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Abstract

Given a directed graph, a directed cut is a cut with all arcs oriented in the same
direction, and a directed join is a set of arcs which intersects every directed cut at least
once. Edmonds and Giles [7] conjectured for all weighted directed graphs, the minimum
weight of a directed cut is equal to the maximum size of a packing of directed joins.
Unfortunately, the conjecture is false; a counterexample was first given by Schrijver [13].
However its ”dual” statement, that the minimum weight of a dijoin is equal to the maximum
number of dicuts in a packing, was shown to be true by Luchessi and Younger [11].

Various relaxations of the conjecture have been considered; Woodall’s conjecture re-
mains open, which asks the same question for unweighted directed graphs, and Edmond-
Giles’s conjecture was shown to be true in the special case of source-sink connected directed
graphs. Following these inquries, this thesis explores different relaxations of the Edmond-
Giles’s conjecture.
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Chapter 1

Introduction

1.1 The Edmonds-Giles Conjecture

With combinatorial objects, many instances arise when the minimum of some quantity over
the object serves as an upperbound for the maximum of another quantity. For instance,
this is the relationship displayed by minimum s− t cuts and maximum number of disjoint
s − t paths for undirected graphs. It is natural to ask whether these quantities are the
same, as is the case with s− t cuts and disjoint s− t paths by Menger’s Theorem. In this
thesis, we investigate a combinatorial min-max relation where the equality is not always
satisfied.

Let D = (V,A) be a directed graph (we will call them digraphs for brevity). A cut
induced by ∅ 6= U ( V is the set of arcs δ(U) = {(u, v) ∈ A : u ∈ U, v /∈ U or u /∈ U, v ∈ U}
(if the underlying digraph for the cut is ambiguous, we make the digraph explicit by
δD(U)). A cut δ(U) can be decomposed into δ+(U) = {(u, v) ∈ A : u ∈ U, v /∈ U}, the set
of outgoing arcs, and δ−(U) = {(u, v) ∈ A : u /∈ U, v ∈ U}, the set of incoming arcs.

A directed cut (or a dicut) is a cut induced by ∅ 6= U ( V such that all arcs in the cut
are either outgoing or incoming, i.e. δ(U) = δ+(U) or δ(U) = δ−(U). For a dicut δ(U), we
call U the shore of the dicut. Using the above notation, observe that δ+(U) = δ−(V −U);
we will usually refer to dicuts as δ+(U).

A directed join (or a dijoin) is a set of arcs J such that J intersects every dicut of D
at least once. Dijoins are more intuitive when considered under contractions. A digraph
D is strongly connected if for all pairs of vertices u, v ∈ V , a directed path (or a dipath)
exists from u to v. It can be shown that D is strongly connected if and only if D does not
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Figure 1.1: A weighted digraph and a weighted packing. Dashed arcs have weight 0, and
solid arcs have weight 1. The orange dashed lines show the dicuts of the digraph. The
different coloured arcs indicate the dijoins in the weighted packing. Observe that no dijoin
in the weighted packing can contain the zero weight arc.

contain a dicut. Hence, a dijoin can be considered to be a set of arcs J such that if all arcs
in J are contracted, then D becomes strongly connected.

A weighted directed graph is a pair (D,w) where D = (V,A) is a digraph and w ∈ ZA+ is
an assignment of non-negative integral weights to every arc in D; in the unweighted case,
we simply set w = 1. A w-weighted packing (or simply a weighted packing when the weight
is unambiguous) of k dijoins is a collection of k dijoins such that every arc a in D is present
in at most w(a) dijoins in the collection (see Figure 1.1).

Let us define τ(D,w) (or simply τ when the underlying weighted directed graph is
clear) as the weight of the minimum weight dicut in (D,w), and ν(D,w) as the maximum
size w-weighted packing of dijoins. We say minimum dicut and minimum weight dicut
interchangably.

Dijoins have a non-empty intersection with every dicut, and every a ∈ A can be in w(a)
of the dijoins in the packing. Thus, the size of a w-weighted packing of dijoins is at most
the weight of every dicut, leading to the following remark:

Remark 1.1. For a weighted digraph (D,w), the maximum size of a w-weighted packing
of dijoins is at most the minimum weight of a dicut, i.e. ν(D,w) ≤ τ(D,w).

It was conjectured [7] that the two quantities are the same.

Conjecture 1.2 (Edmonds and Giles). For all weighted digraphs, the maximum size of a
w-weighted packing of dijoins is equal to the minimum weight of a dicut.

Unfortunately the conjecture is false; the counter example in Figure 1.2 was given by
Schrijver [13]. Before diving into the counter example, we introduce some relevant terms.
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A dicut δ(U) is a trivial dicut if U = {v} or U = V − {v} for a vertex v. A path (resp.
cycle) is a set of arcs which form a path (resp. cycle) in the underlying undirected graph.
Given a path P , we partition the arcs into forward arcs and backward arcs. An alternating
path (resp. alternating cycle) is a path (resp. cycle) where for every pair of adjacent arcs
in the path, there is one backward arc and one forward arc.

Figure 1.2: Schrijver’s counterexample of the Edmonds-Giles conjecture. The dashed arcs
are of weight 0, and the solid arcs are of weight 1. The weight of a minimum dicut is 2,
but a packing of 2 dijoins does not exist.

Proposition 1.3. Let (Gs, ws) be Schrijver’s counterexample in Figure 1.2. We have
ν(Gs, ws) = 1 < 2 = τ(Gs, ws).

Proof. We have τ(Gs, ws) = 2; it can be readily checked that no dicut of weight 1 exists
and a trivial dicut of weight 2 exists.

For an eventual contradiction, suppose (Gs, ws) contained a ws-weighted packing of 2
dijoins, labeled J1 and J2. Consider the three disjoint alternating paths of length 3 formed
by the weight 1 arcs, and observe that the internal vertices of these paths are shores of
trivial dicuts. For J1 and J2 to intersect these dicuts, each alternating path must be
partitioned such that either J1 or J2 contains the first and last arc, and the other dijoin
must contains the middle arc. Up to symmetry, there are two such partitions of the weight
1 arcs (see Figure 1.4), and in either case J1 or J2 has an empty intersection with a dicut
in Figure 1.3.
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Figure 1.3: The dicuts of interest in Schrijver’s counterexample.

Figure 1.4: Up to symmetry, the partition of weight 1 arcs shown above are the only
possible candidates for a packing of 2 dijoins. In the left diagram, the set of blue arcs does
not intersect the second cut from Figure 1.3; in the right diagram, the set of red arcs does
not intersect the fourth cut from Figure 1.3.

1.2 Swapping Dicuts with Dijoins

The Edmonds-Giles conjecture was particularly enticing because its ”dual”, derived by
swapping the role of dicuts and dijoins, is true.

Theorem 1.4 (Weighted Lucchesi-Younger). For every weighted digraph, the minimum
weight of a dijoin is equal to the maximum size of a w-weighted packing of dicuts.

In fact, the Weighted Lucchesi-Younger Theorem is implied by the Lucchesi-Younger
Theorem [11], which is its unweighted analogue.

Theorem 1.5 (Lucchesi and Younger). For every directed graph, the minimum cardinality
of a dijoin is equal to the maximum number of disjoint dicuts.

To show the implication, consider the following two-step transformation from a weighted
digraph (D = (V,A), w) to an unweighted digraph:

4



(S1) contract all a ∈ A such that w(a) = 0, and

(S2) for all a = (u, v) ∈ A with w(a) > 1, replace a with a directed path from u to v of
length w(a).

Remark 1.6. Let a be an arc of digraph D. A dicut δ+D(U) is a dicut of D/a, if and only
if, a /∈ δ+D(U).

Let (DS1, wS1) be the weighted digraph after applying (S1), and DS2 the digraph after
applying (S2) to (DS1, wS1). Let us denote A0 be the set of weight 0 arcs of (D,w). If J
is a dijoin of DS1, then J ∪ A0 is a dijoin of D. Hence, (S1) preserves the weight of the
minimum dijoin. It also preserves the maximum size of a weighted packing of dicuts. By
Remark 1.6, the only dicuts of DS1 not in D are precisely the dicuts containing weight 0
arcs. However, such dicuts are not in a weighted packing.

Identical statements can be made of (S2). Suppose a single arc a = (u, v) of weight
w(a) > 0 is replaced by a directed u−v path a1, . . . , aw(a) in (DS1, wS1); let this digraph be
(D′, w′). Observe that if δ+(U) is a dicut of DS1 with a ∈ δ+(U), then (δ+(U)−{a})∪{ai}
for every i ∈ [w(a)] is a dicut of D′. Hence a minimal dijoin J ′ of D′ either contains all arcs
in a1, . . . , aw(a) or none of them, preserving the weight of the minimum dijoin. Additionally,
a k disjoint dicuts in (D′, w′) yields a weighted packing of k dijoins in (DS1, wS1); dicuts
which contains ai now contains a.

The arguments above give a natural mapping from a collection of k disjoint dicuts of
DS2 to a w-weighted packing of k dicuts in (D,w), as well as a minimum cardinality dijoin
of DS2 to a minimum weight dijoin of (D,w).

However, when packing dijoins, there is no known way of easily reducing the Edmonds-
Giles conjecture to an unweighted setting. For arcs a with w(a) > 1 we may add w(a)− 1
copies of a, fixing all weights (including the orignal arc) to be 1. Every dicut shore before
the transformation is still a dicut shore, and no new shores are introduced by adding arcs.
In addition, the weight of the dicut for every shore remains the same.

Remark 1.7. When packing dijoins in weighted digraphs, we may assume that w ∈ {0, 1}A.

Handling weight 0 arcs are more elusive. The obvious first attempt is to delete such
arcs, which would preserve the weight of every dicut which existed prior to the deletion.
Unfortunately deleting an arc may introduce new dicuts with weights less than τ (see
Figure 1.5), which certifies that a w-weighted packing of size τ does not exist.
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1 0

2

1

Figure 1.5: Deleting a weight 0 arc may introduce new dicuts. The right weighted digraph
is produced by deleting the weight 0 arc of the left weighted digraph (arcs are labeled by
their weights). The cut indicated by the dashed orange circle is not a dicut in the left
weighted digraph, but is a dicut in the right weighted digraph. Furthermore, the value of
τ of the right weighted digraph is less than the value of τ of the left weighted digraph.

1.3 Previous Relaxations

We say that a weighted digraph (D,w) packs if τ(D,w) = ν(D,w). What properties must
(D,w) satisfy in order for it to pack? As previously mentioned, unlike for the Weighted
Lucchesi-Younger Theorem, we do not know whether the Edmonds-Giles conjecture is
equivalent to its unweighted version. Woodall [19] conjectured that for every digraph,
(D, 1) packs. Indeed, Edmonds-Giles conjecture is false, and Woodall’s conjecture is open.

Conjecture 1.8 (Woodall). For every digraph, the minimum cardinality of a dicut is equal
to the maximum number of disjoint dijoins.

Figure 1.6: A source-sink connected digraph.

Dropping the weights is simply one of the ways to relax the Edmonds-Giles conjecture.
In fact, a known instance of when the Edmonds-Giles conjecture is true are for source-sink
connected digraphs [14, 8]. A weighted digraph is source-sink connected if there exists a
directed path from every source to every sink (see Figure 1.3).

Theorem 1.9. If D is a source-sink connected digraph, then (D,w) packs for every w ∈
ZA+.
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1.4 Outline of the Thesis

The purpose of this thesis is to explore the Edmonds-Giles conjecture and its various
relaxations.

In Chapter 2, we take a look at a fractional packing of dijoins, which relaxes the
Edmonds-Giles conjecture by allowing an assignment of fractional values to dijoins in a
packing. We introduce combinatorial objects called clutters, which is of interest as the
set of dijoins of a digraph forms a clutter. An unpublished conjecture by Seymour ([16],
Section 79.3e) about fractional packings for ideal clutters is given, and a natural relaxation
of the conjecture is proven for dijoins.

Chapter 3 focuses on finding a weighted packing of dijoins of size k < τ . It is an open
question whether there exists τ ′ such that every weighted digraph (D,w) with τ(D,w) ≥ τ ′

has a weighted packing of 3 dijoins. We show that if a weighted digraph has bounded
packing size, then the weighted digraph is sparse. Furthermore, the notion of ε-balanced
digraphs is introduced, and we find a weighted packing of dijoins of size dependent on ε
and τ .

Chapter 4 is dedicated to posing a slightly different question to whether a weighted
digraph packs. A new object over digraphs called a kernel is introduced; the existence of a
kernel for a weighted digraph implies that the weighted digraph packs. We give examples
of kernels in specific instances.

In Chapter 5, we conclude by reiterating open problems in the field of packing dijoins,
and stating natural extentions to the thesis.

7



Chapter 2

Fractional Packing of Dijoins

In this chapter, we look at fractional packings of dijoins. We introduce combinatorial
objects called clutters, and packing and covering problems on clutters which generalize
packing dijoins. We also introduce the dyadic conjecture by Seymour, and prove a natural
relaxation of the conjecture for a fractional packing of dijoins.

For this thesis, we denote by Z+ as the set of non-negative integers; by [n], we mean
{1, 2, . . . , n}. All vectors are column vectors.

2.1 A Fractional Packing Always Exists

2.1.1 Clutters

Let V be a finite set of elements. A clutter C is a family of subsets over the ground set V
such that no set in C contains another set in C. A cover of a clutter C over a ground set
V is a subset B ⊆ V such that B has a non-empty intersection with all memebers in C.

Various clutters which arise from combinatorial objects have been studied. For di-
graphs, some examples are the family of minimal s−t directed paths, the family of minimal
s − t cuts (by which we mean δ+(U) where s ∈ U, t /∈ U), as well as the family of dijoins
and dicuts. Given an undirected graph G = (V,E) with T ⊆ V where |T | is even, a T -join
is J ⊆ E such that the set of vertices in (V, J) with odd degree is exactly T ; a T -cut is
a cut which separates T into two sets of odd size. For undirected graphs, the family of
minimal T -joins and T -cuts are clutters.

8



2.1.2 Linear and Integer Programs

A rational system Mx ≤ b is totally dual integral (TDI) if for every integral vector w
such that max

{
wTx : Mx ≤ b

}
exists, its dual min

{
bTy : MTy = w, y ≥ 0

}
has an integral

optimal solution.

A polyhedron P is an integral polyhedron if every minimal face of P contains an integral
point. For a polyhedron P = {x : Mx ≤ b} to be integral, it is a necessary condition that
max

{
wTx : x ∈ P

}
has an optimal integral value for every integral w such that the linear

program admits an optimal solution. Interestingly, it is also a sufficient condition; having
an optimal integral value for all integral weights for which the program admits an optimal
solution guarantees that P is an integral polyhedron ([4], see Theorem 4.1). The following
theorem is a consequence of this fact.

Theorem 2.1 ([4], Theorem 4.26). If Mx ≤ b is TDI and b is integral, then {x : Mx ≤ b}
is an integral polyhedron.

For a clutter C over a ground set V , let M(C) be a |C| × |V | matrix where the rows are
characteristic vectors of C ∈ C. Consider the following primal-dual pair of linear programs
where w ∈ ZV+.

τ ∗(C, w) = min
{
wTx : M(C)x ≥ 1, x ≥ 0

}
(PC)

ν∗(C, w) = max
{

1Ty : M(C)Ty ≤ w, y ≥ 0
}

(DC)

Let (IPC) denote the program derived by adding integrality constraints to (PC), and
(IDC) the integer program derived from (DC). Additionally, let τ(C, w) denote the optimal
value of (IPC) and ν(C, w) denote the optimal value of (IDC).

The optimal solution x̄ of (IPC) describes a subset of V such that it contains at least
one element from each member of C, i.e. a minimum weight cover. Likewise, the optimal
solution ȳ of (IPC) describes a collection of members in C such that v ∈ V is present in at
most w(v) members, i.e. a maximum size weighted packing of members of C. An optimal
solution to (DC) is called a fractional packing of the members of the clutter.

A clutter C is ideal if the polyhedron {x : M(C)x ≥ 1, x ≥ 0} is an integral polyhedron.
Equivalently, it is ideal if for all integral weights such that (PC) has an optimal solution,
it has an integral optimal solution. The clutter has the max-flow min-cut (or MFMC for
short) property if the system M(C)x ≥ 1, x ≥ 0 is TDI. By Theorem 2.1, we have the
following remark.

9



Remark 2.2. If a clutter has the MFMC property, then it is ideal.

The converse does not hold as shown by the clutter

Q6 = {{1, 2, 4}, {1, 3, 5}, {2, 3, 6}, {4, 5, 6}}

over the ground set [6]. Observe that ν(Q6, 1) = 1 as no two members in Q6 are disjoint,
while τ(Q6, 1) = 2 as no single element is contained in all members of Q6. However, Q6 is
ideal [10].

Remark 2.3. The clutter Q6 is ideal, but does not have the MFMC property.

2.1.3 Blockers

For a clutter C, the blocker of C (denoted b(C)) is the clutter of minimal covers of C. A
clutter and its blocker form a natural pair, as Edmonds and Fulkerson proved that a blocker
of a blocker of a clutter is the clutter itself.

Proposition 2.4 ([5], Theorem 1.15). For a clutter C, b(b(C)) = C.

Given a clutter C, we say that C and b(C) form a blocking pair. In fact, Lehman showed
that idealness is a property of a blocking pair.

Proposition 2.5 ([5], Theorem 1.17). A clutter C is ideal if and only if b(C) is ideal.

As expected, many of the examples of clutters previously given are blocking pairs. For
instance, s− t directed paths and s− t cuts, T -joins and T -cuts, and of course, dijoins and
dicuts.

2.1.4 Rational Fractional Packings of Dijoins

For a digraph G, let J (G) be the clutter of dijoins, and C(G) the clutter of dicuts of G.
We first prove that J (G) is ideal.

Proposition 2.6. For all digraphs, the clutter of dijoins is ideal.

Proof. By the weighted Luchessi-Younger theorem (Theorem 1.4), the system M(C(G))x ≥
1, x ≥ 0 is TDI, and therefore C(G) has the MFMC property. The MFMC property implies
idealness of C(G) (Remark 2.2). The clutters J (G) and C(G) form a blocking pair; by
Proposition 2.5 idealness is a mutual property of a blocking pair, thus J (G) is ideal.
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Corollary 2.7. For every weighted digraph (G,w), τ(G,w) = ν∗(G,w); the weight of the
minimum dicut is equal to the optimal w-weighted fractional packing of dijoins.

By Cramer’s Rule, we know a fractional solution to (DJ (G)) exists which is rational.
What more can we say about the dual solution?

2.2 Fractional Packings with Structured Denomina-

tors

For 0 < k ∈ Z+, a fractional packing y is said to be 1
k
-integral if y = 1

k
y where y is integral.

The following remark states a more intuitive way of thinking about fractional packings
that are rational; we find a weighted packing where the weights are scaled accordingly.

Remark 2.8. For a weight w, an optimal 1
k
-integral w-weighted packing exists, if and only

if, an optimal kw-weighted packing exists.

2.2.1 The Dyadic Conjecture

Recall that the clutter Q6 = {{1, 2, 4}, {1, 3, 5}, {2, 3, 6}, {4, 5, 6}} is an ideal clutter that
does not possess the MFMC property; ν(Q6, 1) = 1 < 2 = τ(Q6, 1). However, (DQ6) with
w = 1 has a 1

2
-integral solution, namely the vector with all 1

2
entries (every element is

present in exactly two members in Q6). In fact, the statement generalizes to all w ∈ Z [6]
+ .

Remark 2.9 ([9], Corollary 1.4). For all w ∈ Z [6]
+ , (DQ6) has a 1

2
-integral optimal solution.

However, not every ideal clutter admits an optimal 1
2
-integral dual solution. The fol-

lowing counterexample was given by Seymour [17].

Let G = (V,E) be a graph. The clutter of T -joins of G is ideal; its blocker, the clutter
of T -cuts, was shown to be ideal by Edmonds and Johnson ([5], Theorem 2.1). Let G be
the Petersen graph with a vertex replaced with a triangle; the three edges incident to the
original vertex are incident to distinct vertices of the triangle.

Observe that G is connected, bridgeless, 3-regular and non 3-edge-colourable with an
even number of edges and vertices. Let T be the clutter of V -joins of G. Construct a new
graph H = (VH , EH) by replacing every edge of G with a path of length two, introducing
a ”middle” vertex with degree 2 for each edge. Then |VH | is even. Seymour showed that
H does not have an optimal 1

2
-integral packing of V -joins.
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Proposition 2.10 ([17], Counterexample 4.3). The graph H with w = 1 does not admit
an optimal 1

2
-integral packing of VH-joins.

Proof. By assumption, G is connected and bridgeless, thus H is as well; a minimum VH-cut
has at least 2 edges. Additionally, H has vertices of degree two, thus a minimum VH-cut
has exactly 2 edges.

It suffices to show that with w = 2, a w-weighted packing of VH-joins of size 2τ(T , 1) = 4
does not exist (Remark 2.8). For an eventual contradiction, suppose J1, J2, J3, J4 is such
a packing. Since w = 2, and every vertex in V ∩ VH is incident to a a vertex of degree 2
in VH , each edge of H is contained in two of the Jis. Let Ci be the symmetric difference
of Ji and J4 for i ∈ [3]. Observe that each Ci is an edge-disjoint union of cycles, and each
path of length 2 which replaced edges in G to form H belong to two of the Cis. Let C ′i be
the corresponding edges in G of Ci, and consider their complement C ′i. Every edge of G
belonging to two of the Cis mean Ci are edge disjoint. Since Ci are edge-disjoint cycles,
and the graph is 3-regular, the Ci form edge-disjoint V -joins. However, the Ci form a valid
3-edge colouring of G, which is a contradiction.

Seymour also showed that the above example does not admit an optimal 1
3
-integral

packing, but noted that an optimal 1
4
-integral solution exists. Thus, he conjectured the

following:

Conjecture 2.11. For every clutter of T -joins, there exists an optimal fractional packing
that is 1

4
-integral.

Furthermore, Seymour made the following conjecture ([16], see Section 79.3e) for all
ideal clutters. A fractional packing is dyadic if it is 1

2k
-integral for some k ∈ Z+.

Conjecture 2.12 (Dyadic Conjecture). Every ideal clutter has an optimal fractional pack-
ing that is dyadic.

Recently, some evidence has been shown in support of the conjecture. Abdi, Cornuéjols
and Palion [2] have shown that all graphs and edge weights admit a dyadic packing of T -
joins. Additionally, Abdi, Cornuéjols, Guenin and Tunçel [1] showed that for an ideal
clutter C and weights w such that τ(C, w) ≥ 2, a dyadic packing of value 2 always exists;
namely, this shows the dyadic conjecture when τ(C, w) = 2. In fact, they showed that the
result holds for a more general class of clutters called clean clutters.
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2.2.2 Denominators in an Optimal Fractional Packing

The packing and covering linear programs for dijoins is reiterated for convenience below.
Recall that by J (G) being ideal, τ ∗(G,w) = τ(G,w),

min wTx
s.t.

∑
(xa : a ∈ J) ≥ 1 ∀J ∈ J (G)

xa ≥ 0 ∀a ∈ A
(PG,w)

max 1Ty
s.t.

∑
(yJ : J ∈ J (G), a ∈ J) ≤ w(a) ∀a ∈ A

yJ ≥ 0 ∀J ∈ J (G)
(DG,w)

We prove a natural generalization of the dyadic conjecture for the clutter of dijoins. A
[n]-adic rational for n ∈ Z+, n > 0 is a rational number of the form a

b
where a, b ∈ Z, b > 0

and b is a product of primes in [n]. A vector is a [n]-adic vector if all its entries are [n]-adic
rationals. For convenience, we define [1]-adic numbers to be the integers.

We prove the following theorem:

Theorem 2.13. For a weighted digraph (G,w), an optimal [τ(G,w)]-adic fractional pack-
ing of dijoins exist.

Note that when τ = 2, then a [τ ]-adic packing is a dyadic packing.

For a weighted digraph (G,w), let Aw>0 = {a ∈ A : w(a) > 0}. For the remainder of
this chapter, we call (G,w) a counterexample if (G,w) does not admit a [τ(G,w)]-adic
fractional packing of dijoins. We call (G,w) a minimal counterexample if

1. (G,w) is a counterexample,

2. G minimizes |V | among such digraphs, and subject to that,

3. |Aw>0| is minimized, and subject to that,

4. the sum of the weights, 1Tw, is minimized.

We first prove that minimal counterexamples adhere to a useful structure. Note that
if the minimum weight of a dicut is 1, then the set of weight 1 arcs is a dijoin, which is a
[1]-adic packing; every minimal counterexample has τ ≥ 2.
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Lemma 2.14. If (G,w) is a minimal counterexample with τ(G,w) ≥ 2, then every a ∈
Aw>0 is contained in a minimum dicut.

Proof. Clearly an arc a exists with positive weight in order for τ(G,w) ≥ 2. For an
eventual contradiction, suppose a′ ∈ A is an arc where w(a′) > 0 and a′ does not belong
to a minimum dicut of G. Consider a new cost w′ where

w′(a) =

{
w(a) a ∈ A− {a′}
w(a)− 1 a = a′.

By assumption every dicut in (G,w) containing a′ has value at least τ(G,w) + 1. The
weights w and w′ agree on every arc except a′, where w′a′ = wa′ − 1; every dicut containing
a′ has weight at least τ(G,w) in (G,w′). Thus, τ(G,w) = τ(G,w′).

Since 1Tw′ < 1Tw, by minimality an optimal [τ(G,w)]-adic fractional solution y of
(DG,w′) exists. This y is also a feasible solution to (DG,w) with value τ(G,w), which
contradicts (G,w) being a minimal counterexample.

For the next lemma, we require the following remark.

Remark 2.15. [[3], Remark 4.1] Let δ+(U) and δ+(W ) be dicuts of a digraph G = (V,A).
The following statements hold:

1. if U ∪W 6= V , δ+(U ∪W ) is a dicut of G, and

2. if U ∩W 6= ∅, δ+(U ∩W ) is a dicut of G.

For U ⊆ V , let G/U denote the weighted digraph where the vertices in U are contracted
to a single vertex vU , the arcs (u, v) ∈ δ+(U), (v, u) ∈ δ−(U) are replaced with arcs (vU , v)
and (v, vU) respectively. Let w/U denote the weight of arcs in G/U where the newly added
arcs (of the form (vU , v) or (v, vU)) have the same weight as the arcs which were replaced.
We will also use the shorthand (G,w)/U = (G/U,w/U). The next two lemmas address a
counterexample which minimizes the number of vertices, which is not necessarily a minimal
counterexample.

Lemma 2.16. In a counterexample (G,w) minimizing |V |, every minimum dicut is a
trivial dicut.
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Proof. For an eventual contradiction, suppose a counterexample (G,w) minimizing |V |
has a non-trivial minimum dicut δ+G(U). Let (G1 = (V1, A1), w1) = (G,w)/U and (G2 =
(V2, A2), w2) = (G,w)/(V − U). A dicut of Gi is also a dicut of G with the same weight,
thus minimum dicuts of Gi have weight τ(G,w).

Note that |V1|, |V2| < |V |; by minimality (Gi, wi) has an optimal [τ(G,w)]-adic packing
yi where 1Tyi = τ(G,w).

Let Ji be a minimal dijoin of Gi. The dicut x where

xa =

{
1 a ∈ δ+(U)

0 Otherwise

is a minimum dicut of Gi. By Complementary Slackness, for a ∈ δ+(U),
∑

(yiJi : a ∈ Ji) =
1. In addition, if yiJi > 0, then we have

∑
(xa : a ∈ Ji) = 1, i.e. if yiJi is positive,

|Ji ∩ δ+(U)| = 1. (2.17)

A pair (J1, J2) is valid if J1 ∩ δ+(U) = J2 ∩ δ+(U). By (2.17) if (J1, J2) are valid, then
they share a unique arc in δ+(U). We first prove that if (J1, J2) are valid then J1 ∪ J2 is a
dijoin of G.

Claim 1. If (J1, J2) is valid, then J1 ∪ J2 is a dijoin of G.

Proof For an eventual contradiction, suppose J = J1 ∪J2 is not a dijoin of G; there exists
a dicut δ+(W ), W ⊆ V where J ∩ δ+(W ) = ∅. Let a = (u1, u2) ∈ J1 ∩ J2, the unique arc
in the intersection. Since a /∈ δ+(W ), either {u1, u2} ⊆ W or {u1, u2} ⊆ V −W .

If W ⊆ U or W ⊆ V − U , δ+(W ) is a dicut of G1 or G2 respectively. In either case,
Ji ∩ δ+(W ) = ∅, contradicting that Ji is a dijoin of Gi; we have W ∩ U 6= ∅. Additionally
if W ∪ U = V , then δ+(W ∩ U) is a dicut of G2, and a /∈ δ+(W ∩ U) in order for δ+G(W )
to be a dicut. This means that δ+(W ) ∩ J2 6= ∅; we have W ∪ U 6= V .

Suppose {u1, u2} ⊆ W . By Remark 2.15, δ+(U∪W ) is a dicut of G. Since {u1, u2} ⊆ W
we have (u1, u2) /∈ δ+(W ∪ U). The dicut δ+(W ∪ U) corresponds to the dicut δ+({vU} ∪
(W∩(V −U))) of G1. This dicut of G1 has an empty intersection with J1, which contradicts
J1 being a dijoin of G1.

Now suppose {u1, u2} ⊆ V −W . Again, by Remark 2.15 and U ∩W 6= ∅, δ+(U ∩W )
is a dicut of G. Similar to above, δ+(U ∩W ) ∩ J = ∅. The dicut δ+(U ∩W ) corresponds
to a dicut of the digraph G2, but J2 does not intersect the dicut, contradicting that J2 is
a dijoin of G2. ♦
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Since y1 and y2 are [τ(G,w)]-adic, they can be expressed as yi = 1
ki
ŷi where ŷi ∈ ZAi+ ,

and ki is a product of primes in [τ(G,w)]. Let k = k1 × k2. Then kyi is an integral
solution of (DGi,kwi), a kwi-weighted packing of kτ(G,w) dijoins. Showing that (G, kw)
packs implies that (G,w) admits an optimal [τ(G,w)]-adic fractional packing of dijoins,
which yields a contradiction.

For ease of argument, we will work in the setting where the weights are 0 or 1. Consider
weighted digraph (G′i, kw

′
i) derived from (Gi, wi), i ∈ {1, 2}, and (G′, kw′) from (G, kw) by

applying Remark 1.7. The G′is can still formed from G by contracting U .

Observe that a union of different valid pairs form different dijoins of G′. Every dijoin of
G′1 or G′2 must include at least one arc in δ+(U) and exactly one by 2.17. Thus τ(G′, kw′)
valid pairs exist (one pair for each weight one arc in δ+G′(U)), which form τ(G, kw) =
τ(G′, kw′) dijoins of G. These dijoins are disjoint, since the packing of dijoins of G′1 and G′2
are disjoint. Hence (G′, kw′) packs, and thus (G, kw) packs; this yields a contradiction. �

The reduction above (that we may assume minimum dicuts are trivial dicuts) is a
routine argument; for instance, it can be found as subclaim (56.2) of Theorem 56.1 in [16].

Lemma 2.18. A counterexample (G,w) minimizing |V | has no arc with weight τ(G,w).

Proof. Consider the case where every arc a that is not a′ has weight 0. No dicut of G exists
that does not contain a′, and no non-trivial dicut exists which contains a′ by Lemma 2.16.
Let a′ = (v1, v2). One or both of δ+(v1) and δ+(V − {v2}) are the only dicuts of G. In
either case, {a′} is a dijoin, and a collection of τ(D,w) sets of {a′} is an optimal integral
packing (which is [τ(G,w)]-adic) of dijoins.

Now suppose a different arc than a′ exists with non-zero cost. By Lemma 2.14 a
minimum dicut δ(v) not containing a′ exists, which is also a minimum dicut of (G,w)/a′

with weight τ(G,w). Contracting an arc does not decrease the minimum weight of a dicut,
thus τ(G,w) = τ(G/a′, w/a′). Consider (G,w)/a′, which by minimality has y′, an optimal
[τ(G,w)]-adic fractional packing of dijoins. Every dijoin of (G,w)/a′ with a′ is a dijoin of
(G,w); for J a dijoin of (G,w)/a′, we construct a fractional packing of dijoins y for (G,w)
where yJ∪{a′} = y′J . The weighted packing y has value τ(G,w), and is a valid packing since
w(a′) = τ(G,w).

In summary we have proved that for a minimal counterexample (G,w),

1. every minimum dicut of (G,w) is a trivial cut,
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2. every arc a with w(a) > 0 is contained in a minimum dicut, and

3. w(a) ∈ {0} ∪ [τ(G,w)− 1] for all a ∈ A.

The last two properties are held by every counterexample which minimizes the number of
vertices.

The next lemma reveals our plan of attack: using the structure of the minimal coun-
terexample, we derive two weights w1, w2 from w where w is a weighted average of w1 and
w2, and w1 and w2 admit [τ(G,w)]-adic fractional packings. We can then find the desired
fractional packing for (G,w) by taking a weighted average of the solutions to (G,w1) and
(G,w2).

Lemma 2.19. Let w ∈ ZA+. If there exists w1, w2 ∈ ZA+ such that

(1) w = dw1 + (1− d)w2 where 0 < d < 1 is a [τ(G,w)]-adic rational number,

(2) τ(G,w) = τ(G,w1) = τ(G,w2), and

(3) (DG,w1) and (DG,w2) have an optimal [τ(G,w)]-adic fractional packing,

then (DG,w) admits an optimal [τ(G,w)]-adic fractional packing of dijoins.

Proof. By assumptions (2) and (3), (DG,w1) and (DG,w2) admit [τ(G,w)]-adic optimal
solutions y1 and y2 respectively. Consider y′ = dy1 + (1− d)y2, which is [τ(G,w)]-adic by
(1). We show that y′ is optimal for (DG,w) to prove the lemma. The vector y′ is feasible
for (DG,w) since by (1), for all a ∈ A,∑

(y′J : a ∈ J) =
∑

(dy1J + (1− d)y2J : a ∈ J) ≤ dw1
a + (1− d)w2

a = w(a).

In addition, 1Ty′ = d1Ty1 + (1 − d)1Ty2 = τ(G,w) by (3), which is the optimal value of
(DG,w) since it is the optimal value of (PG,w).

Let (G,w) be a minimal counterexample. We now construct the weights w1 and w2

for (G,w). Let ∼ be a relation on a, a′ ∈ Aw>0 where a ∼ a′ if a and a′ both belong to
the same minimum dicut. Clearly ∼ is reflexive and symmetric; we also define ∼ to be
transitive. Let E be an equivalence class of ∼.

We call a cycle in a digraph an odd alternating cycle if the cycle has odd length and
except for a single pair, every pair of adjacent arcs in the cycle contains one forward arc
and one backward arc.
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Remark 2.20. Let T = a1, a2, . . . , ak be an odd alternating cycle where a1 and ak are arcs
which are either both forward arcs or backward arcs. If a cut δ(U) contains a1 and ak,
δ(U) is not a dicut.

Proof. If u is the mutual endpoint of a1 and ak, one arc leaves u and the other enters u.

Lemma 2.21. Let T be either a cycle or a path. If δ+(U) is a dicut such that |T ∩δ+(U)| ≥
1, then the difference between the number of forward arcs and backward arcs in T ∩ δ+(U)
is at most 1.

Proof. Let δ+(U) be such that |T ∩δ+(U)| ≥ 2 (clearly the result holds if |T ∩δ+(U)| = 1),
and

T = a1, a2, . . . , ak

where a1, ak are the first and last arcs respectively if T is a path. Let T ′ be a subsequence
of T consisting only of arcs in T ∩ δ+(U), i.e.

T ′ = ab1 , ab2 , . . . , abl

where l ≤ k.

It suffices to show that every pair of arcs of the form (abj , abj+1
) in T ′ contains one

forward arc and one backward arc.

Without loss of generality, let abi , i ∈ [l − 1] be a forward arc. For an eventual contra-
diction, suppose that abi+1

is also a forward arc. Let vj−1, vj be the endpoints of the arc
aj. Since abi = (vbi−1, vbi), abi+1

= (vbi+1−1, vbi+1
) are forward arcs in δ+(U), vbi , vbi+1

are in
V −U . Furthermore, T ′ is a subsequence of T , hence no arc aj, bi < j < bi+1, is in T ′; every
vertex between and including vbi and vbi+1−1 in T are in V − U . This is a contradiction
since both endpoints of abi+1

are in V − U , and thus abi+1
/∈ δ+(U).

If a dicut and a dicycle have a non-empty intersection, its intersection contains at least
two arcs, and the difference between the number of backward and forward arcs is at most
one. However, a dicycle only contains forward or backward arcs; dicuts and dicycles are
always disjoint. Similarly, dicuts and dipaths have at most one arc in common.

Corollary 2.22. Dicuts are disjoint from directed cycles.

Corollary 2.23. Dicuts and dipaths have at most one arc in common.
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If an (odd) alternating cycle exists in E, let T be such an alternating cycle. Otherwise,
we pick a maximal alternating path contained in E of length at least 2; an alternating
path is maximal if no arcs can be added to create a longer alternating path. If an (odd)
alternating cycle does not exist, a maximal alternating path of length at least two exists,
since τ(D,w) ≥ 2; in all instances, T contains at least 2 arcs. Hence, T is either an (odd)
alternating cycle, or a maximal alternating path. We will call T an alternating structure.
For brevity, we label the following hypotheses:

(H1) T is an alternating structure contained in an equivalence class H under ∼, and

wfε (a) =


w(a) + ε a is a forward arc of T

w(a)− ε a if a backward arc of T

w(a) Otherwise.

(H2) T is an alternating structure contained in an equivalence class H under ∼, and

wbε(a) =


w(a) + ε a is a backward arc of T

w(a)− ε a if a forward arc of T

w(a) Otherwise.

Lemma 2.24. Let δ+(U) be a dicut of (G,w), and ε ∈ Z+ − {0}. Suppose wfε , T satisfies
(H1) and wbε, T satisfies (H2). Then the following holds:

1. if δ+(U) = δ+(v) is a minimum dicut in (G,w), then wfε (δ+(v)) = wbε(δ
+(v)) =

τ(G,w), and

2. if δ+(U) has a non-empty intersection with T , wfε (δ+(U)) is either w(δ+(U)) + ε,
w(δ+(U)) − ε, or w(δ+(U)), and wbε(δ

+(U)) is either w(δ+(U)) + ε, w(δ+(U)) − ε,
or w(δ+(U)).

Proof. (1) Let δ+(v) be a minimum dicut in (G,w) such that δ+(v)∩T 6= ∅. If T is an (odd)
alternating cycle, then |δ+(v) ∩ T | = 2. One arc in δ+(v) ∩ T must be a forward arc and
the other a backward arc (guaranteed by Remark 2.20 for odd alternating cycles). Since
forward arcs and backward arcs are increased and decreased (or decreased and increased
for wbε) by the same amount, the weight is maintained.

If T is an alternating path, it suffices to show that no v exists such that v is an
endpoint of T . If such a v existed, then T is not a maximal alternating path; since
w(δ(v)) ≥ τ(G,w) ≥ 2, another arc in δ(v) exists which can extend the alternating path.
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(2) The intersection δ+(U) ∩ T contains at most one more forward arc than backward
arc (or vice versa) by Lemma 2.21 and Remark 2.20; similar to above, the result holds.

We want α, β ∈ Z+ such that wfα and wbβ are non-negative and the weights satisfy at
least one of the following conditions:

(C1) a non-trivial dicut becomes a minimum dicut,

(C2) a weight of an arc becomes τ(G,w),

(C3) an arc a ∈ A exists with w(a) > 0, but has weight zero under the new weight, or

(C4) the sum of the entries for the new weights is less than 1Tw.

Let αj (and likewise βj) denote the minimum positive integer such that wfαj satisfies con-
dition (Ci) above (if no such integer exists, then let αj =∞). Observe that α2 and α3 are
finite; every arc in T has weight less than τ(G,w) (Lemma 2.18), and has positive weight
since T ⊆ E ⊆ Aw>0. The choice of α = min{αi : i ∈ [4]} (likewise β = min{βi : i ∈ [4]})
is well defined. Here are some more hypotheses:

(H3) given (wfα, T ), the tuple satisfies (H1) and α is the minimum non-negative integer
such that wfα satisfies (C1)-(C4), and

(H4) given (wbβ, T ), the tuple satisfies (H2) and β is the minimum non-negative integer

such that wbβ satisfies (C1)-(C4).

Remark 2.25. There exists (wfα, T ) and (wbβ, T ) such that they satisfy (H3) and (H4)
respectively.

Remark 2.26. Suppose (wfα, T ) and (wbβ, T ) satisfies (H3) and (H4) respectively. Then

τ(G,wfα) = τ(G,wbβ) = τ(G,w).

The weight of every trivial dicut remains the same, and the weights of non-trivial dicuts
may decrease by α or β by Lemma 2.24. However since α ≤ α1 (likewise β ≤ β1), weights
of non-trivial dicuts do not become less than τ(G,w).

Lemma 2.27. Suppose (wfα, T ) and (wbβ, T ) satisfies (H3) and (H4) respectively. We have
α + β ≤ τ(G,w).
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Proof. Without loss of generality consider a forward arc a ∈ T . Observe that w(a) + α ≤
τ(G,w), and w(a)− β ≥ 0. Combining the two inequalities, we get

β ≤ w(a) ≤ τ(G,w)− α,

i.e. α + β ≤ τ(G,w).

Lemma 2.28. Suppose (wfα, T ) and (wbβ, T ) satisfies (H3) and (H4) respectively. The

weighted digraphs (G,wfα) and (G,wbβ) admit optimal [τ(G,w)]-adic fractional packing of
dijoins.

Proof. The proof is identical for both weighted digraphs; we consider (G,wfα). Recall
Remark 2.26; the weight wfα preserves the minimum weight of a dicut of (G,w). By our
choice of α, one of the following is true.

We have 1Twfα < 1Tw. Then by minimality of 1Tw (and possibly of |Aw>0|), (G,wfα)
admits a [τ(G,w)]-adic fractional packing of dijoins.

An arc a ∈ A exists with w(a) > 0, but a has zero weight under wfα. Recall that
T ⊆ Aw>0. This implies that |Aw>0| strictly decreases; by minimality of |Aw>0|, (G,wfα)
admits a [τ(G,w)]-adic fractional packing of dijoins.

There exists a ∈ A with weight τ(G,w) under wfα. If (G,wfα) does not admit an optimal
[τ(G,w)]-adic fractional packing, (G,wfα) is a counterexample which is minimal in |V |; this
contradicts Lemma 2.18.

A non-trivial dicut δ+(U) of G has weight τ(G,wfα) = τ(G,w). If (G,wfα) does not
admit an optimal [τ(G,w)]-adic fractional packing, (G,wfα) is a counterexample which is
minimal in |V |; this contradicts Lemma 2.16, (G,wfα).

In all cases (G,wfα) has an optimal [τ(G,w)]-adic fractional packing of dijoins as desired.

Observe that (G,wfα) or (G,wbβ) may not be a minimal counterexample. In particular,
if T is an odd alternating cycle or an odd length maximal alternating path, then one
of the two weighted digraphs does not minimize the sum of the weights (or possibly the
cardinality of the set of positive weight arcs). However, this was of no consequence since
both weighted digraphs still minimize the number of vertices; this is why Lemma 2.16 and
Lemma 2.18 referred to counterexamples minimizing the number of vertices, rather than a
minimal counterexample.

Proof of Theorem 2.13 Let (wfα, T ) and (wbβ, T ) satisfy (H3) and (H4) respectively; the
weights and the alternating structure exist by Remark 2.25. We verify that the weights
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wfα and wbβ satisfy the conditions of Lemma 2.19 to prove Theorem 2.13. As stated in
Remark 2.26,

τ(G,w) = τ(G,wfα) = τ(G,wbβ).

By Lemma 2.28, both weighted digraphs admit a [τ(G,w)]-adic fractional packing of di-
joins.

We claim that for d = β
α+β

,

w = dwfα + (1− d)wbβ,

where d is [τ(G,w)]-adic (Lemma 2.27). Clearly this is satisfied for a ∈ A − T ; without
loss of generality, let a ∈ T be a forward arc. Then,

β

α + β
(w(a) + α) +

α

α + β
(w(a)− β) = w(a).

All conditions of Lemma 2.19 are satisfied as desired, and (G,w) is not a counterexample.
�
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Chapter 3

Packing Fewer Than τ Dijoins

The following open problem puts an extremal twist to the Edmonds-Giles conjecture:

Question 3.1. Is there an increasing function f(τ) such that for every weighted digraph
(D,w) with minimum weight dicut at least τ , there exists a w-weighted packing of dijoins
of size f(τ)?

In fact, the problem is open even for 3 dijoins:

Question 3.2. Does there exist m such that τ(D,w) ≥ m guarantees that ν(D,w) ≥ 3?

In the unweighted setting, it is known that τ ≥ 2 guarantees ν ≥ 2 ([16], Theorem
56.3).

For the rest of the chapter, we assume that every weighted digraph (D,w) has w ∈
{0, 1}A, and denote A1 = {a ∈ A : wa = 1} as the set of non-zero weight arcs (Remark 1.7).
Under this setting, packing dijoins is equivalent to finding disjoint dijoins in A1.

In Section 3.1, we show that if a weighted digraph (D,w) does not contain k disjoint
dijoins in A1, then the subgraph of D induced by A1 is ”sparse relative to k”. In the
subsequent sections, the term ε-balanced is introduced for weighted digraphs, and we derive
a lower bound on the size of a packing of dijoins for weighted digraphs with minimum weight
dicut at least τ that is ε-balanced.
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3.1 Weighted Digraphs with Bounded Packing Size

are Sparse

One difficulty in packing dijoins is showing that a subset of the arcs intersects every dicut
at least once. An approach to packing dijoins is to attempt to pack different objects which
are easier to identify, but also happen to be dijoins. One such examples are spanning trees
of digraphs, a set of arcs which form spanning trees in the underlying undirected graph.

A theorem by Nash-Williams and Tutte characterizes when k disjoint spanning trees
exist for a graph:

Theorem 3.3 (Nash-Williams and Tutte). A graph G has k edge-disjoint spanning trees
if and only if for every partition of vertices P, there are at least k(|P| − 1) crossing edges.

The theorem immediately yields a statement on a packing of spanning trees in weighted
digraphs. For later use, we introduce definitions for partitions which certify that a weighted
digraph does not contain k arc disjoint spanning trees in A1. Let P be a partition of vertices
for a weighted digraph (D,w). We denote by Cross(D,w)(P) as the weight of arcs in D which
cross this partition. If P is a partition such that Cross(D,w)(P) < k(P−1), we say that P is a
k-deficient partition, and the k-deficiency of P is def(D,w)(P , k) = k(|P|−1)−Cross(D,w)(P).

Corollary 3.4. A weighted digraph (D,w) has a w-weighted packing of spanning trees of
size k if and only if (D,w) does not have a k-deficient partition.

A digraph is weakly connected if the underlying graph is connected. Given a weighted
digraph (D,w) and a subset of the vertices U , we denote by D[U ] = (U,A[U ]) the subgraph
induced by U , and w[U ] the weights of arcs in D which remain in D[U ]. We use the short-
hand (D,w)[U ] = (D[U ], w[U ]). For convenience, we reiterate the contraction notations
introduced in the previous chapter. For U ⊆ V , letD/U denote the weighted digraph where
the vertices in U are contracted to a single vertex vU , the arcs (u, v) ∈ δ+(U), (v, u) ∈ δ−(U)
are replaced with arcs (vU , v) and (v, vU) respectively. Let w/U denote the weight of arcs
in G/U where the newly added arcs (of the form (vU , v) or (v, vU)) have the same weight
as the arcs which were replaced. We will also use the shorthand (G,w)/U = (G/U,w/U).

Spanning trees have a non-empty intersection with every cut, a superset of dicuts;
spanning trees are ”stricter” objects than dijoins. Hence, packing τ spanning trees is
unreasonable, and we ask a weaker question: does a function g(τ) exist such that every
weighted digraph with the weight of the minimum dicut at least τ have a packing of
spanning trees of size g(τ)? Unfortunately, we cannot do better than g(τ) = 2; imposing a
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τ − 1

1 1

Figure 3.1: A weighted digraph with arcs labeled with its weights. For τ ≥ 1, the weight
of the minimum dicut is τ , but the maximum size of a weighted packing of spanning trees
is 2 for all τ .

lower bound on τ(D,w) does not guarantee a minimum number of weight 1 arcs incident
to every vertex (see Figure 3.1). However, when packing k < τ dijoins, we may assume
that no U ⊆ V exists such that (D,w)[U ] has a packing of k spanning trees, as we may
instead consider (D,w)/U . The next lemma formalizes this idea.

Lemma 3.5. Let (D,w) be a weighted digraph and let ∅ 6= U ⊆ V be such that (U,A1[U ])
is weakly connected. If JU ⊆ A1[U ] is a dijoin of (D,w)[U ] and JV/U ⊆ A1/U is a dijoin
of (D,w)/U , then J = JU ∪ JV/U ⊆ A1 is a dijoin of D.

Proof. Let δ+(W ) be a dicut of D. If U ⊆ W or W ⊆ V − U , then δ+(W ) is a dicut of
(D,w)/U , and has a non-empty intersection with JV/U ⊆ J . Now suppose otherwise, i.e.
∅ 6= W ∩ U 6= U . The set of arcs δ+D(W ) ∩A1[U ] = δ+D[U ](W ∩ U) ∩A1 is non-empty (since

(U,A1[U ]) is weakly connected) and δ+D[U ](W ∩U) is a dicut of D[U ]. Hence, δ+(W ) has a
non-empty intersection with JU ⊆ J , and J is a dijoin of D.

Nash-Williams also proved a result which characterizes when the edges of a graph can
be decomposed into t forests:

Theorem 3.6. A graph G can be partitioned into t edge-disjoint forests if and only if for
every U ⊆ V , |E[U ]| ≤ t(|U | − 1).

The theorem states that the minimum number of forests that a graph can be decom-

posed into is t =
⌈
max

{
|E[U ]|
|U |−1 : U ⊆ V, |U | ≥ 2

}⌉
.

Corollary 3.7. The weight 1 arcs of (D,w) can be partitioned into t arc-disjoint forests,

where t =
⌈
max

{
w(A[U ])
|U |−1 : U ⊆ V, |U | ≥ 2

}⌉
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We call such weighted digraphs to be t-arboric. The expression w(A[U ])
|U |−1 is nearly the ratio

between the number of weight one arcs and the number of vertices; it can be interpreted
as the density of the graph. Then a weighted digraph that is t-arboric for small t implies
that every subgraph is sparse.

The following is the main theorem for this section. It states that if a weighted di-
graph (D,w) does not contain a w-weighted packing of k dijoins, then we may consider a
contraction minor which is sparse (i.e. is k-arboric).

Theorem 3.8. Suppose (D,w) does not contain a w-weighted packing of k dijoins. Then
there exists a weighted directed graph (H,w′) which is a contraction minor of (D,w) such
that

1. (H,w′) does not contain a w′-weighted packing of k dijoins, and

2. the weight 1 arcs of (H,w′) can be decomposed into k forests.

Proof. (1) By assumption (D,w) does not contain a w-weighted packing of k spanning
trees; a k-deficient partition P exists. We pick P such that

1. def(D,w)(P , k) is maximized, and subject to that

2. |P| is minimized.

Let W ∈ P where |W | ≥ 2. We first show that (D,w)[W ] contains a w-weighted
packing of k spanning trees. For an eventual contradiction, suppose otherwise: a k-deficient
partition PW exists for (D,w)[W ], and Cross(D,w)[W ](PW ) < k(|PW | − 1). Now consider
P = (P − {W}) ∪ PW , a partition of V . Observe that Cross(D,w)(P) = Cross(D,w)(P) +
Cross(D,w)[W ](PW ), thus

def(D,w)(P) = k(|P| − 1)− Cross(D,w)(P)

= k(|P|+ |PW | − 2)− Cross(D,w)(P)

= def(D,w)(P) + def(D,w)[W ](PW ).

By assumption, def(D,w)[W ](PW ) > 0 hence def(D,w)(P) > def(D,w)(P). This contradicts
the maximality of def(D,w)(P , k).

Now let (H = (V ′, A′), w′) be formed from G by contracting each set of P into a single
vertex. We denote by vU ∈ V ′ the vertex resulting from contracting U ∈ P . If (H,w′) has
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a w′-weighted packing of k dijoins, then pairing each dijoin in the packing with a spanning
tree in each D[W ], W ∈ P forms a collection of k dijoins of D by Lemma 3.5. Hence,
(H,w′) does not have such a packing.

(2) Let ∅ 6= W ⊂ V ′ with |W | ≥ 2. We prove that H[W ] = (W,A′W ) has strictly less
than k(|W |− 1) weight 1 arcs. To show a contradiction suppose w(A′W ) ≥ k(|W |− 1). Let

P = (P − {U ⊆ V : vU ∈ W}) ∪

{ ⋃
vU∈W

U

}
,

a partition of V . Note that Cross(D,w)(P) = Cross(D,w)(P)− w(A′W ). Thus,

def(D,w)(P) = k(|P| − |W |)− Cross(D,w)(P)

= k(|P| − |W |)− Cross(D,w)(P) + w(A′W )

≥ k(|P| − 1)− k(|W | − 1)− Cross(D,w)(P) + k(|W | − 1)

= def(D,w)(P),

and |P| < |P|. If def(D,w)(P) > def(D,w)(P), then maximality of def(D,w)(P) is contradicted.
If def(D,w)(P) = def(D,w)(P), then minimality of |P| is contradicted. Thus, for all induced

subgraph of H we have that
w(A′W )

|W |−1 < k; by Theorem 3.7, the weight 1 arcs of G can be
decomposed into k forests.

By Theorem 3.8, to show that a τ exists such that f(τ) ≥ 3, we may only consider
weighted digraphs with weight 1 arcs which can be decomposed into at most 3 disjoint
forests.

In the proof of Theorem 3.8, the contraction minor was derived by contracting induced
subgraphs which contained k disjoint spanning trees in A1. The following results describe
when such induced subgraphs can be found; we will use them in the subsequent chapter.

Lemma 3.9. Let 1 ≤ k ∈ N. Either (D,w) has an induced subgraph with a w-weighted
packing of k spanning trees, or the partition of vertices which uniquely maximizes k-
deficiency is the trivial partition.

Proof. Suppose that (D,w) does not contain a subgraph which has a packing of k spanning
trees. For an eventual contradiction, suppose that a non-trivial partition P exists which
maximizes deficiency. Pick U ∈ P that contains more than one vertex, and note that by
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assumption (D,w)[U ] does not contain a packing of k spanning trees; a k-deficient partition
PU exists for (D,w)[U ]. Let P = (P −W ) ∪ PU . Then,

def(D,w)(P , k) = def(D,w)(P , k) + def(D,w)[U ](PU , k),

and since PU is k-deficient, def(D,w)[U ](PU , k) > 0. The partition P does not maximize
k-deficiency, which is a contradiction.

Corollary 3.10. If (D,w) has fractional arboricity at least k, then there exists an induced
subgraph of (D,w) which contains a packing of k disjoint spanning trees. In particular, if
the average weighted degree of (D,w) is 2k, then there exists an induced subgraph of (D,w)
which contains k disjoint spanning trees.

Proof. Suppose (D,w) has fractional arboricity at least k; a set U ⊆ V, |U | ≥ 2 exists

with w(A[U ])|
|U |−1 ≥ k. For an eventual contradiction, further suppose that (D,w)[U ] does not

contain a packing of spanning trees of size k. Then by Lemma 3.9, the trivial partition
uniquely maximizes k-deficiency. However, w(A[U ]) ≥ k(|U | − 1), and the k-deficiency
of the trivial partition is at most 0. Therefore every partition has negative k-deficiency,
and no k-deficient partition exists. This implies that (D,w)[U ] contains a packing of k
spanning trees, which is a contradiction.

The latter statement follows since if the average weighted degree is at least 2k, then
the fractional arboricity of the graph is at least k.

3.2 Packing Dijoins in ε-Balanced Weighted Digraphs

Finding a f(τ) size packing of dijoins seems currently out of reach for a non-constant f(τ)
that is increasing in τ . We introduce a new parameter ε to weighted digraphs, and find a
packing of dijoins of size f(τ, ε). The central idea on achieving such a packing is similar to
the prior section; we attempt to find a packing of spanning trees in an induced subgraph
and contract the subgraph. If we can contract the entire digraph to a single vertex, then
a packing can be found.

3.2.1 Lifting Operations

A k-lifting operation is an operation on weighted digraphs where if a packing of k dijoins
exists after the operation, they can be mapped to packing of k dijoins in the weighted
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digraph before the operation. When such a mapping is applied, we say that the dijoins
have been lifted. We have already encountered a k-lifting operation; we formally introduce
the procedure next.

Let (D,w) be a weighted digraph. If U ⊆ V is such that (D,w)[U ] contains a w[U ]-
weighted packing of k spanning trees, contracting U is called a k-SP contraction (spanning
tree contraction). Lemma 3.5 ensures that k-SP contraction is a k-lifting operation. Corol-
lary 3.10 describe a sufficient condition on when k-SP contraction can be applied.

Recall that dicuts are disjoint from dicycles (Corollary 2.22). The operation to contract
a dicycle (dicycle contraction) is a k-lifting operation for every k ≥ 1; the dijoins after the
contraction are dijoins before the contraction.

An important aspect of contractions are that the weight of the minimum dicut in
the contracted weighted digraph does not decrease; every dicut in the contracted digraph
corresponds to a dicut in the original digraph.

Remark 3.11. Contractions do not decrease the minimum weight of a dicut for a weighted
digraph.

G2 G1

Figure 3.2: When packing less than τ dijoins, how to pair the dijoins of G1 = G/U
and G2 = G/(V − U). The left digram shows digraph G, and dicut shore U , which is a
non-trivial minimum dicut. The red arcs of G1 and G2 are dijoins, but their union is not
a dijoin of G.

Another contraction operation we have previously used to great effect is seen in the
proof of Lemma 2.16; the lemma dealt with optimal [τ ]-adic packings, but the proof is
virtually identical for optimal integral packings. In the proof, two digraphs G1 and G2

were derived from G by contracting U and V − U of a non-trivial minimum dicut δ+(U).
The union of dijoins of G1 and G2 which shared a unique arc across δ+(U) was a dijoin of
G. Unfortunately, the operation is not always applicable when packing k < τ dijoins. In
general, it is unclear how the dijoins of G1 and G2 should be paired to yield a dijoin of G
(see Figure 3.2).

What if no induced subgraph exists with a packing of k spanning trees? We introduce
a new operation that can remedy such scenarios. A transitive arc is an arc (u, v) where
the digraph contains a u− v dipath which does not use (u, v).
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Remark 3.12. If U is a shore of a dicut of a digraph, then U is still a shore of a dicut
after a transitive arc is added to the digraph.

For a weighted digraph (D,w) and a u− v dipath P in (D,w) using only the weight 1
arcs, splitting P is adding a transitive arc (u, v) of weight 1, and changing the weights of
all arcs in P to 0.

Figure 3.3: An illustration of splitting a dipath of length 4. As usual, dashed arcs have
weight 0, and solid arcs have weight 1.

Lemma 3.13. Splitting is a k-lifting operation for all k ≥ 1. Furthermore, splitting
preserves the value of the minimum weight dicut.

Proof. Let P be the dipath which is split, and let (u, v) be the added transitive arc.
Furthermore, let (D,w) be the digraph before splitting, and (D′ = (A′, V ′), w′) be the
digraph after splitting. We show a mapping from a dijoin J ′ ⊆ A′1 in the weighted digraph
after splitting, to a dijoin J ⊆ A1 before splitting. If (u, v) /∈ J ′, then J = J ′ ⊆ A1 is a
dijoin. If (u, v) ∈ J ′, consider J = (J ′ − {(u, v)}) ∪ P . To show J is a dijoin, it suffices to
show that if (u, v) ∈ δ+(U) then δ+(U) has a non-empty intersection with P . Indeed this
is the case; if (u, v) ∈ δ+(U), then u ∈ U and v /∈ U , which are the endpoints of P . Hence
an arc in P is in δ+(U).

If δ+(U) has a non-empty intersection with P , exactly one arc a is in the intersection
by Corollary 2.23. Moreover, (u, v) ∈ δ+(U) as u ∈ U and v /∈ U . Thus

w′(δ+D′(U)) = w(δ+(U))− w(a) + w′((u, v)) = w(δ+(U)),

and the weight of every dicut wht a non-empty intersection with P remains the same; the
minimum weight of a dicut is preserved.

Splitting is useful for when no induced subgraph exists with a packing of k spanning
trees. We may split dipaths and introduce new weight 1 arcs to find more spanning trees.
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Figure 3.4: Splitting may not preserve ε-balancedness for ε > 0. For the trivial cut

indicated in gray, we have that |w(δ
+(v))−w(δ−(v))|
w(δ(v))

is 1
3

in the left digraph, but becomes 1
after splitting.

3.2.2 Packing f(τ, ε) Dijoins in ε-Balanced Digraphs

A weighted digraph (D,w) is ε-balanced if for all cuts δ(U) of D that is not a dicut and
has w(δ(U)) > 0,

|w(δ+(U))− w(δ−(U))|
w(δ(U))

≤ ε.

A useful property of ε-balancedness (with respect to the operations introduced thus
far) is that it is closed under contractions. Every cut of the contracted digraph is a cut of
the original digraph. Note that ε-balancedness is not closed under splitting; see Figure 3.4

Remark 3.14. Being ε-balanced is closed under contraction.

We require the following two results:

Theorem 3.15 (Max-Flow Min-Cut Theorem, [16], Theorem 10.3). For a weighted di-
graph, the maximum s− t flow is equal to the weight of the minimum s− t cut.

Theorem 3.16 (Integral Flow Theorem, [16], Corollary 10.3a). If the weights of every arc
is a non-negative integer, then there exists an integer maximum flow.

Theorem 3.15 and Theorem 3.16 imply the following:

Corollary 3.17. The maximum s− t flow of a weighted digraph is equal to the maximum
size of a weighted packing of directed s− t paths.

Furthermore, they show that the clutter of directed s−t paths has the MFMC property
(Corollary 3.18). This will be useful to show that enough directed paths exist which can
be split to find a dense induced subgraph.
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Corollary 3.18. For a weighted digraph (D,w), then weight of a minimum s − t cut is
equal to the maximum size w-weighted packing of directed s− t paths.

Now we are ready for the main theorem of this section:

Theorem 3.19. Let 0 ≤ ε < 1 be a constant, and 1 ≤ k ∈ N. If a weighted digraph (G,w)

is ε-balanced and τ(G,w) ≥ 2(1+ε)
(1−ε) k, then a w-weighted packing of k dijoins exist.

Proof. Consider a counterexample (G1, w1) minimizing the number of vertices. If G1 con-
tains a dicycle, then we apply dicycle contraction. The new weighted digraph is ε-balanced,
and the value of the minimum weight dicut is at least the value of the original. By min-
imality, the contracted weighted digraph contains a packing of k dijoins, which can be
lifted. Similarly, k-SP contraction cannot be applied to (G1, w1).

Since G1 is a directed acyclic graph, it contains sources and sinks; let S and T respec-
tively be the set of sources and sinks of G1. Let z be the maximum number of disjoint
directed S−T paths in A1; z is equal to the value of the maximum S−T flow in (G1, w1) by
Corollary 3.17. We split every such dipath; let (G2, w2) be the resulting weighted digraph,
and consider induced subgraph (G2, w2)[S ∪T ]. The subgraph has at least z arcs of weight
1; if z ≥ k(|S|+ |T |), then the average weighted degree of the subgraph is at least 2k, and
by Corollary 3.10, (G2, w2)[S ∪ T ] contains an induced subgraph with k disjoint spanning
trees. This is precisely what we prove next.

Claim 1. We have z ≥ k(|S|+ |T |).

Proof It suffices to show that z ≥ (1−ε)
1+ε

τ |S| and z ≥ (1−ε)
1+ε

τ |T |. Adding the two inequalities
results in

2z ≥ (1− ε)
(1 + ε)

τ(|S|+ |T |) ≥ 2k(|S|+ |T |)

where the last inequality comes from τ ≥ 2(1+ε)
1−ε k.

Let W be a shore of the minimum S−T cut of (G1, w1) with S ⊆ W . By Corollary 3.18,
z = w(W ). We partition V into sets S, T , Ŝ = W − S and T̂ = V − W − T (i.e.
Ŝ and T̂ are shores of the minimum S − T cut without the sinks or the sources). If
Ŝ = ∅, then w(δ+(W )) = w(δ+(S)), and z = τ |S| ≥ 2k|S|; similarly, if T̂ = ∅ then
w(δ+(W )) = w(δ−(T )) and z = τ |T | ≥ 2k|T |. Hence, we may assume that Ŝ 6= ∅ and
T̂ 6= ∅.

Before proceeding, we give an intuition of why the claim is true. Since S is the set
of sources, τ |S| weight 1 arcs are in δ+(S). Every such arc either is in δ−(V − W ), in
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which case the arcs contributes to z, or is in δ−(Ŝ). The value of z is ”small” if many
weight 1 arcs in δ+(S) enter Ŝ instead of V −W , and not many weight one arcs are in
δ+(Ŝ) ∩ δ−(V −W ), i.e. the minimum S − T cut has small weight. In such a case, given
the lower bound on τ , Ŝ has much more weight 1 arcs which enter Ŝ than which leave Ŝ;
the cut δ(Ŝ) shows that the weighted digraph is not ε-balanced.

For U1, U2 ⊆ V , let w1(U1, U2) = w1(δ
+(U1) ∩ δ−(U2)), the sum of the weights of arcs

from U1 to U2. Observe that z = w1(Ŝ, V −W )− w1(S, Ŝ) + w1(δ
+(S)), hence

z − w1(T̂ , Ŝ) = w1(Ŝ, V −W )− w1(S, Ŝ) + w1(δ
+(S))− w1(T̂ , Ŝ). (3.20)

We have that w1(S, Ŝ) ≥ w1(Ŝ, V −W ), as otherwise δ+(S) is a S − T cut which has
weight at most w1(δ

+(W )). By ε-balancedness of the cut δ(Ŝ) and the previous inequality

(which allows us to drop the absolute value), w1(T̂ ,Ŝ)+w1(S,Ŝ)−w1(Ŝ,V−W )

w1(δ(Ŝ))
≤ ε, i.e.

w1(Ŝ, V −W )− w1(S, Ŝ)− w1(T̂ , Ŝ) ≥ −εw1(δ(Ŝ)). (3.21)

Plugging in 3.21 to 3.20, we get

z ≥ w1(δ
+(S))− εw1(δ(Ŝ)) + w1(T̂ , Ŝ).

In fact, w1(δ(Ŝ)) = z + w1(T̂ , Ŝ)− 2w1(S, V −W ) + w1(δ
+(S)), thus

z ≥ (1− ε)w1(δ
+(S))− εz + (1− ε)w1(T̂ , Ŝ) + 2εw1(S, V −W ).

Rearranging the inequality,

z ≥ 1

1 + ε
((1− ε)w1(δ

+(S)) + (1− ε)w1(T̂ , Ŝ) + 2εw1(S, V −W ))

≥ 1− ε
1 + ε

w1(δ
+(S))

=
1− ε
1 + ε

τ |S|

as desired.

In the above, by replacing w1(Ŝ, V −W ) with w1(W, T̂ ), w1(S, Ŝ) with w1(T̂ , T ), and
w1(S, V −W ) with w1(W,T ), (w1(T̂ , Ŝ) is unchanged) the proof follows identically. Namely,
it shows that z ≥ 1−ε

1+ε
τ |T |. ♦

Splitting the z disjoint S − T dipaths ensures that k-SP contraction can be applied,
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but does not ensure that the new graph is ε-balanced. To remedy this, we undo the
splitting for an S − T dipath if the transitive arc added when splitting is not part of the k
disjoint spanning trees used in the k-SP contraction; equivalently, from graph (G1, w1) we
selectively split a S−T dipath if the resulting transitive arc is used in the k spanning trees
to be contracted. Let (G3, w3) be derived from applying k-SP contraction to (G2, w2).

Note that G3 contains dicycles. If a dipath (s, v1), (v1, v2), . . . , (vm, t) where s ∈ S,
t ∈ T is split, then the transitive arc (s, t) is used one of the k disjoint spanning trees,
i.e. s and t are contracted to a single vertex. Let (G4, w4) be the resulting graph after
contracting all dicycles of (G3, w3).

Claim 2. (G4, w4) is ε-balanced.

Proof Let U ⊆ V be the set of vertices contracted in the k-SP contraction to derive G3

from G2. We denote by vU the vertex created by contracting U . Let U be the set of vertices
contracted to derive G4 from G3. We showed above that vU ∈ U . Then (G4, w4) can be
directly derived from (G1, w1) by contracting (U − {vU}) ∪ U . Contraction operations
preserve ε-balancedness, thus (G4, w4) is ε-balanced. ♦

In addition, τ(G4, w4) ≥ τ(G1, w1) (Remark 3.11 and Lemma 3.13). By minimality,
(G4, w4) has a w4-weighted packing of k disjoint dijoins. Every operation applied to Gi to
derive Gi+1, i ∈ [3] is a lifting operation, therefore (G1, w1) also contains k disjoint dijoins,
which is a contradiction. �

Corollary 3.22. Let 0 ≤ ε < 1 be a constant. Let the function f(τ, ε) denote the maximum
packing of dijoins that can be achieved in a ε-balanced weighted digraph with the weight of

the minimum dicut is at least τ . We have f(τ, ε) ≥
⌊

(1−ε)
2(1+ε)

τ
⌋

.

Interestingly when ε = 0, we have that f(τ, 0) ≥
⌊
τ
2

⌋
. This is identical to the best

lower bound on f(τ); with Schrijver’s counterexample we have τ = 2 but ν = 1.

We also have the following corollary:

Corollary 3.23. Let k ∈ Z+, k ≥ 3 be fixed. If a weighted digraph (D,w) with τ(D,w) ≥ k
does not admit a w-weighted packing of k dijoins, then the weighted digraph has a cut δ(U)
where

|w(δ+(U))− w(δ−(U))|
|w(δ(U))|

>
τ(D,w)− 2k

τ(D,w) + 2k
.

Let k ∈ Z+, k ≥ 3 be fixed, and suppose no mk exists such that τ ≥ mk guarantees
that ν ≥ k. In this case, Corollary 3.23 implies that a weighted digraph with large τ (say,
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τ > 100k) without a weighted packing of k-dijoins are ”very unbalanced”; such weighted
digraphs are not ε-balanced for every ε ∈ [0, τ−2k

τ+2k
]. Thus, examining weighted digraphs

with large τ which are ε-balanced for ε close to 1 may aid in answering Question 3.2.
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Chapter 4

Kernels and Equitability

Dijoins have a non-empty intersection with every dicut, but in general there are exponen-
tially many minimal dicuts relative to the number of vertices (Figure 4.1); it seems that
descriptions of dijoins (say for an IP which solves maximum weighted packing) requires ex-
ponentially many constraints. A natural question arises: can we apply stronger constraints
on a smaller number of dicuts to yield dijoins? We study this question under equitability.

Figure 4.1: In general, digraphs have exponentially many minimal dicuts. The shores of
dicuts are indicated in gray. Generalizing the digraph to n dipaths of length two from a
source to a sink, the digraph has n+ 2 vertices but 2n minimal dicuts.
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4.1 The Central Object: Kernels

As in the last chapter, for a weighted digraph (D,w) we assume that w ∈ {0, 1}A, and
denote by A1 the weight 1 arcs of (D,w) (or A1(D,w) if we wish to make its dependence
on the weighted digraph explicit). For a set O of dicut shores of D, J ⊆ A1(D,w), is
O-equitable (or equitable for O) if for every U ∈ O,⌊

1

τ(D,w)
w(δ(U))

⌋
≤ |J ∩ δ(U)| ≤

⌈
1

τ(D,w)
w(δ(U))

⌉
.

Note that O may include either shore of a dicut.

Equitability is a stronger condition than having a non-empty intersection. The condi-
tion is natural in the sense that when partitioning A1(D,w) into dijoins J1, . . . , Jτ , equi-
tability divides the arcs in a fair way along the family; for every dicut δ(U), U ∈ O, we
have −1 ≤ |Ji ∩ δ(U)| − |Jj ∩ δ(U)| ≤ 1.

For a weighted digraph (D,w), a kernel K is a family of dicut shores of D such that

(K1) A1(D,w) can be partitioned into τ(D,w) sets which are K-equitable, and

(K2) every K-equitable set is a dijoin.

We will interchangably refer to (K1) as the partition condition, and (K2) as the dijoin
condition.

Proposition 4.1. If a kernel K exists for a weighted digraph, then it packs.

Proof. Let J1, . . . Jτ be the partition of A1 into τ sets which are all equitable for K as
guaranteed by the partition condition. Since all Ji are K-equitable, by the dijoin condition,
the Ji are dijoins. Thus J1, . . . , Jτ is a weighted packing of τ dijoins.

Satisfying either of the conditions individually is trivial. Every partition of A1 is ∅-
equitable. On the other hand, if K is the set of all dicuts of a weighted digraph, then a
K-equitable set is a dijoin. These extreme examples suggest a trade-off between achieving
the above two conditions: including more dicut shores in the family makes satisfying the
dijoin condition more likely, perhaps at the cost of achieving the partition condition and
vice versa.

In the subsequent sections, we show examples of kernels. In Section 4.3, we show that
if every weight of a dicut multiple of τ(D,w), then every maximal laminar family of dicut
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shores is a kernel. Abdi, Cornuéjols and Zlatin [3] introduced a parameter ρ(D,w) :=
1

τ(D,w)

∑
v∈V [w(δ+(v))−w(δ−(v)) mod τ(D,w)], and gave a highly technical construction

which reduced packing statements on weighted digraphs to packing statements on weighted
(τ, τ + 1)-bipartite digraphs with ρ values at most ρ(D,w). Section 4.4 is dedicated to
introducing these bipartite digraphs. Using the tools from [3], we prove in Section 4.5 that
when a weighted (τ, τ + 1)-bipartite digraph has ρ value in {1, 2}, a kernel exists. When
ρ = 1, the family of all singletons suffices; the kernel for ρ = 2 is more complex, and we
postpone its description.

4.2 Laminarity is Sufficient for the Partition Condi-

tion

We say that two sets U and W are intersecting if U ∩ W 6= ∅ and U 6⊆ W 6⊆ U . A
family of sets L is laminar if for every U,W ∈ L, U and W are not intersecting. A
sufficient condition when a family of dicut shores O satisfies (K1) is when O is laminar.
Let M(O) be a |O| × |A1| matrix where its rows are incident vectors of the dicuts in O.

Let bl(O), bu(O) ∈ ZO+ where for U ∈ O, the entry for bl(O) is
⌊
w(δ(U))

τ

⌋
and for bu(O) is⌈

w(δ(U))
τ

⌉
. Finally, let M ′(O) =

[
M(O)
−M(O)

]
and b′(O) =

[
bu(O)
−bl(O)

]
.

Lemma 4.2. If there exists xi ∈ ZA1
+ , i ∈ [τ ] such that 1 = x1 + · · · + xτ , and xi ∈ {x ≥

0 : M ′(O)x ≤ b′(O)}, then O satisfies the partition condition.

Proof. Let Ji ⊆ A1 be such that xi is the characteristic vector of Ji. Since 1 = x1+ · · ·+xτ ,
the Jis partition A1. Vector xi satisfies M ′xi ≤ b′ if and only if bl(O) ≤M(O)xi ≤ bu(O).
This is precisely the condition that Ji is O-equitable;.

If O is laminar, then M ′(O) satisfies the above property. We need the following results
to prove the claim.

Lemma 4.3 ([15], see proof of Theorem 22.3). Let O be a laminar family of dicut shores.
The matrix M(O) is a totally unimodular matrix.

Remark 4.4. Repeating a row or multiplying a row by −1 maintains total unimodularity.

Theorem 4.5 ([15], Theorem 19.4). An integral matrix M is totally unimodular if and
only if for all integral vectors b, y and for each natural number k ≥ 1 with y ≥ 0,My ≤ kb,
there are integral vectors x1, . . . , xk in {x ≥ 0 : Mx ≤ b} such that y = x1 + · · ·+ xk.
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Lemma 4.6. Let O be a family of dicut shores. If O is laminar, then there exists a
partition of the weight 1 arcs into J1, . . . , Jτ such that the Ji’s are O-equitable.

Proof. The matrix M(O) is totally unimodular by Lemma 4.3. Observe that M ′(O) can
be constructed from M(O) by repeating rows and multiplying rows by −1; by Remark 4.4
M ′(O) is also totally unimodular. For U ∈ O, letmU(O) be the row ofM(O) corresponding
to U . The entry for bl(O) is

⌊
1
τ
mU(O)1

⌋
and for bu(O) is

⌈
1
τ
mU(O)1

⌉
. Hence, τbl(O) ≤

M(O)1 ≤ τbu(O), and thus M ′(O)1 ≤ τb′(O). Picking y = 1, b = b′(O), k = τ and
M = M ′(O) in Theorem 4.5, we see that M ′(O) satisfies the condition in Lemma 4.2.
This completes the proof.

Let L be a laminar family over a ground set V . It can be shown that |L| is at most
2|V | − 1. Lemma 4.6 fits nicely under our notion of a tradeoff between (K1) and (K2): it
is always possible to pick a family with linear size relative to the size of the ground set
which guarantees (K1).

4.3 Kernel Example: Every Dicut has Weight Multi-

ple of τ

We show that if weighted digraph (D,w) is such that every dicut has weight that is a
multiple of τ , then every laminar family is a kernel of (D,w). Given a family of sets F and
U /∈ F let inter(U,F) = |{W ∈ F : W and U are intersecting }|. We require the following
lemma.

Lemma 4.7. Let L be a laminar family and suppose U ∈ L and W /∈ L where U and W
are intersecting. Then inter(W ∩ U,L) < inter(W,L) and inter(W ∪ U,L) < inter(W,L).

Proof. Given a set B ∈ L, B and U are not intersecting by L being laminar. Thus if B
contributes to either inter(W ∩ U,L), or inter(W ∪ U,L), then B and W are intersecting.
This shows that inter(U ∩W,L) ≤ inter(W,L) and inter(U ∪W,L) ≤ inter(W,L). The
inequality is strict since U and W are intersecting by assumption but not U ∩ W nor
U ∪W .

Lemma 4.7 is quite standard. For instance, it can be found in [18] in the proof of
Lemma 2.3.

A function h is modular if h(W ) + h(S) = h(W ∪ S) + h(W ∩ S).
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Theorem 4.8. If (D,w) is a weighted digraph where every dicut has weight that is a
multiple of τ(D,w), then every maximal laminar family of dicut shores is a kernel of
(D,w).

Proof. Let L be a maximal laminar family of dicut shores. Since L is laminar, there
exists J1, . . . , Jτ in A1 such that the Ji are all L-equitable (Theorem 4.6). For U ⊆ V , let
φ(U) = w(δ+(U))−w(δ−(U)), and φJi(U) = w(δ+(U)∩ Ji)−w(δ−(U)∩ Ji). Observe that
φ and φJi are modular.

We show that that each Ji is equitable for every dicut. For an eventual contradiction,
let δ+(W ) be a dicut such that a Ji exists which is not equitable for δ+(W ). We pick
δ+(W ) which minimizes inter(W,L). Clearly W /∈ L, and L ∪ {W} is not laminar as
otherwise L is not maximal; there exists S ∈ L where S and W are intersecting. Then
φJi(W ) = φJi(W ∩S)+φJi(W ∪S)−φJi(S). By minimality, and Lemma 4.7, Ji is equitable
for W ∩ S and W ∪ S. It is also equitable for S since S ∈ L. Therefore,

φJi(W ) =
1

τ
(φ(W ∩ S) + φ(W ∪ S)− φ(S)) =

1

τ
φ(W )

Hence Ji is a dijoin which is equitable for W , a contradiction.

Corollary 4.9. If a weighted digraph is such that every dicut has weight that is a multiple
of τ , then the weighted digraph packs.

A weighted digraph is said to be divisible by k if k divides φ(v) for every vertex v.
Mészáros [12] showed the following lemma:

Lemma 4.10 ([12], Lemma 9). If a weighted digraph is divisible by k, then there is a
partition of weight 1 arcs J1, . . . , Jk such that φJi(v) = 1

k
φ(v) for all vertex v.

In particular, the lemma implies that if a weighted digraph is divisible by τ , then a
weighted packing of τ dijoins exists. The proof of Theorem 4.8 is similar to the proof of
Lemma 4.10. In fact, the two properties are equivalent when D is an acyclic digraph.

Lemma 4.11. If D is a directed acyclic graph, then every arc belongs to a dicut.

Proof. Let a = (v0, v1) ∈ A and consider the following procedure:

1. Initialize U = {v0},

2. for every arc (u, v) ∈ δ−(U), add u to U , and
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3. repeat step 2 until no such arcs exist.

The procedure halts since D is finite; let U be the set generated by the procedure after
halting. Observe that for every u ∈ U , a dipath exists from u to v0. After halting, δ(U)
is a dicut as long as U ( V , as if an arc enters U , the procedure would not have halted.
For an eventual contradiction, suppose U = V . Then v1 ∈ U and a dipath exists from v1
to v0. This path with arc a is a dicycle, a contradiction.

Lemma 4.12. For every v ∈ V , if δ(v) is not a dicut then there exists two dicuts
δ+(U), δ+(W ) such that φ(v) = φ(W )− φ(U).

Proof. Let v ∈ V such that δ(v) is not a dicut. For a = (u, v) ∈ δ−(v), let Ua be a dicut
shore such that a ∈ δ+(Ua), which exists by Lemma 4.11. Crucially, v /∈ Ua for all such
a. For U =

⋃
a∈δ−(v) Ua, δ

+(U) is a dicut, and δ−(v) ⊆ δ+(U) since for all (u, v) ∈ δ−(v),
u ∈ U .

Now consider W = U ∪ {v}. Observe that for every (u, v) ∈ δ−(v), u ∈ U , hence
δ−(W ) = ∅, and δ+(W ) is a dicut. For every a ∈ δ+(U), a does not enter v if and only if
a ∈ δ+(W ). Hence, φ(v) = φ(W )− φ(U).

Proposition 4.13. A weighted acyclic digraph (D,w) is divisible by τ(D,w), if and only
if, the weight of every dicut of (D,w) is a multiple of τ(D,w).

Proof. (⇒) Recall that φ is modular. Then for every dicut δ+(U), φ(U) =
∑

u∈U φ(u).
Clearly φ(U) is divisible by τ since every φ(u) is.

(⇐) If v ∈ V is such that δ(v) is a dicut, then the result is immediate. Otherwise,
by Lemma 4.12, there exists dicuts δ+(U), δ+(W ) such that φ(v) = φ(W ) − φ(U). Since
φ(W ), φ(U) are divisible by τ(D,w), φ(v) is divisible by τ .

4.4 Weighted (τ, τ + 1)-Bipartite Digraphs

A bipartite digraph is a digraph where every vertex is either a source or a sink. A weighted
(τ, τ + 1)-bipartite digraph is a weighted bipartite digraph where every dicut has weight at
least τ , every vertex has weighted degree τ or τ + 1, and the set of vertices with weighted
degree τ + 1 form a stable set. Such weighted digraphs are called sink-regular if every sink
has weighted degree τ ; see Figure 4.2 for an example.
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Figure 4.2: A weighted (3, 4)-bipartite digraph that is sink regular. Every source v has
w(δ+(v))− w(δ−(v)) mod 3 = 1, thus ρ = 3.

Recall that

ρ(D,w) :=
1

τ(D,w)

∑
v∈V

[w(δ+(v))− w(δ−(v)) mod τ(D,w)].

Abdi, Cornuéjols and Zlatin [3] introduced the Decompose-and-Lift procedure, which de-
composes a weighted digraph (D,w) into a finite collection of weighted (τ, τ + 1)-bipartite
digraphs (Di, wi), i ∈ I. They showed that ρ(Di, wi) ≤ ρ(D,w) for all i ∈ [m]. Further-
more, if Ji is a dijoin of (Di, wi) using only the weight 1 arcs, then the collection J1, . . . , Jm
can be mapped to a dijoin of (D,w).

Theorem 4.14 ([3], Theorem 2.6). Every weighted digraph (D1, w1) with ρ(D1, w1) ≤ ρ
and τ(D1, w1) ≥ 2 has a w1-weighted packing of dijoins of size τ , if and only if, it is true
for every sink-regular weighted (τ, τ + 1)-bipartite digraph (D2, w2) with ρ(D2, w2) ≤ ρ and
τ(D2, w2) ≥ 2.

In fact, the reduction is more general. A k-dijoin is a set of arcs such that it intersects
every dicut at least k times. The reduction can map k-dijoins of the weighted (τ, τ + 1)-
bipartite digraphs to k-dijoins of original weighted digraphs as well.

The reduction was used in [3] to show that weighted digraphs with ρ ∈ {0, 1, 2} pack.
Prior to their work, Mészáros [12] proved the case for ρ = 0; a weighted digraph has ρ = 0
precisely when it is divisible by τ . Our goal is to rephrase their results using the language
of kernels.
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4.5 Kernel Example: Weighted (τ, τ +1)-Bipartite Di-

graphs with ρ ∈ {1, 2}

If (D,w) is a weighted (τ, τ + 1)-bipartite digraph with ρ(D,w) = 1, then the family of all
singletons is a kernel of (D,w); let

Kρ=1(D,w) = {{v} : v ∈ V }.

For U ⊆ V , the discrepancy of U (denoted disc(U)) is the number of sinks minus the
number of sources in U . Note that disc is a modular function. Let U0 denote the families
of dicut shores δ+(U) such that disc(U) = 0, and let U0

min denote the minimal sets in U0.
If (D,w) is a weighted (τ, τ + 1)-bipartite digraph with ρ(D,w) = 2, then the family

Kρ=2(D,w) = {{v} : v ∈ V } ∪
{
a(V )− U : U ∈ U0

min

}
is a kernel of (D,w). We will first show that Kρ=1(D,w) and Kρ=2(D,w) satisfy the
partition condition when ρ(D,w) = 1 and 2 respectively. We delay proving the dijoin
condition; this allows us to postpone introducing additional the machinery from [3] until
it is required.

4.5.1 The Partition Condition is Satisfied

We introduce some terminology for weighted (τ, τ + 1)-bipartite digraphs. A vertex v is
active if w(δ(v)) = τ+1. For instance, in the weighted (3, 4)-bipartite digraph in Figure 4.2,
every source is an active vertex. For U ⊆ V , let a(U), s(U) and t(U) respectively denote
the active vertices, sinks and sources in U . From here on, we say that a weighted digraph
(D,w) satisfies standard assumptions (or satisfies (SA)) if,

1. (D,w) is a weighted (τ, τ + 1)-bipartite digraph for τ ≥ 1 with w ∈ {0, 1}A, and

2. (D,w) is sink regular.

Due to its structure, one advantage of considering weighted (τ, τ+1)-bipartite digraphs
is that it is amenable to counting arguments. This allows us to derive a formula for weights
of dicuts easily. The following is from [3] with the proofs paraphrased.

Lemma 4.15 ([3], Lemma 3.7). For a weighted digraph (D,w) satisfying (SA), the follow-
ing statements hold:
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1. ρ(D,w) = disc(V ) and |a(V )| = τ(D,w)× disc(V ),

2. For every dicut δ+(U) of D, w(δ+(U)) = |a(U)| − τ(D,w)× disc(U),

3. For every dicut δ+(U) of D, disc(U) ≤ disc(V ) − 1, and if the equality holds, then
w(δ+(U)) = τ(D,w).

Proof. (1) Observe that

ρ(D,w) =
1

τ

∑
v∈V

w(δ+(v))− w(δ−(v)) mod τ

=
1

τ
|a(V )|

since the digraph is sink-regular. Now showing ρ(D,w) = disc(V ) proves both claims.
Double counting A1, we have that τ |t(V )| = τ |s(V )| + |a(V )|, which immediately implies
|a(V )| = τ |t(V )| − τ |s(V )| = τdisc(V ).

Let δ+(U) be a dicut in D. (2) Every arc in A1 incident to a sink in U is incident
to a source in U since δ−(U) = ∅. Thus w(δ+(U)) is the number of arcs in A1 incident
to a source in U , and a sink not in U . The digraph is sink-regular, thus w(δ+(U)) =
τ |s(U)|+ |a(U)| − τ |t(U)| = |a(U)| − τdisc(U).

(3) For an eventual contradiction, suppose disc(U) ≥ disc(V ). Using (2), we get
w(δ+(U)) ≤ |a(U)|−τdisc(V ) ≤ |a(V )|−τdisc(V ). However by (1), |a(V )|−τdisc(V ) = 0,
which contradicts τ > 0 being the minimum weight of a dicut. Plugging in disc(U) =
disc(V )− 1 in (2) immediately shows the second claim.

Clearly Kρ=1(D,w) is laminar, and hence satisfies (K1) by Lemma 4.6. Now we proceed
to prove that Kρ=2(D,w) satisfies (K1) by also proving it is laminar.

Lemma 4.16. For a weighted digraph (D,w) satisfying (SA) with ρ(D,w) = 2, the union
of two distinct sets in U0

min contains all active vertices of (D,w).

Proof. Let U,W ∈ U0
min be distinct. Recall that w(δ+(U)) = |a(U)| − τdisc(U) ((2) of

Lemma 4.15), thus |a(U)|, |a(W )| ≥ τ .

Suppose that a(U) ∩ a(W ) = ∅. Since |a(V )| = ρτ = 2τ , and a(U) and a(W ) are
disjoint, we have a(V ) = a(U) ∪ a(W ).
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Now suppose that a(U) ∩ a(W ) 6= ∅, meaning U ∩ W 6= ∅. We may assume that
U ∪W 6= V as otherwise the result is trivially true. Then δ+(U ∩W ) and δ+(U ∪W ) are
dicuts of D, and by the modularity of discrepancy,

disc(U ∪W ) + disc(U ∩W ) = disc(U) + disc(W ) = 0.

Observe that by minimality disc(U ∩W ) 6= 0, and thus disc(U ∪W ) 6= 0. Furthermore,
disc(U ∩W ), disc(U ∪W ) ∈ {−1, 1} since disc(U) ≤ disc(V ) − 1 for any dicut δ+(U);
exactly one of disc(U ∩W ), disc(U ∪W ) is 1.

Suppose disc(U ∩W ) = 1. By (3) of Lemma 4.15, δ+(U ∩W ) is a minimum weight
dicut, thus

w(δ+(U ∩W )) = |a(U ∩W )| − τdisc(U ∩W ) = |a(U ∩W )| − τ = τ,

i.e. |a(U∩W )| = 2τ . Therefore a(U∩W ) contains all active vertices, hence U∪W contains
all active vertices.

Using similar reasoning as above, when disc(U ∪W ) = 1 we can directly show that
|a(U ∪W )| = 2τ .

Lemma 4.17. If δ+(U) is a dicut of a weighted digraph satisfying (SA) with disc(U) =
ρ− 1, then a(V ) ⊆ U .

Proof. By Lemma 4.15, w(δ+(U)) = |a(U)| − τdisc(U) = τ . Plugging in disc(U) = ρ− 1,
we get |a(U)| = ρτ = |a(V )|.

Lemma 4.18. If (D,w) satisfies (SA) and ρ(D,w) = 2, then Kρ=2(D,w) satisfies (K1).

Proof. By Lemma 4.6, it suffices to show that Kρ=2(D,w) is laminar. To this end, we
prove that the sets in {a(V ) − a(U) : U ∈ U0

min} are pairwise disjoint. For an eventual
contradiction, suppose there exists U,W ∈ U0

min such that (a(V )− U) ∩ (a(V )−W ) 6= ∅.
Observe that a(V )− (U ∪W ) = (a(V )− U) ∩ (a(V )−W ) 6= ∅, and thus a(V ) 6⊆ U ∪W .
This contradicts Lemma 4.16.

4.5.2 The Dijoin Condition is Satisfied

We introduce additional terminology from [3]. A set of arcs J ⊆ A1 is a rounded 1-factor of

(D,w) if for every vertex v, |J ∩ δ(v)| ∈
{⌊

w(δ(v))
τ

⌋
,
⌈
w(δ(v))

τ

⌉}
. A dyad center of a rounded
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Figure 4.3: A weighted (3, 4)-bipartite digraph with ρ = 2. The shores in {a(V ) − U :
U ∈ U0

min} are indicated in gray.

1-factor J is a vertex where J contains two arcs incident to v; dyad centers are necessarily
active vertices. The set of dyad centers of J is denoted as dc(J).

Remark 4.19. For a weighted digraph satisfying (SA), a set of arcs is a rounded 1-factor,
if and only if, it is equitable for the family {{v} : v ∈ V }.

The next remark shows the utility of considering weighted (τ, τ + 1)-bipartite digraphs
when packing dijoins.

Remark 4.20 ([3], Remark 3.2). If J1, . . . , Jτ are disjoint dijoins in A1 for a weighted
(τ, τ + 1)-bipartite digraph, then the Ji partition A1 and are rounded 1-factors.

In addition, A1 can always be partitioned into τ rounded 1-factors.

Theorem 4.21 ([3], Theorem 3.4, originally from [6]). Let G be a bipartite graph and
k ≥ 1 an integer. The edges of G can be partitioned into J1, . . . , Jk such that |Ji ∩ δ(v)| ∈{⌊
|δ(v)|
k

⌋
,
⌈
|δ(v)|
k

⌉}
for each i ∈ [k].

The following lemma is from [3] with the proofs paraphrased.

Lemma 4.22 ([3], Lemma 3.8). Let J ⊆ A1 be a rounded 1-factor of a weighted digraph
(D,w) satisfying (SA). The following statements hold:

1. |dc(J)| = ρ(D,w) = disc(V ),

2. for every dicut δ+(U) of D, |J ∩ δ+(U)| = |dc(J) ∩ U | − disc(U)

3. J is a dijoin if and only if |dc(J) ∩ U | ≥ 1 + disc(U) for every dicut δ+(U) of D.

46



Proof. (1) Sink regularity implies that the dyad centers of J are sources. By J being a
rounded 1-factor, J has |t(V )| arcs incident to sinks, and |s(V )|+ |dc(J)| arcs incident to
sources, i.e. |dc(J)| = disc(V ).

(2) There are |dc(J) ∩ U | + |s(U)| arcs in J incident to a source in U . Exactly |t(U)|
arcs in J are incident to a sink in U since J has precisely one arc incident to every sink,
and no arc enters U . Thus

|delta+(U) ∩ J | = |dc(J) ∩ U |+ |s(U)| − |t(U)| = |dc(J) ∩ U | − disc(V )

(3) is a direct consequences of (2).

Recall that Kρ=2(D,w) contains {a(V )− U : U ∈ U0
min}. Part (3) of Lemma 4.22 shows

that whether a rounded 1-factor is a dijoin is solely a function of its dyad centers. With
this lemma in hand, the relevance of U0

min is clear: to show that a rounded 1-factor J has
sufficiently many dyad centers in every U ∈ U0, it suffices to consider the minimal such
shores. We first show that when ρ(D,w) = 1, the family of all singletons satisfies (K2).

Theorem 4.23. If (D,w) satisfies (SA) and ρ(D,w) = 1, then Kρ=1(D,w) is a kernel of
(D,w).

Proof. Let J1, . . . , Jτ be the partition of A1 such that every Ji is Kρ=1(D,w)-equitable.
Then, every Jis is a rounded 1-factors (Remark 4.19).

Now it suffices to check that for every dicut δ+(U), |dc(Ji) ∩ U | ≥ 1 + disc(U) holds
(Lemma 4.22). By Lemma 4.15, every dicut δ+(U) has disc(U) ≤ disc(V )−1 = ρ−1 ≤ 0.
The inequality is clearly satisfied when disc(U) < 0, so suppose disc(U) = 0, which is
only the case when ρ = 1. Then disc(U) = ρ − 1, and by Lemma 4.17, a(V ) ⊆ U and
|dc(Ji) ∩ U | = ρ; every Ji is a dijoin as desired.

Corollary 4.24. Weighted (τ, τ + 1)-bipartite digraphs satisfying ρ = 1 pack.

Our proof of Theorem 4.23 proceeds similarly to the proof in [3]; they show that every
rounded 1-factor is a dijoin. In fact, their proof goes one step further to show that when
ρ = 1, a w-weighted packing of size τ exists where every dijoin is equitable for every dicut.

When ρ = 2, rounded 1-factors do not necessarily intersect dicuts with shores in U0

(see Figure 4.4); observe that Lemma 4.17 cannot be applied to U0 when ρ = 2. However,
Abdi, Cornuéjols and Zlatin [3] showed that it is always possible to make changes to the
rounded 1-factors to yield dijoins. Alternating paths between dyad centers of rounded
1-factors were used to swap dyad centers around until every rounded 1-factor satisfied the
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inequality in Lemma 4.22. In essence, they identify a family (in particular the family of
singletons) and derive a partition of A1 into τ equitable sets, and make local changes until
every equitable set is a dijoin. Our method for ρ = 2 is stronger in the sense that local
changes are no longer necessary; the equitable sets are immediately dijoins.

Figure 4.4: A weighted (3, 4)-bipartite digraph with ρ = 2 where its weight 1 arcs are
partitioned into 3 rounded 1-factors. The dyad centers of rounded 1 factors are indicated
with circles. Observe that the blue and black rounded 1-factors are not dijoins. Namely,
they do not contain dyad centers in dicut shores with discrepancy 0.

Theorem 4.25. If (D,w) satisfies (SA) and ρ(D,w) = 2, then Kρ=2(D,w) is a kernel of
(D,w).

Proof. The set Kρ=2(D,w) is laminar (Lemma 4.18), and let J1, . . . , Jτ be a partition of
A1 into Kρ=2(D,w)-equitable sets, which exists by Lemma 4.6. Since the Jis are equitable
for every trivial dicut, they are rounded 1-factors.

If δ+(U) is a dicut, then disc(U) ≤ 1. The inequality |dc(Ji) ∩ U | ≥ 1 + disc(U) is
satisfied for disc(U) < 0 trivially, and for disc(U) = ρ − 1 = 1, by Lemma 4.17. For
an eventual contradiction, suppose that a dicut δ+(U) where disc(U) = 0 and Ji such
that |dc(Ji) ∩ U | < 1. Let U ′ ⊆ U be such that U ′ ∈ U0

min. Recall that w(δ+(U ′)) =
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|a(U ′)| − τdisc(U ′) ≥ τ (Lemma 4.15), thus |a(U ′)| ≥ τ . Then,⌈
1

τ
w(δ+(a(V )− U ′))

⌉
=

⌈
τ + 1

τ
|a(V )− U ′|)

⌉
= |a(V )− U ′|+

⌈
1

τ
|a(V )− U ′|

⌉
≤ |a(V )− U ′|+ 1,

where last inequality comes from |a(V )− U ′| = |a(V )| − |a(U ′)|, and |a(V )| = 2τ .

Since |dc(Ji)| = ρ = 2, this implies that |dc(Ji)∩(a(V )−U)| = |dc(Ji)∩(a(V )−U ′)| = 2;
as Ji is a rounded 1-factor, it has one arc incident to every active vertex in a(V )−U ′, and
two additional arcs for each dyad center in a(V )− U ′. This yields a contradiction as Ji is
not equitable for U ′ since |Ji∩δ(a(V )−U ′)| = |a(V )−U ′|+2 >

⌈
1
τ
w(δ+(a(V )− U ′))

⌉
.

Corollary 4.26. Weighted (τ, τ + 1)-bipartite digraphs satisfying ρ = 2 pack.

4.6 Beyond ρ = 2

Finding a canonical kernel construction for weighted (τ, τ+1)-bipartite digraphs with ρ ≥ 3
is out of reach; Schrijver’s counterexample has ρ value of 3 (see Figure 4.5). Hence, not
every weighted (τ, τ + 1)-bipartite digraph with ρ ≥ 3 packs.

Given this roadblock, one relaxation of Edmonds-Giles conjecture mentioned in Chap-
ter 3 was to ask what the maximum size weighted packing is for all weighted digraphs
with the weight of the minimum dicut τ . In other words, what is the function f(τ) where
every weighted digraph with weight of its minimum dicut τ , we can always find a weighted
packing of size f(τ)? Due to Schrijver’s counterexample, f(τ) = τ

2
is the best possible.

However, with the notion of k-dijoins (recall that a k-dijoin is a set of arcs which have
at least k arcs common with every dicut), another relaxation can be formulated. We say
that (D,w) k-packs if there exists J1, . . . , Jm ⊆ A1 such that

∑
i∈[m] ki = τ , where Ji is a

ki-dijoin with ki ≤ k.

Question 4.27. Given a weighted digraph (G,w), when does (G,w) k-pack?

It is currently unknown if there is a weighted digraph which 3-packs but does not 2-pack;
in Schrijver’s counterexample, the set of weight 1 arcs is a 2-dijoin. Thus, a refinement of
the above question is:
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Figure 4.5: The red vertices have value 1, and the black vertices have value 0 under
w(δ+(v))− w(δ−(v)) mod τ . Thus ρ = 6

2
= 3 for Schrijver’s counterexample.

Question 4.28. Does every weighted digraph 2-pack?

We can even extend the notion of kernels to achieve k-packings. For a family of dicut
shores O of (D,w), J ⊆ A1(D,w) is (F , k)-equitable for 1 ≤ k ≤ τ(D,w) (or k-equitable
for F) if for every dicut shore U ∈ O,⌊

k

τ(D,w)
w(δ(U))

⌋
≤ |J ∩ δ(U)| ≤

⌈
k

τ(D,w)
w(δ(U))

⌉
.

For a weighted digraph (D,w), a k-kernel F is a family of dicut shores of D such that

(KK1) A1(D,w) can be partitioned into J1, . . . , Jn, 1 ≤ n ≤ τ(D,w), such that for all
i ∈ [n], Ji is (F , ki)-equitable where ki ≤ k, and

(KK2) a (F ,m)-equitable set is a m-dijoin for all 1 ≤ m ≤ τ(D,w).

Remark 4.29. If a k-kernel exists for a weighted digraph, then it k-packs.

Interestingly, we can extend the construction of the kernel for weighted (τ, τ + 1)-
bipartite digraphs with ρ = 2 to a set of families which satisfies (KK2) for higher ρ values.
Suppose (D,w) satisfies (SA). We define U i as the set of dicut shores U where δ+(U) is
a dicut and disc(U) = i; let U imin be the minimal sets in U i. Furthermore, let Ai be the
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minimal sets in {a(U) : U ∈ U imin}, and Ai = {a(V )− U : U ∈ Ai}. Let K(D,w) be a set
of families of dicut shores where every family in K(D,w) can be expressed as

{{v} : v ∈ V } ∪
⋃

0≤i≤ρ(D,w)−2

Si

where Si is either Ai or Ai. When ρ(D,w) = 2, picking A0 nearly derives the kernel. Our
only concern for rounded 1-factors is whether they have enough dyad centers in each dicut
shore; hence we considered only the dicuts minimal in their shores. However, every dyad
center is an active vertex; we may further refine the family by considering the dicuts which
are minimal in their active vertices among the dicut shores with the same discrepancy.
This detail was previously omitted for simplicity.

The flexibility of choosing between Ai and Ai arises since equitability imposes both a
lowerbound and an upperbound. If Ai is picked, the upperbound imposed on the sets of
Ai will ensure that enough dyad centers are contained in these sets; if Ai is picked, the
lowerbound imposed will ensure that not too many dyad centers are picked outside of the
sets in Ai.

Theorem 4.30. Suppose (D,w) satisfies (SA). For every F ∈ K(D,w) and 1 ≤ k ≤
τ(D,w), if J is (F , k)-equitable, then J is a k-dijoin.

Proof. Suppose J is (F , k)-equitable, where F ∈ K(D,w). Observe that D[J ] is a bipartite
digraph since D is. Furthermore, since J is (F , k)-equitable, every sink and non-active
source has degree k and every active source has degree either k or k + 1 in D[J ]. Using
Theorem 4.21, we partition J into J1, . . . , Jk; the Ji are are rounded 1-factors based on the
degrees of vertices in D[J ]. In other words, J is a union of k disjoint rounded 1-factors. For
brevity, we will abuse notation and denote dc(J) = dc(J1)∪ · · · ∪ dc(Jk). By Lemma 4.22,

|J ∩ δ+(U)| =
∑
i∈[k]

|Ji ∩ δ+(U)| = |dc(J) ∩ U | − kdisc(U).

Therefore, we will show that |dc(J) ∩ U | ≥ k + kdisc(U) for all dicut δ+(U).

If disc(U) < 0, then the above inequality is trivially satisfied; if disc(U) = ρ − 1,
then Lemma 4.17 implies the above inequality. Assume 0 ≤ disc(U) ≤ ρ − 2. Since
w(δ+(U)) = |a(U)| − τdisc(U) ≥ τ , we have |a(U)| ≥ τ(1 + disc(U)).

Suppose that for i = disc(U), Ai was chosen for F , and let U ′ ∈ U0
min be such that
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a(U ′) ∈ Ai and a(U ′) ⊆ a(U). By J being (F , k)-equitable, where a(U ′) ∈ F ,

|J ∩ δ+(a(U ′))| ≥
⌊
k

τ
w(δ+(a(U ′)))

⌋
= k|a(U ′)|+

⌊
k

τ
|a(U ′)|

⌋
≥ k|a(U ′)|+ k(1 + disc(U ′)).

Since every Ji is incident to every vertex in U ′, and dyad centers of Ji and Jj are disjoint
for i 6= j, the above inequality implies that |dc(J)∩U | ≥ |dc(J)∩U ′| ≥ k(1 + disc(U ′)) as
desired.

Now suppose that Ai was chosen, and pick a(U ′) to be the same as before. By J
being (F , k)-equitable (this time using the upperbound), and since a(V )− a(U ′) ∈ F and
|a(V )| = ρτ ,

|J ∩ δ+(a(V )− a(U ′))| ≤
⌈

1

τ
w(δ+(a(V )− a(U ′)))

⌉
= k|a(V )− a(U ′)|

⌈
k

τ
|a(V )− a(U ′)|

⌉
≤ k|a(V )− a(U ′)|+ k(ρ− 1− disc(U)).

Again, this implies that |dc(J)∩ (a(V )− a(U ′))| ≤ k(ρ− 1− disc(U)). Since |dc(J)| = kρ,
we get that |dc(J) ∩ a(U ′)| ≥ k(1 + disc(U)), as desired.

Hence every family in K(D,w) satisfies (KK2). When is there a set in K(D,w) which
satisfies (KK1)?

Question 4.31. If (D,w) k-packs, does K(D,w) contain a k-kernel?
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Chapter 5

Future Directions

Let us conclude the thesis by stating some open questions, and natural extentions to the
thesis.

We conjecture the following generalization of the Dyadic Conjecture; in Chapter 2, we
proved the conjecture for the clutter of dijoins.

Conjecture 5.1. Every ideal clutter has an optimal fractional packing that is [τ ]-adic.

Finding kernels of weighted digraphs is at least as hard as finding a weighted packing of
τ dijoins. This is true for k-kernels and k-packings as well. It is unknown whether finding
(k-)kernels and finding (k-)packings is the same question.

Question 5.2. Suppose a weighted digraph (D,w) k-packs. Does a k-kernel exist for
(D,w)?

One motivation behind finding a (k-)kernel is to apply constraints on a smaller, ideally
polynomial, number of dicuts. In the previous chapter, we found a set of families K(D,w)
such that every F ∈ K(D,w) satisfies (KK2) (and hence satisfies (K2)). Unfortunately,
the families in K(D,w) are superpolynomially large in general; we give a construction of a
weighted (τ, τ + 1)-bipartite digraph with such K(D,w).

For τ ≥ 4, we will refer to the following construction of a weighted (τ, τ + 1)-bipartite
digraph (G,w) as C(τ) (we will say that a digraph was constructed using C(τ)). Let
(Di = (Vi, Ai), wi = 1) for i ∈ [τ ] be a weighted (τ, τ + 1)-bipartite digraph which contains
τ + 1 sinks, τ sources (which are all active vertices) and where every source is incident to
every sink. Observe that the discrepancy of Vi is 1.
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We construct a weighted digraph (G,w) in the following way. The vertex set of digraph
G is {s, t} ∪

⋃
i∈[τ ] Vi, where s is a source and t is a sink. For each (Di, wi), we arbitrarily

pick an arc (si, ti) and make its weight 0, and add two arcs (s, ti) and (si, t) of weight 1;
see Figure 5.1 for an example.

(D1, w1) (D2, w2) (D3, w3)

Figure 5.1: Illustration of (G,w) where τ = 4. As usual, solid arcs of weight 1 and dashed
arcs are of weight 0. The weighted digraph (D4, w4) is explicitly shown; all weighted
digraphs (Di, wi), i ∈ [3] can be replaced by the same weighted digraph as (D4, w4).

Remark 5.3. If δ+(U) is a dicut and u ∈ U is a sink, then δ+(U − {u}) is a dicut.

Lemma 5.4. If (G,w) is a weighted digraph constructed using C(τ) where τ ≥ 4 and τ is
even, then (G,w) a weighted (τ, τ + 1)-bipartite digraph that is sink regular.

Proof. Clearly every vertex is either a source or a sink. Every sink has weighted degree
τ , and every source except s (which has weighted degree τ) has weighted degree τ + 1. It
now suffices to show that no dicut has weight less than τ . Let δ+(U) be a dicut of G, and
let Ui = U ∩ Vi. We consider cases on whether s or t are in U .

Claim 1. If Ui 6= Vi and Ui 6= ∅, then w(δ+G(Ui)) ≥ τ .
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Proof The set Ui may not be a dicut shore in G due to the arc (s, ti). However, since
U is a dicut in G, and every arc in Di is present in G, Ui is a dicut shore in Di. Since
(Di, wi) is a weighted (τ, τ + 1)-bipartite digraph, wi(δ

+
Di

(Ui)) ≥ τ . The only weight that
was decreased when constructing (G,w) is (si, ti). However, if si ∈ Ui, then (si, t) ∈ δ+G(Ui).
Thus w(δ+G(Ui)) ≥ wi(δ

+
Di

(Ui)) ≥ τ . ♦

No arc exists between Vi and Vj for i 6= j. Furthermore, if s /∈ U , Ui 6= Vi as otherwise
(s, ti) enters Ui. Suppose U contains neither s nor t. Then there exists Ui 6= ∅, and
δ+G(Ui) ⊆ δ+G(U); the above claim implies that δ+G(U) has weight at least τ .

Suppose s ∈ U but t /∈ U . No arc enters s, so if there exists a Ui such that ∅ 6= Ui 6= Vi,
then w(δ+(U)) ≥ w(δ+G(Ui)) ≥ τ . If every Ui is either empty, or Ui = Vi for all i ∈ [τ ],
then clearly at least τ arcs in δ−(t) ∪ δ+(s) (all of weight 1) are in δ+(U).

Suppose s /∈ U and t ∈ U . Then si ∈ U for all i ∈ [τ ], i.e. Ui is non-empty for all
i ∈ [τ ]. Moreover, Ui 6= Vi for all i ∈ [τ ], since otherwise (s, ti) enters U . Using the above
claim, but observing that (si, t) is not in δ+(U), we have w(δ+(U)) ≥ τ 2 − τ which is at
least τ for τ ≥ 2.

Finally, suppose s, t ∈ U . Again, Ui is non-empty for all i ∈ [τ ]. At least one Ui
exists which is not Vi since U 6= V . If Ui = {si}, then there are τ weight 1 arcs in
{(s, ti)} ∪ δ+(Ui) − {(si, t)}, which are all in δ+(U). If Ui contains only sources, then
clearly the weight of δ+(U) is at least τ . If Ui contains a sink, then it must contain all
sources in Vi, as every sink is incident to every source. Hence, the contribution to the
weight w(δ+(U)) by arcs incident to Vi when a sink is in Ui is when all but one sink is in
Ui. Whatever the excluded sink may be, the contribution of arcs incident to Vi is at least
τ . �

Theorem 5.5. Given (G,w) that was constructed using C(τ) where τ ≥ 4 and τ is even,
we have |A τ

2
−1| ≥

(
τ
τ/2

)
.

Proof. Let Nj ⊆ [τ ], j ∈
[(

τ
τ/2

)]
be distinct combinations of [τ ] of size τ

2
, and let Wj =

{s} ∪
⋃
i∈Nj Vi. Observe that δ+(Wj) is a dicut, and every Wj contains τ2

2
active vertices.

The discrepancy of Vi is 1, thus the discrepancy of Wj is τ
2
− 1 ≥ 1 since τ ≥ 4.

We show that the sets a(Wj) are in A τ
2
−1. For an eventual contradiction, suppose that

there exists Wj such that Wj /∈ U
τ
2
−1

min , i.e. there exists δ+(U) such that disc(U) = τ
2
− 1,

and a(U) ( a(Wj). Such a shore must have |a(U)| < τ2

2
, and we pick the shore U which

minimizes |a(U)|.
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Claim 1. For all i ∈ [τ ], either U contains all or none of the active vertices (i.e. sources)
of Vi.

Proof For an eventual contradiction, suppose there exists Vi such that 1 ≤ |s(Vi)∩U | < τ .
Since every sink is incident to every source, the shore U cannot contain a sink in Vi.
Consider Unew, which is derived by removing |Vi ∩ U | sinks in U − Vi. If t ∈ U − Vi
then t is removed; the other |Vi ∩ U | − 1 sinks are chosen arbitrarily. This is always
possible, as the discrepancy of U is positive. The vertices in U ∩ Vi are sources which
are not incident to sinks outside of Vi except possibly t. Thus U − Vi − {t} is a dicut
shore, and after removing other sinks it is still a dicut shore (Remark 5.3). Observe that
disc(Unew) = τ

2
− 1, a(Unew) ( a(U) and δ+(Unew) is a dicut, contradicting the minimality

of |a(U)|. ♦

Let m be the number of Vi where all its active vertices are contained in U , and possibly
after rearranging the digraph, let [m] be the indices. Since all active vertices of D are in
one of the Vi, we have m τ

2
= |a(U)| < τ2

2
, i.e. m < τ

2
. Suppose there exists ti ∈ U for some

i ∈ [m]. Then s ∈ U , and the maximum discrepancy of U is m− 1, by taking all sinks in
each of the Vi, i ∈ [m]. This is a contradiction since m− 1 < τ

2
− 1, thus a(U) /∈ Ai. If no

ti exists such that ti ∈ U , then the maximum discrepancy of U is 0, which again yields a
contradiction. �

The weighted (τ, τ + 1)-bipartite digraph (G,w) has 2τ 2 + τ + 2 vertices, but since
|Ai| = |Ai|, every family in K(D,w) has at least

(
τ
τ/2

)
≥ 2

τ
2 sets. Recall that a laminar

family of dicut shores guaranteed (K1) (and therefore (KK1)), but at most 2|V |− 1 shores
are in such a family. The above theorem shows the flipside of the tradeoff; families in
K(D,w) guarantee (KK2), but in general its size is superpolynomially large.

Question 5.6. If a k-kernel exists, does a k-kernel of polynomial size always exist?

Additionally,

Question 5.7. When does a weighted (τ, τ + 1)-bipartite digraph (B,w) have a family in
K(B,w) which satisfies (KK1)?

The set of families K(B,w) is defined for every value of ρ. For a weighted digraph
(D,w), let (Di, wi), i ∈ [m] be the resulting collection of weighted (τ, τ + 1)-bipartite
digraph after applying the Decompose-and-Lifting procedure.

Question 5.8. Is there a natural mapping from K(Di, wi), i ∈ [m] to a family of dicut
shores F for (D,w) which satisfies (K2)?
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Mészáros [12] proved that every weighted digraph with ρ = 0 packs. Abdi, Cornuéjols
and Zlatin [3] did the same when ρ ∈ {1, 2} by reducing general packing statements to
packing statements for weighted (τ, τ + 1)-bipartite digraphs.

Question 5.9. Can we directly show that weighted digraphs with ρ ∈ {1, 2} pack without
reducing it to weighted (τ, τ + 1)-bipartite digraphs?

The useful structure of weighted (τ, τ + 1)-bipartite digraphs can be a double-edged
sword; its structure restricts arguments using induction. For instance, we may want to
contract a subgraph (e.g. apply k-SP contraction), but in general we have no guarantee
that the resulting weighted digraph is a weighted (τ, τ + 1)-bipartite digraph.
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Glossary of Notation

δ(U), δD(U) the cut corresponding U , a subset of vertices of D

δ+(U) the set of outgoing arcs for a subset of vertices U

δ−(U) the set of incoming arcs for a subset of vertices U

[n] the set {1, 2, . . . , n}

ZS+ a vector of non-negative integers with each entry corresponding to an
element in set S

J (D) the clutter of dijoins of digraph D

C(D) the clutter of dicuts of digraph D

τ(C, w) the minimum weight cover of clutter C

τ(D,w) the shorthand for τ(J (D), w)

ν(C, w) the maximum size of a w-weighted packing of clutter C

ν(D,w) the shorthand or ν(J (D), w)

A−B the set containing elements in A but not in B

A1, A1(D,w) the weight 1 arcs of (D,w), used when w ∈ {0, 1}A

Aw>0 the arcs of a weighted digraph with positive weight

A[U ] the arcs of a subgraph induced by subset of vertices U

D[U ] the shorthand for (U,A[U ])

w[U ] the weight of remaining arcs in the subgraph induced by U

(D,w)[U ] the shorthand for (D[U ], w[U ])
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D/U the digraph after contracting the subset of vertices U into a single vertex

w/U the weight of arcs remaining after contracting the subgraph induced by
U

(D,w)/U the shorthand for (D/U,w/U)

f(τ) the maximum packing number of weighted digraphs with minimum
weight dicut at least τ

f(τ, ε) the maximum packing number of ε-balanced weighted digraphs with
minimum weight dicut at least τ

Cross(D,w)(P) the weight of crossing arcs of partition P

def(D,w)(P , k) the k-deficiency of P , i.e. def(D,w)(P , k) = Cross(D,w)(P)− k(|P| − 1)

inter(U,F) the number of sets in F with a non-empty intersection with U , but does
not contain U and is not contained in U

φ(U) the value of w(δ+(U))− w(δ−(U))

φJ(U) the value of w(δ+(U) ∩ J)− w(δ−(U) ∩ J)

ρ(D,w) the value of 1
τ(D,w)

∑
v∈V [w(δ+(v))− w(δ−(v)) mod τ(D,w)]

disc(U) the number of sinks minus the number of sources

a(U) the set of active vertices in U

s(U) the set of sources in U

t(U) the set of sinks in U

U i the set of shores of dicuts with discrepancy i

U imin the set of minimal shores of dicuts with discrepancy i, i.e. the minimal
sets of U i

Ai the set {a(U) : U ∈ U imin}

Ai the complement of Ai in the active vertices, i.e. {a(V )− U : U ∈ Ai}

Kρ=1(D,w) the family of all singletons in D

Kρ=2(D,w) the family {{v} : v ∈ V } ∪ {a(V )− U : U ∈ U0
min}
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K(D,w) the set of families of dicut shores of (D,w), such that every family can be
described by {{v} : v ∈ V } ∪

⋃
0≤i≤ρ−2 Si, where Si is either Ai or Ai
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