOneRing

217 atMostOneRing

218 orderedSuccessors

219 connectedAppendages
220 orderedRing

221 %

222

223 pred ideal {

106

224 valid

225 no appendages

226 (System_N_frst) = “(System_N_prdc)
227 }

107

Appendix B

Distributed Spanning Tree Model

N[others]/message

1 open util/traces[Level] as nodelLevel
2

3 sig Level {}

4

5 conc state DistrubedTreeSpanning {
6 root: one Node

7

8 conc state N [Node]l {

9 level: lone Level

10 parent: lone Node

11 message: Node -> Level

12

13 action sendMessage [

14 one n: Node - this | {

15 no N[n]/message

16 N[n]/message’ = this -> level
17 all others: Node - n |

18 N[others]/message’ =

19 }

20 1 {3

21

22 default state Unassigned {

23 trans RootAssign {

24 when {

25 this in root

108

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

}

trans NodeAssign {

}

}

do {
level’ = nodelevel/first
parent’ = this

}

goto Assigned

when A
some message

}

do {
level’ = nodelLevel/next[Node.message]
parent’ = message.Level

}

goto Assigned

state Assigned {

trans sendMessage {

init
no
no
no

when {

}

some n: Node

do {

}

(sendMessage)

{

level
parent
message

no N[n]/level

109

Appendix C

Heating System Model

© 00 N O O WN -

[N S I e e e e el i el e
= O ©OW 00 N O U W N+~ O

22
23
24
25

open util/ring[Node] as node

open util/ordering[Temp] as temp

sig Temp{}
abstract sig ValvePos {}

one sig OPEN, HALF, CLOSED extends ValvePos {}

conc state HeatingSystem

env
env
env
env
env

event
event
event
event
event

default state Functioning {

event
event
event
event
event

Reset {}
TurnOn {3}
furnaceFault
userReset {}
heatSwitchOn

activate {}
deactivate {}
furnaceRunning {}
furnaceNotRunning {}
furnaceReset {}

conc state Furnace {

default state Furmnace_Normal A{
default state Furnace_0ff {

trans T1 {

{3

{3

110

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

on activate
goto Furnace_Activating

state Furnace_Activating {
trans T2 {
on deactivate
goto Furnace_0ff

trans T3 {
send furnaceRunning
goto Furnace_Running

state Furnace_Running {
trans T4 {
on deactivate
goto Furnace_0ff

trans T5 {
on furnaceFault
goto HeatingSystem/ERROR

conc state Controller {

controllerOn: one Bool
condition heatRequested [some r: Identifier |
Functioning/Room[r]/requestHeat = True] {}
condition noHeatRequested [no r: Identifier |
Functioning/Room[r]/requestHeat = Truel] {}

default state 0ff {
trans T8 {
on heatSwitchOn
send furnaceReset
do controllerOn’ = True
goto On

111

66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105

state On {
default state Idle {
trans T9 {
when heatRequested
send activate
goto Heater_Active
}
b

state Heater_Active A

trans T10 {
when noHeatRequested
send deactivate
goto Idle

}

trans T11 {
on furnaceFault
do controllerOn’ = False
goto HeatingSystem/ERROR

}

init {
controllerOn = False

conc state Room [Identifier] {
actualTemp: one Temp
desiredTemp: one Temp
valvePos: one ValvePos
requestHeat: one Bool

env event waitedForWarmth {}
env event waitedForCool {}

condition tooCold [lt[actualTemp,

112

desiredTempl] {}

106
107
108
109

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144

condition tooHot [gtlactualTemp, desiredTemp]l] {}
condition vOpen [valvePos = OPEN] {}

condition vClosed [valvePos = CLOSED] {}
condition controllerOn [Functioning/Controller/

controllerOn = True] {3}
action rH [requestHeat’ = Truel] {}
action cancelrH [requestHeat’ = False] {}

default state No_Heat_Request {
default state Idle_No_Heat {
trans T12 {
when tooCold
goto Wait_For_Heat
}
trans coolRoom {
when !tooCold
do actualTemp’ = temp/prev[actualTemp]
}
}
state Wait_For_Heat {
trans T13 {
when !(tooCold)
goto Idle_No_Heat
}
trans T14 {
on waitedForWarmth
when valvePos = CLOSED
do valvePos’ = O0PEN
}
trans T15 {
when v0Open and controller(On
do rH
goto Heat_Requested
}

state Heat_Requested {
default state Idle_Heating {
trans T15 {

113

145
146
147
148
149
150
1561
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184

when tooHot
do valvePos’ = CLOSED
goto Wait_For_Cool
}
trans heatRoom {
when !(tooHot)

do actualTemp’ = temp/next[actualTemp]

}

state Wait_For_Cool {
trans T16 {
when !(tooHot)
goto Idle_Heating
}
trans T17 {
on waitedForCool
do valvePos’ = CLOSED
}
trans T18 {
on waitedForCool
when vClosed
do {
cancelrH

actualTemp’ = desiredTemp

}
goto No_Heat_Request

init {
requestHeat = False
valvePos = CLOSED

state ERROR {
trans T19 {

114

185
186
187
188
189

3

on heatSwitchOn
goto Functioning

115

	List of Figures
	List of Tables
	Introduction
	Contributions
	Validation
	Thesis Outline

	Background
	Alloy
	Dash
	Summary

	Dash+ Syntax and Semantics
	Replicated AND-States
	Dynamic Variables
	Events
	Buffers
	Initial Constraints
	Frame Problem
	Well-Formedness
	Summary

	Translation to Alloy
	Background: Translating Dash to Alloy
	Dash to Core Dash
	Core Dash to Alloy

	Translating Replicated AND-States
	Levels in a Dash+ Model
	State Hierarchy
	Weaving Parameterization into the Transition Predicates

	Buffers
	Summary

	Model Checking in Dash+
	Model Checking using the Traces method in Alloy
	Transitive Closure Based Model Checking (TCMC)
	Electrum
	Summary

	Case Studies
	Chord
	Distributed Spanning Tree Algorithm
	Leader Election Protocol
	The Bit Counter
	Elevator
	Carousel
	Heating System
	Summary

	Related Work
	Languages with Constructs for Processes
	Declarative Languages and Languages Based on Alloy
	Languages with State Hierarchy

	Conclusion
	Future Work

	References
	APPENDICES
	Chord Model
	Distributed Spanning Tree Model
	Heating System Model

