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Abstract

Ground Source Heat Pump (GSHP) systems have grown in popularity and acceptance

worldwide as an attractive option to replace conventional Heating Ventilation and Air

Conditioning (HVAC) technologies due to their capacity to provide space heating and

cooling in buildings and houses. Such GSHP systems may participate as a price-taker in

electricity markets through a load aggregator to optimize their load demand, being able

to provide grid services, such as load shifting. Therefore, aggregated GSHP systems have

the potential, if properly designed, integrated, and applied, to yield energy and carbon

savings in the energy market. However, the integration of such aggregated GSHP systems

brings new challenges to operators, as it involves uncertainties on ambient temperature

and electricity price forecasts, which can be highly volatile and thus impact the GSHP

system operation and its participation in electricity markets. From a detailed literature

review of GSHP applications for load management for residential users, it can be concluded

that there are no works that discuss the operational performance of large-scale GSHP

systems, modeled in detail, and their integration in electricity markets; additionally, none

of the existing works have considered uncertainties in terms of ambient temperature and

electricity price forecasts for the optimal operation of aggregated GSHP systems.

After a comprehensive review of the relevant background related to GSHP systems,

aggregator strategies in the electricity market, and optimization in the presence of un-

certainties, in this thesis, a detailed mathematical model is presented of a GSHP with a

vertical U-pipe Ground Heat eXchanger (GHX) configuration to provide residential space

heating/cooling, integrating them into a load aggregator model. Based on this model, a

two-stage operational strategy for the GSHP price-taker aggregator participating in Day-

Ahead Market (DAM) and Real-Time Market (RTM) is proposed, to determine the optimal

annual heating/cooling load dispatch to control the temperatures for a community of houses

that minimizes the aggregator’s cost. Simulations are presented then of an aggregator’s

optimal load dispatch with a conventional HVAC and the proposed GSHP alternative,

considering comfort maximization vis-a-vis minimization of electricity costs, and showing

the impact of each objective with respect to the dispatch of controllable loads, in-house

temperature, and total procurement costs.

Finally, a novel model based on Robust Optimization (RO) is proposed and developed,

considering uncertainties in terms of the DAM and RTM electricity prices and hourly am-

bient temperature forecasts, which yields an optimum schedule that protects against the
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worst-case scenario for a given level of conservatism. The RO model is compared and

validated in a realistic test system with respect to Model Predictive Control (MPC) and

Monte Carlo Simulations (MCS) approaches that are traditionally used to manage uncer-

tainty. It is shown that the proposed RO approach is computationally efficient compared

to the MPC and MCS approaches, and properly accounts for the considered uncertain-

ties, demonstrating the advantage of the presented RO technique for GSHP dispatch by

aggregators.
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Chapter 1

Introduction

1.1 Motivation

Canada has set a target of 30% reduction in Green House Gas (GHG) emissions by 2030,

from its 2005 levels, which is expected to be achieved by implementing different strategies

determined from a high-level analysis. In this context, the total residential energy use

in 2016 in Canada was 1458 PJ, of which 60% was accounted for by space heating and

cooling [1]. The main source of energy for space heating and cooling varies by province;

for example, in Ontario, the majority of residences are heated with natural gas, whereas

in Quebec, the use of electric-based heaters is preponderant [2]. Therefore, there is a need

for alternative low-cost and more efficient energy sources for residential and commercial

heating and cooling, in which the development and application of Ground Source Heat

Pump (GSHP) systems could play a role.

GSHP is a viable energy-efficient alternative to traditional furnaces and air condition-

ers, and can help existing electrically heated homes reduce their energy consumption for

heating, by up to 60% [3]. It has been reported in [4] that, when gas heated homes are

transformed to GSHP heating, there are significant reductions in GHG emissions; however,

the economic benefits are only realized over a long-term time horizon after recovery of the

capital costs. On the other hand, transformation of electrical heated homes to GSHP

heating has significant economic benefits, with relatively low impact on GHG reductions

in power systems with low emission, such as Ontario and Quebec, but higher impact on

systems with high GHG emissions as in some regions in USA, Canada and Europe.
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GSHP systems are generally preferred over other types of heat pump systems, because

the ground temperature remains almost constant throughout the year and is usually higher

than the ambient temperature in winter and lower than the ambient in summer [5,6]. The

application of GSHP systems to provide in-house air comfort has been studied for over 60

years, such as in Philadelphia, USA, in 1947 [7], when the city’s electric utility undertook a

project on the heat transfer features of the earth and its use as a heat source for heat pumps.

In Canada, a number of operational and pilot projects have been implemented to satisfy the

inter-seasonal cooling and heating demand with the application of Underground Thermal

Energy Storage (UTES) facilities [8], in conjunction with the implementation of GSHP

units, for the development of an efficient Energy Management System (EMS). Studies in

different cities and provinces of Canada have demonstrated that the use of GSHP systems

can reduce the heating energy cost by up to 50%, compared to furnace based heating

systems [9].

The evolution of wholesale electricity markets has predominantly focused on the devel-

opment of a competitive supply (generation) system. Residential customers are usually not

eligible to purchase electricity directly from the wholesale energy market [10], and hence

GSHP systems cannot participate in the demand bidding process individually. To cap-

ture the benefits of demand elasticity of individual GSHP loads, they can be represented

as a group, typically referred to as a load aggregator. For example, in Ontario, Canada,

the Independent Electric System Operator (IESO) launched the Demand Response (DR)

auction program in 2016 to develop an operating reserve provision that is available, at

lower cost than the capacity installation cost, and almost 50% of the participants were

load aggregators [11].

Even though GSHP is a well known technology in Canada, few projects have been

built [12]. As a result, only limited data, information, and research has been reported

on the viability of this technology for reducing end-user electricity consumption. This

imposes further challenges to system operators, utilities, and new investors to understand

the benefits that can be obtained from GSHPs in reducing building space heating and

cooling energy demand, their potential to provide additional services to the utility, such as

load shifting, and to properly assess the economics of new developments. Therefore, the

development of new load aggregator models to study the application of GSHPs connected

to the grid should help provide sufficient insights into their impact on the rest of the system.

This is specially important for Ontario, not only because of the interest of the province

to promote installation of GSHPs at their end-use customers [9], but also to exploit the
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favorable geological features of the region.

Therefore, the main objectives of this thesis are to propose appropriate load aggrega-

tor models and frameworks for optimal dispatch and market participation of GSHPs for

energy, heating, and DR provisions, with the inclusion of a novel mathematical model of a

GSHP system with vertical U-pipe Ground Heat eXchanger (GHX) configuration, consid-

ering its thermal and geometric characteristics. In this context, the deployment of these

GSHP systems in practical settings, introduces new challenges to operators and especially

for aggregators participating in competitive electricity markets, because it involves uncer-

tainties in ambient temperatures and electricity prices, which can be highly volatile and

thus impact the GSHP operation considerably [13, 14]. There is a need to consider these

uncertainties are considered here to optimally schedule the power dispatch of GSHP loads

in electricity markets by aggregators as price-taker participants.

1.2 Literature Review

The literature review presented in this section concentrates on the modeling and operation

of GSHP systems, discussing the thermodynamic models of the GHX. This is followed

by a summary on the participation of load aggregators in electricity markets, and the

application of Robust Optimization (RO), Model Predictive Control (MPC), and Monte

Carlo Simulation (MCS) approaches to consider uncertainties in power system operation.

1.2.1 GSHP Modeling and Operation

This section discusses research works focusing on GSHP system modeling and operation

in the context of electricity markets. The provision of Primary Frequency Control (PFC)

in isolated microgrids has been considered in [15], with the application of GSHP units

using a DR strategy for Thermostatically Controlled Loads (TCL). The thermodynamic

characteristics of the house are represented with a thermal-electrical equivalent circuit,

which considers parameters such as outdoor temperature, solar irradiance, internal heat

loads, house thermal properties, among others. The model of the GSHP unit comprises

the thermo-electrical equivalent circuit model of the house, the equation fit model of the

reversible water-to-air based GSHP, and the thermodynamic model of the borehole-based
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GHX. The performance of the thermo-electrical models for the provision of PFC with

the proposed DR strategy is then evaluated, using a model of an actual hybrid PV-diesel

microgrid. Different tests are conducted to analyze the system frequency response under

different controls, and including GSHP, Air Conditioning (AC), and electric water heating,

demonstrating the advantages of using GSHP for PFC. Some of the models developed in

this thesis are based on the work in [15], but for long-term GSHP operations rather than

dynamic analyses, to evaluate its advantage of GSHP over conventional HVAC systems.

An MPC approach for residential heating is presented in [16], wherein the thermal

mathematical model of a building is developed with a GSHP system used to supply thermal

energy to a water-based floor heating system. An MPC controller is implemented to

manage the GSHP compressor performance, in order to minimize the overall electricity

cost while maintaining the indoor temperature within a comfortable range. The thermal

model of the house is expressed as a continuous-time state space model to include the GSHP

dynamics, which are faster than the thermal characteristics of the building. The results

demonstrate that the MPC based approach is able to shift the on-peak loads to periods of

low electricity prices. However, this work [16] does not consider it detailed modeling of the

GHX system to represent the thermodynamics of the borehole component of the GSHP

systems, but instead assuming that the Coefficient of Performance (COP) is a constant

that is not affected by the heat contribution from the terminals of the GHX system.

Furthermore, the MPC approach uses perfect forecasts for the thermal characteristics of

the GSHP units.

The annual analysis of energy consumption for space heating and cooling in a residence

in Greece is presented in [17], wherein a conventional HVAC system comprising a fan-coil,

chiller/boiler 2-pipe system is compared to a water-to-water based GSHP with a horizon-

tal ground array. The study is performed on the dynamic performance of both systems

during 10 days in the winter for heating operation, and 10 days in the summer for cooling

operation, considering different control strategies. The simulation results demonstrated

that in southern Europe climates, for residential space heating and cooling services, GSHP

systems yield a 50% lower operation cost as compared to the standard chiller/boiler based

HVAC system. Although the study brings out advantages of GSHPs over conventional

HVAC systems, it lacks a detailed representation of the GSHP thermodynamic model.

A study for different GSHP systems in [18] presents a comparison with other heating

systems, such as Air Source Heat Pumps (ASHPs), electric baseboard heaters, and natural
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gas furnaces, with the objective of improving the understanding of GSHP systems and

promote their use in several applications. A detailed description of the heating systems

is provided, and the characteristics of each system is analyzed, highlighting the different

configurations, global status, and their advantages and limitations. A brief overview of

recent developments in GSHP systems for different applications is also included. A detailed

comparison with respect to efficiency, economy, and carbon dioxide emissions is carried out

as well, concluding that for Canadian climate conditions, GSHP systems possess the most

efficient COP, and from the economic point of view, these systems are the most economic

option in two of the three provinces considered, although it has a slightly higher cost

compared to ASHP systems in the third province. Finally, it is demonstrated that GSHP

systems are the largest emissions reductions option as compared to conventional electrical

heating devices or natural gas fired systems. This work [18] however, does not consider

large-scale aggregated GSHP systems, nor their optimal operation to minimize the annual

cost of heat provision.

A method is presented in [19] for the optimal design of GSHPs systems, combining

financial and thermodynamic characteristics to obtain estimates of the total costs and

optimal COP. The objective of this work is to determine the optimal technical configura-

tion of specific GSHP components, especially heat pumps, bore well size, number of bore

wells, and mass flow rate, satisfying the physical and technical system needs while mini-

mizing the total annual investment and operational costs. However, the proposed optimal

design model of the GSHP system does not consider detailed GHX system models that

represent the thermodynamic characteristics of the borehole performance. Furthermore,

no large-scale analysis of aggregated GSHP systems is included in the study.

Three different numerical models are reported in [20] to estimate the long-term ther-

mal behavior and operation of GSHP systems, focusing on the physical configuration and

geometrical characteristics of different GHX boreholes, two real GSHP facilities in Italy

are considered in the analysis; first, the performance of both facilities is monitored over a

year, to obtain enough data; then, computational simulations are carried out over a 10-year

period to analyze the behaviour of the u-pipe borehole based GHX configuration in both

facilities. The proposed numerical models are not suitable for optimal operation studies

due to the complexity of these models, that would result in considerable computational

costs.
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1.2.2 Electricity Market Load Aggregator

The authors in [21] propose a method to determine Day-Ahead Market (DAM) bidding

strategies of an aggregator of flexible loads seeking to maximize its profit, considering

different risk factors. The aggregator load profile is forecasted considering the aggregate

power demand of residential customers responding to dynamic tariffs. Uncertainties re-

lated to consumers’ behaviour and their willingness to participate in the aggregation are

considered. The studies show that risk-averse aggregators tend to adopt the bidding strate-

gies with larger power demand imbalances. Washing machines, dryers, dishwashers, and

Electric Vehicle (EV) charging stations are included in the study as source of flexible loads,

but thermal loads such as conventional HVAC or GSHP systems are not considered.

In [22], a retail electricity market is proposed that includes AC loads as DR providers,

managed using an agent-based approach. The framework comprises two optimization prob-

lems, the first seeks to maximize the retailer’s profit from the sale of energy, subject to the

price-sensitivity of loads. In the lower level problem, the AC agent seeks to minimize the

AC load consumption, implementing local controls, such as temperature set-point varia-

tions, considering the given retail prices and the consumers’ comfort levels. However, the

proposed agent-based approach focuses on the DAM only, with no consideration for the

Real-Time Market (RTM) operations.

The optimal operation of a DR aggregator participating in the wholesale electricity

market is presented in [23], where the aggregator manages a portfolio of different DR

programs to participate in the DAM and RTM as a price-taker participant. The optimiza-

tion problem, formulated as a bi-level optimization, determines the optimal schedule of

the different DR resources available, in dispatching ACs, with the upper-level objective

of maximizing the aggregator’s profit, whereas the lower level problem minimizes the cost

of providing energy balance to the system. The proposed model does not include GSHP

systems and does not consider the users’ satisfaction such as comfort constraints, which

are important in aggregator modeling.

The optimal schedule of aggregated flexible loads of commercial and residential build-

ings, such as HVAC and smart appliances, participating in a DAM is studied in [24]. The

demand profile considers two types of flexible loads: residential loads such as washers,

dryers and ACs; and commercial loads, mainly water heaters and HVAC systems. The

optimization model however, does not consider participation in the RTM, and no ther-

modynamic constraints are included to calculate the indoor temperature of the buildings
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and thus the effect of thermal controllable loads, such as conventional HVAC and GSHP

systems cannot be measured.

An optimal bidding strategy of an aggregator of Distributed Energy Resourcess (DERs)

and flexible demand in the DAM is proposed in [25]. The aggregator seeks to maximize its

expected profit considering the participation of multiple Local Energy Systems (LES), such

as Combined Heat and Power (CHP), Photovoltaics (PVs), chillers, conventional HVAC,

and Thermal Energy Storage (TES). The optimization problem considers the technical

and physical constraints from each energy system, along with the novel power dispatch

constraints. The Mixed Integer Linear Programming (MILP) optimization problem, how-

ever, is deterministic, and has a considerable computational cost since the model is rather

complex and not purely linear.

An optimization framework for the participation of DR aggregators in wholesale elec-

tricity markets is proposed in [26] that maximizes their profit in a DAM, considering dif-

ferent DR strategies such as load curtailment and load shifting, and energy storage units.

The proposed MILP optimization problem maximizes the difference between the revenue

for selling the aggregated total load reduction from all four strategies, and the cost of

paying the contracted customers for the load reductions, subject to the specific constraints

for each strategy. Results show that the use of energy storage units provides a more flex-

ible alternative and thus are a more profitable solution. However, the proposed model is

deterministic and does not include the potential DR contribution of thermal controllable

loads, especially GSHP systems.

1.2.3 Modeling uncertainties in load aggregator operation

Various works present load aggregator operation strategies considering uncertainties. For

example, a stochastic-based decision-making framework for the efficient management of

smart energy hubs is proposed in [27], where an optimal self-scheduling model is developed

for DAM and RTM to minimize the procurement cost of electricity, considering uncertain-

ties on electricity prices, renewable energy generation, and load demand. The energy hub

includes a boiler, a CHP unit, a battery storage system, a diesel generator, a wind turbine,

and an EV fleet. The model provides acceptable results with significant uncertainty in

the parameters, for a reasonable computational burden. On the other hand, a stochastic

operation strategy is presented in [28] for a Plug-In Electric Vehicle (PEV) load aggregator
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in the DAM, considering uncertainties based on customer’s driving patterns and market

prices, where the load aggregator determines the optimal PEV fleet charging schedule to

minimize its total energy cost. The bidding strategy of the aggregator is formulated as

a bilevel problem, which is implemented as a MILP optimization. The upper level prob-

lem represents the charging cost minimization of the aggregator, whereas the lower level

problem represents the market clearing. The stochastic model in both the works assume a

probability distribution function to represent the uncertainties, which could be a challenge

depending on data availability.

In [29] a schedule for an Energy Storage System (ESS) aggregator is proposed using

an RO approach to represent the uncertainties in the power output of Renewable Energy

Sources (RES), loads, and real-time thermal ratings of transmission lines. The problem is

first formulated as a deterministic scenario where the objective is to minimize the opera-

tional cost of the ESSs. The RO problem is solved for the worst-case scenario considering

a specific value of budget of uncertainty. The model provides robust results against signifi-

cant uncertainty with a reasonable computational burden. An MPC-based scheduling and

operation approach is proposed in [30] for a load aggregator, with the inclusion of generic

ESSs participating in DAM and RTM, and in the presence of price and load uncertainties.

With increasing uncertainty in price and load, the MPC-based strategy yields significantly

improved performance with respect to the other strategies, reducing the total electricity

costs of the load aggregator. However, none of the aforementioned works consider inclusion

of thermal based loads in the load aggregator framework, such as GSHP systems.

A strategic bidding and financial compensation mechanism for a load aggregator is pro-

posed in [31], which involves a Direct Thermostat Control (DTC) program implemented for

space heating and cooling services. The load control model is implemented in a two-stage

market framework, i.e., DAM and RTM. Uncertainties in DAM prices, non-controllable

loads, ambient temperature, and thermal characteristics of the house are considered in a

MCS based approach. However, only limited historical data was considered for the MCS

approach, which does not allow an accurate representation of the uncertainties, while re-

sulting in high computational costs.

A hybrid stochastic RO approach is proposed in [32] to develop an optimal bidding

strategy in the DAM for a microgrid, minimizing the total electricity cost. Uncertainties

in distributed generation output and DAM prices are modeled as stochastic optimization

problem using forecasted data. The results of the DAM settlement using the RO approach
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are used to model the uncertainty in RTM price, and hence limit the power unbalance in

real-time. It is noted that microgrids can benefit significantly from bidding in the DAM,

and the budget of uncertainty can be used to set different risk levels for the agent. However,

there is no consideration of thermal loads in the reported work, such as GSHP systems.

A novel stochastic-based optimization model for a residential energy hub is presented

in [33] for an optimal schedule of RES units that minimizes the total cost of electricity,

considering uncertainties in RES output power and electricity market prices, simultane-

ously, as well as the seasonal heat and power demands. The residential hub considers

different energy sources, such as EVs, PV, CHP and AC. The results show the advan-

tages of the proposed scenario-based model considering different uncertainties, compared

with deterministic methods. However, the RES device models included in the system [33],

are generic and do not capture their specific characteristics, nor there is representation of

seasonal heat and power demand uncertainties.

In [34], an optimal bidding strategy is proposed for a residential load aggregator to

maximize its total profit considering uncertainties, based on their willingness to participate

in the DR program to control residential flexible loads. The optimization problem considers

average models for HVAC, water heater and EV systems, which are treated as flexible loads;

uncertainties on the level of the consumer’s willingness to participate in the DR program are

modeled by implementing fuzzy logic inference rules. However, there is no consideration for

uncertainties in the house thermal characteristics, and the thermal/technical characteristics

of the flexible loads are not modeled.

1.2.4 Discussion

From the literature review, it can be observed that some works examine the different ap-

plications of GSHP systems for space heating and cooling, such as frequency regulation

services, strategies to reduce costs, and GSHP integration into the grid. However, load

aggregator models presented in the literature, in general, do not consider GSHP modeling

and load management, with the majority of research papers focusing on optimal load dis-

patch of existing thermostatically controllable loads, such as ACs, electric water heaters

and other flexible loads. Furthermore, most of the reported research that consider GSHP

systems focus on their modeling and overall efficiency, but do not consider their partici-

pation in electricity markets. Finally, there are no works dealing with the application of
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GSHP systems for optimal heating and cooling load dispatch by aggregators.

The load aggregator models and their participation in electricity markets discussed in

the literature review are based on low fidelity and incomplete models of household thermal

characteristics, since these do not consider a number of key components such as internal

heat gains, solar radiance and household building heat transfer. No load aggregator models

have yet been reported in the literature for optimal power dispatch of heating/cooling loads

of GSHP systems. Performance comparisons between GSHP and other TCLs for power

consumption reduction in heating mode have not been reported so far either.

To represent uncertainties in power systems studies, techniques based on range arith-

metic such as RO have been shown to perform well, compared to MCS and MPC ap-

proaches. However, only a few papers have focused on studying conservative solutions

against worst-case scenarios in the context of load aggregation. Furthermore, uncertainties

related to the thermal characteristics of households and the GSHP units have not been

considered in the aggregator framework for flexible load dispatch. Finally, works that con-

sider uncertainties on thermodynamic characteristics of thermal loads are generic and do

not capture their specific characteristics.

Based on the aforementioned discussion, the main objective of the research presented

in this thesis is to develop a two-stage operational strategy for the GSHP price-taker

aggregator participating in DAM and RTM, and hence determine the optimal annual

heating/cooling load dispatch to control the temperatures for a community of houses that

minimizes the aggregator’s cost, considering uncertainties by means of an RO approach.

The detailed objectives of the thesis are discussed next.

1.3 Research Objectives

The main objectives and expected contributions of this thesis are the following:

• Develop a novel mathematical model of a GSHP system with vertical U-pipe GHX

configuration, integrated with the thermal model of households in closed-loop and

accounting for the thermal and geometric characteristics of residential space heat-

ing/cooling, with the capacity to switch between heating and cooling operation modes

based on the ambient temperature.
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• Propose a GSHP/HVAC load aggregator model for its participation in wholesale

electricity markets as a price-taker participant, to provide peak load reduction and

load shifting by optimally dispatching the aggregated GSHP loads with the follow-

ing different operating strategies: a) maximize the house comfort, and b) two-stage

operation in DAM and RTM to minimize the aggregator’s total electricity cost.

• Carry out simulations for a year considering the integration of several GSHPs/HVACs

by a load aggregator for comparative optimal operation strategies in the DAM and

RTM, with mathematical models augmented with a set of coordination equations to

manage the switching between heating and cooling operations of the GSHP/HVAC

systems when operating over the yearly cycle.

• Carry out a techno-economic analysis, to examine the feasibility and long-term prof-

itability for the load aggregator to invest in GSHP systems operating with the pro-

posed strategy, compared to HVAC systems.

• Propose an RO mathematical model that considers uncertainties in electricity prices

and ambient temperature to optimize the aggregated GSHP load dispatch, controlling

their in-house temperatures to minimize overall costs under the worst-case scenario.

To realize the aforementioned objectives, a realistic test system that includes a commu-

nity of 800 houses is used, with different house thermal and geometric characteristics, along

with different HVAC and GSHP unit characteristics. This allows to realistically compare

and analyze the results of the proposed models and operation methodology, and evaluate

the RO approach performance with respect to MPC and MCS techniques.

1.4 Outline of the Thesis

The rest of the thesis is organized as follows:

• Chapter 2 discusses the relevant background on GSHP systems and modeling. A gen-

eral overview on the Ontario electricity market model, the services provided and the

role of load aggregators is also presented. Finally, a brief background on optimization

techniques based on MPC, MCS, and RO approaches to represent uncertainties, are

discussed.
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• Chapter 3 presents a deterministic GSHP model for a price-taker load aggregator

participating in electricity markets. First, a linear formulation to represent the ther-

modynamic characteristics of the GSHP and HVAC system are presented. Thereafter,

a linear load aggregator model is developed for the proposed two-stage and base case

strategies, followed by the results and comparisons of the simulation studies based

on the long-term performance of the deterministic GSHP model, compared with the

HVAC system and for both the proposed two-stage and base case strategies.

• Chapter 4 presents the GSHP mathematical models considering uncertainties in elec-

tricity prices and ambient temperatures, using an RO technique and MPC and MCS

approaches. Results obtained when uncertainties are modeled, presented and com-

pared among the three approaches used, to account for uncertainties.

• Chapter 5 summarizes the thesis content, and highlights the main conclusions and

contributions of the presented work. The scope for future work is also discussed.
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Chapter 2

Background

In this Chapter, a general overview, modeling and operation of GSHP systems are dis-

cussed, considering all the thermodynamic characteristics associated with the system. A

general overview of the Ontario electricity market is presented next, followed by a de-

scription of the role of aggregators participating in electricity markets. Finally, a general

description is provided of optimization techniques that consider uncertainties, together

with their mathematical formulation.

2.1 Ground Source Heat Pump

2.1.1 Overview

GSHP systems utilize the earth or ground water to provide space heating and cooling for

residential houses and commercial buildings. The system takes advantage of the earth as

a source of heat in the winter, and as a reservoir/sink for heat that is extracted from the

house or building in the summer [15,35].

GSHP systems are categorized based on the GHX configuration used, i.e., open loop,

closed loop, or hybrid. In open loop GHX systems, the underground water can be drawn

up to the heat pump, where the heat is extracted before re-injection. On the other hand, in

closed loop GHX systems, heat exchanger pipes are installed underground to extract/inject
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the heat via an antifreeze solution, which is then transferred to the heat pump’s refriger-

ation system [36]. In extreme cold areas, or in areas with poor water quality, closed loop

GHX based GSHP systems are preferable for space heating and cooling applications.

Two types of closed loop GSHP systems are available in the market, based on the

physical orientation of their GHX, namely, vertical and horizontal GHX arrangements [3].

Systems with vertical GHX do not require large areas, rendering then suitable for urban

areas, they are immersed in the boreholes of 0.1-0.2 m in diameter at a depth of 40-200

m (see Figure 2.1) [18]. These systems operate efficiently in all types of geological areas,

except soils with low thermal conductivity, such as dry sand or gravel (as in deserts). The

horizontal GHX arrangement is more common in rural areas, where properties are larger,

and these pipes are placed in trenches normally 1.0 to 1.8 m deep. These systems are

generally cheaper to install than vertical loops, but require large amount of land area.

The main components of a GSHP unit, shown in Figure 2.2, are the following [15,35]:

• Refrigerant: It is the liquid or gaseous substance that circulates within the heat

pump.

• Reversing Valve: It controls the direction of flow of the refrigerant in the heat pump

to operate either in heating or cooling mode.

• Evaporator: It is a device in which the refrigerant absorbs heat from its surroundings

and reaches its boiling point to become a low-temperature vapour.

• Compressor: It compresses the molecules of the refrigerant vapour, thus increasing

its temperature.

• Condenser: It is the device wherein the refrigerant vapour transfers the heat to its

surroundings and becomes a liquid refrigerant.

• Expansion Valve: It lowers the pressure created by the compressor, which causes the

temperature to drop, and the refrigerant becomes a low-temperature liquid.

The principle of operation of a GSHP unit is characterized by its ability to provide

space heating and cooling, as shown in Figure 2.3. In the heating cycle, the heat transferred

from the ground to the water in the borehole is transferred to the antifreeze or refrigerant

solution in the heat pump unit inside the house (see Figure 2.3a). The cooling cycle is
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Figure 2.1: Vertical Ground Heat Exchanger (GHX) [36].

basically the reverse of the heating cycle, as shown in Figure 2.3b. The direction of the

refrigerant flow is changed by the reversing valve. The refrigerant absorbs heat from the

house air and transfers it directly to the ground through the GHX [35].

Based on past experiences, a summary of the major challenges associated with GSHP

systems are the following [37,38]:

• Large initial investment: The installation cost of GSHP systems are high in ur-
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Figure 2.2: Generic configuration of a GSHP system with the arrows depicting the heating
cycle [36].

ban areas, mainly because of the high cost of the land and space limitations. For

aggregation-based grid service provisions, hundreds of residential GSHP systems

would be required, which again is a challenging proposition for urban areas.

• System installation regulations: The installation process for GSHP systems is com-

plex, which include drilling the land, installing the boreholes, etc., and there are no

specific regulations related to boreholes in residential areas.

• Determination of thermal properties: The thermal properties of GSHPs might change

with time, or even from one location to another. In order to determine these prop-

erties, different experimental and ground sampling procedures are necessary.

The performance of a general GSHP unit is identified by the COP and Energy Efficiency
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Figure 2.3: GSHP working principle [15].

Ratio (EER), in both heating and cooling modes, respectively [39], which can be calculated

as follows [35]:

EERHP =
QC

Wcom

(2.1)

COPHP =
QH

Wcom

(2.2)

The variables and parameters can be found in the Nomenclature section. For closed-

loop GSHP systems, the COP varies between 3.1 and 4.9, while the EER ranges from 13.4

to 25.8 [36]. In Canada, where air temperatures can go below -30°C, and where winter

ground temperatures are generally in the range of –2°C to 4°C, earth-energy systems have

a COP between 2.5 and 3.8 [3].
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2.1.2 Mathematical Modeling

The thermal model of a GSHP system follows the thermodynamic properties of the typical

vapor-compression cooling/heating cycle represented in the T-s diagram, as shown in Figure

2.4. The model considers the mass flow rates from the refrigerant and ground water

circulating in the GHX and the heat pump, the power consumption of the compressor,

and the heat transfer of the evaporator and condenser [40]. The model presented next,

represents the GSHP system operation in heating mode [40,41].
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Figure 2.4: T-s diagram of a vapour-compression cycle in heating mode for a heat pump [40].

From the first law of thermodynamics, the heat transfer Qh between the refrigerant in

the GSHP and the indoor air is given by:

Qh = (h3 − h2)ṁRe (2.3)

Additionally, the heat transfer Qc between the refrigerant and the underground water in

heating mode can be determined as follows:
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Qc = cf (Tout − Tin)ṁf (2.4)

The compressor power consumption Wcom can be expressed as a product of the mass flow

rate and the difference in enthalpy between states 2 and 1, as follows (Figure 2.4):

Wcom = ṁR(h2 − h1) (2.5)

The GHX heat transfer QGHX between the underground fluid and the soil is expressed as

follows:

Qabs/rej =
∆T

RTotal

=
∥Tg − Tf1+Tf2

2
∥

Rpp +Rbb +Rg

(2.6)

The thermal resistances of the GHX can be calculated as follows:

Rpp =
S

2UGHXπDi,GHX lGHX

(2.7)

Rg =
lnDo,GHX/Di,GHX

4πkglGHX

(2.8)

Rbb =
S

2UGHXπDo,GHX lGHX

(2.9)

Finally, the overall COP of a GSHP system can be expressed as follows:

COPsystem = COPHP +
Qabs/rej

Wcom

=
Qh +Qabs/rej

Wcom

(2.10)

EERsystem = EERHP − Qabs/rej

Wcom

=
Qc −Qabs/rej

Wcom

(2.11)
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2.2 Electricity Market Model and Aggregator Strate-

gies

2.2.1 Ontario’s Electricity Market

The IESO, established in 2002, is responsible for the day-to-day operation of the Ontario

power system [42]. All participants with direct physical connection must participate in the

electricity market; the participants are also allowed to have bilateral contracts. A two-stage

market is used, with the pre-dispatch stage or DAM, providing a first estimate of the power

dispatch and electricity prices for the next day on an hourly basis. The second stage is the

RTM, which is settled every 5 minutes using an MPC approach with 12 fixed intervals,

wherein the operating reserves, Market Clearing Prices (MCPs) and dispatch instructions

for the next interval are determined.

Ancillary services are provided and managed by the IESO to ensure the reliability of

the power system. While some of these services are procured through long-term contracts,

some are provided through the markets [42]. The Energy Competition Act of Ontario in

1998 provided authority for the creation of a market in order to provide an efficient and

reliable environment to electricity retailers for the sale and purchase of ancillary services

in Ontario [43, 44]. Currently, the IESO provides the following four ancillary services to

ensure reliable operation of the Ontario’s power system [45]:

• Regulation/Automatic Generation Control Service: It matches total system gener-

ation to total system load, and helps reduce the frequency deviations in the power

system. The IESO contracts with eligible generators to provide regulation service

for the period beginning May 1 of each year to April 30 of the following year. This

service corrects for short-term changes in electricity use that might affect the stabil-

ity of the power system. Minimum requirements are calculated by the IESO, and

control signals are sent to the generators under contract to raise or lower their output

as required. The current regulation service must satisfy the minimum requirement

of ±100 MW of Automatic Generation Control (AGC) to be scheduled at all times;

additionally, a minimum overall ramp rate of 50 MW per minute is required.

• Black Start Service: The service is contracted to meet the requirements of restoring

the Ontario power system after a major black out. They help the system reliability
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with the ability to restart their generation facility with no outside source of power;

these facilities have to satisfy specific requirements determined by the IESO.

• Reactive Support and Voltage Control: These are contracted from generators to

ensure that the IESO is able to maintain the voltage level of its grid within acceptable

limits. Reactive power flow is needed in the ac transmission system to support the

transfer of active power over the network. Generation facilities are the major provider

of this service in Ontario.

• Reliability Must-Run Resources: Whenever sufficient resources to provide physical

services in a reliable way are not available, the IESO may need to call registered

facilities in order to maintain the reliability of the grid. The contracts obligate

the market participant to offer into the IESO the maximum amount of energy and

operating reserve, in accordance with stated performance standards.

• Operating Reserve Markets: Is a stand-by power or demand reserve that can be

called on with short notice by the IESO to guarantee available additional resources,

such as dispatchable generators or loads, if an unexpected event takes place in the

real-time energy market. The three types of operating reserve classes are: 10-minute

synchronized (spinning) reserve, 10-minute non-synchronized (non-spinning) reserve

and 30-minute non-synchronized reserve.

The IESO launched the Demand Response (DR) auction market in 2016, wherein con-

tracted loads can be called upon by the IESO on short notice for curtailment, in order

to maintain the reliability of the grid [46]. However, this pilot market was replaced in

December 2019 with the capacity auction program, securing the capacity needed to meet

Ontario’s short term power needs [47].

2.2.2 Role of Aggregators in the Electricity Market

An aggregator can be defined as an entity which agglomerates a set of retail customers in

a power system for the purpose of providing certain services which would otherwise not

be feasible by individual agents [48]. These have the resources to provide customer load

management and are responsible for the installation of communication and control devices

at end-user premises. The main objectives of an aggregator are to (a) provide various
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services to the utility and/or (b) reduce the electricity cost of customers. Each aggregator

accounts for a significant share of demand in the electricity market, and can negotiate on

behalf of the customers directly with the utility. The participating customers in return

permit the aggregator to have direct control of their flexible demands such as appliances,

smart loads, HVAC loads, etc. [49].

From the utility operator’s perspective, the aggregator is seen as a large generator or

load, which could provide ancillary services such as spinning and regulating reserve [50]. In

addition, the aggregator may also participate in the electricity market with supply offers

and/or demand bids. In the case of Ontario, load aggregators act as market participants

depending of the service provided, such as capacity reserve or energy storage contributor,

or as program participants such as smart metering providers [51].

Load aggregators may be price-taker participants, as illustrated in Figure 2.5, i.e., they

do not impact the electricity market prices. In this case, the aggregator only schedules

the total load demand of each customer to minimize its total electricity cost considering

different factors, such as the electricity prices and customers’ load profiles, with the aggre-

gator benefiting from the price difference between the market prices and the customers’ fix

payments for its services.
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Figure 2.5: Structure of the price-taker load aggregator [49].

In the context of the power system, load aggregators take into account various system

and market uncertainties and manage the risks of individual customers by coordinating

information exchange between various power system actors. Competition among aggrega-

tors can lead to innovative solutions and products and increase participation in electricity

markets [52]. Aggregators can be defined and classified according to their responsibilities as

follows [53]: production aggregators, commercial aggregators, and load aggregators. Load

aggregators can integrate small distributed generation and ESS facilities, and interact with

other market players, such as local retailers, microgrids, and RES.

Most aggregator strategies consider their participation in the DAM and RTM with a

bi-level or two-stage economic optimization model which aims to maximize the aggregator’s

profits, or minimize its total operational costs [54]. Other less common objectives include

the minimization of system imbalance, or the maximization of social welfare. The aggre-

gator’s optimization problem can be formulated as a hierarchical game, where a follower

creates optimal decisions to maximize its objective function, which is influenced by the se-

lection of the leader, and upon which the leader maximizes its own objective function [55].
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An example for the upper-level problem (leader) is the optimization of the strategic aggre-

gator bidding, which considers the outcome of the lower-level (follower) representing the

market clearing process, as discussed in [56].

2.3 Optimization in the Presence of Uncertainties

Optimization modeling can be defined as the process of finding the maximum or minimum

of a function, which in an engineering context can represent benefits or costs related to a

system [57]. These mathematical models are expressed in terms of objective functions and

constraints, which together represent a measure of the system performance, and establish

the feasible region for the system variables. An optimization problem can be represented

by a set of equations and inequalities, as follows:

min
x

f(x) (2.12)

s.t. gi(x) = 0 ∀i (2.13)

hj(x) ≤ 0 ∀j (2.14)

where x is the vector of decision variables, f(x) represents the objective function, g(x) the

equality constraint functions, and h(x) the inequality constraint functions.

Although the optimization models may have an accurate mathematical representation,

the solutions obtained may not necessarily be the optimum in practice due to the uncer-

tainties in model and other system parameters. Depending on the degree of uncertainty,

the model optimal solution can lead to different misrepresented outcomes, such as economic

losses or under-performing operation, which are highly undesirable. Price uncertainty have

always been a challenge for different agent-based participants in the electricity market due

to the price volatility [58], and more recently uncertainty of ambient temperature which

is becoming relevant due to the increasing integration of thermo-electrical systems. Thus,

in order to ensure reliable operational decisions, these uncertainties must be taken into

account in optimization models.

A classical approach to deal with uncertainties is through Stochastic Optimization

(SO) [59]. There are several SO techniques depending on the problem formulation, with
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uncertainties in parameters [60]. In these models, such as in the case of MCS and MPC

techniques, uncertainties are represented by Probability Density Functions (PDFs), which

are nonlinear, thus making the problems more complex [61]. Despite presenting robust

results, adequate PDF representations for the uncertainties considered are only possible if

there is a considerable amount of data; hence, the lack of data may lead to assumptions

regarding the PDFs, which may yield poor representations with significant errors [62]. Due

to these challenges, alternative methods based on range arithmetic, such as RO, have been

proposed.

2.3.1 Model Predictive Control (MPC)

MPC can be described as a future behaviour prediction using a system model, based on

measurements or estimates of the current state of the system and a hypothetical future

input trajectory or feedback control policy [63]. In this context, forecasted inputs are

characterized by a finite number of degrees of freedom, which are used to optimize a cost

and the first control input of the optimal control sequence is only implemented. The process

is repeated at the next time instant using newly available information on the system state.

This repetition is instrumental in reducing the gap between the predicted and the actual

system response in closed-loop operation. The MPC approach also provides a certain

degree of inherent robustness to uncertainties that can arise from unknown variations of

the parameters, as well as to model uncertainty in the form of disturbances in the system

dynamics [64].

In the MPC approach, the current control action is computed in real-time. A model

predictive controller uses, at each sampling instant, the current input and output mea-

surements of the plant, its current state and the plant model, to calculate over a finite

horizon, a future control sequence that optimizes a given performance index and satisfies

constraints on the control action, using the first control in the sequence as the plant input.

The basic MPC plant structure is illustrated in Figure 2.6, where xt is the vector of

state variables at time t, ut is the vector of control variables at time t, and yt is the output

of the optimal control problem at time t. The optimization calculates a control sequence for

the finite horizon such that a selected objective function is minimized, but only the control

action for the next time step is implemented; this process repeats itself every time-step [65].
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Figure 2.6: MPC structure [66].

2.3.2 Montecarlo Simulations (MCS)

Monte Carlo Simulation (MCS) is a stochastic technique that relies on repeated random

sampling and statistical analysis to compute the results [67]. This method of simulation

is closely related to random experiments, for which the specific result is not known in

advance, and is hence typically used for benchmarking modeling techniques for uncertainty

management.

In its most simple form, MCS collects a number of random observations of a population,

which is referred to as simple sampling. The number of samples from a random variable

x, and are distributed according to its PDF, f(x) [68]. When a random variable is to

be obtained from a PDF, it is useful to obtain the variable’s Cumulative Distribution

Function (CDF) P (x), which denotes the cumulative probability of an event in a given

interval (Figure 2.7) and can be obtained by integrating the PDF as follows:

P (a < x < b) =

∫ b

a

f(x) dx (2.15)
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Figure 2.7: PDF and CDF for a normal distribution function [68].

The basic MCS procedure is as follows [69]:

1. Specify a statistical PDF to be used as the source for each of the input parameters.

2. Draw random samples from each PDF, which then represent the values of the input

variables. For each set of input parameters, a set of output parameters yn is obtained.

3. Collect output values yn from a number of simulation runs.

4. Repeat Steps 2 and 3 for N times, which is the number of trials at which the expected

values of the outputs converge.

5. Perform statistical analysis on the values of the output variables to characterize the

output variation, from which one can estimate its expected value E(.) and variance

σ2 as follows:

E[Y ] =
1

N

N∑
n=1

yn (2.16)
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σ2[Y ] =
1

N

N∑
n=1

(yn − E[Y ])2 (2.17)

where Y = {y1, . . . , yN}

2.3.3 Robust Optimization (RO)

Robust Optimization (RO) presents an attractive approach to represent random variables

through uncertainty sets, rather than probabilistic models, and thus there is no need to as-

sume the intrinsic characteristics of the uncertainties. The method was originally proposed

in [70], and employed in a linear optimization problem, seeking to optimize the objective

in the worst-case scenario; however, the original model was highly conservative. Several

decades later, a method to make the level of conservatism more flexible while maintaining

the advantages of the linear model was proposed in [71], where a parameter, the budget

of uncertainty Γ, was introduced, which can take any value in [0, M ], where M represents

the set of coefficients that are subject to uncertainty. Varying Γ from 0 to M allows a

trade-off between the level of conservatism and robustness. Thus, for Γ = 0 the model is

deterministic, while for Γ =M , the most conservative (worst case) scenario is considered,

yielding the model proposed in [70].

RO problems seek to optimize an objective function for the worst-case scenario, as

follows [72]:

min
x

M∑
m=1

cmxm (2.18)

s.t. Ax ≤ b (2.19)

where c, A and b are parameters, x is a variable, and m is an index. Observe that the

objective is to minimize the function in terms of the decision variables xm. By considering

uncertainties in the parameters cm, it is assumed that there is a mismatch of up to ∆cm
in its value. Hence, the values that cm may assume are in the following interval:

cm ∈ [cm,0(1−∆cm), cm,0(1 + ∆cm)] (2.20)
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cm = cm,0(1 + ∆cm) (2.21)

−∆c ≤ ∆cm ≤ +∆c (2.22)

where cm,0 represents the forecast value of cm, and ∆cm is a variable that represents the

mismatch of cm. Substituting (2.21) in (2.18) and adding several constraints reflecting cm
uncertainty, one has:

min
X=[x1,...,xm]

max
∆cm

M∑
m=1

cm,0xm + cm,0 ∆cmxm︸ ︷︷ ︸
Bi-linear term

 (2.23)

s.t.∆cm = ∆c+m −∆c−m ∀m (2.24)

∆c+m ≤ ∆c ∀m (2.25)

∆c−m ≤ ∆c ∀m (2.26)

M∑
m=1

∆c+m +∆c−m
∆c

− Γ ≤ 0 (2.27)

∆c+m,∆c
−
m ≥ 0 ∀m (2.28)

Observe in (2.23) that the problem seeks to minimize the function in terms of x, and

maximize it in terms of ∆cm. In (2.24), the variable ∆cm is broken into two positive vari-

ables ∆c+m and ∆c−m which represents the upward and downward deviations, respectively,

and are limited by ∆c in (2.25) and (2.26). Finally, the level of conservatism is controlled

using (2.27), where the budget of uncertainty Γ limits the number of times the value of cm
deviates from the forecast. Note that in the range of values for the budget of uncertainty is

Γ ∈ [0,M ], Γ = 0 corresponds to the deterministic model, i.e., no uncertainties considered,

and Γ = M corresponds to the most conservative scenario, where all values of cm deviate

from the forecast. Hence by choosing different combinations of (∆c, Γ), a set of possible

optimum decisions can be obtained, with different degrees of uncertainty.

The modified objective function (2.23) includes a bi-linear term, and thus converts the

overall problem into a nonlinear model. Additionally, a min-max structure is a saddle-point
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mathematical problem, which may be non-convex. However, the internal maximization

problem in (2.23) is linear, and hence it can be replaced by its dual problem using the

concept of strong duality [73].

2.4 Summary

This chapter reviewed various background topics, concepts and tools used throughout the

thesis. The concept of GSHP was introduced first, providing an overview of its principle

of operation and presenting a mathematical model to represent its thermodynamic char-

acteristics. A synopsis of the Ontario’s electricity market model and related services was

introduced, followed by a comprehensive overview of the role of aggregators in electricity

markets. Finally, uncertainty consideration in optimization problems was discussed for

different techniques, in particular MPC, MCS and RO.
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Chapter 3

Modeling and Operation in

Electricity Markets

This chapter presents a novel mathematical model to represent the thermodynamic char-

acteristics of a GSHP system with a vertical U-pipe GHX configuration, and its operation

in the electricity market environment via a load aggregator. The developed models allow

to determine the GSHP aggregator’s optimal load dispatch, considering both HVAC and

GSHP systems for residential space heating/cooling, for two different operating strategies:

minimizing the aggregator’s electricity cost while operating in the electricity market envi-

ronment, and maximizing the customer’s comfort. Simulations and results are presented

to illustrate the application and benefits of the proposed models.

3.1 GSHP Thermal Model

As discussed in Section 2.1, systems with vertical U-pipe based GHX are preferred in

suburban areas because their installation does not require large spaces [74], and thus these

have been considered for the studies presented here. The proposed GSHP model in this

thesis considers the mass flow rates of the ground water circulating in the GHX and the heat

pump, the power consumption of the compressor, and the heat transfer of the evaporator

and condenser, based on [40].
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In order to reduce the complexity of the considered heat transfer processes, while main-

taining proper accuracy of the thermal load model, the following assumptions are made:

• Seasonal variation of ground temperature is not considered.

• Indoor air temperature is homogeneous, i.e., no heat loss is considered inside the

house.

• Temperature of the building envelope is homogeneous.

• Thermal comfort parameters remain within the recommended limits.

• The GSHP system operates either in cooling or heating mode.

• Since the time resolution of the model is one hour, a steady-state heat exchange

process is assumed to model thermal systems.

3.1.1 Performance of the GSHP

The COP and EER of the GSHP for each house i at each hour t are calculated as follows

[15]:

COPHP
i,t = COPHP

ref

[
Ah +Bh

( T out
i,t

THP
ref

)
+ Ch

( THP
ref

Ti,t−1

)]
(3.1)

EERHP
i,t = EERHP

ref

[
Ac +Bc

( T out
i,t

THP
ref

)
+ Cc

( THP
ref

Ti,t−1

)]
(3.2)

where COPHP
i,t and EERHP

i,t are the calculated COP and EER of the GSHP, in heating

and cooling mode, respectively; Ah/c, Bh/c, and Ch/c are coefficients shown in Appendix

A obtained from a linear data-fitting of the GSHP capacity data-sheets provided also in

the Appendix A; T out
i,t is the outlet temperature at the GHX terminal; THP

ref is the GSHP’s

reference temperature of operation (283 °K); Ti,t is the indoor air temperature; and COPHP
ref

and EERHP
ref are the rated COP and EER of the GSHP, respectively. All variables and

parameters in these and other equations are defined in the Nomenclature section.
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3.1.2 House Heat Transfer Balance

The following relations represent the inter-temporal house heat transfer and the GHX

contribution that affects the in-house temperature at hour t:

Qini,t
= (1− ψ)ϕt +QGi,t

(3.3)

Qouti,t = UA(Ti,t−1 − T F
ambt) + UE(Ti,t−1 − TEi,t

) (3.4)

In (3.3), the first term Q
h/c
GHX corresponds to the heat transfer into the house from the

GHX U-pipe based system, the second term represents the solar radiation through the

glazed surfaces, with the incidence factor representing the transmittance loss of the solar

radiation power, which is effectively reflection [75]; and finally the internal heat gains of

the house are given by the third term. In (3.4), the first term denotes the heat transfer

from inside the house to the outside environment through the external glazed surfaces, and

the second term denotes the heat transfer from inside the house through the external walls

and ceiling.

3.1.3 In-house Temperature Relationship

The inside air temperature of house i at hour t, depends on the temperature at time t− 1,

the power consumption of the GSHP unit at time t, and the heat transfers occurring inside

the house, as follows:

Ti,t = Ti,t−1 +
Qini,t

−Qouti,t

HPr

+
Qh

i,t

HPr

+ α̃i p
res
i,t −

Qc
i,t

HPr

∀i ∈ I, t ∈ T
(3.5)

where:

Qh
i,t = COPHP

i,t phi,t︸ ︷︷ ︸
Bi-linear term

(3.6)
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Qc
i,t = EERHP

i,t pci,t︸ ︷︷ ︸
Bi-linear term

(3.7)

The first term in (3.5) represents the in-house temperature at t− 1. The temperature

change due to inter-temporal house heat transfers, given in (3.3) and (3.4), are expressed by

the second term. The third term denotes the temperature change because of heat transfer

from the GSHP system operating in heating mode to the house, the fourth term represents

the temperature change due to heat provided by the secondary thermal resistances presi,t

multiplied by the factor α̃i, which are used occasionally for peak heating in severe weather

conditions. The last term represents the temperature change because of heat transfer from

the house to the GSHP system operating in cooling mode.

Note that (3.6) and (3.7) are non-linear because of the bi-linear components. However,

these can be linearized using the Mccormick envelope approach [76], by replacing the bi-

linear terms with a set of linear inequality constraints ∀ i ∈ I, t ∈ T as follows:

Q
h/c
i,t ≥ W

h/c
i,t p

h/c
i +W

h/c
i p

h/c
i,t −W

h/c
i p

h/c
i (3.8)

Q
h/c
i,t ≤ W

h/c
i,t p

h/c
i +W

h/c
i p

h/c
i,t −W

h/c
i p

h/c
i (3.9)

Q
h/c
i,t ≥ W

h/c
i p

h/c
i,t (3.10)

Q
h/c
i,t ≤ W

h/c
i p

h/c
i,t (3.11)

W
h/c
i ≤ W

h/c
i,t ≤ W

h/c
i (3.12)

where Qh
i,t denotes the heat injected to the house and Qc

i,t the heat extracted from the

house, based on the GSHP operation mode.
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3.1.4 External Wall Temperature

The temperature of the external walls of the house i at hour t depend on the solar radiation

and the heat transfer between the external environment and the external walls of the house,

as follows:

TEi,t
= TEi,t−1

+
ψϕt + UE(TEi,t−1

− T F
ambt

)

HPE

∀i ∈ I, t ∈ T
(3.13)

3.1.5 Comfort Limits

The following constraints ensures that the in-house temperature is within the end-user’s

comfort range:

Ti ≤ Ti,t ≤ Ti ∀i ∈ I, t ∈ T (3.14)

3.1.6 Cycling Constraint

The following equations guarantee that the temperature inside a house at the end of day

is the same as that of the initial temperature T o
i for the next day:

Ti,T = T o
i ∀i ∈ I, t = T = 24 (3.15)

3.1.7 Borehole Thermal Model

The borehole model is built to represent the vertical and radial heat transfer processes

along its depth [15,77]. Based on [78], the U-pipe can be split into 50 equal segments j of

height 5 meters each, as seen in Figure 3.1a, to properly represent the vertical temperature

variation of the underground fluid. Each segment j yields five different nodes, as per

Figure 3.1b, which represent the fluid temperature inside each leg of the U-pipe T f,dn
i,t,j and

T f,up
i,t,j (one leading the fluid up and the other down), the temperatures of the grout regions

T b,dn
i,t,j and T b,up

i,t,j , and the temperature of the surrounding ground T g
i,t,j. Each node has

a thermal capacitance and shares a thermal resistance with every adjacent node, which
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can be calculated using the following equations based on GHX geometric and thermal

properties [79]:

Rbb =
S

kb(db − dpe)dz
(3.16)

Rpp =
S − dpe
kb dpe dz

(3.17)

Rb =
1

π kb dz
log

(
dx

dpe
√

4S
π/dpe

+ 1

)
(3.18)

Rg =
1

π kg dz
log
(dg
db

)
(3.19)

Finally, Lax-Wendroff finite difference approximations, as per [80], are applied to the

heat-flow equations, considering that v is constant, resulting in the following expressions

[81]:

T f,dn
i,t,j = T f,dn

i,t−1,j −
v∆t

2∆z

{
[T f,dn

i,t−1,j+1 − T f,dn
i,t−1,j−1]

− 1

∆z
[T f,dn

i,t−1,j+1 − 2T f,dn
i,t−1,j + T f,dn

i,t−1,j−1]

}
− ∆t

HPf

[
T f,dn
i,t−1,j − T f,up

i,t−1,j

Rpp

+
T f,dn
i,t−1,j − T b,dn

i,t−1,j

Rb

]
∀i ∈ I, t ∈ T , j ∈ J

(3.20)
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Figure 3.1: Vertical GHX configuration [81].

T f,up
i,t,j = T f,up

i,t−1,j +
v∆t

2∆z

{
[T f,up

i,t−1,j+1 − T f,up
i,t−1,j−1]

− 1

∆z
[T f,up

i,t−1,j+1 − 2T f,up
i,t−1,j + T f,up

i,t−1,j−1]

}
− ∆t

HPf

[
T f,up
i,t−1,j − T b,up

i,t−1,j

Rb

−
T f,dn
i,t−1,j − T f,up

i,t−1,j

Rpp

]
∀i ∈ I, t ∈ T , j ∈ J

(3.21)

T b,dn
i,t,j = T b,dn

i,t−1,j +
∆t

HPb

{
T f,dn
i,t−1,j − T b,dn

i,t−1,j

Rb

+
T b,dn
i,t−1,j − T b,up

i,t−1,j

Rbb

−
T b,dn
i,t−1,j − T g

i,t−1,j

Rg

}
∀i ∈ I, t ∈ T , j ∈ J

(3.22)
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T b,up
i,t,j = T b,up

i,t−1,j +
∆t

HPb

{
T f,up
i,t−1,j − T b,up

i,t−1,j

Rb

−
T b,dn
i,t−1,j − T b,up

i,t−1,j

Rbb

−
T b,up
i,t−1,j − T g

i,t−1,j

Rg

}
∀i ∈ I, t ∈ T , j ∈ J

(3.23)

T g
i,t,j = T g

i,t−1,j +
∆t

HPg

{
T b,dn
i,t−1,j − T g

i,t−1,j

Rg

+
T b,up
i,t−1,j − T g

i,t−1,j

Rg

}
∀i ∈ I, t ∈ T , j ∈ J

(3.24)

The inlet temperature at the terminal of the GHX borehole depends on the GSHP operation

mode, cooling and heating respectively, and can be expressed as follows [15]:

T in
i,t = T out

i,t−1 +
Qrej

i,t

cfṁf

(3.25)

T in
i,t = T out

i,t−1 −
Qabs

i,t

cfṁf

(3.26)

where Qrej
i,t is the heat transferred to the GHX unit, and Qabs

i,t is the heat injected by the

GHX unit to the household, which can be calculated as follows:

Qrej
i,t = Qc

i,t + pci,t (3.27)

Qabs
i,t = Qh

i,t − phi,t (3.28)

Equation (3.25) and (3.26) can then be written in a composite form to represent the inlet

temperature:
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T in
i,t = T out

i,t−1 + (1− Zai,t)
Qc

i,t + pci,t
cfṁf

− Zai,t

Qh
i,t − phi,t
cfṁf

(3.29)

where the binary parameter Zai,t = {1, 0} is used to define whether the system is in heating

or cooling mode, respectively.

3.2 HVAC Model

The indoor temperature of each house i at hour t is dependent on the temperature at time

t − 1, the power consumption of the HVAC unit at time t, and the heat transfers in the

house due to solar radiation, between the room and the environment, and between the

room and the external walls of the house, and can be defined as follows [31]:

Ti,t = Ti,t−1 ± α̃ip
h/c
i,t +

(1− ψ)ϕt+QGi,t

HPr

−
UA(Ti,t−1 − T F

ambt
)− UE(Ti,t−1 − TEi,t

)

HPr

∀i ∈ I, t ∈ T

(3.30)

Equations (3.13) to (3.15) representing the house thermal characteristic for the external

wall temperature, the house comfort limits, and the house temperature cycling constraint,

respectively, are also included in the HVAC model.

3.3 GSHP/HVAC Load Aggregator Operations Strate-

gies

3.3.1 Proposed Two-Stage Strategy

The objective of the GSHP/HVAC load aggregator is to determine the optimal heat-

ing/cooling load dispatch of all houses to minimize its total electricity procurement costs,

while maintaining the in-house temperature of all customers within a comfortable range,
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considering the physical capacity of the GSHP/HVAC units, the thermal characteristics

of each house and the ambient temperature. The load aggregator is assumed to collect

information on the uncontrolled loads in the house, the house thermal and heating system

characteristics, and the current and forecasted ambient temperature, in order to optimally

schedule the GSHP/HVAC load of each house to minimize its cost of total electricity pur-

chase from the electricity market. The following two-stage strategy for the aggregator is

proposed, which interacts with the DAM and the RTM, as illustrated in Figure 3.2:

• Stage 1: The aggregator schedules the thermal load of each house to minimize its total

electricity cost using a forecast of the DAM price λDAMF
t , while satisfying the houses’

indoor temperature comfort ranges. The total scheduled load of the aggregator is

submitted as a demand bid to the DAM, and it is assumed that the entire bid

quantity PDAM∗
t is cleared, which is then an input to the aggregator’s real-time

operation model.

• Stage 2: The load aggregator updates the forecast of local ambient temperature, RTM

price forecast, and energy consumption by uncontrolled loads, and uses PDAM∗
t from

the DAM. The aggregator then solves the real-time operation model to determine

the final thermal load dispatch and other associated decision variables, assuming here

that the RTM operation takes place one hour ahead.

GSHP Load Aggregator Model for Participation in DAM

• Objective Function: The GSHP load aggregator seeks to minimize the total cost of

purchasing electricity from the DAM, as follows:

min
PDAM
t , PDAMres

t

J1 =
24∑
t

[
λDAMF
t PDAM

t + λ̂DAMFPDAMres
t

]
(3.31)

where the first term represents the energy procurement cost at hour t at DAM price,

and the second term denotes the total cost of serving the aggregated electrical load

of secondary thermal resistances, assuming that it is procured at the maximum fore-

casted DAM price [3]. The GSHP system capacity is typically designed to provide

majority of the household’s annual heating energy requirement, with the occasional
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Figure 3.2: Framework of the GSHP load aggregator participating in the electricity market.

peak heating load that occurs during severe weather conditions being met by a sup-

plementary heating system, i.e., secondary thermal resistances [9]. Therefore, to

minimize the use of these resistances, their operation is penalized in the model by

costing them at the maximum forecasted DAM electricity price.

• Total Aggregated Load: The total load procured by the aggregator at hour t is given

by:

PDAM
t = LDAM

t +
∑
i

pDAMh
i,t +

∑
i

pDAMc
i,t

∀i ∈ I, t ∈ T
(3.32)
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PDAMres
t =

∑
i

pDAMres
i,t ∀i ∈ I, t ∈ T (3.33)

The first term in (3.32) corresponds to the aggregated uncontrolled load in the com-

munity, and the second and third terms, which are mutually exclusive decision vari-

ables, represent the aggregated GSHP/HVAC load during heating and cooling oper-

ation, respectively. Equation (3.33) defines the aggregated load from the secondary

thermal resistances of houses, represented by the decision variable pDAMres
i,t .

• Capacity Limits: These ensure that the thermal system power consumption are

within their capacity limits, as follows:

0 ≤ p
DAMh/c
i,t ≤ P

h/c
i ∀i ∈ I, t ∈ T (3.34)

0 ≤ pDAMres
i,t ≤ P res

i ∀i ∈ I, t ∈ T (3.35)

• Operation Coordination: The following constraints guarantee that the GSHP/HVAC

unit operates either in heating or cooling mode:

pDAMc
i,t ≤ (1− Zai,t)M ∀i ∈ I, t ∈ T (3.36)

pDAMh
i,t , pDAMres

i,t ≤ Zai,tM ∀i ∈ I, t ∈ T (3.37)

where M is a large number.

• Thermal Load Modeling: Includes the HVAC or GSHP operational constraints (3.3)-

(3.30) as appropriate, formulated for DAM operation.

GSHP Load Aggregator Model for Participation in RTM

• Objective Function: The aggregator seeks to minimize its total penalties payable for

any deviations in the real-time load dispatch from the DAM dispatch, at the RTM
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price, as follows:

min
∆Pt , ∆P res

t

J2 =
24∑
t

[
λRTMF
t ∆Pt + λ̂RTMF∆P res

t

]
(3.38)

where

∆Pt =
∣∣∣PDAM∗

t − PRTM
t

∣∣∣ ∀t ∈ T (3.39)

∆P res
t =

∣∣∣PDAM∗res
t − PRTMres

t

∣∣∣ ∀t ∈ T (3.40)

In (3.38), the first term denotes the penalties paid by the aggregator for any deviation

in the total aggregated load from DAM dispatch at the forecasted RTM price, and

the second term denotes the total penalties for deviation of the aggregated electrical

load of the secondary resistances at the maximum forecasted RTM price, as previ-

ously argued. The model is subject to constraints (3.32) to (3.36) and the thermal

load model relations (3.3)-(3.30) for either GSHP or HVAC systems, as appropriate,

formulated for RTM operation.

The RTM load aggregator model presented above is nonlinear because of (3.39) and

(3.40), which are linearized using mutually exclusive non-negative auxiliary variables ∆P+
t

and ∆P−
t that represent the deviations of the aggregator’s demand in RTM as compared

to DAM operation, as follows [82]:

∆Pt = ∆P+
t +∆P−

t ∀t ∈ T (3.41)

∆P+
t = PRTM

t − PDAM∗

t ∀t ∈ T (3.42)

∆P−
t = PDAM∗

t − PRTM
t ∀t ∈ T (3.43)

And similarly for ∆P res
t .
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3.3.2 Base Case Strategy

The Base Case strategy correspond to the worst case scenario for space heating and cooling,

i.e., the set point of the thermostat is kept fixed, and it is assumed that the community is

only equipped with electric HVAC systems. The Base Case is where the total power con-

sumption of the GSHP/HVAC system is determined by maximizing the customer comfort,

i.e., minimizing the deviation of the in-house temperature from a reference set point, given

as follows:

J3 =
I∑
i

24∑
t

|TRef
i,t − Ti,t| (3.44)

This objective function is nonlinear, but can be readily linearized applying the same prin-

ciple as in (3.41)-(3.43), i.e., considering mutually exclusive non-negative variables ∆T+
i,t

and ∆T−
i,t, as follows:

∆Ti,t = ∆T+
i,t +∆T−

i,t ∀t ∈ T , ∀i ∈ I (3.45)

∆T+
t = TRef

i,t − Ti,t ∀t ∈ T , ∀i ∈ I (3.46)

∆P−
t = Ti,t − TRef

i,t ∀t ∈ T , ∀i ∈ I (3.47)

and subject to (3.32)-(3.36), and the GSHP/HVAC system constraints as appropriate.

3.4 Results and Discussions

3.4.1 Test System

The present study considers a GSHP/HVAC load aggregator in Ontario, Canada, that

submits demand bids to the IESO and purchases electricity for its clients. The weather

data is from 2019 [83], The solar irradiation, shown in Figure 3.3, and the internal heat
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gains in a typical house, presented in Figure 3.4, are taken from [84] and [85], respectively.

The load aggregator is assumed to provide electricity to 800 houses, as in [86], with each

house assumed to have the same thermal characteristic, and all customers assumed to stay

at home from 6 PM to 8 AM, for simplicity and without loss of generality. The latter

assumptions are relaxed in Chapter 4, so that uncertainty can be better represented in the

proposed techniques.
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Figure 3.3: Solar irradiation profile of a typical winter and summer day [84].

All model parameters are presented in the following tables: Table 3.1 illustrates all

the thermal parameters of the GHX model; the recommended thermal comfort ranges are

presented in Table 3.2; the parameters for the house geometric and thermal characteristics

are given in Table 3.3 and the characteristics of conventional HVAC system and detailed

GSHP system, obtained from [15,31,87], are presented in Table 3.4.

The electricity prices were obtained from [88], considering the 3h pre-dispatch price

of Ontario as the DAM price forecast λDAMF
t , and the Hourly Ontario Energy Prices

(HOEPs) as the RTM price forecast λRTMF
t . The uncontrolled loads, i.e., loads other than

HVAC/GSHPs, were obtained from [89] for day-ahead profiles of operation, and the RTM

load profiles for the uncontrolled loads were obtained assuming, for each hour, a normal

distribution with LDAM
t as mean and a 25% standard deviation, as per [90], to model a
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Figure 3.4: Internal heat gain in a typical household [85].

Table 3.1: Geometric-thermal Characteristics of the GHX [79]

Item Value

Number of segments 50
Borehole depth [m] 250
Grout thermal capacitance HPb

[J/°C] 537.3
Ground thermal capacitance HPg [J/°C] 2110.5
Fluid thermal capacitance HPf

[J/°C] 365.7
Pipe to pipe thermal resistance Rpp [°C/W] 0.291
Borehole conductive thermal resistance Rb [°C/W] 0.061
Grout-to-Grout thermal resistance Rbb [°C/W] 0.239
Grout-to-ground thermal resistance Rg [°C/W] 0.051
Fluid specific heat cf [J/kg °C] 4361
Fluid mass flow rate ṁf [kg/s] 0.53
Velocity of the underground fluid v [m/s] 0.032

reasonable variation with respect to the DAM uncontrolled load profile.

It is assumed in this work that customers are not equipped with any Home Energy

Management System (HEMS) with which they could optimize their GSHP/HVAC oper-
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Table 3.2: Household Indoor Temperature Ranges for Thermal Comfort

Time
Temperature range [°C]
Minimum Maximum

6 PM to 9 AM 20 22
9 AM to 6 PM 17 25

Table 3.3: Household Geometric and Thermal Characteristics [15]

Item Value

Area [m2] 325
Volume [m3] 225
Glazed surface portion [%] 9.5
R ceiling [m2 °C /W] 7.67
R external walls [m2 °C /W] 4.67

Table 3.4: GSHP and HVAC Characteristics [31,87]

GSHP

Model BP030
Cooling Capacity [Btu/hr] 28500
Heating Capacity [Btu/hr] 20500
EERHP

ref 19.4
COPHP

ref 4.3

HVAC

Power capacity [kW] 7
Heating/cooling capability 0.4

ation and minimize costs. Furthermore, for the case of customers with programmable

thermostats, is assumed that these are not programmed, prioritizing comfort over saving.

In this context, the worst case scenario is considered here for the Base Case, or busi-

ness as usual, to better highlight the advantages of aggregating GSHP/HVAC flexibility,

which does not require direct customer involvement and presents multiple advantages for

electricity markets [91].
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3.4.2 Study Cases

Simulations were carried out for the whole of 2019, and the following four sample days were

specifically selected to analyze the daily operation of the GSHP/HVAC units: January 31,

February 4, July 20 and September 9, since these are the coldest day in winter, the warmest

day in winter, the warmest day in summer, and the coldest day in summer, respectively.

Also, a comparative analysis was performed on the performance of the GSHP model for

optimal heating/cooling power dispatch as a viable alternative to existing HVAC systems

from a load aggregator’s perspective. Note that the GSHP optimization model is a linear

programming (LP) problem; thus, the mathematical models were implemented in GAMS,

and solved using the CPLEX solver.

The load schedules for 2019 are shown in Figure 3.5 for DAM operations in the Pro-

posed two-stage Strategy (the results for RTM operation yield similar conclusions) and the

Base Case, for both the aggregated GSHP and HVAC technologies. Observe that in both

technologies, the total power scheduled for the Base Case is slightly higher as compared

to the Proposed Strategy. Additionally, note in Figure 3.5a that the GSHP loads sched-

uled in the winter months are considerable higher as compared to those scheduled in the

summer, since the secondary thermal resistances are required on some days within the first

two months of the year during severe cold weather conditions. On the other hand, observe

that the power consumption during the summer months are higher as compared to winter

months with the aggregated HVAC annual dispatch, as shown in Figure 3.5b. The power

demand is higher in the Base Case as compared to the Proposed Strategy, as expected.

In Figure 3.6, the aggregator’s total daily electricity cost for the proposed two-stage

strategy and the Base Case, for both the aggregated GSHP and HVAC technologies, is

presented. Note that in both cases the Base Case daily total electricity cost is higher

than the daily cost in the Proposed Strategy, with the peak costs being high in some

winter days due to the use of secondary resistances, which are charged at the maximum

forecasted DAM/RTM price. Observe in Figure 3.6b that the daily electricity price in the

summer months is higher for the HVAC technology in both strategies, compared to the

daily costs with GSHP technologies, shown in Figure 3.6a. This is because the considerable

lower GSHP power dispatch on those months, due to a significant higher EER of the GSHP

units in cooling mode, compared to HVAC systems.
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(a) GSHP.

(b) HVAC.

Figure 3.5: Annual schedule of the aggregated GSHP/HVAC load.
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(a) GSHP.

(b) HVAC.

Figure 3.6: Aggregator total annual cost.
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The borehole inlet and outlet temperature profiles at the terminals of the U-pipe, the

borehole grout temperature, and the ground temperature are shown for the year 2019

in Figure 3.7. Note that when the GSHP operates in heating mode during the first few

months of the year (typically January to March), the outlet temperature is higher than

the inlet temperature, and both profiles are lower than the grout and ground tempera-

ture. This is because, as the fluid flows through the U-pipe, heat is absorved from the

surrounding ground and the borehole grout, thus increasing the difference between inlet

and outlet temperatures, while the inlet and outlet temperatures decrease; note also that

the grout temperature decreases, following the behavior of the fluid temperature. The

ground temperature increases because it has the lowest initial temperature, but its change

rate starts to decrease when all other temperatures are lower in comparison, due to their

different thermal characteristics, such as thermal conductance (resistances). When the

GSHP operates in cooling mode in the second part of the year (April to September), the

temperature difference decreases until the inlet temperature surpasses the outlet tempera-

ture, and both profiles are higher than the grout and ground temperature. This is because

heat is transferred to the surrounding ground, and thus the temperature difference between

inlet and outlet temperatures begins to increase; additionally, the grout temperature starts

to decrease, along with the ground temperature, but at a lower rate of change, due to its

different thermal characteristics than the other GHX thermal components. Finally, near

the end of year (October to December), i.e., at the start of the winter season, the GSHP

returns to operate mostly in heating mode, as it was the case during the first few months

of the year.

Observe that the ground temperature presents the smallest variations among all tem-

perature profiles, as expected, and the grout temperature profile is in accordance with the

physical and anticipated system behavior, being lower than the ground temperature in the

first half of the year, i.e., heat flowing from the ground to the grout, and vice-versa during

the last 6 months. Note that the ground temperature at the end of the year is higher with

respect to its initial temperature, which means that the ground is heating up and thus this

could affect on the long term the efficiency of the GSHP unit in cooling mode.
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Figure 3.7: Annual temperature profile of the borehole for 2019.

The daily aggregated GSHP load dispatch profiles and electricity prices for the days

analyzed are shown in Figures 3.8, for DAM operations in the Proposed two-stage Strategy

(the RTM operation yield similar results) and the Base Case. For the GSHP, the units

operate at full capacity for the entire day (see Figure 3.8a) on the coldest day of the year

for both strategies, and thus there is less flexibility to provide load shifting and peak power

reduction. In Figure 3.8b, note that the effects on load shifting for the Proposed Strategy,

compared to the Base Case, are considerable; thus, the peak dispatch occurs early in the

day when the electricity price is low, and then there is no power dispatched until late in the

afternoon, unlike for the Base Case, where the peak load occurs at noon when the prices

are high. A similar load shifting effect is observed in Figure 3.8d. Note also that there is a

noticeable load reduction in summer days as observed in Figures 3.8c and 3.8d, where the

hourly power dispatch is considerable lower compared with the power dispatch values for

the Base Case scenario.

Figure 3.9 presents the dispatch of secondary thermal resistances in the GSHP unit to

provide additional heating during the coldest period of the day. Observe that there is a

significant load reduction for the secondary resistances in the Proposed Strategy, which

decreases the daily total aggregator cost.

The heating/cooling demand profiles for the daily power dispatch with HVAC is shown
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in Figure 3.10. Note that the HVAC units operate at full capacity on the coldest and

warmest days of the year for the Base Case, as depicted in Figures 3.10a and 3.10c, re-

spectively. On the other hand, in the Proposed Strategy, the aggregator reduces the power

dispatch when the electricity price is high, keeping the customer temperatures within the

given constraints. Observe also, note that there are significant changes on the other ana-

lyzed days with respect to the time of the peak loads; for example, the peak load occurs late

at night, as shown in Figure 3.10b, or late in the afternoon, as illustrated in Figure 3.10d,

when the electricity prices are low. The load reduction and peak load shifting of controlled

loads is clearly reflected in the variation of in-house temperature and the aggregator total

cost.
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Figure 3.8: Aggregated GSHP electrical load dispatch.
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Figure 3.9: GSHP secondary thermal resistance dispatch for January 31.
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Figure 3.10: Aggregated HVAC electrical load dispatch.
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The GSHP operating modes are depicted in Figure 3.11. Thus, during winter, the

GSHP is predominantly operating in heating mode, as shown in Figure 3.11a, and a similar

operation behaviour is noticed during the warmest days in summer when the GSHP is

predominantly operating in cooling mode, as observed in Figure 3.11c. Although the GSHP

operation is predominantly in heating mode in winter, and in cooling mode in summer, it

may switch its operation mode for a few hours within the same day; this can be attributed

to atypical temperatures on such days for the season, as observed in Figure 3.11b, which

was the warmest day in that winter, and in Figure 3.11d, which was the coldest day in

that summer.
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Figure 3.11: GSHP operation mode, with 1 representing heating and -1 cooling.

The house temperature profiles, and the ambient temperature for each typical day (ref-

erenced with the right y-axis) are presented in Figure 3.12. Observe that the temperature

profiles with the Proposed Strategy vary considerably on all these days, within the specified
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limits. Thus, the house temperature profile is at the lower comfort limit for the coldest day

of the year, as shown in Figure 3.12a, due to the reduction in the power dispatch of the

secondary resistances on that day, as shown in Figure 3.9; on this day, the highest temper-

ature deviation with respect to the Base Case takes place. On other days, the temperature

profile deviation on the Proposed Strategy are smaller and fluctuates from the Base Case

temperature profile.

For the Base Case, the temperature remains at the set point on all days, except on

July 20 (Figure 3.12c) when there is a small deviation from the set point because of the

warm temperatures registered on that day. The small deviation in temperature from the

set point, noted in summer months, is a consequence of the limited power capacity of the

GSHP. On the other hand, in winter, such small temperature deviations from the set point

in the Base Case are not observed (Figure 3.12a), because of the dispatch of secondary

thermal resistances.
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Figure 3.12: Comparison of house temperature profiles.
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3.4.3 Economic Analysis

The aforementioned models were solved for all days in 2019, yielding the results illustrated

in Table 3.5, where the load aggregator’s total electricity cost for the year decreases by 15%

and 11% with the GSHP and HVAC systems, respectively, using the Proposed Strategy,

as compared to their respective Base Cases. Furthermore, the GSHP system requires 66%

less heating/cooling energy in the Base Case as compared to the HVAC, while, with the

Proposed Strategy, the GSHP system requires 63% less heating/cooling energy than with

HVAC.

Table 3.5: Comparison of GSHP Versus HVAC Operations for 2019

Item
GSHP HVAC

Base Proposed Base Proposed
Case Strategy Case Strategy

Aggregator total $425,137 $371,157 $585,204 $525,881
operating cost ($) (-27%**) (-15%*, -30%**) (-11%*)
Annual heating/cooling 6.6 6.4 19.3 18.6
dispatch (GWh) (-66%**) (-1%*, -63%**) (-4%*)

* With respect to Base Case
** With respect to HVAC

An economic impact analysis for the aggregator is carried out here for a 25 year span,

to examine the feasibility and long-term profitability of the Proposed Strategy with GSHP

systems, while comparing it to existing conventional HVAC systems in the Base Case.

The parameters in Table 3.6 were obtained using the historic electricity price and power

demand data obtained from [88] and [92], which yield the price inflation and demand

growth rate; the annual capital and operational costs of the GSHP and HVAC systems were

extracted from [9]. The analysis was carried out considering the initial cost of switching

the current HVAC system to the GSHP system in each community household, which is

borne by the aggregator. The cost savings of the project comparison analysis, shown in

Table 3.5, are considered as the cost savings for the first year, which forms the basis for

annual simulations considering the price inflation and demand growth rate to determine the

potential cost savings on each year thereafter, which are illustrated in the incremental net

cash-flow diagram in Figure 3.13, with the accrue savings showing a considerable increase

in year 13 due to the avoided cost of HVAC replacement in that year.
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With the information from the incremental cash flow, an incremental Internal Rate

of Return (IRR) of 7.33% can be calculated, which is higher than a typical Minimum

Acceptable Rate of Return (MARR) of 5% to 6% for public utility projects like this one [93],

making it suitable for investment. The cost and energy savings achieved from applying

the Proposed Strategy on GSHP systems demonstrate that these systems are effective and

economic alternatives for residential space heating/cooling applications.
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Figure 3.13: Incremental net cash flow diagram of GSHP compared with HVAC.

Table 3.6: Economic Parameters of GSHP/HVAC Systems [9, 88,92]

Item GSHP HVAC
Capital cost ($/unit) $11,000 $6,000
O&M cost ($/unit) $120 $500
Lifetime (years) 25 13
DAM/RTM price inflation 3.50%/year
Market demand growth 0.15%/year
Incremental IRR (∆IRR) 7.33%
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3.5 Summary

In this Chapter, detailed mathematical model of a deterministic GSHP system with vertical

U-pipe GHX configuration and a two-stage strategy for a load aggregator’s have been de-

veloped. Thus, the thermal modeling of the GSHP system, considering its thermodynamic

characteristics for more realistic modeling, and a conventional HVAC model were described

first. Then, the Proposed two-stage Strategy for a load aggregator models to participate

in the DAM and RTM, to minimize the total electricity cost, and a Base Case strategy,

considering minimization of the differential temperature were presented and discussed. A

description of a test system for optimal load dispatch by an aggregator were then provided.

Finally, results for different case studies were presented, analyzed, and compared in detail,

demonstrating the effectiveness of the proposed two-stage strategy for optimal aggregator

load dispatch of HVAC and GSHP systems, and the advantages of GSHP compared to

HVAC.
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Chapter 4

Uncertainty Modeling

This chapter presents three mathematical formulations to represent uncertainties for the

dispatch of aggregated GSHP. Thus, typical MPC and MCS approaches are first discussed,

based on an existing deterministic model that represents the operation and participation of

the aggregator in electricity markets, to account for uncertainties on the electricity prices

and ambient temperatures on the dispatch of aggregated GSHP systems. A novel RO

approach is then proposed and developed, and all methods are finally validated, analyzed,

and compared using a benchmark test system. Simulations and results are presented to

illustrate the benefits of the proposed RO technique for GSHP dispatch by aggregators in

terms of computational burden and proper representation of uncertainties.

4.1 Model Predictive Control (MPC)

As explained in Section 2.3.1, in order to capture the uncertainties in electricity prices

and ambient temperature forecasts, an MPC approach is typically used, in which the

optimization problem is solved representing the forecast uncertainties on electricity prices

λYF
t and ambient temperature T F

ambt
∀ t ∈ T , as follows for the DAM and RTM:

λYF
t = λYF

0,t + ϵλt (4.1)

T F
ambt = T F

amb0,t
+ ϵTt (4.2)
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where ϵλt and ϵTt are the electricity price and ambient temperature forecasting errors, which

are assumed here to increase with forecast lead time [64].

The obtained optimal solutions from the DAM and RTM are implemented only for

the next time step; thus, for a time horizon of 24 hours, only the solution for the first

hour is used for the GSHP power dispatch phi,t in heating mode and pci,t in cooling mode,

respectively. The process is then repeated for the next iteration and so on. The procedure

is illustrated in Figure 4.1.
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Figure 4.1: MPC approach for GSHP daily dispatch.
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4.2 Montecarlo Simulations (MCS)

As explained in Section 2.3.2, the MCS approach is widely used to obtain stochastic solu-

tions to problems involving uncertainties by using random values for the uncertain param-

eters. The resulting outcome is commonly expressed as a probability distribution instead

of a single optimal solution. In this study, random number generation is used to sample

the CDFs of the forecasted electricity prices and the ambient temperature, for the DAM

and RTM ∀ t ∈ T , as follows:

λYF
t = λYF

0,t (1 + ξλ
YF

t ) (4.3)

T F
ambt = T F

amb0,t
(1 + ξ

TF
amb

t ) (4.4)

where ξλ
YF

t and ξ
TF
amb

t are random scalars obtained from standard normal distribution, with

mean µ and standard deviation ρ obtained from historical data.

In the MCS procedure, each iteration is simulated as a deterministic problem, with

(4.3) and (4.4) defining the uncertain parameters, and the output variables are collected to

perform statistical analyses and estimate their expected values. The iterations stop when

the latter converge to fixed values.

4.3 Robust Optimization (RO)

In the RO formulation, the optimization model seeks to minimize the aggregator’s to-

tal electricity procurement costs considering the uncertainty in electricity prices, and the

ambient temperatures, as illustrated in Figure 4.2. As explained in Section 2.3.3, the un-

certainty in electricity prices are formulated for the DAM and RTM in terms of their center

values, i.e., forecast price, and its deviation from it, as follows:

λYF
t = λYF

0,t (1 + ∆λYF
t ) ∀t ∈ T (4.5)

The RO formulation minimizes the total procurement cost of electricity under worst case
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Figure 4.2: RO based framework of the load aggregator participating in the electricity market

scenarios. Thus, substituting (4.5) in (3.31) for the DAM, and in (3.38) for RTM, the

following objective functions are obtained:
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min
PDAM
t ,

PDAMres
t

max
∆λ

DAMF
t

J1 =
24∑
t

[
λDAMF
t PDAM

t + λ̂DAMFPDAMres
t

+∆λDAMF
t PDAM

t︸ ︷︷ ︸
Bi-linear term

λDAMF
0,t + ∆̂λ

DAMF

t PDAMres
t︸ ︷︷ ︸

Bi-linear term

λ̂DAMF

]
(4.6)

min
∆Pt,
∆P res

t

max
∆λ

RTMF
t

J2 =
24∑
t

[
λRTMF
t ∆Pt + λ̂RTMF∆P res

t

+∆λRTMF
t ∆Pt︸ ︷︷ ︸

Bi-linear term

λRTMF
0,t + ∆̂λ

RTMF

t ∆P res
t︸ ︷︷ ︸

Bi-linear term

λ̂RTMF

]
(4.7)

where, for the DAM and RTM:

∆λYF
t = ∆λYF+

t −∆λYF−
t ∀t ∈ T (4.8)

∆λYF+
t −∆λ ≤ 0 ∀t ∈ T (4.9)

∆λYF−
t −∆λ ≤ 0 ∀t ∈ T (4.10)

24∑
t

∆λYF+
t +∆λYF−

t

∆λ
− Γ ≤ 0 (4.11)

∆λYF+
t ,∆λYF−

t ≥ 0 ∀t ∈ T (4.12)

The modified objective functions (4.6) and (4.7) represent a min-max problem, where the

total electricity cost is minimized in terms of the aggregated GSHP power variables and

maximized in terms of electricity price deviations. Equation (4.8) defines the DAM and

RTM price deviations, and (4.9) and (4.10) limit the positive and negative deviations to

the maximum allowed deviation based on historical data analyses and chosen confidence

levels. Finally, (4.11) presents the flexibility of conservatism assumed through the budget

of uncertainty Γ, which determines the maximum number of times prices may deviate
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from the forecasted values. Note that higher allowed deviations ∆λ provide more financial

protection against larger price uncertainties.

Equations (4.6) and (4.7) have a saddle-node and nonlinear problem structure due to

the new set of bi-linear terms. Hence, based on the dual of the maximization problem, the

following set of objective functions represented in linear form can be obtained [94]:

min
PDAM
t ,PDAMres

t ,

βDAM
1,t ,βDAM

2,t ,

βDAM
3,t ,βDAM

4

J1 =
24∑
t

[
λDAMF
t PDAM

t + λ̂DAMFPDAMres
t

+∆λ(βDAM
2,t + βDAMres

2,t + βDAM
3,t + βDAMres

3,t

]
+ Γ(βDAM

4 + βDAMres
4 ) (4.13)

min
∆Pt,∆P res

t ,

βRTM
1,t ,βRTM

2,t ,

βRTM
3,t ,βRTM

4

J2 =
24∑
t

[
λRTMF
t ∆Pt + λ̂RTMF∆P res

t

+∆λ(βRTM
2,t + βRTMres

2,t + βRTM
3,t + βRTMres

3,t

]
+ Γ(βRTM

4 + βRTMres
4 ) (4.14)

where:

βDAM
1,t = PDAM

t λDAMF
0,t ∀t ∈ T (4.15)

βRTM
1,t = ∆Ptλ

RTMF
0,t ∀t ∈ T (4.16)

βDAMres
1,t = PDAMres

t λ̂DAMF ∀t ∈ T (4.17)

βDAMres
1,t = PDAMres

t λ̂DAMF ∀t ∈ T (4.18)
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− βY
1,t + βY

2,t +
βY
4

∆λ
≥ 0 ∀t ∈ T (4.19)

βY
1,t + βY

3,t +
βY
4

∆λ
≥ 0 ∀t ∈ T (4.20)

βY
2,t, β

Y
3,t, β

Y
4 ≥ 0 ∀t ∈ T (4.21)

The objective functions are thus converted into minimization problems without bi-linear

terms.

The second source of uncertainty are the forecasted ambient temperatures. As with

the price, the ambient temperature can be expressed in terms of their center values and

deviation, as follows:

T F
ambt = T F

amb0,t
(1 + ∆T F

ambt) ∀t (4.22)

Substituting (4.22) in (3.4) and (3.13) for the house heat transfer balance and external wall

temperature calculations, respectively, results in the following set of linear constraints:

Qouti,t = Qout0,i,t − UA∆T
F
ambtT

F
amb0,t

(4.23)

TEi,t
= TE0,i,t

−
UE∆T

F
ambt

T F
amb0,t

HPE

∀i ∈ I, t ∈ T
(4.24)

where:

∆T F
ambt = ∆T F+

ambt
−∆T F−

ambt
∀t ∈ T (4.25)

∆T F+
ambt

−∆T F
ambt

≤ 0 ∀t ∈ T (4.26)
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∆T F−
ambt

−∆T F
ambt

≤ 0 ∀t ∈ T (4.27)

T∑
t

∆T F+
ambt

+∆T F−
ambt

∆T F
ambt

− Γ ≤ 0 (4.28)

∆T F+
ambt

,∆T F−
ambt

≥ 0 ∀t ∈ T (4.29)

The complete RO DAM model comprises (4.13), (4.15), (4.17), (4.19)-(4.21), (4.23)-(4.29),

the GSHP thermal constraints discussed in Section 3.1, (3.1)-(3.3), (3.5)-(3.12) and (3.14)-

(3.29), and the operational constraints (3.32)-(3.37). Similarly for the RO RTM model,

it comprises (4.14), (4.16), (4.18), (4.19)-(4.21), (4.23)-(4.29), the same GSHP thermal

constraints as the RO DAM model formulated for the RTM operation. Finally, observe

that these RO models are linear optimization problems, and hence they can be solved using

LP techniques.

4.4 Results and Discussion

4.4.1 Test System

As discussed in Section 3.4.1, this work considers a GSHP load aggregator in Ontario,

Canada, that submits demand bids to the IESO and purchases electricity for its clients.

The load aggregator is assumed to provide electricity to 800 houses, as in [86], but unlike

Chapter 3 that assumed only one type of house and GSHP unit, two different house thermal

characteristics and four different GSHP units are used here, which result in 8 different types

of homes that are then equally distributed among the 800 houses. Finally, as in Chapter 3,

all customers are assumed to be at home from 6 PM to 8 AM, for simplicity and without

loss of generality.

The recommended thermal comfort ranges are presented in Table 3.2, the parameters

for the two house’s geometric and thermal characteristics are given in Table 4.1, and the

characteristics of the four GSHP system units, obtained from [15,95] and [87], are presented

in Table 4.2. The electricity prices, uncontrolled DAM loads LDAM
t , the weather data, solar
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irradiation for that year and internal heat gains in a typical house are considered to be the

same as discussed in Chapter 3.

Table 4.1: Household Geometric and Thermal Characteristics

Item House 1 [15] House 2 [95]

Area [m2] 325 260
Volume [m3] 225 174
Glazed surface portion [%] 9.5 7.2
R ceiling [m2 °C /W] 7.67 6.92
R external walls [m2 °C /W] 4.67 3.37

Table 4.2: GSHP Characteristics [87]

Model BP018 BP024 BP030 BP036
Cooling Capacity [Btu/hr] 20,500 26,000 28,500 37,500
Heating Capacity [Btu/hr] 14,800 18,000 20,500 26,000
EERHP

ref 19.0 21.1 19.4 19.7
COPHP

ref 3.8 4.0 4.3 4.1

Simulations were carried out for the following four sample days specifically selected

to analyze the daily operation of the GSHP units: January 31, February 4, July 20, and

September 9, 2019, since these are the coldest day in winter, the warmest day in winter,

the warmest day in summer, and the coldest day in summer, respectively. Since all GSHP

optimization models are LP problems, they were implemented in GAMS and solved using

the CPLEX solver.

4.4.2 Results

A fixed one-hour recalculation time is considered for the MPC approach implementation

of the optimal power dispatch, with a typical 24-hour moving prediction horizon and a

forecasting error increasing over time as in [96] for the estimated electricity price error,

and in [97] for the estimated outdoor temperature error, as depicted in Figure 4.3. The es-

timated forecast errors were obtained using the Root Mean Square Error (RMSE) standard

metric.
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Figure 4.3: RMSEs for (a) electricity price [96], and (b) ambient temperature [97]

For the MCS technique, the deterministic optimization problem is repeatedly solved

considering uncertainties in electricity prices and ambient temperature, assuming the de-

viations to be normally distributed, with mean 0 and hourly standard deviations for the

electricity price SDλ
t and ambient temperature SDT

t , obtained from historical data and

illustrated in Figure 4.4. Observe in Figure 4.5 and Figure 4.6 that increasing the number

of iterations beyond 2000 does not provide any significant change in the results for the
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total electricity costs and aggregated GSHP load, respectively; hence, the MCS studies

presented consider 2000 iterations.
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Figure 4.4: Hourly standard deviations for (a) electricity price and (b) ambient temperature,
obtained from 10-year historical data for the given day.
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The RO simulations were carried out for different values of ∆λ, ∆T , and Γ, as fol-

lows: ∆λ ∈ [0.5SDλ
t , SD

λ
t , 1.5SD

λ
t , 2SD

λ
t ]; ∆T ∈ [0.5SDT

t , SD
T
t , 1.5SD

T
t , 2SD

T
t ]; and

Γ ∈ [0, 6, 12, 18, 24]. Therefore, 20 different scenarios were simulated for each day. Figure

4.7 presents the total electricity costs for the load aggregator for each day and for different

combinations of ∆λ, ∆T , and Γ. Note that Γ = 0 corresponds to the deterministic case, as

the electricity cost does not change with different combinations of ∆λ and ∆T . Further-

more, as Γ increases, the electricity prices and ambient temperature forecast deviate from

their original values, resulting in total electricity cost increases. The same occurs with

the increase in ∆λ and ∆T deviations for a specific Γ, with larger prices and temperature

deviations leading to higher electricity costs, as expected.

The aggregated GSHP optimal power dispatch for all RO combinations is shown in

Figure 4.8, where it can be observed that the total GSHP power dispatched is less sensitive

to changes in ∆λ, ∆T , and Γ as compared to the sensitivity of the electricity costs. This

can be attributed to the lower SDT
t values for the in-house temperature changes, which

result in lower variations on the GSHP overall power dispatch. Furthermore, note that the

total GSHP power dispatch sensitivity to uncertainties is even less on extreme cold days,

as shown in Figure 4.8a, because the GSHP units operate at its maximum capacity almost

at every hour, thus reducing the power dispatch flexibility with respect to the changes in

the uncertainty parameters. Finally, observe that the power dispatch is more sensitive to

uncertainty changes on days with low GSHP demand, for the warmest day in the winter

and coldest day in the summer, respectively, as illustrated in Figures 4.8b and 4.8d.
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Figure 4.7: Aggregator electricity costs for the RO model.
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Figure 4.8: Aggregated GSHP power dispatch for the RO model.
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4.4.3 Comparison and Discussions

To validate the proposed RO model in this work, a comparison is performed with respect

to the obtained results from the MCS and MPC approaches, along with the results from

the deterministic scenario of the Proposed Strategy, in terms of the GSHP power dispatch

and in-house temperatures. Thus, the aggregated GSHP power dispatch is presented in

Figure 4.9 for the MCS, MPC, and RO approaches, for different combinations of ∆λt, ∆Tt,

and Γ, and the deterministic scenario. Note that the dispatch profiles are similar in all

cases with peak demands occurring at similar times; this is due to the relatively low SDT
t

values, as previously explained. Observe also that the demand profile in winter days are in

general similar in all cases, with relatively small deviations for each scenario, as shown in

Figures 4.9a and 4.9b; however, there are higher variations in the power dispatch profiles

during summer days, due to the higher EER of the GSHP units in cooling mode.

The indoor temperature profiles for the MCS, MPC, and RO approaches for different

combinations of ∆λt, ∆Tt, and Γ are shown in Figure 4.10 for House 20 and in Figure

4.11 for House 344, as these have different thermal characteristics and are equipped with

different GSHP units. Note that, in general, they present a similar behaviour with small

temperature profile variations, due mainly to the different house and GSHP geometric and

thermal characteristics between each house type; this is again due to low values of SDT
t .

Observe for House 20 that the temperature profiles differ slightly on different scenarios,

specially on extreme cold and warm days, as observed in Figures 4.10a and 4.10c, as this

house is equipped with the smallest GSHP capacity unit (BP018). This is not the case

for House 344, in which the temperature profiles follow a similar behaviour with minimal

deviations with respect to each scenario, even in extreme temperatures, as observed in

Figure 4.11a, due to the higher capacity of the GSHP unit (BP030).

A detailed comparison with respect to the obtained results from the MCS and MPC

approaches is presented in Table 4.3, where the results of all three approaches in terms

of total electricity cost, aggregated GSHP power dispatch, and computational burden are

presented. Observe that in all cases, the deterministic scenario presents the lowest total

electricity cost, followed by the MPC, and then the MCS scenarios, with the RO model

resulting in the highest costs as Γ increases, i.e., as the uncertainty increases; a similar

behaviour can be observed in terms of the aggregated GSHP power dispatch. This is

expected since the larger the price and temperature deviations are, the larger the cost

and power deviations become, to account for the increase uncertainty; furthermore, the
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RO approach is the most conservative, as it considers the worst case scenario. Note that

the proposed RO approach can be solved within 4 minutes in all scenarios, while the

computational burden of solving the MPC and MCS simulations is considerably higher.

1000

2000

3000

4000

5000

1 4 7 10 13 16 19 22

Po
w

er
 (k

W
)

Hour
Γ = 6   , Δλ = 0.5SDλ

t  , ΔT = 0.5SDT
t  

Γ = 18 , Δλ = 1.5SDλ
t  , ΔT = 1.5SDT

t 
MPC

Deterministic
Γ = 12 , Δλ = 1SDλ

t  , ΔT = 1SDT
t  

Γ = 24 , Δλ = 2SDλ
t  , ΔT = 2SDT

t 
MCS

(a) January 31.

0

500

1000

1500

2000

1 4 7 10 13 16 19 22

Po
w

er
 (k

W
)

Hour
Γ = 6   , Δλ = 0.5SDλ

t  , ΔT = 0.5SDT
t  

Γ = 18 , Δλ = 1.5SDλ
t  , ΔT = 1.5SDT

t 
MPC

Deterministic
Γ = 12 , Δλ = 1SDλ

t  , ΔT = 1SDT
t  

Γ = 24 , Δλ = 2SDλ
t  , ΔT = 2SDT

t 
MCS

(b) February 4.

0

500

1000

1500

1 4 7 10 13 16 19 22

Po
w

er
 (k

W
)

Hour
Γ = 6   , Δλ = 0.5SDλ

t  , ΔT = 0.5SDT
t  

Γ = 18 , Δλ = 1.5SDλ
t  , ΔT = 1.5SDT

t 
MPC

Deterministic
Γ = 12 , Δλ = 1SDλ

t  , ΔT = 1SDT
t  

Γ = 24 , Δλ = 2SDλ
t  , ΔT = 2SDT

t 
MCS

(c) July 20.

0

500

1000

1500

1 4 7 10 13 16 19 22

Po
w

er
 (k

W
)

Hour
Γ = 6   , Δλ = 0.5SDλ

t  , ΔT = 0.5SDT
t  

Γ = 18 , Δλ = 1.5SDλ
t  , ΔT = 1.5SDT

t 
MPC

Deterministic
Γ = 12 , Δλ = 1SDλ

t  , ΔT = 1SDT
t  

Γ = 24 , Δλ = 2SDλ
t  , ΔT = 2SDT

t 
MCS

(d) September 9.

Figure 4.9: Comparison of aggregated GSHP power dispatched.
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Table 4.3: Summary Comparison of Uncertainty Methods

Day

RO

MPC MCS
∆λ = 0.5SDλ

t ∆λ = SDλ
t ∆λ = 1.5SDλ

t ∆λ = 2SDλ
t

∆T = 0.5SDT
t ∆T = SDT

t ∆T = 1.5SDT
t ∆T = 2SDT

t

Γ = 0 Γ = 6 Γ = 12 Γ = 18 Γ = 24
Total electricity cost ($)

31-Jan 8,247 8,619 10,258 12,730 15,567 8,529 8,719
04-Feb 749 835 997 1,219 1,447 842 893
20-Jul 1,638 1,736 1,980 2,340 2,779 1,770 1,862
04-Sep 438 464 541 683 761 475 500

Power dispatch (MW)

31-Jan 90.9 91.1 92.8 93.1 93.7 91.6 93.2
04-Feb 3.6 3.9 4.0 4.1 4.4 3.8 4.1
20-Jul 11.9 12.2 12.5 13.1 13.5 12.4 13.2
04-Sep 5.1 5.7 6.1 6.4 6.7 5.6 6.1

Computational burden (minutes)

31-Jan 3.1 3.2 3.3 3.3 3.4 85 6105
04-Feb 2.5 2.9 3.1 3.0 3.1 80 4914
20-Jul 2.6 2.6 2.7 2.7 2.9 83 5251
04-Sep 2.9 2.9 3.0 3.0 3.1 83 5382
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Figure 4.10: Comparison of indoor temperature profiles for House 20.
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Figure 4.11: Comparison of indoor temperature profiles for House 344.
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4.5 Summary

The GSHP load aggregator model presented in Chapter 3 to minimize the total electricity

cost for a GSHP load aggregator was further extended in this chapter considering elec-

tricity price and ambient temperature uncertainties, based on range arithmetic techniques.

For this purpose, electricity price and ambient temperature uncertainties MPC, MCS, and

RO approaches to account for were presented. The implementation of each technique were

discussed, including the development of a linear RO mathematical model. It was shown

that the RO model yields multiple scenarios for the operator to choose based on the desired

level of protection against uncertainties. For validation and comparison purposes, the RO

model results were discussed vis-a-vis the ones obtained with the MPC and MCS tech-

niques, showing that the proposed RO approach was computationally more efficient, while

properly representing the considered uncertainties. This demonstrated the advantages of

the RO approach for GSHP power dispatch by load aggregators.
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Chapter 5

Conclusions, Contributions and

Future Work

5.1 Summary and Conclusions

In this thesis, a novel detailed mathematical model of a GSHP system with vertical U-

pipe GHX configuration has been proposed, considering the thermal modeling of residential

homes and a GSHP system. These detailed thermodynamic models were included in a two-

stage strategy for a load aggregator participating as price-taker in the DAM and RTM, to

determine the optimal power dispatch of the aggregated GSHP load. However, since the

electricity prices and ambient temperatures are subject to uncertainties, an RO uncertainty

model was developed based on range arithmetic, to determine the operational decisions for

a GSHP load aggregator.

In the first part of the thesis, a deterministic optimal scheduling model for a GSHP

aggregator was presented. Detailed Non-linear functions were used to represent the ther-

modynamic characteristics of the in-house temperature, absolute deviation in the total

aggregated load from DAM dispatch at the RTM price, and the objective function for

the Base-Case strategy. These nonlinear representations were linearized using McCormick

Envelopes and mutually exclusive non-negative auxiliary variables, eliminating bi-linear

terms and non-linearities from the absolute variables in the model. The proposed novel

linear formulation was implemented to simulate the operation for the GSHP aggregator,
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comparing it with a base-case strategy that seeks to maximize the customer’s comfort by

minimizing the deviation of the in-house temperature from a reference set point. Addition-

ally, the thermodynamic model of a conventional HVAC system was considered to compare

it with the performance of the GSHP system. Both models were studied using correspond-

ing DAM and RTM prices from the IESO for 2019, demonstrating that the proposed linear

GSHP aggregator model yielded better results, with a significantly lower total procurement

cost, as compared to the Base-Case and the conventional HVAC model.

In the second part of the thesis, range arithmetic techniques to represent electricity

price uncertainties were introduced in the model. To this effect, an RO model was devel-

oped to optimize the GSHP’s load aggregator power dispatch for the worst-case scenario for

a given budget of uncertainty, which allowed studying a range of scenarios from the deter-

ministic to the most conservative case. For validation purposes, the RO model results were

compared with those obtained with MPC and MCS techniques considering fixed intervals

of uncertainty. Simulations were carried out for specific days of the year for the above con-

sidered uncertainty techniques, considering their corresponding uncertainties in the DAM

and RTM electricity prices, and ambient temperature forecasts. Studies revealed that the

proposed RO approach was computationally more efficient to represent uncertainties for

GSHP power dispatch by load aggregators.

The following conclusions can be drawn from this work:

• The proposed detailed mathematical model of a GSHP system, with vertical U-

pipe GHX configuration and a two-stage strategy for a load aggregator, demonstrate

that these systems are more effective and economic alternatives for residential space

heating/cooling applications than the conventional HVAC system and the typical

maximization of the customers’ thermal comfort.

• The proposed linear thermodynamic representation of the GSHP aggregator signif-

icantly reduces the computational burden of the mathematical model, without loss

of accuracy, making it simpler to implement uncertainty techniques, such as MPC,

MCS and RO.

• The RO model yields optimum schedules that are protected against the worst-case

scenario, for a given budget of uncertainty. The model can be efficiently varied from

deterministic to the most conservative while properly representing the considered

uncertainties, thus demonstrating the advantages of the RO approach.
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5.2 Contributions

The main contributions of this thesis can be summarized as follows:

• A novel linear mathematical model for residential space heating/cooling of a GSHP

system with vertical U-pipe GHX closed-loop configuration was proposed and vali-

dated, accounting for its thermal and geometric characteristics, as well as the switch-

ing between heating and cooling modes based on the average ambient temperature.

• A GSHP load aggregator model was developed for its participation in wholesale

electricity markets as a price-taker, to provide peak load reduction and load shifting

services by optimally dispatching the aggregated GSHP loads with two different

operating strategies: a base-case that seeks to maximize the house comfort and a two-

stage operation in DAM and RTM to minimize the aggregator’s total electricity cost.

The model was implemented and validated with respect to a mathematical model of

an existing conventional HVAC system, comparing its operational performance with

that of the GSHP system.

• Carried out simulations for a whole year considering the integration of several GSHPs

/ HVACs by the load aggregator and determining their respective optimal opera-

tion strategies in the DAM and RTM. These were coupled together with a techno-

economic analysis, to determine the feasibility and long-term profitability for a load

aggregator to invest in GSHP systems operating with the proposed strategy.

• An RO mathematical model was proposed that considers uncertainties in the electric-

ity prices and ambient temperature to optimize the aggregated GSHP load dispatch,

controlling their in-house temperatures to minimize overall costs under the worst-case

scenario.

• A realistic test system, with multiple and different house thermal and geometric

characteristics, along with different GSHP unit characteristics, was used to compare

and analyze the results of the proposed RO approach with respect to MPC and

MCS techniques, demonstrating the feasibility and advantages of the proposed RO

mathematical model in practical applications.
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The proposed GSHP thermodynamic model, and load aggregator strategies, presented

in Chapter 3 were published in [86] and [98]. The uncertainty models and related ap-

proaches detailed in Chapter 4 have been submitted for publication in [99].

5.3 Future Work

Based on the work presented in this thesis, the following issues could be addressed in the

future:

• Consider the GSHP load aggregator participating as a price-maker in the market. For

this purpose, a bi-level model could be developed for a load aggregator that seeks

to maximize profits by providing energy and ancillary services, while minimizing its

total electricity costs.

• Study the potential of the GSHP unit to operate as an ESS by considering the thermal

characteristics of the soil to store energy during the GSHP operation.

• Apply the proposed techniques to model uncertainties in other system parameters

such as customer willingness to participate in the program and customer’s time at

home.
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[55] S. Dempe, V. Kalashnikov, G. A. Pérez-Valdés, and N. Kalashnykova, Bilevel Pro-

gramming Problems: Theory, Algorithms and Applications to Energy Networks. Berlin,

Heidelberg: Springer Berlin Heidelberg, 2015.

[56] X. Xiao, J. Wang, R. Lin, D. J. Hill, and C. Kang, “Large-scale aggregation of pro-

sumers toward strategic bidding in joint energy and regulation markets,” Applied

Energy, vol. 271, p. 115159, 2020.

[57] S. S. Rao, Engineering Optimization: Theory and Practice. John Wiley & Sons, Ltd,

2009.

[58] A. R. Jordehi, “How to deal with uncertainties in electric power systems? A review,”

Renewable and Sustainable Energy Reviews, vol. 96, pp. 145–155, 2018.

90

https://www.ieso.ca/en/Sector-Participants/Registered-Participants
https://www.ieso.ca/en/Sector-Participants/Registered-Participants


[59] A. Shapiro, D. Dentcheva, and A. Ruszczynski, Lectures in Stochastic Programming:

Modeling and Theory. SIAM, 2009.

[60] D. E. Olivares, J. D. Lara, C. A. Canizares, and M. Kazerani, “Stochastic-predictive

energy management system for isolated microgrids,” IEEE Transactions on Smart

Grid, vol. 6, pp. 2681–2693, Nov. 2015.

[61] B. Fanzeres, A. Street, and L. A. Barroso, “Contracting strategies for renewable gen-

erators: A hybrid stochastic and robust optimization approach,” IEEE Transactions

on Power Systems, vol. 30, no. 4, pp. 1825–1837, 2015.

[62] J. D. Lara, D. E. Olivares, and C. A. Cañizares, “Robust energy management of
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Appendix A

GSHP Capacity Data-sheets

Tables A.1 to A.4 depict the GSHP capacities for the different units considered in the thesis

with respect to the in-house and borehole fluid temperatures; and Table A.5 presents the

linear data-fitting coefficients for the performance of the GSHP in heating or cooling mode.
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Table A.1: Bosch BP018

GHX fluid In-house Total GHX fluid In-house Total
temperature temperature capacity EER temperature temperature capacity COP

(°F) (°F) (BTUH) (°F) (°F) (BTUH)
50 60 21000 21.9 30 60 14200 3.9
50 70 22400 24.2 30 70 13900 3.7
50 80 23800 26.8 30 80 13400 3.3
60 60 20100 21 40 60 16300 4.3
60 70 21400 23 40 70 15900 4
60 80 22800 25.2 40 80 15400 3.6
70 60 19200 19.3 50 60 18500 4.8
70 70 20500 21 50 70 18000 4.3
70 80 21700 22.6 50 80 17500 3.9
80 60 18200 17 60 60 20800 5.3
80 70 19400 18.3 60 70 20300 4.8
80 80 20700 19.7 60 80 19800 4.3
90 60 17300 14.8 70 60 23200 4.9
90 70 18400 15.7 70 70 22600 5.2
90 80 19600 16.8 70 80 22000 4.6
100 60 16300 12.6 80 60 25600 6.4
100 70 17400 13.4 80 70 25000 5.6
100 80 18500 14.2 80 80 24400 4.9
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Table A.2: Bosch BP024

GHX fluid In-house Total GHX fluid In-house Total
temperature temperature capacity EER temperature temperature capacity COP

(°F) (°F) (BTUH) (°F) (°F) (BTUH)
50 60 28100 30.8 30 60 19300 4.1
50 70 30000 33.1 30 70 18900 3.6
50 80 31900 35.5 30 80 18600 3.2
60 60 26800 24.9 40 60 22100 4.5
60 70 28700 26.7 40 70 21700 4
60 80 30500 28.5 40 80 21300 3.5
70 60 25600 20.7 50 60 25200 5
70 70 27300 22.1 50 70 24700 4.4
70 80 29000 23.3 50 80 24200 3.9
80 60 24200 17.2 60 60 28500 5.5
80 70 25900 18.4 60 70 27900 4.8
80 80 27600 19.5 60 80 27300 4.2
90 60 22900 14.5 70 60 32000 6
90 70 24400 15.3 70 70 31300 5.2
90 80 26000 16.2 70 80 30600 4.6
100 60 21500 12.1 80 60 35500 6.3
100 70 23000 12.9 80 70 34800 5.6
100 80 24500 13.6 80 80 34000 4.9
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Table A.3: Bosch BP030

GHX fluid In-house Total GHX fluid In-house Total
temperature temperature capacity EER temperature temperature capacity COP

(°F) (°F) (BTUH) (°F) (°F) (BTUH)
50 60 30900 27.2 30 60 20500 4.2
50 70 32800 28.1 30 70 20000 3.7
50 80 34800 28.7 30 80 19600 3.2
60 60 29500 22.9 40 60 23400 4.8
60 70 31400 23.7 40 70 22800 4.2
60 80 33200 24.3 40 80 22300 3.6
70 60 28000 19.3 50 60 26500 5.4
70 70 29900 20.1 50 70 26000 4.7
70 80 31700 20.7 50 80 25600 4.1
80 60 26600 16.3 60 60 30100 5.9
80 70 28300 17 60 70 29300 5.2
80 80 30200 17.7 60 80 28800 4.5
90 60 25200 13.8 70 60 33700 6.4
90 70 26800 14.4 70 70 33200 5.6
90 80 28500 15 70 80 32200 4.9
100 60 23600 11.6 80 60 37700 6.6
100 70 25300 12.2 80 70 36900 5.8
100 80 26900 12.7 80 80 36100 5.1
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Table A.4: Bosch BP036

GHX fluid In-house Total GHX fluid In-house Total
temperature temperature capacity EER temperature temperature capacity COP

(°F) (°F) (BTUH) (°F) (°F) (BTUH)
50 60 37800 24.2 30 60 27000 4.2
50 70 40300 25.6 30 70 26700 3.7
50 80 42900 27 30 80 26000 3.3
60 60 36200 20.8 40 60 30800 4.6
60 70 38500 22 40 70 30600 4.2
60 80 41000 23.2 40 80 29700 3.7
70 60 34500 18 50 60 35000 5.1
70 70 36800 19 50 70 34400 4.6
70 80 39200 20.1 50 80 33800 4.1
80 60 32700 15.4 60 60 39600 5.6
80 70 35000 16.4 60 70 38700 5
80 80 37300 17.3 60 80 37800 4.5
90 60 31000 13.3 70 60 44400 6.1
90 70 33100 14.1 70 70 43300 5.5
90 80 35200 14.8 70 80 42400 4.9
100 60 29200 11.3 80 60 49100 6.6
100 70 31200 12 80 70 48100 5.9
100 80 33400 12.8 80 80 47100 5.2

Table A.5: GSHP Data-fitting Coefficients

Model BP018 BP024 BP030 BP036
Ac 11.22 13.35 13.5 10.37
Bc -6.076 -8.833 -7.71 -6.592
Cc -3.983 -3.18 -4.562 -2.62
Ah -9.737 -11.84 -12.25 -11.3
Bh 5.081 5.106 5.224 5.419
Ch 6.028 8.146 8.43 7.273
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