
Universal Database System Analysis for
Insight and Adaptivity

by

Brad Glasbergen

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Computer Science

Waterloo, Ontario, Canada, 2022

© Brad Glasbergen 2022

Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the
Examining Committee is by majority vote.

External Examiner: Tilmann Rabl
Professor,
Digital Engineering Fakultät,
University of Potsdam,
Hasso Plattner Institute

Supervisor: Khuzaima Daudjee
Research Associate Professor,
Cheriton School of Computer Science,
University of Waterloo

Internal Member: Tamer Özsu
University Professor,
Cheriton School of Computer Science,
University of Waterloo

Internal Member: Semih Salihoglu
Associate Professor,
Cheriton School of Computer Science,
University of Waterloo

Internal-External Member: Patrick Lam
Associate Professor,
Department of Electrical and Computer Engineering,
University of Waterloo

ii

Author’s Declaration

This thesis consists of material all of which I authored or co-authored: see Statement
of Contributions included in the thesis. This is a true copy of the thesis, including any
required final revisions, as accepted by my examiners

I understand that my thesis may be made electronically available to the public.

iii

Statement of Contributions

Some portions of this thesis are based on peer-reviewed joint work with Prof. Khuzaima
Daudjee, Prof. Daniel Vogel, Prof. Jian Zhao, Michael Abebe, Amit Levi, and Fangyu
Wu [49,50,52]. I am the first author and the primary contributor in each work.

iv

Abstract

Database systems are ubiquitous; they serve as the cornerstone of modern application
infrastructure due to their efficient data access and storage. Database systems are com-
monly deployed in a wide range of environments, from transaction processing to analytics.

Unfortunately, this broad support comes with a trade-off in system complexity. Database
systems contain many components and features that must work together to meet client
demand. Administrators responsible for maintaining database systems face a daunting
task: they must determine the access characteristics of the client workload they are serv-
ing and tailor the system to optimize for it. Complicating matters, client workloads are
known to shift in access patterns and load. Thus, administrators continuously perform this
optimization task, refining system design and configuration to meet ever-changing client
request patterns.

Researchers have focused on creating next-generation, natively adaptive database sys-
tems to address this administrator burden. Natively adaptive database systems construct
client-request models, determine workload characteristics, and tailor processing strategies
to optimize accordingly. These systems continuously refine their models, ensuring they are
responsive to workload shifts. While these new systems show promise in adapting system
behaviour to their environment, existing, popularly-used database systems lack these adap-
tive capabilities. Porting the ideas in these new adaptive systems to existing infrastructure
requires monumental engineering effort, slowing their adoption and leaving users stranded
with their existing, non-adaptive database systems.

In this thesis, I present Dendrite, a framework that easily “bolts on” to existing database
systems to endow them with adaptive capabilities. Dendrite captures database system
behaviour in a system-agnostic fashion, ensuring that its techniques are generalizable.
It compares captured behaviour to determine how system behaviour changes over time
and with respect to idealized system performance. These differences are matched against
configurable adaption rules, which deploy user-defined functions to remedy performance
problems. As such, Dendrite can deploy whatever adaptions are necessary to address a
behaviour shift and tailor the system to the workload at hand. Dendrite has low tracking
overhead, making it practical for intensive database system deployments.

v

Acknowledgements

First, I would like to thank my advisor, Khuzaima Daudjee. Khuzaima’s steadfast
support, encouragement, and advice were indispensable throughout my PhD. Thank you
for the many hours of research and life advice, for indulging my research ideas, and for
teaching me to be an independent researcher.

I am thankful to my committee members, Tamer Özsu, Semih Salihoglu, Patrick Lam,
and Tilmann Rabl for their valuable suggestions and feedback. I appreciate the time they
took to read and comment on this thesis, which helped to refine its content. I am also
thankful to Reza Ramezan, who provided insightful feedback on the proofs.

I am endlessly grateful to my wife, Rebecca Mayers. Thank you for your ardent support
throughout graduate school, for advocating for my success, and for propelling this thesis
to completion.

I am thankful to my friends in the Data Systems Group at the University of Waterloo.
I am particularly thankful to Michael Abebe, who served as an inspiring role model and
key collaborator throughout graduate school.

I am thankful to my parents for their encouragement and assistance in completing my
graduate studies.

Finally, I am grateful to the Province of Ontario, the Natural Sciences and Engineering
Council of Canada, and the Cheriton School of Computer Science for funding this research.

vi

Dedication

For my beloved wife, Rebecca Mayers. Thank you for always believing in me.

vii

Table of Contents

List of Figures xii

List of Tables xv

1 Introduction 1

1.1 Motivational Example . 3

1.2 Contributions . 4

1.3 Thesis Organization . 5

1.3.1 Universal Behaviour Model Extraction 6

1.3.2 Robust Behaviour Capture . 6

1.3.3 Adaptivity Framework . 7

1.3.4 Case Studies and Lessons Learned 7

2 Terminology 9

2.1 System Behaviour . 9

2.2 Adaption . 9

3 Core Models and Behaviour Difference Detection 11

3.1 Low Overhead Event Extraction . 12

3.2 Event Tracking . 14

3.3 Event Flows . 16

viii

3.3.1 Efficiently Tracking Event Transitions 18

3.3.2 Estimating Transition Time CDFs 19

3.3.3 Combining Transition Time CDFs 27

3.3.4 CDF Differences Report . 31

3.4 Difference Detection . 32

3.4.1 Difference Monitoring User Interface 33

3.5 Experimental Evaluation . 34

3.5.1 Experiment Setup . 35

3.5.2 Evaluation Methodology . 35

3.5.3 Behaviour Difference Validation . 36

3.5.4 Monitoring Overheads . 43

3.5.5 Analysis Time . 45

3.5.6 System Integration Efforts . 46

3.5.7 Accuracy of Sampled CDFs . 47

3.6 Summary and Discussion . 47

4 Enhanced Modelling and Adaptivity Framework 49

4.1 Model Enhancement Motivation . 50

4.1.1 Resource Consumption and Behaviour Differences 50

4.1.2 Higher-Dimensional Modelling . 51

4.2 Behaviour Model Enhancements . 52

4.2.1 Fine-grained Resource Metric Collection 54

4.2.2 Minimizing Modelling Overheads 56

4.2.3 Model Accuracy Guarantees . 62

4.2.4 Concurrency . 63

4.2.5 Combining Variable-Order Behaviour Models 65

4.3 Control Server and Enabling Adaptivity 68

4.3.1 Overview . 69

ix

4.3.2 Detecting Behaviour Differences . 70

4.3.3 Fingerprinting . 73

4.3.4 Adaption Rules . 74

4.3.5 User Interface . 78

4.3.6 System Tools and Deployment . 78

4.4 Beyond Logging-based Models . 80

4.4.1 Overview . 80

4.4.2 Trade-offs between Dendrite Versions 81

5 Generalized Database System Adaptivity: Case Studies 83

5.1 Experiment Setup . 84

5.1.1 PostgreSQL . 85

5.1.2 MariaDB . 86

5.1.3 SQLite . 87

5.1.4 MonetDB . 88

5.1.5 Workloads . 88

5.2 Case Studies . 89

5.2.1 Reducing Checkpoint Frequency . 90

5.2.2 Automatic Construction of Secondary Indexes 92

5.2.3 Handling an HTAP Workload . 94

5.2.4 Batching Updates in SQLite . 96

5.3 Microbenchmarks . 99

5.3.1 Quantifying Overheads . 100

5.3.2 Attention Focusing and Fingerprinting 101

5.3.3 System Integration . 103

5.3.4 Behaviour Model Microbenchmarks 104

5.4 Discussion . 107

5.5 Summary . 108

x

6 Related Work 109

6.1 System Management Assistance Tools . 109

6.1.1 Simple Statistics Collection . 110

6.1.2 System Behaviour Analysis . 111

6.2 System Recommendation Tools . 115

6.3 Adaptive Database Systems . 117

6.3.1 Natively Adaptive Database Systems 117

6.3.2 Generalized Database Adaptivity 120

7 Conclusion and Future Work 121

7.1 Contributions . 121

7.2 Future Work . 122

References 124

xi

List of Figures

1.1 A natively adaptive database system architecture. 2

1.2 Dendrite’s user interface highlighting a behaviour change. 3

1.3 Dendrite’s user interface showing the largest proportional differences be-
tween current and expected system behaviour. 4

3.1 Dendrite’s architecture for difference detection. 12

3.2 A PostgreSQL debug logging call issued while starting a new backend process. 13

3.3 A selection of PostgreSQL log levels and their descriptions. Higher numbers
are more coarse-grained and important. 13

3.4 A logging call is handled by the logging library, which calls record_event.
record_event is implemented in Dendrite’s in-memory tracer and updates
system behaviour models. 14

3.5 Dendrite’s data structures used for tracking log messages, transitions, and
empirical CDFs. 15

3.6 PostgreSQL page access transition graph for Scenario A (blue) and Scenario
B (orange). 16

3.7 Buffer page access transition graph and latency CDFs for Scenario A (blue)
and Scenario B (orange). 17

3.8 (1 − ε)µ ≤ µ̂ ≤ (1 + ε)µ with probability 3/4, per Lemma 1. If more than
half of our estimates µ̂ are within ε of µ, then the median µ̂ is within ε of µ. 25

3.9 Combining empirical CDFs using random walks for Scenario A (blue) and
Scenario B (orange) using a renormalized subset of the page access tran-
sition graph. Crossed-out paths indicate those pruned from consideration.
Double purple lines indicate the random walk example in the text. Fe1,e2(x)
are CDFs for percentile x of transition times from event e1 to event e2. . . 28

xii

3.10 Dendrite’s difference detection interface. 33

3.11 The experiment architecture used to evaluate Dendrite’s difference detection. 34

3.12 Precision graphs for Dendrite, Distalyzer, and DBSherlock’s ability to pin-
point differences in (a) PostgreSQL, (b) TPC-W benchmark client, and (c)
Apache Tomcat execution behaviour. 38

3.13 SQLite precision results and YCSB-C throughput. 44

3.14 Analysis times for each of the analysis tools and Dendrite’s CDF accuracies. 45

4.1 Dendrite’s architecture when deployed in online adaption mode. Compo-
nents from the previous chapter are repurposed and extended to support
adaption-rule responses. 52

4.2 Dendrite’s in-memory tracer handling an example record_event call. . . . 53

4.3 The C library functions Dendrite’s injection shim overrides to track resource
utilization. 55

4.4 Dendrite’s injection shim. 56

4.5 Behaviour models for k = 1 and k = 3 capturing event sequence 1, 1, 1,
2, 3, 4, 1, 1, 1, 2, 3, 5 . 57

4.6 Variable-order behaviour model capturing event sequence 1, 1, 1, 2, 3, 4, 1, 1, 1,
2, 3, 5 . 58

4.7 Steps in dynamically reducing an order-3 transition to order-1. 58

4.8 Merging prior event sequences and metric reservoirs. 59

4.9 Dendrite’s control server. 69

4.10 A sample of Dendrite’s built-in functions for composing adaption rules. . . 75

4.11 Dendrite’s user interface. 77

4.12 Dendrite-Pin extracting events from executables. 80

5.1 Experiment architecture for Dendrite’s case studies. 84

5.2 Checkpoint adaption throughput improvements. 90

5.3 Index-creation adaption throughput improvements. 92

5.4 Row-oriented storage vs. column-oriented storage. Updates that span mul-
tiple record fields are best served by row-stores, while queries that aggregate
the same field across records are best served by column-stores. 94

xiii

5.5 CHBenchmark query latency improvements. 95

5.6 SQLite batched query adaption throughput improvements. 97

5.7 PostgreSQL throughput on a YCSB-C workload. 100

5.8 Model difference scores for a PostgreSQL YCSB 100% read-only worker
compared to worker models obtained from other environments. 102

5.9 a) the disk read-portion of Dendrite’s behaviour model for a YCSB-C Post-
greSQL worker, and (b) the relevant portion of an order-1 behaviour model
constructed from the same data. 104

6.1 A taxonomy of prior work related to Dendrite. 110

xiv

List of Tables

3.1 Scenarios used to evaluate Dendrite, Distalyzer and DBSherlock’s ability to
pinpoint behaviour differences. 37

3.2 Analysis of system integration efforts. 46

xv

Chapter 1

Introduction

Relational database systems are a critical backbone of modern application infrastructure
[107]. They are used to store and access data across a variety of application domains,
ranging from transaction processing to analytics.

Different applications have different access characteristics. For example, online transac-
tion processing workloads (OLTP) tend to be update-intensive, but have relatively simple
transactions. By contrast, online analytical processing workloads (OLAP) rarely update
data but use long-running, complex operations.

Due to these differences in access patterns, different data structures and algorithms
perform better for different workload types. For example, updates are more efficiently con-
ducted on row-oriented storage than column-oriented storage, making row-orientation more
suitable for transaction processing workloads. On the other hand, column-oriented storage
is preferable for analytics-intensive workloads [1]. Similarly, optimistic concurrency control
techniques are superior for highly-concurrent workloads executing on commodity hardware
with low contention, while locking-based concurrency control protocols are preferable in
the highly-contended case [112]. Generally, it is not possible to select a single system
configuration — encompassing physical design and processing techniques — that performs
well across all workloads and environments [106,108].

As database systems are a vital component in application infrastructure [107], the
storage and processing algorithms deployed by the system must be tailored to the workload
at hand. To this end, administrators vigilantly monitor client workloads, analyzing them
to determine access and load characteristics. To do so, they comb through large debug-
logging files and hundreds of system metrics [125] exported by the database system to
determine how the system behaves in response to the workload. This information is used

1

Figure 1.1: A natively adaptive database system architecture.

to determine the amount of resources to be provisioned to the system and to tailor its
request processing strategies.

Furthermore, client workloads are known to shift in access patterns and demand over
time [3,81,110,111]. Therefore, administrators must continuously monitor the workload to
determine how it evolves over time, updating the database system’s processing strategies
to reflect the workload’s new characteristics.

In recent years, researchers have proposed next-generation, natively adaptive systems
[34,81,93,95] as a remedy to this administrator burden (Figure 1.1). These systems build
models of the client workload to determine its access characteristics, evaluate the benefits
and trade-offs of different storage and query processing strategies, and deploy the choices
expected to maximize benefits for client requests. In particular, these systems adapt their
physical design, processing decisions, or resource allocation according to their environment.
When the workload changes, the system updates its models to reflect the workload’s new
behaviour, in turn refining the adaptions chosen for the workload.

While these natively adaptive systems have shown promise in automatically tailoring
themselves to client workloads, their techniques are not yet widespread. Popular, open-
source database systems, such as PostgreSQL [59], either have limited adaption capabilities
or lack them entirely. Unfortunately, retrofitting systems with adaptive components re-
quires immense developer effort [94]. As every database system is unique, determining
the circumstances under which adaptions should be deployed is currently system-specific,

2

Figure 1.2: Dendrite’s user interface highlighting a behaviour change.

time-intensive and error-prone.

Natively adaptive systems are often research prototypes under active development and
far less battle-tested than existing industrial systems. It is therefore unreasonable for
users of popular industrial systems to switch to using a recently proposed adaptive system;
running mission-critical infrastructure on prototypes is ill-advised. Therefore, users are
stranded with database systems lacking adaptive capabilities. Administrators continue
to shoulder the Sisyphean task of system optimization, despite the promise of adaptive
systems on the horizon.

Dendrite addresses this challenge by “bolting” onto existing database systems, auto-
matically detecting system behaviour differences, and deploying adaptions to address them.
Database developers use Dendrite’s intuitive adaption rules to codify the appropriate re-
sponse to behaviour differences, which it executes when rule conditions are satisfied. In
doing so, Dendrite enables otherwise unequipped database systems to respond to changes
in workload and system behaviour. To integrate with Dendrite, developers: (i) modify
their system’s logging library and link it against Dendrite, or (ii) inject Dendrite directly
into the system’s executable code via binary instrumentation, requiring no source code
modification. As such, popular database systems can obtain Dendrite’s adaptive benefits
with little engineering effort.

1.1 Motivational Example

To demonstrate Dendrite’s utility, I will show how it can respond to workload changes
in PostgreSQL 14.1. Figure 1.2 shows Dendrite’s behaviour differences timeline for an
experiment in which a 10-client OLTP workload executes against PostgreSQL, with 2
clients joining the system to execute OLAP queries a few minutes later. Each circle on
the timeline indicates a 30-second time interval, where teal circles represent expected
behaviour, and gold circles represent a behaviour difference. Dendrite is configured to
monitor PostgreSQL’s execution behaviour.

Once the OLAP clients join the system, Dendrite reports a significant difference in
PostgreSQL’s execution behaviour compared to its behaviour on the previously executing

3

Figure 1.3: Dendrite’s user interface showing the largest proportional differences between
current and expected system behaviour.

OLTP workload. It marks this shift in its user interface with a gold circle 1 . Consult-
ing Dendrite’s reported behaviour differences (Figure 1.3), we observe a large increase in
DiskRead events, which corresponds to a disproportionate rise in page reads from disk.
There is also a marked increase in shared memory exit events, which are part of the
termination procedure for the background parallel scan processes that PostgreSQL uses
for the analytics queries. By characterizing each database process’s behaviour, Dendrite
determines that two analytics workers are executing.

Dendrite matches this active process and behaviour difference information against a
set of rules that determine how it should respond. Using these adaption rules, Dendrite
responds by re-routing the analytics queries to a more suitable column-store database,
MonetDB [11], which processes the queries more efficiently and reduces analytic query
latency by 25×. Afterward, Dendrite returns system behaviour to expected, as indicated
by the subsequent teal circles on the timeline in Figure 1.2.

1.2 Contributions

Dendrite captures its behaviour information in a system-agnostic way and therefore inte-
grates easily with any database system. It extracts system events, such as page flushes
and checkpoints, from ubiquitously used debug-logging calls and encodes them alongside

4

resource-consumption metrics in behaviour models. These models capture how the sys-
tem moves between events, enabling rich behaviour analysis and difference detection. If
the target system uses logging sparingly (or not at all), Dendrite retrieves the informa-
tion it requires through binary instrumentation. As Dendrite’s adaption rules support
user-defined functions as responses, it can deploy a wide range of augmentations to adapt
the running system in response to a behaviour shift. Dendrite consumes little memory
and has low overhead, making it suitable for intensive, high-performance database system
deployments.

Dendrite provides these features to deliver the following key contributions:

1. Dendrite uses novel, system-agnostic techniques to efficiently extract events and fine-
grained resource consumption from a running database system.

2. Dendrite encodes system behaviour in expressive models that capture complex system-
behaviour patterns while automatically minimizing model memory consumption.

3. Dendrite enriches database systems with adaptive capabilities through its adaption
rule framework. Adaption rules are intuitive and can respond to disparate behaviour
changes to improve system performance.

4. Dendrite is effective in adapting multiple popular database systems and improv-
ing their performance, as evidenced through comprehensive and representative case
studies spanning the PostgreSQL, MariaDB, and SQLite database systems. Beyond
showcasing Dendrite’s capabilities, these studies offer valuable insight for researchers
investigating generalized system adaptivity; findings show that models constructed
using widely available information sources (debug logging and operating system met-
rics) are effective in detecting system behaviour changes and that adaption criteria
are portable across database systems from the same (relational) domain.

The rest of the thesis describes these contributions and demonstrates Dendrite’s ef-
fectiveness in practice. Dendrite is fundamentally different from prior approaches in its
generalizability across systems, comprehensive behaviour modelling, and support for a wide
range of online adaptions.

1.3 Thesis Organization

The layout of this thesis is as follows. In Chapter 2, I present the necessary background
and terminology to simplify Dendrite’s presentation. In Chapter 3, I describe the core

5

behaviour-extraction techniques and behaviour models underlying the Dendrite system.
In Chapter 4, I detail enhancements to these models that capture resource consumption
in code and binary instrumentation techniques that extend Dendrite’s applicability to
an even broader range of systems. This chapter also describes Dendrite’s adaption rule
framework that effects behaviour changes, along with its user interface and tools that ease
deployment. Chapter 5 demonstrates Dendrite’s applicability to a wide range of database
systems and workloads, presenting insights into the portability of rules between similar
database systems and lessons learned for generalized system adaptivity. Related work is
covered in Chapter 6. I discuss future work and conclude in Chapter 7. The central parts
of the thesis are summarized next.

1.3.1 Universal Behaviour Model Extraction

Behaviour models are at the core of Dendrite’s functionality. They provide comprehensive
information about system behaviour to enable robust behaviour comparisons, yet remain
lightweight enough to avoid degrading system performance during their capture.

I will first present the novel extraction techniques that Dendrite uses to obtain these
behaviour models from arbitrary data systems. A key insight is that debug-logging libraries
are ubiquitously used, share a common Application Programming Interface (API), and
output information about system events. Hence, Dendrite can extract the information it
requires from the system by intercepting debug-logging calls and encoding its insights into
Markov chains that describe system behaviour evolution.

By building its behaviour models on a per-thread basis using thread-local storage, Den-
drite mitigates cross-thread contention during monitoring and model construction. This
design is key in capturing expressive models without unduly impairing performance.

1.3.2 Robust Behaviour Capture

While Markov chains are an efficient tool for capturing event transitions, they report
the probability of transitioning between system events as being conditional only on the
immediately preceding event. This reductionist approach would preclude Dendrite from
properly attributing event origins. For example, it would not be able to tell whether
buffer pages being flushed to disk in PostgreSQL is due to the background writer process
performing its expected flushing duties, or whether the buffer pool must unexpectedly flush
dirty pages to disk to accommodate page reads.

6

To this end, I extend the Markov chains underlying Dendrite’s behaviour modelling
into comprehensive variable-order Markov models. These models capture the transition
complexity of the traced events adaptively, encoding longer-term system-behaviour trends
and resource consumption (in terms of disk usage, memory allocation, network traffic) as
the system moves through the code.

While debug logging is widely used and developers tend to place logging statements
in information-dense places [128], relying on them would preclude Dendrite from use in
environments where logging is not used effectively (or at all). Dendrite eliminates this
logging dependency by optionally deploying binary instrumentation techniques that extract
information directly from targeted function calls.

1.3.3 Adaptivity Framework

Given a representative behaviour model and an extracted model corresponding to the sys-
tem’s current behaviour, Dendrite compares them using a novel event-proportion-based
model-comparison technique. This technique determines how different the models are
overall and which differences are the most important. If the models are significantly dif-
ferent, Dendrite evaluates a set of adaption rules over these differences to determine how
to respond.

Dendrite provides a set of built-in primitives that act as predicates over behaviour dif-
ferences to ease rule composition. For example, prob_diff(event) computes the difference
in frequency of event in the representative model compared to that of the extracted. If an
adaption rule’s conjunctive conditions match the behaviour differences, then a user-defined
function (UDF) associated with the rule is executed to address the behaviour difference.

Dendrite also provides users with a web interface that describes the system’s behaviour
evolution over time, along with any executed adaption rules. Administrators can explore
the system’s behaviour and event relationships in detail, and additional rules can be reg-
istered using the interface to respond to behaviour differences in the future.

1.3.4 Case Studies and Lessons Learned

To show Dendrite’s effectiveness across database systems, I integrate Dendrite with Post-
greSQL, MariaDB, and SQLite. I present case studies for each system that show that
Dendrite can both detect behaviour differences induced by the workload or environment,
and respond to these differences appropriately through adaption rules.

7

Beyond per-system efficacy, I also show the generality of Dendrite’s adaption rules by
executing the same three case studies on both PostgreSQL and MariaDB, open-source
database systems that exhibit broadly similar characteristics. Results demonstrate that
adaption rules composed for one database system can be ported to another without sig-
nificant changes through a translation layer that determines equivalent events across the
systems. Similarly, while the response UDF is similar overall, some translation is performed
to convert PostgreSQL adaption logic to MariaDB adaption logic.

Finally, I discuss key requirements for every adaption tool and future work that further
extends Dendrite’s scope and applicability.

8

Chapter 2

Terminology

2.1 System Behaviour

Database systems are complex, containing a large number of components and features that
work together to process user requests. Dendrite’s goals are to (i) determine whether the
system’s current behaviour differs from its idealized behaviour, and, if so, (ii) effect changes
that restore the system to expected functionality and performance.

In this thesis, system behaviour is defined as the execution patterns of the database
system. This definition captures a wide body of research that models database systems
in a myriad of different ways. For example, some research relies on database performance
metrics, while others require direct instrumentation. In all cases, the goal is to capture
a signature of how the database is processing requests and its performance. Dendrite
differs from prior work in its ability to capture and model database system behaviour in a
system-agnostic fashion using debug logging and libc calls.

2.2 Adaption

Dendrite captures database system behaviour to determine how the system’s current be-
haviour differs from expectations. These differences determine how Dendrite will adapt the
system, such that the system returns to its idealized behaviour.

Database systems accept user input from configuration files, data-definition language
(DDL) commands, and data-modification language (DML) commands. Dendrite uses these

9

input vectors to tailor the system’s processing behaviour, improving performance for the
workload at hand. Fundamentally, these inputs affect the database system’s physical de-
sign, processing decisions, and resource provisioning [95].

Database system physical design refers to the storage formats, auxiliary data struc-
tures, and data placement decisions that govern how data is stored and accessed. Physical
design decisions involve creating indexes, selecting which views to materialize, and deter-
mining partitioning and replication strategies for data. Each decision is associated with
cost-benefit trade-offs that must be carefully navigated to optimize for the workload at
hand. For example, indexes accelerate access to data items when filtering by indexed fields
compared to a full table scan, but require maintenance when data items are updated.

Processing decisions refers to how the database system determines which access strate-
gies to use for client requests and how it manages its background maintenance processes.
A database system chooses among available access strategies based on the values of user-
configured thresholds, plan hints, and hardware performance. Moreover, database systems
feature background processes to maintain system metadata, address table bloat, and flush
dirty pages to disk. User-configurable thresholds govern when these background main-
tenance processes execute and how many resources they consume, in turn significantly
affecting system performance.

Resource Provisioning refers to the physical system resources (memory, CPU, network
bandwidth) assigned to the database system or its sub-components. While some resources
are configurable within the database system (e.g., PostgreSQL’s buffer pool size, which
stores disk pages in memory), others are external and configured using containers, virtual
machines, or cloud-provider interfaces. The amount of resources the database system can
use to process requests plays a key role in overall system performance.

Dendrite uses arbitrary user-defined functions to deploy changes and can therefore aug-
ment system behaviour along any of these dimensions. For example, Dendrite can deploy
new indexes based on the workload, manage the frequency of background checkpointing
events, and increase the resources provisioned to the database system’s buffer pool. For the
rest of this thesis, change in any of these aspects in response to the workload or environment
constitutes an adaption:

Definition 1. An adaption is a change in physical design, processing decisions, or re-
source allocation made in response to the workload, database system behaviour, or comput-
ing environment.

A running database system that deploys adaptations to tailor itself to client workloads
or the environment is an adaptive database system.

10

Chapter 3

Core Models and Behaviour Difference
Detection

This chapter presents the core behaviour extraction and modelling techniques that Dendrite
uses to capture database system behaviour and determine how the system has changed over
time or with respect to an expected behaviour baseline. Experiments at the end of this
chapter show the effectiveness of these techniques in modelling database system behaviour
and detecting salient differences.

Dendrite’s modelling framework (Figure 3.1) is implemented in two steps. First, the in-
memory tracer extracts behaviour models on a per-process, per-thread basis and outputs
each model into a separate file. The tracer extracts this information by intercepting debug
logging calls and encoding it into Markov chain based behaviour models. Next, a back-
ground process combines these models to produce an overall model of system behaviour,
loading it into a model storage database. Dendrite’s control server compares models stored
in this database to determine behaviour differences and outputs a behaviour difference re-
port. In this chapter, this reporting process is assumed to be triggered by an administrator;
the subsequent chapter builds on the core techniques outlined here to perform behaviour
model comparisons on the fly during system execution, using the reported differences to
deploy adaptions and improve performance.

As one of Dendrite’s primary goals is to provide adaption capabilities to a broad range
of database systems, its extraction techniques do not rely on system-specific features or
metrics. Furthermore, Dendrite minimizes integration effort; requiring engineers to design
and build complex system-specific scripts to integrate their database systems with Dendrite
defeats its goals of generalizability and hinders its adoption. Finally, Dendrite does not

11

Figure 3.1: Dendrite’s architecture for difference detection.

significantly hamper system performance. The following sections describe how the in-
memory tracer and control server achieve these objectives.

3.1 Low Overhead Event Extraction

Nearly all systems use debug logging [48,90,122,125]; Dendrite exploits this fact to provide
universal behaviour modelling and adaption.

Although there are many different debug logging libraries (e.g., Google Logging [56],
Log4j [44], and Spdlog [87]), they all provide a similar interface for database systems to
output a debug log message to file:

1 log(LOG_LEVEL , message , format_args)

where message is a string with placeholders for variables, composing the body of the text to
be written to disk, and format_args contains the variables to be spliced into the message
body. For example, the PostgreSQL code shown in Figure 3.2 has a logging call with
LOG_LEVEL DEBUG2 and splices the variables pid and port->sock into the log message.

LOG_LEVEL indicates the log level of the message. Log levels communicate the im-
portance of the message to output, and range from critical (FATAL) to fine-grained and
informational (DEBUG5) (Figure 3.3). The logging library is configured to emit messages

12

1 pid = fork_process ();
2 if(pid >0) {
3 /* in parent , successful fork */
4 log(DEBUG2 , "forked new backend , pid=%d socket =%d",
5 (int) pid , (int) port ->sock)));
6 }

Figure 3.2: A PostgreSQL debug logging call issued while starting a new backend process.

Level Name Description
10-15 DEBUG1-DEBUG5 Fine-grained informational details
16 LOG Server operational messages
17 INFO Messages specifically enabled by user (VERBOSE)
19 WARNING Warnings, unexpected behaviour
21 ERROR Error, abort transaction
22 FATAL Fatal error, abort process
23 PANIC Fatal error, abort all server processes

Figure 3.3: A selection of PostgreSQL log levels and their descriptions. Higher numbers
are more coarse-grained and important.

of coarser granularity than a specified threshold to disk. For example, a system configured
with log level INFO will emit a message at the high-importance FATAL level to disk, but
not a message at the fine-grained DEBUG level.

It is well-known that detailed logging results in considerable performance overheads
[122, 125]. Two issues lead to performance degradation when using fine-grained logging.
First, debug logging libraries often incur synchronization overheads in the presence of
multi-processing and multi-threading. With detailed logging enabled, this synchronization
overhead may be considerable. Second, messages emitted by the debug logging library are
traditionally persisted to disk for later analysis. Although log messages may be buffered
in memory and asynchronously written out to persistent storage as a batch, the costs of
writing out detailed logs remain substantial. Administrators minimize these overheads
by configuring database systems to use a high log level threshold in production and thus
reduce the volume of messages logged to disk.

Dendrite avoids these overheads by integrating directly with debug logging libraries to
track events and event transitions in memory (Figure 3.4). In particular, when a running
database system issues a log call, the debug logging library forwards the call to Dendrite’s

13

Figure 3.4: A logging call is handled by the logging library, which calls record_event.
record_event is implemented in Dendrite’s in-memory tracer and updates system be-
haviour models.

in-memory tracer by calling the tracer’s record_event function. Afterward, the logging
library handles the call as usual, emitting the message only if its level is higher than
the preconfigured emission threshold. Note that this procedure ensures Dendrite captures
all messages regardless of whether they are ultimately written to disk per the log level
threshold. As such, the database system may output coarse-grained logs for auditing
purposes as usual while obtaining Dendrite’s analysis over log messages of all granularities.

The in-memory tracer obtains the file name and line number of the position in source
code that issued the logging call. This information is readily available via programming
language primitives, like the __FILE__ and __LINE__ macros in C/C++. Dendrite uses this
information to uniquely identify each event. Note that log messages originating from the
same line in source code therefore map to the same event. This is by design; log messages
are often parameterized by variables but correspond to the same system event [67, 68].
Consequently, prior approaches that mined log files for behaviour and anomaly detection
typically rely on detailed system-specific preprocessing scripts to map log messages to
events [67,68,90]. By using file names and line numbers to identify events, Dendrite avoids
the overhead of such scripts while maintaining generalizability.

3.2 Event Tracking

After obtaining a logging library call’s originating file name and line number, Dendrite
uses this information to look up its corresponding event in an in-memory hash map called

14

Figure 3.5: Dendrite’s data structures used for tracking log messages, transitions, and
empirical CDFs.

the event table. For example, in Figure 3.5, the event corresponding to the log message
originating in file bufmgr.c on line 725 hashes to the second slot. Each event in the
event table is associated with a file name, line number, event counter and pointers to
event transition and transition-time information. Each time record_event() is called for
a particular event e, e’s hit count is incremented and its transition and timing information
is updated (described in Chapter 3.3). Importantly, each process and thread maintains
their own event table as a thread-local data structure. Therefore, there is no contention
when an event table is updated.

Periodically, or when the database system shuts down, each thread writes its event
table to a per-thread file on disk. Before analysis, a background aggregator thread sums
the counts for each event over all of these files to determine their overall frequency and
compute their proportion. Along with event transition and timing information, Dendrite
encodes these event proportions into a behaviour model for comparison against those of
other workloads and system configurations. Although Dendrite internally associates events
with only their file names and line numbers, the original log message can be obtained by
looking up and reading the message at that event’s location in source code. Moreover,
Dendrite enables users to “tag” events with custom names to further improve the clarity
of its reports. These tags are stored along with the models in a model storage database
(Figure 3.1).

Event Differences Report: Dendrite’s control server retrieves behaviour models from
the model storage database and reports differences in events in descending order of their

15

Figure 3.6: PostgreSQL page access transition graph for Scenario A (blue) and Scenario
B (orange).

proportional differences. Dendrite reports differences in event proportions rather than raw
event counts. Directly comparing event counts leads to high difference rankings in only the
most frequently occurring events, while differences in event proportions differentiate the
event distribution of overall system behaviour. Note that this comparison is fully system-
agnostic; neither Dendrite’s extraction nor ranking of event differences rely on any domain
knowledge or system-specific characteristics.

3.3 Event Flows

Although event proportion comparisons capture aggregate differences in behaviour, they
do not describe event relationships. For example, counts of individual page accesses, buffer
pool cache misses, and dirty page flushes alone do not express the control flow of operations
that comprise PostgreSQL’s buffer page access code. By encoding sequences of events into
its behaviour models, Dendrite automatically expresses the target application’s control flow.
Moreover, Dendrite combines its event transition models with detailed timing information
to present performance breakdowns for functionality that spans multiple events.

To demonstrate these benefits, consider the buffer page access portion of the behaviour
models Dendrite extracted for two scenarios, A and B (Figure 3.6). Scenario A uses

16

(a) PostgreSQL page access CDF. (b) PostgreSQL buffer pool cache miss CDF.

Figure 3.7: Buffer page access transition graph and latency CDFs for Scenario A (blue)
and Scenario B (orange).

PostgreSQL’s default buffer pool size of 128 MB, while Scenario B uses 8 GB. The structure
of the models for both scenarios is the same and reflects the execution path in code for
page accesses. When PostgreSQL needs to access page data (PageAccess), it first checks
to see if the page is loaded into the in-memory buffer pool. If so, it retrieves the data
directly from the page without further processing (termed a CacheHit event). Otherwise,
it determines a page that should be evicted from the fixed-size buffer pool according to a
replacement policy so that the requested page can take its place. If the page-to-be-replaced
(termed the victim) has been modified relative to its on-disk version, these modifications
must first be flushed to the disk (DirtyPageFlush). Afterward, the requested page’s data
is read into the buffer pool, replacing the victim page’s content (DiskRead). This whole
process of page replacement is termed a buffer pool cache miss. As cache misses present
significant processing overheads, maximizing the proportion of cache hits is desirable.

Consulting Dendrite’s behaviour model in Figure 3.6, we observe that although the
buffer pool cache hit rate is high for both scenarios, Scenario A’s hit rate is significantly
lower than Scenario B’s. In particular, there is a 70% probability of transitioning from
the PageAccess event to the CacheHit event in Scenario A, while there is 99% chance
in Scenario B. These differences in execution control flow patterns result in significant
differences in buffer access latency, which Dendrite captures.

Dendrite enriches its models by efficiently computing empirical cumulative distribution
functions (CDFs) of the time to transition between pairs of events. In contrast to the typical

17

approach of computing average latencies, CDFs describe the full range of performance
behaviour, including tail latencies, which are a key performance concern [75]. Furthermore,
individual CDFs may be combined with event transition probabilities to estimate CDFs
of the time spent in functionality that straddles multiple events and event transitions
(Chapter 3.3.3).

The combined CDF for buffer access latencies for the Scenarios is shown in Figure 3.7a.
The overall page access times for both scenarios are similar until the higher percentiles,
where the differences in cache misses manifest in higher latencies for Scenario A. The access
latencies for buffer pool cache hits are far lower than tail cache miss times (Figure 3.7b),
which emphasizes the importance of maximizing cache hits. However, note that cache miss
times are not uniformly high because many cache misses can be resolved by retrieving the
page from the operating system’s cache outside the confines of PostgreSQL’s buffer pool.
In the rare cases where this is not possible, access latencies increase considerably, as seen
in the tail of the cache miss CDF (Figure 3.7b). Given these CDFs, one can conclude
that the buffer pool is too small in Scenario A, even though the operating system’s cache
can mitigate the cost of cache misses. Thus, this example demonstrates the importance of
considering tail latencies and not merely averages; in the worst case, page access latencies
can increase by orders of magnitude.

To support this functionality, I next describe how Dendrite provides the following key
features:

1. Dendrite efficiently tracks transitions and the time to transition between pairs of
events without significantly degrading performance.

2. Dendrite estimates and combines CDFs for individual transitions to compute the
elapsed time for system functionality that straddles multiple events.

3. Dendrite effectively ranks differences in transition probability and CDFs of transition
time, outputting them in a behaviour differences report.

3.3.1 Efficiently Tracking Event Transitions

During database system execution, Dendrite stores transition count information in event
tables. In addition to the event frequency tracking described in Chapter 3.2, record_event
also looks up the last executed event for the current thread, and increments the transition
count from that event to the current event.

18

Each event in the event table is associated with a dynamically allocated list of counters.
These lists contain one counter for each of the event’s transitions (Figure 3.5). For example,
bufmgr.c:725 in Figure 3.5 transitions to the bufmgr.c:963 twice out of the total of 10
times the event has been executed. As most events transition to only a handful of others,
using a dynamically allocated list of counters reduces memory consumption considerably
(Chapter 3.5.4).

These per-thread transition counters are written to disk alongside the event counts.
Dendrite’s background aggregation thread uses these transition counters to compute the
probability of transition from e1 to e2 by dividing the e1 → e2 transition counter by the
number of times it has observed e1. For example, bufmgr.c:725 has a 20% probability
of transitioning to bufmgr.c:963 using the values in Figure 3.5. As event transitions are
stored in thread-local data structures, and the total transition counts are computed by
the background aggregator thread using the outputted files, Dendrite avoids introducing
contention among threads.

As noted earlier, since these behaviour models are backed by event and pairwise event
transition counts, they are essentially Markov chains. Hence, Dendrite benefits from the
rich literature on Markov chain analysis (e.g. random walks) but also inherits the mem-
oryless assumption (it does not account for multiple prior events influencing a transition
probability). Even these simple Markov chain models enable rich analysis and difference
detection, as evidenced by the experiments in Chapter 3.5. The subsequent chapter extends
Dendrite’s behaviour models to address these limitations.

Transition Differences Report: Dendrite’s control server compares event transition
probabilities in behaviour models similarly to how it compares event probabilities. Con-
cretely, Dendrite ranks differences in transition probability according to the ratio difference
between them:

max

(
P (e2|e1)
P ′(e2|e1)

,
P ′(e2|e1)
P (e2|e1)

)

where P (e2|e1) and P ′(e2|e1) represent the probability to transition to an event e2 from
event e1 in the first and second behaviour models, respectively.

3.3.2 Estimating Transition Time CDFs

While transition probabilities provide insight into the likelihood of moving from an event
e1 to event e2, it is important to know how long this transition takes. For example, a

19

LockAcquire event is highly likely to transition to a LockAcquired event, but the time it
takes to perform this transition corresponds to lock contention.

Dendrite supports this analysis by computing an empirical CDF of transition time
for each event transition. When the in-memory tracer handles a record_event() call, it
uses the clock_gettime system call to retrieve a nanosecond-precision timestamp from the
operating system. It compares this timestamp to the timestamp obtained for the last event
to determine the transition time between events. Transition times are stored in a fixed-size
array of recorded times for this transition, called a reservoir, and used to compute the
CDF.

Dendrite reduces sampling overheads by using adaptable damped reservoir sampling
[6] to manage the transition time data that powers its CDFs. Rather than obtaining a
timestamp for every event transition, Dendrite samples a subset of the event transition
times. For each record_event() call, Dendrite samples the transition time for the current
event e1 to next event e2 with probability max (N

k
, 1), where N is the number of samples

that can be stored in the reservoir (reservoir size) and k is the number of times Dendrite
has observed e1 so far. Thus, as Dendrite observes more instances of e1, k increases, which
reduces the likelihood of sampling e1 in the future. If there are already N elements in
the reservoir, then one of these elements in the reservoir (chosen randomly) is replaced.
Dendrite avoids excessive sampling overheads by reducing the sampling probability once it
has obtained enough samples. Replacing an element at random enables Dendrite to keep
older transition times around rather than just the most recent samples if it employed a least
recently used policy instead. The reservoirs for each thread corresponding to the e1 → e2
transition are written to disk alongside their respective transition counters and combined
to produce CDFs of transition times. This strategy gives a fuller picture of transition times.

To produce an empirical CDF for a given reservoir, Dendrite uses the numpy analysis
library’s linear approximation technique [64]. The reservoirs’ size (i.e., the number of stored
samples) determines the accuracy of the estimated CDFs and the memory used for tracking.
As the reservoir size increases, the CDF’s accuracy increases, as does memory consumption.
Therefore, the reservoir size is chosen by accounting for theoretical guarantees on CDF
accuracy and considering the associated memory usage trade-off.

Theoretical Guarantees

Assume (as in previous work [91]) that the distribution of latencies for each event transition
follows an exponential distribution exp(λ) for some λ > 0.1

1This assumption is validated through empirical accuracy results in Chapter 3.5.7.

20

Let X1, . . . ,Xn be n independent and identically distributed samples from exp(λ). The
mean of the exp(λ) distribution is µ = 1/λ.

Lemma 1. Fix ε > 0, and let n = 4
ε2

. Then, with probability at least 3/4 it holds that

(1− ε)µ ≤ µ̂ ≤ (1 + ε)µ.

Proof. Each sample Xi has expectation value E[Xi] = µ and variance Var[Xi] = µ2 since
it is drawn from exp(λ).

Let X̄ def
= 1

n

∑n
i=1Xi. Then:

E[X̄] = E[
1

n

n∑
i=1

Xi]

=
1

n
E[

n∑
i=1

Xi]

=
1

n
nµ

= µ

And:

Var[X̄] = Var[
1

n

n∑
i=1

Xi]

=
1

n2
Var[

n∑
i=1

Xi]

=
1

n2
nµ2

=
µ2

n

Chebyshev’s inequality [113] states that for a random variable X with mean µ and
non-zero variance σ2:

Pr [|X − µ| ≥ kσ] ≤ 1

k2

Since we desire (1 − ε)µ ≤ µ̂ ≤ (1 + ε)µ, we want |µ̂ − µ| ≤ εµ. So, setting kσ = εµ,
we find:

21

kσ = εµ

k =
εµ

σ

k =
εµ√
σ2

k =
εµ√
µ2

n

k =
εµ
µ√
n

k =
√
nε

k =

√
4

ε2
ε

k = 2

So, by Chebyshev’s inequality:

Pr
[
|X̄ − µ| ≥ µε

]
≤ 1

4

which concludes the proof.

Next, bounds are placed on the maximum error ε for the learned approximation of
exp(λ).

The total variation distance between two probability distributions p and q that share
the same sample space Ω is defined as:

distTV (p, q)
def
= sup

x∈Ω
|p(x)− q(x)|

where sup is the supremum (or least upper bound).

Lemma 2. To learn the distribution exp(λ) up to error ε in total variation distance, it
suffices to approximate µ within a multiplicative factor of (1 + 2ε).

22

Proof. As our estimate µ̂ is within a multiplicative factor of (1 + 2ε) of the true µ value:

µ/(1 + 2ε) ≤ µ̂ ≤ (1 + 2ε)µ

λ/(1 + 2ε) ≤ λ̂ ≤ (1 + 2ε)λ

The Kullback-Leibler divergence [73] for two probability distributions P and Q with
density functions p(x) and q(x) is defined as:

distKL(P,Q) =

∫ ∞

−∞
p(x)log(

p(x)

q(x)
)dx

Recall that:
exp(x;λ) = λ exp−λx

So:

distKL(exp(x, λ), exp(x, λ̂)) =

∫ ∞

−∞
λ exp−λx log(

λ exp−λx

λ̂ exp−λ̂x
)dx

=

∫ ∞

−∞
λ exp−λx log(

λ

λ̂
· exp−λx · 1

exp−λ̂x
)dx

=

∫ ∞

−∞
λ exp−λx (log(λ

λ̂
) + log(exp−λx)− log(exp−λ̂x)

)
dx

=

∫ ∞

−∞
λ exp−λx (log(λ

λ̂
) + (λ̂x− λx)

)
dx

= log(
λ

λ̂
)

∫ ∞

−∞
λ exp−λx dx+ (λ̂− λ)

∫ ∞

−∞
λ exp−λx x dx

Note that
∫∞
−∞ λ exp−λx dx = 1, since it is a probability distribution. Moreover,∫ ∞

−∞
λ exp−λx xdx = E[exp(λ)] =

1

λ

So:

= log(
λ

λ̂
) +

λ̂− λ

λ

23

= log(λ)− log(λ̂) +
λ̂

λ
− 1

= −1(log(λ̂)− log(λ)) +
λ̂

λ
− 1

= −log(λ̂
λ
) +

λ̂

λ
− 1

Let k = λ̂
λ
− 1. Then:

= k − log(k + 1)

Conducting a Taylor Series expansion of log(k + 1), we find that:

log(k + 1) ≈
∞∑
n=0

f (n)

n!
kn = 0 + k − k2

2
+ . . .

So:
≤ k − (k +

k2

2
)

≤ k2

2

Expanding out:

≤
(λ̂
λ
− 1)2

2

Since λ̂
λ
≤ (1 + 2ε), we have:

≤ (1 + 2ε− 1)2

2

≤ (2ε)2

2

≤ 2ε2

24

Figure 3.8: (1− ε)µ ≤ µ̂ ≤ (1 + ε)µ with probability 3/4, per Lemma 1. If more than half
of our estimates µ̂ are within ε of µ, then the median µ̂ is within ε of µ.

Pinsker’s inequality [116] states that:

distTV (exp(λ), exp(λ
′)) ≤

√
1

2
· distKL(exp(λ)|| exp(λ′))

So:

distTV (exp(λ), exp(λ
′)) ≤

√
1

2
· 2ϵ2 ≤ ε.

concluding the proof.

Combining the above lemmas reveals that with repeated experiments, at most ε error
with 1− δ probability for any δ > 0 can be guaranteed.

Theorem 1. Let ϵ, δ > 0. There exists an algorithm that draws 4/ε2 log(1
δ
) samples from

an unknown exponential distribution exp(λ) such that, with probability at least 1 − δ, it
outputs a probability distribution p̂ where distTV (p̂, exp(λ)) ≤ ε.

Proof. Lemma 1 says that (1 − ε)µ ≤ µ̂ ≤ (1 + ε)µ with probability 3/4 when using 4
ε2

samples. Hence, there is a small probability that the estimate µ̂ will be outside of the
acceptable range.

Suppose the estimation procedure for µ is repeated k times. If more than k/2 of the
estimates µ̂ fall within ε of the true µ value, then the median necessarily falls within ε as
well. This argument is presented visually in Figure 3.8. The worst case is that all of the
unacceptable estimates for µ fall on one side of the acceptable range. Assume without loss
of generality that they are below (1− ε)µ — here, five of the 11 total estimates. However,
since more than half (six) of the estimates are in the acceptable range, the median is also
within the acceptable range.

25

Let X1, X2, . . . , Xk be independent random variables where Xi = 1 if the ith estimate
µ̂ is within ε of µ and 0 otherwise. Then if

∑k
i=1Xi > 0.5k, the median µ̂ value is within

ε of µ.

Hoeffding’s inequality [63] states that:

Pr[|
k∑
i=1

Xi − ψ| ≥ t] ≤ 2 exp
−2t2∑k

i=1
(bi−ai)

2

where ψ = E[
∑k

i=1Xi] and ai and bi are the lower and upper bounds of each Xi variable.
Since the range is [0,1], we have:

Pr[|
∑
i=1

Xi − ψ| ≥ t] ≤ 2 exp
−2t2

k

We want:

Pr[
k∑
i=1

Xi ≥ 0.5k] ≥ δ

Simplifying the left:

Pr[
k∑
i=1

Xi ≥ 0.5k] = Pr[
k∑
i=1

Xi − 0.75k ≥ −0.25k]

≤ Pr[|
k∑
i=1

Xi − 0.75k| ≥ 0.25k]

Choose ψ = E[
∑k

i=1Xi] = 0.75k, so k = ψ/0.75. Thus:

= Pr[|
k∑
i=1

Xi − ψ| ≥ 0.25ψ

0.75
]

Applying Hoeffding’s inequality with t = ψ
3

gives us:

Pr[|
∑
i=1

Xi − ψ| ≥ ψ

3
] ≤ 2 exp

−2(0.75)k2

9k

26

≤ c exp−k

for c ∈ R.

Finding k:

δ ≤ c exp−k

⇒ 1

δ
≤ c′ expk

⇒ O(log(
1

δ
)) ≤ k

Thus, repeating the estimation procedure O(log(1
δ
)) times for µ yields a µ̂ value within

ε of the true µ value with probability 1 − δ. Since (1 − ε)µ ≤ µ̂ ≤ (1 + ε)µ is a tighter
bound than µ/(1 + 2ε) ≤ µ̂ ≤ (1 + 2ε)µ when 0 < ε ≤ 1

2
and µ > 0, applying Lemma 2

constrains the total variation distance as required.

Concretely, these theoretical results show that Dendrite’s estimated probability distri-
butions approximate the true distribution within a total variation distance of ε = 0.1 with
more than 90% probability, given its default reservoir size of 1000. Using this reservoir size
for each unique event transition in PostgreSQL in the experiments consumes only 1.5 MB
per thread.2 Therefore, Dendrite uses this reservoir size for all experiments. Chapter 3.5.7
shows the effects of reservoir size on empirical CDF accuracy.

3.3.3 Combining Transition Time CDFs

Dendrite’s empirical CDFs provide granular timing information about a single transition.
Database system functionality often spans multiple event transitions. For example, Post-
greSQL’s buffer page accesses span buffer pool cache hits, cache misses, dirty page flushes
and disk reads (Figure 3.6). To obtain a complete picture of time spent in buffer ac-
cesses, one must account for the likelihood of transitioning between all of these events and
their corresponding transition time CDFs. Dendrite supports developers by enabling them

2PostgreSQL 9.6 emits 90 unique events and 150 unique transitions.

27

Figure 3.9: Combining empirical CDFs using random walks for Scenario A (blue) and
Scenario B (orange) using a renormalized subset of the page access transition graph.
Crossed-out paths indicate those pruned from consideration. Double purple lines indicate
the random walk example in the text. Fe1,e2(x) are CDFs for percentile x of transition
times from event e1 to event e2.

to combine transition CDFs and thus explore the performance characteristics of complex
system functionality (Algorithm 1). This functionality is particularly desirable when in-
vestigating further after receiving Dendrite’s behaviour difference report. For example,
suppose Dendrite has reported an increase in the time to transition from the DiskRead
event to the CacheMiss event (corresponding to the time to read a page from disk); a
developer can then use this feature to determine the effect on overall page access time, a
particular code path of interest, or query performance more broadly. Dendrite uses random
walks to recreate the flow of program execution, sampling from the empirical CDFs and
adding the sampled times together to form a sample for the overall CDF. These samples
are then used to derive the overall empirical CDF.

28

Algorithm 1 combine_cdf((V,E), S, T, τ , n)
Input: (V,E) are vertices/edges in a model’s transition graph, S is the start event vertex,

T is a set of terminal events, τ is the probability cut-off threshold, n is the number of
random walks

Output: Unified transition time CDF from event S to an event in T.
1: E’ = bounded_dfs(S, T, (V,E), 1, τ)
2: E’ = renormalize_probs((V,E’))
3: t = ∅
4: for i = 0; i < n; i++ do
5: t = t ∪ random_walk(S, T, (V,E’))
6: end for
7: return convert_to_cdf(t)

To demonstrate how Dendrite combines CDFs, consider the example in Figure 3.9,
where it computes the total page access latency CDF for a buffer pool cache miss. The
initial node for the random walk is the start of a buffer page access (PageAccess), and the
terminal node is a buffer pool cache miss completion event (CacheMiss). In the first phase,
Dendrite conducts a bounded depth-first search from the start node to the end nodes to find
paths that lead to the end node (Algorithm 1, line 1). As Dendrite conducts the depth-first
search (Algorithm 2), it computes the probability of arriving at each node from the start
node using the tracked transition and event frequency counts. If the probability reaches a
lower-bound threshold (line 4), then Dendrite prunes the path from consideration. Paths
that lead to the terminal nodes are recorded as acceptable choices during random walks and
have their probabilities renormalized to account for the probabilities removed from pruned
edges (Algorithm 1, line 2). That is, if a node has i unpruned paths with probabilities
p1, p2, . . . , pi, then pi = pi∑

j pj
. After pruning the divergent paths from the transition graph

for the buffer pool miss event, Dendrite constructs the renormalized transition graph shown
in Figure 3.9.

In the second phase, Dendrite conducts random walks from the start node to terminal
nodes (Algorithm 1, line 5). The next transition is chosen at each step using the renor-
malized transition probability. For example, from the PageAccess start node in Figure
3.9, Dendrite takes the transition to the DiskRead node in both scenarios with nearly
100% probability. Dendrite computes the probability of taking the path at each step and
terminates the walk when it reaches the minimum probability threshold or a terminal node.

29

Algorithm 2 bounded_dfs(N, T, (V,E), p, τ)
Input: N is the current event, T is a set of terminal events, (V,E) are vertices/edges in

the model’s transition graph, p is the probability of getting to N from the start node,
τ is the probability cut-off threshold

Output: The set of edges that can lead from N to T with probability ≥ τ
1: E’ = ∅
2: for (N, v2, p2) ∈ E do
3: pn = p * p2
4: if pn >= τ then
5: if v2 ∈ T then
6: E’ = E’ ∪ (N, v2, p2)
7: else
8: next_edges = bounded_dfs(v2, T, (V,E), pn, τ)
9: if next_edges != ∅ then

10: E’ = E’ ∪ (N, v2, p2) ∪ next_edges
11: end if
12: end if
13: end if
14: end for
15: return E’

Assume without loss of generality that Dendrite has taken the transition to the DiskRead
event and then to the CacheMiss completion event for one of the random walks. Then at
each step, Dendrite samples the CDF of each transition taken and adds the sampled value
to a running total. Thus, Dendrite will sample the Fa,r(x) distribution and the Fr,m(x)
distribution (Figure 3.9) and add those results to obtain the cumulative transition time for
the random walk.

Dendrite conducts multiple random walks, using each of the returned cumulative times
to estimate the overall CDF of transition times from the start to terminal events. The
number of random walks and the accuracy of the underlying CDFs determine the combined
CDF’s accuracy. It follows from Theorem 1 that a constructed CDF with maximum path
length from a source node l has a total variation of at most ε from the true CDF, given
that each CDF along the path has a total variation of at most ε

l
.

30

Algorithm 3 random_walk(N, T, (V,E), t)
Input: N is the current event, T is a set of terminal events, (V,E’) are vertices/edges in

the transition graph that lead to terminal events (Algorithm 2), t is the current total
transition time.

Output: A sample of the time to transition from the start event to an event in T
1: r = random_float(0, 1)
2: for (N, v2, p)∈ E’ do
3: r = r - p
4: if r < 0 then
5: tn = sample_cdf(N, v2)
6: t = t + tn
7: if v2 ∈ T then
8: return t
9: else

10: return random_walk(v2, T, (V,E’), t)
11: end if
12: end if
13: end for

3.3.4 CDF Differences Report

Measuring how event transition latencies have changed between workloads and system
configurations is often desirable. For example, a developer may wish to see how the lock
wait time CDF has changed between a workload with low contention and a workload
with high contention. Dendrite provides this functionality by reporting the largest CDF
transition time differences.

Dendrite quantifies the differences in CDFs p and q using the earth-mover’s distance
between them [96]. This distance metric provides an intuitive measure of the differences
between CDFs as it quantifies the effort to “push probability mass” in p to make it “look
like” q. That is:

EMD(p, q) =

∑100
i=1

∑100
j=1 fi,jdi,j∑100

i=1

∑100
j=1 fi,j

(3.1)

where F = [fi,j] defines the optimal flow of probability mass from percentile i in p to
percentile j in q (computed by solving the min-cost-flow problem [96]), and D = [di,j] =

31

|i−j| defines the distance (and cost) of moving one unit of probability mass from percentile
i in p to percentile j in q.

For each event transition present in both of the models Dendrite is comparing, Dendrite
computes the earth-mover’s distance between the transition’s CDFs to obtain scores and
ranks CDF differences in decreasing order. Thus, the transitions that differ the most
will be presented first. As with differences in event proportion and transition probability,
differences in transition time CDFs are computed and ranked in a fully domain-agnostic
way.

3.4 Difference Detection

The in-memory tracer and control server (Figure 3.1) work together to enable Dendrite’s
behaviour difference detection.

The in-memory tracer extracts per-process, per-thread behaviour models using the
event and transition tracing approaches described in Chapters 3.2 and 3.3. Periodically,
and when the database system being traced shuts down, these behaviour models are written
into separate files.

Asynchronously, Dendrite’s background aggregation thread sweeps through these model
files and combines them into an overall model of system behaviour. To do so, it sums the
counts for every event and event transition across all of the model files, subsampling values
in the CDF reservoirs according to the frequency contributed by each model. For example,
if model m1 has observed event transition e1 → e2 40 times and m2 has observed it 20
times with a fixed-size reservoir of 10 samples, then the combined reservoir for e1 → e2 will
have 7 samples from m1 and 3 from m2 because m1 comprises 2

3
of the total samples. Since

this model merging process is performed in the background using simple counter additions
and lightweight subsampling, it is efficient. The combined model of system behaviour is
then loaded into a model database for later analysis.

Dendrite’s control server provides a comprehensive suite of tools for developers and
administrators to compare models and explore system behaviour differences. Given two
behaviour models that correspond to an expected baseline and a situation of interest, the
control server compares them using the difference and ranking procedures described in
Chapters 3.2 and 3.3. It outputs a three-part report containing the previously mentioned
event differences report, transition differences report, and CDF differences report. Each
subreport is sorted by the largest contributing differences. These subreports are available
in text or through the control server’s intuitive user interface.

32

Figure 3.10: Dendrite’s difference detection interface.

Beyond these tools’ investigative value, the core techniques that power them are ex-
tended in the following chapter into an online difference detection and adaption deployment
framework.

3.4.1 Difference Monitoring User Interface

The control server’s user interface is implemented as a web application that operates over
the model database. The interface consists of four logical components (Figure 3.10): the
top reported event differences (upper left); the largest CDF differences (upper right); the
event transition graph that shows which events transition to the current event of interest,
and which events are likely to follow (bottom left); and an event transition comparison for
the current event between the two models that presents execution flow differences (bottom
right).

Each of these components employs brushing and linking [71]; an interaction with one
component affects what is shown in the other, thereby helping users to explore behaviour
differences effectively. For example, when the user selects an event in the top event dif-
ferences component, the transition graph will pan and zoom to the event of interest and
the transition comparison panes will adjust to display the event and its neighbours in the

33

Figure 3.11: The experiment architecture used to evaluate Dendrite’s difference detection.

transition graph. This feature lets users quickly find the most significant ranked differences
and contextualize them within the transition graph. Users may pan and zoom within the
transition graph and then examine other panes in the UI that directly contrast the se-
lected event and its associated transitions between the behaviour models. Furthermore,
Dendrite’s UI renders nodes in transition graphs using the CoSE layout, which places
them near other nodes to which they are connected via a physics simulation [36]. This
rendering results in clusters of nodes corresponding to different behaviour aspects (e.g.,
checkpointing, vacuuming, or buffer/query management). These aspects are illustrated
through representative examples in a demonstration video highlighting Dendrite’s differ-
ence detection capabilities [50].

3.5 Experimental Evaluation

The behaviour modelling and difference detection techniques presented in this chapter are
fundamental building blocks for the extensions and adaption framework presented in the
next chapter. Therefore, I now present a robust empirical evaluation of Dendrite’s mod-
elling and detection capabilities that demonstrates their utility, efficiency, and applicability.

34

3.5.1 Experiment Setup

To demonstrate Dendrite’s cross-system effectiveness, I integrated it with a typical 3-
tiered system consisting of a database system (PostgreSQL or SQLite), TPC-W benchmark
clients, and Apache Tomcat (web server) (Figure 3.11). These components work together
to execute the popular TPC-W benchmark [115].

TPC-W is a transactional web benchmark simulating a book store e-commerce envi-
ronment. Clients submit HTTP requests to a web server, which issues requests in turn to a
database system that stores persistent application state. The information in the database
is used to generate web page responses to client requests.

I used the popular University of Minho implementation of TPC-W [97]. This imple-
mentation deploys Apache Tomcat, a Java servlet container, as the web server. The book
store application is implemented as a Java servlet that Tomcat executes. Hence, the TPC-
W clients issue requests to Tomcat, which forwards the requests to the book store servlet.
The book store servlet interacts with the database system as necessary to implement the
search, browsing, and product order features necessary for the benchmark.

I integrated Dendrite with each of the benchmark’s system components: the benchmark
clients, Apache Tomcat, the book store servlet, and the database system (PostgreSQL or
SQLite). These components vary in implementation language (Java vs. C++), function-
ality (client vs. server), and complexity (application vs. database). Hence, the following
experiment results demonstrate Dendrite’s cross-system difference detection effectiveness
and low-effort integration.

The benchmark machines are configured with 32 GB of main memory, 12 CPU cores
with hyperthreading enabled, and an 800 GB HDD. The experiments use 10 concurrent
clients with no waiting (i.e., think time) between transactions.

3.5.2 Evaluation Methodology

I contrasted Dendrite with state-of-the-art approaches for system behaviour analysis in
terms of precision, performance overheads, analysis time, and ease of integration.

Distalyzer [90] is a log analysis tool that describes differences in log files that corre-
spond to normal and abnormal system executions. Distalyzer describes statistically sig-
nificant differences in log message counts, timestamps at which messages are emitted and
logged variable values. Unlike Dendrite, Distalyzer requires that logs be written to disk

35

and preprocessed offline using system-specific scripts before analysis. I used domain knowl-
edge of the systems integrated with Distalyzer to develop scripts that extract important
variables and latencies from the log files, which Dendrite does not require.

DBSherlock [125] is a state-of-the-art database monitoring and anomaly detection
tool. It extracts metrics from system-specific sources (e.g., PostgreSQL statistics collector),
the operating system, and debug log files. It generates predicates over these metrics (e.g.,
dbCurLockWaits > 5) that predominantly hold for the period of anomalous performance
but not under normal performance. I ported DBSherlock to other database systems by
mapping the MySQL metrics it relies on to corresponding statistics in the other databases
(where available). As DBSherlock is designed for database systems, I consider only its
ability to locate behaviour differences in PostgreSQL and SQLite.

By default, these experiments use PostgreSQL 9.6 as the database system. However,
I also showcase Dendrite’s difference detection generality within the database systems
domain by highlighting behaviour differences in SQLite 3.31.1 behaviour in Chapter 3.5.3.

3.5.3 Behaviour Difference Validation

To assess each analysis tool’s ability to surface relevant and useful behaviour insights, I
studied controlled scenarios in which a single system characteristic is adjusted (e.g., lock
contention, query execution time, transaction mix) and determined whether each tool
reports the expected behaviour change corresponding to this difference. Table 3.1 shows
the nine scenarios I studied, along with the variations I used to test precision.

In each scenario, Dendrite, Distalyzer, and DBSherlock compare the behaviour of the
integrated system on the baseline TPC-W workload to the same workload but with the
relevant change induced (test workload). To ensure an apples-to-apples comparison, I
provided Distalyzer with the same level of logging information as Dendrite by configuring
the database system, benchmark clients, and Apache Tomcat to write all log messages to
disk, which comes at the cost of significant performance degradation (Chapter 3.5.4). As
Distalyzer uses populations of log files to derive its insights, each of its tests relies on log
files obtained under three executions of the test configuration. Distalyzer, therefore, uses
three times as much information as the other approaches and takes three times as long to
gather it. I used Distalyzer’s absolute total difference to rank its reported differences, as
in [90].

For DBSherlock, I monitored metrics every second (per [125]) for the baseline configu-
ration and compared it to metrics recorded for the test configuration. I labelled the metrics
recorded during the test configuration as anomalous and the metrics during the baseline

36

Table 3.1: Scenarios used to evaluate Dendrite, Distalyzer and DBSherlock’s ability to
pinpoint behaviour differences.

Test Case Description Variations
Lock Contention Increase lock hold time PostgreSQL/SQLite: 10,

25, 50, 75, 100 ms
Buffer Pool Size Decrease buffer pool size PostgreSQL: 250MB,

500MB, 1GB, 2GB, 4GB
SQLite:

50KB,100KB,1MB,100MB,
1GB

Aggressive Vacuuming Increase frequency of
vacuuming

PostgreSQL: 50, 40, 30,
20, 10 s

SQLite: 5, 10, 20, 40, 80
txns

Aggressive Checkpointing Increase frequency of
checkpointing

PostgreSQL: 90, 75, 60,
45, 30 s

SQLite: 500, 2.5k, 5k,
10k, 20k WAL frames

Long Running Query Decrease BestSeller
transaction selectivity

5x, 10x, 15x, 20x, 25x more
tuples accessed

Txn Mix Change Change likelihood of
executing BestSellers after

Homepage transaction

-10%, -20%, +10%, +20%,
+30% less/more likely

Txn Mix Change (Cause) As above, but find
transition probability

difference

-10%, -20%, +10%, +20%,
+30% less/more likely

Txn Mix Change (Tomcat) As above, but using only
web server logging

-10%, -20%, +10%, +20%,
+30% less/more likely

HTTP Flood Rapidly issue GET requests
on new HTTP connections

0, 0.001, 0.01, 0.1, 1 s think
time between requests

configuration as normal. Hence, DBSherlock outputs predicates over these metrics that
hold for the test configuration but not for the baseline configuration. I rank these pred-
icates according to DBSherlock’s normalized difference threshold metric, which describes
how different the underlying metric’s values are in the baseline and test configurations.

While each analysis tool has a different output format, they all output a ranked list

37

Figure 3.12: Precision graphs for Dendrite, Distalyzer, and DBSherlock’s ability to pinpoint
differences in (a) PostgreSQL, (b) TPC-W benchmark client, and (c) Apache Tomcat
execution behaviour.

of system behaviour differences. I compared the top 3 ranked differences in an outputted
category and determined if the information surfaced with them was indicative of the be-
haviour change. For example, in the lock contention scenario, I looked for a DBSherlock
predicate or Dendrite/Distalyzer event that indicated more locking or increased lock time
within the ranked list, considering such a test successful. I repeated each test three times
and considered five variations of each test case. Precision results for each tool are computed
by dividing the number of correct test cases in each scenario over the number of test cases
(Figure 3.12). Next, I discuss each result in turn.

38

PostgreSQL Behaviour

I integrated Dendrite and Distalyzer with PostgreSQL 9.6 and enhanced its logging by con-
figuring relevant built-in DTrace hooks to emit logging information. I induced changes in
PostgreSQL’s execution behaviour and evaluated Dendrite, Distalyzer, and DBSherlock’s
ability to detect these differences (Figure 3.12a). Unless otherwise stated, these exper-
iments use the default PostgreSQL configuration with appropriate values for the buffer
pool and operating system cache (8 GB and 16 GB, respectively) and a 50 GB TPC-W
database.

Lock Contention: I introduced additional lock contention in the TPC-W BuyConfirm
transaction by holding exclusive locks for longer. Dendrite reports differences in lock wait
event proportion in all of the test cases, demonstrating its ability to surface relevant
behaviour insights. Distalyzer identifies lock contention in most cases but is susceptible
to reporting spurious differences in irrelevant events that occur at different times in the
baseline and test configuration (e.g., checkpointing, autovacuum). DBSherlock does not
accurately detect lock contention in PostgreSQL because PostgreSQL 9.6 does not keep
a running tally of lock conflicts. I approximated this statistic by polling the number of
queries that are blocked on locks, but this approximation does not capture all lock conflicts.

Aggressive Checkpointing: I decreased the checkpoint interval from PostgreSQL’s
default (5 minutes) and compared system behaviour to the default configuration. Both
Dendrite and Distalyzer correctly identify differences in checkpoint events in all test cases.
Distalyzer performs comparably with Dendrite because checkpoint occurrence rates have
changed significantly, and Distalyzer ranks changes in occurrence time highly. DBSher-
lock does not extract checkpoint counts by default and therefore does not capture these
differences. I accommodated an increase in page flush metrics for DBSherlock, but these
predicates are also infrequently reported compared to predicates over values of unrelated
metrics that have changed.

Aggressive Vacuuming: In this scenario, I compared PostgreSQL’s behaviour when
using its default autovacuum interval (1 minute) and with decreased autovacuum intervals.
Both Dendrite and Distalyzer effectively pinpoint differences in autovacuum events, though
Dendrite’s precision remains higher. Again, Distalyzer’s susceptibility to event occurrence
timings affects its precision, an issue from which Dendrite does not suffer. By contrast,
DBSherlock does not report these differences as it does not capture metrics related to
vacuum behaviour.

Improperly-Sized Buffer Pool: I decreased PostgreSQL’s allocated buffer pool size
to induce additional buffer pool cache misses. Dendrite accurately detects differences in

39

buffer cache misses for all configurations where the buffer pool size is less than 4 GB. When
comparing system behaviour with a 4 GB buffer pool to an 8 GB buffer pool, the change
in buffer misses is not significant enough to be outputted. Similarly, Distalyzer accurately
reports cache miss effects for small buffer pool sizes but is less accurate than Dendrite.
DBSherlock pinpoints differences in buffer pool size as its top reported difference in each
experiment because it extracts buffer pool size as a metric. As this metric is constant for
the baseline configuration and constant for the test configuration, but these constant values
differ, the predicate dbTotalPagesMB < X for a configured buffer pool size X perfectly
partitions the data observed in the baseline configuration from that of the X configuration
and is thus highly ranked.

These results show that Dendrite is highly accurate at pinpointing relevant behaviour
changes compared to the other approaches. Unlike Dendrite, Distalyzer’s ranking scores
hinder its precision because they are heavily affected by when events occur. DBSherlock’s
accuracy suffers because its ranking prioritizes predicates over metrics that hold for the
test configuration but not for the baseline, which can happen spuriously. For example,
if the operating system had a different number of files open during the test period than
what was observed in the baseline, a predicate describing this unimportant difference was
ranked highly. Dendrite avoids this pitfall as it pinpoints the most significant differences
in behaviour between the configurations and not predicates that separate values of metrics
in one configuration from another.

Client Application Behaviour

I now consider changes in application behaviour and evaluate Dendrite and Distalyzer’s
ability to highlight these differences (Figure 3.12b). I did not evaluate DBSherlock on
benchmark client or web server behaviour due to its specialization for databases and re-
liance on a priori knowledge of which system metrics to extract. By contrast, both Dendrite
and Distalyzer use information that is available through debug logging.

Long Running Query: I varied the selectivity of the TPC-W BestSeller transaction
to increase the transaction’s execution time. In all cases, both Dendrite and Distalyzer
correctly highlight the BestSeller transaction as exhibiting a large latency change. Den-
drite naturally captures this difference as part of its transition time CDF rankings. By
contrast, Distalyzer detects this transaction’s latency differences because I extracted each
transaction’s latency from TPC-W client execution logs as part of the client log preprocess-
ing script I developed for Distalyzer. This result highlights the need for domain knowledge
when configuring Distalyzer for each system.

40

Transaction Mix Change: I modified the probability of executing the BestSeller
transaction after the Home page transaction. Decreasing this probability results in an
increased rate of executing NewProducts transactions, while increasing it results in more
BestSeller transactions. Dendrite correctly detects these transaction mix changes in appli-
cation behaviour in all cases, which is captured by differences in client event logging about
which web pages they will access. Distalyzer correctly detects them in only 60% of cases.
In cases where Distalyzer is incorrect, it is due to the importance it places on event timing
differences and because it also highly ranks event differences correlated with the changes
in the transaction mix, but not the change in transaction mix directly.

Transaction Mix Change (Cause): For the previous scenario, I also assessed
whether each system could find the root cause — i.e., the change in transition proba-
bility from the home page. Only Dendrite can detect changes in transition probabilities
between log events, enabling it to capture the change in access patterns. For the larger
transition probability modifications, it is highly accurate. When Dendrite is incorrect, it
highlights transition differences from rarely occurring events; as their transition counts are
low, they are more susceptible to variation.

Web Server Behaviour

To demonstrate Dendrite’s generalizability to a wide range of systems, I also integrated
Dendrite and Distalyzer with Apache Tomcat version 9.0.3, a popular open source Java
servlet container and web server. As in the other environments, I developed a custom
preprocessing script to enable Distalyzer to extract events and timing information from
Tomcat’s log files, which Dendrite does not require. Precision results are shown in Figure
3.12c.

Transaction Mix Change (Tomcat): For the transaction mix change experiment
above, I further evaluated whether we could determine this change in access patterns using
only models of the web server’s behaviour. Dendrite is highly accurate at pinpointing the
behaviour change, which is emitted from per-transaction servlet logging. In particular, it
notes that clients’ web page access patterns differ significantly when the change is induced.
Distalyzer’s precision again suffers due to its susceptibility to event timing differences. As
Tomcat emits 2.5× more event types than PostgreSQL, this result demonstrates Dendrite’s
generalizability across systems and its resilience to system complexity.

HTTP Flood: I simulated an HTTP flood attack [114] by rapidly issuing HTTP
GET requests to Tomcat while running the TPC-W browsing mix. I tested the analysis
tools’ sensitivity to reporting these events by inserting varying think times between each

41

GET request. Dendrite captures this behaviour by highlighting differences in request type
proportion in every variation of this test (repeated accesses to the same page), while
Distalyzer captures these differences in only 60% of cases. In cases where Distalyzer does
not pinpoint the correct behaviour difference, it highlights differences correlated with the
attack (e.g., session management) or changes in event timing. These results show that
Dendrite’s techniques also apply to security-focused behaviour exploration on data systems.

SQLite Behaviour

To further demonstrate Dendrite’s generality, I integrated it with SQLite, a popular em-
bedded SQL database (Figure 3.13a). I enabled SQLite’s debug logging statements by
adjusting its compiler flags and configured it to use Dendrite’s in-memory tracer instead of
writing logs to the console. For Distalyzer, I configured SQLite to emit these logs to disk
and developed a preprocessing script to extract relevant features from them. I provided
metrics for DBSherlock by using SQLite’s sqlite3_(db)status functions. As these met-
rics do not cover all the test case functionality, I also advantaged DBSherlock by providing
extra information obtained by outputting and preprocessing only the relevant SQLite log
messages (e.g., checkpoints). I configured SQLite to use a write-ahead log and used the
default configuration unless otherwise mentioned. As SQLite is an embedded database, I
used a 1 GB TPC-W database.

Lock Contention: SQLite supports only a single concurrent writer; concurrent up-
dates either block or are handled by a retry busy-loop. Therefore, I replicated the Post-
greSQL lock contention test by creating a connection pool of database connections for
concurrent readers and a single database writer connection. I added logging statements to
the connection pool code and made this information available to each analysis system.

Dendrite and Distalyzer obtain high accuracy on this test as obtaining the writer con-
nection is the main bottleneck and is therefore highly reported in Dendrite’s transition
time CDF differences and Distalyzer’s state variables. DBSherlock is not effective in this
scenario because the lock wait time metric does not separate one scenario’s behaviour from
the other.

Aggressive Checkpointing: SQLite conducts checkpoints every N frames, in con-
trast to PostgreSQL’s method of every N seconds, so I adjusted the test case values for this
scenario to accommodate this difference (Table 3.1, default 1000 frames). Dendrite obtains
100% precision on this test case because even small changes in checkpoint frequency greatly
affect their overall event count proportion, which Dendrite detects. Although Distalyzer is
not as accurate as Dendrite, its support for time-based and frequency-based differences en-

42

able it to frequently report differences in checkpointing as well. DBSherlock is not effective
in this scenario because, as before, its ranking prioritizes unrelated metric differences.

Aggressive Vacuuming: Clients issue PRAGMA incremental_vacuum commands to
SQLite to trigger vacuuming. Therefore, I configured the write connection to submit
this command after every kth committed transaction for varying values of k (Table 3.1,
defaulting to every transaction, as in SQLite’s full vacuum mode). Both Dendrite and
Distalyzer obtain perfect precision for this test for the same reasons they perform well
on the Aggressive Checkpointing test, reporting differences in vacuum events. As before,
DBSherlock is not effective on this test case.

Improperly-Sized Buffer Pool: Unlike PostgreSQL, update transactions in SQLite
invalidate the cache of other concurrent connections, making large buffer pool sizes less
effective. I accommodated this behaviour by reducing the buffer pool sizes I used in
this test compared to the values we used for PostgreSQL (Table 3.1, default 10 MB).
Dendrite reports larger numbers of cache misses and page fetches in all cases when the
buffer pool size changes, and Distalyzer reports similar characteristics for most of the
experiments in this test case. DBSherlock is ineffective on this test case because SQLite’s
memory consumption grows to meet the buffer pool size. DBSherlock’s ranking, therefore,
prioritizes other metrics.

Distalyzer’s accuracy is improved on these test cases compared to their counterparts
on PostgreSQL because I disabled time-based events (e.g., checkpoints or vacuuming) if
they were not the focus of the test case. Therefore, Distalyzer is less vulnerable to overem-
phasizing the importance of these events. Despite these advantages for its competitors,
Dendrite retains its superiority in highlighting behaviour differences in SQLite. Further-
more, as subsequent results show, Dendrite has much lower overhead on both PostgreSQL
and SQLite than Distalyzer.

3.5.4 Monitoring Overheads

To assess the performance overheads of Dendrite, Distalyzer and DBSherlock, I used the
YCSB-C benchmark [22]. The YCSB-C workload exclusively uses single record lookups by
primary key, transferring workload processing bottlenecks from transaction execution to
the debug logging and monitoring of the analysis tools. I executed this workload against
PostgreSQL and SQLite for 5 minutes using OLTPBench [35] and measured the through-
put. Figure 3.13b shows the average throughput over three experiments for each database-
analysis tool pair, along with their 95% confidence intervals.

43

(a) SQLite Precision Results

(b) Performance Overheads

Figure 3.13: SQLite precision results and YCSB-C throughput.

Observe that Dendrite’s monitoring reduces the transaction throughput of PostgreSQL
and SQLite by less than 3%, while Distalyzer imposes large performance penalties of 90%
and 85%, respectively. These overheads are induced by the detailed and costly debug log-
ging it requires, whereas Dendrite intercepts logging calls in memory and does not need
log messages to be materialized on disk. Similarly, Dendrite improves throughput over
DBSherlock by 60% on PostgreSQL because DBSherlock requires some logging to comple-
ment its obtained system metrics. On the SQLite database, the throughput discrepancies
are similar because DBSherlock’s SQLite configuration does not log as heavily as its Post-
greSQL configuration — it relies largely on sqlite3_(db)status metrics. These results,
when combined with those from the prior section, demonstrate that Dendrite obtains the
highest difference detection precision with the lowest overhead.

To further understand Dendrite’s overheads, I conducted an ablation study in which I
measured the throughput of the database systems while Dendrite tracked (i) only event
counts, (ii) events and transition counts, and (iii) with all tracking enabled. I observed

44

(a) Analysis times
(PostgreSQL)

(b) Single CDF Accuracy (c) Combined CDF Accuracy

Figure 3.14: Analysis times for each of the analysis tools and Dendrite’s CDF accuracies.

that event count tracking resulted in only 1.5% of the overhead, enabling transition count
tracking incurred a scant additional overhead of 0.5%, and enabling the remaining tracking
functionality in Dendrite added only 1% overhead.

3.5.5 Analysis Time

I now contrast Dendrite, Distalyzer, and DBSherlock in terms of the time they take to
analyze results from two workloads or system configurations. I average the time it takes
to compare PostgreSQL behaviour for the 10 ms variation of the lock contention scenario
to the baseline configuration (Chapter 3.5.3). Results are shown in Figure 3.14a.

Distalyzer’s analysis time far exceeds that of DBSherlock and Dendrite due to the
large size of its preprocessed log files for each test (≈ 4 GB). By contrast, Dendrite’s and
DBSherlock’s analysis phases use summaries of system execution behaviour to determine
behaviour differences, which requires much less I/O and computation time. However, Den-
drite’s analysis phase takes only 1/5 the time of DBSherlock’s, a testament to Dendrite’s
efficiency while yielding useful results (Chapter 3.5.3). This low analysis time enables
administrators to identify and respond to system changes rapidly.

45

Table 3.2: Analysis of system integration efforts.

Dendrite Distalyzer DBSherlock
PostgreSQL Lines of Code Changed 53 156 159
SQLite Lines of Code Changed 74 317 194
TPC-W Lines of Code Changed 13 61 N/A
Tomcat Lines of Code Changed 25 189 N/A

3.5.6 System Integration Efforts

I estimate the efforts of integrating Dendrite, Distalyzer and DBSherlock with PostgreSQL,
SQLite, TPC-W benchmark clients, and the Apache Tomcat web server in Table 3.2.
Integrating Dendrite with these data systems requires less effort than the other approaches,
which I quantify using the lines of code (LoC) changed during integration.

Both Distalyzer and DBSherlock require system-specific preprocessing scripts, while
Dendrite does not. Distalyzer’s preprocessing scripts transform log files into a format
containing event variables, state variables and relevant latencies. Due to the complexity of
parsing a large variety of log messages and coercing them into the Distalyzer-interpretable
format, these scripts often require many lines of code to implement (Table 3.2). Similarly,
DBSherlock’s preprocessing scripts take the form of customized dstat plugins or targeted
modifications to the SQLite JDBC driver to obtain status metrics. These scripts rely on
a priori knowledge to obtain the salient metrics, transforming them and combining them
together for later analysis. In contrast to these approaches, Dendrite requires instrumenting
only the logging library and wrapping thread logic to output behaviour models before
terminating, thus requiring fewer code changes to integrate.

The architecture of a system influences the complexity of integrating it with an anal-
ysis tool. For example, integrating Dendrite with PostgreSQL requires less effort than
SQLite because PostgreSQL uses a centralized logging library (elog) while SQLite uses
compiler-enabled printf statements. Furthermore, SQLite’s embedded nature necessi-
tates modifying the JDBC driver, which is unnecessary for PostgreSQL. As these aspects
also increase the complexity of integrating with Distalyzer and DBSherlock, Dendrite’s
integration efforts remain the lowest in all cases.

46

3.5.7 Accuracy of Sampled CDFs

I assessed Dendrite’s accuracy in estimating individual CDFs and those generated using its
random walk technique. First, I determined the CDF accuracy for a single transition using
three different reservoir sizes (Figure 3.14b). I measured the deviation of the estimated
CDF from the true CDF at every 5th percentile up to the 95th percentile and averaged them.
As expected, increasing the reservoir size reduces the estimation error but also increases
the memory consumption. With a reservoir size of 100, I observed a high estimation
error of 35%, while increasing the size to 1000 reduces the error to below 10%. While
further increases to the reservoir size marginally improve accuracy, returns on the additional
memory consumed diminish significantly when using reservoir sizes above 1000.

I next considered the accuracy of CDFs constructed via random walks by computing
buffer miss latency CDFs (recall Figure 3.9) and comparing them to the true CDF (Figure
3.14c). As above, I considered various reservoir sizes and averaged the errors at every
5th percentile after 1 million random walks. Again, I observed that the error decreases
significantly from 60% to 20% when increasing reservoir size from 100 to 1000 and that
10000 samples reduce it further to 8%. Given these accuracy and memory trade-offs,
Dendrite uses reservoirs of size 1000 in the above experiments.

These results complement the theoretical results (Chapter 3.3.2) as the theory bounds
total variation in probability while the empirical results measure differences in latency at
given percentiles. Combined, these results show that Dendrite’s CDF estimation techniques
are effective and accurate.

3.6 Summary and Discussion

This chapter presented Dendrite’s core behaviour extraction, modelling, and difference de-
tection techniques. In brief, Dendrite intercepts debug logging calls made by the database
system and encodes the frequency and execution control flow of these logging events into
Markov chain based behaviour models. Dendrite compares the extracted models to deter-
mine how behaviour has shifted in terms of event proportion, event transition probabilities,
and cumulative distribution functions of event transition times.

In Chapter 3.5, I showed the effectiveness of Dendrite’s difference detection techniques
on a variety of popular data systems in representative scenarios. The results demonstrate
that Dendrite’s difference detection has higher precision than existing approaches, and that
it achieves these results with low overhead.

47

Despite these results, a few challenges remain to make Dendrite a generalizable adap-
tivity framework. This chapter presented model extraction and behaviour comparison
techniques for post-hoc analysis, but adaption frameworks operate online. The next chap-
ter enhances Dendrite to extract models from live database systems and perform online
behaviour difference detection. Online difference detection enables rapid responses to sys-
tem behaviour changes, which is infeasible with offline analysis. I also discuss Dendrite’s
adaption rule framework that codifies and deploys responses to behaviour differences; this
framework supports a wide variety of adaptive use cases while remaining intuitive to use.

Lastly, the behaviour models used in this chapter cannot capture all behaviour differ-
ences. In particular, they do not encode resource-consumption metrics — for example,
memory consumption or network bandwidth utilization. Determining when database sys-
tem resources are nearing exhaustion and responding appropriately comprises an important
class of adaption scenarios. Moreover, these models do not handle cases where event control
flow is dependent on more than one preceding event, precluding it from disambiguating the
contexts in which an event occurs. This drawback leads to event-relationship conflation
when, for example, DirtyPageFlush events occur in a loop in PostgreSQL’s checkpointer
but not in its page access logic. In the following chapter, I present enhancements to these
core techniques, along with Dendrite’s adaption rule framework, that address the above
challenges.

48

Chapter 4

Enhanced Modelling and Adaptivity
Framework

In the last chapter, I described the core behaviour modelling and difference detection tech-
niques that power the Dendrite system. While these techniques are effective in pinpoint-
ing behaviour differences in system events and transitions, they cannot attribute system
resource consumption to system code paths, a critical feature for understanding overall
system performance and improving it. For example, the prior modelling approach cannot
be used to determine if a database system’s performance has degraded because disk I/O
bandwidth is saturated.

A chief objective of Dendrite is to tailor database system processing in response to
workload or environmental changes, such as the changes in transaction mixes shown in the
last chapter. After registering an expected baseline of system behaviour, Dendrite could
employ the techniques described in the previous chapter to determine when behaviour
has shifted and output a behaviour differences report. However, an administrator would
need to digest the report, use their domain knowledge to decipher the root cause of the
behaviour difference, and address the underlying issue. Relying on administrators to effect
changes increases their heavy system-maintenance burden. Hence, these techniques alone
do not meet Dendrite’s stated goals of a bolt-on, generalized adaptivity framework.

In this chapter, I present enhancements to Dendrite’s behaviour models that encode
fine-grained resource consumption metrics. I also describe Dendrite’s online adaptivity
framework, which uses the behaviour models enhanced by this chapter’s techniques to
detect behaviour differences that warrant system augmentation and automatically deploy
changes to improve performance.

49

4.1 Model Enhancement Motivation

Before explaining how Dendrite improves upon the previous chapter’s behaviour modelling
technique, I will describe its limitations in more detail. The improvements in this chap-
ter address two key shortcomings: resource-consumption tracking and higher-dimensional
modelling.

4.1.1 Resource Consumption and Behaviour Differences

Database systems are resource-intensive. Traditional disk-based database systems rely
heavily on disk bandwidth to store data, access it quickly, and process requests transac-
tionally. A portion of the system’s stored data is cached in memory to avoid expensive disk
accesses, posing a significant main memory requirement. As these database systems often
receive many concurrent client requests, they also induce high network traffic. Processing
complex queries also requires a powerful CPU to meet stringent client latency requirements.

If any of these system resources are exhausted, performance will degrade. Requests
for resources may be queued or denied, increasing client request latency. Therefore, ad-
ministrators carefully monitor the resource usage of their database systems to ensure the
resources needed to meet client demands are available. When these requirements cannot
be satisfied, techniques such as re-routing and deferred processing can be used to reduce
resource requirements.

Detecting and remedying resource-contention situations are common tasks for system
administrators. Dendrite addresses this administrative burden by capturing system re-
source consumption and enabling automatic, consumption-based responses to behaviour
differences. Automated responses to these scenarios are valuable because every second of
downtime and performance reduction becomes expensive for companies [4, 42,77].

Resource consumption can also indicate the importance of a system behaviour change
and whether a reaction is warranted. For example, suppose Dendrite has detected that a
database system it is monitoring has encountered a sudden increase in client load. If the
system can handle the increased demand given the available resources, then no adaption is
required. On the other hand, if query latency significantly increases due to the additional
load, then Dendrite may elect to deploy a load-shedding strategy to ameliorate it.

It is common to capture system resource consumption in aggregate, using operating
system or database system counters. For example, administrators may use dstat or top
to determine the resource consumption of various system processes and threads. However,

50

finer-grained metrics are required to support the types of adaptions outlined in Dendrite’s
objectives. Returning to the running example of a load spike, if the system’s performance
has degraded due to contention on disk bandwidth, it is necessary to determine which
areas of the system’s code are responsible for the contention. If background processes are
executing that contribute to disk I/O saturation, such as a checkpoint or background page
flushing, then throttling those processes may alleviate the contention. If these processes
are not active, throttling them will be ineffective.

To this end, I enrich Dendrite’s behaviour models to support fine-grained resource
consumption attribution. These enhanced models report the total resources consumed for
each resource type and which parts of the system’s code are consuming them. In line with
Dendrite’s goals of generalizability, this extraction process is fully system-agnostic. The
following section describes how Dendrite meets these objectives.

4.1.2 Higher-Dimensional Modelling

The modelling techniques described in the previous chapter exploit the memoryless prop-
erty of Markov models to reduce complexity. In particular, they assume that the proba-
bility of moving to a subsequent event e′ is conditional only on the current event e (i.e.,
none of the previous events). This assumption of conditional independence may not hold
for all event transitions in practice. While the prior models are effective for behaviour
difference detection, behaviour models powering adaption frameworks must eliminate this
assumption to ensure appropriate responses.

As a concrete example, consider a DirtyPageFlush event in PostgreSQL. This event
occurs for one of three main reasons: (i) a modified page held in the buffer pool must
be evicted from memory and written to disk to make room for another page’s data, (ii)
PostgreSQL’s background writer process (bgwriter) is flushing page modifications to disk
to reduce the overheads of a future checkpoint, or (iii) a checkpoint is taking place, which
flushes a large number of dirty pages to disk.

In case (i), only a single page is flushed, after which transaction processing resumes
as normal. In case (ii) and (ii), dirty pages will be flushed in a loop, resulting in a very
different series of events than that of case (i). The previous modelling approach does not
disambiguate these cases as its event transitions use only the immediately preceding event.
When models from the background writer, checkpoint process, and transaction processing
threads are merged, event transition probabilities will be combined and conflated. This
conflation happens whenever a system event E appears in multiple code paths and these
paths have different event-transition characteristics for E.

51

Figure 4.1: Dendrite’s architecture when deployed in online adaption mode. Components
from the previous chapter are repurposed and extended to support adaption-rule responses.

The correct response to a high number of dirty page flushes depends on the cause.
Suppose the background writer is impairing performance through periodic page flushes.
In that case, Dendrite can defer the background writes to a period of lower load to alle-
viate these effects, and similarly for a checkpoint. However, if the impetus for dirty page
flushes is eviction during page reads, then the solution is to increase buffer pool size or
background flushes to move costly page flushes off the main path of transaction execu-
tion. Dendrite’s enhanced behaviour models disambiguate such situations, ensuring an
appropriate adaption response.

4.2 Behaviour Model Enhancements

To support enhanced behaviour tracking and autonomous adaptions, Dendrite’s architec-
ture is augmented as shown in Figure 4.1. The in-memory tracer is extended to support
higher-dimensional modelling and resource capturing by collaborating with the injection
shim, described below. The control server periodically issues commands to the in-memory
tracer, compelling it to write its per-thread models to disk. As before, a background thread
aggregates the models into a combined behaviour model, but this model is now passed to
the control server directly. The control server detects behaviour differences and responds
to them using system adaptions. Presently, we restrict our focus to the injection shim and

52

Figure 4.2: Dendrite’s in-memory tracer handling an example record_event call.

the in-memory tracer; Chapter 4.3 covers the control server’s enhanced functionality in
detail.

Dendrite’s enhanced behaviour models obtain their core information in a manner similar
to the models presented in the previous chapter. The target database system’s logging
library is integrated with Dendrite by linking against the in-memory tracer and having
the log() function call Dendrite’s record_event function (recall Figure 3.4). However,
record_event is modified to account for sequences of prior events.

As before, record_event obtains the file name and line number of the originating log
call in source code (Figure 4.2). Dendrite hashes these values to determine a unique ID for
the event. In this example, the log message from file md.c on line 655 (corresponding to a
BufferReadDone event) obtains a hash of 2.

In contrast to the prior models, Dendrite obtains the event IDs of the k previous events
(in Figure 4.2 example, k = 2), which are stored in a ring-buffer by the tracer. Dendrite
hashes the previous event IDs (corresponding to DiskReadDone, DiskRead) together to
determine an offset into an in-memory hash table that tracks the number of times those
events have occurred consecutively. In Figure 4.2 2 , the event sequence (2,1) hashes to
the third slot and its count is incremented to 10.

Afterward, Dendrite records that the prior event sequence has transitioned to the cur-
rent event (Figure 4.2, 3); it increments the transition count from event sequence (2,1) to
the current event ID 2. Dendrite captures how the database system moves between events
by tracking event transitions. If transition patterns change (e.g., page accesses now lead
to more cache hits), Dendrite recognizes this difference and responds appropriately.

Dendrite uses these event and transition counts to determine the most popular events

53

and compute transition probabilities. In Figure 4.2, the probability of moving from event
sequence (2,1) to event 2 is computed by dividing the transition count by the prior sequence
frequency: P (2|[2, 1]) = 5

10
. These enhanced event frequencies and transition probabilities

are the core of Dendrite’s behaviour models; next, I describe how Dendrite enriches them
with resource metrics.

4.2.1 Fine-grained Resource Metric Collection

It is often desirable to deploy adaptions based on the resource usage of database system
components and processes. For example, suppose a PostgreSQL database exhausts disk
I/O resources due to checkpointing during heavy system load. In that case, postponing
the checkpoint to a less workload-intensive period may be appropriate. By contrast, if disk
resources are exhausted due to query processing, postponing checkpoints will have little
impact on performance. To this end, Dendrite’s behaviour models encode both aggregate
and fine-grained system resource consumption metrics. Extracting these metrics while con-
forming to the outlined goals of generalizability and low overhead is challenging, requiring
novel techniques.

To capture aggregate resource consumption information, Dendrite uses dool, a fork
of the popular (now deprecated) dstat [120] resource monitor. dool is a Python 3 tool
that obtains resource information from the /proc filesystem on Linux, outputting it to a
comma-separated values (CSV) file for later analysis. Dendrite configures dool to output
aggregate CPU utilization, memory consumption, network traffic, and disk I/O to file.
As part of behaviour model merging (Chapter 3.2), the background process reads these
metrics and incorporates them into the combined behaviour models.

Dendrite exploits dynamic linking to intercept targeted libc calls and capture their
resource usage. On Linux systems1, the LD_PRELOAD environment variable specifies shared
object files to be loaded ahead of any others the executable needs. As the symbols in
these files are resolved first, functions implemented within them override functions with
the same name defined in the files loaded afterward. Dendrite uses this feature to override
C library functions with custom implementations in a preloaded shared object file called
the injection shim.

The injection shim contains custom implementations of libc functions (e.g., pwrite,
send) that allocate or use system resources. These custom versions extract the size
argument from the function call, which dictates how much data is to be operated on, adding

1Other operating systems like Windows and macOS support similar functionality.

54

Function Name Description Tracked Parameter and
Type

malloc(sz) Allocates sz bytes from the
heap

Sum sz, allocation

free(ptr) Frees ptr memory count, deallocation
read(fd,buf,sz) Reads sz bytes from file fd

into buffer buf
Sum sz, disk read I/O

write(fd,buf,sz) Write sz bytes into file fd
from buffer buf

Sum sz, disk write I/O

pwrite(fd,buf,sz,off) Write sz bytes into file fd at
offset off from buffer buf

Sum sz, disk write I/O

io_submit(ctx, n, iocb) Submit n asynchronous I/O
calls found in iocb ptr.

Sum of I/O sizes in iocb,
disk read/write I/O.

send(fd,buf,sz,flags) Send sz bytes in buffer buf
over socket fd using flags
flags.

Sum sz, network write I/O

recv(fd,buf,sz,flags) Receive sz bytes into buffer
buf over socket fd using
flags flags.

Sum sz, network read I/O

Figure 4.3: The C library functions Dendrite’s injection shim overrides to track resource
utilization.

it to a running metric total for the current event transition (Figure 4.2, 4). Afterward,
they call the default libc implementation of the function, preserving the original system
behaviour. When Dendrite receives the next record_event call, it stores the total in a
fixed-size array (reservoir) for the given metric on the given transition (Figure 4.2, 5).
Afterward, it sets the counters for each metric to zero so that resource consumption can
be tabulated for the next event transition.

This resource tracking feature enables developers and administrators to determine
which parts of their database system’s code consume the most resources. As an exam-
ple from Figure 4.2, they can determine that the transition from (2, 1) → 2 reads 8 bytes,
and map the event IDs back to source code locations ((md.c:655, md.c:640) → md.c:655)
to determine the responsible code. Moreover, Dendrite’s adaption rules can adapt system
behaviour in response to targeted resource consumption — for example, a case study in
Chapter 5.2.1 shows that Dendrite can detect excessive disk I/O due to checkpointing and
then reduce this process’ aggressiveness.

55

Figure 4.4: Dendrite’s injection shim.

Figure 4.3 shows the functions the injection shim tracks by default. These functions
were determined empirically by executing a variety of popular database systems and ensur-
ing that Dendrite captured expected resource utilization. Note that not every function call
is used by every database system — for example, PostgreSQL 14.1 uses pwrite to write
data to disk, PostgreSQL 9.6 uses write, and MariaDB 10.5 uses asynchronous io_submit
calls. Metrics are recorded as long as the system’s resource-consuming calls are defined
in the injection shim. If developers or administrators wish to capture additional classes
of resource usage not shown in Figure 4.3, they can trivially add new interceptors to the
shim. Doing so requires only a few lines of code.

4.2.2 Minimizing Modelling Overheads

The higher-dimensional behaviour modelling techniques proposed in the previous sections
assume a fixed constant k that defines the number of prior events to account for when
computing transition probabilities. However, the choice of k presents trade-offs that must
be carefully navigated.

The value of k affects the accuracy of Dendrite’s behaviour models and their memory
consumption. For example, setting k = 1 leads to a conflation in DirtyPageFlush tran-
sition probabilities because the models do not account for whether the events arose from
a checkpoint/background write or an LRU page eviction (Chapter 4.1.2). On the other
hand, setting k = 2 consumes more memory than required for any event transition that
does not depend on two preceding events. In the worst case where every k-length sequence
of n events transitions to each of the n events, an order-k model consumes O(nk−1) more
memory than an order-1 model.

56

Figure 4.5: Behaviour models for k = 1 and k = 3 capturing event sequence 1, 1, 1, 2, 3, 4,
1, 1, 1, 2, 3, 5 . . .

To demonstrate the trade-offs imposed by the parameter k, consider the following exam-
ple. Suppose Dendrite observes the following sequence of events IDs: (1, 1, 1, {2 or 5}, 3, 4),
repeating infinitely. Figure 4.5a shows the model constructed for k = 1, while Figure 4.5b
shows the model for k = 3. The k = 3 model consumes more memory as it contains a
node for each triplet of event occurrences, while the k = 1 model has only one node for
each event type. Moreover, the k = 3 model contains nodes for both (5, 3, 4) and (2, 3, 4)
transitioning to 1, even though the system always moves to event 1 after event 4 regardless
of the events that came before — a relationship captured succinctly by the k = 1 model.
However, the k = 3 model correctly captures that the sequence (4, 1, 1) is always followed
by 1 (Figure 4.5b), unlike the k = 1 model.

It would be ideal if nodes in the model were created only when necessary to capture
event transition relationships. For example, the model in Figure 4.6 does not contain nodes
to disambiguate (1, 5, 3) from (1, 2, 3) or (5, 3, 4) from (2, 3, 4) because the transitions from
3 or 4 do not depend on any prior events. Such a model would consume less memory and
communicate event transition relationships more clearly.

Constructing this idealized model is challenging because Dendrite operates online. Den-
drite discovers the transition independence relationships on-the-fly because it receives in-
formation about event executions only while the system is running. Moreover, Dendrite
continuously refines its behaviour models, meaning that events that at one time appeared
not to influence subsequent transitions may do so as Dendrite observes more of the database
system’s behaviour.

57

Figure 4.6: Variable-order behaviour model capturing event sequence 1, 1, 1, 2, 3, 4, 1, 1, 1,
2, 3, 5 . . .

Figure 4.7: Steps in dynamically reducing an order-3 transition to order-1.

Dendrite dynamically determines how many prior events each transition depends upon
and eliminates nodes accordingly (as in Figure 4.6). At the same time, it provides strong
statistical guarantees when reducing sequence lengths to ensure its models remain accurate.

To achieve these objectives, Dendrite performs the following detection step when updat-
ing event transition counts while handling a record_event call (recall Figure 4.2, 3). As-
sume without loss of generality that the current k-length event sequence is (E1, E2, . . . , Ek),
and the subsequent event is Ek+1. As before, Dendrite will update the counters for the oc-
currences of event sequence (E1, E2, . . . , Ek) and event transition (E1, E2, . . . , Ek) → Ek+1.
Afterward, it will check if the transition probability of moving from (E1, E2, . . . , Ek) to
any subsequent event E ′

k+1 is equivalent to the transition probability without accounting
for E1. In other words, it determines whether the transition’s probability is independent
of E1:

P (E ′
k+1|E1, E2, . . . , Ek−1, Ek) = P (E ′

k+1|E2, . . . , Ek−1, Ek) (4.1)

As a concrete example, consider Figure 4.7, which follows our running example. The

58

Figure 4.8: Merging prior event sequences and metric reservoirs.

blue numbers indicate event sequence or transition counts. Both the (1, 5, 3) and (1, 2, 3)
event sequences transition to subsequent event 4 with 100% probability, yielding event
sequences (5, 3, 4) and (2, 3, 4) respectively. Since P (Ek+1|1, 5, 3) = P (Ek+1|5, 3), for all
Ek+1 to which (1, 5, 3) transitions (here only 4), Dendrite reduces the sequence to the
middle panel. The same holds for (1, 2, 3), so the sequence length is reduced accord-
ingly. On a subsequent transition count update for (5, 3), Dendrite determines that ∀Ek+1,
P (Ek+1|5, 3) = P (Ek+1|3), so it reduces the sequence length again. To determine this fact,
it finds all event sequences ending in 3 that transition to Ek+1, thereby accounting for the
(2, 3) path to 4. It then merges these sequences to produce a single event sequence, 3, that
transitions to 4.

Merging event sequences requires careful consideration since Dendrite must account
for the resource-consumption reservoirs. As each merged transition requires combining
resource-consumption samples, Dendrite subsamples each of the original transitions’ sam-
ples according to their proportion of the overall transition count. That is, if, as a conse-
quence of reducing an event sequence length, Dendrite needs to merge two event sequences,
A and B, and A transitions to Ek+1 100 times but B transitions only once, then the sam-
ples from A should be represented 100-fold more in the merged reservoir than the samples
from B.

This merging procedure (Algorithm 4) is illustrated by merging two reservoirs for the
disk write I/O metric in Figure 4.8. Suppose Dendrite is reducing prior event sequence

59

Algorithm 4 reduceEventSequenceLength(m, prior_seq)
Input: Behaviour model m, prior event sequence to reduce prior_seq
1: reduced_seq = prior_seq[1:]
2: seqs = m.findPriorSeqsEndingIn(reduced_seq)
3: reduced_seq_count = 0
4: next_ev_transition_counts = hashmap()
5: for seq ∈ seqs do
6: reduced_seq_count += m.getCount(seq)
7: for ev ∈ m.eventsSeqTransitionsTo(seq) do
8: next_ev_transition_counts[ev] += m.getTrCount(seq, ev)
9: end for

10: end for
11: for seq ∈ seqs do
12: for (ev, count) ∈ next_ev_transition_counts do
13: prob = count/reduced_seq_count
14: res = m.sampleReservoirs(seq, m.getTrCount(seq, ev), count)
15: reduced_seq.addTransition(ev, prob, res)
16: end for
17: m.remove(seq)
18: end for
19: m.add(reduced_seq)

(2,3,4) to (3,4), as in the example (Figure 4.5b, 4.6). First, it finds all of the prior event
sequences that have the suffix (3,4) — in the example, (2,3,4) and (5,3,4). Next, Den-
drite computes the reduced sequence’s frequency count and transition counts by iterating
through the transitions for each of the found sequences (Algorithm 4, lines 5-10). In the
example, it finds only one unique transition for each of the found sequences (to event ID
1), with a total count of 25. Next, Dendrite determines the transition probabilities for
the reduced sequence by dividing these transition counts from the total reduced sequence
count (line 13). There are 25 transitions to event ID 1 in the example, with a total count
of 25 transitions, yielding a probability of 1.0. Finally, Dendrite subsamples the metric
reservoirs for the found transitions according to the proportion of the transition total they
comprise. Here, (2,3,4) → 1 makes up 2/5 of the total transitions, so 2/5 of each metric
reservoir in the reduced sequence will be made up of samples from its reservoirs (Figure
4.8). The remaining samples come from (5, 3, 4) → 1.

In practice, performing a simple equality check to verify independence before sequence

60

reduction is insufficient. Dendrite’s computed event transition probabilities are inherently
estimates of the true event transition probabilties; each event transition it observes is a
sample of the true event transition distribution. With few observations of an event sequence
transition, Dendrite cannot be confident that its estimate of the transition’s probability is
accurate. As the number of observations increases, it becomes increasingly confident about
the transition probability’s true value.

As a concrete example, suppose Dendrite has captured 10 samples of event sequence
(E1, E2, E3) and observed that a particular transition (E1, E2, E3) → E ′ occurred 5 times.
Dendrite computes the maximum likelihood estimate p̂ for the transition’s probability, 0.5.
But the true transition probability p may be 0.3 — Dendrite just happened to observe
otherwise in its 10 samples. Dendrite exploits theoretical guarantees on the true probabil-
ity’s deviation from the maximum likelihood estimate, as shown in the subsequent section,
to ensure that it is confident in its transition probability estimates before considering the
associated transitions for merging.

As a further consideration, the number of samples involved in computing transition
probabilities may affect whether Dendrite chooses to reduce sequence lengths if relying on
strict-equality independence checks. For example, suppose that Dendrite wishes to reduce
(1, 2, 3) to (2, 3), but the transition from (1, 2, 3) → 4 has taken place 999/1000 times, and
(2, 2, 3) → 4 has taken place 9991/10000 times. As these probabilities marginally differ, the
strict-equality procedure above would preclude these sequences from merging. However,
it could be the case that the true transition probability from (1, 2, 3) → 4 is 0.9991 — it
simply cannot be represented with that level of precision using 1000 samples. This result
is undesirable because it decreases the scope of sequence merging.

Dendrite overcomes these challenges by instead applying the following check before
reducing a prior event sequence E = (e1, e2, . . . , ek) to E ′ = (e2, . . . , ek):

∀X, Y : |P (Y |e1, e2, . . . , ek)− P (Y |X, e2, . . . , ek)| < ϵ (4.2)

with probability 1 − δ. That is, if all other event sequences with the same ending events
have true transition probabilities within ϵ of each other with probability at least 1 − δ,
then Dendrite merges the sequences together. Dendrite computes the number of samples
required to satisfy ϵ, δ = 0.05 (by default), and simplifies the prior sequence for the tran-
sition only when this criterion is met. Next, I show how Dendrite computes this sample
count.

61

4.2.3 Model Accuracy Guarantees

As Dendrite computes transition probabilities using observed frequencies of event sequences
and transitions, these probabilities are necessarily estimates of the true transition prob-
abilities and thus subject to error. Therefore, Dendrite quantifies the error bounds on
its estimates based on the number of samples it has. Concretely, Dendrite computes the
number of samples required to ensure that an estimated transition probability p̂ is within
ϵ of the true value p with probability 1− δ.

Observe that the number of times prior event sequence (e1, e2, ...ek) transitions to sub-
sequent event e′ can be modelled by a binomial distribution with some true probability
p. Thus, the empirical estimator for p is p̂ def

= x
m

where m is the number of times we have
observed event sequence (e1, e2, . . . , ek) and x is the number of times it has been followed
by e′.

Lemma 3. Fix ϵ > 0, δ ∈ (0, 1). Then for m ≥ 2+ϵ
ϵ2
ln(2

δ
), it holds with probability 1 − δ

that |p̂− p| ≤ ϵ.

Proof. Let X ∼ Binomial(m, p) represent the probability distribution of the observed
transition count. By applying the two-sided Chernoff inequality:

P (|x− E[X]| ≥ ϵ′E[X]) ≤ 2 exp(− ϵ′2

2 + ϵ′
E[X]) (for any ϵ′ > 0)

Therefore,

P (|x−mp| ≥ ϵ′mp) = P (|p̂− p| ≥ ϵ′p) ≤ 2 exp(− ϵ′2

2 + ϵ′
mp)

Choose ϵ′ = ϵ
p
, then

P (|p̂− p| ≥ ϵ′p) ≤ 2 exp(−
ϵ2

p2

2 + ϵ
p

mp) = 2 exp(− ϵ2

2p+ ϵ
m)

since p ≤ 1, ϵ2

2p+ϵ
≥ ϵ2

2+ϵ
, so

P (|p̂− p| ≥ ϵ) ≤ 2 exp(− ϵ2

2 + ϵ
m)

then since m ≥ 2+ϵ
ϵ2
ln(2

δ
)

P (|p̂− p| ≥ ϵ) ≤ 2 exp(− ϵ2

2 + ϵ
m) ≤ δ

62

Lemma 4. If two independent event transition probabilities p̂1, p̂2 are within at most ϵ
of their true probabilities p1, p2 respectively with probability 1 − δ and |p̂1 − p̂2| ≤ ϵ, then
|p1 − p2| ≤ 3ϵ with probability at least (1− δ)2.

Proof. By definition, p̂1 = p1 +∆p1 , p2 = p̂2 +∆p2 where |∆pi | ≤ ϵ.
So, we have

|p1 − p2| = |p̂1 +∆p1 − p̂2 −∆p2 |

Using the triangle inequality:

|p1 − p2| ≤ |p̂1 − p̂2|+ |∆p2 −∆p1 |

⇒ |p1 − p2| ≤ ϵ+ |∆p2 −∆p1| ≤ 3ϵ

with probability (1− δ)2.

Thus, from Lemmas 3 and 4, we have the reduction rule:

∀X, Y : |P̂ (Y |e1, e2, ..., ek)− P̂ (Y |X, e2, ..., ek)| ≤ ϵ

⇒ ∀X, Y : |P (Y |e1, e2, ..., ek)− P (Y |X, e2, ..., ek)| ≤ 3ϵ

with probability (1− δ)2.

Practically, these results mean that for Dendrite’s default settings of ϵ, δ = 0.05, Den-
drite ensures P (Y |e1, e2, ..., ek) differs from P (Y |X, e2, ..., ek) by at most 0.15 with prob-
ability 90.25% by collecting at least 9075 samples before reducing prior event sequence
length in its models.

4.2.4 Concurrency

Recall that Dendrite constructs its enhanced behaviour models on a per-process, per-
thread basis. Each thread creates a behaviour model independently of the others, storing
the counters and reservoirs in thread-local storage to avoid contention on shared data
structures.

When a database system linked against Dendrite starts executing, the first thread to
issue a logging call is responsible for setting up a network socket, a thread to monitor the
socket, and shared-memory communications structures. The control server (discussed in
the following section) periodically issues a request to this network socket, indicating that
each thread should write its model to disk and begin construction of a new model for the

63

Algorithm 5 record_event(fname,line)
Input: File name and line number of the logging event (fname, line)
1: if shm_ptr == NULL then
2: global_sem = sem_open("/lock.sem", O_CREAT, 1)
3: global_rdy_sem = sem_open("/rdy.sem", O_CREAT, 0)
4: if sem_trywait(global_sem) then
5: shmid = shmget(ftok("shm_buff"))
6: shm_ptr = shmat(shmid, sizeof(ShmData), IPC_CREATE)
7: shm_ptr->epoch = 0
8: t_epoch = 0
9: create_socket_and_monitoring_thread()

10: sem_post(global_rdy_sem, INT64_MAX)
11: else
12: sem_wait(global_rdy_sem)
13: shmid = shmget(ftok("shm_buff"))
14: shm_ptr = shmat(shmid, sizeof(ShmData))
15: t_epoch = shm_ptr->epoch
16: sem_post(global_rdy_sem, 1)
17: end if
18: end if
19: if t_epoch < shm_ptr->epoch then
20: dump_model()
21: t_epoch = shm_ptr->epoch
22: reset_model()
23: end if
24: update_counters(fname, line)

64

upcoming time period. The interval at which this command is sent is configurable (with a
default of 30 seconds), and termed an epoch.

The setup process operates as follows. A log() call in turn executes record_event()
(Algorithm 5). However, record_event will determine that the shared-memory control
structures for the current thread have not yet been allocated and initialized (line 1).
Therefore, it races with other threads to create a named SYSV semaphore in the /dev/shm
filesystem called lock.sem with initial value 1 and a rdy.sem semaphore with value 0 (lines
2-3). This race is benign as only one thread will succeed in creating the semaphores — the
other threads will open the created semaphores. Afterward, the threads race to acquire the
lock semaphore (line 4). The thread that wins the race creates a named shared-memory
segment (line 7), initializing an atomic uint64_t epoch counter. Each thread uses this
counter to determine when to write their models to disk (line 8). It then creates the net-
work socket and a monitoring thread, incrementing the ready semaphore to INT64_MAX
(lines 9-10). The other threads block on the ready semaphore until this increment occurs
(line 11), after which they will attach to the initialized shared memory structures (line 12).
Note that this setup process is conducted only once per thread. On subsequent execu-
tions of record_event the shared-memory structures are detected, so execution proceeds
directly to writing out models if necessary (line 19) and updating the thread-local event
and transition counters as previously described (line 24).

When the monitoring thread receives the control server’s command to output per-
thread models to disk, it atomically increments the epoch counter in shared memory
(shm_ptr->epoch). When other threads handle a subsequent record_event call, they
check this counter and compare it against a thread-local copy of the counter’s value (line
19). If the values of these copies differ, then the control server has advanced the epoch;
the thread writes its current model to disk in a per-thread file (line 20), tagging the model
with the epoch value stored in the local counter. It then updates its local counter to match
the shared epoch counter (line 21). Finally, the thread deletes the memory for the prior
model and constructs a new model (line 22), adding information for the event occurrence
associated with the record_event call (line 24).

4.2.5 Combining Variable-Order Behaviour Models

After the per-thread models have been written to disk, Dendrite uses a background process
to read the models for each thread within a given epoch. This process combines these
models into a single model that describes overall system behaviour. Unlike the merge
process described in the previous chapter, the enhanced models from different threads may

65

now record information for the same event transition with different sequence lengths. For
example, the transition (E1, E2) → E3 in one model may be represented as (E2) → E3 in
another. Dendrite’s combined models account for these different representations and unify
their information correctly.

Dendrite respects model differences by first transforming each thread’s model to a fixed-
order k model, where k is the maximum prior event sequence length present in any thread’s
model. This process is called model expansion.

Expanding a model m to order k from its existing order is done one order at a time.
The first step is to find the smallest-order transition — the minimum length of a prior
event sequence for any recorded transition in m (Algorithm 6, line 1). Next, Dendrite
preprocesses the existing transitions, building a map from prior event sequences to their
next events (line 5). Then, for each transition t in the existing model, Dendrite performs
the following sequence of steps (line 6):

• If t is already of the desired order, it is copied over to the expanded model directly
(line 10).

• Otherwise, Dendrite finds all other transitions that involve the prior event sequence
of t. That is, if t = (E1, . . . Ei−1, Ei) → E ′, it finds all transitions t2 ∈ m with prior
event sequence (E1, . . . , Ei−1, Ei) (line 15).

• It finds all of the events to which (E1, . . . , Ei) transitions (line 16), e.g., E ′.

• It determines all transitions in m that could lead to t. For example, transition
(E0, E1, . . . , Ei−1) → Ei leads to (E1, . . . , Ei−1, Ei) → E ′ because the the last portion
of the former’s prior event sequence appended with its transition matches the prior
event sequence of the latter. Informally, one can interpret this relationship as “the
former transition may be directly followed by the latter.” Dendrite constructs the
expanded event sequence by combining the former’s prior event sequence and its
transition into an expanded prior event sequence, recording it in unique_prior_seqs
(line 18).

• For each of the (next_event, unique_prior_seq) pairs returned by the previous two
steps, Dendrite generates an expanded transition (line 21).

• Dendrite determines the number of times the expanded prior event sequence oc-
curred by summing the counts of transitions that would have led to it. Note that
this is not the number of transitions from the expanded prior sequence to a partic-
ular next_event, but rather the number of times the sequence transitioned to any

66

Algorithm 6 expand_model_one_order(m)
Input: Behaviour model m
Output: Behaviour model with transitions of at least order min_order(m)+1
1: min_order = min([t.order for t in m.transitions])
2: transitions_to_skip = map()
3: new_transitions = set()
4: new_transitions_metrics = map()
5: prior_index = build_index_from_priors()
6: for t ∈ m.transitions do
7: if t ∈ transitions_to_skip then
8: continue
9: end if

10: if t.prior_events.length >= min_order + 1 then
11: new_transitions[t] = m.transitions[t]
12: new_transitions_metrics[t] = m.transitions_metrics[t]
13: continue
14: end if
15: all_other_transitions =

prior_index.find_all_transitions_with_same_priors(t)
16: next_events = unique([t2.next() for t2 in all_other_transitions])
17: transitions_that_end_in_start =

[t2 for t2 in m.transitions if t2.could_transition_to(t)]
18: unique_prior_seqs = unique(

[t2.construct_before(t) for t2 in transitions_that_end_in_start])
19: for next_event in next_events do
20: for unique_prior_seq in unique_prior_seqs do
21: expanded_transition = (unique_prior_seq) → next_ev
22: total_transition_count = m.sum_matching_trs(

transitions_that_end_in_start, unique_prior_seq)
23: subsampled_metrics = m.subsample_reservoirs(

transitions_that_end_in_start, unique_prior_seq)
24: new_transitions[expanded_transition] = total_transition_count
25: new_transitions_metrics[expanded_transition] = subsampled_metrics
26: transitions_to_skip.add((t) → next_event)
27: end for
28: end for
29: end for
30: return model(new_transitions, new_transitions_metrics)

67

subsequent event. Thus, Dendrite exploits its knowledge that sequence lengths are
reduced only if the reduced sequence’s transition probability for any transition is close
(within ϵ with high probability 1− δ) to the original sequence’s probability. Hence,
the expanded sequence’s probability must be close to that of the reduced sequence’s
probability. So, Dendrite multiplies the probability of the reduced sequence’s transi-
tion to next_event by the total number of times the expanded prior event sequence
occurred to determine the transition count (line 22).

• The same process as above is used to expand out metric reservoirs for all next_event,
unique_prior_seq pairs, except that subsampling is applied to merge multiple reser-
voirs that contribute to an expanded transition (line 23).

• Since (next_event, unique_prior_seq) pairs account for all transitions that share t’s
prior event sequence, Dendrite records this fact and skips over them when processing
subsequent transitions (line 26).

• Finally, Dendrite returns the model defined by transition counts and transition met-
rics.

The expand_order_by_one function is repeatedly executed until the desired model or-
der is achieved. This process is applied to each per-thread model, after which the merge
procedure described in the previous chapter is executed. Metric reservoirs are subsampled
so that fixed-size reservoirs do not overflow. Once the models are combined, Dendrite
applies the order reduction procedure over each transition to simplify the combined model.
This merging procedure is performed in the background by the control server (described
next) in a process external to the database system; thus, Dendrite avoids cross-thread syn-
chronization on the main path of execution that would impair performance. The resulting
combined model is the chief means of Dendrite’s behaviour comparisons and adaptions.

4.3 Control Server and Enabling Adaptivity

Dendrite’s in-memory tracer constructs comprehensive behaviour models in collabo-
ration with the injection shim using the procedures described above. Dendrite’s control
server (Figure 4.9) retrieves behaviour models from the tracer when an epoch has com-
pleted, combines the models, and compares the combined model against a registered model

68

Figure 4.9: Dendrite’s control server.

of expected system behaviour (termed the baseline). If the differences are significant, Den-
drite evaluates adaption rules to return system behaviour to normal. The control server can
also optionally exploit domain knowledge to enhance its difference detection and adaption
rule selection through fingerprinting and attention focusing techniques, described later in
this chapter.

4.3.1 Overview

Although Dendrite’s in-memory tracer enables system-agnostic behaviour extraction and
modelling, the control server that selects and deploys adaptions requires some knowledge of
database system details. For example, if Dendrite determines that an index should be cre-
ated to accelerate a client workload, it must know whether the underlying database system
is PostgreSQL, MariaDB, or otherwise, to select the proper driver to communicate with
the system. The in-memory tracer’s system-agnostic nature is still of great value because
its bolt-on techniques to extract behaviour models apply to arbitrary relational database
systems. This feature eliminates the need for developers to create their own behaviour
modelling framework for every database system and provides a consistent behaviour dif-
ference format over which adaption rules operate.

Adaption-rule creation is a collaborative process between developers and administra-
tors. Developers create template rules as part of system development, and administrators

69

refine these templates for their environment.

The development process already includes adaption-rule creation; existing rules are
simply static and hard-coded in algorithms and configuration files. For example, consider
the shared_buffers configuration parameter in PostgreSQL, which defines the number of
disk pages the database system can store in shared-memory buffers. PostgreSQL uses a
default value of 128 MB, but the documentation says that using 25% of the system’s total
memory pool is a “reasonable starting value” for parameter selection. This is an example of
a static rule — the system provides a default and advice on adjusting the setting, but the
setting is changed only through administrator intervention. Enriching a database system
with the ability to dynamically change such values on the fly through adaption rules is a
natural evolution of this process.

Dendrite’s control server enables adaptivity for arbitrary relational database systems
by:

• enabling and leveraging system-agnostic behaviour comparisons to detect and quan-
tify the database system’s deviation from expected behaviour. These comparisons
can be enriched with domain-knowledge to account for the importance of various
system events and to identify running system processes.

• enabling developers to intuitively specify system adaptions and their criteria as adap-
tion rules.

• automatically matching adaption-rule conditions against behaviour differences and
deploying adaptions in response to system behaviour changes.

The rest of this section describes these features and the novel techniques enabling
them. The design choices powering these features are validated through a robust suite of
representative case studies in Chapter 5.

4.3.2 Detecting Behaviour Differences

Once the control server obtains the per-thread behaviour models for the current epoch, it
combines them into the current overall behaviour model mc using the procedure outlined
in Chapter 4.2.5. It then compares this model against the registered baseline model,
mb. If the behaviour differences are significant, as defined below, Dendrite will evaluate
adaption rules to restore/improve system performance. While Dendrite could perform this

70

comparison using the techniques described in Chapter 3.4, that approach suffers from two
key issues.

Recall that the previously described technique compares the proportion of each event
e between the two models:

diff _score(mc,mb) =
∑

e∈mc∪mb

event_score(mc,mb, e) (4.3)

event_score(mc,mb, e) = max

(
Propmc

(e)

Propmb
(e)

,
Propmb

(e)

Propmc
(e)

)
(4.4)

where e is an event and Propm(e) is the proportion of the total event count in model m
attributable to event e (e.g., 40% of the total events in m). If diff _score(mc,mb) ≥ τ ,
for some τ > 1.0, we say that the behaviour difference between these models is significant.
Dendrite evaluates adaption rules (Chapter 4.3.4) to react to significant differences and
improve system performance.

The first issue with this approach is that not every event is equally important. For
example, the appearance of single checkpoint event in PostgreSQL may warrant a behaviour
change due to the high overheads it induces, but a slight difference in lightweight query-
parse events does not. If the checkpoint count during the current epoch has doubled from
the baseline, the prior approach assigns the same weight to this difference as a doubling in
query-parse events.

Second, the technique’s handling of events present in one model but not in the other is
problematic. Suppose an event e occurs in the current model, mc, but not in the baseline
model, mb. The technique would compute event_score(mc,mb) = ∞, meaning that this
difference alone would be sufficient to mark the models as significantly different, regardless
of the configured τ threshold. While this large score may be warranted for failure or crash
events, it is not for one-off informational events like log-file maintenance.

These issues present challenges for Dendrite’s adaption rule framework, since significant
behaviour differences would be frequently reported in situations for which adaptions are
not warranted. Though adaption-rule conditions can filter out spurious reports without
invoking unnecessary adaptions, such reports result in administrator confusion as Dendrite
will detect behaviour differences but decide not to respond to them. It would be ideal if
Dendrite reported a behaviour difference only in situations where an adminstrator would
judge the behaviour difference significant; otherwise, administrators may determine that
Dendrite is excessively sensitive and ignore its reports.

71

Note that reporting a behaviour difference due to these two issues is not incorrect;
database system behaviour does differ, and the differences are significant in terms of event
proportion. However, an administrator’s determination of significance is a value judgment
based on their domain knowledge and the effects of the difference on database system
performance. Therefore, Dendrite enables developers and administrators to optionally
signify event importance, as described next.

Attention Focusing

Dendrite enables developers to signal the importance of database system events by spec-
ifying a configurable importance-mapping function. This function increases the relative
weight of target events in the overall difference score:

diff _score_mapper(fname, line,mc,mb, level , raw_score) → score

where fname is the event’s file name in source code, line is its line number, mc has object
fields describing event frequency and proportion of the given event in the current epoch’s
model (and similarly for baseline mb), level is the event’s log level, and raw_score is the
computed difference score for the event as above.

As a log() call is parameterized with a level parameter that describes its importance,
diff_score_mapper can be used to down-weight informational debug messages and more
heavily weight error events. However, the mapper can also be used to change the weighting
of individual events as required. For example, the mappers used in the case studies in the
following chapter clamp the maximum scores for disk page accesses and statistics collector
events that on their own are not indicative of behaviour changes requiring adaption.

As the diff_score_mapper uses domain knowledge about the importance of events in
a data system’s life cycle, devising this function is a task most suited for developers for the
system. Developers already know which events in their system are the most important,
as they use these insights to answer user questions, diagnose performance problems, and
alleviate system bottlenecks for their systems in production.

Some system events occur infrequently and may therefore not be present in both of
the models Dendrite is comparing. The default event_score function would assign this
difference a score of infinity, and therefore Dendrite would always indicate that the models
are significantly different. As discussed above, this is not always desirable. Therefore,
developers can also optionally provide a missing_event_score_mapper, which takes the

72

same arguments as the diff_score_mapper and similarly outputs a difference score. By
default, events present in only one model are assigned a large event difference score of 5.0.

Dendrite’s difference detection is effective without specifying these functions, as shown
by Chapter 5.3.2. Leveraging domain knowledge to encode the importance of a few targeted
events improves Dendrite’s resiliency to fluctuating workload environments.

4.3.3 Fingerprinting

It is useful to know which data system processes (or threads) are active when determining
how to respond to a behaviour change in the data system. For example, an increase in CPU
consumption and query execution count may indicate that more clients are connecting to
the system or that the existing clients are submitting more queries. In the former case, an
appropriate adaption rule may redirect future client connections to another system node
to balance query load. In the latter case, query-level load balancing is more suitable.
Dendrite can differentiate between such cases by accounting for the number of active client
processes or threads in the system.

An easy way for Dendrite to determine which processes or threads are running is to
use the operating system’s process/thread list. For example, the ps tool on UNIX systems
outputs a list of running process IDs and their human-readable process names. Unfortu-
nately, for Dendrite to extract this information the database system must use consistent
naming conventions for each executing process/thread. Moreover, Dendrite must know
these conventions a priori to be able to group executing threads/processes by type (e.g.,
client workers, checkpointer, autovacuumer) so that adaption rules can operate over them
(e.g., worker thread count has doubled in the current epoch relative to baseline). As dif-
ferent database systems can use different naming conventions (or none at all), it is difficult
to generalize any technique relying on thread names across data systems.

Dendrite avoids this limitation by identifying running threads through fingerprinting.
Developers can optionally supply Dendrite with pre-registered models of behaviour in-
dicative of database system threads (e.g., checkpointer). After obtaining the per-thread
behaviour models for an epoch, Dendrite compares them to these pre-registered models
to determine using the diff _score function mentioned above. If the models are similar,
Dendrite records that the corresponding thread ID is of the registered model’s type and
makes this information available to adaption rules to better tailor a response (Chapter
4.3.4). Obtaining these representative models is simple: developers can simply request
that Dendrite export a thread’s behaviour model during testing and register it with the
control server alongside the adaption rules (Chapter 4.3.6).

73

4.3.4 Adaption Rules

Dendrite uses conjunctive adaption rules to determine how it should respond to changes
in workload or database system behaviour. These rules specify the conditions to match
against behaviour changes, along with a user-defined function (UDF) to augment the sys-
tem and improve performance.

Adaption rule syntax is as follows:

boolean_expression (AND boolean_expression)* -> PYTHON_UDF(func_args*)

A boolean_expression is a boolean predicate over the current epoch’s differences from
the baseline, PYTHON_UDF is an arbitrary Python user-defined function (UDF) supplied to
Dendrite, and func_args are arguments passed to the UDF.

To ease rule composition, Dendrite provides a set of built-in functions that operate over
model differences (Figure 4.10). These functions retrieve differences in event frequencies,
event proportion, transition probabilities, metric statistics for libc calls (e.g., average
resource consumption), aggregate system resource-consumption, the elapsed time between
events, active processes, and new processes. Developers combine the functions with suitable
operators and thresholds to create boolean predicates that form the backbone of adaption
rules.

As a representative example, consider an adaption rule used to reduce the aggressiveness
of checkpointing in PostgreSQL when the system is under load (Chapter 5.2.1):

get_cur_aggregate_metric_value(’write’) > 25 MB
AND get_transition_cur_metric_sum([’BufferFlush’;’DiskWrite’], ’DiskWriteDone’,
’write’) > 2 MB AND active_models(’checkpointer’) = 1 ->
‘dial_back_chkpt_and_autovac’()

That is, if the total amount of disk writes during this epoch exceeds 25 MB, at least
2 MB of the writes are due to buffer flushes, and the checkpointer process is active, then
execute the ‘dial_back_chkpt_and_autovac’ UDF.

Event names in adaption rules are specified as strings, while event transitions are spec-
ified using a list of prior and subsequent event names. For example, ‘BufferFlush’ identifies
the buffer flush event, and [‘BufferFlush’;‘DiskWrite’], ‘DiskWriteDone’ describes an order-
2 transition from (BufferFlush, DiskWrite) to DiskWriteDone. Metrics are expressed as
strings in the domain of intercepted libc calls (e.g., ‘write’, ‘malloc’).

74

Function Name Description
get_prob_diff(e) Probability difference score for event e
get_[cur|prev]_prob(e) Current/previous epoch probability for event e
get_count_diff(e) Frequency difference score for event e
get_[cur|prev]_count(e) Current/previous epoch probability for frequency

event e
get_transition_diff(e1, e2) Transition probability difference score from e1 to e2
get_transition_
[cur|prev]_prob(e1, e2)

Transition probability for current/previous epoch
from e1 to e2

get_agg_metric_diff(m) Aggregate metric difference for metricm (e.g., write)
get_transition_metric_diff(
e1, e2, m)

Transition metric difference (libc) for metric m be-
tween e1 and e2

get_cdf_diff(e1, e2,m) The earth-mover’s distance between the CDFs of met-
ric m between e1 and e2

get_[cur|prev]_
metric_mean(e1, e2,m)

The mean for metric m between events e1 and e2 for
the current/previous epoch

get_[cur|prev]_
metric_sum(e1, e2,m)

The sum for metric m between events e1 and e2 for
the current/previous epoch

active_models(type) The number of models of type type active in the cur-
rent epoch. If type is not provided, matches an pro-
cess (as with other functions below).

new_models(type) The number of models of type type newly active in
the current epoch

Figure 4.10: A sample of Dendrite’s built-in functions for composing adaption rules.

75

Dendrite allows developers to tag events with human-readable names (e.g., mapping
the event from md.c on line 655 to BufferReadDone) to simplify rule composition and
adjustments. These tags improve the readability of rules and enable administrators that
may be less familiar with the database system’s source code to customize them for their
environment. Tagging also allows the porting of rules between different database system
versions as events may change their position in source code between versions.

The PYTHON_UDF argument supports arbitrary Python 3 UDFs, which may call shell
scripts or other executables as desired. These functions accept a list of function arguments,
func_args, to which the current and baseline models are prepended. As such, the functions
can access characteristics of the models to determine how to respond. As examples of
adaption UDFs, one scenario in the following chapter’s case studies employs a UDF that
changes the system configuration for PostgreSQL (Chapter 5.2.1), and another detects and
routes OLAP queries away from a PostgreSQL database to a MonetDB database that more
efficiently supports them (Chapter 5.2.3).

Dendrite evaluates adaption rules whenever it observes a significant behaviour difference
(Chapter 4.3.2). However, adaption rules can take time to effect the desired change; for
example, reducing the frequency of checkpointing may take a few epochs to reduce I/O
consumption because a checkpoint is ongoing (and should not be interrupted). If so,
subsequent epoch behaviour differences may also match a given rule’s conditions, resulting
in the same rule being fired multiple times in a row. Dendrite eliminates this concern by
executing a UDF only when its conditions are unsatisfied in the previous epoch but are
satisfied in the current one.

The control server deploys an HTTP server that can be used to dynamically register
rules in response to the ongoing workload. The control server will evaluate these addi-
tional rules in subsequent epochs. This feature supports administrators interacting with
Dendrite’s web interface (Chapter 4.3.5), which highlights behaviour changes and alerts
administrators when significant changes have occurred.

Rule Evaluation Discussion

Although adaption rules are individually conjunctive, Dendrite’s execution of any matching
adaption rule over behaviour differences naturally forms a disjunctive condition. Consider
the following adaption rule condition:

A ∧ (B ∨ C)

where A, B, and C are boolean subexpressions, ∧ is the logical AND operator and ∨ is
the logical OR operator.

76

Figure 4.11: Dendrite’s user interface.

By the distributive property, the condition can be rewritten as:

(A ∧B) ∨ (A ∧ C)

i.e., a logical disjunction of conjunctions. This disjunctive adaption condition can be
represented using two rules in Dendrite — A ∧ B → UDF and A ∧ C → UDF . In other
words, rules in Dendrite that share a UDF reaction are in disjunctive normal form (DNF) as
Dendrite will execute any rule that matches the behaviour differences. As all boolean logic
formulae may be converted into DNF [29], Dendrite supports a large variety of database
system adaption conditions.

Currently, Dendrite evaluates each rule’s conditions sequentially. If an administrator
has registered rules R1, R2, . . . Rk, Dendrite will evaluate R1 first, then R2, and so forth.
Dendrite could exploit more advanced rule evaluation algorithms (e.g., the Rete algorithm
[43]) and work on active databases [13]. These optimizations, however, are orthogonal to
Dendrite’s contributions of enabling online adaptivity in generalized database systems.

77

4.3.5 User Interface

In addition to the interface described in the previous chapter for exploring behaviour
differences (Chapter 3.4.1), Dendrite presents a web interface that shows ongoing database
system behaviour and any adaptions it has deployed (Figure 4.11). This user interface
consists of three panels: the timeline panel (top), the differences relative to the baseline
panel (bottom left), and the differences compared to the prior epoch panel (bottom right).

The timeline panel presents database system behaviour over time, where each circle
describes the behaviour of an epoch. A teal circle indicates that system behaviour during
that epoch is comparable to both the expected baseline and the prior epoch, while a gold
circle with a warning symbol means that system behaviour differs. Clicking on a circle
shows these differences in detail in the differences panels below; the panels show differences
in terms of aggregate system resource consumption and event proportion. Dendrite can also
attribute resource consumption to particular event transitions using libc metric reservoirs
in a pop-up panel.

When database system behaviour changes, a pop-up window summarizes the details of
the behaviour change and lists any adaptions executed in response. Users may register new
rules in this panel using the existing ones as a template. Dendrite considers these rules if
system behaviour changes in subsequent epochs.

This user interface is demonstrated in greater detail in a demonstration video [52]. This
video highlights Dendrite’s utility in remedying load spikes and reducing excess disk I/O
due to checkpointing and autovacuuming in PostgreSQL.

4.3.6 System Tools and Deployment

Dendrite provides a robust suite of management tools for developers and administrators
to work with behaviour models and adaption rules. These management tools include a
PostgreSQL database that indexes historical and current behaviour models and scripts
that automate common system management tasks.

When Dendrite outputs per-thread behaviour models to disk at the end of an epoch,
it writes them into per-thread files identified by process and thread IDs. New models are
appended to these files when an epoch completes. Offline, the control server retrieves these
models and loads them into a PostgreSQL database. Dendrite associates each model with
its timestamp, epoch, process ID and thread ID.

Administrators use the provided tools to simplify their interactions with the control
server:

78

• pg_get_model: Retrieves the combined behaviour model from PostgreSQL for the
specified epoch, serializing it to disk in a local file.

• diff_models: Determines the difference score for the two specified behaviour models
(with or without attention focusing), outputting the top differences.

• read_single_model_at_epoch: Returns the behaviour model for the requested pro-
cess/thread ID for the given epoch.

The first two tools enable a detailed offline analysis of a behaviour anomaly. While
Dendrite automatically responds to these events, administrators may wish to perform a
postmortem analysis of discovered problems to better understand the problem source.

The last tool is useful for registering representative behaviour models. After launching
Dendrite and executing the representative workload, a developer or administrator can
determine the process/thread ID of an execution unit of interest and export its behaviour
model. These exported models are then provided to Dendrite to enable fingerprinting
(Chapter 4.3.3).

Building on the approach used in the case studies (Chapter 5), the Dendrite deployment
process is envisioned as follows. First, developers integrate the target database system with
Dendrite. They modify the system’s logging library to forward information to Dendrite’s
in-memory tracing library (Chapter 5.3.3). Developers use domain knowledge of common
system problems that require adaption and reproduce them in test environments with
benchmark workloads, using Dendrite to output behaviour differences. As Dendrite reports
the top differences when system behaviour changes, these differences provide a convenient
starting point for developers to compose template adaption rules. The Dendrite-equipped
version of the database system is made available to administrators, along with the template
adaption rules, to deploy in their environments.

Next, administrators deploy the database system as usual, using system documentation
or tuning tools to obtain good initial performance for their workload. They have Dendrite
output a model of system behaviour and register it as the baseline. They augment the
provided template adaption rules for their environment, adjusting the thresholds and user-
defined functions if necessary. Finally, they monitor Dendrite’s user interface and use it to
define and register new responses to unforeseen situations that benefit from adaption.

79

Figure 4.12: Dendrite-Pin extracting events from executables.

4.4 Beyond Logging-based Models

The previous sections have shown how Dendrite constructs behaviour models by intercept-
ing logging messages and system metrics. While debug logging is widely used in practice, a
dependence on logging would reduce Dendrite’s effectiveness when logging is used sparingly
or eschewed entirely.

In this section, I present an alternative version of Dendrite’s in-memory tracer built
on top of Intel’s dynamic binary instrumentation framework, Pin [80]. This version,
Dendrite-Pin, eliminates the need for logging and can inject adaption logic directly into
binary code, unlike the default implementation (Dendrite-Log). Developers can choose
among these Dendrite versions depending on the availability of source code, their willing-
ness/ability to modify the system’s code to improve logging coverage if needed, and their
performance requirements.

4.4.1 Overview

Developers use Pin to create instrumentation tools (pintools) that are injected into binary
executable code. These instrumentation tools can modify functions in the executable’s

80

code, enabling developers to trace and change the underlying system’s behaviour. Dendrite-
Pin exploits this functionality to extract the information it needs from the system without
logging. Deploying Dendrite-Pin is simple — administrators download the Pin framework
on the database machine. They then execute the system using Pin and specify Dendrite-
Pin’s tracer as the pintool to deploy.

By default, Dendrite-Pin overrides same libc calls as Dendrite-Log. It also accepts a
configuration file specifying a list of additional function names to override in the executable.
When the system starts, Dendrite-Pin will locate these functions in the system’s binary
code, inserting calls to the in-memory tracer’s record_event function that extract events
and encode them into its models (Figure 4.12). In doing so, it captures tracing information
that may not be available through logging.

Moreover, Dendrite-Pin overrides same libc calls as Dendrite-Log. However, instead
of using LD_PRELOAD to supply a shared object file with the tracking shim versions of these
calls before libc.so is loaded, Dendrite-Pin directly overrides the function calls using Pin.

Beyond inserting tracing information, Dendrite-Pin can also entirely replace functions
in the executable with custom implementations. The original implementation of a replaced
function remains available to the override, enabling it to call the original while modifying
function inputs and outputs. As such, Dendrite-Pin can endow systems with adaptive
processing strategies they cannot support with solely system-external UDFs. For exam-
ple, we show how Dendrite-Pin can improve SQLite’s performance on an update-intensive
workload by adaptively batching queries in Chapter 5.2.4.

4.4.2 Trade-offs between Dendrite Versions

Dendrite-Log and Dendrite-Pin pose different benefits and drawbacks, making them suit-
able for different environments. We now discuss these trade-offs in more detail, providing
insight into when each version should be used.

Dendrite-Pin offers three key advantages over Dendrite-Log. First, it enables systems
to integrate with Dendrite without code recompilation. Second, it extracts behaviour
models without logging and thus supports systems in which logging is sparse or unused.
Third, it can inject new functionality into the system using binary modification, enabling
adaption rules to augment internal system logic. If these features are required in the target
environment, then the Dendrite-Pin version can be deployed.

However, Dendrite-Log’s ability to access source code has advantages. Logging libraries
may use one method to test if a message should be written to disk, and a different one to

81

write it out. This mechanism is less suited for Dendrite-Pin because the test function may
not use the event’s file name and line number, precluding Dendrite-Pin from determining
the event’s origin by intercepting this function. However, the test function determines
whether the write-back function — that contains the needed information — will be ex-
ecuted. This pattern is used in PostgreSQL 14.1 and means that Dendrite-Pin captures
slightly different events than Dendrite-Log. Whereas Dendrite-Log obtains its informa-
tion from logging calls, Dendrite-Pin obtains information by intercepting targeted function
calls that may or may not have logging calls in them. Finally, Dendrite-Pin can have
slightly higher overhead than Dendrite-Log (Chapter 5.3.1). For these reasons, Dendrite-
Log should be deployed when binary instrumentation is not required, using Dendrite-Pin
when it is.

The next chapter shows the effectiveness of both Dendrite versions in a variety of
representative use cases, examining these trade-offs in more detail.

82

Chapter 5

Generalized Database System
Adaptivity: Case Studies

Dendrite is unique in its cross-system ability to model database system behaviour and
enrich these systems with adaptive responses through its adaption-rule framework. Thus,
this chapter focuses on exercising, evaluating and analyzing these capabilities through four
representative case studies on several popular database systems.

The case studies answer the research questions posed in the introduction. Namely, they
show that:

1. Dendrite efficiently extracts database system events and resource-consumption met-
rics in a system-agnostic fashion, enabling its modelling framework to integrate easily
with popular, open-source database systems.

2. Dendrite’s behaviour models are lightweight and capture the information necessary
to detect system behaviour shifts. Its difference detection techniques surface the most
important behaviour changes.

3. Dendrite’s adaption rules are expressive and handle a wide variety of behaviour
changes. Adaption rules are portable across database systems with similar char-
acteristics.

To obtain these findings, I integrated Dendrite with PostgreSQL 14.1 [59], MariaDB
10.5 [47], and SQLite 3.36.0 [32]. These databases are well-known and widely deployed;
they consistently rank among the most popular open source database systems [31, 103,

83

Figure 5.1: Experiment architecture for Dendrite’s case studies.

123]. I evaluated Dendrite on three workloads with disparate characteristics: TPC-C [24],
CHBenchmark [20], and YCSB [22].

In the case studies, Dendrite:

1. detects disk I/O overheads due to checkpointing and augments configuration param-
eters to improve performance;

2. reduces query latency by determining when a client workload would benefit from a
secondary index and constructing one appropriately;

3. detects clients that are executing analytical queries on a row-oriented database system
that would be better served by a column-oriented database system and re-routes their
queries accordingly to reduce query-response time;

4. improves the performance of the SQLite embedded database system in an update-
intensive environment by dynamically batching updates, reducing processing over-
heads.

5.1 Experiment Setup

The case studies use a single-node deployment (Figure 5.1), except for the hybrid transac-
tion/analytic processing experiment. The control server is deployed on the same machine
as the database system, issuing a command to the database-integrated in-memory tracer
every 30 seconds (the configured epoch length) that triggers writing the current epoch’s

84

models to disk. To avoid repeatedly polling the files on disk to determine when the models
have been written, the control server uses inotify [66]. The Linux kernel signals the con-
trol server’s inotify handlers when a model file is created or new data has been written,
prompting the server to process the new information. The control server then conducts
behaviour comparisons and deploys adaptions as described in the previous chapter.

Clients send requests to the database system to execute each workload using the stan-
dard Java-based JDBC or C drivers. The way these systems execute the requests depends
on their architectures and the processing techniques they support. I first present a brief
overview of each of the systems used in the case studies below.

5.1.1 PostgreSQL

PostgreSQL [59] is a relational database management system (RDBMS) that uses a tradi-
tional client-server architecture. Clients use a language-specific driver (e.g., JDBC for Java,
libpq for C/C++), to send queries through the network to the standalone PostgreSQL
database server to execute.

PostgreSQL uses a process-centric model. When a client connects to the system, Post-
greSQL forks a worker process to handle the client’s requests. Background workers, such
as the bgwriter that asynchronously flushes dirty pages or the checkpointer that conducts
periodic system checkpoints, also operate in independent processes. PostgreSQL supports
parallel query execution by forking new background processes to execute query plans con-
currently.

The client, background worker, and coordinator processes communicate with each other
using shared memory and signals. The buffer pool resides in shared memory and is typically
configured to use 25% of overall system memory. The remaining memory serves as the
operating system’s file cache.

PostgreSQL uses checkpoints to flush dirty pages to disk and reduce recovery time
in case of a system crash. Checkpoints in PostgreSQL are expensive because they flush a
large number of pages to disk and consume significant I/O bandwidth. As processing query
requests involves writing updates to the write-ahead log (WAL) and reading pages from
disk, the extra resource consumption of checkpoints conflicts with normal query processing
and can impair performance. The bgwriter offsets this cost by asynchronously writing
dirtied pages to disk in batches, reducing the number of pages that must be flushed dur-
ing a checkpoint. Alternatively, checkpoints can be spread over a longer interval using
the checkpoint_completion_target configuration parameter, thus avoiding an I/O burst.

85

Checkpoints are triggered when the WAL reaches a specific size (1 GB by default) or when
a configured timeout has elapsed (5 minutes by default).

PostgreSQL tables use multi-version concurrency control to avoid conflicts between
concurrent clients that wish to read and update the same record. Updates create new
versions of records, and PostgreSQL tracks which record versions should be visible to
executing clients to preserve isolation requirements. However, old versions of records that
are no longer visible to clients must be periodically removed from the table to prevent
tables from growing in size and degrading performance. Background autovacuum workers
scan the tables for such “dead tuples” and remove them. Although this process is necessary,
it is also disk-bandwidth intensive and impairs database system performance.

PostgreSQL uses elog as its debug logging library. PostgreSQL’s debug logging is
sparse by default, so I configured its important DTrace probes [58] to emit debug logs
to improve logging coverage. Integrating PostgreSQL with Dendrite-Log chiefly involves
changing a debug-logging macro (ereport_domain) to call record_event (Chapter 5.3.3).

5.1.2 MariaDB

MariaDB [47] is a popular, open-source fork of the MySQL [23] relational database man-
agement system. Although the two systems share a similar codebase, they are increasingly
distinct as they grow to support different features.

MariaDB uses a highly asynchronous, threading-based architecture. Clients are as-
signed threads when they connect to the system, enabling them to share the same address
space and buffer pool with other clients. Requests for page data on disk are performed
through asynchronous I/O requests (libaio), unlike PostgreSQL’s use of read and pwrite.

Like PostgreSQL, MariaDB uses checkpointing to reduce recovery time in case of a
system crash. However, MariaDB implements fuzzy checkpointing [102]. When a check-
point starts, it flushes dirty pages in least-recently-used (LRU) order, skipping any latched
pages. Of the remaining dirty pages, that with the earliest change according to transaction
commit order defines the checkpoint low watermark; all earlier changes have been flushed
to disk, so recovery can start from this low watermark in the WAL.

As MariaDB implements its WAL differently than PostgreSQL, the conditions under
which checkpointing is triggered also differ. Unlike PostgreSQL’s append-based WAL,
MariaDB uses a fixed-size, circular, disk-backed buffer. WAL records are written to this
buffer in the typical circular fashion. If a write to the WAL would overwrite a record that
has changes in the buffer pool as of yet unflushed to disk, the system must block to flush

86

the page to disk before the record would be overwritten. This condition triggers an ag-
gressive round of page flushing that blocks transactions, leading to significant performance
degradation. The other condition for checkpointing is more benign — if 90% of the pages
in the buffer pool are dirty, MariaDB will trigger a lightweight checkpointing round that
does not block.

MariaDB’s tables do not require autovacuuming. Before a record is updated, its old
version is copied to a temporary buffer called the rollback segment. Afterward, the transac-
tion directly updates the record’s values in the table. Records in the rollback segment are
purged when they are no longer visible to ongoing transactions, which incurs less overhead
than the scans required by PostgreSQL’s autovacuuming. Thus, MariaDB incurs more
overhead on updates to maintain this rollback segment but avoids the cost of vacuums,
while PostgreSQL is the opposite.

MariaDB does not provide support for parallel query execution, unlike PostgreSQL.
While PostgreSQL aggressively uses parallel plans to reduce the latency cost of expensive
analytics queries, MariaDB cannot benefit from such strategies.

To output debug logging information, MariaDB uses the DBUG library [41]. This
library provides DBUG_ENTER and DBUG_EXIT macros that are called at the entrance and
exit of most functions, along with DBUG_PRINT for outputting information in the middle
of function execution. These macros feature group arguments so that logging statements
may be enabled and disabled according to their group name (e.g., lock, ib_buf). Inte-
grating MariaDB with Dendrite-Log requires changing only these DBUG_* macros to call
record_event as part of their execution (Chapter 5.3.3).

5.1.3 SQLite

SQLite is a popular, embedded relational database management system, in contrast to
the client-server models of PostgreSQL and MariaDB. SQLite stores the database in a
single file, unlike the complex file architectures of the other database systems. Clients
interact with SQLite using function calls provided by SQLite’s client-library instead of
issuing requests over network sockets.

Although SQLite supports concurrent clients, it executes update transactions serially.
Clients that wish to modify data while another client is updating it must block or use a
retry loop to repeatedly submit their transaction. Moreover, an update from one client
connection invalidates the local caches of the other clients, causing significant performance
degradation. Thus, SQLite targets read-mostly workloads.

87

Like the other RDBMSs, SQLite supports checkpointing dirty pages to minimize recov-
ery time. Automatic checkpointing executes after a configurable number of log frames have
been written to SQLite’s WAL, defaulting to 1000. SQLite also supports autovacuuming,
but differs from PostgreSQL in that it packs the database into the smallest file size. Au-
tovacuuming is disabled by default but can be configured to execute on every transaction
commit or by user command.

SQLite does not output debug logs by default. Internally, SQLite uses TRACE macro
statements to output information, but compiler flags typically disable them. While it is a
simple matter to adjust the compiler flags and adjust the TRACE macro to call record_event
(as in Chapter 3.5), the case studies in this chapter use this situation to demonstrate the
benefits of Dendrite-Pin.

5.1.4 MonetDB

MonetDB [11] is a relational database management system that uses column-oriented data
storage and excels at processing analytics queries. Like PostgreSQL and MariaDB, it
employs a client-server architecture; clients submit queries to MonetDB over a network
socket.

MonetDB automatically creates indexes to optimize for the workload [65], while Post-
greSQL, MariaDB, and SQLite necessitate that administrators hand-select them. Mon-
etDB’s queries are automatically compiled into parallelizable, vectorized execution plans
to improve performance.

5.1.5 Workloads

The case studies consider three workloads with disparate characteristics.

TPC-C [24]: TPC-C is a popular order-entry benchmark. Its update-intensive nature
is representative of online transaction processing (OLTP) workloads.

CHBenCHmark [20]: While analytics (OLAP) and transaction processing (OLTP)
workloads have traditionally been considered disjoint, there has recently been increased in-
terest in executing complex analytical queries over the most up-to-date transactional data.
Workloads exhibiting such characteristics are called hybrid analytics/transaction process-
ing workloads (HTAP), and are among the most challenging for databases to efficiently
serve.

88

CHBenCHmark unifies a representative OLTP workload, TPC-C, with a popular
OLAP workload, TPC-H [25]. CHBenCHmark executes a configurable number of TPC-C
clients in parallel with a configurable number of TPC-H-like workers in the background.
The TPC-H style workers operate over an extended TPC-C schema to support TPC-H
queries while still incorporating the data updated by the OLTP clients.

YCSB [22]: The Yahoo Cloud Serving Benchmark is a key-value style benchmark
that features a variety of workload types. The case studies and microbenchmarks use
variations of YCSB-B and YCSB-C benchmarks. By default, the YCSB-B workload uses
a 95%/5% read-only/update transaction mix, while the YCSB-C workload uses a 100%
read-only transaction mix. All queries select the records to be retrieved or updated based
on the primary key of the relation and thus use index scans. These workloads are used to
test automatic index creation, evaluate dynamic query batching, and examine Dendrite’s
overheads.

5.2 Case Studies

The following case studies comprehensively evaluate Dendrite’s generality and adaption
capabilities. The first three case studies show Dendrite’s ability to adapt system behaviour
in the popular PostgreSQL and MariaDB database systems. These database systems have
broadly similar characteristics but distinct architectures (process vs. thread-based), fea-
tures (e.g., intra-query parallelism in PostgreSQL, which is not supported in MariaDB),
and code bases. As such, these case studies demonstrate that Dendrite is effective in a
variety of scenarios and across database systems. Moreover, they show that adaption rules
composed for one database can be ported to other similar systems.

The last case study uses the SQLite database system, which unlike PostgreSQL and
MariaDB uses limited debug logging. Even in this different and challenging environment,
Dendrite is effective in detecting behaviour changes and deploying adaptions to remedy
them through its use of binary instrumentation.

Each experiment’s performance metric of interest is averaged over at least three runs.
Each machine uses the Ubuntu 20.04 operating system and is equipped with 12 CPU cores
with hyperthreading enabled, 32 GB of memory, a 1 GB/s network card, and a 1 TB HDD.

89

Figure 5.2: Checkpoint adaption throughput improvements.

5.2.1 Reducing Checkpoint Frequency

Checkpointing is a critical component of database maintenance. Checkpoints execute pe-
riodically, flushing dirty pages to disk to reduce recovery time if the database crashes.
Unfortunately, checkpoints are known to have high overheads as they consume significant
CPU and disk resources that could otherwise be used for query processing. In this sce-
nario, Dendrite reduces an aggressive checkpointing threshold to ameliorate checkpointing
overheads and improve system performance.

This case study uses the default configurations for both PostgreSQL and MariaDB,
except that the checkpoint_completion_target configuration parameter in PostgreSQL
is adjusted to 0.0 to improve checkpoint completion speed.

Both Dendrite versions are supplied with a behaviour model of the checkpointer pro-
cess/thread in PostgreSQL and MariaDB for identification through fingerprinting (Chapter
4.3.3). I registered a baseline behaviour model extracted from a period when checkpointing
was not taking place. All models were obtained during a dry run of this experiment.

Dendrite-Log is configured with the following adaption rule for both PostgreSQL and
MariaDB:

get_cur_aggregate_metric_value(‘disk_write’) > 25 MB
AND get_transition_cur_metric_sum([‘BufferFlush’; ‘DiskWrite’], ‘DiskWriteDone’,
‘write’) > 2 MB AND active_models(‘checkpointer’) = 1 ->
‘dial_back_chkpt_and_autovac’()

90

That is, if the aggregate disk writes during an epoch exceed 25 MB, 2 MB of these
writes are due to flushing pages to disk in a checkpoint, and the checkpointer is active,
then Dendrite executes the dial_back_chkpt_and_autovac user-defined function.

This UDF reduces the frequency of checkpointing and autovacuuming. In PostgreSQL,
this function modifies the PostgreSQL configuration to set max_wal_size to 100 GB and
checkpoint_timeout to 6 hours, which act as the thresholds for when checkpointing is
triggered (Chapter 5.1.1). It also reduces the background autovacuum worker count to 0
and cancels ongoing autovacuuming.

As MariaDB supports dynamically resizing its WAL size using the SET SQL command1,
Dendrite uses this approach to increase the WAL file size to 8 GB. Since checkpointing
in MariaDB on the update-intensive TPC-C workload using the default configuration is
primarily triggered by overwriting unflushed WAL records in the small 96 MB WAL (Chap-
ter 5.1.2), this change dramatically improves system performance by alleviating blocking
and I/O overheads. Dendrite-Pin uses the same adaption rule for both MariaDB and
PostgreSQL, simply adjusted to use the names of the relevant intercepted functions.

I executed 20 TPC-C workers against a scale factor 10 database using OLTPBench [35].
The write-intensive nature of this workload rapidly fills the WAL and triggers checkpointing
in PostgreSQL and MariaDB. Dendrite recognizes the behaviour difference from expected
behaviour in the first few epochs for both PostgreSQL and MariaDB, matching the provided
adaption rule and reducing checkpoint frequency. Dialing back checkpoint frequency takes
place immediately in PostgreSQL, but does not cancel ongoing checkpoints (which take 5
minutes to complete). After the checkpoint completes, Dendrite reports that the system
has converged to expected system behaviour. Similarly, reducing checkpoint frequency
for MariaDB necessitates online resizing of the WAL but provides significant throughput
improvements once the resizing completes (5 minutes). Afterward, MariaDB converges to
expected system behaviour.

As a result of these system adaptions, Dendrite improves system throughput by more
than 2.5× in PostgreSQL and 2× in MariaDB (Figure 5.2). Note that the same adaption
rule conditions work for both systems; porting rules requires only a simple developer-
provided abstraction layer to determine which events are equivalent across the systems.2

1As dynamic WAL resizing is supported in MariaDB 10.9+, this version is used for this experiment.
2e.g., DiskWrite = buf0flu.cc:835 in MariaDB and md.c:710 in PostgreSQL.

91

Figure 5.3: Index-creation adaption throughput improvements.

5.2.2 Automatic Construction of Secondary Indexes

Indexes are widely used in database systems to accelerate lookup operations on relations
with a large amount of data. However, they must be updated when new data items are
inserted or updated, leading to a trade-off between search and update operation perfor-
mance. Administrators must determine which indexes are worth the maintenance cost,
which depends on client access patterns in the workload. This case study shows how Den-
drite detects circumstances in which a workload would benefit from a secondary index,
determines which index to create, and consequently improves system throughput.

When a database system needs to find a record in a relation for which indexed in-
formation is unavailable, it resorts to a sequential scan. While PostgreSQL uses parallel
background workers to improve the performance of large scans, MariaDB lacks this capa-
bility. As PostgreSQL does not have debug logging events for sequential scans, I targeted
logging events for the creation of background scan workers in Dendrite’s adaption rules for
this system. The MariaDB rules operate over sequential scans directly.

Dendrite-Log is equipped with the following adaption rule for PostgreSQL:

get_prob_diff(‘BackgroundWorkerStart’) > 2.0 AND
get_count_diff(‘CommitTransaction’) > 1.5 AND
get_cur_count(‘CommitTransaction’) < get_prev_count(‘CommitTransaction’) ->
‘create_appropriate_sec_index’()

92

That is, if the proportion of background workers registered has increased by 2×, but
the number of committed transactions has decreased by 50%, then execute the create_
appropriate_sec_index user-defined function. This UDF retrieves the set of frequently
executed queries that are using sequential scans, and constructs a secondary index over
the fields on which the queries have a predicate.

In PostgreSQL, create_appropriate_sec_index uses the pg_stat_user_tables view
to find the tables that have the largest number of sequential scans. The UDF deter-
mines that the sequential scans primarily execute over the USERTABLE relation and uses
the pg_stat_statements view to retrieve slow queries operating on USERTABLE with an
execution count greater than 10. It parses the query and finds the columns it accesses,
constructing an index over them to improve query performance.

In MariaDB, create_appropriate_sec_index retrieves the slowest-to-execute queries
from MariaDB’s slow_log relation, and parses them as in PostgreSQL. It extracts the
relevant columns and relation, and constructs an index over these columns for the specified
relation.

The adaption rule used for MariaDB is similar to that of PostgreSQL, but the ‘Back-
groundWorkerStart’ > 2.0 condition is substituted for a ‘SequentialScan’ > 2.0 check. The
rest of the rule is the same. The Dendrite-Log rule for a given database system is also used
for its Dendrite-Pin experiments. Again, observe that a simple abstraction layer mapping
events of interest between systems is sufficient to port a rule.

I executed a 25-client YCSB-C workload against PostgreSQL and MariaDB. The de-
fault configuration is used for both database systems while disabling checkpointing and
autovacuuming to remove background performance effects and ensure consistency across
results. At 90 seconds into the 300 second workload, 15 clients switch to executing a record
lookup operation using an unindexed field. These queries require sequential scans and are
significantly slower compared to the original queries that use indexes.

Dendrite detects a behaviour shift in both PostgreSQL and MariaDB in the first epoch
in which queries requiring sequential scans execute (epoch 3). Both systems take less
than 30 seconds to create the necessary index, after which performance improves and be-
haviour rapidly converges to expectations. As a result of this adaption, Dendrite improves
performance by between 1.4× and 1.7× (Figure 5.3).

While all adapted systems provide significant gains compared to their unadapted de-
faults, the PostgreSQL configurations enjoy the largest benefits since PostgreSQL incurs a
larger penalty than MariaDB for a lack of indexing on this read-intensive workload. This
effect is due to its parallel sequential scans amplifying resource contention. Dendrite-Pin
is marginally slower for PostgreSQL because Pin has higher overhead than log interception

93

Figure 5.4: Row-oriented storage vs. column-oriented storage. Updates that span multiple
record fields are best served by row-stores, while queries that aggregate the same field
across records are best served by column-stores.

(Chapter 5.3.1), and both configurations capture similar numbers of events. By contrast,
Dendrite-Pin is marginally faster than Dendrite-Log on MariaDB since it intercepts fewer
function calls than the events captured by Dendrite-Log.

5.2.3 Handling an HTAP Workload

Relational database management systems select between column-oriented and row-oriented
storage. Column-oriented storage packs a relation’s data columns sequentially on disk,
whereas row-oriented storage packs records sequentially (Figure 5.4). Column-oriented
storage is read-optimized [1,5,11], in that only the columns accessed by submitted queries
need to be read from disk. In contrast, row-oriented storage must skip over unused fields
during a sequential scan (purple query in Figure 5.4). The downside of column-oriented
storage is that transactions which update multiple record fields need to access data spread
across non-sequential disk locations, whereas row-oriented storage places these fields closer
together (blue query in Figure 5.4). Hence, read-heavy analytics workloads (OLAP)
are best served by column stores, while row-stores best serve update-intensive workloads
(OLTP). Hybrid workloads (HTAP) benefit from a hybrid storage approach.

94

Figure 5.5: CHBenchmark query latency improvements.

In this case study, Dendrite automatically detects OLAP worker threads/processes
executing within a hybrid workload. It changes these workers’ query routing strategies,
routing their queries to a column store instead of the primary row store. Doing so reduces
the latency of these expensive analytics queries significantly.

I used OLTPBench to create a scale factor 10 CHBenCHmark database in PostgreSQL
(or MariaDB), and replicate the data to MonetDB. As PostgreSQL and MariaDB are row-
oriented database systems, they serve as the primary row-store system. MonetDB uses a
column-oriented data storage and therefore serves as a standby node to which analytics
queries will be redirected.

Both PostgreSQL and MariaDB are equipped with the same configurations used in
the prior case study, and MonetDB is equipped with its default configuration. To obtain
a representative model of desired workload behaviour, I executed the OLTP portion of
CHBenCHmark against the PostgreSQL/MariaDB database, and exported a behaviour
model during normal system execution. I then enabled the OLAP portion of the workload
and repeated this experiment, exporting models of the PostgreSQL processes and MariaDB
threads used to execute the analytical queries. I registered the OLTP-only model as the
baseline and provided Dendrite with OLAP worker models of the row-store databases for
use in fingerprinting.

I equipped Dendrite-Log with the following adaption rule for both PostgreSQL and
MariaDB:

95

get_cur_count(‘DiskRead’) > get_prev_count(‘DiskRead’) * 5.0 AND
active_models(‘olap_worker’) >= 2 -> ‘route_olap_to_monet’()

That is, if the count of DiskRead events has increased by more than 5× and at least two
olap_worker processes/threads are active, then Dendrite will re-route the OLAP queries
to MonetDB. For both systems, Dendrite-Pin is equipped with an equivalent rule that
operates over relevant function execution counts.

In PostgreSQL, the route_olap_to_monet UDF determines which processes correspond
to OLAP workers using the provided fingerprint and the per-thread models. It obtains their
process IDs and identifies the client connections using the metadata on JDBC connections.
These clients are transparently adjusted to interact with MonetDB instead of the default
row store, improving performance. The MariaDB UDF is similar, except that it uses thread
IDs as MariaDB uses a threading-based architecture.

I executed 10 OLTP CHBenCHmark workers to execute against the row-store database.
After 180 seconds, 2 OLAP workers began executing analytical queries as well.

During the initial epochs, Dendrite reports that MariaDB/PostgreSQL behave as ex-
pected, since there are no OLAP queries running. In the first epoch in which OLAP
queries appear, Dendrite detects a behaviour difference in both systems. Dendrite matches
the new processes’/threads’ behaviour against the registered model using fingerprinting
and determines that they are OLAP workers. As the DiskRead condition also matches,
Dendrite deploys the route_olap_to_monet UDF, which obtains the process/thread IDs
of the running OLAP workers and forwards them to the connection pool manager for re-
routing. The connection pool transparently swaps the underlying row-store connection for
a connection to MonetDB, rerouting the queries.

As as result of Dendrite’s adaption, average OLAP query latency is reduced by a
factor of 25× compared to PostgreSQL, and by 200× compared to MariaDB (Figure 5.5).
These gains are due to MonetDB’s superior execution strategy and column-oriented data
storage layout compared to the row-store systems. The performance difference between the
PostgreSQL and MariaDB results is due to PostgreSQL’s parallel query execution support
and superior query plans.

5.2.4 Batching Updates in SQLite

SQLite is an embedded database system suitable for read-intensive workloads, but it suf-
fers from contention on update-intensive workloads. Unlike PostgreSQL and MariaDB,

96

Figure 5.6: SQLite batched query adaption throughput improvements.

it supports only serial, i.e., one-transaction-at-a-time, execution of updates. In this case
study, Dendrite improves SQLite’s update performance through binary instrumentation.
Dendrite detects an increase in submitted update transactions, dynamically batches them
into a single larger transaction and executes them as a unit. In doing so, it improves
performance by mitigating the overheads of processing only a single update operation at a
time.

In contrast to PostgreSQL and MariaDB, SQLite provides limited debug logging. While
enhanced logging can be enabled by adjusting compilation flags, this necessitates rebuilding
the software with a custom configuration. Therefore, this study focuses on Dendrite-Pin,
demonstrating its ability to model systems without recompilation or reliance on logging. I
configured Dendrite-Pin to trace the sqlite3Select and sqlite3Update functions, which
execute select and update queries respectively. Dendrite-Pin is provided with the following
adaption rule:

get_prob_diff(‘sqlite3Update’) > 1.5 AND
get_cur_prob(‘sqlite3Update’) > get_prev_prob(‘sqlite3Update’) ->
‘start_batching’()

That is, if Dendrite determines that the proportion of update queries has increased by
50% then it executes the start_batching UDF.

start_batching creates a /hdd1/override file. The file is used by sqlite3ExecWrapper,

97

a function injected by Dendrite-Pin to override the sqlite3Exec function responsible for
executing SQL strings:

1 int SQLite3ExecWrapper(sqlite3 *db, const char *sql , int (* callback)(void *,
int , char**, char **), void *first , char *errmsg) {

2 struct stat statbuf;
3 int rc = stat("/hdd1/override", &statbuf);
4 bool not_exists = (rc == -1);
5 if(not_exists || strncmp(sql , "UPDATE usertable", 16) != 0) {
6 // Can’t guarantee this is our UDPATE , so don’t buffer it. Pass

through.
7 return (* sqliteExecFunc)(db, sql , callback , first , errmsg);
8 }
9

10 // Assume we can buffer or execute it at will.
11 std::lock_guard <std::mutex > lk(batch_mutex);
12

13 if(batch_updates.size() == 99) {
14 drain_buffered_queries(db, sql);
15 } else {
16 batch_updates.push_back(strdup(sql));
17 }
18 return SQLITE_OK;
19 }
20 int SQLite3CloseWrapper(sqlite3 *db) {
21 {
22 std::lock_guard <std::mutex > lk(batch_mutex);
23 drain_buffered_queries(db, NULL);
24 }
25 return (* sqliteCloseFunc)(db);
26 }

The SQLite3ExecWrapper function checks to see if a file called /hdd1/override exists on
disk, and if so, batches updates. To do so, it adds received UPDATE queries on the usertable
relation to the batch_updates queue. If the queue reaches a fixed length, the queue is
drained alongside the current query. If the query is not an update, or it is not an update
that should be batched (e.g., background maintenance queries performed by SQLite), then
the query batch is bypassed and executed as usual. This adaption temporarily trades
off ACID semantics of the batched update queries for improved performance; Dendrite’s
adaption rules can codify and exploit cases where developers/administrators deem this
trade-off appropriate, as in this case study. Although this adaption shows the possibilities of
Dendrite-Pin’s responses, it could be enhanced to provide ACID-compliant group-commit
semantics [33] if desired.

98

1 void drain_buffered_queries(sqlite3 *db, const char *last_sql) {
2 char *errmsg;
3

4 (* sqliteExecFunc)(db, "BEGIN", NULL , NULL , errmsg);
5 while(!batch_updates.empty()) {
6 char *sql_ptr = batch_updates.back();
7 batch_updates.pop_back ();
8 (* sqliteExecFunc)(db, sql_ptr , NULL , NULL , errmsg);
9 free(sql_ptr);

10 }
11 if(last_sql) {
12 (* sqliteExecFunc)(db, last_sql , NULL , NULL , errmsg);
13 }
14 (* sqliteExecFunc)(db, "COMMIT", NULL , NULL , errmsg);
15 }

The query buffer is drained using the drain_buffered_queries function. Dendrite
executes all of the queries in the queue as a single update transaction, wrapping them in
BEGIN and COMMIT SQLite commands.

I executed the YCSB-B workload against SQLite, starting with an initial mix of 90%
read and 10% update transactions. A model of this workload’s behaviour from SQLite was
exported using Dendrite and registered as the expected model of system behaviour. After
150 seconds, the workload switches to an 80% read, 20% update mix. Dendrite rapidly
detects this behaviour shift, matches it against the provided adaption rule, and processes
update requests in batches for the remainder of the 300 second workload.

I evaluated batch sizes of 10, 100, and 1000 to determine which yielded the most
significant benefits (Figure 5.6). As shown, even a modest batch size of 10 yields benefits
over default SQLite (1.2×), but a larger batch size of 100 provides a larger throughput
advantage (1.8×). The relative gains become smaller as the batch size grows to 1000
(2.0×). These results demonstrate the utility of Dendrite-Pin in integrating with systems
that use limited logging, as well as the power of modifying system code through binary
injection.

5.3 Microbenchmarks

To quantify Dendrite’s overheads, I conducted targeted assessments through microbench-
marks. This section analyzes these overheads in terms of throughput reduction and memory
consumption.

99

Figure 5.7: PostgreSQL throughput on a YCSB-C workload.

5.3.1 Quantifying Overheads

To assess Dendrite’s overheads, I executed a 25-client YCSB-C workload against Post-
greSQL; YCSB-C’s simple queries move the bottleneck from query execution to Dendrite’s
tracing. As Dendrite-Log and Dendrite-Pin capture a different number of events using
their default configurations (Chapter 4.4.2), I also contrast each version when they cap-
ture only the popular BufferPageAccess event. This approach ensures an apples-to-apples
comparison.

The default configurations of Dendrite-Log and Dendrite-Pin reduce system through-
put with respect to default PostgreSQL by 4% and 15%, respectively. Dendrite-Pin has
higher overhead than Dendrite-Log because of the increased performance impact of binary
instrumentation compared to log-based integration (Chapter 4.4.2).

When both versions use an equivalent tracing configuration (BufferOnly), Dendrite-Pin
has only 8% higher overhead than Dendrite-Log. Again, this difference is attributable to
the overheads of binary instrumentation. These results show the efficiency of Dendrite’s
tracing; capturing information for an event requires updating only a few counters in hash
maps. Moreover, model comparisons and rule evaluation are performed off the main path
of execution and therefore have little effect on overall performance.

The default configurations of Dendrite-Log and Dendrite-Pin consume less than 2 MB
of memory per process for tracking events, event transitions, and metric reservoirs. Over-
whelmingly, this memory comes from tracking metric consumption reservoirs on a per
event-transition basis. PostgreSQL exhibits few unique transitions, which is expected due

100

to the consistent way in which it moves between events. As Dendrite allocates memory for
reservoirs only if required, it minimizes memory consumption.

5.3.2 Attention Focusing and Fingerprinting

Dendrite’s attention-focusing techniques enable developers and administrators to encode
domain knowledge about which database system events are the most important and should
be weighed more heavily when determining system behaviour differences. Similarly, by
supplying Dendrite with behaviour models corresponding to database system processes
(e.g., the checkpointer), Dendrite can identify when these processes are active and exploit
this information in adaption rules.

To examine the sensitivity of Dendrite’s fingerprinting (Chapter 4.3.3) and attention-
focusing techniques (Chapter 4.3.2), I compared PostgreSQL worker behaviour models
obtained from different epochs, experiments and workloads. I obtained a YCSB-C worker
model from the overheads microbenchmark above and compared it against the other clients’
models obtained during the same epoch and during database system startup. I also com-
pared this model against models obtained from a different execution of the same YCSB-
C workload, against a different workload mix (50/50 read/read-modify-write YCSB) and
against a different workload, TPC-C. I tested model similarity with and without attention-
focusing mappers enabled (denoted by ‘AF’ and ‘no AF’, respectively), to show that al-
though the mappers improve robustness, Dendrite remains effective without them.

The distribution for difference scores among models for each setting is shown as boxplots
in Figure 5.8. As in the case studies, Dendrite is configured to treat models with a difference
score less than 3.0 (the dotted line) as similar when fingerprinting. Hence, scores below
the blue dotted line indicate that Dendrite considers the models to be of the same type,
with scores above indicating significant differences. Dendrite considers worker models
obtained from the same YCSB-C configuration to be similar to the registered default
model, except for models obtained while the system was starting with attention-focusing
techniques turned off. The largest differences in these cases correspond to startup events
not present in the registered YCSB-C worker model and in disk read probabilities since the
buffer pool is not yet warm. Attention focusing lessens the importance of these differences
as it recognizes their transient nature, enabling Dendrite to detect active YCSB-C workers
correctly during startup when these techniques are enabled.

By contrast, Dendrite considers PostgreSQL worker models obtained under different
workload mixes or workloads to be significantly different from the YCSB-C worker model,
regardless of whether attention-focusing techniques are enabled. These large scores are

101

F
ig

ur
e

5.
8:

M
od

el
di

ffe
re

nc
e

sc
or

es
fo

r
a

P
os

tg
re

SQ
L

Y
C

SB
10

0%
re

ad
-o

nl
y

w
or

ke
r

co
m

pa
re

d
to

w
or

ke
r

m
od

el
s

ob
ta

in
ed

fr
om

ot
he

r
en

vi
ro

nm
en

ts
.

102

due to significant differences in disk access and transaction management events. This
distinction is desirable because it shows that Dendrite can recognize processes by their type
(e.g., PostgreSQL worker) and differentiate them based on their execution characteristics
(e.g., transaction mix, workload).

5.3.3 System Integration

The case studies required integrating Dendrite with PostgreSQL 14.1, MariaDB 10.5, and
SQLite 3.36.0. I now describe the integration process with each of these database systems.

Integrating Dendrite-Log with PostgreSQL requires few targeted changes. First, I mod-
ified PostgreSQL’s logging macro, ereport_domain, to call Dendrite’s record_event func-
tion, and modified PostgreSQL’s Makefiles to link against Dendrite’s shared libraries. Next,
I configured targeted DTrace probes in PostgreSQL to call record_event so that this in-
formation is available to Dendrite. Then, I changed PostgreSQL’s pg_ctl binary to set
the LD_PRELOAD environment variable to point to Dendrite’s injection shim before starting
the PostgreSQL server, so that it can obtain resource-consumption metrics. Finally, I ad-
justed the exit handlers of processes to emit their behaviour models to disk. Altogether,
these changes required just 35 lines of code. Note that this integration requires even fewer
lines of code than the difference detection experiments from Chapter 3.5.6. This difference
arises because the PostgreSQL versions differ and because the full Dendrite system does
not need signal handlers to catch system shutdown; the control server has the running
database system emit models at the end of every epoch.

Integrating Dendrite-Pin with PostgreSQL is even simpler. I provided Dendrite-Pin
with a set of functions called around the DTrace probes configured for Dendrite-Log, as
well as the errfinish logging function (as the ereport_domain macro is not accessible in
the compiled binary). As with Dendrite-Log, I intercepted process exit-handler functions
and configured them to write captured behaviour models to disk. Altogether, these changes
intercept a set of 12 functions and require no changes to PostgreSQL source code.

To extract behaviour information from MariaDB with Dendrite-Log, I intercepted Mari-
aDB’s DBUG macros. MariaDB uses these macros liberally throughout the codebase, includ-
ing at the entrance and exit of many function calls. Macros are grouped by the area of
the code they operate in or their functionality — Dendrite uses these group names to
extract information from only the performance-relevant groups. To match PostgreSQL,
I inserted tracing during buffer writebacks and sequential scan initialization. Altogether,
these changes modified only 29 lines of code in MariaDB. Dendrite-Pin used a similar ap-
proach to the PostgreSQL integration, intercepting 10 functions and requiring no changes

103

Figure 5.9: a) the disk read-portion of Dendrite’s behaviour model for a YCSB-C Post-
greSQL worker, and (b) the relevant portion of an order-1 behaviour model constructed
from the same data.

to source code.

Integrating Dendrite-Pin with SQLite required little effort; I simply configured Dendrite-
Pin to intercept the sqlite3Select and sqlite3Update functions. As with PostgreSQL
and MariaDB, Dendrite-Pin requires no code changes to integrate with SQLite.

5.3.4 Behaviour Model Microbenchmarks

Dendrite’s behaviour models capture complex database system behaviour patterns (Chap-
ter 4.2.2). Dendrite detects when fewer prior events affect an event transition’s probability
and simplifies the model, reducing its memory consumption. I now show these mod-
els’ utility in accurately representing system behaviour and their automatic simplification
property.

Behaviour Model Representativeness

As Dendrite’s behaviour models encode prior event sequences, they capture more detailed
event context than single-order behaviour models. To demonstrate this property, consider
the following PostgreSQL case study.

104

I obtained a model of YCSB-C PostgreSQL worker behaviour by executing a 5 client
workload against a 1.75 GB PostgreSQL database. The database is equipped with a 500
MB buffer pool, thereby inducing buffer pool cache misses. Since the entire database fits
in the machine’s 32 GB of main memory, buffer pool cache misses are handled by the
operating system’s filesystem cache. Hence, I emulated a machine with 500 MB of main
memory to match the buffer pool size by adding latency proportional to disk seek time to
cache misses.

Figure 5.9a shows the cache miss portion of Dendrite’s behaviour model for a Post-
greSQL worker. The nodes describe the prior event sequence, with the current event
shown in black and the previous events shown in gray. In the left node, the current event
is QueryExec, which follows the previous events StartTxn, QueryExec, QueryDone, and
BindPortal. There is a 30% chance of directly moving to the QueryDone event, forming
the new event sequence QueryExec, QueryDone, BindPortal, QueryExec, QueryDone, and
a 70% chance of incurring a CacheMiss.

Note that the prior event sequence contains a transition from StartTxn, QueryExec to
QueryDone without a cache miss; this transition is guaranteed because the first query in a
transaction is always a BEGIN command, which does not access data and therefore cannot
incur a cache miss. As the last query is a COMMIT command, cache misses may only
occur on queries between these commands. Dendrite’s enhanced behaviour models capture
this fact, while the equivalent single-order model in Figure 5.9b fails to do so. This lack of
context leads to poor estimates of cache miss rates, reducing the effectiveness of adaption
rules.

I equipped Dendrite with the following adaption rule:

get_transition_prob_diff([‘StartTxn’; ‘QueryExec’, ‘QueryDone’ ‘BindPortal’,
‘QueryExec’], ‘DiskRead’) > 2.0 -> ‘increase_buffer_pool’()

Specifically, if the probability of a cache miss on a YCSB-C query has increased by
a factor of 2 compared to when a buffer pool is adequately provisioned, Dendrite exe-
cutes the increase_buffer_pool UDF. This UDF alters PostgreSQL’s configuration and
increases the buffer pool to 8 GB, thereby increasing the proportion of cache hits and
improving performance. Dendrite immediately detects that system behaviour differs from
expected, matches this adaption rule, and deploys the UDF. After restarting the database
and executing the workload for 10 minutes, performance is improved by 5×.

Dendrite’s models provide increased model accuracy by better capturing event patterns.

105

In doing so, Dendrite enables simplified adaption-rule composition and expressivity in
responding to database system behaviour differences.

Reduction Experiments

I now empirically evaluate Dendrite’s behaviour model reduction properties through a
targeted microbenchmark with event-transition probability distributions.

In this microbenchmark, Dendrite captures 10 distinct events that have uniform event
transition probability between each pair of events. Dendrite is configured to capture a
maximum prior sequence length of 3 in its behaviour models. Initially, Dendrite tracks
event transition probabilities from each triplet of events (Ei, Ej, Ek) to subsequent event
E ′, yielding a total of 10, 000 unique transitions. As Dendrite obtains samples from the
running database system, it determines that transition probabilities between pairs of events
are independent of any prior events and simplifies its model accordingly. Since these checks
require ≈ 10, 000 samples to obtain high confidence per the ϵ, δ requirements outlined in
Chapter 4.2.3, all sequences are reduced to (Ek) → E ′ once Dendrite has observed 100M
record_event samples.

In practice, it is unlikely that each system event transitions to every other event. Thus,
I also tested Dendrite capturing 10 distinct events with Zipf-distributed event transition
probabilities; event ID i was far more likely to be be followed by event ID i + 1 than any
other event.

Using a Zipf(ρ = 10) distribution of event transition probabilities, Dendrite reduced
triplets of the form (Ej−1, Ej, Ej+1) → E ′ to (Ej, Ej+1) → E ′ for all E ′ with 125,000
samples of event transitions over 10 unique events. Dendrite performs these reductions
with fewer record_event calls because it obtains more samples for the popular event
transitions from event ID i to event ID i + 1, giving it greater confidence in the captured
transition probabilities. Similarly, Dendrite is able to reduce the popular event sequence
transitions to order-2 over 100 unique events with 2 million samples. Notably, Dendrite
does not reduce the event sequence lengths to order-1 because it does not have enough
samples for rare transitions, e.g., (Ei, Ej, Ej+1) → E where Ei ̸= Ej−1. Obtaining enough
samples for these rare transitions requires a large number of overall system samples given
the Zipf distribution.

I also considered a Zipf(ρ = 2) distribution of event transition probabilities. As Dendrite
acquires fewer samples of the popular event transitions than with the more skewed Zipf(ρ =
10) distribution for the same number of event transitions, it reduces sequence lengths of

106

popular transitions to order-2 at 500,000 samples for 10 unique events and 1B samples for
100 unique events.

5.4 Discussion

The case studies in this chapter show that Dendrite effectively adapts multiple database
systems to optimize for their circumstances, improving performance. These results lead
to interesting insights about the nature of system adaptivity and its generalization across
database systems, which I now discuss.

As noted in Chapter 5.1, PostgreSQL, MariaDB, and SQLite exhibit significantly dif-
ferent characteristics. For example, PostgreSQL and MariaDB differ in how they support
client connections (processes vs threads), their support for parallel query execution, and
their management of the write-ahead log through checkpointing. Dendrite’s logging-call
interception and behaviour difference detection techniques are effective across database
systems despite these dissimilarities, showing the generality of Dendrite’s techniques.

Interestingly, the case studies show that an adaption rule composed for one database
system can inform the adaption rules for another. In fact, the criteria of each PostgreSQL
adaption-rule in the case studies can be used in MariaDB by translating PostgreSQL events
to MariaDB. Reusing rule criteria significantly decreases the effort of rule development.

Thus, transferring an adaption rule from one database system to another requires an
event equivalence layer between the systems and translating the source system’s UDFs to
support the destination system. In the case studies, transferring rules was simple as it
required only information easily obtainable through system documentation.

Through this discussion and the results, we observe that there are three key components
for database system adaptivity, which Dendrite provides:

1. A means to monitor system behaviour and detect differences

2. A means to match behaviour differences to adaption strategies

3. A means to deploy adaption strategies on the targeted system

For a case study to be successful, each of these components must work effectively in tandem
with each other. If a behaviour difference is not detected, then no adaption will be deployed.
If an inappropriate adaption strategy is selected, the response may worsen matters. Finally,

107

there must be an effective way to deploy the chosen strategy to the underlying database
system rapidly. Dendrite’s success in these case studies demonstrates the effectiveness of
its design choices in each of these areas.

5.5 Summary

This chapter demonstrates the effectiveness of Dendrite in bolting adaptive capabilities
onto popular, industrial-strength database systems through a robust suite of case studies.
Dendrite integrates easily with each system, despite their distinct characteristics. Adap-
tion rules are expressive and handle a wide variety of behaviour differences while remaining
portable between database systems that exhibit similar characteristics. Microbenchmarks
show that Dendrite’s overheads are low in terms of both memory consumption and perfor-
mance degradation, making it suitable for intensive database system deployments.

108

Chapter 6

Related Work

Dendrite is unique in its ability to (i) capture a live database system’s behaviour in a
system-agnostic way, and (ii) respond to behaviour differing from expectations to improve
system performance. Thus far, the research community’s focus has been limited to system
behaviour modelling [58, 83, 90, 124, 125] and next-generation, natively adaptive database
systems [2, 3, 39, 93, 110, 111]. This chapter provides an overview of prior work and its
limitations, with a focus on how it differs from Dendrite.

Given the challenges that administrators face while managing database systems and the
time-sensitive nature of remedying performance problems, there has been substantial re-
search effort into alleviating this burden through system-management assistance tools and
adaptive database systems. I now present related work in these areas and their differences
from Dendrite (Figure 6.1).

6.1 System Management Assistance Tools

This first category consists of research efforts that assist administrators in monitoring
their systems and configuring them. While these tools provide helpful output to guide
administrator decisions, administrators ultimately diagnose, remedy, and configure the
underlying system.

This category may be further subdivided into tools that gather and expose simple
statistics, those that capture higher-level system behaviour and alert administrators when
changes occur, and those that directly recommend system modifications. Importantly,
none of these tools directly effect changes, which is one of Dendrite’s core contributions.

109

Figure 6.1: A taxonomy of prior work related to Dendrite.

6.1.1 Simple Statistics Collection

As resource contention is well-known to degrade the performance of database systems and
applications, many tools have been developed to extract and expose operating system and
database resource consumption metrics. On Linux systems, vmstat [119], iostat [53], and
netstat [9] are commonly used to retrieve memory, disk I/O, and network I/O statis-
tics respectively. Administrators use these statistics to determine when system capacity is
exceeded, and either provision additional resources or reduce load to restore normal per-
formance by eliminating resource bottlenecks. Since it is desirable to monitor the usage of
multiple resources simultaneously, dstat [120] and sar [54] capture several key operating
system resource statistics using a single application and present them in a unified output
stream.

As database systems are heavy consumers of system resources, they often provide their

110

own tools to explain their resource utilization to administrators. For example, Post-
greSQL’s statistics collector [60] records the number of pages read from and written to
disk, page access cache hit ratios, index usage counts, and other pertinent information
useful for administrators to monitor and optimize their database. Other popular data sys-
tems, from databases [23, 47] to message brokers [46] to streaming systems [45] similarly
expose key metrics.

While these aggregate system metrics are helpful in obtaining a high-level perspective
of overall resource utilization, it is desirable to attribute this usage to individual system
components. Therefore, developers often use profiling tools (e.g., gprof [57], perftools)
to find the slow or resource-intensive sections of their code and optimize them. These
tools add significant overhead and hamper the performance of the profiled system, which
relegates them to post-hoc use when investigating a known problem offline.

Dendrite uses dool [120] (formerly dstat) to extract operating system metrics from
an online system but goes beyond dool’s capabilities by encoding these metrics in com-
prehensive behavioural models. These models include low-level system tracing and enable
code-level resource-consumption attribution with very low overhead. Dendrite uses this
tracing and resource usage information to effect appropriate system adaptions in response
to changes in workloads or deployment environments. The case studies in Chapter 5 demon-
strate the effectiveness of Dendrite’s approach; however, Dendrite can be easily enhanced
to capture additional metrics from sources other than dool if desired.

6.1.2 System Behaviour Analysis

It is difficult for administrators to determine whether a system is performing well using
metric statistics alone; resource consumption naturally fluctuates during system execution,
so administrators must determine whether a change in these metrics is unexpected. There-
fore, researchers have developed tools that capture higher-level data system behaviour to
more easily detect and remedy system anomalies.

DBSeer [88, 124] builds white-box and black-box models of database system process-
ing techniques, such as disk I/O, to predict the system resources required to process a
client workload at a target throughput rate. Specifically, DBSeer builds statistical models
of memory consumption, disk flushing, CPU utilization in the MySQL and PostgreSQL
RDBMSs, and uses them to predict (i) the throughput of the system under a fixed set of
resources and a given workload mix, (ii) the resources required of each modelled type to
process the target workload at the desired throughput rate. Like Dendrite, DBSeer uses

111

debug logs and operating system metrics. However, DBSeer assumes knowledge of the un-
derlying database system in its white-box model construction, extracting DBMS-specific
counters not available in other systems and relying on domain knowledge in its model
construction, while Dendrite does not. Furthermore, as DBSeer’s focus is on resource
prediction, it does not detect system behaviour differences nor effect system adaptions in
response.

DBSherlock [125] associates periods of abnormal system behaviour with predicates con-
structed over captured debug logs, operating system metrics, and database system metrics.
Given a period of anomalous or poorly-performing system behaviour, DBSherlock deter-
mines the ranges of values in its extracted metrics most associated with the anomaly. For
example, DBSherlock may determine that poor performance is associated with an increase
in CPU waits, query latency, and disk writes. While Dendrite also uses predicates over sys-
tem behaviour differences, these predicates are used by Dendrite’s adaption rules to effect
changes that remedy the underlying issue, which DBSherlock does not support. Moreover,
Dendrite captures behaviour in a fully system-agnostic way, as it does not rely on DBMS-
specific counters or log preprocessing, unlike DBSherlock. These features ensure Dendrite’s
approach is generalizable and keep its overheads low (Chapter 5.3.1).

Distalyzer [90] preprocesses log files to obtain information about the frequency and oc-
currence times of system events, alongside value ranges of variables outputted in the files.
Given a population of log files obtained over multiple system executions that are labelled
according to good and bad performance, Distalyzer determines which events, occurrence
times, and values are statistically associated with the poorly performing executions. Al-
though Distalyzer operates over system logs from arbitrary systems, Dendrite has key
differences. First, Distalyzer requires that log files are emitted to disk, while Dendrite
intercepts log calls in memory to avoid the performance overheads of detailed log file mate-
rialization. Second, Distalyzer requires multiple log files to determine statistical behaviour
differences, while Dendrite detects these differences online during a single system execu-
tion. Lastly, Dendrite also uses these behaviour differences to determine how to adapt the
system to the workload at hand, while Distalyzer focuses solely on behaviour difference
detection.

PerfXplain [72] uses debug logs and performance counters obtained from Ganglia [30]
to determine why the performance of a pair of MapReduce jobs differed. It provides a
query language to look over previous runs of MapReduce jobs with similar characteristics
to the pair of interest, and then outputs explanatory information to show what features,
constructed over the counters and logs, are most correlated with the difference. PerfXplain
assumes that the tracing information it requires is readily available, unlike Dendrite, which
obtains it in a system-agnostic, low-overhead fashion.

112

Lprof [129] reconstructs the control flow of distributed applications. Using static anal-
ysis of Java bytecode, Lprof determines the format of various log messages. It interprets
request identifiers from outputted messages and links messages from different system com-
ponents. At runtime, log files are analyzed to determine the performance characteristics
of requests that span the system, storing them in a queryable database. Dendrite differs
from Lprof as it intercepts the information it needs without static analysis. and enables
adaptive responses to behaviour differences.

Dendrite’s behaviour extraction techniques operate on live database systems rather
than depending on offline static analysis. Offline analysis determines only which code
paths and systems events the system may access, not which ones are popularly exercised
in the deployment environment. Dendrite’s online techniques enable it to characterize
system behaviour in situ, which static analysis alone cannot support.

PerfAugur [101] detects anomalies in system telemetry using robust statistics [100]. It
assumes that this telemetry is encoded in a single relational table and finds predicates
on the table for which an aggregate over a subset differs significantly from the aggregate
computed over the whole relation. By contrast, Dendrite extracts all of the information it
requires online from a running data system.

Pivot Tracing [83] allows developers to dynamically enable system tracing by expressing
queries over the output of pre-defined tracepoints. These queries can group and filter based
on request flow, i.e., what events happened before other events, which relies on metadata
propagation between the tracepoints. The supplied queries determine which tracepoints
are “switched on,” such that the information needed to answer the query is extracted with
low overhead. Tracepoints must be declared, however, by expert users or developers a
priori, whereas Dendrite extracts the information it requires from built-in debug logs.

CloudSeer [126] is an anomaly detection tool that operates over outputted system de-
bug logs. It constructs an automaton of logging offline and detects when the log-ordering
patterns it observed are violated. Dendrite goes beyond by enabling broader behaviour
comparisons using statistics of captured system events. For example, Dendrite can deter-
mine if there is a lower proportion of cache hits or a change in how clients issue requests [49],
which is beyond CloudSeer’s capabilities. Moreover, Dendrite builds its models in mem-
ory by intercepting log calls and can therefore construct finer-grained models with lower
overhead than CloudSeer.

The goal of anomaly detection is to find patterns in subsets of data that do not match
the overall behaviour of the whole [14]. These techniques are popularly used to detect credit
card fraud and network intrusions. Hence, behaviour difference detection may be viewed
as a particular instance of anomaly detection on a time series of metrics extracted from

113

the operating system and debug logs. However, anomaly detection techniques are highly
workload-specific and vary significantly according to their domain [14]; therefore, while
Dendrite shares high-level similarities with other tools in this space, it is fundamentally
novel in how it captures system behaviour and compares it.

Given the widespread challenges system administrators face in managing their data
systems, there has also been significant industry focus on system monitoring tools [7,28,38,
70,98,104,105]. These tools rely on instrumentation in the core libraries used by distributed
applications to trace the performance and characteristics of requests as they move through
the system. For example, thread management operations and remote procedure call (RPC)
libraries are commonly instrumented to attach identifiers to requests. These identifiers
are used to trace requests that span computing nodes in a distributed system. Metrics
characterizing the performance of these requests are sampled and exported, displaying
them to developers and users in rich visualizations called dashboards. These systems
deploy sophisticated visualization techniques to present information to developers to more
easily detect performance problems and remedy issues. However, unlike Dendrite, these
tools do not adapt the system according to the exported data.

The Mystery Machine [19] unifies logging events from multiple sources and determines
causal relationships among them (e.g., happens-before [74], mutually exclusive) using large-
scale mining over event samples. These causal models are used to perform common inves-
tigation tasks such as determining resource slack and critical-path performance analysis.
While Dendrite also uses log files as a key information source, it differs from the Mystery
Machine in both how it extracts its information and the types of analysis it conducts.

Statistical debugging techniques [40, 78] inject code into an application to evaluate
and report boolean predicates at points of interest. The application is then evaluated
repeatedly offline to determine which predicates are statistically associated with a fault or
failure. While Dendrite may also be used to investigate system failure conditions, it does
so using logs and metrics and not by injecting predicates into the application for offline
evaluation. As Dendrite’s low-overhead analysis is executed on live production systems, it
does not require multiple system executions to locate failures.

Amoeba [79] locates performance bugs in database systems by generating semantically
equivalent SQL queries and determining if there is a significant difference in their perfor-
mance. Apollo [69] similarly detects performance regressions across different versions of
the same DBMS using SQL fuzzing techniques. Dendrite differs from these systems in that
they aim to capture performance regressions in generated SQL queries, while Dendrite
captures system behaviour to detect performance degradation in live systems.

The software engineering research community has developed tools that use debug logs to

114

pinpoint load-testing and memory-consumption problems in code [67,68,109]. These tools
mine outputted debug log files for control-flow relationships and correlate them with higher-
level system metrics (e.g., memory usage). If the control flow or memory consumption is
abnormal relative to other parts of the log file, it may indicate a bug in the code. Unlike
Dendrite, which intercepts logging function calls, these systems require log files to be
materialized on disk which vastly increases their performance overheads. Moreover, these
tools require administrator intervention to remedy discovered issues, while Dendrite enables
adaptions that address them.

Despite the prior work on database system behaviour analysis tools, Dendrite differs
from this class of work in (i) its system-agnostic information extraction techniques, and
(ii) its ability to respond to database system behaviour changes through adaption rules.

6.2 System Recommendation Tools

All of the prior approaches are limited to providing only high-level views of system be-
haviour and explanations of discrepancies; they do not suggest steps for an administrator
to take that would improve system performance nor take action independently. Instead,
administrators must use the output of these tools to devise an appropriate response, a
daunting task given the complexity of database systems [117, 125]. Therefore, researchers
have developed recommendation tools that monitor database system performance and sug-
gest materialized views [62,86], indexes [17,61], and parameter configurations [37,117,127]
to optimize performance. I will first present an overview of each tool’s functionality and
then describe how Dendrite fundamentally differs from them.

Much research has focused on selecting views to materialize within databases [16,62,86].
As queries can access pre-computed results directly from materialized views, they can avoid
processing the underlying data tables entirely if the right views are materialized, leading to
significant performance improvements. However, these views must be updated whenever
the data over which they are built is modified; a view selection strategy must carefully
balance maintenance cost against query processing time improvements for the workload.
Thus, view selection tools monitor the data system to obtain a representative sample of
client query workloads, calculate the potential improvements of candidate views, consider
their maintenance costs, and deploy the views most likely to improve system performance.

Similarly, using appropriate database indexes for query workloads can significantly im-
prove query latency [16,17,61]. Like materialized views, indexes are an auxiliary structure
that must be updated if the data they index is modified. Thus, a similar balance must be

115

struck, but with an additional challenge; there are many types of database indexes, each
of which is specialized for workloads with different access characteristics.

Database systems are notorious for having vast numbers of configuration parame-
ters that govern many aspects of how the system processes client requests [117]. These
parameters play a critical role in system performance. Unfortunately, there is no sin-
gle set of configuration values that optimizes performance across all workloads, and the
sheer scope and complexities of parameter relationships push the parameter selection
problem beyond human reasoning capabilities [94, 117]. To meet these challenges, re-
searchers have developed many different parameter selection (colloquially, “knob tuning”)
tools [37,55,84,85,117,118,127], of which iTuned [37], Ottertune [117], and CDBTune [127]
are representative works.

ITuned [37] optimizes database system parameters using an iterative, experiment-based,
trial-and-error approach: it selects values for each configuration parameter, executes a pro-
vided, representative workload against the database system, and then chooses the next set
of parameter values based on the observed performance and that of the prior experiments.
As ITuned models the performance-parameter relationship using a Gaussian process [99], it
selects parameter values based on their expected improvement over the current parameters
using the model.

Like ITuned, Ottertune [117] uses a Gaussian process to predict how a database will
perform on a given workload under various parameter settings. However, Ottertune im-
proves on ITuned by maintaining a global repository of training results from other users
and databases, which it bootstraps to reduce training time. Ottertune further mitigates
tuning time by reducing the number of knobs that must be considered using dimensionality
reduction.

A key limitation of Ottertune is that Gaussian process regression is susceptible to
selecting parameters that optimize performance within a subregion of the parameter space
(local optimum) instead of overall (global optimum) [127]. CDBtune [127] addresses this
limitation through deep reinforcement learning, which intrinsically balances exploring the
parameter space and exploiting the knowledge it has gleaned. Moreover, CDBTune directly
accounts for changes in the database over time and in response to parameter changes, unlike
Ottertune.

Knob tuning tools are complementary to Dendrite’s behaviour modelling and adaptions.
While these tools can excel at selecting configuration parameter values for a representa-
tive workload, they do not provide behaviour difference detection to determine when to
change parameter values. Concisely, these tools define what should be changed (and to
which values), but not when. Hence, these knob tuning tools could be exploited to gen-

116

erate adaption rules for Dendrite, while Dendrite performs the difference detection and
generalized adaption deployment. This idea is explored further in Chapter 7.

These recommendation tools specialize in a single stratum of database system behaviour
tracking and optimization (parameter, view, or index optimizations). In contrast, Dendrite
employs a universal approach for capturing database system behaviour and responding
accordingly. Each area should be viewed as a particular type of adaption that Dendrite
can deploy.

6.3 Adaptive Database Systems

Every monitoring and recommendation tool mentioned thus far shares a common limi-
tation; unlike Dendrite, they all require administrators to deploy appropriate responses.
There are two key branches of work that address this limitation: next-generation, natively
adaptive database systems and generalized database adaption techniques.

6.3.1 Natively Adaptive Database Systems

Natively adaptive database systems are new, next-generation database systems with novel
architectures specifically designed for adaptivity [93, 94]. As such, retrofitting existing
database systems with the adaptivity capabilities proposed by this line of research requires
tremendous engineering effort [94].

Prior work by Pavlo et al. [95] outlines the components a natively adaptive database
system requires for complete autonomy. In particular, a fully autonomous database system
must have a workload forecasting component that predicts the upcoming workload, a per-
formance modelling1 component that predicts the performance of the system under various
configurations and workloads, and an action planner that determines which adaptions the
system will deploy given the forecast and performance models. A fully autonomous sys-
tem does not require administrator intervention of any kind, other than to set high-level
optimization criteria (e.g., maximize system throughput, minimize cloud infrastructure
costs). While fully database autonomous systems are years of research away, this work
also enumerates increasing levels of autonomy along the way:

1In the paper, this component is called “behaviour modelling”, but it focuses on predicting the perfor-
mance and resource consumption of small, isolated system components (e.g., hash-join initialization time).
To avoid confusion with Dendrite’s behaviour modelling, this work is differentiated using the performance
modelling label.

117

1. Level 0: human insight and direct intervention are required to tailor the system to
its workload and environment.

2. Level 1: The database system provides recommendations to the administrator on
how it should be configured based on the workload, but administrators must accept
these changes and determine when they should be deployed.

3. Level 2: The database system collaborates with the administrator to adaptively
configure its parameters and subsystems.

4. Level 3: Individual database system components are autonomous, responding to
their environment without any administrator involvement (e.g., autoscaling on cloud
providers). There is no long term planning, or holistic decision-making.

5. Level 4: The administrator provides high-level direction to the database system
on what to optimize, and small hints (e.g., anticipated workload spike) to influence
system decision making. Otherwise, the database system self-manages its components
holistically and responds automatically to the workload and environment.

6. Level 5: The administrator sets an optimization objective and the database system
self-manages to achieve it. No other administrator intervention is required.

In this thesis, any database system operating at autonomy level 2 is considered adap-
tive, in line with Definition 1. Concretely, a database system is adaptive if, while running,
it changes its system configuration, physical design, or resource allocation without ad-
ministrator intervention (i.e., it deploys adaptions). Dendrite’s goal is to enrich existing
non-adaptive database systems with adaptive capabilities, empowering them to reach level
2 autonomy through its bolt-on functionality.

Pavlo et al. [93] propose a natively adaptive database architecture, Noisepage2, that
captures query workload characteristics and changes the data layout of tuples in tables
to either row or column orientations to best suit the query workload. NoisePage captures
query arrival rates and forecasts upcoming queries to preemptively change table layouts in
anticipation of future workload shifts.

MB2 [82] is the performance-modelling component of the Noisepage database system
[21]. MB2 decomposes database system functionality into small operating units (OUs),
whose resource consumption and performance characteristics are modelled with machine
learning. A grid-search technique is used to sweep the input features of each OU to

2Previously called Peloton.

118

learn these performance characteristics. This performance prediction framework, when
combined with a workload forecasting module [81] is intended to act as the building blocks
for a fully autonomous database system. While Dendrite also models database system
performance characteristics, it does not require developers to demarcate or declare OUs
manually. Dendrite’s focus in on determining which aspects of overall system behaviour
have changed and responding to these changes.

E-Store [111] uses operating system statistics to determine when a database cluster’s
load is imbalanced and migrates partitions between database nodes to restore balance. If
the system is overloaded, E-Store elastically adds database nodes to the system, reducing
node count when the added capacity is no longer required. E-Store is reactionary and
does not preemptively move partitions, which may lead to poor performance in the face
of predictable patterns. P-Store [110] extends E-Store and addresses this limitation by
building workload models to predict upcoming workload patterns and move partitions
accordingly.

Distributed transactions in database systems are well-known to cause severe overheads
and performance degradation due to two-phase commits [26]. Therefore, there has been
significant research focus on enabling online partition migration within database systems
to minimize [26] or eliminate [2, 3, 27,76] distributed transactions.

Database cracking [65] creates database indexes by automatically breaking data tables
into pieces based on the columns accessed in the predicates of executed queries. These
pieces are labelled according to the range of values they contain for the accessed column.
When subsequent queries with predicates operating over the same columns are submitted,
their performance is improved as they can be answered using the smaller pieces containing
values of interest rather than scanning the whole table. The key advantage of cracked
indexes over traditional indexes is that they are constructed on-demand in response to the
workload and do not require a priori knowledge of access patterns.

As database caching systems play a significant role in overall performance, researchers
have developed predictive caching systems to improve cache hit rates [12, 51, 92]. These
systems build models over submitted client queries and predict which queries are likely to
arrive next. In doing so, they can ensure that those queries’ results are placed into the
cache ahead of time, providing a cache hit and improving performance.

The adaptivity enabled by each of these systems cannot be “bolted-on” to other database
systems, unlike Dendrite’s adaptive framework. By relying solely on debugging logging
and operating system metrics, Dendrite easily generalizes to arbitrary database systems,
as shown through integrations with PostgreSQL, MariaDB, and SQLite (Chapter 5).

119

6.3.2 Generalized Database Adaptivity

Prior proprietary work has also recognized the dearth of adaptive capabilities in existing
database systems and proposed adaptive techniques that can generalize across database
systems. Unlike Dendrite’s bolt-on integration, these techniques rely on per-system be-
haviour extraction scripts and instrumentation, which greatly increases the effort required
to integrate with them.

IBM’s Automated Tuning Expert [121] relies on custom adaptors over database infor-
mation sources (metrics, debug logs, catalog) to extract system events. These events are
matched against tuning plans, which codify the tuning expertise of administrators and
are used to adapt the system to the workload. In contrast to this work’s reliance on
system-specific adaptors, Dendrite bolts-on to database systems to intercept logging calls
in-memory, thereby mitigating overheads. Dendrite also differs from this closed-source
work in the form its adaption rules take, its powerful, context-capturing behaviour mod-
elling, and its support for binary instrumentation.

SQLCM [15] instruments SQL Server to extract database metrics and match them
against configurable event-condition action rules that tailor database processing. Unlike
the proprietary SQLCM, Dendrite extracts all of the information it requries from system-
agnostic debug logging calls and libc metrics, ensuring that it integrates easily with a
broad range of database systems.

Both of these works are proprietary and closed source, precluding comparison with
Dendrite.

Beyond database systems, Dendrite shares some high-level similarities with runtime
verification systems [8, 10, 18]. Dendrite differs from this work through its adaption rules
that use proportion-based behaviour differences from an expected baseline model and its
automatic extraction of live system events from logging calls, which obviates instrumenta-
tion.

120

Chapter 7

Conclusion and Future Work

Adaptive database systems are a promising approach to alleviate the heavy administrator
burden of maintaining and optimizing database systems. However, many popularly used,
industrial-strength database systems lack robust adaption capabilities, trapping adminis-
trators in a Sisphyean monitoring and optimization cycle. This thesis provides techniques
that bolt-on to existing database systems and empower them with adaptive capabilities.
In this chapter, I summarize the core contributions of the thesis (Chapter 7.1) along with
limitations and opportunities for future research (Chapter 7.2).

7.1 Contributions

Developing a bolt-on adaption framework for general database systems requires addressing
several challenging research objectives. In line with the challenges outlined in Chapter
1.2, I presented a system-agnostic behaviour extraction framework with low overhead that
detects important differences and enables adaptive responses through its comprehensive
support for a wide range of database system augmentations.

The modelling techniques presented in Chapters 3 and 4 are system-agnostic and do
not rely on system-specific knowledge to capture database system behaviour. By inter-
cepting debug logging, operating system metrics, and libc calls, Dendrite builds robust
behaviour models that capture fine-grained behaviour information. Dendrite is also able
to operate in environments with limited debug logging due to its innovative use of binary
instrumentation, ensuring that its techniques are broadly applicable.

121

Chapters 3 and 4 also describe behaviour model comparison techniques that highlight
significant differences in the extracted models. Although Dendrite can perform these com-
parisons in a system-agnostic fashion, it can also exploit domain knowledge provided in
the form of attention-focusing mappers to further improve its ranking of difference impor-
tances.

Dendrite uses adaption rules to respond to detected behaviour differences. Adaption
rules are expressive and handle a wide variety of system behaviour differences, while remain-
ing intuitive to compose due their conjunctive nature, built-in data extraction functions,
and tagging functionality. Chapter 5 shows the power of these rules in action, demonstrat-
ing their applicability through realistic case studies with representative workloads and
multiple database systems. Adaption rules may be ported between database systems that
exhibit similar characteristics using a simple abstraction layer that tracks equivalent events
in the systems, further decreasing the challenge in composing these rules.

Importantly, Dendrite achieves all of the above techniques while incurring low overhead.
As Dendrite builds its models in memory by intercepting debug logging and function calls, it
avoids the traditional modelling overheads associated with writing fine-grained information
to disk. Dendrite’s models are compact and consume little memory, ensuring that system
resources are dedicated to the critical task of query processing.

The future for adaptive database systems is bright, with further interesting work to
be done. This thesis is a stepping stone towards realizing fully autonomous, generalized
database system adaptivity.

7.2 Future Work

While Dendrite is a promising step towards generalized system adaptivity, future research
can further increase its scope and utility.

First, Dendrite relies on developers and administrators to provide it with adaption
rules to intelligently respond to detected behaviour differences. While some adaption rules
are common knowledge among wizened administrators, e.g., increasing buffer pool size to
improve cache hits or avoiding checkpointing during periods of high load, other adaption
scenarios require more consideration. Hence, while Dendrite reduces administrator burden,
it does not eliminate it entirely. It remains interesting future work to determine if adaption
rules can be automatically generated, perhaps using an augmented knob-tuning or rein-
forcement learning tool. Similarly, it would be desirable to have Dendrite automatically
learn event importances that enhance its behaviour comparisons.

122

Second, future research could target Dendrite’s footprint to further reduce its over-
heads. One direction could further mitigate tracing overhead to improve database system
throughput. Another could focus on ensures that Dendrite’s tracing does not alter the
behaviour of the executing system. Although Dendrite’s per-thread models avoid syn-
chronization primitives that may lead to heisenbugs [89], the scant overheads it induces
could lead to differences in externally observed system behaviour. Thus, future research
may investigate techniques to deterministically “replay” system execution given Dendrite’s
behaviour observations.

Third, Dendrite builds its models on a per-thread basis to eliminate synchronization
overheads, but database systems can collaboratively process client requests across threads,
processes or distributed machines. Improving Dendrite’s models by “stitching” together
these distinct models into a combined model that captures collaborative work patterns
would increase its applicability, particularly in the popular distributed database systems
space.

Fourth, although Dendrite’s adaptions tailor database system processing, they cannot
fundamentally change system functionality. For example, Dendrite cannot feasibly convert
the row-oriented PostgreSQL database system to a column store. Binary instrumentation
can induce novel adaptions, but injecting large-scale functionality is infeasible due to the
deep knowledge of database system internals it requires. Note that adding a layer of indi-
rection using a load balancer or query router widens the scope of Dendrite’s adaptions. For
example, Dendrite can adapt query router decisions based on the workload (e.g., Chapter
5), transferring targeted queries to another database system with the desired functional-
ity. Hence, while Dendrite supports a wide variety of adaptions, the nature of UDFs and
database systems have important considerations in designing an adaptive solution. These
considerations may be addressed through future work.

123

References

[1] Daniel J. Abadi, Samuel R. Madden, and Nabil Hachem. Column-stores vs. row-
stores: How different are they really? In Proc. ACM SIGMOD Int. Conf. on Man-
agement of Data, pages 967–980, 2008.

[2] Michael Abebe, Brad Glasbergen, and Khuzaima Daudjee. Dynamast: Adaptive
dynamic mastering for replicated systems. In Proc. 36th Int. Conf. on Data Engi-
neering, pages 1381–1392, 2020.

[3] Michael Abebe, Brad Glasbergen, and Khuzaima Daudjee. Morphosys: Automatic
physical design metamorphosis for distributed database systems. Proc. VLDB En-
dowment, 13(13):3573–3587, 2020.

[4] Akamai. New study reveals the impact of travel site performance on con-
sumers. https://www.akamai.com/us/en/about/news/press/2010-press/
new-study-reveals-the-impact-of-travel-site-performance-on-consumers.
jsp, 2010.

[5] Vaibhav Arora, Faisal Nawab, Divyakant Agrawal, and Amr El Abbadi. Janus: A
hybrid scalable multi-representation cloud datastore. IEEE Trans. Knowl. and Data
Eng., 30(4):689–702, 2018.

[6] Peter Bailis, Edward Gan, Samuel Madden, Deepak Narayanan, Kexin Rong, and Sa-
haana Suri. MacroBase: Prioritizing attention in fast data. In Proc. ACM SIGMOD
Int. Conf. on Management of Data, pages 541–556, 2016.

[7] Paul Barham, Rebecca Isaacs, and Dushyanth Narayanan. Magpie: online modelling
and performance-aware systems. In Proc. 9th Workshop on Hot Topics in Operating
Systems, pages 85–90, 2003.

124

https://www.akamai.com/us/en/about/news/press/2010-press/new-study-reveals-the-impact-of-travel-site-performance-on-consumers.jsp
https://www.akamai.com/us/en/about/news/press/2010-press/new-study-reveals-the-impact-of-travel-site-performance-on-consumers.jsp
https://www.akamai.com/us/en/about/news/press/2010-press/new-study-reveals-the-impact-of-travel-site-performance-on-consumers.jsp

[8] Ezio Bartocci, Yliès Falcone, Adrian Francalanza, and Giles Reger. Introduction
to Runtime Verification, chapter 1, pages 1–33. Springer International Publishing,
Cham, 2018.

[9] Fred Baumgarten, Matt Welsh, Alan Cox, Tuan Hoang, and Bernd Eckenfels. Netstat
manual page. https://linux.die.net/man/8/netstat, 2021.

[10] Eric Bodden, Patrick Lam, and Laurie Hendren. Clara: A framework for partially
evaluating finite-state runtime monitors ahead of time. In Proc. 10th Int. Conf on
Runtime Verification, pages 183–197, 2010.

[11] Peter A Boncz, Marcin Zukowski, and Niels Nes. Monetdb/x100: Hyper-pipelining
query execution. In Proc. 2nd Biennial Conf. on Innovative Data Systems Research,
pages 225–237, 2005.

[12] Ivan T. Bowman and Kenneth Salem. Optimization of query streams using semantic
prefetching. ACM Trans. Database Syst., 30(4):1056–1101, 2005.

[13] Sharma Chakravarthy, Vidhya Krishnaprasad, Eman Anwar, and Seung-Kyum Kim.
Composite events for active databases: Semantics, contexts and detection. In Proc.
20th Int. Conf. on Very Large Data Bases, pages 606–617, 1994.

[14] Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detection: A
survey. ACM Comput. Surv., 41(3):1–58, 2009.

[15] Surajit Chaudhuri, Arnd Christian König, and Vivek Narasayya. SQLCM: a contiu-
ous monitoring framework for relational database engines. In Proc. 20th Int. Conf.
on Data Engineering, pages 473–484, 2004.

[16] Surajit Chaudhuri and Vivek Narasayya. Self-tuning database systems: A decade of
progress. In Proc. 33rd Int. Conf. on Very Large Data Bases, pages 3–14, 2007.

[17] Surajit Chaudhuri and Vivek R. Narasayya. An efficient cost-driven index selection
tool for microsoft sql server. In Proc. 23th Int. Conf. on Very Large Data Bases,
VLDB ’97, page 146–155, 1997.

[18] Feng Chen and Grigore Roşu. Mop: An efficient and generic runtime verification
framework. In Proc. 22nd ACM SIGPLAN Conf. on Object-Oriented Programming
Systems, Languages & Applications, pages 569–588, 2007.

125

https://linux.die.net/man/8/netstat

[19] Michael Chow, David Meisner, Jason Flinn, Daniel Peek, and Thomas F. Wenisch.
The mystery machine: End-to-end performance analysis of large-scale internet ser-
vices. In Proc. 11th USENIX Symp. on Operating System Design and Implementa-
tion, pages 217–231, 2014.

[20] Richard Cole, Florian Funke, Leo Giakoumakis, Wey Guy, Alfons Kemper, Stefan
Krompass, Harumi Kuno, Raghunath Nambiar, Thomas Neumann, Meikel Poess,
Kai-Uwe Sattler, Michael Seibold, Eric Simon, and Florian Waas. The mixed work-
load CH-BenCHmark. In Proc. 4th Int. Workshop on Testing Database Systems,
pages 1–6, 2011.

[21] NoisePage contributors. Noisepage: Self-driving database management system.
https://noise.page/, 2022.

[22] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell
Sears. Benchmarking cloud serving systems with YCSB. In Proc. 1st ACM Symp.
on Cloud Computing, pages 143–154, 2010.

[23] Oracle Corportation. MySQL. https://www.mysql.com/, 2021.

[24] Transaction Processing Council. TPC-C. http://www.tpc.org/tpcc/, 2018.

[25] Transaction Processing Council. TPC-H. http://www.tpc.org/tpch/, 2018.

[26] Carlo Curino, Evan Jones, Yang Zhang, and Sam Madden. Schism: A workload-
driven approach to database replication and partitioning. Proc. VLDB Endowment,
3(1–2):48–57, 2010.

[27] Sudipto Das, Divyakant Agrawal, and Amr El Abbadi. G-store: A scalable data
store for transactional multi key access in the cloud. In Proc. 1st ACM Symp. on
Cloud Computing, pages 163–174, 2010.

[28] DatadogHQ. Cloud monitoring as a service, datadog. https://www.datadoghq.com,
2021.

[29] B. A. Davey and H. A. Priestley. Introduction to Lattices and Order. Cambridge
University Press, Cambridge, Massachusetts, 2002.

[30] Ganglia Developers. Ganglia monitoring system. http://ganglia.sourceforge.
net/.

126

https://noise.page/
https://www.mysql.com/
http://www.tpc.org/tpcc/
http://www.tpc.org/tpch/
https://www.datadoghq.com
http://ganglia.sourceforge.net/
http://ganglia.sourceforge.net/

[31] SQLite Developers. Most widely used and deployed database engine. https://www.
sqlite.org/mostdeployed.html, 2022.

[32] SQLite Developers. SQLite. https://www.sqlite.org/index.html, 2022.

[33] David J DeWitt, Randy H Katz, Frank Olken, Leonard D Shapiro, Michael R Stone-
braker, and David A. Wood. Implementation techniques for main memory database
systems. In Proc. ACM SIGMOD Int. Conf. on Management of Data, page 1–8,
1984.

[34] Karl Dias, Mark Ramacher, Uri Shaft, Venkateshwaran Venkataramani, and Graham
Wood. Automatic performance diagnosis and tuning in oracle. automatic perfor-
mance diagnosis and tuning in oracle. In Proc. 2nd Biennial Conf. on Innovative
Data Systems Research, pages 84–94, 2005.

[35] Djellel Eddine Difallah, Andrew Pavlo, Carlo Curino, and Philippe Cudre-Mauroux.
OLTP-Bench: An extensible testbed for benchmarking relational databases. Proc.
VLDB Endowment, 7(4):277––288, 2013.

[36] Ugur Dogrusoz, Erhan Giral, Ahmet Cetintas, Ali Civril, and Emek Demir. A layout
algorithm for undirected compound graphs. Inf. Sci., 179(7):980–994, 2009.

[37] Songyun Duan, Vamsidhar Thummala, and Shivnath Babu. Tuning database con-
figuration parameters with ituned. Proc. VLDB Endowment, 2(1):1246–1257, 2009.

[38] Elastic. ElasticStack: ElasticStash, Beats, LogStash and Kibana. https://www.
elastic.co/elastic-stack.

[39] Aaron J Elmore, Vaibhav Arora, Rebecca Taft, Andrew Pavlo, Divyakant Agrawal,
and Amr El Abbadi. Squall: Fine-grained live reconfiguration for partitioned main
memory databases. In Proc. ACM SIGMOD Int. Conf. on Management of Data,
pages 299–313, 2015.

[40] Anna Fariha, Suman Nath, and Alexandra Meliou. Causality-guided adaptive inter-
ventional debugging. In Proc. ACM SIGMOD Int. Conf. on Management of Data,
pages 431–446, 2020.

[41] Fred Fish. The DBUG package. https://dev.mysql.com/doc/refman/8.0/en/
dbug-package.html, 2022.

[42] Brady Forest. Bing and Google Agree - Slow Pages Lose Users. http://radar.
oreilly.com/2009/06/bing-and-google-agree-slow-pag.html, 2009.

127

https://www.sqlite.org/mostdeployed.html
https://www.sqlite.org/mostdeployed.html
https://www.sqlite.org/index.html
https://www.elastic.co/elastic-stack
https://www.elastic.co/elastic-stack
https://dev.mysql.com/doc/refman/8.0/en/dbug-package.html
https://dev.mysql.com/doc/refman/8.0/en/dbug-package.html
http://radar.oreilly.com/2009/06/bing-and-google-agree-slow-pag.html
http://radar.oreilly.com/2009/06/bing-and-google-agree-slow-pag.html

[43] Charles L. Forgy. Rete: A fast algorithm for the many pattern/many object pattern
match problem. J. Artificial Intelligence, 19(1):17–37, 1982.

[44] Apache Software Foundation. Apache Log4j2. https://logging.apache.org/
log4j/2.x/, 2020.

[45] Apache Software Foundation. Apache Flink: Stateful computations over data
streams. https://flink.apache.org/, 2021.

[46] Apache Software Foundation. Apache Kafka. https://kafka.apache.org/, 2021.

[47] MariaDB Foundation. MariaDB server: The open-source relational database. https:
//mariadb.org/, 2021.

[48] Qiang Fu, Jieming Zhu, Wenlu Hu, Jian-Guang Lou, Rui Ding, Qingwei Lin, Dong-
mei Zhang, and Tao Xie. Where do developers log? an empirical study on logging
practices in industry. In Proc. 36th Int. Conf. on Software Eng., pages 24–33, 2014.

[49] Brad Glasbergen, Michael Abebe, Khuzaima Daudjee, and Amit Levi. Sen-
tinel: Universal analysis and insight for data systems. Proc. VLDB Endowment,
13(12):2720–2733, 2020.

[50] Brad Glasbergen, Michael Abebe, Khuzaima Daudjee, Daniel Vogel, and Jian Zhao.
Sentinel: Understanding data systems. In Proc. ACM SIGMOD Int. Conf. on Man-
agement of Data, pages 2729–2732, 2020.

[51] Brad Glasbergen, Kyle Langendoen, Michael Abebe, and Khuzaima Daudjee.
Chronocache: Predictive and adaptive mid-tier query result caching. In Proc. ACM
SIGMOD Int. Conf. on Management of Data, pages 2391–2406, 2020.

[52] Brad Glasbergen, Fangyu Wu, and Khuzaima Daudjee. Dendrite: Bolt-on adaptivity
for data systems. In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages
2726–2730, 2021.

[53] Sebastien Godard. Iostat manual page. https://linux.die.net/man/1/iostat,
2021.

[54] Sebastien Godard. SYSSTAT. http://sebastien.godard.pagesperso-orange.fr/,
2021.

128

https://logging.apache.org/log4j/2.x/
https://logging.apache.org/log4j/2.x/
https://flink.apache.org/
https://kafka.apache.org/
https://mariadb.org/
https://mariadb.org/
https://linux.die.net/man/1/iostat
http://sebastien.godard.pagesperso-orange.fr/

[55] Daniel Golovin, Benjamin Solnik, Subhodeep Moitra, Greg Kochanski, John Karro,
and D. Sculley. Google vizier: A service for black-box optimization. In Proc. 23rd
ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, pages 1487–
1495, 2017.

[56] Google. Google logging module. https://github.com/google/glog, 2020.

[57] Susan L. Graham, Peter B. Kessler, and Marshall K. McKusick. An execution profiler
for modular programs. Software: Practice and Experience, 13(8):671–685, 1983.

[58] Brendan Gregg and Jim Mauro. DTrace: Dynamic Tracing in Oracle Solaris, Mac
OS X, and FreeBSD. Prentice Hall Professional, New Jersey, 2011.

[59] PostgreSQL Global Development Group. PostgreSQL. https://www.postgresql.
org/, 2018.

[60] The PostgreSQL Global Development Group. PostgreSQL: Documentation: 9.6: The
statistics collector. https://www.postgresql.org/docs/9.6/monitoring-stats.
html, 2021.

[61] H. Gupta, V. Harinarayan, A. Rajaraman, and J.D. Ullman. Index selection for
OLAP. In Proc. 13th Int. Conf. on Data Engineering, pages 208–219, 1997.

[62] Alon Y. Halevy. Answering queries using views: A survey. Proc. VLDB Endowment,
10(4):270–294, 2001.

[63] Wassily Hoeffding. Probability inequalities for sums of bounded random variables.
J. American Statistical Association, 58(301):13–30, 1963.

[64] Rob J. Hyndman and Yanan Fan. Sample quantiles in statistical packages. The
American Statistician, 50(4):361–365, 1996.

[65] Stratos Idreos, Martin L. Kersten, and Stefan Manegold. Database cracking. In Proc.
3rd Biennial Conf. on Innovative Data Systems Research, pages 68–78, 2007.

[66] iNotify. INotify man page. https://man7.org/linux/man-pages/man7/inotify.7.
html, 2022.

[67] Zhen Ming Jiang, Ahmed E. Hassan, Gilbert Hamann, and Parminder Flora. An
automated approach for abstracting execution logs to execution events. J. Softw.
Maint. Evol., 20(4):249–267, 2008.

129

https://github.com/google/glog
https://www.postgresql.org/
https://www.postgresql.org/
https://www.postgresql.org/docs/9.6/monitoring-stats.html
https://www.postgresql.org/docs/9.6/monitoring-stats.html
https://man7.org/linux/man-pages/man7/inotify.7.html
https://man7.org/linux/man-pages/man7/inotify.7.html

[68] Zhen Ming Jiang, Ahmed E. Hassan, Gilbert Hamann, and Parminder Flora. Au-
tomated performance analysis of load tests. In Proc. 25th Int. Conf. on Software
Maint., pages 125–134, 2009.

[69] Jinho Jung, Hong Hu, Joy Arulraj, Taesoo Kim, and Woonhak Kang. Apollo: Auto-
matic detection and diagnosis of performance regressions in database systems. Proc.
VLDB Endowment, 13(1):57–70, 2019.

[70] Jonathan Kaldor, Jonathan Mace, Michał Bejda, Edison Gao, Wiktor Kuropatwa,
Joe O’Neill, Kian Win Ong, Bill Schaller, Pingjia Shan, Brendan Viscomi, Vinod
Venkataraman, Kaushik Veeraraghavan, and Yee Jiun Song. Canopy: An end-to-end
performance tracing and analysis system. In Proc. 26th ACM Symp. on Operating
System Principles, pages 34–50, 2017.

[71] D. A. Keim. Information visualization and visual data mining. IEEE Trans. Visual-
ization and Computer Graphics, 8(1):1–8, 2002.

[72] Nodira Khoussainova, Magdalena Balazinska, and Dan Suciu. PerfXplain: Debugging
MapReduce job performance. Proc. VLDB Endowment, 5(7):598–609, 2012.

[73] S. Kullback and R. A. Leibler. On information and sufficiency. The Annals of
Mathematical Statistics, 22(1):79–86, 1951.

[74] Leslie Lamport. Time, Clocks and the Ordering of Events in a Distributed System.
Commun. ACM, 21(7):558–565, 1978.

[75] Jialin Li, Naveen Kr. Sharma, Dan R. K. Ports, and Steven D. Gribble. Tales of the
tail: Hardware, OS, and application-level sources of tail latency. In Proc. 5th ACM
Symp. on Cloud Computing, pages 1–14, 2014.

[76] Qian Lin, Pengfei Chang, Gang Chen, Beng Chin Ooi, Kian-Lee Tan, and Zhengkui
Wang. Towards a non-2PC transaction management in distributed database systems.
In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages 1659–1674, 2016.

[77] Greg Linden. Make data useful. http://www.gduchamp.com/media/
StanfordDataMining.2006-11-28.pdf, 2006.

[78] Chao Liu, Long Fei, Xifeng Yan, Jiawei Han, and S.P. Midkiff. Statistical debugging:
A hypothesis testing-based approach. IEEE Trans. Softw. Eng., 32(10):831–848,
2006.

130

http://www.gduchamp.com/media/StanfordDataMining.2006-11-28.pdf
http://www.gduchamp.com/media/StanfordDataMining.2006-11-28.pdf

[79] Xinyu Liu, Qi Zhou, Joy Arulraj, and Alessandro Orso. Automatic detection of
performance bugs in database systems using equivalent queries. In Proc. 44th Int.
Conf. on Software Eng., pages 225–236, 2022.

[80] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin: Building
customized program analysis tools with dynamic instrumentation. In Proc. ACM
SIGPLAN 2005 Conf. on Programming Language Design and Implementation, pages
190–200, 2005.

[81] Lin Ma, Dana Van Aken, Ahmed Hefny, Gustavo Mezerhane, Andrew Pavlo, and
Geoffrey J. Gordon. Query-based workload forecasting for self-driving database man-
agement systems. In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages
631—-645, 2018.

[82] Lin Ma, William Zhang, Jie Jiao, Wuwen Wang, Matthew Butrovich, Wan Shen
Lim, Prashanth Menon, and Andrew Pavlo. MB2: Decomposed behavior modeling
for self-driving database management systems. In Proc. ACM SIGMOD Int. Conf.
on Management of Data, pages 1248–1261, 2021.

[83] Jonathan Mace, Ryan Roelke, and Rodrigo Fonseca. Pivot tracing: Dynamic causal
monitoring for distributed systems. In Proc. 25th ACM Symp. on Operating System
Principles, pages 378–393, 2015.

[84] Ashraf Mahgoub, Alexander Michaelson Medoff, Rakesh Kumar, Subrata Mitra, Ana
Klimovic, Somali Chaterji, and Saurabh Bagchi. OPTIMUSCLOUD: Heterogeneous
configuration optimization for distributed databases in the cloud. In Proc. USENIX
2020 Annual Technical Conf., pages 189–203, 2020.

[85] Ashraf Mahgoub, Paul Wood, Sachandhan Ganesh, Subrata Mitra, Wolfgang Ger-
lach, Travis Harrison, Folker Meyer, Ananth Grama, Saurabh Bagchi, and Somali
Chaterji. Rafiki: A middleware for parameter tuning of NoSQL datastores for dy-
namic metagenomics workloads. In Proc. ACM/IFIP/USENIX 18th Int. Middleware
Conf., pages 28–40, 2017.

[86] Imene Mami and Zohra Bellahsene. A survey of view selection methods. ACM
SIGMOD Rec., 41(1):20–29, 2012.

[87] Gabi Melman. SpdLog: Fast c++ logging library. https://github.com/gabime/
spdlog, 2020.

131

https://github.com/gabime/spdlog
https://github.com/gabime/spdlog

[88] Barzan Mozafari, Carlo Curino, Alekh Jindal, and Samuel Madden. Performance and
resource modeling in highly-concurrent OLTP workloads. In Proc. ACM SIGMOD
Int. Conf. on Management of Data, pages 301—-312, 2013.

[89] Madanlal Musuvathi, Shaz Qadeer, Thomas Ball, Gerard Basler, Pira-
manayagam Arumuga Nainar, and Iulian Neamtiu. Finding and reproducing heisen-
bugs in concurrent programs. In Proc. 8th USENIX Symp. on Operating System
Design and Implementation, pages 267–280, 2008.

[90] Karthik Nagaraj, Charles Killian, and Jennifer Neville. Structured comparative anal-
ysis of systems logs to diagnose performance problems. In Proc. 9th USENIX Symp.
on Networked Systems Design & Implementation, pages 26–26, 2012.

[91] Minh Nguyen, Zhongwei Li, Feng Duan, Hao Che, Yu Lei, and Hong Jiang. The tail
at scale: How to predict it? In Proc. 8th USENIX Workshop on Hot Topics in Cloud
Computing, pages 120–125, 2016.

[92] Mark Palmer and Stanley B. Zdonik. Fido: A cache that learns to fetch. In Proc.
17th Int. Conf. on Very Large Data Bases, pages 255–264, 1991.

[93] Andrew Pavlo, Gustavo Angulo, Joy Arulraj, Haibin Lin, Jiexi Lin, Lin Ma,
Prashanth Menon, Todd C Mowry, Matthew Perron, Ian Quah, et al. Self-driving
database management systems. In Proc. 8th Biennial Conf. on Innovative Data
Systems Research, 2017.

[94] Andrew Pavlo, Matthew Butrovich, Ananya Joshi, Lin Ma, Prashanth Menon,
Dana Van Aken, Lisa Lee, and Ruslan Salakhutdinov. External vs. internal: An
essay on machine learning agents for autonomous database management systems.
IEEE Data Eng. Bull., 42(2):32–46, 2019.

[95] Andrew Pavlo, Matthew Butrovich, Lin Ma, Prashanth Menon, Wan Shen Lim, Dana
Van Aken, and William Zhang. Make your database system dream of electric sheep:
Towards self-driving operation. Proc. VLDB Endowment, 14(12):3211–3221, 2021.

[96] Ofir Pele and Michael Werman. Fast and robust earth mover’s distances. In Proc.
12th Int. Conf. on Computer Vision, pages 460–467, 2009.

[97] Jose Pereira. TPC-W implementation. https://github.com/jopereira/java-tpcw,
2016. University of Minho’s implementation of TPC-W.

[98] Prometheus. Monitoring system and time-series database. https://prometheus.io/.

132

https://github.com/jopereira/java-tpcw
https://prometheus.io/

[99] Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes for
Machine Learning (Adaptive Computation and Machine Learning). The MIT Press,
Cambridge, Massachusetts, 2005.

[100] Peter J Rousseeuw and Annick M Leroy. Robust regression and outlier detection.
John Wiley & Sons, Hoboken, New Jersey, 2005.

[101] Sudip Roy, Arnd Christian König, Igor Dvorkin, and Manish Kumar. Perfaugur:
Robust diagnostics for performance anomalies in cloud services. In Proc. 31st Int.
Conf. on Data Engineering, pages 1167–1178, 2015.

[102] K. Salem and H. Garcia-Molina. Checkpointing memory-resident databases. In Proc.
5th Int. Conf. on Data Engineering, pages 452–462, 1989.

[103] Amazon Web Services. Open source databases. https://aws.amazon.com/products/
databases/open-source-databases/, 2022.

[104] Benjamin H. Sigelman, Luiz André Barroso, Mike Burrows, Pat Stephenson, Manoj
Plakal, Donald Beaver, Saul Jaspan, and Chandan Shanbhag. Dapper, a large-
scale distributed systems tracing infrastructure. Technical report, Google, Inc., 2010.
https://research.google.com/archive/papers/dapper-2010-1.pdf.

[105] Splunk. Cloud-based data platform for cybersecurity, it operations, and dev ops.
https://www.splunk.com/, 2021.

[106] Michael Stonebraker and Ugur Cetintemel. "One Size Fits All": An idea whose time
has come and gone. In Proc. 21st Int. Conf. on Data Engineering, pages 2–11, 2005.

[107] Michael Stonebraker, Sam Madden, and Pradeep Dubey. Intel "big data" science
and technology center vision and execution plan. ACM SIGMOD Rec., 42(1):44–49,
2013.

[108] Michael Stonebraker, Samuel Madden, Daniel J. Abadi, Stavros Harizopoulos, Nabil
Hachem, and Pat Helland. The end of an architectural era: (it’s time for a complete
rewrite). In Proc. 33rd Int. Conf. on Very Large Data Bases, pages 1150–1160, 2007.

[109] Mark D. Syer, Zhen Ming Jiang, Meiyappan Nagappan, Ahmed E. Hassan, Mohamed
Nasser, and Parminder Flora. Leveraging performance counters and execution logs
to diagnose memory-related performance issues. In Proc. 29th Int. Conf. on Software
Maint., pages 110–119, 2013.

133

https://aws.amazon.com/products/databases/open-source-databases/
https://aws.amazon.com/products/databases/open-source-databases/
https://research.google.com/archive/papers/dapper-2010-1.pdf
https://www.splunk.com/

[110] Rebecca Taft, Nosayba El-Sayed, Marco Serafini, Yu Lu, Ashraf Aboulnaga, Michael
Stonebraker, Ricardo Mayerhofer, and Francisco Andrade. P-store: An elastic
database system with predictive provisioning. In Proc. ACM SIGMOD Int. Conf. on
Management of Data, pages 205–219, 2018.

[111] Rebecca Taft, Essam Mansour, Marco Serafini, Jennie Duggan, Aaron J. Elmore,
Ashraf Aboulnaga, Andrew Pavlo, and Michael Stonebraker. E-store: Fine-grained
elastic partitioning for distributed transaction processing systems. Proc. VLDB En-
dowment, 8(3):245–256, 2014.

[112] Dixin Tang, Hao Jiang, and Aaron J Elmore. Adaptive concurrency control: Despite
the looking glass, one concurrency control does not fit all. In Proc. 8th Biennial
Conf. on Innovative Data Systems Research, pages 1–9, 2017.

[113] P. Tchébychef. Des valeurs moyennes (traduction du russe, n. de khanikof.). Journal
de Mathématiques Pures et Appliquées, 2(12):177–184, 1867.

[114] CAPEC Content Team. Capec 488: Http flood. https://capec.mitre.org/data/
definitions/488.html, February 2020.

[115] TPC. TPC benchmark W (web commerce). http://www.tpc.org/tpcw, 2000.

[116] Alexandre Tsybakov. Introduction to nonparametric estimation. Springer, New York,
2008.

[117] Dana Van Aken, Andrew Pavlo, Geoffrey J. Gordon, and Bohan Zhang. Automatic
database management system tuning through large-scale machine learning. In Proc.
ACM SIGMOD Int. Conf. on Management of Data, pages 1009–1024, 2017.

[118] Junxiong Wang, Immanuel Trummer, and Debabrota Basu. UDO: universal database
optimization using reinforcement learning. Proc. VLDB Endowment, 14(13):3402–
3414, 2021.

[119] Henry Ware and Fabian Frédérick. Vmstat manual page. https://linux.die.net/
man/8/vmstat, 2021.

[120] Dag Wieers. DStat. http://dag.wiee.rs/home-made/dstat/, 2021.

[121] David Wiese, Gennadi Rabinovitch, Michael Reichert, and Stephan Arenswald. Au-
tonomic tuning expert: A framework for best-practice oriented autonomic database
tuning. In Proc. Conf. of the IBM Centre for Advanced Studies on Collaborative
Research, pages 1–15, 2008.

134

https://capec.mitre.org/data/definitions/488.html
https://capec.mitre.org/data/definitions/488.html
http://www.tpc.org/tpcw
https://linux.die.net/man/8/vmstat
https://linux.die.net/man/8/vmstat
http://dag.wiee.rs/home-made/dstat/

[122] Stephen Yang, Seo Jin Park, and John Ousterhout. NanoLog: A Nanosecond Scale
Logging System. In Proc. USENIX 2018 Annual Technical Conf., pages 335–350,
2018.

[123] Matt Yonkovit. The state of the open source database industry
in 2020: Part three. https://www.percona.com/blog/2020/04/22/
the-state-of-the-open-source-database-industry-in-2020-part-three/,
2020.

[124] Dong Young Yoon, Barzan Mozafari, and Douglas P. Brown. DBSeer: Pain-free
database administration through workload intelligence. Proc. VLDB Endowment,
8(12):2036–2039, 2015.

[125] Dong Young Yoon, Ning Niu, and Barzan Mozafari. Dbsherlock: A performance
diagnostic tool for transactional databases. In Proc. ACM SIGMOD Int. Conf. on
Management of Data, pages 1599—-1614, 2016.

[126] Xiao Yu, Pallavi Joshi, Jianwu Xu, Guoliang Jin, Hui Zhang, and Guofei Jiang.
Cloudseer: Workflow monitoring of cloud infrastructures via interleaved logs. In Proc.
21st Int. Conf. on Architectural Support for Programming Languages and Operating
Systems, pages 489–502, 2016.

[127] Ji Zhang, Yu Liu, Ke Zhou, Guoliang Li, Zhili Xiao, Bin Cheng, Jiashu Xing, Yang-
tao Wang, Tianheng Cheng, Li Liu, Minwei Ran, and Zekang Li. An end-to-end
automatic cloud database tuning system using deep reinforcement learning. In Proc.
ACM SIGMOD Int. Conf. on Management of Data, pages 415–432, 2019.

[128] Xu Zhao, Kirk Rodrigues, Yu Luo, Ding Yuan, and Michael Stumm. Non-Intrusive
performance profiling for entire software stacks based on the flow reconstruction prin-
ciple. In Proc. 12th USENIX Symp. on Operating System Design and Implementation,
pages 603–618, 2016.

[129] Xu Zhao, Yongle Zhang, David Lion, Muhammad Faizan Ullah, Yu Luo, Ding Yuan,
and Michael Stumm. lprof: A non-intrusive request flow profiler for distributed
systems. In Proc. 11th USENIX Symp. on Operating System Design and Implemen-
tation, pages 629–644, 2014.

135

https://www.percona.com/blog/2020/04/22/the-state-of-the-open-source-database-industry-in-2020-part-three/
https://www.percona.com/blog/2020/04/22/the-state-of-the-open-source-database-industry-in-2020-part-three/

	List of Figures
	List of Tables
	Introduction
	Motivational Example
	Contributions
	Thesis Organization
	Universal Behaviour Model Extraction
	Robust Behaviour Capture
	Adaptivity Framework
	Case Studies and Lessons Learned

	Terminology
	System Behaviour
	Adaption

	Core Models and Behaviour Difference Detection
	Low Overhead Event Extraction
	Event Tracking
	Event Flows
	Efficiently Tracking Event Transitions
	Estimating Transition Time CDFs
	Combining Transition Time CDFs
	CDF Differences Report

	Difference Detection
	Difference Monitoring User Interface

	Experimental Evaluation
	Experiment Setup
	Evaluation Methodology
	Behaviour Difference Validation
	Monitoring Overheads
	Analysis Time
	System Integration Efforts
	Accuracy of Sampled CDFs

	Summary and Discussion

	Enhanced Modelling and Adaptivity Framework
	Model Enhancement Motivation
	Resource Consumption and Behaviour Differences
	Higher-Dimensional Modelling

	Behaviour Model Enhancements
	Fine-grained Resource Metric Collection
	Minimizing Modelling Overheads
	Model Accuracy Guarantees
	Concurrency
	Combining Variable-Order Behaviour Models

	Control Server and Enabling Adaptivity
	Overview
	Detecting Behaviour Differences
	Fingerprinting
	Adaption Rules
	User Interface
	System Tools and Deployment

	Beyond Logging-based Models
	Overview
	Trade-offs between Dendrite Versions

	Generalized Database System Adaptivity: Case Studies
	Experiment Setup
	PostgreSQL
	MariaDB
	SQLite
	MonetDB
	Workloads

	Case Studies
	Reducing Checkpoint Frequency
	Automatic Construction of Secondary Indexes
	Handling an HTAP Workload
	Batching Updates in SQLite

	Microbenchmarks
	Quantifying Overheads
	Attention Focusing and Fingerprinting
	System Integration
	Behaviour Model Microbenchmarks

	Discussion
	Summary

	Related Work
	System Management Assistance Tools
	Simple Statistics Collection
	System Behaviour Analysis

	System Recommendation Tools
	Adaptive Database Systems
	Natively Adaptive Database Systems
	Generalized Database Adaptivity

	Conclusion and Future Work
	Contributions
	Future Work

	References

