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Abstract

The dramatic improvements in core information retrieval tasks engendered by neural
rankers create a need for novel evaluation methods. If every ranker returns highly relevant
items in the top ranks, it becomes difficult to recognize meaningful differences between
them and to build reusable test collections. Several recent papers explore pairwise prefer-
ence judgments as an alternative to traditional graded relevance assessments. Rather than
viewing items one at a time, assessors view items side-by-side and indicate the one that
provides the better response to a query, allowing fine-grained distinctions. If we employ
preference judgments to identify the probably best items for each query, we can measure
rankers by their ability to place these items as high as possible. I frame the problem of find-
ing best items as a dueling bandits problem. While many papers explore dueling bandits
for online ranker evaluation via interleaving, they have not been considered as a framework
for offline evaluation via human preference judgments. I review the literature for possible
solutions. For human preference judgments, any usable algorithm must tolerate ties since
two items may appear nearly equal to assessors. It must minimize the number of judg-
ments required for any specific pair, since each such comparison requires an independent
assessor. Since the theoretical guarantees provided by most algorithms depend on assump-
tions that are not satisfied by human preference judgments, I simulate selected algorithms
on representative test cases to provide insight into their practical utility. In contrast to
the previous paper presented at SIGIR 2022 [87], I include more theoretical analysis and
experimental results in this work. Based on the simulations, two algorithms stand out
for their potential. I proceed with the method of Clarke et al. [20], and the simulations
suggest modifications to further improve its performance. Using the modified algorithm,
over 10,000 preference judgments for pools derived from submissions to the TREC 2021
Deep Learning Track are collected, confirming its suitability. We test the idea of best-item
evaluation and suggest ideas for further theoretical and practical progress.
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Chapter 1

Introduction

The standard offline evaluation approach for ad hoc information retrieval systems requires
a benchmark document collection, a test suite of queries, and a set of relevance judgments.
These judgments are usually made by human assessors based on predefined relevance levels
to measure the degree to which a search result is related to a query. Collecting relevance
judgments is time-consuming and expensive since it involves human assessors. Especially
for large document collections, it is intractable to obtain exhaustive relevance judgments
for every single query and document pair. To reduce assessment costs, the Text REtrieval
Conference (TREC) project adopts the pooling [74] method which only assesses the top k
documents returned by various retrieval systems. However, due to the huge improvements
in information retrieval systems and the continuously increasing document corpus size,
recent work [81] on the TREC Deep Learning track has found that the document collection
built with pooling is not reusable, and has the problem of high-precision saturation because
of the existence of too many relevant documents in the judging pool and likely many
unknown relevant documents in the unjudged portion of the corpus.

Other evaluation challenges associated with pointwise graded relevance assessments
also note the existence of too many relevant documents and recognize difficulties in clearly
defining and consistently applying precise relevance grading schemes [14]. If every retriever
returns highly relevant items in the top ranks, it becomes difficult to distinguish among
retrievers. All of these challenges create a need for novel evaluation methods. In this work,
I consider best item evaluation as a potential direction. If we employ preference judgments
to identify the probably best items for each query, we can measure rankers by their ability
to place these best items as high as possible.

As an alternative to absolute relevance assessments of individual items, pairwise pref-
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msmarco passage 50 318366271: Nicole Jaffe (I) Nicole Jaffe. Jaffe’s career
was mainly based on doing voice-over work. She is best remembered as the voice
of the nerdy-and-intellectual Velma Dinkley in the Scooby-Doo cartoons from
1969-1973; before actress Pat Stevens picked up the role.

msmarco passage 30 571323592: Biography. Taliesin Jaffe born as Taliesin
Axelrod Jaffe is an American actor, voice actor, ADR director, and scriptwriter.
Jaffe was born on January 19, 1977. He is one of the famous director and actor
who was born in Los Angeles, California, United States. His nationality is
American.

msmarco passage 24 359189946: Taliesin Jaffe The Flash. Taking the
helm of the legendary Scarlett Speedster is Taliesin Jaffe, who is a video game
and television actor. Jaffe has appeared in numerous titles including Fire Emblem
Heroes, Final Fantasy XV, Fallout 4, Pillars of Eternity, and Street Fighter IV.

Figure 1.1: Three of 92 pooled passages for the question Who is Jaffe? (#1103547). Even
though the question is ambiguous, the first two that provide clear and complete biographies
were preferred by assessors.

erence judgments have been explored in several papers [14, 20, 39, 67, 71, 86]. Instead of
viewing items one at a time and assigning predefined relevance scores, human assessors
consider two items side-by-side and express a relative preference for one over the other,
allowing fine-grained distinctions that may be missed by pointwise judgments [8, 20]. As-
sessment guidelines for pairwise preference judgments can also be simpler since judgments
can be expressed in relative terms, which can ease and speed up the judging process [20].

Figure 1.1 provides an example, presenting three passages intended to answer the ques-
tion ”Who is Jaffe?”. They all provide clear and concise biographies for two different actors
with the last name “Jaffe”. Distinguishing them using absolute scores will require more
complex definitions of relevance and increase the judgment burden on assessors. As a com-
parison, pairwise preference judgments, only requiring assessors to make relative decisions,
greatly simplify the labeling process. Our experiments show that the first two passages
were preferred by crowdsourced assessors since they are more focused on biographical in-
formation.

The value of preference judgments for offline evaluation has been demonstrated in recent
papers. Sakai and Zeng [71] propose a variety of preference-based measures and examine
the measures with users’ SERP preferences and traditional measures such as nDCG. Clarke
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et al. [18] define and validate an evaluation measure that computes the similarity between a
directed multigraph of preferences and an actual ranking generated by a ranker. Arabzadeh
et al. [6] employ preference judgments to isolate best items and evaluate rankers by their
ability to place best items as high as possible. Others propose and explore measures based
on counts of correctly ordered items - according to the preference judgments - or measures
that convert preferences to gain values for use with NDCG and other standard evaluation
measures [13, 71, 86, 88].

These papers give considerable attention to preference-based evaluation measures. How-
ever, they devote relatively less attention to the preference judging process itself. Many
papers assume that all pairs in a judging pool will be judged once [6, 14, 71]. Sakai and
Zeng [71] judge all pairs three times, requiring thousands of judgments for a judging pool
of only three or four dozen items. Carterette et al. [14] suggest reducing the number of
judgments by exploiting transitivity and eliminating non-relevant items in an initial bi-
nary relevance pass, but they do not explore these ideas in detail. Clarke et al. [20] build
on these ideas, describing a tournament-like judging strategy targeted at crowdsourced
preference judgments.

In this thesis, I focus on the judging process, with the goal of identifying the best
responses to a query while minimizing the number of preference judgments. With these
best responses, we can measure rankers via best item evaluation. I frame the problem
of finding best items in terms of dueling bandits, in which the algorithm attempts to
identify the probably best of K arms through noisy pairwise comparisons [9, 50, 54, 92, 90,
95, 96]. There are extensive studies on dueling bandits and human preference judgments
in the context of information retrieval, but explicit connections between them are rare.
Glowacka [32] (Chapter 5) reviews both the use of dueling bandits for online evaluation
and the use of (non-dueling) bandits for traditional pointwise relevance judgments, but
does not connect the two concepts.

In the remainder of this work, I first introduce bandits algorithms together with IR
evaluation measures in Chapter 2, including both traditional measures and preference-
based measures. In Chapter 3, I define and justify requirements for human preferences
as dueling bandits, followed by a review and analysis of candidate algorithms from both
the machine learning and information retrieval literature. Since the theoretical guarantees
provided by these algorithms typically depend on assumptions that are not usually satisfied
by human preference judgments, I simulate selected algorithms on two representative test
cases to provide insight into their practical utility in Chapter 4. In Chapter 5, a modified
version of the algorithm described in Clarke et al. [20] is proposed as a suitable candidate.
In a joint work, we employed the modified algorithm to collect over 10,000 crowdsourced
preference judgments for the TREC 2021 Deep Learning Track [22], verifying the suitability
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of the algorithm. Using the collected preference judgments, we tested the idea of best item
evaluation and provided support for ideas proposed by Arabzadeh et al [6]. In Chapter 6,
I give a summary of the research results and suggest directions for future work.

The main contributions of this thesis are three-fold:

• Proposed the novel idea of framing the problem of finding best items via crowd-
sourced preference judgments in terms of dueling bandits, and set the scene for
further progress in this space.

• Reviewed candidate algorithms from the dueling bandits literature, further pro-
gressed the work in Clarke et al. [20], and outlined directions for theoretical and
practical progress.

• Generated costly preference judgments and validated the idea of best item evaluation.
Crowdsourced preference judgments are available publicly for further research.
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Chapter 2

Background

This chapter provides the reader with background information, covering from traditional
evaluation measures in information retrieval to reinforcement learning and bandit algo-
rithms. It also looks at related work in finding the max/top-k items via crowdsourced
preference judgments.

2.1 Graded Relevance

Traditional offline evaluation for information retrieval tasks typically relies on graded rel-
evance assessments of retrieved results to measure the effectiveness of IR systems. Binary
assessments classify every document as either relevant or non-relevant in response to the
user request, implying that all relevant documents are equally important and have the same
level of information. In a ranked retrieval context, IR systems are typically evaluated over
the top-k retrieved results. Common evaluation measures for binary assessments include
precision@k, recall@k, Mean Average Precision (MAP) and Mean Reciprocal Rank(MRR).

One shortcoming of binary relevance is that it does not consider the possibility of
documents being relevant to a different degree, with some documents highly relevant and
others less. In order to address such issues, multi-level graded relevance judgments are
employed. However, there is no globally accepted standard of relevance levels. The number
of relevance levels and the definition of levels can vary from task to task. For example,
judgments for the document ranking task in the TREC Deep Learning track were collected
on a four-point scale of Irrelevant, Relevant, Highly Relevant and Perfectly Relevant [23].
The TREC Conversational Assistance Track [24] adopted a five-point relevance scale of
Fully meets, Highly meets, Moderately meets, Slightly meets and Fails to meet.
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A standard and widely adopted evaluation approach for non-binary notions of relevance
is normalized discounted cumulative gain (nDCG) [41]. To compute nDCG, ordinal rele-
vance levels must be converted into a ratio scale. For instance, the TREC Deep Learning
track mapped score 0 to irrelevant and scores 1, 2, 3 to relevant, highly relevant and per-
fectly relevant respectively [23]. The more relevant a document is, the higher score it gets
assigned.

While multi-level graded relevance has seen increasing adoption in both academia and
industry, it faces several problems. Defining and consistently applying multi-level relevance
grades is more difficult and time-consuming than making binary decisions, requiring a
substantial amount of human effort [14]. If every retriever returns highly relevant items in
the top ranks, it becomes difficult to recognize meaningful differences between retrievers
and to build reusable test collections.

2.2 NDCG

Normalized discounted cumulative gain (nDCG) is an evaluation metric that measures the
effectiveness of IR systems for retrieving highly relevant documents. It is based on two
assumptions: 1) The more relevant a document is, the more useful information it contains.
2) Relevant documents are more valuable when appearing earlier in a ranked list, since
users tend to pay more attention to top items and neglect the rest [41].

NDCG is a normalized value of the Discounted Cumulative Gain (DCG), which is a
weighted sum of relevance scores of retrieved items. The discount factor dominantly used
in IR literature is 1

log 1+r
, where r represents the ranked position of the object. Assume

that for a query q there is a collection of m documents D = {d1, d2, ..., dm} whose relevance
to q is given by rel = {rel1, rel2, ..., relm}. Let F(q, d) be a ranking function that outputs
a real-valued score for every query-document pair. Then for query q and the collection of
m documents, F ranks the documents according to their scores F (q, d1), ..., F (q, dm). Let
ranki denote the rank of document di in the resulting ranking list. DCG value is computed
as follows:

DCG(F,D) = Σm
i=1

reli
log2(1 + ranki)

An alternative DCG, often used by commercial search engines, gives exponentially
increasing weights to higher relevance grades:

DCG(F,D) = Σm
i=1

2reli − 1

log2(1 + ranki)
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NDCG normalizes DCG on a scale of 0 to 1 by the Ideal DCG (IDCG), which is the
DCG of an ideal/perfect ranking: for any pair of documents di and dj in the ranking list,
reli ≥ relj indicates ranki ≤ rankj. Let F ′ denote a ranking function that generates an
ideal ranking of the collection D. Then IDCG is IDCG(D) = DCG(F ′, D). NDCG is
computed as follows:

NDCG(F,D) =
DCG(F,D)

IDCG(D)

NDCG has proved to be discriminative, stable, and predictive [69, 82, 83], and is one of
the most standard and primary evaluation measures used in recent TREC tasks [23, 24].
However, it still has limitations. If NDCG is selected as an evaluation measure, human
assessors need to make judgments by assigning scores to query-document pairs based on
pre-defined relevance assessing guidelines. Such guidelines specify how to decide among
multiple relevance scores based on potentially many factors. There are several concerns
associated with this approach. First, anticipating all potentially useful factors is intractable
when creating the guidelines, and balancing between various factors is challenging. The
guidelines either can be too coarse to distinguish items from each other, or can be too fine-
grained and tedious. Additionally, assessors need to take lots of mental effort to maintain
consistency when making judgments using such multi-level graded relevance guidelines.

2.3 Preference Judgments

As opposed to absolute judgments assessed based on the degree of relevance of individual
items, preference judgments specify the relation of two items, indicating that one result
should be favored over the other. Therefore, preference judgments bypass some of the
difficulties of defining and deciding between multiple relevance scores. Preferences can be
derived either directly from human assessments or implicitly from existing relevance scores,
click data or other signals. Throughout this thesis, I consider a preference judgment as a
pairwise, binary decision made by human assessors.

The idea of using preferences as an alternative to absolute relevance dates back to the
early 1990s. Research conducted by Rorvig in 1990 first introduced preference judgments
and showed that test collections could be built reliably from such judgments [68]. In 1991,
Frei and Schauble [31] proposed a usefulness measure on preference sets and suggested
that humans are more consistent at making relative relevance judgments. In 1995, Yao
[89] proposed an evaluation measure to examine the agreement between user preference of
documents and system-retrieved results based on the distance between the two rankings.
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When compared to pointwise absolute judgments, relative judgments are more flexible
and easier to obtain, allowing for finer distinctions among documents and considering
factors that can be difficult to incorporate in relevance grades [14]. For instance, if two
articles are equally relevant, the more recent one may be preferred for the purpose of
timeliness. However, there are two primary concerns regarding pairwise comparisons: 1)
the number of pairs needed to be judged may be quadratic in the number of documents.
2) There has been a lack of validated evaluation methods.

A notable effort was made in 2008 by Carterette et al. [14] to bring preference-based
measures into actual use. The authors asked expert judges to make pointwise judgments
and pairwise comparisons, collecting a total of O(n) absolute scores and O(n2) preferences.
By studying the assessor agreement and the time spent per judgment, they found that
pairwise comparisons can be made faster by humans and are less likely to have inter-
assessor disagreement than pointwise judgments. In addition, on average over 99% of
preference triplets are transitive: given a triplet of documents (i, j, k), if i is preferred to
j and j is preferred to k, i is preferred k, suggesting that the number of pairs for judging
can be reduced by exploiting transitivity [14].

As for evaluation measures for preference judgments, Carterette et al. [14] developed two
simple metrics: ppref (precision of preference) and wpref (weighted precision of preference).
Ppref is the percentage of pairs ordered by IR systems that agree with preferences. Wpref
is the sum of pairs in ppref weighted by factor wij = 1

log2 j+1
such that item i is preferred to

item j and i, j are the ranks. Later at SIGIR 2008, Carterette and Bennett [13] introduced
another two metrics: rpref (recall of preferences) and average precision of preferences.
Inspired by their work to establish preference-based evaluation measures, Sakai and Zeng
[71] greatly expanded the family of preference-based measures and examined whether they
aligned with the users’ perception of search engine result pages (SERPs). More recently,
Clarke et al. [18] treated a collection of preferences as a directed multi-graph, and developed
an evaluation measure that computes the similarity between a preference graph and an
actual ranking generated by IR systems.

Instead of basing evaluation metrics on the counts of correctly ordered items, another
way is to measure IR systems by their ability to rank best-known items as high as possible.
Arabzadeh et al. [6] employed crowdsourced workers to make preference judgments and
isolated only the best items which were used to re-evaluate top runs on the MS MARCO
passage retrieval leaderboard.
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2.4 Reinforcement Learning and Bandit Algorithms

In recent decades, the theory and practice of reinforcement learning have gained increasing
attention, with many exciting advancements. Reinforcement learning is an active field in
machine learning concerned with learning optimal policies for sequential decision making
problems from experience gained through interacting with the environment [53, 56, 75]. As
opposed to supervised learning where data is labeled or unsupervised learning where the
aim typically is to discover hidden structures in unlabeled data, the learner in reinforcement
learning studies what decisions in an action space yield high rewards by trying them out and
evaluating reward signals. Often, different decisions not only result in different immediate
rewards, but also have an impact on the next scenario and therefore all future rewards.
The goal is to learn an optimal policy that maximizes the expectation of long-term return.

A distinctive feature of reinforcement learning is the exploration-exploitation tradeoff.
Initially, reward distributions associated with each action are fixed but unknown, and
a learner can only obtain estimates by executing respective actions. Feedback received
indicates how good a selected action is, but not if it is optimal. Consequently, in order to
maximize rewards, a learner needs to find a balance between actively exploring new actions
to discover the one with higher long-term return and exploiting the current knowledge by
selecting a greedy option to maximize short-term rewards [75]. This is known as the
exploration–exploitation tradeoff.

Reinforcement learning has several sub-areas, one of which is the multi-armed bandit
(MAB) problem. In the standard setting, a learner repeatedly selects one action at a time
from a given set of K choices and observes the corresponding feedback, with the goal of
optimizing its evaluation criterion over a time period [9, 32, 90]. Assume that there are
K actions {a1, a2, ..., aK} whose associated expected rewards are {µ1, µ2, ..., µK}. The K
actions are referred to as the K arms of a bandit, named by analogy to a slot machine.
The objective is to find a strategy to select an arm at each round t = 1, ..., T and earn the
corresponding reward while maximizing the cumulative rewards after T time steps. Given
that the maximal reward can be obtained by always selecting the best arm, the goal of a
learner can be also viewed as finding the best arm that has the highest expected reward.

Depending on what a learner is concerned with, there are various ways to measure the
performance. One common evaluation criterion is cumulative regret. Let µ′ = maxk µk

denote the expected reward of selecting the best arm. Then the regret of choosing an arm
ai at round t is defined as the difference between the reward of selecting the best arm and
the reward of selecting ai:

rt = max
k

µk − µi = µ′ − µi

9



The total regret accumulated after T time steps is defined as:

RT =
T∑
t=1

rt =
T∑
t=1

(µ′ − µi(t))

As we can see, each action is penalized according to the quality of the selected item.
Cumulative regret measures the average quality of the decisions made by a learner during a
time period T . A widely adopted objective of MAB algorithms is to minimize the expected
cumulative regret [9].

In addition to looking at the expected regret, another variable of interest is sample
complexity, i.e. the number of steps required to identify the optimal arm. Under the
PAC (“probably approximately correct”) setting, the goal can be formally formulated as
finding an ε-optimal arm whose expected reward is within ε from the expected reward of
the best arm with probability at least 1−δ [9, 61]. In contrast to regret minimization tasks
that consider the average quality of selected arms, the performance of a learner in the PAC
setting is measured purely based on sample complexity, which is usually expressed in terms
of ε, δ and the total number of arms K. In the PAC setting, each decision is penalized
equally, regardless of the quality of the selected items.

Multi-armed bandit problems enjoy a long history, extending back to the early 1930s
for applications in medical trials [77]. Recent years have seen a substantial increase for
applications in online content delivery, such as displaying ads on a search page and online
recommendation systems. The classic multi-armed bandit problem has several variants.
For instance, dueling bandits, contextual multi-armed bandits [58] and rotting bandits [49].
Dueling bandits are discussed in the next section while the latter two are left out since
they are beyond the scope of the study.

2.5 Dueling Bandits

The dueling bandits problem, first introduced by Yue et al. in 2012 [90], represents an
important variant in which the algorithm attempts to identify the best of K arms through
noisy pairwise comparisons. In some situations, preference-based feedback indicating that
one arm is better than the other is more promising and easier to collect than real-valued
feedback which numerically quantifies the quality of arms. Taking online ranker evaluation
tasks as an example, interleaved comparison methods, which compare rankers by interleav-
ing their results and using click data as preference signal, have proven to be more reliable,
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efficient, and substantially cheaper than collecting pointwise relevance judgments from ex-
perts [38, 42]. Due to these advantages, dueling bandits together with interleaving have
been widely explored and employed as a tool for ranker evaluation in the context of online
learning to rank [9]. Cumulative regret is the main evaluation criterion since we would like
the two rankers being compared at each time step to be as good as possible while being
able to explore new possibilities. Comparing between bad rankers can negatively hurt user
experience.

The K-armed dueling bandits problem considers a set of K arms {a1, a2, ..., aK}. At
each time step, a pair of arms (ai, aj) is pulled for comparison and the feedback is a relative
preference suggesting which arm is preferred. Let pi,j denote the probability of ai beating
aj, and pj,i = 1 − pi,j. The preference matrix is defined as: P = [pi,j]. The goal is to
find the optimal arm via pairwise comparison. Since the observed feedback is stochastic,
the order between two arms can only be estimated with a certain probability and needs
multiple comparisons to combat against noise. The problem of identifying the optimal
item is therefore reduced to estimating the preference matrix P.

A number of dueling bandits algorithms have been proposed [50, 54, 92, 90, 95, 96].
Depending on the assumptions on underlying preference relations as well as definitions
of the optimal arm, dueling bandits problems can be formulated in several ways: the
Condorcet dueling bandits problem, the Copeland dueling bandits problem, and the Borda
dueling bandits problem. The categories described here are not exhaustive and I only focus
on the ones that are most common and regularly referred to in this thesis.

2.5.1 The Condorcet Assumption

In the Condorcet setting, dueling bandits algorithms require the existence of the Condorcet
winner, which is a single arm that beats all others with a probability greater than 0.5 [78].
Without loss of generality, let a1 denote the Condorcet winner. Then p1,i > 0.5 holds for
all i > 1.

A challenge that arises naturally in the regret-minimization dueling bandits problem is
formulating a proper notion of regret. Given the Condorcet winner a1 and a pair of arms
ai(t) and aj(t) selected for comparison at iteration t, a commonly used definition of regret at

iteration t is rt =
∆1,i(t)+∆1,j(t)

2
, where ∆i,j = pi,j − 0.5. Regret measures the average sub-

optimality of the two arms being compared against each other with respect to the Condorcet
arm a1. The cumulative regret after T iterations is RT =

∑T
t=1 rt = 1

2

∑T
t=1(∆1,i(t)+∆1,j(t)).
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2.5.2 The Copeland Assumption

A key limitation of the Condorcet setting is that practically the Condorcet winner does
not exist. For instance, Zoghi et al. [94] show that the probability of the existence of the
Condorcet winner in online ranker evaluation decreases rapidly as the number of rankers
increases. To address this issue, the authors present two algorithms for the Copeland
setting. Unlike the Condorcet winner that beats all other arms with a probability greater
than 0.5, Copeland winners are the arms beating the maximal number of other arms and
are guaranteed to exist. The Condorcet winner can be viewed as a special case of Copeland
winner.

Let Cpld(ai) denote the Colepand score of ai, which is defined as the number of arms
aj ∈ {a1, a2, ..., aK} for which pi,j > 0.5. The normalized Copeland score of ai is cpld(ai) =
Cpld(ai)
K−1 . Copeland winners are the ones with the largest normalized Copeland score. In

the Copeland setting, the regret incurred by comparing ai(t) and aj(t) at iteration t is
defined with respect to a Copeland winner. Without loss of generality, let a1 denote a
Copeland winner. Then the regret of comparing ai(t) and aj(t) is commonly defined as
2cpld(a1) − cpld(ai(t)) − cpld(aj(t)) [47, 84, 94].

2.5.3 The Borda Assumption

An alternative definition of the optimal arm that has been studied in the bandits literature
is Borda winner, i.e. an arm with the greatest probability of being preferred to another
randomly selected arm [28, 40, 54, 78]. More formally, assuming a pool of K arms, the
Borda score of an arm ai is defined as: bi = 1

K−1
∑K

j=1,j ̸=i pi,j. The Borda winner is the
arm with the largest Borda score. Similarly as for the Copeland winner, the Borda winner
always exists for every possible preference probability matrix [40]. The evaluation criterion
for Borda settings typically is sample complexity, i.e. the number of comparisons required
to find the Borda winner.

2.6 Crowdsourced Maximum and Top-k Computation

Many existing works have considered the problem of identifying max/top-k objects from
a given set in crowdsourcing environments. However, they do not frame the problem as
dueling bandits. Venetis and Garcia-Molina [79] consider finding the maximum in crowd-
sourced settings and provide tournament algorithms which can be tuned on parameters like
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monetary cost, execution latency, and output quality. In each microtask, human workers
are asked to select the best item from several candidates. If they disagree on the max,
additional workers are requested dynamically. The winners proceed to the next round,
and the process is repeated until a single item remains. The algorithm was analyzed and
empirically evaluated with respect to human error models obtained from psychometrics.
Guo et al. [35] break the max problem into two subproblems, the judgment problem and
the next votes problem. The judgment problem aims to estimate the current best item
given a set of comparison results, and the next vote problem aims to determine which
future comparisons are most effective based on the current results. The authors present
maximum likelihood strategies and several graph-based heuristic strategies to compute the
max via pairwise comparisons. Verroios et al. [80] study the budget allocation problem
for tournament-based max operations and present a strategy that minimizes the latency.
Khan and GarćıaMolina [44] present a hybrid method which asks the crowd to first grade
individual items, and then perform pairwise comparisons to find the maximum element.

The max problem can be generalized to the top-k problem. Davidson et al. [25] con-
struct tournament trees and make use of pairwise comparisons and heap-sort techniques to
obtain top-k elements. Busa-Feketes et al. [12] propose a preference-based racing algorithm
to identify top-k lists. However, they did not focus on minimizing the monetary cost. Li
et al. [52] present budget-aware and confidence-aware frameworks obtain the top-k items
with pairwise judgments that require human workers to weigh the preference for a pair
of items via a sliding bar. Chen et al. [16] propose a method to aggregate crowdsourced
pairwise comparisons into a global ranking. In addition to finding the next pair of items
to compare, they focus on finding the best worker to do the comparison by estimating the
reliability of each individual worker.

There are other works that are not restricted to pairwise comparisons. Polychronopou-
los et al. [5] allow human workers to compare a small subset of items at a time and merge
local ranked lists via median rank aggregation [27] to select the global top-k items. Li
et al. [51] propose a rating-ranking method to identify top-k objects, which asks human
workers to either rate or rank several objects. The ratings and rankings of items are fi-
nally aggregated to compute the top-k results. De Alfaro et al. [26] introduce a recursive
algorithm which partitions items into subsets and asks human workers to choose the top-1
of each subset.

13



Chapter 3

Analysis

This chapter defines and justifies the requirements that a dueling bandits algorithm for hu-
man preference judgments should satisfy, and surveys algorithms from the machine learning
and information retrieval literature.

3.1 Problem Formulation

Dueling bandits algorithms have been widely explored as a tool for online ranker evaluation
via interleaving methods. Each ranker is viewed as an arm and the feedback is collected via
interleaving methods. When it comes to human preference judgments, the requirements
differ substantially from those for online ranker selection. Assuming a pool of K items
potentially satisfying a given query, each item can be viewed as an arm. In an academic
research context, this pool of items might be formed from experimental runs submitted to
an evaluation forum such as TREC. In a commercial context, the pool might be formed
from the results returned by production vs. experimental rankers. In this thesis, I assume
that each item in this pool represents a plausible response to the query, since a preference
judgment between items that are unrelated to the query would be pointless. As a result, I
assume that the pool has been filtered with a binary relevance pass, eliminating unrelated
items.

The objective is to identify with high probability the best of K arms through noisy
pairwise comparisons. A preference judgment compares two items i and j with the un-
known probability of i beating j equal to pi,j. For human preference judgments, I assume
that each comparison of i and j is independent, with different people making each judg-
ment. I assume that human judges may be crowdsourced workers or temporary contract
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employees with minimal or no training. Consequently, two sources of noise are recognized:
1) genuine disagreements of opinion, where the balance between competing factors might
cause independent judges to reach different conclusions; and 2) erroneous judgments due to
misunderstandings, distractions, or lack of training. While the use of trained and dedicated
assessors might reduce the second source, nothing can be done about the first source. As
a result, even with trained and dedicated assessors, pi,j typically will not be close to 0 or
1. As an exception, if an assessor is considered to be “authoritative” [64] then pi,j will be
always 0 or 1. In this case, preference judgments are not dueling bandits, and traditional
sorting and selection algorithms may be applied.

Bengs et al. [9] review common assumptions on pairwise preferences across the dueling
bandits literature. A prevalent assumption that can be seen in the majority of the work
is “No Ties”. At a purely theoretical level, it might be reasonable to assume |∆i,j| > 0 if
i ̸= j. As long as there is some difference for comparison between i and j and an endless
supply of independent human assessors, a preference difference that cannot be explained
by chance can eventually be detected. However, practically any algorithm being employed
needs to gracefully handle cases where some values of ∆i,j are arbitrarily close to zero.
When collecting judgments, I avoid asking assessors if two items appear equal, or nearly
so, since there is no universal way to define “near equality”. Instead, I require assessors to
seek meaningful differences, however minor.

Ambiguous queries provide an example where ∆i,j can be close to zero. The first
two passages in Figure 1.1 are among the top 5 selected for the ambiguous query “Who
is Jaffe?”. They both provide concise biographical information. Based on the relative
recency and number of their roles, Taliesin, with 170 credits on IMDb, might be preferred
to Nicole, who is best known as the voice of Velma on Scooby-Doo. Nonetheless, either is
preferable to the third passage, which is less focused on biographical information.

Unlike the interleaving methods used for online learning to rank, human preference
judgments are expensive. For the crowdsourced experiments reported in this work, a
single judgment cost nearly 36 cents on average. As a result, minimizing the number of
comparisons is crucial due to budget constraints. Practically, there is also a limit on the
number of independent judgments that can be obtained for a given pair since each requires
a different assessor.

To summarize, a dueling bandit algorithm for human preference judgments must satisfy
the following requirements:

1. Near linearity: The number of comparisons should grow linearly with the number
of arms K, up to a logarithmic term.
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2. Equality tolerance: The algorithm must gracefully handle cases where values of
∆i,j are close or equal to zero. The impact of ∆i,j = 0 values must be considered.

3. Parsimony: The algorithm must be practically usable, minimizing both the total
number of assessments and the number of independent assessments of a given pair.
Even with near linear growth and equality tolerance, constant factors can render
algorithms too expensive for human assessment.

The goal is to find the best item from a pool of K items. The most natural definition
of “best item” is the item preferred over any other, i.e. the Condorcet winner. However,
given the possibility of ties, Copeland winners provide an alternative definition of “best”,
i.e., the arm or arms that beat the most other arms. We can also define best items in
terms of a sum of expectations, where the winner is the one with the largest Borda score:

bi =
1

K − 1

K∑
j=1,j ̸=i

pi,j (3.1)

In the dueling bandits literature, an alternative approach to model pairwise probabilities
is through utility functions. Assume that there is a latent utility function u : A → R
mapping an arm ai ∈ A to a real-valued utility score u(ai). Such scores can reflect the
absolute preference for each arm. In a pairwise comparison of ai and aj, the probability of
ai beating aj can be represented as:

P(ai ≻ aj) = σ(u(ai) − u(aj)), (3.2)

where σ : R → [0, 1] is a link function mapping differences of utilities to probabilities
[9]. The link function must be monotonic and have σ(0) = 1/2 so that an arm with a
higher utility has a higher probability of beating the ones with lower utilities. Logistic link
function σ(x) = 1/(1 + exp(−x)) is a common example of link functions.

Without loss of generality, assume a pool of K items A = {a1, a2, ..., aK}, a utility
function u : A → R so that u(a1) > u(a2) > ... > u(aK) > 0, and a monotonically non-
decreasing link function σ : R → [0, 1]. According to (3.1) and (3.2), the Borda score of
an arm ai ∈ A is:

bi =
1

K − 1

K∑
j=1,j ̸=i

pi,j =
1

K − 1

K∑
j=1,j ̸=i

σ(u(ai) − u(aj))
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We now take the difference of bi and bi+1 to examine whether Borda ranking aligns with
utility ranking:

bi − bi+1 =
K∑

j=1,j ̸=i

σ(u(ai) − u(aj)) −
K∑

j=1,j ̸=i+1

σ(u(ai+1) − u(aj))

=
K∑

j=1,j ̸=i,j ̸=i+1

[σ(u(ai) − u(aj)) − σ(u(ai+1) − u(aj))]

+σ(u(ai) − u(ai+1)) − σ(u(ai+1) − u(ai))

Since u(ai) > u(ai+1), we have u(ai) − u(aj) > u(ai+1) − u(aj). Then, by the non-
decreasing monotonicity of σ, we obtain σ(u(ai) − u(aj)) > σ(u(ai+1) − u(aj)). Therefore,∑K

j=1,j ̸=i,j ̸=i+1[σ(u(ai) − u(aj)) − σ(u(ai+1) − u(aj))] > 0. Similarly, σ(u(ai) − u(ai+1)) −
σ(u(ai+1) − u(ai)) > 0 since u(ai) − u(ai+1) > u(ai+1) − u(ai). Thus, we get bi − bi+1 > 0,
which implies Borda ranking aligns with utility ranking.

Borda ranking and utility ranking both obey the probability ranking principle (PRP),
which is one of the theoretical foundations for ranking in information retrieval. The PRP
states that the overall effectiveness of the retrieval system to its user will be maximized
if documents are ranked in order of probability of relevance or usefulness [17]. In utility-
based dueling bandits, it is assumed that there is a utility function u : A → R mapping
an arm ai ∈ A to a real-valued utility score u(ai), so that arms with higher scores are
more of relevance or usefulness than the ones with lower scores. Probability of relevance is
essentially a special case of utility scores: the utility function u maps arms to real-valued
scores in the range of 0 and 1. Therefore, Borda ranking and utility ranking obey the
probability ranking principle.

3.2 Bengs et al. [9]

While there exists a substantial body of research on dueling bandits and human preference
judgments in the context of information retrieval, explicit connections between them are
rare. G lowacka [32] (Chapter 5) reviews both the use of dueling bandits for online evalu-
ation and the use of (non-dueling) bandits for traditional pointwise relevance judgments
[57], but does not connect the two concepts. The focus of this thesis is to investigate the
use of dueling bandits for human preference judgments.

17



To find possible solutions, I review existing algorithms from the machine learning and
information retrieval literature in light of the requirements listed in the previous section. I
consider the suitability of these algorithms for identifying the best item or items in the pool
through human preference judgments. In undertaking this review, I was greatly assisted
by the comprehensive survey on dueling bandits by Bengs et al. [9], which served as a
foundation for the review. In the survey, existing algorithms are categorized into different
classes based on specific properties. I follow their framework and discuss the possibilities
of these algorithms being applied to human preference judgments.

3.2.1 Coherent Preference Relations

As discussed in Section 2.5, the problem of identifying best arms or inducing a total order
over arms can be naturally reduced to estimating the pairwise preference matrix P = [pi,j].
However, unlike the traditional value-based MAB setting in which the optimality of an
arm is quantified on a numerical scale and a total order over arms can be easily derived
based on the absolute rewards, the correlation between the preference probabilities and the
order of arms is more complicated in the preference-based setting [9]. For example, given
a preference matrix P, a total order over arms may not exist due to preferential cycles.
Therefore, in order to allow the learner to find the target, a number of assumptions on
the preference probabilities are proposed to make the preference matrix P coherent. Bengs
et al. [9] categorized the approaches of learning from coherent pairwise comparisons into
three classes: 1) axiomatic approaches, 2) utility functions, and 3) statistical models. I
discuss the three groups of algorithms one by one.

Axiomatic Approaches. Bengs et al. [9] collect various assumptions on pairwise pref-
erences that can be found in the literature and give a detailed analysis on the relationships
between these assumptions. Some of the common assumptions that are referred to in this
thesis include:

• Total order over arms : There exists a total order over all arms such that ai ≻ aj
indicates ∆i,j = pi,j − 0.5 > 0.

• Strong stochastic transitivity (SST): For any triplet of bandits {ai, aj, ak} such that
∆i,j ≥ 0 and ∆j,k ≥ 0, ∆i,k ≥ max (∆i,j,∆j,k).

• γ-relaxed stochastic transitivity (γ-RST): For any triplet of bandits {ai, aj, ak} such
that ∆i,j ≥ 0 and ∆j,k ≥ 0, γ∆i,k ≥ max (∆i,j,∆j,k) for some γ ≥ 1.
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• Moderate stochastic transitivity (MST): For any triplet of bandits {ai, aj, ak} such
that ∆i,j ≥ 0 and ∆j,k ≥ 0, ∆i,k ≥ min (∆i,j,∆j,k).

• Stochastic triangle inequality (STI): For any triplet of bandits {ai, aj, ak} such that
∆i,j ≥ 0 and ∆j,k ≥ 0, ∆i,k ≤ ∆i,j + ∆j,k.

• No ties : ∆i,j ̸= 0 for all i ̸= j.

• Existence of a Condorcet winner : There exists an arm ai such that ∆i,j ≥ 0 for all
j ̸= i.

Experimental evidence reported in prior work suggests that preference judgments made
by dedicated assessors are very nearly transitive [14, 71], so that it is safe to assume strong
stochastic transitivity, but not stochastic triangle inequality. Interleaved Filtering(IF) [90]
and Beat the Mean(BTM) [92] are two of the early dueling bandits algorithms and both
follow an “explore then exploit” approach to find the best item while minimizing cumulative
regrets. To establish theoretical guarantees, they make restrictive assumptions about the
underlying preference relations: a total order over arms, stochastic triangle inequality,
strong stochastic transitivity for IF or γ-relaxed stochastic transitivity for BTM. It has
been shown that the two algorithms incur the following expected regret bounds for the
K-armed dueling bandit problem:

O(
K log T

minj ̸=1 ∆1,j

) for Interleaved Filtering, and

O(
γ7K log T

minj ̸=1 ∆1,j

) for Beat the Mean,

where a1 denotes the best arm and T denotes the exploration horizon.

While both of the regret bounds grow linearly with the number of arms K, the constant
factors in the notations are huge. Additionally, stochastic triangle inequality is often
violated in practice. Hence, the theoretical performance bounds may not hold. In addition,
the bounds are expressed in terms of the inverse 1/∆i,j, possibly resulting in an infinite
value when ∆i,j is close to zero. This can have an unforeseen impact and possibly violate
the equality tolerance requirement.

Later dueling bandits work for the regret minimization task commonly adapt the well-
known UCB algorithm and Thompson sampling to select arms for comparison. RCS [97],
RUCB [96], MergeRUCB [95], and MergeDTS [50] identify the best item with high proba-
bility while only requiring the existence of the Condorcet winner. When selecting the next
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pair of items being compared, RCS and RUCB select the first item by choosing the one
that is most likely to be the Condorcet winner. The second item is the first one’s strongest
competitor, i.e., the one with the highest probability of beating the first item. One ma-
jor difference between the two algorithms is that RCS estimates preference probabilities
by sampling, whereas RUCB estimates probabilities by confidence intervals. MergeRUCB
focuses on the large-scale online ranker evaluation problem and improves upon RUCB and
RCS by using a divide and conquer strategy. In subsequent work, Li et al. [50] propose to
further improve MergeRUCB by making use of Thompson sampling to select arms. While
the theoretical guarantees for RCS are not provided, the other three have the following
high probability regret bounds:

O(K2 +
∑
j ̸=1

log T

∆2
1,j

) for RUCB, and

O(
K log T

mini,j:pi,j ̸=0.5 ∆2
i,j

) for MergeRUCB, and

O(
K log T

mini,j:pi,j ̸=0.5 ∆2
i,j

) for MergeDTS.

The quadratic term in RUCB’s regret bound violates the near linearity requirement.
MergeRUCB and MergeDTS enjoy the same upper bounds which grow linearly in the
number of arms. However, since the Condorcet winner is not guaranteed to exist, the
algorithms can possibly fail to produce the correct answer. Strictly speaking, any algorithm
that relies on the existence of the Condorcet winner can be excluded from consideration
on theoretical grounds. Another thing worth noting is that the two algorithms both make
special requirements about “ties”, which is covered in Section 3.3.2. I select MergeDTS
for further consideration since it represents the state-of-the-art large-scale dueling bandits
algorithm, and outperforms many algorithms such as RUCB [96], RMED1 [45] in most
experimental setups [50].

While previous methods focus on regret minimization, sample complexity is another
variable of interest. Knockout [30], Seq-Eliminate [28], and Opt-Max [29] consider the
problem of finding the best arm while minimizing sample complexity under the (ϵ, δ)-PAC
setting. The three algorithms assume a total order over arms. Additionally, Knockout
assumes SST, STI, and γ-RST. Seq-Eliminate assumes SST. Opt-Max assumes MST, which
is a relaxed version of SST. Given the assumptions, they achieve the following sample
complexity theoretical guarantees:

O(
K

γ4ϵ2
log

1

δ
) for Knockout, and
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O(
K

ϵ2
log

1

δ
) for Seq-Eliminate, and

O(
K

ϵ2
log

1

δ
) if δ ≥ min(1/K, exp(−K1/4)) for Opt-Max.

At first glance, they seem to be suitable candidates for human preference judgments
because their theoretical performance guarantees grow linearly in the number of arms and
are not expressed in terms of the inverse 1/∆i,j. However, the three algorithms make
heavy use of a subroutine called COMPARE, which keeps comparing two arms until the
confidence about the winner is sufficiently large or the comparison budget for a single pair
is exhausted. Given a round dependent bias ϵ and confidence δ, the comparison budget
for Knockout is 1

2ϵ2
log 2

δ
. Different from Knockout, Seq-Eliminate and Opt-Max take lower

bias ϵl, upper bias ϵu and confidence δ. Seq-Eliminate compares two elements 2
(ϵu−ϵl)2

log 2
δ

times, and Opt-Max compares two elements 8
(ϵu−ϵl)2

log 2
δ

times. In the case of ties, the
number of comparisons can easily grow from hundreds to thousands, violating the equality
tolerance and parsimony requirements.

In 2020, Ren et al. [66] propose the Tournament-k-Selection (T-k-S) method to find the
best k arms under (ϵ, δ)-PAC setting. Assuming a total order over arms, strong stochastic
transitivity and stochastic triangle inequality, T-k-S is shown to have an optimal sample
complexity of O(K

ϵ2
log k

δ
). There are two concerns about T-k-S when it comes to human

preference judgments. First, stochastic triangle inequality cannot be safely assumed. Sec-
ond, similar to Knockout, Seq-Eliminate and Opt-Max, T-k-S makes use of a subroutine
called Distribute-Item, which repeatedly compares two items at most 2

ϵ2
log 4

δ
times. Again,

the number can grow easily from hundreds to thousands when two items are similar. In
general, algorithms that repeatedly compare two arms until a winner is found are not suit-
able for human preference judgments since it may require too many independent assessors
and cost too much when two arms are nearly equal. Ideally, there should be a feasible
comparison budget that can be spent on every individual pair.

Mohajer et al. [63] study the top-k partition and ranking problem via noisy comparisons
under the assumption of a total order over items. On the special case where k = 1, the
proposed algorithm SELECT has a sample complexity of O( K log logK

minj ̸=1 ∆
2
1,j

) for identifying the

top item a1 from a group of K items. SELECT is a single-elimination tournament where
items are randomly paired and compared for a fixed number of times, with the winners
proceeding to the next round. Ties are broken randomly. The algorithm is further extended
to find the top-k items. I consider the algorithm in Section 3.3.
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Utility-based Dueling Bandits. In addition to the axiomatic approaches that rely on
the regularity properties, another way to represent preferences is through utility functions.
A utility function u : A → R maps an arm ai ∈ A to a real-valued utility score u(ai) so
that arms with higher scores are more likely to be selected than the ones with lower scores.
The probability of ai beating aj can be represented as P(ai ≻ aj) = σ(u(ai)−u(aj)), where
σ : R → [0, 1] is a link function mapping differences of utilities to probabilities. In 2009,
Yue and Joachims [91] introduce the utility-based dueling bandit problem and propose a
gradient-descent method built on methods for online convex optimization tasks. They as-
sume the existence of a compact, convex parameterized space of arms containing the origin.
For human preference judgments, I do not have a set of featurized vectors representing the
compatibility between query-passage pairs. Generating such vectorized representation is
beyond the scope of this work. Hence, gradient descent algorithms requiring a compact,
convex action space such as [91, 48] are excluded from consideration.

Ailon et al. [3] propose two reduction-based approaches that reduce the utility-based
dueling bandits problem to the classic value-based multi-armed bandits problem, demon-
strating that one of the two methods, MultiSBM, is superior to IF [90] in many scenarios.
Zimmert and Seldin [93] study a more general multi-armed bandits setting where each ac-
tion can be decomposed into a Cartesian product of elementary actions. The algorithm can
be applied to utility-based dueling bandits, superior to many known algorithms including
IF, BTM, RUCB, MultiSBM, besides RMED1 in empirical experiments. I did not consider
them in Section 3.3 because the selected method MergeDTS already outperforms RMED1.

Lin and Lu [54] consider winner selection in sports tournaments as dueling bandits and
assume a latent utility for each arm as well as a linear link function. They estimate the
utilities of each arm and successively eliminate empirically inferior arms based on associated
confidence intervals to identify the arm with the highest utility. With a modification of
the stopping criterion, they show that the proposed method can return a Borda winner
under (ϵ, δ)-PAC setting. After running O( 1

ϵ2
log K

ϵδ
) times, an ϵ-Borda winner is returned

with probability at least 1 − δ. The sample complexity takes the form: O(K
ϵ2

log K
ϵδ

). Since
the algorithm is specifically intended to support human tasks such as best player selection
in sports tournaments, I select it for further consideration.

Regularity Through Statistical Models. This group of papers, including [11, 76]
assumes that the probability of observing a ranking of the arms is generated by certain
statistical models. Let SK denote the set of rankings(or permutations) of the K arms
[K] = {1, ..., K}. Under the assumption of a statistical ranking model P : SK → [0, 1],
with P(π) the probability of observing a ranking π ∈ SK , the probability of ai being
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preferred to aj is denoted by:

pi,j = P(ai ≻ aj) =
∑

π∈SK ,π(j)>π(i)

P(π)

, where π(i) and π(j) are the ranks of ai and aj in the ranking π.

To find the optimal item, Busa-Fekete et al. [11] propose the MALLOWSMPI algorithm,
assuming a Mallow’s ϕ-distribution model[60]. Szörényi at al. [76] propose the PLPAC
algorithm, assuming a Plackett-Luce (PL) model [59, 65]. Under a PL model where each
arm i ∈ [K] has a skill parameter vi, the probability that arm i is preferred to arm j is

pi,j =
vi

vi + vj
.

Assuming a ranking r = (r1, ..., rK) where ri is the rank of the ith item and an ordering
o = (o1, ..., oK) where ori = i for all i ∈ [K], the probability of r is

P(r) =
K∏
i=1

voi
voi + voi+1

+ ... + voK

The PL model satisfies strong stochastic transitivity, stochastic triangle inequality,
and is guaranteed to have a Condorcet winner. Under the assumption of a PL model,
the PLPAC algorithm makes use of a budgeted Quicksort algorithm to recover partial
rankings. At each round, a random pivot item is selected and compared with the rest
of items one by one, partitioning items into two groups. The process is repeated until
a PAC-item is found. Let i∗ represent the optimal arm and let ∆i = 1

2
max{ϵ, pi∗,i − 1

2
}

for each i ̸= i∗. With probability at least 1 − δ, PLPAC outputs an ϵ-optimal arm using
at most O(K maxi ̸=i∗

1
∆2

i
log K

∆iδ
) pairwise comparisons. It has been shown that PLPAC

outperforms IF, BTM, and MALLOWSMPI in experiments on synthetic data, and on real
data where the assumption is violated to a certain degree. Since evaluating to what extent
human preference judgments fit to a PL model is beyond the scope of the thesis, and the
paper does not have enough information for me to re-implement the method, I leave this
for future work.

3.2.2 Non-coherent Preference Relations

The methods presented so far assume either the existence of the Condorcet winner or an
underlying ground truth ordering over arms. In real-world scenarios, such assumptions
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may not hold. An alternative way is to define winners based on the pairwise preference
probabilities. Various notions of winners have been proposed as an alternative to the
Condorcet winner, including Copeland winners and Borda winners. In this section, I
review existing methods and consider their suitability for human judgments.

In 2015, Zoghi et al. [94] introduce the Copeland dueling bandits problem and propose
two algorithms designed for regret minimization tasks: Copeland Confidence Bound (CCB)
and Scalable Copeland Bandits (SCB). Assuming that there are no ties, the expected regret

bound for CCB is O(K
2+(C+LC)K log T

mini ̸=j ∆
2
i,j

), where C is the number of Copeland winners and LC

is the number of arms that win a Copeland winner. SCB addresses the scalability concern
about CCB by eliminating the O(K2) term. The expected regret bound for SCB takes the

form: O(K(logK+LC) log T

mini̸=j ∆
2
i,j

). Later in 2016, Wu and Liu [84] propose the Double Thompson

Sampling (DTS) algorithm that works in both Condorcet setting and Copeland setting.

DTS breaks ties randomly and achieves O( K2 log T
mini ̸=j ∆

2
i,j

+K2) regret. Based on the experiment

results, DTS significantly outperforms many algorithms such as BTM, RUCB, CCB, and
SCB. While the O(K2) term seems to violate the near linearity requirement, I select DTS
for further consideration due to its notable practical performance and the ability to handle
ties.

In addition to identifying the best item, another variant is to find the top-k subset
or top-k ranking by actively comparing pairs of items. Heckel et al. [36] propose an ac-
tive ranking algorithm referred to as AR to partition items into sets of pre-specified sizes
based on their estimated Borda scores, which includes special cases of identifying the top-k
items and a total ordering. Maystre and Grossglauser [62] propose the Multisort algo-
rithm, which invokes the QuickSort algorithm multiple times and aggregates the rankings
into a final ranking by Copeland scores. Groves and Branke [34] focus on the problem
of identifying top-k Borda items and propose two adapted Bayesian sequential sampling
methods. However, no bound on the sample complexity is provided. The AR algorithm
is selected for further consideration since it is representative of active ranking algorithms
and the implementation is made available.

3.3 Candidate Algorithms

Based on the review, most algorithms from the dueling bandits literature do not provide
a close match to the requirements for near linearity, equality tolerance, and parsimony.
While I do not want to exclude algorithms on purely theoretical grounds, some algorithms
employ basic strategies that are clearly inconsistent with human preferences. For example,
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strategies that repeatedly compare two arms until a winner is found may require too many
independent assessors when arms are nearly equal [28, 30, 66]. The remaining algorithms
could also be excluded on theoretical grounds. Some require quadratic judgments, possibly
violating near linearity. Others have performance guarantees expressed in terms of 1/∆i,j,
possibly violating equality tolerance. Others rely on the stochastic triangle inequality or
the existence of the Condorcet winner. Although they could be excluded on theoretical
grounds, I select several algorithms based on their potential to work in practice even if
the theoretical assumptions are not satisfied. These algorithms use basic strategies that
seem plausible in the context of human preferences. Sheth and Rajkumar [72] study a
practical scenario where a winner is identified via active pairwise comparisons using very
few comparisons. Although this work is not covered in the survey by Bengs et al. [9],
it is the same as the dueling bandits problem and seems highly relevant to my research
problem. In addition, I consider candidate algorithms from the literature related to human
preferences for information retrieval evaluation. Clarke et al. [20] and Arabzadeh et al. [6]
focus on finding the top items from a pool. I select the unnamed algorithm in Clarke et
al. [20], since it shares my goal of finding top items and accommodates pools with hundreds
of items. In the rest of this section, I briefly introduce the selected algorithms.

3.3.1 Double Thompson Sampling

While prior studies mostly focus on the Condorcet setting, Wu and Liu [84] propose the
Double Thompson Sampling (DTS) method that works under both Condorcet setting and
Copeland setting. As previously mentioned, Copeland winners, which are guaranteed to
exist, generalize the concept of a Condorcet winner and are more practical.

Double Thompson Sampling makes use of the well-known Thompson sampling algo-
rithm that dates back to 1933 [77]. A fundamental dilemma in probabilistic problems
is the exploration-exploitation trade-off. Thompson sampling attempts to resolve this by
taking uncertainty into consideration while sampling candidates based on how likely they
are optimal. It has been widely studied in traditional multi-armed bandits and other online
learning problems [2, 15, 33, 46, 85].

DTS maintains beta posterior distributions over the expected preference probabilities.
At each time step, it selects two candidates for comparison by sampling from the beta
distributions. When selecting the first arm, DTS first eliminates the arms that are unlikely
to be potential winners based on upper confidence bounds, and then chooses the arm that
beats the maximal number of others according to the sampled probabilities. Ties are
broken at random. When selecting the second arm, the posterior distributions are used
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again to sample the probabilities of each arm being preferred to the first candidate. Among
those uncertain arms whose lower confidence bound for the preference probability against
the first arm is at most 1/2, the one with the largest sampled probability of being preferred
over the first candidate is chosen as the second candidate in search of higher information
gain. The beta distributions are updated accordingly based on the comparison results, and
the procedure is repeated for a time horizon T .

DTS is designed and evaluated in terms of a regret minimization criterion. Under the
assumption that there are no ties, DTS achieves a theoretical regret bound of the form
O(K2 log T ), which grows quadratically in the number of arms. While quadratic growth
violates our requirements, the algorithm may still be practically suitable for small K. The
experiment results reported by the authors show that DTS outperforms algorithms such
as BTM, RUCB, CCB, and SCB.

3.3.2 Merge Double Thompson Sampling

Zoghi et al. [50] consider the large-scale online ranker evaluation problem under the Con-
dorcet assumption. Although the Condorcet winner is not guaranteed to exist, it provides
the most natural definition for the “best” arm and is worth investigating. To handle cases
in which the number of arms is large, the authors propose Merge Double Thompson Sam-
pling (MergeDTS) that uses a divide and conquer strategy along with Thompson sampling
to identify the Condorcet winner.

MergeDTS proceeds as follows. Arms are randomly partitioned into disjoint batches of
a predefined size. At each time step, the algorithm considers a single batch and selects two
arms within that batch for comparison. This specific behavior is designed to avoid global
pairwise comparisons between all pairs of arms, which turns out to successfully improve
both computation efficiency and time efficiency. Similar to DTS, when selecting the first
candidate, MergeDTS samples preference probabilities from beta posterior distributions
for all pairs of arms within the current batch. The arm that beats most of the others based
on the sampled probabilities is selected as the first candidate. When selecting the second
arm, MergeDTS selects the first arm’s worst competitor in the current batch based on the
sampled preference probabilities. The motivation behind this choice is to eliminate arms as
quickly as possible. Posterior distributions and confidence bounds are updated accordingly
based on the comparison results. An arm ai is eliminated if there exists another arm aj in
the same batch where ai’s upper confidence bound on the preference probability of winning
aj is below 1/2. Once the current batch size becomes one, it is merged with another larger
sized batch. The entire process iterates until there is only a single-element batch left, which
contains the Condorcet winner with high probability.
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To provide theoretical guarantees, MergeDTS makes the following assumptions: 1) A
single Condorcet winner exists. 2) There are no ties, unless they are “uninformative” arms
that cannot beat any other arms. 3) Uninformative arms represent at most one third of the
full set of arms. By assuming the maximal percentage of uninformative arms, it ensures
that uninformative arms can be eliminated by informative arms with high probability and
the merge steps can be successfully performed [50]. Under these assumptions, MergeDTS
provides a high probability bound on the cumulative regret, which is of the order

O

(
K log T

∆2
min

)
, where ∆min = min

∆i,j>0
∆ij.

The cumulative regret grows linearly with the number of arms K, which is a main
advantage of MergeDTS and makes the algorithm suitable for large-scale online ranker
evaluation problems. However, when ∆min is small, MergeDTS may encounter a perfor-
mance decline.

3.3.3 Round-Efficient Dueling Bandits

Suppose that in a large sports tournament, each player is paired with a competitor and
multiple pairwise competitions are carried out simultaneously at each round. To identify
the best player in the end, Lin and Lu [54] consider the problem as best arm identification
for multi-armed dueling bandits. Each player is considered as an arm, and it is assumed
that there is an unknown parameter µi for each player i measuring the underlying strength
of the player. It is also assumed that there is a linear relationship between the underlying
strength and preference probabilities, so that a player with higher strength is more likely
to win. In this work, the probability of arm i winning arm j is defined as

1+(µi−µj)

2
. The

goal is to identify the arm with the highest strength, or an ϵ-optimal arm whose strength
is within ϵ of the optimal one. The algorithm tries to minimize the total number of rounds
together with the total number of pairwise comparisons, since ideally a sports tournament
should not last too long and extra competition can put a burden on participants. While
it is hard to measure and quantify the strength of each arm on an absolute scale, relative
feedback indicating which arm is better can be obtained easily via pairwise comparisons.

The algorithm proceeds in rounds and eliminates inferior arms until only a single arm
remains. In the beginning, an allowed error probability δ is given, and arms are randomly
partitioned into disjoint pairs. Scaled scores and confidence intervals for the latent utilities
of active arms are calculated based on the observed feedback. An arm is eliminated if it
loses to the empirically best arm based on the lower confidence interval of the estimated
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latent strength. The process stops when only a single arm remains or enough iterations
have been made. Assuming that all arms can be arranged in total order, it is shown that
the algorithm provides a theoretical guarantee of identifying the arm i∗ with the highest
strength with probability at least 1 − δ via comparisons at most:

O

(
Σj ̸=i∗

1

∆2
i∗,j

log
K

δ∆i∗,j

)
,

and has a round complexity of:

O

(
1

minj ̸=i∗∆2
i∗,j

log
K

δminj ̸=i∗∆i∗,j

)

3.3.4 Clarke et al.

While they do not frame their work in terms of dueling bandits, Clarke et al. [20] present
an algorithm using crowdsourced preference judgments to find the top answers to a ques-
tion from a pool of possible answers. They focused on the potential benefits of preference
judgments for information retrieval evaluation, including the impact of preference judg-
ments on the outcomes of TREC 2019 CAsT retrieval experiment. However, they did not
explore the algorithm itself in any detail. Here, I consider the algorithm as a solution to
the dueling bandits problem.

Figure 3.2 presents a version of the algorithm modified to return a set of best responses.
I base this presentation on the paper itself, but confirm it against their implementation.
The algorithm works in a series of pruning phases. During each phase, the algorithm
estimates Borda scores for the remaining items in the pool and prunes those items with
estimated Borda scores less than or equal to 0.5. Pruning continues until the pool size
drops to a threshold m, at which point the algorithm makes a final estimate of Borda
scores and returns the set of items with the greatest scores.

When the size of the pool is greater than m, the algorithm estimates Borda scores by
first generating a random graph in which each item is randomly paired with at least n
other items, with no pairing repeated. If the size of the pool is odd, one item will be paired
with n+ 1 others. In their implementation, Clarke et al. [20] use a brute force approach to
generate this graph. Assessors judge the pairs and the algorithm estimates Borda scores
from the counts of pairs won and lost. While Clarke et al. [20] provide no theoretical
guarantees, their algorithm produces crowdsourcing results shown to be consistent with
the judgments of dedicated assessors. Their overall approach is similar to the work of
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Karnin et al. [43], which solves the equivalent problem for (non-dueling) bandits in both
fixed confidence and fixed budget settings, and that paper might provide a starting point
for further theoretical investigation.

To understand how the algorithm estimates Borda scores, let’s suppose that there are
K items in total, denoted by [K] = {1, ..., K}. The algorithm randomly pairs each item
with n other items, building a graph with K vertices where each vertex has a degree of n.
Without loss of generality, suppose that an item i ∈ [K] is randomly paired with a set Sn

of n other items. By definition, the Borda score of i is:

bi =
1

K − 1

∑
j∈[K]−{i}

pi,j

By symmetry, each item of [K]−{i} has the probability of n
K−1 to belong to Sn. Hence,

the expectation of the sum of probabilities of i being preferred to an item in Sn is:

E(
∑

j∈[K]−{i}

pi,j1j∈Sn) =
∑

j∈[K]−{i}

pi,jP(j ∈ Sn)

=
∑

j∈[K]−{i}

pi,j
n

K − 1

=
n

K − 1

∑
j∈[K]−{i}

pi,j

By taking the average, we have:

1

n
E(

∑
j∈[K]−{i}

pi,j1j∈Sn) =
1

K − 1

∑
j∈[K]−{i}

pi,j = bi,

implying that the method produces the estimation of Borda scores.

Next, let’s examine the expected probability of a Borda winner proceeding to the next
phase. Suppose item 1 is the borda winner and let b1 denote the Borda score, i.e. the
probability of item 1 winning a random arm. Let n denote the random pairings during
a pruning phase. An arm proceeds to the next phase if it wins at least half of the n
competitions. Hence, the expected probability of item 1 proceeding to the next phase is:

P =
n∑

k=⌈n
2
⌉

(
n

k

)
bk1(1 − b1)

n−k
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Figure 3.1 shows the probability of a Borda winner proceeding to the next phase with
different Borda scores. As we can see, we can increase the probability of a Borda winner
proceeding to the next phase by increasing the value of n.

Figure 3.1: The probability of a Borda winner proceeding to the next phase with different
Borda scores.

3.3.5 Mohajer et al.

Mohajer et al. [63] explore the active top-k selection and ranking problem based on noisy
pairwise comparisons. To handle the special case of finding the best item, they propose
a customized single-elimination tournament method referred to as SELECT. SELECT
randomly pairs items and repeatedly compares them a fixed number of times, denoted by
m, in order to combat against noise. One of the items in each pair can proceed to the
next round based on majority voting, while the other item is eliminated. The tournament
process is repeated multiple times until a single arm remains.

The SELECT algorithm returns exactly one item with any choices of m, but the algo-
rithm performance depends on the value of m. The authors show that if m is sufficiently
large, more specifically, if

m ≥ (1 + ϵ) ln 2

2

log logK

minj ̸=1 ∆2
1,j

,
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Figure 3.2: Function prefBest(Pool, K, n, m) returns the probably best item from a pool
of K items based on Clarke et al. [20]. The function preference(u, v) returns the item
preferred by a human assessor or any other source of preferences.

Input
Pool Set of items to judge
K Pool size
n Pairings during pruning phase
m Threshold for completion phase

Output
Probably best item in Pool

def randomPairings(Pool, K, n):
Generate and return the edge set of a random graph, where the K items in the pool form the vertices
of the graph and each vertex has outdegree n (or n+ 1).

def completePairings(Pool, K):
Generate and return the edge set of a complete graph, where the K items in the pool form the
vertices of the graph (each vertex has outdegree K − 1).

def estimateBorda(E):
W← 0 #count of wins for each item
C← 0 #count of pairings for each item
for (u,v) in E:

w ← preference(u, v)
Cu ← Cu + 1
Cv ← Cv + 1
Ww ←Ww + 1

return W/C

def prune(Pool, K, n):
E ← randomPairings(Pool, K, n)
B ← estimateBorda(E)
Pruned← ∅
for bi in B:

if bi ≥ 0.5:
Pruned← Pruned ∪ {i}

return Pruned

def finalize(Pool, K):
E ← completePairings(Pool, K)
B ← estimateBorda(E)
return {j | bj = maxi∈B bi}

def prefBest(Pool, K, n, m):
while K > m:

Pool← prune(Pool, K, n)
K ← |Pool|

return finalize(Pool, K)
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then with high probability the SELECT algorithm can find the top-1 item using a total of

O(
K log logK

minj ̸=1 ∆2
1,j

)

comparisons.

In order to find the top-k items where k > 1, the authors propose a heap-based algo-
rithm referred to as TOP. TOP makes use of SELECT and proceeds as follows: 1) split
K items into k sub-groups and apply SELECT within each sub-group to find k winners.
2) Heap sort the shortlist of the k winners from sub-groups and extract the top item from
the list. 3) Apply SELECT in the sub-group to which the top item belongs to identify the
second best item, and add the second best item to the shortlist. Then repeat step 2 to find
the next best item. Steps 2) and 3) are repeated until top-k items have been retrieved.
The sample complexity of finding the top-k items is

O(
(K + k log k) max{log k, log logK}

minj ̸=1 ∆2
1,j

)

3.3.6 Active Ranking

Heckel et al. [36] consider the problem of partitioning a set of K items into sub-groups of
predefined size according to the probability that a given item beats a randomly selected
item, i.e. the Borda score. The identification of the top-k items or a total order over
items can be viewed as a special case. The authors propose the Active Ranking (AR)
algorithm which is a successive elimination strategy. At each round, the method maintains
a set of active arms and compares each arm with another randomly selected arm. The
number of comparisons won is counted, and estimates of the Borda scores together with
associated confidence intervals are computed based on the counts. An item is removed
from the active set if the AR algorithm is confident that the item belongs to a certain
pre-defined set. The AR algorithm does not make any particular structural assumptions
on the underlying pairwise preference probabilities. It is shown that imposing parametric
assumptions can lead to at most a logarithmic reduction in sample complexity.

3.3.7 PARWiS

Based on the review and analysis so far, while multiple algorithms enjoy linear or quasilinear
theoretical guarantees in terms of the number of arms K, there are usually large constants
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hiding inside the order notation, resulting in a large number of total comparisons. To
address this challenge, Sheth and Rajkumar [72] study the winner selection problem under
a shoestring comparison budget. Given a set of K arms [K] = {1, ..., K}, the authors
consider the Bradley-Terry-Luce(BTL) model for pairwise probabilities: assuming that
each arm i ∈ [K] has a real-valued score wi, then for all i, j the probability of i being
preferred to j is calculated as:

pi,j = P (i ≻ j) =
wi

wi + wj

.

The goal is to find the item with the highest BTL score by actively performing at most B
pairwise comparisons.

The proposed algorithm, PARWiS, is based on a spectral ranking procedure that con-
structs and maintains a Markov chain. The Markov chain is used to strategically select
the next pair of items being compared, and to recover an approximate BTL score vector.
PARWiS proceeds as follows. First, two randomly selected arms are compared once, with
the winner proceeding to the next comparison with another random arm. The process is
repeated until all K items are compared, resulting in K − 1 pairwise comparisons. The
K−1 comparison results are used to initialize a Markov chain. In the next phase, PARWiS
compares the current winner with the item that is most likely to disrupt the current win-
ner according to the Markov chain and an associated objective function. In the paper, the
authors experiment with several objective functions including the log-likelihood function,
the least squares, and an objective function that computes the stationary distribution of
the Markov chain. For more information, see [72]. After every comparison, the Markov
chain is updated accordingly, until the comparison budget is exhausted. Estimated BTL
scores are then computed from the Markov chain to identify the best item. When there are
multiple winners, the algorithm is designed to find any one of them. The authors perform
a set of experiments to show that PARWiS returns the top item effectively with shoestring
budgets. However, no theoretical guarantee is provided.
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Chapter 4

Simulations

In this chapter, I simulate the selected algorithms on two artificial test cases in order to
understand their ability to satisfy the requirements of Section 3.1 and test their practical
utility. The two test cases are deliberately designed to take into account both the common
algorithm requirements in the dueling bandits literature and real-life examples of human
preference judgments.

Case A assumes a total order over items with no ties. Although this assumption usually
is not satisfied in human preference judgments due to the possible existence of many ties,
I include this test case to examine whether the selected algorithms are practically usable
in the best-case scenario. In other words, when theoretical assumptions are satisfied, I am
interested to see if the number of assessments and independent judges required to identify
the best item is feasible, not going over the budget. I expect that Case A could be handled
easily by most dueling bandit algorithms since it satisfies the most common requirements of
these algorithms. The other test case (Case B) represents something close to the opposite
extreme. I assume that there are many ties and multiple “best” arms. Best arms tie with
each other. None-best arms tie with each other. Best arms win non-best arms with a
probability greater than 0.5. Both cases assume K = 100, with items 0, 1, 2, ...99:

Case A (total order, no ties):
i < j =⇒ qi,j = 0.75 and qj,i = 0.25

Case B (two winners, many ties):
q0,1 = q1,0 = 0.5
i > 1 =⇒ q0,i = 0.75 and qi,0 = 0.25
i > 1 =⇒ q1,i = 0.75 and qi,1 = 0.25
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Case A Case B
total order, no ties two winners, many ties

Algorithm best found comparisons assessors one found both found comparisons assessors
PARWiS [72] 537 1000 17-68 686 287 1000 7-83

Active Ranking [36] 175 1000 3-11 405 545 1000 3-11
Mohajer et al. [63] (SELECT) 715 990 10 905 0 990 10

Mohajer et al. [63] (TOP-2) - - - 588 277 980 5
Clarke et al. [20] (extra final phase) 510 624-781 3-6 733 81 616-795 3-6

Clarke et al. [20] 502 599-759 2-5 666 94 592-764 2-5
Round-Efficient Dueling Bandits [54] 141 1000 2-5 680 89 1000 2-5

Double Thompson Sampling [84] 124 1000 4-24 710 7 1000 4-20
MergeDTS [50] 108 1000 31-93 581 58 1000 28-81

Figure 4.1: Summary of 1, 000 simulations of selected algorithms on two artificial test cases
intended to be representative of two possible extremes.

i > 1 and j > 1 =⇒ qi,j = 0.5

The two test cases are picked for their simplicity and as a contrast to one another.
The value of K = 100 is close to the limit for the number of arms in the experiments of
Chapter 5. 0.75 is picked as a “winning” probability since it corresponds to the level at
which we tolerate test case errors in the experiments with crowdsourced assessors (Chapter
5). In the dueling bandits literature, many algorithms require a pre-defined time horizon
as a parameter. Such time horizons can be viewed as a limit on the number of preference
judgments required to identify the best arm. I choose T = 1000 as a practical limit on
the number of judgments for K = 100 items. In any case, I treat T = 1000 as a fixed
budget and halt simulations after 1, 000 comparisons. The simulations use the original
code when authors have made it available, maintaining the default values of parameters
in that code. When code is not available, I base simulations on my own implementations
from pseudo-code and descriptions in the papers.

I executed each of the selected algorithms 1, 000 times on each of the two cases. The
results are summarized in Figure 4.1, ordered by the number of simulations in Case B
where at least one winner is found. Simulation details and a discussion for the individual
algorithms are provided in the subsections that follow. Algorithms ran until their budget for
comparisons was exhausted. I determined the maximum number of independent assessors
according to the number of times the simulation requested a judgment for each specific
pair. The maximum number of assessors also varied from simulation to simulation, and I
report a range.

35



4.1 Double Thompson Sampling

Li et al. [50]1 provide implementations and optimal parameters for both DTS and MergeDTS.
The two algorithms are originally designed for regret minimization tasks and have a large
time horizon such as T = 1e7. The return statement in their code returns the cumulative
regret. I modified the return statement to return the empirically best arm when the num-
ber of comparisons reached 1000. In the simulations, I set α = 0.87, which they report
as the empirically optimal parameter for DTS [50]. α is an exploration parameter that
controls the trade-off between exploitation and exploration.

For Case A where there exists a total order and no ties, 959 simulations returned exactly
one item, out of which 124 simulations correctly identified the optimal item 0. In addition,
922 items that were not item 0 were returned. For Case B with two winners and many ties,
710 simulations returned one of the correct answers, and 7 simulations found both winners.
Across all simulations, 357 items that were neither item 0 nor item 1 were returned.

4.2 Merge Double Thompson Sampling

Similar to DTS, MergeDTS requires an exploration parameter α. Additionally, it needs
a partition size M and an exploration bonus C that is added to the confidence intervals.
Li et al. [50] extensively analyzed the sensitivity of parameter and suggest the practically
optimal parameters for MergeDTS are α = 0.86, M = 16 and C = 4, 000, 000.

I follow the same setting in our simulations. Among 1000 simulations for Case A,
MergeDTS found the correct target item 0 108 times and returned 1503 items that were not
item 0. For Case B, 581 simulations returned one of the two winners while 58 simulations
found both. Across all simulations, 914 items that were neither item 0 nor item 1 were
returned.

4.3 Round-Efficient Dueling Bandits

I implemented the Round-Efficient Dueling Bandits of finding the optimal arm based on
the pseudo-code in Lin and Lu [54]. The implementation can be found in this repository2.
In the simulations, I set the allowed error probability δ = 0.2.

1github.com/chang-li/MergeDTS
2github.com/XinyiYan/duelingBandits
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Of 1000 simulations for Case A, the algorithm returned one item 559 times, where 141
times it found the optimal arm; 1632 items that were not item 0 were returned. For Case
B, 680 simulations returned one of the two optimal arms, and 89 simulations found both
arms; 606 items that were neither item 0 nor item 1 were returned during the simulations
for Case B.

4.4 Clarke et al.

The simulations use the implementation of Clarke et al. [20]3 for these simulations. The
code is run “as is”, replacing their example judging script with scripts that implement
Case A and Case B. Since the algorithm is intended for precisely our scenario, no changes
to the implementation were required.

For both cases, nearly half of the simulations returned two or more items tied for best —
497 for Case A and 489 for Case B. For Case A, 502 simulations of the 1000 simulations
correctly returned item 0, while 323 simulations returned item 1 and 213 simulations re-
turned item 2. In total, the simulations for Case A returned 995 items that were not item 0.
For Case B, 94 simulations returned both item 0 and item 1, while 666 returned one or
the other, but not both. In addition, the simulations for Case B returned 729 other items,
which were neither item 0 nor item 1.

Given the large number of ties produced by the algorithm “as is”, I attempted to
address the problem by adding an extra final phase. This extra final phase judges all
pairs in the final pool a second time so that the algorithm bases its final estimates on two
comparisons of each pair. From a practical standpoint, an extra final phase requires only
an extra independent assessment for each pair.

With an extra final phase, there are fewer ties and incorrect results. For Case A, where
there is a single best item, 290 simulations return one or more items tied for best. Of the
1000 simulations, 510 correctly returned item 0, while 302 simulations returned item 1 and
166 simulations returned item 2. In total, the simulations for Case A returned 780 items
that were not item 0. For Case B, 81 simulations returned both item 0 and item 1, while
733 returned one or the other, but not both. In addition, the simulations for Case B
returned 430 other items, which were neither item 0 nor item 1.

3github.com/claclark/preferences
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4.5 Mohajer et al.

Mohajer et al. [63]4 provide their MATLAB implementations for finding the top-1 and
top-k items. I re-implemented the two methods in Python with very few modifications.
For Case A where there is a single winner, I apply the top-1 selection method SELECT.
Since the algorithm compares every pair m times and we want to find the best item out of
100 items within 1000 comparisons, I set m to be 10, resulting in 990 comparisons in total.
Among the 1000 simulations for Case A, the SELECT algorithm found the correct target
715 times, outperforming all the other selected methods. In addition, it correctly returned
one of the two winners in Case B 905 times. However, the SELECT method can not
inherently find more than one winner. To find both winners in Case B, I apply the top-2
selection method which needs an extra phase of heap-sorting. In order to keep the total
number of comparisons below the budget, I set m to be 5 for the top-2 selection method,
resulting in 980 total comparisons. 588 simulations returned one of the two winners. 277
simulations returned both winners.

4.6 Active Ranking

Heckel et al. [36]5 implement a variant of the top-k ranking algorithm proposed in the
paper. While the algorithm in the paper uses a successive elimination strategy, their
implementation is based on the LUCB (lower upper confidence bound), but shares the
same sample complexity guarantees as they report. I use their implementation for the
simulations and restrict the total number of comparisons to 1000. I set the allowed error
probability δ = 0.1, following their setup. For Case A, I set k = 1 and 175 simulations
correctly returned the optimal item. For Case B, I set k = 2. 405 simulations returned
one of the correct answers and 545 simulations found both winners.

4.7 PARWiS

Sheth and Rajkumar [72]6 provide implementations for the PARWiS algorithm. I modify
their code to take a preference probability matrix as an input instead of a BTL scores
vector. For all other input parameters such as the objective function, I use their default

4github.com/a-elmahdy/Active-Learning-from-Noisy-Comparisons.git
5github.com/reinhardh/supplement_active_ranking
6github.com/DevSheth/active-ranking-under-shoe-string-budget
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values. The shoestring budget is set to be 1000. The algorithm returns the top winner and
a ranking over all items according to BTL scores.

Among the 1000 simulations for Case A, PARWiS successfully recovered the optimal
item 537 times. The range of the maximum number of independent assessors is [17, 68].
For Case B, 686 simulations recovered one of the two winners, with the maximum number
of independent assessors in the range of [7, 83]. Since PARWiS returns a ranking and there
are two winners in Case B, I extract the item with the second highest BTL score from
the ranking and compare it with the true winners. 287 simulations recovered both of the
winners.

4.8 Discussion

In contrast to the previous work presented at SIGIR 2022 [87], I considered more algorithms
in this thesis and further expanded the simulation results. All algorithms performed fairly
reasonably on Case B, with between 63.9% and 97.3% of simulations finding at least one
or two of the “winners”. All algorithms performed less reasonably on Case A, which I
had assumed would be the easier case, with between 10.8% and 71.5% finding the single
“winner”. In our previous SIGIR paper [87], I determined that only Clarke et al. [20] fully
satisfied the three requirements. Based on the analysis and simulations reported in this
work, the tournament method of Mohajer et al. [63] and the heuristic approach of Clarke
et al. [20] both appear to be suitable for human preference judgments.

While PARWiS [72] performed reasonably well on both test cases, the large number of
independent assessors required is a major obstacle. Between the two suitable algorithms,
the SELECT method [63] compares each pair a fixed number of times, and only returns
a single item. It successfully recovered the true winner or one of the true winners more
often than the other method [20] did. However, if we want to find more than one win-
ner, SELECT needs to be extended to a heap-based algorithm, requiring extra rounds of
comparisons. In order not to run out of the comparison budget, each pair will be com-
pared fewer times, at the expense of the algorithm performance. The approach of Clarke
et al. [20] demonstrates practical value but lacks an explicit theoretical foundation beyond
what I did in Section 3.3.4. I proceed with the algorithm of Clarke et al. [20] and leave the
method of Mohajer et al. [63] as a potential future work. Dueling bandit algorithms are
sensitive to parameterization. I made efforts to adapt the other algorithms by adjusting
parameters, but without success.
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Chapter 5

Human Preference Judgments

Based on the foregoing analysis, we proceed with the algorithm of Clarke et al. [20], which
provides a feasible solution to the requirements of Section 3.1. We apply the algorithm
to produce human preference judgments for the passage retrieval task of the TREC 2021
Deep Learning track [22]. The crowdsourced Mechanical Turk judgments reported in this
section were supervised by Chengxi Luo, as reported in the joint paper [87]. We focus the
experiments on further validation of the algorithm, on opportunities for improvement, and
on exploration of sparse labels for information retrieval evaluation, providing support for
ideas proposed by Arabzadeh et al. [6].

5.1 Method

We applied the algorithm of Clarke et al. [20] to crowdsource preference judgments for
pools generated from runs submitted to the passage retrieval task of the TREC 2021
Deep Learning Track [23]. For these experiments we worked with an initial pool of 50
queries and provided by the track organizers. During their own judging process they
added seven queries and dropped four, so that the overlap is 46 queries [73]. Participants
in the track submitted 63 runs to the passage retrieval task. Each run comprised a ranked
list of up to 100 passages intended to answer each of 477 questions. TREC assessors
judged these queries on a four-point relevance scale (“perfect”, “highly relevant”, “related”,
“irrelevant”) [73]. The query in Figure 1.1 (#1103547) was one of the dropped query
because it has no highly relevant or perfect passages.

We based our experiments on the implementation provided by Clarke et al. [20] in
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the associated repository1. Apart from the addition of a second finalization phase, we
followed the crowdsourcing procedure described in that paper as closely as possible, using
the code without change, including default parameters. We implemented the second finalize
phase by requesting two judgments for each pair in the final pool through the crowdsource
platform, computing scores in a separate script from both the judgments in the final phase
of the original implementation and our extra finalization phase. Apart from this additional
finalization phase, our procedure is exactly prefBest(Pool, K, 7, 9) as listed in Figure 3.2,
where n = 7 and m = 9 are the default values in the original implementation.

We started with depth-10 pools generated from the runs submitted for the passage
retrieval task, along with their pointwise graded judgments. The implementation builds
its own internal pools from the three grades of relevant passages, omitting irrelevant pas-
sages, “top down” until a minimum threshold is reached or until all relevant passages are
included. For our experiments, we maintained the default value of 5 for this threshold. The
implementation first adds all perfectly relevant passages to its pool, if the threshold is not
reached, it then adds all highly relevant and then all relevant passages until the threshold
is reached or there are no relevant passages remaining. For the 50 questions, preference
judging pools ranged in size from 5 to 130, with a median size of 15 and a mean size of
31.4.

We used Amazon Mechanical Turk (MT) to crowdsource judgments. We used the
judging interface described in [20] as the starting point, modifying it to simplify data
management and improve performance. Each judging task comprises ten target pairs — for
which we need judgments — and three test pairs. These test pairs were intended to reduce
judging errors due to misunderstandings, distractions, or the absence of assessor training,
as discussed in Section 3.1. Each test pair consisted of a question, a “best-known answer”
passage, and an off-topic passage. These questions and best-known answers were taken
from the collection developed by Clarke et al.[20], as provided in their github repository.
Target pairs and test pairs were randomly assigned to tasks. Within each pair, the left and
right placement of passages was determined randomly. For judging purposes, we edited
some of the 50 questions to correct obvious grammatical and other errors. We included
these edited questions in the data release for this paper.

We required crowdsourced workers to have a task approval rate greater than 95%, and
to have more than 1,000 approved tasks. We required workers to be located in the United
States, consistent with the context of these TREC experiments. We paid workers $2.00
for completing each task, consistent with the expected time to complete a single task and
our local minimum wage. In addition, we paid a platform fee of $0.40 to Amazon MT for

1github.com/claclark/preferences
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each task. Under our research protocol, workers could stop after partially completing a
task and receive a prorated amount, but none did. While we were debugging the perfor-
mance of our system a small number of workers experienced unacceptable delays and were
paid compensation. Our research protocol received ethics approval from the University of
Waterloo.

Data from workers who did not correctly answer at least 75% of the test pairs was
excluded. This requirement means that workers completing a single task were required to
correctly answer all three test pairs; workers completing two tasks were required to correctly
answer at least five of the six test questions. We paid these workers for their work, but
they were excluded from participating in later phases. The total cost for all judgments
was $3,830.41, including interface debugging tasks, excluded data, and platform fees. This
produced a total of 10,697 usable judgments at a cost of just under 36 cents each. Of
these, 9,713 judgments were required by the algorithm in Section 3.3.4 and an additional
984 judgments were required for our extra finalization phase.

5.2 Exact duplicates

After running the entire experiment, including the extra finalization phase, we discovered
that the test collection used for the TREC Deep Learning passage retrieval task (the
MS MARCO v2 dataset) contained exact duplicates – passages that were character-for-
character identical. Of the 1570 passages in our combined judging pools, 460 passages
contained at least one duplicate in the same pool. If we keep just one of these duplicates,
it would leave 1308 items in the pool.

If we had encountered these duplicates earlier in the experiment, it is likely that we
would have merged them into equivalence classes, so that assessors would not have to
choose between absolutely identical passages. However, we did not notice them until we
were looking at top results to select examples for the joint paper[87] and realized that
the top 5 of question #364210 included an identical copy of the top answer, which was
tied for second. We did not see any identical pairs during our interface tests, perhaps
because comparisons between exact duplicates are relatively rare, despite the relatively
large number of them. Excluding the extra finalization phase, only 169 (1.7%) of the
9,713 judgments required for our experiments are between identical elements.

As a result, we have an unplanned test of our equality tolerance requirement. If the
top result for a question has an exact duplicate, it should also appear in the top results.
Comparing the top results from the main experiment (excluding the extra finalization
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phase), the top document for 15 questions had a duplicate in the pool. If we exclude five
questions where the pool size is less or equal to m = 9, where there were no pruning phases,
the top document for ten questions had at least one exact duplicate in the pool. The pool
sizes for these questions range from 11 to 130, with an average size of 50.5.

For eight of these ten questions, the top passage had a single exact duplicate in the
pool. For six of these eight questions, the duplicate also appeared in the top-5, usually
ranked second or third. For one of the eight questions, the duplicate reached the upper
half but did not reach the finalization phase. For the remaining question, the duplicate
was eliminated during the initial pruning phase.

For one question (#629937) the top passage had two duplicates in the pool, which
were ranked third and fourth. One question (#508292) had two duplicate passages tied for
first. These passages had two other duplicates in their pool of 103 passages. One of these
duplicates was ranked second. The other made it into the top half but was eliminated
during the second pruning phase.

Overall, 9 of 12 duplicates for these ten questions (75%) reached the top-5, a result
consistent with our expectations from the analysis and simulations in previous sections.
This outcome might be improved by increasing the value of n to decrease the number of top
results lost during the pruning phases. As future work, we hope to extend our theoretical
understanding of the approach to choose the number of comparisons during the pruning
phase more dynamically, based on the data itself [43].

5.3 Extra finalization phase

The simulations suggested that an extra finalization phase would reduce the number of
ties and incorrect results. To test this observation, for each question we requested a second
round of assessments for the pairs in the final phase. This extra finalization phase gives
us three sets of best items. Set I from the first round, Set II from the second round, and
a Combined Set constructed by merging the judgments from both finalization phases and
computing scores from the combination.

For the 50 questions, both Set I and Set II had 75 best passages — an average of
1.5 passages per question. The Combined Set had fewer ties, with 66 best passages – an
average of 1.32 passages per question. While the exact distributions of ties differ between
Set I and Set II, both have (different) questions with 4 passages tied for best, while the
Combined Set has none.
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Figure 5.1: Scatter plot comparing experimental runs submitted to the passage retrieval
task of the TREC 2021 Deep Learning track on pointwise graded judgments vs. pairwise
preference judgments. Each point represents a single run. Official TREC runs use slightly
different questions and relevance judgments than our initial pools [73].

Comparing the top passages in Set I and Set II, only 22 of the topics share at least
one best answer, and the intersection of Set I and Set II contains only 25 passages. Even
though the Combined Set is smaller, 40 of the topics in the Combined Set share a top
answer with Set I; 39 of the topic in the Combined Set share a top answer with Set II. The
Combined Set shares 44 passages with both Set I and Set II.

Although it is perhaps not surprising, the Combined Set has fewer ties and is more
consistent with both Set I and Set II than they are with each other. We report the
experiments in the next section on the Combined Set. As future work, we hope to discover
and validate more a principled method for the finalization phase.

5.4 Best item evaluation

As discussed in Chapter 1, one of the motivations to identify best items is to evaluate IR
systems by their ability to place these items as high as possible. With the algorithm of
Clarke et al. [20], we crowdsourced preference judgments for the passage retrieval task of
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Figure 5.2: Scatter plots comparing sparse binary judgments against graded judgments
and preference judgments for experiments runs submitted to the passage retrieval task of
the TREC 2021 Deep Learning Track. Each point represents a single run. Official TREC
runs use slightly different questions and relevance judgments than our initial pools [73].
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the TREC 2021 Deep Learning Track [23], and identified best responses to the queries. In
this section, we aim to further test the idea of best item evaluation using our crowdsourced
preference judgments in order to create more complete stories about this topic. We compare
best item evaluation with traditional graded evaluation methods and MS MARCO sparse
labels to provide more insight.

Traditional evaluation approaches in information retrieval aim for judgments to be as
complete as possible. Experimental runs are pooled as deeply as possible, and efforts are
made to judge as many items as possible. The goal is to create a re-usable collection so that
future experiments conducted on the collection provide meaningful results, even if these
new experimental runs surface unjudged documents in their top ranks [10, 70]. NDCG is
one of the common measures used in traditional pointwise graded evaluation. However,
this traditional evaluation methodology faces several challenges. For instance, TREC has
struggled with the problem of completeness for most of its history, with the overview paper
for TREC 2021 providing an excellent summary [73]. Some TREC tracks, including the
Deep Learning Track, use active learning methods [1] to expand the set of known relevant
documents. Unfortunately, despite these efforts, “Most topics have very many relevant . .
. and as a result the collection is likely not a reusable collection.” [73].

The MS MARCO leaderboards2 represent a radical departure from traditional infor-
mation retrieval evaluation methodology. Over the past three years, the MS MARCO
leaderboards have tracked dramatic improvements in core information retrieval tasks, in-
cluding passage retrieval [21]. MS MARCO bases evaluation on sparse labels, with 94%
of the questions in the development set for passage ranking having only a single known
relevant passage [6]. Given this sparsity of relevance labels, mean reciprocal rank (MRR)
forms the primary evaluation measure. While the sparse labels are not intended to rep-
resent the “best” passages [22], better systems will tend to place these passages higher in
their rankings. This overall approach has been validated through comparisons with Deep
Learning Track results in 2019 and 2020 [21].

Arabzadeh et al. [6] suggest that if the sparse labels represented the best known items,
the long term validity of the approach might be further improved. We further suggest
that there may be fewer concerns about the re-usability of a collection based on best
known items. If a new experiment ranks an unjudged item above the best known item, the
unjudged item only invalidates measures if it is better than all previously judged items, a
much higher bar than mere relevance.

To further explore the validity of best answer evaluation, we compare best item eval-
uation with measures computed over all available judgments. For our comparison with

2microsoft.github.io/msmarco/
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graded judgments, we use the official TREC NDCG@10 score. We also compare with Pref-
erence Graph Compatibility (PGC) [18], which is computed directly from a multi-graph of
preferences. Figure 5.1 plots NDCG against PGC, computed over the 63 runs submitted
to the passage retrieval task of the TREC 2021 Deep Learning Track [22]. We compute
PGC using the entirety of the preference judgments collected by our experiments, includ-
ing the extra finalization phase. A Kendall’s τ value of 0.8150 indicates the consistency
of the preference judgments with the pointwise judgments, suggesting that the pairwise
judgments are of sufficient quality to form the basis for measurement.

We create the top plots in Figure 5.2 based on the Combined Set of preference labels
from Section 5.3 to test the idea of best item evaluation. MRR values are computed using
best known responses, and compared with PGC and NDCG. Despite the sparsity of these
preference labels, the ordering of runs is correlated with PGC, with a Kendall’s τ over 0.8.
Both of the top plots show a generally consistent ordering of runs.

As a comparison, we create the bottom plots in Figure 5.2 using MS MARCO sparse
labels. Questions for the TREC 2021 Deep Learning Track were taken from questions held
out from MS MARCO data releases [22], so that MS MARCO sparse labels are available
for these questions. Craswell et al. [22] report MRR values using these labels, which we use
to create the bottom plots. With a Kendall’s τ under 0.5, MRR on these labels is much
less correlated with our preference judgments. The top run on the MS MARCO labels
(p_f10_mdt53b) places just below the median on PGC. The group submitting this run is
known for it experience and expertise on the MS MARCO collection [55], expertise which
may have inadvertently engendered poorer performance on the preference-based labels.

As a final experiment, we created random sparse labels based on the official graded
relevance judgments for the Deep Learning Track. For each of the 50 questions, we pooled
the passages with the highest relevance grade for that question. From each pool, we picked
a single random relevance passage as the sparse label for that question, and computed
MRR for each run using these sparse labels. We repeated this process 1,000 times. For
95% of these trials, the Kendall’s τ correlation between MRR and NDCG@10 fell between
0.485 and 0.735. Kendall’s τ with the MS MARCO labels (0.5131) is closer to the lower end
of this range, while Kendall’s τ with the preference labels is closer to the upper end. On
the 1,000 trials, the best run achieved an MRR value between 0.120 and 0.219. On the MS
MARCO labels p_f10_mdt53b achieves an MRR of 0.3728, while on the preference labels
NLE_P_v1 achieves 0.3946, both well above the best MRR values on random labels. This
outcome suggests that neither the MS MARCO labels nor the preference labels are arbitrary
relevant passages. In general, these passages are preferred by the rankers themselves, where
rankers heavily tuned on MS MARCO appear to prefer MS MARCO passages.
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Chapter 6

Conclusion

Neural rankers push the limits of traditional information retrieval evaluation methodolo-
gies. If most items returned by a ranker are relevant in the traditional sense, how do we
measure further improvements? A possible answer is to focus on the top items, the best
of the best [6]. A better ranker would place these top items higher in its ranking. This
thesis explores dueling bandits as a framework for finding these items via human prefer-
ence judgments, and is built on top of our previous work presented at SIGIR 2022 [87] by
considering additional algorithms and generating more experimental results.

After defining requirements in Section 3.1, I reviewed dueling bandits algorithms in the
research literature. While many algorithms have proven their practical value in the context
of online ranker selection, they have not been applied in the context of human preference
judgments. Instead of excluding them at a purely theoretical level, two simple test cases in
Section 4 are designed to examine the practical performance of several candidate algorithms
selected based on their potentials. While I determined that only Clarke et al. [20] satisfied
the requirements for human preference judgments in the previous work [87], as an outcome
of the review and simulations reported in this thesis, both the heuristic approach of Clarke
et al. [20] and the tournament-based method of Mohajer et al. [63] satisfy the requirements.
I proceed with the algorithm of Clarke et al. [20] and leave the other method for future
work.

Using the algorithm of Clarke et al. [20], we crowdsourced preference judgments for the
passage retrieval task of the TREC 2021 Deep Learning Track, identifying the probably best
answer for each of the 50 question in the evaluation set. These experiments suggest that
the algorithm meets our requirements, particularly the requirement of ties being tolerated.
We demonstrate the practical value of an extra finalization phase. These experiments also
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suggest that evaluation can be based on the best known items alone, supporting the views
of Arabzadeh et al. [6].

As potential future work of this thesis, I hope to focus on the opportunities for ex-
perimenting with and improving existing algorithms for human preference judgments, on
analysis of theoretical bounds for the algorithm of Clarke et al. [20], and on further explo-
ration of sparse labels for information retrieval evaluation.

Code, crowdsourced preference judgments and best answers are available in an associ-
ated repository:

https::/github.com/XinyiYan/duelingBandits
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elicitation using statistical models: The case of mallows. In International Conference
on Machine Learning, pages 1071–1079. PMLR, 2014.
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ration and k-armed voting bandits. In International Conference on Machine Learning,
pages 91–99. PMLR, 2013.

[79] Petros Venetis and Hector Garcia-Molina. Dynamic max algorithms in crowdsourcing
environments. Technical report, Stanford InfoLab, 2012.

[80] Vasilis Verroios, Peter Lofgren, and Hector Garcia-Molina. tdp: An optimal-latency
budget allocation strategy for crowdsourced maximum operations. In Proceedings of
the 2015 ACM SIGMOD International Conference on Management of Data, pages
1047–1062, 2015.

[81] Ellen M Voorhees, Nick Craswell, and Jimmy Lin. Too many relevants: Whither
cranfield test collections? In Proceedings of the 45th Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval (SIGIR
2022), 2022.

[82] William Webber, Alistair Moffat, and Justin Zobel. The effect of pooling and evalua-
tion depth on metric stability. In EVIA@ NTCIR, pages 7–15, 2010.

[83] William Webber, Alistair Moffat, Justin Zobel, and Tetsuya Sakai. Precision-at-ten
considered redundant. In Proceedings of the 31st Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, pages 695–696,
2008.

[84] Huasen Wu and Xin Liu. Double thompson sampling for dueling bandits. Advances
in Neural Information Processing Systems, 29:649–657, 2016.

[85] Yingce Xia, Haifang Li, Tao Qin, Nenghai Yu, and Tie-Yan Liu. Thompson sampling
for budgeted multi-armed bandits. In Twenty-Fourth International Joint Conference
on Artificial Intelligence, 2015.

57



[86] Xiaohui Xie, Jiaxin Mao, Yiqun Liu, Maarten de Rijke, Haitian Chen, Min Zhang, and
Shaoping Ma. Preference-based evaluation metrics for web image search. In Proceed-
ings of the 43rd International ACM SIGIR Conference on Research and Development
in Information Retrieval, pages 369–378, 2020.

[87] Xinyi Yan, Chengxi Luo, Charles LA Clarke, Nick Craswell, Ellen M Voorhees, and
Pablo Castells. Human preferences as dueling bandits. In Proceedings of the 45th
International ACM SIGIR Conference on Research and Development in Information
Retrieval, pages 567–577, 2022.

[88] Ziying Yang, Alistair Moffat, and Andrew Turpin. Pairwise crowd judgments: Pref-
erence, absolute, and ratio. In Proceedings of the 23rd Australasian Document Com-
puting Symposium, pages 1–8, 2018.

[89] Y.Y. Yao. Measuring retrieval effectiveness based on user preference of documents.
Journal of the American Society for Information science, 46(2):133–145, 1995.

[90] Yisong Yue, Josef Broder, Robert Kleinberg, and Thorsten Joachims. The k-armed
dueling bandits problem. Journal of Computer and System Sciences, 78(5):1538–1556,
2012.

[91] Yisong Yue and Thorsten Joachims. Interactively optimizing information retrieval
systems as a dueling bandits problem. In Proceedings of the 26th Annual International
Conference on Machine Learning, pages 1201–1208, 2009.

[92] Yisong Yue and Thorsten Joachims. Beat the mean bandit. In Proceedings of the 28th
International Conference on Machine Learning (ICML-11), pages 241–248. Citeseer,
2011.

[93] Julian Zimmert and Yevgeny Seldin. Factored bandits. Advances in Neural Informa-
tion Processing Systems, 31:2835–2844, 2018.

[94] Masrour Zoghi, Zohar S Karnin, Shimon Whiteson, and Maarten De Rijke. Copeland
dueling bandits. Advances in Neural Information Processing Systems, 28:307–315,
2015.

[95] Masrour Zoghi, Shimon Whiteson, and Maarten de Rijke. MergeRUCB: A method for
large-scale online ranker evaluation. In Proceedings of the Eighth ACM International
Conference on Web Search and Data Mining, pages 17–26, 2015.

58



[96] Masrour Zoghi, Shimon Whiteson, Remi Munos, and Maarten Rijke. Relative upper
confidence bound for the k-armed dueling bandit problem. In International Conference
on Machine Learning, pages 10–18. PMLR, 2014.

[97] Masrour Zoghi, Shimon A Whiteson, Maarten De Rijke, and Remi Munos. Relative
confidence sampling for efficient on-line ranker evaluation. In Proceedings of the 7th
ACM International Conference on Web Search and Data Mining, pages 73–82, 2014.

59


	List of Figures
	Introduction
	Background
	Graded Relevance
	NDCG
	Preference Judgments
	Reinforcement Learning and Bandit Algorithms
	Dueling Bandits
	The Condorcet Assumption
	The Copeland Assumption
	The Borda Assumption

	Crowdsourced Maximum and Top-k Computation

	Analysis
	Problem Formulation
	Bengs et al. bengs2021preference
	Coherent Preference Relations
	Non-coherent Preference Relations

	Candidate Algorithms
	Double Thompson Sampling
	Merge Double Thompson Sampling
	Round-Efficient Dueling Bandits
	Clarke et al.
	Mohajer et al.
	Active Ranking
	PARWiS


	Simulations
	Double Thompson Sampling
	Merge Double Thompson Sampling
	Round-Efficient Dueling Bandits
	Clarke et al.
	Mohajer et al.
	Active Ranking
	PARWiS
	Discussion

	Human Preference Judgments
	Method
	Exact duplicates
	Extra finalization phase
	Best item evaluation

	Conclusion
	References

