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Abstract

Twisted holography is a duality between a twisted supergravity, and a twisted supersym-
metric gauge theory living on the D-branes in the supergravity. The main objectives of
this duality is the comparison between the algebra of observables in the bulk twisted su-
pergravity and the algebra of observables in the boundary twisted supersymmetric gauge
theory.

In this thesis, two example of the twisted holography duality are explored. The bulk
theory for the first example is the 4d topological-holomorphic Chern-Simons theory, which
is expected to be dual to 2d BF theory with line defects. The algebra of observables in the
2d BF theory is computed by two methods: perturbation theory (Feynman diagrams), and
phase space quantization. By holography duality this algebra is expected to be isomorphic
to the algebra of bulk-boundary scattering process, and the latter is computed in this thesis
using perturbative method.

The bulk theory for the second example is the 5d topological-holomorphic Chern-Simons
theory, which is expected to be dual to the large-N limit of a family of 1d quantum
mechanics built from the ADHM quivers. The generators and relations of the large-N
limit algebra of observables in the 1d quantum mechanics are studied from algebraic point
view. By holography duality, this algebra is expected to be the algebra of observables on the
universal line defect coupled to the 5d Chern-Simons theory, and some nontrivial relations
of the latter algebra are computed in this thesis using perturbative method. The surface
defects and various fusion process between line and surface defects are also explored.
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Chapter 1

Introduction

1.1 Holographic duality

Holography is one of the main active area of research in finding a theory of quantum gravity
[154, 153]. The prime example of this concept is The AdS/CFT Correspondence [118]. In
general, holography is a duality between two theories, referred to as a bulk theory and a
boundary theory[118, 90, 158]. A familiar manifestation of the duality is an equality of
the partition function of the two theories - the boundary partition function as a function
of sources, and the bulk partition function as a function of boundary values of fields. This
in turns implies that correlation functions of operators in the boundary theory can also
be computed in the bulk theory by varying boundary values of its fields [90, 158]. This
dictionary has been extended to include expectations values of non-local operators as well
[117, 148, 162, 82]. This is a strong-weak duality, relating a strongly coupled boundary
theory to a weakly coupled bulk theory. As is usual in strong-weak dualities, precise
mathematical formulations and exact computations on both sides of the duality are hard
in general.

Recently, a twisted version of The AdS/CFT Correspondence has been formulated by
Costello and Li [28, 29], which makes the mathematical formulation of the duality possible.
In their setup, the twisted holography relates the bulk twisted supergravity to the boundary
twisted supersymmetric gauge theory. The bulk twisted supergravity, denoted by Tbk, is
supergravity in a background where the bosonic ghost field takes some non-zero value
[34, 35]. The boundary twisted supersymmetric gauge theory, denoted by Tbd, arises from
D-branes in the twisted supergravity, considered as defects in the bulk theory. The main
objectives considered in the twisted holography setting are

1



(1) The algebras of operatorsAOp(Tbd) of the twisted supersymmetric gauge theory living
on stack of N D-branes, after sending N !∞.

(2) The algebra of operators AOp(Tbk) in perturbative twisted supergravity living on the
location of the defect given by the stack of D-branes.

A particular nice feature of the twisted setup is that, the theories are usually drastically
simplified, though still quite nontrivial. The theories can be furthermore simplified with the
presence of Omega background [131, 132, 130, 161]. With the help of these simplifications,
the exact computations becomes possible in some interesting examples [87, 139, 140, 84,
83, 28].

The main proposal of the twisted holography is the comparison between algebras of pro-
tected sub-sectors of observables of the bulk/boundary theories, which can be summarized
as follows.

Conjecture 1.1.1 (Costello-Li, [29]). AOp(Tbd) is Koszul dual to AOp(Tbk).

Before explaining the reason why Koszul duality is expected, we should mention that
the Conjecture 1.1.1 is only expected to hold in the case that the brane sources no flux in
the supergravity theory. In general, a deformation of the Koszul duality between AOp(Tbd)
and AOp(Tbk) is expected, and this should be related to the curved Koszul duality in math
literature [95], examples of this more general situation is explored in [31, 37, 38, 39]. The
examples considered in this thesis (4d and 5d Chern-Simons theories) have the feature that
branes source no flux in the supergravity background.

For the record of literature in this area, see [26] for an earlier example and also [98, 31,
70, 147, 111, 37, 137, 65, 112, 138, 136, 20, 67, 35, 36, 40] for follow-up and related works.
For a recent and very readable review of Koszul duality aimed at physicists, we refer the
reader to [142].

1.2 Why Koszul duality?

In this section we explain why in the first place we expect the Koszul duality between
operator algebras of the bulk theory and the large N limit of the boundary theory. The
discussion in this section is broadly general and somewhat impressionism, the aim of this
section is to serve as a motivation behind the investigation into specific models in the body
of this thesis.

2



Let us first briefly recall the notion of Koszul dual algebra in mathematical terminology
[114]. Let A be a differential-graded algebra, i.e. an algebra

A =
⊕
i≥0

Ai, such that Ai · Aj ⊂ Ai+j, (1.1)

together with

d : Ai ! Ai+1, such that d(a · b) = d(a) · b+ (−1)deg(a)a · d(b). (1.2)

We furthermore assume that A0 = C, so there exists a differential-graded algebra homo-
morphism

ρ : A! C, (1.3)

ρ is called the augmentation map. Define the Koszul dual algebra A! by

A! = RHomA(C,C). (1.4)

The algebra structure on A! is induced from the standard one on Hom. A presentation of
A! in terms of bar-construction can be found in [114].

Let us go back to the holography, and lets us assume that the differential graded algebra
A is the algebra of observables of some twisted supergravity theory T on Rt×Rd for d ≥ 2
such that T is topological along Rt. Consider a line defect on Rt×{0}, which comes from
certain stack of N D-brane in the string-theory lift of T and taking N ! ∞. Then we
remove this line defect and include the gravitational flux sourced by this defect, this will
result in the back-reacted geometry with underlying topological space

Rt × (Rd\{0}) ∼= Rt × Rr>0 × Sd−1 ∼= AdS2 × Sd−1. (1.5)

In the physics holography language, the line defect is called a black brane, and the limit
r ! 0 is called the near-horizon limit.

In the back-reacted geometry, we compactify the theory along Sd−1 while keeping all
the KK-modes, and assume that the compactified theory is topological on the remaining
spacetime Rt × Rr>0. Note that this assumption is satisfied for the examples that are
considered in this thesis (4d and 5d Chern-Simons theories).

Next we put boundary conditions at r = 0 and r = ∞ respectively. In the 2d topological
field theory [5], the boundary conditions at r = 0 form the category of right A-modules
mod-A, and the boundary conditions at r = ∞ form the category of left A-modules A-mod.
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To see this physically, we can choose a boundary condition and bring local operators in
the bulk towards the boundary, this operation is associative, and the identity operator in
the bulk becomes the identity on the boundary, therefore the boundary condition is a left
or right A-module, depending on the direction of operator action.

After fixing a boundary condition M in A-mod or mod-A, the algebra of boundary
observables is

RHomA(M,M), (1.6)

where the multiplication is induced from Hom.

The specific boundary conditions that are considered in the holography correspondence
are the following.

• At r = 0, we put Dirichlet boundary conditions, i.e. the right A-module A.

• At r = ∞, we put Neumann boundary conditions, i.e. the left A-module C (via the
augmentation A! C).

Therefore the algebra of local operators at r = 0 is A itself, and the algebra of local
operators at r = ∞ is the Koszul dual algebra A!. The boundary theory at r = ∞ with
the Neumann boundary condition is the theory Tbd that is considered in the holography,
hence we expect that

AOp(Tbd) ∼= AOp(Tbk)
!, (1.7)

given that various assumptions that we made along the way are satisfied.

1.2.1 Universal line defect

An important property of the Koszul dual algebra A! is the following fact [114]: there is
an isomorphism between functors

Homdg−alg(A
!,−) ∼= MC(−⊗ A). (1.8)

Here MC(B ⊗ A) denotes the set of solutions to the Maurer-Cartan equation:

dx+
1

2
[x, x] = 0, x ∈ (B ⊗ A)1 (1.9)
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in the differential-graded algebra B ⊗ A. In other words, the Koszul dual algebra A!

represents the functor MC(− ⊗ A), this can be used as the definition of the Koszul dual
algebra.

From the physics perspective, lets us still assume that the differential graded algebra
A is the algebra of observables of the twisted supergravity T on Rt × Rd, such that T is
topological along Rt. By the topological property, there exists a charge δ in the theory T
of ghost number −1 such that

{Q, δ} = ∂t, (1.10)

where Q is the differential (BRST charge) on A. Then we put a line defect on Rt × {0},
and look for one-dimensional topological quantum mechanics that can be coupled to the
theory T along the line defect.

The general process of coupling a topological quantum mechanics to a bulk theory T
along a line defect can be described as follows. Let B be the algebra of observables of the
topological quantum mechanics, then a general coupling is constructed from topological
descent

Sint = Pexp

∫
Rt

δxdt =
∑
n≥1

∫
t1≤···≤tn

δx(t1) · · · δx(tn), (1.11)

where x is an operator in B ⊗ A with ghost number one (so that the coupling is of ghost
number zero). A physical coupling must be anomaly-free, i.e. QSint = 0. We can compute
the BRST variation

QSint =
∑
n≥1

n∑
i=1

∫
t1≤···≤tn

δx(t1) · · · (∂tx− δQx)(ti) · · · δx(tn)

=
∑
n≥1

n∑
i=1

∫
t1≤···≤tn

δx(t1) · · · (−δQx− δx · x+ x · δx)(ti) · · · δx(tn)

= −
∑
n≥1

n∑
i=1

∫
t1≤···≤tn

δx(t1) · · · δ(Qx+
1

2
[x, x])(ti) · · · δx(tn).

(1.12)

The BRST variation of interaction term Sint vanishes if x satisfies the Maurer-Cartan
equation:

Qx+
1

2
[x, x] = 0. (1.13)

The above argument shows that A! is the algebra of observables of a universal line defect
that can be coupled to T .
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Our speculation of Koszul duality rephrased in the twisted holography setup is that
Tbd is the universal theory that can be coupled to the bulk theory Tbk along the defect.

Although the above discussion is only for the 1d defect, one should interpret that the
universal defect is the “right” definition of Koszul duality and try to formulate the Koszul
duality for higher dimensional defect. This is not the goal of this thesis. For discussion on
Koszul dual chiral algebras, see [31, 37, 38, 39].

1.3 Relationship with Witten’s prescription of holog-

raphy

In the seminal works of holography correspondence [90, 158], two theories, Tbd and Tbk

were considered on two manifolds M1 and M2 respectively, with the property that M1

was conformally equivalent to the boundary of M2. The theory Tbd was considered with
background sources, schematically represented by ϕ. The theory Tbk was such that the
values of its fields at the boundary ∂M2 can be coupled to the fields of Tbd, then Tbk was
quantized with the fields ϕ as the fixed profile of its fields at the boundary ∂M2. These
two theories were considered to be holographic dual when their partition functions were
equal:

Zbd(ϕ) = Zbk(ϕ) . (1.14)

This is the main identity in Witten’s prescription of holography.

This equality leads to an isomorphism of two algebras constructed from the two theories,
as follows. Consider local operators Oi in Tbd with corresponding sources ϕi. The partition
function Zbd(ϕ) with these sources has the form:

Zbd(ϕ) =

∫
DX exp

(
−1

ℏ
Sbd +

∑
i

Oiϕ
i

)
, (1.15)

where X schematically represents all the dynamical fields in Tbd. Correlation functions of
the operators Oi can be computed from the partition function by taking derivatives with
respect to the sources:

⟨O1(p1) · · ·On(pn)⟩ =
1

Zbd(ϕ)

δ

δϕ1(p1)
· · · δ

δϕn(pn)
Zbd(ϕ)

∣∣∣∣
ϕ=ϕ0

. (1.16)

We can consider the algebra generated by the operators Oi using operator product expan-
sion (OPE). However, this algebra is generally of singular nature, due to its dependence
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on the location of the operators and the possibility of bringing two operators too close to
each other. In specific twisted supersymmetric gauge theories, we can consider protected
sub-sectors of the operator spectrum that can generate algebras free from such contact
singularity, so that a position independent algebra can be defined. This is the algebra
AOp(Tbd) that was introduced in the very beginning. Suppose the structure constants of
the algebra AOp(Tbd) are

OiOj = Ck
ijOk . (1.17)

In terms of the partition function and the sources the relation (1.17) becomes:

δ

δϕi
δ

δϕj
Zbd(ϕ)

∣∣∣∣
ϕ=0

= Ck
ij

δ

δϕk
Zbd(ϕ)

∣∣∣∣
ϕ=ϕ0

. (1.18)

The statement of duality (1.14) then tells us that the above equation must hold if we
replace Zbd by Zbk:

δ

δϕi
δ

δϕj
Zbk(ϕ)

∣∣∣∣
ϕ=0

= Ck
ij

δ

δϕk
Zbk(ϕ)

∣∣∣∣
ϕ=ϕ0

. (1.19)

This gives us a realization of the operator algebra AOp(Tbd) in the dual theory Tbk. This
motivates us to define another algebra by taking functional derivatives of the partition
function of Tbk with respect to ϕ, as in (1.19). Let’s call this algebra the scattering algebra,
ASc(Tbk).

From the above discussions, Witten’s prescription of holography duality implies the
following isomorphism:

AOp(Tbd) ∼= ASc(Tbk) . (1.20)

Together with the previous Koszul duality isomorphism, the twisted holography gives two
equivalent description of the algebra of boundary observables AOp(Tbd) in terms of bulk
theory Tbk:

(1) The algebra of observables on universally coupled defect, which can be computed by
the anomaly-cancellation using Feynman diagrams.

(2) The algebra of bulk-boundary scatterings, which can be computed using Witten
diagrams introduced in [158].

On the other hand, AOp(Tbd) is defined as the large-N limit of algebra of observables of the
world-volume theory on the stack of N D-branes supported at the defect. Therefore a com-
parison of AOp(Tbd) between large-N limit presentation and one of the bulk presentation
(i.e. ASc(Tbk) or AOp(Tbk)

!) would be a check of holography in the twisted setup.
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1.4 Organization of the thesis

This thesis is dedicated to two examples of the twisted holography, whose bulk theories
are 4d and 5d topological-holomorphic Chern-Simons theories. As we explained above, the
main objectives are the comparison of the algebra of observable on the boundary ASc(Tbd)
in the large-N limit presentation versus the bulk presentation ASc(Tbk) or AOp(Tbk)

!. Along
the way some additional features of the algebra ASc(Tbd) (e.g. coproduct) are also explored.

Chapters §2 and §2 are closely related. In chapter §2, we start from a brane setup
involving N D2 branes and K D4 branes in a 6d topological string theory and describe
the two theories that we claim to be holographic dual to each other. The world-volume
theory on D4 branes is the 4d topological-holomorphic Chern-Simons theory with gauge
group GLK , and the world-volume theory on D2 branes is the 2d BF theory with gauge
group GLN . Next, in the section §2.3 we compute the local operator algebra of the world-
volume theory on the stack of N D2 brane, using the Feynman diagram approach. This
algebra is the Yangian Yℏ(glK) in the limit N ! ∞. In the section §2.4 we show that
the same algebra can be computed using Witten diagrams in the D4 brane theory. Some
of technical computations in §2.3 and §2.4 are presented in appendix §A. In the section
§2.5, we propose a string theory realization of the duality, and we show that the model of
twisted holography that we have constructed in this chapter is a protected subsector of the
more familiar model of holographic duality involving N = 4 super Yang-Mills theory with
defects. We identify the supersymmetric twists and Ω-deformation that reduce the N = 4
duality setup to the topological setup presented in the earlier sections.

Chapter §3 views the 2d BF theory from a different perspective. Namely we investigate
the geometry of the phase space of the 2d GLN BF theory coupled to a quantum-mechanical
system with GLK flavour symmetry along a defect, and study the algebra of functions
in this phase space. In §3.2 we show that the phase space M(N,K) can be embedded
into the based loop group L−(GLK × GL1) as a Poisson subvariety, and in §3.3 we show
that the large-N limit of the M(N,K) is isomorphic to L−(GLK × GL1). In §3.4 we
compute Hilbert series of C[M(N,K)] as well as Hilbert series of certain modules of it.
The techniques of this computation is presented in appendix §B. In §3.5 we show that
the quantization Cℏ[M(N,K)] is a truncation of Yangian. The idea of the proof is to
compare the defining ideal of Cℏ[M(N,K)] in Yℏ(glK ⊕ gl1) with the defining ideal of the
Coulomb-branch presentation of truncated Yangian [18].

In chapter §4 we switch gears to the 5d topological-holomorphic Chern-Simons theory.
We start with reviewing the 11 dimensional twisted supergravity background

(R3 × Taub-NUT)topological × (C2)holomorphic
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in section §4.1. In the limit of Taub-NUT circle shrink to zero radius, the theory reduces
to 10 dimensional type IIA supergravity with D6 brane supported at the tip of Taub-
NUT. After turning on the Ω-background, the effective theory on D6 brane becomes the
5d topological-holomorphic Chern-Simons theory. If we add M2 and M5 branes into the
11d supergravity, they become line and surface defects in 5d Chern-Simons theory after
reduction to type IIA and turning on Ω-background. The algebra A of local observables
on the M2 brane is the large-N limit of the quantized ring of functions on Nakajima quiver
varieties associated to the ADHM quivers, and the algebra of local observables on the
M5 brane is the mode algebra W∞ of the W-infinity chiral algebra. Fusion of several
M2 and M5 branes can be interpreted as coproduct between these algebras, see §4.1.10.
We compute certain commutation relations of the algebra of universal defect coupled to
5d Chern-Simons along the M2 brane in §4.2, using Feynman diagrams, and show that
they agree with the large-N limit presentation of A. Some of the technical computation of
integrals are presented in the appendix §D. We also compute the coproduct ∆A,A, ∆W∞,W∞ ,
and ∆A,W∞ in §4.3, using Feynman diagrams, and show that they agree with the expected
formulae derived using free-field realization in [73].

In chapter §5, we study the algebra A of observables on the M2 brane from a purely
algebraic point of view. A is the large-N limit of the quantized ring of functions on
Nakajima quiver varieties associated to the ADHM quivers, we review the quantization for
general Nakajiam quiver varieties in the appendix §C. We write down the generators and
relations of A in §5.1, partly using the Calogero representation (a free-field realization)
of A worked out in §5.2. Note that they match with the presentation of the deformed
double current algebra in the literature [89, 59, 60], and this answers a question of Costello
[29, 2.1]. We also observe a simple relation between the Yangian of glK and A in §5.5,
and we use this observation to prove a conjecture of Costello [29, 2.3]. We mention the
relation between cA and the Kac-Moody algebra of glK in §5.6. And in the last section we
write down the coproduct formula for A and show that it gives rise to a vertex coalgebra
structure on A.

The chapters of this thesis are technically independent of each other and they can be
read independently.
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Chapter 2

4d Chern-Simons Theory

In this chapter, we study a toy model for holographic duality. The model is constructed by
embedding a stack of N D2-branes and K D4-branes (with one dimensional intersection)
in a 6D topological string theory. The world-volume theory on the D2-branes (resp. D4-
branes) is 2D BF theory (resp. 4D Chern-Simons theory) with GLN (resp. GLK) gauge
group. We propose that in the large N limit the BF theory on R2 is dual to the closed
string theory on R2 × R+ × S3 with the Chern-Simons defect on R × R+ × S2. As a
check for the duality we compute the operator algebra in the BF theory, along the D2-D4
intersection – the algebra is the Yangian of glK . We then compute the same algebra, in
the guise of a scattering algebra, using Witten diagrams in the Chern-Simons theory. Our
computations of the algebras are exact (valid at all loops).

2.1 Introduction and Summary

Holography is a duality between two theories, referred to as a bulk theory and a boundary
theory, in two different space-time dimensions that differ by one [118, 90, 158]. A familiar
manifestation of the duality is an equality of the partition function of the two theories -
the boundary partition function as a function of sources, and the bulk partition function
as a function of boundary values of fields. This in turns implies that correlation functions
of operators in the boundary theory can also be computed in the bulk theory by varying
boundary values of its fields [90, 158]. This dictionary has been extended to include
expectations values of non-local operators as well [117, 148, 162, 82]. This is a strong-weak
duality, relating a strongly coupled boundary theory to a weakly coupled bulk theory. As
is usual in strong-weak dualities, exact computations on both sides of the duality are hard.
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Topological theories have provided interesting examples of holographic dualities where
exact computations are possible [87, 139, 140, 84, 83, 28].

Recently, it has shown that some instances of holography can be described as an al-
gebraic relation, known as Koszul duality, between the operator algebras of the two dual
theories [29]. It was previously known that the algebra of operators restricted to a line in
the holomorphic twist of 4d N = 1 gauge theory with the gauge group GLK is the Koszul
dual of the Yangian of glK [26]. In light of the connection between Koszul duality and
holography, this result suggests that if there is a theory whose local operator algebra is
the Yangian of glK then that theory could be a holographic dual to the twisted 4d theory.
Since the inception of holography, brane constructions played a crucial role in finding dual
theories. It turns out that the particular twisted 4d theory is the world-volume theory
of K D4-branes1 embedded in a particular 6d topological string theory [30]. Since the
operators whose algebra is the Koszul dual of the Yangian lives on a line, it is a reasonable
guess that we need to include some other branes that intersect this stack of D4-branes
along a line. Beginning from such motivations we eventually find (and demonstrate in this
chapter) that the correct choice is to embed a stack of N D2-branes in the 6d topological
string theory so that they intersect the D4-branes along a line. The world-volume theory
of the D2-branes is 2d BF theory with GLN gauge group coupled to a fermionic quantum
mechanics along the D2-D4 intersection. The algebra of gauge invariant local operators
along this D2-D4 intersection is precisely the Yangian of glK .

This connected the D2 world-volume theory and the D4 world-volume theory via holog-
raphy in the sense of Koszul duality. The connection between these two theories via holog-
raphy in the sense of [90, 158] was still unclear. In this chapter we begin to establish this
connection. We take the D2-brane world-volume theory to be our boundary theory. This
implies that the closed string theory in some background, including the D4-brane theory
should give us the dual bulk theory. In the boundary theory, we consider the OPE (op-
erator product expansion) algebra of gauge invariant local operators, we argue that this
algebra can be computed in the bulk theory by computing a certain algebra of scatterings
from the asymptotic boundary in the limit N ! ∞. Our computation of the boundary
local operator algebra using the bulk theory follows closely the computation of boundary
correlation functions using Witten diagrams [158].

The Feynman diagrams and Witten diagrams we compute in this chapter have at most
two loops, however, we would like to emphasize that the identification we make between
the operator algebras and the Yangian is true at all loop orders. In the boundary theory

1We are following the convention of [3], according to which, by a topological Dp-brane we mean a brane
with a p-dimensional world-volume.
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(D2-brane theory) this will follow from the simple fact that, for the operator product that
we shall compute, there will be no non-vanishing diagrams beyond two loops. In the bulk
theory this follows from a certain classification of anomalies in the D4-brane theory [41]
and independently from the very rigid nature of the deformation theory of the Yangian.
We explain some of these mathematical aspects underlying our results in appendix §A.3.

A particular motivation for studying these topological/holomorphic theories and their
duality is that these theories can be constructed from certain brane setup in string theory.
We can identify these theories as certain supersymmetric subsectors of some theories on
D-branes in type IIB string theory by applying supersymmetric twists and Ω-deformation.

The organization of the chapter is as follows. In §2.2 we start from a brane setup
involving N D2-branes and K D4-branes in a 6d topological string theory and describe the
two theories that we claim to be holographic dual to each other. In §2.3 we compute the
local operator algebra in the D2-brane theory, this algebra will be the Yangian Y (glK) in
the limit N !∞. In §2.4 we show that the same algebra can be computed using Witten
diagrams in the D4-brane theory. In the last section, §2.5, we propose a string theory
realization of the duality.

2.2 The dual theories

2.2.1 Brane construction

The quickest way to introduce the theories we claim to be holographic dual to each other
is to use branes to construct them. Our starting point is a 6d topological string theory,
in particular, the product of the A-twisted string theory on R4 and the B-twisted string
theory on C [30]. The brane setup is the following:

Rv Rw Rx Ry Cz No. of branes
D2 0 × × 0 0 N
D4 0 0 × × × K

(2.1)

The subscripts denote the coordinates we use to parametrize the corresponding directions,
and it is implied that the complex direction is parametrized by the complex variable z,
along with its conjugate variable z.

Our first theory, denoted by Tbd, is the theory of open strings on the stack of D2-branes.
This is a 2d topological gauge theory with the complexified gauge group GLN [30]. The
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intersection of the D2-branes with the D4-branes introduces a line operator in this theory.
We describe this theory in §2.2.3.

Next, we consider the product of two theories, open string theory on the stack of D4-
branes, and closed string theory on the 6d background sourced by the stack of D2-branes.
The theory on the stack of D4-branes is a 4d analogue of Chern-Simons (CS) gauge theory
with the complexified gauge group GLK [30]. As it does in the theory on the D2-branes, the
intersection between the D2 and the D4-branes introduces a line operator in this theory as
well. This line sources a flux supported on the 3-sphere linking the line. Our bulk theory
is the Kaluza-Klein compactification of the total 6d theory2 on the 3-sphere. We describe
the 4d CS theory in §2.2.5. Let us describe the closed sting theory in the next section.

2.2.2 The closed string theory

The closed string theory, denoted by Tcl, is a product of Kodira-Spencer (also known as
BCOV) theory [11, 34] on C and Kähler gravity [12] on R4, along with a 3-form flux sourced
by the stack of D2-branes.3 Fields4 in this theory are given by:

Set of fields, F := Ω•(R4)⊗ Ω•,•(C) , (2.2)

i.e., the fields are differential forms on R4 and (p, q)-forms on C.5 The linearized BRST
differential acting on these fields is a sum of the de Rham differential on R4 and the
Dolbeault differential on C, leading to the following equation of motion:(

dR4 + ∂C
)
α = 0 , α ∈ F . (2.3)

The background field sourced by the D2-branes, let it be denoted by F3 ∈ F , measures
the flux through a topological S3 surrounding the D2-branes, it can be normalized as:∫

S3

F3 = N . (2.4)

Note that the S3 is only topological, i.e., continuous deformation of the S3 should not
affect the above equation. This is equivalent to saying that, the 3-form must be closed on

26d closed string theory coupled to 4d CS theory.
3This flux is analogous to the 5-form flux sourced by the stack of D4-branes in Maldacena’s setup of

AdS/CFT duality between N = 4 super Yang-Mills and supergravity on AdS5 × S5 [118].
4In the BV formalism, including ghosts and anti-fields.
5We are not being careful about the degree (ghost number) of the fields since this will not be used in

this chapter.
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the complement of the support of the D2-branes:

dR4×CF3(p) = 0 , p /∈ D2 . (2.5)

Here the differential is the de Rham differential for the entire space, i.e., dR4×C = dR4 +
∂C + ∂C. Moreover, as a dynamically determined background it is also constrained by
the equation of motion (2.3). In addition to satisfying these equations, F3 must also
be translation invariant corresponding to the directions parallel to the D2-branes. The
solution is:

F3 =
iN

2π(v2 + y2 + zz)2
(v dy ∧ dz ∧ dz − y dv ∧ dz ∧ dz − 2z dv ∧ dy ∧ dz) . (2.6)

In general, a closed string background like this might deform the theory on a brane, how-
ever, the pullback of the form (2.6) to the D4-branes vanishes:

ι∗F3 = 0 , (2.7)

where ι : R2
x,y×Cz ↪! R4

v,w,x,y×Cz is the embedding of the D4-branes into the entire space.
So the closed string background leaves the D4-brane world-volume theory unaffected.6

The flux (2.6) signals a change in the topology of the closed string background:

R4
v,w,x,y × Cz ! R2

w,x × R+ × S3 , (2.8)

where the R+ is parametrized by r :=
√
v2 + y2 + zz. This change follows from requiring

translation symmetry in the directions parallel to the D2-branes and the existence of an
S3 supporting the flux F3. This S3 is analogous to the S5 in the D4-brane geometry
supporting the 5-form flux sourced by the said D4-branes in Maldacena’s AdS/CFT [118].
The coordinate r measures distance7 from the location of the D2-branes. The r ! 0 region
would be analogous to Maldacena’s near horizon geometry. In our topological setting there
is no distinction between near and distant, and we treat the entire R2

w,x × R+ × S3 as
analogous to Maldacena’s near horizon geometry. This makes R2

w,x ×R+ analogous to the
AdS geometry. We recall that, in the AdS/CFT correspondence the location of the black

6The flux (2.6) is the only background turned on in the closed string theory. This can be argued as
follows: The D2-branes introduce a 4-form source (the Poincaré dual to the support of the branes) in the
closed string theory. This form can appear on the right hand side of the equation of motion (2.3) only for
a 3-form field α, which can then have a non-trivial solution, as in (2.6). Furthermore, since the equation
of motion (2.3) is free, the non-trivial solution for the 3-form field does not affect any other field.

7In the absence of a metric “distance” should be taken lightly. We really only distinguish between the
two extreme cases, r = 0 and r = ∞.
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branes and the boundary of AdS correspond to two opposite limits of the non-compact
coordinate transverse to the branes. In our case r = 0 corresponds to the location of the
D2-branes, and we treat the plane at r = ∞, namely:

R2
w,x × {∞} , (2.9)

as analogous to the asymptotic boundary of AdS.

The D4-branes in (2.1) appear as a defect in the closed string theory, they are analogous
to the D5-branes that were considered in [85] or the D3-branes considered in [85, 86],
in Maldacena’s setup of AdS/CFT, where they were presented as holographic duals of
Wilson loops in 4d N = 4 super Yang-Mills. For the world-volume of these branes, the
transformation (2.8) corresponds to:

R2
x,y × Cz ! Rx × R+ × S2 , (2.10)

where the R+ direction is parametrized by r′ :=
√
y2 + zz. The intersection of the bound-

ary plane (2.9) and this world-volume is then the line:

Rx × {∞}, (2.11)

at infinity of r′. We draw a cartoon representing some aspects of the brane setup in figure
2.1.

We can now talk about two theories:

1. The 2d world-volume theory of the D2-branes. This is our analogue of the CFT (with
a line operator) in AdS/CFT.

2. The effective8 3D theory on world-volume R2
w,x × R+ with a defect supported on

Rx × R+. This is our analogue of the gravitational theory in AdS background (with
defect) in AdS/CFT.

To draw parallels once more with the traditional dictionary of AdS/CFT [118, 90, 158],
we should establish a duality between the operators in the D2-brane world-volume theory
and variations of boundary values of fields in the “gravitational” theory on R2

w,x×R+ (the
boundary is Rw,x×{∞}). Both of these surfaces have a line operator/defect and this leads
to two types of operators, ones that are restricted to the line, and others that can be placed

8Effective, in the sense that this is the Kaluza-Klein reduction of a 6d theory with three compact
directions, though we don’t want to loose any dynamics, i.e., we don’t throw away massive modes.
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anywhere. Local operators in a 2d surface are commuting, unless they are restricted to
a line. Therefore, in both of our theories, we have non-commutative associative algebras
whose centers consist of operators that can be placed anywhere in the 2d surface. For this
chapter we are mostly concerned with the non-commuting operators:

1. Operators in the world-volume theory of the D2-branes that are restricted to the
D2-D4 intersection.

2. Variations of boundary values of fields in the effective theory along the intersection
(2.11) of the boundary R2

w,x × {∞} and the defect on Rx × R+.

In physical string theory, the analogue of the D4-branes would be coupled to the closed
string modes. In an appropriate low energy limit such gravitational couplings can be
ignored, leading to the notion of rigid holography [1]. Since we are working with topological
theory, we are assuming such a decoupling.

The computations in the “gravitational” side will be governed by the effective dynamics
on the defect on Rx × R+. This is the Kaluza-Klein compactification of the world-volume
theory of the D4-branes (with a line operator due to D2-D4 intersection). This 4d theory
(which we describe in §2.2.5) is familiar from previous works such as [41]. Therefore we use
the 4d dynamics, instead of the effective 2d one for our computations. In terms of Witten
diagrams (which we compute in §2.4) this means that while we have a 1D boundary, the
propagators are from the 4d theory and the bulk points are integrated over the 4d world-
volume R2 × C. We take the boundary line to be at y = ∞ with some fixed coordinate z
in the complex direction. In future we shall refer to this line as ℓ∞(z):

ℓ∞(z) := Rx × {y = ∞}× {z} . (2.12)

A cartoon of our setup

Let us make a diagrammatic summary of our brane setup in Fig 2.1. In the figure we draw
the non-compact part, namely R2

w,x ×R+, of the closed string background (the right hand
side of (2.8)). We identify the location of the 2d black brane and the defect D4-branes,
the asymptotic boundary R2

w,x×{∞}, and the intersection between the boundary and the
defect. At the top of the picture, parallel to the asymptotic boundary, we also draw the
D2-branes. We draw the D2-branes independently of the rest of the diagram because the
D2-branes do not exist in the backreacted bulk, they become the black brane. However,
traditionally, parallels are drawn between the asymptotic boundary and the brane sourcing
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2d black brane

R2
w,x × {∞}

D2-brane

D4-brane

ℓ∞(z)

Belongs to
the center.

Duality map

w

x
r

•

•

Figure 2.1: D2-brane, and the non-compact part of the backreacted bulk.

the bulk (the D2-brane in this case). The dots on the asymptotic boundary represent local
variations of boundary values of fields in the bulk theory Tbk. The corresponding dots on
the D2-brane represent the local operators in the boundary theory Tbd that are dual to the
aforementioned variations. By the duality map in the figure we schematically represent
boundary excitations in the bulk theory corresponding to some local operators in the dual
description of the same dynamics in terms of the boundary theory.

2.2.3 BF: The theory on D2-branes

This is a 2d topological gauge theory on the stack of N D2-branes (see (2.1)), supported
on R2

w,x, with complexified gauge group GLN . The field content of this theory is:

Field Valued in
β Ω0(R2)× glN
α Ω1(R2)× glN

. (2.13)

α is a Lie algebra valued connection and β is a Lie algebra valued scalar, both complex.
The curvature of the connection is denoted as F = dα + α ∧ α. The action is given by:

SBF :=

∫
R2
w,x

trN(βF) , (2.14)

where the trace is taken in the fundamental representation of glN .

We consider this theory in the presence of a line operator supported on Rx×{0}, caused
by the intersection of the D2 and D4-branes. The line operator is defined by a fermionic
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quantum mechanical system living on it.9 The fields in the quantum mechanics (QM) are
K fundamental (of glN) fermions and their complex conjugates:

Field Valued in
ψi Ω0(Rx)×N

ψi Ω0(Rx)×N
, i ∈ {1, · · · , K} , (2.15)

where N refers to the fundamental representation of glN and N to the anti-fundamental.
The fermionic system has a global symmetry GLN×GLK . These fermions couple naturally
to the glN connection α of the BF theory. The action for the QM is given by:

SQM :=

∫
Rx

(
ψidψ

i + ψiαψ
i + ψjA

j
iψ

i
)
, (2.16)

where we have introduced a background glK-valued gauge field A ∈ Ω1(Rx) × glK . Note
that the terms in the above action are made glN invariant by pairing up elements of N
with elements of the dual space N.

Our first theory is this BF theory with the line operator, schematically:

Tbd := BFN ⊗N QMN×K , (2.17)

where the subscripts on BF and QM refer to the symmetries (GLN and GLN × GLK
respectively) of the respective theories and the subscript on ⊗ implies that the GLN is
gauged. There are two types of gauge (glN) invariant operators in the theory:10

for n ∈ N≥0 ,
operators restricted to Rx: Oi

j[n] :=
1
ℏψjβ

nψi ,
operators not restricted to Rx: O[n] := 1

ℏtrNβ
n .

(2.18)

Unrestricted local operators in two topological dimensions can be moved around freely,
implying that for any n ≥ 0, the operator O[n] commutes with all of the operators defined
above.11 The operator algebra of the 2d BF theory consists of all theses operators but for
this chapter we focus on the non-commuting ones, in other words we, focus on the quotient

9This closely resembles the D3-D5 system in type IIB string theory considered in [85], there too a
fermionic quantum mechanics lived on the intersection, giving rise to Wilson lines upon integrating out the
fermions. Note that we could have considered bosons, instead of fermions, living on the line, without any
significant change to our following computations. This would be similar to the D3-D3 system considered
in [85, 86].

10The ℏ−1 appears in these definitions because the action (2.16) will appear in path integrals as
exp

(
−ℏ−1SQM

)
, which means functional derivatives with respect to Ai

j inserts operators that carry ℏ−1.
11These operators are represented by the red dot on the D2-brane in figure 2.1.
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of the full operator algebra of the boundary theory by its center.12 We shall compute
their Lie bracket in §2.3, which will establish an isomorphism with the Yangian. Had we
included the commuting operators as well we would have found a central extension of the
Yangian. In sum, the operator algebra we construct from the theory Tbd is:

AOp(Tbd) :=
(
Oi
j[n], O[n]

)
/(O[n]) . (2.19)

By the notation (x, y, · · · ) we mean the algebra generated by the set of operators {x, y, · · · }
over C.
Remark 2.2.4 (A speculative link). Note that it is possible to lift our D2 and D4 branes to
type IIB string theory while maintaining a one dimensional intersection. This results in a
D3-D5 setup (studied in particular in [85]) where on the D3 brane we find the N = 4 Yang-
Mills theory with a Wilson line.13 In [57, 80, 78], the authors considered local operators in
the N = 4 Yang-Mills that are restricted to certain Wilson lines. With the proper choice
of Wilson lines, Localization reduces this setup to 2d Yang-Mills theory with Wilson lines
– local operator insertions along the Wilson lines in 4d reduce to local operator insertions
along the Wilson lines in 2d [79]. 2d BF theory is the zero coupling limit of 2d Yang-Mills
theory. We therefore expect the algebra constructed in this section to be related to the
algebra constructed in the aforementioned references, at least in some limit.14 The algebra
in [78] would correspond to the K = 1 instance of our algebra, it may be an interesting
check to compute the analogue of the algebra in [78] for higher K. △

2.2.5 4d Chern-Simons: The theory on D4-branes

This is a 4d gauge theory on the stack of K D4-branes, supported on R2
x,y×Cz with the line

L := Rx × (0, 0, 0) removed and with the (complexified) gauge group GLK . The notation
of distinguishing directions by R and C is meant to highlight the fact that observables in
this theory depend only on the topology of the real directions and depend holomorphically
on the complex directions.15 Due to the removed line, we can represent the topology of
the support of this theory as (c.f. (2.10)):

M := R× R+ × S2 . (2.20)

12We shall similarly quotient out the center in the bulk theory as well.
13It is also interesting to note that the D5 brane in an Omega background reproduces the 4d CS theory

[43].
14We thank Shota Komatsu for pointing out this interesting possibility.
15In particular, they are independent of the coordinates x and y that parametrize the R2, and depend

holomorphically on z which parametrizes the C.
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The field of this theory is just a connection:

Field Valued in

A Ω1(R2×C\L)
(dz)

⊗ glK
. (2.21)

The above notation simply means that A is a glK-valued 1-form without a dz component.
The theory is defined by the action:

SCS :=
i

2π

∫
M

dz ∧ CS(A) , (2.22)

where CS(A) refers to the standard Chern-Simons Lagrangian:

CS(A) = trK

(
A ∧ dA+

2

3
A ∧ A ∧ A

)
, (2.23)

where the trace is taken over the fundamental representation of glK . This theory is a 4d
analogue of the, perhaps more familiar, 3D Chern-Simons theory. We shall therefore refer
to it as the 4d Chern-Simons theory and sometimes denote it by CS4

K or just CS.

The removal of the line L from R2×C is caused by the D2-D4 brane intersection. Note
that from the perspective of the CS theory, the D2-D4 intersection looks like a Wilson
line. This means that we should be quantizing the CS theory on M with a background
electric flux supported on the S2 insideM . Alternatively, we can quantize the CS theory on
R4 ×C with a Wilson line inserted along L.16 The choice of representation for the Wilson
line is determined by the number, N , of D2-branes, let us denote this representation as
ϱ : glK ! V . With this choice, the Wilson line is defined as the following operator:

Wϱ(L) := P exp

(∫
L

ϱ(A)

)
, (2.24)

where P exp implies path ordered exponentiation, made necessary by the fact that the
exponent is matrix valued. The above operator is valued in End(V ). This in general
means that the following expectation value:

⟨Wϱ(L)⟩ =
∫
DAWϱ(L) exp

(
−1

ℏSCS

)∫
DA exp

(
−1

ℏSCS

) , (2.25)

16Recall that in case of the BF theory the line operator at the D2-D4 intersection was described by a
fermionic QM. We could do the same in this case. However, in this case it proves more convenient to
integrate out the fermion, leaving a Wilson line in its place. The mechanism is the same that appeared
for intersection of D3 and D5-branes in physical string theory [85].
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is valued in Hom(H−∞⊗V,H+∞⊗V ), where H±∞ are the Hilbert spaces of the CS4
K theory

on the Cauchy surfaces perpendicular to L at x = ±∞, in the absence of the Wilson line.
However, for the particular CS theory, these Hilbert spaces are trivial and we end up with
a map that transports vectors in V from x = −∞ to x = +∞:

⟨Wϱ(L)⟩ : V−∞ ! V+∞ . (2.26)

In picture this operator may be represented as:

⟨Wϱ(L)⟩ :

Wϱ(L)
V V

x = −∞ x = +∞

. (2.27)

The CS theory is quantized with some fixed boundary profile of the connection along the
boundary Rx × {∞} × S2.17 To express the dependence of expectations values on this
boundary value we put a subscript, such as ⟨Wϱ(L)⟩A. Since we are essentially interested
in the Kaluza-Klein reduced theory on Rx × R+ we mostly care about the value of the
connection along the boundary line (defined in (2.12)) ℓ∞(z) ⊂ Rx × {∞} × S2.

To define our second theory, we start with the product of the closed string theory and
the CS theory, Tcl⊗CS4

K , supported on R2
w,x×R+×S3 and compactify on S3, our notation

for this theory is the following:

Tbk := πS
3

∗
(
Tcl ⊗ CS4

K

)
. (2.28)

We can put the theory Tbd (2.17) on the plane Rw,x “at infinity” of R2
w,x×R+. This plane

has a distinguished line Rx × {∞} (2.11) where the D4-brane world volume intersects.18

Along this line we have the glK gauge field which couples to the fermions of the QM in Tbd

(this coupling corresponds to the last term in (2.16)). Boundary excitations from arbitrary
points on Rw,x × {∞} will correspond to operators in the BF theory that are commuting,
since these local excitations on a plane are not ordered. The non-commutative algebra we
are interested in in the BF theory is the algebra of operators restricted to a particular line.
Similarly, in the “gravitational” side of the setup, we are interested in boundary excitations
restricted to the line ℓ∞(z). Let us look a bit more closely at the coupling between the
connection A and the fermions:

Iz :=
1

ℏ

∫
ℓ∞(z)

ψ
i
Ajiψj , ℓ∞(z) = Rx × {y = ∞}× {z} . (2.29)

17The boundary was chosen to respect the symmetry of the Wilson line along L.
18After aligning the v-coordinates of the plane and the D4-branes.
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A small variation of z leads to coupling between the fermions and z-derivatives of the
connection:

Iz+δz =
∞∑
n=0

1

ℏ

∫
ℓ∞(z)

(δz)n

n!
ψ
i
∂nzA

j
iψj . (2.30)

In the BF theory, the field β corresponds to the fluctuation of the D2-branes in the trans-
verse C direction [30]. Therefore, we can interpret the above varied coupling term as saying
that the operator in the boundary theory Tbd that couples to the derivative ∂nzA

j
i is pre-

cisely the operator Oi
j[n] = ℏ−1ψ

i
βnψj (c.f. (2.18), (2.19)). This motivates us to look at

functional derivatives of ⟨Wϱ(L)⟩A with respect to ∂nzA
j
i at fixed points along ℓ∞(z), such

as:
δ

δ∂n1
z A

j1
i1
(p1)

· · · δ

δ∂nm
z Ajmim (pm)

⟨Wϱ(L)⟩A , p1, · · · , pm ∈ ℓ∞(z) . (2.31)

Just as the expectation value ⟨Wϱ(L)⟩A is End(V )-valued, these functional derivatives are
End(V )-valued as well.19 The action is given by applying the functional derivative on
⟨Wϱ(L)⟩A (ψ) for any ψ ∈ V . Let us denote this operator as

T ij [n] : ℓ∞(z)× V ! V ,

p ∈ ℓ∞(z) , T ij [n](p) : ψ 7!
δ

δ∂nzA
j
i (p)

⟨Wϱ(L)⟩A (ψ) .
(2.32)

which can be pictorially represented by slight modifications of (2.27):

Wϱ(L)

δ

δ∂nz A
j
i

x = p

y = 0, ψ T ij [n](p)(ψ)

x = −∞ x = +∞
y = ∞

(2.33)

Composition of these operators, such as T i1j1 (p1) · · ·T
im
jm

(pm), is defined by the expression
(2.31). A more precise and computable characterization of these operators and their com-
position in terms of Witten diagrams [158] will be given in §2.4 (see (2.119)). Due to
topological invariance along the x-direction, the operator T ij [n](p) must be independent of
the position p. However, since these operators are positioned along a line, their product

19After choosing a point along ℓ∞(z).
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should be expected to depend on the ordering, leading to a non-commutative associative
algebra. We can now define the second algebra to appear in our example of holography:

ASc(Tbk) :=
(
T ij [n]

)
, (2.34)

i.e., the complex algebra generated by the set {T ij [n]}.
Remark 2.2.6 (Center of the algebra). In the BF theory we mentioned gauge invariant
operators that belong to the center of the algebra. Clearly, the holographic dual of those
operators do not come from the CS theory, rather they come from the closed string theory.
A 2-form field ϕ = ϕwxdw ∧ dx+ · · · from the closed string theory deforms the BF theory
as:

SBF ! SBF +

∫
R2
w,x

dw ∧ dx (∂nz ϕwx) trN (βn) . (2.35)

Functional derivatives with respect to the fields ∂nz ϕw,x placed at arbitrary locations on
the asymptotic boundary R2

w,x × {∞} correspond to inserting the operators trNβ
n in the

BF theory.20 As we did in the BF theory, we are going to ignore these operators now as
well. △

After all this setup, we can present the main result of this chapter:

Theorem 2.2.7. In the limit N !∞, both the algebra of local operators (2.19) along the
line operator in the theory Tbd = BFN ⊗N QMN×K, and the algebra of scatterings from

a line in the boundary (2.34) of the theory Tbk = πS
3

∗
(
Tcl ⊗ CS4

K

)
are isomorphic to the

Yangian of glK, i.e.:

AOp(Tbd)
N!∞∼= Yℏ(glK)

N!∞∼= ASc(Tbk) . (2.36)

The rest of the chapter is devoted to the explicit computations of these algebras.

2.3 AOp (Tbd) from BF⊗ QM theory

In this section we prove the first half of our main result (Theorem 2.2.7):

Proposition 2.3.1. The algebra AOp(Tbd), defined in the context of 2d BF theory with
the gauge group GLN coupled to a 1D fermionic quantum mechanics with global symmetry
GLN ×GLK, is isomorphic to the Yangian of glK in the limit N !∞:

AOp(Tbd)
N!∞∼= Yℏ(glK) . (2.37)

20These functional derivatives are represented by the red dot on the asymptotic boundary in figure 2.1.
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The BF theory coupled to a fermionic quantum mechanics was defined in §2.2.3, let us
repeat the actions here:

STbd = SBF + SQM , (2.38)

where:

SBF =

∫
R2
w,x

trN(βdα + β[α, α]) (2.39)

and SQM =

∫
Rx

(
ψidψ

i + ψiαψ
i
)
. (2.40)

We no longer need the source term, i.e., the coupling to the background glK connection
(c.f. (2.16)). Let us determine the propagators now.

The BF propagator is defined as the 2-point correlation function:

Pαβ(p, q) :=
〈
βα(p)αβ(q)

〉
. (2.41)

We choose a basis {τα} of glN which is orthonormal with respect to the trace trN:

trN(τατβ) = δαβ . (2.42)

Then the two point correlation function becomes diagonal in the color indices:

Pαβ(p, q) ≡ δαβP(p, q) . (2.43)

We shall often refer to just P as the propagator, it is determined by the following equation:21

1

ℏ
dP(0, p) = δ2(p)dw ∧ dx . (2.44)

Once we impose the following gauge fixing condition:22

d ⋆ P(0, p) = 0 , (2.45)

the solution is (using translation invariance to replace the 0 with an arbitrary point):

P(p, q) =
ℏ
2π

dϕ(p, q) , (2.46)

21A minor technicality: P(p, q) is a 1-form on R2
p × R2

q and in (2.44), by P(0, p) we mean the pull-back
of P ∈ Ω2(R4) by the diagonal embedding R2 ↪! R2 × R2.

22This is the analogue of the Lorentz gauge.

24



where ϕ(p, q) is the angle (measured counter-clockwise) between the line joining p-q and
any other reference line passing through p. In Feynman diagrams we shall represent this
propagator as:

P(p, q) = p q . (2.47)

Similarly, the propagator in the QM is defined by:

1

ℏ
∂x2

〈
ψ
a

i (x1)ψ
j
b(x2)

〉
= δab δ

j
i δ

1(x1 − x2) , (2.48)

with the solution: 〈
ψ
a

i (x1)ψ
j
b(x2)

〉
= δab δ

j
i ℏϑ(x2 − x1) , (2.49)

where ϑ(x2 − x1) is a unit step function. Anti-symmetry of the fermion fields dictates:〈
ψjb(x1)ψ

a

i (x2)
〉
= −

〈
ψ
a

i (x2)ψ
j
b(x1)

〉
= −δab δ

j
i ℏϑ(x1 − x2) . (2.50)

We take the step function to be:

ϑ(x) =
1

2
sgn(x) =


1/2 for x > 0
0 for x = 0
−1/2 for x < 0

. (2.51)

Then we can write:〈
ψ
a

i (x1)ψ
j
b(x2)

〉
=
〈
ψjb(x1)ψ

a

i (x2)
〉
= δab δ

j
i

ℏ
2
sgn(x2 − x1) . (2.52)

This propagator does not distinguish between ψ and ψ and it depends only on the order
of the fields, not their specific positions. In Feynman diagrams we shall represent this
propagator as:

ℏ
2
sgn(x2 − x1) = x1 x2

, (2.53)

where the curved line refers to the propagator itself and the horizontal line refers to the
support of the QM, i.e., the line w = 0. We now move on to computing operator products
that will give us the algebra AOp(Tbd).

Remark 2.3.2 (Fermion vs. Boson - Propagator). We might as well have considered a
bosonic QM instead of a fermionic QM. At present, this is an arbitrary choice, however, if
one starts from some brane setup in physical string theory and reduce it to the topological
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setup we are considering by twists and Ω-deformations,23 then depending on the starting
setup one might end up with either statistics. Let us make a few comments about the
bosonic case. In the first order formulation of bosonic QM the action looks exactly as in
the fermionic action 2.40 except the fields would be commuting – let us denote the bosonic
counterpart of ψ and ψ by ϕ and ϕ respectively. Then, instead of the propagator (2.52),
we would have the following propagator:24

−
〈
ϕ
a

i (x1)ϕ
j
b(x2)

〉
=
〈
ϕjb(x1)ϕ

a

i (x2)
〉
= δab δ

j
i

ℏ
2
sgn(x2 − x1) . (2.54)

Note that the extra sign in the first term (compared to (2.52)) is consistent with the
commutativity of the bosonic fields:〈

ϕ
a

i (x1)ϕ
j
b(x2)

〉
=
〈
ϕjb(x2)ϕ

a

i (x1)
〉
. (2.55)

The bosonic propagator (2.54) distinguishes between ϕ and ϕ, in that, the propagator is
positive if ϕ(x1) is placed before ϕ(x2), i.e., x1 < x2, and negative otherwise. △

2.3.3 Free theory limit, O(ℏ0)

Interaction in the quantum mechanics is generated via coupling to the glN gague field (see
(2.40)). Without this coupling, the quantum mechanics is free. In this section we compute
the operator product between Oi

j[m] and Ok
l [n] in this free theory, which will give us the

classical algebra.

Let us denote the operator product by ⋆, as in:

Oi
j[m] ⋆ Ok

l [n] . (2.56)

The classical limit of this product has an expansion in Feynman diagrams where we ignore
all diagrams with BF propagators. Before evaluating this product let us illustrate the
computations of the relevant diagrams by computing one exemplary diagram in detail.

23We describe one such specific procedure in §2.5.
24We have chosen the overall sign of the propagator to make comparision between Feynman diagrams

involving bosonic operators and fermionic operators as simple as possible. However, the overall sign is not
important for the determination of the algebra. The parameter ℏ enters the algebra as the formal variable
deforming the universal enveloping algebra U(glK [z]) to its Yangian, and the sign of ℏ is irrelevant for this
purpose.
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Consider the following diagram:25

Gik
jl [△ ·▲](x1, x2) :=

x1
Oi

j [m]
x2

Ok
l [n]

(2.57)

We are representing the operator Oi
j[m] = 1

ℏψ
a

j (β
m)baψ

i
b by the symbol where the three

dots represent the three fields ψ
a

j , (β
m)ba, and ψib respectively. The coordinate below an

operator in (2.57) represents the position of that operator and the lines connecting different
dots are propagators. Depending on which dots are being connected a propagator is either
the BF propagator (2.46) or the QM propagator (2.52). The value of the diagram is then
given by:

Gik
jl [△ ·▲](x1, x2) =

1

ℏ
ψ
a

j (x1)(β(x1)
m)ba

1

2
ℏδcbδil

1

ℏ
(β(x2)

n)dcψ
k
d(x2) ,

=
1

2ℏ
δilψj(x1)β(x1)

mβ(x2)
nψk(x2) . (2.58)

In the second line we have hidden away the contracted glN indices. In computing the
operator product (2.56) only the following limit of the diagram is relevant:

lim
x2!x1

Gik
jl [△ ·▲](x1, x2) =

1

2ℏ
δilψjβ

m+nψk =
1

2
δilO

k
j [m+ n] . (2.59)

We have ignored the positions of the operators, because the algebra we are computing
must be translation invariant. Reference to position only matters when we have different
operators located at different positions.

We can now give a diagramatic expansion of the operator product (2.56) in the free
theory:

Oi
j[m] ⋆ Ok

l [n]
x2!x1=

x1 x2
+

x1 x2

+
x1 x2

+
x1 x2

.

(2.60)

We have omitted the labels for the operators in the diagrams. It is understood that the
first operator is Oi

j[m] and the second one is Ok
l [n]. Summing these four diagrams we find:

Oi
j[m] ⋆ Ok

l [n] = Oi
j[m]Ok

l [n] +
1

2
δilO

k
j [m+ n]− 1

2
δkjO

i
l [m+ n] +

1

4
δilδ

k
j trNβ

m+n . (2.61)

25The reader can ignore the elaborate symbols (triangles and as such) that we use to refer to a diagram.
They are meant to systematically identify a diagram, but for practical purposes the entire expression can
be thought of as an unfortunately long unique symbol assigned to a diagram, just to refer to it later on.
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The product in the first term on the right hand side of the above equation is a c-number
product, hence commuting. The sign of the third term comes from the first diagram in the
second line in (2.60). In short, this comes about by commuting two fermions, as follows:

lim
x2!x1

Gik
jl [▲ ·△](x1, x2) =

1

2ℏ
δkjψ

iβm+nψl = − 1

2ℏ
δkjψlβ

m+nψi = −1

2
δkjO

i
l [m+ n] . (2.62)

Using (2.61) we can compute the Lie bracket of the algebra AOp(Tbd) in the classical
limit: [

Oi
j[m], Ok

l [n]
]
⋆
= δilO

k
j [m+ n]− δkjO

i
l [m+ n] . (2.63)

This is the Lie bracket in the loop algebra glK [z].
26

Remark 2.3.4 (Fermion vs. Boson - Classical Algebra). How would the bracket (2.63) be
affected if we had a bosonic QM? It would not. The first and the fourth diagrams from
(2.60) would still cancel with their counterparts when we take the commutator. The value
of the second diagram, (2.59), remains unchanged. In computing the value of the third
diagram (see (2.62)) we get an extra sign compared to the fermionic case because we don’t
pick up any sign by commuting bosonos, however, we pick up yet another sign from the
propagator relative to the fermionic propagator (see Remark 2.3.2 – compare the bosonic
(2.54) and fermionic (2.52) propagators).

2.3.5 Loop corrections from BF theory

Interaction in the BF theory comes from the following term in the BF action (2.39):

fαβγ

∫
R2

βααβ ∧ αγ , (2.65)

where the structure constant fαβγ comes from the trace in our orthonormal basis (2.42):

fαβγ = trN(τα[τβ, τγ]) . (2.66)

In Feynman diagrams this interaction will be represented by a trivalent vertex with exactly
1 outgoing and 2 incoming edges. Including the propagators for the edges, such a vertex

26The isomorphism is given by: Oi
j [m] 7! zmeji , where eji are the elementary matrices of dimension

K ×K satisfying the relation:
[eji , e

l
k] = δlie

j
k − δjke

l
i . (2.64)
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will look like:

q2, β

q3, γ q1, α

p =
ℏ2

(2π)3
fαβγ

∫
p∈R2

dq1ϕ(p, q1) ∧ dq2ϕ(p, q2) ∧ dq3ϕ(p, q3) ,

=: V αβγ(q1, q2, q3) .

(2.67)

We have given the name V αβγ to this vertex function.

Possibilities of Feynman diagrams are rather limited in the BF theory. In particular,
there are no cycles.27 This means that there is only one possible BF diagram that will
appear in our computations, which is the following:

. (2.68)

The middle operator looks slightly different because this operator involves the connection
α and an integration, as opposed to just the β field, to be specific,

=
1

ℏ

∫
R
ψiαψ

i . (2.69)

This term is the result of the insertion of the term coupling the fermions to the glN
connection in the QM action (2.40). In doing the above integrationover R we shall take
ψ and ψ to be constant. In other words, we are taking derivatives of the fermions to be
zero. The reason is that, the equations of motion for the fermions (derived from the action
(2.40)), namely dψi = −Aψi and dψi = Aψi, tell us that derivatives of the fermions are
not gauge-invariant quantities – and we want to expand the operator product of gauge
invariant operators in terms of other gauge invariant operators only.28

In the following we shall consider the diagram (2.68) with all possible fermionic prop-
agators added to it.

27By cycle we mean loop in the sense of graph theory. In this chapter when we write loop without any
explanation, we mean the exponent of ℏ, as is customary in physics. This exponent is related but not
always equal to the number of loops (graph theory). Therefore, we reserve the word loop for the exponent
of ℏ, and the word cycle for what would be loop in graph theory.

Let us illustrate why there are no cycles in BF Feynman diagrams. Consider the cycle . The three

propagators in the cycle contribute the 3-form dϕ1 ∧ dϕ2 ∧ dϕ3 to a diagram containing the cycle, where
the ϕ’s are the angles between two successive vertices. However, due to the constraint ϕ1 + ϕ2 + ϕ3 = 2π,
only two out of the three propagators are linearly independent. Therefore, their product vanishes.

28An alternative, and perhaps more streamlined, way to say this would be to formulate all the theories
in the BV/BRST formalism, where operators are defined, a priori, to be in the cohomology of the BRST
operator, which would exclude derivatives of the fermions to begin with.
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0 fermionic propagators

We are mostly going to compute products of level 1 operators, i.e., Oi
j[1], this is because

together with the level 0 operators, they generate the entire algebra. Without any fermionic
propagators, we just have the diagram (2.68):

Gik
jl [··](x1, x2) :=

x1
Oi

j [1]
x

1
ℏ
∫
ψαψ

x2
Ok

l [1]

. (2.70)

In future, we shall omit the labels below the operators to reduce clutter. In terms of the
BF vertex function (2.67), the above diagram can be expressed as:

Gik
jl [··](x1, x2) =

1

ℏ3
ψjταψ

iψτβψψlτγψ
k

∫
Rx

V αβγ(x1, x, x2) . (2.71)

We have used the expansions of β = βατα and α = αβτβ in the orthonormal glN basis
{τα}. As defined in (2.67), the vertex function V αβγ is a 2d integral of a 3-form, therefore,
the integration of the vertex function on a line gives us a number. It will be convenient to
divide up the integral of the vertex function into three integrals depending on the location
of the point x relative to x1 and x2:∫

Rx

V αβγ(x1, x, x2) = Vαβγ·|| (x1, x2) + Vαβγ|·| (x1, x2) + Vαβγ||· (x1, x2) , (2.72)

where,

Vαβγ·|| (x1, x2) :=

∫
x<x1

V αβγ(x1, x, x2) =
ℏ2

24
fαβγ , (2.73a)

Vαβγ|·| (x1, x2) :=

∫
x1<x<x2

V αβγ(x1, x, x2) =
ℏ2

24
fαβγ , (2.73b)

Vαβγ||· (x1, x2) :=

∫
x2<x

V αβγ(x1, x, x2) =
ℏ2

24
fαβγ . (2.73c)

We evaluate these integrals in Appendix §A.1. Adding them up and substituting in (2.71)
we get from the diagram (2.70):

Gik
jl [··](x1, x2)

x1!x2=
1

8ℏ
ψjταψ

iψτβψψlτγψ
kfαβγ . (2.74)
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Since the glN indices are all contracted, we can choose a particular basis to get an expression
independent of any reference to glN . Choosing the elementary matrices as the basis we get
the following expression:

Gik
jl [··] =

π2

2ℏ
ψje

a
bψ

iψecdψψle
e
fψ

kf bdface . (2.75)

Using the definition of the elementary matrices (eab )
c
d = δadδ

c
b we get ψje

a
bψ

i = ψ
d

j (e
a
b )
c
d ψ

i
c =

ψ
a

jψ
i
b and in this basis the structure constant is:

f bdface = δdaδ
f
c δ

b
e − δbcδ

d
eδ
f
a . (2.76)

Using these expressions in (2.75) we get:

Gik
jl [··] =

1

8ℏ
(
ψjψ

m ψmψ
k ψlψ

i − ψlψ
m ψmψ

i ψjψ
k
)
,

=
1

8
ℏ2
(
Om
j [0]O

k
m[0]O

i
l [0]−Om

l [0]O
i
m[0]O

k
j [0]
)
. (2.77)

The above expression is anti-symmetric under the exchange (i, j) ↔ (k, l), therefore, the
contribution of this diagram to the Lie bracket (2.63) is twice the value of the diagram.

1 fermionic propagator

We have the following six diagrams:

Gik
jl [·△ ·▲] = , Gik

jl [·▲ ·△] = ,

Gik
jl [△ ·▲ ·] = , Gik

jl [▲ ·△ ·] = ,

Gik
jl [△ · · ▲] = , Gik

jl [▲ · · △] = .

(2.78)

In all the above diagrams, the left and the right most operators are Oi
j[1] and Ok

l [1] re-
spectively, and all the graphs are functions of x1 and x2, where these two operators are

31



located. Let us explain the evaluation of the top left diagram in detail. Written explicitly,
this diagram is:

Gik
jl [·△ ·▲](x1, x2) =

1

ℏ3

∫
Rx

ψj(x1)ταψ
i(x1)ψ

a

m(x) (τβ)
b
a

〈
ψmb (x)ψ

c

l (x2)
〉

× (τγ)
d
c ψ

k
d(x2)V

αβγ(x1, x, x2) , (2.79)

where the two point correlation function is the QM propagator (2.52). The integrand
above depends on the position only to the extend that they depend on the ordering of
the positions, since we are only quantizing the constant modes of the fermions.29 The
propagator between the two fermions gives a propagator which depends on the sign of
x2−x (see (2.52), (2.53)), since we are integrating over x, this propagator will change sign
depending on whether x is to the left or to the right of x2.

30 Therefore, we can write this
graph as:

Gik
jl [·△ ·▲] =

1

ℏ2
ψjταψ

iψlτβτγψ
k
(
Vαβγ·|| + Vαβγ|·| − Vαβγ||·

)
,

=
1

24
ψjταψ

iψlτβτγψ
k fαβγ =

1

24
ψjταψ

iψlτδψ
k f δ

βγ f
αβγ . (2.80)

Due to the symmetry f δ
βγ f

αβγ = f α
βγ f δβγ, the above expression is symmetric under the

exchange (i, j) ↔ (k, l), therefore this diagram does not contribute to the Lie bracket
(2.63). The diagrams Gik

jl [·▲ ·△], Gik
jl [△ ·▲ ·], and Gik

jl [▲ ·△ ·] do not contribute to the Lie
bracket for exactly the same reason. The remaining two diagrams evaluate to the following
expressions:

Gik
jl [△ · · ▲] = 1

8ℏ
fαβγδilψjτατγψ

kψτβψ , (2.81a)

Gik
jl [▲ · · △] = − 1

8ℏ
fαβγδkjψlτγταψ

iψτβψ . (2.81b)

Their sum is symmetric under the exchange (i, j)↔ (k, l),31 and therefore these diagrams
do not contribute to the Lie bracket either.

None of the diagrams with one fermionic propagator contributes to the Lie bracket.

29Derivatives of the fermions are not gauge invariant.
30This is the reason why we computed the integrals (2.73) separately depending on the position of x.
31The opposite ordering of τα and τγ cancels the sign, using the anti-symmetry of the indices on the

structure constant.
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2 fermionic propagators

There are nine ways to join two pairs of fermions with propagators:

Gik
jl [△·▲▽·▼] Gik

jl [▼△·▲·▽] Gik
jl [▲·▽·▼△]

Gik
jl [▲·▼△·▽] Gik

jl [▲▽·△·▼] Gik
jl [△·▼·▲▽]

(2.82)

Gik
jl [▼△·▲▽·]

Gik
jl [▼△··▲▽]

Gik
jl [·▼△·▲▽]

The left and the right most operators in all of the above diagrams are Oi
j[1] and Ok

l [1]
respectively.

All three of the diagrams in the bottom line vanish. This is because joining all the
fermions in two operators with propagators introduces a trace trN(τατβ) of glN generators
when the same color indices, α and β in this case, are contracted with the structure constant
coming form the BF interaction vertex, as in trN(τατβ)f

αβγ. Since the trace is symmetric
and the structure constant is anti-symmetric, these three diagrams vanish.

Computation also reveals the following relations:32

Gik
jl [▼ △ ·▲▽] = Gik

jl [▲ · ▽ · ▼ △] , Gik
jl [▲▽ · △ ·▼] = Gik

jl [△ ·▼ · ▲▽] , (2.83)

together with the fact that Gik
jl [▼ △ ·▲·▽]+Gik

jl [▲▽ ·△ ·▼] is symmetric under the exchange
(i, j)↔ (k, l). The above relations and symmetry implies that when anti-symmetrized with
respect to (i, j) ↔ (k, l), the sum of the four diagrams appearing in the above relations

32Among the four diagrams at the top right 2× 2 corner of (2.82).
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vanish. In a similar vein, the sum Gik
jl [△ ·▲▽ · ▼] + Gik

jl [▲ · ▼ △ ·▽] also turns out to be
symmetric under (i, j)↔ (k, l) and therefore these two diagrams do not contribute to the
Lie bracket either.

None of the diagrams with two fermionic propagators contributes to the Lie bracket.

3 fermionic propagators

There are two ways to join all the fermions with propagators:

, (2.84)

As before, the left and the right most operators are Oi
j[1] and Ok

l [1] respectively. Both
of these diagrams are proportional to δilδ

k
j , in particular, they are symmetric under the

exchange (i, j)↔ (k, l), and therefore do not contribute to the Lie bracket.

Lie bracket

Since only the diagram with zero fermionic propagator (2.77) survives the anti-symmetrization,
the Lie bracket (2.63) up to O(ℏ2) corrections becomes:[

Oi
j[1], O

k
l [1]
]
⋆
= δilO

k
j [2]− δkjO

i
l [2] +Gik

jl [··]−Gki
lj [··] ,

= δilO
k
j [2]− δkjO

i
l [2] +

ℏ2

4

(
Om
j [0]O

k
m[0]O

i
l [0]−Om

l [0]O
i
m[0]O

k
j [0]
)
. (2.85)

Though we have only computed up to 2-loops diagrams, this result is exact, because there
are no more non-vanishing Feynman diagrams that can be drawn.

Since (2.85) is not among the standard relations of the Yangian that are readily available
in the literature, we shall now make a change of basis to get to a standard relation. First
note that, the product of operators in the right hand side of the above equation is not
the operator product, this product is commutative (anti-commutative for fermions) and
therefore we can write it in an explicitly symmetric form, such as:

Om
j [0]O

k
m[0]O

i
l [0] =

{
Om
j [0], O

k
m[0], O

i
l [0]
}
, (2.86)
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where the bracket means complete symmetriazation, i.e., for any three symbols O1, O2 and
O3 with a product we have:

{O1, O2, O3} =
1

3!

∑
s∈S3

Os(1)Os(2)Os(3) , (2.87)

where S3 is the symmetric group of order 3!. With this symmetric bracket, let us now
define:

Qik
jl := f iunjvmf

vpq
uorf

rtk
qsl

{
Om
n [0], O

o
p[0], O

s
t [0]
}
, (2.88)

where f ijklmn are the glK structure constants in the basis of elementary matrices. Using the
form of the gl structure constant in the basis of elementary matrices (c.f. (2.76)) we can
write:

Qik
jl = 3

{
Oi
l , O

m
j , O

k
m

}
− 3

{
Ok
j , O

m
l , O

i
m

}
+ δkj

{
Om
l , O

n
m, O

i
n

}
− δil

{
Om
j , O

n
m, O

k
n

}
. (2.89)

We have ignored to write the [0] for each of the operators. Using the above expression we
can re-write (2.85) as:

[
Oi
j[1], O

k
l [1]
]
⋆
= δilÕ

k
j [2]− δkj Õ

i
l [2] +

ℏ2

12
Qik
jl , (2.90)

with the redefinition:

Õk
j [2] := Ok

j [2]−
ℏ2

12

{
Om
j , O

n
m, O

k
n

}
. (2.91)

Note that,
{
Om
j , O

n
m, O

k
n

}
does indeed transform as an element of glK , since it only has

a pair of fundamental-anti-fundamental glK indices free. This makes the redefinition of
Ok
j [2] possible. The Lie bracket (2.90) is how the Yangian was presented in [41].

Remark 2.3.6 (Fermion vs. Boson - Quantum Algebra). In Remark 2.3.4 we pointed out
that the classical part of the algebra (2.90) remains unchanged if we replace the fermionic
QM on the defect with a bosonic QM. This remains true at the quantum level – though a bit
tedious, it can be readily verified by using the bosonic propagator (2.54) and keeping track
of signs through the computations of this section without any other modifications. △

2.3.7 Large N limit: The Yangian

For finite N , there are some extra relations among the operators Oi
j[n] that are not part

of the Yangian algebra. These relations are simply a result of having finite dimensional
matrices. We start by noting that the operators Oi

j[m] act on the Hilbert space Hfer
QM of
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the quantum mechanics. This is a finite dimensional Hilbert space constructed by acting
with the fermionic zero modes on the vacuum of the theory:

Hfer
QM = C|Ω⟩ ⊕

⊕
i,a

Cψia|Ω⟩ ⊕
⊕
i,j,a,b

Cψiaψ
j
b |Ω⟩+ · · · . (2.92)

Considering the GLN and GLK indices on the fermions this Hilbert space can be decom-
posed into tensor products of representations of GLK and GLN as follows (see (A.9)):

Hfer
QM =

⊕
Y

HN
Y T ⊗HK

Y , (2.93)

where Y is a Young tableaux, Y T is the transpose of Y , HN
Y T (resp. HK

Y ) is the GLN
(resp. GLK) representation associated to the tableaux Y T (resp. Y ), and a bar over
a representation denotes its dual. Any d × d matrix X satisfies a degree d polynomial
equation:33

Xd =
d−1∑
i=0

ciX
i . (2.94)

Therefore, all the operators Oi
j[m] satisfy some polynomial equation of degree dimHfer

QM.
Since the matrix B is an N × N matrix there are relations among its different powers,
which can lead to relations among operators of the QM as well. In the limit N ! ∞ we
do not need to worry about such truncations of the Yangian and we have the full Yangian.
This positively concludes the first half of our main result (Theorem 2.2.7).

Remark 2.3.8 (Fermion vs. Boson – Hilbert Space). The Hilbert space as a representation
of GLN ×GLK differs between the fermionic description of the defect QM and the bosonic
description. The fermionic Hilbert space (2.93) is finite dimensional because of the anti-
symmetry of the fermionic generators. There is no such exclusion principle for the bosons
and the bosonic Hilbert space is infinite dimensional. The bosonic Hilbert space is (see
(A.13)):

Hbos
QM =

⊕
Y

HN
Y ⊗HK

Y , (2.95)

where HN
Y and HK

Y are representations of GLN and GLK denoted by the same tableaux
Y . △

33The relation between the coefficients appearing in (2.94) and X is the following [152]: if X has the

characteristic polynomial
∑d

i=0 aix
d−i with a0 = 1 and ui satisfy the recurrence relation

∑d
i=0 aiud−i = 0,

then ci =
∑d−1

j=i aj−iud−j .
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2.4 ASc(Tbk) from 4d Chern-Simons Theory

In this section we prove the second half of our main result (Theorem 2.2.7):

Proposition 2.4.1. The algebra ASc(Tbk), defined in (2.34) in the context of 4d Chern-
Simons theory, is isomorphic to the Yangian Yℏ(glK):

ASc(Tbk)
N!∞∼= Yℏ(glK) . (2.96)

The 4d Chern-Simons theory with gauge group GLK , also denoted by CS4
K , is defined

by the action (2.22), which we repeat here for convenience:

SCS :=
i

2π

∫
R2
x,y×Cz

dz ∧ trK

(
A ∧ dA+

2

3
A ∧ A ∧ A

)
. (2.97)

The trace in the fundamental representation defines a positive-definite metric on glK ,
moreover, we choose a basis of glK , denoted by {tµ}, in which the metric becomes diagonal:

trK(tµtν) ∝ δµν . (2.98)

We consider this theory in the presence of a Wilson line in some representation ϱ : glK !
End(V ), supported along the line L defined by y = z = 0:

Wϱ(L) = P exp

(∫
L

ϱ(A)

)
. (2.99)

Consideration of fusion of Wilson lines to give rise to Wilson lines in tensor product rep-
resentation shows that it is not only the connection A that couples to a Wilson line but
also its derivatives ∂nzA [41]. Furthermore, gauge invariance at the classical level requires
that ∂nzA couples to the Wilson line via a representation of the loop algebra glK [z]. So the
line operator that we consider is the following:

P exp

(∑
n≥0

ϱµ,n

∫
L

∂nzA
µ

)
, (2.100)

where the matrices ϱµ,n ∈ End(V ) satisfy:

[ϱµ,m, ϱν,n] = f ξ
µν ϱξ,m+n . (2.101)
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The structure constant f ξ
µν is that of glK . In particular, we have ϱµ,0 = ϱ(tµ).

In (2.21), A was defined to not have a dz component. The reason is that, due to the
appearance of dz in the above action (2.97), the dz component of the connection A never
appears in the action anyway.34

Though the theory is topological, in order to do concrete computations, such as impos-
ing gauge fixing conditions, computing propagator, and evaluating Witten diagrams etc.
we need to make a choice of metric on R2

x,y × Cz, we choose:35

ds2 = dx2 + dy2 + dzdz . (2.104)

For the GLK gauge symmetry we use the following gauge fixing condition:

∂xAx + ∂yAy + 4∂zAz = 0 . (2.105)

The propagator is defined as the two-point correlation function:

P µν(v1, v2) := ⟨Aµ(v1)Aν(v2)⟩ . (2.106)

Since in the basis of our choice the Lie algebra metric is diagonal (2.98), this propagator
is proportional to a Kronecker delta in the Lie algebra indices:

P µν(v1, v2) = δµνP (v1, v2) , (2.107)

where P is a 2-form on R4
v1
×R4

v2
. We can fix one of the coordinates to be the origin, this

amounts to taking the projection:

ϖ : R4
v1
× R4

v1
! R4

v , ϖ : (v1, v2) 7! v1 − v2 =: v . (2.108)

Due to translation invariance, P can be written as a pullback of some 2-form on R4 by
ϖ, i.e., P = ϖ∗P for some P ∈ Ω2(R4). The propagator P can be characterized as the

34Had we defined the space of connections to be Ω1(R2
x,y × Cz) ⊗ glK , then, in addition to the usual

GLK gauge symmetry, we would have to consider the following additional gauge transformation:

A! A+ fdz , (2.102)

for arbitrary function f ∈ Ω0(R2 × C). We could fix this gauge by imposing:

Az = 0 . (2.103)

This would get us back to the space
(
Ω1(R2

x,y × Cz)/(dz)
)
⊗ glK .

35For this theory we follow the choices of [41] whenever possible.
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Green’s function for the differential operator i
2πℏdz ∧ d that appears in the kinetic term of

the action SCS. For P this results in the following equation:

i

2πℏ
dz ∧ dP (v) = δ4(v)dx ∧ dy ∧ dz ∧ dz , (2.109)

The propagator P , and in turns P , must also satisfy the gauge fixing condition (2.105):

∂xP x + ∂yP y + 4∂zP z = 0 . (2.110)

The solution to (2.109) and (2.110) is given by:

P (x, y, z, z) =
ℏ
2π

x dy ∧ dz + y dz ∧ dx+ 2z dx ∧ dy

(x2 + y2 + zz)2
. (2.111)

The propagator P (v1, v2) will be referred to as the bulk-to-bulk propagator, since the
points v1 and v2 can be anywhere in the world-volume R2

x,y × Cz of CS theory. To com-
pute Witten diagrams we also need a boundary-to-bulk propagator. We will denote it as
Kµ(v, x) ≡ K(v, x)tµ, where v ∈ R2

x,y × Cz and x ∈ ℓ∞(z) is restricted to the boundary
line. The boundary-to-bulk propagator is a 1-form defined as a solution to the classical
equation of motion:

dzv ∧ dvK(v, x) = 0 , (2.112)

and by the condition that when pulled back to the boundary, in this case ℓ∞(z), it must
become a delta function supported at x:

ε∗K(x′, x) = δ1(x′ − x)dx′ , x′ ∈ ℓ∞(z) (2.113)

where ε : ℓ∞(z) ↪! R2 × C is the embedding of the line in the larger 4d world-volume. As
our boundary-to-bulk propagator we choose the following:

K(v, x) = dvθ(xv − x) = δ1(xv − x)dxv , (2.114)

where xv refers to the x-coordinate of the bulk point v. The function θ is the following
step function:

θ(x) =


1 for x > 0
1/2 for x = 0
0 for x < 0

. (2.115)

Note that we have functional derivatives with respect to ∂nzA for n ∈ N≥0. The propagator
(2.114) corresponds to the functional derivative with n = 0. Let us denote the propagator
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corresponding to δ
δ∂nz A

, more generally, as Kn, and for n ≥ 0, we modify the condition

(2.113) by imposing:

lim
v!x′

ε∗∂nzK(v, x) = δ1(x′ − x)dx′ , x′ ∈ ℓ∞(z) . (2.116)

This leads us to the following generalization of (2.114):

Kn(v, x) = znv δ
1(xv − x)dxv . (2.117)

Apart from the two propagators, we shall need the coupling constant of the theory to
compute Witten diagrams. The coupling constant of this theory can be read off from the
interaction term in the action SCS, it is:

i

2πℏ
f ξ
µν dz . (2.118)

Now we can give a diagrammatic definition of the operators in the algebra ASc(Tbk),
namely the ones defined in (2.32), and their products:

Tµ1 [n1](p1) · · ·Tµm [nm](pm) =
∞∑
l=1

∑
ji≥0 · · ·

· · ·

ϱν1,j1
q1

ϱνl,jl
ql

j1 jl

p1
µ1, n1

pm
µm, nm

· · ·

· · ·

. (2.119)

Let us clarify some points about the picture. We have replaced the pair of fundamental-
anti-fundamental indices on T with a single adjoint index. The bottom horizontal line
represents the boundary line ℓ∞(z), and the top horizontal line represents the Wilson line in
representation ϱ : glK ! V at y = 0. The sum is over the number of propagators attached
to the Wilson line and all possible derivative couplings. The orders of the derivatives are
mentioned in the boxes. The points q1 ≤ · · · ≤ ql on the Wilson line are all integrated along
the line without changing their order. The gray blob represents a sum over all possible
graphs consistent with the external lines. We use different types of lines to represent
different entities:

Bulk-to-bulk propagator, P (v1, v2) = v1 v2 ,

Boundary-to-bulk propagator, K(v, x) = v x ,

The boundary line ℓ∞(z) : ,

Wilson line : .

(2.120)
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The labels µi, ni below the points along the boundary line implies that the corresponding
boundary-to-bulk propagator is Kni

= zniK and that it carries a glK-index µi. Finally, the
jth derivative of Aν couples to the Wilson line via the matrix ϱν,j. Such a diagram with
m boundary-to-bulk propagators and l bulk-to-bulk propagators attached to the Wilson
lines will be evaluated to an element of End(V ) which will schematically look like:

(Γm!l)
µ1···µl
ν1···νm ϱµ1,j1 · · · ϱµl,jl , (2.121)

where (Γm!l)
µ1···µm
ν1···νl is a number that will be found by evaluating the Witten diagram. Since

the bulk-to-bulk propagator (2.111) is proportional to ℏ and the interaction vertex (2.118)
is proportional to ℏ−1, each diagram will come with a factor of ℏ that will be related to
the Euler character of the graph.36 In the following we start computing diagrams starting
from O(ℏ0) and up to O(ℏ2), by the end of which we shall have proven the main result
(Proposition 2.4.1) of this section.

Remark 2.4.2 (Diagrams as m! l maps, and deformation). Each m! l Witten diagram
that appears in sums such as (2.119) can be interpreted as a map whose image is the value
of the diagram:

Γm!l :
m⊗
i=1

zniglK !
l⊗

i=1

zjiglK ! End(V ) ,

Γm!l :
m⊗
i=1

znitµi 7! (Γm!l)
µ1···µl
ν1···νm ϱµ1,j1 · · · ϱµl,jl .

(2.122)

As we shall see explicitly in our computations, diagrams in (2.119) without loops (diagrams
of O(ℏ0)) define an associative product that leads to classical algebras such as U(glK [z]).
However, there are generally more diagrams in (2.119) involving loops (diagrams of O(ℏ)
and higher order) that change the classical product to something else. Since loops in
Witten or Feynman diagrams are the essence of the quantum interactions, classical algebras
deformed by such loop diagrams are aptly called quantum groups (of course, why they are
called groups is a different story entirely [24].) △

36In a Feynman diagram all propagators are proportional to ℏ and the power of ℏ of a diagram relates
simply to the number of faces of the diagram, which is why ℏ is called the loop counting parameter. In
a Witten diagram the boundary-to-bulk propagators do not carry any ℏ and therefore the power of ℏ
depends also on the number of boundary-to-bulk propagators. However, we are going to ignore this point
and simply refer to the power of ℏ in a diagram as the loop order of that diagram.
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2.4.3 Relation to anomaly of Wilson line

As we shall compute relevant Witten diagrams of the 4d Chern-Simons theory in detail
in later sections, we shall find that the computations are essentially similar to the com-
putations of gauge anomaly of the Wilson line [41] in this theory. This of course is not
a coincidence. To see this, let us consider the variation of the expectation value of the
Wilson line, ⟨Wϱ(L)⟩A, as we vary the connection A along the boundary line ℓ∞(z):

δ ⟨Wϱ(L)⟩A =
∞∑
n=0

∫
p∈ℓ∞(z)

δ

δ∂nzA
µ(p)

⟨Wϱ(L)⟩A δ∂
n
zA

µ(p) . (2.123)

Let us make the following variation:

δ∂zA
µ(x) = δ1(x− p)ηµ = dxθ(x− p)ηµ , (2.124)

for some fixed Lie algebra element ηµtµ ∈ glK . Then we find:

δ ⟨Wρ(L)⟩A =
δ

δ∂zAµ(p)
⟨Wϱ(L)⟩A η

µ . (2.125)

An exact variation of the boundary value of the connection is like a gauge transformation
that does not vanish at the boundary. In [41] it was proved that such a variation of the
connection leads to a variation of the Wilson line which is a local functional supported on
the line:

δ ⟨Wϱ(L)⟩A = ([ϱµ,1, ϱν,1] + Θµ,1,ν,1)

∫
L

∂zA
µ∂zc

ν , (2.126)

where c was the generator of the gauge transformation:

∂zdc
µ = δ∂zA

µ , (2.127)

ρµ,1 ∈ End(V ) is part of the representation of glK [z] that couples ∂zA
µ to the Wilson line

(see (2.100)), and Θµ,1,ν,1, which is anti-symmetric in µ and ν, is a matrix that acts on V .
Variations such as the above measure gauge anomaly associated to the line, though in our
case it is not an anomaly since we are varying the connection at the boundary, and such
“large gauge” transformations are not actually part of the gauge symmetry of the theory.
The matrix Θµ,1,ν,1 which signals the presence of anomaly is not an arbitrary matrix and in
[41], all constraints on this matrix were worked out, we shall not need them at the moment.
Comparing with (2.124) we see that for us ∂zc

µ(x) = θ(x− p)ηµ, which leads to:

δ ⟨Wϱ(L)⟩A =
(
f ξ
µν ϱξ,2 +Θµ,1,ν,1

) ∫
x>p

∂zA
µην , (2.128)
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where we have used the fact that the matrices ϱµ,1 satisfy the loop algebra (2.101). The
integral above is along L. The connection A above is a background connection satisfying
the equation of motion, i.e., it is flat. Since the D4 world-volume, even in the presence of
a Wilson line, has no non-contractible loop, all flat connections are exact. Symmetry of
world-volume dictates in particular that the connection must also be translation invariant
along the direction of the Wilson line L. By considering the integral of A along the following
rectangle:

dA = 0

y = 0

y = ∞

x = ∞x = p

ℓ∞(z)

L

(2.129)

and using translation invariance in the x-direction along with Stoke’s theorem, we can
change the support of the integral in (2.128) from L to ℓ∞(z), to get:

δ ⟨Wϱ(L)⟩A =
(
f ξ
µν ϱξ,2 +Θµ,1,ν,1

) ∫
ℓ∞(z)∋x>p

∂zA
µην . (2.130)

Comparing with (2.125) we find:

δ

δ∂zAν(p)
⟨Wϱ(L)⟩A =

(
f ξ
µν ϱξ,2 +Θµ,1,ν,1

) ∫
x>p

∂zA
µ , (2.131)

where the integral is now along the boundary line ℓ∞(z). This leads to the following
relation between our algebra and anomaly:

[Tµ[1], Tν [1]]

= lim
ι!0

[
δ

δ∂zAµ(p+ ι)

δ

δ∂zAν(p)
− δ

δ∂zAν(p)

δ

δ∂zAµ(p+ ι)

]
⟨Wϱ(L)⟩A

= f ξ
µν ϱξ,2 +Θµ,1,ν,1 . (2.132)

The first term with the structure constant gives us the loop algebra glK [z], which is
the classical result. The anomaly term is the result of 2-loop dynamics [41], i.e., it is
proportional to ℏ2. This term gives the quantum deformation of the classical loop algebra.
This also explains why our two loop computation of the algebra is similar to the two loop
computation of anomaly from [41].

At this point, we note that we can actually just use the result of [41] to find out what
Θµ,1,ν,1 is and we would find that the deformed algebra of the operators T µ[n] is indeed
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the Yangian Yℏ(glK). However, we think it is illustrative to derive this result from a direct
computation of Witten diagrams.

2.4.4 Classical algebra, O(ℏ0)

Lie bracket

We denote a diagram by Γdn!m when there are n boundary-to-bulk propagators, m propa-
gators attached to the Wilson line, and the diagram is of order ℏd. If there are more than
one such diagrams we denote them as Γdn!m,i with i = 1, · · · .

Our aim in this section is to compute the product Tµ[m](p1)Tν [n](p2) and eventually
the commutator

[Tµ[m], Tν [n]] := lim
p2!p1

(Tµ[m](p1)Tν [n](p2)− Tν [n](p1)Tµ[m](p2)) , (2.133)

at 0-loop.37

We have the following two 2! 2 diagrams:

Γ0
2!2,1 (

p1
µ,m ; p2ν,n) =

p1
µ,m

p2
ν,n

q1 q2
m n

, Γ0
2!2,2 (

p1
µ,m ; p2ν,n) =

p1
µ,m

p2
ν,n

q2 q1
n m

, (2.134)

where a label m in a box on the Wilson line refers to the coupling between the Wilson
line and the mth derivative of the connection. The first diagram evaluates to (note that
p1 < p2 and q1 < q2):

Γ0
2!2,1 (

p1
µ,m ; p2ν,n) =

∫
q1<q2

dq1dq2 δ
1(q1 − p1)δ

1(q2 − p2)ϱ
µ
mϱ

ν
n ,

= ϱµ,mϱν,n , (2.135)

and the second one (with p1 < p2 and q1 > q2):

Γ0
2!2,2 (

p1
µ,m ; p2ν,n) =

∫
q1>q2

dq2dq1 δ
1(q1 − p1)δ

1(q2 − p2)ϱν,nϱµ,m ,

= 0 . (2.136)

37[Tµ[m](p1), Tν [n](p1)] may be a more accurate notation but this algebra must be position invariant
and therefore we shall ignore the position. Reference to the position only matters when different operators
are positioned at different locations.
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Therefore their contribution to the commutator is:

[Tµ[m], Tν [n]] = lim
p2!p1

(
Γ0
2!2,1 (

p1
µ,m ; p2ν,n)− Γ0

2!2,1 (
p1
ν,n ;

p2
µ,m)

)
,

= [ϱµ,m, ϱν,n] = f ξ
µν ϱξ,m+n = f ξ

µν Tξ[m+ n] , (2.137)

where the last equality is established by evaluating the diagram:

m+ n

p
ξ,m+n

. (2.138)

The bracket (2.137) is precisely the Lie bracket in the loop algebra glK [z]. Note in
passing that had we considered the same diagrams as the ones in (2.134) except with
different derivative couplings at the Wilson line then the diagrams would have vanished,
either because there would be more z-derivatives than z, or there would be less, in which
case there would be z’s floating around which vanish along the Wilson line located at
y = z = 0.

There is one 2! 1 diagram as well:

p1
µ,m

p2
ν,n

m+ n

, (2.139)

however, since the two boundary-to-bulk propagators are two parallel delta functions,38

they never meet in the bulk and therefore the diagram vanishes. There are no more
classical diagrams, so the Lie bracket in the classical algebra is just the bracket in (2.137).

Coproduct

Apart from the Lie algebra structure, the algebra ASc(Tbk) also has a coproduct structure.
This can be seen by considering the Wilson line in a tensor product representation, say U⊗
V . Such a Wilson line can be produced by considering two Wilson lines in representations
U and V respectively and bringing them together, and asking how Tµ[n] acts on U ⊗ V .

38i.e., their support are restricted to x = p1 and x = p2 respectively with p1 ̸= p2, so they never intersect.
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Since there are going to be multiple vector spaces in this section, let us distinguish the
actions of Tµ[n] on them by a superscript, such as, TUµ [n], T

V
µ [n], etc. At the classical

level the answer to the question we are asking is simply given by computing the following
diagrams:

U
V

p
µ,m

m

+
U
V

p
µ,m

m

. (2.140)

Evaluation of these diagrams is very similar to that of the diagrams in (2.134) and the
result is:

TU⊗V
µ [m] = TUµ [m]⊗ idV + idU ⊗ T Vµ [m] . (2.141)

This is the same coproduct structure as that of the universal enveloping algebra U(glK [z]).

Combining the results of this section and the previous one we find that, at the classical
level we have an associative algebra with generators Tµ[n] with a Lie bracket and coproduct
given by the Lie bracket of the loop algebra glK [z] and the coproduct of its universla
enveloping algebra. This identifies ASc(Tbk), clasically, as the universal enveloping algebra
itself:

Lemma 2.4.5. The large N limit of the algebra ASc(Tbk) at the classical level is the
universal enveloping algebra U(glK [z]):

ASc(Tbk)/ℏ
N!∞∼= U(glK [z])

∼= Yℏ(glK)/ℏ . (2.142)

The reason why we need to take the large N limit is that, the operators Tµ[m] acts on
a vector space which is finite dimensional for finite N . This leads to some extra relations
in the algebra, which we can get rid of in the large N limit. A similar argument was
presented for the operator algebra coming from the BF theory in §2.3.7 and the argument
in the context of the CS theory will be explained in more detail in §2.4.7.

2.4.6 Loop corrections

1-loop, O(ℏ)

Now we want to compute 1-loop deformation to both the Lie algebra structure and the
coproduct structure of ASc(Tbk).
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Lie bracket. The 2! 1 diagrams at this loop order are:39

, , , . (2.143)

All of these vanish due to Lemma A.4.2 of §A.4.1.

The 2! 2 diagrams at this loop order are:

+ . (2.144)

Note that, since the bulk points are being integrated over, crossing the boundary-to-bulk
propagators does not produce any new diagram, it just exchanges the two diagrams that
we have drawn:

crossing
−−−−−! = . (2.145)

For this reason, in future we shall only draw diagrams up to crossing of the boundary-to-
bulk propagators that are connected to bulk interaction vertices.

Now let us comment on the evaluation of the diagrams in (2.144). We start by do-
ing integration by parts with respect the differential corresponding to either one of the
two boundary-to-bulk propagators. As mentioned in §A.4.5, this gives two kinds of con-
tributions, one coming from collapsing a bulk-to-bulk propagator, the other coming from
boundary terms. Collapsing any of the bulk-to-bulk propagators leads to a configuration
which will vanish due to Lemma A.4.3 (§A.4.1). Therefore, doing integration by parts will
only result in a boundary term. Recall from the general discussion in §A.4.5 that only
the boundary component of the integrals along the Wilson line can possibly contribute.
Since there are two points on the Wilson line, let us call them p1 and p2, the domain of
integration is:

∆2 = {(p1, p2) ∈ R2 | p1 < p2} . (2.146)

39Sometimes we ignore to specify the derivative couplings at the Wilson line, when the diagrams we
draw are vanishing regardless.
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The boundary of this domain is:

∂∆2 = {(p1, p2) ∈ R2 | p1 = p2} . (2.147)

Once restricted to this boundary, both of the diagrams in (2.144) will involve a configuration
such as the following:

, (2.148)

which vanishes due to Lemma A.4.2.40 The diagrams (2.144) thus vanish.

There are four other 2! 2 diagrams at 1-loop, they can be generated by starting with:

, (2.149)

and then

1. Permuting the two points on the Wilson line.

2. Permuting the two points on the boundary.

3. Simultaneously permuting the two points on the Wilson line and the two points on
the boundary.

All of these diagrams vanish due to Lemma A.4.2.

There are also six 2! 3 diagrams. All of these can be generated from the following:

, (2.150)

by permuting the points along the Wilson line and the boundary. However, due to Lemma
A.4.3, all of these diagrams vanish.

40These diagrams actually require a UV regularization due to logarithmic divergence coming from the
two points on the Wilson line being coincident. To regularize, the domain of integration needs to be
restricted from ∆2 to ∆̃2 := {(p1, p2) ∈ R2 | p1 ≤ p2 − ϵ} for some small positive number ϵ, which leads
to the modified boundary equation p1 = p2 − ϵ, however, this does not affect the arguments presented in
the proof of Lemma A.4.2 (essentially because ϵ is a constant and dϵ = 0, resulting in no new forms other
than the ones considered in the proof), and therefore we are not going to describe the regularization of
these diagrams in detail.
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There are no more 2 ! m diagrams at 1-loop. Thus, we conclude that there is no
1-loop contribution to the Lie bracket in ASc(Tbk).

Coproduct. We use the same superscript notation we used in §2.4.4 to distinguish between
the actions of Tµ[m] on different vector spaces. The 1-loop diagram that deforms the
classical coproduct is the following:

Γ1
1!2 (

p
µ,1) =

p
µ,1

U
V

(2.151)

Happily for us, precisely this diagram was computed in eq. 5.6 of [41] to answer the question
“how does a background connection couple to the product Wilson line?”. The result of that
paper involved an arbitrary background connection where we have our boundary-to-bulk
propagator, so we just need to replace that with K1(v, p) = zvδ

1(xv − p) and we find:

Γ1
1!2 (

p
µ,1) = −ℏ

2
f νξ
µ TUν [0]⊗ T Vξ [0] . (2.152)

This deforms the classical coproduct (2.141) as follows:

TU⊗V
µ [1] = TUµ [1]⊗ idV + idU ⊗ T Vµ [1]− ℏ

2
f νξ
µ TUν [0]⊗ T Vξ [0] . (2.153)

The exact same computation with K0 instead of K1 shows that Γ1
1!2 (

p
µ,0) = 0, i.e., the

classical algebra of the 0th level operators remain entirely undeformed at this loop order.41

Thus we see that at 1-loop, the Lie algebra structure in ASc(Tbk) remains undeformed,
but there is a non-trivial deformation of the coalgebra structure. At this point, there is a
mathematical shortcut to proving that the algebra ASc(Tbk), including all loop corrections,
is the Yangian. The proof relies on a uniqueness theorem (Theorem 12.1.1 of [24]) concern-
ing the deformation of U(glK [z]). Being able to use the theorem requires satisfying some
technical conditions, we discuss this proof in Appendix A.3. This proof is independent of
the rest of the chapter, where we compute two loop corrections to the commutator (2.137)
which will directly show that the algebra is the Yangian.

41Note that the 0th level operators form a closed algebra which is nothing but the Lie algebra glK .
Reductive Lie algebras belong to discrete isomorphism classes and therefore they are robust against con-
tinuous deformations. So the algebra of Tµ[0] will in fact remain undeformed at all loop orders. We will
not make more than a few remarks about them in the future.
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2-loops, O(ℏ2)

The number of 2-loop diagrams is too large to list them all, and most of them are zero.
Instead of drawing all these diagrams let us mention how we can quickly identify a large
portion of the diagrams that end up being zero.

Consider the following transformations that can be performed on a propagator or a
vertex in any diagram:

! , ! ,

! , ! , ! .
(2.154)

All these transformations increase the order of ℏ by one, however, all the diagrams con-
structed using these modifications are zero due to Lemma A.4.2. We will therefore ignore
such diagrams. Let us now identify potentially non-zero 2! m diagrams at 2-loops.

All 2-loop 2 ! 1 diagrams are created from lower order diagrams using modifications
such as (2.154). All of them vanish.

For 2 ! 2 diagrams, ignoring those that are results of modifications such as (2.154)
or that are product of lower order vanishing diagrams, we are left with the sum of the
following diagrams:

Γ2
2!2,1 = , Γ2

2!2,2 = ,

Γ2
2!2,3 = , Γ2

2!2,4 = .

(2.155)

Let us first consider the first two diagrams Γ2
2!2,1 and Γ2

2!2,2. Collapsing any of the bulk-
to-bulk propagators will result in a configuration where either Lemma A.4.2 or A.4.3 is
applicable. Therefore, when we do integration by parts with respect to the differential in
one of the two boundary-to-bulk propagators we only get a boundary term. The boundary
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corresponds to the boundary of ∆2 (defined in (2.146)), and when restricted to this bound-
ary, the integrand vanishes due to Lemma A.4.3, in the same way as for the diagrams in
(2.144).42

The diagrams Γ2
2!2,3 and Γ2

2!2,4 are symmetric under the exchange of the color labels
associated to the boundary-to-bulk propagators, for a proof see the discussion following
(A.40). So these diagrams don’t contribute to the anti-symmetric commutator we are
computing.

Now we come to the most involved part of our computations, 2! 3 diagrams at 2-loops.
We have the sum of the following diagrams:

Γ2
2!3,1 = , Γ2

2!3,2 = , Γ2
2!3,3 = ,

Γ2
2!3,4 = , Γ2

2!3,5 = , Γ2
2!3,6 = .

(2.156)

All of these diagrams are in fact non-zero. We proceed with the evaluation of the diagram
Γ2
2!3,1:

Γ2
2!3,1 (

p1
µ,1 ;

p2
ν,1) =

p1
µ,m

p2
ν,n

v1 v2
v3

q1 q2 q3

(2.157)

The glK factor of the diagram is easily evaluated to be:

f ξo
µ f πρ

ξ f σ
νπ ϱ(to)ϱ(tρ)ϱ(tσ) . (2.158)

The numerical factor takes a bit more care. Each of the bulk points vi = (xi, yi, zi, zi)
is integrated over M = R2 × C and the points qi on the Wilson line take value in the

42These diagrams are linearly divergent when the two points on the Wilson line are coincident and they
require similar UV regularization as their 1-loop counterparts.
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simplex ∆3 = {(q1, q2, q3) ∈ R3 | q1 < q2 < q3}. For the sake of integration we can partially
compactify the bulk to M = R× S3. So the domain of integration for this diagram is:

M3 ×∆3 . (2.159)

However, this domain needs regularization due to UV divergences coming from the points qi
all coming together. As in [41], we use a point splitting regulator, by restricting integration
to the domain:

∆̃3 := {(q1, q2, q3) ∈ ∆3 | q1 < p3 − ϵ} , (2.160)

for some small positive number ϵ. We are not going to discuss the regulator here, as it
would be identical to the discussion in [41]. We shall now do integration by parts with
respect to the differential in the propagator connecting p1 and v1. Note that collapsing any
of the bulk-to-bulk propagators leads to a configuration where the vanishing Lemma A.4.3
applies. Therefore, contribution to the integral only comes from the boundary M3 × ∂∆̃3.
The boundary of the simplex has three components, respectively defined by the constraints
q1 = q2, q2 = q3, and q1 = q3−ϵ. However, when q1 = q2 or q2 = q3, we can use the vanishing
Lemma A.4.2 and the integral vanishes. Therefore the contribution to the diagram comes
only from integration over:

M3 × {(q1, q2, q3) ∈ ∆̃3 | q1 = q3 − ϵ} . (2.161)

Further simplification can be made using the fact that the propagator connecting p2 and
v3 is zδ1(x3 − p2). This restricts the integration over v3 to {p2} × S3. However, using
translation symmetry in the x-direction we can fix the position of q1 at (0, 0, 0, 0) and
allow the integration of v3 over all of M . However, due to the presence of the delta
function δ1(x3 − p2) in the boundary-to-bulk propagator, x3 and p1 = p2 − δ are rigidly
tied to each other. This way, we end up with the following integration for the numerical
factor:43

1

2

(
i

2πℏ

)3 ∫
0<q2<ϵ
v1,v2,v3

dq2d
4v1d

4v2d
4v3θ(x1 − x−3 )z1z3P (v2, v1)

× P (v3, v2)P (q1, v1)P (q2, v2)P (q3, v3) ,

(2.162)

where q1 = (0, 0, 0, 0), q2 = (p2, 0, 0, 0), q3 = (ϵ, 0, 0, 0), and x−3 := x3 − δ, and since all the
forms that appear are even we have ignored the wedge product symbols to be economic.

Before evaluating the above integral, we note that the diagram Γ2
2!3,4 evaluates to the

43The factor of 1/2 comes from diagram automorphisms.
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same color factor and almost same numerical factor, except for a different step function:

1

2

(
i

2πℏ

)3 ∫
0<q2<ϵ
v1,v2,v3

dq2d
4v1d

4v2d
4v3θ(x3 − x−1 )z1z3P (v2, v1)

× P (v3, v2)P (q1, v1)P (q2, v2)P (q3, v3) ,

(2.163)

Since we have to sum over all the diagrams, we use the fact that:

lim
δ!0

(
θ(x1 − x−3 ) + θ(x3 − x−1 )

)
= 1 , (2.164)

to write:

lim
p2!p1

(
Γ2
2!3,1 (

p1
µ,1 ;

p2
ν,1) + Γ2

2!3,4 (
p1
µ,1 ;

p2
ν,1)
)

= f ξo
µ f πρ

ξ f σ
νπ ϱ(to)ϱ(tρ)ϱ(tσ)

(
i

2πℏ

)3
1

2

∫
0<q2<ϵ
v1,v2,v3

dq2d
4v1d

4v2d
4v3

× z1z3P (v2, v1)P (v3, v2)P (q1, v1)P (q2, v2)P (q3, v3) ,

(2.165)

Let us refer to the above integral by ℏ2I1, so that we can write the right hand side of the
above equation as:

ℏ2f ξo
µ f πρ

ξ f σ
νπ ϱ(to)ϱ(tρ)ϱ(tσ) I1 . (2.166)

Similar considerations for the rest of the diagrams in (2.156) lead to similar expressions:

lim
p2!p1

(
Γ2
2!3,2 (

p1
µ,1 ;

p2
ν,1) + Γ2

2!3,5 (
p1
µ,1 ;

p2
ν,1)
)
= ℏ2f ξo

µ f πρ
ξ f σ

νπ ϱ(tρ)ϱ(to)ϱ(tσ) I2 , (2.167a)

lim
p2!p1

(
Γ2
2!3,2 (

p1
µ,1 ;

p2
ν,1) + Γ2

2!3,5 (
p1
µ,1 ;

p2
ν,1)
)
= ℏ2f ξo

µ f πρ
ξ f σ

νπ ϱ(to)ϱ(tσ)ϱ(tρ) I3 , (2.167b)

for two integrals I2 and I3 that are only slightly different from I1.
44 To get the 2-loop

contributions to the commutator [Tµ[1], Tν , [1]] we need only to anti-symmetrize the ex-
pressions (2.166), (2.167). Putting them together with the classical result (2.137) we get
the Lie bracket up to 2-loops:

[Tµ[1], Tν , [1]] = f ξ
µν Tξ[2] + 2ℏ2f ξo

[µ f πρ
ξ f σ

ν]π

(
To[0]Tρ[0]Tσ[0] I1

+ Tρ[0]To[0]Tσ[0] I2 + To[0]Tσ[0]Tρ[0] I3
)
,

(2.168)

where we have replaced matrix products such as ϱ(tρ)ϱ(to)ϱ(tσ) with Tρ[0]To[0]Tσ[0] which
is accurate up to the loop order shown. Thus we see that quantum corrections deform the
classical Lie algebra of glK [z].

44These integrals can be performed and their values are I2 = I3 = 1
72

(
2− 3

π2

)
, I1 = 1

36

(
1 + 3

π2

)
though

we postpone computing them until we no longer need to compute them.
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2.4.7 Large N limit: The Yangian

The deformed Lie bracket (2.168) may not look quite like the standard relations of the
Yangian found in the literature, but we can choose a different basis to get to the standard
relations, which we shall do momentarily.45 However, for finite N , our algebra has more
relations. Recall that the generators Tµ[1] act on the space V where classically V is a
representation space, ϱ : glK [z] ! End(V ), of the loop algebra glK [z] and the representa-
tion ρ was determined by the number N . The representation ϱ depends on N because ρ
is the representation that couples the glK connection A to the Wilson line generated by
integrating out N ×K fermions. The representation is essentially the Hilbert space (2.93)
of the fermionic QM that lives on the line. The important point for us is that, for finite
N , ϱ is finite dimensional. This implies that, as we discussed at the end of §(2.3.5), the
generators Tµ[1] satisfy degree d polynomial equations where d = dim(V ). In the limit
N !∞ these relations disappear and we have our isomorphism with the Yangian Y (glK).

The Yangian in a more standard basis

To get to a standard defining bracket for the Yangian, we change basis as follows. There
is an ambiguity in Tξ[2]. In (2.137) it was equal to ϱξ,2 at the classical level, but it can be
shifted at 2-loops (i.e., by a term proportional to ℏ2) by the image ϑ(tξ) for an arbitrary
glK-equivariant map ϑ : glK ! End(V ). This shift simply corresponds to a different
choice for the counterterm that couples ∂2zA

ξ to the Wilson line. Using this freedom
we want to replace products such as ϱ(to)ϱ(tρ)ϱ(tσ) with the totally symmetric product
{ϱ(to), ϱ(tρ), ϱ(tσ)} (defined in (2.87)). To this end, Consider the difference:

∆µν := 2ℏ2f ξo
[µ f πρ

ξ f σ
ν]π (ϱ(to)ϱ(tρ)ϱ(tσ)− {ϱ(to), ϱ(tρ), ϱ(tσ)}) . (2.169)

The square brackets around µ and ν in the above equation implies anti-symmetrization
with respect to µ and ν. The difference ∆µν can be viewed as the image of the following
glK-equivariant map:

∆ : ∧2glK ! End(V ) , ∆ : tµ ∧ tν 7! ∆µν . (2.170)

We now propose the following lemma:

Lemma 2.4.8. The map ∆ factors through glK, i.e., ∆ : ∧2glK ! glK ! End(V ).

45We can also appeal to the uniqueness theorem 12.1.1 of [24], in conjunction with the result of Appendix
A.3, to conclude that the deformed algebra must be the Yangian Yℏ(glK).
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The proof of this lemma involves some algebraic technicalities which we relegate to the
Appendix §A.5. The utility of this lemma is that, it establishes the difference (2.169) as
the image of an element of glK which, according to our previous argument, can be absorbed
into a redefinition of ϱξ,2 (equivalently Tξ[2]). Therefore, with a new T new

ξ [2] we can rewrite
(2.168) as:

[Tµ[1], Tν , [1]] = f ξ
µν T

new
ξ [2] + ℏ2(I1 + I2 + I3)Qµν , (2.171)

where we have also defined:

Qµν := 2f ξo
[µ f πρ

ξ f σ
ν]π {To[0], Tρ[0], Tσ[0]} . (2.172)

The reason why we have postponed presenting the evaluations of the individual integrals
I1, I2, and I3 is that we don’t need their individual values, only the sum, and precisely this
sum was evaluated in eq. (E.23) of [41] with the result:

I1 + I2 + I3 =
1

12
. (2.173)

We can therefore write (ignoring the “new” label on Tξ[2]):

[Tµ[1], Tν [1]] = f ξ
µν Tξ[2] +

ℏ2

12
Qµν . (2.174)

This is the relation for the Yangian that was presented in §8.6 of [41] and how to relate
this to other standard relations of the Yangian was also discussed there. This is also the
exact relation we found in the boundary theory (c.f. (2.90)). Note furthermore that, if
we had used the relation between our algebra and anomaly (2.132) to derive the algebra
Lie bracket, we would have arrived at precisely the same conclusion, as the second term in
(2.174) is indeed the anomaly of a Wilson line (c.f. eq. 8.35 of [34]).

Thus we see that the algebra ASc(Tbk), defined in (2.34), at 2-loops, is the Yangian
Yℏ(glK):

ASc(Tbk)/ℏ3
N!∞∼= Yℏ(glK)/ℏ3 . (2.175)

The two loop result in the BF theory was exact. The above two loop result is exact as
well. Though we do not prove this by computing Witten diagrams, we can argue using the
form of the algebra in terms of anomaly (2.132). In [41] it was shown that there are no
anomalies beyond two loops. This concludes our second proof of Proposition 2.4.1.46

46The first one, which is significantly more abstract, being in Appendix A.3.
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2.5 String Theory Construction of The Duality

The topological theories we have considered so far can be constructed from a certain brane
setup in type IIB string theory and then applying a twist and an omega deformation.
This brane construction will show that the algebras we have constructed are infact certain
supersymmetric subsectors of the well studied N = 4 SYM theory with defect and its
holographic dual. We dscribe this construction below.

2.5.1 Brane Configuration

Our starting brane configuration involves a stack of N D3 branes and K D5 branes in type
IIB string theory on a 10d target space of the form R8 × C where C is a complex curve
which we take to be just the complex plane C. The D5 branes wrap R4 × C and the D3
branes wrap an R4 which has a 3d intersection with the D5 branes. Let us express the
brane configuraiton by the following table:

0 1 2 3 4 5 6 7 8 9
R4 C R4

D5 × × × × × ×
D3 × × × ×

(2.176)

The world-volume theory on the D5 branes is the 6d N = (1, 1) SYM theory coupled
to a 3d defect preserving half of the supersymmetry. Similarly, the world-volume theory
on the D3 branes is the 4d SYM theory coupled to a 3d defect preserving half of the
supersymmetry. To this setup we apply a particular twist, i.e., we choose a nilpotent
supercharge and consider its cohomology.

2.5.2 Twisting Supercharge

From the 6d Perspective

We use Γi with i ∈ {0, · · · , 9} for 10d Euclidean gamma matrices. We also use the notation:

Γi1···in := Γi1 · · ·Γin . (2.177)

Type IIB has 32 supercharges, arranged into two Weyl spinors of the same 10 dimen-
sional chirality – let us denote them as Ql and Qr. A general linear combination of them is
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written as ϵLQl + ϵRQr where ϵL and ϵR are chiral spinors parametrizing the supercharge.
The chirality constraints on them are:

iΓ0···9ϵL = ϵL , iΓ0···9ϵR = ϵR . (2.178)

We shall discuss constraints on the supercharge by describing them as constraints on the
parametrizing spinors.

The supercharges preserved by the D5 branes are constrained by:

ϵR = iΓ012345ϵL . (2.179)

This reduces the number of supercharges to 16. The D3 branes imposes the further con-
straint:

ϵR = iΓ0237ϵL . (2.180)

This reduces the number of supercharges by half once more. Therefore the defect preserves
just 8 supercharges. Since ϵR is completely determined given ϵL, in what follows we refer
to our choice of supercharge simply by referring to ϵL.

We want to perform a twist that makes the D5 world-volume theory topological along
R4 and holomorphic along C. This twist was described in [43]. Let us give names to the
two factors of R4 in the 10d space-time:

M := R4
0123 , M ′ := R4

6789 . (2.181)

The spinors in the 6d theory transform as representations of Spin(6) under space-time
rotations. N = (1, 1) algebra has two left handed spinors and two right handed spinors
transforming as 4l and 4r respectively.47 The subgroup of Spin(6) preserving the prod-
uct structure R4 × C is Spin(4)M × U(1). Under this subgroup 4l and 4r transform as
(2,1)−1⊕(1,2)+1 and (2,1)+1⊕(1,2)−1 respectively, where the subscripts denote the U(1)
charges. Rotations along M ′ act as R-symmetry on the spinors – the spinors transform as
representations of Spin(4)M ′ such that 4+ transforms as (2,1) and 4− transforms as (1,2).
In total, under the symmetry group Spin(4)M ×U(1)× Spin(4)M ′) the 16 supercharges of
the 6d theory transform as:

((2,1)−1 ⊕ (1,2)+1)⊗ (2,1)⊕ ((2,1)+1 ⊕ (1,2)−1)⊗ (1,2) . (2.182)

47There are two of each chirality because the R-symmetry is Sp(1) × Sp(1) = Spin(4)M ′ such that the
two left handed spinors transform as a doublet of one Sp(1) and the two right handed spinors transform
as a doublet of the other Sp(1).
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The twist we seek is performed by redefining the the space-time isometry:

Spin(4)M ⇝ Spin(4)newM ⊆ Spin(4)M × Spin(4)M ′ , (2.183)

where the subgroup Spin(4)newM of Spin(4)M×Spin(4)M ′ consists of elements (x, θ(x)) which
is defined by the isomorphism θ : Spin(4)M

∼
−! Spin(4)M ′ . More, explicitly, the isomorphism

acts as:
θ(Γµν) = Γµ+6,ν+6 , µ, ν ∈ {0, 1, 2, 3} . (2.184)

The generators of the new Spin(4)newM are then:

Γµν + Γµ+6,ν+6 . (2.185)

After this redefinition, the symmetry Spin(4)M×U(1)×Spin(4)M ′ of the 6d theory reduces
to Spin(4)newM × U(1) and under this group the representation (2.182) of the supercharges
becomes:

2(1,1)−1 ⊕ (3,1)−1 ⊕ (1,3)−1 ⊕ 2(2,2)+1 . (2.186)

We thus have two supercharges that are scalars along M , both of them have charge −1
under the U(1) rotation along C. We take the generator of this rotation to be −iΓ45, then
if ϵ is one of the scalar (on M) supercharges that means:

iΓ45ϵ = ϵ . (2.187)

We identify the supercharge ϵ by imposing invariance under the new rotation generators
on M , namely (2.185):

(Γµν + Γµ+6,ν+6)ϵ = 0 . (2.188)

The constraints (2.179) and (2.180) put by the D-branes and the U(1)-charge on C (2.187)
together are equivalent to the following four independent constraints:

iΓµ,µ+6ϵ = ϵ , µ{0, 1, 2, 3} . (2.189)

Together with the chirality constraint (2.178) in 10d we therefore have 5 equations, each
reducing the number degrees of freedom by half. Since a Dirac spinor in 10d has 32
degrees of freedom, we are left with 32× 2−5 = 1 degree of freedom, i.e., we have a unique
supercharge,48 which we call Q. It was shown in [43] that the supercharge Q is nilpotent:

Q2 = 0 , (2.190)

48Note that without using the constraint put by the D3 branes we would get two supercharges that are
scalar on M , i.e., there are two superhcarges in the 6d theory (by itself) that are scalar on M .
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and the 6d theory twisted by this Q is topological alongM – which is simply a consequence
of (2.188) – and it is holomorphic along C. The latter claim follows from the fact that there
is another supercharge in the 2d space of scalar (onM) supercharges in the 6d theory, let’s
call it Q′, which has the following commutator with Q:

{Q,Q′} = ∂z , (2.191)

where z = 1
2
(x4 − ix5) is the holomorphic coordinate on C. This shows that z-dependence

is trivial (Q-exact) in the Q-cohomology.

From the 4d Perspective

What is new in our setup compared to the setup considered in [43] is the stack of D3
branes. We can figure out what happens to the world-volume theory of the D3 branes –
we get the Kapustin-Witten (KW) twist [107], as we now show. The equations (2.189) can
be used to to get the following six (three of which are independent) equations:

(Γ02 + Γ68)ϵ = 0 , (Γ03 + Γ69)ϵ = 0 , (Γ23 + Γ89)ϵ = 0 ,

(Γ07 + Γ16)ϵ = 0 , (Γ27 + Γ18)ϵ = 0 , (Γ37 + Γ19)ϵ = 0 .
(2.192)

These are in fact the equations that defines a scalar supercharge in the KW twist of
N = 4 theory on R4

0237 for a particular homomorphism from space-time ismoetry to the
R-symmetry.49 Space-time isometry of the theory on R4

0237 acts on the spinors as Spin(4)iso,
generated by the six generators:

Γµν , µ, ν ∈ {0, 2, 3, 7} and µ ̸= ν . (2.193)

Rotations along the transverse directions act as R-symmetry, which is Spin(6), though the
subgroup of the R-symmetry preserving the product structure C×R4

1689 is U(1)×Spin(4)R.
The KW twist is constructed by redefining space-time isometry to be a Spin(4) subgroup
of Spin(4)iso × Spin(4)R consisting of elements (x, ϑ(x)) where ϑ : Spin(4)iso

∼
−! Spin(4)R is

an isomorphism. The particular isomorphism that leads to the equations (2.192) is:

Γ02 7! Γ68 , Γ03 7! Γ69 , Γ23 7! Γ89 ,

Γ07 7! Γ16 , Γ27 7! Γ18 , Γ37 7! Γ19 .
(2.194)

49Note that we ar using subscripts simply to refer to particular directions.
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Remark 2.5.3 (A member of a CP1 family of twists). In [107] it was shown that there is a
family of KW twists parametrized by CP1. The unique twist (by the supercharge Q) we
have found is a specific member of this family. Let us identify which member that is.

The CP1 family comes from the fact that there is a 2d space of scalar (on M) super-
charges (in (2.186)) in the twisted theory.50 Also note from the original representation of
the spinors (2.182) that the two scalar supercharges come from spinors transforming as
(1, 2) and (2, 1) under the original isometry Spin(4)old.51 Let us choose two Spin(4)new

scalar spinors with opposite Spin(4)old chiralities and call them ϵl and ϵr. The Spin(4)old

chirality operator is Γold := Γ0237. Let us choose ϵl and ϵr in such a way that they are
related by the following equation:

ϵr = Nϵl where N =
1

4
(Γ06 + Γ28 + Γ39 + Γ17) . (2.195)

This relation is consistent with the spinors being Spin(4)new invariant because N anti-
commutes with Spin(4)new (thus invariant spinors are still invariant after being operated
with N), as well as with Γold (chaning Spin(4)old chirality). An arbitrary scalar supercharge
in the twisted theory is a complex linear combination of ϵl and ϵr, such as αϵl+βϵr, however,
since the overall normalization of the spinor is irrelevant, the true parameter identifying a
spinor is the ratio t := β/α ∈ CP1. Furthermore, due to the equations (2.192), N2 acts as
−1 on any Spin(4)new scalar, leading to:

ϵl = −Nϵr . (2.196)

To see the value of the twisting parameter t for the supercharge identified by the equa-
tions (2.189) (in addition to the 10d chirality (2.178)), we first pick a linear combination
ϵ := ϵl + tϵr with t ∈ CP1. Then using (2.196) and (2.189) we get:

− iϵ = Nϵ = ϵr − tϵl , (2.197)

where the first equality follows from (2.189) and the second from (2.196). Equating the
two sides we find the twisting parameter:

t = i . (2.198)

△
50Though we began the discussion with a view to identifying topological-holomorphic twist of 6d N =

(1, 1) theory, what we found in the process in particular are supercharges that are scalar on M . If we
forget that we had a 6d theory on M ×C and just consider a theory on M with rotations on C being part
of the R-symmetry then, first of all, we find a N = 4 SYM theory on M and the twist we described is
precisely the KW twist.

51We are writing Spin(4)old instead of Spin(4)M since the support of the 4d theory is not M ≡ R4
0123

but R4
0237.
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From the 3d Perspective

Finally, at the 3 dimensional D3-D5 intersection lives a 3d N = 4 theory consisting of
bifundamental hypermultiplets coupled to background gauge fields which are restrictions
of the gauge fields from the D3 and the D5 branes [81]. Considering Q-cohomology for
the 3d theory reduces it to a topological theory as well. To identify the topological 3d
theory we note that for the twisting parameter t = i, the 4d theory is an analogue of a 2d
B-model52 [107] and this can be coupled to a 3d analogue of the 2d B-model53 – a B-type
topological twist of 3d N = 4 is called a Rozanski-Witten (RW) twist [149]. The flavor
symmetry of the theory is U(N) × U(K) which acts on the hypers and is gauged by the
background connections.

We can reach the same conclusion by analyzing the constraints on the twisting super-
charge viewed from the 3d point of view. The bosonic symmetry of the 3d theory includes
SU(2)iso×SU(2)H ×SU(2)C where SU(2)iso is the isometry of the space-time R3

023, SU(2)C
are rotations in R3

689, and SU(2)H are rotations in R3
145. The hypers in the 3d theory come

from strings with one end attached to the D5 branes and another end attached to the D3
branes. Rotations in R3

145 – the R-symmetry SU(2)H – therefore act on the hypers. This
means that SU(2)H acts on the Higgs branch of the 3d theory. This leaves the other R-
symmetry group SU(2)C which would act on the coulomb branch of the theory if the theory
had some dynamical 3d vector multiplets. We now note that the topological twist, from
the 3d perspective, involves twisting the isometry SU(2)iso with the R-symmetry group
SU(2)C , as evidenced explicitly by the three equations in the first line of (2.192). This par-
ticular topological twist (as opposed to the topological twist using the other R-symmetry
SU(2)H) of 3d N = 4 is indeed the RW twist [32].

To summerize, taking cohomology with respect to the supercharge Q leaves us with the
KW twist (twisting parameter t = i) of N = 4 SYM theory on R4 with gauge group U(N)
and a topological-holomorphic twist of N = (1, 1) theory on R4 × C with gauge group
U(K), and these two theories are coupled via a 3d RW theory of bifundamental hypers
with flavor symmetry U(N)× U(K) gauged by background connections.54

52In particular, the 4d Theory on R2 × T 2 can be compactified on the two-torus T 2 to get a B-model
on R2.

53We want to be able to take the 3d theory on R2 × S1 and compactify it on S1 to get a B-model on
R2. If we have a 4d theory on R2 × T 2 coupled to a 3d theory on R2 × S1, compactifying on T 2 should
not make the two systems incompatible.

54Though it is customary to decouple the central U(1) subgroup from the gauge groups as it doesn’t
interact with the non-abelian part, our computations look somewhat simpler if we keep the U(1).
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2.5.4 Omega Deformation

We start by noting that the dimensional reduction of the topological-holomorphic 6d theory
from R4×C to R4 reduces it to the KW twist of N = 4 SYM on the R4.55 This observation
allows us to readily tailor the results obtained in [43] about omega deformation of the 6d
theory to the case of omega deformation of 4d KW theory.

The fundamental bosonic field in the 10dN = 1 SYM theory is the connection AI where
I ∈ {0, · · · , 9}. When dimensionally reduced to 6d, this becomes a 6d connection AM with
M ∈ {0, · · · , 5} and four scalar fields ϕ0, ϕ1, ϕ2, and ϕ3 which are just the remaining four
components of the 10d connection. The Spin(4)M space-time isometry acts on the first four
components of the connection, namely A0, A1, A2, and A3 via the vector representation.
The four scalars – ϕ0, ϕ1, ϕ2, and ϕ3 – transform under the vector representation of the
R-symmetry Spin(4)M ′ . Once twisted according to (2.183), only the diagonal subgroup
Spin(4)newM of Spin(4)M×Spin(4)M ′ acts on the fields, under which the first four components
of the connection and the four scalars transform in the same way56 and therefore we can
package them together into one complex valued gauge field:

Aµ := Aµ + iϕµ , µ ∈ {0, 1, 2, 3} . (2.199)

We also write the remaining components of the connection in complex coordinates on C:

Az := A4 + iA5 and Az := A4 − iA5 . (2.200)

It was shown in [43] that this topological-holomorphic 6d theory can be viewed as a 2d
gauged B-model on R2

23 where the fields are valued in maps Map(R2
01 × C, glK). This is a

vector space which plays the role of the Lie algebra of the 2d gauge theory. From the 2d
point of view A2 and A3 are part of a connection on R2

23 and there are four chiral multiplets
with the bottom componentsA0,A1, Az, and Az. The 2d theory consists of a superpotential
which is a holomorphic function of these chiral multiplets – the superpotential can be
written conveniently in terms of a one form Ã := A0dx

0 + A1dx
1 + Azdz + Azdz on

R2
01 × C consisting of these chiral fields:57

W (A0,A1, Az, Az) =

∫
R2
01×C

dz ∧ tr

(
Ã ∧ dÃ+

2

3
Ã ∧ Ã ∧ Ã

)
. (2.201)

55Both the 6d N = (1, 1) SYM and the 4d N = 4 SYM are dimensional reductions of the 10d N = 1
SYM and dimensional reduction commutes with the twisting procedure.

56Apart from the inhomogeneous transformation of the connection.
57Up to some overall numerical factors.
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The superpotential is the action functional of a 4d CS theory on R2
01×C for the connection

Ã.

One of the results of [43] is the following: Ω-deformation applied to this topological-
holomorphic 6d theory with respect to rotation on R2

23 reduces the the theory to a 4d CS
theory on R2

01 × C with complexified gauge group GLK .

The twisted 4d theory (the D3 world-volume theory) wraps the plane R2
23 as well and

therefore is affected by the Ω-deformation. By noting that the 4d theory is a dimensional
redcution of the 6d theory from R4×C to R4 and assuming that Ω-deformation commutes
with dimensional reduction,58 we can deduce what the Ω-deformed version of the twisted
4d theory is. This will be a 2d gauge theory with complexified gauge group GLN and the
action will be the dimensional reduction of the 4d CS action (2.201) from R2 × C to R2 –
this is the 2d BF theory where Az plays the role of the B field:∫

R2×C
dz ∧ CS(AR2×C)

Reduce on C
−−−−−−−!

∫
R2

trAz

(
dAR2 +

1

2
AR2 ∧ AR2

)
=

∫
R2

trAzF (AR2) ,

(2.202)

where, as before, z is the anti-holomorphic coordinate on C.

Finally, it was shown in [161] that the RW twist of a 3d N = 4 theory on R2
Ω ×R with

only hypers reduces, upon Ω-deformation with respect to rotation in the plane R2
Ω, to a

free quantum mechanics on R. A slight modification of this result, involving background
connections gauging the flavor symmetry of the hypers leads to the result that the omega
deformed theory is a gauged quantum mechanics, the kind of theory we have considered
on the defect in the 2d BF theory.59

2.5.5 Takeaway from the Brane Construction

Via supersymmetric twists and Ω-deformation, we have made contact with precisely the
setup we have considered in this chapter. We have a 4d CS theory with gauge group GLK
and a 2d BF theory with gauge group GLN and they intersect along a topological line
supporting a gauged quantum mechanics with GLK ×GLN symmetry. We thus claim that
the topological holographic duality that we have established in this chapter is indeed a
topological subsector of the standard holographic duality involving defect N = 4 SYM.

58Alternatively, one can redo the localization computations of [43] for the 4d case, confirming that
Ω-deformation does indeed commute with dimensional reduction.

59The bosonic version, which leads to the same Yangian with minor modifications to the computations
as remarked in 2.3.2, 2.3.4, and 2.3.6.
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2.6 Concluding Remarks and Future Works

In the previous sections we have been able to match a subsector of the operator algebra
in the 2d BF theory with a line defect, with a subsector of the scattering algebra in a
3D closed string theory with a surface defect. The subsectors of operators we focused on
are restricted to the defects on both sides of the duality. While this matching provides
a non-trivial check of the proposed holographic duality, several immediate questions and
new directions arise that were not addressed in the chapter. Let us comment on a few such
issues that we think are interesting topics to pursue for future research.

Central extensions on two sides of the duality: To ease computation we restricted
our attention to the quotients of the full operator algebra and scattering algebra by their
centers. The inclusion of the central operators will change the associative structure of
the algebras. A stronger statement of duality will be to compare the centrally extended
Yangians coming from the boundary and the bulk theory.

Brane probes: Using branes in the bulk to probe local operators in the boundary theory
has been a useful tool [120, 4]. In our setup, a brane must be Lagrangian in the A-
twisted R4 directions. Looking at the brane setup (2.1) (which we reproduce in (2.204) for
convenience) we see that the real directions of the D2 and D4 branes are Lagrangian with
respect to the following symplectic form:

dv ∧ dx+ dw ∧ dy . (2.203)

This leaves the possibility of two more different embeddings for D2-branes:

Rv Rw Rx Ry Cz

D2 0 × × 0 0
D4 0 0 × × ×
D2′ × 0 0 × z
D2′′ × × 0 0 z

(2.204)

The D2′-branes are Wilson lines in the CS theory on the D4-branes perpendicular to the
original Wilson line at thte D2-D4 intersection. Such crossing Wilson lines were studied in
[41, 42] with the result that this corssing (of two Wilson lines carrying representations U
and V of glK respectively) inserts an operator TV U(z) : U ⊗ V ! V ⊗ U in the CS theory
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which solves the Yang-Baxter equation, which is described more easily with diagrams:

V V V
U

U

U

W

W

W

TUV (z10) TWV (z20)

TWU(z21)

z0

z1 z2

=

V V V
W

W

W

U

U

U

TWV (z20) TUV (z10)

TWU(z21)

z0

z2z1

, (2.205)

where z1, z2, and z3 are the spectral parameters (location in the complex plane) of the lines
carrying representations V , U , and W respectively, and z21 := z2− z1 and so on. Solutions
of the above equation are closely tied to Quantum Groups. The operators TUV (z), which are
commonly referred to as R-matrices, can be explicitly constructed using Feynman diagrams
[41]. When the complex directions of the theory are parametrized by C (as in our case),
these R-matrices are rational functions of z. If we choose U and W to be the fundamental
representation of glK , then by providing an incoming and an outgoing fundamental state,
we can view ⟨j|TKV (z)|i⟩ as a map Tij(z) : V ! V which has an expansion is z−1:

Tij(z) = idV δ
i
j − ℏ

∑
n≥0

(
−z−1

)n+1
T ij [n] , (2.206)

where the T ij [n] are precisely the operators that generate the scattering algebra ASc(Tbk)
(see (2.32) and (2.34)). This suggests that in the dual picture we should be able to interpret
the D2′ branes as a generating function for the operators Oi

j[n].

The interpretations of the D2′′ branes are missing on both sides of the duality.

Finite N duality: Most of our computations were insensitive to the size of N . After
computing the relevant algebras in both sides of the duality we considered their limits
when N !∞ in §2.3.7 and §2.4.7. It was only in this limit that the algebras become the
Yangian. However, it would be a stronger check if we could match the algebras at finite
N , when they are quotients of the Yangian by some extra relations. In the CS theory
we mentioned that these relations came from the fact that our operators were acting on
some finite dimensional vector space, in the BF theory the dual operators were acting on a
vector space of the same dimension. So the relations that resulted this way are the same.
However, there were some extra relations in the BF side, where we argued that Oi

j[N ] was
a linear combination of Oi

j[n]’s with n < N . To have a duality these relations should have
an explanation in the CS side as well.
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Duality for other quantum groups: In [41, 42] it was shown that by replacing our
complex direction C with the punctured plane C× or an elliptic curve, we can get, in-
stead of the Yangian, the trigonometric or elliptic solutions to the Yang-Baxter equation
(2.205). It will be interesting to have an analogous analysis of holographic duality for the
corresponding quantum groups as well.
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Chapter 3

Phase Space of 2d BF Theory

In the previous chapter, it was shown that the algebra of local operators in 2d BF theory
with gauge group GLN coupled to a 1d fermionic1 quantum mechanics with global symme-
try GLK (the boundary side) and the algebra of scattering states computed using Witten
digrams of 4d Chern-Simons theory with gauge group GLK (the bulk side) match and in
the large-N limit approach the Yangian (see Theorem 1 on page 12 of [98]). Concretely,
let B be the the B-field of BF theory and (ψ, ψ) are the fields of quantum mechanical
system living on the line. It was shown in [98] that the subalgebra of a subset of local
gauge-invariant operators of this system, which are given by

ψaB
nψb, a, b = 1, · · · , K, n ≥ 0, (3.1)

in the large-N limit is the Yangian of glK .

In this chapter, we study the same problem from the perspective of the geometry of the
phase space of 2d-1d coupled system. On of the reasons we are studying the problem from
the phase-space perspective is that it allows us to make statements about some aspects
of this example of twisted holography at finite N . Our strategy is to fist characterize the
(classical or quantized) algebra in the large-N limit and then find the finite-N algebra as
the quotient of the large-N limit algebra by an ideal. Let the phase space of the coupled
2d-1d system be denoted as M(N,K), which is parameterized by (B,ψ, ψ).

1There is nothing special about quantum mechanics to be fermionic. We pointed out it since it was
used in [98] for explicit computations. We could consider bosonic quantum mechanics and the resulting
operator algebra would be the same. However, the brane configuration which leads to the fermionic vs
bosonic quantum mechanics would be different [85, 86].
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Summary of the results

As we have explained so far, we study the phase space of the 2d BF theory coupled to
a 1d quantum-mechanical system. The basic logic of the chapter is to first study the
classical phase space M(K,N) and its ring of functions C(K,N), and finally their large-N
limit. We then study modules for these algebras. Then, we considered the quantization
of the classical phase space and the deformation quantization Cℏ[M(N,K)] of its ring of
functions, which leads to the algebra. We study its structure, especially its coproduct and
its identification with the Coulomb-branch algebra of 3d N = 4 theories.

Section 3.1 is devoted to the review of physical holographic setup. The main results of
this work can be summarized as follows.

In Section 3.2, we investigate the geometry of the phase space of BF theory coupled to our
quantum-mechanical system and study the algebra of functions in this phase space. The
main results of this section are the following

1. The first result is concerned with the structure of the phase space; we show that
M(N,K) is a normal affine variety of dimension 2NK. This is shown in Corollary
3.2.8.

2. C[M(N,K)], the algebra of functions onM(N,K) is generated by the set {ψBnψ; Tr(Bn)}.
Note that the operators Tr(Bn) are dual to the gravitons while determinant (det(Bn))
and subdeterminant operators are dual to giant gravitons in the bulk. We then find
that M(N, 1) ≃ A2N . Furthermore, by defining the morphism

ηab : M(N,K)!M(1, K)

(B,ψ, ψ)! (B,ψb, ψa);
(3.2)

we show that the products of ηab for various a and b is a closed embedding∏
1≤a,b≤K

ηab : M(N,K) ↪−!M(N, 1)×A(N) M(N, 1)×A(N) · · · ×A(N) M(N, 1), (3.3)

where the right hand side has K2 copies of M(N, 1). This is achieved in Proposition
3.2.12.

3. Next, we define the following Poisson structure on M(N,K) by

{ψia, ψbj} = δabδij,

{Bmn, Bpq} = δpnBmq − δmqBpn,

{Bmn, ψbj} = {Bmn, ψia} = 0,

(3.4)
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Defining T
(n)
ab ≡ ψaB

nψb, with the convention T
(−1)
ab = δab, we show that

{T (p)
ab , T

(q)
cd } =

min(p,q)−1∑
i=−1

(
T

(p+q−1−i)
cb T

(i)
ad − T

(i)
cb T

(p+q−1−i)
ad

)
. (3.5)

In Section 3.3, we consider the large-N limit ofM(N,K) and its ring of functions C[M(N,K)].
The main results of this section as as follows

1. We show that
⋃
N M(N,K) is Zariski-dense in L−GLK × L−GL1, where L

−GLK is
the loop group defined in (3.28). This result is the content of Theorem 3.3.4.

2. Using this result, we then show that M(∞, K) ∼= L−GLK × L−GL1. This in turn
would imply that

C[M(∞, K)] ∼= C[L−GLK ]⊗ C[L−GL1]. (3.6)

Section 3.4 is devoted to study of modules for C[M(N,K)]. The main result of this section
is the computation of Hilbert series for C[M(N,K)] in Theorem 3.4.4 and its large-N limit
C[M(∞, K)] in Proposition 3.4.15.

In Section 3.5, we move to the quantization Cℏ[M(N,K)] of the ring of functions C[M(N,K)]
on the phase space. Quantization amounts to replace the Poisson brackets (3.3) with com-
mutators and studying the resulting algebras. The main results of this section are

1. We first prove the commutator of T
(n)
ab

[T
(p)
ab , T

(q)
cd ] = ℏ

min(p,q)−1∑
i=−1

(
T

(i)
cb T

(p+q−1−i)
ad − T

(p+q−1−i)
cb T

(i)
ad

)
. (3.7)

This is equivalent to the RTT relation if one defines the generating functions Tab(z)

(the RTT generators) of T
(n)
ab by the following power-series expansion at z !∞

Tab(z) ≡
∑
n≥−1

T
(n)
ab z

−n−1 = δab + ψa
1

z −B
ψb.

2. We next present one of the main results of this work, i.e. we show that the surjective
map

Yℏ(glK ⊕ gl1) := Yℏ(glK)⊗ Yℏ(gl1)↠ Cℏ[M(N,K)] (3.8)
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exists for any N . We present two arguments for the existence of this map in Theorem
3.5.5 and in Section 3.5.6. We also prove a particular observation of [51] according to
which the quantum determinant of Yangian, whose coefficient determine the center,
determine is given in terms of Capelli’s determinant, defined in (3.55).

3. The coproduct of the quantized algebra is constructed in Section 3.5.15.

4. Finally, we explain the identification between the quantized ring of functions on the
phase space Cℏ[M(N,K)] and the Coulomb-branch algebra of certain 3d N = 4
quiver gauge theories.

Some details are relegated to the appendices. The Hall-Littlewood polynomial has been
reviewed in Appendix B.1. Geometrization of the Jing operators, which are used in giving
a vertex-algebra definition of the Hall-Littlewood polynomials is explained in Appendix
B.2.

3.1 The Holographic Setup

In this section, we briefly review the twisted holography setup of [98].

The starting point is 6d topological string theory on R4×C, where the theory is A-twisted
along R4 and B-twisted along C. These theories coming from a configuration of branes2,
which is summarized in Table 3.1.

Rx Ry Rv Rw Cz # of branes
D2 × × N
D4 × × × K

Table 3.1: The brane configuration that realizes our twisted holography setup. The sub-
scripts on Rx et al denote the coordinates along that direction. We have used the same
conventions as [98]. The last column denotes the number of branes.

There are four main ingredients at play [29]: 1) the theory of open strings on the stack of

2Similar to [98], we are following the convention used in [3] where Dp-brane in topological string theory
have p-dimensional world-volume in spacetime.
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D2 branes, which is the 2d BF theory with gauge group GLN with the following action

SBF =

∫
R2
x,w

TrN(BFA), (3.9)

where B ∈ Ω0(R2
x,w, glN) is an adjoint-valued scalar, A ∈ Ω1(R2

x,w, glN) is the gauge field
for the gauge group GLN with curvature FA = dAA = dA+ A ∧ A, and the trace is taken
over the fundamental representation of glN , which we have denoted as N. This plays the
role of the boundary side of the correspondence; 2) the theory on the stack of D4-branes,
which is 4d Chern-Simons theory with gauge group GLK [26, 27]. Since we do not need
this theory in this chapter, we are not describing its details and refer the reader to [98];
3) the 1d intersection of the two sets of branes, which introduces a line operator in both
theories: the line operator in the BF-theory side is described by a quantum mechanics with
fermionic degrees of freedom: ψa ∈ Ω0(Rx,N) with a = 1, · · · , K3, and the conjugate field
ψa ∈ Ω0(Rx,N), where bar denotes the antifundamental representation. The action of this
theory is given by

SQM =

∫
L

K∑
a=1

ψa(d+ A)ψa, (3.10)

where we have denoted Rx as L. A carton of the setup is shown in Figure 3.1. In the 4d
Chern-Simons theory side, we get a Wilson line taking values in some representation of
glK [[z]] =

∏
n≥0 glK⊗zn (at least classically). 4) The bulk closed-string theory sector, which

is a mixture of the Kähler gravity along R4
x,y,v,w and BCOV theory along Cz [11, 12, 45, 34].

Furthermore, we turn on a background 3-form flux field, which is sourced by D2-branes.
This could deform the topology of the closed-string background and also the theory living
on the stack of D4-branes. It turns out that the topology of the closed-string background
is deformed to R2

x,w × R+,r × S3, where r ≡ (y2 + v2 + zz̄)
1
2 parameterizes R+, and the

background 3-form field measures the flux through S3. The value of this flux is nothing but
the number of D2-branes, which is N . On the other hand, it turns out that the pullback
of the 3-form to D4-branes vanishes, and hence the theory of D4 branes is not deformed in
the presence of this flux. Note that the theory on D4-branes could in principle be coupled
to the modes in the closed-string theory living in the bulk. In the setup considered in [98],
it is assumed that in the large-N limit, there is no such coupling. This has been called rigid
holography in the physics literature [1]. Taking this point into account, the theory that
effectively plays the role of bulk side in our twisted holography setup is 4d Chern-Simons

3Note that there is a change of notation compared to [98]. Here, we have used a = 1, · · · ,K for the
global symmetry indices while i = 1, · · · ,K has been used for the global symmetry indices in [98].
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K coincident D4-branes
wrapping R2

x,v × Cz
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N coincident D2-branes
wrapping R2

x,w
gl N

BF
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ry

Line defects
along Rx

Local operators
of the boundary theory

Figure 3.1: The holographic setup. N coincident D2-branes are hosting a glN BF theory.
These branes should be thought of as the imaging of D2-branes deep in the bulk which
are sourcing the bulk fields. At the bottom of the figure, we have shown 2d black branes
which are the D2-branes in the backreacted geometry of the bulk. A 4d glK Chern-Simons
theory lives on the of K coincident D4-branes. The intersection of the two stack of branes
is a line defect on which a fermionic quantum-mechanical system lives.
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N

ψ ψ

KK

B

Figure 3.2: The quiver description of the phase space.

theory and we need to consider Witten diagrams of this theory in the computations of
scattering through the bulk.

We would like to analyze the phase space of 2d BF theory coupled to a 1d quantum
mechanics and its geometry. We choose the gauge A = 0. The equations of motion are

dψa = dψa = 0,

dB −
K∑
a=1

ψaψaδw=0 = 0.
(3.11)

The solution is that ψa and ψa are constant along the line defect, B is constant on the
regions w < 0 and w > 0, and

Bw>0 −Bw<0 =
K∑
a=1

ψaψa.

So the phase space is parametrized by Bw>0, ψ
a and ψa, modulo the GLN action. This is

the quiver variety (categorical quotient) associated to the framed quiver in Figure 3.2. Let
us denote this quiver variety by M(N,K) = Rep(N,K)/GLN , where Rep(N,K) is the
linear space of representations of quiver in Figure 3.2. We study this space in Section 3.2.
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3.2 Geometry of the Phase Space M(N,K)

In this section, we analyze the phase space of the coupled theory SBF + SQM, where SBF

and SQM are given by (3.9) and (3.10), respectively.

3.2.1 Singularities and resolution

When K = 1, M(N, 1) is the Zastava space ZN
sl2

studied in [61]. Recall that the degree ZN
sl2

is defined by the degree N based quasi-map space of the flag variety of SL2. Explicitly, this
is the space of polynomials Q(z), P (z) such that degQ < N and P is a monic polynomial
of degree N . In particular, ZN

sl2
is isomorphic to the affine space A2N . The isomorphism

between M(N, 1) and ZN
sl2

is given by the map

(B,ψ, ψ) 7! (P (z) = det(z −B), Q(z) = ψ adj(z −B)ψ). (3.12)

Here adj(z −B) is the adjugate matrix of z −B.

For general K, then same argument in [61, Section 2] shows that the Laumon resolution
PN ! ZN factors through M(N,K). Here PN is the parabolic Laumon space, i.e. the
moduli space of degree N rank K subsheaves F of rank 2K trivial vector bundle on P1 such
that F|∞ is a sub-bundle and is a fixed rankK flag of C2K , and ZN is the parabolic Zastava
space associated to SL2K and the parabolic subgroup P ⊂ SL2K which stabilizes a fixed
rank K flag in C2K [17]. In fact PN is isomorphic to the moduli space of stable represen-
tations of the quiver in Figure 3.2, denoted by Ms(N,K), where the stability condition is
that if V ⊂ CN , B(V ) ⊂ V and im (ψ) ⊂ V then V = CN . The stability condition implies
that the action of GLN on the stable representations is free, thus Ms(N,K) is smooth.
Since the parabolic Zastava space ZN is affine, the Laumon resolution PN ! ZN factors
through the affinization of PN = Ms(N,K), which is M(N,K), and M(N,K) ! ZN

is finite since Laumon resolution is proper. Moreover, PN ! ZN is isomorphism on the
locus where the subsheaf F is a sub-bundle, this corresponds to a map (instead of just
a quasi-map) from P1 to Grassmannian Gr(K, 2K) which sends ∞ to identity. We call
this locus the “regular” locus, and it has a quiver description as well: it parametrizes
quiver representations that are stable and also co-stable, i.e. if V ⊂ CN , B(V ) ⊂ V and
V ⊂ ker(ψ) then V = 0. The semi-simplification map Ms(N,K) ! M(N,K) is also
isomorphism on the regular locus, since GLN acts on a stable and co-stable representation
freely with closed orbit. This implies that the morphism M(N,K) ! ZN is birational.
Since M(N,K) is affine quotient of a smooth variety normal M(N,K) is normal, thus
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M(N,K)! ZN is the normalization. It turns out that M(N,K)! ZN is isomorphism,
which will be proven in a more general context elsewhere.

Summarize the above discussions, we have morphisms of varieties:

PN ∼= Ms(N,K) −!M(N,K) ∼= ZN ,

such that Ms(N,K) −!M(N,K) is a resolution of singularities, and it is isomorphism
when restricted on M(N,K)reg.

Lemma 3.2.2. For the resolution of singularities f : Ms(N,K) −!M(N,K), we have
OM(N,K)

∼= Rf∗OMs(N,K), i.e.

(1) Rif∗OMs(N,K) = 0 for i > 0,

(2) the natural homomorphism OM(N,K) ! f∗OMs(N,K) is isomorphism.

The key to the proof of Lemma 3.2.2 is Grauert-Riemenschneider vanishing theorem, we
recall it here:

Theorem 3.2.3 (Grauert-Riemenschneider Vanishing). Let h : X −! Y be a resolution
of singularities in characteristic zero, then Rih∗(KX) = 0 for i > 0. Moreover let L be an
ample line bundle on X, then Rih∗(KX ⊗ L) = 0 for i > 0. Here KX is the canonical line
bundle of X.

For a proof (of a more general version of this theorem), see [109, Corollary 2.68]. We
would like to apply this theorem to f : Ms(N,K) −! M(N,K), but the sheaf in the
theorem is the canonical sheaf, not the structure sheaf. This is not an issue, because:

Lemma 3.2.4. The canonical line bundle on Ms(N,K) is trivial.

Proof. Denote by V the tautological sheaf on Ms(N,K), which is the descent of CN along
the quotient Reps(N,K) !Ms(N,K), and denote by W the framing vector space, then
there is a short exact sequence

0 −! End(V) −! End(V)⊕W ⊗ V∗ ⊕W ∗ ⊗ V −! TMs(N,K) −! 0. (3.13)

Here TMs(N,K) is the tangent sheaf of Ms(N,K). From this short exact sequence we get

KMs(N,K) = detT ∗
Ms(N,K)

∼= det(W ⊗ V∗)⊗ det(W ∗ ⊗ V) ∼= OMs(N,K).
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Proof of Lemma 3.2.2. Since the canonical line bundle on Ms(N,K) is trivial, we have

Rif∗OMs(N,K)
∼= Rif∗KMs(N,K) = 0,

for i > 0, by Grauert-Riemenschneider vanishing theorem. Since M(N,K) is normal and
f is birational, we also have OM(N,K)

∼= f∗OMs(N,K).

Corollary 3.2.5. M(N,K) has rational Gorenstein singularities.

Proof. M(N,K) has rational singularities by Lemma 3.2.2. Then the dualizing sheaf
ωM(N,K) is

ωM(N,K)
∼= Rf∗KMs(N,K)

∼= Rf∗OMs(N,K)
∼= OM(N,K),

which is a line bundle, thus M(N,K) has Gorenstein singularities.

3.2.6 Factorization

There is an obvious morphism:

fN1,N2 : M(N1, K)×M(N2, K) −!M(N1 +N2, K), (3.14)

(B(1), ψ(1), ψ
(1)
)× (B(2), ψ(2), ψ

(2)
) 7!

([
B(1) 0
0 B(2)

]
,

[
ψ(1)

ψ(2)

]
,
[
ψ

(1)
ψ

(2)
]
.

)
(3.15)

Consider the natural projection

ΦN : M(N,K) −! A(N). (3.16)

Here ΦN maps a triple (B,ψ, ψ) to the coefficients of the characteristic polynomial of B,
and A(N) is the N ’th symmetric product of affine line A1, which parametrizes coefficients
of the characteristic polynomial of B. Denote by

(
A(N1) × A(N2)

)
disj

the open subset of

A(N1) × A(N2) such that eigenvalues of B(1) is disjoint from eigenvalues of B(2). Analogous
to the K = 1 case discussed in [61], we have the following factorization isomorphism

Proposition 3.2.7. The restriction of fN1,N2 on
(
A(N1) × A(N2)

)
disj

is isomorphism:

fN1,N2 : (M(N1, K)×M(N2, K))disj
∼= M(N1 +N2, K)×A(N1+N2)

(
A(N1) × A(N2)

)
disj

.

Here (M(N1, K)×M(N2, K))disj is the restriction of M(N1, K)×M(N2, K) on
(
A(N1) × A(N2)

)
disj

.

Corollary 3.2.8. M(N,K) is a normal affine variety of dimension 2NK.
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Proof. M(N,K) is normal and affine since is the quotient of an affine space by GLN , we
only need to show that its dimension is 2NK. By the factorization isomorphism, it suffices
to show that dimM(1, K) = 2K. Note that M(1, K) is isomorphic to the A1 times the
space of K ×K matrices of rank ≤ 1 and the latter has dimension 2K − 1.

Using the normalization map M(N,K)! ZN we have the following result:

Proposition 3.2.9. The morphism ΦN : M(N,K)! A(N) is equidimensional.

Proof. It suffices to show that the projection Φ′
N : ZN ! A(N) is equidimensional, since

M(N,K) ! ZN is finite. Here we prove that the central fiber Φ′−1
N (0) has dimension

(2K − 1)N , and the dimensions for other fibers follow from factorization isomorphism.

To compute dimΦ′−1
N (0), we use the description of the central fiber for parabolic Zastava

in [17, 3.5], and obtain that

Φ′−1
N (0) ∼= Gr

Nθ

P ∩GrU(P−) ⊂ GrSL2K
. (3.17)

Here P ⊂ SL2K is the parabolic subgroup which stabilizes a fixed rank K flag in C2K ,
U(P−) is the unipotent radical of the opposite of P , and θ = diag(1, 0, · · · , 0,−1) is

the longest coroot of sl2K . Then Gr
Nθ

P ∩ GrU(P−) ⊂ Gr
Nθ ∩ GrU(B−) and the latter has

dimension ⟨Nθ, ρ̌⟩ = (2K− 1)N , thus dimΦ′−1
N (0) ≤ (2K− 1)N . Since the generic fiber of

ΦN has dimension (2K−1)N , we also have the other direction of inequality dimΦ′−1
N (0) ≥

(2K − 1)N . Hence dimΦ′−1
N (0) = (2K − 1)N .

Corollary 3.2.10. The morphism ΦN : M(N,K)! A(N) is flat.

Proof. This follows from Proposition 3.2.9, Corollary 3.2.5, and the miracle flatness theo-
rem [151, Tag 00R4]

3.2.11 Generators of C[M(N,K)]

By invariant theory, the algebra of functions on M(N,K), denoted by C[M(N,K)], is
generated by

Tr(Bn), ψaB
mψb. (3.18)

Here 1 ≤ n ≤ N , 0 ≤ m ≤ N−1 and 1 ≤ a, b ≤ K. When K = 1, it turns out that there is
no relations between these generators, i.e. Tr(B), · · · ,Tr(BN), ψψ, ψBψ, · · · , ψBN−1ψ give
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rise to an isomorphism M(N, 1) ∼= A2N . In fact, since we know that dimM(N, 1) = 2N
and the map M(N, 1) ! A2N is closed embedding, the map must be an isomorphism by
dimensional reason.

For general K, let us fix a pair of integers a, b, then the functions Tr(Bn), ψaB
mψb give rise

to a morphism ηab : M(N,K)!M(1, K) sending a triple (B,ψ, ψ) to (B,ψb, ψa). From
the above discussions, we have

Proposition 3.2.12. The product of ηab is a closed embedding∏
1≤a,b≤K

ηab : M(N,K) ↪−!M(N, 1)×A(N) · · · ×A(N) M(N, 1), (3.19)

where the right hand side has K2 copies of M(N, 1). Moreover,
∏

1≤a,b≤K ηab is compatible
with factorization isomorphism fN1,N2.

3.2.13 Poisson structure

Let us introduce a Poisson structure on the space of (B,ψ, ψ) as following

{ψia, ψbj} = δabδij, {Bmn, Bpq} = δpnBmq − δmqBpn, {Bmn, ψbj} = {Bmn, ψia} = 0.

(3.20)

Here we treat ψ, ψ as usual bosonic variables, i.e. commute instead of anti-commute with
each other. This Poisson structure comes from the classical limit of Uℏ(glN) ⊗ WeylNK ,
where WeylNK is the Weyl algebra generated by ψ, ψ. It is easy to see that the Poisson
structure is equivariant under the GLN action, so it descends to M(N,K).

Remark 3.2.14. This is not the Poisson structure for the Zastava space. In fact, when
K = 1, this Poisson structure on C[M(N, 1)] is trivial, see the Theorem 3.2.15 below.

Define T
(n)
ab = ψaB

nψb, and we use the convention T
(−1)
ab = δab, then denote by Tab(z)

the power series expanded at z !∞:

Tab(z) =
∑
n≥−1

T
(n)
ab z

−n−1 = δab + ψa
1

z −B
ψb.

Proposition 3.2.15. The Poisson brackets between T
(k)
ab are:

{T (p)
ab , T

(q)
cd } =

min(p,q)−1∑
i=−1

(
T

(p+q−1−i)
cb T

(i)
ad − T

(i)
cb T

(p+q−1−i)
ad

)
. (3.21)

And for all n ≥ 1, Tr(Bn) is Poisson central.
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Proof. This is the classical limit of (3.49).

Remark 3.2.16. In [98], another presentation of Poisson structure is obtained:

{ψia, ψbj} = δabδij, {Bmn, Bpq} = δnp
∑
a

ψaqψma − δmq
∑
a

ψanψpa,

{Bmn, ψbj} = {Bmn, ψia} = 0,

(3.22)

3.2.17 Multiplication morphism

Apart from the obvious factorization map (3.14), there is another map

mN1,N2 : M(N1, K)×M(N2, K) −!M(N1 +N2, K), (3.23)

(B(1), ψ(1), ψ
(1)
)× (B(2), ψ(2), ψ

(2)
) 7!

([
B(1) ψ(1)ψ

(2)

0 B(2)

]
,

[
ψ(1)

ψ(2)

]
,
[
ψ

(1)
ψ

(2)
])

. (3.24)

We have the following elementary property of the multiplication morphism.

Proposition 3.2.18. The multiplication morphism mN1,N2 is dominant.

Proof. It suffices to prove that the composition f−1
N1,N2

◦mN1,N2 is dominant when restricted

on
(
A(N1) × A(N2)

)
disj

. First of all, we construct a GLN1 ×GLN2 equivariant map

m̃N1,N2 : (Rep(N1, K)× Rep(N2, K))disj −! (Rep(N1, K)× Rep(N2, K))disj ,

such that m̃N1,N2 descends to f−1
N1,N2

◦ mN1,N2 after taking the quotient by GLN1 × GLN2 .
The construction is as follows. If the spectra of B1 and B2 are disjoint from each other,
then linear map Mat(N1, N2) ! Mat(N1, N2), X 7! B1X − XB2 is an isomorphism. Let
A be the unique N1 ×N2 matrix such that

B(1)A− AB(2) = ψ(1)ψ
(2)

holds.

Then we can use the matrix[
1 A
0 1

]
to diagonalize

[
B(1) ψ(1)ψ

(2)

0 B(2)

]
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and it accordingly maps
[
ψ

(1)
, ψ

(2)
]
to
[
ψ

(1)
, ψ

(2) − ψ
(1)
A
]
and

[
ψ(1), ψ(2)

]t
to
[
ψ(1) + Aψ(2), ψ(2)

]t
.

Hence we define m̃N1,N2 as

(B(1), ψ(1), ψ
(1)
)× (B(2), ψ(2), ψ

(2)
) 7! (B(1), ψ(1) + Aψ(2), ψ

(1)
)× (B(2), ψ(2), ψ

(2) − ψ
(1)
A).

(3.25)

Notice that the tangent map dm̃N1,N2 is an isomorphism at any point (B(1), 0, ψ
(1)
) ×

(B(2), ψ(2), 0), so m̃N1,N2 is generically étale thus it is dominant. Then it follows that
mN1,N2 is dominant.

Proposition 3.2.19. The multiplication morphism mN1,N2 has following properties

(1) mN1,N2 is Poisson,

(2) mN1+N2,N3◦(mN1,N2×Id) = mN1,N2+N3◦(Id×mN2,N3), i.e. multiplication is associative.

The proposition will be evident once we make connection to the multiplication map on
the loop group in the next section. Note that the factorization map fN1,N2 is not Poisson
in general.

3.2.20 Embedding M(N,K) ↪!M(N ′, K)

Suppose that N < N ′, then we have a morphism

ιN,N ′ : M(N,K) −!M(N ′, K), (3.26)

(B,ψ, ψ) 7!

([
B 0
0 0

]
,

[
ψ
0

]
,
[
ψ 0

])
. (3.27)

Note that ι∗N,N ′(Tr(Bn)) = Tr(Bn), ι∗N,N ′(T
(m)
ab ) = T

(m)
ab , so ι∗N,N ′ is surjective, thus ιN,N ′ is

a closed embedding.

Proposition 3.2.21. The embedding ιN,N ′ has following properties

(1) ιN ′,N ′′ ◦ ιN,N ′ = ιN,N ′′,

(2) ιN,N ′ is Poisson,

(3) mN ′
1,N

′
2
◦
(
ιN1,N ′

1
× ιN2,N ′

2

)
= ιN1+N2,N ′

1+N
′
2
◦mN1,N2.
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Proof. Property (1) is obvious from definition of ιN,N ′ , (2) is a corollary of Proposition
3.2.15, only (3) needs explanation. Using property (1), the proof of (3) reduces to the
cases of either N ′

1 = N1, N
′
2 = N2 + 1 or N ′

1 = N1 + 1, N ′
2 = N2. The first case is obvious

from the definition of embedding and multiplication morphism, so we only need to consider
the case when N ′

1 = N1 + 1, N ′
2 = N2. It amounts to showing thatB(1) 0 ψ(1)ψ

(2)

0 0 0
0 0 B(2)

 ,
ψ(1)

0
ψ(2)

 , [ψ(1)
0 ψ

(2)
]

is equivalent to B(1) ψ(1)ψ
(2)

0
0 B(2) 0
0 0 0

 ,
ψ(1)

ψ(2)

0

 , [ψ(1)
ψ

(2)
0
]

under the action of some matrix W ∈ GLN1+N2+1. It is elementary to check that

W =

[
IdN1 0
0 wN2wN2−1 · · ·w1

]
does the job, where wi ∈ GLN2+1 switches row i and row i+ 1.

3.3 Large-N Limit

In this section we use the embeddings ιN,N ′ : M(N,K) ↪!M(N ′, K) constructed in the
previous section to define the large-N limit of the family M(N,K) as the spectrum of
C×-finite elements in the inverse limit of algebras C[M(N,K)], and show that the large-N
limit is isomorphic to the Poisson group L−(GLK ×GL1), defined below. It is known that
L−(GLK ×GL1) quantizes to the Yangian Yℏ(glK ⊕ gl1), and we will explore the quantized
version of the larg-N limit in the next section.

Definition 3.3.1. Define C[M(∞, K)] to be the subalgebra of lim
 −
N

C[M(N,K)] generated

by T
(n)
ab and Tr(Bm), for all n,m ∈ Z≥0 and 1 ≤ a, b ≤ K. And then define M(∞, K) =

SpecC[M(∞, K)].

Denote by L−GLK the group of power series

1 +
∞∑
i=1

giz
−i, gi ∈ glK , (3.28)
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here the group structure is the multiplication of power series in matrices. Consider the
morphism

iN = (πN , φN) :M(N,K)! L−GLK × L−GL1, (3.29)

(B,ψ, ψ) 7!

(
1 + ψ

1

z −B
ψ,

1

zN
det(z −B)

)
, (3.30)

which is a closed embedding because T
(n)
ab and Tr(Bm) generate C[M(N,K)]. Here (z −

B)−1 is expanded as a power series of matrices in z−1. It is known that L−GLK is a
Poisson-Lie group scheme whose Poisson structure comes from the Manin triple

(glK((z
−1)), z−1glK [[z

−1]], glK [z]).

Explicitly, let T
(n)
ab , n ≥ −1 be the function on L−GLK that takes the value of ab component

of gn+1 and we use the convention that T
(−1)
ab = δab, then the Poisson structure on L−GLK

is determined by the equation

(u− v){Tab(u), Tcd(v)} = Tad(v)Tcb(u)− Tad(u)Tcb(v), where Tab(u) =
∞∑

i=−1

T
(i)
ab u

−i−1.

(3.31)

Compare equation (3.31) with equation (3.21), and we have

Proposition 3.3.2. The morphism iN : M(N,K)! L−GLK × L−GL1 is Poisson.

Proposition 3.3.3. iN is compatible with embedding ιN,N ′ and multiplication mN1,N2, i.e.

(1) iN ′ ◦ ιN,N ′ = iN ,

(2) iN1+N2 ◦mN1,N2 = m ◦ (iN1 × iN2).

Here m : L−(GLK ×GL1)×L−(GLK ×GL1)! L−(GLK ×GL1) is the multiplication map
of the group L−(GLK ×GL1).

Proof. (1) is obvious from definition. (2) can be shown by direct computation. If (B(1), ψ(1), ψ
(1)
)

is a point in M(N1, K) and (B(2), ψ(2), ψ
(2)
) is a point in M(N2, K), then πN1+N2 ◦mN1,N2
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maps this pair of representations to

1 +
[
ψ

(1)
ψ

(2)
](

z −

[
B(1) ψ(1)ψ

(2)

0 B(2)

])−1 [
ψ(1)

ψ(2)

]

= 1 +
[
ψ

(1)
ψ

(2)
](

z −

[
B(1) ψ(1)ψ

(2)

0 B(2)

])−1 [
ψ(1)

ψ(2)

]
= 1 + ψ

(1) 1

z −B(1)
ψ(1) + ψ

(2) 1

z −B(2)
ψ(2)

+
∞∑

i,j=0

ψ
(1) (

B(1)
)i
ψ(1)ψ

(2) (
B(2)

)j
ψ(2)z−i−j−2

=

(
1 + ψ

(1) 1

z −B(1)
ψ(1)

)(
1 + ψ

(2) 1

z −B(2)
ψ(2)

)
.

And we also have φN1+N2 ◦mN1,N2 = m◦(φN1×φN2) by the multiplicativity of determinants
of block diagonal matrices.

Proof of Proposition 3.2.19. (1) follows from Proposition 3.3.2 and the fact that the Pois-
son structure on L−(GLK ×GL1) makes it a Poisson-Lie group, i.e. m is Poisson. (2) is a
direct consequence of Proposition 3.3.3.

Since iN is compatible with ιN,N ′ , it makes sense to take the ind-scheme
⋃
N M(N,K)

inside L−GLK × L−GL1.

Theorem 3.3.4.
⋃
N M(N,K) is Zariski-dense in L−GLK × L−GL1.

Proof. It suffices to show that for every N , there exists N ′ such that L−
NGLK × L−

NGL1

is a closed subscheme of M(N ′, K). Denote by m = mL−GLK
×mL−

NGL1
the multiplication

map on L−GLK × L−GL1. We make two observations

(1) L−
1 GLK × {1} ⊂ M(K,K). This is because S × {1} ⊂ M(K,K), where S is the

subvariety of L−
1 GLK :

1 +
g

z
, g ∈ glK such that rank(g) ≤ 1.

then we can apply the multiplication m K times to obtain L−
1 GLK × {1}, more

precisely, we have following linear algebra fact:
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– Every matrixM ∈ glK can be written as a linear combinationM = X1+· · ·+XK

such that rank(Xi) ≤ 1 and XiXj = 0 if i < j.

This can be interpreted as

1 +
M

z
=

(
1 +

X1

z

)
· · ·
(
1 +

XK

z

)
,

which is exactly what we want to show. To show this fact, we notice that the
statement is true for M if and only if it is true for AMA−1 for some A ∈ GLK , so
without loss of generality, we assume that M is a Jordan block Jλ, and then take
Xi = atibi, where

ai = (0, · · · , 0, λ, 1, 0, · · · , 0), i < K and i’th component is λ,

aK = (0, · · · , 0, λ),
bi = (0, · · · , 0, 1, 0, · · · , 0), i’th component is 1.

If M is a direct sum of Jordan blocks, then we take Xi associated to each individual
block.

(2) {1}×L−
1 GL1 ⊂ M(1, K), this is because {1}×L−

1 is the the image of points (b, 0, 0) ⊂
M(1, K).

(3) The multiplication map mL−GLK
: L−

1 GLK × L−
NGLK ! L−

N+1GLK is dominant. In
effect, the tangent map dmL−GLK

at the point
(
1, 1 + 1/z + · · ·+ 1/zN

)
is(

X

z
,
Y1
z
, · · · , Yi

zi
, · · · , YN

zN

)
7!

X + Y1
z

, · · · , X + YN
zN

,
X

zN+1
(3.32)

where left hand side is a tangent vector at
(
1, 1 + 1/z + · · ·+ 1/zN

)
, and right hand

side is a tangent vector at 1 + 1/z + · · · + 1/zN ∈ L−
N+1GLK . Since X, Y1, · · · , YN

take value in all matrices in glK , the linear map (3.32) is surjective and thus is an
isomorphism by dimension counting. It follows that mL−GLK

: L−
1 GLK × L−

NGLK !
L−
N+1GLK is étale at the point

(
1, 1 + 1/z + · · ·+ 1/zN

)
, thus it is generically étale,

and dominant.

Combine (1) and (2) and use the multiplication m (which is compatible with the multipli-
cations of M(N,K)), then we have an inclusion L−

1 GLK × L−
1 GL1 ⊂ M(K + 1, K). (3)

implies that m :
(
L−
1 GLK × L−

1 GL1

)
×
(
L−
NGLK × L−

NGL1

)
! L−

N+1GLK × L−
N+1GL1 is

dominant. By induction on N , we have inclusions L−
NGLK × L−

NGL1 ⊂ M((K + 1)N,K).
This concludes the proof.
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Corollary 3.3.5. M(∞, K) ∼= L−GLK × L−GL1, i.e.

C[M(∞, K)] ∼= C[L−GLK ]⊗ C[L−GL1]. (3.33)

3.4 Modules of C[M(N,K)] and their Hilbert series

Recall that we have a resolution of singularities f : Ms(N,K) −! M(N,K), where
Ms(N,K) is the moduli space of stable representations of the quiver in the Figure 3.2.
The action of gauge group GLN on the space of stable representations Reps(N,K) is free,
so the quotient map Reps(N,K) ! Ms(N,K) is a principal GLN -bundle. The gauge
node vector space CN is a trivial bundle on Rep(N,K) but it is endowed with a non-trivial
equivariant structure under the action of GLN , then it descend to a locally free sheaf V on
Ms(N,K) since the GLN action on the stable locus is free. We call this locally free sheaf
V the tautological sheaf, and call its determinant line bundle the tautological line bundle,
denoted by Det.

Lemma 3.4.1. The tautological line bundle Det is ample on Ms(N,K).

This lemma will be proven in the next subsection. Apply the Grauert-Riemenschneider
vansihing theorem 3.2.3 to the tautological line bundle Det, we have

H i(Ms(N,K),Det⊗n) = 0, for all i > 0 and n ≥ 0. (3.34)

Definition 3.4.2. The C[M(N,K)] module of level n, denoted by Γ(N,K, n), is defined by
the global section of n’th power of tautological line bundle, i.e.

Γ(N,K, n) = Γ(Ms(N,K),Det⊗n). (3.35)

In this section, we compute the Hilbert series of C[M(N,K)] and Γ(N,K, n). Before
starting, let us introduce some notations and explain what we are going to compute.

The quiver in Figure 3.2 admits an action of GLK × C×
q × C×

t , where GLK is the
flavour symmetry which acts on the framing vector space, C×

q scales B by B 7! q−1B,

and C×
t scales ψ by ψ 7! t−1ψ. The convention of the inverse q−1 and t−1 is such that

the functions Tr(Bn) and ψaB
mψb scales by qn and qmt respectively (since functions are

dual to the space). Although C[M(N,K)] is infinite dimensional, every C×
q × C×

t -weight
space of C[M(N,K)] is finite dimensional (we will see it later), thus it makes sense to
regard C[M(N,K)] as an element in KGLK

(pt)[[q, t]]. Similarly, the same properties hold
for Γ(N,K, n). The goal of this section is to compute the these elements.

85



Definition 3.4.3. Let KGLK
(pt) = Q[x±1 , · · · , x±K ]SK , where SK is the permutation group

acting on x1, · · ·xK . We use shorthand notation f(x) for a function of x1, · · · , xK , and
f(x−1) = f(x−1

1 , · · · , x−1
K ). Denote by ZN,K(x; q, t) the element of C[M(N,K)] inKGLK

(pt)[[q, t]],

and denote by Z
(n)
N,K(x; q, t) the element of Γ(N,K, n) in KGLK

(pt)[[q, t]].

By Lemma 3.4.1, we have Z
(n)
N,K(x; q, t) = χ(Ms(N,K),Det⊗n). The case K = 1 is

trivial: The functions Tr(B), · · · ,Tr(BN), ψψ, ψBψ, · · · , ψBN−1ψ give rise to an isomor-
phism M(N, 1) ∼= A2N . The Lemma 3.4.6 below, together with the fact that the Hilbert-
Chow map for Hilbert scheme of points on smooth curve is isomorphism, implies that
Ms(N,K) ∼= M(N,K). In fact, Det in this case is a trivial bundle, with C×

q ×C×
t -weight

(1, 0), thus

Z
(n)
N,1(x; q, t) = qnZN,1(x; q, t) =

qn

(q; q)N(t; q)N
. (3.36)

Here we use the q-Pochhammer symbol (a; q)n = (1− a)(1− aq) · · · (1− aqn−1). The case
when K > 1 is trickier. In principal, one can use the localization technique to get a formula
of χ(Ms(N,K),Det⊗n) in terms of summation over fixed points, but it involves complicated
denominators that make it hard to extract the power series in q and t explicitly. What we
will actually do, is to reduce the computation to Euler character of vector bundles on Quot
scheme, which is related to the affine Grassmannian of GLK , and finally apply the known
results on the geometry of the affine Grassmannian of GLK to finish the calculation. We
present the final result here and explain the calculation in steps afterwards.

Theorem 3.4.4. The Hilbert series of Γ(N,K, n) is

Z
(n)
N,K(x; q, t) =

1

(q; q)N

∑
µ

t|µ|Hµ+(nN )(x; q)s(µ1)(x
−1) · · · s(µN )(x

−1). (3.37)

Here the summation is over arrays µ = (µ1, · · · , µN) ∈ ZN≥0, (n
N) is the array consisting

of N copies of n, i.e. (n, n, · · · , n), |µ| =
∑N

i=1 µi, s(µi)(x) is the Schur polynomial of the
partition (µi), and Hλ(x; q) is the generalized transformed Hall-Littlewood polynomial of
the array λ, defined in (B.6).

3.4.5 Reduction steps

Recall that the stability condition in the definition of Ms(N,K) is that if V ⊂ CN ,
B(V ) ⊂ V and im (ψ) ⊂ V then V = CN , in particular the sub-quiver consisting of arrows
(B,ψ) is stable under the same stability condition, so we have:
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Lemma 3.4.6. The moduli of stable representations Ms(N,K) is a vector bundle over the
Quot scheme of A1 which parametrizes length N quotients of O⊕K

A1 , denoted by QuotN(A1,O⊕K
A1 ):

Ms(N,K) = V(V ⊗W ∗)

QuotN(A1,O⊕K
A1 )

p

Here V is the tautological sheaf on QuotN(A1,O⊕K
A1 ), and W is the framing vector space.

Proof. Consider a point (B,ψ, ψ) ∈ Ms(N,K), the action B on CN makes it into a
C[z]-module such that z acts as B. The stability on (B,ψ) is equivalent to that CN is a
quotient module of a free module of rankK. This gives rise to a morphism p : Ms(N,K)!
QuotN(A1,O⊕K

A1 ), and the extra information in Ms(N,K) compared to the Quot scheme
is a homomorphism from the universal quotient V to the framing vector space W , so
Ms(N,K) is represented by V(V ⊗W ∗).

Lemma 3.4.6 implies that

χ(Ms(N,K),Det⊗n) =
∞∑
m=0

tmχ(QuotN(A1,O⊕K
A1 ), Symm(V ⊗W ∗)⊗ Det⊗n). (3.38)

Here in each summand, χ(QuotN(A1,O⊕K
A1 ), Symm(V ⊗W ∗)) is in KGLK

(pt)[[q]]. So the
computation of C[M(N,K)] boils down to the computation of equivariant Euler characters
of sheaves on the Quot scheme.

The Quot scheme has a nice structure: there is morphism h : QuotN(A1,O⊕K
A1 ) −! A(N)

where A(N) is the N ’th symmetric product of A1, which is identified with the Hilbert
scheme of N points on A1 and h is the Hilbert-Chow morphism for the Quot scheme. In
the language of quivers, h maps (B,ψ) to the spectrum of B, regarded as a divisor of
degree N on A1.

Lemma 3.4.7. The central fiber h−1(0) of the Hilbert-Chow morphism h : QuotN(A1,O⊕K
A1 ) −!

A(N), endowed with reduced scheme structure, is isomorphic to Gr
Nω1

GLK
in the affine Grass-

mannian GrGLK
. Here ω1 = (1, 0, · · · , 0) is the first fundamental coweight of GLK.

Proof. The central fiber h−1(0) represents submodules of C[z]⊕K whose cokernels are finite
of length N and are supported at 0, so by formal gluing theorem [151, Tag 0BP2], h−1(0)

represents submodules of C[[z]]⊕K whose cokernels are finite of length N , this is Gr
Nω1

GLK
.
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Proposition 3.4.8. The Hilbert-Chow morphism h : QuotN(A1,O⊕K
A1 ) −! A(N) is flat.

Proof. By the deformation theory, QuotN(A1,O⊕K
A1 ) is smooth of dimensionNK. h−1(0)red ∼=

Gr
Nω1

GLK
has dimension (K − 1)N , which equals to dimQuotN(A1,O⊕K

A1 )− dimA(N), thus h
is flat along h−1(0) by miracle flatness theorem [151, Tag 00R4]. Since flatness is an open
condition, h is flat in an open neighborhood of h−1(0). Since Hilbert-Chow morphism h
is proper, there is an open neighborhood U of 0 ∈ A(N) such that h|h−1(U) is flat. Finally
h is equivariant under the C× action on A1 which contracts A(N) to 0, so the flatness is
transported from U to the whole A(N).

Proposition 3.4.8 provides a tool that reduces the computation of Euler character to
the central fiber. In effect, to compute χ(QuotN(A1,O⊕K

A1 ),F) for a locally free sheaf F ,
we can apply C×

q -localization to its derived pushforward Rh∗(F):

χ(QuotN(A1,O⊕K
A1 ),F) = χ(A(N), Rh∗(F)) =

χ(h−1(0),F|h−1(0))∏N
i=1(1− qi)

, (3.39)

where in the last equation we use the proper base change (since F is flat over A(N) by
Proposition 3.4.8), and the denominator comes from the tangent space of A(N) at 0 which
has C×

q -weights −1, · · · ,−N .

Proposition 3.4.9. The central fiber h−1(0) is isomorphic to Gr
Nω1

GLK
as a scheme.

Proof. In view of Lemma 3.4.7, the proposition is equivalent to that h−1(0) is reduced.
Since h is flat with domain and codomain being smooth, h−1(0) is a Cohen-Macaulay
scheme, therefore it is enough to show that h−1(0) is generically reduced. We claim that h
is smooth at the point zNω1 . Assume that the claim is true, then h is smooth in an open
neighborhood of zNω1 , thus h−1(0) is generically reduced.

The claim follows from the deformation theory of QuotN(A1,O⊕K
A1 ). Namely, if e1, · · · , eK

is the basis of O⊕K
A1 , then zNω1 corresponds to short exact sequence

0 −! E −! O⊕K
A1 −! Q −! 0

such that E is the subsheaf of O⊕K
A1 generated by zNe1, e2, · · · , eK . Then the tangent space

of QuotN(A1,O⊕K
A1 ) at zNω1 is

HomOA1
(E , Q).

In particular, the tangent space contains HomOA1
(zNOA1 ,OA1/zNOA1) as a subspace, and

the latter projects isomorphically onto the tangent space of A(N) at 0. In particular, the
tangent map at zNω1 is surjective, thus h is smooth at zNω1 .
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Note that the restriction of the tautological line bundle Det to the central fiber h−1(0)
is exactly the determinant line bundle O(1) on the affine Grassmannian. This enables us
to prove the aforementioned Lemma 3.4.1.

Proof of Lemma 3.4.1. It is well-known that the determinant line bundleO(1) on the affine
Grassmannian is ample [164], thus the restriction of the tautological line bundle Det to
the central fiber h−1(0) is ample. Since Hilbert-Chow morphism h is proper, there is
an open neighborhood U of 0 ∈ A(N) such that Det|h−1(U) is ample relative to U . And
h is equivariant under the C× action on A1 which contracts A(N) to 0, so the relative
ampleness is transported from U to the whole A(N), i.e. Det is relatively ample over
A(N). Since A(N) is affine, Det on the Quot scheme QuotN(A1,O⊕K

A1 ) is ample. Since the
projection Ms(N,K) ! QuotN(A1,O⊕K

A1 ) is a vector bundle, the pullback of Det, which
is the tautological line bundle on Ms(N,K), is ample.

By the Lemma 3.4.1 and localization formula (3.39), we reduce the calculation to

Z
(n)
N,K(x; q, t) = χ(Ms(N,K),Det⊗n)

=
1

(q; q)N

∞∑
m=0

tmχ(Gr
Nω1

GLK
, Symm(V ⊗W ∗)⊗O(n)),

(3.40)

where V is the restriction of the universal quotient sheaf to Gr
Nω1

GLK
.

Remark 3.4.10. One can show that QuotN(A1,O⊕K
A1 ) is isomorphic to Gr

ω1,··· ,ω1

GLK ,A(N) , defined as

the closure of SymN (Grω1 × A1) |A(N)\A(N−1) in the symmetrized Beilinson-Drinfeld Grass-

mannian of GLK on A(N), here A(N−1) ↪! A(N) embeds diagonally. Moreover the isomor-
phism is GLK × C×

q -equivariant and commutes with projections to A(N):

QuotN(A1,O⊕K
A1 ) Gr

ω1,··· ,ω1

GLK ,A(N)

A(N)
h π

Here π is the structure map of symmetrized Beilinson-Drinfeld Grassmannian.

Furthermore, one can show that the Picard groups of Ms(N,K) and QuotN(A1,O⊕K
A1 )

are generated by the tautological line bundle, i.e.

Pic(Ms(N,K)) = Pic(QuotN(A1,O⊕K
A1 )) = Z · Det.
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3.4.11 Calculation on affine Grassmannian

It remains to do the calculation on affine Grassmannian for

∞∑
m=0

tnχ(Gr
Nω1

GLK
, Symm(V ⊗W ∗)⊗O(n)) = χ(Gr

Nω1

GLK
, S•

t (V ⊗W ∗)⊗O(n)).

Here we use the notation S•
t (V ⊗W ∗) =

⊕
m≥0 t

n Symm(V ⊗W ∗). To start with, note that
there is a convolution map on GrGLK

:

m : Grω1
GLK

×̃Gr
(N−1)ω1

GLK
−! Gr

Nω1

GLK
,

see appendix (B.12) for definition of the convolution product. The key property of the
convolution product is that

O ∼= Rm∗O. (3.41)

See the proof of appendix B.2.5 for an explanation of this isomorphism. Here O is the
structure sheaves, we omit the subscripts labelling the domain and codomain, since the
meaning of the homomorphism is clear. In view of (3.41), we have

χ(Gr
Nω1

GLK
, S•

t (V ⊗W ∗)⊗O(n)) = χ
(
Grω1

GLK
×̃Gr

(N−1)ω1

GLK
, S•

t (m
∗V ⊗W ∗)⊗O(n)

)
.

Let us write VN for V to indicate the rank of the gauge group.

Lemma 3.4.12. m∗VN is an extension of p∗V1 by the twist of VN−1, denoted by ṼN−1, i.e.
there is a short exact sequence

0 −! ṼN−1 −! m∗VN −! p∗V1 −! 0.

Here p : Grω1
GLK

×̃Gr
(N−1)ω1

GLK
! Gr

Nω1

GLK
is the projection to the first component map, and

ṼN−1 is the sheaf GLK(K)
GLn(O)

× VN−1.

Proof. VN is the universal quotient of C[[z]]⊕K . Denote the kernel by LN . Then the pullback

of VN to the twisted product Grω1
GLK

×̃Gr
(N−1)ω1

GLK
is by definition the extension of V1 by VN−1,

except that in the definition of VN−1 the free module C[[z]]⊕K is replaced by L1 (this is the
meaning of twist).
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Note that V1 is of rank one, so it is by definition the determinant line bundleO(1) on the
affine Grassmannian GrGLK

restricted on Grω1
GLK

. The convolution map easily generalizes
to multiple copies of GrGLK

:

m : Grω1
GLK

×̃ · · · ×̃Grω1
GLK
−! Gr

ω1

GLK
,

and we can apply Lemma 3.4.12 recursively and see that m∗VN is a consecutive extension
of (twisted) O(1). Since we only care about the Euler character, we can forget about the
extension structure and focus on the K-theory class, in other words, we have:

χ(Gr
Nω1

GLK
, S•

t (V ⊗W ∗)⊗O(n))

=χ(Grω1
GLK

×̃ · · · ×̃Grω1
GLK

, S•
t ((O(1) + Õ(1) + · · ·+ Õ(1))⊗W ∗)⊗ (O(n)⊠̃ · · · ⊠̃O(n)))

=
∑
µ

T |µ|χ(Grω1
GLK

×̃ · · · ×̃Grω1
GLK

,O(µ1 + n)⊠̃ · · · ⊠̃O(µN + n))χ(Sµ1(W ∗)) · · ·χ(SµN (W ∗)).

(3.42)

Here the summation is over arrays µ = (µ1, · · · , µN) ∈ ZN≥0, |µ| =
∑N

i=1 µi, and χ(S
k(W ∗))

is the GLK-equivariant K-theory class of the k’th symmetric tensor product of W ∗, where
W is the fundamental representation of GLK . It is well-known that χ(Sk(W ∗)) = s(k)(x

−1),
where s(k)(x) is the Schur polynomial of the partition (k). Finally, the remaining part of

the computation, which is the character of O(µ1+n)⊠̃ · · · ⊠̃O(µN+n), is related to a well-
understood family of symmetric functions, the transformed Hall-Littlewood polynomial.
In fact we have

χ(Grω1
GLK

×̃ · · · ×̃Grω1
GLK

,O(µ1 + n)⊠̃ · · · ⊠̃O(µN + n)) = Hµ+(nN )(x; q). (3.43)

where Hµ(x; q) is the generalized transformed Hall-Littlewood polynomial of the array

µ+(nN) (see (B.6)). For the derivation of this formula, see Corollary B.2.4 in the appendix.

3.4.13 N !∞ limit

Recall that C[M(∞, K)] is the subalgebra of lim
 −
N

C[M(N,K)] generated by T
(n)
ab and

Tr(Bm), for all n,m ∈ Z≥0 and 1 ≤ a, b ≤ K (Definition 3.3.1).

Lemma 3.4.14. C[M(∞, K)] contains all T ×C×
q ×C×

t eigenvectors in lim
 −
N

C[M(N,K)],

where T ⊂ GLK is the maximal torus.
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Proof. We claim that for fixed n ∈ Z≥0, the dimension of C×
q -weight n space of C[M(N,K)]

stabilizes when N ≫ 0, more precisely there exists N such that for all N ′ > N the
kernel of C[M(N ′, K)] ↠ C[M(N,K)] has C×

q -weights > n. To see why this is true,
we take N such that L−

nGLK × L−
nGL1 ⊂ M(N,K) (N can be (n + 1)K according to

the proof of Theorem 3.3.4), then ker(C[M(N ′, K)] ↠ C[M(N,K)]) is a subquotient of
ker(C[L−GLK × L−GL1]↠ C[L−

nGLK × L−
nGL1]), and the latter is an ideal generated by

elements of C×
q -weights greater than n.

Now assume that a ∈ lim
 −
N

C[M(N,K)] is a T×C×
q ×C×

t eigenvector, and let its C×
q be n.

Then there exists N such that for all N ′ > N the kernel of C[M(N ′, K)]↠ C[M(N,K)]
has C×

q -weights greater than n. Consider the image of a in C[M(N,K)], denoted by a,
and take a T ×C×

q ×C×
t -equivariant lift of a along the projection C[L−GLK × L−GL1]↠

C[M(N,K)], and we denote the lift by a′, then a − a′ has C×
q -weight n and is zero in

C[M(N,K)], thus a− a′ is in the kernel of C[M(N ′, K)]↠ C[M(N,K)] for all N ′ > N ,
which forces a = a′ in C[M(N ′, K)] because of weight consideration, therefore a = a′ in
lim
 −
N

C[M(N,K)].

Proposition 3.4.15. The Hilbert series of C[M(∞, K)] equals to the N ! ∞ limit of
Hilbert series of C[M(N,K)], i.e.

C[M(∞, K)] =
1

(q; q)∞
lim
N!∞

∑
µ

t|µ|Hµ(x; q)s(µ1)(x
−1) · · · s(µN )(x

−1) (3.44)

Proof. The N !∞ limit of Hilbert series of C[M(N,K)] enumerates T ×C×
q ×C×

t eigen-
vectors in lim

 −
N

C[M(N,K)], which is the same as T×C×
q ×C×

t eigenvectors in C[M(∞, K)],

by Lemma 3.4.14.

On the other hand, C[M(∞, K)] is freely generated by ψaB
nψb,Tr(B

m), which makes
its Hilbert series easily computed by

PE
(
(t+ tq + tq2 + · · · )χ(glK)

)
PE(q + q2 + · · · ). (3.45)

Here χ(glK) is the character of the adjoint representation of GLK , and PE is the plethestic

exponential. Note that χ(glK) can be written as a symmetric function 1+
sλad (x)

hK(x)
, where λad

is the Young tableaux corresponding to the adjoint representation of SLK , and hK(x) =
x1x2 · · ·xK . Moreover,

PE(q + q2 + · · · ) =
∞∏
i=1

1

1− qi
=

1

(q; q)∞
.
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Compare equation 3.44 with 3.45, we get the following interesting equation, which we do
not know other way to prove.

Corollary 3.4.16.

lim
N!∞

∑
µ

t|µ|Hµ(x; q)s(µ1)(x
−1) · · · s(µN )(x

−1) = PE

(
t

1− q

(
1 +

sλad(x)

hK(x)

))
. (3.46)

Here λad is the Young tableaux corresponding to the adjoint representation of SLK, hK(x) =
x1x2 · · ·xK, and PE is the plethestic exponential.

3.5 Quantization of M(N,K)

In this section we study the quantization of M(N,K), namely we quantizes the Poisson
structure (3.20) to the commutation relation:

[ψia, ψbj] = ℏδabδij, [Bmn, Bpq] = ℏ(δpnBmq − δmqBpn), [Bmn, ψbj] = [Bmn, ψia] = 0.

(3.47)

This is the algebra Uℏ(glN) ⊗ WeylNK , and we define the quantized ring of functions on
the phase space Cℏ[M(N,K)] by the invariant part (Uℏ(glN) ⊗WeylNK)

GLN . Since GLN
is reductive, we have Cℏ[M(N,K)]/(ℏ) = C[M(N,K)]. Note that Cℏ[M(N,K)] possesses
a natural grading by setting

deg(ψ) = 0, deg(ψ) = 1, deg(B) = 1, deg(ℏ) = 1. (3.48)

Lemma 3.5.1. Cℏ[M(N,K)] is flat over C[ℏ].

Proof. Since Uℏ(glN)⊗WeylNK is flat over C[ℏ], the subalgebra Cℏ[M(N,K)] is ℏ-torsion
free, thus it is also flat over C[ℏ].

Remark 3.5.2. On the stable moduli Ms(N,K) there is a notion of quantized struc-
ture sheaf, namely, consider the completion of Uℏ(glN) ⊗ WeylNK in the ℏ-adic topol-
ogy, this allows us to localize it in the Zariski topology of the affine space Rep(N,K),
and by taking GLN -invariant on the open locus of stable representations Reps(N,K),

we get a sheaf of flat C[[ℏ]]-algebras on Ms(N,K), denoted by ÔMs(N,K). By construc-

tion we have ÔMs(N,K)/(ℏ) = OMs(N,K). This sheaf is related to Cℏ[M(N,K)] as fol-
lows. By construction we have a natural homomorphism of algebras Cℏ[M(N,K)] !

Γ(Ms(N,K), ÔMs(N,K)), which preserves the grading (3.48). On the other hand, by
Lemma 3.2.2 below, we have

93



• H i(Ms(N,K), ÔMs(N,K)) = 0, for i > 0.

• Γ(Ms(N,K), ÔMs(N,K)) is a flat C[[ℏ]]-algebra, which quantizes C[M(N,K)].

Since Cℏ[M(N,K)] is generated by positive degree elements, we conclude that Cℏ[M(N,K)]

is naturally identified with the subalgebra of homogeneous elements in Γ(Ms(N,K), ÔMs(N,K)).

T
(n)
ab = ψaB

nψb and Tr(Bk) generate C[M(N,K)], so they generate Cℏ[M(N,K)] as
well, and it is easy to see that Tr(Bk) commutes with all elements in Uℏ(glN) ⊗WeylNK ,
therefore Tr(Bk) is central. We denote by Tab(z) the power series expanded at z !∞:

Tab(z) =
∑
n≥−1

T
(n)
ab z

−n−1 = δab + ψa
1

z −B
ψb.

Proposition 3.5.3. The commutators between T
(k)
ab are:

[T
(p)
ab , T

(q)
cd ] = ℏ

min(p,q)−1∑
i=−1

(
T

(i)
cb T

(p+q−1−i)
ad − T

(p+q−1−i)
cb T

(i)
ad

)
. (3.49)

Proof. It is easy to see that (3.49) is equivalent to

[T
(p+1)
ab , T

(q)
cd ]− [T

(p)
ab , T

(q+1)
cd ] = ℏ

(
T

(p)
cb T

(q)
ad − T

(q)
cb T

(p)
ad

)
.

We compute the left hand side of the above equation:

[T
(p+1)
ab , T

(q)
cd ]− [T

(p)
ab , T

(q+1)
cd ] = ψamψcr

(
[(Bp+1)mn, (B

q)rs]− [(Bp)mn, (B
q+1)rs]

)
ψbnψds

= ℏψamψcr

(
q∑
i=1

(Bi−1)rn(B
p+1+q−i)ms − (Bi+p)rn(B

q−i)ms

)
ψbnψds

− ℏψamψcr

(
q+1∑
i=1

(Bi−1)rn(B
p+1+q−i)ms − (Bi+p−1)rn(B

q+1−i)ms

)
ψbnψds

= ℏψamψcr ((Bp)rn(B
q)ms − (Bq)rn(B

p)ms)ψbnψds,

which is exactly the right hand side.

Remark 3.5.4. The commutators (3.49) is equivalent to the RTT equation

[Tab(u), Tcd(v)] =
ℏ

u− v
(Tcb(u)Tad(v)− Tcb(v)Tad(u)) . (3.50)
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The classical embedding M(L,K) ↪!M(N,K) for L < N can be quantized as follows.
Consider the left ideal of Uℏ(glN)⊗WeylNK generated by Bij and ψia for all L < i, j ≤ N

and 1 ≤ a ≤ K, denote it by I0L,N , then IL,N := (Uℏ(glN)⊗WeylNK)
GLN−L ∩ I0L,N is a

two-sided ideal in (Uℏ(glN)⊗WeylNK)
GLN−L , where GLN−L acts on indices L < i, j ≤ N .

It is easy to see that

(Uℏ(glN)⊗WeylNK)
GLN−L = (Uℏ(glL)⊗WeylLK)⊕ IL,N

as vector spaces, thus Uℏ(glL) ⊗ WeylLK = (Uℏ(glN)⊗WeylNK)
GLN−L /IL,N . Restricting

to Cℏ[M(N,K)] = (Uℏ(glN)⊗WeylNK)
GLN , we get a map Cℏ[M(N,K)]! Cℏ[M(L,K)]

between graded algebras, and this quantizes the embedding M(L,K) ↪!M(N,K). This
map is surjective because it is surjective modulo ℏ.

Theorem 3.5.5. For every N there is a surjective map of algebras

Yℏ(glK ⊕ gl1) := Yℏ(glK)⊗ Yℏ(gl1)↠ Cℏ[M(N,K)].

Here we define Yℏ(gl1) as the algebra C[L−GL1][ℏ]. These maps are compatible in the sense
that for N > L the diagram

Yℏ(glK ⊕ gl1) Cℏ[M(N,K)]

Cℏ[M(L,K)]

commutes. Moreover, the intersection of ideals of these maps is zero.

Proof. After quantization, we need to be careful about taking determinant. Instead of
taking coefficients in the characteristic polynomial of B, we use the natural generators
Tr(Bk). More precisely, write C[L−GL1] = C[m1,m2, · · · ], where mi is the function that
takes the value of ai in the power series 1 +

∑
i≥1 aiz

−i ∈ L−GL1, and define the “power
sum” generators p1, p2, · · · by∑

n≥1

pn
nzn

= − log

(
1 +

∑
n≥1

mn

zn

)
.

We define the map Yℏ(gl1) ! Cℏ[M(N,K)] by pn 7! Tr(Bn). Let the RTT generators of
Yℏ(glK) be T(u), and we define Yℏ(glK)! Cℏ[M(N,K)] by T(u) 7! T (u). Then Yℏ(glK)⊗
Yℏ(gl1) ! Cℏ[M(N,K)] is surjective since it is surjective modulo ℏ. The compatibility is
clear from construction. The intersection of kernels is zero because Cℏ[M(N,K)] is flat
over C[ℏ] and the intersection of kernels modulo ℏ is zero.
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3.5.6 Another map from Yℏ(glK ⊕ gl1) to Cℏ[M(N,K)]

Recall that the phase space M(N,K) is actually a Hamiltonian reduction of (B+, B−, ψ, ψ)
by the moment map equation B+ − B− = ψψ. In the previous discussions we use the
conventionB = B+, so there is another set of generators ψB

k
−ψ and Tr(Bk

−) of C[M(N,K)].

It is easy to see that the subalgebra in C[M(N,K)] generated by ψBk
+ψ is the same as the

subalgebra generated by ψBk
−ψ. However, the subalgebra generated by Tr(Bk

+) is not the
same as the subalgebra generated by Tr(Bk

−). This means that we have two distinct maps
from C[L−GL1] to C[M(N,K)].

After quantization, the commutation relation between B− are

[B−,ij, B−,kl] = ℏ(δilB−,kj − δkjB−,il).

Definition 3.5.7. The quantum moment map µ : glN ! Uℏ(glN)⊗ Uℏ(glN)⊗WeylNK is

µ(Eij) = B+,ij −B−,ij − ψiψj + ℏNδij. (3.51)

And the quantum Hamiltonian reduction (Uℏ(glN)⊗Uℏ(glN)⊗WeylNK)�µGLN is defined
as the GLN invariant of Uℏ(glN)⊗ Uℏ(glN)⊗WeylNK quotient by the left ideal generated
by µ(glN). Denote the quantum Hamiltonian reduction by AN,K .

Obviously there are two isomorphisms between Cℏ[M(N,K)] and AN,K , corresponding
to two set of generators which are packaged in the generating functions

Tab(u) = δab + ψa
1

u−B+

ψb, Z(u) = 1− ℏTr
(

1

u−B+

)
,

T ab(u) = δab + ψa
1

u+B−
ψb, Z(u) = 1− ℏTr

(
1

u+B−

)
.

The relations between two sets of generators are summarized in the next lemma.

Lemma 3.5.8.

Tab(u)T bc(−u) = δac, (3.52)

Tab(u)T ba(−u+Kℏ) = KZ(u)Z(−u+Kℏ) (3.53)
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Proof. First of all, we compute

Tab(u)T bc(w) = δac + ψa
1

u−B+

ψc + ψa
1

w +B−
ψc + ψa

1

u−B+

ψbψb
1

w +B−
ψc

= δac + ψa
1

u−B+

ψc + ψa
1

w +B−
ψc + ψa

1

u−B+

(B+ −B−)
1

w +B−
ψc

= δac + (u+ w)ψa
1

u−B+

1

w +B−
ψc.

Taking w = −u, we get Tab(u)T bc(−u) = δac. Contracting with δac, we get

Tab(u)T ba(w) = K + (u+ w)Tr

(
1

w +B−
ψψ

1

u−B+

)
−Kℏ(u+ w)Tr

(
1

w +B−

1

u−B+

)
= K + (u+ w)Tr

(
1

w +B−
(B+ −B−)

1

u−B+

)
+ ℏ(u+ w)Tr

(
1

w +B−

)
Tr

(
1

u−B+

)
−Kℏ(u+ w)Tr

(
1

w +B−

1

u−B+

)
.

Here the second equality follows from moment map condition. Taking w = −u +Kℏ, we
get

Tab(u)T ba(−u+Kℏ) = K

(
1− ℏTr

(
1

u−B+

))(
1− ℏTr

(
1

−u+Kℏ+B−

))
.

Recall that the quantum determinant of T (u) is defined as

qdetT (u) =
∑
σ∈SK

sgn(σ)Tσ(1),1(u+
K − 1

2
ℏ) · · ·Tσ(K),K(u−

K − 1

2
ℏ). (3.54)

It is proposed in [51] that quantum determinant of T (u) should be related to Capelli’s
determinant of B±, we prove it in the next proposition.

Proposition 3.5.9. Let C+(u) be the Capelli’s determinant of B+

C+(u) =
∑
σ∈SN

sgn(σ)(u− (N − 1)ℏ−B+)σ(1),1 · · · (u−B+)σ(N),N , (3.55)

and similarly let C−(u) be the the Capelli’s determinant of −B−, then

qdetT (u) = (−1)N
C−(−u+ K−1

2
ℏ)

C+(u+
K−1
2

ℏ)
. (3.56)
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Proof. Let f(u) = qdetT (u) · C+(u+
K−1
2

ℏ)/C−(−u+ K−1
2

ℏ), then compare the quantum
Liouville formula [124]:

Tab(u)T ba(−u+Kℏ) = K
qdetT (u− K−1

2
ℏ)

qdetT (u− K+1
2

ℏ)
, (3.57)

with Lemma 3.5.8, we get f(u)/f(u− ℏ) = 1, so f(u) does not depend on u, thus f(u) =
limu!∞ f(u) = (−1)N , i.e. qdetT (u) = (−1)NC−(−u+ K−1

2
ℏ)/C+(u+

K−1
2

ℏ).

Now we have RTT generator T (u) and its inverse T (−u), then the J-generators of the
Yangian for slK can be obtained from them, in fact one define Bavr =

1
2
(B+ +B−), and

J
(n)
ab = ψaB

n
avrψb, (3.58)

then J
(0)
ab are generators of glK and they act on J

(1)
ab as adjoint representation, and

[J
(1)
ab , J

(1)
cd ] = ℏ(δbcJ (2)

ad − δadJ
(2)
cb ) +

ℏ
4
(J

(0)
ed J

(0)
ae J

(0)
cb − J

(0)
eb J

(0)
ce J

(0)
ad ). (3.59)

The above commutation relation shows that J̃
(0)
ab = J

(0)
ab − 1

K
δabJ

(0)
cc and J̃

(1)
ab = J

(1)
ab − 1

K
δabJ

(1)
cc

generate the image of the subalgebra Yℏ(slK) ⊂ Yℏ(glK ⊕ gl1).

3.5.10 Defining ideal of Cℏ[M(N,K)]

In this subsection we present some observations about the ideal of the quotient map
Yℏ(glK ⊕ gl1)↠ Cℏ[M(N,K)].

Definition 3.5.11. Fix N , define a power series C(u) = zN +
∑

n>0 Cnu
N−n with coefficients

Cn ∈ Yℏ(gl1) by

1− Nℏ
u

− ℏ
∑
n>0

pn
un+1

=
C(u− ℏ)
C(u)

. (3.60)

Here pn are the power sum generators of Yℏ(gl1). Let RTT generator of Yℏ(glK) be T(u) =
1+

∑
n≥0 T

(n)u−n−1, and write the quantum minor of T(u) for row indices a = (a1 < · · · <
ai) and column indices b = (b1 < · · · < bi) as

Ta,b(u) =
∑
σ∈Si

sgn(σ)Tσ(a1),b1(u+
i− 1

2
ℏ) · · ·Tσ(ai),bi(u−

i− 1

2
ℏ). (3.61)
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Remark 3.5.12. Let C(u) be the Capelli’s determinant of B, then by the quantum Newton’s
formula [124], we have

1− ℏTr
(

1

u−B

)
=
C(u− ℏ)
C(u)

, (3.62)

therefore the image of C(u) in Cℏ[M(N,K)] is C(u). In the classical limit ℏ ! 0, C(u)
is the det(u− B), and Cn ≡ (−1)nmn mod ℏ, where mn are the generators of C[L−GL1]
that take the value of an in the power series 1 +

∑
n≥1 anz

−n ∈ L−GL1.

Theorem 3.5.13. The kernel of Yℏ(glK ⊕ gl1)↠ Cℏ[M(N,K)] is generated by all coeffi-
cients for negative powers in u in the power series

C(u), C(u+
i− 1

2
ℏ)Ta,b(u), (3.63)

for all a = (a1 < · · · < ai), b = (b1 < · · · < bi) and all 1 ≤ i ≤ K.

Proof. First of all, we show that (3.63) are mapped to polynomials. For C(u), its image is
the Capelli’s determinant C(u) of B, which is a polynomial. Note that C(u) is known to be
noncommutative version of characteristic polynomial in the sense that C(B) = 0 [124], thus

we have recursion relations: T
(m)
ab +

∑N
n=1CnT

(m−n)
ab = 0 for all m ≥ N , which is equivalent

to that C(u)Tab(u) is a polynomial. It follows from (3.56) that C(u + K−1
2

ℏ)qdetT (u) is
a polynomial. Next we consider the embedding Cℏ[M(N, i)] ↪! Cℏ[M(N,K)] by B 7! B
and ψis 7! ψias and ψsi 7! ψasi. This implies that C(u + i−1

2
ℏ)Ta,a(u) are polynomials for

all a = (a1 < · · · < ai) and all 1 ≤ i ≤ K. After taking commutators with T
(0)
ab for various

indices a and b, we see that all coefficients for negative powers in u in the power series
C(u + i−1

2
ℏ)Ta,b(u) are ℏ-torsion, and by the flatness (Lemma 3.5.1) they must be zero.

Thus we see that (3.63) are mapped to polynomials.

Next we show that the kernel of Yℏ(glK ⊕ gl1) ↠ Cℏ[M(N,K)] is generated by all
coefficients for negative powers in u in the power series (3.63). By the flatness over C[ℏ]
(Lemma 3.5.1), it suffices to show that they generate the ideal modulo ℏ. In fact, we
claim that the scheme defined by vanishing of those coefficients modulo ℏ is reduced and
irreducible of dimension 2NK, this implies the result. To prove the claim, we write down
the image of (3.63) in the Drinfeld’s generators of Yℏ(glK ⊕ gl1):

Hi(u) = C(u)δi,1
Ai−1(u+

ℏ
2
)Ai+1(u+

ℏ
2
)

Ai(u)Ai(u+ ℏ)
(3.64)

Ei(u) = C(u+
i− 1

2
ℏ)Ti,i+(u)Ai(u)−1, Fi(u) = C(u+

i− 1

2
ℏ)Ai(u)−1Ti+,i(u), (3.65)
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1 N -1 N

K

N -1 1

Figure 3.3: The quiver diagram for the Higgs-branch description

where 1 ≤ i ≤ K − 1, A0(u) = 1, Ai(u) = C(u + i−1
2
ℏ)Ti,i(u), i = (1 < · · · < i) and i+ =

(1 < · · · < i−1 < i+1). Compare this formula with [18, Corollary B.17] we conclude that
the quotient of Yℏ(glK ⊕ gl1) by the ideal generated by all coefficients for negative powers
in u in the power series (3.63) is the truncated Yangian Y Nλ

0 [mL
1 , · · · ,mL

N ,m
R
1 , · · · ,mR

N ]ℏ
for slK , where λ = ω1+ωK−1 and ωi is the i’th fundamental coweight of slK , and the mass
parameters WL(u) =

∏N
i=1(u−mL

i ),WR(u) =
∏N

i=1(u−mR
i ) are identified through

WL(u) = C(u− 1

2
ℏ), WR(u) = (−1)NC−(−u+

K

2
ℏ). (3.66)

Since Y Nλ
0 [mL

1 , · · · ,mL
N ,m

R
1 , · · · ,mR

N ]ℏ/(ℏ) = C[WNλ

0,SLK
] and WNλ

0,SLK
is a reduced and ir-

reducible scheme of dimension 2NK, the theorem follows.

Remark 3.5.14. We actually find an explicit S-duality isomorphism between quantized
Higgs branch of the 3d N = 4 gauge theory associated to the quiver in Figure 3.3 and the
quantized Coulomb branch of the 3d N = 4 gauge theory associated to the quiver in Figure
3.4. The generator Ai(u) for 1 ≤ i ≤ K − 1 are mapped to

∏N
r=1(u− ℏ− wi,r), where wi,r

is the r’th equivariant parameter of the i’th gauge node. The subalgebra of Cℏ[M(N,K)]
generated by Ai(u) for 1 ≤ i ≤ K − 1 is known as the Gelfand-Zeitlin subalgebra.

3.5.15 Quantized coproduct

It is well-known that truncated Yangian has coproduct

∆ : Y
(N1+N2)λ

0 [mL
1 , · · · ,mL

N1+N2
,mR

1 , · · · ,mR
N1+N2

]ℏ −! (3.67)

Y
N1λ
0 [mL

1 , · · · ,mL
N1
,mR

1 , · · · ,mR
N1
]ℏ ⊗C[ℏ] Y

N2λ
0 [mL

N1+1, · · · ,mL
N1+N2

,mR
N1+1, · · · ,mR

N1+N2
]ℏ
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N

N

N

K − 1 gauge nodes

N

N

N

Figure 3.4: The quiver diagram for the Coulomb-branch description. The corresponding
gauge theory is mirror-dual to the one described by the quiver in Figure 3.3.

which is compatible with the coproduct on Yℏ(slK). In the RTT generators, we can write
the coproduct explicitly as

∆(Tab(u)) = Tac(u)⊗ Tcb(u), ∆(C(u)) = C(u)⊗ C(u). (3.68)

or equivalently

∆(T ab(u)) = T cb(u)⊗ T ac(u), ∆(C−(u)) = C−(u)⊗ C−(u). (3.69)

Note that this coproduct is a map of Yℏ(glK ⊕ gl1)-bimodules.

An interesting feature of this coproduct is that it does not comes from a truncation of
coproduct for Yℏ(glK ⊕ gl1). In fact (3.62) together with (3.68) implies that 1− ℏTr

(
1

u−B

)
is group-like, and we compute that ∆(Tr(B)) = Tr(B) ⊗ 1 + 1 ⊗ Tr(B) − ℏN1N2. The
rank of the truncation explicitly enters the coproduct formula, this means that we need
to upgrade the rank N into a variable in the large N limit. Namely we define the C[ℏ]-
bialgebra Yℏ,δ(glK⊕gl1) as the Yangian extended by central element δ, i.e. Yℏ(glK⊕gl1)[δ],
and the coproduct

∆(Tab(u)) = Tac(u)⊗ Tcb(u), ∆(δ) = δ ⊗ 1 + 1⊗ δ, (3.70)

∆(pn) = pn ⊗ 1 + 1⊗ pn − ℏ
n−1∑
i=0

pi ⊗ pn−1−i,

where pn, n > 0 are the power sum generators of Yℏ(gl1) and p0 := δ, and the counit

ϵ(Tab(u)) = δab, ϵ(pn) = ϵ(δ) = 0. (3.71)

101



Under the natural quotient map Yℏ,δ(glK ⊕ gl1) ↠ Cℏ[M(N,K)] defined as T(u) 7!
T (u), pn 7! Tr(Bn), δ 7! N , the coproduct (3.70) truncates to (3.68).

Motivated by (3.60), we define power series A(u) = 1 +
∑

n>0 Anu
−n,An ∈ Yℏ,δ(gl1) by(

1− ℏ
u

)−δ
(
1− ℏ

∑
n≥0

pn
un+1

)
=

A(u− ℏ)
A(u)

. (3.72)

Then the second line of (3.70) can be written in a compact form

∆(A(u)) = A(u)⊗ A(u). (3.73)

In fact Yℏ,δ(glK ⊕ gl1) is a C[ℏ]-Hopf algebra with antipode S

S(T(u)) = T−1(u), S(δ) = −δ, S(A(u)) = A−1(u). (3.74)

3.5.16 Quantized phase space and Coulomb branch algebra

In this subsection we give a conceptual understanding of the identification between the
quantized phase space Cℏ[M(N,K)] and Coulomb branch algebra associated to the quiver
in Figure 3.4.

Given a quiverQ, we denote byAℏ
C(Q) the quantum Coulomb branch algebra associated

to the quiver Q with all mass deformation turned on [18], i.e.

Aℏ
C(Q) := H(GL(V )O×GL(W )O)⋊C×

∗ (R),

see [18] for more details.

Example 3.5.17. It is known that the quantum Coulomb branch algebra of the quiver of
Figure 3.5 is the Weyl algebra WeylN(K+N). Its classical limit is the generalized transverse

slice Wλ∗N
w0(λ∗N ), where λN is the N ’th fundamental coweight of GLN(K+N) and w0 is the

longest element of the Weyl group of GLN(K+N) and λ∗N = −w0(λN). The projection

GLN(K+N)((z)) ! GrGLN(K+N)
identifies Wλ∗N

w0(λ∗N ) with the cotangent bundle of the orbit

UλN · z−λN , where UλN is the unipotent group whose Lie algebra is the −1 eigenspace of
λN .

Example 3.5.18. The 3d N = 4 gauge theory associated to the following quiver
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1 N -1 N N

1

K + 1 gauge nodes

N -1 1

Figure 3.5: The quiver for the Weyl algebra WeylN(K+N).

1 2 N -2 N -1

N

Figure 3.6: The quiver diagram of T [SU(N)] theory.

is known as T [SU(N)], its Coulomb branch algebra is isomorphic to Uℏ(glN). An explicit
way to see this isomorphism is by looking at the evaluation representation of Yℏ(glN) :

Tij(u) 7! δij +
Eij

u
, where Eij are the generators of Uℏ(glN) satisfying relations [Eij, Ekl] =

ℏ(δjkEil − δilEkj). Define

An(u) = u[n]Tn,n(u), u
[n] := (u+

n− 1

2
ℏ)(u+

n− 3

2
ℏ) · · · (u− n− 1

2
ℏ),

where Tn,n(u) is the quantum determinant of the submatrix of T(u) consisting of first n

rows and first n columns. Write An(u) = un+
∑

i>0A
(i)
n un−i, then the kernel of Yℏ(glN)↠

Uℏ(glN) contains A
(p)
n for all p > n and for all 1 ≤ n ≤ N . In the Drinfeld generators, we

have

Hn(u) =
An−1(u+

ℏ
2
)An+1(u+

ℏ
2
)

An(u)An(u+ ℏ)
, 1 ≤ n ≤ N − 1, A0(u) = 1.

Compare with [18, Corollary B.17] we conclude that the quotient of Yℏ(glN) by the ideal

generated by A
(p)
n for all p > n and for all 1 ≤ n ≤ N (and invert ℏ if possible) is the
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truncated Yangian Y
NωN−1

0 [m1, · · · ,mN ]ℏ for slN , where ωN−1 is the (N−1)’st fundamental
coweight of slN , and the mass parameters W (u) =

∏N
i=1(u−mi) are identified as W (u) =

AN(u + ℏ). The classical limit of Y
NωN−1

0 [m1, · · · ,mN ]ℏ is the function ring of WNωN−1

0,SLN
,

which is reduced and irreducible of dimension N2. On the other hand, the classical limit of

Uℏ(glN) is the function ring of gl∗N , which has dimension N2 and embeds into WNωN−1

0,SLN
as

a closed subscheme, thus Uℏ(glN) is isomorphic to the Coulomb branch algebra of quiver
in the Figure 3.6, argued in the same way as Theorem 3.5.13.

Recall that balanced subquiver Qbal ⊂ Q is formed by those edge-loop-free nodes i ∈ Q0

such that 2 dimVi = dimWi +
∑

j aij dimVj where aij is the number of edges between i

and j. It is well-known that Qbal is a union of finite ADE quivers, unless Qbal is a union of
connected components of Q of affine type with zero framing on them. It is shown in [18]

that if it is not the latter case then the corresponding ADE group, denoted by L̃bal, acts
on the Coulomb branch algebra Aℏ

C(Q), such that the infinitesimal action is generated by
1
ℏ [H

(1)
i , •], 1ℏ [E

(1)
i , •], 1ℏ [F

(1)
i , •] for those i ∈ Qbal

0 .

Example 3.5.19. In the case that Q is of ADE type with gauge dimension vector v and
flavour dimension vector w, the classical Coulomb branch MC(Q) is the Poisson variety

Wλ∗

µ∗ , where λ =
∑

i∈Q0
wiλi, µ = λ −

∑
i∈Q0

viαi, λ
∗ = −w0(λ), λi are fundamental

coweights and αi are fundamental coroots and w0 is the longest element in the Weyl group
of G. It is shown in [19, Example A.5] that Lbal action can be identified with the natural

action of StabG(µ
∗) on Wλ∗

µ∗ when µ is dominant. This holds for general µ. In fact we can
take a dominant ν such that ⟨ν, α̌i⟩ = 0,∀i ∈ Qbal

0 and µ + ν is dominant, then the shift

map i0,ν∗ : C[W
λ∗+ν∗

µ∗+ν∗ ]! C[Wλ∗

µ∗ ] commutes with the action of StabG(µ
∗) ⊂ StabG(µ

∗+ν∗).

Since i0,ν∗ is Poisson and preserves E
(1)
i , F

(1)
i , H

(1)
i for i ∈ Qbal

0 , it follows that the action of
Lbal constructed in [19, Proposition A.3] commutes with the shift map. Since the action of

Lbal agrees with the natural one for StabG(µ
∗) on Wλ∗+ν∗

µ∗+ν∗ , and the shift map is birational

and equivariant for both of actions, these two actions agree on Wλ∗

µ∗ as well.

Remark 3.5.20. Suppose that there is another action of L̃bal on Aℏ
C(Q) which acts trivially

on ℏ, not necessarily the one constructed in [19, Appendix A], such that these two actions
agree after modulo ℏ and mass parameters (generators of H∗

GL(W )(pt)), then these two

actions must agree on Aℏ
C(Q). In fact Aℏ

C(Q) is a flat deformation of Aℏ
C(Q)/(ℏ,mass) and

the deformation spaces of modules for reductive group are trivial.

Consider a quiver Q containing following part
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1 2 N -1 N

Figure 3.7: The quiver Q.

Then Aℏ
C(Q) admits an action of SLN , and also a grading (C× action) coming from

π0(GrGLN
) which commutes with the SLN action, thus Aℏ

C(Q) admits an action of GLN .
Denote the following quiver by Q′

N

Figure 3.8: The quiver Q′.

then we have

Lemma 3.5.21. Aℏ
C(Q

′) ∼= Aℏ
C(Q)

GLN .

Proof. Consider the affine Grassmannian GrGLN
and denote by AQ (resp. AQ′) the ring

object in DGLN (O)⋊C×(GrGLN
) coming from pushing forward of the dualing complex on the

BFN space of triples corresponding to quiver gauge theory Q (resp. Q′), see [19]. Then we

have AQ
∼= AR

!
⊗AQ′ [19], where AR is the regular ring object with a natural GLN action

(which is called the right action in [19]). Therefore we have

Aℏ
C(Q)

GLN = H∗
GLN (O)⋊C×(GrGLN

,AR

!
⊗AQ′)GLN = H∗

GLN (O)⋊C×(GrGLN
, IC0

!
⊗AQ′)

= Ext∗GLN (O)⋊C×(IC0,AQ′) = Aℏ
C(Q

′).
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Example 3.5.22. In the example of WeylN(K+N), StabSLN(K+N)
(w0(λ

∗
N)) = SLN × SLN+K

acts on WeylN(K+N) = Diffℏ(CN ⊗ CK+N) naturally via regarding CN as fundamental

representation of SLN and CK+N as antifundamental representation of SLK+N , and modulo
ℏ the action becomes the natural one on the cotangent bundle of the orbit UλN · z−λN , thus
by the above remark we see that the action of Lbal = SLN × SLN+K on WeylN(K+N) is
the natural one described above. Moreover the grading coming from π0(GrGLN

) is that

degE
(p)
N = −1, degF

(p)
N = 1, and this grading enlarges the action of SLN × SLN+K to

the action of GLN × GLN+K on WeylN(K+N) = Diffℏ(CN ⊗ CK+N) via regarding CN

as fundamental representation of GLN and CK+N as antifundamental representation of
GLK+N .

Applying Lemma 3.5.21 to the quiver in the Figure 3.5 with K = 0, then we see that
Uℏ(glN)

∼= WeylGLN

N2 , which is nothing but the free field realization of Uℏ(glN). Then it

follows that Cℏ[M(N,K)] ∼= WeylGLN×GLN

N(K+N) where the action comes from the restriction of
GLN ×GLN+K to GLN ×GLN . Apply Lemma 3.5.21 again, followed by removing the edge
between flavours as it has no effect on Coulomb branch, we see that Cℏ[M(N,K)] is the
Coulomb branch algebra of the quiver in Figure 3.4.

Remark 3.5.23. Apply Lemma 3.5.21 to the quiver in the Figure 3.6 with N replaced by
N +K, and we see that

Uℏ(glN+K)
GLN ∼= Y λ

0 [m
L
1 , · · · ,mL

N ,m
R
1 , · · · ,mR

N+K ]ℏ,

where the right-hand-side is a truncated Yangian for slK and λ = Nω1 + (N + K)ωK−1.
This is known as the centralizer construction of Yangian in the literature [124].
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Chapter 4

5d Chern-Simons Theory with Line
and Surface Defects

In [35], Costello and Li developed a beautiful formalism, which prescribes a way to topo-
logically twist supergravity. Combining with the classical notion of topological twist of
supersymmetric quantum field theory [156, 157], we are now able to explore a topo-
logical sector for both sides of AdS/CFT correspondence. It was further suggested in
[28] a systematic method of turning an Ω-background, which plays an important roles
[131, 2, 132, 130, 161, 129] in studying supersymmetric field theories, in the twisted super-
gravity.

Topological twist along with Ω-deformation enables us to study a particular protected
sub-sector of a given supersymmetric field theory [134, 100, 5, 135], which is localized not
only in the field configuration space but also in the spacetime. Interesting dynamics usually
disappear along the way, but as a payoff, we can make a more rigorous statement on the
operator algebra.

The topological holography is an exact isomorphism between the operator algebras of
gravity and field theory. In this chapter, we will focus on a particular example of topologi-
cal holography: the correspondence of the operator algebra of M-theory on a certain back-
ground parametrized by ϵ1, ϵ2, which localizes to 5d non-commutative GLK Chern-Simons
theory with non-commutativity parameter ϵ2

1, and the operator algebra of the worldvol-
ume theory of M2-brane, which localizes to 1d topological quantum mechanics(TQM). In

1The 5d CS theoriy that appears in this thesis is always meant to be a certain variant of the usual 5d
CS theory with a topological-holomorphic twist and with non-commutativity turned on in the holomorphic
directions.

107



particular, [29] proved that two operator algebras are Koszul dual [29] to each other.

The important first step of the proof was to impose a BRST-invariance of the 5d
GLK CS theory coupled with the 1d TQM. 5d CS theory is a renormalizable, and self-
consistent theory [34]. However, in the presence of the topological defect that couples
1d TQM and 5d CS theory, certain Feynman diagrams turn out to have non-zero BRST
variations. For the combined, interacting theory to be quantum mechanically consistent,
the BRST variations of the Feynman diagrams should combine to give zero. This procedure
magically reproduces the algebra commutation relations that define 1d TQM operator
algebra, Aϵ1,ϵ2 . Intriguingly, one can extract non-perturbative information in the protected
operator algebra from the perturbative calculation.

In fact, both the algebra of local operators in 5d CS theory and the 1d TQM opera-
tor algebra Aϵ1,ϵ2 are deformations of the universal enveloping algebra of the Lie algebra
Diffϵ2(C)⊗glK over the ring C[[ϵ1]]. Deformation theory tells us that the space of deforma-
tions of U(Diffϵ2(C)⊗glK) is the second Hochschild cohomology HH2(U(Diffϵ2(C)⊗glK)).
Although this Hochschild cohomology is known to be hard to compute, there is still a
clever way of comparing these two deformations [29]: notice that both of the algebras
are defined compatibly for super groups GLK+R|R, and their deformations are compatible
with transition maps GLK+R|R ↪! GLK+R+1|R+1, so there are induced transition maps be-
tween Hochschild cohomologies HH2(U(Diffϵ2(C) ⊗ glK+R+1|R+1)) ! HH2(U(Diffϵ2(C) ⊗
glK+R|R)), hence the equivalence class of deformations are actually elements in the limit

lim
R!∞

HH2(U(Diffϵ2(C)⊗ glK+R|R)) (4.1)

and the limit is well-understood 2, it turns out that the space of all deformations is essen-
tially one-dimensional: a free module over C[κ] where κ is the central element 1 ⊗ IdK .
Hence the algebra of local operators in 5d CS theory and the 1d TQM operator algebra
are isomorphic up to a κ-dependent reparametrization

ℏ 7!
∞∑
i=1

fi(κ)ℏi (4.2)

where fi(κ) are polynomials in κ.

Later, in [70] the same algebra withK = 1 was defined using the gauge theory approach,
and a combined system of M2-branes and M5-branes were studied. In this case the algebra
of observables A on M2 brane is isomorphic to the 1-shifted affine Yangian of gl1 [155, 108,

2The actual computation in [29] is more subtle, and will not be used in this work.
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89, 59, 60], and the algebra of observables W∞ on M5 brane is isomorphic to the affine
Yangian of gl1 [143, 64, 144]. Importantly, the algebras have three parameters ϵ1, ϵ2, ϵ3,
which are the parameters of Omega deformations turned on three complex planes as a part
of the eleven-dimension supergravity background. Depending on the orientations of the
M2 branes(extending over one of the three complex planes) and the M5 branes(extending
over two of the three complex planes) on the three Omega deformed planes, the description
of the theories on the membrane worldvolume changes; however, both of A and W∞ have
triality [70, 72, 63] under the cyclic permutation of the deformation parameters.

Crucially, [70] noticed GL1 CS should be treated separately from GLK CS theory with
K > 1, since the algebras differ drastically and the ingredients of the Feynman diagram
are different in GL1 CS, due to the non-commutativity. As a result, operator algebra
isomorphism should be re-assessed.

Our work was motivated by the observation, and we will solve the following problem
in a part of next three chapters.

• The simplest algebra Aϵ1,ϵ2 commutator, which has ϵ1 correction.

The problem will be solved by two complementary methods:

(1) Calculation by algebraic method, which is done in chapter §5.

(2) Using Feynman diagrams whose non-trivial BRST variation lead to the commutator,
which is done in section §4.2.

At this point, one may wonder about the algebraic structure of a network of M2 and
M5 branes extending over different complex planes. In [70], the authors conjectured a
fusion of A’s and interpreted an end of M2 branes on M5 branes as a degenerate module
of a truncated version of W∞ [72]. Moreover, recently the authors of [73] discovered a
full algebraic structure governing intersecting M2-M5 branes. Key algebraic relations used
to assemble the elements of the brane system are ∆A,A, ∆A,W∞ , ∆W∞,W∞ , coproducts of
A and W∞. They are induced by properly defined fusions of M2 and M5 branes. The
strategy of [73] was to use a free field realization of both A and W∞ algebras. This is the
boundary field theory derivation in the context of the twisted M-theory.

One of the objectives of the section §4.3 is to reproduce the coproducts of the M2-M5
brane system by a perturbative computation in the gravity side of the twisted M-theory. By
the gravity side of the twisted M-theory, we mean the 5d topological holomorphic Chern-
Simons theory, which is obtained as a result of localization of the Omega deformed twisted
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M-theory. The philosophy of our approach is simple to state. By probing the entire theory
enriched with defects using the perturbative method3, we will decode the non-perturbative
algebraic structure of the defects.

We interpret the coproduct ∆A,A : A! A⊗A as a fusion of two Wilson lines and the
coproduct ∆W∞,W∞ : W∞ ! W∞ ⊗W∞ as a fusion of two surface defects, and compute
the OPE of both defects in the 5d Chern-Simons theory background. Importantly, the
quantum corrections in the coproduct relations are captured by 1-loop Feynman diagrams
in the perturbation theory of the 5d Chern-Simons theory coupled with the defects.

Consistent with the logic under [73], which was used to explain the mixed coproduct
∆A,W∞ : A! A⊗W∞, we will impose gauge invariance of the intersecting M2, M5 brane
configuration coupled to the 5d Chern-Simons theory, and reproduce the mixed coproduct.
Again, the quantum corrections in the A ! A ⊗ W∞ coproduct are captured by 1-loop
Feynman diagrams in the 5d Chern-Simons theory that have vertices on both kinds of
defects.

4.1 Twisted holography via Koszul duality

Twisted holography is the duality between the protected sub-sectors of full supersymmetric
AdS/CFT [118, 90, 158], obtained by a topological twist and Ω-background both turned
on in the field theory side and supergravity side. The most glaring aspect of twisted holog-
raphy4 is an correspondence between operator algebra in both sides, which is manifested
by a rigorous Koszul duality. Moreover, the information of physical observables such as
Witten diagrams in the bulk side that match with correlation functions in the boundary
side is fully captured by OPE algebra in the twisted sector [71].

This section is prepared for a quick review of twisted holography for non-experts. The
idea was introduced in [35] and studied in various examples [28, 29, 98, 31, 70, 37] with or
without Ω-deformation. The reader who is familiar with [28] can skip most of this section,
except for §4.1.2, §4.1.3, and §4.1.9, where we set up the necessary conventions for the rest
of this paper. These sections can be skipped as well, if the reader is familiar with [70].
Also, see a complementary review of the formalism in the section 2 of [70].

3A similar set-up but using a non-perturbative method to find the algebraic data of a coupled system
can be found in the bootstrap program for a BCFT, for instance [113].

4A similar line of development was made in [15, 122], using twisted Q-cohomology, where Q is a
particular combination of a supercharge Q and a conformal supercharge S [6]. In the sense of [134], Q-
cohomology is equivalent to QV -cohomology, where QV is the modified scalar supercharge in Ω-deformed
theories.
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After defining the notion of twisted supergravity in §4.1.1, we will focus on a particular
(twisted and Ω-deformed) M-theory background on Rt×C2

NC×Cϵ1 ×Cϵ2 ×Cϵ3 , where NC
means non-commutative, and ϵi stands for Ω-background related to U(1) isometry with
a deformation parameter ϵi in §4.1.2. N M2 branes extending Rt × Cϵ1 leads to the field
theory side. As we will explain in §4.1.3, a bare operator algebra isomorphism between
twisted supergravity and twisted M2-brane worldvolume theory is given by an interaction
Lagrangian between two systems. Due to this interaction, a perturbative gauge anomaly
appears in various Feynman diagrams, and a careful cancellation of the anomaly will give
a consistent quantum mechanical coupling between two systems. Strikingly, the anomaly
cancellation condition itself leads to a complete operator algebra isomorphism, by fixing
algebra commutators. This will be described in section §4.2. To discuss holography, it is
necessary to include the effect of taking a large N limit and the subsequent deformation in
the spacetime geometry. We will illustrate the concepts in §4.1.8. In §4.1.9, we will explain
how to introduce M5-brane in the system and describe the role of M5-brane in the gravity
and field theory side. In short, the degree of freedom on M5-brane will form a module of
the operator algebra of M2-brane. Similar to the M2-brane case, the anomaly cancellation
condition for M5-brane uniquely fixes the structure of the module.

4.1.1 Twisted supergravity

Before discussing the topological twist of supergravity, it would be instructive to recall the
same idea in the context of supersymmetric field theory and make an analog from the field
theory example.

Given a supersymmetric field theory, we can make it topological by redefining the
generator of the rotation symmetry M using the generator of the R-symmetry R.

M ′ =M +R (4.3)

As a part of Lorentz symmetry is redefined, supercharges, which were previously spinor(s),
split into a scalar Q, which is nilpotent

Q2 = 0, (4.4)

and a 1-form Qµ. Because of the nilpotency of Q, one can define the notion of Q-
cohomology.

Following anti-commutator explains the topological nature of the operators in Q-cohomology:
a translation is Q-exact.

{Q,Qµ} = Pµ (4.5)
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To go to the particular Q-cohomology, one needs to turn off all the infinitesimal super-
translation ϵQ except for the one that parametrizes the particular transformation δQ gen-
erated by Q.

More precisely, if we were to start with a gauge theory, which is quantized with BRST
formalism, the physical observables are defined as BRST cohomology, with respect to some
QBRST. The topological twist modifies QBRST, and the physical observables in the resulting
theory are given by Q′

BRST-cohomology.

Q′
BRST = QBRST +Q (4.6)

As an example, consider 3d N = 4 supersymmetric field theory. The Lorentz symmetry
is SU(2) and R-symmetry is SU(2)H×SU(2)C , where H stands for Higgs and C stands for
Coulomb. There are two ways to re-define the Lorentz symmetry algebra, and we choose
to twist with SU(2)C , as this will be used in the later discussion. In other words, one
redefines

M ′ =M +RC (4.7)

The resulting scalar supercharge is obtained by identifying two spinor indices, one of
Lorentz symmetry α and one of SU(2)C R-symmetry a

Qα
aȧ 7! Qa

aȧ (4.8)

and taking a linear combination.
Q = Q+

11̄
+Q−

12̄ (4.9)

This twist is called Rozansky-Witten twist [149] and will be used in twisting our M2-brane
theory.

One way to start thinking about the topological twist of supergravity is to consider a
brane in the background of the “twisted” supergravity. If one places a brane in a twisted
supergravity background, it is natural to guess that the worldvolume theory of the brane
should also be topologically twisted coherently with the prescribed twisted supergravity
background.

Given the intuition, let us define twisted supergravity, following [35]. In supergravity,
the supersymmetry is a local (gauge) symmetry, a fermionic part of super-diffeomorphism.
As usual in gauge theories, one needs to take a quotient by the gauge symmetry, and
this is done by introducing a ghost field. As supersymmetry is a fermionic symmetry,
the corresponding ghost field is a bosonic spinor, q. Twisted supergravity is defined as
supergravity in a background where the bosonic ghost q takes a non-zero value.
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It is helpful to recall how we twist a field theory to have a better picture for presum-
ably unfamiliar non-zero bosonic ghost. One can think the infinitesimal super-translation
parameter ϵ that appears in the global supersymmetry transformation as a rigid limit
of the bosonic ghost q. For instance, in 4d N = 1 holomorphically twisted field theory
[133, 102, 25, 150], with Q paired with ϵ+, the supersymmetry transformation of the bottom
component ϕ of anti-chiral superfield Ψ̄ = (ϕ̄, ψ̄, F̄ ) transforms as

δϕ = ϵ̄ψ̄, δψ̄ = iϵ+∂̄ϕ̄+ iϵ−∂ϕ̄+ ϵ̄F̄ (4.10)

As we focus on Q-cohomology, we set ϵ+ = 1, ϵ− = ϵ̄ = 0, then the equations reduce into

δϕ̄ = 0, δψ̄ = i∂̄ϕ̄ (4.11)

In the similar spirit, in the twisted supergravity, we control the twist by giving non-zero
VEV to components of the bosonic ghost q.

Indeed, [35] proved that by turning on non-zero bosonic spinor vacuum expectation
value λq !̸= 0 with qαΓ

αβ
µ qβ = 0 for a vector gamma matrix, one can obtain the effect of

topological twisting. We can now compare with the field theory case above (4.4): Q2 = 0
with Q ̸= 0. One can think of ϵQ as a rigid limit of q.

The operator algebra of twisted type IIB supergravity is isomorphic to that of Kodaira-
Spencer theory [11]. The following diagram gives a pictorial definition of the two theories,
which turned out to be isomorphic to each other.

Figure 4.1: Starting from type IIB string theory, one can obtain the same theory by taking
two operations 1. String field limit, 2. Topological twist, in any order.
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Notice that the topological twist in the first column of the picture is the twist applied
on the worldsheet string theory5, whereas in the second column is the twist on the target
space theory.

Lastly, there are two types of twists available: a topological twist and a holomorphic
twist, and it is possible to turn on the two different types of twists in the two different
directions of the spacetime. The mixed type of twists is called a topological-holomorphic
twist, for example, [106]. Different from a topological twist, a holomorphic twist makes
only the anti-holomorphic translation to be Q-exact; after the twist we have Q and Qz

such that
{Q,Qz} = ∂z̄ (4.12)

Hence, the holomorphic translation is physical(not Q-exact), and there exist non-trivial
dynamics arising from this. [35, 28] showed that it is possible to discuss a holomorphic
twist in the supergravity. It is important to have a holomorphic direction to keep the
non-trivial dynamics, as we will later see.

4.1.2 Ω-deformed M-theory

Similar to the previous section, we will start reviewing the notion of Ω-deformation of
topologically twisted field theory. To define Ω-background, one first needs an isometry,
typically U(1), generated by some vector field V on a plane where one wants to turn on
the Ω-background. Ω-deformation is a deformation of topologically twisted field theory.
Physical observables are in the modified QV cohomology, which satisfies

Q2
V = LV , where QV = Q+ iV µQµ (4.13)

where LV is a conserved charge associated with V , and iV µ is a contraction with the vector
field V µ, reducing the form degree by 1.

As the RHS of (4.13) is non-trivial, QV cohomology only consists of operators, which
are fixed by the action of LV such that LVO = 0. Hence, effectively, the theory is defined
in two fewer dimensions, if the isometry group is U(1). More generally, one can turn
on Ω-background in the n planes, and the dynamics of the original theory defined on
D-dimensions localizes on D − 2n dimensions.

5We thank Kevin Costello, who pointed out that the arrow from Type IIB string theory to B-model
topological string theory is still mysterious in the following sense. In Ramond-Ramond formalism, as the
super-ghost is in the Ramond sector and it is hard to give it a VEV. In the Green-Schwarz picture surely
it should work better, but there are still problems there, as the world-sheet is necessarily embedded in
space-time whereas in the B model that is not allowed.
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[28] proposed a prescription for turning Ω-background in twisted 11d supergravity; we
need a 3-form field ϵC, along with U(1) isometry generated by a vector field ϵV , where ϵ
is a constant, measuring the deformation. Similar to the field theory description, in this
background(λq !, C ̸= 0), the bosonic ghost q squares into the vector field, ϵV to satisfy
the 11d supergravity equation of motion.

q2 = qα(Γ
αβ)µqβ = ϵVµ (4.14)

The Ω-background localizes the supergravity field configuration into the fixed point of the
U(1) isometry. From now on, we will call Ω-background with parametrized by ϵi as Ωϵi

background. More generally, one can turn on multiple Ωϵi-backgrounds in the separate
2-planes, which we will denote as Cϵi .

The twisted and Ω-deformed 11d background that we will focus in this paper is

11d SUGRA: (Rt × Cϵ1 × TNK;ϵ2,ϵ3)topological × (Cz × Cw)holomorphic (4.15)

where TNK;ϵ2,ϵ3 is Taub-NUT space with AK-singularity at origin, which can be thought
of as S1

ϵ2
-fibration over R×Cϵ3 . In the background we are interested in, we have, out of the

7 topological directions, 6 directions equipped with an Omega background Ωϵ1 ×Ωϵ2 ×Ωϵ3

with a Calabi-Yau condition Kϵ1+ ϵ2+ ϵ3 = 0. The twist is implemented with the bosonic
ghost chosen such that holomorphic twist in Cz × Cw directions, and topological twist in
Rt × Cϵ1 × TNK;ϵ2,ϵ3 directions6. The 3-form is

C = V d ∧ dz̄ ∧ dw̄ (4.16)

where V d is 1-form, which is a Poincare dual of the vector field V on Cϵ2 plane, and z, w
are holomorphic coordinates on Cz × Cw.

The twisted holography is the duality between the protected subsector of M2-brane and
the localized supergravity, due to the Ω-background. We first want to introduceM2 branes
and establish the explicit isomorphism at the level of operator algebras. Place N -stacks of
M2-branes on

M2-brane: Rt × {·} × Cϵ1 × {·} (4.17)

For the concrete computation, it is convenient to go to type IIA frame by reducing along
an M-theory circle. We pick the M-theory circle as S1

ϵ2
, which is in the direction of the

vector field V .7

6As remarked, if one introduces branes, the worldvolume theory inherits the particular twist that is
turned on in the particular direction that the branes extend.

7For a different purpose, to make contact with Y-algebra system, type IIB frame is better, but we will
not pursue this direction in this thesis.
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After reducing on S1
ϵ2
, the Taub-NUT geometry maps into K-stacks of D6-brane and

N -stacks of M2-branes map to N -stacks of D2-branes.

Type IIA SUGRA : Rt × Cz × Cw × Cϵ1 × R× Cϵ3

D6-branes : Rt × Cz × Cw × Cϵ1

D2-branes : Rt × × Cϵ1

(4.18)

and 3-form C-field reduces into a B-field, which induces a non-commutativity [z, w] = ϵ2
on Cz × Cw.

B = ϵ2dz̄ ∧ dw̄ (4.19)

There are two types of contributions to gravity side: (1) closed strings in type IIA string
theory, (2) open strings on the D6-brane. It was shown in [28] that we can completely
forget about the closed strings. The reason is in the presence of the non-commutativity,
the holomorphically twisted supergravity background (B-model) is the same as the topo-
logically twisted background (A-model) equipped with a B-field. As we are working in the
supergravity limit, where there is no instanton effect, we can also ignore the effect from
a B-field. Hence, for closed string, the background becomes topological A-model without
instanton effect, which is trivial. Therefore, the open strings from the D6-brane entirely
capture gravity side.

D6-brane worldvolume theory is 7d SYM, and it localizes on 5d non-commutative GLK
Chern-Simons on Rt ×Cz ×Cw due to Ωϵ1-background on Cϵ1 [43]. The 5d Chern-Simons
theory is not the typical Chern-Simons theory, as it inherits a topological twist in Rt direc-
tion and a holomorphic twist in Cz ×Cw direction, in addition to the non-commutativity.
As a result, a gauge field only has 3 components

A = Atdt+ Az̄dz̄ + Aw̄dw̄ (4.20)

and the action takes the following form.

S5d CS =
1

ϵ1

∫
Rt×Cz×Cw

dzdw

(
A ⋆ϵ2 dA+

2

3
A ⋆ϵ2 A ⋆ϵ2 A

)
(4.21)

The star product ⋆ϵ2 is the standard Moyal product induced from the non-commutativity
of Cz × Cw: [z, w] = ϵ2. The Moyal product between two holomorphic functions8 f and g
is defined as

f ⋆θ g = m ◦ e
θ
2
∂z∧∂w(f ⊗ g) = fg +

θ

2

(
∂f

∂z

∂g

∂w
− ∂g

∂z

∂f

∂w

)
+O(θ2) (4.22)

8The Moyal product is extended to a product on the Dolbeault complex Ω0,∗(Cz × Cw) by the same
formula, except that the product between two functions becomes a wedge product between two forms.
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The gauge transformation Λ ∈ Ω0(R× Cz × Cw)⊗ glK acting on the gauge field A is

A 7! A+ dΛ + [Λ, A], where [Λ, A] = Λ ⋆ϵ2 A− A ⋆ϵ2 Λ (4.23)

The field theory side is defined on N D2-branes, which extend on Rt×Cϵ1 . This is the
3d N = 4 gauge theory with 1 fundamental hypermultiplet and 1 adjoint hypermultiplet.
Since the D2-branes are placed on a topologically twisted supergravity background, the
theory inherits the topological twist, which is the Rozansky-Witten twist. We will work on
N = 2 notation, then each of N = 4 hypermultiplet splits into a chiral and an anti-chiral
N = 2 multiplet. We denote the scalar bottom component of the fundamental chiral and
anti-chiral multiplet as Iai and J ia, and that of adjoint multiplets as X i

j and Y i
j , where

a, b are GLK flavour indices and i, j are GLN gauge indices. Those scalars parametrize
the hyper-Kahler target manifold M, which has a non-degenerate holomorphic symplectic
structure. This structure turns the ring of holomorphic functions on M into a Poisson
algebra with the following basic Poisson brackets:

{J ia, Ibj} = δbaδ
i
j, {X i

j, Y
k
l } = δilδ

k
j . (4.24)

It is known that the gauge-invariant combinations of Q-cohomology of Rozansky-Witten
twisted N = 4 theory is equivalent to the Higgs branch chiral ring. The elements of Higgs
branch chiral ring are gauge invariant polynomials of I, J , X, and Y :

IaSym(XmY n)Jb, TrSym(XmY n) (4.25)

where Sym(•) means fully symmetrized polynomial of the monomial •.
Upon imposing the F-term relation9

[X, Y ]ij − Iaj J
i
a + ϵ2δ

i
j = 0, (4.26)

one can show two words in (4.25) are related by following relation:

IaSym(XmY n)Ja = ϵ2Tr Sym(XmY n). (4.27)

Note that the ϵ2 factor, which was previously introduced as a measure for the non-
commutativity in the 5d CS theory, acts as an FI parameter in the 3d N = 4 gauge
theory. In the Ωϵ1-background, the Higgs branch chiral ring is quantized to an algebra and

9Physically, one needs to impose the F-term relation, as it is a part of defining condition for the
supersymmetric vacua, as a critical locus of our specific 3d N = 4 superpotential. Algebraically, the
F-term relation forms an ideal of the ring of holomorphic functions on M.
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the support of the operator algebra in 3d N = 4 theory also localizes to the fixed point
of the Ωϵ1-background. Therefore, the theory effectively becomes 1d TQM (Topological
Quantum Mechanics) [53, 7, 23]

S1d TQM =
1

ϵ1

∫
Rt

Tr(ϵ2At +XDtY + IDtJ)dt. (4.28)

In summary, two sides of twisted holography are 5d non-commutative Chern-Simons
theory and 1d TQM. Until now, we have not quite taken a large N limit and resulting
back-reaction that will deform the geometry. The large N limit will be crucial for the
operator algebra isomorphism to work and we will illustrate this point in section §4.1.8.

4.1.3 Comparing elements of operator algebra

As 5d Chern-Simons theory has a trivial equation of motion: the curvature F (A) = 0,
all the operators have positive ghost numbers. Also, since Rt direction is topological, the
fields do not depend on t. As a result, operator algebra consist of ghosts c(z, w) with
holomorphic dependence on coordinates of Cz×Cw. The elements are then Fourier modes
of the ghosts:

cab [m,n] = ∂mz ∂
n
wc

a
b (0, 0), (4.29)

where a, b are glK indices. Note that ghost fields cab [m,n] are understood as the linear dual
to the elements in the Lie algebra of gauge transformations C[z, w]ϵ2 ⊗glK , where C[z, w]ϵ2
is the space of holomorphic functions on C2 with commutators

[f, g] = f ⋆ϵ2 g − g ⋆ϵ2 f. (4.30)

An equivalent way to write C[z, w]ϵ2 is the ring Diffϵ2(C) of ϵ2-differential operators on
C, where w is interpreted as the coordinate and z is the differential operator ϵ2∂w. The
algebra of classical observables Obsclϵ2 of 5d CS theory is generated by ghost fields cab [m,n]
with anti-commutativity relations, i.e. ∧∗((Diffϵ2C ⊗ glK)

∨), and the BRST differential
is the dual of the LIe bracket, which is the Chevalley-Eilenberg differential, thus Obsclϵ2 is
the Chevalley-Eilenberg algebra of cochains on the Lie algebra of gauge transformations
Diffϵ2C ⊗ glK , denote by C∗(Diffϵ2C ⊗ glK). At the quantum level, the operator algebra
Obsclϵ2 receives deformations, and we denoted it by Obsϵ1,ϵ2 .

For the 1d topological quantum mechanics, the defining commutation relations come
from the quantization of the Poisson brackets deformed by Ωϵ1-background:

[J ia, I
b
j ] = ϵ1δ

b
aδ
i
j, [X i

j, Y
k
l ] = ϵ1δ

i
lδ
k
j (4.31)
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We will write the F-term relation with explicit gauge indices as follows.

X i
kY

k
j −Xk

j Y
i
k − Iaj J

i
a + ϵ2δ

i
j = 0 (4.32)

Let us define operators as

eab [m,n] =
1

ϵ1
IaSym(XmY n)Jb, t[m,n] =

1

ϵ1
TrSym(XmY n), (4.33)

and they are related by eaa[m,n] = ϵ2t[m,n]. As we will see later in the chapter §5,
the commutation relations among those generators eab [m,n], t[m,n] are independent of N ,
which allows us to define the large N limit algebra to be generated by eab [m,n], t[m,n] with
corresponding relations (see Lemma 5.1.3 and Proposition 5.1.4 for detail). We call such

algebra the ADHM algebra, denote by A(K)
ϵ1,ϵ2 .

Assumption 4.1.4. For the rest of this chapter, we assume that ϵ2 ̸= 0, so A(K)
ϵ1,ϵ2 is generated

by eab [m,n].

Just from counting of degrees of freedom, there is a one-to-one correspondence between
cab [m,n] and eab [m,n]. More precisely, they are dual generators in the sense of Koszul
duality. The main result of [29] is that

Theorem 4.1.5 ([29, 16.0.1]). There is an isomorphism

Obs!ϵ1,ϵ2
∼= A(K)

ϵ1,ϵ2
(4.34)

between the Koszul dual of algebra of local observables Obsϵ1,ϵ2 in 5d GLK Chern-Simons

theory, and the ADHM algebra A(K)
ϵ1,ϵ2, when K > 1.

Here A! is the Koszul dual of an algebra A. For example, it is known that the Koszul
dual for Chevalley-Eilenberg cochain complex C∗(g) for a Lie algebra g, is the universal
enveloping algebra U(g) [26], in particular

Obs!ϵ1=0,ϵ2
∼= U(Diffϵ2(C)⊗ glK). (4.35)

The algebra U(Diffϵ2(C) ⊗ glK) is called the double current algebra in the literature [59].
The proof to the Theorem 4.1.5 consists of three parts. First, one shows that Obs!ϵ1=0,ϵ2

is

isomorphic to A(K)
ϵ1=0,ϵ2

, i.e. the latter is isomorphic to the double current algebra. Next,
one checks two algebras’ commutation relations match in the O(ϵ1) order, where one-loop
Feynman diagram is used to compute the first order correction to Obs!ϵ1=0,ϵ2

. Finally,
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one proves the uniqueness of the deformation of U(Diffϵ2(C)⊗ glK) that ensures all order
matching.

One of our goals is to extend the O(ϵ1) order matching to K = 1. It may seem
trivial compared to higher K, but it turns out that the perturbation computation is more
complicated. We will give the detail for the computation of Feynman diagrams in section
§4.2.

Notation: In the later discussions, we write Aϵ1,ϵ2 for A(1)
ϵ1,ϵ2 .

4.1.6 ADHM algebra for K = 1

In chapter §5, we will derive a set of commutation relations between generators t[m,n] ∈
Aϵ1,ϵ2 that determine all other relations (see §5.3.6 for details), of which the simplest ones
are:

[t[3, 0], t[0, 3]] = 9t[2, 2] +
3

2

(
σ2t[0, 0]− σ3t[0, 0]t[0, 0]

)
[t[2, 1], t[1, 2]] = 3t[2, 2]− 1

2

(
σ2t[0, 0]− σ3t[0, 0]t[0, 0]

) (4.36)

where
σ2 = ϵ21 + ϵ22 + ϵ1ϵ2, σ3 = −ϵ1ϵ2(ϵ1 + ϵ2). (4.37)

For the convenience of later discussions, we also introduce the notation:

T [m,n] =
ϵ2
ϵ1
Tr Sym(XmY n) =

1

ϵ1
ISym(XmY n)J ∈ Aϵ1,ϵ2 (4.38)

Our final goal is to reproduce the Aϵ1,ϵ2 algebra from the anomaly cancellation of 1-loop
Feynman diagrams in 5d Chern-Simons theory. So, it is important to have commutation
relations that yield O(ϵ1) term in the right hand side, where ϵ1 is a loop counting parameter
in 5d CS theory.

To compare the commutation relation to that from 5d Chern-Simons calculation, we
need to make sure if the parameters of ADHM algebra Aϵ1,ϵ2 are the same as those in 5d
CS theory. From [29], the correct parameter dictionary10 is

(ϵ1)ADHM = (ϵ1)CS,

(
ϵ2 +

1

2
ϵ1

)
ADHM

= (ϵ2)CS. (4.39)

10We thank Davide Gaiotto, who pointed out this subtlety.
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Hence, the commutation relation that we are supposed to match from the 5d computation
is

[t[2, 1], t[1, 2]] = 3t[2, 2]− 1

2

((
ϵ22 +

3

4
ϵ21
)
t[0, 0] +

(
ϵ1ϵ

2
2 −

ϵ31
4

)
t[0, 0]t[0, 0]

)
(4.40)

There is one term in the RHS of (4.40) that is in O(ϵ1) order:

[t[2, 1], t[1, 2]] = O(ϵ01)−
1

2
ϵ1ϵ

2
2t[0, 0]t[0, 0] +O(ϵ21) (4.41)

We will try to recover the O(ϵ1) term from 5d Feynman diagram calculation11 in section
§4.2.

4.1.7 Koszul duality

Let us explain why in the first place we can expect the Koszul duality between operator
algebras of 5d Chern-Simons and the large N limit of 1d topological quantum mechanics.
Further details on Koszul duality can be found in [116, 69, 68, 70, 37].

The 5d theory is defined on Rt × C2
NC, where Rt is topological and C2

NC, and 1d TQM
couples to the 5d theory along Rt. As explained in (4.5), there is a scalar supercharge Q
and 1-form supercharge δ that anti-commute to give a translation operator Pt. We can
build a topological line defect action using topological descent

Pexp

∫ ∞

−∞
[δ, x(t)] , where x(t) =

∑
m,n

cab [m,n]e
b
a[m,n]. (4.42)

The BRST variation of (4.42) vanishes if x(t) satisfies the Maurer-Cartan equation:

Qx+
1

2
{x, x} = 0. (4.43)

Now recall that one of the equivalent characterization of Koszul dual algebra of a
differential-graded algebra A12 is the following universal property: for any other differential-
graded algebra B, there is an isomorphism

Homdg−alg(A
!, B) ∼= MC(B ⊗ A), (4.44)

11The basis used in the Feynman diagram computation is T [m,n], not t[m,n]. However, the change of
basis does not affect any computation because the O(ϵ1) term in (4.41) is quadratic in t.

12One additional technical assumption is that A has an augmentation ρ : A! C.
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which is functorial in B, where the left-hand-side is the set of differential-graded algebra
morphisms, and the right-hand-side is the set of Maurer-Cartan elements in B ⊗ A. In
other word A! is the universal differential-graded algebra which solves the Maurer-Cartan
equation in the tensor product with A. In the physics language, if A is the algebra of ob-
servables of some topological-holomorphic field theory, then A! is the algebra of observables
of the universal 1d topological defect that can be coupled to the bulk field theory.

Back to the 5d Chern-Simons situation, the equation (4.42) is the universal way to
couple a line defect to the 5d Chern-Simons theory, hence it is natural to expect the
Koszul duality between Obsϵ1,ϵ2 and A(K)

ϵ1,ϵ2 . So the coupling between the 5d ghosts and
gauge invariant polynomials of 1d TQM is given by

Sint =

∫
Rt

Tr(e[m,n]∂mz ∂
n
wA)dt. (4.45)

Now that we have three types of Lagrangians:

S5d CS + S1d TQM + Sint (4.46)

Quantum mechanically, for the 5d Chern-Simons theory to be compatible with the M2
brane line defect, all correlation functions or Feynman diagrams that involve vertices on
both the defect and the bulk should be invariant under the BRST transformation

QBRSTA = dc+ [A, c], QBRSTc = −1

2
[c, c] (4.47)

where c is a scalar ghost. The bracket does not vanish in general even that we are consid-
ering GL1 gauge theory, since Cz × Cw is non-commutative.

4.1.8 Large-N-limit and a back-reaction of N M2-branes

Although we have not discussed explicitly about taking large N limit, but it was being used
implicitly in the construction of the algebra A(K)

ϵ1,ϵ2 which makes it a crucial step towards
the holography. However, it is important to notice that large N is not necessary for Koszul
duality, but it is important for holography.13

The general philosophy of AdS/CFT [118] teaches us that the back-reaction of N M2-
branes will deform the spacetime geometry. In our case, since the closed strings completely
decouple from the analysis, the back-reaction is only encoded in the interaction related

13We thank an anonymous referee who made this point.
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to the open strings. More precisely, the back-reaction is already encoded in the 5d-1d
interaction Lagrangian (4.45), a part of which we reproduce below.

Sback =
1

K

∫
Rt

eaa[0, 0]c
b
b[0, 0]dt. (4.48)

Here, we can explicitly see N in t[0, 0] = 1
ϵ2
eaa[0, 0], as

t[0, 0] =
1

ϵ1
Tr(1) =

N

ϵ1
. (4.49)

After taking large N limit, N becomes an element of the algebra A(K)
ϵ1,ϵ2 , which is coupled

to the trace of the zeroth Fourier mode of the 5d ghost, caa[0, 0].

4.1.9 M5-brane in Ω-deformed M-theory

In the Ω-deformed M-theory background, in addition to N -stacks of M2 branes, we may
introduce N ′-stacks of M5 branes. M2 and M5 branes extend in 1 and 2 real directions,
respectively in the 5d Chern-Simons theory, and can be considered as line and surface
defects with their degrees of freedom interacting with the 5d Chern-Simons theory. For
simplicity we only discuss the case K = 1.

0 1 2 3 4 5 6 7 8 9 10

Geometry Rt Cϵ1 Cz Cw Cϵ2 Cϵ3

M2 × × ×
M5 × × × × × ×

5d CS × × × × ×

Table 4.1: M2, M5-brane and 5d Chern-Simons theory. In general, M2 branes may extend
over Rt × Cϵi and M5 branes may extend over Cz or w × Cϵi × Cϵj , where i, j ∈ {1, 2, 3}.

Let us fix the orientation of the N ′ M5 branes so that they extend over Cw×Cϵ2 ×Cϵ3 .
We are interested in the M5 brane theory on Cw, as the M5 branes intersect with the 5d
Chern-Simons theory along Cw. For this, it is rather convenient to go to the IIA frame(by
compactifying the M-theory circle S1 ∈ Cϵ2). In the type IIA frame, the theory on Cw

consists of D4-D6 strings, with 8 ND directions; this gives rise to a pair of chiral fermions
ψ, ψ′ with a Lagrangian ∫

Cw

dzTrψ(∂̄ + A)ψ′ (4.50)
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Also, the resulting algebra consists of modes of various currents labeled by its conformal
dimension n: W (n) = ψ∂n−1

w ψ′, where n runs from 1 to N ′. [28] proposed a mathematically
rigorous way to take the large N ′ limit and showed that the M5 brane algebra is W∞.

Note that another intuitive way to understand the M5 brane algebra is via AGT set-up
[2]. N ′ M5 brane worldvolume theory is the 6d (2, 0) theory of AN ′−1 type on 1 holomorphic
direction Cw and 4 topological directions Cϵ2 ×Cϵ3 with an Omega background turned on
both of topological planes [159]. Localizing on the locus of the Omega background, we get
a W∞ algebra on the holomorphic plane [160, 159, 8, 14].

The coupling between the currents in the theory of the M5 branes and the gauge field
of the 5d Chern-Simons theory is given by 14∫

Cw

dwW (m)∂m−1
w A. (4.51)

To see an explicit coupling between the m’th mode of W
(n)
m and 5d gauge field, let us

expand W (n) in w: ∑
m∈Z

W (m)
n

∫
C
w−m−n∂m−1

w Adw. (4.52)

Therefore, the n’th mode of W (m) current W
(m)
n couples to w−m−n(∂m−1

w A)dw.

Quantum mechanically, for the 5d Chern-Simons theory to be compatible with the
surface defect from the M5 branes, all correlation functions or Feynman diagrams that
involve vertices both to the defect and the bulk should be invariant under the BRST
transformation A 7! dc+ [A, c], where c is a scalar ghost.

4.1.10 Coproducts of M2, M5 brane algebra

Recently, [73] proposed a recipe to fuse A and W∞. There are two types of fusion, which
we will respectively call homogeneous fusion and heterotic fusion.

The homogeneous fusion

The homogeneous fusion is between the same type of defects. As there are two types
of defects, we have two homogeneous fusions: a fusion of line defects with each other and

14A similar example of the surface operator was discussed in [44] in the context of 4d Chern-Simons
theory.
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a fusion of surface defects with each other. The operation of the two homegenous fusions
is given as follows

• Place two M2 branes at separate points in one of the holomorphic directions Cw and
bring them together.

• Place two M5 branes at separate points in the topological direction Rt and bring
them together.

We may consider this operation as an OPE of two defects D1, D2 that leads to a
single defect D. Therefore, we may ponder about the relation among the operator algebras
A(D1), A(D2), A(D), associated to D1, D2, D. The fusion process is a 2-to-1 operation
from the bulk algebra point of view, and Koszul-dually 15 it induces an 1-to-2 operation,
which will be called coproducts ∆A,A, ∆W∞,W∞ on each A and W∞.

∆A,A : A! A⊗A,
∆W∞,W∞ : W∞ !W∞,1 ⊗W∞,2.

(4.53)

Physically, we may see the existence of the coproducts in the bulk side through Feynman
diagrams with a bulk 3-point vertex, which has two internal legs connecting to 2 defects
participating in the fusion and 1 external leg.

We visualized the process so far in Figure 4.2.

15The Koszul dual algebra A! of an algebra A has the functorial property that Homalgebra(A
!, B) ∼=

Maurer-Cartan(B⊗A), where the Maurer-Cartan elements in B⊗A is interpreted as the coupling between
two systems with algebra of local observables B and A. Fusion of two line operators with operator algebra
A! gives rise to a Maurer-Cartan element in A! ⊗A! ⊗A and this induces a map A! ! A! ⊗A!.
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Figure 4.2: The top figure schematically describes that the Wilson line fusion induces the
coproduct inA. The bottom figure shows the surface operator fusion induces the coproduct
in W∞.

Now, let us write down the representative example of the coproduct ∆A,A [73] that we
will try to reproduce in the next section:

t2,0 !t
′
2,0 + t̃2,0 + 2σ3

∑
m,n≥0

dm,nt
′
0,mt̃0,nw̃

−m−n−2. (4.54)

t2,0, t
′
2,0, t̃2,0 are elements of A, A1, A2. dm,n is a combinatorial factor that depends on m

and n. w̃ is a separation of two line defects in the Cw-plane.

The coproduct ∆A,A comes from the fusion of two Wilson lines. If we bring three Wil-
son lines together in the Cw plane, then they fuse without ambiguity, which means that
the fusion is associative. Koszul-dually, this means that the coproduct ∆A,A should satisfy
coassociativity in some sense, and this is mathematically captured by the notion of vertex
coalgebra [96]. In the next chapter §5, we make our observation rigorous by proving that
A equipped with ∆A,A satisfies the axioms of the vertex coalgebra, see Proposition 5.7.2
for detail.

The heterotic fusion

The heterotic fusion is between different types of defects: a line and a surface, or M2 branes
intersecting with M5 branes. Different from the case of homogeneous fusions, which have
a simple interpretation as an OPE of defects, the heterotic fusion is subtle. The coproduct
for the heterotic fusion is induced by imposing a gauge-invariant condition on the M2-M5
junction configuration.
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Figure 4.3: Imposing the gauge-invariance of the coupled system of the line defect and the
surface defect induces the coproduct ∆A,W∞ .

Imposing gauge-invariance of the entire coupled system leads to the following schematic
relation between various operators in the system:

tupn,m ·O +W
(n+1)
m−n ·O + (. . .) ·O −O · tdown

n,m = 0. (4.55)

where O represents the junction between the line and the surface, and (. . .) is a sum
of polynomials of elements of A and W∞ that can be seen as quantum corrections. By
arranging the terms in (4.55) as

O · (tdown
n,m ) = (tupn,m +W

(n+1)
m−n + (. . .)) ·O, (4.56)

and comparing the LHS and the RHS, we can notice that the gauge invariance induces a
map between A and A⊗W∞:

∆A,W∞ : A! A⊗W∞. (4.57)

The representative example [73] of the coproduct ∆A,W∞ is

t2,0 !t2,0 + V−2 + σ3

∞∑
n=1

nW
(1)
−n−1W

(1)
n−1 + σ3

∞∑
n=1

nW
(1)
−n−1t0,n−1. (4.58)

In the RHS, t2,0 and V−2 are implicitly t2,0 ⊗ 1 and 1 ⊗ V−2, so both are elements of
A⊗W∞.
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4.2 Perturbative calculations in 5d GL1 CS theory cou-

pled to 1d ADHM quantum mechanics

In this section, we will provide a derivation of the G = GLN , Ĝ = GL1 ADHM algebra
Aϵ1,ϵ2 using the perturbative calculation in 5d GL1 CS. We will see the result from the
perturbative calculation matches with the expectation (4.41). The strategy, which we will
spell out in this section, is to compute the O(ϵ1

1) order gauge anomaly of various Feynman
diagrams in the presence of the line defect fromM2 brane(R1×{0} ⊂ R1×C2

NC). Imposing
a cancellation of the anomaly for the 5d CS theory uniquely fixes the algebra commutation
relations.

Purely working in the weakly coupled 5d CS theory, we will derive the representative
commutation relations of the ADHM algebra (4.41):

• Algebra commutation relation

[t[2, 1], t[1, 2]] = . . .+ ϵ1ϵ
2
2t[0, 0]t[0, 0] + . . . (4.59)

where t[n,m] is a basis element of Aϵ1,ϵ2 .

As we commented in §4.1.6, the algebra basis used in the Feynman diagram computation
is T [m,n], which is related to t[m,n] by rescaling with ϵ2. The effect of the change of
basis is trivial in (4.59), so we will interchangeably use t[m,n] and T [m,n] without loss of
generality.

4.2.1 Ingredients of Feynman diagrams

To set-up the Feynman diagram computations, we recall the 5d GL1 Chern-Simons theory
action on Rt × C2

NC.

S =
1

ϵ1

∫
Rt×C2

NC

dzdw

(
A ⋆ϵ2 dA+

2

3
A ⋆ϵ2 A ⋆ϵ2 A

)
(4.60)

with |ϵ1| ≪|ϵ2| ≪ 1. In components, the 5d gauge field A can be written as

A = Atdt+ Az̄dz̄ + Aw̄dw̄ (4.61)

with all the components are smooth holomorphic functions on R1 × C2
NC.
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Now, we want to collect all the ingredients of the Feynman diagram computation. It is
convenient to rewrite (4.60) as

S =
1

ϵ1

∫
R1×C2

NC

dzdw

(
AdA+

2

3
A(A ⋆ϵ2 A)

)
(4.62)

(4.62) is equivalent to (4.60) up to a total derivative. From the kinetic term of the La-
grangian, we can read off the following information:

• 5d gauge field propagator P is a solution of

dz ∧ dw ∧ dP = δt=z=w=0. (4.63)

That is,

P (v1, v2) = ⟨A(v1)A(v2)⟩ =
z̄12dw̄12dt12 − w̄12dz̄12dt12 + t12dz̄12dw̄12

d512
(4.64)

where

vi = (ti, zi, wi), dij =
√
t2ij+|zij|2+|wij|2, tij = ti − tj (4.65)

From the three-point coupling in the Lagrangian, we can extract 3-point vertex. This
is not immediate, as the theory is defined on non-commutative background. Different
from GLN CS, where the leading contribution of the 3-point vertex was AAA, the leading
contribution of the 3-point coupling of the GL1 gauge bosons starts from O(ϵ2)A∂zA∂wA.
The reason is following:∫

dz ∧ dw ∧ A ∧ (A ⋆ϵ2 A)

=

∫
A ∧ ((Atdt+ Az̄dz̄ + Aw̄dw̄) ⋆ (Atdt+ Az̄dz̄ + Aw̄dw̄))

=

∫
dz ∧ dw ∧ A ∧ [dt ∧ dz̄ (At ⋆ Az̄ − Az̄ ⋆ At) + . . .]

=

∫
dz ∧ dw ∧ A ∧ [dt ∧ dz̄ (0 + 2ϵ2 (∂zAt∂wAz̄ − ∂wAt∂zAz̄)) + . . .]

= 2ϵ2

∫
dz ∧ dw ∧ A ∧ [dt ∧ dz̄(∂zAt∂wAz̄ − ∂wAt∂zAz̄)] +O(ϵ22)

(4.66)

Note that for GLN case, SLN Lie algebra factors attached to each A prevents the O(ϵ02)
term to vanish. Still, GL1 ⊂ GLN part of A contributes as O(ϵ2), but it can be ignored,
since we take ϵ2 ≪ 1.

Hence, in GL1 CS, the 3-point A∂zA∂z2A coupling contributes as
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• Three-point vertex I3pt:
I3pt = ϵ2dz ∧ dw (4.67)

Now, we are ready to introduce the line defect into the theory and study how it couples
to 5d gauge fields. Classically, t[n1, n2] couples to the mode of 5d gauge field by∫

R
t[n1, n2]∂

n1
z ∂

n2
w Adt (4.68)

The last ingredient of the bulk Feynman diagram computation comes from the interaction
(4.68).

• One-point vertex IA1pt:

IA1pt =

{
t[n1, n2]δt,z,w if ∂n1

z ∂
n2
w A is a part of an internal propagator

t[n1, n2]∂
n1
z ∂

n2
w A if ∂n1

z ∂
n2
w A is an external leg

(4.69)

Lastly, the loop counting parameter is ϵ1. Each of the propagator is proportional to
ϵ1 and the internal vertex is proportional to ϵ−1

1 . Hence, 0-loop order(O(ϵ1
0)) Feynman

diagrams may contain the same number of internal propagators and internal vertices and
1-loop order(O(ϵ1)) diagrams may contain one more internal propagators than internal
vertices.

Until now, we have collected all the components of the 5d perturbative computation
(4.64), (4.67), (4.68), and (4.69). With these, let us see what Feynman diagrams have non-
zero BRST variations and how the cancelation of BRST variations of different diagrams
leads to the ADHM algebra Aϵ1,ϵ2 .

4.2.2 Feynman diagram

The goal of this section is derive the O(ϵ1)-term of [t[2, 1], t[1, 2]] by Feynman diagrams.
We interpret the commutator [t[2, 1], t[1, 2]] as the following difference between two tree
level diagrams
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Figure 4.4: There is no internal propagators, but just external ghosts for 5d gauge fields,
which directly interact with 1d QM. The minus sign in the middle literally means that we
take a difference between two amplitudes. In the left diagram t[1, 2] vertex is located at
t = 0 and t[2, 1] is at t = ϵ. In the right diagram, t[1, 2] is at t = −ϵ and t[2, 1] at t = 0.

The amplitude of the diagram is

[t[2, 1], t[1, 2]] ∂2z∂wA1∂z∂
2
wA2 (4.70)

so the BRST variation of the amplitude is proportional to

[t[2, 1], t[1, 2]] ∂2z∂wA1∂z∂
2
wc2 + [t[2, 1], t[1, 2]] ∂2z∂wc1∂z∂

2
wA2 (4.71)

Note that the BRST variation on A fields is QBRSTA = ∂c. At O(ϵ1) level, this diagram
will cancel all anomalies coming from one-loop diagrams with two external legs coupled
to ∂2z∂wA and ∂z∂

2
wA respectively. Let’s enumerate those diagrams, there are two types of

diagrams:

(1) See figure 4.5.
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Figure 4.5: A diagram, which has a vanishing amplitude.

(2) See figure 4.6.

Figure 4.6: The vertical solid line represents the time axis, where 1d topological defect is
supported. Internal wiggly lines stand for 5d gauge field propagators Pi, and the external
wiggly lines stand for 5d gauge field A.

For the first diagram, we claim that the amplitude is always zero. This can be seen as
follows. Let C× act on z and w by rotation with weight 1, then propagators has weight −2.
For the interaction vertex, it contains the integration measure dz ∧ dw together with ∂z
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and ∂w in the interaction term, so the total weight of the interaction vertex is zero. Each
external leg is of weight 3. Hence, the total weight of the amplitude is −2 −m − n < 0,
i.e. it’s not invariant under the C×-rotation symmetry, so the amplitude must be zero.

For the second diagram, we will follow the approach shown in [41] and show that the
diagram has a nonvanishing amplitude if and only if m = n = r = s = 0. And in the case
that it is nonzero, it has a nonvanishing gauge anomaly consequently, under the BRST
variation QBRSTA = ∂c.

Let’s do the same analysis on the second diagram as the first one, i.e., let C× act on z
and w by rotation with weight 1, then the total weight of the amplitude is −n−m− r− s.
Hence, the diagram is nonzero only if m = n = r = s = 0. In the following discussion, we
will focus on he case m = n = r = s = 0.

We first integrate over the first vertex (P1 ∂
2
z∂wA P2) and then integrate over the second

vertex(P2 ∂z∂
2
wA P3).

First vertex(P1 ∂
2
z∂wA P2)

First, we focus on computing the integral over the first vertex:

ϵ1ϵ
2
2

∫
v1

dw1 ∧ dz1 ∧ ∂z1P1(v0, v1) ∧ ∂z2∂w1P2(v1, v2)(z
2
1w1∂

2
z1
∂w1A) (4.72)

Note that ∂z1 and ∂w1 comes from the three-point coupling at v1:

ϵ2A ∧ ∂z1A ∧ ∂w1A (4.73)

And ∂z2 comes from the 3-pt coupling at v2:

ϵ2A ∧ ∂z2A ∧ ∂w2A (4.74)

We will consider ∂w2 later when we treat the second vertex.

The factor z21w1∂
2
z1
∂w1A is for the external leg attached to v1, which is c[2, 1]. In short,

this is an ansatz, and we can start without fixing m,n in c[m,n]. However, we will see
that the integral converges to a finite value only with this particular choice of (m,n). For
a simple presentation, we will drop ∂2z1∂w1A, and recover it later.

After some manipulation, which we refer to Lemma 1 in Appendix D, (4.72) becomes

−
∫
v1

dt1dz1dz̄1dw1dw̄1
|z1|2|w1|2z̄2(w̄12dt2 − t12dw̄2)

d501d
9
12

(4.75)
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The integral 4.75 can be further simplified by using the typical Feynman integral technique,
which can be found in Lemma 2 in Appendix D. We are left with

z̄2(w̄2dt2 − t2dw̄2)

(
c1
d502

+
c2w

2
2

d702
+
c3z

2
2

d702
+
c4z

2
2w

2
2

d902

)
(4.76)

with ci being a constant. Note that all terms in the parenthesis have a same order of
divergence. Therefore, it suffices to focus on the first term to check the convergence of the
full integral(we still need to do v2 integral.)

We will explicitly show the calculation for the first term, and just present the result
for the second, third, and fourth term in (D.9). They are all non-zero and finite. We will
denote the first term as P , which is 1-form.

Second vertex(P ∂z∂
2
wA P3)

Now, let us do the integral over the second vertex(v2). The remaining things are orga-
nized into ∫

v2

P ∧ ∂w2P3(v2, v3) ∧ dz2 ∧ dw2(z2w
2
2∂z2∂

2
w2
A) (4.77)

where we dropped forms related to v3, as we do not integrate over it. ∂w2 comes from the
3-pt coupling at v2:

ϵ2A ∧ ∂z2A ∧ ∂w2A (4.78)

The factor z2w
2
2∂z2∂

2
w2
A is for the external leg attached to v2, which corresponds to c[1, 2].

Again, this is an ansatz. We will see that only this integral converges and does not vanish.
We will drop ∂z2∂

2
w2
A and recover it later.

The integral (4.77) is simplified to∫
v2

−|z2|2|w2|4

d502d
7
23

dt2dz̄2dw̄2dw2dz2 (4.79)

The intermediate steps can be found in Lemma 3 in Appendix D.

Now, it remains to evaluate the delta function at the third vertex and use Feynman
technique to evaluate the integral. By Lemma 4 in Appendix D, we are left with

(const)ϵ1ϵ
2
2t[0, 0]t[0, 0]∂

2
z1
∂z2A1∂

1
z1
∂2z2A2 (4.80)

The BRST variation of the amplitude is

(const)ϵ1ϵ
2
2t[0, 0]t[0, 0]∂

2
z1
∂z2A1∂

1
z1
∂2z2c2 (4.81)
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This indicates that the theory is quantum mechanically inconsistent, as it has a Feynman
diagram that has nonzero BRST variation. However, as long as there is another diagram
whose BRST variation is proportional to the same factors We can cancel the anomaly.

Hence, imposing BRST invariance of the sum of Feynman diagrams, we bootstrap the
possible 1d TQM that can couple to 5d GL1 CS.

An obvious choice is the tree-level diagram where (∂z1A)(∂z2A) appears explicitly: By
equating (4.81) and (4.71), we get

[t[2, 1], t[1, 2]] = ϵ1ϵ
2
2t[0, 0]t[0, 0] + . . . (4.82)

Therefore, we have reproduced the O(ϵ1) part of the ADHM algebra Aϵ1,ϵ2 commutation
relation from the Feynman diagram computation:

[t[2, 1], t[1, 2]]ϵ1 = ϵ1ϵ
2
2t[0, 0]t[0, 0] (4.83)

where [−,−]ϵ1 is the O(ϵ1)-part of the commutator.

4.3 Perturbative calculations of the defect fusions

In this section, we will give a twisted holographic derivation of the various coproducts,
which we reviewed in the previous section.

The original derivation [73] of the coproducts ∆A,A : A ! A ⊗ A and ∆W∞,W∞ :
W∞ ! W∞ ⊗W∞, which are induced by the homogeneous fusion, was purely algebraic,
appealing to the free field realization of A and W∞ [146, 145]. We will explain how to
take an OPE of two identical type defects and produce a single defect by computing 1-
loop Feynman diagrams. The RHS of the coproducts ∆A,A, ∆W∞,W∞ naturally emerges
as a fusion coefficient of the resulting single defect. We will first state the result in §4.3.1
with a diagrammatic explanation. Using the various ingredients of the Feynman diagram
collected in §4.3.3, we give an explicit Feynman diagram computation in §4.3.4, §4.3.6.

The philosophy of the argument that leads to the coproducts A ! A ⊗ W∞ was to
impose the gauge-invariance of the intersecting M2-M5 configuration. [73] derived the
coproduct by utilizing purely algebraic properties of A and W∞. As the system couples
to the bulk 5d Chern-Simons theory, imposing the gauge invariance implicitly assumes the
gauge-invariance of the entire system. We will explain how to compute the possible gauge
anomaly of a collection of Feynman diagrams, where defects interact with the bulk. By
imposing the vanishing anomaly condition, we reproduce the coproduct A! A⊗W∞. We
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will first state the result in §4.3.2 with a diagrammatic explanation and give an explicit
Feynman diagram computation in §4.3.5.

In §4.3.7, we propose a conjecture about the fusion between two transverse surface
defects. Different from the fusion between two parallel surface defects, we will see a line
operator as one of the byproducts.

Note that the coproducts that we are dealing with are all truncated in the first order
of σ3. We prove the dual statement in the 5d Chern-Simons side in §4.3.8.

Our calculation is based on the integral technique developed in [41] in the context of
4d Chern-Simons theory. The authors discussed an OPE between two Wilson lines and
show that it gives a composite Wilson line. We will sometimes rely on our previous paper
[137], as well.

4.3.1 Holographic interpretation of the homogeneous fusion

Given two parallel Wilson lines, placed on the Cw plane at w = 0, w = w̃, when they
approach each other, w̃ ! 0, we obtain a single Wilson line. We will directly compute the
OPE of two Wilson lines in the 5d Chern-Simons background using Feynman diagrams.

At the tree level, the OPE of two Wilson lines associated with t′2,0, t̃2,0
16 is trivial and

the OPE is simply given by a single Wilson line associated with t′2,0 ⊗ 1 + 1⊗ t̃2,0. Hence,
the tree level OPE gives

(t′2,0 ⊗ 1 + 1⊗ t̃2,0)

∫
∂2zA. (4.84)

On the other hand, the OPE becomes nontrivial at the 1-loop level, as there is an
obvious correction coming from the 3-point vertex of the 5d Chern-Simons theory that
couples two Wilson lines, as shown in the figure below.

16We distinguish two algebra elements in different Wilson lines by prime and tilde.
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Figure 4.7: The top figure shows the quantum correction on the Wilson line OPEs from
the interaction with the 5d Chern-Simons theory. The formula(∼ σ3t0,mt0,n) for the fused
Wilson line can be obtained by computing the Feynman diagram. As the representation
associated with ∂2zA is t2,0, the OPE directly gives the coproduct formula ∆A,A : t2,0 !
. . . σ3t0,mt0,n.

Combining the tree level and the 1-loop level computation, we obtain a single fused
Wilson line (

t′2,0 + t̃2,0 + 2σ3
∑
m,n≥0

dm,nt
′
0,mt̃0,nw̃

−m−n−2

)∫
∂2zA. (4.85)

Since
∫
∂2zA couples to t2,0 according to (4.45), the fusion induces an embedding map

∆A,A : t2,0 ! t′2,0 + t̃2,0 + 2σ3
∑
m,n≥0

dm,nt
′
0,mt̃0,nw̃

−m−n−2. (4.86)

This is exactly (4.54). As the tree level is trivial, we will only give an explicit derivation
of the 1-loop term in §4.3.4.

We can similarly analyze the surface defect fusion. Given two parallel surface defects,
placed on Rt direction at t = 0, t = −ϵ, when we approach them together by taking ϵ! 0,
we obtain a single surface defect. We will directly compute the OPE of two surface defects
in the 5d Chern-Simons background using Feynman diagrams.

We will present the nontrivial part of the OPE, which is at 1-loop order, as shown in
the figure below.
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Figure 4.8: The top figure shows the quantum correction on the surface defect OPEs
from the interaction of the two surface defects with the 5d Chern-Simons theory. The
formula(∼ σ3Jn−1J

′
−n−1) for the fused surface defect can be obtained by computing the

Feynman diagram. As the representation associated with ∂wA is L−2, the OPE directly
gives the coproduct formula ∆W∞,W∞ : L−2 ! . . . σ3Jn−1J

′
−n−1.

From the 1-loop computation, we obtain a single fused surface defect

. . .+ σ3

∞∑
n=−∞

nJn−1J
′
−n−1

∫
dw∂w(∂

2
zA). (4.87)

Since
∫
∂wA couples to L−2 according to (4.52), the fusion induces an embedding map

∆W∞,W∞ .

L−2 ! . . .+ σ3

∞∑
n=−∞

nJn−1J
′
−n−1. (4.88)

The basic coproduct ∆W∞,W∞ was not explicitly presented in [73], but it was hiding in a
composed coproduct A ! A ⊗ W∞ ⊗ W∞. On the other hand, from [72] we expect the
basic coproduct T ! J ⊗ J , where T is spin-2 current and J is a spin-1 current. (4.88) is
essentially the relevant O(σ3) order term hiding in the RHS of (2.41) of [73]. We will give
a check in §4.3.6.

4.3.2 Holographic interpretation of the heterotic fusion

We will derive the coproduct ∆A,W∞ , based on the gauge invariance of the M2-M5 brane
junction configuration. One way to discuss the gauge-invariance of the coupled system is
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by computing the amplitude of a collection of Feynman diagrams that involve vertices on
the defects.

To figure out the collection of Feynman diagrams, one needs to consider the LHS(an
element of A) of the boundary coproduct relation (4.58) and determine the 5d gauge mode
that would couple to it. The next step is to write down all Feynman diagrams whose
amplitude is proportional to the 5d gauge mode.

The LHS of the second line of (4.58) is t2,0 and it couples to ∂2zA. The following diagram
represents the one associated with the LHS.

Figure 4.9: The Feynman diagram associated with the LHS of (4.58): t2,0.

The amplitude of the Feynman diagram is trivially

t2,0∂
2
zA. (4.89)

Its BRST variation (4.47) is
t2,0∂

2
z (QBRSTA). (4.90)

On the other hand, up to O(σ3) order, there are three more diagrams, whose amplitudes
are proportional to ∂2zA. They are
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Figure 4.10: The Feynman diagram associated with the RHS of (4.58): t2,0 + V−2 +∑
n nJn−1t0,n−1.

The sum of the amplitudes of the Feynman diagram is(
t2,0 + V−2 +

∞∑
n=1

nJ−n−1t0,n−1

)
∂2zA. (4.91)

Its BRST variation (4.47) is(
t2,0 + V−2 +

∞∑
n=1

nJ−n−1t0,n−1

)
∂2z (QBRSTA). (4.92)

For the defect-enriched 5d Chern-Simons theory to be anomaly free, there must be a
cancellation between (4.90) and (4.92), which leads to the coproduct relation that we have
already seen in the second line of (4.58)17:

t2,0 ! t2,0 + V−2 +
∞∑
n=1

nJ−n−1t0,n−1 (4.93)

As the tree level O(σ3) computation is trivial, we will only provide an explicit 1-loop O(σ3)
computation in §4.3.5.

17We thank Miroslav Rapčák, who pointed out the previous typos in the following formula.

140



4.3.3 Ingredients of Feynman diagrams

To prepare for the computation of the Feynman diagrams shown in the previous subsec-
tions, we recall the5d U(1) Chern-Simons theory [28, 43](also, see the nice description of
the related 4d Chern-Simons theory [26] in [29]) with a leading order action given as 18

1

σ3

∫
Rt×Cz×Cw

(AdA+ A{A,A})dzdw, (4.95)

where σ−1
3 = (ϵ1ϵ2ϵ3)

−1 is the equivariant volume of Cϵ1 × Cϵ2 × Cϵ3 and

A = Atdt+ Az̄dz̄ + Aw̄dw̄, (4.96)

and {A,A} is the holomorphic Poisson bracket defined as

{A,A} =
∂A

∂z

∂A

∂w
− ∂A

∂w

∂A

∂z
. (4.97)

This is nonzero, since A is a 1-form, not a function.

From the Lagrangian, we write down the ingredients of the Feynman diagrams that
involve the 5d Chern-Simons theory and two types of defects.

Figure 4.11: A table of ingredients of the Feynman diagrams in the 5d Chern-Simons
theory coupled with the line and the surface defects.

18In the original paper of Costello [28], the action took a different form as

1

ϵ1

∫
Rt×Cz×Cw

(A ∗ϵ2 dA+A ∗ϵ2 A ∗ϵ2 A)dzdw, (4.94)

where ∗ is a Moyal product combined with the wedge product. The equivalent action (4.95), which makes
the triality among ϵi’s manifest, was suggested in [70], and it will be more convenient in our computation.
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From the kinetic term of the 5d Chern-Simons Lagrangian

1

σ3
dz ∧ dw ∧ A ∧ dA, (4.98)

we can read off the gauge field propagator:

• 5d gauge field propagator P is a solution of

dz ∧ dw ∧ dP = δt=z=w=0. (4.99)

That is,

P12 = P (v1, v2) = ⟨A(v1)A(v2)⟩ =
z̄12dw̄12dt12 − w̄12dz̄12dt12 + t12dz̄12dw̄12

d512
(4.100)

where

vi = (ti, zi, wi), dij =
√
t2ij+|zij|2+|wij|2,

tij = ti − tj, zij = zi−zj, wij = wi − wj.
(4.101)

From the 3-point coupling

1

σ3
dz ∧ dw ∧ A ∧

(
∂A

∂z
∧ ∂A

∂w
− ∂A

∂w
∧ ∂A

∂z

)
, (4.102)

we read off

• Three-point vertex I3pt:

I3pt =
1

σ3
dz ∧ dw(∂z∂w). (4.103)

Each of the partial derivatives acts on one of three legs that attaches to the vertex.

From (4.98), (4.102), we can see that the loop counting parameter is σ3: each of the
propagator is proportional to σ3 and the internal vertex is proportional to σ−1

3 . Therefore,
a given Feynman diagram with v 3-point vertices and e internal propagators is proportional
to σe−v3 .

Next, consider the line defect coupled to the 5d Chern-Simons theory. Classically, tm,n
couples to the mode of the 5d gauge field by∫

R
tm,n∂

m
z ∂

n
wA (4.104)

From (4.104), we read off
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• One-point vertex ItA:
ItA = δ

(5)
t,z,wtm,n∂

m
z ∂

n
wA (4.105)

Lastly, consider the surface defect coupled to the 5d Chern-Simons theory. Classically,
W

(m)
n couples to the mode of the 5d gauge field by∫

Cw

W (m)
n · w−m−n∂m−1

w Adw (4.106)

From (4.106), we read off

• One-point vertex IwA:

IwA = δ
(3)
t,zW

(m)
n w−m−n∂m−1

w Adw (4.107)

As usual in the Feynman diagram computation, we will use (4.108) in the following
sub-sections, when we evaluate the final integrals.

1

AαBβ
=

Γ(α + β)

Γ(α)Γ(β)

∫ 1

0

dx
xα−1(1− x)β−1

(xA+ (1− x)B)α+β
. (4.108)

Along with it, we usedMathematica to compute various integrals; we submitted an ancillary
notebook that collects the integral computations.

4.3.4 A! A⊗A coproduct

We will derive the meromorphic coproducts of the M2 brane algebra using the perturbative
Feynman diagram computation in 5d Chern-Simons theory. The target relation that we
want to derive from the 5d Chern-Simons side is

t2,0 ! . . .+ σ3
∑
m,n≥0

(const)m,nt0,mt0,nz̃
−m−n−2. (4.109)

We will use the technique developed in [41], where the authors computed the OPE of two
Wilson lines using the relevant Feynman diagram in the 4d Chern-Simons theory19.

Using the ingredients given in §4.3.3, we can decorate the 1-loop Feynman diagram
shown in §4.3.1 as follows.

19The Yangian coproduct was more explicitly discussed in [42] in the context of the 4d Chern-Simons
theory.
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Figure 4.12: The 1-loop Feynman diagram associated with the A! A⊗A coproduct. All
the ingredients are explicitly displayed.

The amplitude is

σ3t0,mt0,n

∫
V2

dz2dw2Aext

∫
V0

δ(2)(z0)δ
(2)(w0)∂

m
w0
∂z2P02

×
∫
V1

δ(2)(z1)δ
(2)(w1 − w̃)∂nw1

∂w2P12.

(4.110)

where we used (4.103), (4.105) for I3pt(V2), ItA(V0) and ItA(V1), respectively.

There are three floating vertices, so there are three integrals to do. Let us first do V0,
V1 integrals and use them in the final V2 integral.∫

V0

δ(2)(z0)δ
(2)(w0)∂

m
w0
∂z2P02. (4.111)

Since δ(2)(z0)δ
(2)(w0) ∼ dz0dz̄0dw0dw̄0, we can project most of the terms in P02, and get

(−1)m
7

2
· 9
2
· · · 7 + 2m− 2

2

∫
V0

δ(2)(z0)δ
(2)(w0)w̄

m
2 z̄2

(z̄2dw̄2 − w̄2dz̄2)dt0√
t202 + |w02|2 + |z02|2

7+2m (4.112)

After shifting t0 ! t0 + t2, and evaluating two delta functions, we do the t0 integral. The
result is

(−1)m
8Γ(3 +m)

15

w̄m2 z̄2(z̄2dw̄2 − w̄2dz̄2)

(|w2|2 + |z2|2)m+3
. (4.113)

Now, let us do V1 integral.∫
V1

δ(2)(z1)δ
(2)(w1 − w̃)∂nw1

∂w2P12, (4.114)
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Taking into account of the z1, w1 delta function, we simplify it into

(−1)n
7

2
· 9
2
· · · 7 + 2n− 2

2

∫ ∞

−∞
dt1

( ¯̃w − w̄2)
n+1(z̄2dw̄2 + ( ¯̃w − w̄2)dz̄2)√

t21 + |w̃ − w2|2 + |z2|2
7+2n . (4.115)

Doing the t1 integral we get

(−1)m
8Γ(3 + n)

15

( ¯̃w − w̄2)
n+1(z̄2dw̄2 + ( ¯̃w − w̄2)dz̄2)

(| ¯̃w − w2|2 + |z2|2)n+3
. (4.116)

We can then combine (4.113), (4.116), and the 3-point interaction vertex σ3dz2dw2,
and set up the V2 integral. To be concise, let us omit the constant factors and reintroduce
them at the end.∫

V2

(σ3dz2dw2)
w̄m2 z̄2(z̄2dw̄2 − w̄2dz̄2)

(|w2|2 + |z2|2)m+3

( ¯̃w − w̄2)
n+1(z̄2dw̄2 + ( ¯̃w − w̄2)dz̄2)

(| ¯̃w − w2|2 + |z2|2)n+3
Aext. (4.117)

We then expand20 Aext(z2) in z2 and notice that the only nonvanishing part of the integral
comes from one of the modes of Aext.

Aext = . . .+ z22∂
2
z2
Aext (4.118)

Simplifying the numerator, we get

σ3

∫
V2

w̄m2 ( ¯̃w − w̄2)
n+1z̄22 ¯̃w(z

2
2∂

2
z2
A)

(|w2|2 + |z2|2)m+3(|w̃ − w2|2 + |z2|2)n+3
|dw2|2|dz2|2. (4.119)

We can apply Feynman integral (4.108) here and get∫ 1

0

xm+2(1− x)n+2

∫
V2

w̄m2 ( ¯̃w − w̄2)
n+1z̄22 ¯̃w(z

2
2∂

2
z2
A)|dw2|2|dz2|2dx

((1− x)(|w2|2 + |z2|2) + x(|w̃ − w2|2 + |z2|2))m+n+6
. (4.120)

We can rewrite the denominator into (|w2 − xw̃|2 + |z2|2 + x(1 − x)|w̃|2)m+n+6, and shift
w2 ! w2 + xw̃. Then, the above becomes∫ 1

0

xm+2(1− x)n+2

∫
V2

∂2z2A
(w̄2 + x ¯̃w)m((1− x) ¯̃w − w̄2)

n+1|z2|4 ¯̃w
(|w2|2 + |z2|2 + x(1− x)|w̃|2)m+n+6

|dw2|2|dz2|2dx. (4.121)

When we work in the radial coordinates (rz, θz), (rw, θw) on each Cz, Cw planes, it becomes
manifest that all the terms with non-zero powers of w̄2 in the numerator become zero under
the θw integral.

20See the discussion around equation (3.20) of [41].
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Hence, only one term in the expanded numerator survives:

¯̃wm+n+2

∫ 1

0

x2m+2(1− x)2n+3

∫
V2

∂2z2A
|z2|4

(|w2|2 + |z2|2 + x(1− x)|w̃|2)m+n+6
|dw2|2|dz2|2dx.

(4.122)
Note that if the external leg were ∂nz2A with n ̸= 2, the amplitude vanishes, and the only
non-vanishing condition under θz integral is n = 2.

In the radial coordinates, we can evaluate the integral explicitly:

¯̃wm+n+2

∫ 1

0

x2m+2(1− x)2n+3

∫
Rt

∂2z2A

∫ ∞

0

∫ ∞

0

4π2r5zrw
(r2z + r2w + x(1− x)|w̃|2)m+n+6

drzdrw

=
2π2∏5

i=2(i+m+ n)
w̃−m−n−2

∫
Rt

∂2z2A

∫ 1

0

xm−n(1− x)n−m+1dx

=
π2∏5

i=2(i+m+ n)
w̃−m−n−2

∫
Rt

∂2z2A.

(4.123)
The integration in the second line converges if and only if m = n or m = n + 1. Reintro-
ducing the numerical factors that were omitted, we arrive at

σ3
∑

0≤m−n≤1

cm,nt0,mt0,nw̃
−m−n−2

∫
Rt

∂2z2A, (4.124)

where

cm,n = (−1)m+n

(
8π

15

)2

(m+ n+ 1)!. (4.125)

We have obtained a single composite Wilson line associated with the tensor product
representation t0,m ⊗ t0,n ∈ A ⊗A. Due to the coupling (4.45), the tensor product repre-
sentation can be equally understood as t2,0 ∈ A.

Therefore, we have derived the 1-loop part of the seed coproduct relation of ∆A,A :
A! A⊗A.

t2,0 ! . . .+ σ3
∑

0≤m−n≤1

cm,nt0,m ⊗ t0,nw
−m−n−2. (4.126)

We should emphasize that although we have spent most of the space to compute the
integral, it is only for checking and showing that the integral converges to a finite quantity
for a particular component of the expansion of Aext (4.118). More emphasis should be
placed on the selection rule that determines which structure constants to vanish or not. In
the present case, the selection rule restricts the RHS of the coproduct to have only t′0,mt̃0,n.
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One can still compare the structure constant cm,n in (4.126) and its Koszul dual struc-
ture constant dm,n in (4.54). In general, we do not expect a precise equality between two;
there can be overall numerical factor. For instance, let us recall [41], where the author
compared the OPE in C∗(Cϵ2 [z1, z2]⊗ gl1)

{∂pz1∂
q
z2
X, ∂kz1∂

l
z2
X} =

∑
ϵ1ϵ

(r+s+m+n−p−q−k−l)/2−1
2 Ap,q,k,lr,s,m,n(∂

r
z1
∂sz2X)(∂mz1∂

n
z2
X), (4.127)

where ∂pz1∂
q
z2
X ∈ C∗(Cϵ2 [z1, z2]⊗ gl1), and the Koszul dual OPE in U(Cϵ2 [z1, z2]⊗ gl1)

[zr1z
s
2, z

m
1 z

n
2 ] =

∑
ϵ1ϵ

(r+s+m+n−p−q−k−l)/2−1
2 Ap,q,k,lr,s,m,n

m!n!r!s!

p!q!k!l!
(zp1z

q
2)(z

k
1z

l
2), (4.128)

where zm1 z
n
2 ∈ U(Cϵ2 [z1, z2]⊗ gl1). The analogue of dm,n in (4.54) is the structure constant

Ap,q,k,lr,s,m,n that appears in (4.127) and the analogue of cm,n in (4.126) is the structure constant
Ap,q,k,lr,s,m,n multiplied by the numerical factor that follows. In this case, the structure constants
of Koszul dual pair algebra are related the numerical constant.

4.3.5 A! A⊗W∞ coproduct

We will derive the coproducts of M2 brane algebra and M5 brane algebra using the per-
turbative Feynman diagram computation in 5d Chern-Simons theory. The target relation
that we want to derive from the 5d Chern-Simons side is

t2,0 ! . . .+ σ3

∞∑
n=1

nW
(1)
−n−1W

(1)
n−1 + σ3

∞∑
n=1

nW
(1)
−n−1t0,n−1. (4.129)

This situation is similar to the intersecting M2-M5 brane configuration studied in [70, 137].
To derive the coproduct relation holographically, we will follow [137], where we computed
the Feynman diagrams involving a line and a surface defect.

Let us first write the RHS of (4.129) in the manifest form of A⊗W∞, by recalling the
embedding ρ(Jn−1) = t0,n.

σ3

∞∑
n=1

nJ−n−1Jn−1 + σ3

∞∑
n=1

nJ−n−1t0,n−1 = σ3

∞∑
n=1

nJ−n−1t0,n−1. (4.130)

Using the ingredients given in §4.3.3, we can decorate the 1-loop Feynman diagram
shown in §4.3.2 as follows.
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Figure 4.13: The 1-loop Feynman diagram associated with the A ! A⊗W∞ coproduct.
All the ingredients are explicitly displayed.

The amplitude is

σ3J−n−1t0,n−1

∫
V2

Aextdz2dw2

∫
V0

δ(t0)δ
(2)(z0)∂z2(w

n
0P02)dw0

×
∫
V1

δ(t1 − ϵ)δ(2)(z1)δ
(2)(w1)∂w2∂

n−1
w1

P12,

(4.131)

where we used (4.103), (4.106), (4.105) for I3pt(V2), IwA(V0) and ItA(V1), respectively.

Let us omit all constant terms and reintroduce them at the end. There are three floating
vertices, so there are three integrals to do. Let us first do V0, V1 integrals and use them in
the final V2 integral. ∫

V0

δ(t0)δ
(2)(z0)w

n
0∂z2P02. (4.132)

Since δ(t0)δ
(2)(w0) ∼ dtdw0dw̄0, we can project most of the terms in P02. After performing

t0, z0 integral, we get

−
∫
Cw0

wn0 z̄2(z̄2dt2 + t2dz̄2)√
t22 + |z2|2 + |w02|2

7 |dw0|2. (4.133)

After shifting w0 ! w0 + w2, we get

−
∫
Cw0

z̄2(w0 + w2)
n(t2dz̄2 + z̄2dt2)√

t22 + |z2|2 + |w0|2
7 |dw0|2. (4.134)
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Working in the radial coordinate of Cw0 plane, only one term in the expanded (w0 + w2)
n

survives. Performing the w0 integral in the radial coordinate, we get

−2π

3

wn2 z̄2√
t22 + |z2|2

5 (t2dz̄2 + z̄2dt2). (4.135)

Now, let us do V1 integral.∫
V1

δ(t2 + ϵ)δ(2)(z1)δ
(2)(w1)∂

n−1
w1

∂w2P12. (4.136)

As there are 3 delta functions, we can easily get(
(−1)n

7

2
· 9
2
· · · 7 + 2n− 2

2

)
−w̄n2 (−z̄2dw̄2dt2 + w̄2dz̄2dt2 − (ϵ+ t2)dz̄2dw̄2)√

(ϵ+ t2)2 + |z2|2 + |w2|2
5+2n . (4.137)

The numerical factor in front can be written in terms of Γ function and will be incorporated
later in the final formula.

We can then combine (4.135), (4.137), and the 3-point interaction vertex σ3dz2dw2, and
set up the V2 integral.

σ3

∫
V2

dz2dw2
|w2|2nz̄2(z̄2dt2 + t2dz̄2)(−z̄2dw̄2dt2 + w̄2dz̄2dt2 − (ϵ+ t2)dz̄2dw̄2)√

t22 + |z2|2
5√

|ϵ+ t2|2 + |w2|2 + |z2|2
5+2n Aext.

(4.138)
We then expand21 Aext(z2) in z2 and notice that the only nonvanishing part of the integral
comes from one of the modes of Aext.

Aext = . . .+ z22∂
2
z2
Aext. (4.139)

Substituting it in and simplifying the numerator, we get

σ3

∫
V2

|w2|2n|z2|4(ϵ+ 2t2)√
t22 + |z2|2

5√
(ϵ+ t2)2 + |w2|2 + |z2|2

5+2ndt2|dw2|2|dz2|2. (4.140)

Note that if the external leg were not z22∂
2
z2
A, but zn2 ∂

n
z2
A with n ̸= 2, the z2-integral would

vanish.

21See the discussion around equation (3.20) of [41].
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We can now apply Feynman integral (4.108) on (4.140). Omitting Γ functions for now,
and setting ϵ = 1, we get

σ3

∫ 1

0

dx

∫
V2

√
x2n+3(1− x)3|w2|2n|z2|4(2t2 + 1)

((1− x)(t22 + |z2|2) + x(|w2|2 + |z2|2 + (1 + t2)2))n+5
|dw2|2|dz2|2dt2. (4.141)

We can rewrite the denominator into (|z2|2+x|w2|2+(t2+x)
2+x(1−x))m+n+6, and work

in radial coordinates (rz, θz), (rw, θw) for both Cz, Cw planes. Then, the above becomes

4π2σ3

∫ 1

0

dx
√
x2n+3(1− x)3

∫
r2n+1
w r5z(2t2 + 1)

(r2z + xr2w + (t2 + x)2 + x(1− x))n+5
. (4.142)

Then, shift t2 ! t2 − x, and rescale rw ! rw/
√
x. Using the fact that the integral domain

for t2 is (−∞,∞), a term with an odd power of t2 vanishes.

4π2σ3

∫ 1

0

dx
√
x3(1− x)3(1− 2x)

∫ ∞

0

drz

∫ ∞

0

drw

∫ ∞

−∞
dt2

r2n+1
w r5z

(r2w + r2z + t22 + x(1− x))n+5
.

(4.143)
The final integral is straightforward to evaluate and it gives

σ3
π4

256

Γ(1 + n)

Γ(5 + n)
. (4.144)

Re-introducing all omitted numerical factors, we arrive at∑
n

cnσ3J−n−1t0,n−1∂
2
z2
A, (4.145)

where

cn =
π4

144

n!

2n+ 5
. (4.146)

As it has the external leg ∂2z2A, this Feynman diagram mixes with Figure 4.9 and the
first two of Figure 4.10. The BRST variation (4.47) of these Feynman diagrams should
sum to zero for anomaly-free coupled systems. Hence, we recover the desired coproduct
relation.

t2,0 ! t2,0 + σ3

∞∑
n=1

(const)J−n−1t0,n−1 + . . . . (4.147)

We should emphasize that although we have spent most of the space to compute the
integral, it is only for checking and showing that the integral converges to a finite quantity
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for a particular component of the expansion of Aext (4.139). More emphasis should be
placed on the selection rule that determines which structure constants to vanish or not.
In the present case, the selection rule restricts the RHS of the coproduct to have only
J−n−1t0,n−1. Similar remark that we made at the end of §4.3.4 applies for the numerical
part of the structure constant.

4.3.6 W∞ !W∞ ⊗W∞ coproduct

We will derive the coproducts of M5 brane algebra using the perturbative Feynman diagram
computation in 5d Chern-Simons theory. The target relation that we want to derive from
the 5d Chern-Simons side is

L−2 ! . . .+ σ3

∞∑
n=−∞

nJn−1J
′
−n−1. (4.148)

We will use the technique developed in [41], where the authors computed the OPE of two
Wilson lines by computing the relevant Feynman diagram in the 4d Chern-Simons theory.

Using the ingredients given in §4.3.3, we can decorate the 1-loop Feynman diagram
shown in §4.3.1 as follows.

Figure 4.14: The 1-loop Feynman diagram associated with the W∞ !W∞ ⊗W∞ coprod-
uct. All the ingredients are explicitly displayed.

The amplitude is

σ3Jn−1J
′
−n−1

∫
V2

dz2dw2(w2∂w2Aext)

∫
V0

δ(t0)δ
(2)(z0)dw0∂z2(w

n
0P02)

×
∫
V1

δ(t1 − (−ϵ))δ(2)(z1)dw1∂w2(w
−n
1 P12),

(4.149)
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where we used (4.103), (4.106) for I3pt(V2), IwA(V0) and IwA(V1), respectively. Here, we
started by inserting the explicit term of the expansion Aext = . . . + w2∂w2Aext + . . . in
(4.149), as the LHS of (4.148) tells us that the external leg should be proportional to
∂w2Aext. Hence, the computation in this subsection should be thought of as a check, not a
derivation.

There are three floating vertices, so there are three integrals to do. Let us first do V0,
V1 integrals and use them in the final V2 integral.∫

V0

δ(t0)δ
(2)(z0)w

n
0∂z2P02. (4.150)

Since δ(t0)δ
(2)(z0) ∼ dt0dz0z̄0, we can project most of the terms in P02, and get

−5

2

∫
Cw0

wn0 z̄2(z̄2dt2 + t2dz̄2)√
t22 + |z2|2 + |w02|2

7 |dw0|2. (4.151)

After shifting w0 ! w0 + w2, expanding (w0 + w2)
n in the numerator, and working in the

radial coordinates (rw, θw) of Cw0 , we can project everything but one term:

−5

2

∫ ∞

0

wn2 z̄2(t2dz̄2 + z̄2dt2)√
t22 + |z2|2 + r2w

7 (2πrwdrw). (4.152)

Doing rw integral, we have

−πw
n
2 z̄2(t2dz̄2 + z̄2dt2)√

t22 + |z2|2
5 . (4.153)

Now, let us do V1 integral.∫
V1

δ(t1 + ϵ)δ(2)(z1)(w1)
−n∂w2P12, (4.154)

Taking into account of the t1, w1 delta function, we simplify it into

5

2

∫
w−n

1 (z̄2dt2 + (t2 + ϵ)dz̄2)w̄12√
(t2 + ϵ)2 + |z2|2 + |w12|2

7 |dw1|2. (4.155)

Shifting w1 ! w1 +w2, and expanding (w1 +w2)
−n in w1/w2 and in w2/w1 respectively in

the region of convergence, we have

5

2

∫
0≤|w1|≤|w2|

w̄1w
−n
2

(
1− nw1

w2
+ . . .

)
(z̄2dt2 + (t2 + ϵ)dz̄2)√

(t2 + ϵ)2 + |z2|2 + |w1|2
7 |dw1|2

+
5

2

∫
|w2|≤|w1|<∞

w̄1w
−n
1

(
1− nw2

w1
+ . . .

)
(z̄2dt2 + (t2 + ϵ)dz̄2)√

(t2 + ϵ)2 + |z2|2 + |w1|2
7 |dw1|2.

(4.156)
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In the radial coordinates (rw, θw) of Cw1 , it is clear that only one term in the expansion in
the first parenthesis survives, and reduces to

5

2

∫ |w2|

0

−nw−n−1
2 r2w(z̄2dt2 + (t2 + ϵ)dz̄2)√
(t2 + ϵ)2 + |z2|2 + r2w

7 (2πrw)drw. (4.157)

Doing the rw integral, we get

−πnw
−n−1
2 (z̄2dt2 + (t2 + ϵ)dz̄2)

3

(
1√

(t2 + ϵ)2 + |z2|2
3 +

2((t2 + ϵ)2 + |z2|2) + 5|w2|2√
(t2 + ϵ)2 + |z2|2 + |w2|2

5

)
.

(4.158)

We can then combine (4.153), (4.158), the 3-point interaction vertex σ3dz2dw2, and the
external leg A. This sets up the V2 integral. To be concise, let us omit the constant factors
and reintroduce them at the end.

σ3

∫
dw2dt2|dz2|2

z̄22(2t2 + ϵ)∂w2A√
t22 + |z2|2

5

(
1√

(t2 + ϵ)2 + |z2|2
3 +

2((t2 + ϵ)2 + |z2|2) + 5|w2|2√
(t2 + ϵ)2 + |z2|2 + |w2|2

5

)
.

(4.159)
We may further expand22 ∂w2A(z2) and notice the only nonvanishing piece comes from

∂w2A = . . .+ z22∂
2
z2
(∂w2A). (4.160)

Substituting it in and simplifying the integral, we have

σ3

∫
dw2(∂w2(∂

2
z2
A))

∫
dt2|dz2|2

|z2|4(2t2 + ϵ)√
t22 + |z2|2

5

(
1√

(t2 + ϵ)2 + |z2|2
3

+
2((t2 + ϵ)2 + |z2|2) + 5|w2|2√

(t2 + ϵ)2 + |z2|2 + |w2|2
5

)
.

(4.161)

Let us apply Feynman integral (4.108) to each of two terms, omitting Γ functions for
now, and setting ϵ = 1. For the first term, we get

σ3

∫
dw2(∂w2(∂

2
z2
A))

∫ 1

0

dx
√
(1− x)3x

∫
|z2|4(2t2 + 1)dt2|dz2|2

((1− x)(t22 + |z2|2) + x((t2 + 1)2 + |z2|2))4
.

(4.162)

22See the discussion around equation (3.20) of [41].
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We can rewrite the denominator into ((t2 + x)2 + |z2|2 + x(1− x))4, and shift t2 ! t2 − x.
Since the t2-integral domain is (−∞,∞), the t2-linear term vanishes. Then, the above
becomes

σ3

∫
dw2(∂w2(∂

2
z2
A))

∫ 1

0

dx
√

(1− x)3x

∫
dt2|dz2|2

|z2|4(1− 2x)

(t22 + |z2|2 + x(1− x))4
. (4.163)

Working in radial coordinates (rz, θz) on Cz2 plane, we can perform the integral straight-
forwardly as

π

36
σ3

∫
dw2∂w2(∂

2
z2
A). (4.164)

Similarly, for the second term of (4.161), we apply Feynman integral (4.108).

σ3

∫
dw2(∂w2(∂

2
z2
A))

∫ 1

0

dx
√

(1− x)5x3

×
∫

|z2|4(2t2 + 1)(2((t2 + 1)2 + |z2|2) + 5|w2|2)dt2|dz2|2

((1− x)(t22 + |z2|2) + x((t2 + 1)2 + |z2|2 + |w2|2))5
.

(4.165)

We can rewrite the denominator into ((t2+x)
2+ |z2|2+x|w2|2+x(1−x))4, shift t2 ! t2−x,

and re-scale w2 ! w2/
√
x. Since the t2-integral domain is (−∞,∞), the t2-linear term

vanishes. Then, the above becomes

σ3

∫
dw2(∂w2(∂

2
z2
A))

∫ 1

0

dx
√

(1− x)5x2

×
∫
dt2|dz2|2

|z2|4(1− 2x)(2(t22 + (1− x)2 + |z2|2) + 5|w2|2/x)
(t22 + |z2|2 + |w2|2 + x(1− x))4

.

(4.166)
Working in the radial coordinates (rz, θz) of Cz2 plane, we can check all the terms in the
integrand nicely converge under the rz, t2, x integrals and (4.166) evaluate to

σ3

∫
dw2∂w2(∂

2
z2
A)

(
π

256
+

π

48

(
3092

3465
+ 4|w2|2

)
+

π2

12288

)
. (4.167)

As we are working in the holomorphic supergravity background in the Cw direction, the
term |w2|2 = w2w̄2 with an extra anti-holomorphic dependence on w̄2 must be Q-exact,
and we may safely drop it.

Combining (4.164) and (4.167), and re-introducing all the omitted constant factors, we
arrive at23

σ3 nJn−1J
′
−n−1(const)

∫
dw2∂w2(∂

2
z2
A), (4.168)

23It is unclear how to intrerpret ∂2
z2 acting on A, as the coupling does not give any information on the

z coordinate, but just modes in Cw plane.

154



where

(const) =
π2

3

Γ(4)

Γ
(
5
2

)
Γ
(
3
2

) Γ(5)

Γ
(
5
2

)
Γ
(
5
2

) ( 73π

2304
+

π

48

(
3092

3465

)
+

π2

12288

)
. (4.169)

We have obtained a single composite surface operator associated to the tensor product
representation Jn−1 ⊗ J ′

−n−1 ∈ W∞ ⊗ W∞. Let us look at the external leg ∂w2∂
2
z2
A, and

recall the coupling (4.52). Since it only tells us about the coupling between the w2 modes
of the 5d gauge field and W∞ modes, we do not understand what ∂2z2 means in terms of
Koszul duality. Focusing on ∂w2A, as it couples to L−2, the tensor product representation
Jn−1 ⊗ J ′

−n−1 can be equally understood as L−2 ∈ W∞; it induces the coproduct.

Therefore, we have derived the 1-loop part of the basic coproduct relation of ∆W∞,W∞ :
W∞ !W∞ ⊗W∞

L−2 ! . . .+ σ3
∑
n≥1

(const)nJn−1J
′
−n−1. (4.170)

This is the expected coproduct formula for W2,0,0 !W1,0,0 ⊗W1,0,0. W2,0,0 is a direct sum
of a Virasoro algebra, which provides the mode L−2, and an affine Kac-Moody algebra
û(1). W1,0,0 is an affine Kac-Moody algebra û(1), according to [72].

4.3.7 A comment on the fusion of transverse surface defects

In this section we consider a pair of transverse holomorphic surface defects. Since there is
a SL2(C) symmetry, we can assume that this pair of surface defects are supported on Cz

and Cw respectively.

We conjecture that a fusion of two transverse surface defects will give a line operator as
a quantum correction in 1-loop order, along with the transverse surface operators. Since
we do not have a candidate field theory result for the transverse surface defect fusion, we
will not specify a particular mode of W∞ algebra that would appear in the coproduct in
this subsection. We already have all the ingredients of this calculation. We will frequently
draw them from the previous subsections.

We would like to compute the 1-loop correction to the OPE between two transverse
surface defects. Diagramatically, it is given by the following figure.
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Figure 4.15: The 1-loop Feynman diagram for the OPE between two transverse surface
defects on Cz and Cw planes. All the ingredients are explicitly displayed.

The amplitude is schematically

σ3(. . .)

∫
V2

dz2dw2Aext

∫
V0

δ(t0)δ
(2)(z0)dw0∂z2(. . . P02)

×
∫
V1

δ(t1)δ
(2)(z1)dw1∂w2(. . . P12),

(4.171)

where . . .’s depend on the detail of the modes of the W∞ on each of the vertices Iwa(V0)
and IzA(V1). Since the omitted parts do not affect the structural result that we claim, we
will not specify those throughout this subsection.

As we have learned how to do the integral along the surface defect in the previous
subsection, for each V0, V1 integral, we will draw the result from there:∫

V0

δ(t0)δ
(2)(z0)(. . .)∂z2P02 = (const)

(. . .)z̄2(t2dz̄2 + z̄2dt2)√
t22 + |z2|2

5∫
V1

δ(t1)δ
(2)(z1)(. . .)∂w2P12 = (const)

(. . .)w̄2(t2dw̄2 + w̄2dt2)√
t22 + |w2|2

5 .

(4.172)

We can then combine (4.172) and the 3-point interaction vertex σ3dz2dw2, and the
external leg Aext. This sets up the V2 integral.

σ3

∫
V2

dz2dw2
(. . .)z̄2(t2dz̄2 + z̄2dt2)√

t22 + |z2|2
5

(. . .)w̄2(t2dw̄2 + w̄2dt2)√
t22 + |w2|2

5 Aext. (4.173)
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Expanding the numerator, we can observe three objects with a σ3 factor omitted.∫
(. . .)Aextdw2

∫
(. . .)dz2dz̄2dt2√

(t22 + |z2|2)(t22 + |w2|2)
5 +

∫
(. . .)Aextdz2

∫
(. . .)dw2dw̄2dt2√

(t22 + |z2|2)(t22 + |w2|2)
5

+

∫
(. . .)Aext

∫
(. . .)dz2dz̄2dw2dw̄2√
(t22 + |z2|2)(t22 + |w2|2)

5 .

(4.174)
Depending on (. . .) in the numerators, combined with a proper term from the expansion
of Aext in z or w, each integral may or may not produce non-zero answers. As our primary
purpose is to see the structure, let us now assume that each integral gives a nonzero answer.

The second integrals in each term evaluate to finite constants, which we again denote
by the uniform format (. . .).

σ3(const)

∫
Cw

(. . .)Aextdw2 + σ3(const)

∫
Cz

(. . .)Aextdz2 + σ3(const)

∫
Rt

(. . .)Aext. (4.175)

Therefore, in the most general case, we would obtain either a surface operator on Cw,
surface operator on Cz, or a line operator on Rt as a result of the fusion of two transverse
surface defects, especially from the 1-loop quantum correction.

4.3.8 1-loop exactness of the Feynman diagrams

All basic coproducts ∆A,A, ∆A,W∞ , ∆W∞,W∞ that we have tried to reproduce so far truncate
at O(σ3) order [73]. However, in principle, all the diagrams that we have discussed may
have higher loop corrections on the internal 3-point vertex and one of the propagators.
To match with the algebraic result of [73], we need to argue that such higher corrections
vanish. Note that [42] showed the 1-loop exactness of Yangian coproduct using the 4d
Chern-Simons Feynman diagrams.

Let us start with the potential higher loop corrections to the internal 3-point vertex.
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Figure 4.16: Three possible higher loop corrections. In addition to the already existed
vertices V0, V1, V2 that were used in the computation in the previous subsections, it contains
two extra vertices V3, V4, and three extra propagators P32, P34, P24. We distinguish the
internal propagators and the external leg, by showing Aext explicitly on the external leg.

Two new internal vertices V3, V4 and three new internal propagators P32, P34, P24 will
introduce an extra factor of σ3 = σ3−2

3 . Hence, with these further corrections, the diagrams,
presented in §4.3, are proportional to O(σ2

3).

We will argue the vanishing of the higher loop corrections without introducing compli-
cated integrals again since we have learned the rule of the game from the 1-loop computa-
tions in the previous subsections. For simplicity, we will focus on the left corner diagram,
but the other diagrams are equivalent, as it will turn out soon.

By (4.103), each of the new 3-point vertices V3, V4 will introduce I3pt(Vi): a factor of
σ3, a vertex integral

∫
Vi
dz ∧ dw, and partial derivatives ∂z, ∂w associated with the vertex

coordinate that we integrate over.

The partial derivatives act on the two of the propagators emitting from the vertex V3
to other vertices V2, V4, and effectively produce a multiplicative factor

z̄32w̄34

d232d
2
34

. (4.176)

Similarly, the partial derivatives that act on the propagator emitting from the vertex V4
to a vertex V2 and the external leg, and effectively produce a multiplicative factor

z̄24
d224

∂w4 . (4.177)
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where ∂w4 is assumed to act on Aext.

Considering the three new propagators P32P24P43, the multiplicative factor introduced
by the addition of the new bridge is

σ3
z̄32w̄34z̄24
d232d

2
34d

2
24

P32 ∧ P24 ∧ P43∂w. (4.178)

The numerator of Pij is an anti-holomorphic 2-form on the 2-point configuration space of
Vi and Vj.

When we multiply the three propagators, recalling the definition (4.100), we see it is
precisely zero.24

P32 ∧ P24 ∧ P43 = 0. (4.179)

Since this vanishing property only depends on the three encircling propagators, the ar-
gument remains the same for the other two diagrams in Figure 4.16 that we have not
discussed. Therefore, there is no higher loop correction on the internal vertex V2.

Next, we consider the potential higher loop corrections on the external leg and the
propagators.

Figure 4.17: The first diagram is a loop correction on the external leg(∼ Aext) and the
second diagram is a loop correction on one of the internal propagators P02, P12 that we
have worked with in the previous subsections.

A similar analysis that was applied on Figure 4.16 goes through, and we see the mul-
tiplicative factor introduced by the new bridge is proportional to

P34 ∧ P43 (4.180)

24We used a Mathematica package “grassmann” developed by Matthew Headrick in this computation.
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for both diagrams in Figure 4.17. Again, (4.180) is precisely zero. Therefore, there is no
higher loop correction to the internal propagators and the external leg.

We conjecture that the vanishing phenomena25 are generally the case for the combina-
tions of anti-holomorphic 2-form of the 5d Chern-Simons propagators with their subscripts
in the form of “a trace of a product of matrices ”:

Pi1i2 ∧ Pi2i3 ∧ . . . ∧ Pini1 = 0. (4.181)

25The similar vanishing phenomena were observed in 4d Chern-Simons theory [98], see §A.4.1.
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Chapter 5

M2 Brane Algebras: Algebraic Point
of View

In this chapter, we study the M2 brane algebra from a purely algebraic point of view.
Namely the M2 brane algebra is the uniform-in-N algebra of the quantized ring of functions
on the ADHM moduli space (see §4.1.3). We will spell out its generators and relations in
§5.1, using direct computation together with the (faithful) Calogero representation that
is explicitly written down in §5.2, then we define the uniform-in-N algebra using the
generators and relations in §5.1 and we will prove a flatness theorem of the M2 brane
algebra (Theorem 5.3.3), next we observe a simple relation between the Yangian of glK
and the M2 brane algebra in §5.5 and prove a conjecture of Costello (Theorem 5.5.1), we
also explain a relation between a certain degeneration limit of M2 brane algebra to the
Kac-Moody algebra of glK in §5.6, and finally we write down the meromorphic coproduct
structure of the M2 brane algebra in §5.7 and show that it gives rise to a vertex coalgebra
structure on the M2 brane algebra (Proposition 5.7.2).

5.1 Generators and relations

The ADHM quiver Q consists of one edge loop and one framing. The Cartan matrix
CQ is zero in this case, therefore it is easy to verify that (C.19) is satisfied for all v,w,
i.e. (Qw,vw) is always good for the Jordan quiver. Introduce the convention v = N
and w = K, ℏ = ϵ1, t = ϵ2, and denote the deformed quantum Nakajima quiver variety
by B

(K)
N = Cϵ1 [Mϵ2(N,K)], it is also called the quantized Gieseker variety. In this case

Proposition C.1.18 and Theorem C.1.19 can be summarized as follows.
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Lemma 5.1.1. B
(K)
N is a free C[ϵ1, ϵ2]-module, and

B
(K)
N /(ϵ1) ∼= C[Mϵ2(N,K)]. (5.1)

Moreover the scheme Mc(N,K) is reduced ∀c ∈ C.

The affine schemes Mc(N,K), known as Gieseker varieties, have been extensively stud-
ied. In the case of K = 1, M0(N, 1) = SN(C2), i.e. the N ’th symmetric product of C2.

By invariant theory, B
(K)
N is generated by GLN -invariant monomials in {X, Y, I, J} with

relations
[X i

j, Y
k
l ] =ϵ1δ

i
lδ
k
j , [J

j
a , I

b
i ] = ϵ1δ

j
i δ
b
a,

g(X, Y, I, J)
(
: [X, Y ]ij : −IjJ i + ϵ2δ

i
j

)
= 0,

(5.2)

and other commutations between symbols X, Y, I, J are zero. Here g(X, Y, I, J) means
arbitrary polynomials in X, Y, I, J , and normal ordering convention is such that Y is put
at the left of X.

Definition 5.1.2. In order to present the relations in a nice form, we slightly enlarge B
(K)
N

by inverting ϵ1, and define

eab;n,m =
1

ϵ1
IaSym(XnY m)Jb, tn,m =

1

ϵ1
Tr(Sym(XnY m)).

They are generators of B
(K)
N [ϵ−1

1 ]. It is clear from the moment map equation that eaa;n,m =

ϵ2tn,m and t0,0 =
N
ϵ1
. Moreover, the following relations are easily derived from definition.

Lemma 5.1.3. t0,0 is central, and eab;0,0 act on B
(K)
N [ϵ−1

1 ] as generators of glK,

[eab;0,0, e
c
d;n,m] = δcbe

a
d;n,m − δade

c
b;n,m. (5.3)

The linear span of t2,0, t1,1, t0,2 acts on B
(K)
N [ϵ−1

1 ] as sl2:

[t2,0, e
a
b;n,m] = 2meab;n+1,m−1, [t1,1, e

a
b;n,m] = (m− n)eab;n,m, [t0,2, e

a
b;n,m] = −2neab;n−1,m+1

(5.4)

And moreover

[t1,0, e
a
b;n,m] = meab;n,m−1, [t0,1, e

a
b;n,m] = neab;n−1,m. (5.5)

The above lemma together with three other commutation relations presented in the
next proposition completely determine all other commutation relations.
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Proposition 5.1.4. Let ϵ3 = −Kϵ1 − ϵ2, then

[eab;1,0, t3,0] = 0. (5.6)

[eab;1,0, e
c
d;0,n] = δcbe

a
d;1,n − δade

c
b;1,n −

ϵ3n

2

(
δcbe

a
d;0,n−1 + δade

c
b;0,n−1

)
− nϵ1δ

c
de
a
b;0,n−1

− ϵ1

n−1∑
m=0

m+ 1

n+ 1
δade

c
f ;0,me

f
b;0,n−1−m − ϵ1

n−1∑
m=0

n−m

n+ 1
δcbe

a
f ;0,me

f
d;0,n−1−m

+ ϵ1

n−1∑
m=0

ead;0,me
c
b;0,n−1−m

(5.7)

[t3,0, t0,n] =3nt2,n−1 +
n(n− 1)(n− 2)

4
(ϵ21 − ϵ2ϵ3)t0,n−3

− 3ϵ1
2

n−3∑
m=0

(m+ 1)(n− 2−m)(eac;0,me
c
a;0,n−3−m + ϵ1ϵ2t0,mt0,n−3−m).

(5.8)

Equations (5.6), (5.7), (5.8) together with Lemma 5.1.3 determine all the other com-
mutation relations. For example (5.7) implies that [eab;1,0, t0,n] = neab;0,n−1, together with
(5.6) this in turn implies that

[t3,0, e
a
b;0,n] =

1

n+ 1
[t3,0, [e

a
b;1,0, t0,n+1]] =

1

n+ 1
[eab;1,0, [t3,0, t0,n+1]]

= 3neab;2,n−1 +
n(n− 1)(n− 2)

4
(ϵ21 − ϵ2ϵ3)e

a
b;0,n−3 + quadratic+cubic.

(5.9)

The equation (5.6) is obvious from definition, but the other two equations in Proposition
5.1.4 are less obvious, of which the proof will be deferred until the next section. It turns out
that (5.7) is more or less transparent in the Calogero representation, but the computation
of (5.8) in the Calogero representation or in the original definition seems to be hard. In
order to proceed, we notice that (5.8) is equivalent to the next two equations:

[t2,1, t0,n] = 2nt1,n, (5.10)

[t2,1, t1,n] =(2n− 1)t2,n +
n(n− 1)

4
(ϵ2ϵ3 − ϵ21)t0,n−2+

+
3ϵ1
2

n−2∑
m=0

(m+ 1)(n− 1−m)

n+ 1
(eac;0,me

c
a;0,n−2−m + ϵ1ϵ2t0,mt0,n−2−m).

(5.11)

This comes from [t3,0, t0,n] =
1
2
[[t2,0, t2,1], t0,n] =

1
2
[t2,0, [t2,1, t0,n]]− n[t2,1, t1,n−1].
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5.2 Calogero representation

We choose θ = −1 then N θ(Q,v,w) is isomorphic to the Quot scheme QuotKN parametriz-
ing length-N quotients of O⊕K

C . The Hilbert-Chow map QuotKN ! SymN(C) sends a
quiver data (I, Y ) to the spectrum of Y . Restricted to the open locus where spectra of
Y are distinct, QuotKN is isomorphic to product of N copies of PK−1 fibered over the base
SymN(C)disj.

Let Ea
b be the image of the generator eab ∈ U(glK) under the Beilinson–Bernstein map

U(glK) ! Dϵ2/ϵ1(PK−1), where Dϵ2/ϵ1(PK−1) is the ring of O(1)
⊗ ϵ2

ϵ1 -twisted differential
operators on PK−1. In particular we have

Ea
a =

ϵ2
ϵ1
, Ea

cE
c
b = −ϵ1 + ϵ3

ϵ1
Ea
b , Ea

bE
b
a = −(ϵ1 + ϵ3)ϵ2

ϵ21
. (5.12)

It is not hard to see the following:

Lemma 5.2.1. Composing the Calogero representation B
(K)
N [ϵ−1

1 ] ↪! Dϵ2
ϵ1
(QuotKN )[ϵ

−1
1 ] with

the restriction map Dϵ2
ϵ1
(QuotKN ) ↪! Dϵ2

ϵ1
(PK−1 × · · · ×PK−1 ×CN

disj), then t2,0 and eab;0,n are
mapped to

t2,0 7! ϵ1

N∑
i=1

∂2yi − 2
N∑
i<j

ϵ1Ωij + ϵ2
(yi − yj)2

, eab;0,n 7!
N∑
i=1

Ea
b,iy

n
i , (5.13)

where (y1, · · · , yN) is the coordinate on CN , Ea
b,i is the Ea

b for the i’th PK−1, and Ωij =

Ea
b,iE

b
a,j is the quadratic Casimir between i and j.

Proof. We diagonalize Y = Hdiag(y1, · · · , yN)H−1, and define

uai = (IH)ai , via = (H−1J)ia, Ea
b,i =

1

ϵ1
uai v

i
b. (5.14)

The commutators between u and v are

[via, u
b
j] = ϵ1δ

b
aδ
i
j. (5.15)

Therefore uai are the projective coordinates on the i’th PK−1 and via are the differential
operators on it, and Ea

b,i satisfy the glK commutation relations, namely eab 7! Ea
b,i is a

free-field realization of glK .
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From the diagonalization Y = HDH−1 where D is the diagonal matrix, we read out
the tangent map dY = [dH ·H−1, Y ]+HdDH−1, and in the dual basis the above equation
becomes

∂Hi
j
=

1

ϵ1
(H−1 : [Y,X] :)ji , ∂yi =

1

ϵ1
: (H−1XH)ii :, (5.16)

here we use the identification X i
j = ϵ1∂Y j

i
, and the normal ordering such that X is always

at the right-hand-side of H and Y . Let X
i

j =: (H−1XH)ij :, then

X
i

j =

{
ϵ1

yi−yj : (∂H ·H)ij :, i ̸= j

ϵ1∂yi , i = j,
(5.17)

and the quantum moment map equation becomes

uai v
j
a =

{
−ϵ1 : (∂H ·H)ij :, i ̸= j

ϵ2, i = j.
(5.18)

Thus the image of eab;0,n = 1
ϵ1
IaY nJb is

1

ϵ1

N∑
i=1

uai y
n
i v

i
b =

N∑
i=1

Ea
b,iy

n
i ,

and the image of t2,0 =
1
ϵ1
X
i

jX
j

i is

ϵ1

N∑
i=1

∂2yi −
2

ϵ1

N∑
i<j

uai v
j
au

b
jv
i
b

(yi − yj)2
,

and it is easy to see that 1
ϵ1
uai v

j
au

b
jv
i
b = ϵ1Ωij + ϵ2, this proves our claim.

From the above lemma, we can derive the formula for more generators.

t0,n 7!
1

ϵ1

N∑
i=1

yni , t1,n 7!
N∑
i=1

(n
2
yn−1
i + yni ∂yi

)
, (5.19)

eab;1,n 7! ϵ1

N∑
i=1

Ea
b,i

(n
2
yn−1
i + yni ∂yi

)
+ ϵ1

N∑
i<j

yn+1
i − yn+1

j

n+ 1

Ea
c,iE

c
b,j − Ea

c,jE
c
b,i

(yi − yj)2
(5.20)
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t2,n 7! ϵ1

N∑
i=1

(
n(n− 1)

4
yn−2
i + nyn−1

i ∂yi + yni ∂
2
yi

)
− 2

n+ 1

N∑
i<j

yn+1
i − yn+1

j

(yi − yj)3
(ϵ1Ωij + ϵ2).

(5.21)

We can compute more relations in the Calogero representation.

eac;0,me
c
b;0,n = −ϵ1 + ϵ3

ϵ1
eab;0,m+n +

N∑
i<j

ymi y
n
j E

a
c,iE

c
b,j + yni y

m
j E

c
b,iE

a
c,j,

eab;0,me
b
a;0,n = −(ϵ1 + ϵ3)ϵ2

ϵ1
t0,m+n +

N∑
i<j

(ymi y
n
j + yni y

m
j )Ωij

= −ϵ2ϵ3
ϵ1

t0,m+n − ϵ1ϵ2t0,mt0,n +
1

ϵ1

N∑
i<j

(ymi y
n
j + yni y

m
j )(ϵ1Ωij + ϵ2).

(5.22)

Proof of Equation (5.7). The left hand side of (5.7) can be written as

[eab;1,0, e
c
d;0,n] = ϵ1

N∑
i=1

[Ea
b,i∂yi , E

c
d,iy

n−1
i ] + ϵ1

N∑
i<j

[
Ea
f,iE

f
b,j − Ea

f,jE
f
b,i

yi − yj
, Ec

d,iy
n
i + Ec

d,jy
n
j ]

= ϵ1

N∑
i=1

(
[Ea

b,i, E
c
d,i](ny

n−1
i + yni ∂yi) + nEc

d,iE
a
b,iy

n
i

)
+ ϵ1

N∑
i<j

yni − ynj
yi − yj

(Ea
d,iE

c
b,j + Ea

d,jE
c
b,i)

− ϵ1δ
a
d

N∑
i<j

Ec
f,iE

f
b,jy

n
i − Ec

f,jE
f
b,iy

n
j

yi − yj
− ϵ1δ

c
b

N∑
i<j

Ef
d,iE

a
f,jy

n
i − Ef

d,jE
a
f,iy

n
j

yi − yj

= δcbe
a
d;1,n − δade

c
b;1,n +

ϵ3n

2

(
δcbe

a
d;0,n−1 + δade

c
b;0,n−1

)
− ϵ1nδ

a
de
c
b;0,n−1

− ϵ1δ
a
d

n−1∑
m=0

m+ 1

n+ 1
ecf ;0,me

f
b;0,n−1−m − ϵ1

n−1∑
m=0

n−m

n+ 1
δcbe

a
f ;0,me

f
d;0,n−1−m

+ ϵ1n

N∑
i=1

(Ec
d,iE

a
b,i − Ea

d,iE
c
b,i)y

n−1
i + ϵ1

n−1∑
m=0

ead;0,me
c
b;0,n−1−m.

Use the identity Ec
d,iE

a
b,i−Ea

d,iE
c
b,i = δadE

c
b,i− δcdEa

b,i, we get the right hand side of (5.7).
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Proof of Equation (5.10). In the Calogero representation we have

[t2,1, t0,n] =
N∑
i=1

[∂yi + yi∂
2
yi
, yni ] =

N∑
i=1

(
n2yn−1

i + 2nyni ∂yi
)
= 2nt1,n.

Proof of Equation (5.11). The left hand side of (5.11) can be written as

[t2,1, t1,n] =ϵ1

N∑
i=1

[∂yi + yi∂
2
yi
,
n

2
yn−1
i + yni ∂yi ]−

N∑
i<j

(ϵ1Ωij + ϵ2)[
yi + yj

(yi − yj)2
, yni ∂yi + ynj ∂yj ]

=ϵ1

N∑
i=1

(
n(n− 1)2

2
yn−2
i + n(2n− 1)yn−1

i ∂yi + (2n− 1)yni ∂
2
yi

)

+
N∑
i<j

(ϵ1Ωij + ϵ2)
3(yiy

n
j − yni yj)− (yn+1

i − yn+1
j )

(yi − yj)3
,

And the relevant summations that we encounter in the right hand side of (5.11) can be
written as

ϵ1
2

n−2∑
m=0

(m+ 1)(n− 1−m)(eac;0,me
c
a;0,n−2−m + ϵ1ϵ2t0,mt0,n−2−m)

= −(n+ 1)n(n− 1)

12
ϵ2ϵ3t0,n−2

+
N∑
i<j

(n− 1)(yn+1
i − yn+1

j ) + (n+ 1)(yiy
n
j − yni yj)

(yi − yj)3
(ϵ1Ωij + ϵ2).

(5.23)

Now we can see that two sides of (5.11) agree by direct computation using (5.23).

5.3 Uniform-in-N algebra

Definition 5.3.1. Let the C[ϵ1, ϵ2]-algebra A(K) be generated by tn,m, e
a
b;n,m with relations

tn,m = ϵ2e
a
a;n,m, and those in Lemma 5.1.3 and Proposition 5.1.4, and [eab;1,0, t0,n] = neab;0,n−1.

A(K) is called the ADHM algebra in chapter §4. Let B(K) be the C[ϵ1, ϵ2]-algebra generated
by t′n,m = ϵ1tn,m, e

′a
b;n,m = ϵ1e

a
b;n,m with relations t′n,m = e′aa;n,m and those obtained from

scaling of Lemma 5.1.3 and Proposition 5.1.4 by ϵ21, and finally [e′ab;1,0, t
′
0,n] = nϵ1e

′a
b;0,n−1.
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Obviously, there is an algebra homomorphism B(K) ! A(K), which is an isomorphism
when localized to C[ϵ±1

1 , ϵ2]. In fact B(K) ! A(K) is injective, this is due to the flatness of
the algebras, see Theorem 5.3.3. Moreover there are surjective algebra homomorphisms

pN : B(K) ↠ B
(K)
N ,

e′ab;n,m 7! IaSym(XnY m)Jb, t
′
n,m 7! TrSym(XnY m).

Definition 5.3.2. The image of
∏

N pN : B(K) !
∏

N B
(K)
N is called the uniform-in-N algebra

Cϵ1 [Mϵ2(•, K)].

Theorem 5.3.3. The canonical map B(K) ! Cϵ1 [Mϵ2(•, K)] is an isomorphism. Moreover
A(K) and B(K) are free C[ϵ1, ϵ2]-modules.

Proof. The situation here is similar to that of [29], and we borrow the idea from there.
First of all, note that B(K)/(ϵ1) is the commutative algebra freely generated by e′ab;n,m, t

′
n,m

for (n,m) ∈ N2 and (a, b) ̸= (K,K), and their images in C[Mϵ2(•, K)] are algebraically
independent for generic ϵ2 by [29, Proposition 15.0.2], thus B(K)/(ϵ1) ! C[Mϵ2(•, K)] is
injective therefore it is isomorphic. In other word the kernel of B(K) ! Cϵ1 [Mϵ2(•, K)]
is contained in the ideal (ϵ1). By the flatness of Cϵ1 [Mϵ2(•, K)], if ϵ1f is in the kernel,
then f is in the kernel too. This implies that the kernel is contained in ∩n(ϵn1 ) = 0, thus
B(K) ! Cϵ1 [Mϵ2(•, K)] is an isomorphism.

Fix an order for the generators e′ab;n,m, t
′
n,m and we can form a putative basis of B(K) given

by the normal-ordered monomials in e′ab;n,m, t
′
n,m. Modulo ϵ1, they form a basis of B(K)/(ϵ1)

over C[ϵ2], therefore they generated B(K) as C[ϵ1, ϵ2]-module by the graded Nakayama
lemma. And moreover they do not have nontrivial linear relations, in fact any such relations
must be divisible by ϵ1, and by the flatness of B(K), ϵ1 can be subtracted from linear relation
and we can get a relation not divisible by ϵ1, which must be trivial. This shows the freeness
of B(K).

For the freeness of A(K), fix an order for the generators eab;n,m, tn,m and we can form a

putative basis of A(K) given by the normal-ordered monomials in eab;n,m, tn,m. Note that

A(K)/(ϵ1) is the universal envelope of a Lie algebra generated by eab;n,m, tn,m, so the set of

the normal-ordered monomials forms a basis for A(K)/(ϵ1) by PBW theorem. In particular
they generate A(K) as C[ϵ1, ϵ2]-module by the graded Nakayama lemma. If there is a
nontrivial relation among those normal-ordered monomials, then we can multiple ϵn1 so
that it lies in the image of B(K), but we have shown that normal-ordered monomials in
e′ab;n,m, t

′
n,m form a basis of B(K), therefore the relation must be trivial. This shows the

freeness of A(K).

168



Proposition 5.3.4. On the locus ϵ2 ̸= 0, the algebra A(K)/(ϵ1) is isomorphic to the uni-
versal enveloping algebra of Dϵ2(C) ⊗ glK, where Dϵ2(C) is the algebra of ϵ2-differential
operators on C.

Proof. It is obvious from the commutation relations that A(K)/(ϵ1) is the universal en-
veloping algebra of the Lie algebra spanned by eab;n,m. Let the coordinate on C be y and
its differential x such that [x, y] = ϵ2, then one consider the map

eab;n,m 7! Sym(xnym)⊗ eab , (5.24)

where eab are the corresponding generators of glK , this gives a one-two-one correspondence
between generators eab;n,m and a basis of Dϵ2(C)⊗glK . It is easy to see that the above map
preserves the commutators in Lemma 5.1.3 and Proposition 5.1.4 modulo ϵ1, i.e. it is a Lie
algebra morphism. Thus A(K)/(ϵ1) ∼= U(Dϵ2(C)⊗ glK).

Remark 5.3.5. The algebra U(Dϵ2(C)⊗ glK) is known as the double current algebra in the
literature [89, 59, 60]. Compare the generators and relations of A(K) with [59, Proposition
4.2.13], we see that A(K) is isomorphic to the deformed double current algebra (DDCA).
This provides an affirmative answer to a question of Costello [29, 2.1].

5.3.6 Commutation relations in the case K = 1

In this subsection we write down the commutation relations in the case K = 1 which is
relevant to the subsection §4.1.6. Again, t0,0 is central, and the linear span of t2,0, t1,1, t0,2
acts on A(1) as sl2:

[t2,0, tn,m] = 2mtn+1,m−1, [t1,1, tn,m] = (m− n)tn,m, [t0,2, tn,m] = −2ntn−1,m+1. (5.25)

And

[t1,0, tn,m] = mtn,m−1, [t0,1, tn,m] = ntn−1,m. (5.26)

Moreover

[t3,0, t0,n] = 3nt2,n−1 +
n(n− 1)(n− 2)

4
σ2t0,n−3 +

3σ3
2

n−3∑
m=0

(m+ 1)(n− 2−m)t0,mt0,n−3−m.

(5.27)

where
σ2 = ϵ21 + ϵ22 + ϵ1ϵ2, σ3 = −ϵ1ϵ2(ϵ1 + ϵ2). (5.28)

These relations determine all other commutation relations.
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5.4 Other choices of generators

In the definition of B(K), we use the symmetrization e′ab;n,m = IaSym(XnY m)Jb, t
′
n,m =

TrSym(XnY m) to define the universal-in-N generators, it turns out that non-symmetrized
operators also exists in universal-in-N algebra B(K).

Let us introduce some notation first. For an array r of binaries of length l, i.e. compo-
nents of r are 0 or 1, define r(X, Y ) to be the length-l letter such that at the i’th place is
X if ri = 0 or Y if ri = 1. For example if r = (0, 1, 0) then r(X, Y ) = XYX. We write
|r| = (n,m) if there are n zeroes and m ones in r.

Lemma 5.4.1. There exist a set of polynomials fab;r and gr of variables e′cd;p,q, t
′
r,s ∈ B(K)

for p, r < n and q, s < m and 1 ≤ c, d ≤ K, such that the image of fab;r in B
(K)
N equals

to Iar(X, Y )Jb − IaSym(XnY m)Jb, and the image of gr in B
(K)
N equals to Tr(r(X, Y )) −

TrSym(XnY m). Here (n,m) = |r|.

Proof. The statement obviously holds for n = 0. Now assume that the statement holds for
all (n′,m′) such that n′ < n. One can write

Iar(X, Y )Jb − IaSym(XnY m)Jb =
1

(m+ n)!

∑
g∈Sn+m

Ia(r(X, Y )− g · r(X, Y ))Jb,

as a sum over permutations g ∈ Sn+m, and g · r(X, Y ) means permuting the letter r(X, Y )
using g. By decomposing g into product of permutations of neighboring letters, we only
need to show that for any pair of arrays of binaries r1, r2 such that |r1|+|r2| = (n−1,m−1),
there exists polynomial fab;r1,r2 of variables e′cd;p,q, t

′
r,s ∈ B(K) for p, r < n and q, s < m and

1 ≤ c, d ≤ K, such that the image of fab;r1,r2 in B
(K)
N equals to Iar1(X, Y )[X, Y ]r2(X, Y ))Jb.

Using quantum moment map equation and commutation relations, we can rewrite it as

Iar1(X, Y )[X, Y ]r2(X, Y ))Jb = Iar1(X, Y )JcI
cr2(X, Y ))Jb − ϵ3I

ar1(X, Y )r2(X, Y ))Jb,

thus the statement for r follows from induction.

Definition 5.4.2. For an array r of binaries such that |r| = (n,m), define

e′ab;r = e′ab;n,m + fab;r, t′r = t′n,m + gr.

Note that e′ab;r does not depend on the choice of fab;r, since the image of e′ab;r in B
(K)
N is

Iar(X, Y )Jb for all N , and the intersection of kernels of projections B(K) ! B
(K)
N is zero.

Similarly t′r does not depend on the choice of gr.
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Lemma 5.4.1 shows that the coordinate transform between e′ab;r and e
′a
b;n,m is triangular.

For every (n,m) ∈ N2, choose an array of binaries rn,m with |rn,m| = (n,m), then e′ab;rn,m
and

t′rn,m
is a set of generators of B(K), in fact fix an order for e′ab;rn,m

, (a, b) ̸= (K,K) and t′rn,m
,

then normal-ordered monomials in e′ab;rn,m
and t′rn,m

is a basis of the free C[ϵ1, ϵ2]-module

B(K).

5.5 B-algebra and Yangian

Recall that if A = ⊕i∈ZA
i is a Z-graded algebra with homogeneous components Ai, then

one can define a new algebra B(A), called the B-algebra

B(A) = A0/

(∑
i>0

Ai · A−i

)
. (5.29)

Note that if A is commutative, then SpecB(A) = (SpecA)C
×
, where C×-action on SpecA

is induced from grading.

There is a natural grading on B
(K)
N by letting degree of X, I to be 1 and degree of

Y, J to be −1. This grading is uniform in N , and we obtain a grading on B(K) such that
deg e′ab;n,m = deg t′n,m = n−m, deg ϵ1 = deg ϵ2 = 0. The following is conjectured by Costello
[29, 2.3].

Theorem 5.5.1. On the locus ϵ2 ̸= 0, there is an algebra isomorphism

B(B(K)) ∼= Yϵ1(glK)[ϵ2] (5.30)

between B-algebra of B(K) and the Yangian of glK freely joint with ϵ2.

We prove the theorem as follows. First we construct a homomorphism from Yϵ1(glK)

to the degree zero piece of B
(K)
N , such that the image of generators are uniform in N , so we

obtain a homomorphism Yϵ1(glK) ! B(K) with image in the degree zero piece. It will be
transparent from construction that the composition Yϵ1(glK)[ϵ2]! B(B(K)) is bijective on
the locus ϵ2 ̸= 0.

Let us construct the homomorphism from Yϵ1(glK) to B
(K)
N . Denote by T ab;n the RTT

generators of Yϵ1(glK) satisfying commutation relations

[T ab (u), T
c
d (v)] =

ϵ1
u− v

(T cb (u)T
a
d (v)− T cb (v)T

a
d (u)) , (5.31)
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where T ab (u) = δab +
∑

n≥0 T
a
b;nu

−n−1. The computation in [126] shows that the map

T ab;n 7! Ia(Y X)nJb (5.32)

extends to a C[ϵ1]-algebra homomorphism from Yϵ1(glK) to B
(K)
N . Discussion in the last

section shows that these maps are uniform in N and gives rise to the map

T ab;n 7! e′ab;rn , (5.33)

where rn is the length-2n array (1, 0, · · · , 1, 0). This is a homomorphism from Yϵ1(glK) to
B(K) with image in the degree zero piece.

Proof of Theorem 5.5.1. After inverting ϵ2, we have t′n,m = e′aa;n,m/ϵ2, so B(K)[ϵ−1
2 ] is gen-

erated by e′ab;n,m. From the last section, B(K)[ϵ−1
2 ] is generated by e′ab;n,m (n ̸= m) and e′ab;rn .

Consider the partial order on N2 such that (n,m) ⪯ (n′,m′) if n−m ≤ n′ −m′, and then
refine it to a total order on the set of generators e′ab;n,m and e′ab;rn . Then B(K)[ϵ−1

2 ] has a basis
consisting of decreasing-order monomials in e′ab;n,m and e′ab;rn , in particular the degree zero

component of B(K) has a direct sum decomposition

(⊕
C[ϵ1, ϵ±1

2 ] · normal-ordered monomials in e′ab;rn

)
⊕

(⊕
n>m

C[ϵ1, ϵ±1
2 ] · e′ab;n,m · (· · · )

)
.

Thus we see that B(B(K)[ϵ−1
2 ]) is a free C[ϵ1, ϵ±1

2 ]-module with a basis consisting of normal-
ordered monomials in e′ab;rn . Since the homomorphism Yϵ1(glK)[ϵ2]! B(B(K)) maps T ab;n to
e′ab;rn , and it is well-known that normal-ordered monomials in T ab;n is a basis of Yangian, the
theorem is proven.

5.6 Relation to Poisson current algebra and Kac-Moody

algebra

Define the traceless version of e generators

ēab;n,m = eab;n,m − ϵ2
K
δab tn,m,
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then commutation relations in Lemma 5.1.3 and equations (5.6) remain the same form
with e replaced by ē. Equations (5.7) and (5.8) are modified:

[ēab;1,0, ē
c
d;0,n] = δcb ē

a
d;1,n − δad ē

c
b;1,n +

ϵ2ϵ3n

K
t0,n−1

(
δab δ

c
d

K
− δadδ

c
b

)
+
n

K
(ϵ3δ

c
dē
a
b;0,n−1 − ϵ2δ

a
b ē
c
d;0,n−1)−

ϵ3n

2

(
δcb ē

a
d;0,n−1 + δad ē

c
b;0,n−1

)
− ϵ1

n−1∑
m=0

m+ 1

n+ 1
δad ē

c
f ;0,mē

f
b;0,n−1−m − ϵ1

n−1∑
m=0

n−m

n+ 1
δcb ē

a
f ;0,mē

f
d;0,n−1−m

+ ϵ1

n−1∑
m=0

ēad;0,mē
c
b;0,n−1−m.

(5.34)

[t3,0, t0,n] = 3nt2,n−1 +
n(n− 1)(n− 2)

4
(ϵ21 − ϵ2ϵ3)t0,n−3

− 3ϵ1
2

n−3∑
m=0

(m+ 1)(n− 2−m)

(
ēac;0,mē

c
a;0,n−3−m +

(2ϵ2 − ϵ3)ϵ2
K

t0,mt0,n−3−m

)
.

(5.35)

Define a filtration degree function on generators ē, t by

deg(ēab;n,m) = n+m, deg(tn,m) = n+m+ 2, (5.36)

and define the degree of a monomial in ē, t by the sum of degrees of its components.
This induces a filtration on A(K). For the convenience of later discussions, we write the ē
generators as Jan,m, where J

a are the slK generators with structure constant fabc and Killing
form κab.

Proposition 5.6.1. Commutators in A(K) can be schematically written as

[Jan,m, J
b
p,q] = fabc J

c
n+p,m+q − κab(nq −mp)

ϵ2ϵ3
K

tn+p−1,m+q−1 + lower degree terms, (5.37)

[tn,m, J
a
p,q] = (nq −mp)Jan+p−1,m+q−1 + lower degree terms. (5.38)

[tn,m, tp,q] = (nq −mp)tn+p−1,m+q−1 + lower degree terms. (5.39)
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Proof. The defining relations in Lemma 5.1.3 and equations (5.6), (5.34), and (5.35) are
obviously of the above form. In particular (5.37) is satisfied for (n,m) = (1, 0), p = 0 and
all q, (5.38) and (5.39) are satisfied for m = p = 0, n ≤ 3 and all q. Using the adjoint
action of t2,0, we see that (5.37) is satisfied for (n,m) = (1, 0) and all (p, q), and (5.38) and
(5.39) are satisfied for m = 0, n ≤ 3 and all (p, q). Then using the adjoint action of t0,2, we
see that (5.37) is satisfied for n +m ≤ 1 and all (p, q), and (5.38) and (5.39) are satisfied
for m + n ≤ 3 and all (p, q). Next we proceed by induction. Assume that (5.37), (5.38)
and (5.39) are satisfied for (n+m) ≤ s and all (p, q), then

[Jas+1,0, J
b
p,q] = −1

s
[[t2,1, J

a
s,0], J

b
p,q] = −1

s
([t2,1, [J

a
s,0, J

b
p,q]]− [Jas,0, [t2,1, J

b
p,q]])

= −1

s
[t2,1, f

ab
c J

c
s+p,q − κabsq

ϵ2ϵ3
K

ts+p−1,q−1 + lower degree terms]

+
1

s
[Jas,0, (2q − p)J bp+1,q + lower degree terms]

= fabc J
c
s+1+p,q − κab(s+ 1)q

ϵ2ϵ3
K

ts+p,q−1 + lower degree terms,

so (5.37) is satisfied for (n,m) = (s+1, 0) and all (p, q). Using the adjoint action of t0,2, we
see that (5.37) is satisfied for n+m ≤ s+ 1 and all (p, q). By induction on s, we see that
(5.37) is satisfied for m,n, p, q. The other two equations is proven using similar induction
argument.

From the above description of commutation relations, we immediately see that the
associated graded algebra is related to the Poisson current algebra, defined as the universal
envelope of glK ⊗O(C2), where C2 is endowed with a Poisson bracket.

Corollary 5.6.2. The associated graded algebra grA(K) with respect to the filtration (5.36)
is the universal enveloping algebra of the Lie algebra glK ⊗O(C2) with Lie brackets

[A⊗ f,B ⊗ g] = [A,B]⊗ fg + (A,B)− ϵ2ϵ3
K

,1{f, g}, (5.40)

where A,B ∈ glK, and (A,B)− ϵ2ϵ3
K

,1 is the symmetric form that equals to − ϵ2ϵ3
K
κ on slK and

1 on gl1, and f, g ∈ O(C2) with Poisson bracket {z, w} = 1. Jan,m is mapped to Ja ⊗ znwm

and tn,m is mapped to 1K ⊗ znwm.

Since t0,0 is central in A(K), we can regard A(K) as a C[ϵ1, ϵ2, t0,0]-algebra, and it is free

as a C[ϵ1, ϵ2, t0,0]-module. Let us add the inverse square root t
− 1

2
0,0 to the algebra A(K), and

consider the C[ϵ1, ϵ2, t
− 1

2
0,0 ]-subalgebra Ã(K) ⊂ A(K)[t

− 1
2

0,0 ] generated by

J̃an,m = t
−n+m

2
0,0 Jan,m, t̃n,m = t

−n+m
2

−δn,m

0,0 tn,m,
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then Proposition 5.6.1 implies that

Corollary 5.6.3. Ã(K) is a free C[ϵ1, ϵ2, t
− 1

2
0,0 ]-module, and Ã(K)/(t

− 1
2

0,0 ) is the universal
enveloping algebra of the Lie algebra O(C2)⊗ glK/C · 1K with Lie bracket

[A⊗ f,B ⊗ g] = [A,B]⊗ fg + (A,B)− ϵ2ϵ3
K

,1π
∗
(∮

|z|=1

{f, g} dz

2πiz

)
, (5.41)

where π : C2 ! C, (z, w) 7! zw, and
∮
|z|=1

maps an one-form on C2 to a function on C.
J̃an,m is mapped to Ja ⊗ znwm and t̃n,m is mapped to 1K ⊗ znwm.

Moreover, there is a surjective Lie algebra map from O(C2)⊗ glK/C · 1K to the affine

Lie algebra ĝl(K)− ϵ2ϵ3
K

,1, where the latter has generators Jan, αm (m ̸= 0), and c, and Lie

brackets [Jan, J
b
m] = fabc J

c
n+m − nδn,−m

ϵ2ϵ3
K
κabc, [αn, αm] = nδn,−mc, and other brackets are

zero. The map is given by

J̃an,m 7! Jan−m, t̃n,m 7! αn−m (n ̸= m), t̃n,n 7!
1

n+ 1
c.

Proof. Proposition 5.6.1 implies that the commutators are schematically of the form

[An,m, Bp,q] =[A,B]n+p,m+q + δn+p,m+q(A,B)− ϵ2ϵ3
K

,1(nq −mp)t̃n+p−1,m+q−1

+ t
− 1

2
0,0 · (Polynomial in t

− 1
2

0,0 ).

where A,B are J̃ or t̃ and we regard t̃ as the diagonal gl1 part of glK . Thus Ã(K)/(t
− 1

2
0,0 ) is

the universal enveloping algebra of O(C2)⊗ glK/C · 1K with the Lie brackets (5.41).

For the freeness of Ã(K), fix an order for the generators An,m and we can form a putative

basis of Ã(K) given by the normal-ordered monomials in An,m. Note that normal-ordered

monomials form a basis Ã(K)/(t
− 1

2
0,0 ) by PBW theorem. In particular they generate A(K)

as C[ϵ1, ϵ2, t
− 1

2
0,0 ]-module by the graded Nakayama lemma. They also form a basis when

localized to C[t±
1
2

0,0 ], because after localization Ã(K) is the same as A(K) of which the set
of normal-ordered monomials form a basis. In particular normal-ordered monomials are

linear independent over C[ϵ1, ϵ2, t
− 1

2
0,0 ]. This shows the freeness of A(K).

The surjective map to ĝl(K)− ϵ2ϵ3
K

,1 follows directly by computation.
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5.7 Meromorphic coproduct

Consider the rational map CN1
disj×CN2

disj 99K C
N1+N2
disj sending (y

(1)
1 , · · · , y(1)N1

)× (y
(2)
1 , · · · , y(2)N2

)

to (y
(1)
1 , · · · , y(1)N1

, y
(2)
1 , · · · , y(2)N2

). This is not a globally-defined map since y
(1)
i might collide

with y
(2)
j . Alternatively, one can consider the parametrized version of the above rational

map m : CN1
disj × CN2

disj × P1 99K CN1+N2
disj sending (y

(1)
1 , · · · , y(1)N1

) × (y
(2)
1 , · · · , y(2)N2

) × (w) to

(y
(1)
1 +w, · · · , y(1)N1

+w, y
(2)
1 , · · · , y(2)N2

), where w is the coordinate on P1. Then the non-defined

loci for m on CN1
disj×CN2

disj×P1 is union of hyperplanes y
(1)
i +w = y

(2)
j and the infinity divisor

w = ∞. Since the hyperplanes do not intersect with the infinity divisor, we can take the
formal neighborhood of w = ∞ and localize to get a genuine map

m : CN1
disj × CN2

disj × SpecC((w−1))! CN1+N2
disj .

It maps function ring C[y(1)i , y
(2)
j , (y

(1)
i1
−y(1)i2

)−1, (y
(2)
j1
−y(2)j2

)−1, (y
(1)
i −y(2)j )−1] to C[y(1)i , y

(2)
j , (y

(1)
i1
−

y
(1)
i2
)−1, (y

(2)
j1

− y
(2)
j2
)−1]((w−1)) by

y
(1)
i 7! y

(1)
i + w, y

(2)
j 7! y

(2)
j ,

1

y
(1)
i1

− y
(1)
i2

7!
1

y
(1)
i1

− y
(1)
i2

,
1

y
(2)
j1

− y
(2)
j2

7!
1

y
(2)
j1

− y
(2)
j2

1

y
(1)
i − y

(2)
j

7!
∞∑
n=0

w−n−1(y
(2)
j − y

(1)
i )n.

(5.42)

We call such map a meromorphic coproduct, denoted by ∆(w)N1,N2 . It is coassociative in
the obvious sense, in fact it satisfies a more basic property:

Lemma 5.7.1. Meromorphic coproducts are local in the sense that, if we decompose N =
N1 +N2 +N3 into three clusters, then for any f ∈ O(CN

disj), two elements

(Id⊗∆(w)N2,N3)∆(z)N1,N2+N3f, (P ⊗ Id)(Id⊗∆(z)N1,N3)∆(w)N2,N1+N3f,

are expansions of the same element in O(CN1
disj × CN2

disj × CN3
disj)[[z

−1, w−1, (z − w)−1]][z, w],

where P : O(CN2
disj)⊗O(CN1

disj)! O(CN1
disj)⊗O(CN2

disj) is the permutation operator.

Proof. After taking two-step meromorphic coproduct, y
(1)
i 7! y

(1)
i +z, y

(2)
j 7! y

(2)
j +w, y

(3)
k 7!

y
(3)
k , and those (yi − yj)

−1 are mapped accordingly and then expanded in power series.
Thus we immediately see that ∆(w)N2,N3∆(z)N1,N2+N3f and ∆(z)N1,N3∆(w)N2,N1+N3f are
expansions of the same rational function.
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The meromorphic coproduct can be defined for (twisted) differential operators as well,
i.e. there exists

∆(w)N1,N2 : D
ϵ2
ϵ1
((PK−1 × C)N1+N2

disj )! Dϵ2
ϵ1
((PK−1 × C)N1

disj)⊗Dϵ2
ϵ1
((PK−1 × C)N2

disj)((w
−1)),

which also satisfies the locality in the Lemma 5.7.1. Restricted to the image of B
(K)
N in

Dϵ2
ϵ1
((PK−1×C)Ndisj), we obtain a formula for the meromorphic coproduct for the generators

of B
(K)
N :

∆(w)(eab;0,n) = 1⊗ eab;0,n +
n∑

m=0

(
n

m

)
wn−meab;0,m ⊗ 1,

∆(w)(t2,0) = 1⊗ t2,0 + t2,0 ⊗ 1− 2ϵ1
∑
m,n≥0

(m+ n+ 1)!

m!n!wn+m+2
(−1)n(eab;0,n ⊗ eba;0,m + ϵ1ϵ2t0,n ⊗ t0,m).

(5.43)

From the above formulae we see ∆(w)N1,N2 maps B
(K)
N1+N2

to B
(K)
N1

⊗B
(K)
N2

((w−1)), and the co-
product formulae are independent of N1, N2, thus the family ∆(w)N1,N2 induces a uniform-
in-N meromorphic coproduct ∆(w) : B(K) ! B(K) ⊗ B(K)((w−1)) and similarly a mero-
morphic coproduct for A(K). It turns out the uniform-in-N locality for the meromorphic
coproduct can be put into more general framework called the vertex coalgebra.

Recall that a vertex coalgebra [96] is a vector space V together with linear maps

• Coproduct ∆(w) : V ! V ⊗ V ((w−1)), and write ∆(w)v =
∑

n∈Z∆n(v)w
−n−1,

• Covacuum C : V ! C,

satisfying the following axioms:

(1) Left counit: ∀v ∈ V ,
(C⊗ Id)∆(w)v = v.

(2) Cocreation: ∀v ∈ V ,

(Id⊗ C)∆(w)v ∈ V [w], and lim
w!0

(Id⊗ C)∆(w)v = 0.

(3) Translation: let T = (Id⊗ C)∆−2, then

d

dw
∆(w) = ∆(w)T − (Id⊗ T )∆(w).
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(3) Locality: ∀v ∈ V , two elements

(Id⊗∆(w))∆(z)v, (P ⊗ Id)(Id⊗∆(z))∆(w)v,

are expansions of the same element in (V ⊗ V ⊗ V )[[z−1, w−1, (z − w)−1]][z, w].

We can similarly define vertex coalgebra over some base ring R.

Proposition 5.7.2. The meromorphic coproduct induce vertex coalgebra structures on
A(K) and B(K) over the base ring C[ϵ1, ϵ2].

Proof. We prove the theorem for A(K), and the proof for B(K) is analogous. Let us define
the covacuum C : A(K) ! C[ϵ1, ϵ2] by mapping on generators C(tn,m) = C(eab;n,m) = 0 and
extending it to an algebra map. Then the left counit and cocreation axioms are easily
checked for (5.43), thus these two axioms are satisfied for all elements in A(K) since C⊗ Id
and Id⊗ C are algebra homomorphisms. It remains to check the translation axiom.

Note that the operator T = (Id ⊗ C)∆−2 : A(K) ! A(K) is a derivation, since we can
write

T = lim
w!0

d

dw
(Id⊗ C)∆(w),

and the derivative operator is a derivation. Since T (t2,0) = 0 and T (eab;0,n) = neab;0,n−1, we
conclude that T is the same as the adjoint action of t1,0. For finite N , the operator T

exists, in fact t1,0 is mapped to
∑N

i=1 ∂yi in D
ϵ2
ϵ1
((PK−1 × C)Ndisj), thus

∆(w)N1,N2T (f(y
(1)
i , y

(2)
j ))− (Id⊗ T )∆(w)N1,N2f(y

(1)
i , y

(2)
j )

=

(
N1∑
k=1

∂f

∂y
(1)
k

)
(y

(1)
i + w, y

(2)
j ) +

(
N2∑
k=1

∂f

∂y
(2)
k

)
(y

(1)
i + w, y

(2)
j )−

N2∑
k=1

∂
y
(2)
k

(
f(y

(1)
i + w, y

(2)
j )
)

=
d

dw
f(y

(1)
i + w, y

(2)
j ),

for all functions f on CN1+N2
disj , and this equation extends to hold for differential operators on

(PK−1×C)Ndisj by linearity. In particular, the translation axiom is satisfied for all ∆(w)N1,N2 ,
and it is therefore satisfied for the uniform-in-N coproduct ∆(w).
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Chapter 6

Conclusion

Throughout this thesis, we concretely demonstrated in examples of 4d and 5d Chern-
Simons theories, the computation of the algebra of local observables in the boundary, and
the algebra of bulk-boundary universal coupling or scattering process. These examples
serve as toy models for the twisted holography duality.

The example of 4d Chern-Simons theory is a (quasi) topological subsector of the physical
AdS/CFT correspondence between 4d N = 4 super Yang-Mills theory with a domain wall
and Type IIB supergravity on AdS5 × S5 with a probing D5-brane. The relation is given
by a certain topological-holomorphic twist and Ω-deformation (§2.5.2).

The example of 5d Chern-Simons theory is a (quasi) topological subsector of the physi-
cal AdS/CFT correspondence between M2-brane SCFT and M-theory on AdS4×S7 back-
ground. The Cϵ1 × TNϵ2,ϵ3

K on which the Ω-background is turned on can be regarded as
the transverse direction of an AdS2 ×S3 inside AdS4 ×S7, and the AdS2 ×S3 is the back-
reacted geometry of the line defect in R × C2

NC. Note that the space of protected sphere
correlation functions in the M2 brane SCFT is identified with the space of twisted traces
of A(K) [65], it would be interesting to look into the space of twisted traces of A(K), which
might help to understand better the structure of protected sphere correlation functions.

In the algebraic studies of M2 brane algebra A(K) (Chapter §5), some questions and
conjectures of Costello are answered and proved. One interesting fact we would like to
point out is that the algebra A(K) has a degeneration limit which is isomorphic to the glK
Kac-Moody algebra (Corollary 5.6.3), this completes the derivation of the emergence of
Kac-Moody algebra in the matrix model studied by Dorey et al [56].

An important lesson that we learn from these studies is
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• The perturbative method (Feynman diagram or Witten diagram) is powerful, one
could in principle compute the algebra of local observables in arbitrary order in ℏ.
However, as we have seen in our computation, the perturbative method has its limit
that as the loop order grows, the complication of integrals increases drastically. In
practice, one should not expect to compute the whole algebra unless there are small-
loop exactness result, like the uniqueness of deformation ([24, Theorem 12.1.1] and
[29, Theorem 16.0.1]).

The large-N presentation of the algebra of boundary observables, on the other hand, can be
studied by algebraic or algbro-geometric method, at least in the examples that we studied in
this thesis. One could argue that this is partly because our examples are well-engineered
such that the models manifest connections to mathematics. In fact, the connection to
mathematics can be traced back to the topological/holomorphic nature of these models,
and one could imagine this feature to present in other examples of twisted holography.
Here is one examples in this “wishing-list”:

• The bulk theory is 6d holomorphic Chern-Simons theory coupled to the BCOV theory,
one could put a holomorphic line (2d) defect and ask for the universal chiral algebra
that can be coupled to the bulk theory. This universal chiral algebra is interpreted as
the Koszul dual to the bulk algebra of observables. The mode algebra of this chiral
algebra is some kind of three-parameter quantum group, generalizing the dictionary
that in 4d Chern-Simons we get Yangian which is an one-parameter quantum group,
and in 5d Chern-Simons we get affine Yangian which is a two-parameter quantum
group.
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Appendix A

Techniques in 4d Chern-Simons and
2d BF Perturbative Computations

A.1 Integrating the BF interaction vertex

In this appendix we evaluate the integrals in (2.73).

ϕ2

ϕ

ϕ1 ,
ϕ2

ϕϕ1

. (A.1)

We split up each integral into two, based on whether the bulk point is above or below the
line operator. We use angular coordinates defined as in the above diagrams. One subtlety
is that, from the definition of the propagators in the Cartesian coordinate we can see that
the integrand1 is even under reflection with respect to the line. So, we just have to make
sure that when we divide up the integral in the aforementioned way, even when written
in angular coordinates, the integrand does not change sign under reflection. With this in

1including the measure

195



mind, the integrals we have to evaluate are:

Vαβγ·|| (x1, x2) =
ℏ2

(2π)3
fαβγ

∫ 2π

0

dϕ1

∫ π

ϕ1

dϕ2

(∫ ϕ1+π

π

dϕ+

∫ ϕ1−π

π

dϕ

)
,

Vαβγ|·| (x1, x2) =
ℏ2

(2π)3
fαβγ

∫ 2π

0

dϕ1

∫ π

ϕ1

dϕ2

(∫ ϕ2+π

ϕ1+π

dϕ+

∫ ϕ2−π

ϕ1−π
dϕ

)
,

Vαβγ||· (x1, x2) =
ℏ2

(2π)3
fαβγ

∫ 2π

0

dϕ1

∫ π

ϕ1

dϕ2

(∫ 2π

ϕ2+π

dϕ+

∫ 0

ϕ2−π
dϕ

)
.

All three terms are equal to ℏ2
24
fαβγ.

A.2 Quantum Mechanical Hilbert Spaces

A.2.1 Fermionic

The quantum mechanical action (2.16) is written in terms of fermions ψ and ψ that trans-
form under GLN × GLK according to the representations V := N ⊗K and V := N ⊗K
respectively. The kinetic term in the action is first order in derivative, which establishes ψ
and ψ as canonically conjugate variables, in other words, the phase space of the QM is:

V ⊕ V = T ∗V . (A.2)

The Hilbert space of this theory can now be written as the space of functions on V – since
V is a fermionic vector space, functions on this space can be written as anti-symmetric
polynomials in the dual vectors:

Hfer = O(V ) = ∧•(V ) . (A.3)

Let us look at the anti-symmetric polynomials of degree n, which can be defined as the

subspace of V
⊗n

where Sn acts by sign – Sn being the permutation group of n objects:

∧n
(
V

⊗n
)
= HomSn

(
ε, V

⊗n
)
∼= HomSn

(
ε,N⊗n ⊗K

⊗n
)
. (A.4)

Here ε is the one dimensional sign representation of the symmetric group Sn. Using Schur-
Weyl duality we can decompose spaces such as N⊗n into irreducible representations of
Sn ×GLN :

∧n
(
V

⊗n
)
=

⊕
|Y |=|Y ′|=n

HomSn

(
ε, πY ⊗HN

Y ⊗ πY ′ ⊗HK
Y ′

)
, (A.5)
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where Y and Y ′ are Young tableau, the sum is over tableau containing n boxes, πY is the
irreducible representation of Sn parametrized by the tableaux Y , HK

Y ′ is the irreducible

representation of GLK parametrized by the tableaux Y ′ and HK
Y ′ is its dual. Since we are

computing Sn equivariant Hom, we can focus on the Sn representations:

HomSn(ε, πY ⊗ πY ′) ∼= HomSn(ε⊗ πY , πY ′) = HomSn(ε⊗ πY , πY ′) , (A.6)

where we have used the fact that representations of Sn are self-dual. Now, tensoring
with the sign representation exchanges the role of rows and columns in a Yaoung tableau
parametrizing a representation of Sn, and by Schur’s lemma, there is exactly one (up to
scalar multiples) map of representations between two irreducible representations if they
are isomorphic and no such map if they are not. These two facts tell us that:

HomSn(ε⊗ πY , πY ′) = δY T ,Y ′C , (A.7)

where Y T denotes the transpose of the tableaux Y . This leaves just one sum in (A.5):

∧n
(
V

⊗n
)
=
⊕
|Y |=n

HN
Y T ⊗HK

Y . (A.8)

The full fermionic Hilbert space (A.3) is then the following sum:

Hfer =
⊕
Y

HN
Y T ⊗HK

Y . (A.9)

Note that, this is a finite sum, since the tableau Y can have at most K rows and at most
N columns – this is of course a consequence of exclusion principle for fermions.

A.2.2 Bosonic

Let us replace the fermions in the action (2.16) with bosons and change nothing else.
Representations of the bosons are the same as their fermionic counterpart and therefore
we still have the phase space T ∗(V ) where V = N ⊕K. The difference, compared to the
fermionic case, is that the Hilbert space now consists of symmetric polynomials in V (c.f.
(A.3)):

Hbos = Sym•(V ) . (A.10)

Then, instead of (A.4) we have:

Symn
(
V

⊗n
)
= HomSn

(
C,N⊗n ⊗K

⊗n
)
, (A.11)
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where C is the trivial representation of Sn. Following a similar computation as we did for
the fermionic case we now end up with the following Hom between representations of Sn
(c.f. (A.7)):

HomSn(πY , πY ′) = δY,Y ′C , (A.12)

which leads to the following description of the bosonic Hilbert space:

Hbos =
⊕
Y

HN
Y ⊗HK

Y . (A.13)

Note that, as opposed to the fermionic case, we now have no restriction on the number of
columns of Y (number of rows is restricted to be at most min(N,K)) and therefore the
Hilbert space is infinite dimensional, as expected given the lack of any exclusion principle
for bosons.

A.3 Yangian from 1-loop Computations

At the end of §2.4.6, by computing 1-loop diagrams, we concluded that quantum corrections
deform the coalgebra structure of the classical Hopf algebra U(glK [z]). Since ASc(Tbk) is
an algebra to begin with, we conclude that at one loop, we have a deformation of the
classical algebra as a Hopf algebra. We are using the term “deformation” (alternatively,
“quantization”) in the sense of Definition 6.1.1 of [24], which essentially means that:

• ASc(Tbd) becomes the classical algebra U(glK [z]) in the classical limit ℏ! 0.

• ASc(Tbk) is isomorphic to U(glK [z])JℏK as a CJℏK-module.

• ASc(Tbk) is a topological Hopf algebra (with respect to ℏ-adic topology).

The reason that we adhere to these conditions is that, there is a well known uniqueness
theorem (Theorem 12.1.1 of [24]) which says that the Yangian is the unique deformation of
U(glK [z]) in the above sense. Therefore, if we can show that our algebra ASc(Tbk) satisfies
all these conditions and it is a nontrivial deformation of U(glK) then we can conclude
that it is the Yangian. From 1-loop computations we already know that it is a non-trivial
deformation. That the first condition in the list above is satisfied is the content of Lemma
2.4.5. The second condition is satisfied because ℏ acts on the generators of our algebra
by simply multiplying the external propagators by ℏ in the relevant Witten diagrams, this
action does not distinguish between classical diagrams and higher loop diagrams. Satisfying
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the last condition is less trivial. While it seems known to people working in the field, we
were unable to find a reference to cite, therefore, for the sake of completion, we provide
a proof in this appendix, that the algebra ASc(Tbk) is indeed an (ℏ-adic)topological Hopf
algebra.

We shall prove this by reconstructing the algebra ASc(Tbk) from its representations.
As mentioned in §2.2.5, representations of this algebra are carried by Wilson lines, which
form an abelian monoidal category. A morphism between two representations V and U
in this category is constructed by computing the expectation value of two Wilson lines
in representations U and V ∨ and providing a state at one end of each of the lines. For
example, if ϱ and ϱ′ are two homomorphisms from glK to U and V ∨ respectively, then for
two lines L and L′ in the topological plane of the CS theory and any ψ ⊗ χ∨ ∈ U ⊗ V ∨,
the expectation value ⟨Wϱ(L)Wϱ′(L

′)⟩ (ψ ⊗ χ∨) is a morphism V ! U .

Classically, these sameWilson lines carry representations of the classical algebra U(glK [z]).
When viewed as representations of the deformed (alternatively, quantized) algebraASc(Tbk),
we shall call the category of Wilson lines as the quantized category and viewed as represen-
tations of U(glK [z]) we shall refer to the category as the classical category. Given any two
Wilson lines U and V , any non-trivial morphism between them in the quantized category
is a quantization of a non-trivial morphism in the classical category.2 In fact, there is a
one-to-one correspondence between morphisms between two lines in the classical category
and the morphisms between the same lines in the quantized category.

For the sake of proof, let us abstract the information we have. We start with a C-linear
rigid abelian monoidal category C = RepC(H) which is the representation category of a
Hopf algebra H. We then find a CJℏK-linear abelian monoidal category Cℏ, whose objects
are representations of some, yet unknown, Hopf algebra Hℏ, with the following properties:

• ob(Cℏ) = ob(C) ,

• HomCℏ(U, V ) ∼= HomC(U, V )JℏK as CJℏK-modules .

Given this information we shall now prove that Hℏ is unique and that it is topological with
respect to ℏ-adic topology.

2Recall that a morphism between two Wilson lines is the expectation value of the lines when provided
with a state at one end. A classical morphism is computed with classical diagrams and its quantization
amounts to adding loop diagrams. A zero morphism is constructed by providing zero states, this is
independent of quantization, i.e., a quantized morphism is zero, if the provided states are zero, but then
so is the original classical morphism.
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A.3.1 Tannakian formalism

The aim of this formalism is to realize certain abelian rigid monoidal categories as the repre-
sentation (or corepresentation) categories of Hopf algebras (possibly with extra structures).
To avoid running into some subtlety in the beginning (we shall explain the subtlety later in
this section), we first consider the reconstruction from the category of corepresentations.

Reconstruction from corepresentation. Let k be a field, C an abelian (resp. abelian
monoidal and End(1) = k) category such that morphisms are k-bilinear, and let R be a
commutative algebra over k – if there is an exact faithful (resp. monoidal) functor ω from
C to Modf (R)

3 such that the image of ω is inside the full subcategory Projf (R)
4, then we

shall say that C has a fiber functor ω to Modf (R).

Theorem A.3.2 (Tannakian Reconstruction for Coalgebra and Bialgebra). With the no-
tation above, if moreover R is a local ring or a PID5, then there exists a unique flat
R-coalgebra (resp. R-bialgebra) A, up to unique isomorphism, such that A represents the
endomorphism of ω in the sense that ∀M ∈ IndProjf (R)

6

HomR(A,M) ∼= Nat(ω, ω ⊗M) .

Moreover, there is a functor ϕ : C ! CorepR(A) which makes the following diagram com-
mutative

C CorepR(A)

Modf (R)

ω

ϕ

forget

and ϕ is an equivalence if R = k.

Our strategy in proving this theorem basically follows [54]. First of all, we need the
following

Lemma A.3.3. C is both Noetherian and Artinian.

3finitely generated modules of R
4finitely generated projective modules of R
5PID=Principal Ideal Domain
6IndProjf (R) means category of inductive limit of finite projective R-modules, which is equivalent to

category of flat R-modules.
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Proof. Take X ∈ ob(C), and an ascending chain Xi of subobjects of X, apply the func-
tor ω to this chain, so that ω(Xi) is an ascending chain of finitely generated projective
submodules of finitely generated projective module ω(X), thus there is an index j such
that rank(ω(Xj)) = rank(ω(X)). Now the quotient of ω(X) by ω(Xj) is ω(X/Xj), which
is again finitely generated projective, so it has zero rank, hence trivial. Faithfulness of ω
implies that X/Xj is zero, i.e. X = Xj, so C is Noetherian. It follows similarly that C is
Artinian as well.

Next, we define a functor

⊗ : Projf (R)× C ! C

by sending (Rn, X) to Xn, recall that every finitely generated projective module over a
local ring or a PID is free, thus isomorphic to Rn for some n. Define Hom(M,X) to be
M∨ ⊗X. For V ⊂M and Y ⊂ X, we define the transporter of V to Y to be

(Y : V ) := Ker(Hom(M,X)! Hom(V,X/Y ))

We now have the following:

Lemma A.3.4. Take the full abelian subcategory CX of C generated by subquotients of
Xn, consider the largest subobject PX of Hom(ω(X), X) whose image in Hom(ω(X)n, Xn)
under diagonal embedding is contained in (Y : ω(Y )) for all subobjects Y of Xn and all n.
Then the Theorem (A.3.2) is true for CX with coalgebra defined by AX := ω(PX)

∨.

Proof. PX exists because C is Artinian. Notice that ω takes Hom(M,X) to HomR(M,X)
and (Y : V ) to (ω(Y ) : V ), so it takes PX , which is defined by⋂

(Hom(ω(X), X) ∩ (Y : ω(Y )))

to ⋂
(EndR(ω(X)) ∩ (ω(Y ) : ω(Y ))) .

Hence ω(PX) is the largest subring of EndR(ω(X)) stabilizing ω(Y ) for all Y ⊂ Xn and all
n. It’s a finitely generated projective R module by construction, and so is AX . Note that
only finitely many intersection occurs because Hom(ω(X), X) is Artinian.
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Next, take any flat R module M ,7 since CX is generated by subquotients of X, an
element λ ∈ Nat(ω, ω ⊗ M) is completely determined by it is value on X, so λ ∈
EndR(ω(X))⊗M . Since −⊗RM is an exact functor, we have:⋂

(HomR(ω(X), ω(X)⊗RM) ∩ (ω(Y )⊗RM : ω(Y )))

=
(⋂

(EndR(ω(X)) ∩ (ω(Y ) : ω(Y )))
)
⊗RM .

This follows because there are only finitely many intersections and finite limit commutes
with tensoring with flat module. Therefore,

λ ∈ ω(PX)⊗
R
M .

Conversely, every element in ω(PX) ⊗R M gives rise to a natural transform in the way
described above. Hence we establish the isomorphism

Nat(ω, ω ⊗M) ∼= ω(PX)⊗RM ∼= HomR(AX ,M) .

AX is unique up to unique isomorphism (as a flat R module) because it represents the
functor M 7! Nat(ω, ω ⊗M).

Next, we shall define a co-action of AX on ω, a counit and a coproduct on AX which
makes AX an R-coalgebra and ω a corepresentation:

ρ ∈ Nat(ω, ω ⊗ AX) ∼= EndR(AX)

corresponds to the identity map of AX , and

ϵ ∈ HomR(AX , R) ∼= Nat(ω, ω)

corresponds to Idω. The co-action ρ tensored with IdAX
gives a natural transform between

ω ⊗ AX and ω ⊗ AX ⊗ AX , whose composition with ρ gives the following commutative
diagram:

ω ω ⊗ AX

ω ⊗ AX ⊗ AX

ψ

ρ

ρ⊗IdAX
.

7Recall that a R module is flat if and only if it is a filtered colimit of finitely generated projective
modules.
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Take ∆ to be the image of ψ in HomR(AX , AX ⊗R AX). It follows from definition that
AX is counital and ρ : ω ! ω ⊗ AX is a corepresentation. It remains to check that ∆ is
coassociative.

Observe that the essential image of ω ⊗ AX is a subcategory of the essential image of
ω, hence every functor that shows up here can be restricted to ω ⊗ AX , in particular, ρ,
whose restriction to ω ⊗ AX is obviously ρ⊗ IdAX

. It follows from the definition that

(ρ⊗ IdAX
) ◦ ρ = (Idω ⊗∆) ◦ ρ ∈ Nat(ω, ω ⊗ AX ⊗ AX) .

Restrict this equation to ω ⊗ AX and we get

(ρ⊗ IdAX
⊗ IdAX

) ◦ (ρ⊗ IdAX
) = (Idω ⊗ IdAX

⊗∆) ◦ (ρ⊗ IdAX
) .

Composing with ρ, the LHS corresponds to (∆ ⊗ IdAX
) ◦∆ and the RHS corresponds to

(IdAX
⊗∆) ◦∆ whose equality is exactly the coassociativity of AX .

It follows that ∀Z ∈ CX ,

ρ(Z) : ω(Z)! ω(Z)⊗R AX

gives ω(Z) a AX corepresentation structure and this is functorial in Z, thus ω factors
through a ϕ : CX ! CorepR(AX).

Back to the uniqueness of AX . It has been shown that it is unique up to unique isomor-
phism as a flat R module. Additionally, if ϕ : AX ! A′

X is an isomorphism such that it
induces identity transformation on the functor M 7! Nat(ω, ω⊗M) then, ϕ automatically
maps the triple (∆, ϵ, ρ) to (∆′, ϵ′, ρ′), so ϕ is a coalgebra isomorphism.

Finally, it remains to show that when R = k, ϕ is essentially surjective8 and full:

• Essentially Surjective: If M ∈ Corepk(AX), then define

M̃ := Coker(M ⊗ ω(PX)⊗ PX ⇒M ⊗ PX) ,

where two arrows are ω(PX) representation structure ofM and PX respectively, then

ω(M̃) =M ⊗
ω(PX)

ω(PX) =M .

8In fact, ϕ is essentially surjective even without the assumption that R = k.
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• Full: If f : M ! N is a AX-corepresentation morphism, then by the k-linearlity of
CX , f lifts to morphisms

f ⊗ IdPX
:M ⊗ PX ! N ⊗ PX ,

and
f ⊗ Idω(PX) ⊗ IdPX

:M ⊗ ω(PX)⊗ PX ! N ⊗ ω(PX)⊗ PX .

Thus, passing to cokernel gives rise to f̃ : M̃ ! Ñ which is mapped to f by ω.

Next we move on to recover the category C by its subcategories CX . Define an index
category I such that its objects are isomorphism classes of objects in C, denoted by Xi

for each index i, and a unique arrow from i to j if Xi is a subobject of Xj. I is directed
because for any two objects Z and W , they are subobjects of Z ⊕W . Observe that if X
is a subobject of Y , then CX is a full subcategory of CY , so a functorial restriction

HomR(AY ,M) ∼= Nat(ωY , ωY ⊗M)! Nat(ωX , ωX ⊗M) ∼= HomR(AY ,M) ,

gives rise to a coalgebra homomorphism AX ! AY . Futhermore, this homomorphism is
injective because ω(PY ) ! ω(PX) is surjective, otherwise Coker(ω(PY ) ! ω(PX)) will be
mapped to the zero object in CorepR(AY ), which contradicts with ω being faithful.

Lemma A.3.5. Define the coalgbra

A := lim−!
i∈I

AXi
,

then it is the desired coalgebra in Theorem A.3.2.

Proof. A is flat because it is an inductive limit of flat R modules. Moreover

HomR(A,M) = lim −
i∈I

HomR(AXi
,M) ∼= lim −

i∈I
Nat(ωXi

, ωXi
⊗M) = Nat(ω, ω ⊗M) ,

which gives the desired functorial property and this implies that A is unique up to unique
isomorphism. Finally, when R = k, the functor ϕ is defined and it is fully faithful because
it is fully faithful on each subcategory CXi

. It’s also essentially surjective because every
corepresentation V of A comes from a corepresentation of a finite dimensional sub-coalgebra
of A,9 and A is a filtered union of sub-coalgebras AXi

, so V comes from a corepresentation
of some AXi

.
9Take a basis {ei} for V , the co-action ρ takes ei to

∑
j ej ⊗ aji, then it is easy to see that span{aji}

is a finite dimensional sub-coalgebra of A.
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Proof of Theorem A.3.2. It remains to prove the theorem when C is monoidal. This
amounts to including m : C ⊠ C ! C and e : 1 ! C with associativity and unitarity
constrains, where 1 is the trivial tensor category with objects {0, 1} and only nontrivial
morphisms are End(1) = k. Using the isomorphism:

HomR(A⊗R A,A⊗R A) ∼= Nat(ω ⊠ ω, ω ⊠ ω ⊗ A⊗R A) ,

we get a homomorphism

τ : HomR(A⊗R A,M)! Nat(ω ⊠ ω, ω ⊠ ω ⊗M) .

It is an isomorphism because for each pair of subcategories (CX , CY )

HomR(AX ⊗R AY ,M) ∼= HomR(AX , R)⊗R HomR(AY ,M)
∼= Nat(ωX , ωX)⊗R Nat(ωY , ωY ⊗M)
∼= Nat(ωX ⊠ ωY , ωX ⊠ ωY ⊗M)

and it is compatible with the homomorphism given above, so after taking limit, τ is an
isomorphism. We also have a homomorphism:

Nat(ω, ω ⊗M)! Nat(ω ⊠ ω, ω ⊠ ω ⊗M) ,

by taking any α ∈ Nat(ω, ω ⊗M), and composing with the isomorphism ω ⊠ ω(X ⊠ Y ) ∼=
ω(X ⊗ Y ). This homomorphism in turn becomes a homomorphism

µ : A⊗R A! A .

And the obvious isomorphism

HomR(R,M) =M ! Nat(ω1, ω1 ⊗M) ,

together with the unit functor e : 1! C give a homomorphism

ι : R! A .

All of the homomorphisms are functorial with respect toM so µ and ι are homomorphisms
between coalgebras. Now the associativity and unitarity of monoidal category C translates
into associativity and unitarity of µ and ι, which are exactly conditions for A to be a
bialgebra. This concludes the proof of Theorem A.3.2.
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Remark A.3.6. In the statement of Theorem A.3.2, it is assumed that R is a local ring or
a PID, for the following technical reason: we want to introduce the functor

⊗ : Projf (R)× C ! C

which is defined by sending (Rn, X) to Xn. This is feasible only if every finite projective
module is free, which is not always true for an arbitary ring. Nevertheless, this is true
when R is local or a PID. It is tempting to eliminate this assumption when C is rigid, since
we only use the Hom(ω(X), X) to define the crucial object PX , and there is no need to
define a Hom when the category is rigid. In fact, there is no loss of information if we define
PX by ⋂

(Hom(X,X) ∩ (Y : Y )) ,

then the fiber functor ω takes PX to⋂
(EndR(ω(X)) ∩ (ω(Y ) : ω(Y ))) ,

since ω is monoidal by definition and a monoidal functor between rigid monoidal categories
preserves duality and thus preserves inner Hom. △

Following the above remark, we drop the assumption on ring R and state the following
version of Tannakian reconstruction for Hopf algebras:

Theorem A.3.7 (Tannakian Reconstruction for Hopf Algebra). Let R be a commutative k-
algebra, C a k-linear abelian rigid monoidal category (resp. abelian rigid braided monoidal)
with a fiber functor ω to Modf (R), then there exists a unique flat R-Hopf algebra A (resp.
R-coquasitriangular Hopf algebra), up to unique isomorphism, such that A represents the
endomorphism of ω in the sense that ∀M ∈ IndProjf (R)

HomR(A,M) ∼= Nat(ω, ω ⊗M) .

Moreover, there is a functor ϕ : C ! CorepR(A) which makes the following diagram com-
mutative:

C CorepR(A)

Modf (R)

ω

ϕ

forget
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and ϕ is an equivalence if R = k.

Sketch of proof. The idea of proof basically follows [103]. Accoring to Remark A.3.6 and
Theorem A.3.2, there exists a bialgebra A which satisfies all conditions in the theorem, so
it remains to prove that there are compatible structures on A when C has extra structures.

(a) C is rigid. This means that there is an equivalence between k-linear abelian monoidal
categories

σ : C ! Cop ,

by taking the right dual of each object, so it turns into an isomophism between R
modules

σ : Nat(ω, ω ⊗M)! Nat(ωop, ωop ⊗M) .

According to the functoriality of the construction of the bialgebra A, there is a
bialgebra isomorphism:

S : A! Aop ,

put it in another way, a bialgebra anti-automorphism of A. To prove that it satisfies
the required compatibility:

µ ◦ (S ⊗ Id) ◦∆ = ι ◦ ϵ = µ ◦ (Id⊗ S) ◦∆ ,

we observe that ι ◦ ϵ gives the natural transformation

Id⊗ ρω(1) : ω(X) = ω(X)⊗ ω(1) 7! ω(X)⊗ ρ(ω(1)) ,

but 1 is the trivial corepresentation of A, so ρ(ω(1)) is canonically identified with
ω(1), so ι◦ϵ is just the identity morphism on ω(X). On the other hand, µ◦(S⊗Id)◦∆
corresponds to the homomorphism

ω(X)! ω(X)⊗ ω(X)∨ ⊗ ω(X)! ω(X)⊗ ω(X∨ ⊗X)! ω(X)⊗ ω(1) = ω(X)

which is identity by the rigidity of C, hence µ◦(S⊗Id)◦∆ = ι◦ϵ. The other equation
is similiar.
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(b) C is rigid braided. This means that there is a natural transformation:

r : ω ⊠ ω ! ω ⊠ ω ,

which gives the braiding. This corresponds to a homomorphism of R-modules

R : A⊗ A! R ,

let’s define it to be the universal R-matrix. The fact that r is a natural transformation
is equivalent to the diagram below being commutative

ω(U)⊗ ω(V ) ω(U)⊗ ω(V )⊗ A⊗ A ω(U)⊗ ω(V )⊗ A

ω(V )⊗ ω(U) ω(V )⊗ ω(U)⊗ A⊗ A ω(V )⊗ ω(U)⊗ A

ρ⊗ρ

r

Id⊗Id⊗µ

r⊗Id

ρ⊗ρ Id⊗Id⊗µ

which in turn translates to the following equation of R:

R12 ◦ µ24 ◦ (∆⊗∆) = R23 ◦ µ13 ◦ τ13 ◦ (∆⊗∆) ,

where τ : A ⊗ A ! A ⊗ A sends x ⊗ y to y ⊗ x. The compactibility of r with the
identity

ω(X) ω(X)⊗ ω(1)

ω(X) ω(1)⊗ ω(X)

Id r ,

translates to R ◦ (IdA ⊗ 1) = ϵ. And symmetrically R ◦ (1⊗ IdA) = ϵ.

Finally, the hexagon axiom of braiding:

(ω(X)⊗ ω(Y ))⊗ ω(Z)

(ω(Y )⊗ ω(X))⊗ ω(Z) ω(X)⊗ (ω(Y )⊗ ω(Z))

ω(Y )⊗ (ω(X)⊗ ω(Z)) (ω(Y )⊗ ω(Z))⊗ ω(X)

ω(Y )⊗ (ω(Z)⊗ ω(X))

r⊗1

r

1⊗r

,
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translates to the commutativity of the diagram

A⊗ A⊗ A A⊗ A⊗ A⊗ A

A⊗ A R

Id⊗Id⊗∆

µ⊗Id R13·R24

R

,

and the same hexagon but with r−1 instead of r gives another one:

A⊗ A⊗ A A⊗ A⊗ A⊗ A

A⊗ A R

∆⊗Id⊗Id

Id⊗µ R14·R23

R

.

So we end up confirming all the properties that universal R-matrix should satisfy,
and we conclude that A is indeed a coquasitriangular Hopf algebra.

Reconstruction from representation It is tempting to dualize everything above to
formalize the Tannakian reconstruction for the category of representations. In other words,
we can take the dual of A instead of A itself, and a corepresentation becomes the repre-
sentaion, and when the category has extra structures, those structures will be dualized,
for example, when C is a k-linear abelian rigid braided monoidal category, it should come
from the representation category of a flat R-quasitriangular Hopf algebra, since the dual of
those diagrams involved in the proof of Theorem A.3.7 are exactly properties of universal
R-matrix of a quasitriangular Hopf algebra.

This is naive because the statement:

HomR(U, V ⊗ A) ∼= HomR(U ⊗ A∗, V ) ,

is not true in general, sinceA can be infinite dimensional, thus the naive dualizing procedure
is not feasible. To resolve this subtlety, we observe that A is constructed from a filtered
colimit of finite projective R-modules, each is an R-coalgebra, and any finitely generated
corepresentation of A comes from a corepresentation of a finite coalgebra, so it is natural
to define the action of A∗ on those modules by factoring through some finite quotient A∗

X
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for some X ∈ ob(C). Similiarly, the multiplication structure on A∗ can be defined by first
projecting down to some finite quotient and taking multiplication

A∗ ⊗ A∗ = lim −
i∈I

AXi
⊗ lim −

i∈I
AXi
! AXi

⊗ AXi
! AXi

which is compatible with transition map AXj
! AXi

then taking the inverse limit gives
the multiplication of A∗. For antipode S, its dual is a map A∗ ! A∗.

On the other hand, the comultiplication on A∗, is still subtle. If we dualize the multi-
plication of A, cut-off at some finite submodule

AXi
⊗ AXj

! A ,

we only get an inverse system of morphisms from A∗ to A∗
Xi

⊗A∗
Xj

and the latter’s inverse

limit is A∗⊗̂A∗, instead of A∗ ⊗ A∗. So we actually get a topological Hopf algebra with
topological basis

Ni := ker(A∗ ! A∗
Xi
) ,

so that the comultiplication is continuous. Similiarly the counit, multiplication, and
anipode are continuous as well. Finally when C is braided, there exists an invertible
element R ∈ A∗⊗̂A∗, and the dual of the structure homomorphism in A is exactly the
condition that R is the universal R-matrix of a topological quasitriangular Hopf algebra.

So we can restate Theorem A.3.7 in terms of representations of topological Hopf alge-
bras:

Theorem A.3.8. Let R be a commutative k-algebra, C a k-linear abelian rigid monoidal
category (resp. abelian rigid braided monoidal) with a fiber functor ω to Modf (R), then
there exists a unique topological R-Hopf algebra H (resp. R-quasitriangular Hopf algebra)
which is an inverse limit of finite projective R-modules endowed with discrete topology, up
to unique isomorphism, such that H represents the endomorphism of ω in the sense that

H ∼= Nat(ω, ω) .

Moreover, there is a functor ϕ : C ! RepR(H) which sends an object in C to a continuous
representation of H and makes the following diagram commutative:
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C RepR(H)

Modf (R)

ω

ϕ

forget ,

and ϕ is an equivalence if R = k.

Application to Quantization We now consider the case that we have a category Cℏ,
which is a quantization of the category of representations of some Hopf algebra H over C.
The quantization, namely Cℏ, of RepC(H) is a C-linear abelian monoidal category which has
the same set of generators as RepC(H), together with a fiber functor ωℏ : Cℏ ! Modf (CJℏK)
which acts on generators of RepC(H) by tensoring with CJℏK, and

HomCℏ(X, Y ) ∼= HomCℏ(X, Y )/ℏ = HomRepC(H)(X, Y )

for any pair of generators X and Y . For example, the classical algebra of local observables
in 4D Chern-Simons theory is U(g[z]), the universal enveloping algebra of Lie algebra g[z],
which has the category of representations generated by classical Wilson lines. Quantized
Wilson lines naturally generated a C-linear abelian monoidal category.

Applying Theorem A.3.8, (Cℏ, ωℏ) gives us a (topological) CJℏK-Hopf algebra Hℏ. Since
Cℏ and C shares the same set of generators, and the construction of those Hopf algebras as
CJℏK-modules only involves generators of corresponding categories, so Hℏ is isomorphic to
the completion of H ⊗ CJℏK in the ℏ-adic topology:

Hℏ := lim −
i∈I

HXi
⊗ CJℏK ∼= lim −

i∈I
lim −
n

HXi
⊗ C[ℏ]/(ℏn)

∼= lim −
n

lim −
i∈I

HXi
⊗ C[ℏ]/(ℏn)

∼= lim −
n

H ⊗ C[ℏ]/(ℏn) .

For the same reason, tensor product of two copies of Hℏ and completed in the inverse limit
topology is isomorphic to the completion of Hℏ ⊗CJℏK Hℏ in the ℏ-adic topology:

Hℏ⊗̂Hℏ ∼= lim −
n

Hℏ ⊗CJℏK Hℏ/(ℏn)

From the construction of those Hopf algebras and the condition that a morphism in Cℏ
modulo ℏ is a morphism in RepC(H), it is easy to see that modulo ℏ respects all structure
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homomorphisms, thus Hℏ modulo ℏ and H are isomorphic as Hopf algebras. Finally,
structure homomorphisms of Hℏ are continuous in the ℏ-adic topology because they are
ℏ-linear. Thus we conlude that:

Theorem A.3.9. Hℏ is a quantization of H in the sense of Definition 6.1.1 of [24], i.e.
it is a topological Hopf algebra over CJℏK with ℏ-adic topology, such that

(i) Hℏ is isomorphic to HJℏK as a CJℏK-module;

(ii) Hℏ modulo ℏ is isomorphic to H as Hopf algebras.

In our case, H = U(g[z]) for g = glK [z], so Hℏ is a quantization of U(glK [z]), and
according to Theorem 12.1.1 of [24], this is unique up to isomorphisms. This proves
Proposition (2.4.1).

A.4 Technicalities of Witten Diagrams

A.4.1 Vanishing lemmas

We introduce some lemmas to allow us to readily declare several Witten diagrams in the
4D Chern-Simons theory to be zero.

Lemma A.4.2. The product of two or three bulk-to-bulk propagators vanish when attached
cyclically, diagrammatically this means:

v0v1 = v0

v1

v2

= 0 . (A.14)

Proof. Two propagators: We can choose one of the two bulk points, say v0, to be at the
origin and denote v1 simply as v. This amounts to taking the projection (2.108), namely:
R4
v0
×R4

v1
∋ (v0, v1) 7! v1−v0 =: v ∈ R4. Then the product of the two propagators become:

P (v0, v1) ∧ P (v1, v0) 7! P (v) ∧ P (−v) = −P (v) ∧ P (v) . (A.15)

This is a four form at v, however, P does not have any dz component, therefore the four
form P (v) ∧ P (v) necessarily contains repetition of a one form and thus vanishes.
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Three propagators: By choosing v0 to be the origin of our coordinate system we can
turn the product to the following:

P (v1) ∧ P (v2) ∧ P (v1, v2) . (A.16)

We now need to look closely at the propagators (see (2.108) and (2.111)):

P (vi) =
ℏ
2π

xi dyi ∧ dzi + yi dzi ∧ dxi + 2zi dxi ∧ dyi
d(vi, 0)4

, (A.17a)

P (v1, v2) =
ℏ
2π

x12 dy12 ∧ dz12 + y12 dz12 ∧ dx12 + 2z12 dx12 ∧ dy12
d(v1, v2)4

, (A.17b)

where vi := (xi, yi, zi, zi), xij := xi − xj, yij := yi − yj, · · · , and d(vi, vj)
2 := (x2ij + y2ij +

zijzij). Since the propagators don’t have any dz component the product (A.16) must be
proportional to ω :=

∧
i∈{1,2} dxi ∧ dyi ∧ dzi. In the product there are six terms that are

proportional to ω. For example, we can pick dx1 ∧ dy1 from P (v1), dz2 ∧ dx2 from P (v2)
and dy12 ∧ dz12 from P (v1, v2), this term is proportional to:

dx1 ∧ dy1 ∧ dz2 ∧ dx2 ∧ dy12 ∧ dz12 = −dx1 ∧ dy1 ∧ dz2 ∧ dx2 ∧ dy2 ∧ dz1 = +ω . (A.18)

The other five such terms are:

dy1 ∧ dz1 ∧ dz2 ∧ dx2 ∧ dx12 ∧ dy12 = − ω ,

dy1 ∧ dz1 ∧ dx2 ∧ dy2 ∧ dz12 ∧ dx12 = + ω ,

dz1 ∧ dx1 ∧ dy2 ∧ dz2 ∧ dx12 ∧ dy12 = + ω ,

dz1 ∧ dx1 ∧ dx2 ∧ dy2 ∧ dy12 ∧ dz12 = − ω ,

dx1 ∧ dy1 ∧ dy2 ∧ dz2 ∧ dz12 ∧ dx12 = − ω .

(A.19)

These signs can be determined from a determinant, stated differently, we have the following
equation:

det

 dy1 ∧ dz1 dz1 ∧ dx1 dx1 ∧ dy1
dy2 ∧ dz2 dz2 ∧ dx2 dx2 ∧ dy2
dy12 ∧ dz12 dz12 ∧ dx12 dx12 ∧ dy12

 = −6ω , (A.20)

where the product used in taking determinant is the wedge product. The above equation
implies that in the product (A.16) the coefficient of −ω is given by the same determinant
if we replace the two forms with their respective coefficients as they appear in (A.17).
Therefore, the coefficient is:

1

8π3d(v1, 0)4d(v2, 0)4d(v1, v2)4
det

 x1 y1 z1
x2 y2 z2
x12 y12 z12

 = 0 . (A.21)
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The determinant vanishes because the three rows of the matrix are linearly dependent.
Thus we conclude that the product (A.16) vanishes.

Lemma A.4.3. The product of two bulk-to-bulk propagators joined at a bulk vertex where
the other two endpoints are restricted to the Wilson line, vanishes, i.e., in any Witten
diagram:

v

p1 p2

= 0 . (A.22)

Proof. This simply follows from the explicit form of the bulk-to-bulk propagator. Compu-
tation verifies that:

ι∂x1∧∂x2 (P (v, p1) ∧ P (v, p2)) = 0 , (A.23)

where x1 and x2 are the x-coordinates of the points p1 and p2 respectively.

The world-volume on which the CS theory is defined is R2
x,y×Cz, which in the presence

of the Wilson line at y = z = 0 we view as Rx × R+ × S2. When performing integration
over this space we approximate the non-compact direction by a finite interval and then
taking the length of the interval to infinity. In doing so we introduce boundaries of the
world-volume, namely the two components B±D := {±D} × R+ × S2 at the two ends of
the interval [−D,D]. Our next lemma concerns some integrals over these boundaries.

Lemma A.4.4. The integral over a bulk point vanishes when restricted to the spheres at
infinity, in diagram:

lim
D!∞

∫
v0∈B±D

v1

vn

...v0 = 0 . (A.24)

Proof. Symbolically, the integration can be written as:

lim
D!∞

∫
B±D

dvolB±D
ι∂y∧∂z (P (v0, v1) ∧ · · · ∧ P (v0, vn)) , (A.25)

where y and z are coordinates of v0. Note that the dz required for the volume form on
B±D comes from the structure constant at the interaction vertex, not from the propaga-
tors. In the above integration the x-component of v0 is fixed at ±D, which introduces D
dependence in the integrand. The bulk-to-bulk propagator has the following asymptotic
scaling behavior:10

P ((D, y, z, z), vj)
D!∞∼ D−2 +O(D−3) . (A.26)

10Keep in mind that ℏ has a (length) scaling dimension 1.
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The integration measure on B±D is independent of D, therefore the integral behaves as
D−2n for large D, and consequently vanishes in the limit D !∞.

A.4.5 Comments on integration by parts

Finally, let us make a few general remarks about the integrals involved in computing
Witten diagrams. Since the boundary-to-bulk propagators are exact and the bulk-to-bulk
propagators behave nicely when acted upon by differential (see (2.109)), we want to use
Stoke’s theorem to simplify any given Witten diagram. Suppose we have a Witten diagram
with m propagators connected to the boundary, n propagators connected to the Wilson
line, and l bulk points. Let us denote the bulk points by vi for i = 1, · · · , l, the points on the
Wilson line by pj for j = 1, · · · , n, and the points on the boundary as xk for k = 1, · · · ,m.
The domain of integration for the diagram is then M l×∆n, where M = R×R+ × S2 and
∆n is an n-simplex defined as:

∆n := {(p1, · · · , pn) ∈ Rn | p1 ≤ p2 ≤ · · · ≤ pn} . (A.27)

This domain may need to be modified in some Witten diagrams due to the integral over
this domain having UV divergences. UV divergences can occur when some points along
the Wilson line collide with each other. To avoid such divergences we shall use a point
splitting regulator, i.e., we shall cut some corners from the simplex ∆n. Let us denote the
regularized simplex as ∆̃n. The exact description of ∆̃n will vary from diagram to diagram,
and we shall describe them as we encounter them.

When we do integration by parts with respect to the differential in a boundary-to-bulk
propagator, we get the following three types of terms:

1. A boundary term. Boundaries of our integration domain comes from boundaries of
M and ∆̃n. For M we get:

∂M = B+∞ ⊔B−∞ . (A.28)

Due to Lemma A.4.4, integrations over ∂M will vanish. Therefore, nonzero con-
tribution to the boundary integration, when we do integration by parts, will only
come from the boundary of the regularized simplex, namely ∂∆̃n. Schematically, the
appearance of such a boundary integral will look like:∫

M l×∆̃n

dθ ∧ (· · · ) =
∫
M l×∂∆̃n

θ ∧ (· · · ) + · · · . (A.29)
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2. The differential acts on a bulk-to-bulk propagator. Due to (2.109), this identifies the
two end points of the propagator, schematically:

b ∈ {0, 1} ,
∫
M l×∂b∆̃n

dθ ∧ P ∧ (· · · ) =
∫
M l−1×∂b∆̃n

θ ∧ (· · · ) + · · · . (A.30)

3. The differential acts on a step function left by a previous integration by parts. This
does not change the domain of integration.

The third option does not to lead a simplification of the domain of integration. Therefore,
at the present abstract level, our strategy to simplify an integration is: first go to the
boundary of the simplex, and then keep collapsing bulk-to-bulk propagators until we have
no more differential left or when no more bulk-to-bulk propagator can be collapsed without
the diagram vanishing due the vanishing lemmas from §A.4.1.

A.5 Proof of Lemma 2.4.8

All the diagrams that we draw in this section only exist to represent color factors, their
numerical values are irrelevant. Which is why we also ignore the color coding we used in
the diagrams in the chapter 2.

We start with yet another lemma:

Lemma A.5.1. The color factor of any Witten diagram with two boundary-to-bulk propa-
gators connected by a single bulk-to-bulk propagator, that is any Witten diagrams with the
following configuration:

...
...

µ ν

(A.31)

upon anti-symmetrizing the color labels of the boundary-to-bulk propagators, involves the
following factor:

f ξ
µν Xξ , (A.32)

for some matrix Xξ that transforms under the adjoint representation of glK. In partic-
ular, this color factor is the image in End(V ) of some element of glK where V is the
representation of some distant Wilson line.
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Proof. The two bulk vertices in the diagram results in the following product of structure
constants: f π

µo f o
νρ where the indices π and ρ are contracted with the rest of the diagram.

Anti-symmetrizing the indices µ and ν we get f π
µo f o

νρ − f π
νo f o

µρ , which using the Jacobi
identity becomes −f o

µν f
π

ρo . Once π and ρ are contracted with the rest of the diagram
we get an expression of the general form (A.32). Furthermore, any expression of the form
(A.32) is an image in End(V ) of some element in glK , since the structure constant f ξ

µν

can be viewed as a map:

f : ∧2glK ! glK , f : tµ ∧ tν 7! f ξ
µν tξ . (A.33)

Now composing the above map with a representation of glK on V gives the aforementioned
image.

Let us now look at the color factor (2.158) of the diagram (2.157), both of which we
repeat here:

µ ν

, f ξo
µ f πρ

ξ f σ
νπ ϱ(to)ϱ(tρ)ϱ(tσ) . (A.34)

By commuting ϱ(to) and ϱ(tρ) in the color factor we create a difference which is the color
factor of the following diagram:

µ ν

. (A.35)

The key feature of the above diagram is the loop with three propagators attached to it.
Such a loop produces a color factor which is a glK-invariant inside (glK)

⊗3, explicitly we
can write a loop and its associated color factor respectively as:

µ

ν

ξ

and f π
µo f o

νρ f
ρ

ξπ . (A.36)

The color factor is glK-invariant since the structure constant itself is such an invariant. To
find the invariants in (glK)

⊗3 we start by writing glK as:

glK = slK ⊕ C , (A.37)
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where by slK we mean the complexified algebra sl(K,C). This gives us the decomposition

(glK)
⊗3 = (slK)

⊗3 ⊕ · · · , (A.38)

where the “· · · ” contains summands that necessarily include at leas one factor of the center
C. However, none of the three indices that appear in the diagram in (A.36) can correspond
to the center, because each of these indices belong to an instance of the structure constant,
which vanishes whenever one of its indices correspond to the center.11 This means that
the glK invariant we are looking for must lie in (slK)

⊗3. For K > 2, there are exactly two
such invariants [121], one of them is the structure constant itself, which is totally anti-
symmetric. The other invariant is totally symmetric. However the structure constant is
even (invariant) under the Z2 outer automorphism of slK whereas the symmetric invariant
is odd. Since our theory has this Z2 as a symmetry, only the structure constant can appear
as the invariant in a diagram.12 This means, as far as the color factor is concerned, we can
collapse a loop such as the one in (A.36) to an interaction vertex. As soon as we do this
operation to the diagram (A.35), Lemma A.5.1 tells us that the color factor of the diagram
is an image in End(V ) of an element in glK . This shows that we can swap the positions of
any of the two pairs of the adjacent matrices in the color factor in (A.34) and the difference
we shall create is an image of a map glK ! End(V ). To achieve all permutations of the
three matrices wee need to be able to keep swaping positions, let us therefore keep looking
forward.

Suppose we commute ϱ(to) and ϱ(tρ) in (A.34), then we end up with the color factor
of the diagram (2.156). Now if we commute ϱ(to) and ϱ(tσ), we create a difference that
corresponds the color factor of the following diagram:

µ ν

. (A.39)

The key feature of this diagram is a loop with four propagators attached to it. The loop
and its associated color factor can be written as:

µξ

ν o

, f τ
µπ f σ

oτ f ρ
νσ f π

ξρ . (A.40)

11In other words, the central abelian photon in glK interacts with neither itself nor the non-abelian
gluons and therefore can not contribute to the diagrams we are considering.

12This is also apparent from the way this invariant is written in (A.36), since the structure constant is
invariant under this Z2, certainly a product of them is invariant as well.
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As before, the color factor is a glK-invariant in (glK)
⊗4. This time, it will be more con-

venient to write the color factor as a trace. Noting that the structure constants are the
adjoint representations of the generators of the algebra we can write the above color factor
as:

trad(tµtotνtξ) . (A.41)

The adjoint representation of glK factors through slK , and the adjoint representation of slK
has a non-degenerate metric with which we can raise and lower adjoint indices. Suitably
changing positions of some of the indices in the color factor we can conclude:

trad(tµtotνtξ) = trad(tµtξtνto) . (A.42)

Using the cyclic symmetry of the trace we then find that the color factor is symmetric under
the exchange of µ and ν, therefore when we anti-symmetrize the diagram with respect to
µ and ν it vanishes.

In summary, starting from the color factor in (A.34), we can keep swapping any two
adjacent matrices and the difference can always be written as an image of some map
glK ! End(V ). The same argument applies to the color factors of all the diagrams in
(2.156). This proves the lemma.
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Appendix B

Techniques in the Computation of
Hilbert Series of C[M(N,K)]

B.1 Hall-Littlewood Polynomials

In this appendix we review some background on symmetric functions, following section 3
of [91].

Definition B.1.1. For a partition λ = (1α1 , 2α2 , · · · ), the Hall-Littlewood polynomial Pλ(x; q)
is defined in n ≥ l(λ) =

∑
i≥1 αi variables x1, · · · , xn by the formula

Pλ(x; q) =
1∏

i≥0[αi]q!

∑
w∈Sn

w

(
xλ
∏
i<j

1− qxj/xi
1− xj/xi

)
. (B.1)

Here α0 is defined so that
∑

i≥0 αi = α0 + l(λ) = n, and xλ = xλ11 · · ·xλnn , and we use the
standard q-number notation

[n]q =
1− qn

1− q
, [n]q! = [n]q[n− 1]q · · · [1]q,

[
n
k

]
q

=
[n]q!

[k]q![n− k]q!
.

The Hall-Littlewood polynomial Pλ(x; q) is an interpolation between Schur symmetric
functions sλ(x) and monomial symmetric functions mλ(x), in fact we have

Pλ(x; 0) = sλ(x), Pλ(x; 1) = mλ(x). (B.2)
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Definition B.1.2. The Kostka-Foulkes functions are coefficients of the expansion

sλ(x) =
∑
λ,µ

Kλµ(q)Pµ(x; q). (B.3)

In particular, by (B.2) we have

Kλµ(0) = δλµ.

B.1.3 Jing operators and transformed Hall-Littlewood polyno-
mials

Naihuan Jing found a definition of Hall-Littlewood polynomials using vertex algebra [101].
Before giving his definition, we recall some plethystic notations.

The ring of symmetric functions over a base field F (assuming characteristic zero) is
freely generated by power sum functions pk, that is

ΛF = F[p1, p2, · · · ].

Let R be a ring containing F, A be a formal Laurent series with R coefficients in
indeterminates a1, a2, · · · , we define pk[A] to be the result of replacing each indeterminate
ai in A by aki . Then for any f ∈ ΛF, the plethystic substitution of A into f , denoted f [A],
is the image of f under the homomorphism sending pk to pk[A].

Example B.1.4. We list some special cases here.

• Let A = a1 + · · ·+ an, then pk[A] = ak1 + · · ·+ akn = pk(a1, · · · , an), and thus for any
f ∈ ΛF, we have f [A] = f(a1, · · · , an).

• Let A,B be formal Laurent series with R coefficients, then pk[A±B] = pk[A]±pk[B].

• Let PE = exp (
∑∞

k=1 pk/k), then we have

PE[A+B] = PE[A]PE[B], PE[A−B] = PE[A]/PE[B].

For a single variable x, we have PE(x) = 1
1−x , thus for a summation X = x1+x2+· · · ,

PE(X) =
∏
i≥1

1

1− xi
, PE(−X) =

∏
i≥1

(1− xi).
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For the rest of this section, we fix the notation X = x1 + x2 + · · · .
Definition B.1.5. The Jing operators are the coefficients Sqm = [um]Sq(u) of the operator
generating function Sq(u) defined by

Sq(u)f = f [X + (q − 1)u−1]PE[uX]. (B.4)

Proposition B.1.6. Jing operators Sqm satisfy relations:

SqnS
q
m+1 − qSqm+1S

q
n = qSqn+1S

q
m − SqmS

q
n+1. (B.5)

For a proof, see [101, Proposition 2.12], mind that our q is denoted by t there and our
Sqm is denoted by H−m there.

Definition B.1.7. Let µ = (µ1 ≥ · · · ≥ µl) be a Young tableaux (partition), define the
transformed Hall-Littlewood polynomial by

Hµ(x; q) = Sqµ1S
q
µ2
· · ·Sqµl(1). (B.6)

For a general array µ = (µ1, · · · , µl) ∈ Zl≥0, we define the generalized transformed Hall-
Littlewood polynomial by the same formula above.

Using relations (B.5) recursively, we can bring a product of operators Sqµ1 · · ·S
q
µl

for an
array µ = (µ1, · · · , µl) ∈ Zl≥0 into a linear combination of operators Sqµ′1

· · ·Sqµ′l such that

µ′
1 ≥ · · · ≥ µ′

l, in other words, a generalized transformed Hall-Littlewood polynomial can
be written as linear combination of usual transformed Hall-Littlewood polynomials.

The following proposition summarizes the fundamental properties of transformed Hall-
Littlewood polynomials, for a proof, see [91, 3.4.3].

Proposition B.1.8. The transformed Hall-Littlewood polynomials Hµ are related to the
classical Hall-Littlewood polynomials Pµ by

Hµ[(1− q)X; q] = (1− q)l(µ)
µ1∏
i=1

[αi(µ)]q!Pµ(x; q). (B.7)

They are uniquely characterized by the following properties.

(i) Hµ(x; q) ∈ sµ(x) + Z[q] · {sλ(x) : λ > µ},

(ii) Hµ[(1− q)x; q] ∈ Z[q] · {sλ(x) : λ ≤ µ}.
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And Hµ is related to Schur functions by

Hµ(x; q) =
∑
λµ

Kλµ(q)sλ(x). (B.8)

It turns out that we can rewrite the definition of Jing operators without referring to
the generating function Sq(u).

Lemma B.1.9. For an n-variable function f ∈ F[p1, · · · , pn](q), where pk(x) = xk1 + · · ·+
xkn, Jing operator Sqm acts on it as

(Sqmf)(x; q) =
n∑
i=1

f(x1, · · · , qxi, · · · , xn; q)
xmi∏

j ̸=i(1− xj/xi)
. (B.9)

Proof. Notice that

PE(uX) =
n∏
i=1

1

1− uxi
=

n∑
i=1

1

1− uxi

∏
j ̸=i

1

1− xj/xi
. (B.10)

Without loss of generality, we assume that f = pk1 · · · pks , then by definition, Sqm is the
coefficient of um in the series expansion

(pk1 + (qk1 − 1)u−k1) · · · (pks + (qks − 1)u−ks)
n∑
i=1

1

1− uxi

∏
j ̸=i

1

1− xj/xi
.

Let us fix an index i in the summation, then for this summand, its [um] coefficient is

(pk1 + (qk1 − 1)xk1i ) · · · (pks + (qks − 1)xksi )
xmi∏

j ̸=i(1− xj/xi)

= (xk11 + · · ·+ qk1xk1i + · · ·+ xk1n ) · · · (xkss + · · ·+ qksxksi + · · ·+ xksn )
xmi∏

j ̸=i(1− xj/xi)

= f(x1, · · · , qxi, · · · , xn; q)
xmi∏

j ̸=i(1− xj/xi)
.

Summing over i gives the desired formula (B.9).
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B.2 Affine Grassmannians and Geometrization of Jing

Operators

In this section we give a geometric definition of Jing operators Sqm. Recall that

KGLn×C×(pt) = Q[x±1 , · · · , x±n , q±]Sn . (B.11)

Here we take rationalized coefficients in the K-theory. Notice that Q[p1, · · · , pn, q±] ⊂
KGLn×C×(pt) is a subalgebra.

Consider the affine Grassmannian GrGLn = GLn(K)/GLn(O), and let ω1 = (1, 0, · · · , 0)
be the first fundamental coweight of GLn, then the GLn(O)-orbit Grω1 is isomorphic to
Pn−1 and it is fixed by the C×-rotation.

The category that we are interested in is Db
GLn(O)⋊C×(GrGLn), the GLn(O) ⋊ C×-

equivariant bounded derive category of coherent sheaves on GrGLn . Here coherent sheaves
on ind-scheme like GrGLn are defined to have finite type support, so for any F ∈ Db

GLn(O)⋊C×(GrGLn),

we have χ(F) ∈ KGLn(O)⋊C×(pt) = KGLn×C×(pt).

There is a convolution product on affine Grassmannian, defined as:

m : GrGLn×̃GrGLn = GLn(K)
GLn(O)

× GLn(K)/GLn(O)! GLn(K)/GLn(O). (B.12)

Here the map sends (g1, g2) to g1g2. The convolution map of GrGLn induces a functor
⋆ : Db

GLn(O)⋊C×(GrGLn)×Db
GLn(O)⋊C×(GrGLn)! Db

GLn(O)⋊C×(GrGLn) defined as

F ⋆ G = Rm∗(F⊠̃G).

Passing to the K-theory, we obtain an map

⋆ : KGLn(O)⋊C×(GrGLn)⊗KGLn(O)⋊C×(GrGLn) −! KGLn(O)⋊C×(GrGLn). (B.13)

In fact, the ⋆-product on KGLn(O)⋊C×(GrGLn) is associative, and moreover we have the
following.

Theorem B.2.1. The algebra KGLn(O)⋊C×(GrGLn) endowed with ⋆-product is isomorphic
to SHn, the spherical part of double affine Hecke algebra of GLn.

The part of story which is relevant to us is that the convolution between GrGLn

and the identity point makes KGLn(O)⋊C×(pt) = Q[x±1 , · · · , x±n , q±]Sn into a module of
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KGLn(O)⋊C×(GrGLn), and we can realize Jing operators Sqm geometrically fromKGLn(O)⋊C×(GrGLn)
as follows.

There is a distinguished line bundle O(1) (determinant line bundle) on GrGLn [164,
1.5], and from the construction of O(1) we know that it is GLn(O)⋊C×-equivariant. Let
us use O(m)|Grω1 to denote i∗i

∗O(1)⊗m where i : Grω1 ↪! GrGLn is the natural embedding.
Since i is GLn(O)⋊C×-equivariant, O(m)|Grω1 is also GLn(O)⋊C×-equivariant.

Proposition B.2.2. For F ∈ Db
GLn(O)⋊C×(GrGLn), let χ = χ(F) ∈ Q[x±1 , · · · , x±n , q±]Sn be

the equivariant Euler characteristic of F , similarly let χ̃ = χ(O(m)|Grω1 ⋆ F). Then

χ̃(x; q) =
n∑
i=1

χ(x1, · · · , qxi, · · · , xn; q)
xmi∏

j ̸=i(1− xj/xi)
. (B.14)

Proof. Let p : GrGLn×̃GrGLn ! GrGLn be the projection to the first component map, i.e.
p(g1, g2) = g1, this is a fibration with fibers isomorphic to GrGLn . Then by the projection
formula we have

χ(O(m)|Grω1 ⋆ F) = χ(Pn−1,O(m)⊗ Li∗Rp∗F̃). (B.15)

Here F̃ = O⊠̃F is the twist of F on GrGLn×̃GrGLn . We use the localization on Pn−1

to compute the right hand side of (B.15) as following. Let the maximal torus of GLn
be T , then T -fixed points of Pn−1 are [1, 0, · · · , 0], · · · , [0, · · · , 1, · · · , 0], · · · , [0, · · · , 1] (in
homogeneous coordinates of Pn−1), label these points by e1, · · · , en. Observe that

(1) The fiber of determinant line bundle O(1) at ei has T -weight xi,

(2) The tangent space at ei has T -weights xi/xj, j ∈ {1, · · · , n}\{i},

(3) The fiber of Li∗Rp∗F̃ at ei has the same T -weights as χ(F), but the C×-action
is different, because the fiber p−1(ei) is is identified with GrGLn via a translation
g 7! zωi−ωi−1g and the new C× acts through the diagonal of C×

rotation × Ti, where Ti
is the i’th C×-component of T . In other word, the fiber of Li∗Rp∗F̃ at ei has the
T × C×-weights

χ(F)(x1, · · · , qxi, · · · , xn; q).

Then (B.14) follows from applying localization toO(m)⊗Li∗Rp∗F̃ using three observations
made above.
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Comparing (B.14) and (B.9), we have the following

Corollary B.2.3. If χ(F) ∈ Q[p1, · · · , pn, q±] ⊂ KGLn×C×(pt), then

χ(O(m)|Grω1 ⋆ F) = Sqmχ(F). (B.16)

From this corollary we see that the operator O(m)|Grω1 ⋆ (−) is a geometrization of the
Jing operator Sqm. In fact, it extends the domain of Sqm toKGLn×C×(pt) = Q[p1, · · · , pn, h−1

n , q±],
and negative m is also allowed.

Corollary B.2.4. Let µ = (µ1, · · · , µl) be an array of nonnegative integers, then

Hµ(x; q) = χ(GrGLn ,O(µ1)|Grω1 ⋆ · · · ⋆O(µl)|Grω1 ). (B.17)

Proof. Combine (B.16) with the definition of Hµ in terms of iterative action of Sqµi (B.6).

Corollary B.2.5. Let Gr
Nω1

be the closure of the GLn(O)-orbit through zNω1, then

χ(Gr
Nω1

,O(k)) = H(kN )(x; q). (B.18)

Here (kN) is the partition consisting of N copies of k, i.e. (k, k, · · · , k).

Proof. Let m : GrGLn×̃GrGLn · · · ×̃GrGLn ! GrGLn be the convolution map of N -copies
of GrGLn , it is easy to see from the definition of determinate line bundle that there is a
GLn(O)⋊C×-equivariant isomorphism

m∗O(1) ∼= O(1)⊠̃ · · · ⊠̃O(1).

It is known that m(Grω1×̃ · · · ×̃Grω1) = Gr
Nω1

, and it is birational, thus m is a resolution

of singularities. It is also known that Gr
Nω1

has rational singularities (this is true for all
G(O)-orbit closure on affine Grassmannian of any reductive group G, see [105, Theorem
2.7]), therefore Rm∗O ∼= O and Rm∗m

∗O(k) ∼= O(k), thus

χ(Gr
Nω1

,O(k)) = χ(Grω1×̃ · · · ×̃Grω1 ,m∗O(k))

= χ(GrGLn ,O(k)|Grω1 ⋆ · · · ⋆O(k)|Grω1 )

= H(kN )(x; q).
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Appendix C

Quantization of Quiver Varieties

C.1 Quantum Moment Map and Quantum Hamilto-

nian Reduction

Fix the base field to be C. Let g be a Lie algebra with an action on an associative algebra
A, i.e. a Lie homomorphism ϕ : g! Der(A).

Definition C.1.1. A Lie homomorphism µ : g ! A is called a quantum moment map if
∀a ∈ g, b ∈ A,

[µ(a), b] = ϕ(a) · b. (C.1)

Lemma C.1.2. Let J be the left ideal A · µ(g), then Jg is a two-sided ideal of Ag.

Proof. Let x =
∑
biµ(ai) ∈ Jg and y ∈ Ag, then

xy =
∑

biµ(ai)y =
∑

biyµ(ai) +
∑

bi[µ(ai), y] =
∑

biyµ(ai) +
∑

biϕ(ai) · y

=
∑

biyµ(ai) ∈ Jg.

Definition C.1.3. Define the quantum Hamiltonian reduction A � g to be Ag/Jg.

Assumption C.1.4. Assume that A is filtered such that

(1) [FkA,FlA] ⊂ Fk+l−dA for a fixed positive integer d,
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(2) grA is commutative,

(3) µ(g) ⊂ FdA.

Under the above assumptions grA obtains a Poisson structure of degree −d defined as

{a, b} = [ã, b̃],

where ã is a lift of a, b̃ is a lift of b. It follows that the action of g on A preserves
the filtration, therefore the Poisson algebra grA inherits a g-action (denoted by ϕ) which
preserves the Poisson structure. Note that the image of µ in grdA (denoted by µ) is a
classical moment map, i.e. for a ∈ g, b ∈ grA,

{µ(a), b} = ϕ(a) · b. (C.2)

We define the ideal I = grA · µ(g), it is easy to see that Ig is a Poisson ideal of (grA)g, i.e.
{Ig, (grA)g} ⊂ Ig.

Definition C.1.5. Define the classical Hamiltonian reduction grA � g to be (grA)g/Ig.

Proposition C.1.6 (Classical Limit Commutes with Hamiltonian Reduction).
Suppose that g is reductive, and {e1, · · · , en} is a basis of g such that {µ(ei)}ni=1 is a
regular sequence in grA, then

grA � g ∼= gr (A � g) . (C.3)

Proof. By definition, gr (A � g) = gr(Ag)/gr(Jg), and since g is reductive, we have

gr (A � g) = gr(A)g/gr(J)g.

Therefore it suffices to show that I = grJ , in other words, if
∑
fiµ(ei) ∈ FmA then

∃gi ∈ Fm−dA such that
∑
fiµ(ei) =

∑
giµ(ei).

Suppose that
∑
fiµ(ei) ∈ FmA and fi ∈ FkA such that k > m − d, we claim that

∃f ′
i ∈ Fk−1A such that

∑
fiµ(ei) =

∑
f ′
iµ(ei). To prove this claim, we can assume that

∀i, fi /∈ Fk−1A, and denote their image in grkA by f i. Then we have∑
f iµ(ei) = 0 in grk+dA.

By the assumption that {µ(ei)}ni=1 is a regular sequence in grA, we see that ∃hij ∈ grk−dA
such that

f i =
∑
j

hijµ(ej), hij + hji = 0,

because the Koszul complex associated to {µ(ei)}ni=1 is exact. Let us fix a lift hij ∈ Fk−dA
such that hij + hji = 0, and take hi = fi −

∑
j hijµ(ej), then
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• hi ∈ Fk−1A, since its image hi in grkA is zero;

•
∑

i(fi − hi)µ(ei) =
1
2

∑
ij hijµ([ei, ej]) =

1
2

∑
ijk hijCijkµ(ek), where Cijk is the struc-

ture constant of g.

Hence we see that f ′
i = hi +

1
2

∑
jk hjkCjki is in Fk−1A and

∑
fiµ(ei) =

∑
f ′
iµ(ei), which

proves the claim.

C.1.7 Shift of quantum moment map

Let χ : g! C be a character, then

µχ : g! A, a 7! µ(a)− χ(a) · 1

is a new quantum moment map. More generally, we can put the family of characters C · χ
together as following:

µtχ : g! A[t], a 7! µ(a)− χ(a) · t.

Definition C.1.8. Denote by Jχ the left ideal of A generated by µχ(g), and denote by Jtχ the
left ideal of A[t] generated by µtχ(g). Define the shifted quantum Hamiltonian reduction
A �χ g to be Ag/Jg

χ, and also define the 1-parameter family A �tχ g to be Ag[t]/Jg
tχ.

It is elementary to see that

A �χ g ∼= (A �tχ g) /(t− 1). (C.4)

Proposition C.1.9. Under the Assumption C.1.4, and additionally assume that g is re-
ductive, and {e1, · · · , en} is a basis of g such that {µ(ei)}ni=1 is a regular sequence in grA,
then

(grA � g) [t] ∼= gr (A �tχ g) . (C.5)

In particular, A �tχ g is a free C[t]-module.

Proof. Apply Proposition C.1.6 to A[t], where we take the filtration degree of t to be
zero.
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C.1.10 Quantum quiver variety

Let (Q,v) be a quiver, where Q is a finite directed graph with vertex set Q0 and edge set
Q1, and v ∈ NQ0 is called the dimension vector. Define the representation space of (Q,v)
as

R(Q,v) =
⊕
a∈Q1

Hom(Cvt(a) ,Cvh(a)), (C.6)

where h(a) and t(a) are head and tail of an arrow a ∈ Q1. The reductive group G(v) =∏
i∈Q0

GL(vi)/C× naturally acts on R(Q,v), where C× is the diagonal embedding of central
tori, which acts trivially on R(Q,v). DefineD(R(Q,v)) be the ring of differential operators
on R(Q,v). The action of G(v) on R(Q,v) naturally extends to D(R(Q,v)).

Let us introduce a quantum moment map µ : g(v) ! D(R(Q,v)) as following. Fix a
coordinate X β

aα of R(Q,v), where a ∈ Q1, α = 1, · · · ,vh(a), and β = 1, · · · ,vt(a), then for
a basis element eνρ of gl(vi), define

µ(eνρ) =
∑

a∈Q1,h(a)=i
1≤γ≤vt(a)

X γ
aρ

∂

∂X γ
aν

−
∑

a∈Q1,t(a)=i
1≤γ≤vt(a)

X γ
aρ

∂

∂X γ
aν
. (C.7)

It is elementary to check that µ is indeed a quantum moment map. Note that in the
classical limit by taking associated graded of D(R(Q,v)) with respect to the filtration
degree degX β

aα = 0, deg ∂X β
aα

= 1, grD(R(Q,v)) is the ring of polynomials on T ∗R(Q,v),
in particular D(R(Q,v)) satisfies the Assumption C.1.4 with d = 1. Moreover µ is the
classical moment map in the context of quiver varieties, and in the classical setting, it is
conventional to write the Hamiltonian reduction as

M(Q,v) = Spec (C[T ∗R(Q,v)] � g(v)) . (C.8)

Definition C.1.11. Define the quantum quiver variety as C[ℏ]-algebra

Cℏ[M(Q,v)] = Rees(D(R(Q,v)) � g(v)), (C.9)

the RHS is the Rees algebra of D(R(Q,v)) � g(v) with respect to the filtration degree
degX β

aα = 0, deg ∂X β
aα

= 1.

We can also define another algebra

Cℏ[M(Q,v)] = Dℏ(R(Q,v))
g(v)/ (Dℏ(R(Q,v)) · µ(g(v)))g(v) , (C.10)

230



where Dℏ(R(Q,v)) is the ring of ℏ-differential operators on R(Q,v), i.e. the Rees algebra
of D(R(Q,v)) with respect to the filtration degree degX β

aα = 0, deg ∂X β
aα

= 1. We observe
that there is an isomorphism

Cℏ[M(Q,v)]/(ℏ− 1) ∼= D(R(Q,v)) � g(v) ∼= Cℏ[M(Q,v)]/(ℏ− 1). (C.11)

Then it follows from Rees construction that there is a graded C[ℏ]-algebra homomorphism

Φ : Cℏ[M(Q,v)] −! Cℏ[M(Q,v)],

such that Φ[ℏ−1] is isomorphism. We claim that Φ : Cℏ[M(Q,v)] ! Cℏ[M(Q,v)] is
surjective. In fact,

Cℏ[M(Q,v)]/(ℏ) = gr
(
D(R(Q,v))g(v)

)
/ (grD(R(Q,v)) · µ(g(v)))g(v) ,

Cℏ[M(Q,v)]/(ℏ) = gr
(
D(R(Q,v))g(v)

)
/gr
(
(D(R(Q,v)) · µ(g(v)))g(v)

)
,

and it is easy to see that (grD(R(Q,v)) · µ(g(v)))g(v) ⊂ gr
(
(D(R(Q,v)) · µ(g(v)))g(v)

)
.

Lemma C.1.12. The following statements are equivalent:

(1) Cℏ[M(Q,v)] is flat over C[ℏ].

(2) Φ : Cℏ[M(Q,v)]! Cℏ[M(Q,v)] is isomorphism.

(3) The natural map C[T ∗R(Q,v)] � g(v)! gr(D(R(Q,v)) � g(v)) is isomorphism.

Proof. As we have explained, Φ[ℏ−1] is isomorphism, so the kernel of Φ is ℏ-torsion. Since
Cℏ[M(Q,v)] is C[ℏ]-free by the Rees construction, the equivalence between (1) and (2) is
obvious. The statement (3) is equivalent to Φ/(ℏ) being an isomorphism, thus (2) implies
(3). Suppose that (3) holds, then the long exact sequence associated to −⊗L

C[ℏ] C implies

that ker(Φ) = ℏ · ker(Φ). However Dℏ(R(Q,v)) is graded with deg ℏ = 1 and the grading
is bounded below, thus ker(Φ) ⫌ ℏ · ker(Φ) unless ker(Φ) = 0. This shows that (3) implies
(2).

Definition C.1.13. We say that quantization commutes with reduction if one of the
equivalent statements in Lemma C.1.12 holds.

To state the next proposition, we need the following convention: let p(v) be the function

p(v) = 1 +
∑
a∈Q1

vh(a)vt(a) −
∑
i∈Q0

vivi. (C.12)
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Definition C.1.14. We say that (Q,v) is good if

• p(v) ≥
∑r

t=1 p(v
(t)) for any decomposition v = v(1) + · · · + v(r) into nonzero v(t) ∈

NQ0 .

Proposition C.1.15. If (Q,v) is good, then quantization of M(Q,v) commutes with
reduction. In particular

Cℏ[M(Q,v)]/(ℏ) ∼= C[M(Q,v)], (C.13)

i.e. Cℏ[M(Q,v)] is a flat deformation of C[M(Q,v)].

Proof. Since (Q,v) is good, and Crawley-Boevey [46, Theorem 1.1] shows that in this case
the classical moment map µ : S∗(g(v)) ! C[T ∗R(Q,v)] (µ is extended to the symmetric
algebra of g(v)) is flat, in particular any sequence of basis of g(v) is mapped to a regular
sequence in C[T ∗R(Q,v)], which is exactly the condition in Proposition C.1.6, so we have

Cℏ[M(Q,v)]/(ℏ) = gr (D(R(Q,v)) � g(v)) ∼= C[T ∗R(Q,v)] � g(v) = C[M(Q,v)].

C.1.16 Quantum Nakajima quiver variety

Let (Q,v,w) be a framed quiver with framing vector w (assume w ̸= 0). Following
Crawley-Boevey, we define the associated unframed quiver (Qw,vw) as Qw

0 = Q0

∐
{∞}

(union of vertices of Q with an extra vertex denoted by ∞), and arrows in Qw are those
from Q and for each vertex i ∈ Q0 attach wi-copies of arrows from ∞ to i, and set vw

i = vi
if i ∈ Q0 and vw

∞ = 1. From the construction we see that the group

G(vw) =
∏
i∈Qw

0

GL(vw
i )/C× ∼=

∏
i∈Q0

GL(vi) =: GL(v) (C.14)

acts on R(Qw,vw). Then we have the quantum moment map µ : gl(v) ! D(R(Qw,vw))
defined by the equation (C.7).

We can consider the shift of µ. Namely there is a character χ : GL(v) ! C× sending
(gi | gi ∈ GL(vi)) to

∏
i det(gi). It gives rise to a |Q0|-dimensional family of quantum

moment maps µtχ : gl(v) ! D(R(Qw,vw))[t], here C[t] = C[ti | i ∈ Q0], and µtχ acts on
basis element eνρ of gl(vi) as

µtχ(e
ν
ρ) = µ(eνρ)− δνρ ti.

232



Definition C.1.17. Define the deformed quantum Nakajima quiver variety as C[ℏ, t]-algebra

Cℏ[Mt(Q,v,w)] = Rees(D(R(Qw,vw)) �tχ gl(v)), (C.15)

the RHS is the Rees algebra of D(R(Qw,vw))�tχgl(v) with respect to the filtration degree
degX β

aα = 0, deg ∂X β
aα

= deg ti = 1.

Similarly, given a vector λ ∈ CQ0 , Define the λ-specialized quantum Nakajima quiver
variety as C[ℏ]-algebra

Cℏ[Mλ(Q,v,w)] = Rees(D(R(Qw,vw)) �λχ gl(v)), (C.16)

the RHS is the Rees algebra of D(R(Qw,vw))�λχgl(v) with respect to the filtration degree
degX β

aα = 0, deg ∂X β
aα

= 1. It is elementray to see that

Cℏ[Mt(Q,v,w)]/(ti − λi | i ∈ Q0) ∼= Cℏ[Mλ(Q,v,w)]. (C.17)

Proposition C.1.18. If (Qw,vw) is good, then Cℏ[Mt(Q,v,w)] is a free C[ℏ, t]-module,
and

Cℏ[Mt(Q,v,w)]/(ℏ) ∼= C[Mt(Q,v,w)],

Cℏ[Mλ(Q,v,w)]/(ℏ) ∼= C[Mλ(Q,v,w)].
(C.18)

In other words, Cℏ[Mt(Q,v,w)] and Cℏ[Mλ(Q,v,w)] are quantizations of C[Mt(Q,v,w)]
and C[Mλ(Q,v,w)].

Proof. Isomorphisms (C.18) follow from Proposition C.1.15. In order to show the freeness
of Cℏ[Mt(Q,v,w)] (equivalently Cℏ[Mt(Q,v,w)]), as a C[ℏ, t]-module, we modify the
Proposition C.1.6 by changing the definition of quantum moment map to its Rees version,
i.e. ∀a ∈ g, b ∈ A,

[µ(a), b] = ℏϕ(a) · b,

here A = Dℏ(R(Q
w,vw))[t] and g = gl(v). Introduce a filtration F•Dℏ(R(Q

w,vw))[t] by
setting degX β

aα = deg ℏ = deg ti = 0, deg ∂X β
aα

= 1, then

grFDℏ(R(Q
w,vw))[t] = C[T ∗R(Qw,vw)][ℏ, t],

and µ agrees with the classical moment map for T ∗R(Qw,vw), which maps a basis of
gl(v) to a regular sequence because we assume that (Qw,vw) is good, therefore the same
argument of Proposition C.1.6 shows that

C[T ∗R(Qw,vw)][ℏ, t] � gl(v) ∼= grF (Cℏ[Mt(Q,v,w)]) .
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The LHS is a undeformed Hamiltonian reduction, since the deformation parameter ti is in
zeroth filtration part and is modulo out in the associated graded µ, therefore

C[T ∗R(Qw,vw)][ℏ, t] � gl(v) = (C[T ∗R(Qw,vw)] � gl(v)) [ℏ, t],

thus grF (Cℏ[Mt(Q,v,w)]) is a free C[ℏ, t]-module.

The following theorem is a special case of the main result of [163].

Theorem C.1.19. If (Qw,vw) is good, then Mλ(Q,v,w) is reduced for all λ ∈ CQ0.

Remark C.1.20. It can be shown that if C[Mt(Q,v,w)] is a flat C[t]-module, then (Qw,vw)
is good. This is a corollary of Crawley-Boevey’s criterion on the flatness of classical moment
map for quivers [46, Theorem 1.1]. We give a sketch of proof to this corollary. Let
µcl : T

∗R(Qw,vw)! gl(v)∗ be the geometric version of classical moment map. The affine
space Z := SpecC[t] embeds into gl(v)∗ as the dual of gl(v)/[gl(v), gl(v)]. C[Mt(Q,v,w)]
being a flat C[t]-module implies that µ−1

cl (Z)! Z is dominant. It is easy to see that the set
of λ ∈ Z such that vw ∈ Σλ (see comments after [46, Theorem 1.2] for notation) contains
the complement of union of finitely many hyperplanes in Z, therefore ∃λ ∈ Z such that
vw ∈ Σλ and µ−1

cl (λ) is nonempty. According to [46, Corollary 1.4], this implies that

dimµ−1
cl (λ)/GL(v) = 2p(vw),

and by the flatness ofMt(Q,v,w), we see that dimµ−1
cl (0)/GL(v) = 2p(vw), and according

to [48, Theorem 1.1], this in turn implies that (Qw,vw) is good.

Remark C.1.21. We can write the condition for (Qw,vw) being good in terms of framed
quiver (Q,v,w). Note that p(vw) = p(v) + w · v − 1, here w · v =

∑
i∈Q0

wivi, and

p(v) = 1 − 1
2
v · CQv, here CQ is the Cartan matrix of Q. Any decomposition of vw into

nonzero element in NQw
0 is of the form v(0)w+v(1)+· · ·+v(r), where v = v(0)+v(1)+· · ·+v(r)

is a decomposition of v into elements in NQ0 such that v(t) ̸= 0 for t > 0. Thus (Qw,vw)
is good iff

r∑
t=1

w · v(t) ≥ r +
∑

0≤t<u≤r

v(t) · CQv(u), (C.19)

for all decomposition v = v(0) + v(1) + · · · + v(r) into elements in NQ0 such that v(t) ̸= 0
for t > 0.

Remark C.1.22. Nakajima gave a sufficient condition for (Qw,vw) being good in some
cases [127, Proposition 10.5]. Namely, assume that Q has no edge loop, and
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(1) w · δ ≥ 2 for all imaginary root δ of Q,

(2) w − CQv ∈ ZQ0

≥0,

then (Qw,vw) is good. For example, if Q is of finite type (i.e. ADE quivers), then (Qw,vw)
is good if w − CQv ∈ ZQ0

≥0.

C.1.23 Sheaf version of quantization

Let (Q,v,w) be a framed quiver such that (Qv,vw) is good, choose a generic stability
θ ∈ QQ0 , then the stable moduli space Mθ

t(Q,v,w) is smooth over the base SpecC[t].
Moreover the natural projection p : Mθ

t(Q,v,w)!Mt(Q,v,w) is projective, and for all
λ ∈ CQ0 , pλ : Mθ

λ(Q,v,w)!Mλ(Q,v,w) is a symplectic resolution. By the construction

in [115], there is a sheaf of flat C[[ℏ]]-algebras on Mθ
t(Q,v,w), denote by ÕMθ

t
, such

that ÕMθ
t
/(ℏ) is the structure sheaf OMθ

t
. By [115] there is a natural C[ℏ, t]-algebra

homomorphism

Cℏ[Mθ
t(Q,v,w)]! Γ

(
Mθ

t(Q,v,w), ÕMθ
t

)
,

and moreover we have

Proposition C.1.24. Under the above homomorphism Cℏ[Mθ
t(Q,v,w)] is identified with

C×-finite elements in Γ
(
Mθ

t(Q,v,w), ÕMθ
t

)
, where C× acts on quiver path generators

with weight one and on ℏ, t with weight two.

C.1.25 Calogero representation

Let (Q,v,w) be a framed quiver such that (Qv,vw) is good, and moreover assume that
the θ-stable locus of R(Qw,vw), denote by Rθ(Qw,vw), is nonempty, then T ∗Rθ(Qw,vw)
is contained in the θ-stable locus of T ∗R(Qw,vw), and it is GL(v)-stable, therefore there
is an open embedding

T ∗Rθ(Qw,vw) �tχ GL(v) ↪!Mθ
t(Q,v,w).

Note that T ∗Rθ(Qw,vw) �tχ GL(v) is the t-twisted cotangent bundle T ∗
t N θ(Q,v,w) of

the affine quotient

N θ(Q,v,w) = Rθ(Qw,vw)/GL(v).
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Here t-twisted cotangent bundle is defined as the affine bundle over N θ(Q,v,w)×SpecC[t]
modelled on T ∗N θ(Q,v,w) × SpecC[t] and determined by the class

∑
i∈Q0

c1(Li) ⊗ ti ∈
H1(Ω1), where Li is the tautological line bundle associated to the i’th node.

After passing to quantization, ÕMθ
t
|T ∗

t N θ(Q,v,w) is naturally identified with ℏ-adic com-

pletion of the sheaf of t-twisted ℏ-differential operators onN θ(Q,v,w). Since T ∗
t N θ(Q,v,w)

is open and dense in Mθ
t(Q,v,w), composing the embedding in Proposition C.1.24 with

the restriction map Γ
(
Mθ

t(Q,v,w), ÕMθ
t

)
↪! Γ

(
T ∗
t N θ(Q,v,w), ÕMθ

t

)
, we obtain an

embedding of C[ℏ, t]-algebras

Cℏ[Mθ
t(Q,v,w)] ↪! Dt

ℏ(N θ(Q,v,w)), (C.20)

where the right-hand-side is the ring of t-twisted ℏ-differential operators on N θ(Q,v,w).
We call such embedding a Calogero representation of Cℏ[Mθ

t(Q,v,w)].
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Appendix D

Integrals in the 5d CS Perturbative
Calculations

Lemma 1.
We will compute the following integral.

ϵ1ϵ
2
2

∫
v1

dw1 ∧ dz1 ∧ ∂z1P1(v0, v1) ∧ ∂z2∂w1P2(v1, v2)(z
2
1w1∂

2
z1
∂w1A) (D.1)

Computing the partial derivatives, we can re-write it as

ϵ1ϵ
2
2

(
z̄1
d201

w̄1

d412
(w1z1z̄2)

)
[P (v0, v1) ∧ dw1 ∧ z1dz1 ∧ P (v1, v2)]

Note that we ignore all constant factors here. We see that

P (v0, v1) ∧ P (v1, v2) =
dz̄1dw̄1dt1
d501d

5
12

(z̄01w̄12dt2 − z̄01t12dw̄2 + w̄01t12dz̄2

− w̄01z̄12dt2 + t01z̄12dw̄2 − t01w̄12dz̄2)

Including ∧dw1 ∧ (z1dz1)∧, we can simplify it:

P (v0, v1) ∧ P (v1, v2) ∧ (w1dw1) ∧ (z1dz1) = dz̄1dz1dw1dw̄1dt1
(
|z1|2|w1|2z̄2

)
×[

∂z̄0

(
z̄01w̄12dt2 − z̄01t12dw̄2 + w̄01t12dz̄2 − w̄01z̄12dt2 + t01z̄12dw̄2 − t01w̄12dz̄12

d501d
9
12

)
− ∂z̄0(z̄01w̄12dt2 − z̄01t12dw̄2 + w̄01t12dz̄2 − w̄01z̄12dt2 + t01z̄12dw̄2 − t01w̄12dz̄12)

d501d
9
12

]
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By integration by parts, the the integral over t1, z1, z̄1, w1, w̄1 of all terms in the first two
lines vanishes.

Therefore, we are left with

−
∫
v1

dt1dz1dz̄1dw1dw̄1
|z1|2|w1|2z̄2(w̄12dt2 − t12dw̄2)

d501d
9
12

(D.2)

Lemma 2.

We can use Feynman integral technique to convert (D.2) to the following:∫
v1

∫ 1

0

dx
Γ(7)

Γ(5/2)Γ(9/2)

√
x3(1− x)7|z1|2|w1|2z̄2(w̄12dt2 − t12dw̄2)

((1− x)(|z1|2+|w1|2 + t21) + x(|z12|2+|w12|2 + t212))
7

=

∫
v1

∫ 1

0

dx
(Γ factors)

√
x3(1− x)7|z1|2|w1|2z̄2(w̄12dt2 − t12dw̄2)

(|z1 − xz2|2+|w1 − xw2|2 + (t1 − xt2)2 + x(1− x)(|z2|2+|w2|2 + t22))
7

Shift the integral variables as

z1 ! z1 + xz2, w1 ! w1 + xw2, t1 ! t1 + xt2

Then the above becomes∫
v1

∫ 1

0

dx
Γ(7)

Γ(5/2)Γ(9/2)

√
x3(1− x)7|z1 + xz2|2|w1 + xw2|2z̄2

(|z1|2+|w1|2 + t21 + x(1− x)(|z2|2+|w2|2 + t22))
7

× ((w̄1 + (x− 1)w̄2)dt2 − (t1 + (x− 1)t2)dw̄2)

Drop terms with odd number of t1 and terms that has holomorphic or anti-holomorphic
dependence on z1 or w1:∫

v1

∫ 1

0

dx
Γ(7)

Γ(5/2)Γ(9/2)

√
x3(1− x)9(|z1|2 + x2|z2|2)(|w1|2 + x2|w2|2)z̄2(w̄2dt2 − t2dw̄2)

(|z1|2+|w1|2 + t21 + x(1− x)(|z2|2+|w2|2 + t22))
7

After doing the v1 integral using Mathematica with the integral measure dt1dz1dz̄1dz2dz̄2,
we get

z̄2(w̄2dt2 − t2dw̄2)

(
c1
d502

+
c2w

2
2

d702
+
c3z

2
2

d702
+
c4z

2
2w

2
2

d902

)
(D.3)

Lemma 3.
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We will compute the integral over the second vertex.∫
v2

P ∧ ∂w2P3(v2, v3) ∧ dz2 ∧ dw2(z2w
2
2∂z2∂

2
w2
A)

=

∫
v2

P ∧ w̄2(z̄23dw̄2dt2 − w̄23dz̄2dt2 + t23dz̄2dw̄2)

d723
∧ dw2 ∧ dz2

(D.4)

Now, compute the integrand:

z̄2(w̄2dt2 − t2dw̄2)w̄2(z̄23dw̄2dt2 − w̄23dz̄2dt2 + t23dz̄2dw̄2)

d502d
7
23

∧ dw2 ∧ dz2

=
|z2|2|w2|4(t2 − t3 − t2)

d502d
7
23

dt2dz̄2dw̄2dw2dz2

=− |z2|2|w2|4t3
d502d

7
23

dt2dz̄2dw̄2dw2dz2 substitute t3 = ϵ, then,

=− |z2|2|w2|4ϵ
d502d

7
23

dt2dz̄2dw̄2dw2dz2

(D.5)

We can rescale ϵ! 1, without loss of generality, then it becomes

−|z2|2|w2|4

d502d
7
23

dt2dz̄2dw̄2dw2dz2 (D.6)

Lemma 4.
Now, it remains to evaluate the delta function at the third vertex. In other words, substi-
tute

w3 ! 0, z3 ! 0, t3 ! ϵ = 1 (D.7)

and use Feynman technique to convert the above integral into

− Γ(6)

Γ(5/2)Γ(7/2)

∫ 1

0

dx

∫
v2

√
x3(1− x)5|z2|2|w2|4

(x(z22 + w2
2 + (t2 − 1)2) + (1− x)(z22 + w2

2 + t22))
6

=− Γ(6)

Γ(5/2)Γ(7/2)

∫ 1

0

dx

∫
v2

√
x3(1− x)5|z2|2|w2|4

(z22 + w2
2 + (t2 − x)2 + x(1− x))6

=− Γ(6)

Γ(5/2)Γ(7/2)

∫ 1

0

dx

∫
v2

√
x3(1− x)5|z2|2|w2|4

(z22 + w2
2 + t22 + x(1− x))6
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In the second equality, we shift t2 to t2 + x. After doing v2 integral, it reduces to

Γ(6)

Γ(5/2)Γ(7/2)

π

2880

∫ 1

0

dxx(1− x)2 =
Γ(6)

Γ(5/2)Γ(7/2)

π

2880

Finally, re-introduce all omitted constants:

(First Term) =
Γ(6)

Γ(5/2)Γ(7/2)

Γ(7)

Γ(5/2)Γ(9/2)
(2π)2(2π)2

π

2880
(D.8)

Similarly, we can compute all the others without any divergence.

(Second Term) =
Γ(6)

Γ(5/2)Γ(7/2)

Γ(7)

Γ(5/2)Γ(9/2)
(2π)2(2π)2

π

5760

(Third Term) =
Γ(6)

Γ(5/2)Γ(7/2)

Γ(7)

Γ(5/2)Γ(9/2)
(2π)2(2π)2

π

8640

(Fourth Term) =
Γ(6)

Γ(5/2)Γ(7/2)

Γ(7)

Γ(5/2)Γ(9/2)
(2π)2(2π)2

π

20160

(D.9)

Hence, every terms in (D.3) are integrated into finite terms.
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