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Abstract 

Redox flow batteries including the vanadium redox flow battery (VRFB) and Zn-air batteries have attracted 

attentions in energy storage projects due to their scalability and high energy density. Performance of these 

devices is particularly dependent on the transport processes occurring in their porous electrodes which are 

in turn dependent on their microstructure. As a result, researchers have been focused on designing electrode 

structures that enhances the performance of the energy storage devices and reduces their operational cost. 

For this purpose, pore-scale modeling of reactive transport phenomena in porous electrodes is of strong 

interest to help unravel the structure performance relationship of porous electrodes. Two main approaches 

in pore-scale modeling are direct numerical simulations (DNS), and pore network modeling (PNM). DNS 

methods are computationally expensive especially in large samples and multiphysics and/or multiphase 

problems. PNM has been successfully used in porous electrode studies such as fuel cells due to its lower 

computational cost. However, PNM for structural design and studies of redox flow batteries including Zn-

air and vanadium redox flow batteries (VRFB) requires improvements due to the more complicated 

multiphysics occurring. This thesis aims towards utilizing and improving pore network modeling 

framework for these two types of batteries by developing a rigorous framework that can be used for 

structural-performance and design studies of porous electrodes. 

 

The development of a rigorous PNM framework for studying the microstructures in VRFB and Zn-air 

electrodes requires enhancements in the PNM. For example, in VRFB the effect of both mass transfer 

coefficients and migration are required to be captured. Moreover, to study the impact of various structures, 

a workflow is required for in-silico generation of materials with realistic properties to which PNMs can be 

applied to simulate performance. To resolve these issues, modifications on the PNM topology and 

formulations were applied to accommodate mass transfer coefficients. A framework was developed to 

generate fibrous materials with novel multi-layer structures and analyze their microstructure and 

performance relationship. It was found that in an interdigitated flow field placing a higher permeability 

layer near the membrane provided higher current density in contrast to the opposite order of the layers. The 

higher current density was due to higher flow rates in the regions closer to the membrane that were 

otherwise exhausted. However, it was shown that selecting the optimum design solely based on current 

density was ambiguous, as additional operational conditions such as pumping cost must be included in the 

selection process. 

 

Another essential improvement on PNM framework is to properly capture complex multiphase transport in 

porous electrodes, such as air electrodes in Zn-air flow batteries. This improvement is essential, as air 
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electrodes operate with triple phase boundary regions where oxygen reduction reaction takes place within 

the pore-scale microstructure. A framework was developed to include the dissolution of oxygen in 

multiphase transport formulations and study the relationship between electrolyte invasion configuration, 

liquid-gas interface and performance of the air electrodes. It was found that invasion of electrolyte from 

low to intermediate saturation provides additional liquid-gas interface and higher power density while the 

optimum saturation depends on the structure, which was further investigated in terms of the pore size 

distribution. 

 

Finally, a key step in PNM of porous electrodes is to properly represent the porous structure in the model, 

both topology and geometry. Much effort has been focused on improvements on extracting the network and 

properly estimating its mass transport properties, such as diffusive conductance. In extracted networks from 

volumetric images, this value is found by analyzing the geometrical properties of the pore-to-pore image 

or direct numerical simulation methods. DNS methods provide a more accurate estimation; however, they 

are computationally expensive. To resolve this issue, an image-based deep learning framework was 

developed to estimate diffusive conductance of PNM elements. It was shown that the deep learning 

framework can speed up the estimation of conductance values by 500x in contrast to DNS methods while 

providing a more accurate estimation in contrast to classic analytical solutions and geometry-based 

methods. The developed framework can be applied to migrative transport of species and dispersion, as they 

include the same parameter, thereby useful in modeling porous electrodes. 

 

The presented work in this thesis was focused on improving PNM framework to include mass transport 

processes more effectively in multiphase and multiphysics problems with emphasis on electrochemical 

modeling of porous electrodes. The developed frameworks have enabled the study of microstructure and 

performance relationship in redox flow batteries including metal-air and vanadium redox flow battery. The 

developed in-silico generation of microstructures and performance analysis using PNM can be used as a 

computationally efficient tool to design high performing porous electrodes. 
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Chapter 1: Introduction 

1.1. General research territory 

In the past three decades, increasing demand for energy along with the associated environmental impacts 

and shortage of fossil fuels have increased the demand for renewable energy resources, such as wind and 

solar [1], [2]. However, renewable energy resources are intermittently available resulting in the lack of 

supply for the periods when the electricity demand is high. To stabilize the supply-demand market, large-

scale energy storage devices are required. Amongst different energy storage technologies, redox flow 

batteries (RFB) including the vanadium redox flow battery (VRFB) and metal-air flow batteries have 

attracted attentions due to their high energy efficiency, scalability, and flexibility in terms of controlling 

power and energy separately [3], [4]. Metal-air flow batteries such as Zinc-air flow batteries have an 

additional advantage of having a high energy density while being cost-effective, as they use oxygen in the 

air as the oxidant. Despite the advances in VRFBs and Zinc-air flow batteries technology, they still need to 

be optimized to provide a high performance and long life cycle product [5]–[8]. Since United Nations’ 

global call for actions for protecting the planet in 2015 [9], development of high performance RFBs have 

been more crucial due to decarbonization roadmaps, such as Canada’s 2030 agenda for sustainable 

development that includes access to clean energy in remote communities. Increasing the performance of 

these electrochemical devices and their life cycle will then have a substantial economic and operational 

impact on the development of energy storage projects. VRFBs and Zinc-air flow batteries operate with 

porous electrodes and the structure of the electrodes affect the performance of these batteries, because key 

transport phenomena and electrochemical reactions take place within their microstructure [10], [11]. To 

design an optimum electrode structure that improves the performance of the batteries it is necessary to 

unravel the structure-performance relationship in porous electrodes [2]. Such studies require a proper tool 

to capture and analyze the physics and transport mechanisms occurring within the porous electrodes. 

Although experimental tools can provide insights on the structural-performance of the electrodes [8], [12], 

to study varieties of structures and details of transport at pore-scale a proper numerical modeling provides 

a cost-effective tool. Numerical modeling frameworks have been the focus of researchers in porous 

electrode studies, since advances in image acquisition techniques can now provide the 3D high-resolution 

images of these porous structures [13], [14]. The primary motivation of this work is to utilize and improve 

a pore-scale numerical modeling framework, known as pore network modeling to efficiently capture the 

microstructure and transport in porous electrodes and develop a rigorous framework that can be used for 

structural-performance studies. 
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1.2. Gaps in the existing research 

Macroscopic modeling techniques are commonly used to model batteries, from full cells down to single 

electrodes [15], [16]. Macroscopic models assume the electrode is a homogeneous continuum domain while 

the structural properties are estimated using correlations at macroscopic scale, such as tortuosity and 

permeability. Although these models can be used to design overall cell configurations and provide 

information on the effect of changing macroscopic structural parameters, they do not resolve the conditions 

at the pore-scale. Capturing the effects of real geometry at the pore-scale is essential for several reasons: 

 

• Macroscopic modeling uses effective properties such as tortuosity and effective diffusivity, which 

are estimated using developed correlations. However, those correlations can be erroneous outside 

the range of their applications [17], [18]. As a result, the macroscopic modeling results including 

the performance of the electrode can be erroneous. 

• Even though a macroscopic model can provide information on the general structure such as 

permeability, its information is not enough for creating the porous structure and experimental 

studies. For example, the same value of permeability can be found in two different structures of 

foam and fibrous materials while having different performance. Therefore, microstructure 

information is essential for practical design and experimental studies. To tackle this limitation, 

some researchers have used effective properties correlations that include more structural 

information such as fiber diameter [19]. However, other structural information including anisotropy 

and fiber orientations that are necessary for design could not be captured. 

• Capturing pore-scale information are even more essential in multiphase transport applications, such 

as air electrodes. The distribution of electrolyte within air electrodes are based on percolation theory 

and the reaction at air electrodes takes place at the interface of air-electrolyte, the location and 

extent of which is highly affected by the pore-scale morphology. These pore-scale phenomena are 

impossible to measure in macroscopic models. 

 

Pore-scale modeling techniques can be categorized into two main approaches of direct numerical simulation 

(DNS) and pore network modeling (PNM). DNS methods capture the pore-scale information by discretizing 

the porous domain into computational meshes. DNS methods have been used to study the structural 

properties of porous electrodes, such as pore size distribution at pore-scale [10], [20]. While DNS methods 

provide pore-scale information in contrast to macroscopic modeling, they are computationally expensive 

especially in complex multiphysics problems and large domains [3]. As an alternative approach, pore 

network modeling (PNM) is a cost-effective pore-scale modeling technique that models the porous domain 

as a connected network of pores (nodes) and throats (edges) with simple geometries [2], [21]–[23]. This 
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approximation of the geometry and topology of the material reduces the number of variables in transport 

equations and makes the method computationally efficient and suitable to study large domains and 

multiphase multiphysics problems [24], [25]. 

 

Due to the computational efficiency of PNM and other benefits, this technique has been used successfully 

in various applications in energy storage devices, such as fuel cells [22], [23], [26], Li-ion batteries [27], 

and RFBs [2], [28], [29]. However, PNMs are not traditionally applied to electrochemical devices, and no 

established commercial software is available. Therefore, using PNM to rigorously study porous electrodes 

in VRFB and Zn-air flow batteries requires additional improvements on the modeling framework to capture 

multiphase multiphysics transport properly. For instance, previous PNM studies on VRFB electrodes did 

not include a mass transfer coefficient between the flow fluid and solid electrode [28], or they did not 

include migration effects on ion transport [29]. Such improvements on PNM framework would be a 

steppingstone for the ultimate goal of in-silico design of electrode structures and using PNM within an 

optimization framework to select high performing structures. A main gap in the structural-performance of 

VRFB research is that previous PNM studies on structure-performance relationship of RFBs were based on 

simple lattice networks [2] or existing commercial materials [29], [30]. For structural performance analysis 

it is necessary to develop a framework to generate varieties of novel structures and rapidly analyze their 

performance using electrochemical modeling in PNM. 

 

 Another area were PNMs can be of benefit is understanding the impact of multiphase transport, which adds 

another layer of complexity on top of the structural effects. Multiphase conditions are found in Zn-air 

cathodes (discussed herein) as well as PEM fuel cells and electrolzyers. An issue in multiphase transport in 

air electrodes is to capture the impact of multiphase mechanisms at reactive regions where solid-liquid-gas 

meet, the so-called triple phase boundary (TPB) region [31], [32]. The role of TPB in Zn-air electrodes and 

the impact that electrode microstructure has on the phase distributions have not been thoroughly studied 

[32]. For instance, the only PNM study of the Zn-air electrode was limited to a 2D pore network model, 

and the focus was on qualitative analysis of triple phase boundary so no performance calculations where 

made [33]. Proper modeling in the air electrode using PNM requires development of a framework that can 

capture TPB region and underlying transport phenomena including dissolution of gas in a multiphase 

scheme, transport of species and charge. Such framework can then be used for further studies on optimum 

structural and operational parameters in Zinc-air flow batteries. 

 

The above goals all depend on a faithful representation of the structure by the pore network. A lot of effort 

has been directed toward extraction of topologically accurate networks and extracting suitable geometric 

properties to define the transport conductance of the network conduits. For instance, accurate estimation of 
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diffusive conductance is not only useful to describe diffusive mass transport, but also the migrative transport 

of species and dispersion, as the same parameter exists in both transport phenomena. Classic methods to 

estimate conductance are based on analytical solutions that assume simple pore geometries in place of 

irregular-shaped ones which are found in real porous media [34]. An alternative means of finding 

conductance is to use direct numerical simulation (DNS) on a pore-by-pore basis [35], [36]. However, it is 

computationally expensive to implement DNS on every tomogram from which a network is extracted. 

Therefore, there is a gap in research to accurately estimate diffusive conductance of PNM elements while 

being computationally feasible. 

 

A common concept in the abovementioned gaps is to improve or properly capture mass transport parameters 

in PNM framework for electrochemical modeling of porous electrodes. Addressing those gaps results in a 

more rigorous PNM for studying VRFBs and Zn-air flow batteries and designing optimum electrode 

structures. 

1.3. Filling the gaps 

The objective of this thesis is to address the gaps in the PNM framework with a specific focus on properly 

defining mass transport processes in VRFBs and Zn-air electrodes. Occupying these gaps will result in a 

more rigorous PNM framework for design studies of porous electrodes and understanding their structure-

performance relationship. In this regard, the objectives of this work was break down into three studies as 

follows: 

 

Objective 1: Defining the dissolution of gaseous species and multiphase transport in PNM for the ultimate 

goal of studying the role of TPB and structure-performance relationship in Zn-air electrodes. The 

focus of this objective was to capture the multiphase transport in PNM including invasion of electrolyte 

into the catalyst layer and underlying transport phenomena, such as dissolution of oxygen at electrolyte-gas 

interface, diffusion and reaction of oxygen and mass transport of ionic species along with charge transport 

within the electrolyte. The developed framework was then used for structural-performance analysis in Zn-

air electrodes with the impact of pore size distribution studied as a parameter which could ultimately be 

experimentally targeted. To focus on the complex multiphase behaviour and capture transport phenomena 

occurring in the developed PNM framework, a simple cubic lattice network geometry was used. 

 

Objective 2: Incorporating a local mass transport coefficient in PNM for the ultimate goal of studying the 

structure-performance relationship in VRFB electrodes. In this objective a realistic geometry for the 

porous electrode was defined while the transport is simpler in contrast to objective 1, as it is a single phase 

transport problem. However, the fluid flow was added to the system of mass transport equations. Within 
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the PNM framework, steps were required to couple the fluid velocity with the reaction terms. A robust 

framework was developed for in-silico generation of novel fibrous materials and rapid iteration of designs 

for VRFB electrodes. 

 

Objective 3: Developing a framework to estimate diffusive mass transport conductance of conduits in 

PNM accurately and efficiently. For this objective a deep learning framework was applied to estimate the 

diffusive conductance of conduits from real images of pore regions, thereby capturing the true geometry of 

the network. The deep learning model can then replace the time-consuming DNS methods and the erroneous 

analytical methods in estimating the diffusive conductance values. The final result of this objective 

increases the accuracy of PNM in diffusive mass transport behaviour and electrochemical modeling, as the 

diffusive conductance term exists in migrative conductance of species. 

1.4. Thesis structure 

This thesis is organized with a manuscript-based structure where each chapter is self-contained and 

addressing each objective of the thesis. Each objectives’ chapter includes an introduction with relevant 

literature reviews to justify the motivation of the work presented in the chapter. Detailed theories and 

methodologies followed by results and discussions on findings are then provided. Each chapter ends with 

concluding marks and suggestions on future works. The structure of this thesis is as follows: 

 

In chapter 2, background and theories relevant to the objectives of this thesis are provided. Only general 

literature review was included here since each subsequent chapter discusses the literature pertinent to its 

focus. 

 

In chapter 3, a PNM framework is developed for modeling the multiphase transport in air electrodes of Zn-

air flow batteries. A simple lattice network geometry is used as the porous catalyst layer, while the complex 

multiphase transport including dissolution of the oxygen is applied in the mass transport equations. Results 

and findings on the role of TPB on the electrode performance and the dependence of TPB on electrolyte 

distribution are presented. Next, the developed PNM is used for structural-performance analysis of the 

catalyst layer based on different pore size distributions. 

 

In chapter 4, a PNM framework is developed for in-silico generation of novel structures for VRFB 

electrodes. The generated materials have complex structure, but in contrast to chapter 3 the mass transport 

is applied for a single phase flow. To include the velocity dependence of mass transfer coefficient the PNM 

geometry is modified. An image generation algorithm is used to generate fibrous materials with novel 

structures. Next, the developed PNM is used for structural-performance analysis of the generated structures. 
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In chapter 5, an image-based deep learning framework is developed to estimate the diffusive conductance 

of conduits in PNM. The deep learning model can be used to predict and assign physics properties of 

conduits, such as diffusive and migrative conductance in PNM of porous electrodes. 

 

In chapter 6, key findings and conclusions from the three objectives are presented along with suggestions 

for future efforts and extensions of the research. 
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Chapter 2: Background and Theory 

This chapter provides technical background and theory relevant to the objectives of the thesis, with a focus 

on modeling transport phenomena in porous electrodes. 

2.1. Electrochemical devices 

This section is focused on introducing the two electrochemical devices that are studied in this thesis. The 

basics of quantifying the performance of batteries are then explained along with justifications on the 

importance of studying porous electrodes. 

2.1.1. Zinc-air flow battery 

Zinc-air flow batteries have started to receive attention due to their high energy density since the fuel is a 

simple arbitrarily-sized hopper filled with zinc particles, which are an inexpensive and safe material [37]. 

Additionally, eliminating the need for a positive electrolyte effectively increases the energy density of the 

system. A schematic of a Zn-air flow battery is shown in Figure 2-1a. The battery system consists of a 

powdered metal as the anode, a porous air electrode as the cathode, and a membrane separator for electrical 

isolation while current collectors are connected to each electrode. In the air cathode the KOH electrolyte 

invades through the catalyst layer while the oxygen from the air diffuses through the electrode to the catalyst 

layer where it dissolves into the electrolyte and undergoes oxygen reduction reaction. The oxygen reduction 

reaction produces hydroxides from oxygen and water. The hydroxide ions react with the Zn metal and form 

zincate ions, which precipitates as ZnO, once the ions reach their solubility limit concentration. The 

electrochemical reactions in anode and cathode of ZAFB are as follows. For the zinc electrode: 

Zn + 4OH−
rZn

⟷Zn(OH)4
2− + 2e− (2-1) 

Zn(OH)4
2−

rZnO

⟷ ZnO + 2OH− + H2O (2-2) 

While for the air electrode: 

1

2
O2 + H2O + 2e−

rair

⟷ 2OH− (2-3) 

 

The oxygen reduction reaction takes place within the air cathode’s catalyst layer porous structure, as 

schematically shown in Figure 2-1b. The reaction in the air electrode takes place at the interface of the solid 
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catalyst material, liquid electrolyte, and gas phases, the so-called triple phase boundary (TPB) region. The 

extent of the TPB region depends on various parameters such as the electrolyte invasion pattern and the 

microstructure of the porous catalyst layer. Therefore, to design better performing air electrode structures, 

it is necessary to understand the mechanisms of oxygen reduction reaction and the role of TPB and structural 

and operational parameters affecting the TPB. Part of this thesis (chapter 3) is therefore focused on 

understanding the role of TPB and structural-performance analysis of the porous catalyst layer in the Zn-

air flow battery system. 

 

Figure 2-1 a) A schematic of a Zn-air flow battery b) A schematic of a porous catalyst layer and transport of 

species 

2.1.2. Vanadium Redox flow batteries 

Redox flow batteries (RFBs) are promising energy storage devices for large-scale, long-life applications 

such as stationary storage. The advantage of the flow battery over conventional batteries is that power 

generation and energy storage elements are decoupled, and therefore more stacks can be added when 

required to generate more power and larger electrolyte tanks can be added to increase amount of energy 

storage. Amongst different redox couples for RFBs, vanadium redox flow battery (VRFB) technology has 

been more developed. The advantage of VRFB to other RFBs is the use of the same material in cathodes 
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and anodes, thereby reducing the risk of cross-contamination in cell compartments, which is a degradation 

issue. A typical VRFB consists of a battery stack where the electrochemical reaction occurs to generate 

power, and separate electrolyte tanks where the solutions of electroactive species are stored as schematically 

shown in Figure 2-2 a. The electrochemical reactions during charge and discharge of a vanadium flow 

battery are as follows. For the cathodic electrode half-cell reaction: 

VO2+ + H2O − e−
charge

⇌
discharge

VO2
+ + 2H+  (2-4) 

 

And for the anodic electrode half-cell reaction: 

V3+ + e−
charge

⇌
discharge

V2+ (2-5) 

 

The microstructure of the electrodes in VRFBs plays an important role on the fluid flow distribution and 

reactive transport, and accordingly the generated current/power of the battery. Figure 2-2b illustrates an 

example of a reactive fluid flow through a fibrous porous material from pore-scale simulation results. The 

red color indicates the electroactive species, which is consumed at the electrode surfaces (denoted by the 

dark blue spots). The fluid flow paths highly prefer regions of large pore size, resulting in channeling, and 

conversely constricted pore regions are starved of reactant. The transport here is influenced by both 

diffusion and convection. Not indicated here is the migration of ions due to electric field effects, which 

adds even further complexity to the system. This figure therefore illustrates how the structure of the 

electrode impacts the distribution of reactants, and that the reaction rates are unevenly distributed due to 

the heterogeneous nature of the electrode structure. Developing optimized electrode structures, with high 

permeability but also high reactive surface area and good mass transfer characteristics has been a top 

priority in the VRFB research. Part of this thesis (chapter 4) is therefore focused on developing a framework 

for structural-performance analysis of novel electrode structures in VRFBs. 
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Figure 2-2 a) A schematic of a Vanadium redox flow battery b) A schematic of a porous electrode 

2.1.3. Performance of electrochemical devices 

The performance of flow-cell systems, which have an external supply of reactants that is in principle 

inexhaustible, can be quantified using the current-potential relationship or polarization curve. This is in 

contrast to a normal battery where capacity is the primary consideration. A polarization curve shows the 

steady-state dependence of cell potential on its current density [38]. A schematic of a polarization curve is 

shown in Figure 2-3. Each region in the polarization curve is relevant to a principal phenomenon or physics. 

For example, region a, b and c represent the effect of kinetics, ohmic losses and mass transfer, respectively.  

 

In region a, the slope of the curve is initially high indicating a small amount of current generation leads to 

a fast drop in the cell potential. This region represents a kinetic controlled region at low current density 

(activation polarization). Kinetics of the reaction can be defined using Butler-Volmer equation [38], which 

indicates an exponential increase in current as voltage is applied.  

 

In region b, the ohmic losses dominate the polarization behaviour. Ohmic losses are linearly proportional 

to current. In this linear region, kinetic losses are also increasing but much slower than ohmic losses as 
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kinetics are increasing proportional to the logarithm of the current. Therefore, this linear region is called 

ohmic region. The slope of the polarization curve in region b indicates the ohmic resistance of the 

electrolyte, which is mainly affected by the electrolyte conductivity and length [38].  

 

In region c, mass transfer losses dominate the polarization behaviour at high current density. During the 

discharge reactants are transferred to the electroactive catalyst sites to undergo reaction at the electrode 

surface. The consumption of reactants leads to a concentration gradient between bulk electrolyte and 

electrode surface. The reactant concentration becomes zero and limiting current density is reached [38].  

 

Figure 2-3 An example of an arbitrary polarization curve. 

Depending on the system, the structures and properties of its components, and electrolytes the polarization 

curve is different in each electrochemical device. However, the contribution of kinetics, ohmic loss and 

mass transfer at low to high current densities is a common feature for all polarization curve [38]. Therefore, 

it is important to understand the effect of these mechanisms on the performance of the batteries. Analysis 

of polarization curve can be used to define operational or structural parameters that lead to a better 

performance. For example, using a thin electrolyte can reduce the ohmic loss, as it would be seen from a 

lower slope in moderate current region providing a higher current density. However, such simple conclusion 

was based on the use of a planar electrode. In a porous electrode the polarization curve is affected by the 
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microstructure of the electrode in a more complex way. To quantify the performance of VRFBs and Zn-air 

batteries in structural-performance analysis, the polarization curves can be used as a basis of performance 

measures. For example, when defining the performance in terms of the maximum power density or current 

density, the structural design and operational conditions that lead to a highest power/current density can be 

assumed to be the optimum design. Such cases are examined in chapter 3 and chapter 4 with a main focus 

on the microstructures of the electrodes. 

2.1.4. Porous electrodes 

Porous electrodes are used in various commercial energy storage devices instead of planar electrodes 

essentially because they can provide a larger interface for contact of active materials with the electrolyte 

liquid phase and in some applications with the gas phase [38], [39]. The increased surface area leads to 

increased power density and efficiency of the chemical reaction. Another advantage of a porous electrode 

is that its compactness can reduce the ohmic loss, as it reduces the length of the charge transport [39]. Other 

advantages include providing volume for storing reactants near the electrode surface, which accommodates 

the change in solid electrode volume during the discharge, such as in lead-acid batteries [38], [39]. 

Additionally, in air electrodes such as metal-air batteries the porous electrode structure promotes the 

transport of oxygen and creating a stable liquid-gas interface within porous catalyst layer promotes the 

oxygen reduction reaction. Therefore, the first step in designing better performing porous electrodes is to 

understand the transport mechanisms within the porous structure. However, studying transport in porous 

electrode includes more complications than planar electrodes. For example, ohmic loss and mass transfer 

occur in different directions within the porous structure and accordingly reaction is nonuniform [39]. To 

understand the transport mechanisms different numerical modeling techniques have been developed. In the 

next sections an overview of those techniques and their advantages and disadvantages are provided. As the 

focus of this thesis is based on pore network modeling framework, more details on that specific framework 

are provided. 

2.2. Continuum-scale transport in porous electrodes 

Continuum-scale modeling techniques are macroscopic modeling methods that use the average of variables 

over a volume of the electrode, the so-called representative elementary volume (REV). The REV in 

continuum-scale modeling is small in contrast to the electrode domain while large enough compared with 

individual pore regions [38], [39]. In macroscopic modeling the actual geometry of the pores and solid 

matrix are ignored and the volume-averaged quantities are assumed to be continuous in spatial and temporal 

space. In a porous electrode, the electrode is then modeled as the “superposition of two continua” [39] 

including electrolyte solution and matrix, meaning that at any point in the domain both continuum exist. 
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Therefore, variables such as electrolyte conductivity and diffusivity are calculated as effective properties 

instead of properties at the microscopic level within the porous electrode. Using the effective properties in 

the system of mass and charge transport equations, averaged values of velocity, species concentration and 

electrical potential are found. Macroscopic modeling is therefore computationally inexpensive due to this 

simplification of geometry and mathematical equations are sometimes even solved in one or two 

dimensions. However, actual geometric details of pores and matrix in electrode are ignored [39]. In this 

section modeling porous electrodes using macroscopic modeling is briefly explained. 

2.2.1. Transport equations 

The material balance for a species 𝑖 in the electrolyte using volume-averaged method can be written as 

follows [39]: 

𝜕𝜀𝑐𝑖

𝜕𝑡
= 𝑎𝑗𝑖𝑛 − ∇. 𝑁𝑖   (2-6) 

where 𝑎 is the specific interfacial area defined as surface area of pore walls per unit volume of the electrode 

domain. 𝑐𝑖 is the average concentration of species 𝑖 over the volume of the electrolyte solution in pores. 

With this definition 𝜀𝑐𝑖 is the amount of species per control volume [38]. 𝑗𝑖𝑛 is the pore-wall flux density 

of species 𝑖 averaged over the interfacial area of electrolyte-matrix [39] (species reaction rate at the interface 

[38]). 𝑁𝑖 is the average flux density of species 𝑖 over the cross-section of the electrode. Eq. (2-6) indicates 

that the concentration of species at a location within the electrode changes because of the electrochemical 

reaction (𝑎𝑗𝑖𝑛) and/or species transport (∇. 𝑁𝑖) [39]. 

A volume element in the electrode is assumed to be electrically neutral. Therefore, the divergence of total 

current density (matrix and electrolyte) becomes zero as follows [39]: 

∇. i1 + ∇. i2 = 0 (2-7) 

 

where i1 and i2 are the current density in matrix and electrolyte phase, respectively. In the solid matrix the 

current due to electrons transport is found from ohm’s law as follows: 

 

where 𝜎 and Φ1 are the effective conductivity of the solid phase and solid potential, respectively. 

The current density in the electrolyte solution due to the transport of species 𝑖 is defined as follows [39]: 

i2 = 𝐹 ∑ 𝑧𝑖𝑁𝑖

𝑖

 
(2-9) 

i1 = −𝜎∇Φ1 (2-8) 
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Combining Eq. (2-6), Eq. (2-9) and electroneutrality assumption in the electrolyte (∑ 𝑧𝑖𝑐𝑖 = 0) leads to the 

following equation: 

where 𝑖𝑛 is the average current density. Assuming a single electrode reaction, species reaction rate can be 

defined using Faraday’s law [38]: 

where 𝑠𝑖 is the stoichiometric coefficient for species 𝑖 in the reaction, 𝑛 is the number of electrons, 𝐹 is the 

Faraday’s constant. Substituting Eq. (2-11) into Eq. (2-6), species transport equation becomes as follows: 

The faradic charge transfer from matrix to electrolyte can be described by a general Bulter-Volmer equation 

[39]: 

where 𝜂𝑠 is the surface overpotential defined as 𝜂𝑠 = Φ1 − Φ2 − 𝑈. Φ2 and 𝑈 are the electrolyte potential 

and the open-circuit voltage, respectively. 𝑅 is the universal gas constant and 𝑇 is the absolute temperature. 

The average flux density of species 𝑖 in a dilute electrolyte can be defined by the driving forces in the 

electrolyte using Nernst-Plank equation assuming advection, diffusion and migration driving forces [39]: 

𝑁𝑖 and v are defined as flux density and bulk fluid velocity based on superficial area, which is the area of 

both matrix and pore. Therefore, 
𝑁𝑖

𝜀
 and 

v

𝜀
 can be interpreted roughly as the flux density and velocity in the 

electrolyte phase [39]. 𝑢𝑖 is the ionic mobility and can be described by Nernst-Einstein equation as 𝑢𝑖 =
𝐷𝑖

𝑅𝑇
 

[40]. Properties such as such as the diffusion coefficient and the mobility are estimated as effective 

properties. To estimate effective properties, the average structural effect of the porous medium is commonly 

defined by two parameters [38]. First parameter is porosity to account for the fact that within the porous 

electrode the area available for transport is smaller because of the presence of matrix. Second parameter is 

tortuosity (𝜏 ) of the porous medium which accounts for the fact that a species transport path is tortuous and 

∇. i2 = 𝑎𝐹 ∑ 𝑧𝑖𝑗𝑖𝑛

𝑖

= 𝑎𝑖𝑛 (2-10) 

 

𝑗𝑖𝑛 = −
𝑠𝑖

𝑛𝐹
𝑖𝑛 (2-11) 

 

𝜕𝜀𝑐𝑖

𝜕𝑡
= 𝑎

𝑠𝑖

𝑛𝐹
𝑖𝑛 − ∇. 𝑁𝑖 = −

𝑠𝑖

𝑛𝐹
∇. 𝑖2 − ∇. 𝑁𝑖 

(2-12) 

 

∇. 𝑖2 = 𝑎𝑖0[exp (
𝛼𝑎𝐹𝜂𝑠

𝑅𝑇
) − exp (−

𝛼𝑐𝐹𝜂𝑠

𝑅𝑇
)] (2-13) 

 

𝑁𝑖

𝜀
= −𝐷𝑖∇𝑐𝑖 − 𝑧𝑖𝑢𝑖𝐹𝑐𝑖∇Φ2 +

v𝑐𝑖

𝜀
 (2-14) 
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meandering because of the presence of solid [38]. For example effective diffusivity is estimated using 

Bruggeman correlation as 𝐷𝑒𝑓𝑓 = 𝐷0
𝜀

𝜏
= 𝐷0𝜀0.5 [18]. 

 

Continuum-based modeling methods are useful for studying operation of electrochemical devices or device 

geometry. However, they are not ideal for structural-performance analysis of porous electrodes due to three 

main reasons. Firstly, continuum-based modeling requires effective parameters such as effective diffusivity, 

conductivity, tortuosity and porosity; however, amongst those parameters the only actual structural 

parameter is porosity, while the rest are defined using correlations. The accuracy of the correlations are 

questionable however [17]. For example, to estimate effective diffusivity Brugmann’s correlation [18] is 

widely used. However, for fibrous materials (e.g. VRFB electrode) Todamakis and Sotirchos [41] 

correlation was defined as 𝐷𝑒𝑓𝑓 = 𝐷0𝜀 [
𝜀−0.11

1−0.11
]

𝛽
, where due to the anisotropy in in-plane and through-plane 

direction in fibrous materials, different 𝛽 are assumed for each direction. Both of these correlations have 

been examined in a study by Chen et al. [18] in comparison with a pore-scale modeling technique. Their 

study showed that although in-plane effective diffusivity using Todamakis and Sotirchos correlation 

matched with the pore-scale modeling result, Brugmann’s correlation and through-plane Todamakis and 

Sotirchos can lead to overestimation of the effective diffusivity. The reason is that structural properties of 

fibrous materials are more complex and anisotropic that limits the applicability and accuracy of general 

correlations [18]. This conclusion reinforces the idea of using pore-scale modeling techniques for studying 

porous electrodes. 

 

Secondly, continuum-based modeling techniques average the variables over a volume, therefore the 

detailed structure of the electrode is not captured. Such details are essential for design and manufacturing 

of optimum electrode structures. For example, a macroscopic model can inform about the general structural 

parameters such as the effect of porosity and permeability. However, these methods do not inform about 

parameters that can be directly used in experimental studies and designs. For example, the same value of 

permeability and porosity can be found in two different structures of foam materials and fibrous materials, 

whereas those two structures do not present the same performance. The lack of more structural information 

from continuum-based modeling can be avoided by using correlations that include structural parameters, 

such as fiber diameters. Such information can be used in experimental studies when creating fibrous 

electrodes. In this regards, in as study by Kok et al. [19], they used a continuum-based modeling approach 

to investigate the effect of fiber sizes on the performance. They incorporated the effect of fiber diameter by 

using Carman-Kozeny correlation in the estimation of permeability of the domain. Additionally, the fiber 

diameter was included in estimating the reactive surface area. Although their study presented additional 
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information to explore in experimental studies such as fiber diameter, their model was not capable of 

informing other important structural parameters such as the effect of anisotropy and alignment of fibers. 

Finally, although continuum-based models can be applicable in modeling single-phase transport in VRFB 

electrodes to provide some information on the structure and performance, their application on complex 

multiphase transport in Zn-air electrodes is even more limited. Modeling the air electrode requires two-

phase flow, invasion of electrolyte using percolation theory and additional pore-scale information such as 

the extent of TPB regions, which are impossible to measure in a macroscopic modeling approach. Due to 

these limitations of macroscopic modeling tools, to capture the complex transport phenomenon at micro-

scale and structural-performance analysis, pore-scale modeling techniques are more suitable. Pore-scale 

modeling approaches are explained in next sections. 

2.3. Direct numerical simulations 

With the advances in imaging techniques and availability of high-resolution images of porous media, pore-

scale modeling approaches have attracted attentions in simulating porous electrodes of electrochemical 

devices. Direct numerical simulations (DNS) are pore-scale modeling methods that have the main 

advantage of capturing complex geometries up to the resolution limit of imaging techniques. DNS methods 

include various approaches, which can be divided into two main categories [28] of grid-based approach 

such as Finite Difference (FD) and Finite Element Method (FEM), and particle-based approach such as 

Lattice Boltzmann Method (LBM). In grid-based approaches, the electrolyte and matrix domain are 

discretized into computational meshes or nodes and the system of mass and charge transport equations are 

solved on the computational meshes or nodes. In LBM the void space is segmented into a lattice, on which 

the motion and collision of particles are simulated [35]. In this section, modeling porous electrodes using 

DNS approach is briefly explained. This provides context for the value of pore network modeling, and also 

provides background on DNS itself which is used in chapters 4 and 5 to some extent. 

2.3.1. Transport equations 

Fluid transport is defined by the continuity and Navier-Stokes equations [42]: 

 

 

 

∇. 𝑢 = 0 (2-15) 
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where 𝑢 is the electrolyte velocity, 𝑝 is the pressure. 𝜌 and 𝜇 are the density and the viscosity of the 

electrolyte, respectively. From the solution of the fluid flow equations, the pressure and velocity distribution 

in the electrolyte phase are found. 

Transport of species in the electrolyte can then be defined using Nernst-Plank equation given advection, 

diffusion and migration as the driving forces for species movements [38], [39]: 

where 𝐶𝑗 is the concentration of species 𝑗, 𝐷𝑗 is the diffusion coefficient of species 𝑗, and Φ is the electric 

potential in the electrolyte [10]. Due to electroneutrality in the electrolyte, Eq. (2-17) is applied for all 

species expect the supporting ion (e.g. 𝑆𝑂4
2− in VRFBs). The concentration of the supporting ion is found 

from ∑ 𝑧𝑗𝐶𝑗 = 0. Charge transport within the electrode matrix (e.g. carbon fibers in VRFBs) given the 

charge conservation concept (∇. 𝐽 = 0 ) can be defined as follows: 

where 𝜅𝑠 is the electrical conductivity of the solid matrix and Φ𝑠 is the electric potential in the solid phase. 

Charge transport within the electrolyte phase is defined as follows: 

The electrochemical reaction term is then added to Eq. (2-19) as a rate boundary condition at solid-

electrolyte interface. The electrochemical reaction can be defined using a Butler-Volmer equation. For 

example, in a VRFB system, the rate of consumption/production of species can be defined as follows [20], 

[43]: 

 

 

 

𝜕𝑢

𝜕𝑡
+ (𝑢. ∇)𝑢 = −

1

𝜌
∇𝑝 +

𝜇

𝜌
∇2𝑢 (2-16) 

 

𝜕𝐶𝑗

𝜕𝑡
+ 𝑢 . ∇𝐶𝑗 = 𝐷𝑗∇2𝐶𝑗 + ∇. [

𝑧𝑗𝐶𝑗𝐷𝑗

𝑅𝑇
∇Φ] (2-17) 

 

∇. (𝜅𝑠∇Φ𝑠) = 0 (2-18) 

 

∇ . [(
𝐹2

𝑅𝑇
∑ 𝑧𝑗

2𝐷𝑗𝐶𝑗) ∇Φ + 𝐹 ∑ 𝑧𝑗𝐷𝑗∇𝐶𝑗] = 0 (2-19) 

 

𝑁𝐼𝑉 . 𝑛̂ = −𝑁𝑉 . 𝑛̂ = 𝑘 (𝐶𝐼𝑉
𝑠 )𝛼𝑐(𝐶𝑉

𝑠)𝛼𝑎[exp (
𝛼𝑎𝐹𝜂

𝑅𝑇
) − exp (−

𝛼𝑐𝐹𝜂

𝑅𝑇
)] (2-20) 
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where the multiplication factor for the exponential term on the right-hand side is the exchange current 

density, where 𝐶𝐼𝑉
𝑠  and 𝐶𝑉

𝑠 are concentration of Vanadium species at the solid-liquid interface and 𝑘 is the 

reaction rate constant. 𝜂 is the overpotential defined as:  

where 𝐸0 is the equilibrium potential. From Faraday’s law given the fact that 𝐽 = 𝐹𝑁, the electrochemical 

reaction term for rate boundary condition in Eq. (2-19) is defined from Eq. (2-20). 

The DNS solution of mass and charge transport provides the distribution of charge and species within the 

porous structure of electrodes. These pore-scale information along with the performance of electrodes can 

be analyzed for designing better performing electrodes. In studying VRFB electrode different studies were 

focused on using DNS methods. Qiu et al. [20] used finite volume method -to solve the system of species 

mass and charge transport equations in VRFB electrodes. Their study was focused on operational 

parameters to enhance the electrode performance. However, their analysis illustrated the non-uniform 

distribution of current and species within the porous electrode structure and the advantage of DNS in 

providing pore-scale information in contrast to macroscopic modeling. In a separate study, Qiu et al. [43] 

focused on three electrodes with different porosities and compared the distribution of species and losses 

within their microstructure. Their results showed that starvation of reactive species in some regions of the 

electrodes and low flow rates played an important role on limiting the performance of VRFB electrodes. In 

a separate study, Chen et al. [18] utilized LBM to study the effects of fiber diameter and porosity on the 

depletion rate of species in VRFB electrodes. They concluded that smaller fiber diameter results in a higher 

surface area and more efficient depletion rate of species. All of these DNS-based studies have shown that 

morphology and structure of the electrode is a dominant factor in electrode performance. However, DNS 

methods have a main drawback of being computationally expensive. For example, the lattice Boltzmann 

method, which is commonly used for solving the Navier-Stokes flow in porous media, was utilized in a 

previous stud by Chen et al. [25]. Despite their parallelized code, predicting effective properties of a porous 

catalyst layer domain required 320 CPU cores which took about 6 hours for simulation of oxygen diffusion 

and 2 hours for proton conduction [25]. Therefore, despite the accurate predictions of DNS methods, their 

application on performance analysis of various structures and multiphase flow is computationally expensive 

especially in large samples. Due to this drawback, pore-network modeling technique has attracted more 

attention in studying porous electrodes, as it is a cost-effective pore-scale modeling approach. PNM 

approach is explained in the next section. 

 

𝜂 = Φ𝑠 − Φ𝑙 − (𝐸0 +
𝑅𝑇

𝐹
ln (

𝐶𝑉

𝐶𝐼𝑉
)) (2-21) 
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2.4. Pore network modeling approach 

Pore network modeling maps the phase of interest into a connected network of nodes and edges. In porous 

electrodes, the void space is mapped to a connected network of pores and throats corresponding to wide 

voids and narrow constrictions, respectively. Therefore, PNM simplifies the void space with smaller 

amount of information about pore geometry (e.g. radius, volume) and topology (e.g. coordinates, 

connections) [44]. Such simplification is the main reason for lower computational cost of PNM. Therefore, 

PNM is advantageous in contrast to DNS in terms of computational cost, especially in larger samples and 

where multiphase and more complex physics are involved. Electrochemical modeling of porous electrodes 

using PNM includes modeling fluid flow to find the distribution of velocity and pressure throughout the 

network followed by solving the systems of mass and charge transport to find the species concentration and 

electrical potential within the network. In this section, more details on PNM approach are provided. 

2.4.1. Transport Equations 

Transports in pore network models are modeled by applying the governing equations on discretized network 

of connected pores and throats. An example of a connected pore-throat-pore element in PNM with spherical 

pores and cylindrical throats geometry is shown in Figure 2-4. The region extending from center of one 

pore to the center of its neighbouring pore is the so-called conduit element and its conductance for transport 

phenomena is used in the system of equations in PNM. As the focus of this thesis is modeling transport 

phenomena at steady-state, the PNM formulations in this section are based on steady-state condition. For 

details on transient simulation using PNM see references [28], [45], [46]. For modeling steady-state stokes 

flow, assuming a Newtonian, incompressible fluid, the mass conservation around pore 𝑖 is defined as 

follows [45]: 

where 𝑗 is the number of neighbors of pore 𝑖 and 𝑞𝑖𝑗 is the flow rate between pore 𝑖 and pore 𝑗. 𝐺𝑖𝑗
ℎ  is the 

hydraulic conductance of the conduit element 𝑖𝑗 and 𝑁𝑝 is the total number of pores in the network. 𝐺𝑖𝑗
ℎ  can 

be estimated using resistors-in-series method from the conductance of each conduit’s element. For transport 

“tr” the conduit conductance is calculated as follows: 

 

 

∑ 𝑞𝑖𝑗

𝑁𝑖

𝑗=1

= ∑ 𝐺𝑖𝑗
ℎ

𝑁𝑖

𝑗=1

(𝑃𝑖 − 𝑃𝑗 ) = 0,   𝑖 = 1,2, … , 𝑁𝑝 (2-22) 

 

1

𝐺𝑡𝑟,𝑖𝑘

=
1

𝑔𝑡𝑟,𝑖
𝑝 +

1

𝑔𝑡𝑟,𝑖𝑘
𝑡 +

1

𝑔𝑡𝑟,𝑘
𝑝  (2-23) 
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where the conductance of each element depends on the transport properties (e.g. fluid viscosity in hydraulic 

transport) and geometrical properties of the element (e.g. diameter, length). For fluid flow transport 

assuming a cylindrical throat, the throat conductance can be defined from analytical solution of steady-state 

Navier-Stokes equation for flow in a cylindrical pipe. This results in Hagen-Poiseuille equation as follows 

[45]: 

where 𝑑𝑖𝑗 and 𝑙𝑖𝑗 are the diameter and length of the throat 𝑖𝑗. Modeling a Stokes flow problem in a pore 

network is solving a system of linear equations resulting from the application of Eq. (2-22) to find unknown 

pressure values in each pore. It can now be clearly seen that the accuracy of defining 𝐺𝑖𝑗
ℎ  highly affects the 

accuracy of the simulation. More details on estimating conductance values of PNM elements are explained 

in section 2.4.2.2. 

 

Figure 2-4 A schematic of a pore-throat-pore element in PNM. 

Transport of species in the electrolyte can be defined using Nernst-Plank equations including the advection, 

diffusion and migration forces to describe the species movements. Using an upwind discretization scheme, 

Nernst-Plank equations in PNM framework is defined as follows [45]: 

𝑔𝑖𝑗
ℎ =

𝜋

128𝜇
(

𝑑𝑖𝑗
4

𝑙𝑖𝑗
) (2-24) 
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∑ [𝐺𝑑,𝑖𝑗
𝑛 + 𝑚𝑎𝑥(𝑞𝑖𝑗 − 𝑚𝑖𝑗

𝑛 , 0)]𝑐𝑖
𝑛

𝑁𝑖

𝑗=1

− ∑ [𝐺𝑑,𝑖𝑗
𝑛 + 𝑚𝑎𝑥(−𝑞𝑖𝑗 + 𝑚𝑖𝑗

𝑛 , 0)]𝑐𝑗
𝑛

𝑁𝑖

𝑗=1
+ 𝑆𝑖

𝑛 = 0  , 𝑖

= 1, 2, … , 𝑁𝑝 

 (2-25) 

where 𝐺𝑑,𝑖𝑗
𝑛  is the diffusive conductance of conduit 𝑖𝑗, and can be found using Eq. (2-23) from conductance 

of each element. For example, the diffusive conductance of a cylindrical throat 𝑖𝑗 can be found as follows 

[45]: 

where 𝐷𝑖𝑗
𝑛  is the diffusion coefficient of species 𝑛 at throat 𝑖𝑗. 𝑚𝑖𝑗

𝑛  in Eq. (2-25) is the migration rate of 

species 𝑛, and can be defined as follows: 

where 𝜙
𝑖
 is the electrolyte potential in pore 𝑖. 𝐺𝑚,𝑖𝑗

𝑛  is the migrative conductance of conduit 𝑖𝑗, and can be 

found using Eq. (2-23) from conductance of each element. The migrative conductance of throat 𝑖𝑗 is defined 

as follows: 

𝑔
𝑚,𝑖𝑗
n =

𝑧n𝐹

𝑅𝑇
𝑔

𝑑,𝑖𝑗 
n  (2-28) 

Eq. (2-25) is applied for all the species in the electrolyte except the supporting ion, which can be found 

based on electroneutrality (∑ 𝑧𝑖
𝑛𝑐𝑖

𝑛
𝑛 = 0). The last term 𝑆𝑖

𝑛 is the reaction term and can be defined from 

Butler-Volmer kinetics using Faraday’s law. 

Charge conservation equation assuming electroneutrality in the electrolyte is as follows: 

∑ 𝐺𝑐𝑜𝑛𝑑,𝑖𝑗
𝑖𝑜𝑛𝑖𝑐

𝑁𝑖

𝑗=1

(𝜙
𝑖

− 𝜙
𝑗

) = −𝐹 ∑ 𝑧𝑛 [∑ 𝐺𝑖𝑗
𝑛,𝑑𝑖𝑓𝑓

𝑁𝑡ℎ

𝑗=1

𝑐𝑖
𝑛 − ∑ 𝐺𝑖𝑗

𝑛,𝑑𝑖𝑓𝑓
𝑐𝑗

𝑛

𝑁𝑡ℎ

𝑗=1

]

𝑛𝑐

𝑛

+ 𝐼𝐵𝑉 (2-29) 

where 𝐺𝑐𝑜𝑛𝑑,𝑖𝑗
𝑖𝑜𝑛𝑖𝑐  is the ionic conductance of conduit 𝑖𝑗 and can be defined from Eq (2-23). Ionic conductance 

of pore element 𝑖 with cross sectional area of 𝐴𝑖 is defined as follows: 

𝑔𝑖𝑗
𝑑 = 𝐷𝑖𝑗

𝑛 (
𝜋𝑑𝑖𝑗

2

4𝑙𝑖𝑗
) (2-26) 

 

𝑚𝑖𝑗
𝑛 = 𝐺𝑚,𝑖𝑗

𝑛 (𝜙
𝑖

− 𝜙
𝑗
) (2-27) 
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𝑔
𝑖𝑜𝑛𝑖𝑐,𝑖

𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑙𝑦𝑡𝑒
=

𝐹2

𝑅𝑇
(

𝐴𝑖

𝑙𝑖

) ∑(𝑧𝑖
𝑛)

2
𝐷𝑖

𝑛𝑐𝑖
𝑛

𝑘

 (2-30) 

𝐼𝐵𝑉 can be defined from Butler-Volmer equation. For example, assuming a homogeneous simple one 

species reactant, current at pore 𝑖 can be defined as follows [2]: 

𝐼𝐵𝑉 = 𝐴𝑖𝑟𝑥𝑛
𝑖0𝑟𝑒𝑓

(𝑐𝑖/𝑐𝑟𝑒𝑓)[exp (
𝛼𝑎𝐹𝜂𝑖

𝑅𝑇
) − exp (−

𝛼𝑐𝐹𝜂𝑖

𝑅𝑇
)] 

(2-31) 

where 𝐴𝑖𝑟𝑥𝑛
 is the reaction surface area of pore 𝑖 and 𝑖𝑜𝑟𝑒𝑓

 is the exchange current density. 𝜂𝑖 is the 

overpotential at pore 𝑖 defined as:  

𝜂𝑖 = 𝜙𝑠 − 𝜙𝑖 − 𝑂𝐶𝑉 
(2-32) 

where 𝜙𝑠  is the solid potential, and OCV denotes the open-circuit voltage. Charge transport equations for 

solid phase can be defined in PNM framework as studied by Khan et al. [27]. However, in this thesis the 

phase of interest for PNM was void space and the potential variation in matrix phase was assumed to be 

negligible due to a high conductivity in matrix phase [2], [28]. The system of charge and mass transport 

can be solved in an iterative scheme given the boundary condition and an initial guess for the unknown 

values. An iterative scheme the so-called Gummel iteration for transient solution of the equations was 

explained in details by Agnaou et al. [45]. At each Gummel iteration, the charge conservation equation and 

mass transport equations for each species are solved. The Gummel iterations continue until the difference 

between the unknown values for two successive iterations becomes smaller than a predefined tolerance. To 

ensure the convergence stability an under-relaxation method can be applied on the solution variables. In the 

existence of non-linear reaction terms, at each Gummel iteration an iterative method such as Picard iteration 

can be used to solve each individual mass and charge transport equations with a predefined convergence 

tolerance or maximum number of iterations [45]. As the focus of this thesis is PNM of porous electrodes, 

more details on PNM are given in the next section. 

2.4.2. PNM details 

2.4.2.1. Solving a simple diffusion in PNM 

To demonstrate a steady-state solution of mass transport equations in PNM, a simple example of a single 

species diffusive mass transport for a simple 2D network as shown in Figure 2-5 is provided here. The 

conservation of mass at each pore 𝑖 can be defined using Fick’s law written as follows: 

∑ 𝐺𝑑,𝑖𝑗

𝑁𝑖

𝑗=1

(𝑐𝑖 − 𝑐𝑗) = 0, 𝑖 = 1,2, … , 𝑁𝑃 
(2-33) 
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Assuming a constant concentration boundary conditions at pores 1 (𝑐1 = 𝑐𝑖𝑛𝑙𝑒𝑡) and 6 ( 𝑐6 = 𝑐𝑜𝑢𝑡𝑙𝑒𝑡), and 

a linear reaction term 𝑟𝑖 = 𝑘𝑟𝑥𝑛𝑐𝑖 at pore 4 where 𝑘𝑟𝑥𝑛 is assumed to be known reaction rate constant, the 

conservation of mass at each internal pore leads to following equations: 

 

For pore 2: 

𝐺𝑑,21(𝑐2 − 𝑐1) + 𝐺𝑑,24(𝑐2 − 𝑐4) = 0 

 

For pore 3: 

𝐺𝑑,31(𝑐3 − 𝑐1) + 𝐺𝑑,34(𝑐3 − 𝑐4) + 𝐺𝑑,35(𝑐3 − 𝑐5) = 0 

 

For pore 4: 

𝐺𝑑,42(𝑐4 − 𝑐2) + 𝐺𝑑,43(𝑐4 − 𝑐3) + 𝐺𝑑,46(𝑐4 − 𝑐6) + 𝑘𝑟𝑥𝑛𝑐4 = 0 

 

For pore 5: 

𝐺𝑑,53(𝑐5 − 𝑐3) + 𝐺𝑑,56(𝑐5 − 𝑐6) = 0 

 

The system of linear equations can be rearranged into a matrix form as 𝐴𝑋 = 𝑏, where 𝑋 is the vector of 

unknown variables (here the concentration of species at each pore), 𝐴 includes the information on conduit 

conductance values and b includes information on boundary conditions. The coefficient matrix for mass 

transport equations above is shown in Table 2-1. The unknown vector 𝑋 can then be found by solving the 

linear system using linear algebra methods. However, for more complex physics and large samples, sparse 

matrix solvers are commonly used to reduce the computational cost of the solver method. The solution of 

the system of equations gives the concentration values the at each pore. The concentration values at each 

throat can be defined as a weighted average of its connecting pores. The concentration distribution for 

arbitrary values of 𝑐𝑖𝑛𝑙𝑒𝑡 = 200, 𝑐𝑜𝑢𝑡𝑙𝑒𝑡 = 100, 𝑘𝑟𝑥𝑛 = 10−9 used in the boundary conditions is shown in 

Figure 2-6 a. 
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Table 2-1 Coefficient matrix for mass transport equations for PNM in Figure 2-5. 

𝒄𝟏 𝒄𝟐 𝒄𝟑 𝒄𝟒 𝒄𝟓 𝒄𝟔 𝒃 

1 0 0 0 0 0 𝑐𝑖𝑛𝑙𝑒𝑡 

−𝐺𝑑,21 𝐺𝑑,21

+ 𝐺𝑑,24 

0 −𝐺𝑑,24 0 0 0 

−𝐺𝑑,31 0 𝐺𝑑,31

+ 𝐺𝑑,34 

−𝐺𝑑,34 0 0 0 

0 −𝐺𝑑,42 −𝐺𝑑,43 𝐺𝑑,42

+ 𝐺𝑑,43

+ 𝐺𝑑,46

+ 𝑘𝑟𝑥𝑛 

0 −𝐺𝑑,46 0 

0 0 −𝐺𝑑,53 0 𝐺𝑑,53

+ 𝐺𝑑,56 

−𝐺𝑑,56 0 

0 0 0 0 0 1 𝑐𝑜𝑢𝑡𝑙𝑒𝑡 

 

 

 

Figure 2-5 A schematic of a random cubic pore network in 2D. 

 

Note that the source/sink term was assumed to be a simple linear reaction term. To include a non-linear 

reaction term in the system of equations, the source term needs to be linearized first. Assuming a non-linear 
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reaction source term 𝑆 = 𝑓(𝑐𝑖), and initial guess of 𝑐𝑖 as 𝑐𝑖
∗, following formula studied by Patankar [47] 

can be used to linearize the function: 

𝑆 =  (𝑆′)∗𝑥𝑖 + (𝑆∗ − (𝑆′)∗𝑥𝑖
∗) = 𝑆1𝑥𝑖 + 𝑆2 

(2-34) 

where (𝑆′)∗ and (𝑆)∗ denote the values of first derivative of the source term and the original source term 

at concentration of 𝑐𝑖
∗. For example, in a simple power law reaction source term defined as 𝑟𝑖 = 𝑘𝑟𝑥𝑛𝑐𝑖

𝑛 

with a given order of 𝑛, Eq. (2-34) can be used to linearize the reactive term as follows: 

𝑟𝑖 = 𝑆1𝑐𝑖 + 𝑆2 = 𝑘𝑟𝑥𝑛(𝑛 − 1)𝑐𝑖
∗𝑛

× 𝑐𝑖 + 𝑘𝑟𝑥𝑛(1 − 𝑛)𝑐𝑖
∗𝑛

 
(2-35) 

𝑆1 and 𝑆2 include 𝑐𝑖
∗ , which is the initial guess or the solution from previous iteration. Assuming a power 

law of order 2 for reaction term in pore 4, the linearized form of the reaction term will be as follows: 

𝑆 = (2𝑘𝑐4
∗)𝑐4 − 𝑘(𝑐4

∗)2 = 𝑆1𝑐4 + 𝑆2 
(2-36) 

The matrix will be rearranged as shown in Table 2-2. The concentration distribution for arbitrary values of 

𝑐𝑖𝑛𝑙𝑒𝑡 = 200, 𝑐𝑜𝑢𝑡𝑙𝑒𝑡 = 100, 𝑘𝑟𝑥𝑛 = 10−9 used in the boundary conditions is shown in Figure 2-6 b. 

Comparing Figure 2-6 a and Figure 2-6 b it can be seen that using the power law reaction term resulted in 

a lower value of species concentration at pore 4. This is because the power law reaction rate was higher 

than the linear reaction rate (𝑐𝑖 > 1), resulting in more consumption of species, thereby reducing the 

concentration of species by a larger amount. 

 

Note that in electrochemical modeling, the non-linear reaction term is generally in the form of Butler-

Volmer equation, which is a function of both concentration and potential. Therefore, the solution of coupled 

mass and charge transport equations is found using iterative algorithms, such as Gummel iteration explained 

the previous section [45]. More details on the iterative process are provided in chapter 3 and chapter 4. 
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Table 2-2 Coefficient matrix for mass transport equation including reaction term from Eq.(2-36) 

𝒄𝟏 𝒄𝟐 𝒄𝟑 𝒄𝟒 𝒄𝟓 𝒄𝟔 𝒃 

1 0 0 0 0 0 𝑐𝑖𝑛𝑙𝑒𝑡 

−𝐺𝑑,21 𝐺𝑑,21

+ 𝐺𝑑,24 

0 −𝐺𝑑,24 0 0 0 

−𝐺𝑑,31 0 𝐺𝑑,31

+ 𝐺𝑑,34 

−𝐺𝑑,34 0 0 0 

0 −𝐺𝑑,42 −𝐺𝑑,43 𝐺𝑑,42

+ 𝐺𝑑,43

+ 𝐺𝑑,46

+ 𝑆1 

0 −𝐺𝑑,46 −𝑆2 

0 0 −𝐺𝑑,53 0 𝐺𝑑,53

+ 𝐺𝑑,56 

−𝐺𝑑,56 0 

0 0 0 0 0 1 𝑐𝑜𝑢𝑡𝑙𝑒𝑡 

 

 

Figure 2-6 Solution of mass transport in the pore network model of Figure 2-5. a) Concentration distribution when 

reaction term is defined as r = krxnc . b) Concentration distribution when reaction term is defined as r = krxnc2 

2.4.2.2. Predicting conduit conductance 

As explained in section 2.4.1, the accuracy of conduit conductance values affects the accuracy of PNM 

result [34], [35]. Hydraulic conductance estimation using Hagen-Poiseuille equation (Eq. (2-24)) was 

developed for fluid flow in cylindrical elements. However, in extracted networks original pore regions from 

the porous medium image have irregular shapes and cylindrical pore and throat elements are not the best 

representative of the real geometry’s conductance. For example, Khan et al. [27] showed that the use of 
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truncated pyramids in PNM of Li-ion cathodes provides a better representation of the void space geometry 

and transmissibility. To calculate the conductance of non-cylindrical elements, the geometrical parameters 

in the conductance of each element can be lumped into a size factor (𝜆i ) parameter [48]. Based on this 

definition, the hydraulic conductance of each element 𝑖 can then be defined as follows: 

 𝑔ℎ,𝑖
𝑝

=
𝜆𝑖

ℎ𝑦𝑑

𝜇𝑖
  (2-37) 

where 𝜆i
ℎ𝑦𝑑

 is found assuming a diverging or converging element with a varying cross-section. Assuming 

an element with varying cross-section, integrating over the pressure drop equation given in [48] with 

assumption of negligible inertial loss, the pressure drop equation becomes as follows [48]: 

 ∆𝑝

𝑄
= 16𝜋2𝜇 ∫

𝐼𝑝
∗

𝐴(𝑥)2
𝑑𝑥 

(2-38) 

where 𝑄 is the volumetric flow rare, Ip
∗  is the specific polar moment of inertia and A(x) is the cross-sectional 

area of the element. Based on the definition of hydraulic conductance, the ratio of flow rate to the pressure 

drop, hydraulic conductance of the element from Eq. (2-38) is as follows: 

 

𝑔ℎ,𝑖
𝑝

=
1

16𝜋2𝜇𝑖 ∫
𝐼𝑝

∗

(𝐴𝑖(𝑥))2 𝑑𝑥
𝑙𝑖

 
 (2-39) 

Comparing Eq. (2-39) with Eq. (2-37), the hydraulic size factor for element 𝑖 is calculated as follows: 

 

𝜆𝑖
ℎ𝑦𝑑

=
1

16𝜋2 ∫
𝐼𝑝

∗

(𝐴𝑖(𝑥))2 𝑑𝑥
𝑙𝑖

 
 (2-40) 

Assuming a pyramid pore element 𝑖 in the network as schematically shown in Figure 2-7, 𝜆𝑖
ℎ𝑦𝑑

 will be: 

 

 
𝜆𝑖

ℎ𝑦𝑑
=

1

8
9 𝜋2𝑙𝑖

𝑑𝑖
2 + 𝑑𝑖𝑑𝑖𝑗 + 𝑑𝑖𝑗

2

(𝑑𝑖𝑑𝑖𝑗)
3

  (2-41) 

 

where 𝑑𝑖 and 𝑑𝑖𝑗 are the diameter of pore 𝑖 and throat 𝑖𝑗. 
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Figure 2-7 A schematic of a pyramid and cuboid pore and throat as a conduit element. 

Similar to the hydraulic size factor, to calculate the diffusive conductance of non-cylindrical elements, the 

geometrical parameters of each element can be lumped into a diffusive size factor (𝜆i
𝑑𝑖𝑓𝑓

) parameter [48]. 

Based on this definition, the diffusive conductance of each element 𝑖 can then be defined as follows: 

 
𝑔𝑑𝑖𝑓𝑓,𝑖

𝑝
= 𝜆𝑖

𝑑𝑖𝑓𝑓
𝐷𝑖  (2-42) 

Assuming an element with varying cross-section, the diffusive mass flow rate through the element can be 

defined using Fick’s law: 

 𝑚𝑑𝑖𝑓𝑓 = −𝐷 𝐴(𝑥) 
𝑑𝑐

𝑑𝑥
  (2-43) 

Integrating the Eq. (2-43) over the length of the element 𝑖 gives the following equation: 

 

∆𝑐

𝑚𝑑𝑖𝑓𝑓
=

1

𝐷
∫

1

𝐴(𝑥)
𝑑𝑥 

 (2-44) 

From the definition of diffusive conductance, the ratio of diffusive mass flow rate to the concentration drop, 

the diffusive conductance for element 𝑖 can be defined as follows: 
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𝑔𝑑𝑖𝑓𝑓,𝑖

𝑝
=

𝐷𝑖

∫
1

𝐴𝑖(𝑥)
𝑑𝑥

𝑙𝑖

 
 (2-45) 

Comparing Eq. (2-45) and Eq. (2-42), the diffusive size factor for element 𝑖 is calculated as follows: 

 
𝜆𝑖

𝑑𝑖𝑓𝑓
= 1/ ∫

1

𝐴𝑖(𝑥)
𝑑𝑥

𝑙𝑖

 
 (2-46) 

Assuming a pyramid pore element 𝑖 in the network (Figure 2-7), 𝜆𝑖
𝑑𝑖𝑓𝑓

 will be: 

 

 
𝜆(𝑖 | 𝑘)

𝑑𝑖𝑓𝑓
=

1

𝑙𝑖
𝑑𝑖𝑑𝑖𝑗

  (2-47) 

 

Using the abovementioned size factors can provide a more accurate estimation of conductance of non-

cylindrical elements in contrast to Hagen-Poiseuille equation or classic shape factor correlations [34], 

because the method includes arbitrary cross-sectional shapes as well as the gradual variation of cross-

section in calculation of conductance [48]. However, estimating the conductance of conduits from the real 

image of conduit is the most accurate estimation [35]. Such estimation using DNS methods can be 

computationally expensive. In this thesis, a computationally efficient framework based on deep learning 

was developed to find conductance values from real images. More details are provided in chapter 5. 

2.4.2.3. Predicting permeability in PNM 

Permeability of a porous medium is an intrinsic parameter that indicates how easily fluid can flow through 

the medium. Permeability of porous electrodes is a characteristic of the electrodes and can be used as a 

validation parameter for comparing the accuracy of a PNM with experimental values or DNS methods. In 

fibrous electrodes such as VRFB electrodes, the permeability along the direction of alignment (x or y) the 

so-called in-plane permeability is commonly higher than the permeability perpendicular to the alignment 

(z) the so-called through-plane permeability. To find the permeability of a porous electrode using PNM, a 

flow algorithm can be applied with a constant pressure difference boundary condition or constant flow rate 

at the inlet/outlet of the flow direction. Once the pressure and flow rate values are found from the solution 

of the algorithm, the permeability (K) can be calculated using Darcy’s law as follows: 

 
𝐾 = −

𝑄

𝐴

𝜇

𝛻𝑃
 

 (2-48) 

where 𝑄 is the volumetric flow rate at the inlet/outlet, A is the cross-sectional area of the porous domain at 

the inlet/outlet, and ∇P is the pressure gradient along the direction of flow. 



30 

 

2.4.2.4. Network extraction method 

PNM’s network and geometrical models can be categorized into two main categories: generated and 

extracted networks. Examples of a generated cubic network and an extracted network are shown in Figure 

2-8. In generated networks, the network connections and geometry are generated using standard networks 

such as Cubic lattice, Delaunay, and Voronoi [49]. Geometrical data such as pores and throat sizes are 

assigned to the network elements to represent an arbitrary or real material’s pore size distribution. Although 

standard Cubic lattice networks do not capture the real connectivity of the void space, they can be used as 

a good approximation of the porous medium when the porous sample’s image is not available [2] or when 

the purpose of the study is to analyze phenomena at pore-scale [46], to test a PNM framework [45] or to 

reduce the complexity of the pore-scale study in multiphase or multi-physics problems [23]. In contrast to 

cubic lattice networks, generated networks based on Delaunay tessellations can be used as a better 

representative of porous domain for example fibrous materials. In a study by Gostick [50] on modeling a 

fibrous gas diffusion layer it was shown that a generated network based on Delaunay tessellations for void 

space and Voronoi tessellations for fibrous solid space was in good agreement with properties of available 

materials. However, to better capture the void space in porous samples based on real image data, extracted 

networks are advantageous as they directly map the void space into a connected network of pores and 

throats, thereby preserving the connectivity, topology and geometrical properties of pore regions [51]. Such 

networks are also advantageous in structural-performance analysis studies. For example, the species 

distribution can be used to find starved regions in a structure and use the pore-scale information for 

designing a better performing structure. 

 

Figure 2-8 Examples of pore networks. a) A generated cubic network b) An extracted network 
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Extracted networks are created using pore network extraction methods, which utilize various image 

processing techniques on a volumetric image of the medium to map the void space into their corresponding 

network [51]. Different approaches have been developed for pore network extraction including the maximal 

ball, medial axis skeleton, and watershed segmentation [51]–[53]. In this thesis, a modified watershed-

based approach presented by Gostick [51] was used. The algorithm in the study be Gostick [51] was 

originally developed for extracting a sub-network of the over-segmented watershed (SNOW) in high 

porosity materials. The general steps for extracting the pore network of a porous medium using SNOW 

algorithm are illustrated in Figure 2-9. For a given binary image of a porous medium (Figure 2-9a), first a 

distance transform map is created by replacing each void pixel with their distance value from nearby solid. 

Distance map creates cloud-like shapes that are denser in the centers shown as peaks of the distance 

transform (Figure 2-9b). Applying a maximum filter on distance map locates the distance peaks as centers 

of pore regions (Figure 2-9c). An algorithm to find and remove spurious peaks is then applied to prevent 

over segmentation [51]. The resulting peaks are then used as markers for finding the basins of the distance 

map and segmenting the pore regions in a marker-based watershed segmentation algorithm (Figure 2-9d). 

The network model is then extracted from the segmented image, in which each region corresponds to a pore 

and their connecting faces/channels are considered as throats (Figure 2-9e) [51], [54]. 

 

In a pore network model, the real geometry of segmented regions are mapped to a simplified geometry as 

shown Figure 2-9. Such simplification can reduce the accuracy of PNM, as the transport conductance values 

for each element are approximated over simplified shapes instead of the real geometry. To enhance the 

accuracy of PNM the conductance values can be estimated using DNS methods on the real image of pore 

to pore regions. However, applying DNS on each region is computationally expensive. To address this 

problem, the last objective of this thesis is focused on utilizing an image-based deep learning method to 

develop a framework for efficient estimation of conduit diffusive conductance values. A background and 

theoretical concepts related to deep learning are explained in the next section. 



32 

 

 

Figure 2-9 Illustration of the main steps in SNOW algorithm for a 2D randomly generated porous medium. a) The 

binary image of a randomly generated porous medium b) Distance map of the void space c) Peak points for 

watershed basins are shown as white dots within the distance map d) Segmented regions based on the watershed 

method e) The extracted network mapped on the binary image. 

2.5. Introduction to deep learning 

In this section a brief introduction to machine learning and deep learning concepts is provided. However, 

more details on the deep learning model in this study are provided in chapter 5. 

2.5.1. Machine learning and deep learning 

A machine learning (ML) algorithm is an algorithm that can learn from data [55] and define the best 

function that describes the relationships between features of the data [56]. A frequently quoted explanation 

of the learning process is the definition by Mitchell [57]: “A computer program is said to learn from 

experience E with respect to some class of tasks T and performance measure P , if its performance at tasks 

in T , as measured by P , improves with experience E .” A brief explanation and examples for each of these 

elements Task, Performance, and Experience are provided as follows [55]. 

 

Task T: A task indicates how the machine learning algorithm is processing an example. An example is 

defined as a collection of features and can be represented by a vector notation of 𝑥 ∈ 𝑅𝑛 , where each 
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element of 𝑥𝑖 is a feature. These features are extracted from the data that need to be processed by ML. ML 

algorithms are capable of solving different tasks, such as regression, classification, anomaly detection, 

denoising, to name but a few. For example, in a regression task, the ML algorithm goal is to output a 

function 𝑓: 𝑅𝑛 → 𝑅 that can be used to predict a value [55]. 

 

Performance measure P: Performance measure is defined to evaluate the ability of the ML algorithm. Such 

measurements are defined specific to a task. For example, in a regression task the performance measure is 

defined as the accuracy or error rate of the model. Evaluating the performance measure is generally based 

on a set of data so-called test data that has not been used for training process. This evaluation ensures that 

the trained model can perform well on unseen data [55]. 

 

Experience E: Most frequently, the ML algorithm experiences a dataset to process. Based on the experience 

that the learning process is having, the learning algorithms can be categorized into supervised and 

unsupervised learning. In a supervised learning, the ML algorithm experiences a dataset of features where 

each example 𝑥 has a label or target 𝑦. The ML algorithm can then be used to study and learn such dataset 

to predict 𝑦 from 𝑥 generally by estimating 𝑝(𝑦|𝑥) (e.g. classification task). In an unsupervised learning, 

the ML algorithm experiences a dataset of features 𝑥 and tries to learn the probability distribution 𝑝(𝑥) or 

properties of the distribution in a dataset (e.g. clustering task) [55]. 

 

In conventional ML methods a difficult step is to select the features that are important for the measurement. 

The process of feature selection requires expertise, statistical analysis, and sometimes repeated experiments 

on the data to find the best features [56]. Hand-engineering the features becomes more complicated when 

working with large data or complex high dimensional data, such as images. This problem is tackled by 

introducing deep learning methods. Deep learning is a sub-division of machine learning where deep neural 

networks are used as the basis of learning models [56]. In the last 10 years, deep learning methods have 

been rapidly developed mainly due to advances in computational resources and availability of “big data”. 

Deep learning methods are advantageous over conventional machine learning methods in terms of feature 

extraction, as deep learning methods learn the useful features automatically from the raw data [56]. 

Additionally, deep learning methods have the capability to learn complex nonlinear functionality between 

input and output. Such advantages in deep learning are mainly due to the fact that the basis of its learning 

functions are deep neural network structures. A general overview of concepts and building blocks of deep 

learning models are explained in the next section. 
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2.5.2. Deep neural networks 

As introduced in the previous section, the basic elements of deep learning approach are deep neural network 

models. A neural network model is a computational model that mimics the behaviour of the human brain 

[56] and includes three main component of input layer, hidden layer(s), and output layer. Deep learning 

networks are neural networks that have a large number of hidden layers (at least two) [56], hence the name 

“Deep” learning [56]. The basic elements in construction of deep neural networks are neural layers. Among 

different neural layers most common ones are fully connected layers and convolutional layers [58], as 

shown schematically in Figure 2-10. The fundamental differences between these two types of layers are 

their input/output structure and their mapping process. In a fully connected layer each unit is connected to 

all units of the previous layer whereas in a convolutional layer, each unit is connected to part of the units 

from previous layer [58]. Therefore, a fully connected layer does not have any assumption on the structure 

of the input whereas in a convolutional layer it is assumed that spatially close regions are semantically 

related. This assumption in convolutional layer is a significant advantage in processing image/video data. 

More details on convolutional layers will be provided in section 2.5.2.2. A deep learning model can be 

made by any combination of different layers, such as convolutional layer and fully connected layer. As a 

result, two common types of deep networks are feedforward networks and convolutional networks. A brief 

explanation of these two networks are provided in the next sections. 

 

Figure 2-10 A schematic of two common types of neural layers. a) A fully connected layer b) A convolutional 

layer 

2.5.2.1. Feed forward networks 

A schematic of a simple feed forward neural network is shown in Figure 2-11, where neurons and their 

connections are shown as circles and arrows, respectively. The final goal of a feed forward network is to 

approximate a function 𝐹∗. [55]. The flow of information through a feedforward network can be defined 

using a chain rule as follows [59]: 
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𝐹(𝑥) = 𝑓𝑁(𝑓𝑁−1 (… (𝑓1(𝑥)))) 

 (2-49) 

where 𝑁 is the number of hidden layer, 𝑓𝑖 is the function in layer 𝑖. In the forward pass, each neuron in a 

layer maps the input to output in a two step. First, the neuron calculates a weighted sum of the input values. 

Then, the calculated value is mapped through a mapping function (usually called activation function) to 

produce the output of the neuron. A simple example of an arbitrary neuron in a feed forward network is 

shown in Figure 2-12, where input vectors is represented as 𝑥 = [𝑥1, … , 𝑥𝑛], and weights of each connection 

is represented as [𝑤1, … , 𝑤𝑛]. First, the weighted sum of input values is calculated as follows: 

 
𝑧 = ∑ 𝑥𝑖𝑤𝑖

𝑛

𝑖=1
 

 (2-50) 

To map the calculated value to the output value a non-linear activation functions (𝑓(. )) can be applied on 

z, such as logistic 𝑓(𝑧) = 1/(1 + exp(−𝑧)), hyperbolic tangent (𝑓(𝑧) = (exp(𝑧) − exp(−𝑧))/(exp(𝑧) +

exp(−𝑧)), and rectifier function 𝑓(𝑧) = max(0, 𝑧) [55]. Rectifier functions are commonly used and the 

neurons that use a rectifier activation function are commonly called rectified linear units (ReLUs). 

Each of the connections between neurons contain a weight and training the network is essentially repeatedly 

updating the weights based on the network’s error to find the optimum set of weights that can best model 

the patterns in data [56], thereby finding the F(x) that matches 𝐹∗(𝑥) [55]. A commonly used algorithm for 

training neural networks is the gradient descent algorithm [56]. In training a deep neural network, the 

gradient decent algorithm is used along with the backpropagation algorithm, where the gradient of an 

objective function with respect to weights of the network are found using the chain rule for derivatives in 

the backward direction. In this iterative algorithm based on the gradient of the error the weights are adjusted 

until the objective function is minimized [60]. 
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Figure 2-11 A schematic of a simple feed forward network 

 

 

Figure 2-12 A schematic of a neuron in a feed forward network 

2.5.2.2. Convolutional networks 

Convolutional neural networks (CNNs) were developed for processing high dimensional data, such as 

images and texts [60]. The basic idea of CNNs is to extract local features using the early layers and combine 

the features into higher order information in the later layers [56]. The idea of local features and convolution 

was originated based on neuroscience concepts. For processing the inputs of the brain, neurons have a 

specific “field of view”, the so-called local receptive field. As an example, when a person is touching 

something, this local receptive field is a small patch on their skin or when they look at a specific object the 
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local receptive field is defined as a part of their visual field [61]. The convolutional structure is based on a 

similar concept, where the local receptive field in an image is a local patch of voxels. In a convolutional 

layer within a CNN, the convolution is performed using different filters or kernels. Each convolutional 

kernel transforms a patch of grids in the input to one grid, where the size of the patch depends on the size 

of the kernel. A collection of these convolutional kernels then creates a convolutional layer.  

In a convolutional layer 𝑖, the function 𝑓𝑖 includes varieties of convolutional kernels (𝑔1, … , 𝑔𝑘−1, 𝑔𝑘), 

where 𝑔𝑘 is a linear function in the 𝑘th kernel. Assuming an input image 𝐼, 𝑔𝑘 can be defined as follows 

[59]: 

 
𝑔𝑘(𝑥, 𝑦) = ∑ ∑ ∑ 𝑊𝑘(𝑢, 𝑣, 𝑤)𝐼(𝑥 − 𝑢, 𝑦 − 𝑣, 𝑧 − 𝑤)

𝑑

𝑤=−𝑑

𝑛

𝑣=−𝑛

𝑚

𝑢=−𝑚

 
 (2-51) 

where 𝑥, 𝑦, 𝑧 are the location of the pixel in the image, Wk w is the weight of 𝑘th kernel, and 𝑚, 𝑛, and 𝑤 

are the height, width and depth of the filter. A schematic of a convolutional layer followed by common 

layers in processing its output is shown in Figure 2-13. In each step of implementing the kernel on data, the 

nonlinear transformation of data has learnable weights. As too many learnable weights can be 

computationally expensive, they can be replaced by a fixed nonlinear transformation. A common non-linear 

transformation method is maxpooling, where in a maxpooling layer the maximum value of the input in the 

receptor fields is passed on as the output. A pooling layer reduces the size of the output, thereby providing 

a less computational cost for training process. A simple convolutional neural network can then be made by 

a stack of different types of layers, such as convolutional, activation, and pooling layers followed by fully 

connected prediction layers. Some examples of convolutional structures are LeNet, AlexNet, and Resnet 

models [62]. As in this thesis a residual network Resnet model was used, a brief explanation of the residual 

learning concept is provided in the next section. More details on the model are given in Chapter 5. 



38 

 

 

Figure 2-13 A schematic of a convolutional layer followed by a downsampling pooling layer and a dense layer 

2.5.3. Residual networks 

The basic idea for the development of residual networks was addressing a problem of signal strength 

reduction as it proceeds through deeper layers. In other words, a deeper network showed a higher training 

error in contrast to a shallow model. To prevent this issue, the idea of residual learning was introduced [63]. 

Assuming an input 𝑥 and ℋ(𝑥) as the mapping that needs to be fit through a number of stacked layers, the 

idea of a residual learning is to let the stacked layers approximate a residual function ℱ(𝑥) = ℋ(𝑥) − 𝑥 

instead of ℋ(𝑥). With this definition the mapping function is changed to ℱ(𝑥) + 𝑥 [63]. This formulation 

can be added to neural networks by introducing bypass connections that skip a stack of layers. A schematic 

of a residual block is shown in Figure 2-14. As shown in Figure 2-14 a bypass connection provides the 

network with the opportunity to copy the activations from one residual block to the next, thereby parts of 

the signal can pass through deeper layers without losing its strength. In other words, more information is 

preserved to pass in deeper layers, which was the basic goal for making the network learn the residuals 

[62]. Based on the definition of the residual function, the formulation for a residual block shown in Figure 

2-14 can be written as follows: 

 
𝑦 = ℱ(𝑥, {𝑊𝑖}) + 𝑥 

 (2-52) 

where 𝑥 and 𝑦 are inputs and outputs, respectively. ℱ(𝑥, {𝑊𝑖}) is the residual mapping function that needs 

to be learned. For example, in the illustrated residual block, ℱ = 𝑊2𝑓𝑎𝑐𝑡(𝑊1𝑥) where 𝑓𝑎𝑐𝑡 is a rectifier 

activation function. ℱ + 𝑥 is implemented by a bypass connection and an addition operator. Bypass 
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connections are applicable to both fully connected layers and convolutional layers. In the fully connected 

layers the addition operator applies an element-wise addition, whereas in a convolutional layer the addition 

is applied on two feature maps in terms of channel by channel [63]. The residual learning enabled the 

residual deep learning models to have a large number of layers (e.g. 100) while reducing their training error 

in contrast to conventional deep learning models. 

 

Figure 2-14 A schematic of a residual block 
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Chapter 3: The role of triple phase boundary and structure-

performance relationship in Zn-air cathodes 

 

3.1. Overview 

Zinc-air flow batteries are a promising energy storage technology. Their performance depends on their 

porous cathodes where the oxygen reduction reaction (ORR) occurs. A key feature of the cathode is the 

invasion of electrolyte, creating the so-called triple phase boundary between air, electrolyte and catalyst, 

which is shown in this work to be an overly simplified picture. In this study a mathematical framework 

based on pore network modeling (PNM) was developed to better understand the interplay between electrode 

structure, transport of species and electrolyte invasion. The results suggest that increasing electrolyte 

volume provides highly branched invasion pattern and enhances performance up to a saturation of 0.7, 

whereas further invasion reduces air-liquid interfacial area and lowers the performance. Interestingly, at 

lower saturations (<0.3) the liquid structure is so excessively branched that hydroxide ions are unable to 

diffuse to the anode at a sufficient rate, resulting in supersaturation, which is a degradation problem. The 

pore size distribution of the catalyst layer also affects the performance with wider pore size distributions 

generally performing better. This work represents the first 3D PNM of a zinc-air cathode that includes all 

the key physics and transport mechanisms, enabling prediction of the structure-performance relationship of 

porous cathodes. 

3.2. Introduction 

Recent advances in energy storage technologies have focused on developing cost-effective large-scale 

batteries that can be installed anywhere and provide a large window for power and energy capacity. Metal-

air flow batteries are a promising option as they are rechargeable and because they separate power and 

energy making them easily scalable. A main benefit of these batteries is the use of oxygen in air as the 

oxidant, which eliminates the need for a positive electrolyte, thereby significantly increasing the energy 

density of the system. Amongst different metal anodes, zinc is particularly appealing since it’s cheap, 

abundant, and safe [37]. Despite the promise of Zn-air flow battery technology [64]–[66], they still need to 

be optimized to provide better performance and longer cycle-life. The properties of the porous air electrodes 

have a large impact on the performance since they must successfully support all the key modes of transport 

phenomena including invasion of electrolyte, oxygen reduction reaction (ORR), diffusion of ionic species, 

and conduction of electrons. The operation of the air electrode is based on the triple-phase boundary (TPB), 

which significantly complicates the situation [67]. 
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To improve the performance and durability of Zn-air electrodes, it is necessary to understand the 

mechanisms of oxygen transport and ORR within the electrode’s catalyst layer (CL), and specifically the 

role of the TPB. This region is thus named because reactions are envisioned to occur at the solid-gas-liquid 

interface where the three phases meet. The TPB is formed when liquid electrolyte from the anode penetrates 

partially into the cathode pore structure. The uninvaded pores remain filled with air and provide diffusion 

pathways for oxygen to the reactive sites. The solid walls of the pores are formed by the electrode material, 

which transfers electrons and provide the electrocatalytic surfaces for reactions [32]. The concept of TPB 

has been studied thoroughly in the context of solid oxide fuel cells (SOFC) [32], [68]–[71]; however, some 

details of TPB in SOFCs differs from that of Zn-air electrodes. Firstly, oxygen is insoluble in the ceramic 

electrolyte of SOFCs so the reaction truly takes place directly on TPB contacting the solid electrolyte. In a 

Zn-air cell, by contrast, the oxygen can dissolve into the electrolyte to react on the catalytic surface at the 

solid-liquid interface [31], [72]. Secondly, the TPB in an SOFCs is formed by the mixture of catalyst 

particles (i.e. Ni), electrolyte particles (i.e. yttria-stabilized zirconia), and a network of voids. This forms a 

classic percolation problem since some of the electrolyte particles may be disconnected from the membrane 

due to the random mixing. In a Zn-air cell, the TBP is created when electrolyte flows into the cathode via 

invasion percolation, meaning that all of the electrolyte is physically connected to the anode. Invasion 

percolation is a variation of percolation theory that can describe the process of fluid displacements in a 

porous medium at constant flow rate [73]. Moreover, the liquid distribution within the porous electrode can 

change with time as a result of various factors, such as changes in the void volumes. 

 

The impact of pore-scale phenomena in Zn-air electrodes has not been thoroughly studied, and a deeper 

understanding of the multiphase behavior at the TPB is needed. The depth to which the electrolyte 

penetrates into the CL will impact the performance, but there is clearly an optimum. Insufficient electrolyte 

invasion will create very little TPB, while excessive invasion will destroy any existing TPB. The location 

of the optimum saturation will depend on the pore size distribution, spatial correlations, wettability, particle 

shape, anisotropy, and other structural factors [31], [74]. The effect of the electrolyte saturation on the 

performance of an air electrode invaded by phosphoric acid was experimentally studied by Mori et al. 

[75],who observed that saturation values higher than 0.8 reduced the performance of the electrode. 

However, the details of TPB was not studied in that work, yet understanding the pore scale processes is 

essential to designing electrodes with stable and optimum TPB distribution [31]. Gourdin et al. [76] used 

experimental results of polarization curves to study the performance behavior of K − O2cathodes at 

different electrolyte volume. Although their result provided insights on the electrolyte saturation and 

surface area provided by TPB using Electrochemical Impedance Spectroscopy, the details of TPB location 
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in pore-scale, fluid flow invasion pattern and structural properties of the pore space were not studied. 

Electrolyte invasion within the CL can be well described by invasion percolation. Invasion percolation is a 

variation of percolation theory [73], [77]. One characteristic of invasion percolation is that the distribution 

of invading fluid has a self-similar fractal structure [78]–[80]. This fractal behavior is very good for creating 

large interfacial area between the liquid and gas, so the fluid invasion pattern plays an important role in 

achieving a large TPB in the cathode of a Zn-air battery. However, such a fractal structure may lead to long 

and tortuous transport paths for both oxygen and ion transport. It is thus essential to study the invasion 

pattern of the electrolyte at the pore-scale, and to analyze the structural parameters affecting the patterns 

such as size distributions of the constrictions in the void space. As liquid-gas interface exists in porous 

electrodes of Phosphoric acid fuel cells and Alkaline electrolyzer systems, the findings in this study could 

be generalized to other electrochemical systems applications. 

 

Various mathematical models have been developed to study primary Zn-air batteries [81], [82]. These 

typically use 1D continuum formulations in the through-plane direction to investigate design parameters or 

to understand impact of operational conditions. Because they utilize continuum averaging of the porous 

components, they cannot resolve the transport process at the pore-scale, including the critical impact of the 

TPB distribution due to structural properties of the porous medium. In the classic work of Mao and White 

[81] as well as more recent works [83] the air cathode is assumed to be a flat plate with a high surface area 

to represent the air-water interface. The more recent work of Stamm et al. [82] treated the cathode as 

continuum with a uniform saturation field (between 0 and 1) predicted by assuming a capillary pressure vs 

saturation. These models require constitutive relationships for the air-electrolyte interfacial area and the 

effective diffusivities of each phase, which are correlated with the saturation. These correlations are very 

difficult to measure experimentally [84], [85], and are expected to vary with pore structure. Danner et al. 

[86] used a Lattice Boltzmann method to predict pressure-saturation parameters of bifunctional air 

electrodes in metal-air batteries, which was later used in continuum-based modeling of Li-air batteries [87]. 

Despite useful predictions about the precipitation of solid products in Li-air cathodes, their 1D model 

included the coexisting phases using macroscopic parameters (porosity and pressure) where the details of 

pore space structure and the variation in fluid-gas interface at pore-scale were ignored. Few models have 

been developed for Zn-air flow batteries [88], and these are all based on the continuum formulation and so 

are unable to investigate the impact of the TPB and pore structure on performance. 

 

Clearly, a pore-scale model of the cathode is preferrable for studying the effects electrode pore structure 

and the TPB. It is possible to develop a so-called direct numerical simulation (DNS) which resolve the 

grains and voids of the electrode [43], [89]–[92]. These are computationally intensive and it remains a 
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challenge to incorporate two-phase flow [93]. Pore network modeling (PNM) is an alternative to 

continuum-based and DNS modeling techniques that offers several pivotal advantages. In PNMs the void 

space is mapped to a connected network of pores and throats representing the cavities and constrictions in 

the void space, respectively. Transport through the network occurs via this connected network where the 

conductance between each pore is based on the geometrical details of the constriction (i.e. diameter and 

length). This abstraction reduces the number of variables in the transport equations and hence reduces the 

simulation time enormously [13], [21], [35]. Another advantage of PNMs is that transport parameters such 

as tortuosity are an output of the model as they arise from the network topology and geometry rather than 

being supplied as an independently obtained correlation, which can be challenging to measure [27]. Most 

importantly for the present work, PNM has the ability to model the distribution of electrolyte using invasion 

percolation (IP) on the network [22], [80], [94]. The resulting fluid distributions more accurately represent 

the invasion patterns expected in a working electrode [95], [96]. PNMs allow simple coupling between 

transport and electrolyte invasion by adjusting the conductance of the throat connections according to their 

invasion status. While PNM has been used in modeling multiphase transport in fuel cells [22], [23], [97], 

[98], its application to air electrodes in Zn-air batteries has been limited. Zhu et al. [33] have presented a 

2D PNM that focused on the invasion processes, though the underlying transport in the CL and ORR was 

not modeled. Their PNM was not geometrically rigorous and limiting the model to 2D significantly changes 

the fluid patterns. Nonetheless, their results do show the value of considering the TPB at the pore scale. In 

the present study, a 3D PNM was developed to study the role of TPB in the cathode’s CL of a Zn-air battery, 

including the electrochemical reactions, multiphase transport, and the triple-phase boundary. The objective 

of this work was to utilize the developed PNM to investigate the effect of pore size distribution and 

electrolyte invasion pattern on the extent of TPB and the performance of the electrode, assessed by 

modeling polarization curves. In addition, since KOH precipitation is a known degradation mechanism [99], 

the effect of liquid phase tortuosity on hydroxide transport was studied and the maximum concentration of 

hydroxide ions in the electrode was reported for different operating condition. As a case study, the present 

work focused on the impact of pore size distribution on the polarization behavior of cells, which 

characterized the electrode performance. To the best of our knowledge this is the first 3D PNM of a Zn-air 

electrode, and we demonstrate that PNMs are an ideal tool for this application.  

3.3. Model development 

In this section the equations describing the various transport phenomena occurring in the air cathode’s CL 

and on the TPB region are provided along with the steps to include those phenomena in pore network 

modeling. First, the pore network structure and geometrical properties of the CL pore network are 
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explained. Then, numerical equations for pore scale physics and transport algorithms are provided. Finally, 

the framework to solve the system of equations and obtain the results is presented. 

3.3.1. Air cathode medium 

To analyze the ORR in the Zn-air flow battery, this study includes only the air cathode half-cell as illustrated 

in Figure 3-1. The electrode includes a CL, and a gas diffusion layer that is connected to the current 

collector. To model the cathode compartment with pore-scale resolution while maintaining a reasonable 

computational cost, the domain was limited to only the porous CL, with the GDL and the membrane treated 

as boundary conditions. It was found that the gas phase transport was not a significant factor, thus neglecting 

the transport processes in the gas diffusion layer was justified. 

 

The hydrophobicity of the materials in CL and the pore architecture affects the distribution of the triple 

phase interface of gas, liquid electrolyte, and solid catalysts as shown in Figure 3-2. The sensitivity of the 

electrode performance to the electrolyte invasion and the CL structure (pore size distribution) were 

investigated in this study. 

 

Figure 3-1 A schematic of a Zn-air flow battery. a) The flow battery includes cathode and anode compartments 

with electrolyte tank. b) The cathode compartment containing CL and GDL as the computational domain and 

membrane and air inlet as the boundaries. We assume that the electrolyte has invaded the CL from membrane 

side. 
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Figure 3-2 A schematic of the TPB in an air cathode. Spherical particles are the backbone porous layer containing 

active materials (CL). Electrolyte invasion occurs in the catalyst layer of the air electrode. The oxygen in the air 

dissolves and diffuses into the electrolyte while undergoing ORR upon contacting the active materials. 

3.3.2. Pore network structure 

In this study, the void space of an air cathode’s CL was represented as a pore network, defined as a 

connected network of pores (nodes) and throats (edges). Figure 3-3 shows the representative pore network 

model used here, which is based on a cubic lattice topology for simplicity. Obtaining an experimental 

tomogram of the entire CL of a Zn-air electrode is challenging due to the small size of the pores (< 200 𝑛𝑚) 

and the relatively large thickness of the CL (of order 100 𝜇𝑚) and a suitable tomogram was consequently 

not available for this study. A representative cubic network was used as a first approximation of the CL 

structure. For validation purposes, a random distribution of pore sizes was used with pores spanning 

between 25 and 250 nm. This size range was obtained from an SEM micrograph as outlined in Appendix 

B. The effect of the pore size distribution is studied in section 3.4. In all cases, the throat diameter was taken 

as 0.8 of the lower size of the two connected pores. This value was chosen to provide a sufficient porosity 

of 0.4, while providing a distribution of sizes for narrow constrictions (throats). The pores and throats are 

assumed to be cubes and cuboids, respectively, which determines the geometrical properties (i.e. volume 

and surface area), as well as the pore transport conductance (see section 3.3.3.2). The computational domain 

of the pore network contains only the pores of the CL, with boundary conditions at the interfaces with the 

gas diffusion backing layer on atmospheric side and the membrane-liquid electrolyte on the anode side. The 

PNM in this study was implemented in OpenPNM [49]. 
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Figure 3-3 A representation of a pore network model used in this study. Cubic pores are colored by their diameter 

size. For a better visualization purpose, only a fraction of pores enlarged by a factor of 1.5 is shown and the cuboid 

throats are not shown for better visualizations. However, the connections are shown as green wireframe. The pore 

network demonstrates a typical model in this study, while the network architecture, geometry, and pore/throat sizes 

will vary in different investigations in this study. 

3.3.3. Transport calculations 

The transport phenomena in the air cathode are shown in Figure 3-4 and include diffusion of oxygen from 

the gas diffusion layer, dissolution of oxygen into the electrolyte at electrolyte-gas interface, diffusion of 

the dissolved oxygen through the electrolyte, ORR on catalyst sites (assumed to be uniformly distributed 

on the pore walls), diffusion and migration of the produced ions (OH−), and the ionic conduction of the 

electrolyte. As explained earlier, TPB terminology better describes the ORR in solid oxide fuel cells, 

whereas the ORR in Zn-air cathode occurs at electrolyte-catalyst interface, which is a two-phase (liquid-

solid) interface [31], [74]. Therefore, in this study the term TPB will not be used. To distinguish between 

different regions in the CL, three regions were defined as shown in Figure 3-4. The electrolyte-gas interface 

was defined at the interface throat locations where the dissolution of oxygen takes place. The invaded pores 

that are connected to these interfaces were defined as “near interface pores”. The remaining invaded pores 

that are located further from the interface were defined as remaining electrolyte-filled pores. With this 

definition, it was assumed that all electrolyte-filled pores were reactive, though the bulk of the reaction 

occurs near the interface. The pore network was partially invaded by the electrolyte using invasion 

percolation to a specific saturation, and the rate of the ORR was computed for various applied voltages 
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under steady state conditions to compute a polarization curve. The ORR produces hydroxide ions (OH−), 

the charge carrier in the electrolyte phase: 

1

2
O2 + H2O + 2𝑒−

𝑟𝑂𝑅𝑅

⟷ 2OH− (3-1) 

The PNM of the CL was developed based on the following assumptions: 1) steady state conditions; 2) no 

electrolyte convection in the CL; 3) The diffusion coefficients in the electrolyte depend only on the initial 

KOH concentration; 4) Reactions only occur in the electrolyte-filled pores; 5) The rate of the ORR (𝑟𝑂𝑅𝑅) 

in each pore is proportional to the oxygen concentration in the pore. The reaction area of each reactive pore 

was defined by adding half of the surface area of the connected throats to the pore surface area. 

Mathematical details of each transport phenomena are described in the following sections. 

 

 

Figure 3-4 a) A schematic of the oxygen transport in a Zn-air cathode. Oxygen molecules are represented as red 

dots, dissolved oxygen as pink dots, and hydroxide ions are represented as purple dots. b) A schematic of the 

electrode’s pore network model in 2D. The interface of electrolyte-air represents the electrolyte-gas interface. 

Reactive pores include near interface pores and remaining electrolyte-filled pores. 

3.3.3.1. Electrolyte-air Interface 

To model the electrolyte invasion in the CL, an IP algorithm was employed. Invasion percolation considers 

fluid injection and menisci movement in porous materials based on capillary forces presented by the void 

space constrictions. During invasion of a non-wetting fluid, capillary forces resist the invasion of narrower 

constrictions, so wider constrictions are preferentially invaded. Once a pore is invaded by electrolyte, its 
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neighboring throats are labeled as accessible, and the process repeats by invading the throat with the next 

minimum entry pressure [100]. The entry pressure of the electrolyte into the air filled pores was estimated 

using the Washburn equation [101]: 

𝑃𝑐,𝑖 = −2𝜎
𝑐𝑜𝑠𝜃

𝑟𝑖
 (3-2) 

where 𝑃𝑐,𝑖 and 𝑟𝑖 are the capillary entry pressure and radius of pore 𝑖, respectively; 𝜎 and 𝜃 are the surface 

tension of the electrolyte and the contact angle of the electrolyte with the solid. 

 

The electrolyte invasion inlet was the membrane-CL interface and periodic boundary conditions were 

imposed on 4 sides of the network in the 𝑦 and 𝑧 directions perpendicular to the direction of invasion. A 

periodic boundary condition allows the fluid exiting one boundary to enter at the opposite boundary. Such 

periodic boundary condition are necessary to eliminate wall effects and provide a continuous internal flow 

throughout the porous domain [94], [102]–[104]. This is especially important at lower saturations below 

the percolation threshold, where the size of a representative elementary volume is infinite, since the invasion 

front shows self-similarity over many length scales. Periodic connections were added to the PNM by 

creating additional throats that connect the pores on the opposite walls of the network. The sizes of these 

throats were determined in the same manner as described above. 

3.3.3.2. Diffusion and reaction of oxygen 

Oxygen diffusion through the CL was modeled by Fickian diffusion. The mass balance of oxygen around 

pore 𝑖 is as follows: 

∑ 𝐺𝑑,𝑖𝑗
O2

𝑁𝑖

𝑗=1

(𝑐𝑖
O2 − 𝑐𝑗

O2) = 𝑆𝑖
O2 = −𝜈O2

× 𝑟𝑂𝑅𝑅 = 0.5 × 𝑟𝑂𝑅𝑅 (3-3) 

where 𝐺𝑑,𝑖𝑗
O2 is the diffusive conductance of the conduit that is connecting pores 𝑖 and 𝑗 and can be found 

using a resistors-in-series model (see below); 𝑐𝑖
O2 is the concentration of the oxygen in pore 𝑖; 𝑆𝑖

O2 is oxygen 

consumption by reaction; and 𝜈O2
 is the stoichiometry coefficient of O2 in Eq. (2-1) i.e. 0.5. Within the CL, 

𝑆𝑖
O2 is zero in all gas filled pores, and positive in all wetted pores, not only those near the electrolyte-gas 

interface. 

 

The value of 𝑟𝑂𝑅𝑅 at the reactive sites can be calculated using the Butler-Volmer kinetic model [105]: 
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𝑟𝑂𝑅𝑅 =
𝐽0𝐴𝑖

𝑛𝑒𝐹
(

𝑐𝑖
O2

𝑐0
) [exp (

𝛼𝑎𝐹

𝑅𝑇
𝜂𝑐) − exp (−

𝛼𝑐𝐹

𝑅𝑇
𝜂𝑐)] (3-4) 

where 𝐽0, 𝑛𝑒 , 𝛼𝑎 and 𝛼𝑐 are the exchange current density, the number of electrons in reaction Eq. (2-1), and 

the charge transfer coefficients for the anode and the cathode, respectively; 𝑐0 is a reference concentration; 

𝜂𝑐 is the cathode overpotential; and 𝐹, 𝑅, and 𝑇 are Faraday’s constant, the universal gas constant, and the 

temperature, respectively. Ignoring the IR loss in the anodic compartment, 𝜂𝑐 is defined as follows: 

𝜂𝑐 = 𝜙𝑠 − 𝜙𝑙 − 𝑉𝑜𝑐 (3-5) 

where 𝜙𝑠, 𝜙𝑙, and 𝑉𝑜𝑐 are the solid potential, local electrolyte potential and open circuit voltage, 

respectively. A constant electric potential for the solid phase was assumed due to the relatively high 

conductivity of the carbon electrodes, which was equal to the applied voltage.  

In Eq. (3-3), the value of 𝐺𝑑,𝑖𝑗
O2  can be defined using the resistors-in-series model as shown in Figure 3-5. 

This model was used for all transport processes, and its general formulation is as follows: 

1

𝐺𝑡𝑟,𝑖𝑗

=
1

𝑔𝑡𝑟,𝑖
𝑝 +

1

𝑔𝑡𝑟,𝑖𝑗
𝑡 +

1

𝑔𝑡𝑟,𝑗
𝑝  (3-6) 

where 𝑔𝑡𝑟,(𝑖 | 𝑖𝑗 | 𝑗)
𝑝|𝑡

 is the conductance of the transport mechanism of interest “tr” for each element (half 

pore/throat/half pore) in the conduit. For a diffusive mass transport mechanism, the diffusive conductance 

of each element can be explicitly calculated based on Fick’s first law of diffusion. The diffusive 

conductance of pore 𝑖 is as follows:  

 
𝑔𝑑,𝑖

𝑝
=

𝐷𝑖,𝑘𝐴𝑖

𝐿𝑖
 

 (3-7) 

where 𝐷i,k is the molecular diffusivity of species 𝑘, 𝐴𝑖 is the cross-sectional area of the pore 𝑖, and 𝐿𝑖 is the 

length of the element. The diffusive conductance of pore 𝑗 and throat 𝑖𝑗 can be defined in a similar way as 

for pore 𝑖 in Eq. (3-7). Therefore, for the specific transport mechanism of oxygen diffusion, 𝐺𝑑,𝑖𝑗
O2  in Eq. 

(3-3) can be calculated using Eq. (3-6) and Eq. (3-7), given the molecular diffusivity of oxygen (𝐷𝑖,O2
). 

Note that for a conduit at the electrolyte-gas interface region, the value of 𝐺𝑑,𝑖𝑗
O2  will be corrected to 

incorporate the dissolution of oxygen into the electrolyte. This correction is explained in the next section. 
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Figure 3-5 A schematic of simple cube and cuboid geometry for a pore-throat-pore element as one conduit. The 

conduit elongates from the centroid of one pore and includes their connecting throat and half of two pores. The 

corresponding conductance of the conduit is calculated using a resistors-in-series theory on its elements (half pore-

throat-half pore) from Eq. (3-6). 

3.3.3.3. Oxygen solubility 

The dissolution of the oxygen in the electrolyte was modeled by Henry’s Law. The oxygen solubility was 

calculated as a linear function of the partial oxygen pressure as follows [82]: 

𝐶O2
= 𝐻O2

𝑐,𝑝
𝑃O2

 (3-8) 

where 𝐻O2

𝑐,𝑝
 is Henry’s constant and 𝑃O2

 is the partial oxygen pressure. The dissolved oxygen then diffuses 

through the partially invaded electrode and participates in the ORR. To implement Henry’s law in the PNM, 

the solubility was incorporated into the mass transport resistance/conductance of a conduit element at the 

interface of water and air (where the dissolution occurs). A conduit element filled with water and air is 

illustrated in Figure 3-6. The diffusive resistance of this conduit includes two parts: First, the resistance 

from the center of the electrolyte-filled pore to the liquid-gas interface. Second, the resistance from the 

interface to the center of the air-filled pore. To derive the mass flow rate at the interface of an arbitrary 

conduit, it was assumed that the interface boundary was at the middle of the throat. Therefore, pore 𝑖 and 

half of throat 𝑖𝑗 are occupied by the electrolyte phase 𝛼, while pore 𝑗 and the remaining half of the throat 

are occupied by the air phase 𝛽. The resulting concentration profile in the conduit is schematically shown 

in Figure 3-6. 
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Figure 3-6 A schematic of mass partitioning at the interface of electrolyte-air contact region. It is assumed that the 

interface boundary locates at the middle of the throat. 

The mass flow rate of the conduit is calculated as (see Appendix A): 

 
𝑚𝑖𝑗 = 𝐺𝑗𝑖(𝑐𝑖 − 𝐻𝑖𝑗𝑐𝑗) 

 (3-9) 

where 𝐻𝑖𝑗 is the dimensionless Henry’s constant: 

 
𝐻𝑖𝑗 = 𝐻𝑔𝑎𝑠

𝑐,𝑐 =
𝐶𝑎𝑞

𝑔𝑎𝑠

𝐶𝑔𝑎𝑠
𝑔𝑎𝑠 

 (3-10) 

where 𝐶𝑎𝑞
𝑔𝑎𝑠

 is the concentration of gas species (oxygen) in the electrolyte phase and 𝐶𝑔𝑎𝑠
𝑔𝑎𝑠

 is the 

concentration of the gas species in the gas phase. As the 𝐻𝑔𝑎𝑠
𝑐,𝑝

 is conventionally reported in references [82], 

𝐻𝑔𝑎𝑠
𝑐,𝑐

 can be calculated from 𝐻𝑔𝑎𝑠
𝑐,𝑝

 assuming an ideal gas behavior for oxygen: 

 
𝐻𝑖𝑗 = 𝐻𝑔𝑎𝑠

𝑐,𝑐 = 𝑅𝑇𝐻𝑔𝑎𝑠
𝑐,𝑝

 
 (3-11) 

Therefore, the oxygen solubility defined in Eq. (3-8) is incorporated into the mass flow rate in the form of 

dimensionless Henry’s constant, calculating from Eq. (3-11). Finally, 𝐺𝑗𝑖 can be derived (see Appendix A): 

 
𝐺𝑗𝑖 = (

1

𝑔𝑖
𝑝 +

0.5

𝑔𝑖𝑗
𝑡 ) + 𝐻𝑖𝑗 (

1

𝑔𝑗
𝑝 +

0.5

𝑔𝑖𝑗
𝑡 ) 

 (3-12) 

𝐺𝑗𝑖 along with the mass flow rate Eq. (3-9) was used to define the dissolution of oxygen and mass transport 

at the electrolyte-gas interface region. 
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As the solubility of oxygen in KOH electrolyte is a function of molarity of the solution, 𝐻𝑖𝑗 (given in Table 

3-2) can be calculated from oxygen solubility values at a specified KOH concentration. Oxygen solubility 

(𝑆) are found as follows[106]: 

𝑙𝑜𝑔𝑆 = 𝑙𝑜𝑔1.26 × 10−3 − 0.1746 𝐶𝐾𝑂𝐻 
 (3-13) 

For a 7M KOH solution:  

𝑆 = 10−4.12 = 7.58 × 10−5 [
𝑚𝑜𝑙

𝑙
] = 0.075 [

𝑚𝑜𝑙

𝑚3
] 

 (3-14) 

As Eq. (3-13) from Davis et al.[106] were presented at 𝑃𝑂2 = 750 𝑡𝑜𝑟𝑟 = 101080 𝑃𝑎, the value of 𝐻𝑔𝑎𝑠
𝑐,𝑝

 

can be calculated from its definition: 

𝐻𝑔𝑎𝑠
𝑐,𝑝

=
𝐶𝑎𝑞

𝑃𝑔𝑎𝑠
=

0.075

101080
= 7.42 × 10−7[𝑚𝑜𝑙𝑔𝑎𝑠/𝑚3𝑃𝑎] 

 (3-15) 

Substituting 𝐻𝑔𝑎𝑠
𝑐,𝑝

 value in Eq. (3-11), the Henry’s constant is found as follows: 

𝐻𝑔𝑎𝑠
𝑐,𝑐 = 𝑅𝑇𝐻𝑔𝑎𝑠

𝑐,𝑝
= 8.314 × 298 × 7.42 × 10−7 = 1.838 × 10−3 

 (3-16) 

The value of Henry’s constant can also be calculated using the formulation used by Stamm et al. [82], where 

Sechenov constant was used to calculate the oxygen solubility based on KOH concentration (salting out). 

As an additional check, Henry’s constant was calculated applying Sechenov constant. A value of 𝐻𝑔𝑎𝑠
𝑐,𝑐 =

1.85 × 10−3 was obtained from calculations, which matched the value found in Eq. (3-16). 

3.3.3.4. Transport of ionic species 

The ionic species in the electrolyte are K+ and OH−. Assuming a high concentration of KOH, the K+ cation 

mass transport equation is not solved in the system of ionic species transport equations, as it is assumed to 

be abundant in the supporting electrolyte. Therefore, only the cation was considered when applying the 

electroneutrality condition and calculating the electrolyte conductivity, with the cation assumed to be 

present in balance. 

 

The transport of OH− through the electrolyte occurs by diffusion and migration, which can be modeled by 

the Nernst-Planck equation [45], [107], [108]. Agnaou et al. [45] presented the PNM formulation of the 

Nernst Planck equation. In the present work there was no convection, the upwind scheme was used to 

discretize the migration term, and the electroneutrality assumption was applied, giving the following: 
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∑[𝐺𝑑,𝑖𝑗
OH + max(−𝑚𝑖𝑗

OH, 0)]𝑐𝑖
OH − ∑[𝐺𝑑,𝑖𝑗

OH + max(𝑚𝑖𝑗
OH, 0)]𝑐𝑗

OH

𝑁𝑖

𝑗=1

= 𝑆𝑖
OH

𝑁𝑖

𝑗=1

= −𝜈OH × 𝑟𝑂𝑅𝑅 = −2 × 𝑟𝑂𝑅𝑅 

(3-17) 

where 𝐺𝑑,𝑖𝑗
𝑂𝐻  is the OH− diffusive conductance in the conduit 𝑖𝑗. 𝐺𝑑,𝑖𝑗

OH  can be calculated using the resistors-

in-series model defined in Eq. (3-6) where the diffusive conductance of each element is found from Eq. 

(3-7) given the OH− diffusion coefficient 𝐷𝑖,OH. 𝑚𝑖𝑗
OH is the migration rate of OH− which can be defined as 

follows: 

𝑚𝑖𝑗
OH = 𝐺𝑚,𝑖𝑗

OH (𝜙𝑖 − 𝜙𝑗) (3-18) 

where 𝜙𝑖 and 𝜙𝑗 are the electrolyte potential at pore 𝑖 and 𝑗, respectively. 𝐺𝑚,𝑖𝑗
OH  is the migrative conductance 

and can be calculated using the resistors-in-series defined in Eq. (3-6), where the migrative conductance of 

pore 𝑖 is defined as follows: 

𝑔𝑚,𝑖
OH =

𝑧OH𝐹

𝑅𝑇
𝑔𝑑,𝑖 

OH (3-19) 

where 𝑧OHis the valence of OH−, and 𝑔𝑑,𝑖 
OH is the OH− diffusive conductance of pore 𝑖 found from Eq.(3-7) 

using OH− diffusion coefficient. 

3.3.3.5. Charge conservation 

The charge conservation around pore 𝑖 assuming electroneutrality is as follows [45], [107]: 

∑ 𝐺𝑐𝑜𝑛𝑑,𝑖𝑗
𝑖𝑜𝑛𝑖𝑐

𝑁𝑖

𝑗=1

(𝜙𝑖 − 𝜙𝑗 ) = 𝑆𝑖
𝑐ℎ𝑎𝑟𝑔𝑒

= −𝐹 ∑ 𝑧𝑛 [∑ 𝐺𝑖𝑗
𝑛,𝑑𝑖𝑓𝑓

𝑁𝑡ℎ

𝑗=1

𝑐𝑖
𝑛 − ∑ 𝐺𝑖𝑗

𝑛,𝑑𝑖𝑓𝑓
𝑐𝑗

𝑛

𝑁𝑡ℎ

𝑗=1

]

𝑛𝑐

𝑛

+ 𝐼𝐵𝑉 (3-20) 

where 𝜙𝑖  is the potential of the electrolyte. 𝑆𝑖
𝑐ℎ𝑎𝑟𝑔𝑒

 is the source term which includes electroneutrality 

term and the rate of the charge generation (current) from Butler-Volmer kinetics. 𝐼𝐵𝑉is nonzero at the 

electroactive sites where ORR occurs. 𝑧𝑖
𝑛 is the valence of ionic species 𝑛. 𝐺𝑐𝑜𝑛𝑑,𝑖𝑗

𝑖𝑜𝑛𝑖𝑐  is the ionic conductance 

of the conduit, which can be calculated using the resistors-in-series model defined in Eq. (3-6), where the 

ionic conductance of pore 𝑖 is defined as follows: 

𝑔𝑖𝑜𝑛𝑖𝑐,𝑖
𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑙𝑦𝑡𝑒

=
𝐹2

𝑅𝑇
(

𝐴𝑖

𝐿𝑖
) ∑(𝑧𝑖

𝑛)2 𝐷𝑖
𝑛𝑐𝑖

𝑛

𝑘

 (3-21) 

where 𝑧𝑖
𝑛, 𝐷𝑖

𝑛,and 𝑐𝑖
𝑛 are the valence of ionic species 𝑛, Diffusion coefficient and concentration of species 

𝑛, respectively. The electroneutrality condition ∑ 𝑧𝑛 𝑐𝑛
𝑛 = 0 is applied on the electrolyte solution. 
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Therefore, 𝑐K+

 = 𝑐OH−

 . Applying electroneutrality into Eq. (2-30) the ionic conductance of pore 𝑖 can be 

simplified as a function of 𝑐OH−
: 

𝑔𝑖𝑜𝑛𝑖𝑐,𝑖
𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑙𝑦𝑡𝑒

=
𝐹2

𝑅𝑇
(

𝐴𝑖

𝐿𝑖
) [𝐷𝑖

K+
+ 𝐷𝑖

OH−
]𝑐𝑖

OH−
 (3-22) 

Similarly, the electroneutrality term in the LHS can be simplified as a function of 𝑐OH−
. The second term 

in the LHS is found from Butler-Volmer kinetics defined in Eq. (3-4) 𝐼𝐵𝑉 = 𝑛𝑒𝐹𝑟𝑂𝑅𝑅. 

 

The boundary condition for the charge balance equation was imposed on the electrolyte-membrane interface 

by calculating the ohmic loss in the cell components as given in Eq. (3-23)Assuming an average ohmic loss 

of 𝐼𝑅𝑜ℎ𝑚𝑖𝑐, the potential on the boundary (𝜙𝑚𝑒𝑚−𝑏𝑜𝑢𝑛𝑑) is calculated using Ohm’s law. The generated 

current can be calculated by summing the current rates (𝐼𝑖,𝐵𝑉) in the pore network. 𝑅𝑜ℎ𝑚𝑖𝑐 is the ohmic 

resistance of the membrane and other components that can be calculated by Pouillet’s law [2] with known 

values of the components’ dimensions and conductance given in [88] and Table 3-2:  

𝜙𝑚𝑒𝑚−𝑏𝑜𝑢𝑛𝑑 = 𝑅𝑜ℎ𝑚𝑖𝑐𝐼𝐵𝑉 = ( ∑
𝛿𝑘

𝜎𝑘𝐴𝑘

𝑛𝑐𝑜𝑚𝑝

𝑘

) (∑ 𝐼𝑖,𝐵𝑉

𝑖

) (3-23) 

where 𝛿𝑘 , 𝜎𝑘, and 𝐴𝑘 are thickness, conductivity, and area of the component 𝑘 in the cell. Given the high 

conductivity of the Zn electrode 𝑂(107) [
S

m
]and air cathode 𝑂(104)[

S

m
], the ohmic loss in the electrodes 

were assumed to be negligible. Therefore, the ohmic loss was calculated for membrane, electrolyte channel 

and other components in the cell [88]. Relevant calculated parameters given in Table 3-2 were found [88], 

[109] as follows: 

 

Membrane effective conductivity (𝜎𝑚𝑒𝑚): 

Given the porosity of the membrane (𝜀sep) from [88], assuming a tortuosity of 𝜏𝑠𝑒𝑝 = (
1

𝜀𝑠𝑒𝑝
) for the porous 

membrane, 𝜎𝑚𝑒𝑚 can be found as follows: 

𝜎𝑚𝑒𝑚 = 𝜎𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑙𝑦𝑡𝑒 ×
𝜀

𝜏
= 60 × (

0.5

2
) = 15 𝑆/𝑚 

(3-24) 

 

Electrolyte channel thickness (𝛿𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑙𝑦𝑡𝑒 𝑐ℎ𝑎𝑛𝑛𝑒𝑙): 

The ohmic resistance in [88] was calculated based on 𝛿𝑧𝑖𝑛𝑐 for the anode compartment and 

𝛿𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑙𝑦𝑡𝑒 𝑐ℎ𝑎𝑛𝑛𝑒𝑙 for the electrolyte channel. As 𝛿𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑙𝑦𝑡𝑒 𝑐ℎ𝑎𝑛𝑛𝑒𝑙 was not, based on the reference 

information and shown setup it was assumed that the given 𝛿𝑎𝑛𝑜𝑑𝑒 in their supplementary info includes 
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both 𝛿𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑙𝑦𝑡𝑒 𝑐ℎ𝑎𝑛𝑛𝑒𝑙 and 𝛿𝑧𝑖𝑛𝑐. The value of 𝛿𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑙𝑦𝑡𝑒 𝑐ℎ𝑎𝑛𝑛𝑒𝑙  was then calculated as the difference 

between 𝛿𝑎𝑛𝑜𝑑𝑒 (0.00615 𝑚) and 𝛿𝑧𝑖𝑛𝑐(0.00115 𝑚), which resulted in the value of 5 × 10−3𝑚. 

 

Electrolyte channel conductivity (𝜎𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑙𝑦𝑡𝑒 𝑐ℎ𝑎𝑛𝑛𝑒𝑙): 

Electrolyte channel conductivity in [88] was assumed to be a function of 𝐾𝑂𝐻 concentration (𝜎 =

𝑓(𝐶KOH)). However, the function was not provided. Therefore, the conductivity of the 7M KOH electrolyte 

was found from an empirical relationship given in [109] as follows: 

𝜎 = −2.041(𝑀) − 0.0028(𝑀2) + 0.005332(𝑀. 𝑇) + 207.2 (
𝑀

𝑇
) + 0.001043(𝑀3)

− 0.0000003(𝑀2. 𝑇2) 
(3-25) 

where 𝑀 and 𝑇 are molarity and temperature, respectively. Substituting 𝑀 = 7 and 𝑇 = 298 into Eq. 

(3-25), results in 𝜎 = 61.77 𝑆/𝑚. As stated in [109] the regression model in Eq. (3-25) had an average of 

2% deviation from reference experimental data. Therefore, an approximate value of 60 𝑆/𝑚 was used for 

𝜎𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑙𝑦𝑡𝑒 𝑐ℎ𝑎𝑛𝑛𝑒𝑙 in this study. 

3.3.3.6. Coupling mass and charge transport 

The charge conservation boundary condition depends on the current, which itself is unknown and a function 

of mass transport rate. Therefore, the mass and charge transport equations are coupled, with the 

concentration of the species and the electrolyte potential as unknown variables. To solve the system of 

equations an iterative framework was used, as illustrated in Figure 3-7. The proposed algorithm may diverge 

if the initial guess is not close enough to the actual solution, so a relaxation factor 𝜔 was used [2]. In each 

iteration, the value of the unknown variables was updated as 𝑋𝑖
𝑖𝑡𝑒𝑟+1 = 𝜔 𝑋𝑖

𝑖𝑡𝑒𝑟+1 + (1 − 𝜔) 𝑋𝑖
𝑖𝑡𝑒𝑟. Once 

the systems of equations were solved, the distribution of the electrolyte-gas interface was then analyzed to 

investigate the CL’s parameters that affect the electrode’s performance. When simulating a polarization 

curve the results from the previous voltage were used as inputs to the next voltage, providing a good initial 

guess which helped speed and stability. 

 

The value of relaxation factor in a range of (0,1) was defined based on the range of applied cell voltage [2]. 

At cell voltage close to open circuit the kinetic overpotential is relatively small. Therefore, the reaction rate 

and consumption of species is relatively small, which leads to an approximately uniform concentration 

distribution. Therefore, at the beginning of the discharge and close to open circuit voltage, the coupling 

between mass and charge transport is weak. As a result, a larger relaxation factor at the early stages of 

discharge is sufficient for convergence. On the other hand, at the later stages of discharge as the cell voltage 

is reduced farther from open circuit voltage, the coupling between mass and charge transport physics 
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becomes stronger. As a result, a smaller relaxation factor was required to reach convergence [2]. The 

relaxation factor for the reference case generated in section 3.4.1 was defined using a trial and error, as 

given in Table 3-1. Similarly, relaxation factors were fine tuned for other networks generated in section 

3.4.4. However, for future works it is recommended to automatically define an adaptive relaxation factor 

by defining a function to adaptively change the value of the relaxation factor. A simple outline of the 

function could take in an initial value of the relaxation factor (𝜔0), residual error from previous step 

(𝑒𝑟𝑟𝑜𝑟0), error at the current step (𝑒𝑟𝑟𝑜𝑟), and a minimum and maximum value of the relaxation factor 

(𝜔𝑚𝑖𝑛, 𝜔𝑚𝑎𝑥). The function could calculate the relaxation factor to adaptively increase or decrease. For 

example, if 𝑒𝑟𝑟𝑜𝑟 > 𝑒𝑟𝑟𝑜𝑟0, (meaning we need a smaller relaxation factor) the function could return 𝜔 =

𝜔0 × 0.8 . Otherwise, if 𝑒𝑟𝑟𝑜𝑟 ≤ 𝑒𝑟𝑟𝑜𝑟0 (meaning we don’t need a smaller relaxation factor) the function 

could return 𝜔 = 𝜔0 × 1.5. This adaptive definition is advantageous over constant value of relaxation 

factor, as it reduces the computational costs of the trial and error and the number of iterations to reach the 

convergence. 
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Figure 3-7 The flow chart of the framework to model the Zn-air cathode 

 

Table 3-1 Defined relaxation factors for convergence in the reference pore network model 

Applied voltage Relaxation factor 

0 < 𝑉𝑐𝑒𝑙𝑙 ≤ 0.8 0.2 

0.8 < 𝑉𝑐𝑒𝑙𝑙 ≤ 0.9 0.3 

0.9 < 𝑉𝑐𝑒𝑙𝑙 ≤ 1.1 0.4 

1.1 < 𝑉𝑐𝑒𝑙𝑙 < 1.2 0.8 

1.2 ≤ 𝑉𝑐𝑒𝑙𝑙 < 𝑉𝑜𝑐 1 
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3.4. Modeling Results and Discussion 

3.4.1. The effect of the electrolyte saturation on electrolyte-gas interface length 

To verify the modeling framework, a cubic network was generated based on the data from Lao-atiman et 

al. [88]. The pore size distribution and porosity of the CL was not reported in their experimental data so a 

random distribution with sizes 25 and 250 nm was used based an SEM micrograph (Appendix B) and a 

porosity of 40% was used based on the typical average porosity for catalyst layers [99], [105]. The random 

distribution was created using a random generator to sample from a uniform distribution over the defined 

size range. To reduce the computational cost, the cross-sectional dimension of the cell was reduced to 

15 μm by 15 μm, while the CL thickness was remained constant. The network dimension was 

[30,15,15] μm corresponding to a domain size of [120,60,60] pores in the 𝑥, 𝑦, and 𝑧 directions. The 

spacing of the cubic network was 0.25 μm, which resulted in a network porosity of 40%. The details of the 

parameters used in the PNM are given in Table 3-2. The KOH concentration was 7 M, which is reported as 

an optimum molarity to provide a high electrolyte conductivity [88], [109]. All physical properties of the 

model including KOH concentration, diffusivity of ions, and partial pressure of the oxygen were the same 

as the reported experimental data. The fitted parameters were the exchange current density (𝑗0) , electrolyte 

saturation, and the thickness of other components, which were manually adjusted to fit the model result 

with the experimental data. Figure 3-8 shows the simulated polarization curve compared with the 

experimental data, and reasonable agreement was obtained. As the electrolyte saturation was not included 

in the experimental data, the CL saturation was fitted to 0.85, which was found from the saturation values 

corresponding to the high performance and ensures the electrolyte has reached the CL-GDL interface. 
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Figure 3-8 Comparison of the PNM polarization curves with experimental data by Lao-atiman et al. [88] 

assuming a fitted saturation value of 0.85.  

 

The available experimental data did not include the saturation of the CL, which is challenging to measure 

experimentally. However, in the present study the effect of the electrolyte saturation on the performance of 

electrode was investigated. The invasion of the electrolyte at 4 selected saturations are illustrated in Figure 

3-9. For illustration purpose, pores and throats are shown as spheres and wireframes, and the air-filled pores 

are masked so that the only visible pores are the electrolyte-invaded pores. 

 

Figure 3-10a shows the cell polarization behavior for varying CL saturation between 0.1 and 0.9. Increasing 

the electrolyte saturation does not necessarily increase the maximum generated power, with peak power 

generation occurring at a saturation of 70%. This can be understood by considering the fraction of pores 

where a reaction is possible (i.e. any electrolyte filled pore) versus the fraction of pores where the reaction 

is actually occurring at a significant rate (i.e. pores near the phase boundary). Although dissolved oxygen 

can physically reach any electrolyte-filled pore, the reality is that due to limited solubility and low diffusion 

coefficient the oxygen concentration rapidly drops so that the ORR rate rapidly becomes negligible. As a 

result, most of the reaction occurs at near interface pores. As the saturation increases so does the number 

of pores at the air-electrolyte interface, and thus the peak power increases with saturation. However, at high 

saturations above 0.9, the fraction of pores at the air-electrolyte interface decreases towards 0 as all the 
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pores become filled with electrolyte. This is also reflected in the polarization curves as the observed peak 

power drops beyond a saturation of 0.7. To illustrate this trend, Figure 3-10b shows the fraction of the 

surface area of electrolyte filled pores which lie near the interface as a function of the electrolyte saturation 

in the CL. The peak of this curve also occurs within the saturation range of 0.6-0.8. This behavior in the 

performance agrees with experimental works where the increase and decrease in the performance of air 

electrodes were observed with increasing electrolyte volume [31], [74]–[76]. Another way to evaluate the 

performance of the electrode is to plot the current density versus electrolyte saturation, as shown in Figure 

3-10c for three applied voltages. At each applied voltage, a peak current density occurs when the saturation 

of the CL is around 0.7-0.8, though this shift to slightly higher values at the higher voltages. 
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Figure 3-9 Invasion of electrolyte at different saturation (electrolyte volume). Only electrolyte-filled pores are 

shown (colored by pore diameters) for a better illustration purpose. a) Electrolyte invading at 𝑆𝑤 = 0.1. b) 

Electrolyte invading at 𝑆𝑤 = 0.2. At this point electrolyte front has additional fingers/branches providing additional 

triple phase boundaries. The breakthrough front is not completely blocking the air side. c) Electrolyte invading at 

𝑆𝑤 = 0.4. At this point the electrolyte front has grown in three dimensions occupying more pores which creates a 

more uniform front. d) Electrolyte invading at 𝑆𝑤 = 0.7. The breakthrough front is blocking more pores at the air 

side. At this point and further invasion, the electrolyte has occupied most of the CL and the electrolyte-gas interface 

length will be reducing to a minimum value. 
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Figure 3-10 a) Power and current density curves at each saturation of the electrolyte. b) The surface area ratio of 

near interface pores to all electrolyte-filled pores vs saturation of the electrolyte. c) The change of current density 

by increasing invading electrolyte volume. Each curve shows the increasing and decreasing trend at a constant cell 

potential. 
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Table 3-2 Summary of the parameters used in this study 

Parameter Value Units Description source 

𝛿𝑚 2 × 10−4 𝑚 Membrane thickness [88] 

𝜎𝑚𝑒𝑚 15 𝑆/𝑚 Membrane effective 

conductivity (porosity=0.5 and 

tortuosity=2 applied) 

Calculated 

from [88]  

𝛿𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑙𝑦𝑡𝑒 𝑐ℎ𝑎𝑛𝑛𝑒𝑙 5 × 10−3 𝑚 Electrolyte channel thickness Calculated 

from [88] 

𝜎𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑙𝑦𝑡𝑒 𝑐ℎ𝑎𝑛𝑛𝑒𝑙 60 𝑆/𝑚 Electrolyte channel 

conductivity 

Calculated 

from 

[88],[109]  

𝜎𝑜𝑡ℎ𝑒𝑟_𝑐𝑜𝑚𝑝 20 𝑆/𝑚 Other components’ 

conductivity 

[88]  

𝛿𝑜𝑡ℎ𝑒𝑟_𝑐𝑜𝑚𝑝 6.1 × 10−3 𝑚 Other components’ thickness Fitted 

parameter 

𝑗0 0.9 𝐴/𝑚2 Exchange current density Fitted 

parameter 

𝑐0 8.452 𝑚𝑜𝑙/𝑚3 Reference concentration of 

oxygen 

[88] 

𝛼𝑐 , 𝛼𝑎 0.5 - Cathodic, Anodic transfer 

coefficient 

[88], [105] 

𝐻𝑖𝑗 1.838 × 10−3 - Dimensionless Henry’s 

constant 

Calculated 

from [106] 

𝐷𝑂2,𝑎𝑖𝑟 2.3 × 10−5 𝑚2/𝑠 Oxygen diffusivity in air [88] 

𝐷𝑂2,𝑒𝑙𝑒𝑐 0.6 × 10−9 𝑚2/𝑠 Oxygen diffusivity in 

Electrolyte 

[106] 

𝐷OH−,𝑒𝑙𝑒𝑐 5.27 × 10−9 𝑚2/𝑠 𝑂𝐻− diffusivity in Electrolyte [110] 

𝐷K+,𝑒𝑙𝑒𝑐 1.2 × 10−9 𝑚2/𝑠 𝐾+ diffusivity in Electrolyte [88] 

𝐶o2,𝑖𝑛𝑙𝑒𝑡 8.452 𝑚𝑜𝑙/𝑚3 Inlet oxygen concentration [88] 
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3.4.2. Electrolyte saturation and tortuosity 

The void space in a porous CL includes a broad range of pore sizes providing a heterogeneous pore space, 

which results in a fractal or highly branched fluid invasion front. Ionic transport paths through the fluid 

phase are therefore quite tortuous [111], [112]. To quantify this effect, a network-based tortuosity parameter 

was used [111], [113], [114], defined as the ratio of the shortest path length (𝐿𝑚𝑖𝑛𝑖
) to the straight-line 

length (𝐿𝑠𝑖
) [111] as follows: 

𝜏𝑖 = (
𝐿𝑚𝑖𝑛𝑖

𝐿𝑠𝑖

)
2

 
(3-26) 

The shortest path between each pore 𝑖 and the membrane interface was found using the Dijkstra algorithm 

[112], [115] with equal weights on each connection since the pores were equally spaced. The straight-line 

length for each pore 𝑖 was calculated as the direct or Euclidean distance from the membrane face to the pore 

center. This metric is explored here to examine the effect of saturation on tortuosity of the invasion front. 

Tortuosity of the invasion front hinder the transport of produced ions towards the anode. As a result, the 

increase in produced OH− concentration in tortuous regions results in an increase in the KOH concentration. 

The concentration of KOH can exceed its solubility limit , meaning that KOH can precipitate in the CL 

pores, which is a key degradation mechanism for these systems [99]. Figure 3-11(a & b) shows the fluid 

configuration at two saturations at relatively low saturation values of 𝑆𝑤 = 0.1 and 𝑆𝑤 = 0.2, with each 

pore colored based on the calculated tortuosity (Eq. (3-26)) at this location. Some pores show a very high 

tortuosity, exceeding 100. This is due to the highly fractal nature of the invasion front [78]. Thus, an ion 

formed near the electrolyte-gas interface in the CLs shown in Figure 3-11(a & b) has to follow a narrow 

tortuous path through many pores before reaching the main electrolyte backbone, from where it can be 

transported more easily to the anode. Figure 3-11(c & d) show the same data with only pores having a 

tortuosity greater than 40 visible. This illustrates that the highest tortuosity pores are located in the long 

fingered regions, which make up much of the near interface pores. This also shows that the number of pores 

with an unusually high tortuosity is decreases when the saturation increases from 0.1 to 0.2. To further 

illustrate this trend, Figure 3-12 shows the cumulative tortuosity distributions for a range of saturations. It 

is apparent that once saturation exceeds 0.2 the number of pores with high tortuosity decreases significantly. 

This suggests that the CL should be operated with saturations greater than about 0.3 to reduce the number 

of pores which have very high tortuosity, since these will have high OH− concentrations to drive the mass 

transfer, and thus could be subject to KOH precipitation if the solubility limit is reached. 

 

The sudden drop in tortuosity between 𝑆𝑤 = 0.2 and 𝑆𝑤 = 0.3 may be explained by the percolation 

threshold for this system which is around 𝑆𝑤 ≈ 0.25 (bond percolation on a cubic lattice with a random 

distribution of bond entry values). Below the percolation threshold, the correlation length of the largest 
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invaded cluster becomes infinite [116], [117]. The results for 𝑆𝑤 < 0.25 are impacted by this in two ways. 

Firstly, a high tortuosity is obtained since the electrolyte pathways are highly fractal. Secondly, the results 

are variable between realizations since the domain size was limited, whereas the representative elementary 

volume (REV) of the porous medium becomes infinite.  

 

 

Figure 3-11 a) Tortuosity of invaded pores in the CL. a) Tortuosity at 𝑆𝑤 = 0.1 b) Tortuosity at 𝑆𝑤 = 0.2 c) Pores 

with tortuousity greater than or equal to 40 at 𝑆𝑤 = 0.1 d) Pores with tortuosity greater than or equal to 40 at 𝑆𝑤 =

0.2 
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Figure 3-12 a) Plot of fraction of pores with tortuosity greater than or equal to the stated value in x axis. Each line 

in the plot shows the values at a specific electrolyte saturation. 

3.4.3. Hydroxide concentration distribution 

Given the extremely high tortuosity observed at lower saturations, the distribution of OH− concentration 

was explored, to determine conditions and regions where the solubility limit for KOH (15 M) [110] may be 

exceeded. Exceeding this limit leads to the precipitation of KOH in the CL which blocks the mass transport 

paths and reduce the performance of the air electrode. A contour plot of the maximum OH− concentration 

in the CL as a function of the electrolyte saturation and current density is shown in Figure 3-13. The color 

at each saturation and current density in the contour plot corresponds to the maximum value of the OH− 

concentration observed in the CL under these conditions. The contours with concentration equal to and 

greater than 15 M were colored red to indicate that precipitation of KOH may occur under these conditions. 

At low to intermediate saturation (0.1-0.4) and higher current density, the OH− concentration can exceed 

the KOH solubility limit (red-color regions). In contrast, at higher saturation values (0.4-0.8) the maximum 

observed OH− concentration remains below the solubility limit at all current densities. Therefore, an 

intermediate to high electrolyte saturation is preferable for both electrode performance (higher current 

density), and for preventing KOH precipitation. In terms of cell degradation this result suggests that attempts 

to avoid electrolyte leakage into the GDL by operating at low saturation may induce precipitation. This 

trade-off is worthy of deeper study and should be the subject of future work. 
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Figure 3-13 Contour plot of maximum OH−concentration at different electrolyte saturation and current density. 

The red region with COH− > 15 M represent the condition where the KOH will precipitate in the invaded electrolyte 

which is known to be a degradation mechanism. This contour plot can be used as a guide in choosing an optimum 

operational conditions and electrolyte invasion saturation for the CL to prevent the KOH precipitation and CL 

degradation. 

3.4.4. The effect of the pores size distribution on the invasion front and cell performance 

The pore size distribution (PSD) of the CL strongly affects the invasion pattern and subsequently the 

electrolyte-gas interface. In the above discussions a random distribution was used, but it is also interesting 

to study the impact of other distributions on the expected cell performance. The PSD of the CL is a 

particularly relevant parameter to investigate because it can be adjusted by altering the particle size 

distribution and/or calendering processes, which is experimentally feasible. Three networks were generated 

with dimensions of [30,15,15] μm corresponding to a domain size of [120,60,60] pores in the x, y, and z 

direction. Alternative pore size distributions were then generated using a Weibull function with varying 

parameters, giving the distributions shown in Figure 3-14. The distributions included a wide PSD, a 

moderate PSD and a narrow PSD option, which span the ranges of sizes seen in the SEM micrograph shown 

in Appendix B. The pore and throat size distributions of the previous results (from section 3.4.1) are 
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included in Figure 3-14 for comparison. A complete set of cell performance simulations was performed 

with each option so the impact of PSD on saturation distribution and subsequent cell polarization behavior 

could be seen. The electrolyte invasion pattern at two different saturations of 0.1 and 0.3 for the three 

different PSDs is shown in Figure 3-15(a-f). Given that the saturation in each row is equal, the differences 

in the fluid configuration are striking. For the narrow PSD the invading fluid spans the entire domain at 

𝑆𝑤 = 0.1 (Figure 3-15(c)). For the wide PSD at 𝑆𝑤 = 0.3 (Figure 3-15(d)), there are large regions of 

uninvaded pores. A comparison of the invasion front’s saturation profile along the x-axis (the through-plane 

direction) is shown in Figure 3-15(g-i). At low saturations the profiles vary widely throughout the domain, 

indicative of electrolyte fingers with pockets of air interspersed. This invasion configuration is beneficial 

since it increases the electrolyte-gas interface length by creating more branches of electrolyte-filled pores 

at electrolyte-air interface. The saturation profiles become flatter as the electrolyte saturation increases since 

only small clusters of invaded pores remain. 

 

 

Figure 3-14 Network elements size distribution. a) Three Weibull pore size distribution with shape=1,2,3. Random 

pore size distribution from previous results are shown for comparison. b) Corresponding throat size distributions 

of the pore networks. Throat sizes are defined as a fraction of minimum pore size that is connected to the throat 

(0.85). Throat size distribution from previous results are shown for comparison. 
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Figure 3-15 Electrolyte invasion in three PSD. a,b,c) Saturation=0.1 for wide, moderate, and narrow PSD, 

respectively. d,e,f) Saturation=0.3 for wide, moderate, and narrow PSD, respectively. g,h,i) Electrolyte saturation 

at each vertical slice (distance=X) in the network in three PSDs for electrolyte saturation step 0.1 to 0.9. 

 

The key insight from these simulations is that the invasion pattern in each PSD is quite different, which 

will result in different electrolyte-gas interface and electrolyte tortuosity. These differences in the invasion 

pattern of each PSD also affects the performance of the electrode, as shown in Figure 3-16a. All three 

distributions have a similar peak power output around 70 mW/cm2. The narrow PSD has a substantially 

higher peak power at lower saturation, while the wide PSD allows for a higher total saturation before the 
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performance collapses. This behaviour can be explained in terms of the electrolyte distribution and the 

number of electrolyte-gas interface throats for each network, as shown in Figure 3-16b. As the porosity of 

these three PSD is about half of the porosity of the previous results, the peak performance of only these 

three PSDs is the focus of analysis here. However, the previous results are included in Figure 3-16 for 

comparison. The peak performance corresponds very closely with the peak of number of interface throats. 

The wide PSD has a larger proportion of small pores which are the last to be invaded. These pores allow 

oxygen gas to transport deeper into the domain, even at very high saturations. This could be a useful feature 

since it allows the electrode to continue functioning even if high saturation is reached. On the downside, 

the wider distribution means that at lower saturation, the electrolyte is confined to the subset of large pores 

which reduces the amount of TBP created and leads to lower performance. These results clearly 

demonstrate that pore size distributions can be manipulated to obtain improved performance, but a more 

exhaustive study for an optimum distribution will be the focus of future work. It also remains to be seen if 

complex distributions can actually be realized in a lab. 

 

As it was mentioned in section 3.4.3, it is important to operate the electrode under conditions where the 

concentration of KOH in the CL does not exceed its solubility limit. Therefore, the maximum concentration 

of OH− in each PSD were examined at their peak performance. The maximum concentration of OH− at the 

peak performance of wide, moderate and narrow PSD were 8.4 M, 8.2 M, and 8.2 M, respectively. These 

values indicate that KOH does not precipitate at the conditions corresponding to peak performance in these 

CLs. Note that the peak performance of wide, moderate and narrow PSD occurs at intermediate to high 

saturations (0.5 − 0.8) which matches well with saturation ranges shown in Figure 3-13. Although Figure 

3-13 was developed based on a random PSD, its prediction was applicable (with some approximation) for 

these three PSDs. 
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Figure 3-16 a) Power peak of the three PSDs vs the electrolyte saturation. The curve for previous results (reference 

random) is shown for comparison. b) Electrolyte-gas interface length (number of interface throats) of three PSDs 

vs electrolyte saturation. The curve for previous results (reference random) is shown for comparison. 

3.5. Conclusions 

A framework to model the CL of Zn-air flow batteries was developed based on PNM. This model allowed 

a detailed study of the electrolyte-gas interface and its effect on the cell performance. PNM was uniquely 

suited to this study since it can incorporate multiphase transport at the pore-scale in complex structures with 

computational ease. It was shown that the amount of electrolyte invasion and its pattern arising from the 

pore structure play an important role on the extent and configuration of the electrolyte-gas interface, and 

subsequently cell performance. The results showed that increasing the electrolyte saturation to provide more 

reaction sites (electrolyte filled pores) does not always increase the cell performance. As the invasion 

proceeds to higher saturations, the peak power reaches a maximum and then decreases. The behavior is 

explained by considering that the reaction predominantly occurs in the near interface pores, despite the fact 

that oxygen can dissolve into the electrolyte and be transported to pores deeper within the electrolyte phase 

[31], [75]. The peak amount of electrolyte-gas interface occurs at intermediate saturations, with the exact 

value depending on the pore size distribution. 

 

The true utility of the PNM was in the detailed pore-scale information it provided, with respect to the 

interaction between the electrolyte-gas interface and its impact on electrode performance. In addition to the 

electrolyte-gas interface size, the effect of electrolyte saturation on tortuosity was studied. At lower 
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saturations the electrolyte front was shown to be highly tortuous which resulted in severely restricted 

transport of OH−, such that concentrations exceeding solubility limit of KOH were observed. Such results 

can be used as a guide for the selection of the electrode structure and operating conditions to prevent KOH 

precipitation which may cause electrode degradation. 

 

The importance of pore size distribution was studied to investigate how this could impact cell performance. 

Pore size distributions are potentially adjustable in the lab, so this study aimed to provide some guidance 

on the ideal structures. Although the maximum attainable peak power was close for all cases, it was found 

that CLs with wider pore size distributions continued to function well at higher saturations, while narrow 

PSD were more easily flooded. In contrast, CLs with narrow PSDs did perform better at low to intermediate 

saturations. It remains to be explored whether more elaborate structures could provide additional benefits.  

To the best of our knowledge, this is the most rigorous PNM developed for studying the electrolyte-gas 

interface and ORR in a metal-air cathode, with realistic 3D geometry and coupled multiphysics. The results 

of this work can be used as a guide in the design of the pore size distribution of the CL and the amount of 

electrolyte invasion (e.g. by altering wettability and/or electrolyte pressure). Future works can be focused 

on investigating the model’s application on other electrochemical systems such as Phosphoric acid fuel 

cells and Alkaline electrolyzers, where porous electrodes operate with liquid-gas interface. Additionally, it 

would be of interest to use a heterogenous reaction for the ORR. For this purpose, a suggestion is to define 

the mass transfer coefficient in the pore network element and compare the results of concentration 

distribution in the electrolyte phase with direct numerical simulation results for validation purposes at pore-

scale. Another future research could be developing a framework to solve the system of mass and charge 

transports using a simultaneous approach instead of the sequential approach to reduce the computational 

cost that is currently involved in the iterative method.  
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Chapter 4: Structure-performance relationship in multi-layer 

VRFB electrodes 

4.1. Overview 

Vanadium redox flow batteries (VRFBs) are a promising technology for large-scale and durable energy 

storage applications. The microstructure of the porous electrode affects the performance of these batteries. 

To guide the design of novel fibrous materials, identifying optimized electrode structures has become an 

active research area. However, to design optimal electrode microstructures for VRFBs it is crucial to study 

varieties of structural parameters and design cases using a modeling tool with low computational cost. In 

this study, a pore network modeling (PNM) framework was developed to study the effects of multi-layer 

electrodes on VRFB electrode performance. In contrast to previous experimental works that were focused 

on multi-layer structure of the same material, this study explores the effect of different microstructures at 

each layer. Using an image generation algorithm, different fibrous materials were artificially generated 

from which pore networks were extracted. The pore network framework also included a modification by 

introducing additional throat nodes in the network geometry. The new nodes were added to capture the 

heterogeneity in velocity distribution and accommodate a velocity dependence of mass transfer coefficient. 

Using polarization curves from PNM the performance of different structures was compared. The results in 

this study showed that in a multi-layer structure, the flow rate distribution depends on the arrangement of 

the layers. Putting a highly permeable layer near the membrane provides an alternative preferential path for 

fluid to distribute throughout the electrode thickness and to supply those regions with reactive species. 

Therefore, such electrode design results in a higher reaction rate and current density. Although this study 

was focused on multi-layer structures in VRFBs, the proposed PNM framework can be used to study the 

effect of other structural parameters within porous electrodes. 
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4.2. Introduction 

Redox flow batteries (RFBs) are a promising energy storage technology that are being developed to support 

sustainable energy generation like wind and solar, which require some form of large-scale storage to buffer 

the mismatch between supply and demand. Amongst different redox couples for RFBs, vanadium redox 

flow battery (VRFB) technology has attracted more attention due to the use of the same material in cathodes 

and anodes, thereby reducing the risk of cross-contamination in cell compartments, which is a degradation 

issue. RFBs including VRFBs are electrochemical reactors and each component, such as the porous 

electrodes and membrane separator, contributes to the overall efficiency and performance of the system 

[118] as well as its durability [6]. The main roles of the porous electrode are to provide high surface area 

for electrochemical reactions (reaction), while being conductive to transfer electrons (conduction) [3] and 

permeable for electrolyte flow (convection). The efficiency of these transport processes is largely dictated 

by the structural properties of the electrode such as pore and fibers sizes, porosity, and fiber orientation. 

Therefore, ongoing efforts are focused on optimizing the porous electrode structure to provide VRFBs with 

better performance and lower operational cost [118].  

 

The effect of structural properties on electrode performance has been the subject of numerous studies. 

Forner-Cuenca et al. [8] compared cloth and non-woven structures and found that the large spaces between 

the tows of the woven cloth provided enhanced permeability to flow while the denser regions inside each 

tow provided reactive surface area. The weaker performance of the non-woven electrode can be explained 

by the work of Wong et al. [119] who visualized the reaction distribution using a fluorescing tracer and 

transparent flow field. This revealed pronounced channeling in the nonwoven structures, which left many 

sections of the electrode starved of reactants. Together, these studies stress the key role that the porous 

structure plays on the transport processes occurring during the electrochemical reaction in these flow-

through electrodes, though neither authors suggested novel designs. In addition to supporting flow and 

providing reactive surface area, diffusion and ion transport in the electrode are also crucial. In an early 

experimental study by Aaron et al. [120] it was found that merely stacking 3 standard sheets of electrode 

material (non-woven) substantially outperformed a single sheet. This clearly demonstrated the importance 

of providing increased surface area for the reaction, despite creating increased transport lengths for the 

reactive species. Following this, Tucker et al. [121] explored the impact of layered electrodes more deeply, 

including up to 6 layers, and also varying compression and therefor porosity. They found that 3 layers with 

25% compression performed best since too many layers and too much compression both negatively 

impacted the ability of ions to transport to the reaction sites. Clearly there are many competing objectives, 
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suggesting that the search for an optimum electrode design would benefit from a numerical performance 

model that incorporates the structure of the electrode. 

 

The ability to create fibrous materials in lab provides a wide range of design opportunities for electrodes, 

though it would be time consuming to perform experiments on each candidate structure. To design electrode 

materials more efficiently, a computational model that describes the local distribution of species and 

transport phenomena within the porous structure of the electrode is required. Various modeling techniques 

have been used for studying VRFBs for different purposes. Volume averaged models are the most common 

approach for studying the electrode properties and cell performance [15], [16], [122]. These models assume 

the electrode is a homogeneous continuum domain with macroscopic properties such as porosity, 

permeability, and tortuosity. Although those models provide insights into macroscopic trends such as 

increasing permeability with increasing the porosity [43], they do not capture the microstructure at pore-

scale level for detailed structural-performance analysis. Or in other words, they do not provide a recipe for 

how to make a customized electrode, only what properties it should have. For instance, He et al. [123] used 

a finite element method (using COMSOL [122]) to explore the impact of porosity gradients in the electrode 

with porosity increasing from the membrane side to the flow field side. Their results in a serpentine flow 

field showed that with such a design electrochemical reaction can occur more uniformly throughout the 

through-plane direction in contrast to an electrode with a constant porosity, which may result in higher 

reaction rates near the flow field or membrane depending on the porosity. Although a porosity gradient may 

be enticing, it is not clear how to obtain it in the lab. Moreover, it is almost certain that the correlations used 

for other porosity dependent properties (e.g., tortuosity) will not apply to any arbitrary electrode structures, 

which can take on many forms such as reticulated foams, sintered grains, or highly aligned fibers. 

 

In contrast, direct numerical simulations on volumetric images of an actual microstructure can resolve 

transport phenomena at pore-scale level, making them a useful tool to study the transport phenomena in 

porous structures, without the limitation of continuum models mentioned above. Chen at al. [18] used the 

lattice-Boltzmann method (LBM) to study the effect of electrode porosity and fiber diameter on its 

permeability and transport of reactive species. Their results showed that at a constant porosity, reducing 

fiber diameter results in increased surface area and decreased permeability, which lead to rapid depletion 

of reactive species. At a constant fiber diameter, reducing porosity results in a similar effect. Although their 

study included a large number of stochastically generated fibrous images, their analysis did not include 

other structural parameters such as fiber orientation, nor did they incorporate the electrochemical 

performance and polarization behavior. Applying LBM on voxel images of porous materials is extremely 

computationally expensive, and this is even more limiting when considering the additional physics required 
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to include electrochemical performance. Qiu et al. [42] also used LBM to study electrolyte flow through 

the porous electrodes, while the coupled charge and mass transport equations were solved using finite 

volume method. Their work was focused on the effect of operational conditions on the cell performance 

and yielded valuable results on the distribution of species and current; however, structural parameters were 

not studied. To address the issue of high computational cost, some studies have turned to machine learning. 

Wan et al. [124] developed a genetic algorithm to find optimum structural parameters that resulted in 

optimum surface area and permeability values. To calculate the values of surface area and permeability 

they have developed a machine learning framework that maps the structural properties of fibrous materials 

to the objective parameters. They have concluded that that smaller fiber diameters and more alignment of 

fibers provide optimum surface area and permeability, which is supported by existing experimental data 

[125]. Although their framework included different structural properties including fiber diameter, 

alignment, and porosity, their results were limited to the effect of structural properties on surface area and 

permeability. Therefore, electrochemical performance of the generated materials and operational conditions 

were not considered. 

 

Clearly there is a need for a modeling framework that captures the pore-scale information while being 

computationally efficient. Pore Network Modeling (PNM), where the porous domain is modeled as a 

connected network of pores and throats can provide pore-scale resolved information while being 

computationally inexpensive. Sadeghi et al. [2] used PNM to study the effect of electrode microstructure 

on the performance of H-Br flow batteries. Their study showed the value of fiber alignment to increase flow 

battery performance by locally increasing the fluid velocity. This was the first PNM study to model the full 

electrochemical polarization behavior of a redox flow battery and demonstrated the direct impact of 

structure on performance; however, their work was based on simple cubic networks, which have simplified 

assumptions about the network structure. So, although their study pointed to a potential avenue for structural 

optimization, it was not apparent how an actual electrode might look. Since the porous structure of the 

electrodes have such an important impact on performance, it is essential to investigate the real porous 

electrodes characteristics. Lombardo et al. [28] developed a PNM for modeling redox flow battery 

electrodes that pioneered the use of the Nernst-Planck equations in the pore network scheme. Their study 

was limited to exploring the effect of migration and convection terms on the distribution of species and 

current within the network, therefore, the structural properties of the material were not investigated. Simon 

et al. [126] studied the effect of commercial electrode microstructures on performance, but they only used 

PNM to model the fluid flow through the electrode and find the pressure distribution. They then resorted to 

a 1D continuum-based model for modeling transport of species and finding the mass transport coefficient. 

Their results showed that best performance was seen in cloths with high permeability and mass-transfer 
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coefficient. Despite their comprehensive study on available commercial materials, their work was limited 

to looking at the effect permeability values of existing materials. Designing new materials requires 

exploration of many structural parameters such as fiber alignment, diameter, and their effect on the 

electrode performance. Moreover, using a 1D continuum-based model for electrochemical modeling limits 

the investigations to averaged properties instead of detailed pore-scale information. Heijden et al. [29] 

applied PNM to simulate the electrochemical processes in RFB porous electrodes, with the added feature 

that mass transfer resistance was included in the reaction term, so the bulk and surface concentrations in 

pores could differ. They also limited their study to commercially available materials, then focused on the 

impact of flow rates, which alters the pore-level mass transfer. Although their results can be used as a guide 

for selecting an ideal operational condition for a given electrode structure, the effect of migration of species 

and further structural parameters were not included. Moreover, their mass transfer coefficients were 

independent of local velocities and the effect of velocity was applied as a correction factor. This limits the 

application of their model for studying heterogeneous fibrous materials where local velocity values vary 

significantly, such as the excessive channeling observed by Wong et al. [119] . Therefore, there is a need 

for a PNM-based framework to study fibrous materials with different structural parameters and analyze 

their performance while rigorously including the effect of heterogeneity in velocity and mass transfer 

coefficients, since this is the only way to fully capture the impact of structural changes on performance. 

 

As mentioned earlier, different studies suggested that multi-layer structure for electrodes provides a better 

performance in RFBs. In this study, a framework based on PNM was developed to explore the concept of 

multi-layered structures in terms of the structure-performance relationship. The first step was generating 

images of fibrous materials with different structural parameters [127]–[129] from which the pore network 

was extracted. Several substantial and important modifications were required to the pore network 

framework itself, such as including throat nodes. This was necessary to compute the pore-scale, velocity 

dependent mass transfer coefficients since fluid velocity is only defined in throats. This modification is also 

closer to reality as the reaction occurs at the fiber surfaces which define the throat constrictions. Next, their 

resulting pore network model was used to solve the system of Nernst-Plank mass and charge transport 

equations, incorporating mass transfer limitation into the reaction terms. The developed PNM was validated 

based on experimental polarization data in literatures [130]. Finally, the developed framework was used to 

study the performance of different multi-layer electrode structures and their impact on RFB performance 

and operating cost.  
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4.3. Model development 

4.3.1. Cathode medium 

The present study is focused on modeling the positive electrode half-cell of the VRFB as illustrated in Figure 

4-1a. The findings obtained for this half-cell are equally valid for the counter electrode as well, but for the 

sake of simplicity only one electrode was considered. All comparisons to literature data were therefore 

limited to half-cell studies which eliminate polarization effects at the counter electrode. The cathode domain 

included an electrolyte channel to distribute the electrolyte and reactants, a polymer membrane that allowed 

the transport of protons from the cathode towards the anode, a porous electrode where the electrochemical 

reactions occurred, and current collectors. Due to symmetry, the domain was defined to span from the center 

of the inlet channel, across a full rib, and a half of the outlet channel, as shown in Figure 4-1b. As the effect 

of cell length on modeling result is assumed to be negligible [131], to reduce the computational cost a 

fraction of electrode length was modeled with dimensions given in Section 4.4.1. Because the main goal of 

this study was to investigate the structural properties of porous electrodes, the computational domain was 

limited to only the porous electrode, with the flow channels, current collectors and the membrane treated 

as boundary conditions. Generating the fibrous material image and pore network extraction methods are 

explained in following sections. 

 

 

Figure 4-1 a) Schematic of a VRFB cathode medium with an interdigitated flow field. b) Modeling domain, which 

includes a half-channel, rib, and a half-channel. 
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4.3.1.1. Fibrous materials generation 

In this section the developed algorithms for generating random fibrous materials are explained. First, the 

algorithms to generate random materials without binders are defined. Second, the developed image 

processing framework to include binders are explained. Fibrous materials with binders were used for 

validation purposes in Section 4.4.1. 

 

To generate random fibrous images overlapping cylinders were inserted into a blank image (PoreSpy’s 

cylinders generator was used [132]). The main assumptions for the algorithm are that fibers have a circular 

cross section (cylindrical fibers), have negligible curvature, and are allowed to intersect [124]. The 

algorithm takes in the structural properties of the fibrous material including number of fibers or porosity, 

fiber diameter, and fibers’ 3D orientations to generate a random fibrous material with the given properties. 

The 3D fiber orientation includes the polar angle (𝜑) and azimuthal angle (𝜃) of the fibers, defined as 

through-plane and in-plane orientation degree [124]. Additional parameters such as maximum length of the 

fibers and iterations can also be defined. The algorithm can be used to generate a fibrous material with 

either a given number of fibers or a given porosity as follows:  

 

A) Assuming a predefined number of fibers, each fiber is generated with a random starting point in 

the domain, then oriented at random angles of 𝜑 and 𝜃 out of XY plane (polar) and within the XY 

plane (azimuthal), respectively, within the range of 0 to maximum predefined value to create the 

final image of the fibrous material. Special attention was given to adjust each fiber’s length to span 

throughout the domain, if not defined.  

B) Assuming a predefined porosity the algorithm first estimates an initial value for the number of 

fibers to be added in the domain, based on a rough estimation of the fibers’ length and volume. The 

assumption for initial estimation of porosity is based on the fact that for a given domain volume 

𝑣𝑜𝑙𝑡𝑜𝑡𝑎𝑙, when potentially overlapping fibers are randomly inserted into the domain the total 

volume of added fibers is 𝑣𝑜𝑙𝑎𝑑𝑑𝑒𝑑 and the porosity can be estimated as exp (−
𝑣𝑜𝑙𝑎𝑑𝑑𝑒𝑑

𝑣𝑜𝑙𝑡𝑜𝑡𝑎𝑙
). Once the 

number of fibers is estimated (𝑛𝑓𝑖𝑏𝑒𝑟𝑠), the algorithm inserts a small fraction of 𝑛𝑓𝑖𝑏𝑒𝑟𝑠 into the 

domain using the method explained above (part A) and calculates the true volume of fibers. Then 

additional fibers are inserted into the domain. This process repeats for a predefined maximum 

number of iterations, resulting in an image with a porosity close to the predefined porosity. 

 

When simulating electrospun materials later in this work, only overlapping fibers are necessary. However, 

when validating the present workflow comparison is made to commercial fibrous mats which include 
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carbonaceous binder to hold the fibers together. Consequently, it was necessary to simulate the presence of 

binder in some images. A schematic of the steps to include binder in a generated fibrous material is shown 

in Figure 4-2. First, a random binary image of fibrous material (pore = 1, solid = 0) with given properties is 

generated using cylinders generator algorithm described above. Figure 4-2a shows an example of a 

generated image with number of fibers of 600, and maximum 𝜑 and 𝜃 angles of 15 and 45, respectively. 

Note that the voxel size was chosen to be 1 μm, therefore fiber radius was defined as 4 voxels. Next, the 

distance map of the void space was calculated using Euclidean distance transform giving the result shown 

in Figure 4-2b. A threshold was then applied to distance map to create a mask of all voxels greater than a 

distance R from the solid (Figure 4-2d). This mask was then dilated with a spherical structuring element of 

radius R as shown in Figure 4-2c. The choice of R depends on the number of fibers, target porosity, and 

desired volume fraction of binder. This morphological dilation defines the void space, so any voxels 

previously attributed to void but not part of the dilation represent additional solid phase around the fibers, 

and is concentrated in the areas where fibers are overlapping. This process mimics the accumulation of 

binder at the fiber intersections that is observed in microscope images. The resulting image is the final 

image for pore network modeling where fibers and binder are labeled as 0, and void space is labeled as 1. 

A segmented image of the fibrous material is shown in Figure 4-2e, where void space, fibers and binders 

are labeled as 1, 0, and 2, respectively. Although binder is generally microporous, these pores do not 

contribute to the flow due to their small size, and do not contribute to the reaction since they are largely 

starved of reaction, hence the binder is treated as solid in the subsequent network extraction step. The final 

solid structure, including both fibers and binder is shown in Figure 4-2f. 
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Figure 4-2 An example of the steps for creating a random fibrous material including binders. a) Random fibrous 

material generated using PoreSpy’s cylinder generator method b) Distance map of the void space c) A spherical 

structuring element with radius R used for morphological image processing d) Masked image e) Segmented image 

of the dilation result including void (yellow), fibers (blue) and binders (red). f) Final image of the fibrous material 

including fibers and binders. 

4.3.2. Network extraction 

The SNOW algorithm [51] was used for extracting pore networks of the generated fibrous materials. SNOW 

is a pore network extraction method based on watershed segmentation approach with a main benefit of 

reducing network extraction errors for high-porosity materials. During network extraction the void space is 

segmented into pore regions using modified watershed segmentation [51]. The segmented image is then 

mapped to a connected network of pores and throats, where each region corresponds to a pore and the 

connecting face between neighbouring regions corresponds to a throat. In traditional network modeling the 

balance equations are solved on the pores, and this is where chemical reactions would be included since 

reactions are functions of concentration. In this study, however, it was necessary to augment this paradigm 

since the reaction is also a function of mass transfer to the fiber surface [133], which requires knowing the 

local fluid velocity, but this is only known in the throats. To include the both concentration dependent 
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reactions and the mechanism of mass transfer from bulk to the solid-liquid interface, the network geometry 

was modified to include additional nodes positioned at the centroid of original networks’ throats. Defining 

computational nodes on throat locations were previously implemented in other applications such as heat 

transfer [134] and mineral dissolution [135]. More details about mass transfer coefficients and their 

dependence on velocity are explained in Section 4.3.3.3. 

 

The process of adding throat nodes to the network is illustrated in a flow chart shown in Figure 4-3. To 

create the additional nodes in the network model, first new throat nodes were added at the centroids of 

original throats, followed by trimming the original throats. New throat connections were then added to the 

network to connect new throat nodes to their neighbouring pores, which were previously connected by 

original throats. The geometrical properties of the new throat nodes such as diameter were assigned from 

the original throat diameter. As these additional nodes are reactive, their reaction surface area was 

calculated as sum of half of the surface area of their neighbouring pores. 

 

 

Figure 4-3 A flow chart of modifying the geometry of extracted network to accommodate additional nodes for 

PNM. 
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Figure 4-4 Comparison of original extracted network and geometry updated network with additional nodes for a 

random fibrous image. a) Segmented regions in network extraction b) Original network extracted using Snow2 

algorithm in PoreSpy. Only for visualization purposes pores and throats are shown as sphere and wireframes. c) 

Network with updated geometry where additional nodes are located at previous network’s throat center. 

 

Figure 4-4 shows an example of the original network and modified network, which was extracted from the 

fibrous image in Figure 4-2. Note that only for visualization purposes, the network pores and throats are 

shown as spheres and cylinders. The geometry of the pore network is actually modeled using connected 

pyramids, where the intersection of joined pyramids are assumed to be cuboid throats with the length of 1 

voxel as shown in Figure 4-5. A schematic of two pore regions in the original extracted network and their 

corresponding pore network elements are shown in Figure 4-5. These connected regions form a conduit 

which extended from the center of one pore to the center of the neighbouring pore (Figure 4-5b). The 

transport properties of the modified network conduits were defined using the information from the original 

network (such as diffusive and hydraulic size factors) to ensure the geometry modification does not change 
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effective properties (e.g. permeability) of the resulting pore network. More details on defining conduits’ 

transport properties are explained in Section 4.3.3. The developed PNM was implemented using open-

source software PoreSpy [132] and OpenPNM [49]. 

 

 

Figure 4-5 A schematic of conduit regions and their corresponding PNM element. a) Two connected pore regions 

from segmented image of a porous domain. b) Conduit regions include 3D image of the connected pores extending 

from pore i’s centroid to pore k’s centroid. c) Corresponding PNM element of the conduit region in part b from 

original extracted network. Pores and their connecting throat are modeled as pyramids and cuboid. In the updated 

network creating an additional node on throat location (node not shown here) breaks the conduit into two conduits 

of ij and jk. 

4.3.3. Transport Equations 

The transport phenomena in the cathode include advection-diffusion-migration of species, and charge 

transport including reaction kinetics. During the discharge, the reaction at the VRFB positive electrode is 

as follows: 

𝑉𝑂2
+ + 𝑒− + 2𝐻+ → 𝑉𝑂2+ + H2O (4-1) 

where for simplicity 𝑉𝑂2
+ and 𝑉𝑂2+ ions are denoted as 𝑉5+, and 𝑉4+ in the remaining sections. The PNM 

of the porous electrode was developed based on the following assumptions: 1) Steady state condition, and 

2) diffusion coefficients in the electrolyte depend only on the initial electrolyte concentration. Mathematical 

details of each transport phenomena are described in the following sections. 
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4.3.3.1. Stokes Flow 

Electrolyte flow through the porous electrode is described by Steady-state Stokes flow, assuming a single 

phase, Newtonian fluid for the electrolyte [45]. The mass balance for an arbitrary pore i is then defined as 

follows: 

∑ 𝐺ℎ,𝑖𝑗

𝑁𝑖

𝑗=1

(𝑝𝑖 − 𝑝𝑗) = 0, 𝑖 = 1,2, … , 𝑁𝑃 (4-2) 

 

where 𝑝𝑖, and 𝑝𝑗 are pressure values in pore i and j, respectively. 𝐺ℎ,𝑖𝑗 is the hydraulic conductance of the 

conduit 𝑖𝑗 , which includes pore 𝑖 and newly added nodes 𝑗 (located at the throat centroids of originally 

extracted network). Conductance of conduits in the modified network can be found from the conductance 

of conduit elements in the original network (𝐺𝑡𝑟,𝑖𝑘) using resistors-in-series model as schematically shown 

in Figure 4-5c. The general formulation of the resistors-in-series model for a transport mechanism tr in a 

conduit containing pore 𝑖, throat 𝑖𝑘, and pore 𝑘 is as follows: 

1

𝐺𝑡𝑟,𝑖𝑘

=
1

𝑔𝑡𝑟,𝑖
𝑝 +

1

𝑔𝑡𝑟,𝑖𝑘
𝑡 +

1

𝑔𝑡𝑟,𝑘
𝑝  (4-3) 

where 𝑔𝑡𝑟,(𝑖 | 𝑖𝑘 | 𝑘)
𝑝|𝑡

is the conductance of transport ‘tr’ for each element in the conduit. For a flow mass 

transport problem, the hydraulic conductance of pore 𝑖 element can be defined using Hagen–Poiseuille 

model as follows [45]: 

 
𝑔ℎ,𝑖

𝑝
=

𝜋

128𝜇
(
𝑑𝑖

4

𝑙𝑖
) 

 (4-4) 

where 𝑑𝑖 and 𝑙𝑖 are the diameter and length of pore 𝑖. The hydraulic conductance of pore 𝑘 and throat 𝑖𝑘 in 

the conduit can be found in a similar manner as for pore 𝑖 using Eq. (4-4). As throats are defined as the 

intersecting plane between the pyramid pores ((𝑙𝑡 ≈ 0) ≪ 𝑙𝑝) their resistance was assumed to be negligible. 

Therefore, the right-hand side of Eq. (4-3) includes only pore 𝑖 and pore 𝑘. Hagen–Poiseuille model was 

developed for cylindrical elements, but in the extracted network the pore regions have irregular shapes. 

Assuming an intersecting pyramids conduit in originally extracted network, the conductance of each pore 

element can be found based on a correction size factor (𝜆(𝑖 | 𝑘)
ℎ𝑦𝑑

) [48]: 

 

𝜆(𝑖 | 𝑘)
ℎ𝑦𝑑

=
1

∫
𝐼𝑝

∗

(𝐴(𝑖 | 𝑘)(𝑥))2 𝑑𝑥
𝑙𝑖

 
 (4-5) 
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where 𝐼𝑝
∗ is the specific polar moment of inertia and 𝐴(𝑥) is the cross-sectional area of the element. Given 

the pore diameter 𝑑𝑖 and throat diameter 𝑑𝑖𝑗 , 𝜆(𝑖 | 𝑘)
ℎ𝑦𝑑

 will be: 

 

 
𝜆(𝑖 | 𝑘)

ℎ𝑦𝑑
=

1

8
9

𝜋2𝑙𝑖

𝑑𝑖
2 + 𝑑𝑖𝑑𝑖𝑗 + 𝑑𝑖𝑗

2

(𝑑𝑖𝑑𝑖𝑗)
3

 

 (4-6) 

The conductance of each element can then be defined as: 

 𝑔ℎ,(𝑖|𝑘)
𝑝

=
𝜆(𝑖 | 𝑘)

ℎ𝑦𝑑

𝜇(𝑖|𝑘)
  (4-7) 

Now that the conductance of elements in the originally extracted network are defined, the hydraulic 

conductance of conduits in modified network can be found using resistors-in-series model as shown in 

Figure 4-5. The hydraulic conductance of conduit 𝑖𝑗 ( 𝐺ℎ,𝑖𝑗) containing pore 𝑖 and newly added node 𝑗 will 

be equal to 𝑔ℎ,𝑖
𝑝

 . Similarly, the hydraulic conductance of conduit 𝑗𝑘 ( 𝐺ℎ,𝑗𝑘) containing newly added node 

𝑗 and pore 𝑘 will be equal to 𝑔ℎ,𝑘
𝑝

. Assigning conductance values for PNM elements based on the originally 

extracted network ensures that additional nodes do not affect the characteristics of the domain such as 

permeability of the network. 

 

Fluid flow boundary conditions: 

For modeling the fluid flow in porous electrode, a constant inlet flow rate or inlet velocity boundary 

condition was applied at the boundary between the porous electrode and inlet channel. The average velocity 

of the inlet channel in an interdigitated flow model was found based on the total volumetric flow rate 

(𝑄𝑇) and channel geometry [136], [137]: 

𝑣𝑖𝑛 =
𝑄𝑇

𝑁𝑐,𝑖𝑛𝑊𝑐𝐿𝑐
 (4-8) 

where 𝑊𝑐 and 𝐿𝑐 are the width and length of the channel, respectively. 𝑁𝑐,𝑖𝑛 is the number of inlet channels 

in the interdigitated flow field. To accommodate this boundary condition, a fictitious inlet pore was added 

to the network geometry. This fictitious pore was only connected to the pores in the cathode located at the 

interface of porous electrode and inlet channel (inlet pores). A conductance value of infinity was assigned 

to the throats connecting the fictitious pore and inlet pores. Once the flow simulation was solved, the 

fictitious pore was removed from the network. At the boundary between the porous electrode and outlet 

half channel, a constant pressure equal to zero was assigned to the outlet pores. A no-flux boundary 

condition was assumed for other remaining boundaries. 
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4.3.3.2. Species transport 

At the positive half-cell the electrolyte which includes water and ionic species (V5+, V4+, H+, and SO4
2−) 

flows through the porous electrode. The transport of ionic species within the porous electrode includes 

advection, diffusion, and migration. The mass transport of ions except for SO4
2− was modeled using the 

Nernst-Planck equation [45], [107], [108], while the concentration of SO4
2− was calculated based on the 

electroneutrality condition (∑ 𝑧𝑖
𝑛𝑐𝑖

𝑛
𝑛 = 0). The molar flux of species 𝑛 based on the Nernst-Planck 

formulation developed by Agnaou et al. [45] using an upwind discretization scheme is as follows: 

 

∑ [𝐺𝑑,𝑖𝑗
𝑛 + 𝑚𝑎𝑥(𝑞𝑖𝑗 − 𝑚𝑖𝑗

𝑛 , 0)]𝑐𝑖
𝑛

𝑁𝑖

𝑗=1

− ∑ [𝐺𝑑,𝑖𝑗
𝑛 + 𝑚𝑎𝑥(−𝑞𝑖𝑗 + 𝑚𝑖𝑗

𝑛 , 0)]𝑐𝑗
𝑛

𝑁𝑖

𝑗=1
+ 𝑆𝑖

𝑛

= 0  , 𝑖 = 1, 2, … , 𝑁𝑝 

 (4-9) 

where 𝐺𝑑,𝑖𝑗
𝑛  is the diffusive conductance of conduit ij. 𝑞𝑖𝑗 is the electrolyte flow rate at throat ij. 𝑚𝑖𝑗

𝑛  is the 

migration rate of species 𝑛. Migrative and diffusive conductance of conduit ij can be calculated from 

originally extracted network (conduit 𝑖𝑘) using a similar resistors-in-series approach explained in Section 

4.3.3.1. The diffusive conductance of pore 𝑖 element in original network can be defined as follows: 

 
𝑔𝑑,𝑖

𝑝
=

𝐷𝑖,𝑘𝐴𝑖

𝐿𝑖
 

 (4-10) 

where 𝐷i,k is the molecular diffusivity of species 𝑘, 𝐴𝑖 is the cross-sectional area of the pore 𝑖, and 𝐿𝑖 is the 

length of the element. Assuming an intersecting pyramids conduit in originally extracted network, the 

conductance of each pore element can be found based on a correction size factor (𝜆(𝑖 | 𝑘)
𝑑𝑖𝑓𝑓

) defined as follows 

[48]: 

 
𝜆(𝑖 | 𝑘)

𝑑𝑖𝑓𝑓
= 1/ ∫

1

𝐴(𝑖 | 𝑘)(𝑥)
𝑑𝑥

𝑙𝑖

 
 (4-11) 

Given the pore diameter 𝑑𝑖 and throat diameter 𝑑𝑖𝑗 , 𝜆(𝑖 | 𝑘)
𝑑𝑖𝑓𝑓

 will be: 

 

 
𝜆(𝑖 | 𝑘)

𝑑𝑖𝑓𝑓
=

1

𝑙𝑖
𝑑𝑖𝑑𝑖𝑗

 
(4-12) 

 

The corrected diffusive conductance of pore elements can then be found as: 
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𝑔𝑑,(𝑖|𝑘)

𝑝
= 𝐷(𝑖|𝑘)𝜆(𝑖 | 𝑘)

𝑑𝑖𝑓𝑓
 

 (4-13) 

Similar to Section 4.3.3.1, the diffusive conductance of conduit 𝑖𝑗 ( 𝐺𝑑,𝑖𝑗) containing pore 𝑖 and newly added 

node 𝑗 will be equal to 𝑔𝑑,𝑖
𝑝

 . 

 

The volumetric flow rate 𝑞𝑖𝑗 can be calculated as follows: 

𝑞𝑖𝑗 = 𝐺ℎ,𝑖𝑗(𝑝𝑖 − 𝑝𝑗) (4-14) 

 

The migration rate of species 𝑛 can be calculated as follows: 

𝑚𝑖𝑗
𝑛 = 𝐺𝑚,𝑖𝑗

𝑛 (𝜙𝑖 − 𝜙𝑗) (4-15) 

where 𝐺𝑚,𝑖𝑗
𝑛  is the migrative conductance of conduit 𝑖𝑗, found from resistors-in-series model, where the 

migrative conductance of each element (pore/throat) is calculated as follows: 

𝑔𝑚,𝑖
n =

𝑧n𝐹

𝑅𝑇
𝑔𝑑,𝑖 

n  (4-16) 

 

where 𝑧n is the valence of species 𝑛, and 𝑔𝑑,𝑖 
𝑛  is the diffusive conductance of pore element 𝑖, found from 

Eq. (4-11). 

 

The last term in Eq. (4-9) is the reactive source term defined as follows: 

𝑆𝑖
𝑛 =

𝑟𝑎𝑡𝑒 𝑜𝑓 𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛

𝜗 × 𝐹
 (4-17) 

where 𝜗 is species stoichiometric coefficient in reaction (4-1) and 𝐹 is Faraday’s constant. Rate of reaction 

can be defined using Butler-Volmer kinetic model, which will be explained in Section 4.3.3.4. Note that 𝑆𝑖
𝑛 

is non-zero in reactive nodes. 

 

 

Species transport boundary conditions: 

At the inlet pores a constant concentration boundary condition was assigned for transport of species 

(𝑉5+, 𝑉4+, H+). The inlet concentration for each species was defined based on the initial molarity of the 

vanadium electrolyte (𝑀𝑉), sulphuric acid, and state of charge (SOC) as follows: 
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𝑐V5+ = 𝑆𝑂𝐶 × 𝑀𝑉   (4-18) 

𝑐V4+ = (1 − 𝑆𝑂𝐶) × 𝑀𝑉   (4-19) 

𝑐H+ = 𝑀𝑎𝑐𝑖𝑑 − (1 − 𝑆𝑂𝐶) × 𝑀𝑉   (4-20) 

𝑐so42−  was defined based on electroneutrality in the electrolyte solution. 

 

At the outlet pores, an outflow boundary condition was applied, which means the gradient of the species 

concentration is zero [24]. 

4.3.3.3. Mass transfer coefficient 

The electrochemical reaction in the porous electrode takes place at the solid-liquid interface at reactive 

nodes. Therefore, the reaction rate is controlled by the mass transfer of species from the bulk solution to 

solid-liquid interface. The rate of mass transfer to the interface is proportional to the concentration 

difference and the interfacial area [133], and the proportionality is defined as mass transfer coefficient. The 

mass transfer in terms of rate can then be defined as follows: 

𝑅i
n = 𝑘𝑚𝐴(𝐶𝑏

𝑛 − 𝐶𝑠
𝑛) (4-21) 

where 𝑅i
n is the rate of transport of species n at the interface, 𝑘𝑚 is the mass transfer coefficient, 𝐴 is the 

interfacial area, and 𝐶𝑠
𝑛 and 𝐶𝑏

𝑛 are the concentration at the interface and in the bulk solution, respectively. 

The physical meaning of mass transfer coefficient is that it’s the rate constant for transport of species from 

bulk solution to the interface and it has the dimension of velocity [133]. Many different correlations have 

been developed to calculate the mass transfer coefficient depending on the flow and geometry of the system. 

A common form is to define the mass transfer correlation based on dimensionless parameters Sherwood 

(𝑆ℎ) and Reynolds (𝑅𝑒) number as follows [133]: 

𝑆ℎ = 𝑎 × 𝑅𝑒𝑏 , 𝑘𝑚 = 𝑆ℎ × (𝐷/𝑙) (4-22) 

where 𝐷 is the diffusion coefficient of species, 𝑙 is the characteristic length. For fibrous materials, many 

correlations use fiber diameter (𝑑𝑓) as characteristic length and interstitial velocity as the velocity used in 

𝑅𝑒 [138]–[140]. However, those correlations apply to mass transfer at the continuum scale, while the PNM 

approach requires correlations that apply to individual throats. Additionally, depending on the range of 𝑅𝑒 

at relatively low 𝑅𝑒, which is the case for VRFBs some correlations provide a higher estimation error 

outside their range of application [141]. Correlations can be found based on flow over a single cylinder or 

single fiber using experimental methods [140], [142], however, it has been found that those correlations 
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overestimate the mass transport rate because flow around a single fiber differs enough from flow through a 

conduit defined by a constriction between several fibers [141]. Therefore, to determine a suitable local mass 

transfer coefficient for use within the PNM framework, a series of simulations were performed, which 

imitates the experimental steps used to define global correlations. The details of the PNM simulation and 

assumptions are as follows: For a range of inlet flow rate (resulting in a range of global 𝑅𝑒), the Stokes 

flow algorithm followed by advection-diffusion algorithm was applied on the PNM to find the global mass 

transfer coefficient of the domain. It was assumed that the system was under mass transfer control, which 

is equivalent to limiting current conditions in experimentally developed correlations [139]. Therefore, the 

concentration at the solid surface was set to zero. It was confirmed that the bulk concentrations did not 

change significantly from inlet to outlet, as is required by the definition to use Eq.(4-21). The advection-

diffusion algorithm was then applied with a constant inlet concentration at the inlet pores (𝐶𝑖
𝑛 ≈ 𝐶𝑏) of the 

network (left), and outflow boundary condition at the outlet pores (right). Therefore, the advection-diffusion 

algorithms solves for following mass transport equation for V5+ species [143]:  

∑ [𝐺𝑑,𝑖𝑗
𝑛 + 𝑚𝑎𝑥(𝑞𝑖𝑗, 0)]𝑐𝑖

𝑛 − ∑ [𝐺𝑑,𝑖𝑗
𝑛 + 𝑚𝑎𝑥(−𝑞𝑖𝑗, 0)]𝑐𝑗

𝑛
𝑁𝑖

𝑗=1
=

𝑁𝑖

𝑗=1

− 𝑘𝑚_𝑙𝑜𝑐𝑎𝑙𝐴𝑟𝑥𝑛𝑖
(𝑐𝑖

𝑛) 

(4-23) 

where 𝑘𝑚_𝑙𝑜𝑐𝑎𝑙was defined using local 𝑅𝑒 (with characteristic length of 𝑑𝑓) in newly added nodes (reactive 

nodes): 

𝑘𝑚_𝑙𝑜𝑐𝑎𝑙 = 𝛼𝑅𝑒𝛽(𝐷/𝑑𝑓) (4-24) 

where local 𝑅𝑒 was defined based on velocity values at throat nodes. A range of 𝛼 and 𝛽 were defined for 

each simulation. The value of 𝑘𝑚_𝑔𝑙𝑜𝑏𝑎𝑙 at each inlet flow rate was found as: 

𝑘𝑚−𝑔𝑙𝑜𝑏𝑎𝑙 = 𝑡𝑜𝑡𝑎𝑙 𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒/𝐴𝑟𝑥𝑛𝑡𝑜𝑡𝑎𝑙
(𝐶𝑏

𝑛 − 0) (4-25) 

 

Given the fact that 𝑘𝑚−𝑔𝑙𝑜𝑏𝑎𝑙= 𝑆ℎ𝑔𝑙𝑜𝑏𝑎𝑙 × (𝐷/𝑑𝑓) [139] and 𝑅𝑒𝑔𝑙𝑜𝑏𝑎𝑙 =
𝜌𝑣𝑖𝑛

𝜇𝑑𝑓𝜑
, the global correlation for 

𝑆ℎ𝑔𝑙𝑜𝑏𝑎𝑙 vs 𝑅𝑒𝑔𝑙𝑜𝑏𝑎𝑙 was found using least square regression model based on calculated 𝑆ℎ𝑔𝑙𝑜𝑏𝑎𝑙  and 

𝑅𝑒𝑔𝑙𝑜𝑏𝑎𝑙. The resulting global correlations were then compared with existing literatures for flow in fibrous 

materials and flow over single fiber/cylinder [139]–[141]. The final value of local formulation (𝛼 , 𝛽 in 

Eq.(4-24)) was then selected such that their corresponding global correlation matches the existing literature 

trend within an acceptable accuracy. As shown in Figure 4-6, the global correlation is within the range of 

correlations developed for fibrous materials [139], [141]. The corresponding global and local correlations 

are 𝑆ℎ𝑔𝑙𝑜𝑏𝑎𝑙 = 0.825 Reglobal
0.73 and 𝑆ℎ𝑙𝑜𝑐𝑎𝑙 = 1.0 𝑅𝑒𝑙𝑜𝑐𝑎𝑙

0.7 , respectively. 
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Figure 4-6 Plots of Sh vs Re correlations. Correlations for local and global mass transfer coefficient using PNM 

results are shown as solid lines. Correlations from previous works are extrapolated to the range of Re in the plot 

and shown using different markers from following references: circle [140], plus [139], star [139], triangle [141], 

square [144], diamond [144]. 

4.3.3.4. Charge transport 

The flow of electric current in the porous electrode occurs through both the electrolyte phase (ionic current) 

and solid phase (electronic current). Due to the relatively high conductivity of the carbon electrodes, the 

potential loss within the carbon electrode was assumed to be negligible. Therefore, a constant electric 

potential for the solid phase was assumed (∇𝜑𝑠 = 0), which was equal to the applied voltage. In the 

electrolyte phase, the charge conservation around pore 𝑖 assuming electroneutrality (∑ 𝑧𝑛 𝑐𝑛
𝑛 = 0) is as 

follows [28], [45]: 

∑ 𝐺𝑐𝑜𝑛𝑑,𝑖𝑗
𝑖𝑜𝑛𝑖𝑐

𝑁𝑖

𝑗=1

(𝜙𝑖 − 𝜙𝑗 ) = 𝑆𝑖
𝑐ℎ𝑎𝑟𝑔𝑒

= −𝐹 ∑ 𝑧𝑛 [∑ 𝐺𝑖𝑗
𝑛,𝑑𝑖𝑓𝑓

𝑁𝑡ℎ

𝑗=1

𝑐𝑖
𝑛 − ∑ 𝐺𝑖𝑗

𝑛,𝑑𝑖𝑓𝑓
𝑐𝑗

𝑛

𝑁𝑡ℎ

𝑗=1

]

𝑛𝑐

𝑛

+ 𝐼𝐵𝑉 (4-26) 
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where 𝜙𝑖  is the electrolyte potential at pore 𝑖. 𝑆𝑖
𝑐ℎ𝑎𝑟𝑔𝑒

 is the source term or right-hand side (RHS) of the 

equation including electroneutrality source term and the generated current from Butler-Volmer reaction 

kinetics [28]. 𝐼𝐵𝑉 is nonzero at reactive sites. 𝑧𝑖
𝑛 is the valence of species 𝑛. 𝐺𝑐𝑜𝑛𝑑,𝑖𝑗

𝑖𝑜𝑛𝑖𝑐  is the ionic conductance 

of conduit 𝑖𝑗, which can be defined using resistors-in-series model, where ionic conductance of pore 

elements were defined as follows: 

𝑔𝑖𝑜𝑛𝑖𝑐,𝑖
𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑙𝑦𝑡𝑒

=
𝐹2

𝑅𝑇
(

𝐴𝑖

𝐿𝑖
) ∑(𝑧𝑖

𝑛)2 𝐷𝑖
𝑛𝑐𝑖

𝑛

𝑘

 (4-27) 

 

Given the diffusive size factors defined for pyramid pores, ionic conductance of pore elements is corrected 

as follows: 

𝑔𝑖𝑜𝑛𝑖𝑐,𝑖
𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑙𝑦𝑡𝑒

=
𝐹2

𝑅𝑇
𝜆𝑖

𝑑𝑖𝑓𝑓
∑(𝑧𝑖

𝑛)2 𝐷𝑖
𝑛𝑐𝑖

𝑛

𝑘

 (4-28) 

 

The current generated from electrochemical reaction can be defined using Butler-Volmer equation as 

follows [130], [145], [146]: 

𝐼𝑅𝑥𝑛 = 𝑘0𝐴𝑟𝑥𝑛𝑖
𝐹 [𝐶𝑠

V4+
𝑒𝑥𝑝 (

𝛼𝑎𝐹

𝑅𝑇
𝜂𝑐) − 𝐶𝑠

V5+
𝑒𝑥𝑝 (−

𝛼𝑐𝐹

𝑅𝑇
𝜂𝑐)] 

 

(4-29) 

where 𝑘0 is the reaction rate constant, 𝐶𝑠
V4+

 and 𝐶𝑠
𝑉5+

 are the concentration of V4+ and V5+ at the solid-

liquid interface, respectively; 𝛼𝑎 and 𝛼𝑐 are the charge transfer coefficients for the anode and cathode; 𝐹, 

𝑅, and 𝑇 are Faraday’s constant, the universal gas constant, and the temperature, respectively; 𝜂𝑐 is the 

electrode overpotential and assuming a negligible IR loss in the anode (for a half-cell model where anode 

includes hydrogen reaction and is used as a pseudo reference electrode [130]), 𝜂𝑐 can be defined as follows 

[2]: 

𝜂𝑐 = 𝜙𝑠 − 𝜙𝑙 − 𝑉𝑜𝑐 (4-30) 

where 𝜙𝑠, 𝜙𝑙, and 𝑉𝑜𝑐 are solid potential, electrolyte potential and equilibrium/open-circuit voltage, 

respectively.  
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The concentration of active species at the interface can be calculated from their concentration in the bulk 

solution from mass transfer equation defined in Eq. (4-21). Rewriting Eq. (4-21) for reduced and oxidized 

species, we’ll have: 

𝐼𝑅𝑥𝑛 = 𝐹𝑘𝑚𝐴(𝐶𝑠
𝑛 − 𝐶𝑏

𝑛) (4-31) 

 

Combining Eq. (4-29) and Eq. (4-31), the Butler-Volmer kinetics including the mass transfer resistance 

between the bulk solution and interface is defined as follows [130]: 

𝐼𝑅𝑥𝑛 =
𝑘0𝐴𝑟𝑥𝑛𝑖

𝐹

1 +
𝑘0
ℎ𝑚

[𝑒𝑥𝑝 (
𝛼𝑎𝐹
𝑅𝑇

𝜂𝑐) + 𝑒𝑥𝑝 (−
𝛼𝑐𝐹
𝑅𝑇

𝜂𝑐)]
[𝐶𝑏

V4+
𝑒𝑥𝑝 (

𝛼𝑎𝐹

𝑅𝑇
𝜂𝑐)

− 𝐶𝑏
V5+

𝑒𝑥𝑝 (−
𝛼𝑐𝐹

𝑅𝑇
𝜂𝑐)] 

(4-32) 

Substituting Eq. (4-32) into the charge conservation Eq. (4-26) provides the final formula for charge 

conservation as a function of 𝐶𝑏
V4+

, 𝐶𝑏
V5+

, and electrolyte potential 𝜙𝑙. 

 

Charge transport boundary conditions: 

At the electrode-membrane interface, a Dirichlet boundary condition was applied equal to the IR loss in the 

membrane. The value of the potential at the electrode-membrane interface was defined based on the 

generated current and the ohmic resistance of the membrane (𝑅𝑚𝑒𝑚) using Ohm’s law. The generated 

current was calculated as the summation of the current rates (𝐼𝑖,𝐵𝑉) in the pore network. The membrane 

resistance was calculated based on Pouillet’s law [2] as 𝑅𝑚𝑒𝑚 =
𝛿𝑚

𝜎𝑚𝐴𝑚
, where  𝛿𝑚, 𝜎𝑚, and 𝐴𝑚 are 

thickness, conductivity, and area of the membrane. At the remaining pores in the porous electrode an 

electroneutrality diffusive flux source term was applied to the RHS of charge equations. As the electrical 

conductivity of the fibrous material is assumed to be significantly greater than the electrolyte conductivity, 

the transport equations for solid electrode potential were not solved. Rather, a constant distribution of 

potential 𝜙𝑠 equal to applied voltage (𝑉𝑐𝑒𝑙𝑙) was assumed. 

4.3.3.5. Solving equations 

A flow chart of the developed framework for solving Nernst-Plank system of equations is shown in Figure 

4-7. The fluid flow through the porous electrode was described by Stokes flow Eq. (4-2). In the first step of 

numerical solution, the system of linear equations for fluid flow was solved to find the pressure and velocity 

distribution within the pore network. Next, the coupled system of mass and charge transport equations were 

solved using an iterative algorithm shown in Figure 4-7, where the concentration of species and electrolyte 
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potential values were the unknown variables. As the charge transport equation is highly non-linear, the 

iterative algorithm may diverge, if the initial guess of the variable is not close to the actual solution. To 

prevent this issue a relaxation factor 𝜔 was defined, which was adaptively changed at each voltage range 

based on the convergence error [2]. Therefore, at each iteration in the charge conservation Nernst-Planck 

loop, the unknown variables were updated as 𝑋𝑖
𝑖𝑡𝑒𝑟+1 = 𝜔 𝑋𝑖

𝑖𝑡𝑒𝑟+1 + (1 − 𝜔) 𝑋𝑖
𝑖𝑡𝑒𝑟. Once the systems of 

equations were solved at a specified cell voltage, their results were used as input at the next voltage, 

providing a good initial guess and speed for the algorithm. 

 

Figure 4-7 A flow chart of the developed algorithm to solve the Nernst-Plank system of mass and charge 

conservation and create a polarization curve. 
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4.4. Validation 

To validate the modeling framework with experimental data, polarization data for a VRFB half-cell with 

an interdigitated flow field design by Messaggi et al. [130] was used as the reference. The reference 

experimental data were based on a commercial fibrous material SGL 39AA as the cathode electrode. 

However, because a 3D image of the fibrous material was not available, the developed algorithm in Section 

4.3.1.1 was used to digitally generate a fibrous material with properties close to SGL 39AA. Fibrous 

material generation, network extraction and electrochemical performance results are presented in the 

following sections. 

4.4.1. Fibrous material generation and characteristics 

To create fibrous materials an initial range of 𝜑 = [5,15,25] and 𝜃 = [45,90] was defined. The domain 

size for generating random fibrous images was [2000,500,280] voxels with resolution of 1 μm, fiber 

diameter of 8 μm [12].The thickness of the porous electrode was selected based on nominal thickness of 

SGL 39AA (280 μm) [119], [130], [136], assuming that the effect of compression on transport was 

negligible. A key step in the fiber image generation algorithm was to define the number of fibers and the 

radius of structuring element to apply morphological image processing. 

 

It was found that the candidate fibrous materials generated with fiber orientation parameters of 𝜑 = 15 and 

𝜃 = 45, provided a closer match to the known values of permeability. Calculating the pore size distribution 

(PSD) and permeability of the candidate images, the material with properties closest to the SGL 39AA was 

selected for modeling purposes. The selected material had an initial porosity of 0.89 (number of fibers = 

900) and final porosity of 0.6 (radius of structuring element = 25). The selected generated image and its 

PSD are shown in Figure 4-8. The PSD of the generated fibrous material was found by applying a 

porosimetry simulation based on morphological image opening (i.e., using PoreSpy’s porosimetry filter). 

As the PSD of the reference material was not given by Messaggi et al. [130], the PSD of an SGL 39AA 

from Forner-Cuenca et al. [8] was used as a reference for comparison. Assuming minimum and maximum 

differential saturation of 0 and 1 for data from [8], the generated PSD’s differential saturation was 

normalized between 0 to 1 for comparison. As shown in Figure 4-8b, the generated image has a slightly 

smaller average pore size in contrast to the reference data from experimental mercury intrusion porosimetry 

(MIP) [8]. This was expected because porosimetry filter operates on inscribed spheres so only breaches a 

throat opening at the smallest radii of curvature [51]. For example, considering a throat opening with an 

aspect ratio above 1, the capillary pressure value can be found as follows [51]: 
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𝑃𝑐

𝜎
= 2𝐻 =

1

𝑅1
+

1

𝑅2
 (4-33) 

where 𝑃𝑐, 𝜎 are the capillary pressure and surface tension, respectively. 𝑅1 and 𝑅2 are the radii of the throat. 

In a flattened throat 𝑅2 ≠ 𝑅1 and larger value of 𝑅2 leads to a smaller value of 𝑃𝑐. Therefore, flattened 

throats in fibrous materials would be invaded at a lower capillary pressure in MIP in contrast to image-

based method, resulting in a larger pore size in PSD from interpretation of capillary pressure curves. More 

details about the difference between these two methods have been explained in the study by Gostick [51]. 

Permeability calculations of the generated material are explained in next section. 

 

Figure 4-8 a) Generated fibrous material image b) Pore size distribution of the generated fibrous material (red) and 

an SGL 39AA sample (thickness of 320 um, geometric area of 1.7 cm by 1.5 cm) reproduced from [8](blue). 

4.4.2. Pore network extraction and permeability 

Pore network and geometry for the generated fibrous image was created in two steps. First, a pore network 

of the porous domain was extracted (using PoreSpy’s snow2 algorithm). Then, the throat-node framework 

described in Section 4.3.2 was applied on the original extracted network. The resulting pore network is 

shown in Figure 4-9. To characterize the generated material, the permeability of the material was calculated 

using the PNM framework. The permeability in the in-plane and through-plane directions were 5.81 D and 

20.48 D, respectively, which matches with values in references for SGL 39AA within an acceptable 

accuracy [130], [136]. To further confirm the suitability of the generated images and accuracy of the PNM 

permeability, LBM simulations were used to calculate the permeability of the generated image. However, 

due to the computational cost of LBM and the need for the use of higher resolution image for through-plane 

direction for a fibrous material with binder, the in-plane permeability was calculated for a smaller domain 

of [500, 500, 280] voxels, which was cropped from the image. LBM simulation was performed using an 

open-source package MPLBM-UT [147], which is built upon the open-source package Palabos [148]. To 
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apply a single-phase simulation, a constant pressure gradient was defined between the inlet and outlet of 

the domain. D3Q19 lattice was used as descriptor and Bhatnagar-Gross-Krook (BGK) collision model was 

used to define the dynamics of fluid flow. The simulation with a pre-defined maximum iteration steps 

continues until the steady state is reached when the standard deviation of the average energy falls below a 

pre-defined threshold [149]. In-plane permeability of the cropped image from LBM and PNM were 27.1 D 

and 32.66 D, respectively. 

 

Figure 4-9 Pore network of the generated image in Figure 4-8. Only for visualization pores and throats are shown 

as spheres and wireframes. Spheres diameters are scaled as half of pore diameters for better visualizations and are 

colored by pore sizes. Wireframes opacity was reduced to 0.1, as the focus of this figure was pore sizes. 

4.4.3. Electrochemical performance validation 

The developed PNM framework shown in Figure 4-7 was applied to the pore network model of the 

generated image. As the reference experiments were based on a constant flow rate, their corresponding inlet 

flow rate for the modeling electrode domain of half channel-rib-half channel was calculated using Eq. (4-8). 

For a total flow rate of 20 ml/min, channel width of 1 mm and length of 5 cm, number of inlet channels 

as 12.5 [130], the average velocity at inlet channel was found as 𝑣𝑖𝑛 = 5.24 × 10−4 , resulting in PNM 

half-channel inlet flow rate of 𝑄𝑖𝑛 = 𝑣𝑖𝑛𝐴𝑖𝑛 = 1.32 × 10−10 . Therefore, the PNM results at inlet flow 

rates of 6.6 × 10−11 , 1.32 × 10−10, 3.96 × 10−10 m3/s correspond to the reference experiment’s total 

flow rates of 10, 20, and 60 ml/min. The simulations were performed at a SOC of 0.6 with parameters 

given in Table 4-1 to obtain polarization curves. The only fitting parameters were 𝑘0 and 𝜎𝑚𝑒𝑚𝑏𝑟𝑎𝑛𝑒, which 

were found from fitting the model to experimental results. As shown in Figure 4-10, polarization curves 

from the PNM results matches the experimental curves for all three flow rates within an acceptable error 

given the approximate nature of the generated image of the electrode. For visualization purpose, the 

concentration distribution of 𝑉5+ in the PNM at each flow rate is shown in Figure 4-11. As shown in Figure 

4-11, as the flow rate increases, higher concentrations are seen throughout the network, because a higher 
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flow rate supplies the reactive zones with reactive species to replenish the regions, whereas at lower flow 

rates those regions near the membrane and outlet are exhausted. 

 

Figure 4-10 Polarization curves from modeling results (solid lines) and experimental data of an interdigitated flow 

from [130] (dots) at total flow rates of 10 ml/min, 20 ml/min, and 60 ml/min and SOC = 0.6. Note that for modeling 

a half-channel rib and half-channel, the inlet channel flow rates were calculated based on average channel velocity 

corresponding to the experimental data’s flow rate using Eq. (4-8). 
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Figure 4-11 Concentration distribution of 𝑉5+ within pore network at 𝑉𝑐𝑒𝑙𝑙 = 0.7 V for modeling results. Inlet flow 

rates for a half-channel rib and half-channel medium were calculated based on Eq. (4-8) corresponding to total flow 

rates of a) 10 ml/min b) 20 ml/min , c) 60 ml/min in reference experiments from [130]. 
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Table 4-1 Summary of the parameters used in this study 

Parameter Value Units Description source 

𝛿𝑚 125 × 10−6 𝑚 Membrane thickness [130] 

𝜎𝑚 2 S/m Membrane conductivity Fitted 

parameter 

𝑘0 5 × 10−7 𝑚/𝑠 Reaction rate constant Fitted 

parameter 

𝛼𝑐 , 𝛼𝑎 0.5 - Cathodic, Anodic transfer 

coefficient 

[130] 

𝜌 1350 𝑘𝑔/𝑚3 Electrolyte density [130] 

𝜇 0.005 𝑃𝑎. 𝑠 Electrolyte viscosity [130] 

𝐷𝑉4+ 3.9 × 10−10 𝑚2/𝑠 𝑉4+ diffusivity in electrolyte [130], [150] 

𝐷𝑉5+ 3.9 × 10−10 𝑚2/𝑠 𝑉5+ diffusivity in electrolyte [130], [150] 

𝐷𝐻+  9.312 × 10−9 𝑚2/𝑠 𝐻+ diffusivity in electrolyte [130], [150] 

𝐷𝑆𝑂4
2− 1.065 × 10−9 𝑚2/𝑠 𝑆𝑂4

2− diffusivity in electrolyte [150] 

𝑀𝑉 1000 𝑚𝑜𝑙/𝑚3 Vanadium electrolyte molarity [130] 

𝑀𝑎𝑐𝑖𝑑 5000 𝑚𝑜𝑙/𝑚3 Sulphuric acid molarity [130] 

 

     
 

4.4.4. A note on velocity dependence of mass transfer coefficient 

As explained in Section 4.3.3.3, the mass transfer coefficient was assumed to be velocity dependent. To 

confirm the validity of this assumption in the developed PNM, the results are compared with a PNM 

assuming a velocity independent mass transfer coefficient as 𝑘𝑚 = 2𝐷/𝑙 with a characteristic length of 

reactive pore diameter (𝑑𝑝) [29]. Firstly, a histogram of 𝑘𝑚 values using velocity dependent and 

independent assumptions are compared as shown in Figure 4-12. It is obvious that the latter assumption 

overestimates 𝑘𝑚 values. This conclusion was stated in the study by Heijden et al. [29], where they used a 

correction factor for 𝑘𝑚 values at different inlet flow rates to account for the dependence of 𝑘𝑚 to variations 

in velocity. Secondly, the polarization curves for the PNM using both methods are compared. As shown in 

Figure 4-13, a velocity independent 𝑘𝑚 overestimates the performance of the battery assuming that reaction 

is not mass transfer limited. This comparison demonstrates the importance of mass transfer resistance in 

VRFBs, which is a broad field of research and requires further investigations in future works. 
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Figure 4-12 Histograms of mass transfer coefficients at reactive nodes in the PNM for inlet flow rate corresponding 

to 10 ml/min a) Local mass transfer coefficients were defined based on the local correlation found in Section 

4.3.3.3:𝑘𝑚 = (1.0 𝑅𝑒0.7) (
𝐷

𝑑𝑓
). b) Local mass transfer coefficients were defined as velocity-independent in [29]: 

𝑘𝑚 = 2𝐷/𝑙. 

 

Figure 4-13 Comparison of polarization curves of the PNM at inlet flow rate of 6.6 × 10−11 𝑚3/𝑠 (corresponding 

to total flow rate of 10 ml/min in experimental result) using velocity dependent mass transfer coefficient and 

velocity independent mass transfer coefficient. The experimental curve from [130] is shown for comparison. 
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4.5. Results: Multi-layer structures 

As the structure of the fibrous electrode affects the performance of the cell, different structures were 

explored here to examine their performance using the developed PNM framework. The main goal was to 

utilize PNM to study different structures at pore-scale to find an improved design that provided better 

performance and lower operational cost. The results of creating multi-layer structure and their structural-

performance analysis are presented in the following sections. Crucially, the final structure suggested by this 

study can be directly made in the lab using a technique like electrospinning since all the structural details 

are known. 

4.5.1. Creating structures 

The building blocks of multi-layer structures were individually generated fibrous materials which were 

stacked into layers, inspired by the approach of Tucker et al. [121]. Using the framework developed in 

Section 4.3.1.1, for a maximum 𝜑 = 20 and 𝜃 = 90 , three random fibrous materials were generated with 

low, medium, and high porosity values of 0.7, 0.8, and 0.9. Note that the fiber diameter, domain size of 

each layer and channel, land dimensions for their resulting electrode model were chosen to be the same as 

validation model in Section 4.4. Cross sectional views of the generated fibrous materials are shown in 

Figure 4-14a while 3D visualizations are provided in Appendix C. In-plane and through-plane permeability 

of the generated images were calculated using PNM as presented in  

 

Table 4-2. Using the generated materials, 18 multi-layer electrode structures containing different 

combinations of 2 and 3 layers were created, plus 3 single layer structures. A schematic of 2-layer structures 

containing different layers is shown in Figure 4-14b, where the layers with high, medium and low porosity 

are denoted as “H”, “M”, and “L”, respectively. Each multi-layer structure was named based on the order 

of its layers starting from the electrode-channel side (𝑧 = 𝑧𝑚𝑎𝑥) to electrode-membrane side (𝑧 = 0). As 

an example, structure “L-H” in Figure 4-14b contains the layer with porosity of 0.7 near the channel (𝑧 =

560 𝜇𝑚) and the layer with porosity of 0.9 near the membrane (𝑧 = 0). The 3-layer structures were named 

in a similar way as schematically shown in Figure 4-14c. 
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Figure 4-14 a) Cross sectional view of the generated fibrous materials as building blocks of multi-layer structures. 

Each view is extracted from 3D visualization in xz plane at y = 250 voxel. Top) layer with porosity = 0.7 Middle) 

layer with porosity = 0.8 Bottom) layer with porosity = 0.9. b) A schematic of layers orders in each 2-layer structure 

containing different layers c) A schematic of layers orders in each 3-layer structure containing different layers. 
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Table 4-2 Properties of the generated layers 

Layer Porosity In-plane permeability 

(D) 

Through-plane permeability (D) 

Low porosity (“L”) 0.7 5.39 3.79 

Medium porosity (“M”) 0.8 13.89 9.49 

High porosity (“H”) 0.9 45.52 29.23 

    
 

4.5.2. Relative performance of the structures 

The developed PNM framework was applied to each multi-layer structure to compare the performance of 

different structures. The electrochemical performance of the electrodes was compared at a constant inlet 

flow rate of 6.6 × 10−11 𝑚3/𝑠 using similar boundary conditions and membrane properties that were used 

for validation section. Initial comparison was performed on the generated novel multi-layer structures 

containing different layers. Finally, a thorough comparison of all generated structures was performed in 

Section 4.5.5. 

4.5.3. 2-layer structures 

The polarization curves of PNM for 2-layer structures are shown in Figure 4-15a. In general, in a two-layer 

structure, better performance is seen when the layer with higher permeability/porosity is located near the 

membrane. As shown in Figure 4-15a, structures L-M, L-H, M-H show better performance in contrast to 

the structure where the layer with relatively higher permeability is located near the channel (struct M-L, H-

L, H-M). This is because when an interdigitated flow field is used, both in-plane and through-plane 

permeability play a role in fluid flow distribution and mass transfer. When a layer with lower permeability 

is located far from the channel, the fluid follows the paths with least resistance (i.e., of high permeability) 

near the channel while regions near the membrane are deprived of reactant. Therefore, the lower amount of 

flow near the membrane regions leads to lower reaction rate and performance (current/power density), 

accordingly. To compare the results in pore-scale, the 𝑉5+ concentration and fluid flow distribution in struct 

H-L and L-H, where an increase of 57.9% in performance was seen from changing the order of the layers, 

are shown in Figure 4-16. In structure H-L (Figure 4-16a), the region near the membrane has lowest 

concentration values supporting the conclusion that mass transport limitation negatively affected the 

performance. In contrast L-H (Figure 4-16b), the region near the membrane has higher concentration values 

as a result of better fluid flow distribution. The flow rate distributions in Figure 4-16c and d support this 

conclusion. Note that these two structures H-L and L-H have the same porosity and permeability, while 
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providing different microstructures due to the arrangement of their layers. A similar story is seen when M-

L and M-H combinations are used, but the differences in the performance are less extreme. 

 

 

Figure 4-15 Comparison of polarization curves of PNMs at inlet flow rate of 6.6 × 10−11 𝑚3/𝑠 a)The generated 2-

layer structures with different layers b)The generated 3-layer structures with different layers c) All multi-layer 

structures including structures with similar layer and single layer structures. 
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Figure 4-16 Distribution of 𝑉5+ concentration and fluid flow rate within pore network at 𝑉𝑐𝑒𝑙𝑙 = 0.7 V for 2-layer 

structures. For visualization purposes, only pores are shown as spheres (a,b) and throats are shown as wireframes 

(c,d). a) Concentration distribution of 𝑉5+ in Struct H-L. b) Concentration distribution of 𝑉5+ in Struct L-H. c) 

Fluid flow rate distribution in throats in Struct H-L d) Fluid flow rate distribution in throats in Struct L-H. 

4.5.4. 3-layer structures 

In order to more deeply explore the impact of various layers and their ordering, simulations were performed 

with 3 layers as well. The polarization curves of PNM for 3-layer structures are shown in Figure 4-15b. In 

general, in a 3-layer structure, higher performance is seen where layers with higher permeability are located 

near the membrane (struct L-M-H, L-H-M, M-L-H) whereas the opposite order provides a worse 

performance (struct H-M-L, M-H-L, H-L-M). However, the best performance was seen in struct L-M-H, 

where the structure’s porosity and permeability increased through the electrode thickness (z direction) from 

the lowest porosity layer near the channel to highest porosity layer near the membrane. The V5+ 

concentration and fluid flow distribution in struct H-M-L and struct L-M-H, where an increase of 56.7% in 

performance was seen from changing the order of the layers, are shown in Figure 4-17. In struct H-M-L 

(Figure 4-17a), the exhausted region near membrane correspond to a lower flow rate (Figure 4-17e), whereas 

in struct L-M-H those regions have higher flow rate (Figure 4-17f) and concentration (Figure 4-17b). This 

trend is similar to the trend seen in 2-layer structures. Although the 3-layer structure generally provided a 

higher performance in contrast to 2-layer structures, the gain in their performance was found to be on 

average 3.35% in better performing structures (e.g. 4% gain in struct L-H-M in contrast to struct L-H), and 

7.5% in low performing structures (e.g. 10% gain in struct M-L-H in contrast to struct M-L). Due to such 

small gain in the performance, it may be reasonable to select a 2-layer structure instead of a 3-layer structure 

to reduce the cost of additional material and operations. However, it is noteworthy that a 3-layer structure 
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with additional high permeability layer near the membrane can lead to a lower pressure drop within the 

system, thereby reducing the pumping cost (not studied in this section). 

 

Amongst the 3-layer structures with worse performance, placing the highest permeability layer in the 

middle provided a better performance (struct M-H-L). The reason is this layer provides a least resistance 

path for fluid to flow near the third layer (near the membrane) and enhances the positive effect of mass 

transport in those regions. The V5+ concentration and fluid flow distribution in struct M-H-L and H-L-M 

as shown in Figure 4-17 support this conclusion. 

  



108 

 

 

 

Figure 4-17 Distribution of 𝑉5+ concentration (left) and fluid flow rate (right) within pore network at 𝑉𝑐𝑒𝑙𝑙 =

0.7 V for 3-layer structures. For visualization purposes, only pores are shown as spheres (left) and throats are shown 

as wireframes (right). Left) Concentration distribution of 𝑉5+ in a) Struct H-M-L. b) Struct L-M-H. c) Struct H-L-

M. d) Struct M-H-L. Right) Fluid flow rate distribution in throats in e) Struct H-M-L. f) Struct L-M-H. g) Struct H-

L-M. h) Struct M-H-L. 

4.5.5. Comparison with single structures 

In previous sections to rationalize the improvements in limiting current density of novel multi-layer 

structures the microstructure design and transport at pore-scale were examined. For a more comprehensive 

comparison, the developed PNM was applied on single-layer structures as well as stacks of the same 
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structure. The polarization curves for these structures and previous structures from Sections4.5.3 and 4.5.4 

are shown in Figure 4-15c. As shown in Figure 4-15c, the lowest and highest limiting current density belongs 

to the single layer struct H and multi-layer struct L-L-L. However, at a constant inlet flow rate comparison 

purely based on limiting current density includes ambiguity, because the effect of pumping cost is not 

included. For instance, amongst single layer structures the structure with lowest porosity provides the 

highest limiting current density which is expected since it has the highest volumetric surface area, but it is 

the least efficient structure based on the pumping cost as a consequence of higher pressure drop required to 

apply the fixed flow. The pressure drop vs limiting current density for the generated structures is shown in 

Figure 4-18a. It can be seen that the novel multi-layer structures with the arrangement of lower permeability 

layers near the channel are located at the bottom right region of the scatter plot where a desired balance of 

low pressure drop (operational cost) and high current density can be achieved in contrast to other structures, 

which are located at the two ends of high pressure drop or low current density. To quantify this trend, a 

more comprehensive and fair comparison requires normalizing the performance in terms of both limiting 

current density and pressure drop (which is used here as a proxy for pumping cost). In this regard, the ratio 

of 𝑖𝑙𝑖𝑚/∆𝑃 was defined, for which a higher value indicates a rough estimate of a more efficient structure. 

The bar chart of the defined ratio for each generated structure is shown in Figure 4-18b, where each column 

is colored by the limiting current density of the structure. As shown in Figure 4-18b, a multi-layer structure 

in general provides a higher value of this ratio while the best ratio for single layer structures was found in 

the struct H, which is mainly due to a low pressure drop while its current density is the lowest of all cases 

(colored as dark blue). Amongst multi-layer structures the structures with higher permeability layer near 

the channel provided a higher ratio. However, it can be seen from their color (colored as dark and light 

blue) that their high value of the ratio was not as a result of high current density but low pressure drop. 

Therefore, a more desired balance between current density and pressure can be achieved in columns that 

show still relatively high value of the 𝑖𝑙𝑖𝑚/∆𝑃 ratio while providing a relatively high current density 

(colored as orange/red). For example, a wide selection range based on this balance can be found in the 

multilayer structures in Figure 4-18b spanning from M-H-L to L-M-H. It is noteworthy that although the 

defined ratio includes both generated current and pressure loss, more thorough investigation on the pumping 

cost are required to find a balance between the desired target of power and cost, which would be of interest 

for future works. 

 

Another note on the polarization curves is that although in the single structure cases including single and 

multi-layers of the same structure, the structure with lower porosity provided a higher limiting current 

density, this was not the case for multilayer structures that contained different microstructure at each layer. 

For instance, struct H-L and H-M have lower porosity in contrast to struct H-H, while providing a lower 
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limiting current density as shown in Figure 4-15c. This observation supports the importance of pore-scale 

modeling and studying microstructure properties and anisotropy within the electrode in VRFBs. 

 

Figure 4-18 a) Pressure drop vs limiting current density for each generated structure. b) Ratio of 𝑖𝑙𝑖𝑚/∆𝑃 for each 

generated structure. 



111 

 

 

4.6. Conclusion 

In this study, a PNM was developed to study the effects of novel electrode structures on the performance 

of VRFBs. Previous experimental studies showed that an electrode containing multiple layers of the same 

material can enhance the performance of RFB electrodes [120], [121]. To further investigate the effect of 

microstructures on the electrode performance, this study was focused on exploring the idea of multi-layer 

structure, each with different porosity and permeability, using PNM framework. A workflow was defined 

to generate fibrous microstructures with desired structural properties. The extracted network was then 

modified by introducing additional nodes in the center of each throat locations to allow the application of 

velocity dependent of mass transfer coefficients in each network conduit. An iterative algorithm was used 

for solving the Nernst-Plank system of mass and charge transport equations in PNM framework. The 

proposed PNM framework was first validated based on experimental polarization data available in literature 

[130]. Multi-layer structures with 2 and 3 layers were then created from generated images of fibrous 

materials with porosity of 0.7, 0.8, and 0.9 as low, medium and high porosity layers. It was shown that in 

both 2-layer and 3-layer structures, the structure with higher permeable layer near the membrane and lower 

permeable layer near the channel provides highest performance in terms of current density, with an increase 

of around 57% over the cases with an opposite order for the arrangement of the layers. Concentration of 

species and flow rates at the pore-scale were analyzed to rationalize the observed improvement. In high 

performing structures, higher flow rates were seen in the near-membrane regions, providing the reactive 

surface area with sufficient reactive species. These regions were otherwise starved of reactant in least 

performing structures, as flow bypassed the cell via the high permeability layer under the ribs. It was also 

shown that multi-layer cases with different layers can have the same overall porosity while providing a 

different performance due to the difference in their microstructures, which demonstrates the importance of 

studying the microstructures at pore-scale. 

 

Additionally, as the balance between the generated current and pumping cost is essential in operation of 

VRFBs a final comparison was performed on the generated structures based on the ratio of limiting current 

density to the pressure loss. The comparison included the generated structures as well as single and multi-

layer structures of the same material. It was seen that in single layer structures and multi-layer structures of 

the same material, the least efficient structure in terms of current density had the most efficient value in 

terms of pressure loss. However, this trend was not completely straightforward for multi-layer structures 

with different types of layers. For selecting the desired structure and operational conditions it is important 

to analyze both pumping cost and the generated current. However, more detailed comparison of these two 
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parameters is the focus of future works. Results from this study demonstrated the transport behaviour in 

pore-scale and its effect on macroscopic performance of the electrode. 

 

Future research areas can be studying other parameters such as the effect of fiber orientations and 

compression on electrode performance, including pumping cost analysis. The framework could be applied 

on a large dataset of generated images with a wider range of structural properties to further analyze the 

structure-performance relationship and design parameters. Extending the framework for modeling the entire 

battery cell including the counter electrode as well as both charging and discharging would be of interest. 

Another future research could be developing a multi-scale PNM framework to include the transport 

phenomena in the binders materials if present. 
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Chapter 5: A deep learning framework to estimate diffusive 

conductance of conduits in extracted pore networks 

 

5.1. Overview 

Pore network modeling (PNM) based on networks extracted from tomograms is a well-established tool for 

simulating pore-scale transport behavior in porous media. A key element of this approach is the accurate 

determination of pore-to-pore conductance values, which is a complex task that greatly affects the accuracy 

of flow and diffusive mass transport studies. Classic methods of conductance estimation based on analytical 

solutions and shape factors only apply to simple pore geometries, whereas real porous media contain 

irregular-shaped pores. Although direct numerical simulations (DNS) can accurately estimate conductance 

considering pores' real morphology, it has a high computational cost that becomes infeasible for large 

tomograms. The present work remedies this problem using a deep learning (DL) approach, with a specific 

focus on diffusional transport which has received less attention than hydraulic conductance. A 

convolutional neural network (CNN) model was trained to estimate diffusive conductance of PNM elements 

from volumetric images of porous media. The developed framework estimates the diffusive conductance 

by analyzing individual pore-to-pore 3D images isolated from the tomogram to fully capture the topology 

and shapes. A key outcome of the present work is that only images of the pore regions are used as input 

data, avoiding excessive preprocessing time for data preparation. The results of the diffusive conductance 

prediction show good agreement with the test data obtained by DNS method, with 0.94 𝑅2 prediction 

accuracy and a speedup of 500x in prediction runtime. 

5.2. Introduction 

Diffusive transport occurs in a variety of porous media applications such as geological storage of 

radioactive nuclear waste [151], [152], catalyst supports [153], and electrodes [154], [155]. The use of pore-

scale modeling and simulation techniques to understand the structure-performance relationship of porous 

materials is common in engineering design, such as optimizing performance of porous components, 

distribution of catalyst materials, morphology control of undesired deposition [156], and others [157], 

[158]. The two main approaches for pore-scale simulations of transport in porous materials are direct 

numerical simulations (DNS), and pore network modeling (PNM) [52]. DNS methods such as the lattice 

Boltzmann method (LBM) and the finite element method (FEM) have the advantage of probing detailed 

geometrical features up to the resolution limit of the available image [159]. Their accurate predictions come 

at a high computational cost that prohibits application in more complex problems such as multiphysics, 
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coupled nonlinear and transient transport problems, and large samples where there are billions of unknowns 

[13]. This is in addition to challenges related to building accurate FEM computational grids. On the other 

hand, PNM is a viable alternative for these large and complex problems due to its vastly lower 

computational cost [22], [45], [157], [160]–[162]. In PNM the porous medium is abstracted as a connected 

network where wider void regions are defined as pores (nodes) that are connected by narrower constrictions 

referred to as throats (edges). This simplification reduces the numbers of variables in the discrete transport 

equations by orders of magnitude and hence reduces the simulation time concomitantly [13], [21], [35]. 

However, the necessary simplifications to obtain the speed-up decrease the modeling fidelity [163]. The 

accuracy of PNM predictions depends on the precise description of the pore space geometry, which is used 

in the computation of transport conductance values [54]. A connected pore-throat-pore element in the PNM 

is defined as a conduit and the estimation of conduit’s conductance for mass transport has been an active 

research area since the PNM technique was developed [35], [36], [164]–[167]. The conduit conductance 

for a simple cylindrical geometry can be obtained from an analytical solution of the governing transport 

law (i.e. Fick’s law); however, for real pore morphologies the cylindrical approximation loses accuracy. 

Hence, many attempts have been made to adjust the analytical solution by adding correction factors or 

shape factors to account for the complex geometry encountered in extracted networks [163], [166], [168]–

[170]. Most of these efforts have focused on correcting for the deviation of the cross-section from 

circularity, but they neglect the impact of the diverging and converging nature of the cross-section along its 

axis. Changes in the constriction have particularly important effects on the diffusion transport conductance 

[164] which is the focus of the present work. An alternative to analytical methods based on shape factor is 

to use DNS to estimate the diffusive conductance of each individual pore network element [35], [36]. In 

this approach, the transport conductance is back-calculated from the DNS results without any arbitrary 

selection of the pore size and shape information, since the full impact of the conduit geometry is captured 

in the DNS result. Although this increases the PNM accuracy, it is computationally expensive to conduct 

this analysis on every tomogram for which a pore network is extracted. A promising alternative, explored 

herein, is to employ machine learning (ML) algorithms to estimate the conduit's conductance with a 

relatively low computational cost compared to the DNS approach. 

 

Image-based deep learning (DL) methods have proven to be a powerful tool in classification problems such 

as cancer detection and disease diagnosis [59], age prediction [171] where a property of interest is predicted 

based on only image datasets. They can also be used for regression problems, and in the porous media 

literature have been used to predict properties such as porosity, permeability, and pores size 

distribution[172]–[177]. More complex physics-based information has also been obtained. For instance 

Santos et al. who used CNNs to estimate the gas density profiles in nanopores of shale samples [178]. The 
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advantage of using CNNs over using regular neural network models to predict effective properties of porous 

media was established in a previous work [179], which attributed the success to its convolutional 

architecture which explicitly assume that spatially close inputs are semantically related. This assumption is 

an advantage in image data where the features are obviously spatially related. In the present study, a CNN 

framework was developed to extract and learn the spatial features of random irregular-shaped conduit 

images and predict diffusive conductance values. 

 

The prospect of using ML to estimate the conductance of PNM elements has recently attracted attention 

[180]. The general idea is that sub-images of each conduit can be extracted from the full tomogram, by 

performing a watershed segmentation to identify pore regions, then each pair of pores are analyzed to 

predict their conductance. Both Miao et al. [181] and Rabbani et al. [180] trained a model to predict 

hydraulic conductance, such that Darcy flow could be simulated in the resultant PNM. Because they both 

focused on hydraulic conductance, the physics were dominated by the throat constriction, to the extent that 

in both cases the ground truth or training data was generated by using LBM to simulate flow through the 

throat cross-section only, neglecting the effect of the larger pore bodies. Both groups then estimated some 

relevant geometrical parameters about the throat size and/or shape (convex hull convexity and circularity 

[181], and diameter of an inscribed sphere [180]) for training the ML model. In other words, the ML model 

was trained to predict the given conductance values obtained by DNS simulations on the throat cross-

section, from knowledge of only a few geometrical properties of the throat. There are two key limitations 

to this approach. First, viscous flow is highly dependent on the tightest throat constriction (i.e., ~𝑅4 where 

𝑅 is the radius of the conduit), whereas diffusion is less sensitive to this (i.e., ~𝑅2) and thus more impacted 

by the size and shape of the entire conduit. Therefore, obtaining training data based only on transport 

through the throat constriction is insufficient. Second, since the entire conduit is of interest, it becomes 

much less obvious which specific geometrical properties should be extracted and provided to the ML model 

as input. Moreover, this would require extracting multiple metrics using tools that are themselves 

computationally demanding (i.e., fast marching method, skeletonization, local thickness, etc.). It is 

therefore an open question how to best leverage ML to estimate diffusive conductance values for use in 

PNMs. 

 

The proposed workflow in this study is based on training a CNN model to predict the diffusive conductance 

of pore network elements based on only images of neighboring pore region pairs. The presented study 

estimates the diffusive mass transport properties and tackles defining challenge of previous ML-based 

methods by using a non-preprocessed image-based framework. This framework trains a DL model simply 

by providing a voxel image of two connected pore regions, with each region labeled. This is the smallest 
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possible amount of preprocessing that can be done on input data. The proposed framework substantially 

decreases the preprocessing time and resolves the challenge of finding conduits features. The DL model 

can be used to predict and assign physics properties of conduits (diffusive conductance) in pore network 

models of porous media. This approach can be generalized in the future to predict other properties. This 

manuscript is organized as follows. First, the theoretical background and the methodology of the framework 

are explained. Then, the DL data and trained model are described. Finally, the pore network simulation 

results and their comparison with currently available PNM approaches [152], [163], [166] and DNS 

methods are presented and discussed. 

5.3. Theoretical background 

5.3.1. PNM formulation and conduit conductance 

Diffusion of a species in a conduit is described by Fick’s first law: 

 

𝐽𝑛 = − (
𝐷𝑛𝐴

𝐿
) ∆𝐶𝑛, (5-1) 

where 𝐽𝑛 and 𝐶𝑛 are the diffusive mass flux of species 𝑛, and its concentration, respectively. In Eq. (5-1), 

𝐷𝑛 is the diffusion coefficient of species 𝑛 in the solvent (note that this is the diffusion coefficient in an 

open space, not an effective diffusivity), and 𝐴 and 𝐿 are the area and length of the conduit. If the conduit 

is a straight cylinder, 𝐴 and 𝐿 are well defined; however, if the conduit’s shape is irregular and cross-section 

area along its length varies, these become effective values 𝐴𝑒 and 𝐿𝑒, respectively. Specifically, when the 

conduit connecting pores 𝑖 and 𝑗 is irregular shaped, Eq. (5-1) should be amended as follows [152]: 

𝐽𝑒 = −
𝐷𝑛𝐴𝑒∆𝐶𝑖𝑗,𝑛

𝐿𝑒
= −𝐺𝑖𝑗

𝑑𝑖𝑓𝑓
Δ𝐶𝑖𝑗,𝑛 (5-2) 

where 𝐺𝑖𝑗
𝑑𝑖𝑓𝑓

 is the overall diffusive conductance of the conduit connecting pores 𝑖 and 𝑗. Applying this 

expression to each conduit in the network and enforcing mass conservation at every pore 𝑖 yields the 

following system of equations, assuming steady-state: 

∑ 𝐺𝑖𝑗
𝑑𝑖𝑓𝑓

𝑁

𝑗=1

(𝑐𝑖,𝑛 − 𝑐𝑗,𝑛) = 0,   𝑖 = 1,2, … , 𝑘 (5-3) 

where 𝑁 is the total number of pores connected to pore 𝑖 and 𝑘 the total number of pores in the network. 

Modeling Fickian diffusion in a pore network requires solving this system of linear equations (Eq. (5-3)) 

assuming relevant boundary conditions are applied. This results in concentration values in each pore of the 

network. It is apparent that 𝐺𝑖𝑗
𝑑𝑖𝑓𝑓

 values directly affect the accuracy of the simulation, so a network 

extraction tool must be able to reliably determine these values.  
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A conduit is described with the combination of ½ of pore 𝑖, ½ of pore 𝑗, and the throat connecting them. 

Given that a conduit has three elements in series, 𝐺𝑖𝑗
𝑑𝑖𝑓𝑓

 is the cumulative conductance of each element 

which can be defined based on the linear resistor theory for resistors connected in series by: 

𝐺𝑖𝑗
𝑑𝑖𝑓𝑓

= (
1

𝑔𝑖
𝑑𝑖𝑓𝑓

+
1

𝑔𝑖𝑗
𝑑𝑖𝑓𝑓

+
1

𝑔𝑗
𝑑𝑖𝑓𝑓

)

−1

 (5-4) 

where 𝑔(𝑖 | 𝑖𝑗 | 𝑗)
𝑑𝑖𝑓𝑓

 is the conductance of each element (half pore 𝑖/throat 𝑖𝑗/half pore 𝑗) in the conduit. 

 

Figure 5-1 A schematic of different geometries for a pore-throat-pore element as one conduit. a) Simple sphere and 

cylinder geometry. The conduit elongates from the centroid of one pore and includes their connecting throat and half 

of two pores. The corresponding conductance of the conduit is calculated using the linear resistor theory for resistors 

connected in series on its elements (half pore-throat-half pore) from Eq (5-4) [43]. b) Cylindrical tubes for pores and 

throats, referred as geometry-based method. c) An example of a conical frustum and cylinder. The corresponding 

conductance of the conduit is calculated using the series of resistors model with a correction, referred as shape factor 

based method. 

Figure 5-1 shows a pore-throat-pore conduit and different regular shapes that can be assigned to pores. In 

the conventional approach for calculating conductance, each element in the conduit is usually assumed to 

be a cylindrical tube (Figure 5-1b). This arrangement, referred to herein as geometry-based conductance 

model [98], yields:  

𝑔𝑖
𝑑𝑖𝑓𝑓

=
𝜋𝐷

4
(

𝑑𝑖
4

𝑙𝑖
), (5-5) 

where 𝑑𝑖 and 𝑙𝑖 are the diameter and length of the elements. Equation (5-5) applies to pores 𝑖 and 𝑗 and the 

throat 𝑖𝑗. The length 𝑙 of a pore is its radius as shown on Figure 5-1a. Inserting equation (5-5) into Eq. (5-4) 

yields 𝐺𝑖𝑗
𝑑𝑖𝑓𝑓

 values, which can then be used in Eq.(5-3). To determine 𝑔𝑖
𝑑𝑖𝑓𝑓

 from tomograms, it is 

necessary to extract meaningful values of 𝑑𝑖 and 𝑙𝑖 of the pore and throat elements. This is a challenging 
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task in complex 3D media where the void space is highly irregular in shape, and the pores and throats cannot 

be completely distinguished. 

 

As explained in the Introduction, different studies have proposed shape factor correction models to salvage 

the use of the geometrical model for irregular geometries. A more accurate shape factor correction can be 

obtained by accounting for a variable cross-section in a pore/throat [48]. Assuming a diverging conduit of 

connected conical frustums and cylinder, as shown in Figure 5-1c, the shape factor (𝑆(𝑖 | 𝑖𝑗 | 𝑗)
𝑑𝑖𝑓𝑓

) can be 

calculated as: 

𝑆(𝑖 | 𝑖𝑗 | 𝑗)
𝑑𝑖𝑓𝑓

= 1/ ∫
𝑑𝑥

𝐴(𝑖 | 𝑖𝑗 | 𝑗)(𝑥)
  

𝑆𝑖 =
𝑑𝑖𝑑𝑡𝜋 

4𝑙𝑖
, 𝑆𝑗 =

𝑑𝑗𝑑𝑡𝜋

4𝑙𝑗
, 𝑆𝑡 =

𝜋𝑑𝑡
2

4𝑙𝑡
, 

(5-6) 

where the shape factors are multiplied by geometry-based diffusive conductance of each element as 

mentioned above: 

𝑔𝑖_𝑠ℎ𝑎𝑝𝑒_𝑓𝑎𝑐𝑡𝑜𝑟
𝑑𝑖𝑓𝑓

= 𝑆𝑖
𝑑𝑖𝑓𝑓

𝑔𝑖
𝑑𝑖𝑓𝑓

, (5-7) 

In this study, shape factor based conduit conductance values are calculated for comparisons, using Eq. (5-7). 

Despite its advantages over geometry-based method (Eq.(5-5)), the diffusive conductance calculated based 

on the shape factor method still results in erroneous predictions of overall effective diffusivity of the 

network compared to a DNS method using the image. 

5.3.2. Image-based framework 

Instead of attempting to extract accurate values for quantities describing the geometry, it is possible to find 

𝐺𝑖𝑗
𝑑𝑖𝑓𝑓

 using DNS instead. This can be achieved by performing DNS of diffusion on each sub-image 

representing two neighboring pores and calculating 𝐺𝑖𝑗
𝑑𝑖𝑓𝑓

 using Eq.(5-2). This approach would provide 

increased accuracy, but is computationally expensive given that a typical tomogram may require thousands 

of such mini-simulations. So, although this has been demonstrated to be feasible [35] it is not generally 

practiced. 

 

The objective of the proposed workflow is to overcome the issues of estimating the diffusive conductance 

of PNM elements accurately and rapidly. For this purpose, a DL model was trained to predict diffusive 

conductance of pore network elements with only images of the pore-to-pore regions as the input data. The 

bounding box containing a pair of pore-to-pore region is referred as region of interest (ROI). The input 

image data included random irregular-shaped images of the ROIs extracted from segmented regions of 

randomly generated porous media images. The randomness in the shapes of ROIs is because of 
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segmentation on randomly shaped void space of each porous medium. The details of generated images are 

given in section 5.3.3. The ground truth data was calculated by implementing diffusion DNS on the pore-

to-pore images. A CNN model was then built and trained on the image dataset. The trained model was used 

to predict the diffusive conductance of unseen image datasets. The model performance was assessed based 

on prediction accuracy and runtime. Note that the framework was initially implemented for both two-

dimensional (2D) and three-dimensional (3D) images. The final model presented in this study was 

developed based on 3D images. However for visualization purposes, the 2D samples are shown in the 

framework and in the figures in following sections. The workflow in this study is illustrated in Figure 5-2. 

Details of each step in the workflow are presented in the next sections. 
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Figure 5-2 A flow chart of the proposed algorithm. It starts by applying an improved watershed segmentation 

(SNOW algorithm[51]) on binary images of porous media (top left). For each region of interest (ROI) in the 

segmented image (real shapes of pore-throat-pore element) the diffusive transport is simulated using DNS to find 

its diffusive conductance value (top right). Labeled images of these regions are passed to a DL model (Resnet 

50[63]) to extract their features and train on existing images with their DNS conductance as the ground truth data 

(middle). The model performance is then assessed with a non-biased test dataset (bottom). 

 

5.3.3. Preparation of the training dataset and ground truth labels 

To cover a large variety of geometrical shapes, topologies, and geometrical complexities in the training 

data, synthetic images of porous media were generated. For training a DL model, synthetic image 

generation can provide a large number of samples, which is difficult to obtain from a limited number of 

real porous media images. The 3D images of random porous media were generated using PoreSpy’s random 

polydisperse_spheres generator [132]. PoreSpy is an open-source collection of image analysis tools used to 
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extract information from 3D images of porous materials. PoreSpy’s polydisperse_spheres generator module 

creates an image of randomly placed, overlapping spheres with a distribution of radii, and the shape and 

overall distribution of the void/solid phase are varied. The distribution of overlapping spheres’ radii was 

defined using Scipy’s [182] statistical normal distribution function. To include varieties of realizations close 

to real geometries, a wide range of porosities (0.35-0.8) were used to generate the random images. 

 

The generated images are sets of 3D binary images from which a pore network can be extracted. For this 

study, sub-images (ROIs) of the pore-to-pore regions of pore network elements were required. These ROIs 

can be captured from watershed segmentation of images. Image segmentation is the first step towards pore 

network extraction where the binary image of the porous medium is divided into segmented pore regions. 

In this work, a custom marker-based watershed segmentation method (SNOW method [51]) in PoreSpy 

was used to segment the porous media images (Figure 5-3a). Each region in the segmented image 

corresponds to a pore, and the constriction to its neighboring region corresponds to a throat in the pore 

network model (Figure 5-3b bottom). Therefore, the ROI for this study is two neighboring areas in a 

segmented image of a porous medium that corresponds to a pore-throat-pore element (conduit) in the pore 

network model(Figure 5-3b top). 

 

Figure 5-3 Illustration of the watershed segmented image and an ROI for a 2D randomly generated porous medium. 

a) Segmented regions based on watershed method. b) Two neighboring pore regions segmented image (top) and their 

corresponding pore and throat model in a PNM (bottom). c) Pore network connections in the void space. 

The corresponding pore network of the segmented image is illustrated in (Figure 5-3c). The framework 

developed in this study only requires the information of the image before network extraction (i.e., Figure 

5-3a). Therefore, the input images of the framework are ROIs of the segmented samples. For each ROI, 

two connected pore areas were labeled 1 and 2 and the rest of the segmented image was labeled 0 and 
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treated as non-conducting phase. Flipping the labeling of the regions in every ROI did not notably alter the 

predicted conductance of the conduit. 

 

This label-based description of the pairs was found to work as well or better than other different 

preprocessing steps, such as distance transform, in terms of DL model performance. The labeled image of 

pore-throat-pore captures the shapes and irregularities of pore regions and the location of the throat as 

shown in Figure 5-4. Therefore, the converging and diverging parts of the conduit shape are also well 

captured. The labeled ROI images were defined as input data for the DL workflow. The resolution of all 

images was 1 𝑝𝑖𝑥𝑒𝑙−1. Therefore, the framework is independent of the resolution of the images, as the 

diffusive conductance values are calculated in terms of voxels with the dimension of 1/pixel in 2D and 

1/voxel in 3D.  

 

Figure 5-4 A sample input image for the ML algorithm. It includes two connected pore regions extracted from the 

whole medium segmented void space. To remove the effect of label values on the algorithm, solid-phase along with 

the regions other than ROI are labeled as 0. Two connected pore regions in the ROI are labeled as 1, and 2, respectively. 

To improve representativity of the images dataset and remove any bias related to image generation, 

augmentation methods including rotations and flips were used. [59], [183]. 

 

These ROI images were also computational domains for calculating the ground truth data. A diffusion 

problem at the pore-scale over the conduit was defined and solved using DNS (finite difference method) as 

described in Figure 5-5. A square (or cubic for 3D conduits) grid was used to discretize the computational 

geometry. For each ROI, Dirichlet concentration boundary conditions were imposed on the centroids of the 

two pore regions. After solving the resulting linear system of equations, the diffusive conductance was 

computed using in Eq. (5-2) [152] with concentrations averaged over the portions of the domain within the 

two inscribed spheres (or circles for 2D images) (see Figure 5-5 (c)). In the rest of this work, the DNS based 

conductance values are referred as the ‘ground truth’. 
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Figure 5-5 Steps towards the calculation of 2D conduits diffusive conductance using DNS. a) After meshing the 

conduit using a square (hexahedral for 3D conduits) grid, Dirichlet concentration boundary conditions were imposed 

at the pores centroid. b) Concentration color map resulting from the solution of the diffusion problem. c) An illustration 

of the portions of the 2 regions lying within the corresponding inscribed circle (sphere for a 3D conduit). Surface 

(volume for 3D conduits) average concentration over the inscribed circles (spheres in 3D) are used for the calculation 

of conduit’s effective properties (i.e., the diffusive conductance). An inscribed circle is the largest circle that can fit 

into a pore region [51] while having the pore’s centroid as a center. Inscribed circles are obtained during the network 

extraction using PoreSpy [132]. 

5.3.4. Deep learning model 

The building blocks of a simple CNN are stacks of convolutional layers (CL) followed by maxpooling 

layers and a fully connected layer as the last layer to produce the output [58]. A CL extracts the patterns 

and features of an image by applying filters to the image [61]. The CNN architecture in this study was 

developed based on a residual network model Resnet50 [63] that is advantageous in addressing “vanishing 

gradient problem” in conventional deep networks [184]. The vanishing gradient problem is addressed by 

adding bypass connections where parts of the transformed image can pass through deeper layers without 

losing their strength (Figure 5-6 c). The CNN structure in this study is illustrated in Figure 5-6. The 

developed model is a 3D Resnet50 that takes in 3D voxelated images of ROIs as input. However, for 

illustration purpose a 2D image is shown in Figure 5-6.The model starts with a 3D CL with a cubic kernel 

that sweeps on a padded input image to extract features directly from images. The CL is followed by a batch 

normalization layer where the convoluted input image is normalized based on the samples in the same mini-

batch. The resulting image is passed to an activation layer with an activation function of rectified linear unit 

(ReLU) 𝑓(𝑥) = max (0, 𝑥). Downsampling is then applied to the image using a maxpooling layer. The 

remaining building blocks of the network are convolutional and identity blocks. Convolutional and identity 

blocks include a pattern of convolution, batch normalization, and activation layer with bypasses explained 
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above (Figure 5-6 b,c) [63]. After a series of convolutional blocks and identity blocks, the last block of the 

network starts with a pooling layer. The output of this layer is then flattened to be fed into a dense layer. A 

dropout layer at the end was used to prevent the overfitting problem and increase computational efficiency. 

 

 

 

Figure 5-6 The architecture of the CNN model used in this study. a) Resnet model. b) A convolutional block (conv 

blocks are repeatedly used in the Resnet model with different kernel sizes. c) An identity block (identity blocks are 

repeatedly used in the Resnet model), the bypass identity connection allows the input to pass through the cell without 

modifications. 

5.4. Results and discussion 

5.4.1. Training process 

The workflow for training the DL model was developed in Python [185] using TensorFlow [186]. From a 

dataset containing 24,465 images of pore pairs, the training and validation sets were randomly selected in 

a way that 80% of the images were used as training data and 10% of the images were used as validation 
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dataset. To assess the prediction performance of the model for unseen data, the remaining 10% of the images 

were used. The target data was normalized with min-max scaling between [0,1] based on training dataset. 

The loss function for this regression problem was defined as the MSE between the predicted and target 

values of diffusive conductance. This function was selected among other functions including Huber and 

root mean squared error (RMSE). The objective of the optimization process in CNN learning is to minimize 

this loss function as described in Eq.(5-8). 

Loss =
1

𝑛
∑ (𝑌𝑖 − 𝑌́𝑖)

2𝑛
𝑖=1 , (5-8) 

where 𝑛 is the number of data (labeled images of two regions), 𝑌 is the vector of target values and 𝑌́ is the 

vector of predicted values of diffusive conductance. 

The model was fitted in the training process by minimizing the MSE loss function using Adam Optimizer 

with a learning rate of 10−4. The prediction accuracy was defined as R2 (coefficient of determination) 

accuracy which indicates the proportion of variance of target values that were defined by variables in the 

model as following: [47]: 

R2(Y, 𝑌)́ = 1 −
∑ (𝑌𝑖−𝑌́𝑖)2𝑛

𝑖=1

∑ (𝑌𝑖−𝑌̅)2𝑛
𝑖=1

, (5-9) 

where 𝑌̅ is the average of target values calculated as 𝑌̅ =
1

𝑛
∑ 𝑌𝑖

𝑛
𝑖=1 . 

It must be emphasized that training the model requires setting the hyper-parameters of the DL algorithm 

and adapting its architecture to the task. This was done by performing the training several times, adjusting 

one parameter at a time, and assessing the performance and accuracy of the model to find the best values 

for each parameter. Using this process, a batch size of 16 was and a dropout probability of 𝑃 = 0.5 were 

selected as the best values in terms of memory and accuracy efficiency. To increase the memory efficiency 

of the workflow all the input and output files were saved in Hierarchical Data Format (HDF) files [187]. 

The framework was developed on a machine with 2.10GHz Intel Xeon CPU. Model training was 

implemented on a GPU architecture using Nvidia Quadro RTX 8000 graphics card. Each epoch of training 

took approximately 8.2 minutes to run. Training the model took about 13.7 hours. After training, the model 

predicted conductance of 2,447 images of 3D conduit test data in 9.32 seconds with 𝑅2 accuracy of 0.97. 

That is approximately 0.0038 sec to predict each target label. In contrast, predicting the diffusive 

conductance on those conduit images using DNS method takes between 2-10 seconds (average 3.5) 

depending on the size of the image for the test dataset. DNS based runtime increases as the size of each pair 

of image becomes larger. This performance difference can become quite substantial when networks are 

extracted from images containing 1,000’s of conduits. The trained DL model takes in tensors of large 

number of images and can predict the results within seconds. As the number of conduit images increases, 

the computational cost of DL-based prediction does not increase significantly. On the other hand, the DNS-
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based prediction of larger number of images becomes more time consuming. A detailed comparison of 

these two PNM methods is shown in the next sections. 

5.4.1.1. Training and validation loss 

The loss values for training and validation datasets in each epoch of the training are shown in Figure 5-7. 

The decreasing trend in training and validation errors indicates an improvement in the CNN model 

capability to estimate target values as more epochs are completed. The training and validation errors reached 

a plateau of approximately 𝑀𝑆𝐸 = 2.7563 × 10−4 and 𝑀𝑆𝐸 = 3.3711 × 10−4 at 100 epochs, 

respectively. The trend indicates that overfitting or underfitting did not occur when the model was stopped 

at 100 epochs. However, we observed that before epoch 85, the validation loss is lower than the training 

loss. There are two main reasons that can lead to this trend in early stages of the training until reaching an 

optimum point of a good fit (epoch 100). First, because there is a competition between optimization and 

generalization, the optimization tends to update the model to best perform on the training data whereas the 

generalization tends to have a model that performs well on unseen data (test or validation data). At the early 

stages of the training, these two concepts are correlated [188] and the model can be underfit, meaning that 

there is still room for improvement of the model and the network has not captured all important patterns in 

the training data. At the later stages of the training, the generalization stops improving and the model starts 

to overfit meaning that the model is learning the patterns that are more specific to the training data. A good 

fit will be where both optimization and generalization are in balance and the training and testing loss are 

low but not very much different in terms of order of magnitude. This condition of a good fit was reached at 

epoch 100. Second, this may be related to the use of dropout layers to prevent overfitting [188]. During the 

training the dropout layer drops some of output features of the layer so that the optimization focuses on the 

most important patterns in the training data instead of all patterns, thereby allowing the network to 

generalize better (perform better on unseen data). As more epochs are processed, the trained network 

improves and both training and validation loss become closer until they reach a plateau near epoch 100. 
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Figure 5-7 Loss function values for the training and validation dataset for 100 epochs (semi-log scale). 

5.4.2. Prediction 

5.4.2.1. Prediction accuracy 

The ability of the trained model to predict diffusive conductance of unseen data (vs Fickian diffusion 

equation solution obtained by DNS method described in Section 5.3.3) was then assessed. Prediction results 

for unseen data shown in Figure 5-8 indicate a high accuracy of prediction up to R2 = 0.97 . 

 

Figure 5-8 Predicted diffusive conductance vs DNS based diffusive values (ground truth) for 2,447 test images 

tested on the fitted model. 

 

To compare the proposed framework with traditional methods of estimating diffusive conductance, a 

separate larger dataset of 6,163 conduit images were used as the test data. The conduit images were 
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extracted from a new set of 14 randomly generated images. The DL-based prediction results for these 

unseen images are shown in Figure 5-9. 

 

After extracting the conduit images the DL prediction runtime for 6,163 conduits was 13s whereas the DNS 

prediction was 2.5 hrs. The advantage of using DL-based framework to predict the values is more noticeable 

here, as after increasing the number of images from 2,447 (shown in Figure 5-8) to 6,163 (shown in Figure 

5-9) the DL-based prediction runtime does not increase significantly (from 9.32s to 13s), which is about 4 

seconds increase while still remaining in the order of seconds. On the other hand, the DNS-based prediction 

runtime increases significantly (from 1.5 hrs to 2.5 hrs), which is about 1 hour increase in runtime. 

 

For comparison, also shown in Figure 5-9 are the conductance values for the same set of images but 

calculated with the basic geometrical method and shape factor based method both discussed in section 5.3.1. 

The geometry-based conductance values (Eq. (5-5)) and shape factor based methods (Eq. (5-7)) are 

underestimating/overestimating the conduits' conductance resulting in a higher estimation error. The 

accuracy of these methods to estimate diffusive conductance can be even lower in more irregular-shaped 

geometries and heterogeneous media. As shown in Figure 5-9, geometry-based conductance values have a 

large deviation from ground truth values resulting in the lowest estimation accuracy. This demonstrates the 

inaccuracy of conductance values calculated based on simplified geometries. Attempting to correct these 

geometrically computed values using shape factors improves the overall result marginally, as shown in 

Figure 5-9c. Despite some improvement, the shape factor based method still presents a large deviation from 

ground truth data as degrees of irregularities in pore shapes increase. The main reason is shape factor 

methods are only partially successful in that they do not account for the diverging/converging nature of the 

conduits. Conduit features such as diverging/converging section, shape and more complicated features that 

cannot be quantified as a factor such as spatial features were automatically extracted in a CNN framework. 

As shown in Figure 5-9a, the trained DL model estimated conductance values for unseen images of conduits 

with the highest accuracy (𝑅2 = 0.94) in contrast to traditional geometrical and shape factor based methods 

(Figure 5-9). However, there are some points where the predicted conductance is much lower than the DNS 

value (the points along the bottom close to the horizontal axis). To find the reason for the deviation, the 

volumetric image of pore-to-pore regions corresponding to those points were investigated. It was found that 

those regions either contained a connecting throat of one to two voxels or had a slit-like geometry embedded 

into their large neighboring pore. Examples of such ROIs are shown in  

Figure 5-10. These two types of properties are rare in the segmented image dataset and are not a desired 

property for PNM in general. Therefore, these images were because of the original image’s highly 

constricted region, and image segmentation method that could be improved to modify the segmentation. 
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To compare the DL predicted values with shape factor method visually, an example of a randomly generated 

porous sample with the size of 1003 voxels is shown in Figure 5-11. The extracted network model and part 

of the segmented image of the porous sample is shown in Figure 5-11a. The pores are represented as spheres 

(shrink to half of their size) and throats are represented as cylinders with a constant thickness of 5 voxels. 

This scaling of the size was done only for visualization purpose. In other words, the pore network model 

and its geometry model used for calculating the diffusive conductance includes the real values of pore and 

throat sizes. Predicted values of conduit conductances from DL model is shown in Figure 5-11b. Each throat 

is colored by the predicted conductance value, which spans on a range of [0.25,16] for this porous sample. 

The DL prediction accuracy was 𝑅2 = 0.94 while the shape factor method’s prediction accuracy was 𝑅2 =

0.65. Therefore, the DL method predicted the conductance values more accurate than the shape factor 

method. To compare the predicted diffusive conductances in more details, the percent error of estimated 

conductance of each individual conduit was calculated using 𝑝𝑒𝑟𝑐𝑒𝑛𝑡 𝑒𝑟𝑟𝑜𝑟 =

|
𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒−𝐷𝑁𝑆 𝑣𝑎𝑙𝑢𝑒

𝐷𝑁𝑆 𝑣𝑎𝑙𝑢𝑒
| × 100. As a visual comparison, the percent errors of DL conductance and shape 

factor method conductance are shown in Figure 5-11c,d. For better distinction of the difference in the errors, 

only the throats with percent error smaller or equal to 10% were colored in Figure 5-11c,d. The throats with 

percent error higher than 10% were represented by thin green lines in Figure 5-11c,d. As shown in Figure 

5-11c, the minority (15% of all conduits in the network) of the percent error are higher than 10%, whereas 

in Figure 5-11d, the majority (96% of all conduits in the network) of the percent error are higher than 10%. 

This comparison shows the advantage of DL method over the shape factor method to predict the 

conductances of conduits. Images shown in  

Figure 5-10 and Figure 5-11 were visualized in ParaView[189]. 
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Figure 5-9 Predicted diffusive conductance obtained by different methods vs DNS based values for 6,163 test 

images. a) Predicted diffusive conductance using DL model vs ground truth values, 𝑅2 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 0.94. b) 

Geometry-based diffusive conductance vs ground truth values, 𝑅2 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 0.62. c) Shape factor based 

diffusive conductance vs ground truth values, 𝑅2 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 0.71. 

 
 

Figure 5-10 Examples of ROIs (from 6,163 test images) that the trained model predicts their diffusive conductance 

with the least accuracy. These ROIs correspond to the scatter points in Figure 5-9a that are along the bottom close 

to the horizontal axis. 
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Figure 5-11 Pore network visualization of a randomly generated porous sample. a) Part of the segmented image of 

the porous sample with the extracted pore network of the sample’s void space. Each segmented region is colored 

by its index value. b) The pore network throats are colored by predicted diffusive conductance of conduits using 

the DL method. c) The pore network throats are colored by the percent error of DL-based conductance method. 

The throats with higher than 10% error are distinguished with thin green lines. The DL prediction accuracy for 

diffusive conductance of all conduits in the network was 𝑅2 = 0.94. d) The pore network throats are colored by 

the percent error of shape factor-based conductance method. The throats with higher than 10% error are 

distinguished with thin green lines. The shape factor prediction accuracy for diffusive conductance of all conduits 

in the network was 𝑅2 = 0.65.  

5.4.3. Deep learning-based PNM Comparison with DNS on the entire domain 

The accuracy of PNM results using the local diffusive conductance values found from the proposed DL 

framework was assessed with reference to the results from the DNS method on the entire domain. The 

formation factor prediction for 15 randomly generated synthetic porous media calculated using PNM with 

DNS-based conduit conductance, DL-based conduit conductance, PNM with geometry-based conduit 
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conductance, and shape factor based conduit conductance in comparison with the full DNS results on the 

entire images is shown in Figure 5-12. The formation factor was calculated from the effective diffusivity 

of the domain. Applying a Dirichlet boundary condition for inlet and outlet concentration on each domain, 

assuming a diffusion coefficient of 1, effective diffusivity and formation factor were calculated as follows: 

𝐷𝑒𝑓𝑓 =
𝐽𝐴 × 𝐿

∆𝐶𝑛 × 𝐴
, 𝐹 =

1

𝐷𝑒𝑓𝑓
, (5-10) 

where 𝐽𝑨 and 𝐹 are the molar rate of species transport through the domain, and the formation factor of the 

domain, respectively. 

 

The DL-based PNM can estimate the diffusive mass transport behavior in these porous media samples 

within acceptable accuracy while requiring considerably less computational time in contrast to the DNS 

method. After extracting the images of the conduits, the average runtime to estimate the conduit 

conductance of 6,542 image samples of 3D conduits using the DNS method was 3.5 hrs, whereas the 

predictions using the trained DL model was done in 16.5s. 

 

𝑅2 accuracy of each PNM approach to estimate formation factor in contrast to DNS on the entire medium 

for these 15 cases were: -1.17, 0.49, 0.87, and 0.84 for geometry-based conductance model, shape factor 

based model, DNS-based model, and DL-based model, respectively. Assuming a baseline of 0 for 𝑅2 

accuracy of a model that always predicts the average value of a target, a negative 𝑅2 can be analyzed as a 

scenario where the model predicts worse than the baseline. 
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Figure 5-12 A plot of formation factor calculated using PNM vs DNS for 15 images. Blue dots data points are the 

PNM with shape factor based diffusive conductance, red dots data points are the PNM with finite difference-based 

diffusive conductance, yellow dots data points are the PNM with geometrical diffusive conductance, and green plus 

data points are the PNM with our DL-based diffusive conductance. 

 

The comparison shown in Figure 5-12 demonstrates the advantage of DL-based PNM models both in terms 

of time and accuracy. However, the domain size for the 15 presented samples were not large enough to 

capture the significance of DL-based PNM in terms of time in contrast to the finite difference-based PNM 

approach. For this purpose, a separate comparison was applied on randomly generated porous samples of 

the same porosity (0.75) with different sizes. As the size of the samples increases, the advantage of runtime 

saving in DL-based PNM becomes more significant as shown in Figure 5-13. The runtime reported for 

PNM models includes pore network extraction, extraction of conduit pairs, prediction of conductance as 

well as Fickian diffusion simulation. The runtime for network and image extraction increases as the size of 

the domain becomes larger while the runtime for predicting diffusive conductance using DL-based model 

does not increase significantly. Despite the increase of time for extracting the network and conduit images, 

it should be noted that once the network is extracted, the same network can be used for fast simulation of 

transport phenomena and other simulation purposes in the porous sample. 
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Figure 5-13 Runtime to create a PNM and implement a Fickian diffusion transport through the domain using finite 

difference based conduit conductance method (DNS) and DL based method. Each bar indicates the steps applied on 4 

randomly generated porous sample with size of 1003, 2003, 2503, 𝑎𝑛𝑑 4003. These steps include extracting the 

network, preparing images of conduits, predicting the diffusive conductance of conduits, and applying a diffusive 

mass transport throughout the network. 

5.5. Conclusion 

A DL-based framework was developed to estimate diffusive conductance of conduit elements in pore 

network models using only images of pore-to-pore regions as the input data. The proposed framework is 

the first to estimate diffusion conductance rather than hydraulic conductance, and crucially uses only the 

images rather the more complex metrics obtained from images, greatly simplifying and accelerating its end 

use. The capability of the DL model to estimate the conduits’ diffusive conductance was assessed with a 

non-biased test dataset. The test dataset contained a large number of porous media realizations with various 

morphologies, topologies, and geometrical complexities. The accuracy of the DL model to estimate 

diffusive conductance of irregular-shaped conduits was compared with the accuracy of conventional 

methods to calculate conductance values including geometry-based and shape factor based approaches. The 

DL model predicted diffusive conductance of test images within 0.94 𝑅2 accuracy, whereas geometry-

based and shape factor based methods estimated conductance values within 0.62 and 0.71𝑅2 accuracy, 
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respectively. The speedup in predicting diffusive conductance using the DL model compared to computing 

them using DNS was on average 500x. Therefore, the developed framework was both massively faster than 

DNS and much more accurate than geometry-based methods. Ultimately, the predicted formation factor 

and/or effective diffusivity of full extracted networks was much more accurate than using geometry-based 

methods for conductance, leading to more predictive pore network models based on extractions from 

tomograms. The framework was trained on randomly generated sphere pack materials. For other types of 

porous material samples, the trained model can be retrained on a portion of new samples using transfer 

learning and can be used for prediction on the rest of the samples. Retraining the model would also offer a 

reduced training time as the current model’s weights and trainable parameters need only be fine-tuned with 

new samples. The proposed DL framework was included in PoreSpy’s pore network extraction module 

(porespy.network), and they are compatible with OpenPNM’s diffusive conductance models for pore 

network modeling of transport phenomena. The codes of the proposed framework are available online in 

the PMEAL group’s github profile [190]. Future works could be extending the framework for estimating 

hydraulic conductance of conduits. Although the basis of the comparison for prediction accuracy was 

mainly 𝑅2 accuracy, it is recommended to use multiple metrics such as relative errors, RMSE to evaluate 

the prediction accuracy in future works. It would also be interesting to develop a framework to generate a 

wide range of random individual ROI images as an alternative to extracting the ROI regions from porous 

samples. However, this idea requires further investigation to ensure the dataset is a good representative of 

ROI regions in a range of porosity and types of porous samples. 
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Chapter 6: Conclusions and future work 

The overall goal of this thesis was to apply pore network modeling to the study of transport processes in 

porous electrodes, with an emphasis on VRFB electrodes and Zn-air cathodes. This goal required 

addressing several knowledge gaps in the field of pore network modeling since they have not historically 

been applied to these types of multiphysics systems. The resultant pore network framework was the applied 

to unravel the structure-performance relationship of the electrodes to provide insights into the design and 

operation of these systems. A summary of each objective and key findings in this study are explained in the 

next section. 

6.1. Summary and conclusions 

In chapter 3, a PNM framework was developed for electrochemical modeling of the porous catalyst layer 

of Zn-air flow batteries. The focus of the study was to properly capture the liquid-gas interface and 

investigate its role on the performance of the electrode. The model included electrolyte invasion using 

invasion percolation algorithm that mimics a drainage process in a porous medium, which subsequently 

required including dissolution of oxygen, multiphase transport, and electrochemical kinetics into the PNM 

framework. The developed framework was utilized to analyse the effect of electrolyte saturation on the 

extent of liquid-gas interface and electrode performance. It was found that as the invasion of electrolyte 

proceeds, the generated power increases up to a maximum value and decreases afterwards. Such increase 

and decrease trend in the performance matched the changes of the extent of liquid-gas interface, reinforcing 

the hypothesis that the oxygen reduction reaction is predominantly occurring in the regions closest to the 

liquid-gas interface, but not necessarily at the ‘triple phase boundary’ as is generally assumed. In addition, 

the effect of electrolyte invasion on tortuosity of the electrolyte cluster at pore-scale was studied. It was 

found that at relatively low non-wetting phase saturations the electrolyte cluster presented a highly tortuous 

path that hinders the mass transport of produced OH− and may eventually result in precipitation of KOH, 

which is a degradation issue. Existence of highly tortuous path had a more detrimental effect on the 

accumulation of OH− at lower to intermediate saturations and higher current densities. Finally, the 

developed model was used for structure-performance analysis of the catalyst layers based on three pore size 

distributions. It was concluded that a catalyst layer with narrower pore size distribution performs better at 

lower saturations whereas a catalyst layer with wider pore size distribution continues to perform better at 

higher saturations. The developed framework was the first 3D PNM of zinc-air cathode that included all 

the key physics and transport mechanisms. 
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In chapter 4, a PNM framework was developed for modeling of VRFB porous electrodes. The focus of the 

study was structure-performance analysis of novel electrode structures. For this purpose, a workflow was 

defined to generate fibrous materials with pre-defined structural properties. Extracted networks of the 

fibrous materials were then modified with additional throat nodes to include the velocity dependent of mass 

transfer coefficients in the pore network conduits. This modification was crucial, as it was shown that using 

a velocity independent mass transfer coefficient could lead to overestimation of mass transport behaviour. 

The developed framework was used to generate novel multi-layer structures with different porosity and 

permeability. Various 2-layer and 3-layer structures were generated, and their performance were analyzed 

along with pore-scale information, such as distribution of flow and reactive species. PNM results showed 

that when using an interdigitated flow field, placing the layer with higher permeability near the membrane 

and the layer with lower permeability near the flow channels provides a better performance in contrast to 

the opposite order. However, it was shown that the selection of an optimum design purely based on the 

limiting current density is ambiguous, as a desired balance between the limiting current density and pressure 

loss within the electrode is required. The novel multi-layer structures were then compared with structures 

with similar layers in terms of operational parameters including limiting current density and pressure drop. 

It was shown that in general the multi-layer structures with different layers provide a better balance in terms 

of both parameters. This model provides the basis for future investigations into the structure-performance 

relationship of novel electrode structures, including in-silico designs, allowing for much more rapid 

innovation in this area. 

 

Chapter 5 was dedicated to developing a deep learning framework to predict the diffusive mass transport 

conductance of PNM elements more accurately and efficiently. The accuracy of the ML model was 

evaluated with a large test dataset of unseen images with diffusive conductance values from the DNS as 

ground truth data. The deep learning based prediction accuracy was also compared with classic analytical 

methods of estimating diffusive conductance. It was shown that the prediction accuracy for the developed 

framework was higher than classic analytical-based methods while providing a 500x speed up in contrast 

to DNS methods. The developed framework can be used in electrochemical modeling of porous electrodes 

for estimating diffusive and migrative transport properties, and dispersion in PNM, as the same parameter 

exists in those transport phenomena. The developed framework was the first deep learning based method 

to estimate the diffusive conductance of PNM elements based on only images of conduits as input data, 

while previous frameworks were focused on only hydraulic conductance estimation and multiple extracted 

features as input data. 
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The findings presented in this thesis have notable implications for design studies of Zn-air cathodes and 

VRFB electrodes, which are popular technologies for large-scale energy storage projects. The developed 

frameworks can be utilized for other pore-scale applications where multiphase transport and mass transfer 

resistance are important to be captured. Finally, the frameworks in this thesis helped contributions to 

OpenPNM and PoreSpy and expanded the open-source ecosystem. 

6.2. Suggestions for future works 

From the Zn-air study in chapter 3, the followings are recommended: 

• Applying the framework on extracted networks of real images of air cathode catalyst layers, which 

could demonstrate the effect of new structural parameters, such as particle size distribution. 

• Including convection in the mass transport of species. 

• Including mass transfer coefficient in the reaction term. 

• Developing a framework for simultaneous solution of Nernst-Plank equations instead of the 

developed sequential methods to avoid the computational cost of iterative approach. 

• Applying the framework on other devices with liquid-air interface, such as electrolyzers. 

 

From the VRFB study in chapter 4, the followings are recommended: 

• Including pumping cost in evaluating the performance of electrodes. 

• Extending the framework for other structural parameters, such as fiber orientations. 

• Extending the framework for a wider range of generated images for further structure-performance 

analysis. 

• Investigating the range of application of local mass transfer correlation. 

• Extending the framework for modeling the entire battery cell including the counter electrode as 

well as both charging and discharging. 

• Developing a multi-scale framework to include the transport in binder materials if present. 

 

From the deep-learning based study in chapter 5, the followings are recommended: 

• Extending the framework for wider range of porous material types, such as anisotropic fibrous 

materials. 

• Extending the framework for estimating hydraulic conductance values, extending the metrics of 

accuracy to include other types of measurements, such as relative errors. 

• Investigating the possibility of generating individual ROI images by developing an image 

generation framework. 
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Appendices 

Appendix A.  Deriving Mass Partitioning Equation 

In this section deriving the mass partitioning equation for pore network models is explained. For a conduit 

element shown in Figure 3-6, the assumptions for the derivation are: 1) pore 𝑖 and pore 𝑗 are occupied by 

phase 𝛼 and 𝛽, respectively. 2) The interface of phases is in the middle of the conduit’s throat. 3) The 

interface of phases is at thermodynamic equilibrium which can be described by Henry’s law. 

Assuming the diffusive conductance from pore 𝑖 to the interface as 𝐾𝑖 , and from pore 𝑗 to the interface as 

𝐾𝑗, the rate of diffusion can be described as follows: 

Rate of diffusion from pore 𝑖 to the center of throat 𝑖𝑗: 

 
𝑚𝑖𝑗 = 𝐾𝑖(𝑐𝑖 − 𝑐𝑖

∗) 
(A- 1) 

Rate of diffusion from pore 𝑗 to the center of throat 𝑖𝑗: 

 
𝑚𝑗𝑖 = 𝐾𝑗(𝑐𝑗 − 𝑐𝑗

∗) 
(A- 2) 

where the interface concentrations are related with dimensionless Henry’s constant: 𝐻𝑖𝑗 = 𝑐𝑖
∗/𝑐𝑗

∗ or 𝐻𝑗𝑖 =

𝑐𝑗
∗/𝑐𝑖

∗. 

Applying a mass conservation at the interface of phases, the diffusive mass transport rate from pore 𝑖 to the 

interface is equal to the rate of species from the interface to pore 𝑗. By equating Eq. (A- 1) and Eq. (A- 2), 

the concentration at the interface can be found: 

 
𝑐𝑗

∗ =
(𝐾𝑖 𝐾𝑗⁄ )𝑐𝑖 + 𝑐𝑗

(𝐾𝑖 𝐾𝑗⁄ )𝐻𝑖𝑗 + 1
 

(A- 3) 

By substituting Eq. (A- 3)into Eq. (A- 1)and rearranging, the formula for 𝑚𝑖𝑗 can be as follows: 

 

𝑚𝑖𝑗 =
1

1
𝐾𝑖

+
𝐻𝑖𝑗

𝐾𝑗

(𝑐𝑖 − 𝐻𝑖𝑗𝑐𝑗) 
 (A- 4) 

where the values of the diffusive conductance (𝐾𝑖and 𝐾𝑗) can be calculated using a resistor-in-series model. 

Diffusive conductance from pore 𝑖 to the interface: 

 

1

𝐾𝑖
=

1

𝑔𝑖
𝑝 +

0.5

𝑔𝑖𝑗
𝑡  

 (A- 5) 
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Diffusive conductance from pore 𝑗 to the interface: 

 

1

𝐾𝑗
=

1

𝑔𝑗
𝑝 +

0.5

𝑔𝑖𝑗
𝑡  

(A- 6) 

Substituting Eq. (A- 5)and Eq. (A- 6)into Eq. (A- 4) results in the main equation used in this study Eq. 

(3-4). 

  



151 

 

Appendix B. Estimating Pore Size Distribution from 

Micrographs 

Given a 2D image of the CL as shown in Figure B- 1, the gray scale image was binarized to label the void 

and solid phase pixels (Figure B- 1b) using image-processing Fiji software [191]. Next, the local thickness 

of the void space was extracted (Figure B- 1c) using PoreSpy’s local_thickness filter. The local thickness 

of an object is “the diameter of the largest sphere that fits inside the object and contains the point” [192]. 

Finally, the pore size distribution of the sample was extracted (Figure B- 1) using PoreSpy’s metrics class 

and pore_size_distribution method. The CL’s pore size distribution and range of diameters were then used 

as a realistic base distribution and customized for further studies in section 3.4.4. 

 

 

Figure B- 1 Extracting pore sizes from a CL sample. a) SEM image of a sample Zn-air CL. b) 2D Binarized image 

of the CL sample. Void phase and solid phase are white and black, respectively. c) Local thickness in the void space 

of the binarized image. d) Pore sizes distribution extracted from the local thickness image. 
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Appendix C. Generated layers 

 

 

 

Figure C- 1 3D images of the generated fibrous materials as building blocks of multi-layer structures. a) layer 

with porosity = 0.7 b) layer with porosity = 0.8 c) layer with porosity = 0.9. 

 
 


